Implications of white matter damage in amyotrophic lateral sclerosis
Zhou, Ting; Ahmad, Tina Khorshid; Gozda, Kiana; Truong, Jessica; Kong, Jiming; Namaka, Michael
2017-01-01
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, which involves the progressive degeneration of motor neurons. ALS has long been considered a disease of the grey matter; however, pathological alterations of the white matter (WM), including axonal loss, axonal demyelination and oligodendrocyte death, have been reported in patients with ALS. The present review examined motor neuron death as the primary cause of ALS and evaluated the associated WM damage that is guided by neuronal-glial interactions. Previous studies have suggested that WM damage may occur prior to the death of motor neurons, and thus may be considered an early indicator for the diagnosis and prognosis of ALS. However, the exact molecular mechanisms underlying early-onset WM damage in ALS have yet to be elucidated. The present review explored the detailed anatomy of WM and identified several pathological mechanisms that may be implicated in WM damage in ALS. In addition, it associated the pathophysiological alterations of WM, which may contribute to motor neuron death in ALS, with similar mechanisms of WM damage that are involved in multiple sclerosis (MS). Furthermore, the early detection of WM damage in ALS, using neuroimaging techniques, may lead to earlier therapeutic intervention, using immunomodulatory treatment strategies similar to those used in relapsing-remitting MS, aimed at delaying WM damage in ALS. Early therapeutic approaches may have the potential to delay motor neuron damage and thus prolong the survival of patients with ALS. The therapeutic interventions that are currently available for ALS are only marginally effective. However, early intervention with immunomodulatory drugs may slow the progression of WM damage in the early stages of ALS, thus delaying motor neuron death and increasing the life expectancy of patients with ALS. PMID:28791401
He, Meixia; Xing, Shihui; Yang, Bo; Zhao, Liqun; Hua, Haiying; Liang, Zhijian; Zhou, Wenliang; Zeng, Jinsheng; Pei, Zhong
2007-11-21
Oxidative DNA damage has been proposed to be a major contributor to focal cerebral ischemic injury. However, little is known about the role of oxidative DNA damage in remote damage secondary to the primary infarction. In the present study, we investigated oxidative damage within the ventroposterior nucleus (VPN) after distal middle cerebral artery occlusion (MCAO) in hypertensive rats. We also examined the possible protective effect of ebselen, one glutathione peroxidase mimic, on delayed degeneration in the VPN after distal MCAO. Neuronal damage in the ipsilateral VPN was examined by Nissl staining. Oxidative DNA damage and base repair enzyme activity were assessed by analyzing immunoreactivity of 8-hydroxy-2'-deoxyguanosine (8-ohdG) and 8-oxoguanine DNA glycosylase (OGG1), respectively. The number of intact neurons in the ipsilateral VPN decreased by 52% compared to the contralateral side in ischemia group 2 weeks after distal cerebral cortical infarction. The immunoreactivity of 8-ohdG significantly increased while OGG1 immunoreactivity significantly decreased in the ipsilateral VPN 2 weeks after distal cortical infarction (all p<0.01). Compared with vehicle treatment, ebselen significantly attenuated the neuron loss, ameliorated ischemia-induced increase in 8-ohdG level as well as decrease in OGG1 level within the ipsilateral VPN (all p<0.01). OGG1 was further demonstrated to mainly express in neurons. These findings strongly suggest that oxidative DNA damage may be involved in the delayed neuronal death in the VPN region following distal MCAO. Furthermore, ebselen protects against the delayed damage in the VPN when given at 24 h following distal MCAO.
Kaur, Shamsherjit; Singh, Satinderpal; Chahal, Karan Singh; Prakash, Atish
2014-11-01
Organophosphates (OP) are highly toxic compounds that cause cholinergic neuronal excitotoxicity and dysfunction by irreversible inhibition of acetylcholinesterase, resulting in delayed brain damage. This delayed secondary neuronal destruction, which arises primarily in the cholinergic areas of the brain that contain dense accumulations of cholinergic neurons and the majority of cholinergic projection, could be largely responsible for persistent profound neuropsychiatric and neurological impairments such as memory, cognitive, mental, emotional, motor, and sensory deficits in the victims of OP poisoning. The therapeutic strategies for reducing neuronal brain damage must adopt a multifunctional approach to the various steps of brain deterioration: (i) standard treatment with atropine and related anticholinergic compounds; (ii) anti-excitotoxic therapies to prevent cerebral edema, blockage of calcium influx, inhibition of apoptosis, and allow for the control of seizure; (iii) neuroprotection by aid of antioxidants and N-methyl-d-aspartate (NMDA) antagonists (multifunctional drug therapy), to inhibit/limit the secondary neuronal damage; and (iv) therapies targeting chronic neuropsychiatric and neurological symptoms. These neuroprotective strategies may prevent secondary neuronal damage in both early and late stages of OP poisoning, and thus may be a beneficial approach to treating the neuropsychological and neuronal impairments resulting from OP toxicity.
Neuregulin-1 is neuroprotective in a rat model of organophosphate-induced delayed neuronal injury
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yonggang; Lein, Pamela J.; Liu, Cuimei
2012-07-15
Current medical countermeasures against organophosphate (OP) nerve agents are effective in reducing mortality, but do not sufficiently protect the CNS from delayed brain damage and persistent neurological symptoms. In this study, we examined the efficacy of neuregulin-1 (NRG-1) in protecting against delayed neuronal cell death following acute intoxication with the OP diisopropylflurophosphate (DFP). Adult male Sprague–Dawley rats were pretreated with pyridostigmine (0.1 mg/kg BW, i.m.) and atropine methylnitrate (20 mg/kg BW, i.m.) prior to DFP (9 mg/kg BW, i.p.) intoxication to increase survival and reduce peripheral signs of cholinergic toxicity but not prevent DFP-induced seizures or delayed neuronal injury. Pretreatmentmore » with NRG-1 did not protect against seizures in rats exposed to DFP. However, neuronal injury was significantly reduced in most brain regions by pretreatment with NRG-1 isoforms NRG-EGF (3.2 μg/kg BW, i.a) or NRG-GGF2 (48 μg/kg BW, i.a.) as determined by FluroJade-B labeling in multiple brain regions at 24 h post-DFP injection. NRG-1 also blocked apoptosis and oxidative stress-mediated protein damage in the brains of DFP-intoxicated rats. Administration of NRG-1 at 1 h after DFP injection similarly provided significant neuroprotection against delayed neuronal injury. These findings identify NRG-1 as a promising adjuvant therapy to current medical countermeasures for enhancing neuroprotection against acute OP intoxication. -- Highlights: ► NRG-1 blocked DFP induced neuronal injury. ► NRG-1 did not protect against seizures in rats exposed to DFP. ► NRG-1 blocked apoptosis and oxidative stress in the brains of DFP-intoxicated rats. ► Administration of NRG-1 at 1 h after DFP injection prevented delayed neuronal injury.« less
Neuregulin-1 is Neuroprotective in a Rat Model of Organophosphate-Induced Delayed Neuronal Injury
Li, Yonggang; Lein, Pamela J.; Liu, Cuimei; Bruun, Donald A.; Giulivi, Cecilia; Ford, Gregory; Tewolde, Teclemichael; Ross-Inta, Catherine; Ford, Byron D.
2012-01-01
Current medical countermeasures against organophosphate (OP) nerve agents are effective in reducing mortality, but do not sufficiently protect the CNS from delayed brain damage and persistent neurological symptoms. In this study, we examined the efficacy of neuregulin-1 (NRG-1) in protecting against delayed neuronal cell death following acute intoxication with the OP diisopropylfluorophosphate (DFP). Adult male Sprague Dawley rats were pretreated with pyridostigmine (0.1 mg/kg BW, i.m.) and atropine methylnitrate (20 mg/kg BW, i.m.) prior to DFP (9 mg/kg BW, i.p.) intoxication to increase survival and reduce peripheral signs of cholinergic toxicity but not prevent DFP-induced seizures or delayed neuronal injury. Pretreatment with NRG-1 did not protect against seizures in rats exposed to DFP. However, neuronal injury was significantly reduced in most brain regions by pretreatment with NRG-1 isoforms NRG-EGF (3.2 μg/kg BW, i.a) or NRG-GGF2 (48 μg/kg BW, i.a.) as determined by FluroJade-B labeling in multiple brain regions at 24 h post-DFP injection. NRG-1 also blocked apoptosis and oxidative stress-mediated protein damage in the brains of DFP-intoxicated rats. Administration of NRG-1 at 1 h after DFP injection similarly provided significant neuroprotection against delayed neuronal injury. These findings identify NRG-1 as a promising adjuvant therapy to current medical countermeasures for enhancing neuroprotection against acute OP intoxication. PMID:22583949
Possible mechanisms for delayed neurological damage in lightning and electrical injury.
Reisner, Andrew D
2013-01-01
This article provides and reviews hypotheses to help explain the poorly understood phenomenon of delayed neurological injury following lightning or electrical injury. A review of extant literature provides a starting point to integrate what is already known in an attempt to provide new hypotheses for this phenomenon, as well as to discuss existing hypotheses. The author proposes two theories which stem from the literature on the damaging effects of oxidative stress, and also reviews an existing hypothesis, the electroporation hypothesis. The former two theories can account for delayed damage which is either of vascular or nonvascular origin. The electroporation hypothesis can explain changes both in cases where there is cellular loss as well as cases where there only appears to be change in function after lightning or electrical injury. Although all theories discussed are speculative, the formation of hypotheses is always a starting point in the scientific process. In cases where there is delayed neurological damage with a vascular origin, it is possible that free radicals resulting from oxidative stress may gradually damage spinal vascular endothelial cells, cutting off blood supply, and ending in death of spinal neurons. When the delayed condition is demyelination without vascular damage, it is possible that the free radicals from oxidative stress are formed directly from the lipids found in abundance in myelin cells. The electroporation hypothesis, the formation of additional pores in neurons, may best explain immediate or progressive changes in structure and function after lightning or electrical injury.
Dihné, Marcel; Grommes, Christian; Lutzenburg, Michael; Witte, Otto W; Block, Frank
2002-12-01
After focal cerebral ischemia, depending on its localization and extent, secondary neuronal damage may occur that is remote from the initial lesion. In this study differences in secondary damage of the ventroposterior thalamic nucleus (VPN) and the reticular thalamic nucleus (RTN) were investigated with the use of different ischemia models. Transient middle cerebral artery occlusion (MCAO) leads to cortical infarction, including parts of the basal ganglia such as the globus pallidus, and to widespread edema. Photothrombotic ischemia generates pure cortical infarcts sparing the basal ganglia and with only minor edema. Neuronal degeneration was quantified within the ipsilateral RTN and VPN 14 days after ischemia. Glial reactions were studied with the use of immunohistochemistry. MCAO resulted in delayed neuronal cell loss of the ipsilateral VPN and RTN. Glial activation occurred in both nuclei beginning after 24 hours. Photothrombotic ischemia resulted in delayed neuronal cell loss only within the VPN. Even 2 weeks after photothrombotic ischemia, glial activation could only be seen within the VPN. Pure cortical infarcts after photothrombotic ischemia, without major edema and without effects on the globus pallidus of the basal ganglia, only lead to secondary VPN damage that is possibly due to retrograde degeneration. MCAO, which results in infarction of cortex and globus pallidus and which causes widespread edema, leads to secondary damage in the VPN and RTN. Thus, additional RTN damage may be due to loss of protective GABAergic input from the globus pallidus to the RTN or due to the extensive edema. Retrograde degeneration is not possible because the RTN, in contrast to the VPN, has no efferents to the cortex.
Yamanaka, Koji; Boillee, Severine; Roberts, Elizabeth A.; Garcia, Michael L.; McAlonis-Downes, Melissa; Mikse, Oliver R.; Cleveland, Don W.; Goldstein, Lawrence S. B.
2008-01-01
Dominant mutations in ubiquitously expressed superoxide dismutase (SOD1) cause familial ALS by provoking premature death of adult motor neurons. To test whether mutant damage to cell types beyond motor neurons is required for the onset of motor neuron disease, we generated chimeric mice in which all motor neurons and oligodendrocytes expressed mutant SOD1 at a level sufficient to cause fatal, early-onset motor neuron disease when expressed ubiquitously, but did so in a cellular environment containing variable numbers of non-mutant, non-motor neurons. Despite high-level mutant expression within 100% of motor neurons and oligodendrocytes, in most of these chimeras, the presence of WT non-motor neurons substantially delayed onset of motor neuron degeneration, increasing disease-free life by 50%. Disease onset is therefore non-cell autonomous, and mutant SOD1 damage within cell types other than motor neurons and oligodendrocytes is a central contributor to initiation of motor neuron degeneration. PMID:18492803
Gorgias, N; Maidatsi, P; Tsolaki, M; Alvanou, A; Kiriazis, G; Kaidoglou, K; Giala, M
1996-04-01
The present study investigates whether under conditions of successive hypoxic exposures pretreatment with mild (15% O(2)) or moderate (10% O(2)) hypoxia, protects hippocampal neurones against damage induced by severe (3% O(2)) hypoxia. The ultrastructural findings were also correlated with regional superoxide dismutase (SOD) activity changes. In unpretreated rats severe hypoxia induced ultrastructural changes consistent with the aspects of delayed neuronal death (DND). However, in preexposed animals hippocampal damage was attenuated in an inversely proportional way with the severity of the hypoxic pretreatment. The ultrastructural hypoxic tolerance findings were also closely related to increased regional SOD activity levels. Thus the activation of the endogenous antioxidant defense by hypoxic preconditioning, protects against hippocampal damage induced by severe hypoxia. The eventual contribution of increased endogenous adenosine and/or reduced excitotoxicity to induce hypoxic tolerance is discussed.
Reneman, L; Majoie, C B; Schmand, B; van den Brink, W; den Heeten, G J
2001-10-01
3,4-methylenedioxymethamphetamine (MDMA or "Ecstasy") is known to damage brain serotonin neurons in animals and possibly humans. Because serotonergic damage may adversely affect memory, we compared verbal memory function between MDMA users and MDMA-naïve control subjects and evaluated the relationship between verbal memory function and neuronal dysfunction in the MDMA users. An auditory verbal memory task (Rey Auditory Verbal Learning Test) was used to study eight abstinent MDMA users and seven control subjects. In addition 1H-MRS was used in different brain regions of all MDMA users to measure N-acetylaspartate/creatine (NAA/Cr) ratios, a marker for neuronal viability. The MDMA users recalled significantly fewer words than control subjects on delayed (p =.03) but not immediate recall (p =.08). In MDMA users, delayed memory function was strongly associated with NAA/Cr only in the prefrontal cortex (R(2) =.76, p =.01). Greater decrements in memory function predicted lower NAA/Cr levels-and by inference greater neuronal dysfunction-in the prefrontal cortex of MDMA users.
Pang, Kevin C H; Jiao, Xilu; Sinha, Swamini; Beck, Kevin D; Servatius, Richard J
2011-08-01
The medial septum and diagonal band (MSDB) are important in spatial learning and memory. On the basis of the excitotoxic damage of GABAergic MSDB neurons, we have recently suggested a role for these neurons in controlling proactive interference. Our study sought to test this hypothesis in different behavioral procedures using a new GABAergic immunotoxin. GABA-transporter-saporin (GAT1-SAP) was administered into the MSDB of male Sprague-Dawley rats. Following surgery, rats were trained in a reference memory water maze procedure for 5 days, followed by a working memory (delayed match to position) water maze procedure. Other rats were trained in a lever-press avoidance procedure after intraseptal GAT1-SAP or sham surgery. Intraseptal GAT1-SAP extensively damaged GABAergic neurons while sparing most cholinergic MSDB neurons. Rats treated with GAT1-SAP were not impaired in acquiring a spatial reference memory, learning the location of the escape platform as rapidly as sham rats. In contrast, GAT1-SAP rats were slower than sham rats to learn the platform location in a delayed match to position procedure, in which the platform location was changed every day. Moreover, GAT1-SAP rats returned to previous platform locations more often than sham rats. In the active avoidance procedure, intraseptal GAT1-SAP impaired extinction but not acquisition of the avoidance response. Using a different neurotoxin and behavioral procedures than previous studies, the results of this study paint a similar picture that GABAergic MSDB neurons are important for controlling proactive interference. Copyright © 2010 Wiley-Liss, Inc.
Focal neuronal gigantism: a rare complication of therapeutic radiation.
Gaughen, J R; Bourne, T D; Aregawi, D; Shah, L M; Schiff, D
2009-11-01
Radiation therapy, a mainstay in the treatment of many brain tumors, results in a variety of well-documented acute and chronic complications. Isolated cortical damage following irradiation represents an extremely rare delayed therapeutic complication, described only twice in the medical literature. We report this rare delayed complication in a patient following treatment of a right frontal anaplastic oligodendroglioma.
Zhou, J; Zhang, H Y; Tang, X C
2001-11-09
The protective effects of huperzine A on transient global ischemia in gerbils were investigated. Five min of global ischemia in gerbils results in working memory impairments shown by increased escape latency in a water maze and reduced time spent in the target quadrant. These signs of dysfunction are accompanied by delayed degeneration of pyramidal hippocampal CA1 neurons and by decrease in acetylcholinesterase activity in the hippocampus. Subchronic oral administration of huperzine A (0.1 mg/kg, twice per day for 14 days) after ischemia significantly reduced the memory impairment, reduced neuronal degeneration in the CA1 region, and partially restored hippocampal choline acetyltransferase activity. The ability of huperzine A to attenuate memory deficits and neuronal damage after ischemia might be beneficial in cerebrovascular type dementia.
Mair, Robert G; Miller, Rikki L A; Wormwood, Benjamin A; Francoeur, Miranda J; Onos, Kristen D; Gibson, Brett M
2015-07-01
Although medial thalamus is well established as a site of pathology associated with global amnesia, there is uncertainty about which structures are critical and how they affect memory function. Evidence from human and animal research suggests that damage to the mammillothalamic tract and the anterior, mediodorsal (MD), midline (M), and intralaminar (IL) nuclei contribute to different signs of thalamic amnesia. Here we focus on MD and the adjacent M and IL nuclei, structures identified in animal studies as critical nodes in prefrontal cortex (PFC)-related pathways that are necessary for delayed conditional discrimination. Recordings of PFC neurons in rats performing a dynamic delayed non-matching-to position (DNMTP) task revealed discrete populations encoding information related to planning, execution, and outcome of DNMTP-related actions and delay-related activity signaling previous reinforcement. Parallel studies recording the activity of MD and IL neurons and examining the effects of unilateral thalamic inactivation on the responses of PFC neurons demonstrated a close coupling of central thalamic and PFC neurons responding to diverse aspects of DNMTP and provide evidence that thalamus interacts with PFC neurons to give rise to complex goal-directed behavior exemplified by the DNMTP task. Copyright © 2015 Elsevier Ltd. All rights reserved.
Daneshzand, Mohammad; Faezipour, Miad; Barkana, Buket D.
2017-01-01
Deep brain stimulation (DBS) has compelling results in the desynchronization of the basal ganglia neuronal activities and thus, is used in treating the motor symptoms of Parkinson's disease (PD). Accurate definition of DBS waveform parameters could avert tissue or electrode damage, increase the neuronal activity and reduce energy cost which will prolong the battery life, hence avoiding device replacement surgeries. This study considers the use of a charge balanced Gaussian waveform pattern as a method to disrupt the firing patterns of neuronal cell activity. A computational model was created to simulate ganglia cells and their interactions with thalamic neurons. From the model, we investigated the effects of modified DBS pulse shapes and proposed a delay period between the cathodic and anodic parts of the charge balanced Gaussian waveform to desynchronize the firing patterns of the GPe and GPi cells. The results of the proposed Gaussian waveform with delay outperformed that of rectangular DBS waveforms used in in-vivo experiments. The Gaussian Delay Gaussian (GDG) waveforms achieved lower number of misses in eliciting action potential while having a lower amplitude and shorter length of delay compared to numerous different pulse shapes. The amount of energy consumed in the basal ganglia network due to GDG waveforms was dropped by 22% in comparison with charge balanced Gaussian waveforms without any delay between the cathodic and anodic parts and was also 60% lower than a rectangular charged balanced pulse with a delay between the cathodic and anodic parts of the waveform. Furthermore, by defining a Synchronization Level metric, we observed that the GDG waveform was able to reduce the synchronization of GPi neurons more effectively than any other waveform. The promising results of GDG waveforms in terms of eliciting action potential, desynchronization of the basal ganglia neurons and reduction of energy consumption can potentially enhance the performance of DBS devices. PMID:28848417
Daneshzand, Mohammad; Faezipour, Miad; Barkana, Buket D
2017-01-01
Deep brain stimulation (DBS) has compelling results in the desynchronization of the basal ganglia neuronal activities and thus, is used in treating the motor symptoms of Parkinson's disease (PD). Accurate definition of DBS waveform parameters could avert tissue or electrode damage, increase the neuronal activity and reduce energy cost which will prolong the battery life, hence avoiding device replacement surgeries. This study considers the use of a charge balanced Gaussian waveform pattern as a method to disrupt the firing patterns of neuronal cell activity. A computational model was created to simulate ganglia cells and their interactions with thalamic neurons. From the model, we investigated the effects of modified DBS pulse shapes and proposed a delay period between the cathodic and anodic parts of the charge balanced Gaussian waveform to desynchronize the firing patterns of the GPe and GPi cells. The results of the proposed Gaussian waveform with delay outperformed that of rectangular DBS waveforms used in in-vivo experiments. The Gaussian Delay Gaussian (GDG) waveforms achieved lower number of misses in eliciting action potential while having a lower amplitude and shorter length of delay compared to numerous different pulse shapes. The amount of energy consumed in the basal ganglia network due to GDG waveforms was dropped by 22% in comparison with charge balanced Gaussian waveforms without any delay between the cathodic and anodic parts and was also 60% lower than a rectangular charged balanced pulse with a delay between the cathodic and anodic parts of the waveform. Furthermore, by defining a Synchronization Level metric, we observed that the GDG waveform was able to reduce the synchronization of GPi neurons more effectively than any other waveform. The promising results of GDG waveforms in terms of eliciting action potential, desynchronization of the basal ganglia neurons and reduction of energy consumption can potentially enhance the performance of DBS devices.
Yang, Shu; Wu, Bo; Sun, Haimei; Sun, Tingyi; Han, Kai; Li, Dandan; Ji, Fengqing; Zhang, Guoquan; Zhou, Deshan
2017-10-31
Diabetic gastroparesis is a common complication of diabetes mellitus (DM) that is characterized by decreased serum insulin and insulin-like growth factor-1 (IGF-1). Despite the fact that insulin treatment not glycemic control potently accelerated gastric emptying in type 1 DM patients, the role of insulin/InsR and IGF-1/IGF-1R signaling in diabetic gastroparesis remains incompletely elucidated. In the present study, type 1 DM mice were established and treated with insulin or Voglibose for 8 weeks. The gastric emptying was delayed from DM week 4 when the gastric InsR and IGF-1R were declined. Meanwhile, the gastric choline acetyltransferase (ChAT) was significantly reduced and the myenteric cholinergic neurones and their fibers were significantly diminished. The production of stem cell factor (SCF) was dramatically repressed in the gastric smooth muscles in DM week 6. TWereafter, interstitial cells of Cajal (ICC) were clearly lost and their networks were impaired in DM week 8. Significantly, compared with Voglibose, an 8-week treatment with insulin more efficiently delayed diabetic gastroparesis development by protecting the myenteric cholinergic neurones and ICC. In conclusion, diabetic gastroparesis was an aggressive process due to the successive damages of myenteric cholinergic neurones and ICC by impairing the insulin/InsR and IGF-1/IGF-1R signaling. Insulin therapy in the early stage may delay diabetic gastroparesis. © 2017 The Author(s).
Protection from cyanide-induced brain injury by the Nrf2 transcriptional activator carnosic acid.
Zhang, Dongxian; Lee, Brian; Nutter, Anthony; Song, Paul; Dolatabadi, Nima; Parker, James; Sanz-Blasco, Sara; Newmeyer, Traci; Ambasudhan, Rajesh; McKercher, Scott R; Masliah, Eliezer; Lipton, Stuart A
2015-06-01
Cyanide is a life-threatening, bioterrorist agent, preventing cellular respiration by inhibiting cytochrome c oxidase, resulting in cardiopulmonary failure, hypoxic brain injury, and death within minutes. However, even after treatment with various antidotes to protect cytochrome oxidase, cyanide intoxication in humans can induce a delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Additional mechanisms are thought to underlie cyanide-induced neuronal damage, including generation of reactive oxygen species. This may account for the fact that antioxidants prevent some aspects of cyanide-induced neuronal damage. Here, as a potential preemptive countermeasure against a bioterrorist attack with cyanide, we tested the CNS protective effect of carnosic acid (CA), a pro-electrophilic compound found in the herb rosemary. CA crosses the blood-brain barrier to up-regulate endogenous antioxidant enzymes via activation of the Nrf2 transcriptional pathway. We demonstrate that CA exerts neuroprotective effects on cyanide-induced brain damage in cultured rodent and human-induced pluripotent stem cell-derived neurons in vitro, and in vivo in various brain areas of a non-Swiss albino mouse model of cyanide poisoning that simulates damage observed in the human brain. Cyanide, a potential bioterrorist agent, can produce a chronic delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Here, cyanide poisoning treated with the proelectrophillic compound carnosic acid, results in reduced neuronal cell death in both in vitro and in vivo models through activation of the Nrf2/ARE transcriptional pathway. Carnosic acid is therefore a potential treatment for the toxic central nervous system (CNS) effects of cyanide poisoning. ARE, antioxidant responsive element; Nrf2 (NFE2L2, Nuclear factor (erythroid-derived 2)-like 2). © 2015 International Society for Neurochemistry.
Systemic Prenatal Insults Disrupt Telencephalon Development
Robinson, Shenandoah
2006-01-01
Infants born prematurely are prone to chronic neurologic deficits including cerebral palsy (CP), epilepsy, cognitive delay, behavioral problems, and neurosensory impairments. In affected children, imaging and neuropathological findings demonstrate significant damage to white matter. The extent of cortical damage has been less obvious. Advances in the understanding of telencephalon development provide insights into how systemic intrauterine insults affect the developing white matter, subplate and cortex, and lead to multiple neurologic impairments. In addition to white matter oligodendrocytes and axons, other elements at risk for perinatal brain injury include subplate neurons, GABAergic neurons migrating through white matter and subplate, and afferents of maturing neurotransmitter systems. Common insults including hypoxia-ischemia and infection often affect the developing brain differently than the mature brain, and insults precipitate a cascade of damage to multiple neural lineages. Insights from development can identify potential targets for therapies to repair the damaged neonatal brain before it has matured. PMID:16061421
Protection from cyanide-induced brain injury by the Nrf2 transcriptional activator carnosic acid
Zhang, Dongxian; Lee, Brian; Nutter, Anthony; Song, Paul; Dolatabadi, Nima; Parker, James; Sanz-Blasco, Sara; Newmeyer, Traci; Ambasudhan, Rajesh; McKercher, Scott R.; Masliah, Eliezer; Lipton, Stuart A.
2015-01-01
Cyanide is a life threatening, bioterrorist agent, preventing cellular respiration by inhibiting cytochrome c oxidase, resulting in cardiopulmonary failure, hypoxic brain injury, and death within minutes. However, even after treatment with various antidotes to protect cytochrome oxidase, cyanide intoxication in humans can induce a delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Additional mechanisms are thought to underlie cyanide-induced neuronal damage, including generation of reactive oxygen species (ROS). This may account for the fact that antioxidants prevent some aspects of cyanide-induced neuronal damage. Here, as a potential preemptive countermeasure against a bioterrorist attack with cyanide, we tested the CNS protective effect of carnosic acid (CA), a pro-electrophilic compound found in the herb rosemary. CA crosses the blood-brain-barrier to upregulate endogenous antioxidant enzymes via activation of the Nrf2 transcriptional pathway. We demonstrate that CA exerts neuroprotective effects on cyanide-induced brain damage in cultured rodent and human induced pluripotent stem cell (hiPSC)-derived neurons in vitro, and in vivo in various brain areas of a non-Swiss albino (NSA) mouse model of cyanide poisoning that simulates damage observed in the human brain. PMID:25692407
Logica, Tamara; Riviere, Stephanie; Holubiec, Mariana I; Castilla, Rocío; Barreto, George E; Capani, Francisco
2016-01-01
Perinatal Asphyxia (PA) represents an important cause of severe neurological deficits including delayed mental and motor development, epilepsy, major cognitive deficits and blindness. The interaction between neurons, astrocytes and endothelial cells plays a central role coupling energy supply with changes in neuronal activity. Traditionally, experimental research focused on neurons, whereas astrocytes have been more related to the damage mechanisms of PA. Astrocytes carry out a number of functions that are critical to normal nervous system function, including uptake of neurotransmitters, regulation of pH and ion concentrations, and metabolic support for neurons. In this work, we aim to review metabolic neuron-astrocyte interactions with the purpose of encourage further research in this area in the context of PA, which is highly complex and its mechanisms and pathways have not been fully elucidated to this day.
Logica, Tamara; Riviere, Stephanie; Holubiec, Mariana I.; Castilla, Rocío; Barreto, George E.; Capani, Francisco
2016-01-01
Perinatal Asphyxia (PA) represents an important cause of severe neurological deficits including delayed mental and motor development, epilepsy, major cognitive deficits and blindness. The interaction between neurons, astrocytes and endothelial cells plays a central role coupling energy supply with changes in neuronal activity. Traditionally, experimental research focused on neurons, whereas astrocytes have been more related to the damage mechanisms of PA. Astrocytes carry out a number of functions that are critical to normal nervous system function, including uptake of neurotransmitters, regulation of pH and ion concentrations, and metabolic support for neurons. In this work, we aim to review metabolic neuron-astrocyte interactions with the purpose of encourage further research in this area in the context of PA, which is highly complex and its mechanisms and pathways have not been fully elucidated to this day. PMID:27445788
Sun, Kai; Fan, Jingyu; Han, Jingyan
2015-01-01
Ischemic stroke and ischemia/reperfusion (I/R) injury induced by thrombolytic therapy are conditions with high mortality and serious long-term physical and cognitive disabilities. They have a major impact on global public health. These disorders are associated with multiple insults to the cerebral microcirculation, including reactive oxygen species (ROS) overproduction, leukocyte adhesion and infiltration, brain blood barrier (BBB) disruption, and capillary hypoperfusion, ultimately resulting in tissue edema, hemorrhage, brain injury and delayed neuron damage. Traditional Chinese medicine (TCM) has been used in China, Korea, Japan and other Asian countries for treatment of a wide range of diseases. In China, the usage of compound TCM preparation to treat cerebrovascular diseases dates back to the Han Dynasty. Even thousands of years earlier, the medical formulary recorded many classical prescriptions for treating cerebral I/R-related diseases. This review summarizes current information and underlying mechanisms regarding the ameliorating effects of compound TCM preparation, Chinese materia medica, and active components on I/R-induced cerebral microcirculatory disturbances, brain injury and neuron damage. PMID:26579420
Postconditioning and anticonditioning: possibilities to interfere to evoked apoptosis.
Burda, Jozef; Danielisová, Viera; Némethová, Miroslava; Gottlieb, Miroslav; Kravcuková, Petra; Domoráková, Iveta; Mechírová, Eva; Burda, Rastislav
2009-09-01
The aim of this study was to validate the ability of postconditioning, used 2 days after kainate intoxication, to protect selectively vulnerable hippocampal CA1 neurons against delayed neuronal death. Kainic acid (8 mg/kg, i.p.) was used to induce neurodegeneration of pyramidal CA1 neurons in rat hippocampus. Fluoro Jade B, the specific marker of neurodegeneration, and NeuN, a specific neuronal marker were used for visualization of changes 7 days after intoxication without and with delayed postconditioning (norepinephrine, 3.1 mumol/kg i.p., 2 days after kainate administration) and anticonditioning (Extract of Ginkgo biloba, 40 mg/kg p.o used simultaneously with kainate). Morris water maze was used on 6th and 7th day after kainate to test learning and memory capabilities of animals. Our results confirm that postconditioning if used at right time and with optimal intensity is able to prevent delayed neuronal death initiated not only by ischemia but kainate intoxication, too. The protective effect of repeated stress-postconditioning was suppressed if extract of Ginkgo biloba (EGb 761, 40 mg/kg p.o.) has been administered together with kainic acid. It seems that combination of lethal stress and antioxidant treatment blocks the activation of endogenous protecting mechanism known as ischemic tolerance, aggravates neurodegeneration and, after repeated stress is able to cause cumulative damage. This observation could be very valuable in situation when the aim of treatment is elimination of unwanted cell population from the organism.
Yang, Yoon-Sil; Jeon, Sang-Chan; Kim, Dong-Kwan; Eun, Su-Yong; Jung, Sung-Cherl
2017-03-01
Excessive influx and the subsequent rapid cytosolic elevation of Ca 2+ in neurons is the major cause to induce hyperexcitability and irreversible cell damage although it is an essential ion for cellular signalings. Therefore, most neurons exhibit several cellular mechanisms to homeostatically regulate cytosolic Ca 2+ level in normal as well as pathological conditions. Delayed rectifier K + channels (I DR channels) play a role to suppress membrane excitability by inducing K + outflow in various conditions, indicating their potential role in preventing pathogenic conditions and cell damage under Ca 2+ -mediated excitotoxic conditions. In the present study, we electrophysiologically evaluated the response of I DR channels to hyperexcitable conditions induced by high Ca 2+ pretreatment (3.6 mM, for 24 hours) in cultured hippocampal neurons. In results, high Ca 2+ -treatment significantly increased the amplitude of I DR without changes of gating kinetics. Nimodipine but not APV blocked Ca 2+ -induced I DR enhancement, confirming that the change of I DR might be targeted by Ca 2+ influx through voltage-dependent Ca 2+ channels (VDCCs) rather than NMDA receptors (NMDARs). The VDCC-mediated I DR enhancement was not affected by either Ca 2+ -induced Ca 2+ release (CICR) or small conductance Ca 2+ -activated K + channels (SK channels). Furthermore, PP2 but not H89 completely abolished I DR enhancement under high Ca 2+ condition, indicating that the activation of Src family tyrosine kinases (SFKs) is required for Ca 2+ -mediated I DR enhancement. Thus, SFKs may be sensitive to excessive Ca 2+ influx through VDCCs and enhance I DR to activate a neuroprotective mechanism against Ca 2+ -mediated hyperexcitability in neurons.
Sun, Xiaojuan; Perc, Matjaž; Kurths, Jürgen
2017-05-01
In this paper, we study effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks. Our focus is on the impact of two parameters, namely the time delay τ and the probability of partial time delay p delay , whereby the latter determines the probability with which a connection between two neurons is delayed. Our research reveals that partial time delays significantly affect phase synchronization in this system. In particular, partial time delays can either enhance or decrease phase synchronization and induce synchronization transitions with changes in the mean firing rate of neurons, as well as induce switching between synchronized neurons with period-1 firing to synchronized neurons with period-2 firing. Moreover, in comparison to a neuronal network where all connections are delayed, we show that small partial time delay probabilities have especially different influences on phase synchronization of neuronal networks.
Romero, Juan Ignacio; Holubiec, Mariana Inés; Tornatore, Tamara Logica; Rivière, Stéphanie; Hanschmann, Eva-Maria; Kölliker-Frers, Rodolfo Alberto; Tau, Julia; Blanco, Eduardo; Galeano, Pablo; Rodríguez de Fonseca, Fernando; Lillig, Christopher Horst; Capani, Francisco
2017-01-01
The general disruption of redox signaling following an ischemia-reperfusion episode has been proposed as a crucial component in neuronal death and consequently brain damage. Thioredoxin (Trx) family proteins control redox reactions and ensure protein regulation via specific, oxidative posttranslational modifications as part of cellular signaling processes. Trx proteins function in the manifestation, progression, and recovery following hypoxic/ischemic damage. Here, we analyzed the neuroprotective effects of postinjury, exogenous administration of Grx2 and Trx1 in a neonatal hypoxia/ischemia model. P7 Sprague-Dawley rats were subjected to right common carotid ligation or sham surgery, followed by an exposure to nitrogen. 1 h later, animals were injected i.p. with saline solution, 10 mg/kg recombinant Grx2 or Trx1, and euthanized 72 h postinjury. Results showed that Grx2 administration, and to some extent Trx1, attenuated part of the neuronal damage associated with a perinatal hypoxic/ischemic damage, such as glutamate excitotoxicity, axonal integrity, and astrogliosis. Moreover, these treatments also prevented some of the consequences of the induced neural injury, such as the delay of neurobehavioral development. To our knowledge, this is the first study demonstrating neuroprotective effects of recombinant Trx proteins on the outcome of neonatal hypoxia/ischemia, implying clinical potential as neuroprotective agents that might counteract neonatal hypoxia/ischemia injury.
Holubiec, Mariana Inés; Tornatore, Tamara Logica; Rivière, Stéphanie; Kölliker-Frers, Rodolfo Alberto; Tau, Julia; Blanco, Eduardo; Galeano, Pablo; Lillig, Christopher Horst
2017-01-01
The general disruption of redox signaling following an ischemia-reperfusion episode has been proposed as a crucial component in neuronal death and consequently brain damage. Thioredoxin (Trx) family proteins control redox reactions and ensure protein regulation via specific, oxidative posttranslational modifications as part of cellular signaling processes. Trx proteins function in the manifestation, progression, and recovery following hypoxic/ischemic damage. Here, we analyzed the neuroprotective effects of postinjury, exogenous administration of Grx2 and Trx1 in a neonatal hypoxia/ischemia model. P7 Sprague-Dawley rats were subjected to right common carotid ligation or sham surgery, followed by an exposure to nitrogen. 1 h later, animals were injected i.p. with saline solution, 10 mg/kg recombinant Grx2 or Trx1, and euthanized 72 h postinjury. Results showed that Grx2 administration, and to some extent Trx1, attenuated part of the neuronal damage associated with a perinatal hypoxic/ischemic damage, such as glutamate excitotoxicity, axonal integrity, and astrogliosis. Moreover, these treatments also prevented some of the consequences of the induced neural injury, such as the delay of neurobehavioral development. To our knowledge, this is the first study demonstrating neuroprotective effects of recombinant Trx proteins on the outcome of neonatal hypoxia/ischemia, implying clinical potential as neuroprotective agents that might counteract neonatal hypoxia/ischemia injury. PMID:28706574
Glial degeneration with oxidative damage drives neuronal demise in MPSII disease
Zalfa, Cristina; Verpelli, Chiara; D'Avanzo, Francesca; Tomanin, Rosella; Vicidomini, Cinzia; Cajola, Laura; Manara, Renzo; Sala, Carlo; Scarpa, Maurizio; Vescovi, Angelo Luigi; De Filippis, Lidia
2016-01-01
Mucopolysaccharidosis type II (MPSII) is a lysosomal storage disorder due to the deficit of the iduronate 2-sulfatase (IDS) enzyme, causing progressive neurodegeneration in patients. Neural stem cells (NSCs) derived from the IDS-ko mouse can recapitulate MPSII pathogenesis in vitro. In differentiating IDS-ko NSCs and in the aging IDS-ko mouse brain, glial degeneration precedes neuronal degeneration. Here we show that pure IDS-ko NSC-derived astrocytes are selectively able to drive neuronal degeneration when cocultured with healthy neurons. This phenotype suggests concurrent oxidative damage with metabolic dysfunction. Similar patterns were observed in murine IDS-ko animals and in human MPSII brains. Most importantly, the mutant phenotype of IDS-ko astrocytes was reversed by low oxygen conditions and treatment with vitamin E, which also reversed the toxic effect on cocultured neurons. Moreover, at very early stages of disease we detected in vivo the development of a neuroinflammatory background that precedes astroglial degeneration, thus suggesting a novel model of MPSII pathogenesis, with neuroinflammation preceding glial degeneration, which is finally followed by neuronal death. This hypothesis is also consistent with the progression of white matter abnormalities in MPSII patients. Our study represents a novel breakthrough in the elucidation of MPSII brain pathogenesis and suggests the antioxidant molecules as potential therapeutic tools to delay MPSII onset and progression. PMID:27512952
Glial degeneration with oxidative damage drives neuronal demise in MPSII disease.
Zalfa, Cristina; Verpelli, Chiara; D'Avanzo, Francesca; Tomanin, Rosella; Vicidomini, Cinzia; Cajola, Laura; Manara, Renzo; Sala, Carlo; Scarpa, Maurizio; Vescovi, Angelo Luigi; De Filippis, Lidia
2016-08-11
Mucopolysaccharidosis type II (MPSII) is a lysosomal storage disorder due to the deficit of the iduronate 2-sulfatase (IDS) enzyme, causing progressive neurodegeneration in patients. Neural stem cells (NSCs) derived from the IDS-ko mouse can recapitulate MPSII pathogenesis in vitro. In differentiating IDS-ko NSCs and in the aging IDS-ko mouse brain, glial degeneration precedes neuronal degeneration. Here we show that pure IDS-ko NSC-derived astrocytes are selectively able to drive neuronal degeneration when cocultured with healthy neurons. This phenotype suggests concurrent oxidative damage with metabolic dysfunction. Similar patterns were observed in murine IDS-ko animals and in human MPSII brains. Most importantly, the mutant phenotype of IDS-ko astrocytes was reversed by low oxygen conditions and treatment with vitamin E, which also reversed the toxic effect on cocultured neurons. Moreover, at very early stages of disease we detected in vivo the development of a neuroinflammatory background that precedes astroglial degeneration, thus suggesting a novel model of MPSII pathogenesis, with neuroinflammation preceding glial degeneration, which is finally followed by neuronal death. This hypothesis is also consistent with the progression of white matter abnormalities in MPSII patients. Our study represents a novel breakthrough in the elucidation of MPSII brain pathogenesis and suggests the antioxidant molecules as potential therapeutic tools to delay MPSII onset and progression.
Blockade and knock-out of CALHM1 channels attenuate ischemic brain damage.
Cisneros-Mejorado, Abraham; Gottlieb, Miroslav; Ruiz, Asier; Chara, Juan C; Pérez-Samartín, Alberto; Marambaud, Philippe; Matute, Carlos
2018-06-01
Overactivation of purinergic receptors during cerebral ischemia results in a massive release of neurotransmitters, including adenosine triphosphate (ATP), to the extracellular space which leads to cell death. Some hypothetical pathways of ATP release are large ion channels, such as calcium homeostasis modulator 1 (CALHM1), a membrane ion channel that can permeate ATP. Since this transmitter contributes to postischemic brain damage, we hypothesized that CALHM1 activation may be a relevant target to attenuate stroke injury. Here, we analyzed the contribution of CALHM1 to postanoxic depolarization after ischemia in cultured neurons and in cortical slices. We observed that the onset of postanoxic currents in neurons in those preparations was delayed after its blockade with ruthenium red or silencing of Calhm1 gene by short hairpin RNA, as well as in slices from CALHM1 knockout mice. Subsequently, we used transient middle cerebral artery occlusion and found that ruthenium red, a blocker of CALHM1, or the lack of CALHM1, substantially attenuated the motor symptoms and reduced significantly the infarct volume. These results show that CALHM1 channels mediate postanoxic depolarization in neurons and brain damage after ischemia. Therefore, targeting CALHM1 may have a high therapeutic potential for treating brain damage after ischemia.
NASA Astrophysics Data System (ADS)
Sun, Xiaojuan; Perc, Matjaž; Kurths, Jürgen
2017-05-01
In this paper, we study effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks. Our focus is on the impact of two parameters, namely the time delay τ and the probability of partial time delay pdelay, whereby the latter determines the probability with which a connection between two neurons is delayed. Our research reveals that partial time delays significantly affect phase synchronization in this system. In particular, partial time delays can either enhance or decrease phase synchronization and induce synchronization transitions with changes in the mean firing rate of neurons, as well as induce switching between synchronized neurons with period-1 firing to synchronized neurons with period-2 firing. Moreover, in comparison to a neuronal network where all connections are delayed, we show that small partial time delay probabilities have especially different influences on phase synchronization of neuronal networks.
Taliyan, Rajeev; Ramagiri, Sruthi
2016-08-01
Numerous studies have demonstrated the possible neuroprotective role of lithium treatment against neurological disorders. However, the role of lithium in delayed phase of neuronal death against focal ischemia has not been explored. Therefore, the present study was designed to investigate the effect and molecular mechanisms of post-lithium treatment against cerebral ischemic reperfusion (I/R) injury and associated cognitive deficits in rats. I/R injury was induced by right middle cerebral artery occlusion and lithium (40 and 60 mg/kg) were given intraperitoneally, 24 h after the insult and continued for 1 week with 24-h interval. Using Lasser Doppler, cerebral blood flow was monitored before, during and after MCAO induction. Besides behavioral, biochemical, and histological evaluation, levels of tumor necrosis factor alpha (TNF-α) and brain-derived neurotrophic factor (BDNF) were also estimated. I/R injury resulted in significant elevation of neurological deficits, oxidative stress, neuroinflammation, and cognitive impairments. We found that lithium injection, 24 h after I/R-injury continued for 1 week, dose dependently prevented behavioral abnormality and cognitive impairments. Moreover, lithium attenuated the levels of oxidative stress and pro-inflammatory-cytokines TNF-α level. Further, lithium treatments significantly reduced neuronal damage and augmented healthy neuronal count and improved neuronal density in hippocampus. These neuroprotective effects of delayed lithium treatment were associated with upregulation of neurotrophic factor BDNF levels. Delayed lithium treatment provides neuroprotection against cerebral I/R injury and associated cognitive deficits by upregulating BDNF expression that opens a new avenue to treat I/R injury even after active cell death.
Corticofugal modulation of time-domain processing of biosonar information in bats.
Yan, J; Suga, N
1996-08-23
The Jamaican mustached bat has delay-tuned neurons in the inferior colliculus, medial geniculate body, and auditory cortex. The responses of these neurons to an echo are facilitated by a biosonar pulse emitted by the bat when the echo returns with a particular delay from a target located at a particular distance. Electrical stimulation of cortical delay-tuned neurons increases the delay-tuned responses of collicular neurons tuned to the same echo delay as the cortical neurons and decreases those of collicular neurons tuned to different echo delays. Cortical neurons improve information processing in the inferior colliculus by way of the corticocollicular projection.
McCann, Sarah K.; Dusting, Gregory J.; Roulston, Carli L.
2014-01-01
Evidence suggests the NADPH oxidases contribute to ischaemic stroke injury and Nox2 is the most widely studied subtype in the context of stroke. There is still conjecture however regarding the benefits of inhibiting Nox2 to improve stroke outcome. The current study aimed to examine the temporal effects of genetic Nox2 deletion on neuronal loss after ischaemic stroke using knockout (KO) mice with 6, 24 and 72 hour recovery. Transient cerebral ischaemia was induced via intraluminal filament occlusion and resulted in reduced infarct volumes in Nox2 KO mice at 24 h post-stroke compared to wild-type controls. No protection was evident at either 6 h or 72 h post-stroke, with both genotypes exhibiting similar volumes of damage. Reactive oxygen species were detected using dihydroethidium and were co-localised with neurons and microglia in both genotypes using immunofluorescent double-labelling. The effect of Nox2 deletion on vascular damage and recovery was also examined 24 h and 72 h post-stroke using an antibody against laminin. Blood vessel density was decreased in the ischaemic core of both genotypes 24 h post-stroke and returned to pre-stroke levels only in Nox2 KO mice by 72 h. Overall, these results are the first to show that genetic Nox2 deletion merely delays the progression of neuronal loss after stroke but does not prevent it. Additionally, we show for the first time that Nox2 deletion increases re-vascularisation of the damaged brain by 72 h, which may be important in promoting endogenous brain repair mechanisms that rely on re-vascularisation. PMID:25375101
ERIC Educational Resources Information Center
Chathu, Finla; Krishnakumar, Amee; Paulose, Cheramadathikudyil S.
2008-01-01
Brain damage due to an episode of hypoxia remains a major problem in infants causing deficit in motor and sensory function. Hypoxia leads to neuronal functional failure, cerebral palsy and neuro-developmental delay with characteristic biochemical and molecular alterations resulting in permanent or transitory neurological sequelae or even death.…
Hwang, In Koo; Yoo, Ki-Yeon; Suh, Hong-Won; Kim, Young Sup; Kwon, Dae Young; Kwon, Young-Guen; Yoo, Jun-Hyun; Won, Moo-Ho
2008-07-01
Folic acid deficiency increases stroke risk. In the present study, we examined whether folic acid deficiency enhances neuronal damage and gliosis via oxidative stress in the gerbil hippocampus after transient forebrain ischemia. Animals were exposed to a folic acid-deficient diet (FAD) for 3 months and then subjected to occlusion of both common carotid arteries for 5 min. Exposure to an FAD increased plasma homocysteine levels by five- to eightfold compared with those of animals fed with a control diet (CD). In CD-treated animals, most neurons were dead in the hippocampal CA1 region 4 days after ischemia/reperfusion, whereas, in FAD-treated animals, this occurred 3 days after ischemia/reperfusion. Immunostaining for 8-hydroxy-2'-deoxyguanosine (8-OHdG) was performed to examine DNA damage in CA1 neurons in both groups after ischemia, and it was found that 8-OHdG immunoreactivity in both FAD and CD groups peaked at 12 hr after reperfusion, although the immunoreactivity in the FAD group was much greater than that in the CD group. Platelet endothelial cell adhesion molecule-1 (PECAM-1; a final mediator of neutrophil transendothelial migration) immunoreactivity in both groups increased with time after ischemia/reperfusion: Its immunoreactivity in the FAD group was much higher than that in the CD group 3 days after ischemia/reperfusion. In addition, reactive gliosis in the ischemic CA1 region increased with time after ischemia in both groups, but astrocytosis and microgliosis in the FAD group were more severe than in the CD group at all times after ischemia. Our results suggest that folic acid deficiency enhances neuronal damage induced by ischemia. 2008 Wiley-Liss, Inc.
Blockade of P2X7 receptors or pannexin-1 channels similarly attenuates postischemic damage.
Cisneros-Mejorado, Abraham; Gottlieb, Miroslav; Cavaliere, Fabio; Magnus, Tim; Koch-Nolte, Friederich; Scemes, Eliana; Pérez-Samartín, Alberto; Matute, Carlos
2015-05-01
The role of P2X7 receptors and pannexin-1 channels in ischemic damage remains controversial. Here, we analyzed their contribution to postanoxic depolarization after ischemia in cultured neurons and in brain slices. We observed that pharmacological blockade of P2X7 receptors or pannexin-1 channels delayed the onset of postanoxic currents and reduced their slope, and that simultaneous inhibition did not further enhance the effects of blocking either one. These results were confirmed in acute cortical slices from P2X7 and pannexin-1 knockout mice. Oxygen-glucose deprivation in cortical organotypic cultures caused neuronal death that was reduced with P2X7 and pannexin-1 blockers as well as in organotypic cultures derived from mice lacking P2X7 and pannexin 1. Subsequently, we used transient middle cerebral artery occlusion to monitor the neuroprotective effect of those drugs in vivo. We found that P2X7 and pannexin-1 antagonists, and their ablation in knockout mice, substantially attenuated the motor symptoms and reduced the infarct volume to ~50% of that in vehicle-treated or wild-type animals. These results show that P2X7 receptors and pannexin-1 channels are major mediators of postanoxic depolarization in neurons and of brain damage after ischemia, and that they operate in the same deleterious signaling cascade leading to neuronal and tissue demise.
Mechanism of mesenchymal stem cell-induced neuron recovery and anti-inflammation.
Huang, Peng; Gebhart, Nichole; Richelson, Elliott; Brott, Thomas G; Meschia, James F; Zubair, Abba C
2014-10-01
After ischemic or hemorrhagic stroke, neurons in the penumbra surrounding regions of irreversible injury are vulnerable to delayed but progressive damage as a result of ischemia and hemin-induced neurotoxicity. There is no effective treatment to rescue such dying neurons. Mesenchymal stem cells (MSCs) hold promise for rescue of these damaged neurons. In this study, we evaluated the efficacy and mechanism of MSC-induced neuro-regeneration and immune modulation. Oxygen-glucose deprivation (OGD) was used in our study. M17 neuronal cells were subjected to OGD stress then followed by co-culture with MSCs. Rescue effects were evaluated using proliferation and apoptosis assays. Cytokine assay and quantitative polymerase chain reaction were used to explore the underlying mechanism. Antibody and small molecule blocking experiments were also performed to further understand the mechanism. We showed that M17 proliferation was significantly decreased and the rate of apoptosis increased after exposure to OGD. These effects could be alleviated via co-culture with MSCs. Tumor necrosis factor-α was found elevated after OGD stress and was back to normal levels after co-culture with MSCs. We believe these effects involve interleukin-6 and vascular endothelial growth factor signaling pathways. Our studies have shown that MSCs have anti-inflammatory properties and the capacity to rescue injured neurons. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Impact of Partial Time Delay on Temporal Dynamics of Watts-Strogatz Small-World Neuronal Networks
NASA Astrophysics Data System (ADS)
Yan, Hao; Sun, Xiaojuan
2017-06-01
In this paper, we mainly discuss effects of partial time delay on temporal dynamics of Watts-Strogatz (WS) small-world neuronal networks by controlling two parameters. One is the time delay τ and the other is the probability of partial time delay pdelay. Temporal dynamics of WS small-world neuronal networks are discussed with the aid of temporal coherence and mean firing rate. With the obtained simulation results, it is revealed that for small time delay τ, the probability pdelay could weaken temporal coherence and increase mean firing rate of neuronal networks, which indicates that it could improve neuronal firings of the neuronal networks while destroying firing regularity. For large time delay τ, temporal coherence and mean firing rate do not have great changes with respect to pdelay. Time delay τ always has great influence on both temporal coherence and mean firing rate no matter what is the value of pdelay. Moreover, with the analysis of spike trains and histograms of interspike intervals of neurons inside neuronal networks, it is found that the effects of partial time delays on temporal coherence and mean firing rate could be the result of locking between the period of neuronal firing activities and the value of time delay τ. In brief, partial time delay could have great influence on temporal dynamics of the neuronal networks.
He, Tingting; Aiken, Steve; Bance, Manohar; Yin, Shankai; Wang, Jian
2012-01-01
Noise-exposure at levels low enough to avoid a permanent threshold shift has been found to cause a massive, delayed degeneration of spiral ganglion neurons (SGNs) in mouse cochleae. Damage to the afferent innervation was initiated by a loss of synaptic ribbons, which is largely irreversible in mice. A similar delayed loss of SGNs has been found in guinea pig cochleae, but at a reduced level, suggesting a cross-species difference in SGN sensitivity to noise. Ribbon synapse damage occurs “silently” in that it does not affect hearing thresholds as conventionally measured, and the functional consequence of this damage is not clear. In the present study, we further explored the effect of noise on cochlear afferent innervation in guinea pigs by focusing on the dynamic changes in ribbon counts over time, and resultant changes in temporal processing. It was found that (1) contrary to reports in mice, the initial loss of ribbons largely recovered within a month after the noise exposure, although a significant amount of residual damage existed; (2) while the response threshold fully recovered in a month, the temporal processing continued to be deteriorated during this period. PMID:23185359
Ditsworth, Dara; Maldonado, Marcus; McAlonis-Downes, Melissa; Sun, Shuying; Seelman, Amanda; Drenner, Kevin; Arnold, Eveline; Ling, Shuo-Chien; Pizzo, Donald; Ravits, John; Cleveland, Don W; Da Cruz, Sandrine
2017-06-01
Mutations in TDP-43 cause amyotrophic lateral sclerosis (ALS), a fatal paralytic disease characterized by degeneration and premature death of motor neurons. The contribution of mutant TDP-43-mediated damage within motor neurons was evaluated using mice expressing a conditional allele of an ALS-causing TDP-43 mutant (Q331K) whose broad expression throughout the central nervous system mimics endogenous TDP-43. TDP-43 Q331K mice develop age- and mutant-dependent motor deficits from degeneration and death of motor neurons. Cre-recombinase-mediated excision of the TDP-43 Q331K gene from motor neurons is shown to delay onset of motor symptoms and appearance of TDP-43-mediated aberrant nuclear morphology, and abrogate subsequent death of motor neurons. However, reduction of mutant TDP-43 selectively in motor neurons did not prevent age-dependent degeneration of axons and neuromuscular junction loss, nor did it attenuate astrogliosis or microgliosis. Thus, disease mechanism is non-cell autonomous with mutant TDP-43 expressed in motor neurons determining disease onset but progression defined by mutant acting within other cell types.
NASA Astrophysics Data System (ADS)
Tang, Guoning; Xu, Kesheng; Jiang, Luoluo
2011-10-01
The synchronization is investigated in a two-dimensional Hindmarsh-Rose neuronal network by introducing a global coupling scheme with time delay, where the length of time delay is proportional to the spatial distance between neurons. We find that the time delay always disturbs synchronization of the neuronal network. When both the coupling strength and length of time delay per unit distance (i.e., enlargement factor) are large enough, the time delay induces the abnormal membrane potential oscillations in neurons. Specifically, the abnormal membrane potential oscillations for the symmetrically placed neurons form an antiphase, so that the large coupling strength and enlargement factor lead to the desynchronization of the neuronal network. The complete and intermittently complete synchronization of the neuronal network are observed for the right choice of parameters. The physical mechanism underlying these phenomena is analyzed.
Postconditioning Effectively Prevents Trimethyltin Induced Neuronal Damage in the Rat Brain.
Lalkovicova, Maria; Burda, Jozef; Nemethova, Miroslava; Burda, Rastislav; Danielisova, Viera
Trimethyltin (TMT) is a toxic substance formerly used as a catalyst in the production of organic substances, as well as in industry and agriculture. TMT poisoning has caused death or severe injury in many dozens of people. The toxicity of TMT is mediated by dose dependent selective damage to the limbic system in humans and other animals, specifically the degeneration of CA1 neurons in the hippocampus. The typical symptoms include memory loss and decreased learning ability. Using knowledge gained in previous studies of global ischaemia, we used delayed postconditioning after TMT intoxication (8 mg/kg i.p.), consisting of applying a stressor (BR, bradykinin 150 μg/kg i.p.) 24 or 48 hours after the injection of TMT. We found that BR had preventive effects on neurodegenerative changes as well as learning and memory deficits induced by TMT intoxication.
Neural correlates of auditory recognition memory in the primate dorsal temporal pole
Ng, Chi-Wing; Plakke, Bethany
2013-01-01
Temporal pole (TP) cortex is associated with higher-order sensory perception and/or recognition memory, as human patients with damage in this region show impaired performance during some tasks requiring recognition memory (Olson et al. 2007). The underlying mechanisms of TP processing are largely based on examination of the visual nervous system in humans and monkeys, while little is known about neuronal activity patterns in the auditory portion of this region, dorsal TP (dTP; Poremba et al. 2003). The present study examines single-unit activity of dTP in rhesus monkeys performing a delayed matching-to-sample task utilizing auditory stimuli, wherein two sounds are determined to be the same or different. Neurons of dTP encode several task-relevant events during the delayed matching-to-sample task, and encoding of auditory cues in this region is associated with accurate recognition performance. Population activity in dTP shows a match suppression mechanism to identical, repeated sound stimuli similar to that observed in the visual object identification pathway located ventral to dTP (Desimone 1996; Nakamura and Kubota 1996). However, in contrast to sustained visual delay-related activity in nearby analogous regions, auditory delay-related activity in dTP is transient and limited. Neurons in dTP respond selectively to different sound stimuli and often change their sound response preferences between experimental contexts. Current findings suggest a significant role for dTP in auditory recognition memory similar in many respects to the visual nervous system, while delay memory firing patterns are not prominent, which may relate to monkeys' shorter forgetting thresholds for auditory vs. visual objects. PMID:24198324
Guanfacine ameliorates hypobaric hypoxia induced spatial working memory deficits.
Kauser, H; Sahu, S; Kumar, S; Panjwani, U
2014-01-17
Hypobaric hypoxia (HH) observed at high altitude causes mild cognitive impairment specifically affecting attention and working memory. Adrenergic dysregulation and neuronal damage in prefrontal cortex (PFC) has been implicated in hypoxia induced memory deficits. Optimal stimulation of alpha 2A adrenergic receptor in PFC facilitates the spatial working memory (SWM) under the conditions of adrenergic dysregulation. Therefore the present study was designed to test the efficacy of alpha 2A adrenergic agonist, Guanfacine (GFC), to restore HH induced SWM deficits and PFC neuronal damage. The rats were exposed to chronic HH equivalent to 25,000ft for 7days in an animal decompression chamber and received daily treatment of GFC at a dose of 1mg/kg body weight via the intramuscular route during the period of exposure. The cognitive performance was assessed by Delayed Alternation Task (DAT) using T-Maze and PFC neuronal damage was studied by apoptotic and neurodegenerative markers. Percentage of correct choice decreased significantly while perseverative errors showed a significant increase after 7days HH exposure, GFC significantly ameliorated the SWM deficits and perseveration. There was a marked and significant increase in chromatin condensation, DNA fragmentation, neuronal pyknosis and fluoro Jade positive cells in layer II of the medial PFC in hypoxia exposed group, administration of GFC significantly reduced the magnitude of these changes. Modulation of adrenergic mechanisms by GFC may serve as an effective countermeasure in amelioration of prefrontal deficits and neurodegenerative changes during HH. © 2013.
Secondary damage in the spinal cord after motor cortex injury in rats.
Weishaupt, Nina; Silasi, Gergely; Colbourne, Frederick; Fouad, Karim
2010-08-01
When neurons within the motor cortex are fatally injured, their axons, many of which project into the spinal cord, undergo wallerian degeneration. Pathological processes occurring downstream of the cortical damage have not been extensively studied. We created a focal forelimb motor cortex injury in rats and found that axons from cell bodies located in the hindlimb motor cortex (spared by the cortical injury) become secondarily damaged in the spinal cord. To assess axonal degeneration in the spinal cord, we quantified silver staining in the corticospinal tract (CST) at 1 week and 4 weeks after the injury. We found a significant increase in silver deposition at the thoracic spinal cord level at 4 weeks compared to 1 week post-injury. At both time points, no degenerating neurons could be found in the hindlimb motor cortex. In a separate experiment, we showed that direct injury of neurons within the hindlimb motor cortex caused marked silver deposition in the thoracic CST at 1 week post-injury, and declined thereafter. Therefore, delayed axonal degeneration in the thoracic spinal cord after a focal forelimb motor cortex injury is indicative of secondary damage at the spinal cord level. Furthermore, immunolabeling of spinal cord sections showed that a local inflammatory response dominated by partially activated Iba-1-positive microglia is mounted in the CST, a viable mechanism to cause the observed secondary degeneration of fibers. In conclusion, we demonstrate that following motor cortex injury, wallerian degeneration of axons in the spinal cord leads to secondary damage, which is likely mediated by inflammatory processes.
Dental X-ray exposure and Alzheimer's disease: a hypothetical etiological association.
Rodgers, Caroline C
2011-07-01
Despite the fact that Alzheimer's disease was identified more than 100 years ago, its cause remains elusive. Although the chance of developing Alzheimer's disease increases with age, it is not a natural consequence of aging. This article proposes that dental X-rays can damage microglia telomeres - the structures at the end of chromosomes that determine how many times cells divide before they die - causing them to age prematurely. Degenerated microglia lose their neuroprotective properties, resulting in the formation of neurofibrillary tau tangles and consequently, the neuronal death that causes Alzheimer's dementia. The hypothesis that Alzheimer's is caused specifically by microglia telomere damage would explain the delay of one decade or longer between the presence of Alzheimer's brain pathology and symptoms; telomere damage would not cause any change in microglial function, it would just reset the countdown clock so that senescence and apoptosis occurred earlier than they would have without the environmental insult. Once microglia telomere damage causes premature aging and death, the adjacent neurons are deprived of the physical support, maintenance and nourishment they require to survive. This sequence of events would explain why therapies and vaccines that eliminate amyloid plaques have been unsuccessful in stopping dementia. Regardless of whether clearing plaques is beneficial or harmful - which remains a subject of debate - it does not address the failing microglia population. If microglia telomere damage is causing Alzheimer's disease, self-donated bone marrow or dental pulp stem cell transplants could give rise to new microglia populations that would maintain neuronal health while the original resident microglia population died. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collombet, Jean-Marc, E-mail: jmcollombet@imassa.fr
This manuscript provides a survey of research findings catered to the development of effective countermeasures against nerve agent poisoning over the past decade. New neuropathophysiological distinctive features as regards organophosphate (OP) intoxication are presented. Such leading neuropathophysiological features include recent data on nerve agent-induced neuropathology, related peripheral or central nervous system inflammation and subsequent angiogenesis process. Hence, leading countermeasures against OP exposure are down-listed in terms of pre-treatment, protection or decontamination and emergency treatments. The final chapter focuses on the description of the self-repair attempt encountered in lesioned rodent brains, up to 3 months after soman poisoning. Indeed, an increasedmore » proliferation of neuronal progenitors was recently observed in injured brains of mice subjected to soman exposure. Subsequently, the latter experienced a neuronal regeneration in damaged brain regions such as the hippocampus and amygdala. The positive effect of a cytokine treatment on the neuronal regeneration and subsequent cognitive behavioral recovery are also discussed in this review. For the first time, brain cell therapy and neuronal regeneration are considered as a valuable contribution towards delayed treatment against OP intoxication. To date, efficient delayed treatment was lacking in the therapeutic resources administered to patients contaminated by nerve agents. - Highlights: > This review focuses on neuropathophysiology following nerve agent poisoning in mice. > Extensive data on long-term neuropathology and related inflammation are provided here. > Delayed self-repair attempts encountered in lesioned rodent brains are also described. > Cell therapy is considered as a valuable treatment against nerve agent intoxication.« less
2017-01-01
Epilepsy is a neurological disorder that affects approximately one percent of the world population. Noninvasive electrical brain stimulation via tripolar concentric ring electrodes has been proposed as an alternative/complementary therapy for seizure control. Previous results suggest its efficacy attenuating acute seizures in penicillin, pilocarpine-induced status epilepticus, and pentylenetetrazole-induced rat seizure models and its safety for the rat scalp, cortical integrity, and memory formation. In this study, neuronal counting was used to assess possible tissue damage in rats (n = 36) due to the single dose or five doses (given every 24 hours) of stimulation on hippocampal CA3 subregion neurons 24 hours, one week, and one month after the last stimulation dose. Full factorial analysis of variance showed no statistically significant difference in the number of neurons between control and stimulation-treated animals (p = 0.71). Moreover, it showed no statistically significant differences due to the number of stimulation doses (p = 0.71) nor due to the delay after the last stimulation dose (p = 0.96). Obtained results suggest that stimulation at current parameters (50 mA, 200 μs, 300 Hz, biphasic, charge-balanced pulses for 2 minutes) does not induce neuronal damage in the hippocampal CA3 subregion of the brain. PMID:29065603
Mucio-Ramírez, Samuel; Makeyev, Oleksandr
2017-01-01
Epilepsy is a neurological disorder that affects approximately one percent of the world population. Noninvasive electrical brain stimulation via tripolar concentric ring electrodes has been proposed as an alternative/complementary therapy for seizure control. Previous results suggest its efficacy attenuating acute seizures in penicillin, pilocarpine-induced status epilepticus, and pentylenetetrazole-induced rat seizure models and its safety for the rat scalp, cortical integrity, and memory formation. In this study, neuronal counting was used to assess possible tissue damage in rats ( n = 36) due to the single dose or five doses (given every 24 hours) of stimulation on hippocampal CA3 subregion neurons 24 hours, one week, and one month after the last stimulation dose. Full factorial analysis of variance showed no statistically significant difference in the number of neurons between control and stimulation-treated animals ( p = 0.71). Moreover, it showed no statistically significant differences due to the number of stimulation doses ( p = 0.71) nor due to the delay after the last stimulation dose ( p = 0.96). Obtained results suggest that stimulation at current parameters (50 mA, 200 μ s, 300 Hz, biphasic, charge-balanced pulses for 2 minutes) does not induce neuronal damage in the hippocampal CA3 subregion of the brain.
Delay activity of saccade-related neurons in the caudal dentate nucleus of the macaque cerebellum
Sommer, Marc A.
2013-01-01
The caudal dentate nucleus (DN) in lateral cerebellum is connected with two visual/oculomotor areas of the cerebrum: the frontal eye field and lateral intraparietal cortex. Many neurons in frontal eye field and lateral intraparietal cortex produce “delay activity” between stimulus and response that correlates with processes such as motor planning. Our hypothesis was that caudal DN neurons would have prominent delay activity as well. From lesion studies, we predicted that this activity would be related to self-timing, i.e., the triggering of saccades based on the internal monitoring of time. We recorded from neurons in the caudal DN of monkeys (Macaca mulatta) that made delayed saccades with or without a self-timing requirement. Most (84%) of the caudal DN neurons had delay activity. These neurons conveyed at least three types of information. First, their activity was often correlated, trial by trial, with saccade initiation. Correlations were found more frequently in a task that required self-timing of saccades (53% of neurons) than in a task that did not (27% of neurons). Second, the delay activity was often tuned for saccade direction (in 65% of neurons). This tuning emerged continuously during a trial. Third, the time course of delay activity associated with self-timed saccades differed significantly from that associated with visually guided saccades (in 71% of neurons). A minority of neurons had sensory-related activity. None had presaccadic bursts, in contrast to DN neurons recorded more rostrally. We conclude that caudal DN neurons convey saccade-related delay activity that may contribute to the motor preparation of when and where to move. PMID:23365182
Cha, Y S; Kim, H; Do, H H; Kim, H I; Kim, O H; Cha, K-C; Lee, K H; Hwang, S O
2018-03-01
Delayed onset of neuropsychiatric symptoms after apparent recovery from acute carbon monoxide (CO) poisoning has been described as delayed neuropsychiatric sequelae (DNS). To date, there have been no studies on the utility of serum neuron-specific enolase (NSE), a marker of neuronal cell damage, as a predictive marker of DNS in acute CO poisoning. This retrospective observational study was performed on adult patients with acute CO poisoning consecutively treated over a 9-month period. Serum NSE was measured after emergency department arrival, and patients were divided into two groups. The DNS group comprised patients with delayed sequelae, while the non-DNS group included patients with none of these sequelae. A total of 98 patients with acute CO poisoning were enrolled in this study. DNS developed in eight patients. The median NSE value was significantly higher in the DNS group than in the non-DNS group. There was a statistical difference between the non-DNS group and the DNS group in terms of CO exposure time, Glasgow Coma Scale (GCS), loss of consciousness, creatinine kinase, and troponin I. GCS and NSE were the early predictors of development of DNS. The area under the curve according to the receiver operating characteristic curves of GCS, serum NSE, and GCS combined with serum NSE were 0.922, 0.836, and 0.969, respectively. In conclusion, initial GCS and NSE served as early predictors of development of DNS. Also, NSE might be a useful additional parameter that could improve the prediction accuracy of initial GCS.
Stability switches, Hopf bifurcation and chaos of a neuron model with delay-dependent parameters
NASA Astrophysics Data System (ADS)
Xu, X.; Hu, H. Y.; Wang, H. L.
2006-05-01
It is very common that neural network systems usually involve time delays since the transmission of information between neurons is not instantaneous. Because memory intensity of the biological neuron usually depends on time history, some of the parameters may be delay dependent. Yet, little attention has been paid to the dynamics of such systems. In this Letter, a detailed analysis on the stability switches, Hopf bifurcation and chaos of a neuron model with delay-dependent parameters is given. Moreover, the direction and the stability of the bifurcating periodic solutions are obtained by the normal form theory and the center manifold theorem. It shows that the dynamics of the neuron model with delay-dependent parameters is quite different from that of systems with delay-independent parameters only.
Tchekalarova, Jana D; Ivanova, Natasha; Atanasova, Dimitrina; Pechlivanova, Daniela M; Lazarov, Nikolai; Kortenska, Lidia; Mitreva, Rumiana; Lozanov, Valentin; Stoynev, Alexander
2016-08-01
Over the last 10 years, accumulated experimental and clinical evidence has supported the idea that AT1 receptor subtype is involved in epilepsy. Recently, we have shown that the selective AT1 receptor antagonist losartan attenuates epileptogenesis and exerts neuroprotection in the CA1 area of the hippocampus in epileptic Wistar rats. This study aimed to verify the efficacy of long-term treatment with losartan (10 mg/kg) after kainate-induced status epilepticus (SE) on seizure activity, behavioral and biochemical changes, and neuronal damage in a model of co-morbid hypertension and epilepsy. Spontaneous seizures were video- and EEG-monitored in spontaneously hypertensive rats (SHRs) for a 16-week period after SE. The behavior was analyzed by open field, elevated plus maze, sugar preference test, and forced swim test. The levels of serotonin in the hippocampus and neuronal loss were estimated by HPLC and hematoxylin and eosin staining, respectively. The AT1 receptor antagonism delayed the onset of seizures and alleviated their frequency and duration during and after discontinuation of treatment. Losartan showed neuroprotection mostly in the CA3 area of the hippocampus and the septo-temporal hilus of the dentate gyrus in SHRs. However, the AT1 receptor antagonist did not exert a substantial influence on concomitant with epilepsy behavioral changes and decreased 5-HT levels in the hippocampus. Our results suggest that the antihypertensive therapy with an AT1 receptor blocker might be effective against seizure activity and neuronal damage in a co-morbid hypertension and epilepsy.
Grauer, E; Levy, A
2007-12-05
Severe poisoning by inhibitors of cholinesterase (ChE) enzymes is often associated with prolonged central or peripheral neuronal damage. Oxotremorine is a cholinergic agonist known to induce acute hypothermia. Central and peripheral cholinergic signaling is involved in the induction of hypothermia as well as in its recovery. These processes were used in the present study to reveal prolonged neuronal abnormalities in poisoned rats, using oxotremorine with and without concomitant administration of the peripheral muscarinic antagonist methyl scopolamine. In non-poisoned naïve rats, the hypothermic effect of oxotremorine appeared faster while its recovery was delayed following co-administration of methyl scopolamine, suggesting predominantly peripheral processes in counteracting the hypothermia. One month after exposure to approximately 1LD(50) of the carbamates aldicarb and oxamyl, the hypothermic effect of oxotremorine was similar to that found in saline-treated control group. However, the effect of methyl scopolamine on the recovery process was significantly diminished, indicating that the impaired cholinergic mechanisms were predominantly peripheral. In contrast, 1 month following organophosphate (OP) poisoning by the nerve agents sarin and VX, oxotremorine-induced hypothermia was reduced, indicating mainly impaired central cholinergic mechanisms. The development of severe convulsions during nerve agent poisoning may explain the central neuronal damage in OP-poisoned rats, displayed as reduced hypothermia. As convulsions were not part of the poisoning symptoms with the carbamates tested, their long-term damage was displayed at the recovery stage. This method might be used as a relatively simple means for detecting differential long-term central and peripheral cholinergic injuries, long after toxicity signs have receded.
Vargas, Marcelo R.; Burton, Neal C.; Gan, Li; Johnson, Delinda A.; Schäfer, Matthias; Werner, Sabine; Johnson, Jeffrey A.
2013-01-01
The nuclear factor erythroid 2-related factor 2 (Nrf2) governs the expression of antioxidant and phase II detoxifying enzymes. Nrf2 activation can prevent or reduce cellular damage associated with several types of injury in many different tissues and organs. Dominant mutations in Cu/Zn-superoxide dismutase (SOD1) cause familial forms of amyotrophic lateral sclerosis (ALS), a fatal disorder characterized by the progressive loss of motor neurons and subsequent muscular atrophy. We have previously shown that Nrf2 activation in astrocytes delays neurodegeneration in ALS mouse models. To further investigate the role of Nrf2 in ALS we determined the effect of absence of Nrf2 or its restricted overexpression in neurons or type II skeletal muscle fibers on symptoms onset and survival in mutant hSOD1 expressing mice. We did not observe any detrimental effect associated with the lack of Nrf2 in two different mutant hSOD1 animal models of ALS. However, restricted Nrf2 overexpression in neurons or type II skeletal muscle fibers delayed disease onset but failed to extend survival in hSOD1G93A mice. These results highlight the concept that not only the pharmacological target but also the cell type targeted may be relevant when considering a Nrf2-mediated therapeutic approach for ALS. PMID:23418589
Vargas, Marcelo R; Burton, Neal C; Kutzke, Jennifer; Gan, Li; Johnson, Delinda A; Schäfer, Matthias; Werner, Sabine; Johnson, Jeffrey A
2013-01-01
The nuclear factor erythroid 2-related factor 2 (Nrf2) governs the expression of antioxidant and phase II detoxifying enzymes. Nrf2 activation can prevent or reduce cellular damage associated with several types of injury in many different tissues and organs. Dominant mutations in Cu/Zn-superoxide dismutase (SOD1) cause familial forms of amyotrophic lateral sclerosis (ALS), a fatal disorder characterized by the progressive loss of motor neurons and subsequent muscular atrophy. We have previously shown that Nrf2 activation in astrocytes delays neurodegeneration in ALS mouse models. To further investigate the role of Nrf2 in ALS we determined the effect of absence of Nrf2 or its restricted overexpression in neurons or type II skeletal muscle fibers on symptoms onset and survival in mutant hSOD1 expressing mice. We did not observe any detrimental effect associated with the lack of Nrf2 in two different mutant hSOD1 animal models of ALS. However, restricted Nrf2 overexpression in neurons or type II skeletal muscle fibers delayed disease onset but failed to extend survival in hSOD1(G93A) mice. These results highlight the concept that not only the pharmacological target but also the cell type targeted may be relevant when considering a Nrf2-mediated therapeutic approach for ALS.
Taghva, Alexander; Song, Dong; Hampson, Robert E; Deadwyler, Sam A; Berger, Theodore W
2012-12-01
Identification of functional dependence among neurons is a necessary component in both the rational design of neural prostheses as well as in the characterization of network physiology. The objective of this article is to provide a tutorial for neurosurgeons regarding information theory, specifically time-delayed mutual information, and to compare time-delayed mutual information, an information theoretic quantity based on statistical dependence, with cross-correlation, a commonly used metric for this task in a preliminary analysis of rat hippocampal neurons. Spike trains were recorded from rats performing delayed nonmatch-to-sample task using an array of electrodes surgically implanted into the hippocampus of each hemisphere of the brain. In addition, spike train simulations of positively correlated neurons, negatively correlated neurons, and neurons correlated by nonlinear functions were generated. These were evaluated by time-delayed mutual information (MI) and cross-correlation. Application of time-delayed MI to experimental data indicated the optimal bin size for information capture in the CA3-CA1 system was 40 ms, which may provide some insight into the spatiotemporal nature of encoding in the rat hippocampus. On simulated data, time-delayed MI showed peak values at appropriate time lags in positively correlated, negatively correlated, and complexly correlated data. Cross-correlation showed peak and troughs with positively correlated and negatively correlated data, but failed to capture some higher order correlations. Comparison of time-delayed MI to cross-correlation in identification of functionally dependent neurons indicates that the methods are not equivalent. Time-delayed MI appeared to capture some interactions between CA3-CA1 neurons at physiologically plausible time delays missed by cross-correlation. It should be considered as a method for identification of functional dependence between neurons and may be useful in the development of neural prosthetics. Copyright © 2012 Elsevier Inc. All rights reserved.
Read, Jenny C. A.; Cumming, Bruce G.
2006-01-01
The temporal properties of disparity-sensitive neurons place important temporal constraints on stereo matching. We examined these constraints by measuring the responses of disparity-selective neurons in striate cortex of awake behaving monkeys to random-dot stereograms that contained interocular delays. Disparity selectivity was gradually abolished by increasing interocular delay (when the delay exceeds the integration time, the inputs from the 2 eyes become uncorrelated). The amplitude of the disparity-selective response was a Gaussian function of interocular delay, with a mean of 16 ms (±5 ms, SD). Psychophysical measures of stereoacuity, in both monkey and human observers, showed a closely similar dependency on time, suggesting that temporal integration in V1 neurons is what determines psychophysical matching constraints over time. There was a slight but consistent asymmetry in the neuronal responses, as if the optimum stimulus is one in which the right stimulus leads by about 4 ms. Because all recordings were made in the left hemisphere, this probably reflects nasotemporal differences in conduction times; psychophysical data are compatible with this interpretation. In only a few neurons (5/72), interocular delay caused a change in the preferred disparity. Such tilted disparity/delay profiles have been invoked previously to explain depth perception in the stroboscopic version of the Pulfrich effect (and other variants). However, the great majority of the neurons did not show tilted disparity/delay profiles. This suggests that either the activity of these neurons is ignored when viewing Pulfrich stimuli, or that current theories relating neuronal properties to perception in the Pulfrich effect need to be reevaluated. PMID:15788521
Bae, Eun Joo; Chen, Bai Hui; Yan, Bing Chun; Shin, Bich Na; Cho, Jeong Hwi; Kim, In Hye; Ahn, Ji Hyeon; Lee, Jae Chul; Tae, Hyun-Jin; Hong, Seongkweon; Kim, Dong Won; Cho, Jun Hwi; Lee, Yun Lyul; Won, Moo-Ho; Park, Joon Ha
2015-01-01
The tumor suppressor p63 is one of p53 family members and plays a vital role as a regulator of neuronal apoptosis in the development of the nervous system. However, the role of p63 in mature neuronal death has not been addressed yet. In this study, we first compared ischemia-induced effects on p63 expression in the hippocampal regions (CA1–3) between the young and adult gerbils subjected to 5 minutes of transient global cerebral ischemia. Neuronal death in the hippocampal CA1 region of young gerbils was significantly slow compared with that in the adult gerbils after transient global cerebral ischemia. p63 immunoreactivity in the hippocampal CA1 pyramidal neurons in the sham-operated young group was significantly low compared with that in the sham-operated adult group. p63 immunoreactivity was apparently changed in ischemic hippocampal CA1 pyramidal neurons in both ischemia-operated young and adult groups. In the ischemia-operated adult groups, p63 immunoreactivity in the hippocampal CA1 pyramidal neurons was significantly decreased at 4 days post-ischemia; however, p63 immunoreactivity in the ischemia-operated young group was significantly higher than that in the ischemia-operated adult group. At 7 days post-ischemia, p63 immunoreactivity was decreased in the hippocampal CA1 pyramidal neurons in both ischemia-operated young and adult groups. Change patterns of p63 level in the hippocampal CA1 region of adult and young gerbils after ischemic damage were similar to those observed in the immunohistochemical results. These findings indicate that higher and longer-term expression of p63 in the hippocampal CA1 region of the young gerbils after ischemia/reperfusion may be related to more delayed neuronal death compared to that in the adults. PMID:26199612
Bellesi, Michele; Bushey, Daniel; Chini, Mattia; Tononi, Giulio; Cirelli, Chiara
2016-11-10
Exploration of a novel environment leads to neuronal DNA double-strand breaks (DSBs). These DSBs are generated by type 2 topoisomerase to relieve topological constrains that limit transcription of plasticity-related immediate early genes. If not promptly repaired, however, DSBs may lead to cell death. Since the induction of plasticity-related genes is higher in wake than in sleep, we asked whether it is specifically wake associated with synaptic plasticity that leads to DSBs, and whether sleep provides any selective advantage over wake in their repair. In flies and mice, we find that enriched wake, more than simply time spent awake, induces DSBs, and their repair in mice is delayed or prevented by subsequent wake. In both species the repair of irradiation-induced neuronal DSBs is also quicker during sleep, and mouse genes mediating the response to DNA damage are upregulated in sleep. Thus, sleep facilitates the repair of neuronal DSBs.
Deng, G; Yonchek, JC; Quillinan, N; Strnad, FA; Exo, J; Herson, PS; Traystman, RJ
2014-01-01
Background Pediatric sudden cardiac arrest (CA) is an unfortunate and devastating condition, often leading to poor neurologic outcomes. However, little experimental data on the pathophysiology of pediatric CA is currently available due to the scarcity of animal models. New Method We developed a novel experimental model of pediatric cardiac arrest and cardiopulmonary resuscitation (CA/CPR) using postnatal day 20–25 mice. Adult (8–12 weeks) and pediatric (P20–25) mice were subjected to 6 min CA/CPR. Hippocampal CA1 and striatal neuronal injury were quantified 3 days after resuscitation by hematoxylin and eosin (H&E) and Fluoro-Jade B staining, respectively. Results Pediatric mice exhibited less neuronal injury in both CA1 hippocampal and striatal neurons compared to adult mice. Increasing ischemia time to 8 min CA/CPR resulted in an increase in hippocampal injury in pediatric mice, resulting in similar damage in adult and pediatric brains. In contrast, striatal injury in the pediatric brain following 6 or 8 min CA/CPR remained extremely low. As observed in adult mice, cardiac arrest causes delayed neuronal death in pediatric mice, with hippocampal CA1 neuronal damage maturing at 72 hours after insult. Finally, mild therapeutic hypothermia reduced hippocampal CA1 neuronal injury after pediatric CA/CPR. Comparison with Existing Method This is the first report of a cardiac arrest and CPR model of global cerebral ischemia in mice Conclusions Therefore, the mouse pediatric CA/CPR model we developed is unique and will provide an important new tool to the research community for the study of pediatric brain injury. PMID:24192226
Meeker, Rick B; Poulton, Winona; Feng, Wen-hai; Hudson, Lola; Longo, Frank M
2012-06-01
Feline immunodeficiency virus (FIV) infection like human immunodeficiency virus (HIV), produces systemic and central nervous system disease in its natural host, the domestic cat, that parallels the pathogenesis seen in HIV-infected humans. The ability to culture feline nervous system tissue affords the unique opportunity to directly examine interactions of infectious virus with CNS cells for the development of models and treatments that can then be translated to a natural infectious model. To explore the therapeutic potential of a new p75 neurotrophin receptor ligand, LM11A-31, we evaluated neuronal survival, neuronal damage and calcium homeostasis in cultured feline neurons following inoculation with FIV. FIV resulted in the gradual appearance of dendritic beading, pruning of processes and shrinkage of neuronal perikarya in the neurons. Astrocytes developed a more activated appearance and there was an enhanced accumulation of microglia, particularly at longer times post-inoculation. Addition of 10 nM LM11A-31, to the cultures greatly reduced or eliminated the neuronal pathology as well as the FIV effects on astrocytes and microglia. LM11A-31 also, prevented the development of delayed calcium deregulation in feline neurons exposed to conditioned medium from FIV treated macrophages. The suppression of calcium accumulation prevented the development of foci of calcium accumulation and beading in the dendrites. FIV replication was unaffected by LM11A-31. The strong neuroprotection afforded by LM11A-31 in an infectious in vitro model indicates that LM11A-31 may have excellent potential for the treatment of HIV-associated neurodegeneration.
NASA Astrophysics Data System (ADS)
Wang, Qingyun; Zhang, Honghui; Chen, Guanrong
2012-12-01
We study the effect of heterogeneous neuron and information transmission delay on stochastic resonance of scale-free neuronal networks. For this purpose, we introduce the heterogeneity to the specified neuron with the highest degree. It is shown that in the absence of delay, an intermediate noise level can optimally assist spike firings of collective neurons so as to achieve stochastic resonance on scale-free neuronal networks for small and intermediate αh, which plays a heterogeneous role. Maxima of stochastic resonance measure are enhanced as αh increases, which implies that the heterogeneity can improve stochastic resonance. However, as αh is beyond a certain large value, no obvious stochastic resonance can be observed. If the information transmission delay is introduced to neuronal networks, stochastic resonance is dramatically affected. In particular, the tuned information transmission delay can induce multiple stochastic resonance, which can be manifested as well-expressed maximum in the measure for stochastic resonance, appearing every multiple of one half of the subthreshold stimulus period. Furthermore, we can observe that stochastic resonance at odd multiple of one half of the subthreshold stimulus period is subharmonic, as opposed to the case of even multiple of one half of the subthreshold stimulus period. More interestingly, multiple stochastic resonance can also be improved by the suitable heterogeneous neuron. Presented results can provide good insights into the understanding of the heterogeneous neuron and information transmission delay on realistic neuronal networks.
Reliability and synchronization in a delay-coupled neuronal network with synaptic plasticity
NASA Astrophysics Data System (ADS)
Pérez, Toni; Uchida, Atsushi
2011-06-01
We investigate the characteristics of reliability and synchronization of a neuronal network of delay-coupled integrate and fire neurons. Reliability and synchronization appear in separated regions of the phase space of the parameters considered. The effect of including synaptic plasticity and different delay values between the connections are also considered. We found that plasticity strongly changes the characteristics of reliability and synchronization in the parameter space of the coupling strength and the drive amplitude for the neuronal network. We also found that delay does not affect the reliability of the network but has a determinant influence on the synchronization of the neurons.
Taghva, Alexander; Song, Dong; Hampson, Robert E.; Deadwyler, Sam A.; Berger, Theodore W.
2013-01-01
BACKGROUND Identification of functional dependence among neurons is a necessary component in both the rational design of neural prostheses as well as in the characterization of network physiology. The objective of this article is to provide a tutorial for neurosurgeons regarding information theory, specifically time-delayed mutual information, and to compare time-delayed mutual information, an information theoretic quantity based on statistical dependence, with cross-correlation, a commonly used metric for this task in a preliminary analysis of rat hippocampal neurons. METHODS Spike trains were recorded from rats performing delayed nonmatch-to-sample task using an array of electrodes surgically implanted into the hippocampus of each hemisphere of the brain. In addition, spike train simulations of positively correlated neurons, negatively correlated neurons, and neurons correlated by nonlinear functions were generated. These were evaluated by time-delayed mutual information (MI) and cross-correlation. RESULTS Application of time-delayed MI to experimental data indicated the optimal bin size for information capture in the CA3-CA1 system was 40 ms, which may provide some insight into the spatiotemporal nature of encoding in the rat hippocampus. On simulated data, time-delayed MI showed peak values at appropriate time lags in positively correlated, negatively correlated, and complexly correlated data. Cross-correlation showed peak and troughs with positively correlated and negatively correlated data, but failed to capture some higher order correlations. CONCLUSIONS Comparison of time-delayed MI to cross-correlation in identification of functionally dependent neurons indicates that the methods are not equivalent. Time-delayed MI appeared to capture some interactions between CA3-CA1 neurons at physiologically plausible time delays missed by cross-correlation. It should be considered as a method for identification of functional dependence between neurons and may be useful in the development of neural prosthetics. PMID:22120279
Min, Dongyu; Mao, Xiaoyuan; Wu, Kuncan; Cao, Yonggang; Guo, Feng; Zhu, Shu; Xie, Ni; Wang, Lei; Chen, Tianbao; Shaw, Chris; Cai, Jiqun
2012-02-21
Decreased cerebral blood flow causes cognitive impairments and neuronal injury in vascular dementia. In the present study, we reported that donepezil, a cholinesterase inhibitor, improved transient global cerebral ischemia-induced spatial memory impairment in gerbils. Treatment with 5mg/kg of donepezil for 21 consecutive days following a 10-min period of ischemia significantly inhibited delayed neuronal death in the hippocampal CA1 region. In Morris water maze test, memory impairment was significantly improved by donepezil treatment. Western blot analysis showed that donepezil treatment prevented reductions in p-CaMKII and p-CREB protein levels in the hippocampus. These results suggest that donepezil attenuates the memory deficit induced by transient global cerebral ischemia and this neuroprotection may be associated with the phosphorylation of CaMKII and CERB in the hippocampus. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Acute and chronic ethanol intake: effects on spatial and non-spatial memory in rats.
García-Moreno, Luis M; Cimadevilla, Jose M
2012-12-01
Abusive alcohol consumption produces neuronal damage and biochemical alterations in the mammal brain followed by cognitive disturbances. In this work rats receiving chronic and acute alcohol intake were evaluated in a spontaneous delayed non-matching to sample/position test. Chronic alcohol-treated rats had free access to an aqueous ethanol solution as the only available liquid source from the postnatal day 21 to the end of experiment (postnatal day 90). Acute alcoholic animals received an injection of 2 g/kg ethanol solution once per week. Subjects were evaluated in two tests (object recognition and spatial recognition) based on the spontaneous delayed non-matching to sample or to position paradigm using delays of 1 min, 15 min and 60 min. Results showed that chronic and acute alcohol intake impairs the rats' performance in both tests. Moreover, chronic alcohol-treated rats were more altered than acute treated animals in both tasks. Our results support the idea that chronic and acute alcohol administration during postnatal development caused widespread brain damage resulting in behavioral disturbances and learning disabilities. Copyright © 2012 Elsevier Inc. All rights reserved.
Iwasa, Kensuke; Yamamoto, Shinji; Yagishita, Sosuke; Maruyama, Kei; Yoshikawa, Keisuke
2017-04-01
Excitotoxicity is the pivotal mechanism of neuronal death. Prostaglandins (PGs) produced during excitotoxicity play important roles in neurodegenerative conditions. Previously, we demonstrated that initial burst productions of PGD 2 , PGE 2 , and PGF 2α are produced by cyclooxygenase-2 (COX-2) in the hippocampus following a single systemic kainic acid (KA) administration. In addition, we showed that blocking of all PG productions ameliorated hippocampal delayed neuronal death at 30 days after KA administration. To investigate the role of individual PGs in the delayed neuronal death, we performed intracerebroventricular injection of PGD 2 , PGE 2 , or PGF 2α in rats whose hippocampal PG productions were entirely blocked by pretreatment of NS398, a COX-2 selective inhibitor. Administration of PGD 2 and PGF 2α had a latent contribution to the delayed neuronal death, sustained over 30 days after a single KA treatment. Furthermore, PGD 2 enhanced microglial activation, which may be involved in the delayed neuronal death in the hippocampus. These findings suggest that excitotoxic delayed neuronal death is mediated through microglia activated by PGD 2 . Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.
Chen, Liuji; Hambright, William Sealy; Na, Ren; Ran, Qitao
2015-11-20
Glutathione peroxidase 4 (GPX4), an antioxidant defense enzyme active in repairing oxidative damage to lipids, is a key inhibitor of ferroptosis, a non-apoptotic form of cell death involving lipid reactive oxygen species. Here we show that GPX4 is essential for motor neuron health and survival in vivo. Conditional ablation of Gpx4 in neurons of adult mice resulted in rapid onset and progression of paralysis and death. Pathological inspection revealed that the paralyzed mice had a dramatic degeneration of motor neurons in the spinal cord but had no overt neuron degeneration in the cerebral cortex. Consistent with the role of GPX4 as a ferroptosis inhibitor, spinal motor neuron degeneration induced by Gpx4 ablation exhibited features of ferroptosis, including no caspase-3 activation, no TUNEL staining, activation of ERKs, and elevated spinal inflammation. Supplementation with vitamin E, another inhibitor of ferroptosis, delayed the onset of paralysis and death induced by Gpx4 ablation. Also, lipid peroxidation and mitochondrial dysfunction appeared to be involved in ferroptosis of motor neurons induced by Gpx4 ablation. Taken together, the dramatic motor neuron degeneration and paralysis induced by Gpx4 ablation suggest that ferroptosis inhibition by GPX4 is essential for motor neuron health and survival in vivo. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Ergodic properties of spiking neuronal networks with delayed interactions
NASA Astrophysics Data System (ADS)
Palmigiano, Agostina; Wolf, Fred
The dynamical stability of neuronal networks, and the possibility of chaotic dynamics in the brain pose profound questions to the mechanisms underlying perception. Here we advance on the tractability of large neuronal networks of exactly solvable neuronal models with delayed pulse-coupled interactions. Pulse coupled delayed systems with an infinite dimensional phase space can be studied in equivalent systems of fixed and finite degrees of freedom by introducing a delayer variable for each neuron. A Jacobian of the equivalent system can be analytically obtained, and numerically evaluated. We find that depending on the action potential onset rapidness and the level of heterogeneities, the asynchronous irregular regime characteristic of balanced state networks loses stability with increasing delays to either a slow synchronous irregular or a fast synchronous irregular state. In networks of neurons with slow action potential onset, the transition to collective oscillations leads to an increase of the exponential rate of divergence of nearby trajectories and of the entropy production rate of the chaotic dynamics. The attractor dimension, instead of increasing linearly with increasing delay as reported in many other studies, decreases until eventually the network reaches full synchrony
Venkat, Poornima; Chopp, Michael; Zacharek, Alex; Cui, Chengcheng; Zhang, Li; Li, Qingjiang; Lu, Mei; Zhang, Talan; Liu, Amy; Chen, Jieli
2016-01-01
We investigated cognitive function, axonal/white matter (WM) changes and glymphatic function of vascular dementia (VaD) using a multiple microinfarction (MMI) model in retired breeder (RB) rats. The MMI model induces significant (p<0.05) cognitive decline that worsens with age starting at 2 weeks, which persists until at least 6 weeks after MMI. RB rats subjected to MMI exhibit significant axonal/WM damage identified by decreased myelin thickness, oligodendrocyte progenitor cell numbers, axon density, synaptic protein expression in the cortex and striatum, cortical neuronal branching, and dendritic spine density in the cortex and hippocampus compared with age matched controls. MMI evokes significant dilation of perivascular spaces as well as water channel dysfunction indicated by decreased Aquaporin-4 (AQP-4) expression around blood vessels. MMI induced glymphatic dysfunction with delayed cerebrospinal fluid (CSF) penetration into the brain parenchyma via paravascular pathways as well as delayed waste clearance from the brain. The MMI model in RB rats decreases AQP-4 and induces glymphatic dysfunction which may play an important role in MMI induced axonal/WM damage and cognitive deficits. PMID:27940353
Venkat, Poornima; Chopp, Michael; Zacharek, Alex; Cui, Chengcheng; Zhang, Li; Li, Qingjiang; Lu, Mei; Zhang, Talan; Liu, Amy; Chen, Jieli
2017-02-01
We investigated cognitive function, axonal/white matter (WM) changes and glymphatic function of vascular dementia using a multiple microinfarction (MMI) model in retired breeder (RB) rats. The MMI model induces significant (p < 0.05) cognitive decline that worsens with age starting at 2 weeks, which persists until at least 6 weeks after MMI. RB rats subjected to MMI exhibit significant axonal/WM damage identified by decreased myelin thickness, oligodendrocyte progenitor cell numbers, axon density, synaptic protein expression in the cortex and striatum, cortical neuronal branching, and dendritic spine density in the cortex and hippocampus compared with age-matched controls. MMI evokes significant dilation of perivascular spaces as well as water channel dysfunction indicated by decreased Aquaporin-4 expression around blood vessels. MMI-induced glymphatic dysfunction with delayed cerebrospinal fluid penetration into the brain parenchyma via paravascular pathways as well as delayed waste clearance from the brain. The MMI model in RB rats decreases Aquaporin-4 and induces glymphatic dysfunction which may play an important role in MMI-induced axonal/WM damage and cognitive deficits. Copyright © 2016 Elsevier Inc. All rights reserved.
Li, Guangke; Sang, Nan
2009-01-01
Recent studies implicate the possible neurotoxicity of SO(2), however, its mechanisms remain unclear. In the present study, we investigated SO(2) derivative-induced effect on delayed rectifier potassium channels (I(K)) and cellular death/apoptosis in primary cultured hippocampal neurons. The results demonstrate that SO(2) derivatives (NaHSO(3) and Na(2)SO(3), 3:1M/M) effectively augmented I(K) and promoted the activation of delayed rectifier potassium channels. Also, SO(2) derivatives increased neuronal death percentage and contributed to the formation of DNA ladder in concentration-dependent manners. Interestingly, the neuronal death and DNA ladder formation, caused by SO(2) derivatives, could be attenuated by the delayed rectifier potassium channel blocker (tetraethylammonium, TEA), but not by the transient outward potassium channel blocker (4-aminopyridine, 4-AP). It implies that stimulating delayed rectifier potassium channels were involved in SO(2) derivative-caused hippocampal neuronal insults, and blocking these channels might be one of the possibly clinical treatment for SO(2)-caused neuronal dysfunction.
Yu, Haitao; Wang, Jiang; Du, Jiwei; Deng, Bin; Wei, Xile
2015-02-01
Effects of time delay on the local and global synchronization in small-world neuronal networks with chemical synapses are investigated in this paper. Numerical results show that, for both excitatory and inhibitory coupling types, the information transmission delay can always induce synchronization transitions of spiking neurons in small-world networks. In particular, regions of in-phase and out-of-phase synchronization of connected neurons emerge intermittently as the synaptic delay increases. For excitatory coupling, all transitions to spiking synchronization occur approximately at integer multiples of the firing period of individual neurons; while for inhibitory coupling, these transitions appear at the odd multiples of the half of the firing period of neurons. More importantly, the local synchronization transition is more profound than the global synchronization transition, depending on the type of coupling synapse. For excitatory synapses, the local in-phase synchronization observed for some values of the delay also occur at a global scale; while for inhibitory ones, this synchronization, observed at the local scale, disappears at a global scale. Furthermore, the small-world structure can also affect the phase synchronization of neuronal networks. It is demonstrated that increasing the rewiring probability can always improve the global synchronization of neuronal activity, but has little effect on the local synchronization of neighboring neurons.
Bedoukian, Matthew A.; Rodriguez, Sarah M.; Cohen, Matthew B.; Duncan Smith, Stuart V.; Park, Jennifer
2009-01-01
Gene expression in Drosophila melanogaster changes significantly throughout life and some of these changes can be delayed by lowering ambient temperature and also by dietary restriction. These two interventions are known to slow the rate of aging as well as the accumulation of damage. It is unknown, however, whether gene expression changes that occur during development and early adult life make an animal more vulnerable to death. Here we develop a method capable of measuring the rate of programmed genetic changes during young adult life in Drosophila melanogaster and show that these changes can be delayed or accelerated in a manner that is predictive of longevity. We show that temperature shifts and dietary restriction, which slow the rate of aging in Drosophila melanogaster, extend the window of neuronal susceptibility to GRIM over-expression in a way that scales to lifespan. We propose that this susceptibility can be used to test compounds and genetic manipulations that alter the onset of senescence by changing the programmed timing of gene expression that correlates and may be causal to aging. PMID:19428445
Apoptosis and brain ischaemia.
Love, Seth
2003-04-01
There is increasing evidence that some neuronal death after brain ischaemia is mediated by the action of cysteine-requiring aspartate-directed proteases (caspases), the proteases responsible for apoptosis in mammals, although this form of neuronal death is not always accompanied by the morphological changes that are typical of apoptosis in other tissues. Caspase-mediated neuronal death is more extensive after transient than permanent focal brain ischaemia and may contribute to delayed loss of neurons from the penumbral region of infarcts. The activation of caspases after brain ischaemia is largely consequent on the translocation of Bax, Bak, and other BH3-only members of the Bcl-2 family to the mitochondrial outer membrane and the release of cytochrome c, procaspase-9, and apoptosis activating factor-1 (Apaf-1) from the mitochondrial intermembrane space. How exactly ischaemia induces this translocation is still poorly understood. NF-kappaB, the c-jun N-terminal kinase-c-Jun pathway, p53, E2F1, and other transcription factors are probably all involved in regulating the expression of BH3-only proteins after brain ischaemia, and mitochondrial translocation of Bad from sequestering cytosolic proteins is promoted by inactivation of the serine-threonine kinase, Akt. Other processes that are probably involved in the activation of caspases after brain ischaemia include the mitochondrial release of the second mitochondrial activator of caspases (Smac) or direct inhibitor-of-apoptosis-binding protein with low pI (DIABLO), the accumulation of products of lipid peroxidation, a marked reduction in protein synthesis, and the aberrant reentry of neurons into the cell cycle. Non-caspase-mediated neuronal apoptosis may also occur, but there is little evidence to date that this makes a significant contribution to brain damage after ischaemia. The intracellular processes that contribute to caspase-mediated neuronal death after ischaemia are all potential targets for therapy. However, anti-apoptotic interventions in stroke patients will require detailed evaluation using a range of outcome measures, as some such interventions seem simply to delay neuronal death and others to preserve neurons but not neuronal function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lazar, Shlomi; Egoz, Inbal; Brandeis, Rachel
Sarin is an irreversible organophosphate cholinesterase inhibitor and a highly toxic warfare agent. Following the overt, dose-dependent signs (e.g. tremor, hyper secretion, seizures, respiratory depression and eventually death), brain damage is often reported. The goal of the present study was to characterize the early histopathological and biochemical events leading to this damage. Rats were exposed to 1LD50 of sarin (80 μg/kg, i.m.). Brains were removed at 1, 2, 6, 24 and 48 h and processed for analysis. Results showed that TSPO (translocator protein) mRNA increased at 6 h post exposure while TSPO receptor density increased only at 24 h. Inmore » all brain regions tested, bax mRNA decreased 1 h post exposure followed by an increase 24 h later, with only minor increase in bcl2 mRNA. At this time point a decrease was seen in both anti-apoptotic protein Bcl2 and pro-apoptotic Bax, followed by a time and region specific increase in Bax. An immediate elevation in ERK1/2 activity with no change in JNK may indicate an endogenous “first response” mechanism used to attenuate the forthcoming apoptosis. The time dependent increase in the severity of brain damage included an early bi-phasic activation of astrocytes, a sharp decrease in intact neuronal cells, a time dependent reduction in MAP2 and up to 15% of apoptosis. Thus, neuronal death is mostly due to necrosis and severe astrocytosis. The data suggests that timing of possible treatments should be determined by early events following exposure. For example, the biphasic changes in astrocytes activity indicate a possible beneficial effects of delayed anti-inflammatory intervention. - Highlights: • The severity of brain damage post 1LD50 sarin exposure is time dependent. • Sarin induce differential progression of early processes in the rat brain. • Potential treatments should be timed according to early events following exposure. • The biphasic astrocytes activity suggests a delay in anti-inflammatory intervention.« less
The synchronization of asymmetric-structured electric coupling neuronal system
NASA Astrophysics Data System (ADS)
Wang, Guanping; Jin, Wuyin; Liu, Hao; Sun, Wei
2018-02-01
Based on the Hindmarsh-Rose (HR) model, the synchronization dynamics of asymmetric-structured electric coupling two neuronal system is investigated in this paper. It is discovered that when the time-delay scope and coupling strength for the synchronization are correlated positively under unequal time delay, the time-delay difference does not make a clear distinction between the two individual inter-spike intervals (ISI) bifurcation diagrams of the two coupled neurons. Therefore, the superficial difference of the system synchronization dynamics is not obvious for the unequal time-delay feedback. In the asymmetrical current incentives under asymmetric electric coupled system, the two neurons can only be almost completely synchronized in specific area of the interval which end-pointed with two discharge modes for a single neuron under different stimuli currents before coupling, but the intervention of time-delay feedback, together with the change of the coupling strength, can make the coupled system not only almost completely synchronized within anywhere in the front area, but also outside of it.
NASA Astrophysics Data System (ADS)
Gong, Yubing; Xie, Huijuan
2017-09-01
Using spike-timing-dependent plasticity (STDP), we study the effect of channel noise on temporal coherence and synchronization of adaptive scale-free Hodgkin-Huxley neuronal networks with time delay. It is found that the spiking regularity and spatial synchronization of the neurons intermittently increase and decrease as channel noise intensity is varied, exhibiting transitions of temporal coherence and synchronization. Moreover, this phenomenon depends on time delay, STDP, and network average degree. As time delay increases, the phenomenon is weakened, however, there are optimal STDP and network average degree by which the phenomenon becomes strongest. These results show that channel noise can intermittently enhance the temporal coherence and synchronization of the delayed adaptive neuronal networks. These findings provide a new insight into channel noise for the information processing and transmission in neural systems.
Jaszczak, Jacob S; Wolpe, Jacob B; Bhandari, Rajan; Jaszczak, Rebecca G; Halme, Adrian
2016-10-01
Damage to Drosophila melanogaster imaginal discs activates a regeneration checkpoint that (1) extends larval development and (2) coordinates the regeneration of the damaged disc with the growth of undamaged discs. These two systemic responses to damage are both mediated by Dilp8, a member of the insulin/insulin-like growth factor/relaxin family of peptide hormones, which is released by regenerating imaginal discs. Growth coordination between regenerating and undamaged imaginal discs is dependent on Dilp8 activation of nitric oxide synthase (NOS) in the prothoracic gland (PG), which slows the growth of undamaged discs by limiting ecdysone synthesis. Here we demonstrate that the Drosophila relaxin receptor homolog Lgr3, a leucine-rich repeat-containing G-protein-coupled receptor, is required for Dilp8-dependent growth coordination and developmental delay during the regeneration checkpoint. Lgr3 regulates these responses to damage via distinct mechanisms in different tissues. Using tissue-specific RNA-interference disruption of Lgr3 expression, we show that Lgr3 functions in the PG upstream of NOS, and is necessary for NOS activation and growth coordination during the regeneration checkpoint. When Lgr3 is depleted from neurons, imaginal disc damage no longer produces either developmental delay or growth inhibition. To reconcile these discrete tissue requirements for Lgr3 during regenerative growth coordination, we demonstrate that Lgr3 activity in both the CNS and PG is necessary for NOS activation in the PG following damage. Together, these results identify new roles for a relaxin receptor in mediating damage signaling to regulate growth and developmental timing. Copyright © 2016 by the Genetics Society of America.
Tian, Kun; He, Cong-Cong; Xu, Hui-Nan; Wang, Yu-Xiang; Wang, Hong-Gang; An, Di; Heng, Bin; Pang, Wei; Jiang, Yu-Gang; Liu, Yan-Qiang
2017-05-01
In the present study, cultured rat primary neurons were exposed to a medium containing N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), a specific cell membrane-permeant Zn 2+ chelator, to establish a model of free Zn 2+ deficiency in neurons. The effects of TPEN-mediated free Zn 2+ ion reduction on neuronal viability and on the performance of voltage-gated sodium channels (VGSCs) and potassium channels (Kvs) were assessed. Free Zn 2+ deficiency 1) markedly reduced the neuronal survival rate, 2) reduced the peak amplitude of I Na , 3) shifted the I Na activation curve towards depolarization, 4) modulated the sensitivity of sodium channel voltage-dependent inactivation to a depolarization voltage, and 5) increased the time course of recovery from sodium channel inactivation. In addition, free Zn 2+ deficiency by TPEN notably enhanced the peak amplitude of transient outward K + currents (I A ) and delayed rectifier K + currents (I K ), as well as caused hyperpolarization and depolarization directional shifts in their steady-state activation curves, respectively. Zn 2+ supplementation reversed the effects induced by TPEN. Our results indicate that free Zn 2+ deficiency causes neuronal damage and alters the dynamic characteristics of VGSC and Kv currents. Thus, neuronal injury caused by free Zn 2+ deficiency may correlate with its modulation of the electrophysiological properties of VGSCs and Kvs. Copyright © 2017 Elsevier GmbH. All rights reserved.
Miller, Darren M; Singh, Indrapal N; Wang, Juan A; Hall, Edward D
2015-02-01
The importance of free radical-induced oxidative damage after traumatic brain injury (TBI) has been well documented. Despite multiple clinical trials with radical-scavenging antioxidants that are neuroprotective in TBI models, none is approved for acute TBI patients. As an alternative antioxidant target, Nrf2 is a transcription factor that activates expression of antioxidant and cytoprotective genes by binding to antioxidant response elements (AREs) within DNA. Previous research has shown that neuronal mitochondria are susceptible to oxidative damage post-TBI, and thus the current study investigates whether Nrf2-ARE activation protects mitochondrial function when activated post-TBI. It was hypothesized that administration of carnosic acid (CA) would reduce oxidative damage biomarkers in the brain tissue and also preserve cortical mitochondrial respiratory function post-TBI. A mouse controlled cortical impact (CCI) model was employed with a 1.0mm cortical deformation injury. Administration of CA at 15 min post-TBI reduced cortical lipid peroxidation, protein nitration, and cytoskeletal breakdown markers in a dose-dependent manner at 48 h post-injury. Moreover, CA preserved mitochondrial respiratory function compared to vehicle animals. This was accompanied by decreased oxidative damage to mitochondrial proteins, suggesting the mechanistic connection of the two effects. Lastly, delaying the initial administration of CA up to 8h post-TBI was still capable of reducing cytoskeletal breakdown, thereby demonstrating a clinically relevant therapeutic window for this approach. This study demonstrates that pharmacological Nrf2-ARE induction is capable of neuroprotective efficacy when administered after TBI. Copyright © 2014 Elsevier Inc. All rights reserved.
Harada, Shinichi; Fujita-Hamabe, Wakako; Tokuyama, Shogo
2010-09-10
5'-AMP-activated protein kinase (AMPK) is a serine/threonine kinase that plays a key role in energy homeostasis. Recently, it was reported that centrally activated AMPK is involved in the development of ischemic neuronal damage, while the effect of peripherally activated AMPK on ischemic neuronal damage is not known. In addition, we have previously reported that the development of post-ischemic glucose intolerance could be one of the triggers for the aggravation of neuronal damage. In this study, we focused on effect of activation of peripheral or central AMPK on the development of ischemic neuronal damage. Male ddY mice were subjected to 2 h of middle cerebral artery occlusion (MCAO). Neuronal damage was estimated by histological and behavioral analysis after MCAO. In the liver and skeletal muscle, AMPK activity was not affected by MCAO. But, application of intraperitoneal metformin (250 mg/kg), an AMPK activator, significantly suppressed the development of post-ischemic glucose intolerance and ischemic neuronal damage without alteration of central AMPK activity. On the other hand, application of intracerebroventricular metformin (25, 100 microg/mouse) significantly exacerbated the development of neuronal damage observed on day 1 after MCAO, in a dose-dependent manner. These effects were significantly blocked by compound C, a specific AMPK inhibitor. These results suggest that central AMPK was activated by ischemic stress per se, however, peripheral AMPK was not altered. Furthermore, the regulation of post-ischemic glucose intolerance by activation of peripheral AMPK is of assistance for the suppression of cerebral ischemic neuronal damage. 2010 Elsevier B.V. All rights reserved.
Xia, Yang; Kong, Liang; Yao, Yingjia; Jiao, Yanan; Song, Jie; Tao, Zhenyu; You, Zhong; Yang, Jingxian
2015-09-04
Neuroendoscopy is an innovative technique for neurosurgery that can nonetheless result in traumatic brain injury. The accompanying neuroinflammation may lead to secondary tissue damage, which is the major cause of delayed neuronal death after surgery. The present study investigated the capacity of osthole to prevent secondary brain injury and the underlying mechanism of action in a mouse model of stab wound injury. A mouse model of cortical stab wound injury was established by inserting a needle into the cerebral cortex for 20 min to mimic neuroendoscopy. Mice received an intraperitoneal injection of osthole 30 min after surgery and continued for 14 days. Neurological severity was evaluated 12 h and up to 21 days after the trauma. Brains were collected 3-21 days post-injury for histological analysis, immunocytochemistry, quantitative real-time PCR, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and enzyme-linked immunosorbent assays. Neurological function improved in mice treated with osthole and was accompanied by reduced brain water content and accelerated wound closure relative to untreated mice. Osthole treatment reduced the number of macrophages/microglia and peripheral infiltrating of neutrophils and lowered the level of the proinflammatory cytokines interleukin-6 and tumor necrosis factor α in the lesioned cortex. Osthole-treated mice had fewer TUNEL+ apoptotic neurons surrounding the lesion than controls, indicating increased neuronal survival. Osthole reduced secondary brain damage by suppressing inflammation and apoptosis in a mouse model of stab wound injury. These results suggest a new strategy for promoting neuronal survival and function after neurosurgery to improve long-term patient outcome.
Xu, Tao; Xiao, Na; Zhai, Xiaolong; Kwan Chan, Pak; Tin, Chung
2018-02-01
Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.
Lopez-Gonzalez, Rodrigo; Lu, Yubing; Gendron, Tania F; Karydas, Anna; Tran, Helene; Yang, Dejun; Petrucelli, Leonard; Miller, Bruce L; Almeida, Sandra; Gao, Fen-Biao
2016-10-19
GGGGCC repeat expansions in C9ORF72 are the most common genetic cause of both ALS and FTD. To uncover underlying pathogenic mechanisms, we found that DNA damage was greater, in an age-dependent manner, in motor neurons differentiated from iPSCs of multiple C9ORF72 patients than control neurons. Ectopic expression of the dipeptide repeat (DPR) protein (GR) 80 in iPSC-derived control neurons increased DNA damage, suggesting poly(GR) contributes to DNA damage in aged C9ORF72 neurons. Oxidative stress was also increased in C9ORF72 neurons in an age-dependent manner. Pharmacological or genetic reduction of oxidative stress partially rescued DNA damage in C9ORF72 neurons and control neurons expressing (GR) 80 or (GR) 80 -induced cellular toxicity in flies. Moreover, interactome analysis revealed that (GR) 80 preferentially bound to mitochondrial ribosomal proteins and caused mitochondrial dysfunction. Thus, poly(GR) in C9ORF72 neurons compromises mitochondrial function and causes DNA damage in part by increasing oxidative stress, revealing another pathogenic mechanism in C9ORF72-related ALS and FTD. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Chen; Wang, Jiang; Yu, Haitao; Deng, Bin; Wei, Xile; Tsang, Kaiming; Chan, Wailok
2013-09-01
The combined effects of the information transmission delay and the ratio of the electrical and chemical synapses on the synchronization transitions in the hybrid modular neuronal network are investigated in this paper. Numerical results show that the synchronization of neuron activities can be either promoted or destroyed as the information transmission delay increases, irrespective of the probability of electrical synapses in the hybrid-synaptic network. Interestingly, when the number of the electrical synapses exceeds a certain level, further increasing its proportion can obviously enhance the spatiotemporal synchronization transitions. Moreover, the coupling strength has a significant effect on the synchronization transition. The dominated type of the synapse always has a more profound effect on the emergency of the synchronous behaviors. Furthermore, the results of the modular neuronal network structures demonstrate that excessive partitioning of the modular network may result in the dramatic detriment of neuronal synchronization. Considering that information transmission delays are inevitable in intra- and inter-neuronal networks communication, the obtained results may have important implications for the exploration of the synchronization mechanism underlying several neural system diseases such as Parkinson's Disease.
DNA damage preceding dopamine neuron degeneration in A53T human α-synuclein transgenic mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Degui; Yu, Tianyu; Liu, Yongqiang
Defective DNA repair has been linked with age-associated neurodegenerative disorders. Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by genetic and environmental factors. Whether damages to nuclear DNA contribute to neurodegeneration of PD still remain obscure. in this study we aim to explore whether nuclear DNA damage induce dopamine neuron degeneration in A53T human α-Synuclein over expressed mouse model. We investigated the effects of X-ray irradiation on A53T-α-Syn MEFs and A53T-α-Syn transgene mice. Our results indicate that A53T-α-Syn MEFs show a prolonged DNA damage repair process and senescense phenotype. DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenicmore » mice and decrease the number of nigrostriatal dopaminergic neurons. Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages. - Highlights: • This study explore contribution of DNA damage to neurodegeneration in Parkinson's disease mice. • A53T-α-Syn MEF cells show a prolonged DNA damage repair process and senescense phenotype. • DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenic mice. • DNA damage decrease the number of nigrostriatal dopaminergic neurons. • Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages.« less
Modeling of synchronization behavior of bursting neurons at nonlinearly coupled dynamical networks.
Çakir, Yüksel
2016-01-01
Synchronization behaviors of bursting neurons coupled through electrical and dynamic chemical synapses are investigated. The Izhikevich model is used with random and small world network of bursting neurons. Various currents which consist of diffusive electrical and time-delayed dynamic chemical synapses are used in the simulations to investigate the influences of synaptic currents and couplings on synchronization behavior of bursting neurons. The effects of parameters, such as time delay, inhibitory synaptic strengths, and decay time on synchronization behavior are investigated. It is observed that in random networks with no delay, bursting synchrony is established with the electrical synapse alone, single spiking synchrony is observed with hybrid coupling. In small world network with no delay, periodic bursting behavior with multiple spikes is observed when only chemical and only electrical synapse exist. Single-spike and multiple-spike bursting are established with hybrid couplings. A decrease in the synchronization measure is observed with zero time delay, as the decay time is increased in random network. For synaptic delays which are above active phase period, synchronization measure increases with an increase in synaptic strength and time delay in small world network. However, in random network, it increases with only an increase in synaptic strength.
Gotoh, Mari; Hotta, Harumi; Murakami-Murofushi, Kimiko
2010-12-15
Cyclic phosphatidic acid (cPA) is a lipid mediator that elicits a neurotrophin-like action in embryonic hippocampal neurons in vitro. In this study, we investigated the effects of cPA and 2-O-carba-oleoyl-cPA (2ccPA), a metabolically stabilized cPA derivative, on ischemia-induced delayed neuronal death in the rat hippocampal CA1 region. Transient occlusion for 8 min of bilateral carotid arteries besides permanent ligation of bilateral vertebral arteries was performed and morphological changes of the neurons were examined histologically 5 days after occlusion. cPA or 2ccPA was continuously administered for 5 days by means of an osmotic pump that was implanted subcutaneously before occlusion. Five days after occlusion, delayed neuronal death occurred in approximately 85% of the CA1 hippocampal neurons in the 0.2-2% bovine serum albumin vehicle control group. However, administration of cPA significantly increased the number of undamaged neurons in a dose-dependent manner. At the most effective concentration (18 μg/kg/5d), the number of undamaged neurons was increased to 4 times of that in the vehicle control group. 2ccPA also showed a neuroprotective effect, but it was less potent than that of natural cPA. These results indicate that systemic administration of both cPA and 2ccPA can protect neurons from ischemia-induced delayed neuronal death in the hippocampus. Copyright © 2010 Elsevier B.V. All rights reserved.
Kang, Xue-Jing; Chi, Ye-Nan; Chen, Wen; Liu, Feng-Yu; Cui, Shuang; Liao, Fei-Fei; Cai, Jie; Wan, You
2018-01-01
Ion channels are very important in the peripheral sensitization in neuropathic pain. Our present study aims to investigate the possible contribution of Ca V 3.2 T-type calcium channels in damaged dorsal root ganglion neurons in neuropathic pain. We established a neuropathic pain model of rats with spared nerve injury. In these model rats, it was easy to distinguish damaged dorsal root ganglion neurons (of tibial nerve and common peroneal nerve) from intact dorsal root ganglion neurons (of sural nerves). Our results showed that Ca V 3.2 protein expression increased in medium-sized neurons from the damaged dorsal root ganglions but not in the intact ones. With whole cell patch clamp recording technique, it was found that after-depolarizing amplitudes of the damaged medium-sized dorsal root ganglion neurons increased significantly at membrane potentials of -85 mV and -95 mV. These results indicate a functional up-regulation of Ca V 3.2 T-type calcium channels in the damaged medium-sized neurons after spared nerve injury. Behaviorally, blockade of Ca V 3.2 with antisense oligodeoxynucleotides could significantly reverse mechanical allodynia. These results suggest that Ca V 3.2 T-type calcium channels in damaged medium-sized dorsal root ganglion neurons might contribute to neuropathic pain after peripheral nerve injury.
Reducing excessive GABAergic tonic inhibition promotes post-stroke functional recovery
Clarkson, Andrew N.; Huang, Ben S.; MacIsaac, Sarah E.; Mody, Istvan; Carmichael, S. Thomas
2010-01-01
Stroke is a leading cause of disability; but no pharmacological therapy is currently available for promoting recovery. The brain region adjacent to stroke damage, the peri-infarct zone, is critical for rehabilitation, as it exhibits heightened neuroplasticity, allowing sensorimotor functions to re-map from damaged areas1–3. Thus, understanding the neuronal properties constraining this plasticity is important to developing new treatments. Here we show that after a stroke in mice, tonic neuronal inhibition is increased in the peri-infarct zone. This increased tonic inhibition is mediated by extrasynaptic GABAA receptors (GABAARs) and is caused by an impairment in GABA transporter (GAT-3/4) function. To counteract the heightened inhibition, we administered in vivo a benzodiazepine inverse agonist specific for the α5-subunit-containing extrasynaptic GABAARs at a delay after stroke. This treatment produced an early and sustained recovery of motor function. Genetically lowering the number of α5 or δ-subunit-containing GABAARs responsible for tonic inhibition also proved beneficial for post-stroke recovery, consistent with the therapeutic potential of diminishing extrasynaptic GABAAR function. Together, our results identify new pharmacological targets and provide the rationale for a novel strategy to promote recovery after stroke and possibly other brain injuries. PMID:21048709
Dorsal Raphe Serotonergic Neurons Control Intertemporal Choice under Trade-off.
Xu, Sangyu; Das, Gishnu; Hueske, Emily; Tonegawa, Susumu
2017-10-23
Appropriate choice about delayed reward is fundamental to the survival of animals. Although animals tend to prefer immediate reward, delaying gratification is often advantageous. The dorsal raphe (DR) serotonergic neurons have long been implicated in the processing of delayed reward, but it has been unclear whether or when their activity causally directs choice. Here, we transiently augmented or reduced the activity of DR serotonergic neurons, while mice decided between differently delayed rewards as they performed a novel odor-guided intertemporal choice task. We found that these manipulations, precisely targeted at the decision point, were sufficient to bidirectionally influence impulsive choice. The manipulation specifically affected choices with more difficult trade-off. Similar effects were observed when we manipulated the serotonergic projections to the nucleus accumbens (NAc). We propose that DR serotonergic neurons preempt reward delays at the decision point and play a critical role in suppressing impulsive choice by regulating decision trade-off. Copyright © 2017 Elsevier Ltd. All rights reserved.
Toward heterogeneity in feedforward network with synaptic delays based on FitzHugh-Nagumo model
NASA Astrophysics Data System (ADS)
Qin, Ying-Mei; Men, Cong; Zhao, Jia; Han, Chun-Xiao; Che, Yan-Qiu
2018-01-01
We focus on the role of heterogeneity on the propagation of firing patterns in feedforward network (FFN). Effects of heterogeneities both in parameters of neuronal excitability and synaptic delays are investigated systematically. Neuronal heterogeneity is found to modulate firing rates and spiking regularity by changing the excitability of the network. Synaptic delays are strongly related with desynchronized and synchronized firing patterns of the FFN, which indicate that synaptic delays may play a significant role in bridging rate coding and temporal coding. Furthermore, quasi-coherence resonance (quasi-CR) phenomenon is observed in the parameter domain of connection probability and delay-heterogeneity. All these phenomena above enable a detailed characterization of neuronal heterogeneity in FFN, which may play an indispensable role in reproducing the important properties of in vivo experiments.
DNA Damage and Repair: Relevance to Mechanisms of Neurodegeneration
Martin, Lee J.
2008-01-01
DNA damage is a form of cell stress and injury that has been implicated in the pathogenesis of many neurologic disorders, including amyotrophic lateral sclerosis, Alzheimer disease, Down syndrome, Parkinson disease, cerebral ischemia, and head trauma. However, most data reveal only associations, and the role for DNA damage in direct mechanisms of neurodegeneration is vague with respect to being a definitive upstream cause of neuron cell death, rather than a consequence of the degeneration. Although neurons seem inclined to develop DNA damage during oxidative stress, most of the existing work on DNA damage and repair mechanisms has been done in the context of cancer biology using cycling non-neuronal cells but not nondividing (i.e. postmitotic) neurons. Nevertheless, the identification of mutations in genes that encode proteins that function in DNA repair and DNA damage response in human hereditary DNA repair deficiency syndromes and ataxic disorders is establishing a mechanistic precedent that clearly links DNA damage and DNA repair abnormalities with progressive neurodegeneration. This review summarizes DNA damage and repair mechanisms and their potential relevance to the evolution of degeneration in postmitotic neurons. PMID:18431258
Pilocarpine-Induced Status Epilepticus in Rats Involves Ischemic and Excitotoxic Mechanisms
Fabene, Paolo Francesco; Merigo, Flavia; Galiè, Mirco; Benati, Donatella; Bernardi, Paolo; Farace, Paolo; Nicolato, Elena; Marzola, Pasquina; Sbarbati, Andrea
2007-01-01
The neuron loss characteristic of hippocampal sclerosis in temporal lobe epilepsy patients is thought to be the result of excitotoxic, rather than ischemic, injury. In this study, we assessed changes in vascular structure, gene expression, and the time course of neuronal degeneration in the cerebral cortex during the acute period after onset of pilocarpine-induced status epilepticus (SE). Immediately after 2 hr SE, the subgranular layers of somatosensory cortex exhibited a reduced vascular perfusion indicative of ischemia, whereas the immediately adjacent supragranular layers exhibited increased perfusion. Subgranular layers exhibited necrotic pathology, whereas the supergranular layers were characterized by a delayed (24 h after SE) degeneration apparently via programmed cell death. These results indicate that both excitotoxic and ischemic injuries occur during pilocarpine-induced SE. Both of these degenerative pathways, as well as the widespread and severe brain damage observed, should be considered when animal model-based data are compared to human pathology. PMID:17971868
NASA Astrophysics Data System (ADS)
Xie, Huijuan; Gong, Yubing; Wang, Baoying
In this paper, we numerically study the effect of channel noise on synchronization transitions induced by time delay in adaptive scale-free Hodgkin-Huxley neuronal networks with spike-timing-dependent plasticity (STDP). It is found that synchronization transitions by time delay vary as channel noise intensity is changed and become most pronounced when channel noise intensity is optimal. This phenomenon depends on STDP and network average degree, and it can be either enhanced or suppressed as network average degree increases depending on channel noise intensity. These results show that there are optimal channel noise and network average degree that can enhance the synchronization transitions by time delay in the adaptive neuronal networks. These findings could be helpful for better understanding of the regulation effect of channel noise on synchronization of neuronal networks. They could find potential implications for information transmission in neural systems.
Qian, Yu
2014-01-01
The synchronization transitions in Newman-Watts small-world neuronal networks (SWNNs) induced by time delay τ and long-range connection (LRC) probability P have been investigated by synchronization parameter and space-time plots. Four distinct parameter regions, that is, asynchronous region, transition region, synchronous region, and oscillatory region have been discovered at certain LRC probability P = 1.0 as time delay is increased. Interestingly, desynchronization is observed in oscillatory region. More importantly, we consider the spatiotemporal patterns obtained in delayed Newman-Watts SWNNs are the competition results between long-range drivings (LRDs) and neighboring interactions. In addition, for moderate time delay, the synchronization of neuronal network can be enhanced remarkably by increasing LRC probability. Furthermore, lag synchronization has been found between weak synchronization and complete synchronization as LRC probability P is a little less than 1.0. Finally, the two necessary conditions, moderate time delay and large numbers of LRCs, are exposed explicitly for synchronization in delayed Newman-Watts SWNNs.
Qian, Yu
2014-01-01
The synchronization transitions in Newman-Watts small-world neuronal networks (SWNNs) induced by time delay and long-range connection (LRC) probability have been investigated by synchronization parameter and space-time plots. Four distinct parameter regions, that is, asynchronous region, transition region, synchronous region, and oscillatory region have been discovered at certain LRC probability as time delay is increased. Interestingly, desynchronization is observed in oscillatory region. More importantly, we consider the spatiotemporal patterns obtained in delayed Newman-Watts SWNNs are the competition results between long-range drivings (LRDs) and neighboring interactions. In addition, for moderate time delay, the synchronization of neuronal network can be enhanced remarkably by increasing LRC probability. Furthermore, lag synchronization has been found between weak synchronization and complete synchronization as LRC probability is a little less than 1.0. Finally, the two necessary conditions, moderate time delay and large numbers of LRCs, are exposed explicitly for synchronization in delayed Newman-Watts SWNNs. PMID:24810595
Neural tuning matches frequency-dependent time differences between the ears
Benichoux, Victor; Fontaine, Bertrand; Franken, Tom P; Karino, Shotaro; Joris, Philip X; Brette, Romain
2015-01-01
The time it takes a sound to travel from source to ear differs between the ears and creates an interaural delay. It varies systematically with spatial direction and is generally modeled as a pure time delay, independent of frequency. In acoustical recordings, we found that interaural delay varies with frequency at a fine scale. In physiological recordings of midbrain neurons sensitive to interaural delay, we found that preferred delay also varies with sound frequency. Similar observations reported earlier were not incorporated in a functional framework. We find that the frequency dependence of acoustical and physiological interaural delays are matched in key respects. This suggests that binaural neurons are tuned to acoustical features of ecological environments, rather than to fixed interaural delays. Using recordings from the nerve and brainstem we show that this tuning may emerge from neurons detecting coincidences between input fibers that are mistuned in frequency. DOI: http://dx.doi.org/10.7554/eLife.06072.001 PMID:25915620
Mnemonic neuronal activity in somatosensory cortex.
Zhou, Y D; Fuster, J M
1996-01-01
Single-unit activity was recorded from the hand areas of the somatosensory cortex of monkeys trained to perform a haptic delayed matching to sample task with objects of identical dimensions but different surface features. During the memory retention period of the task (delay), many units showed sustained firing frequency change, either excitation or inhibition. In some cases, firing during that period was significantly higher after one sample object than after another. These observations indicate the participation of somatosensory neurons not only in the perception but in the short-term memory of tactile stimuli. Neurons most directly implicated in tactile memory are (i) those with object-selective delay activity, (ii) those with nondifferential delay activity but without activity related to preparation for movement, and (iii) those with delay activity in the haptic-haptic delayed matching task but no such activity in a control visuo-haptic delayed matching task. The results indicate that cells in early stages of cortical somatosensory processing participate in haptic short-term memory. PMID:8927629
McAlpine, D; Jiang, D; Shackleton, T M; Palmer, A R
1998-08-01
Responses of low-frequency neurons in the inferior colliculus (IC) of anesthetized guinea pigs were studied with binaural beats to assess their mean best interaural phase (BP) to a range of stimulating frequencies. Phase plots (stimulating frequency vs BP) were produced, from which measures of characteristic delay (CD) and characteristic phase (CP) for each neuron were obtained. The CD provides an estimate of the difference in travel time from each ear to coincidence-detector neurons in the brainstem. The CP indicates the mechanism underpinning the coincidence detector responses. A linear phase plot indicates a single, constant delay between the coincidence-detector inputs from the two ears. In more than half (54 of 90) of the neurons, the phase plot was not linear. We hypothesized that neurons with nonlinear phase plots received convergent input from brainstem coincidence detectors with different CDs. Presentation of a second tone with a fixed, unfavorable delay suppressed the response of one input, linearizing the phase plot and revealing other inputs to be relatively simple coincidence detectors. For some neurons with highly complex phase plots, the suppressor tone altered BP values, but did not resolve the nature of the inputs. For neurons with linear phase plots, the suppressor tone either completely abolished their responses or reduced their discharge rate with no change in BP. By selectively suppressing inputs with a second tone, we are able to reveal the nature of underlying binaural inputs to IC neurons, confirming the hypothesis that the complex phase plots of many IC neurons are a result of convergence from simple brainstem coincidence detectors.
NASA Astrophysics Data System (ADS)
Xu, Tao; Xiao, Na; Zhai, Xiaolong; Chan, Pak Kwan; Tin, Chung
2018-02-01
Objective. Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). Approach. The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. Main results. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. Significance. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.
Yoneyama, Masanori; Iwamoto, Naoko; Nagashima, Reiko; Sugiyama, Chie; Kawada, Koichi; Kuramoto, Nobuyuki; Shuto, Makoto; Ogita, Kiyokazu
2008-10-01
The heat shock protein (Hsp) 110 family is composed of HSP105, APG-1, and APG-2. As the response of these proteins to neuronal damage is not yet fully understood, in the present study, we assessed their expression in mouse hippocampal neurons following trimethyltin chloride (TMT) treatment in vivo and in vitro. Although each of these three Hsps had a distinct regional distribution within the hippocampus, a low level of all of them was observed in the granule cell layer of the dentate gyrus in naïve animals. TMT was effective in markedly increasing the level of these Hsps in the granule cell layer, at least 16h to 4days after the treatment. In the dentate granule cell layer on day 2 after TMT treatment, HSP105 was expressed mainly in the perikarya of NeuN-positive cells (intact neurons); whereas APG-1 and APG-2 were predominantly found in NeuN-negative cells (damaged neurons as evidenced by signs of cell shrinkage and condensation of chromatin). Assessments using primary cultures of mouse hippocampal neurons exposed to TMT revealed that whereas HSP105 was observed in intact neurons rather than in damaged neurons, APG-1 and APG-2 were detected in both damaged neurons and intact neurons. Taken together, our data suggest that APG-1 and APG-2 may play different roles from HSP105 in neurons damaged by TMT.
Rivera, L R; Leung, C; Pustovit, R V; Hunne, B L; Andrikopoulos, S; Herath, C; Testro, A; Angus, P W; Furness, J B
2014-08-01
Disorders of gastrointestinal functions that are controlled by enteric neurons commonly accompany fatty liver disease. Established fatty liver disease is associated with diabetes, which itself induces enteric neuron damage. Here, we investigate the relationship between fatty liver disease and enteric neuropathy, in animals fed a high-fat, high-cholesterol diet in the absence of diabetes. Mice were fed a high-fat, high-cholesterol diet (21% fat, 2% cholesterol) or normal chow for 33 weeks. Liver injury was assessed by hematoxylin and eosin, picrosirius red staining, and measurement of plasma alanine aminotransaminase (ALT). Quantitative immunohistochemistry was performed for different types of enteric neurons. The mice developed steatosis, steatohepatitis, fibrosis, and a 10-fold increase in plasma ALT, indicative of liver disease. Oral glucose tolerance was unchanged. Loss and damage to enteric neurons occurred in the myenteric plexus of ileum, cecum, and colon. Total numbers of neurons were reduced by 15-30% and neurons expressing nitric oxide synthase were reduced by 20-40%. The RNA regulating protein, Hu, became more concentrated in the nuclei of enteric neurons after high-fat feeding, which is an indication of stress on the enteric nervous system. There was also disruption of the neuronal cytoskeletal protein, neurofilament medium. Enteric neuron loss and damage occurs in animals with fatty liver disease in the absence of glucose intolerance. The enteric neuron damage may contribute to the gastrointestinal complications of fatty liver disease. © 2014 John Wiley & Sons Ltd.
Lee, Jae-Chul; Cho, Jeong-Hwi; Lee, Tae-Kyeong; Kim, In Hye; Won, Moo-Ho; Cho, Geum-Sil; Shin, Bich-Na; Hwang, In Koo; Park, Joon Ha; Ahn, Ji Hyeon; Kang, Il Jun; Lee, Young Joo; Kim, Yang Hee
2017-01-01
Calbindin D-28K (CB), a Ca2+-binding protein, maintains Ca2+ homeostasis and protects neurons against various insults. Hyperthermia can exacerbate brain damage produced by ischemic insults. However, little is reported about the role of CB in the brain under hyperthermic condition during ischemic insults. We investigated the effects of transient global cerebral ischemia on CB immunoreactivity as well as neuronal damage in the hippocampal formation under hyperthermic condition using immunohistochemistry for neuronal nuclei (NeuN) and CB, and Fluoro-Jade B histofluorescence staining in gerbils. Hyperthermia (39.5 ± 0.2°C) was induced for 30 minutes before and during transient ischemia. Hyperthermic ischemia resulted in neuronal damage/death in the pyramidal layer of CA1–3 area and in the polymorphic layer of the dentate gyrus at 1, 2, 5 days after ischemia. In addition, hyperthermic ischemia significantly decreaced CB immunoreactivity in damaged or dying neurons at 1, 2, 5 days after ischemia. In brief, hyperthermic condition produced more extensive and severer neuronal damage/death, and reduced CB immunoreactivity in the hippocampus following transient global cerebral ischemia. Present findings indicate that the degree of reduced CB immunoreactivity might be related with various neuronal damage/death overtime and corresponding areas after ischemic insults. PMID:29089991
Belugin, Sergei; Mifflin, Steve
2005-12-01
Whole cell patch-clamp measurements were made in neurons enzymatically dispersed from the nucleus of the solitary tract (NTS) to determine if alterations occur in voltage-dependent potassium channels from rats made hypertensive (HT) by unilateral nephrectomy/renal wrap for 4 wk. Some rats had the fluorescent tracer DiA applied to the aortic nerve before the experiment to identify NTS neurons receiving monosynaptic baroreceptor afferent inputs. Mean arterial pressure (MAP) was greater in 4-wk HT (165 +/- 5 mmHg, n = 26, P < 0.001) rats compared with normotensive (NT) rats (109 +/- 3 mmHg measured in 10 of 69 rats). Transient outward currents (TOCs) were observed in 67-82% of NTS neurons from NT and HT rats. At activation voltages from -10 to +10 mV, TOCs were significantly less in HT neurons compared with those observed in NT neurons (P < 0.001). There were no differences in the voltage-dependent activation kinetics, the voltage dependence of steady-state inactivation, and the rise and decay time constants of the TOCs comparing neurons isolated from NT and HT rats. The 4-aminopyridine-sensitive component of the TOC was significantly less in neurons from HT compared with NT rats (P < 0.001), whereas steady-state outward currents, whether or not sensitive to 4-aminopyridine or tetraethylammonium, were not different. Delayed excitation, studied under current clamp, was observed in 60-80% of NTS neurons from NT and HT rats and was not different comparing neurons from NT and HT rats. However, examination of the subset of NTS neurons exhibiting somatic DiA fluorescence revealed that DiA-labeled neurons from HT rats had a significantly shorter duration delayed excitation (n = 8 cells, P = 0.022) than DiA-labeled neurons from NT rats (n = 7 cells). Neurons with delayed excitation from HT rats had a significantly broader first action potential (AP) and a slower maximal downstroke velocity of repolarization compared with NT neurons with delayed excitation (P = 0.016 and P = 0.014, respectively). The number of APs in the first 200 ms of a sustained depolarization was greater in HT than NT neurons (P = 0.012). These results suggest that HT of 4-wk duration reduces TOCs in NTS neurons, and this contributes to reduced delayed excitation and increased AP responses to depolarizing inputs. Such changes could alter baroreflex function in hypertension.
Encoding of Spatio-Temporal Input Characteristics by a CA1 Pyramidal Neuron Model
Pissadaki, Eleftheria Kyriaki; Sidiropoulou, Kyriaki; Reczko, Martin; Poirazi, Panayiota
2010-01-01
The in vivo activity of CA1 pyramidal neurons alternates between regular spiking and bursting, but how these changes affect information processing remains unclear. Using a detailed CA1 pyramidal neuron model, we investigate how timing and spatial arrangement variations in synaptic inputs to the distal and proximal dendritic layers influence the information content of model responses. We find that the temporal delay between activation of the two layers acts as a switch between excitability modes: short delays induce bursting while long delays decrease firing. For long delays, the average firing frequency of the model response discriminates spatially clustered from diffused inputs to the distal dendritic tree. For short delays, the onset latency and inter-spike-interval succession of model responses can accurately classify input signals as temporally close or distant and spatially clustered or diffused across different stimulation protocols. These findings suggest that a CA1 pyramidal neuron may be capable of encoding and transmitting presynaptic spatiotemporal information about the activity of the entorhinal cortex-hippocampal network to higher brain regions via the selective use of either a temporal or a rate code. PMID:21187899
Involvement of neuronal IL-1β in acquired brain lesions in a rat model of neonatal encephalopathy.
Savard, Alexandre; Lavoie, Karine; Brochu, Marie-Elsa; Grbic, Djordje; Lepage, Martin; Gris, Denis; Sebire, Guillaume
2013-09-05
Infection-inflammation combined with hypoxia-ischemia (HI) is the most prevalent pathological scenario involved in perinatal brain damage leading to life-long neurological disabilities. Following lipopolysaccharide (LPS) and/or HI aggression, different patterns of inflammatory responses have been uncovered according to the brain differentiation stage. In fact, LPS pre-exposure has been reported to aggravate HI brain lesions in post-natal day 1 (P1) and P7 rat models that are respectively equivalent - in terms of brain development - to early and late human preterm newborns. However, little is known about the innate immune response in LPS plus HI-induced lesions of the full-term newborn forebrain and the associated neuropathological and neurobehavioral outcomes. An original preclinical rat model has been previously documented for the innate neuroimmune response at different post-natal ages. It was used in the present study to investigate the neuroinflammatory mechanisms that underline neurological impairments after pathogen-induced inflammation and HI in term newborns. LPS and HI exerted a synergistic detrimental effect on rat brain. Their effect led to a peculiar pattern of parasagittal cortical-subcortical infarcts mimicking those in the human full-term newborn with subsequent severe neurodevelopmental impairments. An increased IL-1β response in neocortical and basal gray neurons was demonstrated at 4 h after LPS + HI-exposure and preceded other neuroinflammatory responses such as microglial and astroglial cell activation. Neurological deficits were observed during the acute phase of injury followed by a recovery, then by a delayed onset of profound motor behavior impairment, reminiscent of the delayed clinical onset of motor system impairments observed in humans. Interleukin-1 receptor antagonist (IL-1ra) reduced the extent of brain lesions confirming the involvement of IL-1β response in their pathophysiology. In rat pups at a neurodevelopmental age corresponding to full-term human newborns, a systemic pre-exposure to a pathogen component amplified HI-induced mortality and morbidities that are relevant to human pathology. Neuronal cells were the first cells to produce IL-1β in LPS + HI-exposed full-term brains. Such IL-1β production might be responsible for neuronal self-injuries via well-described neurotoxic mechanisms such as IL-1β-induced nitric oxide production, or IL-1β-dependent exacerbation of excitotoxic damage.
Persistent spatial information in the frontal eye field during object-based short-term memory.
Clark, Kelsey L; Noudoost, Behrad; Moore, Tirin
2012-08-08
Spatial attention is known to gate entry into visual short-term memory, and some evidence suggests that spatial signals may also play a role in binding features or protecting object representations during memory maintenance. To examine the persistence of spatial signals during object short-term memory, the activity of neurons in the frontal eye field (FEF) of macaque monkeys was recorded during an object-based delayed match-to-sample task. In this task, monkeys were trained to remember an object image over a brief delay, regardless of the locations of the sample or target presentation. FEF neurons exhibited visual, delay, and target period activity, including selectivity for sample location and target location. Delay period activity represented the sample location throughout the delay, despite the irrelevance of spatial information for successful task completion. Furthermore, neurons continued to encode sample position in a variant of the task in which the matching stimulus never appeared in their response field, confirming that FEF maintains sample location independent of subsequent behavioral relevance. FEF neurons also exhibited target-position-dependent anticipatory activity immediately before target onset, suggesting that monkeys predicted target position within blocks. These results show that FEF neurons maintain spatial information during short-term memory, even when that information is irrelevant for task performance.
Leuner, Benedetta; Waddell, Jaylyn; Gould, Elizabeth; Shors, Tracey J.
2012-01-01
Some, but not all, types of learning and memory can influence neurogenesis in the adult hippocampus. Trace eyeblink conditioning has been shown to enhance the survival of new neurons, whereas delay eyeblink conditioning has no such effect. The key difference between the two training procedures is that the conditioning stimuli are separated in time during trace but not delay conditioning. These findings raise the question of whether temporal discontiguity is necessary for enhancing the survival of new neurons. Here we used two approaches to test this hypothesis. First, we examined the influence of a delay conditioning task in which the duration of the conditioned stimulus (CS) was increased nearly twofold, a procedure that critically engages the hippocampus. Although the CS and unconditioned stimulus are contiguous, this very long delay conditioning procedure increased the number of new neurons that survived. Second, we examined the influence of learning the trace conditioned response (CR) after having acquired the CR during delay conditioning, a procedure that renders trace conditioning hippocampal-independent. In this case, trace conditioning did not enhance the survival of new neurons. Together, these results demonstrate that associative learning increases the survival of new neurons in the adult hippocampus, regardless of temporal contiguity. PMID:17192426
Localization by interaural time difference (ITD): Effects of interaural frequency mismatch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonham, B.H.; Lewis, E.R.
1999-07-01
A commonly accepted physiological model for lateralization of low-frequency sounds by interaural time delay (ITD) stipulates that binaural comparison neurons receive input from frequency-matched channels from each ear. Here, the effects of hypothetical interaural frequency mismatches on this model are reported. For this study, the cat{close_quote}s auditory system peripheral to the binaural comparison neurons was represented by a neurophysiologically derived model, and binaural comparison neurons were represented by cross-correlators. The results of the study indicate that, for binaural comparison neurons receiving input from one cochlear channel from each ear, interaural CF mismatches may serve to either augment or diminish themore » effective difference in ipsilateral and contralateral axonal time delays from the periphery to the binaural comparison neuron. The magnitude of this increase or decrease in the effective time delay difference can be up to 400 {mu}s for CF mismatches of 0.2 octaves or less for binaural neurons with CFs between 250 Hz and 2.5 kHz. For binaural comparison neurons with nominal CFs near 500 Hz, the 25-{mu}s effective time delay difference caused by a 0.012-octave CF mismatch is equal to the ITD previously shown to be behaviorally sufficient for the cat to lateralize a low-frequency sound source. {copyright} {ital 1999 Acoustical Society of America.}« less
Seijffers, Rhona; Zhang, Jiangwen; Matthews, Jonathan C; Chen, Adam; Tamrazian, Eric; Babaniyi, Olusegun; Selig, Martin; Hynynen, Meri; Woolf, Clifford J; Brown, Robert H
2014-01-28
ALS is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons and atrophy of distal axon terminals in muscle, resulting in loss of motor function. Motor end plates denervated by axonal retraction of dying motor neurons are partially reinnervated by remaining viable motor neurons; however, this axonal sprouting is insufficient to compensate for motor neuron loss. Activating transcription factor 3 (ATF3) promotes neuronal survival and axonal growth. Here, we reveal that forced expression of ATF3 in motor neurons of transgenic SOD1(G93A) ALS mice delays neuromuscular junction denervation by inducing axonal sprouting and enhancing motor neuron viability. Maintenance of neuromuscular junction innervation during the course of the disease in ATF3/SOD1(G93A) mice is associated with a substantial delay in muscle atrophy and improved motor performance. Although disease onset and mortality are delayed, disease duration is not affected. This study shows that adaptive axonal growth-promoting mechanisms can substantially improve motor function in ALS and importantly, that augmenting viability of the motor neuron soma and maintaining functional neuromuscular junction connections are both essential elements in therapy for motor neuron disease in the SOD1(G93A) mice. Accordingly, effective protection of optimal motor neuron function requires restitution of multiple dysregulated cellular pathways.
Xiao, Min; Zheng, Wei Xing; Cao, Jinde
2013-01-01
Recent studies on Hopf bifurcations of neural networks with delays are confined to simplified neural network models consisting of only two, three, four, five, or six neurons. It is well known that neural networks are complex and large-scale nonlinear dynamical systems, so the dynamics of the delayed neural networks are very rich and complicated. Although discussing the dynamics of networks with a few neurons may help us to understand large-scale networks, there are inevitably some complicated problems that may be overlooked if simplified networks are carried over to large-scale networks. In this paper, a general delayed bidirectional associative memory neural network model with n + 1 neurons is considered. By analyzing the associated characteristic equation, the local stability of the trivial steady state is examined, and then the existence of the Hopf bifurcation at the trivial steady state is established. By applying the normal form theory and the center manifold reduction, explicit formulae are derived to determine the direction and stability of the bifurcating periodic solution. Furthermore, the paper highlights situations where the Hopf bifurcations are particularly critical, in the sense that the amplitude and the period of oscillations are very sensitive to errors due to tolerances in the implementation of neuron interconnections. It is shown that the sensitivity is crucially dependent on the delay and also significantly influenced by the feature of the number of neurons. Numerical simulations are carried out to illustrate the main results.
Franz, Denise; Olsen, Hervør Lykke; Klink, Oliver; Gimsa, Jan
2017-04-25
Human induced pluripotent stem cells can be differentiated into dopaminergic neurons (Dopa.4U). Dopa.4U neurons expressed voltage-gated Na V and K V channels and showed neuron-like spontaneous electrical activity. In automated patch clamp measurements with suspended Dopa.4U neurons, delayed rectifier K + current (delayed K V ) and rapidly inactivating A-type K + current (fast K V ) were identified. Examination of the fast K V current with inhibitors yielded IC 50 values of 0.4 mM (4-aminopyridine) and 0.1 mM (tetraethylammonium). In manual patch clamp measurements with adherent Dopa.4U neurons, fast K V current could not be detected, while the delayed K V current showed an IC 50 of 2 mM for 4-aminopyridine. The Na V channels in adherent and suspended Dopa.4U neurons showed IC 50 values for tetrodotoxin of 27 and 2.9 nM, respectively. GABA-induced currents that could be observed in adherent Dopa.4U neurons could not be detected in suspended cells. Application of current pulses induced action potentials in approx. 70 % of the cells. Our results proved the feasibility of automated electrophysiological characterization of neuronal cells.
Quinacrine pretreatment reduces microwave-induced neuronal damage by stabilizing the cell membrane
Ding, Xue-feng; Wu, Yan; Qu, Wen-rui; Fan, Ming; Zhao, Yong-qi
2018-01-01
Quinacrine, widely used to treat parasitic diseases, binds to cell membranes. We previously found that quinacrine pretreatment reduced microwave radiation damage in rat hippocampal neurons, but the molecular mechanism remains poorly understood. Considering the thermal effects of microwave radiation and the protective effects of quinacrine on heat damage in cells, we hypothesized that quinacrine would prevent microwave radiation damage to cells in a mechanism associated with cell membrane stability. To test this, we used retinoic acid to induce PC12 cells to differentiate into neuron-like cells. We then pretreated the neurons with quinacrine (20 and 40 mM) and irradiated them with 50 mW/cm2 microwaves for 3 or 6 hours. Flow cytometry, atomic force microscopy and western blot assays revealed that irradiated cells pretreated with quinacrine showed markedly less apoptosis, necrosis, and membrane damage, and greater expression of heat shock protein 70, than cells exposed to microwave irradiation alone. These results suggest that quinacrine stabilizes the neuronal membrane structure by upregulating the expression of heat shock protein 70, thus reducing neuronal injury caused by microwave radiation. PMID:29623929
Ito, Shinya; Hansen, Michael E.; Heiland, Randy; Lumsdaine, Andrew; Litke, Alan M.; Beggs, John M.
2011-01-01
Transfer entropy (TE) is an information-theoretic measure which has received recent attention in neuroscience for its potential to identify effective connectivity between neurons. Calculating TE for large ensembles of spiking neurons is computationally intensive, and has caused most investigators to probe neural interactions at only a single time delay and at a message length of only a single time bin. This is problematic, as synaptic delays between cortical neurons, for example, range from one to tens of milliseconds. In addition, neurons produce bursts of spikes spanning multiple time bins. To address these issues, here we introduce a free software package that allows TE to be measured at multiple delays and message lengths. To assess performance, we applied these extensions of TE to a spiking cortical network model (Izhikevich, 2006) with known connectivity and a range of synaptic delays. For comparison, we also investigated single-delay TE, at a message length of one bin (D1TE), and cross-correlation (CC) methods. We found that D1TE could identify 36% of true connections when evaluated at a false positive rate of 1%. For extended versions of TE, this dramatically improved to 73% of true connections. In addition, the connections correctly identified by extended versions of TE accounted for 85% of the total synaptic weight in the network. Cross correlation methods generally performed more poorly than extended TE, but were useful when data length was short. A computational performance analysis demonstrated that the algorithm for extended TE, when used on currently available desktop computers, could extract effective connectivity from 1 hr recordings containing 200 neurons in ∼5 min. We conclude that extending TE to multiple delays and message lengths improves its ability to assess effective connectivity between spiking neurons. These extensions to TE soon could become practical tools for experimentalists who record hundreds of spiking neurons. PMID:22102894
Wang, Yanping; Luo, Jing; Chen, Xinzhi; Chen, Hai; Cramer, Sam W.; Sun, Dandan
2010-01-01
We investigated mechanisms underlying the Na+/H+ exchanger isoform 1 (NHE1)-mediated neuronal damage in transient focal ischemia. Physiological parameters, body and tympanic temperatures, and regional cerebral blood flow during 30 min middle cerebral artery occlusion (MCAO) were similar in wild-type NHE1 (NHE1+/+) and NHE1 heterozygous (NHE1+/−) mice. NHE1+/+ mice developed infarct volume of 57.3 ± 8.8 mm3 at 24 h reperfusion (Rp), which progressed to 86.1 ± 10.0 mm3 at 72 h Rp. This delayed cell death was preceded by release of mitochondrial cytochrome c (Cyt. C), nuclear translocation of apoptosis-inducing factor (AIF), activation of caspase-3, and TUNEL-positive staining and chromatin condensation in the ipsilateral hemispheres of NHE1+/+ brains. In contrast, NHE1+/− mice had a significantly smaller infarct volume and improved neurological function. A similar neuroprotection was obtained with NHE1 inhibitor HOE 642. The number of apoptotic cells, release of AIF and Cyt. C or levels of active caspase-3 was significantly reduced in NHE1+/− brains. These data imply that NHE1 activity may contribute to ischemic apoptosis. Ischemic brains did not exhibit changes of NHE1 protein expression. In contrast, up-regulation of NHE1 expression was found in NHE1+/+ neurons after in vitro ischemia. These data suggest that NHE1 activation following cerebral ischemia contributes to mitochondrial damage and ischemic apoptosis. PMID:18662334
Wang, Z; Chen, Y; Lü, Y; Chen, X; Cheng, L; Mi, X; Xu, X; Deng, W; Zhang, Y; Wang, N; Li, J; Li, Y; Wang, X
2015-08-06
JNK-interacting protein 3 (JIP3), also known as JNK stress-activated protein kinase-associated protein 1 (JSAP1), is a scaffold protein mainly involved in the regulation of the pro-apoptotic signaling cascade mediated by c-Jun N-terminal kinase (JNK). Overexpression of JIP3 in neurons in vitro has been reported to lead to accelerated activation of JNK and enhanced apoptosis response to cellular stress. However, the occurrence and the functional significance of stress-induced modulations of JIP3 levels in vivo remain elusive. In this study, we investigated the expression of JIP3 in temporal lobe epilepsy (TLE) and in a kainic acid (KA)-induced mouse model of epileptic seizures, and determined whether down-regulation of JIP3 can decrease susceptibility to seizures and neuron damage induced by KA. We found that JIP3 was markedly increased in TLE patients and a mouse model of epileptic seizures; mice underexpressing JIP3 through lentivirus bearing LV-Letm1-RNAi showed decreased susceptibility, delayed first seizure and decreased seizure duration response to the epileptogenic properties of KA. Subsequently, a decreased activation of JNK following seizure induction was observed in mice underexpressing JIP3, which also exhibited less neuronal apoptosis in the CA3 region of the hippocampus, as assessed three days after KA administration. We also found that mice underexpressing JIP3 exhibited a delayed pentylenetetrazole (PTZ)-induced kindling seizure process. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Damage to Arousal-Promoting Brainstem Neurons with Traumatic Brain Injury
Valko, Philipp O.; Gavrilov, Yuri V.; Yamamoto, Mihoko; Noaín, Daniela; Reddy, Hasini; Haybaeck, Johannes; Weis, Serge; Baumann, Christian R.; Scammell, Thomas E.
2016-01-01
Study Objectives: Coma and chronic sleepiness are common after traumatic brain injury (TBI). Here, we explored whether injury to arousal-promoting brainstem neurons occurs in patients with fatal TBI. Methods: Postmortem examination of 8 TBI patients and 10 controls. Results: Compared to controls, TBI patients had 17% fewer serotonergic neurons in the dorsal raphe nucleus (effect size: 1.25), but the number of serotonergic neurons did not differ in the median raphe nucleus. TBI patients also had 29% fewer noradrenergic neurons in the locus coeruleus (effect size: 0.96). The number of cholinergic neurons in the pedunculopontine and laterodorsal tegmental nuclei (PPT/LDT) was similar in TBI patients and controls. Conclusions: TBI injures arousal-promoting neurons of the mesopontine tegmentum, but this injury is less severe than previously observed in hypothalamic arousal-promoting neurons. Most likely, posttraumatic arousal disturbances are not primarily caused by damage to these brainstem neurons, but arise from an aggregate of injuries, including damage to hypothalamic arousal nuclei and disruption of other arousal-related circuitries. Citation: Valko PO, Gavrilov YV, Yamamoto M, Noain D, Reddy H, Haybaeck J, Weis S, Baumann CR, Scammell TE. Damage to arousal-promoting brainstem neurons with traumatic brain injury. SLEEP 2016;39(6):1249–1252. PMID:27091531
Kato, Hideyuki; Ikeguchi, Tohru
2016-01-01
Specific memory might be stored in a subnetwork consisting of a small population of neurons. To select neurons involved in memory formation, neural competition might be essential. In this paper, we show that excitable neurons are competitive and organize into two assemblies in a recurrent network with spike timing-dependent synaptic plasticity (STDP) and axonal conduction delays. Neural competition is established by the cooperation of spontaneously induced neural oscillation, axonal conduction delays, and STDP. We also suggest that the competition mechanism in this paper is one of the basic functions required to organize memory-storing subnetworks into fine-scale cortical networks. PMID:26840529
Sharma, Jaswinder; Nelluru, Geetha; Ann Wilson, Mary; Johnston, Michael V; Ahamed Hossain, Mir
2011-01-01
Neuronal death pathways following hypoxia–ischaemia are sexually dimorphic, but the underlying mechanisms are unclear. We examined cell death mechanisms during OGD (oxygen-glucose deprivation) followed by Reox (reoxygenation) in segregated male (XY) and female (XX) mouse primary CGNs (cerebellar granule neurons) that are WT (wild-type) or Parp-1 [poly(ADP-ribose) polymerase 1] KO (knockout). Exposure of CGNs to OGD (1.5 h)/Reox (7 h) caused cell death in XY and XX neurons, but cell death during Reox was greater in XX neurons. ATP levels were significantly lower after OGD/Reox in WT-XX neurons than in XY neurons; this difference was eliminated in Parp-1 KO-XX neurons. AIF (apoptosis-inducing factor) was released from mitochondria and translocated to the nucleus by 1 h exclusively in WT-XY neurons. In contrast, there was a release of Cyt C (cytochrome C) from mitochondria in WT-XX and Parp-1 KO neurons of both sexes; delayed activation of caspase 3 was observed in the same three groups. Thus deletion of Parp-1 shunted cell death towards caspase 3-dependent apoptosis. Delayed activation of caspase 8 was also observed in all groups after OGD/Reox, but was much greater in XX neurons, and caspase 8 translocated to the nucleus in XX neurons only. Caspase 8 activation may contribute to increased XX neuronal death during Reox, via caspase 3 activation. Thus, OGD/Reox induces death of XY neurons via a PARP-1-AIF-dependent mechanism, but blockade of PARP-1-AIF pathway shifts neuronal death towards a caspase-dependent mechanism. In XX neurons, OGD/Reox caused prolonged depletion of ATP and delayed activation of caspase 8 and caspase 3, culminating in greater cell death during Reox. PMID:21382016
Kraemer, Kenneth H.; Patronas, Nicholas J.; Schiffmann, Raphael; Brooks, Brian P.; Tamura, Deborah; DiGiovanna, John J.
2008-01-01
Patients with the rare genetic disorders, xeroderma pigmentosum (XP), trichothiodystrophy (TTD) and Cockayne syndrome (CS) have defects in DNA nucleotide excision repair (NER). The NER pathway involves at least 28 genes. Three NER genes are also part of the basal transcription factor, TFIIH. Mutations in 11 NER genes have been associated with clinical diseases with at least 8 overlapping phenotypes. The clinical features of these patients have some similarities and but also have marked differences. NER is involved in protection against sunlight induced DNA damage. While XP patients have 1000-fold increase in susceptibility to skin cancer, TTD and CS patients have normal skin cancer risk. Several of the genes involved in NER also affect somatic growth and development. Some patients have short stature and immature sexual development. TTD patients have sulfur deficient brittle hair. Progressive sensorineural deafness is an early feature of XP and CS. Many of these clinical diseases are associated with developmental delay and progressive neurological degeneration. The main neuropathology of XP is a primary neuronal degeneration. In contrast, CS and TTD patients have reduced myelination of the brain. These complex neurological abnormalities are not related to sunlight exposure but may be caused by developmental defects as well as faulty repair of DNA damage to neuronal cells induced by oxidative metabolism or other endogenous processes. PMID:17276014
Delay-slope-dependent stability results of recurrent neural networks.
Li, Tao; Zheng, Wei Xing; Lin, Chong
2011-12-01
By using the fact that the neuron activation functions are sector bounded and nondecreasing, this brief presents a new method, named the delay-slope-dependent method, for stability analysis of a class of recurrent neural networks with time-varying delays. This method includes more information on the slope of neuron activation functions and fewer matrix variables in the constructed Lyapunov-Krasovskii functional. Then some improved delay-dependent stability criteria with less computational burden and conservatism are obtained. Numerical examples are given to illustrate the effectiveness and the benefits of the proposed method.
TRPA1 channel mediates organophosphate-induced delayed neuropathy
Ding, Qiang; Fang, Sui; Chen, Xueqin; Wang, Youxin; Li, Jian; Tian, Fuyun; Xu, Xiang; Attali, Bernard; Xie, Xin; Gao, Zhaobing
2017-01-01
The organophosphate-induced delayed neuropathy (OPIDN), often leads to paresthesias, ataxia and paralysis, occurs in the late-stage of acute poisoning or after repeated exposures to organophosphate (OP) insecticides or nerve agents, and may contribute to the Gulf War Syndrome. The acute phase of OP poisoning is often attributed to acetylcholinesterase inhibition. However, the underlying mechanism for the delayed neuropathy remains unknown and no treatment is available. Here we demonstrate that TRPA1 channel (Transient receptor potential cation channel, member A1) mediates OPIDN. A variety of OPs, exemplified by malathion, activates TRPA1 but not other neuronal TRP channels. Malathion increases the intracellular calcium levels and upregulates the excitability of mouse dorsal root ganglion neurons in vitro. Mice with repeated exposures to malathion also develop local tissue nerve injuries and pain-related behaviors, which resembles OPIDN. Both the neuropathological changes and the nocifensive behaviors can be attenuated by treatment of TRPA1 antagonist HC030031 or abolished by knockout of Trpa1 gene. In the classic hens OPIDN model, malathion causes nerve injuries and ataxia to a similar level as the positive inducer tri-ortho-cresyl phosphate (TOCP), which also activates TRPA1 channel. Treatment with HC030031 reduces the damages caused by malathion or tri-ortho-cresyl phosphate. Duloxetine and Ketotifen, two commercially available drugs exhibiting TRPA1 inhibitory activity, show neuroprotective effects against OPIDN and might be used in emergency situations. The current study suggests TRPA1 is the major mediator of OPIDN and targeting TRPA1 is an effective way for the treatment of OPIDN. PMID:28894590
Golomb, David; Ermentrout, G. Bard
1999-01-01
Propagation of discharges in cortical and thalamic systems, which is used as a probe for examining network circuitry, is studied by constructing a one-dimensional model of integrate-and-fire neurons that are coupled by excitatory synapses with delay. Each neuron fires only one spike. The velocity and stability of propagating continuous pulses are calculated analytically. Above a certain critical value of the constant delay, these pulses lose stability. Instead, lurching pulses propagate with discontinuous and periodic spatio-temporal characteristics. The parameter regime for which lurching occurs is strongly affected by the footprint (connectivity) shape; bistability may occur with a square footprint shape but not with an exponential footprint shape. For strong synaptic coupling, the velocity of both continuous and lurching pulses increases logarithmically with the synaptic coupling strength gsyn for an exponential footprint shape, and it is bounded for a step footprint shape. We conclude that the differences in velocity and shape between the front of thalamic spindle waves in vitro and cortical paroxysmal discharges stem from their different effective delay; in thalamic networks, large effective delay between inhibitory neurons arises from their effective interaction via the excitatory cells which display postinhibitory rebound. PMID:10557346
Employing TDMA Protocol in Neural Nanonetworks in Case of Neuron Specific Faults.
Tezcan, Hakan; Oktug, Sema F; Kök, Fatma Neşe
2015-09-01
Many neurodegenerative diseases arise from the malfunctioning neurons in the pathway where the signal is carried. In this paper, we propose neuron specific TDMA/multiplexing and demultiplexing mechanisms to convey the spikes of a receptor neuron over a neighboring path in case of an irreversible path fault existing in its original path. The multiplexing mechanism depends on neural delay box (NDB) which is composed of a relay unit and a buffering unit. The relay unit can be realized as a nanoelectronic device. The buffering unit can be implemented either via neural delay lines as employed in optical switching systems or via nanoelectronic delay lines, i.e., delay flip flops. Demultiplexing is realized by a demultiplexer unit according to the time slot assignment information. Besides, we propose the use of neural interfaces in the NDBs and the demultiplexer unit for detecting and stimulating the generation of spikes. The objective of the proposed mechanisms is to substitute a malfunctioning path, increase the number of spikes delivered and correctly deliver the spikes to the intended part of the somatosensory cortex. The results demonstrate that significant performance improvement on the successively delivered number of spikes is achievable when delay lines are employed as neural buffers in NDBs.
Luchtman, Dirk; Gollan, René; Ellwardt, Erik; Birkenstock, Jérôme; Robohm, Kerstin; Siffrin, Volker; Zipp, Frauke
2016-03-01
In multiple sclerosis (MS), a candidate downstream mechanism for neuronal injury is glutamate (Glu)-induced excitotoxicity, leading to toxic increases in intraneuronal Ca(2+) . Here, we used in vivo two-photon imaging in the brain of TN-XXL transgenic Ca(2+) reporter mice to test whether promising oral MS therapeutics, namely fingolimod, dimethyl fumarate, and their respective metabolites fingolimod-phosphate and monomethyl fumarate, can protect neurons against acute glutamatergic excitotoxic damage. We also assessed whether these drugs can protect against excitotoxicity in vitro using primary cortical neurons, and whether they can directly inhibit Glu release from pathogenic T-helper 17 lymphocytes. In vivo, direct and acute (1 h) administration of 100 mM Glu to the brainstem resulted in a rapid and significant up-regulation in neuronal Ca(2+) signaling as well as morphological excitotoxic changes that were attenuated by the NMDA-receptor antagonist MK801. Direct CNS administration of MS drugs prior to Glu significantly delayed or reduced, but did not prevent the neuronal Ca(2+) increase or morphological changes. In vitro, prolonged (24 h) treatment of primary neurons with the fumarates significantly protected against neurotoxicity induced by Glu as well as NMDA, similar to MK801. Furthermore, monomethyl fumerate significantly reduced Glu release from pathogenic T-helper 17 lymphocytes. Overall, these data suggest that MS drugs may mediate neuroprotection via excitotoxicity modulating effects. Evidence suggests MS pathogenesis may involve neuronal excitotoxicity, induced by local release of glutamate. However, current MS drugs, including dimethyl fumerate (DMF) and fingolimod (FTY720) are largely anti-inflammatory and not yet fully tested for their neuroprotective potential. Here, we show that the drugs, in particular DMF metabolite monomethyl fumerate (MMF), protect neurons by excitotoxicity modulating effects. Th17, T-helper 17. © 2015 International Society for Neurochemistry.
Damage to Arousal-Promoting Brainstem Neurons with Traumatic Brain Injury.
Valko, Philipp O; Gavrilov, Yuri V; Yamamoto, Mihoko; Noaín, Daniela; Reddy, Hasini; Haybaeck, Johannes; Weis, Serge; Baumann, Christian R; Scammell, Thomas E
2016-06-01
Coma and chronic sleepiness are common after traumatic brain injury (TBI). Here, we explored whether injury to arousal-promoting brainstem neurons occurs in patients with fatal TBI. Postmortem examination of 8 TBI patients and 10 controls. Compared to controls, TBI patients had 17% fewer serotonergic neurons in the dorsal raphe nucleus (effect size: 1.25), but the number of serotonergic neurons did not differ in the median raphe nucleus. TBI patients also had 29% fewer noradrenergic neurons in the locus coeruleus (effect size: 0.96). The number of cholinergic neurons in the pedunculopontine and laterodorsal tegmental nuclei (PPT/LDT) was similar in TBI patients and controls. TBI injures arousal-promoting neurons of the mesopontine tegmentum, but this injury is less severe than previously observed in hypothalamic arousal-promoting neurons. Most likely, posttraumatic arousal disturbances are not primarily caused by damage to these brainstem neurons, but arise from an aggregate of injuries, including damage to hypothalamic arousal nuclei and disruption of other arousal-related circuitries. © 2016 Associated Professional Sleep Societies, LLC.
Park, Seung Min; Lee, Jae-Chul; Chen, Bai Hui; Shin, Bich-Na; Cho, Jeong Hwi; Kim, In Hye; Park, Joon Ha; Won, Moo-Ho; Ahn, Ji Hyeon; Tae, Hyun-Jin; Shin, Myoung Cheol; Park, Chan Woo; Cho, Jun Hwi; Lee, Hui Young
2016-01-01
Objective(s): The alteration of glucose transporters is closely related with the pathogenesis of brain edema. We compared neuronal damage/death in the hippocampus between adult and young gerbils following transient cerebral ischemia/reperfusion and changes of glucose transporter-1(GLUT-1)-immunoreactive microvessels in their ischemic hippocampal CA1 region. Materials and Methods: Transient cerebral ischemia was developed by 5-min occlusion of both common carotid arteries. Neuronal damage was examined by cresyl violet staining, NeuN immunohistochemistry and Fluoro-Jade B histofluorescence staining and changes in GLUT-1 expression was carried out by immunohistochemistry. Results: About 90% of pyramidal neurons only in the adult CA1 region were damaged after ischemia/reperfusion; in the young, about 53 % of pyramidal neurons were damaged from 7 days after ischemia/reperfusion. The density of GLUT-1-immunoreactive microvessels was significantly higher in the young sham-group than that in the adult sham-group. In the ischemia-operated-groups, the density of GLUT-1-immunoreactive microvessels was significantly decreased in the adult and young at 1 and 4 days post-ischemia, respectively, thereafter, the density of GLUT-1-immunoreactive microvessels was gradually increased in both groups after ischemia/reperfusion. Conclusion: CA1 pyramidal neurons of the young gerbil were damaged much later than that in the adult and that GLUT-1-immunoreactive microvessels were significantly decreased later in the young. These data indicate that GLUT-1 might differently contribute to neuronal damage according to age after ischemic insults. PMID:27403259
2012-01-01
The neurons in neocortex layer I (LI) provide inhibition to the cortical networks. Despite increasing use of mice for the study of brain functions, few studies were reported about mouse LI neurons. In the present study, we characterized intrinsic properties of LI neurons of the anterior cingulate cortex (ACC), a key cortical area for sensory and cognitive functions, by using whole-cell patch clamp recording approach. Seventy one neurons in LI and 12 pyramidal neurons in LII/III were recorded. Although all of the LI neurons expressed continuous adapting firing characteristics, the unsupervised clustering results revealed five groups in the ACC, including: Spontaneous firing neurons; Delay-sAHP neurons, Delay-fAHP neurons, and two groups of neurons with ADP, named ADP1 and ADP2, respectively. Using pharmacological approaches, we found that LI neurons received both excitatory (mediated by AMPA, kainate and NMDA receptors), and inhibitory inputs (which were mediated by GABAA receptors). Our studies provide the first report characterizing the electrophysiological properties of neurons in LI of the ACC from adult mice. PMID:22818293
Zhou, Zhu-Juan; Zheng, Jian; He, Ying
2002-08-01
To make approach to the relationship between the changes of free zinc and ischemic neuronal damage in hippocampus after forebrain ischemia/reperfusion. The models of forebrain ischemia/reperfusion were established in rats. The contents of free Zn2+ were measured by TSQ fluorescence method. The Zn2+ chelator (CaEDTA) was injected into lateral ventricles in order to evaluate the effect of free Zn2+ on ischemic neuronal damage. (1) Zn2+ fluorescence in the hilus of dentate gyrus, CA3 region and the stratum radiatum and stratum oriens of CA1 decreased slightly at forty-eight hours after reperfusion. From seventy-two hours to ninety-six hour after reperfusion, the decreased fluorescence gradually returned to the normal level, but some fluorescence dots were found in pyramidal neurons of CA1 and the hilus of dentate gyrus. Seven days after reperfusion, all the changes of the fluorescence almost recovered. (2) The cell membrane-impermeable Zn2+ chelator CaEDTA could reduce the intracellular concentration of free Zn2+ and reduced neuronal damage after forebrain ischemia/reperfusion. (1) The synaptic vesicle Zn2+ released and then translocated into postsynaptic neurons after forebrain ischemia/reperfusion and played a role in ischemic neuronal damage. (2) The cell membrane-impermeable chelator CaEDTA could provide neuroprotection.
Intrinsic modulation of pulse-coupled integrate-and-fire neurons
NASA Astrophysics Data System (ADS)
Coombes, S.; Lord, G. J.
1997-11-01
Intrinsic neuromodulation is observed in sensory and neuromuscular circuits and in biological central pattern generators. We model a simple neuronal circuit with a system of two pulse-coupled integrate-and-fire neurons and explore the parameter regimes for periodic firing behavior. The inclusion of biologically realistic features shows that the speed and onset of neuronal response plays a crucial role in determining the firing phase for periodic rhythms. We explore the neurophysiological function of distributed delays arising from both the synaptic transmission process and dendritic structure as well as discrete delays associated with axonal communication delays. Bifurcation and stability diagrams are constructed with a mixture of simple analysis, numerical continuation and the Kuramoto phase-reduction technique. Moreover, we show that, for asynchronous behavior, the strength of electrical synapses can control the firing rate of the system.
A mixed-signal implementation of a polychronous spiking neural network with delay adaptation
Wang, Runchun M.; Hamilton, Tara J.; Tapson, Jonathan C.; van Schaik, André
2014-01-01
We present a mixed-signal implementation of a re-configurable polychronous spiking neural network capable of storing and recalling spatio-temporal patterns. The proposed neural network contains one neuron array and one axon array. Spike Timing Dependent Delay Plasticity is used to fine-tune delays and add dynamics to the network. In our mixed-signal implementation, the neurons and axons have been implemented as both analog and digital circuits. The system thus consists of one FPGA, containing the digital neuron array and the digital axon array, and one analog IC containing the analog neuron array and the analog axon array. The system can be easily configured to use different combinations of each. We present and discuss the experimental results of all combinations of the analog and digital axon arrays and the analog and digital neuron arrays. The test results show that the proposed neural network is capable of successfully recalling more than 85% of stored patterns using both analog and digital circuits. PMID:24672422
A mixed-signal implementation of a polychronous spiking neural network with delay adaptation.
Wang, Runchun M; Hamilton, Tara J; Tapson, Jonathan C; van Schaik, André
2014-01-01
We present a mixed-signal implementation of a re-configurable polychronous spiking neural network capable of storing and recalling spatio-temporal patterns. The proposed neural network contains one neuron array and one axon array. Spike Timing Dependent Delay Plasticity is used to fine-tune delays and add dynamics to the network. In our mixed-signal implementation, the neurons and axons have been implemented as both analog and digital circuits. The system thus consists of one FPGA, containing the digital neuron array and the digital axon array, and one analog IC containing the analog neuron array and the analog axon array. The system can be easily configured to use different combinations of each. We present and discuss the experimental results of all combinations of the analog and digital axon arrays and the analog and digital neuron arrays. The test results show that the proposed neural network is capable of successfully recalling more than 85% of stored patterns using both analog and digital circuits.
Molecular Regulation of DNA Damage-Induced Apoptosis in Neurons of Cerebral Cortex
Liu, Zhiping; Pipino, Jacqueline; Chestnut, Barry; Landek, Melissa A.
2009-01-01
Cerebral cortical neuron degeneration occurs in brain disorders manifesting throughout life, but the mechanisms are understood poorly. We used cultured embryonic mouse cortical neurons and an in vivo mouse model to study mechanisms of DNA damaged-induced apoptosis in immature and differentiated neurons. p53 drives apoptosis of immature and differentiated cortical neurons through its rapid and prominent activation stimulated by DNA strand breaks induced by topoisomerase-I and -II inhibition. Blocking p53-DNA transactivation with α-pifithrin protects immature neurons; blocking p53-mitochondrial functions with μ-pifithrin protects differentiated neurons. Mitochondrial death proteins are upregulated in apoptotic immature and differentiated neurons and have nonredundant proapoptotic functions; Bak is more dominant than Bax in differentiated neurons. p53 phosphorylation is mediated by ataxia telangiectasia mutated (ATM) kinase. ATM inactivation is antiapoptotic, particularly in differentiated neurons, whereas inhibition of c-Abl protects immature neurons but not differentiated neurons. Cell death protein expression patterns in mouse forebrain are mostly similar to cultured neurons. DNA damage induces prominent p53 activation and apoptosis in cerebral cortex in vivo. Thus, DNA strand breaks in cortical neurons induce rapid p53-mediated apoptosis through actions of upstream ATM and c-Abl kinases and downstream mitochondrial death proteins. This molecular network operates through variations depending on neuron maturity. PMID:18820287
Kerr, Robert R; Burkitt, Anthony N; Thomas, Doreen A; Gilson, Matthieu; Grayden, David B
2013-01-01
Learning rules, such as spike-timing-dependent plasticity (STDP), change the structure of networks of neurons based on the firing activity. A network level understanding of these mechanisms can help infer how the brain learns patterns and processes information. Previous studies have shown that STDP selectively potentiates feed-forward connections that have specific axonal delays, and that this underlies behavioral functions such as sound localization in the auditory brainstem of the barn owl. In this study, we investigate how STDP leads to the selective potentiation of recurrent connections with different axonal and dendritic delays during oscillatory activity. We develop analytical models of learning with additive STDP in recurrent networks driven by oscillatory inputs, and support the results using simulations with leaky integrate-and-fire neurons. Our results show selective potentiation of connections with specific axonal delays, which depended on the input frequency. In addition, we demonstrate how this can lead to a network becoming selective in the amplitude of its oscillatory response to this frequency. We extend this model of axonal delay selection within a single recurrent network in two ways. First, we show the selective potentiation of connections with a range of both axonal and dendritic delays. Second, we show axonal delay selection between multiple groups receiving out-of-phase, oscillatory inputs. We discuss the application of these models to the formation and activation of neuronal ensembles or cell assemblies in the cortex, and also to missing fundamental pitch perception in the auditory brainstem.
Kerr, Robert R.; Burkitt, Anthony N.; Thomas, Doreen A.; Gilson, Matthieu; Grayden, David B.
2013-01-01
Learning rules, such as spike-timing-dependent plasticity (STDP), change the structure of networks of neurons based on the firing activity. A network level understanding of these mechanisms can help infer how the brain learns patterns and processes information. Previous studies have shown that STDP selectively potentiates feed-forward connections that have specific axonal delays, and that this underlies behavioral functions such as sound localization in the auditory brainstem of the barn owl. In this study, we investigate how STDP leads to the selective potentiation of recurrent connections with different axonal and dendritic delays during oscillatory activity. We develop analytical models of learning with additive STDP in recurrent networks driven by oscillatory inputs, and support the results using simulations with leaky integrate-and-fire neurons. Our results show selective potentiation of connections with specific axonal delays, which depended on the input frequency. In addition, we demonstrate how this can lead to a network becoming selective in the amplitude of its oscillatory response to this frequency. We extend this model of axonal delay selection within a single recurrent network in two ways. First, we show the selective potentiation of connections with a range of both axonal and dendritic delays. Second, we show axonal delay selection between multiple groups receiving out-of-phase, oscillatory inputs. We discuss the application of these models to the formation and activation of neuronal ensembles or cell assemblies in the cortex, and also to missing fundamental pitch perception in the auditory brainstem. PMID:23408878
DL-ReSuMe: A Delay Learning-Based Remote Supervised Method for Spiking Neurons.
Taherkhani, Aboozar; Belatreche, Ammar; Li, Yuhua; Maguire, Liam P
2015-12-01
Recent research has shown the potential capability of spiking neural networks (SNNs) to model complex information processing in the brain. There is biological evidence to prove the use of the precise timing of spikes for information coding. However, the exact learning mechanism in which the neuron is trained to fire at precise times remains an open problem. The majority of the existing learning methods for SNNs are based on weight adjustment. However, there is also biological evidence that the synaptic delay is not constant. In this paper, a learning method for spiking neurons, called delay learning remote supervised method (DL-ReSuMe), is proposed to merge the delay shift approach and ReSuMe-based weight adjustment to enhance the learning performance. DL-ReSuMe uses more biologically plausible properties, such as delay learning, and needs less weight adjustment than ReSuMe. Simulation results have shown that the proposed DL-ReSuMe approach achieves learning accuracy and learning speed improvements compared with ReSuMe.
DNA damage preceding dopamine neuron degeneration in A53T human α-synuclein transgenic mice.
Wang, Degui; Yu, Tianyu; Liu, Yongqiang; Yan, Jun; Guo, Yingli; Jing, Yuhong; Yang, Xuguang; Song, Yanfeng; Tian, Yingxia
2016-12-02
Defective DNA repair has been linked with age-associated neurodegenerative disorders. Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by genetic and environmental factors. Whether damages to nuclear DNA contribute to neurodegeneration of PD still remain obscure. in this study we aim to explore whether nuclear DNA damage induce dopamine neuron degeneration in A53T human α-Synuclein over expressed mouse model. We investigated the effects of X-ray irradiation on A53T-α-Syn MEFs and A53T-α-Syn transgene mice. Our results indicate that A53T-α-Syn MEFs show a prolonged DNA damage repair process and senescense phenotype. DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenic mice and decrease the number of nigrostriatal dopaminergic neurons. Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages. Copyright © 2016 Elsevier Inc. All rights reserved.
Auditory cortex of newborn bats is prewired for echolocation.
Kössl, Manfred; Voss, Cornelia; Mora, Emanuel C; Macias, Silvio; Foeller, Elisabeth; Vater, Marianne
2012-04-10
Neuronal computation of object distance from echo delay is an essential task that echolocating bats must master for spatial orientation and the capture of prey. In the dorsal auditory cortex of bats, neurons specifically respond to combinations of short frequency-modulated components of emitted call and delayed echo. These delay-tuned neurons are thought to serve in target range calculation. It is unknown whether neuronal correlates of active space perception are established by experience-dependent plasticity or by innate mechanisms. Here we demonstrate that in the first postnatal week, before onset of echolocation and flight, dorsal auditory cortex already contains functional circuits that calculate distance from the temporal separation of a simulated pulse and echo. This innate cortical implementation of a purely computational processing mechanism for sonar ranging should enhance survival of juvenile bats when they first engage in active echolocation behaviour and flight.
Study of ATM Phosphorylation by Cdk5 in Neuronal Cells.
She, Hua; Mao, Zixu
2017-01-01
The phosphatidylinositol-3-kinase-like kinase ATM (ataxia-telangiectasia mutated) plays a central role in coordinating the DNA damage responses including cell cycle checkpoint control, DNA repair, and apoptosis. Mutations of ATM cause a spectrum of defects ranging from neurodegeneration to cancer predisposition. We previously showed that Cdk5 (cyclin-dependent kinase 5) is activated by DNA damage and directly phosphorylates ATM at serine 794 in postmitotic neurons. Phosphorylation at serine 794 precedes and is required for ATM autophosphorylation at serine 1981, and activates ATM kinase activity. Cdk5-ATM pathway plays a crucial role in DNA damage-induced neuronal injury. This chapter describes protocols used in analyzing ATM phosphorylation by Cdk5 in CGNs (cerebellar granule neurons) and its effects on neuronal survival.
Murofushi, Hiromu; Murakami-Murofushi, Kimiko
2012-01-01
Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator with a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. We have previously shown that cPA significantly suppresses ischemia-induced delayed neuronal death and the accumulation of glial fibrillary acidic protein in the CA1 region of the rat hippocampus. These results indicated that the systemic administration of cPA can protect hippocampal neurons against ischemia-induced delayed neuronal cell death. In the current study, we investigated the effects of cPA on neuronal cell death caused by hypoxia in vitro and the molecular mechanisms underlying these effects. We used cobalt chloride (CoCl2) to expose cells to hypoxic conditions in vitro. Treating mouse neuroblastoma (Neuro2A) cells with CoCl2 induced nuclear DNA condensation and phosphatidylserine exposure. However, adding cPA led to the suppression of CoCl2-induced apoptosis in a cPA dose-dependent manner and attenuated the increase in the Bax/Bcl-2 ratio caused by CoCl2. Quantitative PCR analysis showed that Neuro2A cells strongly express the LPA1, LPA2, and LPA6, which are G-protein coupled receptors that can be activated by cPA. To date, LPA1 and LPA2 have been reported to exhibit antiapoptotic activity. Therefore, to assess the roles of LPA1 and LPA2 on cPA-induced neuroprotective functions, Ki16425, a selective LPA1 and LPA3 antagonist, was adopted to know the LPA1 function and siRNA was used to knockdown the expression of LPA2. On the basis of our results, we propose that cPA-induced protection of Neuro2A cells from CoCl2-induced hypoxia damage is mediated via LPA2. PMID:23251428
Gotoh, Mari; Sano-Maeda, Katsura; Murofushi, Hiromu; Murakami-Murofushi, Kimiko
2012-01-01
Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator with a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. We have previously shown that cPA significantly suppresses ischemia-induced delayed neuronal death and the accumulation of glial fibrillary acidic protein in the CA1 region of the rat hippocampus. These results indicated that the systemic administration of cPA can protect hippocampal neurons against ischemia-induced delayed neuronal cell death. In the current study, we investigated the effects of cPA on neuronal cell death caused by hypoxia in vitro and the molecular mechanisms underlying these effects. We used cobalt chloride (CoCl(2)) to expose cells to hypoxic conditions in vitro. Treating mouse neuroblastoma (Neuro2A) cells with CoCl(2) induced nuclear DNA condensation and phosphatidylserine exposure. However, adding cPA led to the suppression of CoCl(2)-induced apoptosis in a cPA dose-dependent manner and attenuated the increase in the Bax/Bcl-2 ratio caused by CoCl(2). Quantitative PCR analysis showed that Neuro2A cells strongly express the LPA(1), LPA(2), and LPA(6), which are G-protein coupled receptors that can be activated by cPA. To date, LPA(1) and LPA(2) have been reported to exhibit antiapoptotic activity. Therefore, to assess the roles of LPA(1) and LPA(2) on cPA-induced neuroprotective functions, Ki16425, a selective LPA(1) and LPA(3) antagonist, was adopted to know the LPA(1) function and siRNA was used to knockdown the expression of LPA(2). On the basis of our results, we propose that cPA-induced protection of Neuro2A cells from CoCl(2)-induced hypoxia damage is mediated via LPA(2).
Patel, Ryan; Bauer, Claudia S.; Nieto-Rostro, Manuela; Margas, Wojciech; Ferron, Laurent; Chaggar, Kanchan; Crews, Kasumi; Ramirez, Juan D.; Bennett, David L. H.; Schwartz, Arnold; Dickenson, Anthony H.
2013-01-01
The α2δ-1 subunit of voltage-gated calcium channels is upregulated after sensory nerve injury and is also the therapeutic target of gabapentinoid drugs. It is therefore likely to play a key role in the development of neuropathic pain. In this study, we have examined mice in which α2δ-1 gene expression is disrupted, to determine whether α2δ-1 is involved in various modalities of nociception, and for the development of behavioral hypersensitivity after partial sciatic nerve ligation (PSNL). We find that naive α2δ-1−/− mice show a marked behavioral deficit in mechanical and cold sensitivity, but no change in thermal nociception threshold. The lower mechanical sensitivity is mirrored by a reduced in vivo electrophysiological response of dorsal horn wide dynamic range neurons. The CaV2.2 level is reduced in brain and spinal cord synaptosomes from α2δ-1−/− mice, and α2δ-1−/− DRG neurons exhibit lower calcium channel current density. Furthermore, a significantly smaller number of DRG neurons respond to the TRPM8 agonist menthol. After PSNL, α2δ-1−/− mice show delayed mechanical hypersensitivity, which only develops at 11 d after surgery, whereas in wild-type littermates it is maximal at the earliest time point measured (3 d). There is no compensatory upregulation of α2δ-2 or α2δ-3 after PSNL in α2δ-1−/− mice, and other transcripts, including neuropeptide Y and activating transcription factor-3, are upregulated normally. Furthermore, the ability of pregabalin to alleviate mechanical hypersensitivity is lost in PSNL α2δ-1−/− mice. Thus, α2δ-1 is essential for rapid development of mechanical hypersensitivity in a nerve injury model of neuropathic pain. PMID:24133248
Yu, Qian; Wang, Binrong; Zhao, Tianzhi; Zhang, Xiangnan; Tao, Lei; Shi, Jinshan; Sun, Xude; Ding, Qian
2017-01-01
Brain ischemia leads to poor oxygen supply, and is one of the leading causes of brain damage and/or death. Neuroprotective agents are thus in great need for treatment purpose. Using both young and aged primary cultured hippocampal neurons as in vitro models, we investigated the effect of sodium hydrosulfide (NaHS), an exogenous donor of hydrogen sulfide, on oxygen-glucose deprivation (OGD) damaged neurons that mimick focal cerebral ischemia/reperfusion (I/R) induced brain injury. NaHS treatment (250 μM) protected both young and aged hippocampal neurons, as indicated by restoring number of primary dendrites by 43.9 and 68.7%, number of dendritic end tips by 59.8 and 101.1%, neurite length by 36.8 and 66.7%, and spine density by 38.0 and 58.5% in the OGD-damaged young and aged neurons, respectively. NaHS treatment inhibited growth-associated protein 43 downregulation, oxidative stress in both young and aged hippocampal neurons following OGD damage. Further studies revealed that NaHS treatment could restore ERK1/2 activation, which was inhibited by OGD-induced protein phosphatase 2 (PP2A) upregulation. Our results demonstrated that NaHS has potent protective effects against neuron injury induced by OGD in both young and aged hippocampal neurons. PMID:28326019
Eles, James R; Vazquez, Alberto L; Kozai, Takashi D Y; Cui, X Tracy
2018-08-01
Implantable electrode devices enable long-term electrophysiological recordings for brain-machine interfaces and basic neuroscience research. Implantation of these devices, however, leads to neuronal damage and progressive neural degeneration that can lead to device failure. The present study uses in vivo two-photon microscopy to study the calcium activity and morphology of neurons before, during, and one month after electrode implantation to determine how implantation trauma injures neurons. We show that implantation leads to prolonged, elevated calcium levels in neurons within 150 μm of the electrode interface. These neurons show signs of mechanical distortion and mechanoporation after implantation, suggesting that calcium influx is related to mechanical trauma. Further, calcium-laden neurites develop signs of axonal injury at 1-3 h post-insert. Over the first month after implantation, physiological neuronal calcium activity increases, suggesting that neurons may be recovering. By defining the mechanisms of neuron damage after electrode implantation, our results suggest new directions for therapies to improve electrode longevity. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kuwada, S; Batra, R; Stanford, T R
1989-02-01
1. We studied the effects of sodium pentobarbital on 22 neurons in the inferior colliculus (IC) of the rabbit. We recorded changes in the sensitivity of these neurons to monaural stimulation and to ongoing interaural time differences (ITDs). Monaural stimuli were tone bursts at or near the neuron's best frequency. The ITD was varied by delivering tones that differed by 1 Hz to the two ears, resulting in a 1-Hz binaural beat. 2. We assessed a neuron's ITD sensitivity by calculating three measures from the responses to binaural beats: composite delay, characteristic delay (CD), and characteristic phase (CP). To obtain the composite delay, we first derived period histograms by averaging, showing the response at each stimulating frequency over one period of the beat frequency. Second, the period histograms were replotted as a function of their equivalent interaural delay and then averaged together to yield the composite delay curve. Last, we calculated the composite peak or trough delay by fitting a parabola to the peak or trough of this composite curve. The composite delay curve represents the average response to all frequencies within the neuron's responsive range, and the peak reflects the interaural delay that produces the maximum response. The CD and CP were estimated from a weighted fit of a regression line to the plot of the mean interaural phase of the response versus the stimulating frequency. The slope and phase intercept of this regression line yielded estimates of CD and CP, respectively. These two quantities are thought to reflect the mechanism of ITD sensitivity, which involves the convergence of phase-locked inputs on a binaural cell. The CD estimates the difference in the time required for the two inputs to travel from either ear to this cell, whereas the CP reflects the interaural phase difference of the inputs at this cell. 3. Injections of sodium pentobarbital at subsurgical dosages (less than 25 mg/kg) almost invariably altered the neuron's response rate, response latency, response pattern, and spontaneous activity. Most of these changes were predictable and consistent with an enhancement of inhibitory influences. For example, if the earliest response was inhibitory, later excitation was usually reduced and latency increased. If the earliest response was excitatory, the level of this excitation was unaltered or slightly enhanced, and changes in latency were minimal. 4. The neuron's response pattern also changed in a predictable way. For example, a response with an inhibitory pause could either change to a response with a longer pause or to a response with an onset only.(ABSTRACT TRUNCATED AT 400 WORDS)
Mizrahi, Michal; Friedman-Levi, Yael; Larush, Liraz; Frid, Kati; Binyamin, Orli; Dori, Dvir; Fainstein, Nina; Ovadia, Haim; Ben-Hur, Tamir; Magdassi, Shlomo; Gabizon, Ruth
2014-08-01
Neurodegenerative diseases generate the accumulation of specific misfolded proteins, such as PrP(Sc) prions or A-beta in Alzheimer's diseases, and share common pathological features, like neuronal death and oxidative damage. To test whether reduced oxidation alters disease manifestation, we treated TgMHu2ME199K mice, modeling for genetic prion disease, with Nano-PSO, a nanodroplet formulation of pomegranate seed oil (PSO). PSO comprises large concentrations of a unique polyunsaturated fatty acid, Punicic acid, among the strongest natural antioxidants. Nano-PSO significantly delayed disease presentation when administered to asymptomatic TgMHu2ME199K mice and postponed disease aggravation in already sick mice. Analysis of brain samples revealed that Nano-PSO treatment did not decrease PrP(Sc) accumulation, but rather reduced lipid oxidation and neuronal loss, indicating a strong neuroprotective effect. We propose that Nano-PSO and alike formulations may be both beneficial and safe enough to be administered for long years to subjects at risk or to those already affected by neurodegenerative conditions. This team of authors report that a nanoformulation of pomegranade seed oil, containing high levels of a strong antioxidant, can delay disease onset in a mouse model of genetic prion diseases, and the formulation also indicates a direct neuroprotective effect. Copyright © 2014 Elsevier Inc. All rights reserved.
Mechanisms of Firing Patterns in Fast-Spiking Cortical Interneurons
Golomb, David; Donner, Karnit; Shacham, Liron; Shlosberg, Dan; Amitai, Yael; Hansel, David
2007-01-01
Cortical fast-spiking (FS) interneurons display highly variable electrophysiological properties. Their spike responses to step currents occur almost immediately following the step onset or after a substantial delay, during which subthreshold oscillations are frequently observed. Their firing patterns include high-frequency tonic firing and rhythmic or irregular bursting (stuttering). What is the origin of this variability? In the present paper, we hypothesize that it emerges naturally if one assumes a continuous distribution of properties in a small set of active channels. To test this hypothesis, we construct a minimal, single-compartment conductance-based model of FS cells that includes transient Na+, delayed-rectifier K+, and slowly inactivating d-type K+ conductances. The model is analyzed using nonlinear dynamical system theory. For small Na+ window current, the neuron exhibits high-frequency tonic firing. At current threshold, the spike response is almost instantaneous for small d-current conductance, g d, and it is delayed for larger g d. As g d further increases, the neuron stutters. Noise substantially reduces the delay duration and induces subthreshold oscillations. In contrast, when the Na+ window current is large, the neuron always fires tonically. Near threshold, the firing rates are low, and the delay to firing is only weakly sensitive to noise; subthreshold oscillations are not observed. We propose that the variability in the response of cortical FS neurons is a consequence of heterogeneities in their g d and in the strength of their Na+ window current. We predict the existence of two types of firing patterns in FS neurons, differing in the sensitivity of the delay duration to noise, in the minimal firing rate of the tonic discharge, and in the existence of subthreshold oscillations. We report experimental results from intracellular recordings supporting this prediction. PMID:17696606
Mechanisms of firing patterns in fast-spiking cortical interneurons.
Golomb, David; Donner, Karnit; Shacham, Liron; Shlosberg, Dan; Amitai, Yael; Hansel, David
2007-08-01
Cortical fast-spiking (FS) interneurons display highly variable electrophysiological properties. Their spike responses to step currents occur almost immediately following the step onset or after a substantial delay, during which subthreshold oscillations are frequently observed. Their firing patterns include high-frequency tonic firing and rhythmic or irregular bursting (stuttering). What is the origin of this variability? In the present paper, we hypothesize that it emerges naturally if one assumes a continuous distribution of properties in a small set of active channels. To test this hypothesis, we construct a minimal, single-compartment conductance-based model of FS cells that includes transient Na(+), delayed-rectifier K(+), and slowly inactivating d-type K(+) conductances. The model is analyzed using nonlinear dynamical system theory. For small Na(+) window current, the neuron exhibits high-frequency tonic firing. At current threshold, the spike response is almost instantaneous for small d-current conductance, gd, and it is delayed for larger gd. As gd further increases, the neuron stutters. Noise substantially reduces the delay duration and induces subthreshold oscillations. In contrast, when the Na(+) window current is large, the neuron always fires tonically. Near threshold, the firing rates are low, and the delay to firing is only weakly sensitive to noise; subthreshold oscillations are not observed. We propose that the variability in the response of cortical FS neurons is a consequence of heterogeneities in their gd and in the strength of their Na(+) window current. We predict the existence of two types of firing patterns in FS neurons, differing in the sensitivity of the delay duration to noise, in the minimal firing rate of the tonic discharge, and in the existence of subthreshold oscillations. We report experimental results from intracellular recordings supporting this prediction.
Yamazaki, Yui; Harada, Shinichi; Wada, Tetsuyuki; Yoshida, Shigeru; Tokuyama, Shogo
2016-07-01
We recently demonstrated that the cerebral sodium-glucose transporter (SGLT) is involved in postischaemic hyperglycaemia-induced exacerbation of cerebral ischaemia. However, the associated SGLT-mediated mechanisms remain unclear. Thus, we examined the involvement of cerebral SGLT-induced excessive sodium ion influx in the development of cerebral ischaemic neuronal damage. [Na+]i was estimated according to sodium-binding benzofuran isophthalate fluorescence. In the in vitro study, primary cortical neurons were prepared from fetuses of ddY mice. Primary cortical neurons were cultured for 5 days before each treatment with reagents, and these survival rates were assessed using biochemical assays. In in vivo study, a mouse model of focal ischaemia was generated using middle cerebral artery occlusion (MCAO). In these experiments, treatment with high concentrations of glucose induced increment in [Na+]i, and this phenomenon was suppressed by the SGLT-specific inhibitor phlorizin. SGLT-specific sodium ion influx was induced using a-methyl-D-glucopyranoside (a-MG) treatments, which led to significant concentration-dependent declines in neuronal survival rates and exacerbated hydrogen peroxide-induced neuronal cell death. Moreover, phlorizin ameliorated these effects. Finally, intracerebroventricular administration of a-MG exacerbated the development of neuronal damage induced by MCAO, and these effects were ameliorated by the administration of phlorizin. Hence, excessive influx of sodium ions into neuronal cells through cerebral SGLT may exacerbate the development of cerebral ischaemic neuronal damage. © 2016 Royal Pharmaceutical Society.
Wang, Yazhou; Wang, Wei; Li, Zong; Hao, Shilei; Wang, Bochu
2016-10-01
A growing volume of experimental evidence demonstrates that mechanical stress plays a significant role in growth, proliferation, apoptosis, gene expression, electrophysiological properties and many other aspects of neurons. In this review, first, the mechanical microenvironment and properties of neurons under in vivo conditions are introduced and analyzed. Second, research works in recent decades on the effects of different mechanical forces, especially compression and tension, on various neurons, including dorsal root ganglion neurons, retinal ganglion cells, cerebral cortex neurons, hippocampus neurons, neural stem cells, and other neurons, are summarized. Previous research results demonstrate that mechanical stress can not only injure neurons by damaging their morphology, impacting their electrophysiological characteristics and gene expression, but also promote neuron self-repair. Finally, some future perspectives in neuron research are discussed.
Margaryan, G; Mattioli, C; Mladinic, M; Nistri, A
2010-02-03
Treatment to block the pathophysiological processes triggered by acute spinal injury remains unsatisfactory as the underlying mechanisms are incompletely understood. Using as a model the in vitro spinal cord of the neonatal rat, we investigated the feasibility of neuroprotection of lumbar locomotor networks by the glutamate antagonists 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX) and aminophosphonovalerate (APV) against acute lesions induced by either a toxic solution (pathological medium (PM) to mimic the spinal injury hypoxic-dysmetabolic perturbation) or excitotoxicity with kainate. The study outcome was presence of fictive locomotion 24 h after the insult and its correlation with network histology. Inhibition of fictive locomotion by PM was contrasted by simultaneous and even delayed (1 h later) co-application of CNQX and APV with increased survival of ventral horn premotoneurons and lateral column white matter. Neither CNQX nor APV alone provided neuroprotection. Kainate-mediated excitotoxicity always led to loss of fictive locomotion and extensive neuronal damage. CNQX and APV co-applied with kainate protected one-third of preparations with improved motoneuron and dorsal horn neuronal counts, although they failed with delayed application. Our data suggest that locomotor network neuroprotection was possible when introduced very early during the pathological process of spinal injury, but also showed how the borderline between presence or loss of locomotor activity was a very narrow one that depended on the survival of a certain number of neurons or white matter elements. The present report provides a model not only for preclinical testing of novel neuroprotective agents, but also for estimating the minimal network membership compatible with functional locomotor output. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
Mitophagy in Parkinson's Disease: Pathogenic and Therapeutic Implications.
Gao, Fei; Yang, Jia; Wang, Dongdong; Li, Chao; Fu, Yi; Wang, Huaishan; He, Wei; Zhang, Jianmin
2017-01-01
Neurons affected in Parkinson's disease (PD) experience mitochondrial dysfunction and bioenergetic deficits that occur early and promote the disease-related α-synucleinopathy. Emerging findings suggest that the autophagy-lysosome pathway, which removes damaged mitochondria (mitophagy), is also compromised in PD and results in the accumulation of dysfunctional mitochondria. Studies using genetic-modulated or toxin-induced animal and cellular models as well as postmortem human tissue indicate that impaired mitophagy might be a critical factor in the pathogenesis of synaptic dysfunction and the aggregation of misfolded proteins, which in turn impairs mitochondrial homeostasis. Interventions that stimulate mitophagy to maintain mitochondrial health might, therefore, be used as an approach to delay the neurodegenerative processes in PD.
Dual role of astrocytes in perinatal asphyxia injury and neuroprotection.
Romero, J; Muñiz, J; Logica Tornatore, T; Holubiec, M; González, J; Barreto, G E; Guelman, L; Lillig, C H; Blanco, E; Capani, F
2014-04-17
Perinatal asphyxia represents an important cause of severe neurological deficits including delayed mental and motor development, epilepsy, major cognitive deficits and blindness. However, at the moment, most of the therapeutic strategies were not well targeted toward the processes that induced the brain injury during perinatal asphyxia. Traditionally, experimental research focused on neurons, whereas astrocytes have been more related with the damage mechanisms of perinatal asphyxia. In this work, we propose to review possible protective as well as deleterious roles of astrocytes in the asphyctic brain with the aim to stimulate further research in this area of perinatal asphyxia still not well studied. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sparenborg, S.; Brennecke, L.H.; Jaax, N.K.
1992-12-31
The involvement of the NMDA receptor in the neurotoxicity induced by soman, an organophosphorus compound which irreversibly inhibits cholinesterase, was studied in guinea pigs. The drug MK-801 (0.5, 1 or 5 mg/kg, i.p.) was given as a pretreatment before a convulsant dose of soman or as a post treatment (30, 100 or 300 micron g/kg, i.m.) 5 min after the development of soman-induced status epilepticus. Pyridostigmine, atropine and pralidoxime chloride were also given to each subject to counteract the lethality of soman. All subjects that were challenged with soman and given the vehicle for MK-801 (saline) exhibited severe convulsions andmore » electrographic seizure activity. Neuronal necrosis was found in the hippocampus, amygdala, thalamus and the pyriform and cerebral cortices of those subjects surviving for 48 hr. Pretreatment with 0.5 or 1 mg/kg doses of MK-801 did not prevent nor delay the onset of seizure activity but did diminish its intensity and led to its early arrest. At the largest dose (5 mg/kg), MK-801 completely prevented the development of seizure activity and brain damage. Post treatment with MK-801 prevented, arrested or reduced seizure activity, convulsions and neuronal necrosis in a dose-dependent manner. The NMDA receptor may play a more critical role in the spread and maintenance, rather than the initiation of cholinergically-induced seizure activity....Seizure-related brain damage, Organophosphorus compound, Nerve agent, Cholinesterase inhibition, Excitotoxicity, Guinea pig.« less
Mc Laughlin, Myles; Chabwine, Joelle Nsimire; van der Heijden, Marcel; Joris, Philip X
2008-10-01
To localize low-frequency sounds, humans rely on an interaural comparison of the temporally encoded sound waveform after peripheral filtering. This process can be compared with cross-correlation. For a broadband stimulus, after filtering, the correlation function has a damped oscillatory shape where the periodicity reflects the filter's center frequency and the damping reflects the bandwidth (BW). The physiological equivalent of the correlation function is the noise delay (ND) function, which is obtained from binaural cells by measuring response rate to broadband noise with varying interaural time delays (ITDs). For monaural neurons, delay functions are obtained by counting coincidences for varying delays across spike trains obtained to the same stimulus. Previously, we showed that BWs in monaural and binaural neurons were similar. However, earlier work showed that the damping of delay functions differs significantly between these two populations. Here, we address this paradox by looking at the role of sensitivity to changes in interaural correlation. We measured delay and correlation functions in the cat inferior colliculus (IC) and auditory nerve (AN). We find that, at a population level, AN and IC neurons with similar characteristic frequencies (CF) and BWs can have different responses to changes in correlation. Notably, binaural neurons often show compression, which is not found in the AN and which makes the shape of delay functions more invariant with CF at the level of the IC than at the AN. We conclude that binaural sensitivity is more dependent on correlation sensitivity than has hitherto been appreciated and that the mechanisms underlying correlation sensitivity should be addressed in future studies.
A supervised learning rule for classification of spatiotemporal spike patterns.
Lilin Guo; Zhenzhong Wang; Adjouadi, Malek
2016-08-01
This study introduces a novel supervised algorithm for spiking neurons that take into consideration synapse delays and axonal delays associated with weights. It can be utilized for both classification and association and uses several biologically influenced properties, such as axonal and synaptic delays. This algorithm also takes into consideration spike-timing-dependent plasticity as in Remote Supervised Method (ReSuMe). This paper focuses on the classification aspect alone. Spiked neurons trained according to this proposed learning rule are capable of classifying different categories by the associated sequences of precisely timed spikes. Simulation results have shown that the proposed learning method greatly improves classification accuracy when compared to the Spike Pattern Association Neuron (SPAN) and the Tempotron learning rule.
NASA Astrophysics Data System (ADS)
Che, Yanqiu; Yang, Tingting; Li, Ruixue; Li, Huiyan; Han, Chunxiao; Wang, Jiang; Wei, Xile
2015-09-01
In this paper, we propose a dynamic delayed feedback control approach or desynchronization of chaotic-bursting synchronous activities in an ensemble of globally coupled neuronal oscillators. We demonstrate that the difference signal between an ensemble's mean field and its time delayed state, filtered and fed back to the ensemble, can suppress the self-synchronization in the ensemble. These individual units are decoupled and stabilized at the desired desynchronized states while the stimulation signal reduces to the noise level. The effectiveness of the method is illustrated by examples of two different populations of globally coupled chaotic-bursting neurons. The proposed method has potential for mild, effective and demand-controlled therapy of neurological diseases characterized by pathological synchronization.
Yan, Fang; Liu, Johnson J; Ip, Virginia; Jamieson, Stephen M F; McKeage, Mark J
2015-12-01
Platinum-based anticancer drugs cause peripheral neurotoxicity by damaging sensory neurons within the dorsal root ganglia (DRG), but the mechanisms are incompletely understood. The roles of platinum DNA binding, transcription inhibition and altered cell size were investigated in primary cultures of rat DRG cells. Click chemistry quantitative fluorescence imaging of RNA-incorporated 5-ethynyluridine showed high, but wide ranging, global levels of transcription in individual neurons that correlated with their cell body size. Treatment with platinum drugs reduced neuronal transcription and cell body size to an extent that corresponded to the amount of preceding platinum DNA binding, but without any loss of neuronal cells. The effects of platinum drugs on neuronal transcription and cell body size were inhibited by blocking platinum DNA binding with sodium thiosulfate, and mimicked by treatment with a model transcriptional inhibitor, actinomycin D. In vivo oxaliplatin treatment depleted the total RNA content of DRG tissue concurrently with altering DRG neuronal size. These findings point to a mechanism of chemotherapy-induced peripheral neurotoxicity, whereby platinum DNA damage induces global transcriptional arrest leading in turn to neuronal atrophy. DRG neurons may be particularly vulnerable to this mechanism of toxicity because of their requirements for high basal levels of global transcriptional activity. Findings point to a new stepwise mechanism of chemotherapy-induced peripheral neurotoxicity, whereby platinum DNA damage induces global transcriptional arrest leading in turn to neuronal atrophy. Dorsal root ganglion neurons may be particularly vulnerable to this neurotoxicity because of their high global transcriptional outputs, demonstrated in this study by click chemistry quantitative fluorescence imaging. © 2015 International Society for Neurochemistry.
Samoilov, M O; Churilova, A V; Glushchenko, T S
2015-01-01
In 5 groups of rats (6 animals in each), the changes of neurons in hippocampal fields CA1 and CA4 were studied 7 days after severe hypobaric hypoxia (180 mm Hg, for 3 h) preceded by various numbers (1, 3 and 6) of sessions of preconditioning (PC) by mild hypobaric hypoxia (360 mm Hg, for 2 h, 24 h prior to severe hypoxia). It was found that a single session of PC did not prevent the damage to the structure of neurons and their death after exposure to severe hypoxia. Meanwhile, 6, and especially 3 sessions of PC induced protective mechanisms of neuronal damage prevention. In rats after 6 sessions of PC, unlike those exposed to 3 sessions, mild chromatolysis of hippocampal neurons was demonstrated. This could result from prolonged hypermetabolic activity of neurons and indicate their functional overloading.
Ge, Pengfei; Luo, Yinan; Wang, Haifeng; Ling, Feng
2009-12-01
Brain ischemia has been an important risk factor for human being health, there is no effective medicine can be used to protect delayed neuronal injury or death secondary to blood reperfusion following ischemia. Recent discovery shows protein aggregation is an important factor resulting in ischemia-induced neuron death. Therefore, we propose the hypothesis that inhibiting protein aggregation may be an effective way to prevent delayed neuronal death after transient ischemia. At present, in vitro studies show some chemicals such as 4PBA (sodium 4-phenylbutyrate) and trehalose have the features of antagonizing protein aggregation in vitro. Moreover, polyQ-binding peptide (QBP1), geldanamycin, amino acids and amino acid derivatives have been also used in vitro to decrease aggregation and to increase protein stability. Although in vivo and systematical study should be performed to evaluate their effects of anti-protein aggregation, this enlightening us on using them to protect ischemic-induced neuronal death, and find new potential chemicals or methods which could be effective in keeping protein stable and prevent forming aggregates.
Accelerated age-related cognitive decline and neurodegeneration, caused by deficient DNA repair.
Borgesius, Nils Z; de Waard, Monique C; van der Pluijm, Ingrid; Omrani, Azar; Zondag, Gerben C M; van der Horst, Gijsbertus T J; Melton, David W; Hoeijmakers, Jan H J; Jaarsma, Dick; Elgersma, Ype
2011-08-31
Age-related cognitive decline and neurodegenerative diseases are a growing challenge for our societies with their aging populations. Accumulation of DNA damage has been proposed to contribute to these impairments, but direct proof that DNA damage results in impaired neuronal plasticity and memory is lacking. Here we take advantage of Ercc1(Δ/-) mutant mice, which are impaired in DNA nucleotide excision repair, interstrand crosslink repair, and double-strand break repair. We show that these mice exhibit an age-dependent decrease in neuronal plasticity and progressive neuronal pathology, suggestive of neurodegenerative processes. A similar phenotype is observed in mice where the mutation is restricted to excitatory forebrain neurons. Moreover, these neuron-specific mutants develop a learning impairment. Together, these results suggest a causal relationship between unrepaired, accumulating DNA damage, and age-dependent cognitive decline and neurodegeneration. Hence, accumulated DNA damage could therefore be an important factor in the onset and progression of age-related cognitive decline and neurodegenerative diseases.
Rapid Long-Range Disynaptic Inhibition Explains the Formation of Cortical Orientation Maps
Antolík, Ján
2017-01-01
Competitive interactions are believed to underlie many types of cortical processing, ranging from memory formation, attention and development of cortical functional organization (e.g., development of orientation maps in primary visual cortex). In the latter case, the competitive interactions happen along the cortical surface, with local populations of neurons reinforcing each other, while competing with those displaced more distally. This specific configuration of lateral interactions is however in stark contrast with the known properties of the anatomical substrate, i.e., excitatory connections (mediating reinforcement) having longer reach than inhibitory ones (mediating competition). No satisfactory biologically plausible resolution of this conflict between anatomical measures, and assumed cortical function has been proposed. Recently a specific pattern of delays between different types of neurons in cat cortex has been discovered, where direct mono-synaptic excitation has approximately the same delay, as the combined delays of the disynaptic inhibitory interactions between excitatory neurons (i.e., the sum of delays from excitatory to inhibitory and from inhibitory to excitatory neurons). Here we show that this specific pattern of delays represents a biologically plausible explanation for how short-range inhibition can support competitive interactions that underlie the development of orientation maps in primary visual cortex. We demonstrate this statement analytically under simplifying conditions, and subsequently show using network simulations that development of orientation maps is preserved when long-range excitation, direct inhibitory to inhibitory interactions, and moderate inequality in the delays between excitatory and inhibitory pathways is added. PMID:28408869
Stochastic resonance enhancement of small-world neural networks by hybrid synapses and time delay
NASA Astrophysics Data System (ADS)
Yu, Haitao; Guo, Xinmeng; Wang, Jiang
2017-01-01
The synergistic effect of hybrid electrical-chemical synapses and information transmission delay on the stochastic response behavior in small-world neuronal networks is investigated. Numerical results show that, the stochastic response behavior can be regulated by moderate noise intensity to track the rhythm of subthreshold pacemaker, indicating the occurrence of stochastic resonance (SR) in the considered neural system. Inheriting the characteristics of two types of synapses-electrical and chemical ones, neural networks with hybrid electrical-chemical synapses are of great improvement in neuron communication. Particularly, chemical synapses are conducive to increase the network detectability by lowering the resonance noise intensity, while the information is better transmitted through the networks via electrical coupling. Moreover, time delay is able to enhance or destroy the periodic stochastic response behavior intermittently. In the time-delayed small-world neuronal networks, the introduction of electrical synapses can significantly improve the signal detection capability by widening the range of optimal noise intensity for the subthreshold signal, and the efficiency of SR is largely amplified in the case of pure chemical couplings. In addition, the stochastic response behavior is also profoundly influenced by the network topology. Increasing the rewiring probability in pure chemically coupled networks can always enhance the effect of SR, which is slightly influenced by information transmission delay. On the other hand, the capacity of information communication is robust to the network topology within the time-delayed neuronal systems including electrical couplings.
Olschewski, Andrea; Wolff, Matthias; Bräu, Michael E; Hempelmann, Gunter; Vogel, Werner; Safronov, Boris V
2002-01-01
Combining the patch-clamp recordings in slice preparation with the ‘entire soma isolation' method we studied action of several local anaesthetics on delayed-rectifier K+ currents in spinal dorsal horn neurones.Bupivacaine, lidocaine and mepivacaine at low concentrations (1–100 μM) enhanced delayed-rectifier K+ current in intact neurones within the spinal cord slice, while exhibiting a partial blocking effect at higher concentrations (>100 μM). In isolated somata 0.1–10 μM bupivacaine enhanced delayed-rectifier K+ current by shifting its steady-state activation characteristic and the voltage-dependence of the activation time constant to more negative potentials by 10–20 mV.Detailed analysis has revealed that bupivacaine also increased the maximum delayed-rectifier K+ conductance by changing the open probability, rather than the unitary conductance, of the channel.It is concluded that local anaesthetics show a dual effect on delayed-rectifier K+ currents by potentiating them at low concentrations and partially suppressing at high concentrations. The phenomenon observed demonstrated the complex action of local anaesthetics during spinal and epidural anaesthesia, which is not restricted to a suppression of Na+ conductance only. PMID:12055132
Neuronal and BBB damage induced by sera from patients with secondary progressive multiple sclerosis.
Proia, Patrizia; Schiera, Gabriella; Salemi, Giuseppe; Ragonese, Paolo; Savettieri, Giovanni; Di Liegro, Italia
2009-12-01
An important component of the pathogenic process of multiple sclerosis (MS) is the blood-brain barrier (BBB) damage. We recently set an in vitro model of BBB, based on a three-cell-type co-culture system, in which rat neurons and astrocytes synergistically induce brain capillary endothelial cells to form a monolayer with permeability properties resembling those of the physiological BBB. Herein we report that the serum from patients with secondary progressive multiple sclerosis (SPMS) has a damaging effect on isolated neurons. This finding suggests that neuronal damaging in MS could be a primary event and not only secondary to myelin damage, as generally assumed. SPMS serum affects the permeability of the BBB model, as indicated by the decrease of the transendothelial electrical resistance (TEER). Moreover, as shown by both immunofluorescence and Western blot analyses, BBB breaking is accompanied by a decrease of the synthesis as well as the peripheral localization of occludin, a structural protein of the tight junctions that are responsible for BBB properties.
Costa, Vivian V; Del Sarto, Juliana L; Rocha, Rebeca F; Silva, Flavia R; Doria, Juliana G; Olmo, Isabella G; Marques, Rafael E; Queiroz-Junior, Celso M; Foureaux, Giselle; Araújo, Julia Maria S; Cramer, Allysson; Real, Ana Luíza C V; Ribeiro, Lucas S; Sardi, Silvia I; Ferreira, Anderson J; Machado, Fabiana S; de Oliveira, Antônio C; Teixeira, Antônio L; Nakaya, Helder I; Souza, Danielle G; Ribeiro, Fabiola M; Teixeira, Mauro M
2017-04-25
Zika virus (ZIKV) infection is a global health emergency that causes significant neurodegeneration. Neurodegenerative processes may be exacerbated by N -methyl-d-aspartate receptor (NMDAR)-dependent neuronal excitoxicity. Here, we have exploited the hypothesis that ZIKV-induced neurodegeneration can be rescued by blocking NMDA overstimulation with memantine. Our results show that ZIKV actively replicates in primary neurons and that virus replication is directly associated with massive neuronal cell death. Interestingly, treatment with memantine or other NMDAR blockers, including dizocilpine (MK-801), agmatine sulfate, or ifenprodil, prevents neuronal death without interfering with the ability of ZIKV to replicate in these cells. Moreover, in vivo experiments demonstrate that therapeutic memantine treatment prevents the increase of intraocular pressure (IOP) induced by infection and massively reduces neurodegeneration and microgliosis in the brain of infected mice. Our results indicate that the blockade of NMDARs by memantine provides potent neuroprotective effects against ZIKV-induced neuronal damage, suggesting it could be a viable treatment for patients at risk for ZIKV infection-induced neurodegeneration. IMPORTANCE Zika virus (ZIKV) infection is a global health emergency associated with serious neurological complications, including microcephaly and Guillain-Barré syndrome. Infection of experimental animals with ZIKV causes significant neuronal damage and microgliosis. Treatment with drugs that block NMDARs prevented neuronal damage both in vitro and in vivo These results suggest that overactivation of NMDARs contributes significantly to the neuronal damage induced by ZIKV infection, and this is amenable to inhibition by drug treatment. Copyright © 2017 Costa et al.
Ye, M; Yang, W; Ainscough, J F; Hu, X-P; Li, X; Sedo, A; Zhang, X-H; Zhang, X; Chen, Z; Li, X-M; Beech, D J; Sivaprasadarao, A; Luo, J-H; Jiang, L-H
2014-01-01
Transient ischemia is a leading cause of cognitive dysfunction. Postischemic ROS generation and an increase in the cytosolic Zn2+ level ([Zn2+]c) are critical in delayed CA1 pyramidal neuronal death, but the underlying mechanisms are not fully understood. Here we investigated the role of ROS-sensitive TRPM2 (transient receptor potential melastatin-related 2) channel. Using in vivo and in vitro models of ischemia–reperfusion, we showed that genetic knockout of TRPM2 strongly prohibited the delayed increase in the [Zn2+]c, ROS generation, CA1 pyramidal neuronal death and postischemic memory impairment. Time-lapse imaging revealed that TRPM2 deficiency had no effect on the ischemia-induced increase in the [Zn2+]c but abolished the cytosolic Zn2+ accumulation during reperfusion as well as ROS-elicited increases in the [Zn2+]c. These results provide the first evidence to show a critical role for TRPM2 channel activation during reperfusion in the delayed increase in the [Zn2+]c and CA1 pyramidal neuronal death and identify TRPM2 as a key molecule signaling ROS generation to postischemic brain injury. PMID:25429618
NASA Astrophysics Data System (ADS)
Li, Shanshan; Zhang, Guoshan; Wang, Jiang; Chen, Yingyuan; Deng, Bin
2018-02-01
This paper proposes that modified two-compartment Pinsky-Rinzel (PR) neural model can be used to develop the simple form of central pattern generator (CPG). The CPG is called as 'half-central oscillator', which constructed by two inhibitory chemical coupled PR neurons with time delay. Some key properties of PR neural model related to CPG are studied and proved to meet the requirements of CPG. Using the simple CPG network, we first study the relationship between rhythmical output and key factors, including ambient noise, sensory feedback signals, morphological character of single neuron as well as the coupling delay time. We demonstrate that, appropriate intensity noise can enhance synchronization between two coupled neurons. Different output rhythm of CPG network can be entrained by sensory feedback signals. We also show that the morphology of single neuron has strong effect on the output rhythm. The phase synchronization indexes decrease with the increase of morphology parameter's difference. Through adjusting coupled delay time, we can get absolutely phase synchronization and antiphase state of CPG. Those results of simulation show the feasibility of PR neural model as a valid CPG as well as the emergent behaviors of the particularly CPG.
Valle-Dorado, María Guadalupe; Santana-Gómez, César Emmanuel; Orozco-Suárez, Sandra Adela; Rocha, Luisa
2015-05-01
Experiments were designed to evaluate changes in the histamine release, mast cell number and neuronal damage in hippocampus induced by status epilepticus. We also evaluated if sodium cromoglycate, a stabilizer of mast cells with a possible stabilizing effect on the membrane of neurons, was able to prevent the release of histamine, γ-aminobutyric acid (GABA) and glutamate during the status epilepticus. During microdialysis experiments, rats were treated with saline (SS-SE) or sodium cromoglycate (CG-SE) and 30 min later received the administration of pilocarpine to induce status epilepticus. Twenty-four hours after the status epilepticus, the brains were used to determine the neuronal damage and the number of mast cells in hippocampus. During the status epilepticus, SS-SE group showed an enhanced release of histamine (138.5%, p = 0.005), GABA (331 ± 91%, p ≤ 0.001) and glutamate (467%, p ≤ 0.001), even after diazepam administration. One day after the status epilepticus, SS-SE group demonstrated increased number of mast cells in Stratum pyramidale of CA1 (88%, p < 0.001) and neuronal damage in dentate gyrus, CA1 and CA3. In contrast to SS-SE group, rats from the CG-SE group showed increased latency to the establishment of the status epilepticus (p = 0.048), absence of wet-dog shakes, reduced histamine (but not GABA and glutamate) release, lower number of mast cells (p = 0.008) and reduced neuronal damage in hippocampus. Our data revealed that histamine, possibly from mast cells, is released in hippocampus during the status epilepticus. This effect may be involved in the subsequent neuronal damage and is diminished with sodium cromoglycate pretreatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Active avoidance requires inhibitory signaling in the rodent prelimbic prefrontal cortex
Bravo-Rivera, Christian; Rodriguez-Romaguera, Jose; Pagan-Rivera, Pablo A; Burgos-Robles, Anthony; Roman-Ortiz, Ciorana; Quirk, Gregory J
2018-01-01
Much is known about the neural circuits of conditioned fear and its relevance to understanding anxiety disorders, but less is known about other anxiety-related behaviors such as active avoidance. Using a tone-signaled, platform-mediated avoidance task, we observed that pharmacological inactivation of the prelimbic prefrontal cortex (PL) delayed avoidance. Surprisingly, optogenetic silencing of PL glutamatergic neurons did not delay avoidance. Consistent with this, inhibitory but not excitatory responses of rostral PL neurons were associated with avoidance training. To test the importance of these inhibitory responses, we optogenetically stimulated PL neurons to counteract the tone-elicited reduction in firing rate. Photoactivation of rostral (but not caudal) PL neurons at 4 Hz impaired avoidance. These findings suggest that inhibitory responses of rostral PL neurons signal the avoidability of a potential threat and underscore the importance of designing behavioral optogenetic studies based on neuronal firing responses. PMID:29851381
Tang, Li-li; Wu, Yuan-bo; Fang, Chuan-qin; Qu, Ping; Gao, Zong-liang
2016-01-15
Microglia microvesicles (MVs) has shown to have significant biological functions under normal conditions. A diversity of miRNAs is involved in neuronal development, survival, function, and plasticity, but the exact functional role of NDRG2 and secreted miR-375 in MVs in neuron damage is poorly understood. We investigated the effect of NDRG2 and secreted miR-375 in MVs shed from M1 microglia on neuron damage. Expression of Nos2, Arg-1, miR-375, syntaxin-1A, NDRG2 and Pdk 1 were evaluated using RT-PCR or western blotting. Cell viability of N2A neuron was quantified by a MTT assay. Microglia can be polarized into different functional phenotypes. Expression of NDRG2 and Nos2 were significantly increased by LPS treatment on N9 cells, whereas treatment with IL-4 dramatically suppressed the expression of NDRG2 and remarkably elevated expression of Arg-1. Besides, MVs shed from LPS-treated N9 microglia significantly inhibited cell viability of N2A neurons and expression of syntaxin-1A, and NDRG2 interference reversed the up-regulated miR-375 in LPS-treated N9 microglia and MVs shed from LPS-treated N9 cells. Furthermore, NDRG2 could modulate miR-375 expression in N9 microglia and MVs. And miR-375 inhibitor remarkably elevated Pdk1 expression in N2A neurons. Finally, miR-375 inhibitor could reverse suppression effect of NDRG2 overexpression on cell viability of N2A neurons and expression of syntaxin-1A. Our results demonstrated that NDRG2 promoted secreted miR-375 in microvesicles shed from M1 microglia, which induced neuron damage. The suppression of NDRG2 and secreted miR-375 in MVs shed from M1 microglia may be potential targets for alleviation of neuron damage. Copyright © 2015 Elsevier Inc. All rights reserved.
CB2 Receptor Agonists Protect Human Dopaminergic Neurons against Damage from HIV-1 gp120
Hu, Shuxian; Sheng, Wen S.; Rock, R. Bryan
2013-01-01
Despite the therapeutic impact of anti-retroviral therapy, HIV-1-associated neurocognitive disorder (HAND) remains a serious threat to AIDS patients, and there currently remains no specific therapy for the neurological manifestations of HIV-1. Recent work suggests that the nigrostriatal dopaminergic area is a critical brain region for the neuronal dysfunction and death seen in HAND and that human dopaminergic neurons have a particular sensitivity to gp120-induced damage, manifested as reduced function (decreased dopamine uptake), morphological changes, and reduced viability. Synthetic cannabinoids inhibit HIV-1 expression in human microglia, suppress production of inflammatory mediators in human astrocytes, and there is substantial literature demonstrating the neuroprotective properties of cannabinoids in other neuropathogenic processes. Based on these data, experiments were designed to test the hypothesis that synthetic cannabinoids will protect dopaminergic neurons against the toxic effects of the HIV-1 protein gp120. Using a human mesencephalic neuronal/glial culture model, which contains dopaminergic neurons, microglia, and astrocytes, we were able to show that the CB1/CB2 agonist WIN55,212-2 blunts gp120-induced neuronal damage as measured by dopamine transporter function, apoptosis and lipid peroxidation; these actions were mediated principally by the CB2 receptor. Adding supplementary human microglia to our cultures enhances gp120-induced damage; WIN55,212-2 is able to alleviate this enhanced damage. Additionally, WIN55,212-2 inhibits gp120-induced superoxide production by purified human microglial cells, inhibits migration of human microglia towards supernatants generated from gp120-stimulated human mesencephalic neuronal/glial cultures and reduces chemokine and cytokine production from the human mesencephalic neuronal/glial cultures. These data suggest that synthetic cannabinoids are capable of protecting human dopaminergic neurons from gp120 in a variety of ways, acting principally through the CB2 receptors and microglia. PMID:24147028
Geminiani, Alice; Casellato, Claudia; Antonietti, Alberto; D'Angelo, Egidio; Pedrocchi, Alessandra
2018-06-01
The cerebellum plays a crucial role in sensorimotor control and cerebellar disorders compromise adaptation and learning of motor responses. However, the link between alterations at network level and cerebellar dysfunction is still unclear. In principle, this understanding would benefit of the development of an artificial system embedding the salient neuronal and plastic properties of the cerebellum and operating in closed-loop. To this aim, we have exploited a realistic spiking computational model of the cerebellum to analyze the network correlates of cerebellar impairment. The model was modified to reproduce three different damages of the cerebellar cortex: (i) a loss of the main output neurons (Purkinje Cells), (ii) a lesion to the main cerebellar afferents (Mossy Fibers), and (iii) a damage to a major mechanism of synaptic plasticity (Long Term Depression). The modified network models were challenged with an Eye-Blink Classical Conditioning test, a standard learning paradigm used to evaluate cerebellar impairment, in which the outcome was compared to reference results obtained in human or animal experiments. In all cases, the model reproduced the partial and delayed conditioning typical of the pathologies, indicating that an intact cerebellar cortex functionality is required to accelerate learning by transferring acquired information to the cerebellar nuclei. Interestingly, depending on the type of lesion, the redistribution of synaptic plasticity and response timing varied greatly generating specific adaptation patterns. Thus, not only the present work extends the generalization capabilities of the cerebellar spiking model to pathological cases, but also predicts how changes at the neuronal level are distributed across the network, making it usable to infer cerebellar circuit alterations occurring in cerebellar pathologies.
2018-01-01
Abstract It is widely assumed that distributed neuronal networks are fundamental to the functioning of the brain. Consistent spike timing between neurons is thought to be one of the key principles for the formation of these networks. This can involve synchronous spiking or spiking with time delays, forming spike sequences when the order of spiking is consistent. Finding networks defined by their sequence of time-shifted spikes, denoted here as spike timing networks, is a tremendous challenge. As neurons can participate in multiple spike sequences at multiple between-spike time delays, the possible complexity of networks is prohibitively large. We present a novel approach that is capable of (1) extracting spike timing networks regardless of their sequence complexity, and (2) that describes their spiking sequences with high temporal precision. We achieve this by decomposing frequency-transformed neuronal spiking into separate networks, characterizing each network’s spike sequence by a time delay per neuron, forming a spike sequence timeline. These networks provide a detailed template for an investigation of the experimental relevance of their spike sequences. Using simulated spike timing networks, we show network extraction is robust to spiking noise, spike timing jitter, and partial occurrences of the involved spike sequences. Using rat multineuron recordings, we demonstrate the approach is capable of revealing real spike timing networks with sub-millisecond temporal precision. By uncovering spike timing networks, the prevalence, structure, and function of complex spike sequences can be investigated in greater detail, allowing us to gain a better understanding of their role in neuronal functioning. PMID:29789811
Prolonged Mitosis of Neural Progenitors Alters Cell Fate in the Developing Brain.
Pilaz, Louis-Jan; McMahon, John J; Miller, Emily E; Lennox, Ashley L; Suzuki, Aussie; Salmon, Edward; Silver, Debra L
2016-01-06
Embryonic neocortical development depends on balanced production of progenitors and neurons. Genetic mutations disrupting progenitor mitosis frequently impair neurogenesis; however, the link between altered mitosis and cell fate remains poorly understood. Here we demonstrate that prolonged mitosis of radial glial progenitors directly alters neuronal fate specification and progeny viability. Live imaging of progenitors from a neurogenesis mutant, Magoh(+/-), reveals that mitotic delay significantly correlates with preferential production of neurons instead of progenitors, as well as apoptotic progeny. Independently, two pharmacological approaches reveal a causal relationship between mitotic delay and progeny fate. As mitotic duration increases, progenitors produce substantially more apoptotic progeny or neurons. We show that apoptosis, but not differentiation, is p53 dependent, demonstrating that these are distinct outcomes of mitotic delay. Together our findings reveal that prolonged mitosis is sufficient to alter fates of radial glia progeny and define a new paradigm to understand how mitosis perturbations underlie brain size disorders such as microcephaly. Copyright © 2016 Elsevier Inc. All rights reserved.
Neuroprotective effects of tanshinone I from Danshen extract in a mouse model of hypoxia-ischemia
Lee, Jae-Chul; Park, Joon Ha; Park, Ok Kyu; Kim, In Hye; Yan, Bing Chun; Ahn, Ji Hyeon; Kwon, Seung-Hae; Choi, Jung Hoon
2013-01-01
Hypoxia-ischemia leads to serious neuronal damage in some brain regions and is a strong risk factor for stroke. The aim of this study was to investigate the neuroprotective effect of tanshinone I (TsI) derived from Danshen (Radix Salvia miltiorrhiza root extract) against neuronal damage using a mouse model of cerebral hypoxia-ischemia. Brain infarction and neuronal damage were examined using 2,3,5-triphenyltetrazolium chloride (TTC) staining, hematoxylin and eosin histochemistry, and Fluoro-Jade B histofluorescence. Pre-treatment with TsI (10 mg/kg) was associated with a significant reduction in infarct volume 1 day after hypoxia-ischemia was induced. In addition, TsI protected against hypoxia-ischemia-induced neuronal death in the ipsilateral region. Our present findings suggest that TsI has strong potential for neuroprotection against hypoxic-ischemic damage. These results may be used in research into new anti-stroke medications. PMID:24179693
Short-Term Memory Trace in Rapidly Adapting Synapses of Inferior Temporal Cortex
Sugase-Miyamoto, Yasuko; Liu, Zheng; Wiener, Matthew C.; Optican, Lance M.; Richmond, Barry J.
2008-01-01
Visual short-term memory tasks depend upon both the inferior temporal cortex (ITC) and the prefrontal cortex (PFC). Activity in some neurons persists after the first (sample) stimulus is shown. This delay-period activity has been proposed as an important mechanism for working memory. In ITC neurons, intervening (nonmatching) stimuli wipe out the delay-period activity; hence, the role of ITC in memory must depend upon a different mechanism. Here, we look for a possible mechanism by contrasting memory effects in two architectonically different parts of ITC: area TE and the perirhinal cortex. We found that a large proportion (80%) of stimulus-selective neurons in area TE of macaque ITCs exhibit a memory effect during the stimulus interval. During a sequential delayed matching-to-sample task (DMS), the noise in the neuronal response to the test image was correlated with the noise in the neuronal response to the sample image. Neurons in perirhinal cortex did not show this correlation. These results led us to hypothesize that area TE contributes to short-term memory by acting as a matched filter. When the sample image appears, each TE neuron captures a static copy of its inputs by rapidly adjusting its synaptic weights to match the strength of their individual inputs. Input signals from subsequent images are multiplied by those synaptic weights, thereby computing a measure of the correlation between the past and present inputs. The total activity in area TE is sufficient to quantify the similarity between the two images. This matched filter theory provides an explanation of what is remembered, where the trace is stored, and how comparison is done across time, all without requiring delay period activity. Simulations of a matched filter model match the experimental results, suggesting that area TE neurons store a synaptic memory trace during short-term visual memory. PMID:18464917
Impact of Carbohydrate Restriction on Healthy Adolescent Development.
Richmond, Hannah M; Duriancik, David M
2017-09-01
Carbohydrate-restricted diets are known for their impact on weight loss; however, research is still required to determine if low-carbohydrate diets are safe for adolescents. Carbohydrates directly stimulate an insulin response, and studies have recently shown that insulin and binding to respective insulin receptors (IRs) are critical in Kisspeptin (Kiss1) neuronal development. These neurons directly stimulate gonadotropin-releasing hormone, which activates the pituitary-gonadal axis during puberty. This information suggests that carbohydrate restriction may delay pubertal development in adolescents due to the impact on insulin and Kiss1 transcription. Studies have observed disturbed insulin metabolism in Type I Diabetics leading to delayed puberty, along with overfeeding stimulating early pubertal onset. Additionally, recent clinical trials bred female mice with IR deletions on Kiss1 neurons and observed delayed vaginal opening and estrus. Current animal research suggests low carbohydrate intake may delay pubertal onset, however additional research is required to determine outcome in human subjects. Copyright© of YS Medical Media ltd.
Giaroni, C; Marchet, S; Carpanese, E; Prandoni, V; Oldrini, R; Bartolini, B; Moro, E; Vigetti, D; Crema, F; Lecchini, S; Frigo, G
2013-02-01
Intestinal ischemia and reperfusion (I/R) injury leads to abnormalities in motility, namely delay of transit, caused by damage to myenteric neurons. Alterations of the nitrergic transmission may occur in these conditions. This study investigated whether an in vitro I/R injury may affect nitric oxide (NO) production from the myenteric plexus of the guinea pig ileum and which NO synthase (NOS) isoform is involved. The distribution of the neuronal (n) and inducible (i) NOS was determined by immunohistochemistry during 60 min of glucose/oxygen deprivation (in vitro ischemia) followed by 60 min of reperfusion. The protein and mRNA levels of nNOS and iNOS were investigated by Western-immunoblotting and real time RT-PCR, respectively. NO levels were quantified as nitrite/nitrate. After in vitro I/R the proportion of nNOS-expressing neurons and protein levels remained unchanged. nNOS mRNA levels increased 60 min after inducing ischemia and in the following 5 min of reperfusion. iNOS-immunoreactive neurons, protein and mRNA levels were up-regulated during the whole I/R period. A significant increase of nitrite/nitrate levels was observed in the first 5 min after inducing I/R and was significantly reduced by N(ω) -propyl-l-arginine and 1400 W, selective inhibitors of nNOS and iNOS, respectively. Our data demonstrate that both iNOS and nNOS represent sources for NO overproduction in ileal myenteric plexus during I/R, although iNOS undergoes more consistent changes suggesting a more relevant role for this isoform in the alterations occurring in myenteric neurons following I/R. © 2012 Blackwell Publishing Ltd.
Krieg, Michael; Stühmer, Jan; Cueva, Juan G; Fetter, Richard; Spilker, Kerri; Cremers, Daniel; Shen, Kang; Dunn, Alexander R; Goodman, Miriam B
2017-01-01
Our bodies are in constant motion and so are the neurons that invade each tissue. Motion-induced neuron deformation and damage are associated with several neurodegenerative conditions. Here, we investigated the question of how the neuronal cytoskeleton protects axons and dendrites from mechanical stress, exploiting mutations in UNC-70 β-spectrin, PTL-1 tau/MAP2-like and MEC-7 β-tubulin proteins in Caenorhabditis elegans. We found that mechanical stress induces supercoils and plectonemes in the sensory axons of spectrin and tau double mutants. Biophysical measurements, super-resolution, and electron microscopy, as well as numerical simulations of neurons as discrete, elastic rods provide evidence that a balance of torque, tension, and elasticity stabilizes neurons against mechanical deformation. We conclude that the spectrin and microtubule cytoskeletons work in combination to protect axons and dendrites from mechanical stress and propose that defects in β-spectrin and tau may sensitize neurons to damage. DOI: http://dx.doi.org/10.7554/eLife.20172.001 PMID:28098556
Late calcium EDTA rescues hippocampal CA1 neurons from global ischemia-induced death.
Calderone, Agata; Jover, Teresa; Mashiko, Toshihiro; Noh, Kyung-min; Tanaka, Hidenobu; Bennett, Michael V L; Zukin, R Suzanne
2004-11-03
Transient global ischemia induces a delayed rise in intracellular Zn2+, which may be mediated via glutamate receptor 2 (GluR2)-lacking AMPA receptors (AMPARs), and selective, delayed death of hippocampal CA1 neurons. The molecular mechanisms underlying Zn2+ toxicity in vivo are not well delineated. Here we show the striking finding that intraventricular injection of the high-affinity Zn2+ chelator calcium EDTA (CaEDTA) at 30 min before ischemia (early CaEDTA) or at 48-60 hr (late CaEDTA), but not 3-6 hr, after ischemia, afforded robust protection of CA1 neurons in approximately 50% (late CaEDTA) to 75% (early CaEDTA) of animals. We also show that Zn2+ acts via temporally distinct mechanisms to promote neuronal death. Early CaEDTA attenuated ischemia-induced GluR2 mRNA and protein downregulation (and, by inference, formation of Zn2+-permeable AMPARs), the delayed rise in Zn2+, and neuronal death. These findings suggest that Zn2+ acts at step(s) upstream from GluR2 gene downregulation and implicate Zn2+ in transcriptional regulation and/or GluR2 mRNA stability. Early CaEDTA also blocked mitochondrial release of cytochrome c and Smac/DIABLO (second mitochondria-derived activator of caspases/direct inhibitor of apoptosis protein-binding protein with low pI), caspase-3 activity (but not procaspase-3 cleavage), p75NTR induction, and DNA fragmentation. These findings indicate that CaEDTA preserves the functional integrity of the mitochondrial outer membrane and arrests the caspase death cascade. Late injection of CaEDTA at a time when GluR2 is downregulated and caspase is activated inhibited the delayed rise in Zn2+, p75NTR induction, DNA fragmentation, and cell death. The finding of neuroprotection by late CaEDTA administration has striking implications for intervention in the delayed neuronal death associated with global ischemia.
Lee, E-Jian; Hung, Yu-Chang; Tai, Shih-Huang; Chen, Hung-Yi; Chen, Tsung-Ying; Wu, Tian-Shung
2012-01-01
Neuroprotective efficacy of magnolol, 5,5′-dially-2,2′-dihydroxydiphenyl, was investigated in a model of stroke and cultured neurons exposed to glutamate-induced excitotoxicity. Rats were subjected to permanent middle cerebral artery occlusion (pMCAO). Magnolol or vehicle was administered intraperitoneally, at 1 hr pre-insult or 1–6 hrs post-insult. Brain infarction was measured upon sacrifice. Relative to controls, animals pre-treated with magnolol (50–200 mg/kg) had significant infarct volume reductions by 30.9–37.8% and improved neurobehavioral outcomes (P<0.05, respectively). Delayed treatment with magnolol (100 mg/kg) also protected against ischemic brain damage and improved neurobehavioral scores, even when administered up to 4 hrs post-insult (P<0.05, respectively). Additionally, magnolol (0.1 µM) effectively attenuated the rises of intracellular Ca2+ levels, [Ca2+](i), in cultured neurons exposed to glutamate. Consequently, magnolol (0.1–1 µM) significantly attenuated glutamate-induced cytotoxicity and cell swelling (P<0.05). Thus, magnolol offers neuroprotection against permanent focal cerebral ischemia with a therapeutic window of 4 hrs. This neuroprotection may be, partly, mediated by its ability to limit the glutamate-induced excitotoxicity. PMID:22808077
Vaur, Pauline; Brugg, Bernard; Mericskay, Mathias; Li, Zhenlin; Schmidt, Mark S; Vivien, Denis; Orset, Cyrille; Jacotot, Etienne; Brenner, Charles; Duplus, Eric
2017-12-01
NAD + depletion is a common phenomenon in neurodegenerative pathologies. Excitotoxicity occurs in multiple neurologic disorders and NAD + was shown to prevent neuronal degeneration in this process through mechanisms that remained to be determined. The activity of nicotinamide riboside (NR) in neuroprotective models and the recent description of extracellular conversion of NAD + to NR prompted us to probe the effects of NAD + and NR in protection against excitotoxicity. Here, we show that intracortical administration of NR but not NAD + reduces brain damage induced by NMDA injection. Using cortical neurons, we found that provision of extracellular NR delays NMDA-induced axonal degeneration (AxD) much more strongly than extracellular NAD + Moreover, the stronger effect of NR compared to NAD + depends of axonal stress since in AxD induced by pharmacological inhibition of nicotinamide salvage, both NAD + and NR prevent neuronal death and AxD in a manner that depends on internalization of NR. Taken together, our findings demonstrate that NR is a better neuroprotective agent than NAD + in excitotoxicity-induced AxD and that axonal protection involves defending intracellular NAD + homeostasis.-Vaur, P., Brugg, B., Mericskay, M., Li, Z., Schmidt, M. S., Vivien, D., Orset, C., Jacotot, E., Brenner, C., Duplus, E. Nicotinamide riboside, a form of vitamin B 3 , protects against excitotoxicity-induced axonal degeneration. © FASEB.
NASA Astrophysics Data System (ADS)
Huang, Chengdai; Cao, Jinde; Xiao, Min; Alsaedi, Ahmed; Hayat, Tasawar
2018-04-01
This paper is comprehensively concerned with the dynamics of a class of high-dimension fractional ring-structured neural networks with multiple time delays. Based on the associated characteristic equation, the sum of time delays is regarded as the bifurcation parameter, and some explicit conditions for describing delay-dependent stability and emergence of Hopf bifurcation of such networks are derived. It reveals that the stability and bifurcation heavily relies on the sum of time delays for the proposed networks, and the stability performance of such networks can be markedly improved by selecting carefully the sum of time delays. Moreover, it is further displayed that both the order and the number of neurons can extremely influence the stability and bifurcation of such networks. The obtained criteria enormously generalize and improve the existing work. Finally, numerical examples are presented to verify the efficiency of the theoretical results.
Tanaka, Akemi J.; Cho, Megan T.; Willaert, Rebecca; Retterer, Kyle; Zarate, Yuri A.; Bosanko, Katie; Stefans, Vikki; Oishi, Kimihiko; Williamson, Amy; Wilson, Golder N.; Basinger, Alice; Barbaro-Dieber, Tina; Ortega, Lucia; Sorrentino, Susanna; Gabriel, Melissa K.; Anderson, Ilse J.; Sacoto, Maria J. Guillen; Schnur, Rhonda E.; Chung, Wendy K.
2017-01-01
Using whole-exome sequencing, we identified seven unrelated individuals with global developmental delay, hypotonia, dysmorphic facial features, and an increased frequency of short stature, ataxia, and autism with de novo heterozygous frameshift, nonsense, splice, and missense variants in the Early B-cell Transcription Factor Family Member 3 (EBF3) gene. EBF3 is a member of the collier/olfactory-1/early B-cell factor (COE) family of proteins, which are required for central nervous system (CNS) development. COE proteins are highly evolutionarily conserved and regulate neuronal specification, migration, axon guidance, and dendritogenesis during development and are essential for maintaining neuronal identity in adult neurons. Haploinsufficiency of EBF3 may affect brain development and function, resulting in developmental delay, intellectual disability, and behavioral differences observed in individuals with a deleterious variant in EBF3. PMID:29162653
Layer 5 Callosal Parvalbumin-Expressing Neurons: A Distinct Functional Group of GABAergic Neurons
Zurita, Hector; Feyen, Paul L. C.; Apicella, Alfonso Junior
2018-01-01
Previous studies have shown that parvalbumin-expressing neurons (CC-Parv neurons) connect the two hemispheres of motor and sensory areas via the corpus callosum, and are a functional part of the cortical circuit. Here we test the hypothesis that layer 5 CC-Parv neurons possess anatomical and molecular mechanisms which dampen excitability and modulate the gating of interhemispheric inhibition. In order to investigate this hypothesis we use viral tracing to determine the anatomical and electrophysiological properties of layer 5 CC-Parv and parvalbumin-expressing (Parv) neurons of the mouse auditory cortex (AC). Here we show that layer 5 CC-Parv neurons had larger dendritic fields characterized by longer dendrites that branched farther from the soma, whereas layer 5 Parv neurons had smaller dendritic fields characterized by shorter dendrites that branched nearer to the soma. The layer 5 CC-Parv neurons are characterized by delayed action potential (AP) responses to threshold currents, lower firing rates, and lower instantaneous frequencies compared to the layer 5 Parv neurons. Kv1.1 containing K+ channels are the main source of the AP repolarization of the layer 5 CC-Parv and have a major role in determining both the spike delayed response, firing rate and instantaneous frequency of these neurons. PMID:29559891
Layer 5 Callosal Parvalbumin-Expressing Neurons: A Distinct Functional Group of GABAergic Neurons.
Zurita, Hector; Feyen, Paul L C; Apicella, Alfonso Junior
2018-01-01
Previous studies have shown that parvalbumin-expressing neurons (CC-Parv neurons) connect the two hemispheres of motor and sensory areas via the corpus callosum, and are a functional part of the cortical circuit. Here we test the hypothesis that layer 5 CC-Parv neurons possess anatomical and molecular mechanisms which dampen excitability and modulate the gating of interhemispheric inhibition. In order to investigate this hypothesis we use viral tracing to determine the anatomical and electrophysiological properties of layer 5 CC-Parv and parvalbumin-expressing (Parv) neurons of the mouse auditory cortex (AC). Here we show that layer 5 CC-Parv neurons had larger dendritic fields characterized by longer dendrites that branched farther from the soma, whereas layer 5 Parv neurons had smaller dendritic fields characterized by shorter dendrites that branched nearer to the soma. The layer 5 CC-Parv neurons are characterized by delayed action potential (AP) responses to threshold currents, lower firing rates, and lower instantaneous frequencies compared to the layer 5 Parv neurons. Kv1.1 containing K + channels are the main source of the AP repolarization of the layer 5 CC-Parv and have a major role in determining both the spike delayed response, firing rate and instantaneous frequency of these neurons.
Delayed reverberation through time windows as a key to cerebellar function.
Kistler, W M; Leo van Hemmen, J
1999-11-01
We present a functional model of the cerebellum comprising cerebellar cortex, inferior olive, deep cerebellar nuclei, and brain stem nuclei. The discerning feature of the model being time coding, we consistently describe the system in terms of postsynaptic potentials, synchronous action potentials, and propagation delays. We show by means of detailed single-neuron modeling that (i) Golgi cells can fulfill a gating task in that they form short and well-defined time windows within which granule cells can reach firing threshold, thus organizing neuronal activity in discrete 'time slices', and that (ii) rebound firing in cerebellar nuclei cells is a robust mechanism leading to a delayed reverberation of Purkinje cell activity through cerebellar-reticular projections back to the cerebellar cortex. Computer simulations of the whole cerebellar network consisting of several thousand neurons reveal that reverberation in conjunction with long-term plasticity at the parallel fiber-Purkinje cell synapses enables the system to learn, store, and recall spatio-temporal patterns of neuronal activity. Climbing fiber spikes act both as a synchronization and as a teacher signal, not as an error signal. They are due to intrinsic oscillatory properties of inferior olivary neurons and to delayed reverberation within the network. In addition to clear experimental predictions the present theory sheds new light on a number of experimental observation such as the synchronicity of climbing fiber spikes and provides a novel explanation of how the cerebellum solves timing tasks on a time scale of several hundreds of milliseconds.
Liu, S; Guo, Y
2000-02-01
To observe the early neuron ischemic damage in focal cerebral ischemia/reperfusion with histostaining methods of argyrophil III (AG III), Toludine blue(TB), and H&E, and to make out the 'separating line' between the areas of reversible and irreversible early ischemic damage. Forty-two male Wistar rats were randomly divided into the following groups: pseudo-surgical, blank-control, O2R0(occluded for 2 hours and reperfused for 0 hour), O2R0.5, O2R2, O2R4, O2R24. There were 6 rats in each group. Rats in experimental groups were suffered focal cerebral ischemia/reperfusion through a nylon suture method. After a special processor for tissue manage, the brain were coronal sectioned and stained with H&E, TB, and AG III. The area where dark neurons dwell in (ischemic core) were calculated with image analysis system. The success rate of ischemic model for this experiment is 90%. After being stained with argyrophil III method, normal neurons appear yellow or pale brown, which is hardly distinguished from the pale brown background. The ischemic neuron stained black, and has collapsed body and "corkscrew-like" axon or dentries, which were broken to some extent. The neuropil in the dark neurons dwelt area appears gray or pale black, which is apparently different from the pale brown neighborhood area. The distribution of dark neurons in cortex varies according to different layers, and has a character of columnar form. The dark neurons present as early as 2 hours ischemia without reperfusion with AG III method. AG III stain could selectively display early ischemic neurons, the area dwelt by dark neurons represent early ischemic core. Dark neuron is possibly the irreversibly damaged neuron. Identification of dark neurons could be helpful in the discrimination between early ischemic center and penumbra.
2017-01-01
Midbrain dopamine neurons recorded in vivo pause their firing in response to reward omission and aversive stimuli. While the initiation of pauses typically involves synaptic or modulatory input, intrinsic membrane properties may also enhance or limit hyperpolarization, raising the question of how intrinsic conductances shape pauses in dopamine neurons. Using retrograde labeling and electrophysiological techniques combined with computational modeling, we examined the intrinsic conductances that shape pauses evoked by current injections and synaptic stimulation in subpopulations of dopamine neurons grouped according to their axonal projections to the nucleus accumbens or dorsal striatum in mice. Testing across a range of conditions and pulse durations, we found that mesoaccumbal and nigrostriatal neurons differ substantially in rebound properties with mesoaccumbal neurons displaying significantly longer delays to spiking following hyperpolarization. The underlying mechanism involves an inactivating potassium (IA) current with decay time constants of up to 225 ms, and small-amplitude hyperpolarization-activated currents (IH), characteristics that were most often observed in mesoaccumbal neurons. Pharmacological block of IA completely abolished rebound delays and, importantly, shortened synaptically evoked inhibitory pauses, thereby demonstrating the involvement of A-type potassium channels in prolonging pauses evoked by GABAergic inhibition. Therefore, these results show that mesoaccumbal and nigrostriatal neurons display differential responses to hyperpolarizing inhibitory stimuli that favors a higher sensitivity to inhibition in mesoaccumbal neurons. These findings may explain, in part, observations from in vivo experiments that ventral tegmental area neurons tend to exhibit longer aversive pauses relative to SNc neurons. SIGNIFICANCE STATEMENT Our study examines rebound, postburst, and synaptically evoked inhibitory pauses in subpopulations of midbrain dopamine neurons. We show that pauses in dopamine neuron firing, evoked by either stimulation of GABAergic inputs or hyperpolarizing current injections, are enhanced by a subclass of potassium conductances that are recruited at voltages below spike threshold. Importantly, A-type potassium currents recorded in mesoaccumbal neurons displayed substantially slower inactivation kinetics, which, combined with weaker expression of hyperpolarization-activated currents, lengthened hyperpolarization-induced delays in spiking relative to nigrostriatal neurons. These results suggest that input integration differs among dopamine neurons favoring higher sensitivity to inhibition in mesoaccumbal neurons and may partially explain in vivo observations that ventral tegmental area neurons exhibit longer aversive pauses relative to SNc neurons. PMID:28219982
Glutamate as a neurotransmitter in the brain: review of physiology and pathology.
Meldrum, B S
2000-04-01
Glutamate is the principal excitatory neurotransmitter in brain. Our knowledge of the glutamatergic synapse has advanced enormously in the last 10 years, primarily through application of molecular biological techniques to the study of glutamate receptors and transporters. There are three families of ionotropic receptors with intrinsic cation permeable channels [N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate]. There are three groups of metabotropic, G protein-coupled glutamate receptors (mGluR) that modify neuronal and glial excitability through G protein subunits acting on membrane ion channels and second messengers such as diacylglycerol and cAMP. There are also two glial glutamate transporters and three neuronal transporters in the brain. Glutamate is the most abundant amino acid in the diet. There is no evidence for brain damage in humans resulting from dietary glutamate. A kainate analog, domoate, is sometimes ingested accidentally in blue mussels; this potent toxin causes limbic seizures, which can lead to hippocampal and related pathology and amnesia. Endogenous glutamate, by activating NMDA, AMPA or mGluR1 receptors, may contribute to the brain damage occurring acutely after status epilepticus, cerebral ischemia or traumatic brain injury. It may also contribute to chronic neurodegeneration in such disorders as amyotrophic lateral sclerosis and Huntington's chorea. In animal models of cerebral ischemia and traumatic brain injury, NMDA and AMPA receptor antagonists protect against acute brain damage and delayed behavioral deficits. Such compounds are undergoing testing in humans, but therapeutic efficacy has yet to be established. Other clinical conditions that may respond to drugs acting on glutamatergic transmission include epilepsy, amnesia, anxiety, hyperalgesia and psychosis.
Uto, A; Dux, E; Hossmann, K A
1994-12-01
Glutamate neurotoxicity was studied in primary neuronal cultures prepared from rat cerebral cortex and hippocampal CA1 sector. Neurons were cultivated with 5% native horse serum and then exposed to 0.1 or 1.0 mM glutamate for 5 min. Subsequently, neurons were allowed to recover for 24 hours either in the presence or in the absence of 5% native horse serum. In the absence of serum, neurons showed morphological signs of degeneration and exhibited marked loss of vitality as tested by vital staining and release of lactate dehydrogenase (LDH). In contrast, when neurons were cultivated in the presence of serum, no degenerative changes were seen and the neurons survived. Heat inactivated serum did not prevent neuronal death but addition of basic fibroblast growth factor (bFGF) or transforming growth factor-beta 1 (TGF-beta 1) had the same protective effect as native serum. Measurements of intracellular calcium activity ([Ca2+]i) with the indicator dye fura-2 revealed a sharp increase during glutamate exposure. In the absence of serum, [Ca2+]i returned to near control within 5 min but it secondarily increased after 1 hour to almost the same level as during glutamate exposure. This delayed increase was more pronounced in CA1 than in cortical neurons, it correlated linearly with the initial rise during glutamate exposure, and it was greatly reduced in the presence of serum. These observations suggest that glutamate neurotoxicity in vitro is a function of the delayed and not of the primary rise of intracellular calcium activity, and that trophic factors prevent neurotoxicity by attenuating this delayed response.
Flegel, Kerry; Grushko, Olga; Bolin, Kelsey; Griggs, Ellen; Buttitta, Laura
2016-07-01
Robust and synchronous repression of E2F-dependent gene expression is critical to the proper timing of cell cycle exit when cells transition to a postmitotic state. Previously NuA4 was suggested to act as a barrier to proliferation in Drosophila by repressing E2F-dependent gene expression. Here we show that NuA4 activity is required for proper cell cycle exit and the repression of cell cycle genes during the transition to a postmitotic state in vivo However, the delay of cell cycle exit caused by compromising NuA4 is not due to additional proliferation or effects on E2F activity. Instead NuA4 inhibition results in slowed cell cycle progression through late S and G2 phases due to aberrant activation of an intrinsic p53-independent DNA damage response. A reduction in NuA4 function ultimately produces a paradoxical cell cycle gene expression program, where certain cell cycle genes become derepressed in cells that are delayed during the G2 phase of the final cell cycle. Bypassing the G2 delay when NuA4 is inhibited leads to abnormal mitoses and results in severe tissue defects. NuA4 physically and genetically interacts with components of the E2F complex termed D: rosophila, R: bf, E: 2F A: nd M: yb/ M: ulti-vulva class B: (DREAM/MMB), and modulates a DREAM/MMB-dependent ectopic neuron phenotype in the posterior wing margin. However, this effect is also likely due to the cell cycle delay, as simply reducing Cdk1 is sufficient to generate a similar phenotype. Our work reveals that the major requirement for NuA4 in the cell cycle in vivo is to suppress an endogenous DNA damage response, which is required to coordinate proper S and G2 cell cycle progression with differentiation and cell cycle gene expression. Copyright © 2016 by the Genetics Society of America.
Flegel, Kerry; Grushko, Olga; Bolin, Kelsey; Griggs, Ellen; Buttitta, Laura
2016-01-01
Robust and synchronous repression of E2F-dependent gene expression is critical to the proper timing of cell cycle exit when cells transition to a postmitotic state. Previously NuA4 was suggested to act as a barrier to proliferation in Drosophila by repressing E2F-dependent gene expression. Here we show that NuA4 activity is required for proper cell cycle exit and the repression of cell cycle genes during the transition to a postmitotic state in vivo. However, the delay of cell cycle exit caused by compromising NuA4 is not due to additional proliferation or effects on E2F activity. Instead NuA4 inhibition results in slowed cell cycle progression through late S and G2 phases due to aberrant activation of an intrinsic p53-independent DNA damage response. A reduction in NuA4 function ultimately produces a paradoxical cell cycle gene expression program, where certain cell cycle genes become derepressed in cells that are delayed during the G2 phase of the final cell cycle. Bypassing the G2 delay when NuA4 is inhibited leads to abnormal mitoses and results in severe tissue defects. NuA4 physically and genetically interacts with components of the E2F complex termed Drosophila, Rbf, E2F and Myb/Multi-vulva class B (DREAM/MMB), and modulates a DREAM/MMB-dependent ectopic neuron phenotype in the posterior wing margin. However, this effect is also likely due to the cell cycle delay, as simply reducing Cdk1 is sufficient to generate a similar phenotype. Our work reveals that the major requirement for NuA4 in the cell cycle in vivo is to suppress an endogenous DNA damage response, which is required to coordinate proper S and G2 cell cycle progression with differentiation and cell cycle gene expression. PMID:27184390
Krashes, Michael J.; Shah, Bhavik P.; Koda, Shuichi; Lowell, Bradford B.
2013-01-01
Summary Agouti-related peptide (AgRP) neurons of the hypothalamus release a fast transmitter (GABA) in addition to neuropeptides (NPY and AgRP). This raises questions as to their respective functions. Acute activation of AgRP neurons robustly promotes food intake, while central injections of AgRP, NPY or GABA agonist results in marked escalation of food consumption with temporal variance. Given the orexigenic capability of all three of these neuroactive substances in conjunction with their coexpression in AgRP neurons, we looked to unravel their relative temporal role in driving food intake. Following acute stimulation of AgRP neurons using DREADD technology, we found that either GABA or NPY is required for rapid stimulation of feeding, and the neuropeptide AgRP, through action on MC4 receptors, is sufficient to induce feeding over a delayed, yet prolonged period. These studies help to elucidate the neurochemical mechanisms of AgRP neurons in controlling temporally distinct phases of eating. PMID:24093681
Yamauchi, H; Kagawa, S; Kishibe, Y; Takahashi, M; Higashi, T
2017-05-01
Misery perfusion may cause selective neuronal damage in atherosclerotic ICA or MCA disease. Bypass surgery can improve misery perfusion and may prevent neuronal damage. On the other hand, surgery conveys a risk for neuronal damage. The purpose of this retrospective study was to determine whether progression of cortical neuronal damage in surgically treated patients with misery perfusion is larger than that in surgically treated patients without misery perfusion or medically treated patients with misery perfusion. We evaluated the distribution of benzodiazepine receptors twice by using PET and 11 C-labeled flumazenil in 18 surgically treated patients with atherosclerotic ICA or MCA disease (9 with misery perfusion and 9 without) and no perioperative stroke before and after bypass surgery; in 8 medically treated patients with misery perfusion and no intervening ischemic event; and in 7 healthy controls. We quantified abnormal decreases in the benzodiazepine receptors of the cerebral cortex within the MCA distribution and compared changes in the benzodiazepine receptor index among the 3 groups. The change in the benzodiazepine receptor index in surgically treated patients with misery perfusion (27.5 ± 15.6) during 7 ± 5 months was significantly larger than that in surgically treated patients without misery perfusion (-5.2 ± 9.4) during 6 ± 4 months ( P < .001) and in medically treated patients with misery perfusion (3.2 ± 15.4) during 16 ± 6 months ( P < .01). Progression of cortical neuronal damage in surgically treated patients with misery perfusion and no perioperative stroke may occur and may be larger than that in medically treated patients with misery perfusion and no intervening ischemic event. © 2017 by American Journal of Neuroradiology.
McCreery, D B; Agnew, W F; Yuen, T G; Bullara, L A
1988-01-01
Arrays of platinum (faradaic) and anodized, sintered tantalum pentoxide (capacitor) electrodes were implanted bilaterally in the subdural space of the parietal cortex of the cat. Two weeks after implantation both types of electrodes were pulsed for seven hours with identical waveforms consisting of controlled-current, charge-balanced, symmetric, anodic-first pulse pairs, 400 microseconds/phase and a charge density of 80-100 microC/cm2 (microcoulombs per square cm) at 50 pps (pulses per second). One group of animals was sacrificed immediately following stimulation and a second smaller group one week after stimulation. Tissues beneath both types of pulsed electrodes were damaged, but the difference in damage for the two electrode types was not statistically significant. Tissue beneath unpulsed electrodes was normal. At the ultrastructural level, in animals killed immediately after stimulation, shrunken and hyperchromic neurons were intermixed with neurons showing early intracellular edema. Glial cells appeared essentially normal. In animals killed one week after stimulation most of the damaged neurons had recovered, but the presence of shrunken, vacuolated and degenerating neurons showed that some of the cells were damaged irreversibly. It is concluded that most of the neural damage from stimulations of the brain surface at the level used in this study derives from processes associated with passage of the stimulus current through tissue, such as neuronal hyperactivity rather than electrochemical reactions associated with current injection across the electrode-tissue interface, since such reactions occur only with the faradaic electrodes.
Angoa-Pérez, Mariana; Kreipke, Christian W; Thomas, David M; Van Shura, Kerry E; Lyman, Megan; McDonough, John H; Kuhn, Donald M
2010-12-01
Nerve agent-induced seizures cause neuronal damage in brain limbic and cortical circuits leading to persistent behavioral and cognitive deficits. Without aggressive anticholinergic and benzodiazepine therapy, seizures can be prolonged and neuronal damage progresses for extended periods of time. The objective of this study was to determine the effects of the nerve agent soman on expression of cyclooxygenase-2 (COX-2), the initial enzyme in the biosynthetic pathway of the proinflammatory prostaglandins and a factor that has been implicated in seizure initiation and propagation. Rats were exposed to a toxic dose of soman and scored behaviorally for seizure intensity. Expression of COX-2 was determined throughout brain from 4h to 7 days after exposure by immunohistochemistry and immunoblotting. Microglial activation and astrogliosis were assessed microscopically over the same time-course. Soman increased COX-2 expression in brain regions known to be damaged by nerve agents (e.g., hippocampus, amygdala, piriform cortex and thalamus). COX-2 expression was induced in neurons, and not in microglia or astrocytes, and remained elevated through 7 days. The magnitude of COX-2 induction was correlated with seizure intensity. COX-1 expression was not changed by soman. Increased expression of neuronal COX-2 by soman is a late-developing response relative to other signs of acute physiological distress caused by nerve agents. COX-2-mediated production of prostaglandins is a consequence of the seizure-induced neuronal damage, even after survival of the initial cholinergic crisis is assured. COX-2 inhibitors should be considered as adjunct therapy in nerve agent poisoning to minimize nerve agent-induced seizure activity. Published by Elsevier B.V.
Schurr, A; Rigor, B M
1993-06-18
The effects of kainate (KA) on the recovery of neuronal function in rat hippocampal slices after hypoxia or glucose deprivation (GD) were investigated and compared to those of (R,S)-alpha-amino-3-hydroxy-5-methyl-4- isoxazoleproprionate (AMPA). KA and AMPA were found to be more toxic than either N-methyl-D-aspartate (NMDA), quinolinate, or glutamate, both under normal conditions and under states of energy deprivation. Doses as low as 1 microM KA or AMPA were sufficient to significantly reduce the recovery rate of neuronal function in slices after a standardized period of hypoxia or GD. The enhancement of hypoxic neuronal damage by both agonists could be partially blocked by the antagonist kynurenate, by the NMDA competitive antagonist AP5, and by elevating [Mg2+] in or by omitting Ca2+ from the perfusion medium. The AMPA antagonist glutamic acid diethyl ester was ineffective in preventing the enhanced hypoxic neuronal damage by either KA or AMPA. The antagonist of the glycine modulatory site on the NMDA receptor, 7-chlorokynurenate, did not block the KA toxicity but was able to block the toxicity of AMPA. 2,3-Dihydroxyquinoxaline completely blocked the KA- and AMPA-enhanced hypoxic neuronal damage. The KA-enhanced, GD-induced neuronal damage was prevented by Ca2+ depletion and partially antagonized by kynurenate but not by AP5 or elevated [Mg2+]. The results of the present study indicate that the KA receptor is involved in the mechanism of neuronal damage induced by hypoxia and GD, probably allowing Ca2+ influx and subsequent intracellular Ca2+ overload.(ABSTRACT TRUNCATED AT 250 WORDS)
Light and melatonin schedule neuronal differentiation in the habenular nuclei
de Borsetti, Nancy Hernandez; Dean, Benjamin J.; Bain, Emily J.; Clanton, Joshua A.; Taylor, Robert W.; Gamse, Joshua T.
2011-01-01
The formation of the embryonic brain requires the production, migration, and differentiation of neurons to be timely and coordinated. Coupling to the photoperiod could synchronize the development of neurons in the embryo. Here, we consider the effect of light and melatonin on the differentiation of embryonic neurons in zebrafish. We examine the formation of neurons in the habenular nuclei, a paired structure found near the dorsal surface of the brain adjacent to the pineal organ. Keeping embryos in constant darkness causes a temporary accumulation of habenular precursor cells, resulting in late differentiation and a long-lasting reduction in neuronal processes (neuropil). Because constant darkness delays the accumulation of the neurendocrine hormone melatonin in embryos, we looked for a link between melatonin signaling and habenular neurogenesis. A pharmacological block of melatonin receptors delays neurogenesis and reduces neuropil similarly to constant darkness, while addition of melatonin to embryos in constant darkness restores timely neurogenesis and neuropil. We conclude that light and melatonin schedule the differentiation of neurons and the formation of neural processes in the habenular nuclei. PMID:21840306
Learning Recruits Neurons Representing Previously Established Associations in the Corvid Endbrain.
Veit, Lena; Pidpruzhnykova, Galyna; Nieder, Andreas
2017-10-01
Crows quickly learn arbitrary associations. As a neuronal correlate of this behavior, single neurons in the corvid endbrain area nidopallium caudolaterale (NCL) change their response properties during association learning. In crows performing a delayed association task that required them to map both familiar and novel sample pictures to the same two choice pictures, NCL neurons established a common, prospective code for associations. Here, we report that neuronal tuning changes during learning were not distributed equally in the recorded population of NCL neurons. Instead, such learning-related changes relied almost exclusively on neurons which were already encoding familiar associations. Only in such neurons did behavioral improvements during learning of novel associations coincide with increasing selectivity over the learning process. The size and direction of selectivity for familiar and newly learned associations were highly correlated. These increases in selectivity for novel associations occurred only late in the delay period. Moreover, NCL neurons discriminated correct from erroneous trial outcome based on feedback signals at the end of the trial, particularly in newly learned associations. Our results indicate that task-relevant changes during association learning are not distributed within the population of corvid NCL neurons but rather are restricted to a specific group of association-selective neurons. Such association neurons in the multimodal cognitive integration area NCL likely play an important role during highly flexible behavior in corvids.
Li, Ling-Yun; Xiong, Xiaorui R; Ibrahim, Leena A; Yuan, Wei; Tao, Huizhong W; Zhang, Li I
2015-07-01
Cortical inhibitory circuits play important roles in shaping sensory processing. In auditory cortex, however, functional properties of genetically identified inhibitory neurons are poorly characterized. By two-photon imaging-guided recordings, we specifically targeted 2 major types of cortical inhibitory neuron, parvalbumin (PV) and somatostatin (SOM) expressing neurons, in superficial layers of mouse auditory cortex. We found that PV cells exhibited broader tonal receptive fields with lower intensity thresholds and stronger tone-evoked spike responses compared with SOM neurons. The latter exhibited similar frequency selectivity as excitatory neurons. The broader/weaker frequency tuning of PV neurons was attributed to a broader range of synaptic inputs and stronger subthreshold responses elicited, which resulted in a higher efficiency in the conversion of input to output. In addition, onsets of both the input and spike responses of SOM neurons were significantly delayed compared with PV and excitatory cells. Our results suggest that PV and SOM neurons engage in auditory cortical circuits in different manners: while PV neurons may provide broadly tuned feedforward inhibition for a rapid control of ascending inputs to excitatory neurons, the delayed and more selective inhibition from SOM neurons may provide a specific modulation of feedback inputs on their distal dendrites. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Qin, Sisi; Yang, Canhong; Huang, Weihua; Du, Shuhua; Mai, Hantao; Xiao, Jijie; Lü, Tianming
2018-01-31
Sulforaphane (SFN), a natural dietary isothiocyanate in cruciferous vegetables such as broccoli and cabbage, has very strong anti-inflammatory activity. Activation of microglia leads to overexpression of a series of pro-inflammatory mediators, which play a vital role in neuronal damage. SFN may have neuroprotective effects in different neurodegenerative diseases related to inflammation. However, the mechanisms underlying SFN's protection of neurons against microglia-mediated neuronal damage are not fully understood. Here, we investigated how SFN attenuated microglia-mediated neuronal damage. Our results showed that SFN could not directly protect the viability of neurons following pro-inflammatory mediators, but increased the viability of BV-2 microglia and down-regulated the mRNA and protein levels of pro-inflammatory mediators including TNF-α, IL-1β, IL-6 and iNOS in a concentration-dependent manner in BV-2 cells. SFN also significantly blocked the phosphorylation of MAPKs (p38, JNK, and ERK1/2) and NF-κB p65, both by itself and with MAPK inhibitors (SB203580, SP 600125, and U0126) or an NF-κB inhibitor (PDTC). The expression of pro-inflammatory proteins was also blocked by SFN with or without inhibitors. Further, SFN indirectly increased the viability and maintained the morphology of neurons, and the protein expression of RIPK3 and MLKL was significantly suppressed by SFN in neuronal necroptosis through p38, JNK, and NF-κB p65 but not ERK1/2 signaling pathways. Together, our results demonstrate that SFN attenuates LPS-induced pro-inflammatory responses through down-regulation of MAPK/NF-κB signaling pathway in BV-2 microglia and thus indirectly suppresses microglia-mediated neuronal damage. Copyright © 2018 Elsevier Ltd. All rights reserved.
Echo state networks with filter neurons and a delay&sum readout.
Holzmann, Georg; Hauser, Helmut
2010-03-01
Echo state networks (ESNs) are a novel approach to recurrent neural network training with the advantage of a very simple and linear learning algorithm. It has been demonstrated that ESNs outperform other methods on a number of benchmark tasks. Although the approach is appealing, there are still some inherent limitations in the original formulation. Here we suggest two enhancements of this network model. First, the previously proposed idea of filters in neurons is extended to arbitrary infinite impulse response (IIR) filter neurons. This enables such networks to learn multiple attractors and signals at different timescales, which is especially important for modeling real-world time series. Second, a delay&sum readout is introduced, which adds trainable delays in the synaptic connections of output neurons and therefore vastly improves the memory capacity of echo state networks. It is shown in commonly used benchmark tasks and real-world examples, that this new structure is able to significantly outperform standard ESNs and other state-of-the-art models for nonlinear dynamical system modeling. Copyright 2009 Elsevier Ltd. All rights reserved.
Behl, Tapan; Kotwani, Anita
2017-04-01
Brain-derived neurotrophic factor (BDNF), a member of neurotrophin growth factor family, physiologically mediates induction of neurogenesis and neuronal differentiation, promotes neuronal growth and survival and maintains synaptic plasticity and neuronal interconnections. Unlike the central nervous system, its secretion in the peripheral nervous system occurs in an activity-dependent manner. BDNF improves neuronal mortality, growth, differentiation and maintenance. It also provides neuroprotection against several noxious stimuli, thereby preventing neuronal damage during pathologic conditions. However, in diabetic retinopathy (a neuromicrovascular disorder involving immense neuronal degeneration), BDNF fails to provide enough neuroprotection against oxidative stress-induced retinal neuronal apoptosis. This review describes the prime reasons for the downregulation of BDNF-mediated neuroprotective actions during hyperglycemia, which renders retinal neurons vulnerable to damaging stimuli, leading to diabetic retinopathy. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.
Tseng, Jui-Pin
2017-02-01
This investigation establishes the global cluster synchronization of complex networks with a community structure based on an iterative approach. The units comprising the network are described by differential equations, and can be non-autonomous and involve time delays. In addition, units in the different communities can be governed by different equations. The coupling configuration of the network is rather general. The coupling terms can be non-diffusive, nonlinear, asymmetric, and with heterogeneous coupling delays. Based on this approach, both delay-dependent and delay-independent criteria for global cluster synchronization are derived. We implement the present approach for a nonlinearly coupled neural network with heterogeneous coupling delays. Two numerical examples are given to show that neural networks can behave in a variety of new collective ways under the synchronization criteria. These examples also demonstrate that neural networks remain synchronized in spite of coupling delays between neurons across different communities; however, they may lose synchrony if the coupling delays between the neurons within the same community are too large, such that the synchronization criteria are violated. Copyright © 2016 Elsevier Ltd. All rights reserved.
Genomic integrity and the ageing brain.
Chow, Hei-man; Herrup, Karl
2015-11-01
DNA damage is correlated with and may drive the ageing process. Neurons in the brain are postmitotic and are excluded from many forms of DNA repair; therefore, neurons are vulnerable to various neurodegenerative diseases. The challenges facing the field are to understand how and when neuronal DNA damage accumulates, how this loss of genomic integrity might serve as a 'time keeper' of nerve cell ageing and why this process manifests itself as different diseases in different individuals.
Tanaka, Akemi J; Cho, Megan T; Willaert, Rebecca; Retterer, Kyle; Zarate, Yuri A; Bosanko, Katie; Stefans, Vikki; Oishi, Kimihiko; Williamson, Amy; Wilson, Golder N; Basinger, Alice; Barbaro-Dieber, Tina; Ortega, Lucia; Sorrentino, Susanna; Gabriel, Melissa K; Anderson, Ilse J; Sacoto, Maria J Guillen; Schnur, Rhonda E; Chung, Wendy K
2017-11-01
Using whole-exome sequencing, we identified seven unrelated individuals with global developmental delay, hypotonia, dysmorphic facial features, and an increased frequency of short stature, ataxia, and autism with de novo heterozygous frameshift, nonsense, splice, and missense variants in the Early B-cell Transcription Factor Family Member 3 ( EBF3 ) gene. EBF3 is a member of the collier/olfactory-1/early B-cell factor (COE) family of proteins, which are required for central nervous system (CNS) development. COE proteins are highly evolutionarily conserved and regulate neuronal specification, migration, axon guidance, and dendritogenesis during development and are essential for maintaining neuronal identity in adult neurons. Haploinsufficiency of EBF3 may affect brain development and function, resulting in developmental delay, intellectual disability, and behavioral differences observed in individuals with a deleterious variant in EBF3 . © 2017 Tanaka et al.; Published by Cold Spring Harbor Laboratory Press.
Mutations in KPTN Cause Macrocephaly, Neurodevelopmental Delay, and Seizures
Baple, Emma L.; Maroofian, Reza; Chioza, Barry A.; Izadi, Maryam; Cross, Harold E.; Al-Turki, Saeed; Barwick, Katy; Skrzypiec, Anna; Pawlak, Robert; Wagner, Karin; Coblentz, Roselyn; Zainy, Tala; Patton, Michael A.; Mansour, Sahar; Rich, Phillip; Qualmann, Britta; Hurles, Matt E.; Kessels, Michael M.; Crosby, Andrew H.
2014-01-01
The proper development of neuronal circuits during neuromorphogenesis and neuronal-network formation is critically dependent on a coordinated and intricate series of molecular and cellular cues and responses. Although the cortical actin cytoskeleton is known to play a key role in neuromorphogenesis, relatively little is known about the specific molecules important for this process. Using linkage analysis and whole-exome sequencing on samples from families from the Amish community of Ohio, we have demonstrated that mutations in KPTN, encoding kaptin, cause a syndrome typified by macrocephaly, neurodevelopmental delay, and seizures. Our immunofluorescence analyses in primary neuronal cell cultures showed that endogenous and GFP-tagged kaptin associates with dynamic actin cytoskeletal structures and that this association is lost upon introduction of the identified mutations. Taken together, our studies have identified kaptin alterations responsible for macrocephaly and neurodevelopmental delay and define kaptin as a molecule crucial for normal human neuromorphogenesis. PMID:24239382
Spencer, Jeremy P E; Whiteman, Matthew; Jenner, Peter; Halliwell, Barry
2002-04-01
A decrease in reduced glutathione levels in dopamine containing nigral cells in Parkinson's disease may result from the formation of cysteinyl-adducts of catecholamines, which in turn exert toxicity on nigral cells. We show that exposure of neurons (CSM 14.1) to 5-S-cysteinyl conjugates of dopamine, L-DOPA, DOPAC or DHMA causes neuronal damage, increases in oxidative DNA base modification and an elevation of caspase-3 activity in cells. Damage to neurons was apparent 12-48 h of post-exposure and there were increases in caspase-3 activity in neurons after 6 h. These changes were paralleled by large increases in pyrimidine and purine base oxidation products, such as 8-OH-guanine suggesting that 5-S-cysteinyl conjugates of catecholamines are capable of diffusing into cells and stimulating the formation of reactive oxygen species (ROS), which may then lead to a mechanism of cell damage involving caspase-3. Indeed, intracellular ROS were observed to rise sharply on exposure to the conjugates. These results suggest one mechanism by which oxidative stress may occur in the substantia nigra in Parkinson's disease.
Iqbal, Muhammad; Rehan, Muhammad; Khaliq, Abdul; Saeed-ur-Rehman; Hong, Keum-Shik
2014-01-01
This paper investigates the chaotic behavior and synchronization of two different coupled chaotic FitzHugh-Nagumo (FHN) neurons with unknown parameters under external electrical stimulation (EES). The coupled FHN neurons of different parameters admit unidirectional and bidirectional gap junctions in the medium between them. Dynamical properties, such as the increase in synchronization error as a consequence of the deviation of neuronal parameters for unlike neurons, the effect of difference in coupling strengths caused by the unidirectional gap junctions, and the impact of large time-delay due to separation of neurons, are studied in exploring the behavior of the coupled system. A novel integral-based nonlinear adaptive control scheme, to cope with the infeasibility of the recovery variable, for synchronization of two coupled delayed chaotic FHN neurons of different and unknown parameters under uncertain EES is derived. Further, to guarantee robust synchronization of different neurons against disturbances, the proposed control methodology is modified to achieve the uniformly ultimately bounded synchronization. The parametric estimation errors can be reduced by selecting suitable control parameters. The effectiveness of the proposed control scheme is illustrated via numerical simulations.
Zheng, Jialin; Ghorpade, Anuja; Niemann, Douglas; Cotter, Robin L.; Thylin, Michael R.; Epstein, Leon; Swartz, Jennifer M.; Shepard, Robin B.; Liu, Xiaojuan; Nukuna, Adeline; Gendelman, Howard E.
1999-01-01
Chemokine receptors pivotal for human immunodeficiency virus type 1 (HIV-1) infection in lymphocytes and macrophages (CCR3, CCR5, and CXCR4) are expressed on neural cells (microglia, astrocytes, and/or neurons). It is these cells which are damaged during progressive HIV-1 infection of the central nervous system. We theorize that viral coreceptors could effect neural cell damage during HIV-1-associated dementia (HAD) without simultaneously affecting viral replication. To these ends, we studied the ability of diverse viral strains to affect intracellular signaling and apoptosis of neurons, astrocytes, and monocyte-derived macrophages. Inhibition of cyclic AMP, activation of inositol 1,4,5-trisphosphate, and apoptosis were induced by diverse HIV-1 strains, principally in neurons. Virions from T-cell-tropic (T-tropic) strains (MN, IIIB, and Lai) produced the most significant alterations in signaling of neurons and astrocytes. The HIV-1 envelope glycoprotein, gp120, induced markedly less neural damage than purified virions. Macrophage-tropic (M-tropic) strains (ADA, JR-FL, Bal, MS-CSF, and DJV) produced the least neural damage, while 89.6, a dual-tropic HIV-1 strain, elicited intermediate neural cell damage. All T-tropic strain-mediated neuronal impairments were blocked by the CXCR4 antibody, 12G5. In contrast, the M-tropic strains were only partially blocked by 12G5. CXCR4-mediated neuronal apoptosis was confirmed in pure populations of rat cerebellar granule neurons and was blocked by HA1004, an inhibitor of calcium/calmodulin-dependent protein kinase II, protein kinase A, and protein kinase C. Taken together, these results suggest that progeny HIV-1 virions can influence neuronal signal transduction and apoptosis. This process occurs, in part, through CXCR4 and is independent of CD4 binding. T-tropic viruses that traffic in and out of the brain during progressive HIV-1 disease may play an important role in HAD neuropathogenesis. PMID:10482576
Kerkis, Irina; Haddad, Monica Santoro; Valverde, Cristiane Wenceslau; Glosman, Sabina
2015-12-14
Huntington's disease (HD) is an inherited disease that causes progressive nerve cell degeneration. It is triggered by a mutation in the HTT gene that strongly influences functional abilities and usually results in movement, cognitive and psychiatric disorders. HD is incurable, although treatments are available to help manage symptoms and to delay the physical, mental and behavioral declines associated with the condition. Stem cells are the essential building blocks of life, and play a crucial role in the genesis and development of all higher organisms. Ablative surgical procedures and fetal tissue cell transplantation, which are still experimental, demonstrate low rates of recovery in HD patients. Due to neuronal cell death caused by accumulation of the mutated huntingtin (mHTT) protein, it is unlikely that such brain damage can be treated solely by drug-based therapies. Stem cell-based therapies are important in order to reconstruct damaged brain areas in HD patients. These therapies have a dual role: stem cell paracrine action, stimulating local cell survival, and brain tissue regeneration through the production of new neurons from the intrinsic and likely from donor stem cells. This review summarizes current knowledge on neural stem/progenitor cell and mesenchymal stem cell transplantation, which has been carried out in several animal models of HD, discussing cell distribution, survival and differentiation after transplantation, as well as functional recovery and anatomic improvements associated with these approaches. We also discuss the usefulness of this information for future preclinical and clinical studies in HD.
Regenerative memory in time-delayed neuromorphic photonic resonators
NASA Astrophysics Data System (ADS)
Romeira, B.; Avó, R.; Figueiredo, José M. L.; Barland, S.; Javaloyes, J.
2016-01-01
We investigate a photonic regenerative memory based upon a neuromorphic oscillator with a delayed self-feedback (autaptic) connection. We disclose the existence of a unique temporal response characteristic of localized structures enabling an ideal support for bits in an optical buffer memory for storage and reshaping of data information. We link our experimental implementation, based upon a nanoscale nonlinear resonant tunneling diode driving a laser, to the paradigm of neuronal activity, the FitzHugh-Nagumo model with delayed feedback. This proof-of-concept photonic regenerative memory might constitute a building block for a new class of neuron-inspired photonic memories that can handle high bit-rate optical signals.
Sonnack, Laura; Kampe, Sebastian; Muth-Köhne, Elke; Erdinger, Lothar; Henny, Nicole; Hollert, Henner; Schäfers, Christoph; Fenske, Martina
2015-01-01
Low level metal contaminations are a prevalent issue with often unknown consequences for health and the environment. Effect-based, multifactorial test systems with zebrafish embryos to assess in particular developmental toxicity are beneficial but rarely used in this context. We therefore exposed wild-type embryos to the metals copper (CuSO4), cadmium (CdCl2) and cobalt (CoSO4) for 72 h to determine lethal as well as sublethal morphological effects. Motor neuron damage was investigated by immunofluorescence staining of primary motor neurons (PMNs) and secondary motor neurons (SMNs). In vivo stainings using the vital dye DASPEI were used to quantify neuromast development and damage. The consequences of metal toxicity were also assessed functionally, by testing fish behavior following tactile stimulation. The median effective concentration (EC50) values for morphological effects 72 h post fertilization (hpf) were 14.6 mg/L for cadmium and 0.018 mg/L for copper, whereas embryos exposed up to 45.8 mg/L cobalt showed no morphological effects. All three metals caused a concentration-dependent reduction in the numbers of normal PMNs and SMNs, and in the fluorescence intensity of neuromasts. The results for motor neuron damage and behavior were coincident for all three metals. Even the lowest metal concentrations (cadmium 2mg/L, copper 0.01 mg/L and cobalt 0.8 mg/L) resulted in neuromast damage. The results demonstrate that the neuromast cells were more sensitive to metal exposure than morphological traits or the response to tactile stimulation and motor neuron damage. Copyright © 2015 Elsevier Inc. All rights reserved.
Patel, Mainak; Joshi, Badal
2013-10-07
The widespread presence of synchronized neuronal oscillations within the brain suggests that a mechanism must exist that is capable of decoding such activity. Two realistic designs for such a decoder include: (1) a read-out neuron with a high spike threshold, or (2) a phase-delayed inhibition network motif. Despite requiring a more elaborate network architecture, phase-delayed inhibition has been observed in multiple systems, suggesting that it may provide inherent advantages over simply imposing a high spike threshold. In this work, we use a computational and mathematical approach to investigate the efficacy of the phase-delayed inhibition motif in detecting synchronized oscillations. We show that phase-delayed inhibition is capable of creating a synchrony detector with sharp synchrony filtering properties that depend critically on the time course of inputs. Additionally, we show that phase-delayed inhibition creates a synchrony filter that is far more robust than that created by a high spike threshold. Copyright © 2013 Elsevier Ltd. All rights reserved.
Network complexity and synchronous behavior--an experimental approach.
Neefs, P J; Steur, E; Nijmeijer, H
2010-06-01
We discuss synchronization in networks of Hindmarsh-Rose neurons that are interconnected via gap junctions, also known as electrical synapses. We present theoretical results for interactions without time-delay. These results are supported by experiments with a setup consisting of sixteen electronic equivalents of the Hindmarsh-Rose neuron. We show experimental results of networks where time-delay on the interaction is taken into account. We discuss in particular the influence of the network topology on the synchronization.
Autapse-induced multiple stochastic resonances in a modular neuronal network
NASA Astrophysics Data System (ADS)
Yang, XiaoLi; Yu, YanHu; Sun, ZhongKui
2017-08-01
This study investigates the nontrivial effects of autapse on stochastic resonance in a modular neuronal network subjected to bounded noise. The resonance effect of autapse is detected by imposing a self-feedback loop with autaptic strength and autaptic time delay to each constituent neuron. Numerical simulations have demonstrated that bounded noise with the proper level of amplitude can induce stochastic resonance; moreover, the noise induced resonance dynamics can be significantly shaped by the autapse. In detail, for a specific range of autaptic strength, multiple stochastic resonances can be induced when the autaptic time delays are appropriately adjusted. These appropriately adjusted delays are detected to nearly approach integer multiples of the period of the external weak signal when the autaptic strength is very near zero; otherwise, they do not match the period of the external weak signal when the autaptic strength is slightly greater than zero. Surprisingly, in both cases, the differences between arbitrary two adjacent adjusted autaptic delays are always approximately equal to the period of the weak signal. The phenomenon of autaptic delay induced multiple stochastic resonances is further confirmed to be robust against the period of the external weak signal and the intramodule probability of subnetwork. These findings could have important implications for weak signal detection and information propagation in realistic neural systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiran, Shashi; Oddi, Vineesha; Ramakrishna, Gayatri, E-mail: gayatrirama1@gmail.com
2015-02-01
Maintaining the genomic integrity is a constant challenge in proliferating cells. Amongst various proteins involved in this process, Sirtuins play a key role in DNA damage repair mechanisms in yeast as well as mammals. In the present work we report the role of one of the least explored Sirtuin viz., SIRT7, under conditions of genomic stress when treated with doxorubicin. Knockdown of SIRT7 sensitized osteosarcoma (U2OS) cells to DNA damage induced cell death by doxorubicin. SIRT7 overexpression in NIH3T3 delayed cell cycle progression by causing delay in G1 to S transition. SIRT7 overexpressing cells when treated with low dose ofmore » doxorubicin (0.25 µM) showed delayed onset of senescence, lesser accumulation of DNA damage marker γH2AX and lowered levels of growth arrest markers viz., p53 and p21 when compared to doxorubicin treated control GFP expressing cells. Resistance to DNA damage following SIRT7 overexpression was also evident by EdU incorporation studies where cellular growth arrest was significantly delayed. When treated with higher dose of doxorubicin (>1 µM), SIRT7 conferred resistance to apoptosis by attenuating stress activated kinases (SAPK viz., p38 and JNK) and p53 response thereby shifting the cellular fate towards senescence. Interestingly, relocalization of SIRT7 from nucleolus to nucleoplasm together with its co-localization with SAPK was an important feature associated with DNA damage. SIRT7 mediated resistance to doxorubicin induced apoptosis and senescence was lost when p53 level was restored by nutlin treatment. Overall, we propose SIRT7 attenuates DNA damage, SAPK activation and p53 response thereby promoting cellular survival under conditions of genomic stress. - Highlights: • Knockdown of SIRT7 sensitized cells to DNA damage induced apoptosis. • SIRT7 delayed onset of premature senescence by attenuating DNA damage response. • Overexpression of SIRT7 delayed cell cycle progression by delaying G1/S transition. • Upon DNA damage SIRT7 attenuated p38/JNK activation and also p53 response. • Overall, SIRT7 promoted cellular survival in conditions of genomic stress.« less
NASA Technical Reports Server (NTRS)
Llinas, R. R.; Alonso, A.
1992-01-01
1. The electrophysiological properties of the tuberomammillary and lateral mammillary neurons in the guinea pig mammillary body were studied using an in vitro brain slice preparation. 2. Tuberomammillary (n = 79) neurons were recorded mainly ventral to the lateral mammillary body as well as ventromedially to the fornix within the rostral part of the medial mammillary nucleus. Intracellular staining with horseradish peroxidase (n = 9) and Lucifer yellow (n = 3) revealed that these cells have several thick, long, spiny dendrites emerging from large (20-35 microns) fusiform somata. 3. Most tuberomammillary neurons (66%) fired spontaneously at a relatively low frequency (0.5-10 Hz) at the resting membrane potential. The action potentials were broad (2.3 ms) with a prominent Ca(2+)-dependent shoulder on the falling phase. Deep (17.8 mV), long-lasting spike afterhyperpolarizations were largely Ca(2+)-independent. 4. All tuberomammillary neurons recorded displayed pronounced delayed firing when the cells were activated from a potential negative to the resting level. The cells also displayed a delayed return to the baseline at the break of hyperpolarizing pulses applied from a membrane potential level close to firing threshold. Analysis of the voltage- and time dependence of this delayed rectification suggested the presence of a transient outward current similar to the A current (IA). These were not completely blocked by high concentrations of 4-aminopyridine, whereas the delayed onset of firing was always abolished when voltage-dependent Ca2+ conductances were blocked by superfusion with Cd2+. 5. Tuberomammillary neurons also displayed inward rectification in the hyperpolarizing and, primarily, depolarizing range. Block of voltage-gated Na(+)-dependent conductances with tetrodotoxin (TTX) selectively abolished inward rectification in the depolarizing range, indicating the presence of a persistent low-threshold sodium-dependent conductance (gNap). In fact, persistent TTX-sensitive, plateau potentials were always elicited following Ca2+ block with Cd2+ when K+ currents were reduced by superfusion with tetraethylammonium. 6. The gNap in tuberomammillary neurons may subserve the pacemaker current underlying the spontaneous firing of these cells. The large-amplitude spike afterhyperpolarization of these neurons sets the availability of the transient outward rectifier, which, in conjunction with the pacemaker current, establishes the rate at which membrane potential approaches spike threshold. 7. Repetitive firing elicited by direct depolarization enhanced the spike shoulder of tuberomammillary neurons. Spike trains were followed by a Ca(2+)-dependent, apamine-sensitive, slow afterhyperpolarization. 8. Lateral mammillary neurons were morphologically and electrophysiologically different from tuberomammillary neurons. All lateral mammillary neurons neurons recorded (n = 44) were silent at rest (-60 mV).(ABSTRACT TRUNCATED AT 400 WORDS).
Yang, Jenq-Lin; Lin, Yu-Ting; Chuang, Pei-Chin; Bohr, Vilhelm A; Mattson, Mark P
2014-03-01
Brain-derived neurotrophic factor (BDNF) promotes the survival and growth of neurons during brain development and mediates activity-dependent synaptic plasticity and associated learning and memory in the adult. BDNF levels are reduced in brain regions affected in Alzheimer's, Parkinson's, and Huntington's diseases, and elevation of BDNF levels can ameliorate neuronal dysfunction and degeneration in experimental models of these diseases. Because neurons accumulate oxidative lesions in their DNA during normal activity and in neurodegenerative disorders, we determined whether and how BDNF affects the ability of neurons to cope with oxidative DNA damage. We found that BDNF protects cerebral cortical neurons against oxidative DNA damage-induced death by a mechanism involving enhanced DNA repair. BDNF stimulates DNA repair by activating cyclic AMP response element-binding protein (CREB), which, in turn, induces the expression of apurinic/apyrimidinic endonuclease 1 (APE1), a key enzyme in the base excision DNA repair pathway. Suppression of either APE1 or TrkB by RNA interference abolishes the ability of BDNF to protect neurons against oxidized DNA damage-induced death. The ability of BDNF to activate CREB and upregulate APE1 expression is abolished by shRNA of TrkB as well as inhibitors of TrkB, PI3 kinase, and Akt kinase. Voluntary running wheel exercise significantly increases levels of BDNF, activates CREB, and upregulates APE1 in the cerebral cortex and hippocampus of mice, suggesting a novel mechanism whereby exercise may protect neurons from oxidative DNA damage. Our findings reveal a previously unknown ability of BDNF to enhance DNA repair by inducing the expression of the DNA repair enzyme APE1.
Kuwada, S; Yin, T C
1983-10-01
Detailed, quantitative studies were made of the interaural phase sensitivity of 197 neurons with low best frequency in the inferior colliculus (IC) of the barbiturate-anesthetized cat. We analyzed the responses of single cells to interaural delays in which tone bursts were delivered to the two ears via sealed earphones and the onset of the tone to one ear with respect to the other was varied. For most (80%) cells the discharge rate is a cyclic function of interaural delay at a period corresponding to that of the stimulating frequency. The cyclic nature of the interaural delay curve indicates that these cells are sensitive to the interaural phase difference. These cells are distributed throughout the low-frequency zone of the IC, but they are less numerous in the medial and caudal zones. Cells with a wide variety of response patterns will exhibit interaural phase sensitivities at stimulating frequencies up to 3,100 Hz, although above 2,500 Hz the number of such cells decrease markedly. Using dichotic stimuli we could study the cell's sensitivity to the onset delay and interaural phase independently. The large majority of IC cells respond only to changes in interaural phase, with no sensitivity to the onset delay. However, a small number (7%) of cells exhibit a sensitivity to the onset delay as well as to the interaural phase disparity, and most of these cells show an onset response. The effects of changing the stimulus intensity equally to both ears or of changing the interaural intensity difference on the mean interaural phase were studied. While some neurons are not affected by level changes, others exhibit systematic phase shifts for both average and interaural intensity variations, and there is a continuous distribution of sensitivities between these extremes. A few cells also showed systematic changes in the shape of the interaural delay curves as a function of interaural intensity difference, especially at very long delays. These shifts can be interpreted as a form of time-intensity trading. A few cells demonstrated orderly changes in the interaural delay curve as the repetition rate of the stimulus was varied. Some of these changes are consonant with an inhibitory effect that occurs at stimulus offset. The responses of the neurons show a strong bias for stimuli that would originate from he contralateral sound field; 77% of the responses display mean interaural phase angles that are less than 0.5 of a cycle, which are delays to the ipsilateral tone.(ABSTRACT TRUNCATED AT 400 WORDS)
Excitatory interneurons dominate sensory processing in the spinal substantia gelatinosa of rat
Santos, Sónia F A; Rebelo, Sandra; Derkach, Victor A; Safronov, Boris V
2007-01-01
Substantia gelatinosa (SG, lamina II) is a spinal cord region where most unmyelinated primary afferents terminate and the central nociceptive processing begins. It is formed by several distinct groups of interneurons whose functional properties and synaptic connections are poorly understood, in part, because recordings from synaptically coupled pairs of SG neurons are quite challenging due to a very low probability of finding connected cells. Here, we describe an efficient method for identifying synaptically coupled interneurons in rat spinal cord slices and characterizing their excitatory or inhibitory function. Using tight-seal whole-cell recordings and a cell-attached stimulation technique, we routinely tested about 1500 SG interneurons, classifying 102 of them as monosynaptically connected to neurons in lamina I–III. Surprisingly, the vast majority of SG interneurons (n = 87) were excitatory and glutamatergic, while only 15 neurons were inhibitory. According to their intrinsic firing properties, these 102 SG neurons were also classified as tonic (n = 49), adapting (n = 17) or delayed-firing neurons (n = 36). All but two tonic neurons and all adapting neurons were excitatory interneurons. Of 36 delayed-firing neurons, 23 were excitatory and 13 were inhibitory. We conclude that sensory integration in the intrinsic SG neuronal network is dominated by excitatory interneurons. Such organization of neuronal circuitries in the spinal SG can be important for nociceptive encoding. PMID:17331995
Tang, Jie; Suga, Nobuo
2009-01-01
In auditory cortex of the mustached bat, the FF (F means frequency modulation), dorsal fringe (DF) and ventral fringe (VF) areas consist of “combination-sensitive” neurons tuned to the pair of an emitted biosonar pulse and its echo with a specific delay (best delay: BD). The DF and VF areas are hierarchically at a higher level than the FF area. Focal electric stimulation of the FF area evokes “centrifugal” BD shifts of DF neurons, i.e., shifts away from the BD of the stimulated FF neurons, whereas stimulation of the DF neurons evokes “centripetal” BD shifts of FF neurons, i.e., shifts toward the BD of the stimulated DF neurons. In our current studies, we found that the feed forward projection from FF neurons evokes centrifugal BD shifts of VF neurons, that the feedback projection from VF neurons evokes centripetal BD shifts of FF neurons, that the contralateral projection from DF neurons evokes centripetal BD shifts of DF neurons, and that the centripetal BD shifts evoked by the DF and VF neurons are 2.5 times larger than the centrifugal BD shifts evoked by the FF neurons. The centrifugal BD shifts shape the selective neural representation of a specific target-distance, whereas the centripetal BD shifts expand the representation of the selected specific target-distance to focus on the processing of the target information at a specific distance. The centrifugal and centripetal BD shifts evoked by the feed forward and feedback projections promote finer analysis of a target at shorter distances. PMID:19494145
2014-01-01
Several morphometric studies have revealed smaller than normal neurons in the neocortex of autistic subjects. To test the hypothesis that abnormal neuronal growth is a marker of an autism-associated global encephalopathy, neuronal volumes were estimated in 16 brain regions, including various subcortical structures, Ammon’s horn, archicortex, cerebellum, and brainstem in 14 brains from individuals with autism 4 to 60 years of age and 14 age-matched control brains. This stereological study showed a significantly smaller volume of neuronal soma in 14 of 16 regions in the 4- to 8-year-old autistic brains than in the controls. Arbitrary classification revealed a very severe neuronal volume deficit in 14.3% of significantly altered structures, severe in 50%, moderate in 21.4%, and mild in 14.3% structures. This pattern suggests desynchronized neuronal growth in the interacting neuronal networks involved in the autistic phenotype. The comparative study of the autistic and control subject brains revealed that the number of structures with a significant volume deficit decreased from 14 in the 4- to 8-year-old autistic subjects to 4 in the 36- to 60-year-old. Neuronal volumes in 75% of the structures examined in the older adults with autism are comparable to neuronal volume in age-matched controls. This pattern suggests defects of neuronal growth in early childhood and delayed up-regulation of neuronal growth during adolescence and adulthood reducing neuron soma volume deficit in majority of examined regions. However, significant correction of neuron size but limited clinical improvements suggests that delayed correction does not restore functional deficits. PMID:24612906
Talman, William T.; Dragon, Deidre Nitschke; Jones, Susan Y.; Moore, Steven A.; Lin, Li-Hsien
2015-01-01
Lesions that remove neurons expressing neurokinin-1 (NK1) receptors from the nucleus tractus solitarii (NTS) without removing catecholaminergic neurons lead to loss of baroreflexes, labile arterial pressure, myocardial lesions and sudden death. Because destruction of NTS catecholaminergic neurons expressing tyrosine hydroxylase (TH) may also cause lability of arterial pressure and loss of baroreflexes, we sought to test the hypothesis that cardiac lesions associated with lability are not dependent on damage to neurons with NK1 receptors but would also occur when TH neurons in NTS are targeted. To rid the NTS of TH neurons we microinjected anti-dopamine β-hydroxylase conjugated to saporin (anti-DBH-SAP, 42ng/200nl) into the NTS. After injection of the toxin unilaterally, immunofluorescent staining confirmed that anti-DBH-SAP decreased the number of neurons and fibers that contain TH and DBH in the injected side of the NTS while sparing neuronal elements expressing NK1 receptors. Bilateral injections in 8 rats led to significant lability of arterial pressure. For example, on day 8 standard deviation of mean arterial pressure was 16.8 ± 2.5 mmHg when compared with a standard deviation of 7.83 ± 0.33 mmHg in 6 rats in which phosphate buffered saline (PBS) had been injected bilaterally. Two rats died suddenly at 5 and 8 days after anti-DBH-SAP injection. Seven treated animals demonstrated microscopic myocardial necrosis as reported in animals with lesions of NTS neurons expressing NK1 receptors. Thus, cardiac and cardiovascular effects of lesions directed toward catecholamine neurons of the NTS are similar to those following damage directed toward NK1 receptor containing neurons. PMID:22484855
Krashes, Michael J; Shah, Bhavik P; Koda, Shuichi; Lowell, Bradford B
2013-10-01
Agouti-related peptide (AgRP) neurons of the hypothalamus release a fast transmitter (GABA) in addition to neuropeptides (neuropeptide Y [NPY] and Agouti-related peptide [AgRP]). This raises questions as to their respective functions. The acute activation of AgRP neurons robustly promotes food intake, while central injections of AgRP, NPY, or GABA agonist results in the marked escalation of food consumption with temporal variance. Given the orexigenic capability of all three of these neuroactive substances in conjunction with their coexpression in AgRP neurons, we looked to unravel their relative temporal role in driving food intake. After the acute stimulation of AgRP neurons with DREADD technology, we found that either GABA or NPY is required for the rapid stimulation of feeding, and the neuropeptide AgRP, through action on MC4 receptors, is sufficient to induce feeding over a delayed yet prolonged period. These studies help to elucidate the neurochemical mechanisms of AgRP neurons in controlling temporally distinct phases of eating. Copyright © 2013 Elsevier Inc. All rights reserved.
Agmatine protects against cell damage induced by NMDA and glutamate in cultured hippocampal neurons
Wang, Wei-Ping; Iyo, Abiye H.; Miguel-Hidalgo, Javier; Regunathan, Soundar; Zhu, Meng-Yang
2010-01-01
Agmatine is a polyamine and has been considered as a novel neurotransmitter or neuromodulator in the central nervous system. In the present study, the neuroprotective effect of agmatine against cell damage caused by N-methyl-d-aspartate (NMDA) and glutamate was investigated in cultured rat hippocampal neurons. Lactate dehydrogenase (LDH) activity assay, β-tubulin III immunocytochemical staining and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick end-labeling (TUNEL) assay were conducted to detect cell damage. Exposure of 12-day neuronal cultures of rat hippocampus to NMDA or glutamate for 1 h caused a concentration-dependent neurotoxicity, as indicated by the significant increase in released LDH activities. Addition of 100 µM agmatine into media ablated the neurotoxicity induced by NMDA or glutamate, an effect also produced by the specific NMDA receptor antagonist dizocilpine hydrogen maleate (MK801). Arcaine, an analog of agmatine with similar structure as agmatine, fully prevented the NMDA- or glutamate-induced neuronal damage. Spermine and putrescine, the endogenous polyamine and metabolic products of agmatine without the guanidine moiety of agmatine, failed to show this effect, indicating a structural relevance for this neuroprotection. Immunocytochemical staining and TUNEL assay confirmed the findings in the LDH measurement. That is, agmatine and MK801 markedly attenuated NMDA-induced neuronal death and significantly reduced TUNEL-positive cell numbers induced by exposure of cultured hippocampal neurons to NMDA. Taken together, these results demonstrate that agmatine can protect cultured hippocampal neurons from NMDA- or glutamate-induced excitotoxicity, through a possible blockade of the NMDA receptor channels or a potential anti-apoptotic property. PMID:16546145
Gray, Elizabeth; Ginty, Mark; Kemp, Kevin; Scolding, Neil; Wilkins, Alastair
2011-04-01
Inflammation is known to cause significant neuronal damage and axonal injury in many neurological disorders. Among the range of inflammatory mediators, nitric oxide is a potent neurotoxic agent. Recent evidence has suggested that cellular peroxisomes may be important in protecting neurons from inflammatory damage. To assess the influence of peroxisomal activation on nitric oxide-mediated neurotoxicity, we investigated the effects of the peroxisomal proliferator-activated receptor (PPAR)-α agonist fenofibrate on cortical neurons exposed to a nitric oxide donor or co-cultured with activated microglia. Fenofibrate protected neurons and axons against both nitric oxide donor-induced and microglia-derived nitric oxide-induced toxicity. Moreover, cortical neurons treated with this compound showed a significant increase in gene expression of ABCD3 (the gene encoding for peroxisomal membrane protein-70), with a concomitant increase in protein levels of PPAR-α and catalase, which was associated with a functional increase in the activity of this enzyme. Collectively, these observations provide evidence that modulation of PPAR-α activity and peroxisomal function by fenofibrate attenuates nitric oxide-mediated neuronal and axonal damage, suggesting a new therapeutic approach to protect against neurodegenerative changes associated with neuroinflammation. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Yoo, Ki-Yeon; Kim, In Hye; Cho, Jeong-Hwi; Ahn, Ji Hyeon; Park, Joon Ha; Lee, Jae-Chul; Tae, Hyun-Jin; Kim, Dae Won; Kim, Jong-Dai; Hong, Seongkweon; Won, Moo-Ho; Kang, Il Jun
2016-01-01
In this study, we tried to verify the neuroprotective effect of Chrysanthemum indicum Linne (CIL) extract, which has been used as a botanical drug in East Asia, against ischemic damage and to explore the underlying mechanism involving the anti-inflammatory approach. A gerbil was given CIL extract for 7 consecutive days followed by bilateral carotid artery occlusion to make a cerebral ischemia/reperfusion model. Then, we found that CIL extracts protected pyramidal neurons in the hippocampal CA1 region (CA1) from ischemic damage using neuronal nucleus immunohistochemistry and Fluoro-Jade B histofluorescence. Accordingly, interleukin-13 immunoreactivities in the CA1 pyramidal neurons of CIL-pretreated animals were maintained or increased after cerebral ischemia/reperfusion. These findings indicate that the pre-treatment of CIL can attenuate neuronal damage/death in the brain after cerebral ischemia/reperfusion via an anti-inflammatory approach. PMID:27073380
Sidorina, V V; Gerasimova, Yu A; Kuleshova, E P; Merzhanova, G Kh
2015-01-01
During our experiments on cats was investigated the subthalamic neuron activity at different types of behavior in case of reinforcement choice depending on its value and availability. In chronic experiences the multiunit activity in subthalamic nucleus (STN) and orbitofrontal cortex (FC) has been recorded. Multiunit activity was analyzed over frequency and network properties of spikes. It was shown, that STN neurons reaction to different reinforcements and conditional stimulus at short- or long-delay reactions was represented by increasing or decreasing of frequency of single neurons. However the same STN neu- rons responded with increasing of frequency of single neuron during expectation of mix-bread-meat and decreasing--during the meat expectation. It has been revealed, that the number of STN interneuron interactions was authentic more at impulsive behavior than at self-control choice of behavior. The number of interactions between FC and STN neurons within intervals of 0-30 Ms was authentic more at display impulsive than during self-control behavior. These results suppose that FC and STN neurons participate in integration of reinforcement estimation; and distinctions in a choice of behavior are defined by the local and distributed interneuron interactions of STN and FC.
Abdulla, Susanne; Conrad, Anton; Schwemm, Karl-Peter; Stienstra, Mark P; Gorsselink, Edward L; Dengler, Reinhard; Abdulla, Walied
2014-01-01
This study describes a case of lesions of the upper motor neuronal pathway with locked-in features after lightning strike and cardiac arrest. A case-review analysis. In a 29-year-old male who was hit by a lightning strike during farming activities, cardiopulmonary resuscitation was provided first by co-workers and continued with success by the medical rescue service. After conducting advanced life support under monitoring and therapeutic hypothermia, quadriplegia with facial diplegia was recognized. A review was undertaken detailing the clinical course. MR imaging presented signs consistent with hypoxia-induced damage and diffusion-weighted MR images revealed pronounced damages along the upper motor neuronal pathway. A reactive electroencephalogram pattern, sustained eye movement and the patient communicating via eye-blinking were interpreted as locked-in features. Two weeks after admission the patient was transferred to a neurological rehabilitation centre for further professional care. Direct damage of the upper motor neuron pathway due to the current of the lightning should be considered, albeit the relative contribution of hypoxia-induced damage cannot be separated.
Effect of propofol on hypoxia re-oxygenation induced neuronal cell damage in vitro*.
Huang, Y; Zitta, K; Bein, B; Scholz, J; Steinfath, M; Albrecht, M
2013-01-01
Propofol may protect neuronal cells from hypoxia re-oxygenation injury, possibly via an antioxidant actions under hypoxic conditions. This study investigated the molecular effects of propofol on hypoxia-induced cell damage using a neuronal cell line. Cultured human IMR-32 cells were exposed to propofol (30 μm) and biochemical and molecular approaches were used to assess cellular effects. Propofol significantly reduced hypoxia-mediated increases in lactate dehydrogenase, a marker of cell damage (mean (SD) for normoxia: 0.39 (0.07) a.u.; hypoxia: 0.78 (0.21) a.u.; hypoxia+propofol: 0.44 (0.17) a.u.; normoxia vs hypoxia, p<0.05; hypoxia vs hypoxia+propofol, p<0.05), reactive oxygen species and hydrogen peroxide. Propofol also diminished the morphological signs of cell damage. Increased amounts of catalase, which degrades hydrogen peroxide, were detected under hypoxic conditions. Propofol decreased the amount of catalase produced, but increased its enzymatic activity. Propofol protects neuronal cells from hypoxia re-oxygenation injury, possibly via a combined direct antioxidant effect along with induced cellular antioxidant mechanisms. Anaesthesia © 2012 The Association of Anaesthetists of Great Britain and Ireland.
Levetiracetam mitigates doxorubicin-induced DNA and synaptic damage in neurons.
Manchon, Jose Felix Moruno; Dabaghian, Yuri; Uzor, Ndidi-Ese; Kesler, Shelli R; Wefel, Jeffrey S; Tsvetkov, Andrey S
2016-05-11
Neurotoxicity may occur in cancer patients and survivors during or after chemotherapy. Cognitive deficits associated with neurotoxicity can be subtle or disabling and frequently include disturbances in memory, attention, executive function and processing speed. Searching for pathways altered by anti-cancer treatments in cultured primary neurons, we discovered that doxorubicin, a commonly used anti-neoplastic drug, significantly decreased neuronal survival. The drug promoted the formation of DNA double-strand breaks in primary neurons and reduced synaptic and neurite density. Pretreatment of neurons with levetiracetam, an FDA-approved anti-epileptic drug, enhanced survival of chemotherapy drug-treated neurons, reduced doxorubicin-induced formation of DNA double-strand breaks, and mitigated synaptic and neurite loss. Thus, levetiracetam might be part of a valuable new approach for mitigating synaptic damage and, perhaps, for treating cognitive disturbances in cancer patients and survivors.
Levetiracetam mitigates doxorubicin-induced DNA and synaptic damage in neurons
Manchon, Jose Felix Moruno; Dabaghian, Yuri; Uzor, Ndidi-Ese; Kesler, Shelli R.; Wefel, Jeffrey S.; Tsvetkov, Andrey S.
2016-01-01
Neurotoxicity may occur in cancer patients and survivors during or after chemotherapy. Cognitive deficits associated with neurotoxicity can be subtle or disabling and frequently include disturbances in memory, attention, executive function and processing speed. Searching for pathways altered by anti-cancer treatments in cultured primary neurons, we discovered that doxorubicin, a commonly used anti-neoplastic drug, significantly decreased neuronal survival. The drug promoted the formation of DNA double-strand breaks in primary neurons and reduced synaptic and neurite density. Pretreatment of neurons with levetiracetam, an FDA-approved anti-epileptic drug, enhanced survival of chemotherapy drug-treated neurons, reduced doxorubicin-induced formation of DNA double-strand breaks, and mitigated synaptic and neurite loss. Thus, levetiracetam might be part of a valuable new approach for mitigating synaptic damage and, perhaps, for treating cognitive disturbances in cancer patients and survivors. PMID:27168474
Li, Xiang-Yun; Mei, Guang-Hai; Dong, Qiang; Zhang, Yu; Guo, Zhuang-Li; Su, Jing-Jing; Tang, Yu-Ping; Jin, Xue-Hong; Zhou, Hou-Guang; Huang, Yan-Yan
2015-01-01
Aim. In this study we examined the influence of tetrandrine (Tet) on the neuroprotective effects of glutathione (GSH) in the 6-hydroxydopamine- (6-OHDA-) lesioned rat model of Parkinson's disease (PD). Methods. Levels in the redox system, dopamine (DA) metabolism, dopaminergic neuronal survival, and apoptosis of the substantia nigra (SN) and striatum, as well as the rotational behavior of animals were examined after a 50-day administration of GSH + Tet (or GSH) and/or L-3,4-dihydroxyphenylalanine (L-dopa) to PD rats. Ethics Committee of Huashan Hospital, Fudan University approved the protocol (number SYXK2009-0082). Results. Administration of GSH or Tet alone did not show any significant effects on the factors evaluated in the PD rats. However, in the GSH + Tet group, we observed markedly decreased oxidative damage, inhibition of DA metabolism and enhanced DA synthesis, increased tyrosine hydroxylase- (TH-) immunopositive neuronal survival, and delayed apoptosis of dopaminergic neurons in the SN. Animal rotational behavior was improved in the GSH + Tet group. Additionally, coadministration of GSH + Tet appeared to offset the possible oxidative neurotoxicity induced by L-dopa. Conclusion. In this study, we demonstrated that tetrandrine allowed occurrence of the neuroprotective effect of glutathione probably due to inhibition of P-glycoprotein on 6-hydroxydopamine-lesioned rat models of Parkinson's disease, including rats undergoing long-term L-dopa treatment. PMID:26664824
Impact of adaptation currents on synchronization of coupled exponential integrate-and-fire neurons.
Ladenbauer, Josef; Augustin, Moritz; Shiau, LieJune; Obermayer, Klaus
2012-01-01
The ability of spiking neurons to synchronize their activity in a network depends on the response behavior of these neurons as quantified by the phase response curve (PRC) and on coupling properties. The PRC characterizes the effects of transient inputs on spike timing and can be measured experimentally. Here we use the adaptive exponential integrate-and-fire (aEIF) neuron model to determine how subthreshold and spike-triggered slow adaptation currents shape the PRC. Based on that, we predict how synchrony and phase locked states of coupled neurons change in presence of synaptic delays and unequal coupling strengths. We find that increased subthreshold adaptation currents cause a transition of the PRC from only phase advances to phase advances and delays in response to excitatory perturbations. Increased spike-triggered adaptation currents on the other hand predominantly skew the PRC to the right. Both adaptation induced changes of the PRC are modulated by spike frequency, being more prominent at lower frequencies. Applying phase reduction theory, we show that subthreshold adaptation stabilizes synchrony for pairs of coupled excitatory neurons, while spike-triggered adaptation causes locking with a small phase difference, as long as synaptic heterogeneities are negligible. For inhibitory pairs synchrony is stable and robust against conduction delays, and adaptation can mediate bistability of in-phase and anti-phase locking. We further demonstrate that stable synchrony and bistable in/anti-phase locking of pairs carry over to synchronization and clustering of larger networks. The effects of adaptation in aEIF neurons on PRCs and network dynamics qualitatively reflect those of biophysical adaptation currents in detailed Hodgkin-Huxley-based neurons, which underscores the utility of the aEIF model for investigating the dynamical behavior of networks. Our results suggest neuronal spike frequency adaptation as a mechanism synchronizing low frequency oscillations in local excitatory networks, but indicate that inhibition rather than excitation generates coherent rhythms at higher frequencies.
Impact of Adaptation Currents on Synchronization of Coupled Exponential Integrate-and-Fire Neurons
Ladenbauer, Josef; Augustin, Moritz; Shiau, LieJune; Obermayer, Klaus
2012-01-01
The ability of spiking neurons to synchronize their activity in a network depends on the response behavior of these neurons as quantified by the phase response curve (PRC) and on coupling properties. The PRC characterizes the effects of transient inputs on spike timing and can be measured experimentally. Here we use the adaptive exponential integrate-and-fire (aEIF) neuron model to determine how subthreshold and spike-triggered slow adaptation currents shape the PRC. Based on that, we predict how synchrony and phase locked states of coupled neurons change in presence of synaptic delays and unequal coupling strengths. We find that increased subthreshold adaptation currents cause a transition of the PRC from only phase advances to phase advances and delays in response to excitatory perturbations. Increased spike-triggered adaptation currents on the other hand predominantly skew the PRC to the right. Both adaptation induced changes of the PRC are modulated by spike frequency, being more prominent at lower frequencies. Applying phase reduction theory, we show that subthreshold adaptation stabilizes synchrony for pairs of coupled excitatory neurons, while spike-triggered adaptation causes locking with a small phase difference, as long as synaptic heterogeneities are negligible. For inhibitory pairs synchrony is stable and robust against conduction delays, and adaptation can mediate bistability of in-phase and anti-phase locking. We further demonstrate that stable synchrony and bistable in/anti-phase locking of pairs carry over to synchronization and clustering of larger networks. The effects of adaptation in aEIF neurons on PRCs and network dynamics qualitatively reflect those of biophysical adaptation currents in detailed Hodgkin-Huxley-based neurons, which underscores the utility of the aEIF model for investigating the dynamical behavior of networks. Our results suggest neuronal spike frequency adaptation as a mechanism synchronizing low frequency oscillations in local excitatory networks, but indicate that inhibition rather than excitation generates coherent rhythms at higher frequencies. PMID:22511861
Mitra, Joy; Guerrero, Erika N.; Hegde, Pavana M.; Wang, Haibo; Boldogh, Istvan; Rao, Kosagi Sharaf; Mitra, Sankar; Hegde, Muralidhar L.
2014-01-01
The primary cause(s) of neuronal death in most cases of neurodegenerative diseases, including Alzheimer’s and Parkinson’s disease, are still unknown. However, the association of certain etiological factors, e.g., oxidative stress, protein misfolding/aggregation, redox metal accumulation and various types of damage to the genome, to pathological changes in the affected brain region(s) have been consistently observed. While redox metal toxicity received major attention in the last decade, its potential as a therapeutic target is still at a cross-roads, mostly because of the lack of mechanistic understanding of metal dyshomeostasis in affected neurons. Furthermore, previous studies have established the role of metals in causing genome damage, both directly and via the generation of reactive oxygen species (ROS), but little was known about their impact on genome repair. Our recent studies demonstrated that excess levels of iron and copper observed in neurodegenerative disease-affected brain neurons could not only induce genome damage in neurons, but also affect their repair by oxidatively inhibiting NEIL DNA glycosylases, which initiate the repair of oxidized DNA bases. The inhibitory effect was reversed by a combination of metal chelators and reducing agents, which underscore the need for elucidating the molecular basis for the neuronal toxicity of metals in order to develop effective therapeutic approaches. In this review, we have focused on the oxidative genome damage repair pathway as a potential target for reducing pro-oxidant metal toxicity in neurological diseases. PMID:25036887
Guo, Lilin; Wang, Zhenzhong; Cabrerizo, Mercedes; Adjouadi, Malek
2017-05-01
This study introduces a novel learning algorithm for spiking neurons, called CCDS, which is able to learn and reproduce arbitrary spike patterns in a supervised fashion allowing the processing of spatiotemporal information encoded in the precise timing of spikes. Unlike the Remote Supervised Method (ReSuMe), synapse delays and axonal delays in CCDS are variants which are modulated together with weights during learning. The CCDS rule is both biologically plausible and computationally efficient. The properties of this learning rule are investigated extensively through experimental evaluations in terms of reliability, adaptive learning performance, generality to different neuron models, learning in the presence of noise, effects of its learning parameters and classification performance. Results presented show that the CCDS learning method achieves learning accuracy and learning speed comparable with ReSuMe, but improves classification accuracy when compared to both the Spike Pattern Association Neuron (SPAN) learning rule and the Tempotron learning rule. The merit of CCDS rule is further validated on a practical example involving the automated detection of interictal spikes in EEG records of patients with epilepsy. Results again show that with proper encoding, the CCDS rule achieves good recognition performance.
Neuronal damage and cognitive impairment associated with hypoglycemia: An integrated view.
Languren, Gabriela; Montiel, Teresa; Julio-Amilpas, Alberto; Massieu, Lourdes
2013-10-01
The aim of the present review is to offer a current perspective about the consequences of hypoglycemia and its impact on the diabetic disorder due to the increasing incidence of diabetes around the world. The main consequence of insulin treatment in type 1 diabetic patients is the occurrence of repetitive periods of hypoglycemia and even episodes of severe hypoglycemia leading to coma. In the latter, selective neuronal death is observed in brain vulnerable regions both in humans and animal models, such as the cortex and the hippocampus. Cognitive damage subsequent to hypoglycemic coma has been associated with neuronal death in the hippocampus. The mechanisms implicated in selective damage are not completely understood but many factors have been identified including excitotoxicity, oxidative stress, zinc release, PARP-1 activation and mitochondrial dysfunction. Importantly, the diabetic condition aggravates neuronal damage and cognitive failure induced by hypoglycemia. In the absence of coma prolonged and severe hypoglycemia leads to increased oxidative stress and discrete neuronal death mainly in the cerebral cortex. The mechanisms responsible for cell damage in this condition are still unknown. Recurrent moderate hypoglycemia is far more common in diabetic patients than severe hypoglycemia and currently important efforts are being done in order to elucidate the relationship between cognitive deficits and recurrent hypoglycemia in diabetics. Human studies suggest impaired performance mainly in memory and attention tasks in healthy and diabetic individuals under the hypoglycemic condition. Only scarce neuronal death has been observed under moderate repetitive hypoglycemia but studies suggest that impaired hippocampal synaptic function might be one of the causes of cognitive failure. Recent studies have also implicated altered mitochondrial function and mitochondrial oxidative stress. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pelsman, Alejandra; Hoyo-Vadillo, Carlos; Gudasheva, Tatiana A; Seredenin, Sergei B; Ostrovskaya, Rita U; Busciglio, Jorge
2003-05-01
The neuroprotective activity of a novel N-acylprolyl-containing dipeptide analog of the nootropic 2-oxo-1-pyrrolidine acetamide (Piracetam) designated as GVS-111 (DVD-111/Noopept) was tested in two in vitro models of neuronal degeneration mediated by oxidative stress: normal human cortical neurons treated with H(2)O(2), and Down's syndrome (DS) cortical neurons. Incubation of normal cortical neurons with 50 microM H(2)O(2) for 1h resulted in morphological and structural changes consistent with neuronal apoptosis and in the degeneration of more than 60% of the neurons present in the culture. GVS-111 significantly increased neuronal survival after H(2)O(2)-treatment displaying a dose-dependent neuroprotective activity from 10nM to 100 microM, and an IC(50) value of 1.21+/-0.07 microM. GVS-111 inhibited the accumulation of intracellular free radicals and lipid peroxidation damage in neurons treated with H(2)O(2) or FeSO(4), suggesting an antioxidant mechanism of action. GVS-111 exhibited significantly higher neuroprotection compared to the standard cognition enhancer Piracetam, or to the antioxidants Vitamin E, propyl gallate and N-tert-butyl-2-sulpho-phenylnitrone (s-PBN). In DS cortical cultures, chronic treatment with GVS-111 significantly reduced the appearance of degenerative changes and enhanced neuronal survival. The results suggest that the neuroprotective effect of GVS-111 against oxidative damage and its potential nootropic activity may present a valuable therapeutic combination for the treatment of mental retardation and chronic neurodegenerative disorders.
Ando, Susumu; Kobayashi, Satoru; Waki, Hatsue; Kon, Kazuo; Fukui, Fumiko; Tadenuma, Tomoko; Iwamoto, Machiko; Takeda, Yasuo; Izumiyama, Naotaka; Watanabe, Kazutada; Nakamura, Hiroaki
2002-11-01
A rat dementia model with cognitive deficits was generated by synapse-specific lesions using botulinum neurotoxin (BoNTx) type B in the entorhinal cortex. To detect cognitive deficits, different tasks were needed depending upon the age of the model animals. Impaired learning and memory with lesions were observed in adult rats using the Hebb-Williams maze, AKON-1 maze and a continuous alternation task in T-maze. Cognitive deficits in lesioned aged rats were detected by a continuous alternation and delayed non-matching-to-sample tasks in T-maze. Adenovirus-mediated BDNF gene expression enhanced neuronal plasticity, as revealed by behavioral tests and LTP formation. Chronic administration of carnitine over time pre- and post-lesions seemed to partially ameliorate the cognitive deficits caused by the synaptic lesion. The carnitine-accelerated recovery from synaptic damage was observed by electron microscopy. These results demonstrate that the BoNTx-lesioned rat can be used as a model for dementia and that cognitive deficits can be alleviated in part by BDNF gene transfer or carnitine administration. Copyright 2002 Wiley-Liss, Inc.
Inflammation and Alzheimer’s disease
Akiyama, Haruhiko; Barger, Steven; Barnum, Scott; Bradt, Bonnie; Bauer, Joachim; Cole, Greg M.; Cooper, Neil R.; Eikelenboom, Piet; Emmerling, Mark; Fiebich, Berndt L.; Finch, Caleb E.; Frautschy, Sally; Griffin, W.S.T.; Hampel, Harald; Hull, Michael; Landreth, Gary; Lue, Lih–Fen; Mrak, Robert; Mackenzie, Ian R.; McGeer, Patrick L.; O’Banion, M. Kerry; Pachter, Joel; Pasinetti, Guilio; Plata–Salaman, Carlos; Rogers, Joseph; Rydel, Russell; Shen, Yong; Streit, Wolfgang; Strohmeyer, Ronald; Tooyoma, Ikuo; Van Muiswinkel, Freek L.; Veerhuis, Robert; Walker, Douglas; Webster, Scott; Wegrzyniak, Beatrice; Wenk, Gary; Wyss–Coray, Tony
2013-01-01
Inflammation clearly occurs in pathologically vulnerable regions of the Alzheimer’s disease (AD) brain, and it does so with the full complexity of local peripheral inflammatory responses. In the periphery, degenerating tissue and the deposition of highly insoluble abnormal materials are classical stimulants of inflammation. Likewise, in the AD brain damaged neurons and neurites and highly insoluble amyloid β peptide deposits and neurofibrillary tangles provide obvious stimuli for inflammation. Because these stimuli are discrete, microlocalized, and present from early preclinical to terminal stages of AD, local upregulation of complement, cytokines, acute phase reactants, and other inflammatory mediators is also discrete, microlocalized, and chronic. Cumulated over many years, direct and bystander damage from AD inflammatory mechanisms is likely to significantly exacerbate the very pathogenic processes that gave rise to it. Thus, animal models and clinical studies, although still in their infancy, strongly suggest that AD inflammation significantly contributes to AD pathogenesis. By better understanding AD inflammatory and immunoregulatory processes, it should be possible to develop anti-inflammatory approaches that may not cure AD but will likely help slow the progression or delay the onset of this devastating disorder. PMID:10858586
NASA Astrophysics Data System (ADS)
Vidybida, Alexander; Shchur, Olha
We consider a class of spiking neuronal models, defined by a set of conditions typical for basic threshold-type models, such as the leaky integrate-and-fire or the binding neuron model and also for some artificial neurons. A neuron is fed with a Poisson process. Each output impulse is applied to the neuron itself after a finite delay Δ. This impulse acts as being delivered through a fast Cl-type inhibitory synapse. We derive a general relation which allows calculating exactly the probability density function (pdf) p(t) of output interspike intervals of a neuron with feedback based on known pdf p0(t) for the same neuron without feedback and on the properties of the feedback line (the Δ value). Similar relations between corresponding moments are derived. Furthermore, we prove that the initial segment of pdf p0(t) for a neuron with a fixed threshold level is the same for any neuron satisfying the imposed conditions and is completely determined by the input stream. For the Poisson input stream, we calculate that initial segment exactly and, based on it, obtain exactly the initial segment of pdf p(t) for a neuron with feedback. That is the initial segment of p(t) is model-independent as well. The obtained expressions are checked by means of Monte Carlo simulation. The course of p(t) has a pronounced peculiarity, which makes it impossible to approximate p(t) by Poisson or another simple stochastic process.
Poittevin, Marine; Bonnin, Philippe; Pimpie, Cynthia; Rivière, Léa; Sebrié, Catherine; Dohan, Anthony; Pocard, Marc; Charriaut-Marlangue, Christiane; Kubis, Nathalie
2015-03-01
Diabetes increases the risk of stroke by three, increases related mortality, and delays recovery. We aimed to characterize functional and structural alterations in cerebral microvasculature before and after experimental cerebral ischemia in a mouse model of type 1 diabetes. We hypothesized that preexisting brain microvascular disease in patients with diabetes might partly explain increased stroke severity and impact on outcome. Diabetes was induced in 4-week-old C57Bl/6J mice by intraperitoneal injections of streptozotocin (60 mg/kg). After 8 weeks of diabetes, the vasoreactivity of the neurovascular network to CO2 was abolished and was not reversed by nitric oxide (NO) donor administration; endothelial NO synthase (eNOS) and neuronal NO synthase (nNOS) mRNA, phospho-eNOS protein, nNOS, and phospho-nNOS protein were significantly decreased; angiogenic and vessel maturation factors (vascular endothelial growth factor a [VEGFa], angiopoietin 1 (Ang1), Ang2, transforming growth factor-β [TGF-β], and platelet-derived growth factor-β [PDGF-β]) and blood-brain barrier (BBB) occludin and zona occludens 1 (ZO-1) expression were significantly decreased; and microvessel density was increased without changes in ultrastructural imaging. After permanent focal cerebral ischemia induction, infarct volume and neurological deficit were significantly increased at D1 and D7, and neuronal death (TUNEL+ / NeuN+ cells) and BBB permeability (extravasation of Evans blue) at D1. At D7, CD31+ / Ki67+ double-immunolabeled cells and VEGFa and Ang2 expression were significantly increased, indicating delayed angiogenesis. We show that cerebral microangiopathy thus partly explains stroke severity in diabetes. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Rich-Club Organization in Effective Connectivity among Cortical Neurons.
Nigam, Sunny; Shimono, Masanori; Ito, Shinya; Yeh, Fang-Chin; Timme, Nicholas; Myroshnychenko, Maxym; Lapish, Christopher C; Tosi, Zachary; Hottowy, Pawel; Smith, Wesley C; Masmanidis, Sotiris C; Litke, Alan M; Sporns, Olaf; Beggs, John M
2016-01-20
The performance of complex networks, like the brain, depends on how effectively their elements communicate. Despite the importance of communication, it is virtually unknown how information is transferred in local cortical networks, consisting of hundreds of closely spaced neurons. To address this, it is important to record simultaneously from hundreds of neurons at a spacing that matches typical axonal connection distances, and at a temporal resolution that matches synaptic delays. We used a 512-electrode array (60 μm spacing) to record spontaneous activity at 20 kHz from up to 500 neurons simultaneously in slice cultures of mouse somatosensory cortex for 1 h at a time. We applied a previously validated version of transfer entropy to quantify information transfer. Similar to in vivo reports, we found an approximately lognormal distribution of firing rates. Pairwise information transfer strengths also were nearly lognormally distributed, similar to reports of synaptic strengths. Some neurons transferred and received much more information than others, which is consistent with previous predictions. Neurons with the highest outgoing and incoming information transfer were more strongly connected to each other than chance, thus forming a "rich club." We found similar results in networks recorded in vivo from rodent cortex, suggesting the generality of these findings. A rich-club structure has been found previously in large-scale human brain networks and is thought to facilitate communication between cortical regions. The discovery of a small, but information-rich, subset of neurons within cortical regions suggests that this population will play a vital role in communication, learning, and memory. Significance statement: Many studies have focused on communication networks between cortical brain regions. In contrast, very few studies have examined communication networks within a cortical region. This is the first study to combine such a large number of neurons (several hundred at a time) with such high temporal resolution (so we can know the direction of communication between neurons) for mapping networks within cortex. We found that information was not transferred equally through all neurons. Instead, ∼70% of the information passed through only 20% of the neurons. Network models suggest that this highly concentrated pattern of information transfer would be both efficient and robust to damage. Therefore, this work may help in understanding how the cortex processes information and responds to neurodegenerative diseases. Copyright © 2016 Nigam et al.
Rich-Club Organization in Effective Connectivity among Cortical Neurons
Shimono, Masanori; Ito, Shinya; Yeh, Fang-Chin; Timme, Nicholas; Myroshnychenko, Maxym; Lapish, Christopher C.; Tosi, Zachary; Hottowy, Pawel; Smith, Wesley C.; Masmanidis, Sotiris C.; Litke, Alan M.; Sporns, Olaf; Beggs, John M.
2016-01-01
The performance of complex networks, like the brain, depends on how effectively their elements communicate. Despite the importance of communication, it is virtually unknown how information is transferred in local cortical networks, consisting of hundreds of closely spaced neurons. To address this, it is important to record simultaneously from hundreds of neurons at a spacing that matches typical axonal connection distances, and at a temporal resolution that matches synaptic delays. We used a 512-electrode array (60 μm spacing) to record spontaneous activity at 20 kHz from up to 500 neurons simultaneously in slice cultures of mouse somatosensory cortex for 1 h at a time. We applied a previously validated version of transfer entropy to quantify information transfer. Similar to in vivo reports, we found an approximately lognormal distribution of firing rates. Pairwise information transfer strengths also were nearly lognormally distributed, similar to reports of synaptic strengths. Some neurons transferred and received much more information than others, which is consistent with previous predictions. Neurons with the highest outgoing and incoming information transfer were more strongly connected to each other than chance, thus forming a “rich club.” We found similar results in networks recorded in vivo from rodent cortex, suggesting the generality of these findings. A rich-club structure has been found previously in large-scale human brain networks and is thought to facilitate communication between cortical regions. The discovery of a small, but information-rich, subset of neurons within cortical regions suggests that this population will play a vital role in communication, learning, and memory. SIGNIFICANCE STATEMENT Many studies have focused on communication networks between cortical brain regions. In contrast, very few studies have examined communication networks within a cortical region. This is the first study to combine such a large number of neurons (several hundred at a time) with such high temporal resolution (so we can know the direction of communication between neurons) for mapping networks within cortex. We found that information was not transferred equally through all neurons. Instead, ∼70% of the information passed through only 20% of the neurons. Network models suggest that this highly concentrated pattern of information transfer would be both efficient and robust to damage. Therefore, this work may help in understanding how the cortex processes information and responds to neurodegenerative diseases. PMID:26791200
Neuronal correlate of pictorial short-term memory in the primate temporal cortexYasushi Miyashita
NASA Astrophysics Data System (ADS)
Miyashita, Yasushi; Chang, Han Soo
1988-01-01
It has been proposed that visual-memory traces are located in the temporal lobes of the cerebral cortex, as electric stimulation of this area in humans results in recall of imagery1. Lesions in this area also affect recognition of an object after a delay in both humans2,3 and monkeys4-7 indicating a role in short-term memory of images8. Single-unit recordings from the temporal cortex have shown that some neurons continue to fire when one of two or four colours are to be remembered temporarily9. But neuronal responses selective to specific complex objects10-18 , including hands10,13 and faces13,16,17, cease soon after the offset of stimulus presentation10-18. These results led to the question of whether any of these neurons could serve the memory of complex objects. We report here a group of shape-selective neurons in an anterior ventral part of the temporal cortex of monkeys that exhibited sustained activity during the delay period of a visual short-term memory task. The activity was highly selective for the pictorial information to be memorized and was independent of the physical attributes such as size, orientation, colour or position of the object. These observations show that the delay activity represents the short-term memory of the categorized percept of a picture.
Rattay, Frank; Potrusil, Thomas; Wenger, Cornelia; Wise, Andrew K.; Glueckert, Rudolf; Schrott-Fischer, Anneliese
2013-01-01
Background Our knowledge about the neural code in the auditory nerve is based to a large extent on experiments on cats. Several anatomical differences between auditory neurons in human and cat are expected to lead to functional differences in speed and safety of spike conduction. Methodology/Principal Findings Confocal microscopy was used to systematically evaluate peripheral and central process diameters, commonness of myelination and morphology of spiral ganglion neurons (SGNs) along the cochlea of three human and three cats. Based on these morphometric data, model analysis reveales that spike conduction in SGNs is characterized by four phases: a postsynaptic delay, constant velocity in the peripheral process, a presomatic delay and constant velocity in the central process. The majority of SGNs are type I, connecting the inner hair cells with the brainstem. In contrast to those of humans, type I neurons of the cat are entirely myelinated. Biophysical model evaluation showed delayed and weak spikes in the human soma region as a consequence of a lack of myelin. The simulated spike conduction times are in accordance with normal interwave latencies from auditory brainstem response recordings from man and cat. Simulated 400 pA postsynaptic currents from inner hair cell ribbon synapses were 15 times above threshold. They enforced quick and synchronous spiking. Both of these properties were not present in type II cells as they receive fewer and much weaker (∼26 pA) synaptic stimuli. Conclusions/Significance Wasting synaptic energy boosts spike initiation, which guarantees the rapid transmission of temporal fine structure of auditory signals. However, a lack of myelin in the soma regions of human type I neurons causes a large delay in spike conduction in comparison with cat neurons. The absent myelin, in combination with a longer peripheral process, causes quantitative differences of temporal parameters in the electrically stimulated human cochlea compared to the cat cochlea. PMID:24260179
Hirayama, Koki; Oshima, Hideki; Yamashita, Akiko; Sakatani, Kaoru; Yoshino, Atsuo; Katayama, Yoichi
2016-09-01
We examined the effects of silymarin, which was extracted from Silybum marianum, on delayed neuronal cell death in the rat hippocampus. Rats were divided into four groups: sham-operated rats (sham group), rats which underwent ischemic surgery (control group), rats which were treated with silymarin before and after ischemic surgery (pre group), and rats which were treated with silymarin after ischemic surgery only (post group). We performed the ischemic surgery by occluding the bilateral carotid arteries for 20min and sacrificed the rats one week after the surgery. Silymarin was administered orally at 200mg/kg body weight. Smaller numbers of delayed cell deaths were noted in the rat CA1 region of the pre- and post-groups, and no significant difference was observed between these groups. There were few apoptotic cell deaths in all groups. Compared to the control group, significantly fewer cell deaths by autophagy were found in the pre- and post-group. We concluded that silymarin exerts a preservation effect on delayed neuronal cell death in the rat hippocampus and this effect has nothing to do with the timing of administering of silymarin. Copyright © 2016 Elsevier B.V. All rights reserved.
Lv, Yanni; Qian, Yisong; Ou-Yang, Aijun; Fu, Longsheng
2016-11-01
Microglia activation initiates a neurological deficit cascade that contributes to substantial neuronal damage and impairment following ischemia stroke. Toll-like receptor 4 (TLR4) has been demonstrated to play a critical role in this cascade. In the current study, we tested the hypothesis that hydroxysafflor yellow A (HSYA), an active ingredient extracted from Flos Carthami tinctorii, alleviated inflammatory damage, and mediated neurotrophic effects in neurons by inducing the TLR4 pathway in microglia. A non-contact Transwell co-culture system comprised microglia and neurons was treated with HSYA followed by a 1 mg/mL lipopolysaccharide (LPS) stimulation. The microglia were activated prior to neuronal apoptosis, which were induced by increasing TLR4 expression in the activated microglia. However, HSYA suppressed TLR4 expression in the activated microglia, resulting in less neuronal damage at the early stage of LPS stimulation. Western blot analysis and immunofluorescence indicated that dose-dependently HSYA down-regulated TLR4-induced downstream effectors myeloid differentiation factor 88 (MyD88), nuclear factor kappa b (NF-κB), and the mitogen-activated protein kinases (MAPK)-regulated proteins c-Jun NH2-terminal protein kinase (JNK), protein kinase (ERK) 1/2 (ERK1/2), p38 MAPK (p38), as well as the LPS-induced inflammatory cytokine release. However, HSYA up-regulated brain-derived neurotrophic factor (BDNF) expression. Our data suggest that HSYA could exert neurotrophic and anti-inflammatory functions in response to LPS stimulation by inhibiting TLR4 pathway-mediated signaling.
Global brain ischemia and reperfusion.
White, B C; Grossman, L I; O'Neil, B J; DeGracia, D J; Neumar, R W; Rafols, J A; Krause, G S
1996-05-01
Brain damage accompanying cardiac arrest and resuscitation is frequent and devastating. Neurons in the hippocampus CA1 and CA4 zones and cortical layers III and V are selectively vulnerable to death after injury by ischemia and reperfusion. Ultrastructural evidence indicates that most of the structural damage is associated with reperfusion, during which the vulnerable neurons develop disaggregation of polyribosomes, peroxidative damage to unsaturated fatty acids in the plasma membrane, and prominent alterations in the structure of the Golgi apparatus that is responsible for membrane assembly. Reperfusion is also associated with vulnerable neurons with prominent production of messenger RNAs for stress proteins and for the proteins of the activator protein-1 complex, but these vulnerable neurons fail to efficiently translate these messages into the proteins. The inhibition of protein synthesis during reperfusion involves alteration of translation initiation factors, specifically serine phosphorylation of the alpha-subunit of eukaryotic initiation factor-2 (elF-2 alpha). Growth factors--in particular, insulin--have the potential to reverse phosphorylation of elF-2 alpha, promote effective translation of the mRNA transcripts generated in response to ischemia and reperfusion, enhance neuronal defenses against radicals, and stimulate lipid synthesis and membrane repair. There is now substantial evidence that the insulin-class growth factors have neuron-sparing effects against damage by radicals and ischemia and reperfusion. This new knowledge may provide a fundamental basis for a rational approach to "cerebral resuscitation" that will allow substantial amelioration of the often dismal neurologic outcome now associated with resuscitation from cardiac arrest.
Wang, Min; Yang, Yang; Wang, Ching-Jung; Gamo, Nao J.; Jin, Lu E.; Mazer, James A.; Morrison, John H.; Wang, Xiao-Jing; Arnsten, Amy F.T.
2013-01-01
Summary Neurons in the primate dorsolateral prefrontal cortex (dlPFC) generate persistent firing in the absence of sensory stimulation, the foundation of mental representation. Persistent firing arises from recurrent excitation within a network of pyramidal Delay cells. Here, we examined glutamate receptor influences underlying persistent firing in primate dlPFC during a spatial working memory task. Computational models predicted dependence on NMDA receptor (NMDAR) NR2B stimulation, and Delay cell persistent firing was abolished by local NR2B NMDAR blockade or by systemic ketamine administration. AMPA receptors (AMPAR) contributed background depolarization to sustain network firing. In contrast, many Response cells -which likely predominate in rodent PFC- were sensitive to AMPAR blockade and increased firing following systemic ketamine, indicating that models of ketamine actions should be refined to reflect neuronal heterogeneity. The reliance of Delay cells on NMDAR may explain why insults to NMDARs in schizophrenia or Alzheimer’s Disease profoundly impair cognition. PMID:23439125
Gong, Yubing; Wang, Baoying; Xie, Huijuan
2016-12-01
In this paper, we numerically study the effect of spike-timing-dependent plasticity (STDP) on synchronization transitions induced by autaptic activity in adaptive Newman-Watts Hodgkin-Huxley neuron networks. It is found that synchronization transitions induced by autaptic delay vary with the adjusting rate A p of STDP and become strongest at a certain A p value, and the A p value increases when network randomness or network size increases. It is also found that the synchronization transitions induced by autaptic delay become strongest at a certain network randomness and network size, and the values increase and related synchronization transitions are enhanced when A p increases. These results show that there is optimal STDP that can enhance the synchronization transitions induced by autaptic delay in the adaptive neuronal networks. These findings provide a new insight into the roles of STDP and autapses for the information transmission in neural systems. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Mutations in KPTN cause macrocephaly, neurodevelopmental delay, and seizures.
Baple, Emma L; Maroofian, Reza; Chioza, Barry A; Izadi, Maryam; Cross, Harold E; Al-Turki, Saeed; Barwick, Katy; Skrzypiec, Anna; Pawlak, Robert; Wagner, Karin; Coblentz, Roselyn; Zainy, Tala; Patton, Michael A; Mansour, Sahar; Rich, Phillip; Qualmann, Britta; Hurles, Matt E; Kessels, Michael M; Crosby, Andrew H
2014-01-02
The proper development of neuronal circuits during neuromorphogenesis and neuronal-network formation is critically dependent on a coordinated and intricate series of molecular and cellular cues and responses. Although the cortical actin cytoskeleton is known to play a key role in neuromorphogenesis, relatively little is known about the specific molecules important for this process. Using linkage analysis and whole-exome sequencing on samples from families from the Amish community of Ohio, we have demonstrated that mutations in KPTN, encoding kaptin, cause a syndrome typified by macrocephaly, neurodevelopmental delay, and seizures. Our immunofluorescence analyses in primary neuronal cell cultures showed that endogenous and GFP-tagged kaptin associates with dynamic actin cytoskeletal structures and that this association is lost upon introduction of the identified mutations. Taken together, our studies have identified kaptin alterations responsible for macrocephaly and neurodevelopmental delay and define kaptin as a molecule crucial for normal human neuromorphogenesis. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Howell, Gareth R; Soto, Ileana; Zhu, Xianjun; Ryan, Margaret; Macalinao, Danilo G; Sousa, Gregory L; Caddle, Lura B; MacNicoll, Katharine H; Barbay, Jessica M; Porciatti, Vittorio; Anderson, Michael G; Smith, Richard S; Clark, Abbot F; Libby, Richard T; John, Simon W M
2012-04-01
Glaucoma is a common ocular disorder that is a leading cause of blindness worldwide. It is characterized by the dysfunction and loss of retinal ganglion cells (RGCs). Although many studies have implicated various molecules in glaucoma, no mechanism has been shown to be responsible for the earliest detectable damage to RGCs and their axons in the optic nerve. Here, we show that the leukocyte transendothelial migration pathway is activated in the optic nerve head at the earliest stages of disease in an inherited mouse model of glaucoma. This resulted in proinflammatory monocytes entering the optic nerve prior to detectable neuronal damage. A 1-time x-ray treatment prevented monocyte entry and subsequent glaucomatous damage. A single x-ray treatment of an individual eye in young mice provided that eye with long-term protection from glaucoma but had no effect on the contralateral eye. Localized radiation treatment prevented detectable neuronal damage and dysfunction in treated eyes, despite the continued presence of other glaucomatous stresses and signaling pathways. Injection of endothelin-2, a damaging mediator produced by the monocytes, into irradiated eyes, combined with the other glaucomatous stresses, restored neural damage with a topography characteristic of glaucoma. Together, these data support a model of glaucomatous damage involving monocyte entry into the optic nerve.
Wang, Haibo; Dharmalingam, Prakash; Vasquez, Velmarini; Mitra, Joy; Boldogh, Istvan; Rao, K. S.; Kent, Thomas A.; Mitra, Sankar; Hegde, Muralidhar L.
2016-01-01
A foremost challenge for the neurons, which are among the most oxygenated cells, is the genome damage caused by chronic exposure to endogenous reactive oxygen species (ROS), formed as cellular respiratory byproducts. Strong metabolic activity associated with high transcriptional levels in these long lived post-mitotic cells render them vulnerable to oxidative genome damage, including DNA strand breaks and mutagenic base lesions. There is growing evidence for the accumulation of unrepaired DNA lesions in the central nervous system (CNS) during accelerated ageing and progressive neurodegeneration. Several germ line mutations in DNA repair or DNA damage response (DDR) signaling genes are uniquely manifested in the phenotype of neuronal dysfunction and are etiologically linked to many neurodegenerative disorders. Studies in our lab and elsewhere revealed that pro-oxidant metals, ROS and misfolded amyloidogenic proteins not only contribute to genome damage in CNS, but also impede their repair/DDR signaling leading to persistent damage accumulation, a common feature in sporadic neurodegeneration. Here, we have reviewed recent advances in our understanding of the etiological implications of DNA damage vs. repair imbalance, abnormal DDR signaling in triggering neurodegeneration and potential of DDR as a target for the amelioration of neurodegenerative diseases. PMID:27663141
Sun, Yongan; Yang, Yang; Galvin, Veronica C; Yang, Shengtao; Arnsten, Amy F; Wang, Min
2017-05-24
The primate dorsolateral prefrontal cortex (dlPFC) subserves top-down regulation of attention and working memory abilities. Depletion studies show that the neuromodulator acetylcholine (ACh) is essential to dlPFC working memory functions, but the receptor and cellular bases for cholinergic actions are just beginning to be understood. The current study found that nicotinic receptors comprised of α4 and β2 subunits (α4β2-nAChR) enhance the task-related firing of delay and fixation cells in the dlPFC of monkeys performing a working memory task. Iontophoresis of α4β2-nAChR agonists increased the neuronal firing and enhanced the spatial tuning of delay cells, neurons that represent visual space in the absence of sensory stimulation. These enhancing effects were reversed by coapplication of a α4β2-nAChR antagonist, consistent with actions at α4β2-nAChR. Delay cell firing was reduced when distractors were presented during the delay epoch, whereas stimulation of α4β2-nAChR protected delay cells from these deleterious effects. Iontophoresis of α4β2-nAChR agonists also enhanced the firing of fixation cells, neurons that increase firing when the monkey initiates a trial, and maintain firing until the trial is completed. These neurons are thought to contribute to sustained attention and top-down motor control and have never before been the subject of pharmacological inquiry. These findings begin to build a picture of the cellular actions underlying the beneficial effects of ACh on attention and working memory. The data may also help to explain why genetic insults to α4 subunits are associated with working memory and attentional deficits and why α4β2-nAChR agonists may have therapeutic potential. SIGNIFICANCE STATEMENT The acetylcholine (ACh) arousal system in the brain is needed for robust attention and working memory functions, but the receptor and cellular bases for its beneficial effects are poorly understood in the newly evolved primate brain. The current study found that ACh stimulation of nicotinic receptors comprised of α4 and β2 subunits (α4β2-nAChR) enhanced the firing of neurons in the primate prefrontal cortex that subserve top-down attentional control and working memory. α4β2-nAChR stimulation also protected neuronal responding from the detrimental effects of distracters presented during the delay epoch, when information is held in working memory. These results illuminate how ACh strengthens higher cognition and help to explain why genetic insults to the α4 subunit weaken cognitive and attentional abilities. Copyright © 2017 the authors 0270-6474/17/375366-12$15.00/0.
Rebrov, I G; Kalinina, M V
2013-01-01
Functional activity of the CGABA(A)-receptor/Cl(-) ionophore complex was investigated the muscimol-stimulated entry of the radioactive isotope 36Cl(-) in synaptoneurosomes in changing the structure and permeability of neuronal membranes. Integrity of the membranes was damaged by removal of Ca(+2) and Mg(+2) from the incubation medium and by the method of freezing-thawing synaptoneurosomes. In both cases, an increase in basal 36Cl(-) entry into synaptoneurosomes, indicating increased nonspecific permeability of neuronal membranes, and decreased activity the CABA(A)-receptor/Cl(-) ionophore complex. The conclusion about the relationship of processes damage neuronal membranes and reducing the inhibitory processes in the epileptic focus.
The role of Drosophila TNF Eiger in developmental and damage-induced neuronal apoptosis.
Shklover, Jeny; Levy-Adam, Flonia; Kurant, Estee
2015-04-02
Eiger, the sole Drosophila TNF-alpha homolog, causes ectopic apoptosis through JNK pathway activation. Yet, its role in developmental apoptosis remains unclear. eiger mutant flies are viable and fertile but display compromised elimination of oncogenic cells and extracellular bacteria. Here we show that Eiger, specifically expressed in embryonic neurons and glia, is not involved in developmental neuronal apoptosis or in apoptotic cell clearance. Instead, we provide evidence that Eiger is required for damage-induced apoptosis in the embryonic CNS through regulation of the pro-apoptotic gene hid independently of the JNK pathway. Our study thus reveals a new requirement for Eiger in eliminating damaged cells during development. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Damage of hippocampal neurons in rats with chronic alcoholism.
Du, Ailin; Jiang, Hongbo; Xu, Lei; An, Na; Liu, Hui; Li, Yinsheng; Zhang, Ruiling
2014-09-01
Chronic alcoholism can damage the cytoskeleton and aggravate neurological deficits. However, the effect of chronic alcoholism on hippocampal neurons remains unclear. In this study, a model of chronic alcoholism was established in rats that were fed with 6% alcohol for 42 days. Endogenous hydrogen sulfide content and cystathionine-beta-synthase activity in the hippocampus of rats with chronic alcoholism were significantly increased, while F-actin expression was decreased. Hippocampal neurons in rats with chronic alcoholism appeared to have a fuzzy nuclear membrane, mitochondrial edema, and ruptured mitochondrial crista. These findings suggest that chronic alcoholism can cause learning and memory decline in rats, which may be associated with the hydrogen sulfide/cystathionine-beta-synthase system, mitochondrial damage and reduced expression of F-actin.
Detection of vulnerable neurons damaged by environmental insults in utero
Torii, Masaaki; Chang, Yu-Wen; Ishii, Seiji; Waxman, Stephen G.; Kocsis, Jeffery D.; Rakic, Pasko; Hashimoto-Torii, Kazue
2017-01-01
Development of prognostic biomarkers for the detection of prenatally damaged neurons before manifestations of postnatal disorders is an essential step for prevention and treatment of susceptible individuals. We have developed a versatile fluorescence reporter system in mice enabling detection of Heat Shock Factor 1 activation in response to prenatal cellular damage caused by exposure to various harmful chemical or physical agents. Using an intrautero electroporation-mediated reporter assay and transgenic reporter mice, we are able to identify neurons that survive prenatal exposure to harmful agents but remain vulnerable in postnatal life. This system may provide a powerful tool for exploring the pathogenesis and treatment of multiple disorders caused by exposure to environmental stress before symptoms become manifested, exacerbated, and/or irreversible. PMID:28123061
Appel, Daniel; Seeberger, Miriam; Schwedhelm, Edzard; Czorlich, Patrick; Goetz, Alwin E; Böger, Rainer H; Hannemann, Juliane
2018-03-20
Delayed cerebral ischemia (DCI) is the major cause of lethality and neuronal damage in patients who survived the primary subarachnoid hemorrhage (SAH). Asymmetric and symmetric dimethylarginines (ADMA and SDMA) inhibit nitric oxide production from L-arginine via distinct mechanisms. Elevated ADMA levels are associated with vasospasm after SAH. We aimed to study the time course of ADMA and SDMA in plasma and ventricular cerebrospinal fluid (CSF) and their associations with DCI and outcome. We measured ADMA and SDMA in 34 SAH patients with an external ventricular drain at admission and on days 3, 6, 8, 12, and 15 and followed them up for clinical status and neurological outcome until 30 days post-discharge. DCI was defined as the appearance of new infarctions on cerebral computed tomography or magnetic resonance imaging. ADMA and SDMA plasma concentrations did not differ significantly at baseline between patients who suffered DCI (N = 14; 41%) and not; however, plasma ADMA reached a peak on days 8 and 15 after hemorrhage in patients with DCI (0.81-0.91 µmol/l). Baseline plasma L-arginine/ADMA ratio was significantly lower in patients with DCI (57.1 [34.3; 70.8] vs. 68.7 [55.7; 96.2]; p < 0.05). ADMA and SDMA concentrations in CSF were significantly higher in patients with DCI than without. In multivariable-adjusted linear regression models, CSF ADMA was negatively associated with the incidence of DCI (OR 0.03 [0.02-0.70]; p = 0.04), whereas CSF SDMA on the day of hemorrhage predicted poor neurological outcome until 30 days after discharge (OR 22.4 [1.21-416.02]; p = 0.04). Our study shows that ADMA and the L-arginine/ADMA ratio are associated with the incidence of DCI after SAH. By contrast, SDMA was associated with initial neuronal damage and poor neurological outcome after SAH. These data support the hypothesis that ADMA and L-arginine affect the pathophysiology of cerebral ischemia after SAH, while SDMA is a biomarker of neurological outcome after SAH.
Role of founder cell deficit and delayed neuronogenesis in microencephaly of the trisomy 16 mouse
NASA Technical Reports Server (NTRS)
Haydar, T. F.; Nowakowski, R. S.; Yarowsky, P. J.; Krueger, B. K.
2000-01-01
Development of the neocortex of the trisomy 16 (Ts16) mouse, an animal model of Down syndrome (DS), is characterized by a transient delay in the radial expansion of the cortical wall and a persistent reduction in cortical volume. Here we show that at each cell cycle during neuronogenesis, a smaller proportion of Ts16 progenitors exit the cell cycle than do control, euploid progenitors. In addition, the cell cycle duration was found to be longer in Ts16 than in euploid progenitors, the Ts16 growth fraction was reduced, and an increase in apoptosis was observed in both proliferative and postmitotic zones of the developing Ts16 neocortical wall. Incorporation of these changes into a model of neuronogenesis indicates that they are sufficient to account for the observed delay in radial expansion. In addition, the number of neocortical founder cells, i.e., precursors present just before neuronogenesis begins, is reduced by 26% in Ts16 mice, leading to a reduction in overall cortical size at the end of Ts16 neuronogenesis. Thus, altered proliferative characteristics during Ts16 neuronogenesis result in a delay in the generation of neocortical neurons, whereas the founder cell deficit leads to a proportional reduction in the overall number of neurons. Such prenatal perturbations in either the timing of neuron generation or the final number of neurons produced may lead to significant neocortical abnormalities such as those found in DS.
Konecky, R O; Smith, M A; Olson, C R
2017-06-01
To explore the brain mechanisms underlying multi-item working memory, we monitored the activity of neurons in the dorsolateral prefrontal cortex while macaque monkeys performed spatial and chromatic versions of a Sternberg working-memory task. Each trial required holding three sequentially presented samples in working memory so as to identify a subsequent probe matching one of them. The monkeys were able to recall all three samples at levels well above chance, exhibiting modest load and recency effects. Prefrontal neurons signaled the identity of each sample during the delay period immediately following its presentation. However, as each new sample was presented, the representation of antecedent samples became weak and shifted to an anomalous code. A linear classifier operating on the basis of population activity during the final delay period was able to perform at approximately the level of the monkeys on trials requiring recall of the third sample but showed a falloff in performance on trials requiring recall of the first or second sample much steeper than observed in the monkeys. We conclude that delay-period activity in the prefrontal cortex robustly represented only the most recent item. The monkeys apparently based performance of this classic working-memory task on some storage mechanism in addition to the prefrontal delay-period firing rate. Possibilities include delay-period activity in areas outside the prefrontal cortex and changes within the prefrontal cortex not manifest at the level of the firing rate. NEW & NOTEWORTHY It has long been thought that items held in working memory are encoded by delay-period activity in the dorsolateral prefrontal cortex. Here we describe evidence contrary to that view. In monkeys performing a serial multi-item working memory task, dorsolateral prefrontal neurons encode almost exclusively the identity of the sample presented most recently. Information about earlier samples must be encoded outside the prefrontal cortex or represented within the prefrontal cortex in a cryptic code. Copyright © 2017 the American Physiological Society.
Comper, Sandra Mara; Jardim, Anaclara Prada; Corso, Jeana Torres; Gaça, Larissa Botelho; Noffs, Maria Helena Silva; Lancellotti, Carmen Lúcia Penteado; Cavalheiro, Esper Abrão; Centeno, Ricardo Silva; Yacubian, Elza Márcia Targas
2017-10-01
The objective of the study was to analyze preoperative visual and verbal episodic memories in a homogeneous series of patients with mesial temporal lobe epilepsy (MTLE) and unilateral hippocampal sclerosis (HS) submitted to corticoamygdalohippocampectomy and its association with neuronal cell density of each hippocampal subfield. The hippocampi of 72 right-handed patients were collected and prepared for histopathological examination. Hippocampal sclerosis patterns were determined, and neuronal cell density was calculated. Preoperatively, two verbal and two visual memory tests (immediate and delayed recalls) were applied, and patients were divided into two groups, left and right MTLE (36/36). There were no statistical differences between groups regarding demographic and clinical data. Cornu Ammonis 4 (CA4) neuronal density was significantly lower in the right hippocampus compared with the left (p=0.048). The groups with HS presented different memory performance - the right HS were worse in visual memory test [Complex Rey Figure, immediate (p=0.001) and delayed (p=0.009)], but better in one verbal task [RAVLT delayed (p=0.005)]. Multiple regression analysis suggested that the verbal memory performance of the group with left HS was explained by CA1 neuronal density since both tasks were significantly influenced by CA1 [Logical Memory immediate recall (p=0.050) and Logical Memory and RAVLT delayed recalls (p=0.004 and p=0.001, respectively)]. For patients with right HS, both CA1 subfield integrity (p=0.006) and epilepsy duration (p=0.012) explained Complex Rey Figure immediate recall performance. Ultimately, epilepsy duration also explained the performance in the Complex Rey Figure delayed recall (p<0.001). Cornu Ammonis 1 (CA1) hippocampal subfield was related to immediate and delayed recalls of verbal memory tests in left HS, while CA1 and epilepsy duration were associated with visual memory performance in patients with right HS. Copyright © 2017 Elsevier Inc. All rights reserved.
Dutta, Somhrita; Rutkai, Ibolya; Katakam, Prasad V G; Busija, David W
2015-09-01
We examined the role of the mechanistic target of rapamycin (mTOR) pathway in delayed diazoxide (DZ)-induced preconditioning of cultured rat primary cortical neurons. Neurons were treated for 3 days with 500 μM DZ or feeding medium and then exposed to 3 h of continuous normoxia in Dulbecco's modified eagle medium with glucose or with 3 h of oxygen-glucose deprivation (OGD) followed by normoxia and feeding medium. The OGD decreased viability by 50%, depolarized mitochondria, and reduced mitochondrial respiration, whereas DZ treatment improved viability and mitochondrial respiration, and suppressed reactive oxygen species production, but did not restore mitochondrial membrane potential after OGD. Neuroprotection by DZ was associated with increased phosphorylation of protein kinase B (Akt), mTOR, and the major mTOR downstream substrate, S6 Kinase (S6K). The mTOR inhibitors rapamycin and Torin-1, as well as S6K-targeted siRNA abolished the protective effects of DZ. The effects of DZ on mitochondrial membrane potential and reactive oxygen species production were not affected by rapamycin. Preconditioning with DZ also changed mitochondrial and non-mitochondrial oxygen consumption rates. We conclude that in addition to reducing reactive oxygen species (ROS) production and mitochondrial membrane depolarization, DZ protects against OGD by activation of the Akt-mTOR-S6K pathway and by changes in mitochondrial respiration. Ischemic strokes have limited therapeutic options. Diazoxide (DZ) preconditioning can reduce neuronal damage. Using oxygen-glucose deprivation (OGD), we studied Akt/mTOR/S6K signaling and mitochondrial respiration in neuronal preconditioning. We found DZ protects neurons against OGD via the Akt/mTOR/S6K pathway and alters the mitochondrial and non-mitochondrial oxygen consumption rate. This suggests that the Akt/mTOR/S6k pathway and mitochondria are novel stroke targets. © 2015 International Society for Neurochemistry.
Modular networks with delayed coupling: Synchronization and frequency control
NASA Astrophysics Data System (ADS)
Maslennikov, Oleg V.; Nekorkin, Vladimir I.
2014-07-01
We study the collective dynamics of modular networks consisting of map-based neurons which generate irregular spike sequences. Three types of intramodule topology are considered: a random Erdös-Rényi network, a small-world Watts-Strogatz network, and a scale-free Barabási-Albert network. The interaction between the neurons of different modules is organized by relatively sparse connections with time delay. For all the types of the network topology considered, we found that with increasing delay two regimes of module synchronization alternate with each other: inphase and antiphase. At the same time, the average rate of collective oscillations decreases within each of the time-delay intervals corresponding to a particular synchronization regime. A dual role of the time delay is thus established: controlling a synchronization mode and degree and controlling an average network frequency. Furthermore, we investigate the influence on the modular synchronization by other parameters: the strength of intermodule coupling and the individual firing rate.
Nasrabady, Sara E; Kuzhandaivel, Anujaianthi; Nistri, Andrea
2011-06-01
Delayed neuronal destruction after acute spinal injury is attributed to excitotoxicity mediated by hyperactivation of poly(ADP-ribose) polymerase-1 (PARP-1) that induces 'parthanatos', namely a non-apoptotic cell death mechanism. With an in vitro model of excitotoxicity, we have previously observed parthanatos of rat spinal cord locomotor networks to be decreased by a broad spectrum PARP-1 inhibitor. The present study investigated whether the selective PARP-1 inhibitor N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-(N,N-dimethylamino)acetamide.HCl (PJ-34) not only protected networks from kainate-evoked excitotoxicity, but also prevented loss of locomotor patterns recorded as fictive locomotion from lumbar (L) ventral roots (VRs) 24 h later. PJ-34 (60 μm) blocked PARP-1 activation and preserved dorsal, central and ventral gray matter with maintained reflex activity even after a large dose of kainate. Fictive locomotion could not, however, be restored by either electrical stimulation or bath-applied neurochemicals (N-methyl-D-aspartate plus 5-hydroxytryptamine). A low kainate concentration induced less histological damage that was widely prevented by PJ-34. Nonetheless, fictive locomotion was observed in just over 50% of preparations whose histological profile did not differ (except for the dorsal horn) from those lacking such a rhythm. Our data show that inhibition of PARP-1 could amply preserve spinal network histology after excitotoxicity, with return of locomotor patterns only when the excitotoxic stimulus was moderate. These results demonstrated divergence between histological and functional outcome, implying a narrow borderline between loss of fictive locomotion and neuronal preservation. Our data suggest that either damage of a few unidentified neurons or functional network inhibition was critical for ensuring locomotor cycles. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Good, Cameron H.; Rowley, Courtney S.; Xu, Sheng-ping; Wang, Huikun; Burnham, Nathan W.; Hoffman, Alexander F.; Lupica, Carl R.; Ikemoto, Satoshi
2013-01-01
Many strong rewards, including abused drugs, also produce aversive effects that are poorly understood. For example, cocaine can produce aversive conditioning after its rewarding effects have dissipated, consistent with opponent process theory, but the neural mechanisms involved are not well known. Using electrophysiological recordings in awake rats, we found that some neurons in the lateral habenula (LHb), where activation produces aversive conditioning, exhibited biphasic responses to single doses of intravenous cocaine, with an initial inhibition followed by delayed excitation paralleling cocaine's shift from rewarding to aversive. Recordings in LHb slice preparations revealed similar cocaine-induced biphasic responses and further demonstrated that biphasic responses were mimicked by dopamine, that the inhibitory phase depended on dopamine D2-like receptors, and that the delayed excitation persisted after drug washout for prolonged durations consistent with findings in vivo. c-Fos experiments further showed that cocaine-activated LHb neurons preferentially projected to and activated neurons in the rostromedial tegmental nucleus (RMTg), a recently identified target of LHb axons that is activated by negative motivational stimuli and inhibits dopamine neurons. Finally, pharmacological excitation of the RMTg produced conditioned place aversion, whereas cocaine-induced avoidance behaviors in a runway operant paradigm were abolished by lesions of LHb efferents, lesions of the RMTg, or by optogenetic inactivation of the RMTg selectively during the period when LHb neurons are activated by cocaine. Together, these results indicate that LHb/RMTg pathways contribute critically to cocaine-induced avoidance behaviors, while also participating in reciprocally inhibitory interactions with dopamine neurons. PMID:23616555
Neurons in Dorsal Anterior Cingulate Cortex Signal Postdecisional Variables in a Foraging Task
Hayden, Benjamin Y.
2014-01-01
The dorsal anterior cingulate cortex (dACC) is a key hub of the brain's executive control system. Although a great deal is known about its role in outcome monitoring and behavioral adjustment, whether and how it contributes to the decision process remain unclear. Some theories suggest that dACC neurons track decision variables (e.g., option values) that feed into choice processes and is thus “predecisional.” Other theories suggest that dACC activity patterns differ qualitatively depending on the choice that is made and is thus “postdecisional.” To compare these hypotheses, we examined responses of 124 dACC neurons in a simple foraging task in which monkeys accepted or rejected offers of delayed rewards. In this task, options that vary in benefit (reward size) and cost (delay) appear for 1 s; accepting the option provides the cued reward after the cued delay. To get at dACC neurons' contributions to decisions, we focused on responses around the time of choice, several seconds before the reward and the end of the trial. We found that dACC neurons signal the foregone value of the rejected option, a postdecisional variable. Neurons also signal the profitability (that is, the relative value) of the offer, but even these signals are qualitatively different on accept and reject decisions, meaning that they are also postdecisional. These results suggest that dACC can be placed late in the decision process and also support models that give it a regulatory role in decision, rather than serving as a site of comparison. PMID:24403162
He, Huan; Guo, Wei-Wei; Xu, Rong-Rong; Chen, Xiao-Qing; Zhang, Nan; Wu, Xia; Wang, Xiao-Min
2016-10-24
Alkaloids from Piper longum (PLA), extracted from P. longum, have potent anti-inflammatory effects. The aim of this study was to investigate whether PLA could protect dopaminergic neurons against inflammation-mediated damage by inhibiting microglial activation using a lipopolysaccharide (LPS)-induced dopaminergic neuronal damage rat model. The animal behaviors of rotational behavior, rotarod test and open-field test were investigated. The survival ratio of dopaminergic neurons and microglial activation were examined. The dopamine (DA) and its metabolite were detected by high performance liquid chromatography (HPLC). The effects of PLA on the expression of interleukin (IL)-6, interleukin (IL)-1β and tumor necrosis factor (TNF)-α were detected by enzyme-linked immunosorbent assay (ELISA). Reactive oxygen species (ROS) and nitric oxide (NO) were also estimated. We showed that the survival ratio of tyrosine hydroxylase-immunoreactive (TH-ir) neurons in the substantia nigra pars compacta (SNpc) and DA content in the striatum were reduced after a single intranigral dose of LPS (10 μg) treatment. The survival rate of TH-ir neurons in the SNpc and DA levels in the striatum were significantly improved after treatment with PLA for 6 weeks. The over-activated microglial cells were suppressed by PLA treatment. We also observed that the levels of inflammatory cytokines, including TNF-α, IL-6 and IL-1β were decreased and the excessive production of ROS and NO were abolished after PLA treatment. Therefore, the behavioral dysfunctions induced by LPS were improved after PLA treatment. This study suggests that PLA plays a significant role in protecting dopaminergic neurons against inflammatory reaction induced damage.
Lee, Chao Yu; Wang, Liang-Fei; Wu, Chun-Hu; Ke, Chia-Hua; Chen, Szu-Fu
2014-01-01
Traumatic brain injury (TBI) triggers a series of neuroinflammatory processes that contribute to evolution of neuronal injury. The present study investigated the neuroprotective effects and anti-inflammatory actions of berberine, an isoquinoline alkaloid, in both in vitro and in vivo TBI models. Mice subjected to controlled cortical impact injury were injected with berberine (10 mg·kg−1) or vehicle 10 min after injury. In addition to behavioral studies and histology analysis, blood-brain barrier (BBB) permeability and brain water content were determined. Expression of PI3K/Akt and Erk signaling and inflammatory mediators were also analyzed. The protective effect of berberine was also investigated in cultured neurons either subjected to stretch injury or exposed to conditioned media with activated microglia. Berberine significantly attenuated functional deficits and brain damage associated with TBI up to day 28 post-injury. Berberine also reduced neuronal death, apoptosis, BBB permeability, and brain edema at day 1 post-injury. These changes coincided with a marked reduction in leukocyte infiltration, microglial activation, matrix metalloproteinase-9 activity, and expression of inflammatory mediators. Berberine had no effect on Akt or Erk 1/2 phosphorylation. In mixed glial cultures, berberine reduced TLR4/MyD88/NF-κB signaling. Berberine also attenuated neuronal death induced by microglial conditioned media; however, it did not directly protect cultured neurons subjected to stretch injury. Moreover, administration of berberine at 3 h post-injury also reduced TBI-induced neuronal damage, apoptosis and inflammation in vivo. Berberine reduces TBI-induced brain damage by limiting the production of inflammatory mediators by glial cells, rather than by a direct neuroprotective effect. PMID:25546475
E2F1 and E2F2 induction in response to DNA damage preserves genomic stability in neuronal cells.
Castillo, Daniela S; Campalans, Anna; Belluscio, Laura M; Carcagno, Abel L; Radicella, J Pablo; Cánepa, Eduardo T; Pregi, Nicolás
2015-01-01
E2F transcription factors regulate a wide range of biological processes, including the cellular response to DNA damage. In the present study, we examined whether E2F family members are transcriptionally induced following treatment with several genotoxic agents, and have a role on the cell DNA damage response. We show a novel mechanism, conserved among diverse species, in which E2F1 and E2F2, the latter specifically in neuronal cells, are transcriptionally induced after DNA damage. This upregulation leads to increased E2F1 and E2F2 protein levels as a consequence of de novo protein synthesis. Ectopic expression of these E2Fs in neuronal cells reduces the level of DNA damage following genotoxic treatment, while ablation of E2F1 and E2F2 leads to the accumulation of DNA lesions and increased apoptotic response. Cell viability and DNA repair capability in response to DNA damage induction are also reduced by the E2F1 and E2F2 deficiencies. Finally, E2F1 and E2F2 accumulate at sites of oxidative and UV-induced DNA damage, and interact with γH2AX DNA repair factor. As previously reported for E2F1, E2F2 promotes Rad51 foci formation, interacts with GCN5 acetyltransferase and induces histone acetylation following genotoxic insult. The results presented here unveil a new mechanism involving E2F1 and E2F2 in the maintenance of genomic stability in response to DNA damage in neuronal cells.
E2F1 and E2F2 induction in response to DNA damage preserves genomic stability in neuronal cells
Castillo, Daniela S; Campalans, Anna; Belluscio, Laura M; Carcagno, Abel L; Radicella, J Pablo; Cánepa, Eduardo T; Pregi, Nicolás
2015-01-01
E2F transcription factors regulate a wide range of biological processes, including the cellular response to DNA damage. In the present study, we examined whether E2F family members are transcriptionally induced following treatment with several genotoxic agents, and have a role on the cell DNA damage response. We show a novel mechanism, conserved among diverse species, in which E2F1 and E2F2, the latter specifically in neuronal cells, are transcriptionally induced after DNA damage. This upregulation leads to increased E2F1 and E2F2 protein levels as a consequence of de novo protein synthesis. Ectopic expression of these E2Fs in neuronal cells reduces the level of DNA damage following genotoxic treatment, while ablation of E2F1 and E2F2 leads to the accumulation of DNA lesions and increased apoptotic response. Cell viability and DNA repair capability in response to DNA damage induction are also reduced by the E2F1 and E2F2 deficiencies. Finally, E2F1 and E2F2 accumulate at sites of oxidative and UV-induced DNA damage, and interact with γH2AX DNA repair factor. As previously reported for E2F1, E2F2 promotes Rad51 foci formation, interacts with GCN5 acetyltransferase and induces histone acetylation following genotoxic insult. The results presented here unveil a new mechanism involving E2F1 and E2F2 in the maintenance of genomic stability in response to DNA damage in neuronal cells. PMID:25892555
Duan, Bo; Wang, Yi-Zhi; Yang, Tao; Chu, Xiang-Ping; Yu, Ye; Huang, Yu; Cao, Hui; Hansen, Jillian; Simon, Roger P.; Zhu, Michael X.; Xiong, Zhi-Gang; Xu, Tian-Le
2011-01-01
Ischemic brain injury is a major problem associated with stroke. It has been increasingly recognized that acid-sensing ion channels (ASICs) contribute significantly to ischemic neuronal damage, but the underlying mechanism has remained elusive. Here, we show that extracellular spermine, one of the endogenous polyamines, exacerbates ischemic neuronal injury through sensitization of ASIC1a channels to extracellular acidosis. Pharmacological blockade of ASIC1a or deletion of the ASIC1 gene greatly reduces the enhancing effect of spermine in ischemic neuronal damage both in cultures of dissociated neurons and in a mouse model of focal ischemia. Mechanistically, spermine profoundly reduces desensitization of ASIC1a by slowing down desensitization in the open state, shifting steady-state desensitization to more acidic pH, and accelerating recovery between repeated periods of acid stimulation. Spermine-mediated potentiation of ASIC1a activity is occluded by PcTX1 (psalmotoxin 1), a specific ASIC1a inhibitor binding to its extracellular domain. Functionally, the enhanced channel activity is accompanied by increased acid-induced neuronal membrane depolarization and cytoplasmic Ca2+ overload, which may partially explain the exacerbated neuronal damage caused by spermine. More importantly, blocking endogenous spermine synthesis significantly attenuates ischemic brain injury mediated by ASIC1a but not that by NMDA receptors. Thus, extracellular spermine contributes significantly to ischemic neuronal injury through enhancing ASIC1a activity. Our data suggest new neuroprotective strategies for stroke patients via inhibition of polyamine synthesis and subsequent spermine–ASIC interaction. PMID:21307247
Park, Joon Ha; Cho, Jeong Hwi; Kim, In Hye; Ahn, Ji Hyeon; Lee, Jae-Chul; Chen, Bai Hui; Shin, Bich-Na; Tae, Hyun-Jin; Yoo, Ki-Yeon; Hong, SeongKweon; Kang, Il Jun; Won, Moo-Ho; Kim, Jong-Dai
2015-01-01
Background: Water dropwort (Oenanthe javanica) as a popular traditional medicine in Asia shows various biological properties including antioxidant activity. In this study, we firstly examined the neuroprotective effect of Oenanthe javanica extract (OJE) in the hippocampal cornus ammonis 1 region (CA1 region) of the gerbil subjected to transient cerebral ischemia. Methods: Gerbils were established by the occlusion of common carotid arteries for 5 min. The neuroprotective effect of OJE was estimated by cresyl violet staining. In addition, 4 antioxidants (copper, zinc superoxide dismutase [SOD], manganese SOD, catalase, and glutathione peroxidase) immunoreactivities were investigated by immunohistochemistry. Results: Pyramidal neurons in the CA1 region showed neuronal death at 5 days postischemia; at this point in time, all antioxidants immunoreactivities disappeared in CA1 pyramidal neurons and showed in many nonpyramidal cells. Treatment with 200 mg/kg, not 100 mg/kg, OJE protected CA1 pyramidal neurons from ischemic damage. In addition, 200 mg/kg OJE treatment increased or maintained antioxidants immunoreactivities. Especially, among the antioxidants, glutathione peroxidase immunoreactivity was effectively increased in the CA1 pyramidal neurons of the OJE-treated sham-operated and ischemia-operated groups. Conclusion: Our present results indicate that treatment with OJE can protect neurons from transient ischemic damage and that the neuroprotective effect may be closely associated with increased or maintained intracellular antioxidant enzymes by OJE. PMID:26521793
Oñate, Maritza; Catenaccio, Alejandra; Martínez, Gabriela; Armentano, Donna; Parsons, Geoffrey; Kerr, Bredford; Hetz, Claudio; Court, Felipe A
2016-02-24
Although protein-folding stress at the endoplasmic reticulum (ER) is emerging as a driver of neuronal dysfunction in models of spinal cord injury and neurodegeneration, the contribution of this pathway to peripheral nerve damage remains poorly explored. Here we targeted the unfolded protein response (UPR), an adaptive reaction against ER stress, in mouse models of sciatic nerve injury and found that ablation of the transcription factor XBP1, but not ATF4, significantly delay locomotor recovery. XBP1 deficiency led to decreased macrophage recruitment, a reduction in myelin removal and axonal regeneration. Conversely, overexpression of XBP1s in the nervous system in transgenic mice enhanced locomotor recovery after sciatic nerve crush, associated to an improvement in key pro-regenerative events. To assess the therapeutic potential of UPR manipulation to axonal regeneration, we locally delivered XBP1s or an shRNA targeting this transcription factor to sensory neurons of the dorsal root ganglia using a gene therapy approach and found an enhancement or reduction of axonal regeneration in vivo, respectively. Our results demonstrate a functional role of specific components of the ER proteostasis network in the cellular changes associated to regeneration and functional recovery after peripheral nerve injury.
Oñate, Maritza; Catenaccio, Alejandra; Martínez, Gabriela; Armentano, Donna; Parsons, Geoffrey; Kerr, Bredford; Hetz, Claudio; Court, Felipe A.
2016-01-01
Although protein-folding stress at the endoplasmic reticulum (ER) is emerging as a driver of neuronal dysfunction in models of spinal cord injury and neurodegeneration, the contribution of this pathway to peripheral nerve damage remains poorly explored. Here we targeted the unfolded protein response (UPR), an adaptive reaction against ER stress, in mouse models of sciatic nerve injury and found that ablation of the transcription factor XBP1, but not ATF4, significantly delay locomotor recovery. XBP1 deficiency led to decreased macrophage recruitment, a reduction in myelin removal and axonal regeneration. Conversely, overexpression of XBP1s in the nervous system in transgenic mice enhanced locomotor recovery after sciatic nerve crush, associated to an improvement in key pro-regenerative events. To assess the therapeutic potential of UPR manipulation to axonal regeneration, we locally delivered XBP1s or an shRNA targeting this transcription factor to sensory neurons of the dorsal root ganglia using a gene therapy approach and found an enhancement or reduction of axonal regeneration in vivo, respectively. Our results demonstrate a functional role of specific components of the ER proteostasis network in the cellular changes associated to regeneration and functional recovery after peripheral nerve injury. PMID:26906090
Schwer, Christian I.; Lehane, Cornelius; Guelzow, Timo; Zenker, Simone; Strosing, Karl M.; Spassov, Sashko; Erxleben, Anika; Heimrich, Bernd; Buerkle, Hartmut; Humar, Matjaz
2013-01-01
Ischemic and traumatic brain injury is associated with increased risk for death and disability. The inhibition of penumbral tissue damage has been recognized as a target for therapeutic intervention, because cellular injury evolves progressively upon ATP-depletion and loss of ion homeostasis. In patients, thiopental is used to treat refractory intracranial hypertension by reducing intracranial pressure and cerebral metabolic demands; however, therapeutic benefits of thiopental-treatment are controversially discussed. In the present study we identified fundamental neuroprotective molecular mechanisms mediated by thiopental. Here we show that thiopental inhibits global protein synthesis, which preserves the intracellular energy metabolite content in oxygen-deprived human neuronal SK-N-SH cells or primary mouse cortical neurons and thus ameliorates hypoxic cell damage. Sensitivity to hypoxic damage was restored by pharmacologic repression of eukaryotic elongation factor 2 kinase. Translational inhibition was mediated by calcium influx, activation of the AMP-activated protein kinase, and inhibitory phosphorylation of eukaryotic elongation factor 2. Our results explain the reduction of cerebral metabolic demands during thiopental treatment. Cycloheximide also protected neurons from hypoxic cell death, indicating that translational inhibitors may generally reduce secondary brain injury. In conclusion our study demonstrates that therapeutic inhibition of global protein synthesis protects neurons from hypoxic damage by preserving energy balance in oxygen-deprived cells. Molecular evidence for thiopental-mediated neuroprotection favours a positive clinical evaluation of barbiturate treatment. The chemical structure of thiopental could represent a pharmacologically relevant scaffold for the development of new organ-protective compounds to ameliorate tissue damage when oxygen availability is limited. PMID:24167567
Speca, David J.; Ogata, Genki; Mandikian, Danielle; Bishop, Hannah I.; Wiler, Steve W.; Eum, Kenneth; Wenzel, H. Jürgen; Doisy, Emily T.; Matt, Lucas; Campi, Katharine L.; Golub, Mari S.; Nerbonne, Jeanne M.; Hell, Johannes W.; Trainor, Brian C.; Sack, Jon T.; Schwartzkroin, Philip A.; Trimmer, James S.
2014-01-01
The Kv2.1 delayed rectifier potassium channel exhibits high-level expression in both principal and inhibitory neurons throughout the central nervous system, including prominent expression in hippocampal neurons. Studies of in vitro preparations suggest that Kv2.1 is a key yet conditional regulator of intrinsic neuronal excitability, mediated by changes in Kv2.1 expression, localization and function via activity-dependent regulation of Kv2.1 phosphorylation. Here we identify neurological and behavioral deficits in mutant (Kv2.1−/−) mice lacking this channel. Kv2.1−/− mice have grossly normal characteristics. No impairment in vision or motor coordination was apparent, although Kv2.1−/− mice exhibit reduced body weight. The anatomic structure and expression of related Kv channels in the brains of Kv2.1−/− mice appears unchanged. Delayed rectifier potassium current is diminished in hippocampal neurons cultured from Kv2.1−/− animals. Field recordings from hippocampal slices of Kv2.1−/− mice reveal hyperexcitability in response to the convulsant bicuculline, and epileptiform activity in response to stimulation. In Kv2.1−/− mice, long-term potentiation at the Schaffer collateral – CA1 synapse is decreased. Kv2.1−/− mice are strikingly hyperactive, and exhibit defects in spatial learning, failing to improve performance in a Morris Water Maze task. Kv2.1−/− mice are hypersensitive to the effects of the convulsants flurothyl and pilocarpine, consistent with a role for Kv2.1 as a conditional suppressor of neuronal activity. Although not prone to spontaneous seizures, Kv2.1−/− mice exhibit accelerated seizure progression. Together, these findings suggest homeostatic suppression of elevated neuronal activity by Kv2.1 plays a central role in regulating neuronal network function. PMID:24494598
Wang, Jin; Liu, Yuan; Li, Xiao-Hui; Zeng, Xiang-Chang; Li, Jian; Zhou, Jun; Xiao, Bo; Hu, Kai
2017-05-01
Status epilepticus, the most severe form of epilepsy, is characterized by progressive functional and structural damage in the hippocampus, ultimately leading to the development and clinical appearance of spontaneous, recurrent seizures. Although the pathogenesis underlying epileptogenesis processes remains unclear, a substantial body of evidence has shown that status epilepticus acts as an important initial factor in triggering epileptogenesis. Notably, besides classical cell death mechanisms such as apoptosis and necrosis, 2 novel regulators of cell fate known as necroptosis and autophagy, are demonstrated to be involved in neuronal damage in various neurodegenerative and neuropsychiatric disorders. However, whether necroptosis and autophagy play a role in post-status-epilepticus rat hippocampus and other epilepsy mechanisms deserves further research effort. In addition, research is needed to determine whether compounds from traditional Chinese herbs possess antiepileptic effects through the modulation of necroptosis and autophagy. In this study, we found that curcumin, a polyphenolic phytochemical extracted from the Curcuma longa plant, protects neuronal cells against status-epilepticus-induced hippocampal neuronal damage in the lithium-pilocarpine-induced status epilepticus rat model through induction of autophagy and inhibition of necroptosis.
Kubo, Kozue; Nakao, Shinichi; Jomura, Sachiko; Sakamoto, Sachiyo; Miyamoto, Etsuko; Xu, Yan; Tomimoto, Hidekazu; Inada, Takefumi; Shingu, Koh
2012-01-01
Recent studies have shown that similar to cerebral gray matter (mainly composed of neuronal perikarya), white matter (composed of axons and glias) is vulnerable to ischemia. Edaravone, a free radical scavenger, has neuroprotective effects against focal cerebral ischemia even in humans. In this study, we investigated the time course and the severity of both gray and white matter damage following global cerebral ischemia by cardiac arrest, and examined whether edaravone protected the gray and the white matter. Male Sprague-Dawley rats were used. Global cerebral ischemia was induced by 5 minutes of cardiac arrest and resuscitation (CAR). Edaravone, 3 mg/kg, was administered intravenously either immediately or 60 minutes after CAR. The morphological damage was assessed by cresyl violet staining. The microtubule-associated protein 2 (a maker of neuronal perikarya and dendrites), the β amyloid precursor protein (the accumulation of which is a maker of axonal damage), and the ionized calcium binding adaptor molecule 1 (a marker of microglia) were stained for immunohistochemical analysis. Significant neuronal perikaryal damage and marked microglial activation were observed in the hippocampal CA1 region with little axonal damage one week after CAR. Two weeks after CAR, the perikaryal damage and microglial activation were unchanged, but obvious axonal damage occurred. Administration of edaravone 60 minutes after CAR significantly mitigated the perikaryal damage, the axonal damage, and the microglial activation. Our results show that axonal damage develops slower than perikaryal damage and that edaravone can protect both gray and white matter after CAR in rats. PMID:19410562
Working memory and decision processes in visual area v4.
Hayden, Benjamin Y; Gallant, Jack L
2013-01-01
Recognizing and responding to a remembered stimulus requires the coordination of perception, working memory, and decision-making. To investigate the role of visual cortex in these processes, we recorded responses of single V4 neurons during performance of a delayed match-to-sample task that incorporates rapid serial visual presentation of natural images. We found that neuronal activity during the delay period after the cue but before the images depends on the identity of the remembered image and that this change persists while distractors appear. This persistent response modulation has been identified as a diagnostic criterion for putative working memory signals; our data thus suggest that working memory may involve reactivation of sensory neurons. When the remembered image reappears in the neuron's receptive field, visually evoked responses are enhanced; this match enhancement is a diagnostic criterion for decision. One model that predicts these data is the matched filter hypothesis, which holds that during search V4 neurons change their tuning so as to match the remembered cue, and thus become detectors for that image. More generally, these results suggest that V4 neurons participate in the perceptual, working memory, and decision processes that are needed to perform memory-guided decision-making.
Zou, Chaoshuang; Kou, Ruirui; Gao, Yuan; Xie, Keqin; Song, Fuyong
2013-06-01
Previous studies suggest that abnormal neurons death has been implicated in organophosphate-induced delayed neuropathy (OPIDN). However, the precise mechanism of neuronal death in OPIDN remains largely unknown. In this study, adult hens were treated with a dosage of 750 mg/kg tri-ortho-cresyl phosphate (TOCP) by gavage, and then sacrificed on the time-points of 1, 5, 10, and 21 days after dosing TOCP, respectively. The apoptotic change of spinal cord neurons induced by TOCP was examined, and the role of mitochondria-mediated apoptosis of neurons during OPIDN was investigated. TUNEL assays showed that apoptotic neurons in hen spinal cords began to appear on day 5 following TOCP exposure. Immunohistochemistry and western blot analysis revealed a translocation of cytochrome C from mitochondria to cytoplasm after dosing TOCP. Moreover, the level of Bcl-2, Bcl-xl, Pro-caspase3 and Pro-caspase9 in hen spinal cord was significantly decreased, whereas that of Bax and cleaved-PARP was significantly elevated. Taken together, these findings indicate that the administration of TOCP can induce neuron apoptosis in hen spinal cords, which might be mediated by the activation of mitochondrial apoptotic pathway. Copyright © 2013 Elsevier Ltd. All rights reserved.
McEwen, Hayden J. L.; Inglis, Megan A.; Quennell, Janette H.; Grattan, David R.
2016-01-01
The cellular processes that cause high caloric diet (HCD)-induced infertility are poorly understood but may involve upregulation of suppressor of cytokine signaling (SOCS-3) proteins that are associated with hypothalamic leptin resistance. Deletion of SOCS-3 from brain cells is known to protect mice from diet-induced obesity, but the effects on HCD-induced infertility are unknown. We used neuron-specific SOCS3 knock-out mice to elucidate this and the effects on regional hypothalamic leptin resistance. As expected, male and female neuron-specific SOCS3 knock-out mice were protected from HCD-induced obesity. While female wild-type mice became infertile after 4 months of HCD feeding, infertility onset in knock-out females was delayed by 4 weeks. Similarly, knock-out mice had delayed leptin resistance development in the medial preoptic area and anteroventral periventricular nucleus, regions important for generation of the surge of GnRH and LH that induces ovulation. We therefore tested whether the suppressive effects of HCD on the estradiol-induced GnRH/LH surge were overcome by neuron-specific SOCS3 knock-out. Although only 20% of control HCD-mice experienced a preovulatory-like LH surge, LH surges could be induced in almost all neuron-specific SOCS3 knock-out mice on this diet. In contrast to females, HCD-fed male mice did not exhibit any fertility decline compared with low caloric diet-fed males despite their resistance to the satiety effects of leptin. These data show that deletion of SOCS3 delays the onset of leptin resistance and infertility in HCD-fed female mice, but given continued HCD feeding this state does eventually occur, presumably in response to other mechanisms inhibiting leptin signal transduction. SIGNIFICANCE STATEMENT Obesity is commonly associated with infertility in humans and other animals. Treatments for human infertility show a decreased success rate with increasing body mass index. A hallmark of obesity is an increase in circulating leptin levels; despite this, the brain responds as if there were low levels of leptin, leading to increased appetite and suppressed fertility. Here we show that leptin resistant infertility is caused in part by the leptin signaling molecule SOCS3. Deletion of SOCS3 from brain neurons delays the onset of diet-induced infertility. PMID:27383590
McEwen, Hayden J L; Inglis, Megan A; Quennell, Janette H; Grattan, David R; Anderson, Greg M
2016-07-06
The cellular processes that cause high caloric diet (HCD)-induced infertility are poorly understood but may involve upregulation of suppressor of cytokine signaling (SOCS-3) proteins that are associated with hypothalamic leptin resistance. Deletion of SOCS-3 from brain cells is known to protect mice from diet-induced obesity, but the effects on HCD-induced infertility are unknown. We used neuron-specific SOCS3 knock-out mice to elucidate this and the effects on regional hypothalamic leptin resistance. As expected, male and female neuron-specific SOCS3 knock-out mice were protected from HCD-induced obesity. While female wild-type mice became infertile after 4 months of HCD feeding, infertility onset in knock-out females was delayed by 4 weeks. Similarly, knock-out mice had delayed leptin resistance development in the medial preoptic area and anteroventral periventricular nucleus, regions important for generation of the surge of GnRH and LH that induces ovulation. We therefore tested whether the suppressive effects of HCD on the estradiol-induced GnRH/LH surge were overcome by neuron-specific SOCS3 knock-out. Although only 20% of control HCD-mice experienced a preovulatory-like LH surge, LH surges could be induced in almost all neuron-specific SOCS3 knock-out mice on this diet. In contrast to females, HCD-fed male mice did not exhibit any fertility decline compared with low caloric diet-fed males despite their resistance to the satiety effects of leptin. These data show that deletion of SOCS3 delays the onset of leptin resistance and infertility in HCD-fed female mice, but given continued HCD feeding this state does eventually occur, presumably in response to other mechanisms inhibiting leptin signal transduction. Obesity is commonly associated with infertility in humans and other animals. Treatments for human infertility show a decreased success rate with increasing body mass index. A hallmark of obesity is an increase in circulating leptin levels; despite this, the brain responds as if there were low levels of leptin, leading to increased appetite and suppressed fertility. Here we show that leptin resistant infertility is caused in part by the leptin signaling molecule SOCS3. Deletion of SOCS3 from brain neurons delays the onset of diet-induced infertility. Copyright © 2016 the authors 0270-6474/16/367142-12$15.00/0.
Johnston, Melissa; Anderson, Catrona; Colombo, Michael
2017-01-15
We recorded neuronal activity from the nidopallium caudolaterale, the avian equivalent of mammalian prefrontal cortex, and the entopallium, the avian equivalent of the mammalian visual cortex, in four birds trained on a differential outcomes delayed matching-to-sample procedure in which one sample stimulus was followed by reward and the other was not. Despite similar incidence of reward-specific and reward-unspecific delay cell types across the two areas, overall entopallium delay activity occurred following both rewarded and non-rewarded stimuli, whereas nidopallium caudolaterale delay activity tended to occur following the rewarded stimulus but not the non-rewarded stimulus. These findings are consistent with the view that delay activity in entopallium represents a code of the sample stimulus whereas delay activity in nidopallium caudolaterale represents a code of the possibility of an upcoming reward. However, based on the types of delay cells encountered, cells in NCL also code the sample stimulus and cells in ENTO are influenced by reward. We conclude that both areas support the retention of information, but that the activity in each area is differentially modulated by factors such as reward and attentional mechanisms. Copyright © 2016 Elsevier B.V. All rights reserved.
Jangi, Mohini; Fleet, Christina; Cullen, Patrick; Gupta, Shipra V.; Mekhoubad, Shila; Chiao, Eric; Allaire, Norm; Bennett, C. Frank; Rigo, Frank; Krainer, Adrian R.; Hurt, Jessica A.; Carulli, John P.; Staropoli, John F.
2017-01-01
Spinal muscular atrophy (SMA), an autosomal recessive neuromuscular disease, is the leading monogenic cause of infant mortality. Homozygous loss of the gene survival of motor neuron 1 (SMN1) causes the selective degeneration of lower motor neurons and subsequent atrophy of proximal skeletal muscles. The SMN1 protein product, survival of motor neuron (SMN), is ubiquitously expressed and is a key factor in the assembly of the core splicing machinery. The molecular mechanisms by which disruption of the broad functions of SMN leads to neurodegeneration remain unclear. We used an antisense oligonucleotide (ASO)-based inducible mouse model of SMA to investigate the SMN-specific transcriptome changes associated with neurodegeneration. We found evidence of widespread intron retention, particularly of minor U12 introns, in the spinal cord of mice 30 d after SMA induction, which was then rescued by a therapeutic ASO. Intron retention was concomitant with a strong induction of the p53 pathway and DNA damage response, manifesting as γ-H2A.X positivity in neurons of the spinal cord and brain. Widespread intron retention and markers of the DNA damage response were also observed with SMN depletion in human SH-SY5Y neuroblastoma cells and human induced pluripotent stem cell-derived motor neurons. We also found that retained introns, high in GC content, served as substrates for the formation of transcriptional R-loops. We propose that defects in intron removal in SMA promote DNA damage in part through the formation of RNA:DNA hybrid structures, leading to motor neuron death. PMID:28270613
Wei, Taotao; Sun, Handong; Zhao, Xingyu; Hou, Jingwu; Hou, Aijun; Zhao, Qinshi; Xin, Wenjuan
2002-03-08
Pistafolia A is a novel gallotannin isolated from the leaf extract of Pistacia weinmannifolia. In the present investigation, the ability of Pistafolia A to scavenge reactive oxygen species including hydroxyl radicals and superoxide anion was measured by ESR spin trapping technique. The inhibition effect on iron-induced lipid peroxidaiton in liposomes was studied. The protective effects of Pistafolia A against oxidative neuronal cell damage and apoptosis induced by peroxynitrite were also assessed. The results showed that Pistafolia A could scavenge both hydroxyl radicals and superoxide anion dose-dependently and inhibit lipid peroxidation effectively. In cerebellar granule cells pretreated with Pistafolia A, peroxynitrite-induced oxidative neuronal damage and apoptosis were prevented markedly. The antioxidant capacity of Pistafolia A was much more potent then that of the water-soluble analog of vitamin E, Trolox. The results suggested that Pistafolia A might be used as an effective natural antioxidant for the prevention and cure of neuronal diseases associated with the production of peroxynitrite and related reactive oxygen species.
Protective Effect of Edaravone on Glutamate-Induced Neurotoxicity in Spiral Ganglion Neurons
Bai, Xiaohui; Zhang, Chi; Chen, Aiping; Liu, Wenwen; Li, Jianfeng; Sun, Qian
2016-01-01
Glutamate is an important excitatory neurotransmitter in mammalian brains, but excessive amount of glutamate can cause “excitotoxicity” and lead to neuronal death. As bipolar neurons, spiral ganglion neurons (SGNs) function as a “bridge” in transmitting auditory information from the ear to the brain and can be damaged by excessive glutamate which results in sensorineural hearing loss. In this study, edaravone, a free radical scavenger, elicited both preventative and therapeutic effects on SGNs against glutamate-induced cell damage that was tested by MTT assay and trypan blue staining. Ho.33342 and PI double staining revealed that apoptosis as well as necrosis took place during glutamate treatment, and apoptosis was the main type of cell death. Oxidative stress played an important role in glutamate-induced cell damage but pretreatment with edaravone alleviated cell death. Results of western blot demonstrated that mechanisms underlying the toxicity of glutamate and the protection of edaravone were related to the PI3K pathway and Bcl-2 protein family. PMID:27957345
Time- and dose-dependent changes in neuronal activity produced by X radiation in brain slices.
Pellmar, T C; Schauer, D A; Zeman, G H
1990-05-01
A new method of exposing tissues to X rays in a lead Faraday cage has made it possible to examine directly radiation damage to isolated neuronal tissue. Thin slices of hippocampus from brains of euthanized guinea pigs were exposed to 17.4 ke V X radiation. Electrophysiological recordings were made before, during, and after exposure to doses between 5 and 65 Gy at a dose rate of 1.54 Gy/min. Following exposure to doses of 40 Gy and greater, the synaptic potential was enhanced, reaching a steady level soon after exposure. The ability of the synaptic potential to generate a spike was reduced and damage progressed after termination of the radiation exposure. Recovery was not observed following termination of exposure. These results demonstrate that an isolated neuronal network can show complex changes in electrophysiological properties following moderate doses of ionizing radiation. An investigation of radiation damage directly to neurons in vitro will contribute to the understanding of the underlying mechanisms of radiation-induced nervous system dysfunction.
Schlotterer, Andrea; Pfisterer, Friederike; Kukudov, Georgi; Heckmann, Britta; Henriquez, Daniel; Morath, Christian; Krämer, Bernhard K.; Hammes, Hans-Peter; Schwenger, Vedat; Morcos, Michael
2018-01-01
Glucose and glucose degradation products (GDPs), contained in peritoneal dialysis (PD) fluids, contribute to the formation of advanced glycation end-products (AGEs). Local damaging effects, resulting in functional impairment of the peritoneal membrane, are well studied. It is also supposed that detoxification of AGE precursors by glyoxalase-1 (GLO1) has beneficial effects on GDP-mediated toxicity. The aim of the current study was to analyze systemic detrimental effects of PD fluids and their prevention by glyoxlase-1. Wild-type and GLO1-overexpressing Caenorhabditis elegans (C. elegans) were cultivated in the presence of low- and high-GDP PD fluids containing 1.5 or 4% glucose. Lifespan, neuronal integrity and neuronal functions were subsequently studied. The higher concentrations of glucose and GDP content resulted in a decrease of maximum lifespan by 2 (P<0.01) and 9 days (P<0.001), respectively. Exposure to low- and high-GDP fluids caused reduction of neuronal integrity by 34 (P<0.05) and 41% (P<0.05). Cultivation of animals in the presence of low-GDP fluid containing 4% glucose caused significant impairment of neuronal function, reducing relative and absolute head motility by 58.5 (P<0.01) and 56.7% (P<0.01), respectively; and relative and absolute tail motility by 55.1 (P<0.05) and 55.0% (P<0.05), respectively. Taken together, GLO1 overexpression protected from glucose-induced lifespan reduction, neurostructural damage and neurofunctional damage under low-GDP-conditions. In conclusion, both glucose and GDP content in PD fluids have systemic impact on the lifespan and neuronal integrity of C. elegans. Detoxification of reactive metabolites by GLO1 overexpression was sufficient to protect lifespan, neuronal integrity and neuronal function in a low-GDP environment. These data emphasize the relevance of the GLO1 detoxifying pathway as a potential therapeutic target in the treatment of reactive metabolite-mediated pathologies.
Straussman, Sharon; Levitsky, Lynne L
2010-02-01
Hypoglycemia in the newborn may be associated with both acute decompensation and long-term neuronal loss. Studies of the cause of hypoglycemic brain damage and the relationship of hypoglycemia to disorders associated with hyperinsulinism have aided in our understanding of this common clinical finding. A recent consensus workshop concluded that there has been little progress toward a precise numerical definition of neonatal hypoglycemia. Nonetheless, newer brain imaging modalities have provided insight into the relationship between neuronal energy deficiency and central nervous system damage. Laboratory studies have begun to reveal the mechanism of hypoglycemic damage. In addition, there is new information about hyperinsulinemic hypoglycemia of genetic, environmental, and iatrogenic origin. The quantitative definition of hypoglycemia in the newborn remains elusive because it is a surrogate marker for central nervous system energy deficiency. Nonetheless, the recognition that hyperinsulinemic hypoglycemia, which produces profound central nervous system energy deficiency, is most likely to lead to long-term central nervous system damage, has altered management of children with hypoglycemia. In addition, imaging studies on neonates and laboratory evaluation in animal models have provided insight into the mechanism of neuronal damage.
Siegel, Mark G
2018-06-01
There continues to be controversy over the timing of anterior cruciate ligament (ACL) surgery. Early or delayed intervention after ACL injury is a topic that has not been settled. The issue is whether ACL tears should have surgery performed in an expedient manner. Or is delay an option with no repercussions to the health of the knee? My associates in nonsurgical specialties wave the New England Journal of Medicine to support their view that surgery is not needed. I routinely espouse the literature confirming that delay of surgery may cause future damage. It is now established that a failure to intervene in a timely manner does cause additional damage. I stand vindicated and can affirm to my colleagues that I have found the answer. There is no longer any doubt or equivocation. Delay in reconstructing an unstable knee does cause damage. Copyright © 2018 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Echo-level compensation and delay tuning in the auditory cortex of the mustached bat.
Macías, Silvio; Mora, Emanuel C; Hechavarría, Julio C; Kössl, Manfred
2016-06-01
During echolocation, bats continuously perform audio-motor adjustments to optimize detection efficiency. It has been demonstrated that bats adjust the amplitude of their biosonar vocalizations (known as 'pulses') to stabilize the amplitude of the returning echo. Here, we investigated this echo-level compensation behaviour by swinging mustached bats on a pendulum towards a reflective surface. In such a situation, the bats lower the amplitude of their emitted pulses to maintain the amplitude of incoming echoes at a constant level as they approach a target. We report that cortical auditory neurons that encode target distance have receptive fields that are optimized for dealing with echo-level compensation. In most cortical delay-tuned neurons, the echo amplitude eliciting the maximum response matches the echo amplitudes measured from the bats' biosonar vocalizations while they are swung in a pendulum. In addition, neurons tuned to short target distances are maximally responsive to low pulse amplitudes while neurons tuned to long target distances respond maximally to high pulse amplitudes. Our results suggest that bats dynamically adjust biosonar pulse amplitude to match the encoding of target range and to keep the amplitude of the returning echo within the bounds of the cortical map of echo delays. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Eguchi, Akihiro; Isbister, James B; Ahmad, Nasir; Stringer, Simon
2018-07-01
We present a hierarchical neural network model, in which subpopulations of neurons develop fixed and regularly repeating temporal chains of spikes (polychronization), which respond specifically to randomized Poisson spike trains representing the input training images. The performance is improved by including top-down and lateral synaptic connections, as well as introducing multiple synaptic contacts between each pair of pre- and postsynaptic neurons, with different synaptic contacts having different axonal delays. Spike-timing-dependent plasticity thus allows the model to select the most effective axonal transmission delay between neurons. Furthermore, neurons representing the binding relationship between low-level and high-level visual features emerge through visually guided learning. This begins to provide a way forward to solving the classic feature binding problem in visual neuroscience and leads to a new hypothesis concerning how information about visual features at every spatial scale may be projected upward through successive neuronal layers. We name this hypothetical upward projection of information the "holographic principle." (PsycINFO Database Record (c) 2018 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Nanba, Masaru; Nomura, Kazuki; Nasuhara, Yusuke; Hayashi, Manabu; Kido, Miyuki; Hayashi, Mayumi; Iguchi, Akinori; Shigematsu, Toru; Hirayama, Masao; Ueno, Shigeaki; Fujii, Tomoyuki
2013-06-01
A high pressure (HP) tolerant (barotolerant) mutant a2568D8 and a variably barotolerant mutant a1210H12 were generated from Saccharomyces cerevisiae using ultra-violet mutagenesis. The two mutants, a barosensitive mutant a924E1 and the wild-type strain, were pressurized (225 MPa), and pressure inactivation behavior was analyzed. In the wild-type strain, a proportion of the growth-delayed cells were detected after exposure to HP. In a924E1, the proportion of growth-delayed cells significantly decreased compared with the wild-type. In a2568D8, the proportion of growth-delayed cells increased and the proportion of inactivated cells decreased compared with the wild-type. In a1210H12, the growth-delayed cells could not be detected within 120 s of exposure to HP. The proportion of growth-delayed cells, which incurred the damage, would affect the survival ratio by HP. These results suggested that cellular changes in barotolerance caused by mutations are remarkably affected by the ability to recover from cellular damage, which results in a growth delay.
Howell, Gareth R.; Soto, Ileana; Zhu, Xianjun; Ryan, Margaret; Macalinao, Danilo G.; Sousa, Gregory L.; Caddle, Lura B.; MacNicoll, Katharine H.; Barbay, Jessica M.; Porciatti, Vittorio; Anderson, Michael G.; Smith, Richard S.; Clark, Abbot F.; Libby, Richard T.; John, Simon W.M.
2012-01-01
Glaucoma is a common ocular disorder that is a leading cause of blindness worldwide. It is characterized by the dysfunction and loss of retinal ganglion cells (RGCs). Although many studies have implicated various molecules in glaucoma, no mechanism has been shown to be responsible for the earliest detectable damage to RGCs and their axons in the optic nerve. Here, we show that the leukocyte transendothelial migration pathway is activated in the optic nerve head at the earliest stages of disease in an inherited mouse model of glaucoma. This resulted in proinflammatory monocytes entering the optic nerve prior to detectable neuronal damage. A 1-time x-ray treatment prevented monocyte entry and subsequent glaucomatous damage. A single x-ray treatment of an individual eye in young mice provided that eye with long-term protection from glaucoma but had no effect on the contralateral eye. Localized radiation treatment prevented detectable neuronal damage and dysfunction in treated eyes, despite the continued presence of other glaucomatous stresses and signaling pathways. Injection of endothelin-2, a damaging mediator produced by the monocytes, into irradiated eyes, combined with the other glaucomatous stresses, restored neural damage with a topography characteristic of glaucoma. Together, these data support a model of glaucomatous damage involving monocyte entry into the optic nerve. PMID:22426214
Induction of a G1-S checkpoint in fission yeast.
Bøe, Cathrine A; Krohn, Marit; Rødland, Gro Elise; Capiaghi, Christoph; Maillard, Olivier; Thoma, Fritz; Boye, Erik; Grallert, Beáta
2012-06-19
Entry into S phase is carefully regulated and, in most organisms, under the control of a G(1)-S checkpoint. We have previously described a G(1)-S checkpoint in fission yeast that delays formation of the prereplicative complex at chromosomal replication origins after exposure to UV light (UVC). This checkpoint absolutely depends on the Gcn2 kinase. Here, we explore the signal for activation of the Gcn2-dependent G(1)-S checkpoint in fission yeast. If some form of DNA damage can activate the checkpoint, deficient DNA repair should affect the length of the checkpoint-induced delay. We find that the cell-cycle delay differs in repair-deficient mutants from that in wild-type cells. However, the duration of the delay depends not only on the repair capacity of the cells, but also on the nature of the repair deficiency. First, the delay is abolished in cells that are deficient in the early steps of repair. Second, the delay is prolonged in repair mutants that fail to complete repair after the incision stage. We conclude that the G(1)-S delay depends on damage to the DNA and that the activating signal derives not from the initial DNA damage, but from a repair intermediate(s). Surprisingly, we find that activation of Gcn2 does not depend on the processing of DNA damage and that activated Gcn2 alone is not sufficient to delay entry into S phase in UVC-irradiated cells. Thus, the G(1)-S delay depends on at least two different inputs.
Mendler, Michael; Riedinger, Christin; Schlotterer, Andrea; Volk, Nadine; Fleming, Thomas; Herzig, Stephan; Nawroth, Peter P; Morcos, Michael
2017-02-01
Glucose derived metabolism generates reactive metabolites affecting the neuronal system and lifespan in C. elegans. Here, the role of the insulin homologue ins-7 and its downstream effectors in the generation of high glucose induced neuronal damage and shortening of lifespan was studied. In C. elegans high glucose conditions induced the expression of the insulin homologue ins-7. Abrogating ins-7 under high glucose conditions in non-neuronal cells decreased reactive oxygen species (ROS)-formation and accumulation of methylglyoxal derived advanced glycation endproducts (AGEs), prevented structural neuronal damage and normalised head motility and lifespan. The restoration of lifespan by decreased ins-7 expression was dependent on the concerted action of sod-3 and glod-4 coding for the homologues of iron-manganese superoxide dismutase and glyoxalase 1, respectively. Under high glucose conditions mitochondria-mediated oxidative stress and glycation are downstream targets of ins-7. This impairs the neuronal system and longevity via a non-neuronal/neuronal crosstalk by affecting sod-3 and glod-4, thus giving further insight into the pathophysiology of diabetic complications. Copyright © 2017 Elsevier Inc. All rights reserved.
Ye, Weizhen; Blain, Stacy W
2010-08-01
A major phenotype seen in neurodegenerative disorders is the selective loss of neurons due to apoptotic death and evidence suggests that inappropriate re-activation of cell cycle proteins in post-mitotic neurons may be responsible. To investigate whether reactivation of the G1 cell cycle proteins and S phase entry was linked with apoptosis, we examined homocysteine-induced neuronal cell death in a rat cortical neuron tissue culture system. Hyperhomocysteinaemia is a physiological risk factor for a variety of neurodegenerative diseases, including Alzheimer's disease. We found that in response to homocysteine treatment, cyclin D1, and cyclin-dependent kinases 4 and 2 translocated to the nucleus, and p27 levels decreased. Both cyclin-dependent kinases 4 and 2 regained catalytic activity, the G1 gatekeeper retinoblastoma protein was phosphorylated and DNA synthesis was detected, suggesting transit into S phase. Double-labelling immunofluorescence showed a 95% co-localization of anti-bromodeoxyuridine labelling with apoptotic markers, demonstrating that those cells that entered S phase eventually died. Neurons could be protected from homocysteine-induced death by methods that inhibited G1 phase progression, including down-regulation of cyclin D1 expression, inhibition of cyclin-dependent kinases 4 or 2 activity by small molecule inhibitors, or use of the c-Abl kinase inhibitor, Gleevec, which blocked cyclin D and cyclin-dependent kinase 4 nuclear translocation. However, blocking cell cycle progression post G1, using DNA replication inhibitors, did not prevent apoptosis, suggesting that death was not preventable post the G1-S phase checkpoint. While homocysteine treatment caused DNA damage and activated the DNA damage response, its mechanism of action was distinct from that of more traditional DNA damaging agents, such as camptothecin, as it was p53-independent. Likewise, inhibition of the DNA damage sensors, ataxia-telangiectasia mutant and ataxia telangiectasia and Rad3 related proteins, did not rescue apoptosis and in fact exacerbated death, suggesting that the DNA damage response might normally function neuroprotectively to block S phase-dependent apoptosis induction. As cell cycle events appear to be maintained in vivo in affected neurons for weeks to years before apoptosis is observed, activation of the DNA damage response might be able to hold cell cycle-induced death in check.
Delayed excitatory and inhibitory feedback shape neural information transmission
NASA Astrophysics Data System (ADS)
Chacron, Maurice J.; Longtin, André; Maler, Leonard
2005-11-01
Feedback circuitry with conduction and synaptic delays is ubiquitous in the nervous system. Yet the effects of delayed feedback on sensory processing of natural signals are poorly understood. This study explores the consequences of delayed excitatory and inhibitory feedback inputs on the processing of sensory information. We show, through numerical simulations and theory, that excitatory and inhibitory feedback can alter the firing frequency response of stochastic neurons in opposite ways by creating dynamical resonances, which in turn lead to information resonances (i.e., increased information transfer for specific ranges of input frequencies). The resonances are created at the expense of decreased information transfer in other frequency ranges. Using linear response theory for stochastically firing neurons, we explain how feedback signals shape the neural transfer function for a single neuron as a function of network size. We also find that balanced excitatory and inhibitory feedback can further enhance information tuning while maintaining a constant mean firing rate. Finally, we apply this theory to in vivo experimental data from weakly electric fish in which the feedback loop can be opened. We show that it qualitatively predicts the observed effects of inhibitory feedback. Our study of feedback excitation and inhibition reveals a possible mechanism by which optimal processing may be achieved over selected frequency ranges.
Ryzhavsky, B Ya; Lebedko, O A; Belolubskaya, D S
2008-08-01
The effects of histochrome on the severity of delayed effects of prenatal exposure to lead nitrate were studied in the rat brain. Exposure of pregnant rats to lead nitrate during activation of free radical oxidation reduced activity of NADH- and NADPH-dehydrogenases in cortical neurons of their 40-day-old progeny, reduced the number of neurons in a visual field, increased the number of pathologically modified neurons, and stimulated rat motor activity in an elevated plus-maze. Two intraperitoneal injections of histochrome in a dose of 0.1 mg/kg before and after lead citrate challenge attenuated the manifestations of oxidative stress and prevented the changes in some morphological and histochemical parameters of the brain, developing under the effect of lead exposure.
Peroxisomes contribute to oxidative stress in neurons during doxorubicin-based chemotherapy.
Moruno-Manchon, Jose F; Uzor, Ndidi-Ese; Kesler, Shelli R; Wefel, Jeffrey S; Townley, Debra M; Nagaraja, Archana Sidalaghatta; Pradeep, Sunila; Mangala, Lingegowda S; Sood, Anil K; Tsvetkov, Andrey S
2018-01-01
Doxorubicin, a commonly used anti-neoplastic agent, causes severe neurotoxicity. Doxorubicin promotes thinning of the brain cortex and accelerates brain aging, leading to cognitive impairment. Oxidative stress induced by doxorubicin contributes to cellular damage. In addition to mitochondria, peroxisomes also generate reactive oxygen species (ROS) and promote cell senescence. Here, we investigated if doxorubicin affects peroxisomal homeostasis in neurons. We demonstrate that the number of peroxisomes is increased in doxorubicin-treated neurons and in the brains of mice which underwent doxorubicin-based chemotherapy. Pexophagy, the specific autophagy of peroxisomes, is downregulated in neurons, and peroxisomes produce more ROS. 2-hydroxypropyl-β-cyclodextrin (HPβCD), an activator of the transcription factor TFEB, which regulates expression of genes involved in autophagy and lysosome function, mitigates damage of pexophagy and decreases ROS production induced by doxorubicin. We conclude that peroxisome-associated oxidative stress induced by doxorubicin may contribute to neurotoxicity, cognitive dysfunction, and accelerated brain aging in cancer patients and survivors. Peroxisomes might be a valuable new target for mitigating neuronal damage caused by chemotherapy drugs and for slowing down brain aging in general. Copyright © 2017 Elsevier Inc. All rights reserved.
Andersen, Hjalte Holm; Johnsen, Kasper Bendix; Moos, Torben
2014-05-01
Neurodegenerative disorders are characterized by the presence of inflammation in areas with neuronal cell death and a regional increase in iron that exceeds what occurs during normal aging. The inflammatory process accompanying the neuronal degeneration involves glial cells of the central nervous system (CNS) and monocytes of the circulation that migrate into the CNS while transforming into phagocytic macrophages. This review outlines the possible mechanisms responsible for deposition of iron in neurodegenerative disorders with a main emphasis on how iron-containing monocytes may migrate into the CNS, transform into macrophages, and die out subsequently to their phagocytosis of damaged and dying neuronal cells. The dying macrophages may in turn release their iron, which enters the pool of labile iron to catalytically promote formation of free-radical-mediated stress and oxidative damage to adjacent cells, including neurons. Healthy neurons may also chronically acquire iron from the extracellular space as another principle mechanism for oxidative stress-mediated damage. Pharmacological handling of monocyte migration into the CNS combined with chelators that neutralize the effects of extracellular iron occurring due to the release from dying macrophages as well as intraneuronal chelation may denote good possibilities for reducing the deleterious consequences of iron deposition in the CNS.
Altered development of the brain after focal herpesvirus infection of the central nervous system.
Koontz, Thad; Bralic, Marina; Tomac, Jelena; Pernjak-Pugel, Ester; Bantug, Glen; Jonjic, Stipan; Britt, William J
2008-02-18
Human cytomegalovirus infection of the developing central nervous system (CNS) is a major cause of neurological damage in newborn infants and children. To investigate the pathogenesis of this human infection, we developed a mouse model of infection in the developing CNS. Intraperitoneal inoculation of newborn animals with murine cytomegalovirus resulted in virus replication in the liver followed by virus spread to the brain. Virus infection of the CNS was associated with the induction of inflammatory responses, including the induction of a large number of interferon-stimulated genes and histological evidence of focal encephalitis with recruitment of mononuclear cells to foci containing virus-infected cells. The morphogenesis of the cerebellum was delayed in infected animals. The defects in cerebellar development in infected animals were generalized and, although correlated temporally with virus replication and CNS inflammation, spatially unrelated to foci of virus-infected cells. Specific defects included decreased granular neuron proliferation and migration, expression of differentiation markers, and activation of neurotrophin receptors. These findings suggested that in the developing CNS, focal virus infection and induction of inflammatory responses in resident and infiltrating mononuclear cells resulted in delayed cerebellar morphogenesis.
Altered development of the brain after focal herpesvirus infection of the central nervous system
Koontz, Thad; Bralic, Marina; Tomac, Jelena; Pernjak-Pugel, Ester; Bantug, Glen; Jonjic, Stipan; Britt, William J.
2008-01-01
Human cytomegalovirus infection of the developing central nervous system (CNS) is a major cause of neurological damage in newborn infants and children. To investigate the pathogenesis of this human infection, we developed a mouse model of infection in the developing CNS. Intraperitoneal inoculation of newborn animals with murine cytomegalovirus resulted in virus replication in the liver followed by virus spread to the brain. Virus infection of the CNS was associated with the induction of inflammatory responses, including the induction of a large number of interferon-stimulated genes and histological evidence of focal encephalitis with recruitment of mononuclear cells to foci containing virus-infected cells. The morphogenesis of the cerebellum was delayed in infected animals. The defects in cerebellar development in infected animals were generalized and, although correlated temporally with virus replication and CNS inflammation, spatially unrelated to foci of virus-infected cells. Specific defects included decreased granular neuron proliferation and migration, expression of differentiation markers, and activation of neurotrophin receptors. These findings suggested that in the developing CNS, focal virus infection and induction of inflammatory responses in resident and infiltrating mononuclear cells resulted in delayed cerebellar morphogenesis. PMID:18268036
DNA Damage Analysis in Children with Non-syndromic Developmental Delay by Comet Assay.
Susai, Surraj; Chand, Parkash; Ballambattu, Vishnu Bhat; Hanumanthappa, Nandeesha; Veeramani, Raveendranath
2016-05-01
Majority of the developmental delays in children are non-syndromic and they are believed to have an underlying DNA damage, though not well substantiated. Hence the present study was carried out to find out if there is any increased DNA damage in children with non-syndromic developmental delay by using the comet assay. The present case-control study was undertaken to assess the level of DNA damage in children with non syndromic developmental delay and compare the same with that of age and sex matched controls using submarine gel electrophoresis (Comet Assay). The blood from clinically diagnosed children with non syndromic developmental delay and controls were subjected for alkaline version of comet assay - Single cell gel electrophoresis using lymphocytes isolated from the peripheral blood. The comets were observed under a bright field microscope; photocaptured and scored using the Image J image quantification software. Comet parameters were compared between the cases and controls and statistical analysis and interpretation of results was done using the statistical software SPSS version 20. The mean comet tail length in cases and control was 20.77+7.659μm and 08.97+4.398μm respectively which was statistically significant (p<0.001). Other comet parameters like total comet length and % DNA in tail also showed a statistically significant difference (p < 0.001) between cases and controls. The current investigation unraveled increased levels of DNA damage in children with non syndromic developmental delay when compared to the controls.
García-García, Luis; Fernández de la Rosa, Rubén; Delgado, Mercedes; Silván, Ágata; Bascuñana, Pablo; Bankstahl, Jens P; Gomez, Francisca; Pozo, Miguel A
2018-02-01
Intracerebral administration of the potassium channel blocker 4-aminopyridine (4-AP) triggers neuronal depolarization and intense acute seizure activity followed by neuronal damage. We have recently shown that, in the lithium-pilocarpine rat model of status epilepticus (SE), a single administration of metyrapone, an inhibitor of the 11β-hydroxylase enzyme, had protective properties of preventive nature against signs of brain damage and neuroinflammation. Herein, our aim was to investigate to which extent, pretreatment with metyrapone (150 mg/kg, i.p.) was also able to prevent eventual changes in the acute brain metabolism and short-term neuronal damage induced by intrahippocampal injection of 4-AP (7 μg/5 μl). To this end, regional brain metabolism was assessed by 2-deoxy-2-[ 18 F]fluoro-d-glucose ([ 18 F]FDG) positron emission tomography (PET) during the ictal period. Three days later, markers of neuronal death and hippocampal integrity and apoptosis (Nissl staining, NeuN and active caspase-3 immunohistochemistry), neurodegeneration (Fluoro-Jade C labeling), astrogliosis (glial fibrillary acidic protein (GFAP) immunohistochemistry) and microglia-mediated neuroinflammation (in vitro [ 18 F]GE180 autoradiography) were evaluated. 4-AP administration acutely triggered marked brain hypermetabolism within and around the site of injection as well as short-term signs of brain damage and inflammation. Most important, metyrapone pretreatment was able to reduce ictal hypermetabolism as well as all the markers of brain damage except microglia-mediated neuroinflammation. Overall, our study corroborates the neuroprotective effects of metyrapone against multiple signs of brain damage caused by seizures triggered by 4-AP. Ultimately, our data add up to the consistent protective effect of metyrapone pretreatment reported in other models of neurological disorders of different etiology. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Da-min; Lu, Pei-Hua, E-mail: lphty1_1@163.com; Zhang, Ke
In this study, we tested the potential role of astragaloside IV (AS-IV) against oxygen and glucose deprivation/re-oxygenation (OGD/R)-induced damages in murine cortical neurons, and studied the associated signaling mechanisms. AS-IV exerted significant neuroprotective effects against OGD/R by reducing reactive oxygen species (ROS) accumulation, thereby attenuating oxidative stress and neuronal cell death. We found that AS-IV treatment in cortical neurons resulted in NF-E2-related factor 2 (Nrf2) signaling activation, evidenced by Nrf2 Ser-40 phosphorylation, and its nuclear localization, as well as transcription of antioxidant-responsive element (ARE)-regulated genes: heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO-1) and sulphiredoxin 1 (SRXN-1). Knockdown of Nrf2 throughmore » lentiviral shRNAs prevented AS-IV-induced ARE genes transcription, and abolished its anti-oxidant and neuroprotective activities. Further, we discovered that AS-IV stimulated heparin-binding-epidermal growth factor (HB-EGF) release to trans-activate epidermal growth factor receptor (EGFR) in cortical neurons. Blockage or silencing EGFR prevented Nrf2 activation by AS-IV, thus inhibiting AS-IV-mediated anti-oxidant and neuroprotective activities against OGD/R. In summary, AS-IV protects cortical neurons against OGD/R damages through activating of EGFR-Nrf2 signaling. - Highlights: • Pre-treatment of astragaloside IV (AS-IV) protects murine cortical neurons from OGD/R. • AS-IV activates Nrf2-ARE signaling in murine cortical neurons. • Nrf2 is required for AS-IV-mediated anti-oxidant and neuroprotective activities. • AS-IV stimulates HB-EGF release to trans-activate EGFR in murine cortical neurons. • EGFR mediates AS-IV-induced Nrf2 activation and neuroprotection against OGD/R.« less
Cisneros, Elsa; Roza, Carolina; Jackson, Nieka; López-García, José Antonio
2015-01-01
Kv7.2 channel expression has been reported to decrease in dorsal root ganglia (DRG) following the induction of a peripheral neuropathy while other experiments show that Kv7.2 accumulates in peripheral neuromas. The mechanisms underlying these novel expression patterns are poorly understood. Here we use immunofluorescence methods to analyze Kv7.2 protein expression changes in sensory neurons following peripheral axotomy and the potential role of axonal transport. Results indicate that DRG neurons express Kv7.2 in ~16% of neurons and that this number decreases by about 65% after axotomy. Damaged neurons were identified in DRG by application of the tracer Fluoro-ruby at the site of injury during surgery. Reduction of Kv7.2 expression was particularly strong in damaged neurons although some loss was also found in putative uninjured neurons. In parallel to the decrease in the soma of axotomized sensory neurons, Kv7.2 accumulated at neuromatose fiber endings. Blockade of axonal transport with either vinblastine (VLB) or colchicine (COL) abolished Kv7.2 redistribution in neuropathic animals. Channel distribution rearrangements did not occur following induction of inflammation in the hind paw. Behavioral tests indicate that protein rearrangements within sensory afferents are essential to the development of allodynia under neuropathic conditions. These results suggest that axotomy enhances axonal transport in injured sensory neurons, leading to a decrease of somatic expression of Kv7.2 protein and a concomitant accumulation in damaged fiber endings. Localized changes in channel expression patterns under pathological conditions may create novel opportunities for Kv7.2 channel openers to act as analgesics.
Cisneros, Elsa; Roza, Carolina; Jackson, Nieka; López-García, José Antonio
2015-01-01
Kv7.2 channel expression has been reported to decrease in dorsal root ganglia (DRG) following the induction of a peripheral neuropathy while other experiments show that Kv7.2 accumulates in peripheral neuromas. The mechanisms underlying these novel expression patterns are poorly understood. Here we use immunofluorescence methods to analyze Kv7.2 protein expression changes in sensory neurons following peripheral axotomy and the potential role of axonal transport. Results indicate that DRG neurons express Kv7.2 in ~16% of neurons and that this number decreases by about 65% after axotomy. Damaged neurons were identified in DRG by application of the tracer Fluoro-ruby at the site of injury during surgery. Reduction of Kv7.2 expression was particularly strong in damaged neurons although some loss was also found in putative uninjured neurons. In parallel to the decrease in the soma of axotomized sensory neurons, Kv7.2 accumulated at neuromatose fiber endings. Blockade of axonal transport with either vinblastine (VLB) or colchicine (COL) abolished Kv7.2 redistribution in neuropathic animals. Channel distribution rearrangements did not occur following induction of inflammation in the hind paw. Behavioral tests indicate that protein rearrangements within sensory afferents are essential to the development of allodynia under neuropathic conditions. These results suggest that axotomy enhances axonal transport in injured sensory neurons, leading to a decrease of somatic expression of Kv7.2 protein and a concomitant accumulation in damaged fiber endings. Localized changes in channel expression patterns under pathological conditions may create novel opportunities for Kv7.2 channel openers to act as analgesics. PMID:26696829
[Knockdown of PRDX6 in microglia reduces neuron viability after OGD/R injury].
Tan, Li; Zhao, Yong; Jiang, Beibei; Yang, Bo; Zhang, Hui
2016-08-01
Objective To observe the effects of peroxiredoxin 6 (PRDX6) knockdown in the microglia on neuron viability after oxygen-glucose deprivation and reoxygenation (OGD/R). Methods Microglia was treated with lentivirus PRDX6-siRNA and Ca(2+)-independent phospholipase A2 (iPLA2) inhibitor, 1-hexadecyl-3-(trifluoroethgl)-sn-glycerol-2 phosphomethanol (MJ33). Twenty-four hours later, it was co-cultured with primary neuron to establish the microglia-neuron co-culture OGD/R model. According to the different treatment of microglia, the cells were divided into normal group, OGD/R group, negative control-siRNA treated OGD/R group, PRDX6-siRNA treated OGD/R group and PRDX6-siRNA combined with MJ33 treated OGD/R group. Western blot analysis and real-time quantitative PCR were respectively performed to detect PRDX6 protein and mRNA levels after knockdown of PRDX6 in microglia. The iPLA2 activity was measured by ELISA. MTS and lactate dehydrogenase (LDH) assay were used to measure neuron viability and cell damage. The oxidative stress level of neuron was determined by measuring superoxide dismutase (SOD) and malonaldehyde (MDA) content. Results In PRDX6-siRNA group, neuron viability was inhibited and oxidative stress damage was aggravated compared with OGD/R group. In PRDX6-siRNA combined with MJ33 group, cell viability was promoted and oxidative stress damage was alleviated compared with PRDX6-siRNA group. Conclusion PRDX6 in microglia protects neuron against OGD/R-induced injury, and iPLA2 activity has an effect on PRDX6.
Inhibitory effects of pimozide on cloned and native voltage-gated potassium channels.
Zhang, Zhi-Hao; Lee, Yan T; Rhodes, Kenneth; Wang, Kewei; Argentieri, Thomas M; Wang, Qiang
2003-07-04
The primary goal of this study was to use the cloned neuronal Kv channels to test if pimozide (PMZD), an antipsychotic drug, modulates the activity of Kv channels. In CHO cells, PMZD blocked Kv2.1, a major neuronal delayed rectifier, in a manner that depends upon time and concentration. The estimated IC50 was 4.2 microM at +50 mV. Tail current analysis shows that PMZD reduced the amplitude of the currents, with no effect on the steady-state activation curve (V(1/2) from 14.1 to 11.1 mV) or the slope (16.7 vs. 14.0 mV). From -120 to -20 mV, PMZD did not impact the deactivation kinetics of Kv2.1. PMZD also blocked Kv1.1, another neuronal delayed rectifier, with 16.1 microM of IC50. When Kv1.1 was co-expressed with Kvbeta1, approximately 50% of the Kv1.1 were converted into an inactivating A-type current and the Kv1.1/Kvbeta1 A-type currents were insensitive to PMZD. PMZD (10 microM) had minimal effect on Kv1.4, and had no effect on the M-current candidates, KCNQ2 and KCNQ3 when co-expressed in Xenopus oocytes. In hippocampal neurons, PMZD inhibited the delayed rectifiers by approximately 60%, and A-type currents were insensitive to PMZD. The results suggest that PMZD inhibits certain neuronal Kv channels in heterologous expression systems and in hippocampal neurons. PMZD was less effective on A-type currents, presumably because its ability to block requires a prolonged opening of the K channels. It is thus conceivable that the time-dependent and/or subunit-specific inhibition of Kv channels may increase the release of neurotransmitters such as serotonin and glutamate.
Hawkins, Simon J; Crompton, Lucy A; Sood, Aman; Saunders, Margaret; Boyle, Noreen T; Buckley, Amy; Minogue, Aedín M; McComish, Sarah F; Jiménez-Moreno, Natalia; Cordero-Llana, Oscar; Stathakos, Petros; Gilmore, Catherine E; Kelly, Stephen; Lane, Jon D; Case, C Patrick; Caldwell, Maeve A
2018-05-01
The potential for maternal nanoparticle (NP) exposures to cause developmental toxicity in the fetus without the direct passage of NPs has previously been shown, but the mechanism remained elusive. We now demonstrate that exposure of cobalt and chromium NPs to BeWo cell barriers, an in vitro model of the human placenta, triggers impairment of the autophagic flux and release of interleukin-6. This contributes to the altered differentiation of human neural progenitor cells and DNA damage in the derived neurons and astrocytes. Crucially, neuronal DNA damage is mediated by astrocytes. Inhibiting the autophagic degradation in the BeWo barrier by overexpression of the dominant-negative human ATG4B C74A significantly reduces the levels of DNA damage in astrocytes. In vivo, indirect NP toxicity in mice results in neurodevelopmental abnormalities with reactive astrogliosis and increased DNA damage in the fetal hippocampus. Our results demonstrate the potential importance of autophagy to elicit NP toxicity and the risk of indirect developmental neurotoxicity after maternal NP exposure.
NASA Astrophysics Data System (ADS)
Hawkins, Simon J.; Crompton, Lucy A.; Sood, Aman; Saunders, Margaret; Boyle, Noreen T.; Buckley, Amy; Minogue, Aedín M.; McComish, Sarah F.; Jiménez-Moreno, Natalia; Cordero-Llana, Oscar; Stathakos, Petros; Gilmore, Catherine E.; Kelly, Stephen; Lane, Jon D.; Case, C. Patrick; Caldwell, Maeve A.
2018-05-01
The potential for maternal nanoparticle (NP) exposures to cause developmental toxicity in the fetus without the direct passage of NPs has previously been shown, but the mechanism remained elusive. We now demonstrate that exposure of cobalt and chromium NPs to BeWo cell barriers, an in vitro model of the human placenta, triggers impairment of the autophagic flux and release of interleukin-6. This contributes to the altered differentiation of human neural progenitor cells and DNA damage in the derived neurons and astrocytes. Crucially, neuronal DNA damage is mediated by astrocytes. Inhibiting the autophagic degradation in the BeWo barrier by overexpression of the dominant-negative human ATG4BC74A significantly reduces the levels of DNA damage in astrocytes. In vivo, indirect NP toxicity in mice results in neurodevelopmental abnormalities with reactive astrogliosis and increased DNA damage in the fetal hippocampus. Our results demonstrate the potential importance of autophagy to elicit NP toxicity and the risk of indirect developmental neurotoxicity after maternal NP exposure.
Morucci, Gabriele; Branca, Jacopo J V; Gulisano, Massimo; Ruggiero, Marco; Paternostro, Ferdinando; Pacini, Alessandra; Di Cesare Mannelli, Lorenzo; Pacini, Stefania
2015-02-01
Oxaliplatin-based regimens are effective in metastasized advanced cancers. However, a major limitation to their widespread use is represented by neurotoxicity that leads to peripheral neuropathy. In this study we evaluated the roles of a proven immunotherapeutic agent [Gc-protein-derived macrophage activating factor (GcMAF)] in preventing or decreasing oxaliplatin-induced neuronal damage and in modulating microglia activation following oxaliplatin-induced damage. The effects of oxaliplatin and of a commercially available formula of GcMAF [oleic acid-GcMAF (OA-GcMAF)] were studied in human neurons (SH-SY5Y cells) and in human microglial cells (C13NJ). Cell density, morphology and viability, as well as production of cAMP and expression of vascular endothelial growth factor (VEGF), markers of neuron regeneration [neuromodulin or growth associated protein-43 (Gap-43)] and markers of microglia activation [ionized calcium binding adaptor molecule 1 (Iba1) and B7-2], were determined. OA-GcMAF reverted the damage inflicted by oxaliplatin on human neurons and preserved their viability. The neuroprotective effect was accompanied by increased intracellular cAMP production, as well as by increased expression of VEGF and neuromodulin. OA-GcMAF did not revert the effects of oxaliplatin on microglial cell viability. However, it increased microglial activation following oxaliplatin-induced damage, resulting in an increased expression of the markers Iba1 and B7-2 without any concomitant increase in cell number. When neurons and microglial cells were co-cultured, the presence of OA-GcMAF significantly counteracted the toxic effects of oxaliplatin. Our results demonstrate that OA-GcMAF, already used in the immunotherapy of advanced cancers, may significantly contribute to neutralizing the neurotoxicity induced by oxaliplatin, at the same time possibly concurring to an integrated anticancer effect. The association between these two powerful anticancer molecules would probably produce the dual effect of reduction of oxaliplatin-induced neurotoxicity, together with possible synergism in the overall anticancer effect.
Zaja-Milatovic, Snjezana; Gupta, Ramesh C.; Aschner, Michael; Montine, Thomas J.; Milatovic, Dejan
2008-01-01
Intense seizure activity associated with status epilepticus and excitatory amino acid (EAA) imbalance initiates oxidative damage and neuronal injury in CA1 of the ventral hippocampus. We tested the hypothesis that dendritic degeneration of pyramidal neurons in the CA1 hippocampal area resulting from seizure-induced neurotoxicity is modulated by cerebral oxidative damage. Kainic acid (KA, 1 nmol/5 μl) was injected intracerebroventricularly to C57Bl/6 mice. F2-isoprostanes (F2-IsoPs) and F4-neuroprostanes (F4-NeuroPs) were used as surrogate measures of in vivo oxidative stress and biomarkers of lipid peroxidation. Nitric oxide synthase (NOS) activity was quantified by evaluating citrulline level and pyramidal neuron dendrites and spines were evaluated using rapid Golgi stains and a Neurolucida system. KA produced severe seizures in mice immediately after its administration and a significant (p<0.001) increase in F2-IsoPs, F4-NeuroPs and citrulline levels were seen 30 min following treatment. At the same time, hippocampal pyramidal neurons showed significant (p<0.001) reduction in dendritic length and spine density. In contrast, no significant change in neuronal dendrite and spine density or F2-IsoP, F4-NeuroPs and citrulline levels were found in mice pretreated with Vitamin E (α-tocopherol, 100 mg/kg, ip) for 3 days, or with N-tert-butyl-α-phenylnitrone (PBN, 200 mg/kg, ip) or ibuprofen (inhibitors of cyclooxygenase, COX, 14 μg/ml of drinking water) for 2 weeks prior to KA treatment. These findings indicate novel interactions among free radical-induced generation of F2-IsoPs and F4-NeuroPs, nitric oxide and dendritic degeneration, closely associate oxidative damage to neuronal membranes with degeneration of the dendritic system, and point to possible interventions to limit severe damage in acute neurological disorders. PMID:18556069
Aguilar-Arredondo, Andrea; Zepeda, Angélica
2018-07-01
The dentate gyrus (DG) is a neurogenic structure that exhibits functional and structural reorganization after injury. Neurogenesis and functional recovery occur after brain damage, and the possible relation between both processes is a matter of study. We explored whether neurogenesis and the activation of new neurons correlated with DG recovery over time. We induced a DG lesion in young adult rats through the intrahippocampal injection of kainic acid and analyzed functional recovery and the activation of new neurons after animals performed a contextual fear memory task (CFM) or a control spatial exploratory task. We analyzed the number of BrdU+ cells that co-localized with doublecortin (DCX) or with NeuN within the damaged DG and evaluated the number of cells in each population that were labelled with the activity marker c-fos after either task. At 10 days post-lesion (dpl), a region of the granular cell layer was devoid of cells, evidencing the damaged area, whereas at 30 dpl this region was significantly smaller. At 10 dpl, the number of BrdU+/DCX+/c-fos positive cells was increased compared to the sham-lesion group, but CFM was impaired. At 30 dpl, a significantly greater number of BrdU+/NeuN+/c-fos positive cells was observed than at 10 dpl, and activation correlated with CFM recovery. Performance in the spatial exploratory task induced marginal c-fos immunoreactivity in the BrdU+/NeuN+ population. We demonstrate that neurons born after the DG was damaged survive and are activated in a time- and task-dependent manner and that activation of new neurons occurs along functional recovery.
Anuncibay-Soto, Berta; Pérez-Rodriguez, Diego; Santos-Galdiano, María; Font-Belmonte, Enrique; Ugidos, Irene F; Gonzalez-Rodriguez, Paloma; Regueiro-Purriños, Marta; Fernández-López, Arsenio
2018-05-01
Blood reperfusion of the ischemic tissue after stroke promotes increases in the inflammatory response as well as accumulation of unfolded/misfolded proteins in the cell, leading to endoplasmic reticulum (ER) stress. Both Inflammation and ER stress are critical processes in the delayed death of the cells damaged after ischemia. The aim of this study is to check the putative synergic neuroprotective effect by combining anti-inflammatory and anti-ER stress agents after ischemia. The study was performed on a two-vessel occlusion global cerebral ischemia model. Animals were treated with salubrinal one hour after ischemia and with robenacoxib at 8 h and 32 h after ischemia. Parameters related to the integrity of the blood-brain barrier (BBB), such as matrix metalloproteinase 9 and different cell adhesion molecules (CAMs), were analyzed by qPCR at 24 h and 48 h after ischemia. Microglia and cell components of the neurovascular unit, including neurons, endothelial cells and astrocytes, were analyzed by immunofluorescence after 48 h and seven days of reperfusion. Pharmacologic control of ER stress by salubrinal treatment after ischemia, revealed a neuroprotective effect over neurons that reduces the transcription of molecules involved in the impairment of the BBB. Robenacoxib treatment stepped neuronal demise forward, revealing a detrimental effect of this anti-inflammatory agent. Combined treatment with robenacoxib and salubrinal after ischemia prevented neuronal loss and changes in components of the neurovascular unit and microglia observed when animals were treated only with robenacoxib. Combined treatment with anti-ER stress and anti-inflammatory agents is able to provide enhanced neuroprotective effects reducing glial activation, which opens new avenues in therapies against stroke. Copyright © 2018 Elsevier Inc. All rights reserved.
Veit, Lena; Pidpruzhnykova, Galyna; Nieder, Andreas
2015-01-01
The ability to form associations between behaviorally relevant sensory stimuli is fundamental for goal-directed behaviors. We investigated neuronal activity in the telencephalic area nidopallium caudolaterale (NCL) while two crows (Corvus corone) performed a delayed association task. Whereas some paired associates were familiar to the crows, novel associations had to be learned and mapped to the same target stimuli within a single session. We found neurons that prospectively encoded the chosen test item during the delay for both familiar and newly learned associations. These neurons increased their selectivity during learning in parallel with the crows' increased behavioral performance. Thus, sustained activity in the NCL actively processes information for the upcoming behavioral choice. These data provide new insights into memory representations of behaviorally meaningful stimuli in birds, and how such representations are formed during learning. The findings suggest that the NCL plays a role in learning arbitrary associations, a cornerstone of corvids’ remarkable behavioral flexibility and adaptability. PMID:26598669
Membrane Potential Dynamics of CA1 Pyramidal Neurons During Hippocampal Ripples in Awake Mice
Hulse, Brad K.; Moreaux, Laurent C.; Lubenov, Evgueniy V.; Siapas, Athanassios G.
2016-01-01
Ripples are high-frequency oscillations associated with population bursts in area CA1 of the hippocampus that play a prominent role in theories of memory consolidation. While spiking during ripples has been extensively studied, our understanding of the subthreshold behavior of hippocampal neurons during these events remains incomplete. Here, we combine in vivo whole-cell and multisite extracellular recordings to characterize the membrane potential dynamics of identified CA1 pyramidal neurons during ripples. We find that the subthreshold depolarization during ripples is uncorrelated with the net excitatory input to CA1, while the post-ripple hyperpolarization varies proportionately. This clarifies the circuit mechanism keeping most neurons silent during ripples. On a finer time scale, the phase delay between intracellular and extracellular ripple oscillations varies systematically with membrane potential. Such smoothly varying delays are inconsistent with models of intracellular ripple generation involving perisomatic inhibition alone. Instead, they suggest that ripple-frequency excitation leading inhibition shapes intracellular ripple oscillations. PMID:26889811
Global Hopf bifurcation analysis on a BAM neural network with delays
NASA Astrophysics Data System (ADS)
Sun, Chengjun; Han, Maoan; Pang, Xiaoming
2007-01-01
A delayed differential equation that models a bidirectional associative memory (BAM) neural network with four neurons is considered. By using a global Hopf bifurcation theorem for FDE and a Bendixon's criterion for high-dimensional ODE, a group of sufficient conditions for the system to have multiple periodic solutions are obtained when the sum of delays is sufficiently large.
Optimal compensation for neuron loss
Barrett, David GT; Denève, Sophie; Machens, Christian K
2016-01-01
The brain has an impressive ability to withstand neural damage. Diseases that kill neurons can go unnoticed for years, and incomplete brain lesions or silencing of neurons often fail to produce any behavioral effect. How does the brain compensate for such damage, and what are the limits of this compensation? We propose that neural circuits instantly compensate for neuron loss, thereby preserving their function as much as possible. We show that this compensation can explain changes in tuning curves induced by neuron silencing across a variety of systems, including the primary visual cortex. We find that compensatory mechanisms can be implemented through the dynamics of networks with a tight balance of excitation and inhibition, without requiring synaptic plasticity. The limits of this compensatory mechanism are reached when excitation and inhibition become unbalanced, thereby demarcating a recovery boundary, where signal representation fails and where diseases may become symptomatic. DOI: http://dx.doi.org/10.7554/eLife.12454.001 PMID:27935480
[Physical activity: positive impact on brain plasticity].
Achiron, Anat; Kalron, Alon
2008-03-01
The central nervous system has a unique capability of plasticity that enables a single neuron or a group of neurons to undergo functional and constructional changes that are important to learning processes and for compensation of brain damage. The current review aims to summarize recent data related to the effects of physical activity on brain plasticity. In the last decade it was reported that physical activity can affect and manipulate neuronal connections, synaptic activity and adaptation to new neuronal environment following brain injury. One of the most significant neurotrophic factors that is critical for synaptic re-organization and is influenced by physical activity is brain-derived neurotrophic factor (BDNF). The frequency of physical activity and the intensity of exercises are of importance to brain remodeling, support neuronal survival and positively affect rehabilitation therapy. Physical activity should be employed as a tool to improve neural function in healthy subjects and in patients suffering from neurological damage.
Gazaryan, Irina G; Krasinskaya, Inna P; Kristal, Bruce S; Brown, Abraham M
2007-08-17
Recent observations point to the role played by Zn2+ as an inducer of neuronal death. Two Zn2+ targets have been identified that result in inhibition of mitochondrial respiration: the bc1 center and, more recently, alpha-ketoglutarate dehydrogenase. Zn2+ is also a mediator of oxidative stress, leading to mitochondrial failure, release of apoptotic peptides, and neuronal death. We now present evidence, by means of direct biochemical assays, that Zn2+ is imported through the Ca2+ uniporter and directly targets major enzymes of energy production (lipoamide dehydrogenase) and antioxidant defense (thioredoxin reductase and glutathione reductase). We demonstrate the following. (a) These matrix enzymes are rapidly inhibited by application of Zn2+ to intact mitochondria. (b) Delayed treatment with membrane-impermeable chelators has no effect, indicating rapid transport of biologically relevant quantities of Zn2+ into the matrix. (c) Membrane-permeable chelators stop but do not reverse enzyme inactivation. (d) Enzyme inhibition is rapid and irreversible and precedes the major changes associated with the mitochondrial permeability transition (MPT). (e) The extent and rate of enzyme inactivation linearly correlates with the MPT onset and propagation. (f) The Ca2+ uniporter blocker, Ruthenium Red, protects enzyme activities and delays pore opening up to 2 microm Zn2+. An additional, unidentified import route functions at higher Zn2+ concentrations. (g) No enzyme inactivation is observed for Ca2+-induced MPT. These observations strongly suggest that, unlike Ca2+, exogenous Zn2+ interferes with mitochondrial NADH production and directly alters redox protection in the matrix, contributing to mitochondrial dysfunction. Inactivation of these enzymes by Zn2+ is irreversible, and thus only their de novo synthesis can restore function, which may underlie persistent loss of oxidative carbohydrate metabolism following transient ischemia.
McDannold, Nathan; Vykhodtseva, Natalia; Raymond, Scott; Jolesz, Ferenc A; Hynynen, Kullervo
2005-11-01
Focused ultrasound offers a method to disrupt the blood-brain barrier (BBB) noninvasively and reversibly at targeted locations. The purpose of this study was to test the safety of this method by searching for ischemia and apoptosis in areas with BBB disruption induced by pulsed ultrasound in the presence of preformed gas bubbles and by looking for delayed effects up to one month after sonication. Pulsed ultrasound exposures (sonications) were performed in the brains of 24 rabbits under monitoring by magnetic resonance imaging (MRI) (ultrasound: frequency = 1.63 MHz, burst length = 100 ms, PRF = 1 Hz, duration = 20 s, pressure amplitude 0.7 to 1.0 MPa). Before sonication, an ultrasound contrast agent (Optison, GE Healthcare, Milwaukee, WI, USA) was injected IV. BBB disruption was confirmed with contrast-enhanced MR images. Whole brain histologic examination was performed using haematoxylin and eosin staining for general histology, vanadium acid fuchsin-toluidine blue staining for ischemic neurons and TUNEL staining for apoptosis. The main effects observed were tiny regions of extravasated red blood cells scattered around the sonicated locations, indicating affected capillaries. Despite these vasculature effects, only a few cells in some of the sonicated areas showed evidence for apoptosis or ischemia. No ischemic or apoptotic regions were detected that would indicate a compromised blood supply was induced by the sonications. No delayed effects were observed either by MRI or histology up to 4 wk after sonication. Ultrasound-induced BBB disruption is possible without inducing substantial vascular damage that would result in ischemic or apoptotic death to neurons. These findings indicate that this method is safe for targeted drug delivery, at least when compared with the currently available invasive methods.
Ye, Zhi; Wang, Na; Xia, Pingping; Wang, E; Liao, Juan; Guo, Qulian
2013-04-01
Parecoxib, a novel COX-2 inhibitor, functions as a neuroprotective agent and rescues neurons from cerebral ischemic reperfusion injury-induced apoptosis. However, the molecular mechanisms underlying parecoxib neuroprotection remain to be elucidated. There is growing evidence that endoplasmic reticulum (ER) stress plays an important role in neuronal death caused by brain ischemia. However, very little is known about the role of parecoxib in mediating pathophysiological reactions to ER stress induced by ischemic reperfusion injury. Therefore, in the present study, we investigated whether delayed administration of parecoxib attenuates brain damage via suppressing ER stress-induced cell death. Adult male Sprague-Dawley rats were administered parecoxib (10 or 30 mg kg(-1), IP) or isotonic saline twice a day starting 24 h after middle cerebral artery occlusion (MCAO) for three consecutive days. The expressions of glucose-regulated protein 78 (GRP78) and oxygen-regulated protein 150 (ORP150) and C/EBP-homologous protein (CHOP) and forkhead box protein O 1 (Foxo1) in cytoplasmic and nuclear fraction were determined by Western blotting. The levels of caspase-12 expression were checked by immunohistochemistry analysis, served as a marker for ER stress-induced apoptosis. Parecoxib significantly suppressed cerebral ischemic injury-induced nuclear translocation of CHOP and Foxo1 and attenuated the immunoreactivity of caspase-12 in ischemic penumbra. Furthermore, the protective effect of delayed administration of parecoxib was accompanied by an increased GRP78 and ORP150 expression. Therefore, our study suggested that elevation of GRP78 and ORP150, and suppression of CHOP and Foxo1 nuclear translocation may contribute to parecoxib-mediated neuroprotection during ER stress responses.
TFEB ameliorates the impairment of the autophagy-lysosome pathway in neurons induced by doxorubicin
Moruno Manchon, Jose Felix; Uzor, Ndidi-Ese; Kesler, Shelli R.; Wefel, Jeffrey S.; Townley, Debra M.; Nagaraja, Archana Sidalaghatta; Pradeep, Sunila; Mangala, Lingegowda S.; Sood, Anil K.; Tsvetkov, Andrey S.
2016-01-01
Doxorubicin, a commonly used chemotherapy agent, induces severe cardio- and neurotoxicity. Molecular mechanisms of cardiotoxicity have been extensively studied, but mechanisms by which doxorubicin exhibits its neurotoxic properties remain unclear. Here, we show that doxorubicin impairs neuronal autophagy, leading to the accumulation of an autophagy substrate p62. Neurons treated with doxorubicin contained autophagosomes, damaged mitochondria, and lipid droplets. The brains from mice treated with pegylated liposomal doxorubicin exhibited autophagosomes, often with mitochondria, lipofuscin, and lipid droplets. Interestingly, lysosomes were less acidic in doxorubicin-treated neurons. Overexpression of the transcription factor EB (TFEB), which controls the autophagy-lysosome axis, increased survival of doxorubicin-treated neurons. 2-Hydroxypropyl-β-cyclodextrin (HPβCD), an activator of TFEB, also promoted neuronal survival, decreased the levels of p62, and lowered the pH in lysosomes. Taken together, substantial changes induced by doxorubicin contribute to neurotoxicity, cognitive disturbances in cancer patients and survivors, and accelerated brain aging. The TFEB pathway might be a new approach for mitigating damage of neuronal autophagy caused by doxorubicin. PMID:27992857
TFEB ameliorates the impairment of the autophagy-lysosome pathway in neurons induced by doxorubicin.
Moruno-Manchon, Jose Felix; Uzor, Ndidi-Ese; Kesler, Shelli R; Wefel, Jeffrey S; Townley, Debra M; Nagaraja, Archana Sidalaghatta; Pradeep, Sunila; Mangala, Lingegowda S; Sood, Anil K; Tsvetkov, Andrey S
2016-12-16
Doxorubicin, a commonly used chemotherapy agent, induces severe cardio- and neurotoxicity. Molecular mechanisms of cardiotoxicity have been extensively studied, but mechanisms by which doxorubicin exhibits its neurotoxic properties remain unclear. Here, we show that doxorubicin impairs neuronal autophagy, leading to the accumulation of an autophagy substrate p62. Neurons treated with doxorubicin contained autophagosomes, damaged mitochondria, and lipid droplets. The brains from mice treated with pegylated liposomal doxorubicin exhibited autophagosomes, often with mitochondria, lipofuscin, and lipid droplets. Interestingly, lysosomes were less acidic in doxorubicin-treated neurons. Overexpression of the transcription factor EB (TFEB), which controls the autophagy-lysosome axis, increased survival of doxorubicin-treated neurons. 2-Hydroxypropyl-β-cyclodextrin (HPβCD), an activator of TFEB, also promoted neuronal survival, decreased the levels of p62, and lowered the pH in lysosomes. Taken together, substantial changes induced by doxorubicin contribute to neurotoxicity, cognitive disturbances in cancer patients and survivors, and accelerated brain aging. The TFEB pathway might be a new approach for mitigating damage of neuronal autophagy caused by doxorubicin.
NASA Astrophysics Data System (ADS)
Salehi, Hadi; Das, Saptarshi; Chakrabartty, Shantanu; Biswas, Subir; Burgueño, Rigoberto
2017-04-01
This study proposes a novel strategy for damage identification in aircraft structures. The strategy was evaluated based on the simulation of the binary data generated from self-powered wireless sensors employing a pulse switching architecture. The energy-aware pulse switching communication protocol uses single pulses instead of multi-bit packets for information delivery resulting in discrete binary data. A system employing this energy-efficient technology requires dealing with time-delayed binary data due to the management of power budgets for sensing and communication. This paper presents an intelligent machine-learning framework based on combination of the low-rank matrix decomposition and pattern recognition (PR) methods. Further, data fusion is employed as part of the machine-learning framework to take into account the effect of data time delay on its interpretation. Simulated time-delayed binary data from self-powered sensors was used to determine damage indicator variables. Performance and accuracy of the damage detection strategy was examined and tested for the case of an aircraft horizontal stabilizer. Damage states were simulated on a finite element model by reducing stiffness in a region of the stabilizer's skin. The proposed strategy shows satisfactory performance to identify the presence and location of the damage, even with noisy and incomplete data. It is concluded that PR is a promising machine-learning algorithm for damage detection for time-delayed binary data from novel self-powered wireless sensors.
Hoffmann, Johanna; Janowitz, Deborah; Van der Auwera, Sandra; Wittfeld, Katharina; Nauck, Matthias; Friedrich, Nele; Habes, Mohamad; Davatzikos, Christos; Terock, Jan; Bahls, Martin; Goltz, Annemarie; Kuhla, Angela; Völzke, Henry; Jörgen Grabe, Hans
2017-12-08
Serum neuron-specific enolase (sNSE) is considered a marker for neuronal damage, related to gray matter structures. Previous studies indicated its potential as marker for structural and functional damage in conditions with adverse effects to the brain like obesity and dementia. In the present study, we investigated the putative association between sNSE levels, body mass index (BMI), total gray matter volume (GMV), and magnetic resonance imaging-based indices of aging as well as Alzheimer's disease (AD)-like patterns. sNSE was determined in 901 subjects (499 women, 22-81 years, BMI 18-48 kg/m 2 ), participating in a population-based study (SHIP-TREND). We report age-specific patterns of sNSE levels between males and females. Females showed augmenting, males decreasing sNSE levels associated with age (males: p = 0.1052, females: p = 0.0363). sNSE levels and BMI were non-linearly associated, showing a parabolic association and decreasing sNSE levels at BMI values >25 (p = 0.0056). In contrast to our hypotheses, sNSE levels were not associated with total GMV, aging, or AD-like patterns. Pathomechanisms discussed are: sex-specific hormonal differences, neuronal damage/differentiation, or impaired cerebral glucose metabolism. We assume a sex-dependence of age-related effects to the brain. Further, we propose in accordance to previous studies an actual neuronal damage in the early stages of obesity. However, with progression of overweight, we assume more profound effects of excess body fat to the brain.
Chen, Bin; Wang, Guoxiang; Li, Weiwei; Liu, Weilin; Lin, Ruhui; Tao, Jing; Jiang, Min; Chen, Lidian; Wang, Yun
2017-02-15
Ischemic stroke, the second leading cause of death worldwide, leads to excessive glutamate release, over-activation of N-methyl-D-aspartate receptor (NMDAR), and massive influx of calcium (Ca 2+ ), which may activate calpain and caspase-3, resulting in cellular damage and death. Memantine is an uncompetitive NMDAR antagonist with low-affinity/fast off-rate. We investigated the potential mechanisms through which memantine protects against ischemic stroke in vitro and in vivo. Middle cerebral artery occlusion-reperfusion (MCAO) was performed to establish an experimental model of ischemic stroke. The neuroprotective effects of memantine on ischemic rats were evaluated by neurological deficit scores and infarct volumes. The activities of calpain and caspase-3, and expression levels of microtubule-associated protein-2 (MAP2) and postsynaptic density-95 (PSD95) were determined by Western blotting. Additionally, Nissl staining and immunostaining were performed to examine brain damage, cell apoptosis, and neuronal loss induced by ischemia. Our results show that memantine could significantly prevent ischemic stroke-induced neurological deficits and brain infarct, and reduce ATP depletion-induced neuronal death. Moreover, memantine markedly suppressed the activation of the calpain-caspase-3 pathway and cell apoptosis, and consequently, attenuated brain damage and neuronal loss in MCAO rats. These results provide a molecular basis for the role of memantine in reducing neuronal apoptosis and preventing neuronal damage, suggesting that memantine may be a promising therapy for stroke patients. Copyright © 2017 Elsevier Inc. All rights reserved.
Wachi, Tomoka; Cornell, Brett; Marshall, Courtney; Zhukarev, Vladimir; Baas, Peter W; Toyo-oka, Kazuhito
2016-06-01
14-3-3 proteins are ubiquitously-expressed and multifunctional proteins. There are seven isoforms in mammals with a high level of homology, suggesting potential functional redundancy. We previously found that two of seven isoforms, 14-3-3epsilon and 14-3-3zeta, are important for brain development, in particular, radial migration of pyramidal neurons in the developing cerebral cortex. In this work, we analyzed the function of another isoform, the protein 14-3-3gamma, with respect to neuronal migration in the developing cortex. We found that in utero 14-3-3gamma-deficiency resulted in delays in neuronal migration as well as morphological defects. Migrating neurons deficient in 14-3-3gamma displayed a thicker leading process stem, and the basal ends of neurons were not able to reach the boundary between the cortical plate and the marginal zone. Consistent with the results obtained from in utero electroporation, time-lapse live imaging of brain slices revealed that the ablation of the 14-3-3gamma proteins in pyramidal neurons slowed down their migration. In addition, the 14-3-3gamma deficient neurons showed morphological abnormalities, including increased multipolar neurons with a thicker leading processes stem during migration. These results indicate that the 14-3-3gamma proteins play an important role in radial migration by regulating the morphology of migrating neurons in the cerebral cortex. The findings underscore the pathological phenotypes of brain development associated with the disruption of different 14-3-3 proteins and will advance the preclinical data regarding disorders caused by neuronal migration defects. © 2015 Wiley Periodicals, Inc.
Neural Processing of Target Distance by Echolocating Bats: Functional Roles of the Auditory Midbrain
Wenstrup, Jeffrey J.; Portfors, Christine V.
2011-01-01
Using their biological sonar, bats estimate distance to avoid obstacles and capture moving prey. The primary distance cue is the delay between the bat's emitted echolocation pulse and the return of an echo. The mustached bat's auditory midbrain (inferior colliculus, IC) is crucial to the analysis of pulse-echo delay. IC neurons are selective for certain delays between frequency modulated (FM) elements of the pulse and echo. One role of the IC is to create these “delay-tuned”, “FM-FM” response properties through a series of spectro-temporal integrative interactions. A second major role of the midbrain is to project target distance information to many parts of the brain. Pathways through auditory thalamus undergo radical reorganization to create highly ordered maps of pulse-echo delay in auditory cortex, likely contributing to perceptual features of target distance analysis. FM-FM neurons in IC also project strongly to pre-motor centers including the pretectum and the pontine nuclei. These pathways may contribute to rapid adjustments in flight, body position, and sonar vocalizations that occur as a bat closes in on a target. PMID:21238485
Concussion is completely reversible; an hypothesis.
Parkinson, D
1992-01-01
It is hypothesized that there is an entity properly called 'concussion', a transient loss of neuronal function without permanent neuronal damage, as defined years ago by Derek-Denny Brown. This implies that multiple concussions leave no deficit. n +1 times zero is still zero. Arguments are presented indicating that there is a margin of safety between the acceleration inducing 1-10 s loss of function (concussion) and that inducing permanent damage (contusions, lacerations).
Ironside, J W; Bell, J E
2007-12-01
A wide range of infectious diseases can result in dementia, although the identity and nature of these diseases has changed over time. Two of the most significant current groups in terms of scientific complexity are HIV/AIDS and prion diseases. In these disorders, dementia occurs either as a consequence of targeting the brain and selectively damaging neurones, or by an indirect effect of neuroinflammation. In prion diseases, both direct neurotoxicity and neuroinflammation may act to result in neuronal damage. In HIV encephalitis, the progression of the dementia is slower, perhaps reflecting indirect damage that appears to result from neuroinflammation as a main cause of neuronal death. An ever-increasing range of model systems is now available to study the neuronal damage in infectious dementias, ranging from cell culture systems to animal models, some of which, particularly in the case of prion diseases, are very well characterised and amenable to controlled manipulation in terms of both host and agent parameters. As valuable as these experimental models are, they do not allow a direct approach to an understanding of dementia, the complexities of which cannot readily be studied in vitro or in animal models, but they do allow studies of interventions and therapeutic strategies. This review summarises the current state of knowledge regarding the major infective dementias.
DNA Repair Modulates The Vulnerability of The Developing Brain to Alkylating Agents
Kisby, G.E.; Olivas, A.; Park, T.; Churchwell, M.; Doerge, D.; Samson, L. D.; Gerson, S.L.; Turker, M.S.
2009-01-01
Neurons of the developing brain are especially vulnerable to environmental agents that damage DNA (i.e., genotoxicants), but the mechanism is poorly understood. The focus of the present study is to demonstrate that DNA damage plays a key role in disrupting neurodevelopment. To examine this hypothesis, we compared the cytotoxic and DNA damaging properties of the methylating agents methylazoxymethanol (MAM) and dimethyl sulfate (DMS) and the mono- and bifunctional alkylating agents chloroethylamine (CEA) and nitrogen mustard (HN2), in granule cell neurons derived from the cerebellum of neonatal wild type mice and three transgenic DNA repair strains. Wild type cerebellar neurons were significantly more sensitive to the alkylating agents DMS and HN2 than neuronal cultures treated with MAM or the half-mustard CEA. Parallel studies with neuronal cultures from mice deficient in alkylguanine DNA glycosylase (Aag-/-) or O6-methylguanine methyltransferase (Mgmt-/-), revealed significant differences in the sensitivity of neurons to all four genotoxicants. Mgmt-/- neurons were more sensitive to MAM and HN2 than the other genotoxicants and wild type neurons treated with either alkylating agent. In contrast, Aag-/- neurons were for the most part significantly less sensitive than wild type or Mgmt-/- neurons to MAM and HN2. Aag-/- neurons were also significantly less sensitive than wild type neurons treated with either DMS or CEA. Granule cell development and motor function were also more severely disturbed by MAM and HN2 in Mgmt-/- mice than in comparably treated wild type mice. In contrast, cerebellar development and motor function were well preserved in MAM treated Aag-/- or MGMT overexpressing (MgmtTg+) mice, even as compared with wild type mice suggesting that AAG protein increases MAM toxicity, whereas MGMT protein decreases toxicity. Surprisingly, neuronal development and motor function were severely disturbed in MgmtTg+ mice treated with HN2. Collectively, these in vitro and in vivo studies demonstrate that the type of DNA lesion and the efficiency of DNA repair are two important factors that determine the vulnerability of the developing brain to long-term injury by a genotoxicant. PMID:19162564
Liu, Pin W.
2014-01-01
Kv2 family “delayed-rectifier” potassium channels are widely expressed in mammalian neurons. Kv2 channels activate relatively slowly and their contribution to action potential repolarization under physiological conditions has been unclear. We explored the function of Kv2 channels using a Kv2-selective blocker, Guangxitoxin-1E (GxTX-1E). Using acutely isolated neurons, mixed voltage-clamp and current-clamp experiments were done at 37°C to study the physiological kinetics of channel gating and action potentials. In both rat superior cervical ganglion (SCG) neurons and mouse hippocampal CA1 pyramidal neurons, 100 nm GxTX-1E produced near-saturating block of a component of current typically constituting ∼60–80% of the total delayed-rectifier current. GxTX-1E also reduced A-type potassium current (IA), but much more weakly. In SCG neurons, 100 nm GxTX-1E broadened spikes and voltage clamp experiments using action potential waveforms showed that Kv2 channels carry ∼55% of the total outward current during action potential repolarization despite activating relatively late in the spike. In CA1 neurons, 100 nm GxTX-1E broadened spikes evoked from −70 mV, but not −80 mV, likely reflecting a greater role of Kv2 when other potassium channels were partially inactivated at −70 mV. In both CA1 and SCG neurons, inhibition of Kv2 channels produced dramatic depolarization of interspike voltages during repetitive firing. In CA1 neurons and some SCG neurons, this was associated with increased initial firing frequency. In all neurons, inhibition of Kv2 channels depressed maintained firing because neurons entered depolarization block more readily. Therefore, Kv2 channels can either decrease or increase neuronal excitability depending on the time scale of excitation. PMID:24695716
Wang, Le; Devore, Sasha; Delgutte, Bertrand
2013-01-01
Human listeners are sensitive to interaural time differences (ITDs) in the envelopes of sounds, which can serve as a cue for sound localization. Many high-frequency neurons in the mammalian inferior colliculus (IC) are sensitive to envelope-ITDs of sinusoidally amplitude-modulated (SAM) sounds. Typically, envelope-ITD-sensitive IC neurons exhibit either peak-type sensitivity, discharging maximally at the same delay across frequencies, or trough-type sensitivity, discharging minimally at the same delay across frequencies, consistent with responses observed at the primary site of binaural interaction in the medial and lateral superior olives (MSO and LSO), respectively. However, some high-frequency IC neurons exhibit dual types of envelope-ITD sensitivity in their responses to SAM tones, that is, they exhibit peak-type sensitivity at some modulation frequencies and trough-type sensitivity at other frequencies. Here we show that high-frequency IC neurons in the unanesthetized rabbit can also exhibit dual types of envelope-ITD sensitivity in their responses to SAM noise. Such complex responses to SAM stimuli could be achieved by convergent inputs from MSO and LSO onto single IC neurons. We test this hypothesis by implementing a physiologically explicit, computational model of the binaural pathway. Specifically, we examined envelope-ITD sensitivity of a simple model IC neuron that receives convergent inputs from MSO and LSO model neurons. We show that dual envelope-ITD sensitivity emerges in the IC when convergent MSO and LSO inputs are differentially tuned for modulation frequency. PMID:24155013
Zhang, Z; Guth, L; Steward, O
1998-01-01
Partial lesions of the mammalian spinal cord result in an immediate motor impairment that recovers gradually over time; however, the cellular mechanisms responsible for the transient nature of this paralysis have not been defined. A unique opportunity to identify those injury-induced cellular responses that mediate the recovery of function has arisen from the discovery of a unique mutant strain of mice in which the onset of Wallerian degeneration is dramatically delayed. In this strain of mice (designated WldS for Wallerian degeneration, slow), many of the cellular responses to spinal cord injury are also delayed. We have used this experimental animal model to evaluate possible causal relationships between these delayed cellular responses and the onset of functional recovery. For this purpose, we have compared the time course of locomotor recovery in C57BL/6 (control) mice and in WldS (mutant) mice by hemisecting the spinal cord at T8 and evaluating locomotor function at daily postoperative intervals. The time course of locomotor recovery (as determined by the Tarlov open-field walking procedure) was substantially delayed in mice carrying the WldS mutation: C57BL/6 control mice began to stand and walk within 6 days (mean Tarlov score of 4), whereas mutant mice did not exhibit comparable locomotor function until 16 days postoperatively. (a) The rapid return of locomotor function in the C57BL/6 mice suggests that the recovery resulted from processes of functional plasticity rather than from regeneration or collateral sprouting of nerve fibers. (b) The marked delay in the return of locomotor function in WldS mice indicates that the processes of neuroplasticity are induced by degenerative changes in the damaged neurons. (c) These strains of mice can be effectively used in future studies to elucidate the specific biochemical and physiological alterations responsible for inducing functional plasticity and restoring locomotor function after spinal cord injury.
Perception of echo delay is disrupted by small temporal misalignment of echo harmonics in bat sonar
Bates, Mary E.; Simmons, James A.
2011-01-01
Echolocating big brown bats emit ultrasonic frequency-modulated (FM) biosonar sounds containing two prominent downward-sweeping harmonics (FM1 and FM2) and perceive target distance from echo delay. In naturally occurring echoes, FM1 and FM2 are delayed by the same amount. Even though echoes from targets located off-axis or far away are lowpass filtered, which weakens FM2 relative to FM1, their delays remain the same. We show here that misalignment of FM2 with FM1 by only 2.6 μs is sufficient to significantly disrupt acuity, which then persists for larger misalignments up to 300 μs. However, when FM2 is eliminated entirely rather than just misaligned, acuity is effectively restored. For naturally occurring, lowpass-filtered echoes, neuronal responses to weakened FM2 are retarded relative to FM1 because of amplitude-latency trading, which misaligns the harmonics in the bat's internal auditory representations. Electronically delaying FM2 relative to FM1 mimics the retarded neuronal responses for FM2 relative to FM1 caused by amplitude-latency trading. Echoes with either electronically or physiologically misaligned harmonics are not perceived as having a clearly defined delay. This virtual collapse of delay acuity may suppress interference from off-axis or distant clutter through degradation of delay images for clutter in contrast to sharp images for nearer, frontal targets. PMID:21228198
Perception of echo delay is disrupted by small temporal misalignment of echo harmonics in bat sonar.
Bates, Mary E; Simmons, James A
2011-02-01
Echolocating big brown bats emit ultrasonic frequency-modulated (FM) biosonar sounds containing two prominent downward-sweeping harmonics (FM1 and FM2) and perceive target distance from echo delay. In naturally occurring echoes, FM1 and FM2 are delayed by the same amount. Even though echoes from targets located off-axis or far away are lowpass filtered, which weakens FM2 relative to FM1, their delays remain the same. We show here that misalignment of FM2 with FM1 by only 2.6 μs is sufficient to significantly disrupt acuity, which then persists for larger misalignments up to 300 μs. However, when FM2 is eliminated entirely rather than just misaligned, acuity is effectively restored. For naturally occurring, lowpass-filtered echoes, neuronal responses to weakened FM2 are retarded relative to FM1 because of amplitude-latency trading, which misaligns the harmonics in the bat's internal auditory representations. Electronically delaying FM2 relative to FM1 mimics the retarded neuronal responses for FM2 relative to FM1 caused by amplitude-latency trading. Echoes with either electronically or physiologically misaligned harmonics are not perceived as having a clearly defined delay. This virtual collapse of delay acuity may suppress interference from off-axis or distant clutter through degradation of delay images for clutter in contrast to sharp images for nearer, frontal targets.
ERIC Educational Resources Information Center
Wang, Liping; Li, Xianchun; Hsiao, Steven S.; Bodner, Mark; Lenz, Fred; Zhou, Yong-Di
2012-01-01
Previous studies suggested that primary somatosensory (SI) neurons in well-trained monkeys participated in the haptic-haptic unimodal delayed matching-to-sample (DMS) task. In this study, 585 SI neurons were recorded in monkeys performing a task that was identical to that in the previous studies but without requiring discrimination and active…
Netrin1/DCC signaling promotes neuronal migration in the dorsal spinal cord.
Junge, Harald J; Yung, Andrea R; Goodrich, Lisa V; Chen, Zhe
2016-10-26
Newborn neurons often migrate before undergoing final differentiation, extending neurites, and forming synaptic connections. Therefore, neuronal migration is crucial for establishing neural circuitry during development. In the developing spinal cord, neuroprogenitors first undergo radial migration within the ventricular zone. Differentiated neurons continue to migrate tangentially before reaching the final positions. The molecular pathways that regulate these migration processes remain largely unknown. Our previous study suggests that the DCC receptor is important for the migration of the dorsal spinal cord progenitors and interneurons. In this study, we determined the involvement of the Netrin1 ligand and the ROBO3 coreceptor in the migration. By pulse labeling neuroprogenitors with electroporation, we examined their radial migration in Netrin1 (Ntn1), Dcc, and Robo3 knockout mice. We found that all three mutants exhibit delayed migration. Furthermore, using immunohistochemistry of the BARHL2 interneuron marker, we found that the mediolateral and dorsoventral migration of differentiated dorsal interneurons is also delayed. Together, our results suggest that Netrin1/DCC signaling induce neuronal migration in the dorsal spinal cord. Netrin1, DCC, and ROBO3 have been extensively studied for their functions in regulating axon guidance in the spinal commissural interneurons. We reveal that during earlier development of dorsal interneurons including commissural neurons, these molecules play an important role in promoting cell migration.
Cameron, Stella H; Alwakeel, Amr J; Goddard, Liping; Hobbs, Catherine E; Gowing, Emma K; Barnett, Elizabeth R; Kohe, Sarah E; Sizemore, Rachel J; Oorschot, Dorothy E
2015-09-01
Perinatal hypoxia-ischemia is a major cause of striatal injury and may lead to cerebral palsy. This study investigated whether delayed administration of bone marrow-derived mesenchymal stem cells (MSCs), at one week after neonatal rat hypoxia-ischemia, was neurorestorative of striatal medium-spiny projection neurons and improved motor function. The effect of a subcutaneous injection of a high-dose, or a low-dose, of MSCs was investigated in stereological studies. Postnatal day (PN) 7 pups were subjected to hypoxia-ischemia. At PN14, pups received treatment with either MSCs or diluent. A subset of high-dose pups, and their diluent control pups, were also injected intraperitoneally with bromodeoxyuridine (BrdU), every 24h, on PN15, PN16 and PN17. This permitted tracking of the migration and survival of neuroblasts originating from the subventricular zone into the adjacent injured striatum. Pups were euthanized on PN21 and the absolute number of striatal medium-spiny projection neurons was measured after immunostaining for DARPP-32 (dopamine- and cAMP-regulated phosphoprotein-32), double immunostaining for BrdU and DARPP-32, and after cresyl violet staining alone. The absolute number of striatal immunostained calretinin interneurons was also measured. There was a statistically significant increase in the absolute number of DARPP-32-positive, BrdU/DARPP-32-positive, and cresyl violet-stained striatal medium-spiny projection neurons, and fewer striatal calretinin interneurons, in the high-dose mesenchymal stem cell (MSC) group compared to their diluent counterparts. A high-dose of MSCs restored the absolute number of these neurons to normal uninjured levels, when compared with previous stereological data on the absolute number of cresyl violet-stained striatal medium-spiny projection neurons in the normal uninjured brain. For the low-dose experiment, in which cresyl violet-stained striatal medium-spiny neurons alone were measured, there was a lower statistically significant increase in their absolute number in the MSC group compared to their diluent controls. Investigation of behavior in another cohort of animals showed that delayed administration of a high-dose of bone marrow-derived MSCs, at one week after neonatal rat hypoxia-ischemia, improved motor function on the cylinder test. Thus, delayed therapy with a high- or low-dose of adult MSCs, at one week after injury, is effective in restoring the loss of striatal medium-spiny projection neurons after neonatal rat hypoxia-ischemia and a high-dose of MSCs improved motor function. Copyright © 2015 Elsevier Inc. All rights reserved.
Blood glutamate scavenging as a novel neuroprotective treatment for paraoxon intoxication.
Ruban, Angela; Mohar, Boaz; Jona, Ghil; Teichberg, Vivian I
2014-02-01
Organophosphate-induced brain damage is an irreversible neuronal injury, likely because there is no pharmacological treatment to prevent or block secondary damage processes. The presence of free glutamate (Glu) in the brain has a substantial role in the propagation and maintenance of organophosphate-induced seizures, thus contributing to the secondary brain damage. This report describes for the first time the ability of blood glutamate scavengers (BGS) oxaloacetic acid in combination with glutamate oxaloacetate transaminase to reduce the neuronal damage in an animal model of paraoxon (PO) intoxication. Our method causes a rapid decrease of blood Glu levels and creates a gradient that leads to the efflux of the excess brain Glu into the blood, thus reducing neurotoxicity. We demonstrated that BGS treatment significantly prevented the peripheral benzodiazepine receptor (PBR) density elevation, after PO exposure. Furthermore, we showed that BGS was able to rescue neurons in the piriform cortex of the treated rats. In conclusion, these results suggest that treatment with BGS has a neuroprotective effect in the PO intoxication. This is the first time that this approach is used in PO intoxication and it may be of high clinical significance for the future treatment of the secondary neurologic damage post organophosphates exposure.
Blood glutamate scavenging as a novel neuroprotective treatment for paraoxon intoxication
Ruban, Angela; Mohar, Boaz; Jona, Ghil; Teichberg, Vivian I
2014-01-01
Organophosphate-induced brain damage is an irreversible neuronal injury, likely because there is no pharmacological treatment to prevent or block secondary damage processes. The presence of free glutamate (Glu) in the brain has a substantial role in the propagation and maintenance of organophosphate-induced seizures, thus contributing to the secondary brain damage. This report describes for the first time the ability of blood glutamate scavengers (BGS) oxaloacetic acid in combination with glutamate oxaloacetate transaminase to reduce the neuronal damage in an animal model of paraoxon (PO) intoxication. Our method causes a rapid decrease of blood Glu levels and creates a gradient that leads to the efflux of the excess brain Glu into the blood, thus reducing neurotoxicity. We demonstrated that BGS treatment significantly prevented the peripheral benzodiazepine receptor (PBR) density elevation, after PO exposure. Furthermore, we showed that BGS was able to rescue neurons in the piriform cortex of the treated rats. In conclusion, these results suggest that treatment with BGS has a neuroprotective effect in the PO intoxication. This is the first time that this approach is used in PO intoxication and it may be of high clinical significance for the future treatment of the secondary neurologic damage post organophosphates exposure. PMID:24149933
Perspectives for computational modeling of cell replacement for neurological disorders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aimone, James B.; Weick, Jason P.
In mathematical modeling of anatomically-constrained neural networks we provide significant insights regarding the response of networks to neurological disorders or injury. Furthermore, a logical extension of these models is to incorporate treatment regimens to investigate network responses to intervention. The addition of nascent neurons from stem cell precursors into damaged or diseased tissue has been used as a successful therapeutic tool in recent decades. Interestingly, models have been developed to examine the incorporation of new neurons into intact adult structures, particularly the dentate granule neurons of the hippocampus. These studies suggest that the unique properties of maturing neurons, can impactmore » circuit behavior in unanticipated ways. In this perspective, we review the current status of models used to examine damaged CNS structures with particular focus on cortical damage due to stroke. Secondly, we suggest that computational modeling of cell replacement therapies can be made feasible by implementing approaches taken by current models of adult neurogenesis. The development of these models is critical for generating hypotheses regarding transplant therapies and improving outcomes by tailoring transplants to desired effects.« less
Perspectives for computational modeling of cell replacement for neurological disorders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aimone, James B.; Weick, Jason P.
Mathematical modeling of anatomically-constrained neural networks has provided significant insights regarding the response of networks to neurological disorders or injury. A logical extension of these models is to incorporate treatment regimens to investigate network responses to intervention. The addition of nascent neurons from stem cell precursors into damaged or diseased tissue has been used as a successful therapeutic tool in recent decades. Interestingly, models have been developed to examine the incorporation of new neurons into intact adult structures, particularly the dentate granule neurons of the hippocampus. These studies suggest that the unique properties of maturing neurons, can impact circuit behaviormore » in unanticipated ways. In this perspective, we review the current status of models used to examine damaged CNS structures with particular focus on cortical damage due to stroke. Secondly, we suggest that computational modeling of cell replacement therapies can be made feasible by implementing approaches taken by current models of adult neurogenesis. The development of these models is critical for generating hypotheses regarding transplant therapies and improving outcomes by tailoring transplants to desired effects.« less
Simão, Fabrício; Matté, Aline; Pagnussat, Aline S; Netto, Carlos A; Salbego, Christianne G
2012-10-01
Accumulating evidence indicates that resveratrol potently protects against cerebral ischemia damage due to its oxygen free radicals scavenging and antioxidant properties. However, cellular mechanisms that may underlie the neuroprotective effects of resveratrol in brain ischemia are not fully understood yet. This study aimed to investigate the potential association between the neuroprotective effect of resveratrol and the apoptosis/survival signaling pathways, in particular the glycogen synthase kinase 3 (GSK-3β) and cAMP response element-binding protein (CREB) through phosphatidylinositol 3-kinase (PI3-K)-dependent pathway. An experimental model of global cerebral ischemia was induced in rats by the four-vessel occlusion method for 10 min and followed by different periods of reperfusion. Nissl staining indicated extensive neuronal death at 7 days after ischemia/reperfusion. Administration of resveratrol by i.p. injections (30 mg/kg) for 7 days before ischemia significantly attenuated neuronal death. Both GSK-3β and CREB appear to play a critical role in resveratrol neuroprotection through the PI3-K/Akt pathway, as resveratrol pretreatment increased the phosphorylation of Akt, GSK-3β and CREB in 1 h in the CA1 hippocampus after ischemia/reperfusion. Furthermore, administration of LY294002, an inhibitor of PI3-K, compromised the neuroprotective effect of resveratrol and decreased the level of p-Akt, p-GSK-3β and p-CREB after ischemic injury. Taken together, the results suggest that resveratrol protects against delayed neuronal death in the hippocampal CA1 by maintaining the pro-survival states of Akt, GSK-3β and CREB pathways. These data suggest that the neuroprotective effect of resveratrol may be mediated through activation of the PI3-K/Akt signaling pathway, subsequently downregulating expression of GSK-3β and CREB, thereby leading to prevention of neuronal death after brain ischemia in rats. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Delayed preconditioning with NMDA receptor antagonists in a rat model of perinatal asphyxia.
Makarewicz, Dorota; Sulejczak, Dorota; Duszczyk, Małgorzata; Małek, Michał; Słomka, Marta; Lazarewicz, Jerzy W
2014-01-01
In vitro experiments have demonstrated that preconditioning primary neuronal cultures by temporary application of NMDA receptor antagonists induces long-term tolerance against lethal insults. In the present study we tested whether similar effects also occur in brain submitted to ischemia in vivo and whether the potential benefit outweighs the danger of enhancing the constitutive apoptosis in the developing brain. Memantine in pharmacologically relevant doses of 5 mg/kg or (+)MK-801 (3 mg/kg) was administered i.p. 24, 48, 72 and 96 h before 3-min global forebrain ischemia in adult Mongolian gerbils or prior to hypoxia/ischemia in 7-day-old rats. Neuronal loss in the hippocampal CA1 in gerbils or weight deficit of the ischemic hemispheres in the rat pups was evaluated after 14 days. Also, the number of apoptotic neurons in the immature rat brain was evaluated. In gerbils only the application of (+)MK-801 24 h before ischemia resulted in significant prevention of the loss of pyramidal neurons. In rat pups administration of (+)MK-801 at all studied times before hypoxia-ischemia, or pretreatment with memantine or with hypoxia taken as a positive control 48 to 92 h before the insult, significantly reduced brain damage. Both NMDA receptor antagonists equally reduced the number of apoptotic neurons after hypoxia-ischemia, while (+)MK-801-evoked potentiation of constitutive apoptosis greatly exceeded the effect of memantine. We ascribe neuroprotection induced in the immature rats by the pretreatment with both NMDA receptor antagonists 48 to 92 h before hypoxia-ischemia to tolerance evoked by preconditioning, while the neuroprotective effect of (+)MK-801 applied 24 h before the insults may be attributed to direct consequences of the inhibition of NMDA receptors. This is the first report demonstrating the phenomenon of inducing tolerance against hypoxia-ischemia in vivo in developing rat brain by preconditioning with NMDA receptor antagonists.
Wu, K W; Yang, P; Li, S S; Liu, C W; Sun, F Y
2015-07-09
We recently indicated that the vascular endothelial growth factor (VEGF) protects neurons against hypoxic death via enhancement of tyrosine phosphorylation of Kv1.2, an isoform of the delayed-rectifier potassium channels through activation of the phosphatidylinositol 3-kinase (PI3-K) signaling pathway. The present study investigated whether VEGF could attenuate ischemia-induced increase of the potassium currents in the hippocampal pyramidal neurons of rats after ischemic injury. Adult male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion (MCAO) to induce brain ischemia. The whole-cell patch-clamp technique was used to record the potassium currents of hippocampal neurons in brain slices from the ischemically injured brains of the rats 24h after MCAO. We detected that transient MCAO caused a significant increase of voltage-gated potassium currents (Kv) and outward delayed-rectifier potassium currents (IK), but not outward transient potassium currents (IA), in the ipsilateral hippocampus compared with the sham. Moreover, we found that VEGF could acutely, reversibly and voltage-dependently inhibit the ischemia-induced IK increase. This inhibitory effect of VEGF could be completely abolished by wortmannin, an inhibitor of PI3-K. Our data indicate that VEGF attenuates the ischemia-induced increase of IK via activation of the PI3-K signaling pathway. Published by Elsevier Ltd.
Stenkamp-Strahm, Chloe M.; Nyavor, Yvonne E. A.; Kappmeyer, Adam J.; Horton, Sarah; Gericke, Martin; Balemba, Onesmo B.
2015-01-01
Symptoms of diabetic gastrointestinal dysmotility indicate neuropathy of the enteric nervous system. Long-standing diabetic enteric neuropathy has not been fully characterized, however. We used prolonged high fat diet ingestion (20 weeks) in a mouse model to mimic human obese and type 2 diabetic conditions, and analyzed changes seen in neurons of the duodenal myenteric plexus. Ganglionic and neuronal size, number of neurons per ganglionic area, density indices of neuronal phenotypes (immunoreactive nerve cell bodies and varicosities per ganglion or tissue area) and nerve injury were measured. Findings were compared with results previously seen in mice fed the same diet for 8 weeks. Compared to mice fed standard chow, those on a prolonged high fat diet had smaller ganglionic and cell soma areas. Myenteric VIP- and ChAT-immunoreactive density indices were also reduced. Myenteric nerve fibers were markedly swollen and cytoskeletal protein networks were disrupted. The number of nNOS nerve cell bodies per ganglia was increased, contrary to the reduction previously seen after 8 weeks, but the density index of nNOS varicosities was reduced. Mice fed high fat and standard chow diets experienced an age-related reduction in total neurons, biasing towards neurons of sensory phenotype. Meanwhile ageing was associated with an increase in excitatory neuronal markers. Collectively, these results support a notion that nerve damage underlies diabetic symptoms of dysmotility, and reveals adaptive ENS responses to the prolonged ingestion of a high fat diet. This highlights a need to mechanistically study long-term diet-induced nerve damage and age-related impacts on the ENS. PMID:25722087
Luo, Jia-Lie; Qin, Hong-Yan; Wong, Chun-Kit; Tsang, Suk-Ying; Huang, Yu; Bian, Zhao-Xiang
2011-05-01
Irritable bowel syndrome (IBS), characterized mainly by abdominal pain, is a functional bowel disorder. The present study aimed to examine changes in the excitability and the activity of the voltage-gated K(+) channel in dorsal root ganglia (DRG) neurons innervating the colon of rats subjected to neonatal maternal separation (NMS). Colonic DRG neurons from NMS rats as identified by FAST DiI™ labeling showed an increased cell size compared with those from nonhandled (NH) rats. Whole cell current-clamp recordings showed that colonic DRG neurons from NMS rats displayed: 1) depolarized resting membrane potential; 2) increased input resistance; 3) a dramatic reduction in rheobase; and 4) a significant increase in the number of action potentials evoked at twice rheobase. Whole cell voltage-clamp recordings revealed that neurons from both groups exhibited transient A-type (I(A)) and delayed rectifier (I(K)) K(+) currents. Compared with NH rat neurons, the averaged density of I(K) was significantly reduced in NMS rat neurons. Furthermore, the Kv1.2 expression was significantly decreased in NMS rat colonic DRG neurons. These results suggest that NMS increases the excitability of colonic DRG neurons mainly by suppressing the I(K) current, which is likely accounted for by the downregulation of the Kv1.2 expression and somal hypertrophy. This study demonstrates the alteration of delayed rectifier K current and Kv1.2 expression in DRG neurons from IBS model rats, representing a molecular mechanism underlying visceral pain and sensitization in IBS, suggesting the potential of Kv1.2 as a therapeutic target for the treatment of IBS. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.
Injury of cortical neurons is caused by the advanced glycation end products-mediated pathway☆
Xing, Ying; Zhang, Xu; Song, Xiangfu; Lv, Zhongwen; Hou, Lingling; Li, Fei
2013-01-01
Advanced glycation end products lead to cell apoptosis, and cause cell death by increasing endoplasmic reticulum stress. Advanced glycation end products alone may also directly cause damage to tissues and cells, but the precise mechanism remains unknown. This study used primary cultures of rat cerebral cortex neurons, and treated cells with different concentrations of glycation end products (50, 100, 200, 400 mg/L), and with an antibody for the receptor of advanced glycation end products before and after treatment with advanced glycation end products. The results showed that with increasing concentrations of glycation end products, free radical content increased in neurons, and the number of apoptotic cells increased in a dose-dependent manner. Before and after treatment of advanced glycation end products, the addition of the antibody against advanced glycation end-products markedly reduced hydroxyl free radicals, malondialdehyde levels, and inhibited cell apoptosis. This result indicated that the antibody for receptor of advanced glycation end-products in neurons from the rat cerebral cortex can reduce glycation end product-induced oxidative stress damage by suppressing glycation end product receptors. Overall, our study confirms that the advanced glycation end products-advanced glycation end products receptor pathway may be the main signaling pathway leading to neuronal damage. PMID:25206382
Oxidant/Antioxidant Imbalance and the Risk of Alzheimer's Disease
Abdel Moneim, Ahmed E.
2015-01-01
Alzheimer's disease (AD) is the most common form of dementia characterized by progressive loss of memory and other cognitive functions among older people. Senile plaques and neurofibrillary tangles are the most hallmarks lesions in the brain of AD in addition to neurons loss. Accumulating evidence has shown that oxidative stress–induced damage may play an important role in the initiation and progression of AD pathogenesis. Redox impairment occurs when there is an imbalance between the production and quenching of free radicals from oxygen species. These reactive oxygen species augment the formation and aggregation of amyloid-β and tau protein hyperphosphorylation and vice versa. Currently, there is no available treatments can modify the disease. However, wide varieties of antioxidants show promise to delay or prevent the symptoms of AD and may help in treating the disease. In this review, the role of oxidative stress in AD pathogenesis and the common used antioxidant therapies for AD will summarize. PMID:25817254
The role of oxidative stress in organophosphate and nerve agent toxicity
Pearson, Jennifer N.; Patel, Manisha
2016-01-01
Organophosphate nerve agents exert their toxicity through inhibition of acetylcholinesterase. The excessive stimulation of cholinergic receptors rapidly causes neuronal damage, seizures, death, and long-term neurological impairment in those that survive. Owing to the lethality of organophosphorus agents and the growing risk they pose, medical interventions that prevent organophosphate toxicity and the delayed injury response are much needed. Studies have shown that oxidative stress occurs in models of subacute, acute, and chronic exposure to organophosphate agents. Key findings of these studies include alterations in mitochondrial function and increased free radical–mediated injury, such as lipid peroxidation. This review focuses on the role of reactive oxygen species in organophosphate neurotoxicity and its dependence on seizure activity. Understanding the sources, mechanisms, and pathological consequences of organophosphate-induced oxidative stress can lead to the development of rational therapies for treating toxic exposures. PMID:27371936
Neuroprotective effect of Arthrospira (Spirulina) platensis against kainic acid-neuronal death.
Pérez-Juárez, Angélica; Chamorro, Germán; Alva-Sánchez, Claudia; Paniagua-Castro, Norma; Pacheco-Rosado, Jorge
2016-08-01
Context Arthrospira (Spirulina) platensis (SP) is a cyanobacterium which has attracted attention because of its nutritional value and pharmacological properties. It was previously reported that SP reduces oxidative stress in the hippocampus and protects against damaging neurobehavioural effects of systemic kainic acid (KA). It is widely known that the systemic administration of KA induces neuronal damage, specifically in the CA3 hippocampal region. Objective The present study determines if the SP sub-chronic treatment has neuroprotective properties against KA. Materials and methods Male SW mice were treated with SP during 24 d, at doses of 0, 200, and 800 mg/kg, once daily, and with KA (35 mg/kg, ip) as a single dose on day 14. After the treatment, a histological analysis was performed and the number of atrophic neuronal cells in CA3 hippocampal region was quantified. Results Pretreatment with SP does not protect against seizures induced by KA. However, mortality in the SP 200 and the SP 800 groups was of 20%, while for the KA group, it was of 60%. A single KA ip administration produced a considerable neuronal damage, whereas both doses of SP sub-chronic treatment reduced the number of atrophic neurons in CA3 hippocampal region with respect to the KA group. Discussion The SP neurobehaviour improvement after KA systemic administration correlates with the capacity of SP to reduce KA-neuronal death in CA3 hippocampal cells. This neuroprotection may be related to the antioxidant properties of SP. Conclusion SP reduces KA-neuronal death in CA3 hippocampal cells.
Sartini, S; Lattanzi, D; Ambrogini, P; Di Palma, M; Galati, C; Savelli, D; Polidori, E; Calcabrini, C; Rocchi, M B L; Sestili, P; Cuppini, R
2016-01-15
Creatine supplementation has been shown to protect neurons from oxidative damage due to its antioxidant and ergogenic functions. These features have led to the hypothesis of creatine supplementation use during pregnancy as prophylactic treatment to prevent CNS damage, such as hypoxic-ischemic encephalopathy. Unfortunately, very little is known on the effects of creatine supplementation during neuron differentiation, while in vitro studies revealed an influence on neuron excitability, leaving the possibility of creatine supplementation during the CNS development an open question. Using a multiple approach, we studied the hippocampal neuron morphological and functional development in neonatal rats born by dams supplemented with 1% creatine in drinking water during pregnancy. CA1 pyramidal neurons of supplemented newborn rats showed enhanced dendritic tree development, increased LTP maintenance, larger evoked-synaptic responses, and higher intrinsic excitability in comparison to controls. Moreover, a faster repolarizing phase of action potential with the appearance of a hyperpolarization were recorded in neurons of the creatine-treated group. Consistently, CA1 neurons of creatine exposed pups exhibited a higher maximum firing frequency than controls. In summary, we found that creatine supplementation during pregnancy positively affects morphological and electrophysiological development of CA1 neurons in offspring rats, increasing neuronal excitability. Altogether, these findings emphasize the need to evaluate the benefits and the safety of maternal intake of creatine in humans. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Lammerding, Leoni; Slowik, Alexander; Johann, Sonja; Beyer, Cordian; Zendedel, Adib
2016-01-01
CNS ischemia results in locally confined and rapid tissue damage accompanied by a loss of neurons and their circuits. Early and time-delayed inflammatory responses are critical variables determining the extent of neural disintegration and regeneration. Inflammasomes are vital effectors in innate immunity. Their activation in brain-intrinsic immune cells contributes to ischemia-related brain damage. The steroids 17β-estradiol (E2) and progesterone (P) are neuroprotective and anti-inflammatory. Using a transient focal rat ischemic model, we evaluated the time response of different inflammasomes in the peri-infarct zone from the early to late phases after poststroke ischemia. We show that the different inflammasome complexes reveal a specific time-oriented sequential expression pattern with a maximum at approximately 24 h after the infarct. Within the limits of antibody availability, immunofluorescence labeling demonstrated that microglia and neurons are major sources of the locally activated inflammasomes NOD-like receptor protein-3 (NLRP3) and associated speck-like protein (ASC), respectively. E2 and P given for 24 h immediately after ischemia onset reduced hypoxia-induced mRNA expression of the inflammasomes NLRC4, AIM2 and ASC, and decreased the protein levels of ASC and NLRP3. In addition, mRNA protein levels of the cytokines interleukin-1β (IL1β), IL18 and TNFα were reduced by the steroids. The findings provide for the first time a detailed flow chart of hypoxia-driven inflammasome regulation in the peri-infarct cerebral cortex. Further, we demonstrate that E2 and P alleviate the expression of certain inflammasome components, sometimes in a hormone-specific way. Besides directly regulating other cellular neuroprotective pathways, the control of inflammasomes by these steroids might contribute to its neuroprotective potency. © 2015 S. Karger AG, Basel.
Oxidative damage and neurodegeneration in manganese-induced neurotoxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milatovic, Dejan; Zaja-Milatovic, Snjezana; Gupta, Ramesh C.
2009-10-15
Exposure to excessive manganese (Mn) levels results in neurotoxicity to the extrapyramidal system and the development of Parkinson's disease (PD)-like movement disorder, referred to as manganism. Although the mechanisms by which Mn induces neuronal damage are not well defined, its neurotoxicity appears to be regulated by a number of factors, including oxidative injury, mitochondrial dysfunction and neuroinflammation. To investigate the mechanisms underlying Mn neurotoxicity, we studied the effects of Mn on reactive oxygen species (ROS) formation, changes in high-energy phosphates (HEP), neuroinflammation mediators and associated neuronal dysfunctions both in vitro and in vivo. Primary cortical neuronal cultures showed concentration-dependent alterationsmore » in biomarkers of oxidative damage, F{sub 2}-isoprostanes (F{sub 2}-IsoPs) and mitochondrial dysfunction (ATP), as early as 2 h following Mn exposure. Treatment of neurons with 500 {mu}M Mn also resulted in time-dependent increases in the levels of the inflammatory biomarker, prostaglandin E{sub 2} (PGE{sub 2}). In vivo analyses corroborated these findings, establishing that either a single or three (100 mg/kg, s.c.) Mn injections (days 1, 4 and 7) induced significant increases in F{sub 2}-IsoPs and PGE{sub 2} in adult mouse brain 24 h following the last injection. Quantitative morphometric analyses of Golgi-impregnated striatal sections from mice exposed to single or three Mn injections revealed progressive spine degeneration and dendritic damage of medium spiny neurons (MSNs). These findings suggest that oxidative stress, mitochondrial dysfunction and neuroinflammation are underlying mechanisms in Mn-induced neurodegeneration.« less
NASA Astrophysics Data System (ADS)
Noh, Hae Young; Rajagopal, Ram; Kiremidjian, Anne S.
2012-04-01
This paper introduces a damage diagnosis algorithm for civil structures that uses a sequential change point detection method for the cases where the post-damage feature distribution is unknown a priori. This algorithm extracts features from structural vibration data using time-series analysis and then declares damage using the change point detection method. The change point detection method asymptotically minimizes detection delay for a given false alarm rate. The conventional method uses the known pre- and post-damage feature distributions to perform a sequential hypothesis test. In practice, however, the post-damage distribution is unlikely to be known a priori. Therefore, our algorithm estimates and updates this distribution as data are collected using the maximum likelihood and the Bayesian methods. We also applied an approximate method to reduce the computation load and memory requirement associated with the estimation. The algorithm is validated using multiple sets of simulated data and a set of experimental data collected from a four-story steel special moment-resisting frame. Our algorithm was able to estimate the post-damage distribution consistently and resulted in detection delays only a few seconds longer than the delays from the conventional method that assumes we know the post-damage feature distribution. We confirmed that the Bayesian method is particularly efficient in declaring damage with minimal memory requirement, but the maximum likelihood method provides an insightful heuristic approach.
NASA Technical Reports Server (NTRS)
George, K.; Wu, H.; Willingham, V.; Furusawa, Y.; Kawata, T.; Cucinotta, F. A.; Dicello, J. F. (Principal Investigator)
2001-01-01
PURPOSE: To investigate how cell-cycle delays in human peripheral lymphocytes affect the expression of complex chromosome damage in metaphase following high- and low-LET radiation exposure. MATERIALS AND METHODS: Whole blood was irradiated in vitro with a low and a high dose of 1 GeV u(-1) iron particles, 400MeV u(-1) neon particles or y-rays. Lymphocytes were cultured and metaphase cells were collected at different time points after 48-84h in culture. Interphase chromosomes were prematurely condensed using calyculin-A, either 48 or 72 h after exposure to iron particles or gamma-rays. Cells in first division were analysed using a combination of FISH whole-chromosome painting and DAPI/ Hoechst 33258 harlequin staining. RESULTS: There was a delay in expression of chromosome damage in metaphase that was LET- and dose-dependant. This delay was mostly related to the late emergence of complex-type damage into metaphase. Yields of damage in PCC collected 48 h after irradiation with iron particles were similar to values obtained from cells undergoing mitosis after prolonged incubation. CONCLUSION: The yield of high-LET radiation-induced complex chromosome damage could be underestimated when analysing metaphase cells collected at one time point after irradiation. Chemically induced PCC is a more accurate technique since problems with complicated cell-cycle delays are avoided.
George, K; Wu, H; Willingham, V; Furusawa, Y; Kawata, T; Cucinotta, F A
2001-02-01
To investigate how cell-cycle delays in human peripheral lymphocytes affect the expression of complex chromosome damage in metaphase following high- and low-LET radiation exposure. Whole blood was irradiated in vitro with a low and a high dose of 1 GeV u(-1) iron particles, 400MeV u(-1) neon particles or y-rays. Lymphocytes were cultured and metaphase cells were collected at different time points after 48-84h in culture. Interphase chromosomes were prematurely condensed using calyculin-A, either 48 or 72 h after exposure to iron particles or gamma-rays. Cells in first division were analysed using a combination of FISH whole-chromosome painting and DAPI/ Hoechst 33258 harlequin staining. There was a delay in expression of chromosome damage in metaphase that was LET- and dose-dependant. This delay was mostly related to the late emergence of complex-type damage into metaphase. Yields of damage in PCC collected 48 h after irradiation with iron particles were similar to values obtained from cells undergoing mitosis after prolonged incubation. The yield of high-LET radiation-induced complex chromosome damage could be underestimated when analysing metaphase cells collected at one time point after irradiation. Chemically induced PCC is a more accurate technique since problems with complicated cell-cycle delays are avoided.
Palanca, Ana; Casafont, Iñigo; Berciano, María T; Lafarga, Miguel
2014-05-01
Bortezomib is a reversible proteasome inhibitor used as an anticancer drug. However, its clinical use is limited since it causes peripheral neurotoxicity. We have used Sprague-Dawley rats as an animal model to investigate the cellular mechanisms affected by both short-term and chronic bortezomib treatments in sensory ganglia neurons. Proteasome inhibition induces dose-dependent alterations in the architecture, positioning, shape and polarity of the neuronal nucleus. It also produces DNA damage without affecting neuronal survival, and severe disruption of the protein synthesis machinery at the central cytoplasm accompanied by decreased expression of the brain-derived neurotrophic factor. As a compensatory or adaptive survival response against proteotoxic stress caused by bortezomib treatment, sensory neurons preserve basal levels of transcriptional activity, up-regulate the expression of proteasome subunit genes, and generate a new cytoplasmic perinuclear domain for protein synthesis. We propose that proteasome activity is crucial for controlling nuclear architecture, DNA repair and the organization of the protein synthesis machinery in sensory neurons. These neurons are primary targets of bortezomib neurotoxicity, for which reason their dysfunction may contribute to the pathogenesis of the bortezomib-induced peripheral neuropathy in treated patients.
Jantzie, Lauren L.; Corbett, Christopher J.; Firl, Daniel J.; Robinson, Shenandoah
2015-01-01
Preterm birth impacts brain development and leads to chronic deficits including cognitive delay, behavioral problems, and epilepsy. Premature loss of the subplate, a transient subcortical layer that guides development of the cerebral cortex and axonal refinement, has been implicated in these neurological disorders. Subplate neurons influence postnatal upregulation of the potassium chloride co-transporter KCC2 and maturation of γ-amino-butyric acid A receptor (GABAAR) subunits. We hypothesized that prenatal transient systemic hypoxia–ischemia (TSHI) in Sprague–Dawley rats that mimic brain injury from extreme prematurity in humans would cause premature subplate loss and affect cortical layer IV development. Further, we predicted that the neuroprotective agent erythropoietin (EPO) could attenuate the injury. Prenatal TSHI induced subplate neuronal loss via apoptosis. TSHI impaired cortical layer IV postnatal upregulation of KCC2 and GABAAR subunits, and postnatal EPO treatment mitigated the loss (n ≥ 8). To specifically address how subplate loss affects cortical development, we used in vitro mechanical subplate ablation in slice cultures (n ≥ 3) and found EPO treatment attenuates KCC2 loss. Together, these results show that subplate loss contributes to impaired cerebral development, and EPO treatment diminishes the damage. Limitation of premature subplate loss and the resultant impaired cortical development may minimize cerebral deficits suffered by extremely preterm infants. PMID:24722771
Effects of Tibolone on the Central Nervous System: Clinical and Experimental Approaches
Pinto-Almazán, Rodolfo; Farfán-García, Eunice D.
2017-01-01
Hormone replacement therapy (HRT) increases the risk of endometrial and breast cancer. A strategy to reduce this incidence is the use of tibolone (TIB). The aim of this paper was to address the effects of TIB on the central nervous system (CNS). For the present review, MEDLINE (via PubMed), LILACS (via BIREME), Ovid Global Health, SCOPUS, Scielo, and PsycINFO (ProQuest Research Library) electronic databases were searched for the results of controlled clinical trials on peri- and postmenopausal women published from 1990 to September 2016. Also, this paper reviews experimental studies performed to analyze neuroprotective effects, cognitive deficits, neuroplasticity, oxidative stress, and stroke using TIB. Although there are few studies on the effect of this hormone in the CNS, it has been reported that TIB decreases lipid peroxidation levels and improves memory and learning. TIB has important neuroprotective effects that could prevent the risk of neurodegenerative diseases in postmenopausal women as well as the benefits of HRT in counteracting hot flashes, improving mood, and libido. Some reports have found that TIB delays cognitive impairment in various models of neuronal damage. It also modifies brain plasticity since it acts as an endocrine modulator regulating neurotransmitters, Tau phosphorylation, and decreasing neuronal death. Finally, its antioxidant effects have also been reported in different animal models. PMID:28191467
Cai, Zuowei; Huang, Lihong; Guo, Zhenyuan; Zhang, Lingling; Wan, Xuting
2015-08-01
This paper is concerned with the periodic synchronization problem for a general class of delayed neural networks (DNNs) with discontinuous neuron activation. One of the purposes is to analyze the problem of periodic orbits. To do so, we introduce new tools including inequality techniques and Kakutani's fixed point theorem of set-valued maps to derive the existence of periodic solution. Another purpose is to design a switching state-feedback control for realizing global exponential synchronization of the drive-response network system with periodic coefficients. Unlike the previous works on periodic synchronization of neural network, both the neuron activations and controllers in this paper are allowed to be discontinuous. Moreover, owing to the occurrence of delays in neuron signal, the neural network model is described by the functional differential equation. So we introduce extended Filippov-framework to deal with the basic issues of solutions for discontinuous DNNs. Finally, two examples and simulation experiments are given to illustrate the proposed method and main results which have an important instructional significance in the design of periodic synchronized DNNs circuits involving discontinuous or switching factors. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pulsatile desynchronizing delayed feedback for closed-loop deep brain stimulation
Lysyansky, Borys; Rosenblum, Michael; Pikovsky, Arkady; Tass, Peter A.
2017-01-01
High-frequency (HF) deep brain stimulation (DBS) is the gold standard for the treatment of medically refractory movement disorders like Parkinson’s disease, essential tremor, and dystonia, with a significant potential for application to other neurological diseases. The standard setup of HF DBS utilizes an open-loop stimulation protocol, where a permanent HF electrical pulse train is administered to the brain target areas irrespectively of the ongoing neuronal dynamics. Recent experimental and clinical studies demonstrate that a closed-loop, adaptive DBS might be superior to the open-loop setup. We here combine the notion of the adaptive high-frequency stimulation approach, that aims at delivering stimulation adapted to the extent of appropriately detected biomarkers, with specifically desynchronizing stimulation protocols. To this end, we extend the delayed feedback stimulation methods, which are intrinsically closed-loop techniques and specifically designed to desynchronize abnormal neuronal synchronization, to pulsatile electrical brain stimulation. We show that permanent pulsatile high-frequency stimulation subjected to an amplitude modulation by linear or nonlinear delayed feedback methods can effectively and robustly desynchronize a STN-GPe network of model neurons and suggest this approach for desynchronizing closed-loop DBS. PMID:28273176
Increased dosage of DYRK1A and DSCR1 delays neuronal differentiation in neocortical progenitor cells
Kurabayashi, Nobuhiro; Sanada, Kamon
2013-01-01
Down's syndrome (DS), a major genetic cause of mental retardation, arises from triplication of genes on human chromosome 21. Here we show that DYRK1A (dual-specificity tyrosine-phosphorylated and -regulated kinase 1A) and DSCR1 (DS critical region 1), two genes lying within human chromosome 21 and encoding for a serine/threonine kinase and calcineurin regulator, respectively, are expressed in neural progenitors in the mouse developing neocortex. Increasing the dosage of both proteins in neural progenitors leads to a delay in neuronal differentiation, resulting ultimately in alteration of their laminar fate. This defect is mediated by the cooperative actions of DYRK1A and DSCR1 in suppressing the activity of the transcription factor NFATc. In Ts1Cje mice, a DS mouse model, dysregulation of NFATc in conjunction with increased levels of DYRK1A and DSCR1 was observed. Furthermore, counteracting the dysregulated pathway ameliorates the delayed neuronal differentiation observed in Ts1Cje mice. In sum, our findings suggest that dosage of DYRK1A and DSCR1 is critical for proper neurogenesis through NFATc and provide a potential mechanism to explain the neurodevelopmental defects in DS. PMID:24352425
Kislin, Mikhail; Sword, Jeremy; Fomitcheva, Ioulia V.; Croom, Deborah; Pryazhnikov, Evgeny; Lihavainen, Eero; Toptunov, Dmytro; Rauvala, Heikki; Ribeiro, Andre S.
2017-01-01
Mitochondria play a variety of functional roles in cortical neurons, from metabolic support and neuroprotection to the release of cytokines that trigger apoptosis. In dendrites, mitochondrial structure is closely linked to their function, and fragmentation (fission) of the normally elongated mitochondria indicates loss of their function under pathological conditions, such as stroke and brain trauma. Using in vivo two-photon microscopy in mouse brain, we quantified mitochondrial fragmentation in a full spectrum of cortical injuries, ranging from severe to mild. Severe global ischemic injury was induced by bilateral common carotid artery occlusion, whereas severe focal stroke injury was induced by Rose Bengal photosensitization. The moderate and mild traumatic injury was inflicted by focal laser lesion and by mild photo-damage, respectively. Dendritic and mitochondrial structural changes were tracked longitudinally using transgenic mice expressing fluorescent proteins localized either in cytosol or in mitochondrial matrix. In response to severe injury, mitochondrial fragmentation developed in parallel with dendritic damage signified by dendritic beading. Reconstruction from serial section electron microscopy confirmed mitochondrial fragmentation. Unlike dendritic beading, fragmentation spread beyond the injury core in focal stroke and focal laser lesion models. In moderate and mild injury, mitochondrial fragmentation was reversible with full recovery of structural integrity after 1–2 weeks. The transient fragmentation observed in the mild photo-damage model was associated with changes in dendritic spine density without any signs of dendritic damage. Our findings indicate that alterations in neuronal mitochondria structure are very sensitive to the tissue damage and can be reversible in ischemic and traumatic injuries. SIGNIFICANCE STATEMENT During ischemic stroke or brain trauma, mitochondria can either protect neurons by supplying ATP and adsorbing excessive Ca2+, or kill neurons by releasing proapoptotic factors. Mitochondrial function is tightly linked to their morphology: healthy mitochondria are thin and long; dysfunctional mitochondria are thick (swollen) and short (fragmented). To date, fragmentation of mitochondria was studied either in dissociated cultured neurons or in brain slices, but not in the intact living brain. Using real-time in vivo two-photon microscopy, we quantified mitochondrial fragmentation during acute pathological conditions that mimic severe, moderate, and mild brain injury. We demonstrated that alterations in neuronal mitochondria structural integrity can be reversible in traumatic and ischemic injuries, highlighting mitochondria as a potential target for therapeutic interventions. PMID:28077713
Kim, Sung-Jo; Zhang, Zhongjian; Saha, Arjun; Sarkar, Chinmoy; Zhao, Zhenwen; Xu, Yan; Mukherjee, Anil B
2010-08-02
Reactive oxygen species (ROS) damage brain lipids, carbohydrates, proteins, as well as DNA and may contribute to neurodegeneration. We previously reported that ER- and oxidative stress cause neuronal apoptosis in infantile neuronal ceroid lipofuscinosis (INCL), a lethal neurodegenerative storage disease, caused by palmitoyl-protein thioesterase-1 (PPT1) deficiency. Polyunsaturated fatty acids (PUFA) are essential components of cell membrane phospholipids in the brain and excessive ROS may cause oxidative damage of PUFA leading to neuronal death. Using cultured neurons and neuroprogenitor cells from mice lacking Ppt1, which mimic INCL, we demonstrate that Ppt1-deficient neurons and neuroprogenitor cells contain high levels of ROS, which may cause peroxidation of PUFA and render them incapable of providing protection against oxidative stress. We tested whether treatment of these cells with omega-3 or omega-6 PUFA protects the neurons and neuroprogenitor cells from oxidative stress and suppress apoptosis. We report here that both omega-3 and omega-6 fatty acids protect the Ppt1-deficient cells from ER- as well as oxidative stress and suppress apoptosis. Our results suggest that PUFA supplementation may have neuroprotective effects in INCL. Published by Elsevier Ireland Ltd.
Advanced Age Dissociates Dual Functions of the Perirhinal Cortex
Burke, Sara N.; Maurer, Andrew P.; Nematollahi, Saman; Uprety, Ajay; Wallace, Jenelle L.
2014-01-01
The perirhinal cortex (PRC) is proposed to both represent high-order sensory information and maintain those representations across delays. These cognitive processes are required for recognition memory, which declines during normal aging. Whether or not advanced age affects the ability of PRC principal cells to support these dual roles, however, is not known. The current experiment recorded PRC neurons as young and aged rats traversed a track. When objects were placed on the track, a subset of the neurons became active at discrete locations adjacent to objects. Importantly, the aged rats had a lower proportion of neurons that were activated by objects. Once PRC activity patterns in the presence of objects were established, however, both age groups maintained these representations across delays up to 2 h. These data support the hypothesis that age-associated deficits in stimulus recognition arise from impairments in high-order stimulus representation rather than difficulty in sustaining stable activity patterns over time. PMID:24403147
Advanced age dissociates dual functions of the perirhinal cortex.
Burke, Sara N; Maurer, Andrew P; Nematollahi, Saman; Uprety, Ajay; Wallace, Jenelle L; Barnes, Carol A
2014-01-08
The perirhinal cortex (PRC) is proposed to both represent high-order sensory information and maintain those representations across delays. These cognitive processes are required for recognition memory, which declines during normal aging. Whether or not advanced age affects the ability of PRC principal cells to support these dual roles, however, is not known. The current experiment recorded PRC neurons as young and aged rats traversed a track. When objects were placed on the track, a subset of the neurons became active at discrete locations adjacent to objects. Importantly, the aged rats had a lower proportion of neurons that were activated by objects. Once PRC activity patterns in the presence of objects were established, however, both age groups maintained these representations across delays up to 2 h. These data support the hypothesis that age-associated deficits in stimulus recognition arise from impairments in high-order stimulus representation rather than difficulty in sustaining stable activity patterns over time.
Suppression of phase synchronisation in network based on cat's brain.
Lameu, Ewandson L; Borges, Fernando S; Borges, Rafael R; Iarosz, Kelly C; Caldas, Iberê L; Batista, Antonio M; Viana, Ricardo L; Kurths, Jürgen
2016-04-01
We have studied the effects of perturbations on the cat's cerebral cortex. According to the literature, this cortex structure can be described by a clustered network. This way, we construct a clustered network with the same number of areas as in the cat matrix, where each area is described as a sub-network with a small-world property. We focus on the suppression of neuronal phase synchronisation considering different kinds of perturbations. Among the various controlling interventions, we choose three methods: delayed feedback control, external time-periodic driving, and activation of selected neurons. We simulate these interventions to provide a procedure to suppress undesired and pathological abnormal rhythms that can be associated with many forms of synchronisation. In our simulations, we have verified that the efficiency of synchronisation suppression by delayed feedback control is higher than external time-periodic driving and activation of selected neurons of the cat's cerebral cortex with the same coupling strengths.
Halothane-induced Hypnosis Is Not Accompanied by Inactivation of Orexinergic Output in Rodents
Gompf, Heinrich; Chen, Jingqiu; Sun, Yi; Yanagisawa, Masashi; Aston-Jones, Gary; Kelz, Max B.
2009-01-01
Background One underexploited property of anesthetics is their ability to probe neuronal regulation of arousal. At appropriate doses, anesthetics reversibly obtund conscious perception. However, individual anesthetic agents may accomplish this by altering the function of distinct neuronal populations. Previously we showed that isoflurane and sevoflurane inhibit orexinergic neurons, delaying reintegration of sensory perception as denoted by emergence. Herein we study the effects of halothane. As a halogenated alkane, halothane differs structurally, has a nonoverlapping series of molecular binding partners, and differentially modulates electrophysiologic properties of several ion channels when compared with its halogenated ether relatives. Methods c-Fos immunohistochemistry and in vivo electrophysiology were used to assess neuronal activity. Anesthetic induction and emergence were determined behaviorally in narcoleptic orexin/ataxin-3 mice and control siblings exposed to halothane. Results Halothane-induced hypnosis occurred despite lack of inhibition of orexinergic neurons in mice. In rats, extracellular single-unit recordings within the locus coeruleus showed significantly greater activity during halothane than during a comparable dose of isoflurane. Microinjection of the orexin-1 receptor antagonist, SB-334867-A during the active period slowed firing rates of locus coeruleus neurons in halothane-anesthetized rats, but had no effect on isoflurane-anesthetized rats. Surprisingly, orexin/ataxin-3 transgenic mice, which develop narcolepsy with cataplexy due to loss of orexinergic neurons, did not show delayed emergence from halothane. Conclusion Coordinated inhibition of hypothalamic orexinergic and locus coeruleus noradrenergic neurons is not required for anesthetic induction. Normal emergence from halothane-induced hypnosis in orexin-deficient mice suggests that additional wake-promoting systems likely remain active during general anesthesia produced by halothane. PMID:19809293
NF-κB inhibition delays DNA damage–induced senescence and aging in mice
Tilstra, Jeremy S.; Robinson, Andria R.; Wang, Jin; Gregg, Siobhán Q.; Clauson, Cheryl L.; Reay, Daniel P.; Nasto, Luigi A.; St Croix, Claudette M.; Usas, Arvydas; Vo, Nam; Huard, Johnny; Clemens, Paula R.; Stolz, Donna B.; Guttridge, Denis C.; Watkins, Simon C.; Garinis, George A.; Wang, Yinsheng; Niedernhofer, Laura J.; Robbins, Paul D.
2012-01-01
The accumulation of cellular damage, including DNA damage, is thought to contribute to aging-related degenerative changes, but how damage drives aging is unknown. XFE progeroid syndrome is a disease of accelerated aging caused by a defect in DNA repair. NF-κB, a transcription factor activated by cellular damage and stress, has increased activity with aging and aging-related chronic diseases. To determine whether NF-κB drives aging in response to the accumulation of spontaneous, endogenous DNA damage, we measured the activation of NF-κB in WT and progeroid model mice. As both WT and progeroid mice aged, NF-κB was activated stochastically in a variety of cell types. Genetic depletion of one allele of the p65 subunit of NF-κB or treatment with a pharmacological inhibitor of the NF-κB–activating kinase, IKK, delayed the age-related symptoms and pathologies of progeroid mice. Additionally, inhibition of NF-κB reduced oxidative DNA damage and stress and delayed cellular senescence. These results indicate that the mechanism by which DNA damage drives aging is due in part to NF-κB activation. IKK/NF-κB inhibitors are sufficient to attenuate this damage and could provide clinical benefit for degenerative changes associated with accelerated aging disorders and normal aging. PMID:22706308
Neuron-specific antioxidant OXR1 extends survival of a mouse model of amyotrophic lateral sclerosis.
Liu, Kevin X; Edwards, Benjamin; Lee, Sheena; Finelli, Mattéa J; Davies, Ben; Davies, Kay E; Oliver, Peter L
2015-05-01
Amyotrophic lateral sclerosis is a devastating neurodegenerative disorder characterized by the progressive loss of spinal motor neurons. While the aetiological mechanisms underlying the disease remain poorly understood, oxidative stress is a central component of amyotrophic lateral sclerosis and contributes to motor neuron injury. Recently, oxidation resistance 1 (OXR1) has emerged as a critical regulator of neuronal survival in response to oxidative stress, and is upregulated in the spinal cord of patients with amyotrophic lateral sclerosis. Here, we tested the hypothesis that OXR1 is a key neuroprotective factor during amyotrophic lateral sclerosis pathogenesis by crossing a new transgenic mouse line that overexpresses OXR1 in neurons with the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Interestingly, we report that overexpression of OXR1 significantly extends survival, improves motor deficits, and delays pathology in the spinal cord and in muscles of SOD1(G93A) mice. Furthermore, we find that overexpression of OXR1 in neurons significantly delays non-cell-autonomous neuroinflammatory response, classic complement system activation, and STAT3 activation through transcriptomic analysis of spinal cords of SOD1(G93A) mice. Taken together, these data identify OXR1 as the first neuron-specific antioxidant modulator of pathogenesis and disease progression in SOD1-mediated amyotrophic lateral sclerosis, and suggest that OXR1 may serve as a novel target for future therapeutic strategies. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.
Xu, Zhenkuan; Xu, Wenzhe; Song, Yan; Zhang, Bin; Li, Feng; Liu, Yuguang
2016-07-25
Altered store-operated calcium entry (SOCE) has been suggested to be involved in many diabetic complications. However, the association of altered SOCE and diabetic neuronal damage remains unclear. This study aimed to investigate the effects of altered SOCE on primary cultured rat neuron injury induced by high glucose. Our data demonstrated that high glucose increased rat neuron injury and upregulated the expression of store-operated calcium channel (SOC). Inhibition of SOCE by a pharmacological inhibitor and siRNA knockdown of stromal interaction molecule 1 weakened the intracellular calcium overload, restored mitochondrial membrane potential, downregulated cytochrome C release and inhibited cell apoptosis. As well, treatment with the calcium chelator BAPTA-AM prevented cell apoptosis by ameliorating the high glucose-increased intracellular calcium level. These findings suggest that SOCE blockade may alleviate high glucose-induced neuronal damage by inhibiting apoptosis. SOCE might be a promising therapeutic target in diabetic neurotoxicity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Short-term and long-term memory in early temporal lobe dysfunction.
Hershey, T; Craft, S; Glauser, T A; Hale, S
1998-01-01
Following medial temporal damage, mature humans are impaired in retaining new information over long delays but not short delays. The question of whether a similar dissociation occurs in children was addressed by testing children (ages 7-16) with unilateral temporal lobe epilepsy (TLE) and controls on short- and long-term memory tasks, including a spatial delayed response task (SDR). Early-onset TLE did not affect performance on short delays on SDR, but it did impair performance at the longest delay (60 s), similar to adults with unilateral medial temporal damage. In addition, early-onset TLE affected performance on pattern recall, spatial span, and verbal span with rehearsal interference. No differences were found on story recall or on a response inhibition task.
Chimera states in a multilayer network of coupled and uncoupled neurons
NASA Astrophysics Data System (ADS)
Majhi, Soumen; Perc, Matjaž; Ghosh, Dibakar
2017-07-01
We study the emergence of chimera states in a multilayer neuronal network, where one layer is composed of coupled and the other layer of uncoupled neurons. Through the multilayer structure, the layer with coupled neurons acts as the medium by means of which neurons in the uncoupled layer share information in spite of the absence of physical connections among them. Neurons in the coupled layer are connected with electrical synapses, while across the two layers, neurons are connected through chemical synapses. In both layers, the dynamics of each neuron is described by the Hindmarsh-Rose square wave bursting dynamics. We show that the presence of two different types of connecting synapses within and between the two layers, together with the multilayer network structure, plays a key role in the emergence of between-layer synchronous chimera states and patterns of synchronous clusters. In particular, we find that these chimera states can emerge in the coupled layer regardless of the range of electrical synapses. Even in all-to-all and nearest-neighbor coupling within the coupled layer, we observe qualitatively identical between-layer chimera states. Moreover, we show that the role of information transmission delay between the two layers must not be neglected, and we obtain precise parameter bounds at which chimera states can be observed. The expansion of the chimera region and annihilation of cluster and fully coherent states in the parameter plane for increasing values of inter-layer chemical synaptic time delay are illustrated using effective range measurements. These results are discussed in the light of neuronal evolution, where the coexistence of coherent and incoherent dynamics during the developmental stage is particularly likely.
NASA Astrophysics Data System (ADS)
Yilmaz, Ergin; Baysal, Veli; Ozer, Mahmut; Perc, Matjaž
2016-02-01
We study the effects of an autapse, which is mathematically described as a self-feedback loop, on the propagation of weak, localized pacemaker activity across a Newman-Watts small-world network consisting of stochastic Hodgkin-Huxley neurons. We consider that only the pacemaker neuron, which is stimulated by a subthreshold periodic signal, has an electrical autapse that is characterized by a coupling strength and a delay time. We focus on the impact of the coupling strength, the network structure, the properties of the weak periodic stimulus, and the properties of the autapse on the transmission of localized pacemaker activity. Obtained results indicate the existence of optimal channel noise intensity for the propagation of the localized rhythm. Under optimal conditions, the autapse can significantly improve the propagation of pacemaker activity, but only for a specific range of the autaptic coupling strength. Moreover, the autaptic delay time has to be equal to the intrinsic oscillation period of the Hodgkin-Huxley neuron or its integer multiples. We analyze the inter-spike interval histogram and show that the autapse enhances or suppresses the propagation of the localized rhythm by increasing or decreasing the phase locking between the spiking of the pacemaker neuron and the weak periodic signal. In particular, when the autaptic delay time is equal to the intrinsic period of oscillations an optimal phase locking takes place, resulting in a dominant time scale of the spiking activity. We also investigate the effects of the network structure and the coupling strength on the propagation of pacemaker activity. We find that there exist an optimal coupling strength and an optimal network structure that together warrant an optimal propagation of the localized rhythm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, David Y.; Chunta, John L.; Park, Sean S.
Purpose: To evaluate the efficacy of pulsed low-dose radiation therapy (PLRT) combined with temozolomide (TMZ) as a novel treatment approach for radioresistant glioblastoma multiforme (GBM) in a murine model. Methods and Materials: Orthotopic U87MG hGBM tumors were established in Nu-Foxn1{sup nu} mice and imaged weekly using a small-animal micropositron emission tomography (PET)/computed tomography (CT) system. Tumor volume was determined from contrast-enhanced microCT images and tumor metabolic activity (SUVmax) from the F18-FDG microPET scan. Tumors were irradiated 7 to 10 days after implantation with a total dose of 14 Gy in 7 consecutive days. The daily treatment was given as amore » single continuous 2-Gy dose (RT) or 10 pulses of 0.2 Gy using an interpulse interval of 3 minutes (PLRT). TMZ (10 mg/kg) was given daily by oral gavage 1 hour before RT. Tumor vascularity and normal brain damage were assessed by immunohistochemistry. Results: Radiation therapy with TMZ resulted in a significant 3- to 4-week tumor growth delay compared with controls, with PLRT+TMZ the most effective. PLRT+TMZ resulted in a larger decline in SUVmax than RT+TMZ. Significant differences in survival were evident. Treatment after PLRT+TMZ was associated with increased vascularization compared with RT+TMZ. Significantly fewer degenerating neurons were seen in normal brain after PLRT+TMZ compared with RT+TMZ. Conclusions: PLRT+TMZ produced superior tumor growth delay and less normal brain damage when compared with RT+TMZ. The differential effect of PLRT on vascularization may confirm new treatment avenues for GBM.« less
Chen, Jiejie; Chen, Boshan; Zeng, Zhigang
2018-04-01
This paper investigates O(t -α )-synchronization and adaptive Mittag-Leffler synchronization for the fractional-order memristive neural networks with delays and discontinuous neuron activations. Firstly, based on the framework of Filippov solution and differential inclusion theory, using a Razumikhin-type method, some sufficient conditions ensuring the global O(t -α )-synchronization of considered networks are established via a linear-type discontinuous control. Next, a new fractional differential inequality is established and two new discontinuous adaptive controller is designed to achieve Mittag-Leffler synchronization between the drive system and the response systems using this inequality. Finally, two numerical simulations are given to show the effectiveness of the theoretical results. Our approach and theoretical results have a leading significance in the design of synchronized fractional-order memristive neural networks circuits involving discontinuous activations and time-varying delays. Copyright © 2018 Elsevier Ltd. All rights reserved.
2013-01-01
Background The pathological features of the common neurodegenerative conditions, Alzheimer’s disease (AD), Parkinson’s disease and multiple sclerosis are all known to be associated with iron dysregulation in regions of the brain where the specific pathology is most highly expressed. Iron accumulates in cortical plaques and neurofibrillary tangles in AD where it participates in redox cycling and causes oxidative damage to neurons. To understand these abnormalities in the distribution of iron the expression of proteins that maintain systemic iron balance was investigated in human AD brains and in the APP-transgenic (APP-tg) mouse. Results Protein levels of hepcidin, the iron-homeostatic peptide, and ferroportin, the iron exporter, were significantly reduced in hippocampal lysates from AD brains. By histochemistry, hepcidin and ferroportin were widely distributed in the normal human brain and co-localised in neurons and astrocytes suggesting a role in regulating iron release. In AD brains, hepcidin expression was reduced and restricted to the neuropil, blood vessels and damaged neurons. In the APP-tg mouse immunoreactivity for ferritin light-chain, the iron storage isoform, was initially distributed throughout the brain and as the disease progressed accumulated in the core of amyloid plaques. In human and mouse tissues, extensive AD pathology with amyloid plaques and severe vascular damage with loss of pericytes and endothelial disruption was seen. In AD brains, hepcidin and ferroportin were associated with haem-positive granular deposits in the region of damaged blood vessels. Conclusion Our results suggest that the reduction in ferroportin levels are likely associated with cerebral ischaemia, inflammation, the loss of neurons due to the well-characterised protein misfolding, senile plaque formation and possibly the ageing process itself. The reasons for the reduction in hepcidin levels are less clear but future investigation could examine circulating levels of the peptide in AD and a possible reduction in the passage of hepcidin across damaged vascular endothelium. Imbalance in the levels and distribution of ferritin light-chain further indicate a failure to utilize and release iron by damaged and degenerating neurons. PMID:24252754
Taurine and neural cell damage.
Saransaari, P; Oja, S S
2000-01-01
The inhibitory amino acid taurine is an osmoregulator and neuromodulator, also exerting neuroprotective actions in neural tissue. We review now the involvement of taurine in neuron-damaging conditions, including hypoxia, hypoglycemia, ischemia, oxidative stress, and the presence of free radicals, metabolic poisons and an excess of ammonia. The brain concentration of taurine is increased in several models of ischemic injury in vivo. Cell-damaging conditions which perturb the oxidative metabolism needed for active transport across cell membranes generally reduce taurine uptake in vitro, immature brain tissue being more tolerant to the lack of oxygen. In ischemia nonsaturable diffusion increases considerably. Both basal and K+-stimulated release of taurine in the hippocampus in vitro is markedly enhanced under cell-damaging conditions, ischemia, free radicals and metabolic poisons being the most potent. Hypoxia, hypoglycemia, ischemia, free radicals and oxidative stress also increase the initial basal release of taurine in cerebellar granule neurons, while the release is only moderately enhanced in hypoxia and ischemia in cerebral cortical astrocytes. The taurine release induced by ischemia is for the most part Ca2+-independent, a Ca2+-dependent mechanism being discernible only in hippocampal slices from developing mice. Moreover, a considerable portion of hippocampal taurine release in ischemia is mediated by the reversal of Na+-dependent transporters. The enhanced release in adults may comprise a swelling-induced component through Cl- channels, which is not discernible in developing mice. Excitotoxic concentrations of glutamate also potentiate taurine release in mouse hippocampal slices. The ability of ionotropic glutamate receptor agonists to evoke taurine release varies under different cell-damaging conditions, the N-methyl-D-aspartate-evoked release being clearly receptor-mediated in ischemia. Neurotoxic ammonia has been shown to provoke taurine release from different brain preparations, indicating that the ammonia-induced release may modify neuronal excitability in hyperammonic conditions. Taurine released simultane ously with an excess of excitatory amino acids in the hippocampus under ischemic and other neuron-damaging conditions may constitute an important protective mechanism against excitotoxicity, counteracting the harmful effects which lead to neuronal death. The release of taurine may prevent excitation from reaching neurotoxic levels.
Culmsee, Carsten; Siewe, Jan; Junker, Vera; Retiounskaia, Marina; Schwarz, Stephanie; Camandola, Simonetta; El-Metainy, Shahira; Behnke, Hagen; Mattson, Mark P; Krieglstein, Josef
2003-09-17
The tumor suppressor and transcription factor p53 is a key modulator of cellular stress responses, and activation of p53 precedes apoptosis in many cell types. Controversial reports exist on the role of the transcription factor nuclear factor-kappaB (NF-kappaB) in p53-mediated apoptosis, depending on the cell type and experimental conditions. Therefore, we sought to elucidate the role of NF-kappaB in p53-mediated neuron death. In cultured neurons DNA damaging compounds induced activation of p53, whereas NF-kappaB activity declined significantly. The p53 inhibitor pifithrin-alpha (PFT) preserved NF-kappaB activity and protected neurons against apoptosis. Immunoprecipitation experiments revealed enhanced p53 binding to the transcriptional cofactor p300 after induction of DNA damage, whereas binding of p300 to NF-kappaB was reduced. In contrast, PFT blocked the interaction of p53 with the cofactor, whereas NF-kappaB binding to p300 was enhanced. Most interestingly, similar results were observed after oxygen glucose deprivation in cultured neurons and in ischemic brain tissue. Ischemia-induced repression of NF-kappaB activity was prevented and brain damage was reduced by the p53 inhibitor PFT in a dose-dependent manner. It is concluded that a balanced competitive interaction of p53 and NF-kappaB with the transcriptional cofactor p300 exists in neurons. Exposure of neurons to lethal stress activates p53 and disrupts NF-kappaB binding to p300, thereby blocking NF-kappaB-mediated survival signaling. Inhibitors of p53 provide pronounced neuroprotective effects because they block p53-mediated induction of cell death and concomitantly enhance NF-kappaB-induced survival signaling.
Guthrie, O'neil W
2015-10-01
Xeroderma pigmentosum-A (XPA) is a C4-type zinc-finger scaffolding protein that regulates the removal of bulky-helix distorting DNA damage products from the genome. Phosphorylation of serine residues within the XPA protein is associated with improved protection of genomic DNA and cell death resistance. Therefore, kinase signaling is one important mechanism for regulating the protective function of XPA. Previous experiments have shown that spiral ganglion neurons (SGNs) may mobilize XPA as a general stress response to chemical and physical ototoxicants. Therapeutic optimization of XPA via kinase signaling could serve as a means to improve DNA repair capacity within neurons following injury. The kinase signaling activity of the epidermal growth factor receptor (EGFR) has been shown in tumor cell lines to increase the repair of DNA damage products that are primarily repaired by XPA. Such observations suggest that EGFR may regulate the protective function of XPA. However, it is not known whether SGNs in particular or neurons in general could co-express XPA and EGFR. In the current study gene and protein expression of XPA and EGFR were determined from cochlear homogenates. Immunofluorescence assays were then employed to localize neurons expressing both EGFR and XPA within the ganglion. This work was then confirmed with double-immunohistochemistry. Rosenthal's canal served as the reference space in these experiments and design-based stereology was employed in first-order stereology quantification of immunoreactive neurons. The results confirmed that a population of SGNs that constitutively express XPA may also express the EGFR. These results provide the basis for future experiments designed to therapeutically manipulate the EGFR in order to regulate XPA activity and restore gene function in neurons following DNA damage. Copyright © 2015 Elsevier GmbH. All rights reserved.
Synchronization in networks with heterogeneous coupling delays
NASA Astrophysics Data System (ADS)
Otto, Andreas; Radons, Günter; Bachrathy, Dániel; Orosz, Gábor
2018-01-01
Synchronization in networks of identical oscillators with heterogeneous coupling delays is studied. A decomposition of the network dynamics is obtained by block diagonalizing a newly introduced adjacency lag operator which contains the topology of the network as well as the corresponding coupling delays. This generalizes the master stability function approach, which was developed for homogenous delays. As a result the network dynamics can be analyzed by delay differential equations with distributed delay, where different delay distributions emerge for different network modes. Frequency domain methods are used for the stability analysis of synchronized equilibria and synchronized periodic orbits. As an example, the synchronization behavior in a system of delay-coupled Hodgkin-Huxley neurons is investigated. It is shown that the parameter regions where synchronized periodic spiking is unstable expand when increasing the delay heterogeneity.
Sironi, Francesca; Vallarola, Antonio; Violatto, Martina Bruna; Talamini, Laura; Freschi, Mattia; De Gioia, Roberta; Capelli, Chiara; Agostini, Azzurra; Moscatelli, Davide; Tortarolo, Massimo; Bigini, Paolo; Introna, Martino; Bendotti, Caterina
2017-12-01
Stem cell therapy is considered a promising approach in the treatment of amyotrophic lateral sclerosis (ALS) and mesenchymal stem cells (MSCs) seem to be the most effective in ALS animal models. The umbilical cord (UC) is a source of highly proliferating fetal MSCs, more easily collectable than other MSCs. Recently we demonstrated that human (h) UC-MSCs, double labeled with fluorescent nanoparticles and Hoechst-33258 and transplanted intracerebroventricularly (ICV) into SOD1G93A transgenic mice, partially migrated into the spinal cord after a single injection. This prompted us to assess the effect of repeated ICV injections of hUC-MSCs on disease progression in SOD1G93A mice. Although no transplanted cells migrated to the spinal cord, a partial but significant protection of motor neurons (MNs) was found in the lumbar spinal cord of hUC-MSCs-treated SOD1G93A mice, accompanied by a shift from a pro-inflammatory (IL-6, IL-1β) to anti-inflammatory (IL-4, IL-10) and neuroprotective (IGF-1) environment in the lumbar spinal cord, probably linked to the activation of p-Akt survival pathway in both motor neurons and reactive astrocytes. However, this treatment neither prevented the muscle denervation nor delayed the disease progression of mice, emphasizing the growing evidence that protecting the motor neuron perikarya is not sufficient to delay the ALS progression. Copyright © 2017. Published by Elsevier B.V.
Collombet, Jean-Marc; Four, Elise; Bernabé, Denis; Masqueliez, Catherine; Burckhart, Marie-France; Baille, Valérie; Baubichon, Dominique; Lallement, Guy
2005-03-30
To date, only short-term glial reaction has been extensively studied following soman or other warfare neurotoxicant poisoning. In a context of cell therapy by neural progenitor engraftment to repair brain damage, the long-term effect of soman on glial reaction and neural progenitor division was analyzed in the present study. The effect of soman poisoning was estimated in mouse brains at various times ranging from 1 to 90 days post-poisoning. Using immunochemistry and dye staining techniques (hemalun-eosin staining), the number of degenerating neurons, the number of dividing neural progenitors, and microglial, astroglial or oligodendroglial cell activation were studied. Soman poisoning led to rapid and massive (post-soman day 1) death of mature neurons as assessed by hemalun-eosin staining. Following this acute poisoning phase, a weak toxicity effect on mature neurons was still observed for a period of 1 month after poisoning. A massive short-termed microgliosis peaked on day 3 post-poisoning. Delayed astrogliosis was observed from 3 to 90 days after soman poisoning, contributing to glial scar formation. On the other hand, oligodendroglial cells or their precursors were practically unaffected by soman poisoning. Interestingly, neural progenitors located in the subgranular zone of the dentate gyrus (SGZ) or in the subventricular zone (SVZ) of the brain survived soman poisoning. Furthermore, soman poisoning significantly increased neural progenitor proliferation in both SGZ and SVZ brain areas on post-soman day 3 or day 8, respectively. This increased proliferation rate was detected up to 1 month after poisoning.
Guemez-Gamboa, Alicia; Estrada-Sánchez, Ana María; Montiel, Teresa; Páramo, Blanca; Massieu, Lourdes; Morán, Julio
2011-11-01
Prolonged activation of glutamate receptors leads to excitotoxicity. Several processes such as reactive oxygen species (ROS) production and activation of the calcium-dependent protease, calpain, contribute to glutamate-induced damage. It has been suggested that the ROS-producing enzyme, NADPH oxidase (NOX), plays a role in excitotoxicity. Studies have reported NOX activation after NMDA receptor stimulation during excitotoxic damage, but the role of non-NMDA and metabotropic receptors is unknown. We evaluated the roles of different glutamate receptor subtypes on NOX activation and neuronal death induced by the intrastriatal administration of glutamate in mice. In wild-type mice, NOX2 immunoreactivity in neurons and microglia was stimulated by glutamate administration, and it progressively increased as microglia became activated; calpain activity was also induced. By contrast, mice lacking NOX2 were less vulnerable to excitotoxicity, and there was reduced ROS production and protein nitrosylation, microglial reactivity, and calpain activation. These results suggest that NOX2 is stimulated by glutamate in neurons and reactive microglia through the activation of ionotropic and metabotropic receptors. Neuronal damage involves ROS production by NOX2, which, in turn, contributes to calpain activation.
Piracetam improves cognitive deficits caused by chronic cerebral hypoperfusion in rats.
He, Zhi; Liao, Yun; Zheng, Min; Zeng, Fan-Dian; Guo, Lian-Jun
2008-06-01
Piracetam is the derivate of gamma-aminobutyric acid, which improves the cognition,memory,consciousness, and is widely applied in the clinical treatment of brain dysfunction. In the present experiments, we study the effects of piracetam on chronic cerebral hypoperfused rats and observe its influence on amino acids, synaptic plasticity in the Perforant path-CA3 pathway and apoptosis in vivo. Cerebral hypoperfusion for 30 days by occlusion of bilateral common carotid arteries induced marked amnesic effects along with neuron damage, including: (1) spatial learning and memory deficits shown by longer escape latency and shorter time spent in the target quadrant; (2) significant neuronal loss and nuclei condensation in the cortex and hippocampus especially in CA1 region; (3) lower induction rate of long term potentiation, overexpression of BAX and P53 protein, and lower content of excitatory and inhibitory amino acids in hippocampus. Oral administration of piracetam (600 mg/kg, once per day for 30 days) markedly improved the memory impairment, increased the amino acid content in hippocampus, and attenuated neuronal damage. The ability of piracetam to attenuate memory deficits and neuronal damage after hypoperfusion may be beneficial in cerebrovascular type dementia.
Type a niemann-pick disease. Description of three cases with delayed myelination.
D'Amico, A; Sibilio, M; Caranci, F; Bartiromo, F; Taurisano, R; Balivo, F; Melis, D; Parenti, G; Cirillo, S; Elefante, R; Brunetti, A
2008-06-03
We describe three patients with type A Niemann-Pick disease (NPD-A). NPD-A is an autosomal recessive neuronal storage disease classified among the sphingolipidoses, characterized by accumulation of sphingomyelin in various tissues and in the brain. Magnetic Resonance imaging (MRI) of our three patients showed a marked delay of myelination with frontal atrophy. Few descriptions of this MRI pattern of delayed myelination have been published to date.
Delay-induced patterns in a two-dimensional lattice of coupled oscillators
Kantner, Markus; Schöll, Eckehard; Yanchuk, Serhiy
2015-01-01
We show how a variety of stable spatio-temporal periodic patterns can be created in 2D-lattices of coupled oscillators with non-homogeneous coupling delays. The results are illustrated using the FitzHugh-Nagumo coupled neurons as well as coupled limit cycle (Stuart-Landau) oscillators. A “hybrid dispersion relation” is introduced, which describes the stability of the patterns in spatially extended systems with large time-delay. PMID:25687789
Lack of functional relevance of isolated cell damage in transplants of Parkinson's disease patients.
Cooper, Oliver; Astradsson, Arnar; Hallett, Penny; Robertson, Harold; Mendez, Ivar; Isacson, Ole
2009-08-01
Postmortem analyses from clinical neural transplantation trials of several subjects with Parkinson's disease revealed surviving grafted dopaminergic neurons after more than a decade. A subset of these subjects displayed isolated dopaminergic neurons within the grafts that contained Lewy body-like structures. In this review, we discuss why this isolated cell damage is unlikely to affect the overall graft function and how we can use these observations to help us to understand age-related neurodegeneration and refine our future cell replacement therapies.
Cognitive Interventions in Older Persons: Do They Change the Functioning of the Brain?
van Os, Yindee; de Vugt, Marjolein E.; van Boxtel, Martin
2015-01-01
Background. Cognitive interventions for older persons that may diminish the burden of cognitive problems and could delay conversion to dementia are of great importance. The underlying mechanisms of such interventions might be psychological compensation and neuronal plasticity. This review provides an overview of the literature concerning the evidence that cognitive interventions cause brain activation changes, even in damaged neural systems. Method. A systematic search of the literature was conducted in several international databases, Medline, Embase, Cinahl, Cochrane, and Psychinfo. The methodological quality was assessed according to the guidelines of the Dutch Institute for Health Care Improvement (CBO). Results. Nineteen relevant articles were included with varied methodological quality. All studies were conducted in diverse populations from healthy elderly to patients with dementia and show changes in brain activation after intervention. Conclusions. The results thus far show that cognitive interventions cause changes in brain activation patterns. The exact interpretation of these neurobiological changes remains unclear. More study is needed to understand the extent to which cognitive interventions are effective to delay conversion to dementia. Future studies should more explicitly try to relate clinically significant improvement to changes in brain activation. Long-term follow-up data are necessary to evaluate the stability of the effects. PMID:26583107
Malairaman, Udayabanu; Dandapani, Kumaran; Katyal, Anju
2014-01-01
Background Calcium overload has been implicated as a critical event in glutamate excitotoxicity associated neurodegeneration. Recently, zinc accumulation and its neurotoxic role similar to calcium has been proposed. Earlier, we reported that free chelatable zinc released during hypobaric hypoxia mediates neuronal damage and memory impairment. The molecular mechanism behind hypobaric hypoxia mediated neuronal damage is obscure. The role of free zinc in such neuropathological condition has not been elucidated. In the present study, we investigated the underlying role of free chelatable zinc in hypobaric hypoxia-induced neuronal inflammation and apoptosis resulting in hippocampal damage. Methods Adult male Balb/c mice were exposed to hypobaric hypoxia and treated with saline or Ca2EDTA (1.25 mM/kg i.p) daily for four days. The effects of Ca2EDTA on apoptosis (caspases activity and DNA fragmentation), pro-inflammatory markers (iNOS, TNF-α and COX-2), NADPH oxidase activity, poly(ADP ribose) polymerase (PARP) activity and expressions of Bax, Bcl-2, HIF-1α, metallothionein-3, ZnT-1 and ZIP-6 were examined in the hippocampal region of brain. Results Hypobaric hypoxia resulted in increased expression of metallothionein-3 and zinc transporters (ZnT-1 and ZIP-6). Hypobaric hypoxia elicited an oxidative stress and inflammatory response characterized by elevated NADPH oxidase activity and up-regulation of iNOS, COX-2 and TNF-α. Furthermore, hypobaric hypoxia induced HIF-1α protein expression, PARP activation and apoptosis in the hippocampus. Administration of Ca2EDTA significantly attenuated the hypobaric hypoxia induced oxidative stress, inflammation and apoptosis in the hippocampus. Conclusion We propose that hypobaric hypoxia/reperfusion instigates free chelatable zinc imbalance in brain associated with neuroinflammation and neuronal apoptosis. Therefore, zinc chelating strategies which block zinc mediated neuronal damage linked with cerebral hypoxia and other neurodegenerative conditions can be designed in future. PMID:25340757
Malairaman, Udayabanu; Dandapani, Kumaran; Katyal, Anju
2014-01-01
Calcium overload has been implicated as a critical event in glutamate excitotoxicity associated neurodegeneration. Recently, zinc accumulation and its neurotoxic role similar to calcium has been proposed. Earlier, we reported that free chelatable zinc released during hypobaric hypoxia mediates neuronal damage and memory impairment. The molecular mechanism behind hypobaric hypoxia mediated neuronal damage is obscure. The role of free zinc in such neuropathological condition has not been elucidated. In the present study, we investigated the underlying role of free chelatable zinc in hypobaric hypoxia-induced neuronal inflammation and apoptosis resulting in hippocampal damage. Adult male Balb/c mice were exposed to hypobaric hypoxia and treated with saline or Ca2EDTA (1.25 mM/kg i.p) daily for four days. The effects of Ca2EDTA on apoptosis (caspases activity and DNA fragmentation), pro-inflammatory markers (iNOS, TNF-α and COX-2), NADPH oxidase activity, poly(ADP ribose) polymerase (PARP) activity and expressions of Bax, Bcl-2, HIF-1α, metallothionein-3, ZnT-1 and ZIP-6 were examined in the hippocampal region of brain. Hypobaric hypoxia resulted in increased expression of metallothionein-3 and zinc transporters (ZnT-1 and ZIP-6). Hypobaric hypoxia elicited an oxidative stress and inflammatory response characterized by elevated NADPH oxidase activity and up-regulation of iNOS, COX-2 and TNF-α. Furthermore, hypobaric hypoxia induced HIF-1α protein expression, PARP activation and apoptosis in the hippocampus. Administration of Ca2EDTA significantly attenuated the hypobaric hypoxia induced oxidative stress, inflammation and apoptosis in the hippocampus. We propose that hypobaric hypoxia/reperfusion instigates free chelatable zinc imbalance in brain associated with neuroinflammation and neuronal apoptosis. Therefore, zinc chelating strategies which block zinc mediated neuronal damage linked with cerebral hypoxia and other neurodegenerative conditions can be designed in future.
Testa, Claudia M; Sherer, Todd B; Greenamyre, J Timothy
2005-03-24
Rotenone, a pesticide and complex I inhibitor, causes nigrostriatal degeneration similar to Parkinson disease pathology in a chronic, systemic, in vivo rodent model [M. Alam, W.J. Schmidt, Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats, Behav. Brain Res. 136 (2002) 317-324; R. Betarbet, T.B. Sherer, G. MacKenzie, M. Garcia-Osuna, A.V. Panov, J.T. Greenamyre, Chronic systemic pesticide exposure reproduces features of Parkinson's disease, Nat. Neurosci. 3 (2000) 1301-1306; S.M. Fleming, C. Zhu, P.O. Fernagut, A. Mehta, C.D. DiCarlo, R.L. Seaman, M.F. Chesselet, Behavioral and immunohistochemical effects of chronic intravenous and subcutaneous infusions of varying doses of rotenone, Exp. Neurol. 187 (2004) 418-429; T.B. Sherer, J.H. Kim, R. Betarbet, J.T. Greenamyre, Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation, Exp. Neurol. 179 (2003) 9-16.]. To better investigate the role of mitochondria and complex I inhibition in chronic, progressive neurodegenerative disease, we developed methods for long-term culture of rodent postnatal midbrain organotypic slices. Chronic complex I inhibition over weeks by low dose (10-50 nM) rotenone in this system lead to dose- and time-dependent destruction of substantia nigra pars compacta neuron processes, morphologic changes, some neuronal loss, and decreased tyrosine hydroxylase (TH) protein levels. Chronic complex I inhibition also caused oxidative damage to proteins, measured by protein carbonyl levels. This oxidative damage was blocked by the antioxidant alpha-tocopherol (vitamin E). At the same time, alpha-tocopherol also blocked rotenone-induced reductions in TH protein and TH immunohistochemical changes. Thus, oxidative damage is a primary mechanism of mitochondrial toxicity in intact dopaminergic neurons. The organotypic culture system allows close study of this and other interacting mechanisms over a prolonged time period in mature dopaminergic neurons with intact processes, surrounding glia, and synaptic connections.
Hilton, Genell D.; Nunez, Joseph L.; Bambrick, Linda; Thompson, Scott M.; McCarthy, Margaret M.
2008-01-01
Hypoxic/ischemic (HI) brain injury in newborn full-term and premature infants is a common and pervasive source of life time disabilities in cognitive and locomotor function. In the adult, HI induces glutamate release and excitotoxic cell death dependent on NMDA receptor activation. In animal models of the premature human infant, glutamate is also released following HI, but neurons are largely insensitive to NMDA or AMPA/kainic acid (KA) receptor-mediated damage. Using primary cultured hippocampal neurons we have determined that glutamate increases intracellular calcium much more than kainic acid. Moreover, glutamate induces cell death by activating Type I metabotropic glutamate receptors (mGluRs). Pretreatment of neurons with the gonadal steroid estradiol reduces the level of the Type I metabotropic glutamate receptors and completely prevents cell death, suggesting a novel therapeutic approach to excitotoxic brain damage in the neonate. PMID:17156362
Huang, Wei-Ling; Ma, Yu-Xin; Fan, Yu-Bao; Lai, Sheng-Min; Liu, Hong-Qing; Liu, Jing; Luo, Li; Li, Guo-Ying; Tian, Su-Min
2017-08-01
Previous studies have demonstrated a neuroprotective effect of extract of Ginkgo biloba against neuronal damage, but have mainly focused on antioxidation of extract of Ginkgo biloba . To date, limited studies have determined whether extrasct of Ginkgo biloba has a protective effect on neuronal damage. In the present study, acrylamide and 30, 60, and 120 mg/kg extract of Ginkgo biloba were administered for 4 weeks by gavage to establish mouse models. Our results showed that 30, 60, and 120 mg/kg extract of Ginkgo biloba effectively alleviated the abnormal gait of poisoned mice, and up-regulated protein expression levels of doublecortin (DCX), brain-derived neurotrophic factor, and growth associated protein-43 (GAP-43) in the hippocampus. Simultaneously, DCX- and GAP-43-immunoreactive cells increased. These findings suggest that extract of Ginkgo biloba can mitigate neurotoxicity induced by acrylamide, and thereby promote neuronal regeneration in the hippocampus of acrylamide-treated mice.
Electromagnetic limits to radiofrequency (RF) neuronal telemetry.
Diaz, R E; Sebastian, T
2013-12-18
The viability of a radiofrequency (RF) telemetry channel for reporting individual neuron activity wirelessly from an embedded antenna to an external receiver is determined. Comparing the power at the transmitting antenna required for the desired Channel Capacity, to the maximum power that this antenna can dissipate in the body without altering or damaging surrounding tissue reveals the severe penalty incurred by miniaturization of the antenna. Using both Specific Absorption Rate (SAR) and thermal damage limits as constraints, and 300 Kbps as the required capacity for telemetry streams 100 ms in duration, the model shows that conventional antennas smaller than 0.1 mm could not support human neuronal telemetry to a remote receiver (1 m away.) Reducing the antenna to 10 microns in size to enable the monitoring of single human neuron signals to a receiver at the surface of the head would require operating with a channel capacity of only 0.3 bps.
Neuronal growth cones respond to laser-induced axonal damage
Wu, Tao; Mohanty, Samarendra; Gomez-Godinez, Veronica; Shi, Linda Z.; Liaw, Lih-Huei; Miotke, Jill; Meyer, Ronald L.; Berns, Michael W.
2012-01-01
Although it is well known that damage to neurons results in release of substances that inhibit axonal growth, release of chemical signals from damaged axons that attract axon growth cones has not been observed. In this study, a 532 nm 12 ns laser was focused to a diffraction-limited spot to produce site-specific damage to single goldfish axons in vitro. The axons underwent a localized decrease in thickness (‘thinning’) within seconds. Analysis by fluorescence and transmission electron microscopy indicated that there was no gross rupture of the cell membrane. Mitochondrial transport along the axonal cytoskeleton immediately stopped at the damage site, but recovered over several minutes. Within seconds of damage nearby growth cones extended filopodia towards the injury and were often observed to contact the damaged site. Turning of the growth cone towards the injured axon also was observed. Repair of the laser-induced damage was evidenced by recovery of the axon thickness as well as restoration of mitochondrial movement. We describe a new process of growth cone response to damaged axons. This has been possible through the interface of optics (laser subcellular surgery), fluorescence and electron microscopy, and a goldfish retinal ganglion cell culture model. PMID:21831892
Cellular changes in the enteric nervous system during ageing.
Saffrey, M Jill
2013-10-01
The intrinsic neurons of the gut, enteric neurons, have an essential role in gastrointestinal functions. The enteric nervous system is plastic and continues to undergo changes throughout life, as the gut grows and responds to dietary and other environmental changes. Detailed analysis of changes in the ENS during ageing suggests that enteric neurons are more vulnerable to age-related degeneration and cell death than neurons in other parts of the nervous system, although there is considerable variation in the extent and time course of age-related enteric neuronal loss reported in different studies. Specific neuronal subpopulations, particularly cholinergic myenteric neurons, may be more vulnerable than others to age-associated loss or damage. Enteric degeneration and other age-related neuronal changes may contribute to gastrointestinal dysfunction that is common in the elderly population. Evidence suggests that caloric restriction protects against age-associated loss of enteric neurons, but recent advances in the understanding of the effects of the microbiota and the complex interactions between enteric ganglion cells, mucosal immune system and intestinal epithelium indicate that other factors may well influence ageing of enteric neurons. Much remains to be understood about the mechanisms of neuronal loss and damage in the gut, although there is evidence that reactive oxygen species, neurotrophic factor dysregulation and/or activation of a senescence associated phenotype may be involved. To date, there is no evidence for ongoing neurogenesis that might replace dying neurons in the ageing gut, although small local sites of neurogenesis would be difficult to detect. Finally, despite the considerable evidence for enteric neurodegeneration during ageing, and evidence for some physiological changes in animal models, the ageing gut appears to maintain its function remarkably well in animals that exhibit major neuronal loss, indicating that the ENS has considerable functional reserve. © 2013 Elsevier Inc. All rights reserved.
He, Zhi; Lu, Qing; Xu, Xulin; Huang, Lin; Chen, Jianguo; Guo, Lianjun
2009-01-28
Our previous work has demonstrated that DDPH (1-(2, 6-dimethylphenoxy)-2-(3, 4-dimethoxyphenylethylamino) propane hydrochloride), a competitive alpha(1)-adrenoceptor antagonist, could improve cognitive deficits, reduce histopathological damage and facilitate synaptic plasticity in vivo possibly via increasing NR2B (NMDA receptor 2B) expression and antioxidation of DDPH itself. The present study further evaluated effects of DDPH on OGD (Oxygen and glucose deprivation)-induced neuronal damage in rat primary hippocampal cells. The addition of DDPH to the cultured cells 12 h before OGD for 4 h significantly reduced neuronal damage as determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and LDH (lactate dehydrogenase) release experiments. The effects of DDPH on intracellular calcium concentration were explored by Fura-2 based calcium imaging techniques and results showed that DDPH at the dosages of 5 microM and 10 microM suppressed the increase of intracellular calcium ([Ca(2+)](i)) stimulated by 50 mM KCl in Ca(2+)-containing extracellular solutions. However, DDPH couldn't suppress the increase of [Ca(2+)](i) induced by both 50 microM glutamate in Ca(2+)-containing extracellular solutions and 20 microM ATP (Adenosine Triphosphate) in Ca(2+)-free solution. These results indicated that DDPH prevented [Ca(2+)](i) overload in hippocampal neurons by blocking Ca(2+) influx (voltage-dependent calcium channel) but not Ca(2+) mobilization from the intracellular Ca(2+) store in endoplasm reticulum (ER). We also demonstrated that DDPH could decrease glutamate release when hippocampal cells were subjected to OGD. These observations demonstrated that DDPH protected hippocampal neurons against OGD-induced damage by preventing the Ca(2+) influx and decreasing glutamate release.
Jantas, D; Krawczyk, S; Lason, W
2014-02-01
Tianeptine (Tian) possesses neuroprotective potential, however, little is known about the effect of this drug in models of neuronal apoptosis. In the present study, we aimed (1) to compare the neuroprotective capacities of some antidepressants (ADs) in the models of staurosporine (St)- and doxorubicin (Dox)-evoked cell death, activating the intracellular and the extracellular apoptotic pathway, respectively; (2) to identify the Tian-modulated steps underlying its neuroprotective action; (3) to test the effect of various ADs against Dox-evoked cell damage in glia cells. Primary neuronal and glia cell cultures and retinoic acid-differentiated human neuroblastoma SH-SY5Y (RA-SH-SY5Y) cells were co-treated with imipramine, fluoxetine, citalopram, reboxetine, mirtazapine or Tian and St or Dox. The data showed the predominant neuroprotective effect of Tian over other tested ADs against St- and Dox-induced cell damage in primary neurons and in RA-SH-SY5Y cells. This effect was shown to be caspase-3-independent but connected with attenuation of DNA fragmentation. Moreover, neuroprotection elicited by Tian was blocked by pharmacological inhibitors of MAPK/ERK1/2 and PI3-K/Akt signaling pathways as well by inhibitor of necroptosis, necrostatin-1. Interestingly, the protective effects of all tested ADs were demonstrated in primary glia cells against the Dox-evoked cell damage. The obtained data suggests the glial cells as a common target for protective action of various ADs whereas in relation to neuronal cells only Tian possesses such properties, at least against St- and Dox-induced cell damage. Moreover, this neuroprotective effect of Tian is caspase-3-independent and engages the regulation of survival pathways (MAPK/ERK1/2 and PI3-K/Akt).
Cai, Jing; Jing, Da; Shi, Ming; Liu, Yang; Lin, Tian; Xie, Zhen; Zhu, Yi; Zhao, Haibo; Shi, Xiaodan; Du, Fang; Zhao, Gang
2014-07-01
Infrasound, a kind of common environmental noise and a major contributor of vibroacoustic disease, can induce the central nervous system (CNS) damage. However, no relevant anti-infrasound drugs have been reported yet. Our recent studies have shown that infrasound resulted in excessive microglial activation rapidly and sequential inflammation, revealing a potential role of microglia in infrasound-induced CNS damage. Epigallocatechin gallate (EGCG), a major bioactive component in green tea, has the capacity of protecting against various neurodegenerative diseases via an anti-inflammatory mechanism. However, it is still unknown to date whether EGCG acts on infrasound-induced microglial activation and neuronal damage. We showed that, after 1-, 2- or 5-day exposure of rats to 16 Hz, 130 dB infrasound (2 h/day), EGCG significantly inhibited infrasound-induced microglial activation in rat hippocampal region, evidenced by reduced expressions of Iba-1 (a marker for microglia) and proinflammatory cytokines (IL-1β, IL-6, IL-18 and TNF-α). Moreover, infrasound-induced neuronal apoptosis in rat hippocampi was significantly suppressed by EGCG. EGCG also inhibited infrasound-induced activation of primary microglia in vitro and decreased the levels of proinflammatory cytokines in the supernatants of microglial culture, which were toxic to cultured neurons. Furthermore, EGCG attenuated infrasound-induced increases in nuclear NF-κB p65 and phosphorylated IκBα, and ameliorated infrasound-induced decrease in IκB in microglia. Therefore, our study provides the first evidence that EGCG acts against infrasound-induced neuronal impairment by inhibiting microglia-mediated inflammation through a potential NF-κB pathway-related mechanism, suggesting that EGCG can be used as a promising drug for the treatment of infrasound-induced CNS damage. Copyright © 2014 Elsevier Inc. All rights reserved.
Lee, Hyung; Bae, Jae Hoon; Lee, Seong-Ryong
2004-09-15
Previous studies have demonstrated that a green tea polyphenol, (-)-epigallocatechine gallate (EGCG), has a potent free radical scavenging and antioxidant effect. Glutamate leads to excitotoxicity and oxidative stress, which are important pathophysiologic responses to cerebral ischemia resulting in brain edema and neuronal damage. We investigated the effect of EGCG on excitotoxic neuronal damage in a culture system and the effect on brain edema formation and lesion after unilateral cerebral ischemia in gerbils. In vitro, excitotoxicity was induced by 24-hr incubation with N-methyl-D-aspartate (NMDA; 10 microM), AMPA (10 microM), or kainate (20 microM). EGCG (5 microM) was added to the culture media alone or with excitotoxins. We examined malondialdehyde (MDA) level and neuronal viability to evaluate the effect of EGCG. In vivo, unilateral cerebral ischemia was induced by occlusion of the right common carotid artery for 30, 60, or 90 min and followed by reperfusion of 24 hr. Brain edema, MDA, and infarction were examined to evaluate the protective effect of EGCG. EGCG (25 or 50 mg/kg, intraperitoneally) was administered twice, at 30 min before and immediately after ischemia. EGCG reduced excitotoxin-induced MDA production and neuronal damage in the culture system. In the in vivo study, treatment of gerbils with the lower EGCG dose failed to show neuroprotective effects; however, the higher EGCG dose attenuated the increase in MDA level caused by cerebral ischemia. EGCG also reduced the formation of postischemic brain edema and infarct volume. These results demonstrate EGCG may have future possibilities as a neuroprotective agent against excitotoxicity-related neurologic disorders such as brain ischemia.
Axonal Conduction Delays, Brain State, and Corticogeniculate Communication
2017-01-01
Thalamocortical conduction times are short, but layer 6 corticothalamic axons display an enormous range of conduction times, some exceeding 40–50 ms. Here, we investigate (1) how axonal conduction times of corticogeniculate (CG) neurons are related to the visual information conveyed to the thalamus, and (2) how alert versus nonalert awake brain states affect visual processing across the spectrum of CG conduction times. In awake female Dutch-Belted rabbits, we found 58% of CG neurons to be visually responsive, and 42% to be unresponsive. All responsive CG neurons had simple, orientation-selective receptive fields, and generated sustained responses to stationary stimuli. CG axonal conduction times were strongly related to modulated firing rates (F1 values) generated by drifting grating stimuli, and their associated interspike interval distributions, suggesting a continuum of visual responsiveness spanning the spectrum of axonal conduction times. CG conduction times were also significantly related to visual response latency, contrast sensitivity (C-50 values), directional selectivity, and optimal stimulus velocity. Increasing alertness did not cause visually unresponsive CG neurons to become responsive and did not change the response linearity (F1/F0 ratios) of visually responsive CG neurons. However, for visually responsive CG neurons, increased alertness nearly doubled the modulated response amplitude to optimal visual stimulation (F1 values), significantly shortened response latency, and dramatically increased response reliability. These effects of alertness were uniform across the broad spectrum of CG axonal conduction times. SIGNIFICANCE STATEMENT Corticothalamic neurons of layer 6 send a dense feedback projection to thalamic nuclei that provide input to sensory neocortex. While sensory information reaches the cortex after brief thalamocortical axonal delays, corticothalamic axons can exhibit conduction delays of <2 ms to 40–50 ms. Here, in the corticogeniculate visual system of awake rabbits, we investigate the functional significance of this axonal diversity, and the effects of shifting alert/nonalert brain states on corticogeniculate processing. We show that axonal conduction times are strongly related to multiple visual response properties, suggesting a continuum of visual responsiveness spanning the spectrum of corticogeniculate axonal conduction times. We also show that transitions between awake brain states powerfully affect corticogeniculate processing, in some ways more strongly than in layer 4. PMID:28559382
Neural correlates of target selection for reaching movements in superior colliculus
McPeek, Robert M.
2014-01-01
We recently demonstrated that inactivation of the primate superior colliculus (SC) causes a deficit in target selection for arm-reaching movements when the reach target is located in the inactivated field (Song JH, Rafal RD, McPeek RM. Proc Natl Acad Sci USA 108: E1433–E1440, 2011). This is consistent with the notion that the SC is part of a general-purpose target selection network beyond eye movements. To understand better the role of SC activity in reach target selection, we examined how individual SC neurons in the intermediate layers discriminate a reach target from distractors. Monkeys reached to touch a color oddball target among distractors while maintaining fixation. We found that many SC neurons robustly discriminate the goal of the reaching movement before the onset of the reach even though no saccade is made. To identify these cells in the context of conventional SC cell classification schemes, we also recorded visual, delay-period, and saccade-related responses in a delayed saccade task. On average, SC cells that discriminated the reach target from distractors showed significantly higher visual and delay-period activity than nondiscriminating cells, but there was no significant difference in saccade-related activity. Whereas a majority of SC neurons that discriminated the reach target showed significant delay-period activity, all nondiscriminating cells lacked such activity. We also found that some cells without delay-period activity did discriminate the reach target from distractors. We conclude that the majority of intermediate-layer SC cells discriminate a reach target from distractors, consistent with the idea that the SC contains a priority map used for effector-independent target selection. PMID:25505107
... damage in animal models of elevated IOP. Nerve cell regeneration is another approach to repairing neuronal tissue damaged ... or injury. NIH-supported researchers recently provoked nerve cell regeneration in rodents by activating a nerve cell’s natural ...
Local inhibition of GABA affects precedence effect in the inferior colliculus
Wang, Yanjun; Wang, Ningyu; Wang, Dan; Jia, Jun; Liu, Jinfeng; Xie, Yan; Wen, Xiaohui; Li, Xiaoting
2014-01-01
The precedence effect is a prerequisite for faithful sound localization in a complex auditory environment, and is a physiological phenomenon in which the auditory system selectively suppresses the directional information from echoes. Here we investigated how neurons in the inferior colliculus respond to the paired sounds that produce precedence-effect illusions, and whether their firing behavior can be modulated through inhibition with gamma-aminobutyric acid (GABA). We recorded extracellularly from 36 neurons in rat inferior colliculus under three conditions: no injection, injection with saline, and injection with gamma-aminobutyric acid. The paired sounds that produced precedence effects were two identical 4-ms noise bursts, which were delivered contralaterally or ipsilaterally to the recording site. The normalized neural responses were measured as a function of different inter-stimulus delays and half-maximal interstimulus delays were acquired. Neuronal responses to the lagging sounds were weak when the inter-stimulus delay was short, but increased gradually as the delay was lengthened. Saline injection produced no changes in neural responses, but after local gamma-aminobutyric acid application, responses to the lagging stimulus were suppressed. Application of gamma-aminobutyric acid affected the normalized response to lagging sounds, independently of whether they or the paired sounds were contralateral or ipsilateral to the recording site. These observations suggest that local inhibition by gamma-aminobutyric acid in the rat inferior colliculus shapes the neural responses to lagging sounds, and modulates the precedence effect. PMID:25206830
Song, M-K; Liu, H; Jiang, H-L; Yue, J-M; Hu, G-Y; Chen, H-Z
2008-08-13
Blocking specific K+ channels has been proposed as a promising strategy for the treatment of neurodegenerative diseases. Using a computational virtual screening approach and electrophysiological testing, we found four Aconitum alkaloids are potent blockers of the delayed rectifier K+ channel in rat hippocampal neurons. In the present study, we first tested the action of the four alkaloids on the voltage-gated K+, Na+ and Ca2+ currents in rat hippocampal neurons, and then identified that talatisamine is a specific blocker for the delayed rectifier K+ channel. External application of talatisamine reversibly inhibited the delayed rectifier K+ current (IK) with an IC50 value of 146.0+/-5.8 microM in a voltage-dependent manner, but exhibited very slight blocking effect on the voltage-gated Na+ and Ca2+ currents even at the high concentration of 1-3 mM. Moreover, talatisamine exerted a significant hyperpolarizing shift of the steady-state activation, but did not influence the steady state inactivation of IK and its recovery from inactivation, suggesting that talatisamine had no allosteric action on IK channel and was a pure blocker binding to the external pore entry of the channel. Our present study made the first discovery of potent and specific IK channel blocker from Aconitum alkaloids. It has been argued that suppressing K+ efflux by blocking IK channel may be favorable for Alzheimer's disease therapy. Talatisamine can therefore be considered as a leading compound worthy of further investigations.
Synaptic Orb2A Bridges Memory Acquisition and Late Memory Consolidation in Drosophila
Krüttner, Sebastian; Traunmüller, Lisa; Dag, Ugur; Jandrasits, Katharina; Stepien, Barbara; Iyer, Nirmala; Fradkin, Lee G.; Noordermeer, Jasprina N.; Mensh, Brett D.; Keleman, Krystyna
2015-01-01
Summary To adapt to an ever-changing environment, animals consolidate some, but not all, learning experiences to long-term memory. In mammals, long-term memory consolidation often involves neural pathway reactivation hours after memory acquisition. It is not known whether this delayed-reactivation schema is common across the animal kingdom or how information is stored during the delay period. Here, we show that, during courtship suppression learning, Drosophila exhibits delayed long-term memory consolidation. We also show that the same class of dopaminergic neurons engaged earlier in memory acquisition is also both necessary and sufficient for delayed long-term memory consolidation. Furthermore, we present evidence that, during learning, the translational regulator Orb2A tags specific synapses of mushroom body neurons for later consolidation. Consolidation involves the subsequent recruitment of Orb2B and the activity-dependent synthesis of CaMKII. Thus, our results provide evidence for the role of a neuromodulated, synapse-restricted molecule bridging memory acquisition and long-term memory consolidation in a learning animal. PMID:26095367
Milatovic, Dejan; Gupta, Ramesh C; Yu, Yingchun; Zaja-Milatovic, Snjezana; Aschner, Michael
2011-11-01
Exposure to excessive manganese (Mn) levels leads to neurotoxicity, referred to as manganism, which resembles Parkinson's disease (PD). Manganism is caused by neuronal injury in both cortical and subcortical regions, particularly in the basal ganglia. The basis for the selective neurotoxicity of Mn is not yet fully understood. However, several studies suggest that oxidative damage and inflammatory processes play prominent roles in the degeneration of dopamine-containing neurons. In the present study, we assessed the effects of Mn on reactive oxygen species (ROS) formation, changes in high-energy phosphates and associated neuronal dysfunctions both in vitro and in vivo. Results from our in vitro study showed a significant (p<0.01) increase in biomarkers of oxidative damage, F(2)-isoprostanes (F(2)-IsoPs), as well as the depletion of ATP in primary rat cortical neurons following exposure to Mn (500 μM) for 2h. These effects were protected when neurons were pretreated for 30 min with 100 of an antioxidant, the hydrophilic vitamin E analog, trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), or an anti-inflammatory agent, indomethacin. Results from our in vivo study confirmed a significant increase in F(2)-IsoPs levels in conjunction with the progressive spine degeneration and dendritic damage of the striatal medium spiny neurons (MSNs) of mice exposed to Mn (100mg/kg, s.c.) 24h. Additionally, pretreatment with vitamin E (100mg/kg, i.p.) or ibuprofen (140 μg/ml in the drinking water for two weeks) attenuated the Mn-induced increase in cerebral F(2)-IsoPs? and protected the MSNs from dendritic atrophy and dendritic spine loss. Our findings suggest that the mediation of oxidative stress/mitochondrial dysfunction and the control of alterations in biomarkers of oxidative injury, neuroinflammation and synaptodendritic degeneration may provide an effective, multi-pronged therapeutic strategy for protecting dysfunctional dopaminergic transmission and slowing of the progression of Mn-induced neurodegenerative processes. Copyright © 2011 Elsevier Inc. All rights reserved.
2013-04-01
skills, (e) problems with generalization of previously acquired skills, (f) rigidity and resistance to change, (g) social and communication ...their known role in social behavior, communication , and stereotypic behavior results in identification of a structural component of functional deficits...neurons. These abnormalities may contribute to social and communication deficits, and restricted repetitive and stereotyped patterns of behavior. 3
Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones.
Salford, Leif G; Brun, Arne E; Eberhardt, Jacob L; Malmgren, Lars; Persson, Bertil R R
2003-06-01
The possible risks of radio-frequency electromagnetic fields for the human body is a growing concern for our society. We have previously shown that weak pulsed microwaves give rise to a significant leakage of albumin through the blood-brain barrier. In this study we investigated whether a pathologic leakage across the blood-brain barrier might be combined with damage to the neurons. Three groups each of eight rats were exposed for 2 hr to Global System for Mobile Communications (GSM) mobile phone electromagnetic fields of different strengths. We found highly significant (p< 0.002) evidence for neuronal damage in the cortex, hippocampus, and basal ganglia in the brains of exposed rats.
Melatonin Ameliorates Injury and Specific Responses of Ischemic Striatal Neurons in Rats
Ma, Yuxin; Feng, Qiqi; Ma, Jing; Feng, Zhibo; Zhan, Mali; OuYang, Lisi; Mu, Shuhua; Liu, Bingbing; Jiang, Zhuyi; Jia, Yu; Li, Youlan
2013-01-01
Studies have confirmed that middle cerebral artery occlusion (MCAO) causes striatal injury in which oxidative stress is involved in the pathological mechanism. Increasing evidence suggests that melatonin may have a neuroprotective effect on cerebral ischemic damage. This study aimed to examine the morphological changes of different striatal neuron types and the effect of melatonin on striatal injury by MCAO. The results showed that MCAO induced striatum-related dysfunctions of locomotion, coordination, and cognition, which were remarkably relieved with melatonin treatment. MCAO induced severe striatal neuronal apoptosis and loss, which was significantly decreased with melatonin treatment. Within the outer zone of the infarct, the number of Darpp-32+ projection neurons and the densities of dopamine-receptor-1 (D1)+ and dopamine-receptor-2 (D2)+ fibers were reduced; however, both parvalbumin (Parv)+ and choline acetyltransferase (ChAT)+ interneurons were not significantly decreased in number, and neuropeptide Y (NPY)+ and calretinin (Cr)+ interneurons were even increased. With melatonin treatment, the loss of projection neurons and characteristic responses of interneurons were notably attenuated. The present study demonstrates that the projection neurons are rather vulnerable to ischemic damage, whereas the interneurons display resistance and even hyperplasia against injury. In addition, melatonin alleviates striatal dysfunction, neuronal loss, and morphological transformation of interneurons resulting from cerebral ischemia. PMID:23686363
Neuronal Dysfunction Associated with Cholesterol Deregulation
Loganes, Claudia; Bilel, Sabrine; Celeghini, Claudio; Tommasini, Alberto
2018-01-01
Cholesterol metabolism is crucial for cells and, in particular, its biosynthesis in the central nervous system occurs in situ, and its deregulation involves morphological changes that cause functional variations and trigger programmed cell death. The pathogenesis of rare diseases, such as Mevalonate Kinase Deficiency or Smith–Lemli–Opitz Syndrome, arises due to enzymatic defects in the cholesterol metabolic pathways, resulting in a shortage of downstream products. The most severe clinical manifestations of these diseases appear as neurological defects. Expanding the knowledge of this biological mechanism will be useful for identifying potential targets and preventing neuronal damage. Several studies have demonstrated that deregulation of the cholesterol pathway induces mitochondrial dysfunction as the result of respiratory chain damage. We set out to determine whether mitochondrial damage may be prevented by using protective mitochondria-targeted compounds, such as MitoQ, in a neuronal cell line treated with a statin to induce a biochemical block of the cholesterol pathway. Evidence from the literature suggests that mitochondria play a crucial role in the apoptotic mechanism secondary to blocking the cholesterol pathway. Our study shows that MitoQ, administered as a preventive agent, could counteract the cell damage induced by statins in the early stages, but its protective role fades over time. PMID:29783748
Kashiwagi, Hiroki; Shiraishi, Kazunori; Sakaguchi, Kenta; Nakahama, Tomoya; Kodama, Seiji
2018-05-01
Neuronal loss leads to neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease and Huntington's disease. Because of their long lifespans, neurons are assumed to possess highly efficient DNA repair ability and to be able to protect themselves from deleterious DNA damage such as DNA double-strand breaks (DSBs) produced by intrinsic and extrinsic sources. However, it remains largely unknown whether the DSB repair ability of neurons is more efficient compared with that of other cells. Here, we investigated the repair kinetics of X-ray-induced DSBs in mouse neural cells by scoring the number of phosphorylated 53BP1 foci post irradiation. We found that p53-independent apoptosis was induced time dependently during differentiation from neural stem/progenitor cells (NSPCs) into neurons in culture for 48 h. DSB repair in neurons differentiated from NSPCs in culture was faster than that in mouse embryonic fibroblasts (MEFs), possibly due to the higher DNA-dependent protein kinase activity, but it was similar to that in NSPCs. Further, the incidence of p53-dependent apoptosis induced by X-irradiation in neurons was significantly higher than that in NSPCs. This difference in response of X-ray-induced apoptosis between neurons and NSPCs may reflect a difference in the fidelity of non-homologous end joining or a differential sensitivity to DNA damage other than DSBs.
Live-cell imaging: new avenues to investigate retinal regeneration
Lahne, Manuela; Hyde, David R.
2017-01-01
Sensing and responding to our environment requires functional neurons that act in concert. Neuronal cell loss resulting from degenerative diseases cannot be replaced in humans, causing a functional impairment to integrate and/or respond to sensory cues. In contrast, zebrafish (Danio rerio) possess an endogenous capacity to regenerate lost neurons. Here, we will focus on the processes that lead to neuronal regeneration in the zebrafish retina. Dying retinal neurons release a damage signal, tumor necrosis factor α, which induces the resident radial glia, the Müller glia, to reprogram and re-enter the cell cycle. The Müller glia divide asymmetrically to produce a Müller glia that exits the cell cycle and a neuronal progenitor cell. The arising neuronal progenitor cells undergo several rounds of cell divisions before they migrate to the site of damage to differentiate into the neuronal cell types that were lost. Molecular and immunohistochemical studies have predominantly provided insight into the mechanisms that regulate retinal regeneration. However, many processes during retinal regeneration are dynamic and require live-cell imaging to fully discern the underlying mechanisms. Recently, a multiphoton imaging approach of adult zebrafish retinal cultures was developed. We will discuss the use of live-cell imaging, the currently available tools and those that need to be developed to advance our knowledge on major open questions in the field of retinal regeneration. PMID:28966629
Live-cell imaging: new avenues to investigate retinal regeneration.
Lahne, Manuela; Hyde, David R
2017-08-01
Sensing and responding to our environment requires functional neurons that act in concert. Neuronal cell loss resulting from degenerative diseases cannot be replaced in humans, causing a functional impairment to integrate and/or respond to sensory cues. In contrast, zebrafish ( Danio rerio ) possess an endogenous capacity to regenerate lost neurons. Here, we will focus on the processes that lead to neuronal regeneration in the zebrafish retina. Dying retinal neurons release a damage signal, tumor necrosis factor α, which induces the resident radial glia, the Müller glia, to reprogram and re-enter the cell cycle. The Müller glia divide asymmetrically to produce a Müller glia that exits the cell cycle and a neuronal progenitor cell. The arising neuronal progenitor cells undergo several rounds of cell divisions before they migrate to the site of damage to differentiate into the neuronal cell types that were lost. Molecular and immunohistochemical studies have predominantly provided insight into the mechanisms that regulate retinal regeneration. However, many processes during retinal regeneration are dynamic and require live-cell imaging to fully discern the underlying mechanisms. Recently, a multiphoton imaging approach of adult zebrafish retinal cultures was developed. We will discuss the use of live-cell imaging, the currently available tools and those that need to be developed to advance our knowledge on major open questions in the field of retinal regeneration.
Thomsen, Gretchen M.; Gowing, Genevieve; Latter, Jessica; Chen, Maximus; Vit, Jean-Philippe; Staggenborg, Kevin; Avalos, Pablo; Alkaslasi, Mor; Ferraiuolo, Laura; Likhite, Shibi; Kaspar, Brian K.
2014-01-01
Sporadic amyotrophic lateral sclerosis (ALS) is a fatal disease with unknown etiology, characterized by a progressive loss of motor neurons leading to paralysis and death typically within 3–5 years of onset. Recently, there has been remarkable progress in understanding inherited forms of ALS in which well defined mutations are known to cause the disease. Rodent models in which the superoxide dismutase-1 (SOD1) mutation is overexpressed recapitulate hallmark signs of ALS in patients. Early anatomical changes in mouse models of fALS are seen in the neuromuscular junctions (NMJs) and lower motor neurons, and selective reduction of toxic mutant SOD1 in the spinal cord and muscle of these models has beneficial effects. Therefore, much of ALS research has focused on spinal motor neuron and NMJ aspects of the disease. Here we show that, in the SOD1G93A rat model of ALS, spinal motor neuron loss occurs presymptomatically and before degeneration of ventral root axons and denervation of NMJs. Although overt cell death of corticospinal motor neurons does not occur until disease endpoint, we wanted to establish whether the upper motor neuron might still play a critical role in disease progression. Surprisingly, the knockdown of mutant SOD1 in only the motor cortex of presymptomatic SOD1G93A rats through targeted delivery of AAV9–SOD1–shRNA resulted in a significant delay of disease onset, expansion of lifespan, enhanced survival of spinal motor neurons, and maintenance of NMJs. This datum suggests an early dysfunction and thus an important role of the upper motor neuron in this animal model of ALS and perhaps patients with the disease. PMID:25411487
Zhang, Zhenxiong; Zhuang, Jianguo; Zhang, Cancan; Xu, Fadi
2013-04-01
Inhalation of isoflurane (ISO), a widely used volatile anesthetic, can produce clinical tachypnea. In dogs, this response is reportedly mediated by bronchopulmonary C-fibers (PCFs), but the relevant mechanisms remain unclear. Activation of transient A-type potassium current (IA) channels and delayed rectifier potassium current (IK) channels hyperpolarizes neurons, and inhibition of both channels by ISO increases neural firing. Due to the presence of these channels in the cell bodies of rat PCFs, we determined whether ISO could stimulate PCFs to produce tachypnea in anesthetized rats, and, if so, whether this response resulted from ISO-induced depolarization of the pulmonary C neurons via the inhibition of IA and IK. We recorded ventilatory responses to 5% ISO exposure in anesthetized rats before and after blocking PCF conduction and the responses of pulmonary C neurons (extracellularly recorded) to ISO exposure. ISO-induced (1mM) changes in pulmonary C neuron membrane potential and IA/IK were tested using the perforated patch clamp technique. We found that: (1) ISO inhalation evoked a brief tachypnea (∼7s) and that this response disappeared after blocking PCF conduction; (2) the ISO significantly elevated (by 138%) the firing rate of most pulmonary C neurons (17 out of 21) in the nodose ganglion; and (3) ISO perfusion depolarized the pulmonary C neurons in the vitro and inhibited both IA and IK, and this evoked-depolarization was largely diminished after blocking both IA and IK. Our results suggest that ISO is able to stimulate PCFs to elicit tachypnea in rats, at least partly, via inhibiting IA and IK, thereby depolarizing the pulmonary C neurons. Copyright © 2013. Published by Elsevier B.V.
Concept cells through associative learning of high-level representations.
Reddy, Leila; Thorpe, Simon J
2014-10-22
In this issue of Neuron, Quian Quiroga et al. (2014) show that neurons in the human medial temporal lobe (MTL) follow subjects' perceptual states rather than the features of the visual input. Patients with MTL damage however have intact perceptual abilities but suffer instead from extreme forgetfulness. Thus, the reported MTL neurons could create new memories of the current perceptual state.
Calpastatin inhibits motor neuron death and increases survival of hSOD1(G93A) mice.
Rao, Mala V; Campbell, Jabbar; Palaniappan, Arti; Kumar, Asok; Nixon, Ralph A
2016-04-01
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron disease with a poorly understood cause and no effective treatment. Given that calpains mediate neurodegeneration in other pathological states and are abnormally activated in ALS, we investigated the possible ameliorative effects of inhibiting calpain over-activation in hSOD1(G93A) transgenic (Tg) mice in vivo by neuron-specific over-expression of calpastatin (CAST), the highly selective endogenous inhibitor of calpains. Our data indicate that over-expression of CAST in hSOD1(G93A) mice, which lowered calpain activation to levels comparable to wild-type mice, inhibited the abnormal breakdown of cytoskeletal proteins (spectrin, MAP2 and neurofilaments), and ameliorated motor axon loss. Disease onset in hSOD1(G93A) /CAST mice compared to littermate hSOD1(G93A) mice is delayed, which accounts for their longer time of survival. We also find that neuronal over-expression of CAST in hSOD1(G93A) transgenic mice inhibited production of putative neurotoxic caspase-cleaved tau and activation of Cdk5, which have been implicated in neurodegeneration in ALS models, and also reduced the formation of SOD1 oligomers. Our data indicate that inhibition of calpain with CAST is neuroprotective in an ALS mouse model. CAST (encoding calpastatin) inhibits hyperactivated calpain to prevent motor neuron disease operating through a cascade of events as indicated in the schematic, with relevance to amyotrophic lateral sclerosis (ALS). We propose that over-expression of CAST in motor neurons of hSOD1(G93A) mice inhibits activation of CDK5, breakdown of cytoskeletal proteins (NFs, MAP2 and Tau) and regulatory molecules (Cam Kinase IV, Calcineurin A), and disease-causing proteins (TDP-43, α-Synuclein and Huntingtin) to prevent neuronal loss and delay neurological deficits. In our experiments, CAST could also inhibit cleavage of Bid, Bax, AIF to prevent mitochondrial, ER and lysosome-mediated cell death mechanisms. Similarly, CAST over-expression in neurons attenuated pathological effects of TDP-43, α-synuclein and Huntingtin. These results suggest a potential value of specific small molecule inhibitors of calpains in delaying the development of ALS. Read the Editorial Highlight for this article on page 140. © 2016 International Society for Neurochemistry.
Li, Chunyi; Mo, Zhihuai; Lei, Junjie; Li, Huiqing; Fu, Ruying; Huang, Yanxia; Luo, Shijian; Zhang, Lei
2018-06-01
Edaravone is a new type of oxygen free radical scavenger and able to attenuate various brain damage including hypoxic-ischemic brain damage (HIBD). This study was aimed at investigating the neuroprotective mechanism of edaravone in rat hypoxic-ischemic brain damage model and its correlation with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling pathway. 75 seven-day-old Sprague-Dawley neonatal rats were equally divided into three groups: sham-operated group (sham), HIBD group and HIBD rats injected with edaravone (HIBD + EDA) group. Neurological severity and space cognitive ability of rats in each group were evaluated using Longa neurological severity score and Morris water maze testing. TUNEL assay and flow cytometry were used to determine brain cell apoptosis. Western blot was used to estimate the expression level of death receptor-5 (DR5), Fas-associated protein with death domain (FADD), caspase 8, B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein (Bax). In addition, immunofluorescence was performed to detect caspase 3. Edaravone reduced neurofunctional damage caused by HIBD and improved the cognitive capability of rats. The above experiment results suggested that edaravone could down-regulate the expression of active caspase 3 protein, thereby relieving neuronal apoptosis. Taken together, edaravone could attenuate neuronal apoptosis in rat hypoxic-ischemic brain damage model via suppression of TRAIL signaling pathway, which also suggested that edaravone might be an effective therapeutic strategy for HIBD clinical treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Optogenetic activation of dorsal raphe serotonin neurons enhances patience for future rewards.
Miyazaki, Kayoko W; Miyazaki, Katsuhiko; Tanaka, Kenji F; Yamanaka, Akihiro; Takahashi, Aki; Tabuchi, Sawako; Doya, Kenji
2014-09-08
Serotonin is a neuromodulator that is involved extensively in behavioral, affective, and cognitive functions in the brain. Previous recording studies of the midbrain dorsal raphe nucleus (DRN) revealed that the activation of putative serotonin neurons correlates with the levels of behavioral arousal [1], rhythmic motor outputs [2], salient sensory stimuli [3-6], reward, and conditioned cues [5-8]. The classic theory on serotonin states that it opposes dopamine and inhibits behaviors when aversive events are predicted [9-14]. However, the therapeutic effects of serotonin signal-enhancing medications have been difficult to reconcile with this theory [15, 16]. In contrast, a more recent theory states that serotonin facilitates long-term optimal behaviors and suppresses impulsive behaviors [17-21]. To test these theories, we developed optogenetic mice that selectively express channelrhodopsin in serotonin neurons and tested how the activation of serotonergic neurons in the DRN affects animal behavior during a delayed reward task. The activation of serotonin neurons reduced the premature cessation of waiting for conditioned cues and food rewards. In reward omission trials, serotonin neuron stimulation prolonged the time animals spent waiting. This effect was observed specifically when the animal was engaged in deciding whether to keep waiting and was not due to motor inhibition. Control experiments showed that the prolonged waiting times observed with optogenetic stimulation were not due to behavioral inhibition or the reinforcing effects of serotonergic activation. These results show, for the first time, that the timed activation of serotonin neurons during waiting promotes animals' patience to wait for a delayed reward. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bremen, Peter; Joris, Philip X
2013-10-30
Interaural time differences (ITDs) are a major cue for localizing low-frequency (<1.5 kHz) sounds. Sensitivity to this cue first occurs in the medial superior olive (MSO), which is thought to perform a coincidence analysis on its monaural inputs. Extracellular single-neuron recordings in MSO are difficult to obtain because (1) MSO action potentials are small and (2) a large field potential locked to the stimulus waveform hampers spike isolation. Consequently, only a limited number of studies report MSO data, and even in these studies data are limited in the variety of stimuli used, in the number of neurons studied, and in spike isolation. More high-quality data are needed to better understand the mechanisms underlying neuronal ITD-sensitivity. We circumvented these difficulties by recording from the axons of MSO neurons in the lateral lemniscus (LL) of the chinchilla, a species with pronounced low-frequency sensitivity. Employing sharp glass electrodes we successfully recorded from neurons with ITD sensitivity: the location, response properties, latency, and spike shape were consistent with an MSO axonal origin. The main difficulty encountered was mechanical stability. We obtained responses to binaural beats and dichotic noise bursts to characterize the best delay versus characteristic frequency distribution, and compared the data to recordings we obtained in the inferior colliculus (IC). In contrast to most reports in other rodents, many best delays were close to zero ITD, both in MSO and IC, with a majority of the neurons recorded in the LL firing maximally within the presumed ethological ITD range.
Boumil, Edward F; Vohnoutka, Rishel Brenna; Liu, Yuguan; Lee, Sangmook; Shea, Thomas B
2017-01-01
Amyotrophic lateral sclerosis (ALS) is a progressive disease of motor neurons that has no cure or effective treatment. Any approach that could sustain minor motor function during terminal stages would improve quality of life. We examined the impact of omega-3 (Ω-3) and Ω-6, on motor neuron function in mice expressing mutant human superoxide dismutase-1 (SOD-1), which dominantly confers familial ALS and induces a similar sequence of motor neuron decline and eventual death when expressed in mice. Mice received standard diets supplemented with equivalent amounts of Ω-3 and Ω-6 or a 10x increase in Ω-6 with no change in Ω-3 commencing at 4 weeks of age. Motor function and biochemical/histological parameters were assayed by standard methodologies. Supplementation with equivalent Ω-3 and Ω-6 hastened motor neuron pathology and death, while 10x Ω-6 with no change in Ω-3 significantly delayed motor neuron pathology, including preservation of minor motor neuron function during the terminal stage. In the absence of a cure or treatment, affected individuals may resort to popular nutritional supplements such as Ω-3 as a form of "self-medication". However, our findings and those of other laboratories indicate that such an approach could be harmful. Our findings suggest that a critical balance of Ω-6 and Ω-3 may temporarily preserve motor neuron function during the terminal stages of ALS, which could provide a substantial improvement in quality of life for affected individuals and their caregivers.
Durán-Prado, Mario; Frontiñán, Javier; Santiago-Mora, Raquel; Peinado, Juan Ramón; Parrado-Fernández, Cristina; Gómez-Almagro, María Victoria; Moreno, María; López-Domínguez, José Alberto; Villalba, José Manuel; Alcaín, Francisco J.
2014-01-01
Neuropathological symptoms of Alzheimer's disease appear in advances stages, once neuronal damage arises. Nevertheless, recent studies demonstrate that in early asymptomatic stages, ß-amyloid peptide damages the cerebral microvasculature through mechanisms that involve an increase in reactive oxygen species and calcium, which induces necrosis and apoptosis of endothelial cells, leading to cerebrovascular dysfunction. The goal of our work is to study the potential preventive effect of the lipophilic antioxidant coenzyme Q (CoQ) against ß-amyloid-induced damage on human endothelial cells. We analyzed the protective effect of CoQ against Aβ-induced injury in human umbilical vein endothelial cells (HUVECs) using fluorescence and confocal microscopy, biochemical techniques and RMN-based metabolomics. Our results show that CoQ pretreatment of HUVECs delayed Aβ incorporation into the plasma membrane and mitochondria. Moreover, CoQ reduced the influx of extracellular Ca2+, and Ca2+ release from mitochondria due to opening the mitochondrial transition pore after β-amyloid administration, in addition to decreasing O2 .− and H2O2 levels. Pretreatment with CoQ also prevented ß-amyloid-induced HUVECs necrosis and apoptosis, restored their ability to proliferate, migrate and form tube-like structures in vitro, which is mirrored by a restoration of the cell metabolic profile to control levels. CoQ protected endothelial cells from Aβ-induced injury at physiological concentrations in human plasma after oral CoQ supplementation and thus could be a promising molecule to protect endothelial cells against amyloid angiopathy. PMID:25272163
Dobrachinski, Fernando; da Rosa Gerbatin, Rogério; Sartori, Gláubia; Ferreira Marques, Naiani; Zemolin, Ana Paula; Almeida Silva, Luiz Fernando; Franco, Jeferson Luis; Freire Royes, Luiz Fernando; Rechia Fighera, Michele; Antunes Soares, Félix Alexandre
2017-04-01
Traumatic brain injury (TBI) is a highly complex multi-factorial disorder. Experimental trauma involves primary and secondary injury cascades that underlie delayed neuronal dysfunction and death. Mitochondrial dysfunction and glutamatergic excitotoxicity are the hallmark mechanisms of damage. Accordingly, a successful pharmacological intervention requires a multi-faceted approach. Guanosine (GUO) is known for its neuromodulator effects in various models of brain pathology, specifically those that involve the glutamatergic system. The aim of the study was to investigate the GUO effects against mitochondrial damage in hippocampus and cortex of rats subjected to TBI, as well as the relationship of this effect with the glutamatergic system. Adult male Wistar rats were subjected to a unilateral moderate fluid percussion brain injury (FPI) and treated 15 min later with GUO (7.5 mg/kg) or vehicle (saline 0.9%). Analyses were performed in hippocampus and cortex 3 h post-trauma and revealed significant mitochondrial dysfunction, characterized by a disrupted membrane potential, unbalanced redox system, decreased mitochondrial viability, and complex I inhibition. Further, disruption of Ca 2+ homeostasis and increased mitochondrial swelling was also noted. Our results showed that mitochondrial dysfunction contributed to decreased glutamate uptake and levels of glial glutamate transporters (glutamate transporter 1 and glutamate aspartate transporter), which leads to excitotoxicity. GUO treatment ameliorated mitochondrial damage and glutamatergic dyshomeostasis. Thus, GUO might provide a new efficacious strategy for the treatment acute physiological alterations secondary to TBI.
The Carrier's Liability for Damage Caused by Delay in International Air Transport
NASA Technical Reports Server (NTRS)
Lee, Kang Bin
2003-01-01
Delay in the air transport occurs when passengers, baggage or cargo do not arrive at their destination at the time indicated in the contract of carriage. The causes of delay in the carriage of passengers are booking errors or double booking, delayed departure of aircraft, incorrect information regarding the time of departure, failure to land at the scheduled destination and changes in flight schedule or addition of extra landing stops. Delay in the carriage of baggage or cargo may have different causes: no reservation, lack of space, failure to load the baggage or cargo at the right place, or to deliver the covering documents at the right place. The Montreal Convention of 1999 Article 19 provides that 'The carrier is liable for damage occasioned by delay in the carriage by air of passengers, baggage or cargo. Nevertheless, the carder shall not be liable for damage occasioned by delay if it proves that it and its servants and agents took all measures that could reasonably be required to avoid the damage or that it was impossible for it or them to take such measures'. The Montreal Convention Article 22 provides liability limits of the carrier in case of delay for passengers and their baggage and for cargo. In the carriage of persons, the liability of the carrier for each passenger is limited to 4,150 SDR. In the carriage of baggage, the liability of the carrier is limited to 1,000 SDR for each passenger unless a special declaration as to the value of the baggage has been made. In the carriage of cargo, the liability of the carrier is limited to 17 SDR per kilogram unless a special declaration as to the value of the cargo has been made. The Montreal Convention Article 19 has shortcomings: it is silent on the duration of the liability for carriage,andit does not make any distinction between persons and good. It does not give any indication concerning the circumstances to be taken into account in cases of delay, and about the length of delay. In conclusion, it is desirable to define the period of carriage with accuracy, and to insert the word 'unreasonable' in Article 19.
NASA Astrophysics Data System (ADS)
Arik, Sabri
2006-02-01
This Letter presents a sufficient condition for the existence, uniqueness and global asymptotic stability of the equilibrium point for bidirectional associative memory (BAM) neural networks with distributed time delays. The results impose constraint conditions on the network parameters of neural system independently of the delay parameter, and they are applicable to all bounded continuous non-monotonic neuron activation functions. The results are also compared with the previous results derived in the literature.
Phenotypic Checkpoints Regulate Neuronal Development
Ben-Ari, Yehezkel; Spitzer, Nicholas C.
2010-01-01
Nervous system development proceeds by sequential gene expression mediated by cascades of transcription factors in parallel with sequences of patterned network activity driven by receptors and ion channels. These sequences are cell type- and developmental stage-dependent and modulated by paracrine actions of substances released by neurons and glia. How and to what extent these sequences interact to enable neuronal network development is not understood. Recent evidence demonstrates that CNS development requires intermediate stages of differentiation providing functional feedback that influences gene expression. We suggest that embryonic neuronal functions constitute a series of phenotypic checkpoint signatures; neurons failing to express these functions are delayed or developmentally arrested. Such checkpoints are likely to be a general feature of neuronal development and may constitute presymptomatic signatures of neurological disorders when they go awry. PMID:20864191
A neurologist's reflections on boxing. V. Conclude remarks.
Unterharnscheidt, F
1995-01-01
Clinical and morphological publications have shown convincingly, that participation in boxing leads to a severe permanent brain damage. The extent of the brain damage is correlated to the number of bouts fought, which correspondents in a certain way how many blows against his head a boxer received and to his weight class. The intensity of a boxing blow of a heavyweight is much more severe than those achieved by boxers of lighter weight classes. The permanent brain damage in a boxer, the amateur and the professional boxer, manifests itself in several clinical syndromes in which the pyramidal, the extrapyramidal and the cerebellar systems are involved. A traumatic Parkinsonism, in its complete or abortive form, develops as the result of the numerous boxing blows a boxer sustains in his boxing career. Especially lateral parts of the substantia nigra are affected and reveal at macroscopical and microscopical examination a severe loss of pigmented neurons. Melanin pigment is visible free in the tissue and/or is phagozytosed in macrophages and glial cells. The traumatic Parkinson syndrome, often only in an abortive form, is combined in a boxer with additional clinical and morphological findings due to traumatic lesions in other areas of the brain. It is not as pure as in a patient with a Parkinson syndrome sui generis. The permanent brain damage in a boxer is diffuse, involving all areas of the brain. Especially involved are the large neurons of different layers of the cerebral cortex, the neurons of the Ammons horn formation, the Purkinje cells of the cerebellum. In place of destroyed and lost neurons, proliferation of glial elements, especially astroglial cells, has occurred. The defects are first replaced by protoplasmatic astroglial elements, and later by fibrillary astroglia. The destroyed neurons are replaced by glial scar tissue, which cannot perform the functions of the lost neurons. It is a process which is called partial necrosis of brain tissue. There is no reparation or restitution of the destroyed neural tissue of the brain. What is destroyed remains so, a restitution ad integrum does not occur. As the result of the diffuse loss of neurons in the brain a cerebral atrophy exists. The septum pellucidum, which consists of two thin lamellae, and is small or very small in a normal brain, forms a Cavum septi pellucidi, which is considerably enlarged. The walls of this structure, especially in its dorsal parts are considerably thinned; they show fenestrations and are, in dorsal parts no longer detectable, so that a direct connection between the two lateral ventricles exists. The clinically and morphologically existing permanent brain damage is the result of the boxing activity. Diagnostically, processes of another origin, such as alcoholism, luetic processes, other forms of dementia, etc. can undoubtedly be excluded. A permanent brain damage develops in professional and amateur boxers. The objection, which are voiced by members of the different Amateur Boxing Association, that such permanent brain damage in amateur boxers today no longer exists, after stricter protective measurements were introduced, is not tenable. Individuals who represent today the opinion, that a permanent brain damage or punch drunkenness in boxers does not occur, are not familiar with the pertinent medical literature. The argument, the injury quotient in boxing is lower than in all other athletic activities is not sound, since the statistics show only the inconsequential injuries of boxers, as lesions of the skin of the face, injuries of the hand, fractures, etc. but not the much more important and severe permanent brain damage, which is not taken into consideration in these so-called statistics. Besides of the permanent brain damage of former boxers as the result of the repeated and numerous blows against their head, severe permanent damage of the eyes and the hearing organ exists.
Sensory and Working Memory Representations of Small and Large Numerosities in the Crow Endbrain.
Ditz, Helen M; Nieder, Andreas
2016-11-23
Neurons in the avian nidopallium caudolaterale (NCL), an endbrain structure that originated independently from the mammalian neocortex, process visual numerosities. To clarify the code for number in this anatomically distinct endbrain area in birds, neuronal responses to a broad range of numerosities were analyzed. We recorded single-neuron activity from the NCL of crows performing a delayed match-to-sample task with visual numerosities as discriminanda. The responses of >20% of randomly selected neurons were modulated significantly by numerosities ranging from one to 30 items. Numerosity-selective neurons showed bell-shaped tuning curves with one of the presented numerosities as preferred numerosity regardless of the physical appearance of the items. The resulting labeled-line code exhibited logarithmic compression obeying the Weber-Fechner law for magnitudes. Comparable proportions of selective neurons were found, not only during stimulus presentation, but also in the delay phase, indicating a dominant role of the NCL in numerical working memory. Both during sensory encoding and memorization of numerosities in working memory, NCL activity predicted the crows' number discrimination performance. These neuronal data reveal striking similarities across vertebrate taxa in their code for number despite convergently evolved and anatomically distinct endbrain structures. Birds are known for their capabilities to process numerical quantity. However, birds lack a six-layered neocortex that enables primates with numerical competence. We aimed to decipher the neuronal code for numerical quantity in the independently and distinctly evolved endbrain of birds. We recorded the activity of neurons in an endbrain association area termed nidopallium caudolaterale (NCL) from crows that assessed and briefly memorized numerosities from one to 30 dots. We report a neuronal code for sensory representation and working memory of numerosities in the crow NCL exhibiting several characteristics that are surprisingly similar to the ones found in primates. Our data suggest a common code for number in two different vertebrate taxa that has evolved based on convergent evolution. Copyright © 2016 the authors 0270-6474/16/3612044-09$15.00/0.
Exercise-Induced Skeletal Muscle Damage.
Evans, W J
1987-01-01
In brief: Delayed-onset muscle soreness is most likely caused by structural damage in skeletal muscle after eccentric exercise, in which muscles produce force while lengthening, as in running downhill. This damage may take as long as 12 weeks to repair. Therefore, athletes should allow plenty of time for recovery after events that cause extreme muscle soreness. Because prostaglandin E2 may be important in muscle repair, prostaglandin blockers, such as aspirin, may be useless or even detrimental in the treatment of delayed-onset muscle soreness. Eccentric exercise training may help prevent soreness.
Two familial ALS proteins function in prevention/repair of transcription-associated DNA damage.
Hill, Sarah J; Mordes, Daniel A; Cameron, Lisa A; Neuberg, Donna S; Landini, Serena; Eggan, Kevin; Livingston, David M
2016-11-29
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron dysfunction disease that leads to paralysis and death. There is currently no established molecular pathogenesis pathway. Multiple proteins involved in RNA processing are linked to ALS, including FUS and TDP43, and we propose a disease mechanism in which loss of function of at least one of these proteins leads to an accumulation of transcription-associated DNA damage contributing to motor neuron cell death and progressive neurological symptoms. In support of this hypothesis, we find that FUS or TDP43 depletion leads to increased sensitivity to a transcription-arresting agent due to increased DNA damage. Thus, these proteins normally contribute to the prevention or repair of transcription-associated DNA damage. In addition, both FUS and TDP43 colocalize with active RNA polymerase II at sites of DNA damage along with the DNA damage repair protein, BRCA1, and FUS and TDP43 participate in the prevention or repair of R loop-associated DNA damage, a manifestation of aberrant transcription and/or RNA processing. Gaining a better understanding of the role(s) that FUS and TDP43 play in transcription-associated DNA damage could shed light on the mechanisms underlying ALS pathogenesis.
Two familial ALS proteins function in prevention/repair of transcription-associated DNA damage
Hill, Sarah J.; Mordes, Daniel A.; Cameron, Lisa A.; Neuberg, Donna S.; Landini, Serena; Eggan, Kevin; Livingston, David M.
2016-01-01
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron dysfunction disease that leads to paralysis and death. There is currently no established molecular pathogenesis pathway. Multiple proteins involved in RNA processing are linked to ALS, including FUS and TDP43, and we propose a disease mechanism in which loss of function of at least one of these proteins leads to an accumulation of transcription-associated DNA damage contributing to motor neuron cell death and progressive neurological symptoms. In support of this hypothesis, we find that FUS or TDP43 depletion leads to increased sensitivity to a transcription-arresting agent due to increased DNA damage. Thus, these proteins normally contribute to the prevention or repair of transcription-associated DNA damage. In addition, both FUS and TDP43 colocalize with active RNA polymerase II at sites of DNA damage along with the DNA damage repair protein, BRCA1, and FUS and TDP43 participate in the prevention or repair of R loop-associated DNA damage, a manifestation of aberrant transcription and/or RNA processing. Gaining a better understanding of the role(s) that FUS and TDP43 play in transcription-associated DNA damage could shed light on the mechanisms underlying ALS pathogenesis. PMID:27849576
Au, Ngan Pan Bennett; Kumar, Gajendra; Asthana, Pallavi; Tin, Chung; Mak, Yim Ling; Chan, Leo Lai; Lam, Paul Kwan Sing; Ma, Chi Him Eddie
2016-05-27
Ciguatera fish poisoning (CFP) results from consumption of tropical reef fish containing ciguatoxins (CTXs). Pacific (P)-CTX-1 is among the most potent known CTXs and the predominant source of CFP in the endemic region responsible for the majority of neurological symptoms in patients. Chronic and persistent neurological symptoms occur in some CFP patients, which often result in incomplete functional recovery for years. However, the direct effects of exposure to CTXs remain largely unknown. In present study, we exposed mice to CTX purified from ciguatera fish sourced from the Pacific region. P-CTX-1 was detected in peripheral nerves within hours and persisted for two months after exposure. P-CTX-1 inhibited axonal regrowth from axotomized peripheral neurons in culture. P-CTX-1 exposure reduced motor function in mice within the first two weeks of exposure before returning to baseline levels. These pre-exposed animals exhibited delayed sensory and motor functional recovery, and irreversible motor deficits after peripheral nerve injury in which formation of functional synapses was impaired. These findings are consistent with reduced muscle function, as assessed by electromyography recordings. Our study provides strong evidence that the persistence of P-CTX-1 in peripheral nerves reduces the intrinsic growth capacity of peripheral neurons, resulting in delayed functional recovery after injury.
Neuronal Effects of Sugammadex in combination with Rocuronium or Vecuronium
Aldasoro, Martin; Jorda, Adrian; Aldasoro, Constanza; Marchio, Patricia; Guerra-Ojeda, Sol; Gimeno-Raga, Marc; Mauricio, Mª Dolores; Iradi, Antonio; Obrador, Elena; Vila, Jose Mª; Valles, Soraya L.
2017-01-01
Rocuronium (ROC) and Vecuronium (VEC) are the most currently used steroidal non-depolarizing neuromuscular blocking (MNB) agents. Sugammadex (SUG) rapidly reverses steroidal NMB agents after anaesthesia. The present study was conducted in order to evaluate neuronal effects of SUG alone and in combination with both ROC and VEC. Using MTT, CASP-3 activity and Western-blot we determined the toxicity of SUG, ROC or VEC in neurons in primary culture. SUG induces apoptosis/necrosis in neurons in primary culture and increases cytochrome C (CytC), apoptosis-inducing factor (AIF), Smac/Diablo and Caspase 3 (CASP-3) protein expression. Our results also demonstrated that both ROC and VEC prevent these SUG effects. The protective role of both ROC and VEC could be explained by the fact that SUG encapsulates NMB drugs. In BBB impaired conditions it would be desirable to control SUG doses to prevent the excess of free SUG in plasma that may induce neuronal damage. A balance between SUG, ROC or VEC would be necessary to prevent the risk of cell damage. PMID:28367082
Hasselmo, Michael E.
2008-01-01
This article presents a model of grid cell firing based on the intrinsic persistent firing shown experimentally in neurons of entorhinal cortex. In this model, the mechanism of persistent firing allows individual neurons to hold a stable baseline firing frequency. Depolarizing input from speed modulated head direction cells transiently shifts the frequency of firing from baseline, resulting in a shift in spiking phase in proportion to the integral of velocity. The convergence of input from different persistent firing neurons causes spiking in a grid cell only when the persistent firing neurons are within similar phase ranges. This model effectively simulates the two-dimensional firing of grid cells in open field environments, as well as the properties of theta phase precession. This model provides an alternate implementation of oscillatory interference models. The persistent firing could also interact on a circuit level with rhythmic inhibition and neurons showing membrane potential oscillations to code position with spiking phase. These mechanisms could operate in parallel with computation of position from visual angle and distance of stimuli. In addition to simulating two-dimensional grid patterns, models of phase interference can account for context-dependent firing in other tasks. In network simulations of entorhinal cortex, hippocampus and postsubiculum, the reset of phase effectively replicates context-dependent firing by entorhinal and hippocampal neurons during performance of a continuous spatial alternation task, a delayed spatial alternation task with running in a wheel during the delay period, and a hairpin maze task. PMID:19021258
Xu, Mei; Yip, George Wai-Cheong; Gan, Le-Ting; Ng, Yee-Kong
2005-09-07
Oxidative stress plays an important role in the pathogenesis of neurodegeneration after the acute central nervous system injury. We reported previously that increased nitric oxide (NO) production following spinal cord hemisection tends to lead to neurodegeneration in neurons of the nucleus dorsalis (ND) that normally lacks expression of neuronal NO synthase (nNOS) in opposition to those in the red nucleus (RN) that constitutively expresses nNOS. We wondered whether oxidative stress could be a mechanism underlying this NO involved neurodegeneration. In the present study, we examined oxidative damage evaluated by the presence of 4-hydroxynonenal (HNE) and iron accumulation and expression of putative antioxidant enzymes heme oxygenase-1 (HO-1) and superoxide dismutase (SOD) in neurons of the ND and RN after spinal cord hemisection. We found that HNE expression was induced in neurons of the ipsilateral ND from 1 to 14 days following spinal cord hemisection. Concomitantly, iron staining was seen from 7 to 14 days after lesion. HO-1, however, was only transiently induced in ipsilateral ND neurons between 3 and 7 days after lesion. In contrast to the ND neurons, HNE was undetectable and iron level was unaltered in the RN neurons after spinal cord hemisection. HO-1, SOD-Cu/Zn and SOD-Mn were constitutively expressed in RN neurons, and lesion to the spinal cord did not change their expression. These results suggest that oxidative stress is involved in the degeneration of the lesioned ND neurons; whereas constitutive antioxidant enzymes may protect the RN neurons from oxidative damage.
Chen, Wei; Mao, Liuqun; Xing, Huanhuan; Xu, Lei; Fu, Xiang; Huang, Liyingzi; Huang, Dongling; Pu, Zhijun; Li, Qinghua
2015-11-03
Growing evidence suggests concentration of lycopene was reduced in plasma of patients with Alzheimer disease (AD). Lycopene, a member of the carotenoid family, has been identified as an antioxidant to attenuate oxidative damage and has neuroprotective role in several AD models. However, whether lycopene is involved in the pathogenesis of AD and molecular underpinnings are elusive. In this study, we found that lycopene can significantly delay paralysis in the Aβ1-42-transgenic Caenorhabditis elegans strain GMC101. Lycopene treatment reduced Aβ1-42 secretion in SH-SY5Y cells overexpressing the Swedish mutant form of human β-amyloid precursor protein (APPsw). Next, we found lycopene can down-regulate expression level of β-amyloid precursor protein(APP) in APPsw cells. Moreover, lycopene treatment can not change endogenous reactive oxygen species level and apoptosis in APPsw cells. However, lycopene treatment protected against H2O2-induced oxidative stress and copper-induced damage in APPsw cells. Collectively, our data support that elevated lycopene contributes to the lower pathogenesis of AD. Our findings suggest that increasing lycopene in neurons may be a novel approach to attenuate onset and development of AD. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
AUTEN-67, an autophagy-enhancing drug candidate with potent antiaging and neuroprotective effects.
Papp, Diána; Kovács, Tibor; Billes, Viktor; Varga, Máté; Tarnóci, Anna; Hackler, László; Puskás, László G; Liliom, Hanna; Tárnok, Krisztián; Schlett, Katalin; Borsy, Adrienn; Pádár, Zsolt; Kovács, Attila L; Hegedűs, Krisztina; Juhász, Gábor; Komlós, Marcell; Erdős, Attila; Gulyás, Balázs; Vellai, Tibor
2016-01-01
Autophagy is a major molecular mechanism that eliminates cellular damage in eukaryotic organisms. Basal levels of autophagy are required for maintaining cellular homeostasis and functioning. Defects in the autophagic process are implicated in the development of various age-dependent pathologies including cancer and neurodegenerative diseases, as well as in accelerated aging. Genetic activation of autophagy has been shown to retard the accumulation of damaged cytoplasmic constituents, delay the incidence of age-dependent diseases, and extend life span in genetic models. This implies that autophagy serves as a therapeutic target in treating such pathologies. Although several autophagy-inducing chemical agents have been identified, the majority of them operate upstream of the core autophagic process, thereby exerting undesired side effects. Here, we screened a small-molecule library for specific inhibitors of MTMR14, a myotubularin-related phosphatase antagonizing the formation of autophagic membrane structures, and isolated AUTEN-67 (autophagy enhancer-67) that significantly increases autophagic flux in cell lines and in vivo models. AUTEN-67 promotes longevity and protects neurons from undergoing stress-induced cell death. It also restores nesting behavior in a murine model of Alzheimer disease, without apparent side effects. Thus, AUTEN-67 is a potent drug candidate for treating autophagy-related diseases.
Morales, Inelia; Guzmán-Martínez, Leonardo; Cerda-Troncoso, Cristóbal; Farías, Gonzalo A; Maccioni, Ricardo B
2014-01-01
Alzheimer disease (AD) is the most common cause of dementia in people over 60 years old. The molecular and cellular alterations that trigger this disease are still diffuse, one of the reasons for the delay in finding an effective treatment. In the search for new targets to search for novel therapeutic avenues, clinical studies in patients who used anti-inflammatory drugs indicating a lower incidence of AD have been of value to support the neuroinflammatory hypothesis of the neurodegenerative processes and the role of innate immunity in this disease. Neuroinflammation appears to occur as a consequence of a series of damage signals, including trauma, infection, oxidative agents, redox iron, oligomers of τ and β-amyloid, etc. In this context, our theory of Neuroimmunomodulation focus on the link between neuronal damage and brain inflammatory process, mediated by the progressive activation of astrocytes and microglial cells with the consequent overproduction of proinflammatory agents. Here, we discuss about the role of microglial and astrocytic cells, the principal agents in neuroinflammation process, in the development of neurodegenerative diseases such as AD. In this context, we also evaluated the potential relevance of natural anti-inflammatory components, which include curcumin and the novel Andean Compound, as agents for AD prevention and as a coadjuvant for AD treatments.
Morales, Inelia; Guzmán-Martínez, Leonardo; Cerda-Troncoso, Cristóbal; Farías, Gonzalo A.; Maccioni, Ricardo B.
2014-01-01
Alzheimer disease (AD) is the most common cause of dementia in people over 60 years old. The molecular and cellular alterations that trigger this disease are still diffuse, one of the reasons for the delay in finding an effective treatment. In the search for new targets to search for novel therapeutic avenues, clinical studies in patients who used anti-inflammatory drugs indicating a lower incidence of AD have been of value to support the neuroinflammatory hypothesis of the neurodegenerative processes and the role of innate immunity in this disease. Neuroinflammation appears to occur as a consequence of a series of damage signals, including trauma, infection, oxidative agents, redox iron, oligomers of τ and β-amyloid, etc. In this context, our theory of Neuroimmunomodulation focus on the link between neuronal damage and brain inflammatory process, mediated by the progressive activation of astrocytes and microglial cells with the consequent overproduction of proinflammatory agents. Here, we discuss about the role of microglial and astrocytic cells, the principal agents in neuroinflammation process, in the development of neurodegenerative diseases such as AD. In this context, we also evaluated the potential relevance of natural anti-inflammatory components, which include curcumin and the novel Andean Compound, as agents for AD prevention and as a coadjuvant for AD treatments. PMID:24795567
Alp, Murat; Cucinotta, Francis A
2018-03-01
Exposure to heavy-ion radiation during cancer treatment or space travel may cause cognitive detriments that have been associated with changes in neuron morphology and plasticity. Observations in mice of reduced neuronal dendritic complexity have revealed a dependence on radiation quality and absorbed dose, suggesting that microscopic energy deposition plays an important role. In this work we used morphological data for mouse dentate granular cell layer (GCL) neurons and a stochastic model of particle track structure and microscopic energy deposition (ED) to develop a predictive model of high-charge and energy (HZE) particle-induced morphological changes to the complex structures of dendritic arbors. We represented dendrites as cylindrical segments of varying diameter with unit aspect ratios, and developed a fast sampling method to consider the stochastic distribution of ED by δ rays (secondary electrons) around the path of heavy ions, to reduce computational times. We introduce probabilistic models with a small number of parameters to describe the induction of precursor lesions that precede dendritic snipping, denoted as snip sites. Predictions for oxygen ( 16 O, 600 MeV/n) and titanium ( 48 Ti, 600 MeV/n) particles with LET of 16.3 and 129 keV/μm, respectively, are considered. Morphometric parameters to quantify changes in neuron morphology are described, including reduction in total dendritic length, number of branch points and branch numbers. Sholl analysis is applied for single neurons to elucidate dose-dependent reductions in dendritic complexity. We predict important differences in measurements from imaging of tissues from brain slices with single neuron cell observations due to the role of neuron death through both soma apoptosis and excessive dendritic length reduction. To further elucidate the role of track structure, random segment excision (snips) models are introduced and a sensitivity study of the effects of the modes of neuron death in predictions of morphometric parameters is described. An important conclusion of this study is that δ rays play a major role in neuron morphological changes due to the large spatial distribution of damage sites, which results in a reduced dependence on LET, including modest difference between 16 O and 48 Ti, compared to damages resulting from ED in localized damage sites.
Synchronization in neural nets
NASA Technical Reports Server (NTRS)
Vidal, Jacques J.; Haggerty, John
1988-01-01
The paper presents an artificial neural network concept (the Synchronizable Oscillator Networks) where the instants of individual firings in the form of point processes constitute the only form of information transmitted between joining neurons. In the model, neurons fire spontaneously and regularly in the absence of perturbation. When interaction is present, the scheduled firings are advanced or delayed by the firing of neighboring neurons. Networks of such neurons become global oscillators which exhibit multiple synchronizing attractors. From arbitrary initial states, energy minimization learning procedures can make the network converge to oscillatory modes that satisfy multi-dimensional constraints. Such networks can directly represent routing and scheduling problems that consist of ordering sequences of events.
Role of PPARγ in the Differentiation and Function of Neurons
Quintanilla, Rodrigo A.; Utreras, Elias; Cabezas-Opazo, Fabián A.
2014-01-01
Neuronal processes (neurites and axons) have an important role in brain cells communication and, generally, they are damaged in neurodegenerative diseases. Recent evidence has showed that the activation of PPARγ pathway promoted neuronal differentiation and axon polarity. In addition, activation of PPARγ using thiazolidinediones (TZDs) prevented neurodegeneration by reducing neuronal death, improving mitochondrial function, and decreasing neuroinflammation in neuropathic pain. In this review, we will discuss important evidence that supports a possible role of PPARγ in neuronal development, improvement of neuronal health, and pain signaling. Therefore, activation of PPARγ is a potential target with therapeutic applications against neurodegenerative disorders, brain injury, and pain regulation. PMID:25246934
Sloppy morphological tuning in identified neurons of the crustacean stomatogastric ganglion
Otopalik, Adriane G; Goeritz, Marie L; Sutton, Alexander C; Brookings, Ted; Guerini, Cosmo; Marder, Eve
2017-01-01
Neuronal physiology depends on a neuron’s ion channel composition and unique morphology. Variable ion channel compositions can produce similar neuronal physiologies across animals. Less is known regarding the morphological precision required to produce reliable neuronal physiology. Theoretical studies suggest that moraphology is tightly tuned to minimize wiring and conduction delay of synaptic events. We utilize high-resolution confocal microscopy and custom computational tools to characterize the morphologies of four neuron types in the stomatogastric ganglion (STG) of the crab Cancer borealis. Macroscopic branching patterns and fine cable properties are variable within and across neuron types. We compare these neuronal structures to synthetic minimal spanning neurite trees constrained by a wiring cost equation and find that STG neurons do not adhere to prevailing hypotheses regarding wiring optimization principles. In this highly modulated and oscillating circuit, neuronal structures appear to be governed by a space-filling mechanism that outweighs the cost of inefficient wiring. DOI: http://dx.doi.org/10.7554/eLife.22352.001 PMID:28177286
Leptin Signaling in AgRP Neurons Modulates Puberty Onset and Adult Fertility in Mice.
Egan, Olivia K; Inglis, Megan A; Anderson, Greg M
2017-04-05
The hormone leptin indirectly communicates metabolic information to brain neurons that control reproduction, using GABAergic circuitry. Agouti-related peptide (AgRP) neurons in the arcuate nucleus are GABAergic, express leptin receptors (LepR), and are known to influence reproduction. This study tested whether leptin actions on AgRP neurons are required and sufficient for puberty onset and subsequent fertility. First, Agrp- Cre and Lepr- flox mice were used to target deletion of LepR to AgRP neurons. AgRP-LepR knock-out female mice exhibited mild obesity and adiposity as described previously, as well as a significant delay in the pubertal onset of estrous cycles compared with control animals. No significant differences in male puberty onset or adult fecundity in either sex were observed. Next, mice with a floxed polyadenylation signal causing premature transcriptional termination of the Lepr gene were crossed with AgRP-Cre mice to generate mice with AgRP neuron-specific rescue of LepR. Lepr-null control males and females were morbidly obese and exhibited delayed puberty onset, no evidence of estrous cycles, and minimal fecundity. Remarkably, AgRP-LepR rescue partially or fully restored all of these reproductive attributes to levels similar to those of LepR-intact controls despite minimal rescue of metabolic function. These results indicate that leptin signaling in AgRP neurons is sufficient for puberty onset and normal adult fecundity in both sexes when leptin signaling is absent in all other cells and that in females, the absence of AgRP neuron leptin signaling delays puberty. These actions appear to be independent of leptin's metabolic effects. SIGNIFICANCE STATEMENT Sexual maturation and fertility are dispensable at the individual level but critical for species survival. Conditions such as nutritional imbalance may therefore suppress puberty onset and fertility in an individual. In societies characterized by widespread obesity, the sensitivity of reproduction to metabolic imbalance has significant public health implications. Deficient leptin signaling attributable to diet-induced leptin resistance is associated with infertility in humans and rodents, and treatments for human infertility show a decreased success rate with increasing body mass index. Here we show that the transmission of metabolic information to the hypothalamo-pituitary-gonadal axis is mediated by leptin receptors on AgRP neurons. These results provide conclusive new insights into the mechanisms that cause infertility attributable to malnourishment. Copyright © 2017 the authors 0270-6474/17/373875-12$15.00/0.
2013-01-01
Background Ceramide accumulation is considered a contributing factor to neuronal dysfunction and damage. However, the underlying mechanisms that occur following ischemic insult are still unclear. Methods In the present study, we established cerebral ischemia models using four-vessel occlusion and oxygen-glucose deprivation methods. The hippocampus neural cells were subjected to immunohistochemistry and immunofluorescence staining for ceramide and neutral sphingomyelinase 2 (nSMase2) levels; immunoprecipitation and immunoblot analysis for nSMase2, receptor for activated C kinase 1 (RACK1), embryonic ectoderm development (EED), p38 mitogen-activated protein kinase (p38MAPK) and phosphorylated p38MAPK expression; SMase assay for nSMase and acid sphingomyelinase (aSMase) activity; real-time reverse transcription polymerase chain reaction for cytokine expression; and Nissl, microtubule-associated protein 2 and terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick-end labeling staining. Results We found considerable production of ceramide in astrocytes, but not in neurons, during early cerebral ischemia. This was accompanied by the induction of nSMase (but not aSMase) activity in the rat hippocampi. The inhibition of nSMase2 activity effectively reduced ceramide accumulation in astrocytes and alleviated neuronal damage to some extent. Meanwhile, the expression levels of proinflammatory cytokines, including tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β) and IL-6, were found to be upregulated, which may have played an import role in neuronal damage mediated by the nSMase2/ceramide pathway. Although enhanced binding of nSMase2 with RACK1 and EED were also observed after cerebral ischemia, nSMase2 activity was not blocked by the TNF-α receptor inhibitor through RACK1/EED signaling. p38MAPK, but not protein kinase Cζ or protein phosphatase 2B, was able to induce nSMase2 activation after ischemia. p38MAPK can be induced by A2B adenosine receptor (A2BAR) activity. Conclusions These results indicate that the inhibition of ceramide production in astrocytes by targeting A2BAR/p38MAPK/nSMase2 signaling may represent a viable approach for attenuating inflammatory responses and neuronal damage after cerebral ischemia. PMID:24007266
Just-in-time connectivity for large spiking networks.
Lytton, William W; Omurtag, Ahmet; Neymotin, Samuel A; Hines, Michael L
2008-11-01
The scale of large neuronal network simulations is memory limited due to the need to store connectivity information: connectivity storage grows as the square of neuron number up to anatomically relevant limits. Using the NEURON simulator as a discrete-event simulator (no integration), we explored the consequences of avoiding the space costs of connectivity through regenerating connectivity parameters when needed: just in time after a presynaptic cell fires. We explored various strategies for automated generation of one or more of the basic static connectivity parameters: delays, postsynaptic cell identities, and weights, as well as run-time connectivity state: the event queue. Comparison of the JitCon implementation to NEURON's standard NetCon connectivity method showed substantial space savings, with associated run-time penalty. Although JitCon saved space by eliminating connectivity parameters, larger simulations were still memory limited due to growth of the synaptic event queue. We therefore designed a JitEvent algorithm that added items to the queue only when required: instead of alerting multiple postsynaptic cells, a spiking presynaptic cell posted a callback event at the shortest synaptic delay time. At the time of the callback, this same presynaptic cell directly notified the first postsynaptic cell and generated another self-callback for the next delay time. The JitEvent implementation yielded substantial additional time and space savings. We conclude that just-in-time strategies are necessary for very large network simulations but that a variety of alternative strategies should be considered whose optimality will depend on the characteristics of the simulation to be run.
Bhuiyan, Mohammad Iqbal Hossain; Kim, Joo Youn; Ha, Tae Joung; Kim, Seong Yun; Cho, Kyung-Ok
2012-01-01
The present study investigated the neuroprotective effects of anthocyanins extracted from black soybean (cv. Cheongja 3, Glycine max (L.) MERR.) seed coat against oxygen-glucose deprivation (OGD) and glutamate-induced cell death in rat primary cortical neurons. Lactate dehydrogenase (LDH) release and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assays were employed to assess cell membrane damage and viability of primary neurons, respectively. OGD-induced cell death in 7 d in vitro primary cortical neurons was found to be OGD duration-dependent, and approximately 3.5 h of OGD resulted in ≈60% cell death. Treatment with black soybean anthocyanins dose-dependently prevented membrane damage and increased the viability of primary neurons that were exposed to OGD. Glutamate-induced neuronal cell death was dependent on the glutamate concentration at relatively low concentrations and the number of days the cells remained in culture. Interestingly, black soybean anthocyanins did not protect against glutamate-induced neuronal cell death. They did, however, inhibit the excessive generation of reactive oxygen species (ROS) and preserve mitochondrial membrane potential (MMP) in primary neurons exposed to OGD. In agreement with the neuroprotective effect of crude black soybean anthocyanins, purified cyanidin-3-glucoside (C3G), the major component of anthocyanins, also offered dose-dependent neuroprotection against OGD-induced neuronal cell death. Moreover, black soybean C3G markedly prevented excessive generation of ROS and preserved MMP in primary neurons that were exposed to OGD. Collectively, these results suggest that the neuroprotection of primary rat cortical neurons by anthocyanins that were extracted from black soybean seed coat might be mediated through oxidative stress inhibition and MMP preservation but not through glutamate-induced excitotoxicity attenuation.
Yuan, Liming; Wang, Zhen; Liu, Lihua; Jian, Xiaohong
2015-08-01
Necroptosis has an important role in ischemia-reperfusion damage. The expression of histone deacetylase 6 (HDAC6) is upregulated in neurons following ischemia-reperfusion, however, whether HDAC6 is closely involved in the necroptosis, which occurs during ischemia-reperfusion damage remains to be elucidated. In the present study, the roles of HDAC6 in the necroptosis of cultured rat cortical neurons were investigated in a oxygen-glucose deprivation (OGD) model. The results demonstrated that OGD induced marked necroptosis of cultured rat cortical neurons and upregulated the expression of HDAC6 in the cultured neurons, compared with the control (P<0.05). The necroptosis inhibitor, necrostatin-1 (Nec-1), decreased The expression of HDAC6 in the OGD-treated cultured neurons, accompanied by the inhibition of necroptosis. Further investigation revealed that, compared with OGD treatment alone, inhibiting the activity of HDAC6 with tubacin, a specific HDAC6 inhibitor, reduced the OGD-induced necroptosis of the cultured rat cortical neurons (P<0.05), which was similar to the change following treatment with Nec-1 (P>0.05). In addition, inhibiting the activity of HDAC6 reversed the OGD-induced increase of reactive oxygen species (ROS) and the OGD-induced decrease of acetylated tubulin in the cultured rat cortical neurons (P<0.05), compared with the neurons treated with OGD alone). The levels of acetylated tubulin in the cultured neurons following treatment with OGD and tubacin were significantly higher than those in the control (P<0.05). These results suggested that HDAC6 was involved in the necroptosis of neurons during ischemia-reperfusion by modulating the levels of ROS and acetylated tubulin.
Transcriptional regulation of intermediate progenitor cell generation during hippocampal development
Harris, Lachlan; Zalucki, Oressia; Gobius, Ilan; McDonald, Hannah; Osinki, Jason; Harvey, Tracey J.; Essebier, Alexandra; Vidovic, Diana; Gladwyn-Ng, Ivan; Burne, Thomas H.; Heng, Julian I.; Richards, Linda J.; Gronostajski, Richard M.
2016-01-01
During forebrain development, radial glia generate neurons through the production of intermediate progenitor cells (IPCs). The production of IPCs is a central tenet underlying the generation of the appropriate number of cortical neurons, but the transcriptional logic underpinning this process remains poorly defined. Here, we examined IPC production using mice lacking the transcription factor nuclear factor I/X (Nfix). We show that Nfix deficiency delays IPC production and prolongs the neurogenic window, resulting in an increased number of neurons in the postnatal forebrain. Loss of additional Nfi alleles (Nfib) resulted in a severe delay in IPC generation while, conversely, overexpression of NFIX led to precocious IPC generation. Mechanistically, analyses of microarray and ChIP-seq datasets, coupled with the investigation of spindle orientation during radial glial cell division, revealed that NFIX promotes the generation of IPCs via the transcriptional upregulation of inscuteable (Insc). These data thereby provide novel insights into the mechanisms controlling the timely transition of radial glia into IPCs during forebrain development. PMID:27965439
Neuronal matrix metalloproteinase-9 is a determinant of selective neurodegeneration
Kaplan, Artem; Spiller, Krista J.; Towne, Christopher; Kanning, Kevin C.; Choe, Ginn T.; Geber, Adam; Akay, Turgay; Aebischer, Patrick; Henderson, Christopher E.
2018-01-01
SUMMARY Selective neuronal loss is the hallmark of neurodegenerative diseases. In patients with amyotrophic lateral sclerosis (ALS), most motor neurons die but those innervating extraocular, pelvic sphincter and slow limb muscles exhibit selective resistance. We identified 18 genes that show >10-fold differential expression between resistant and vulnerable motor neurons. One of these, matrix metalloproteinase-9 (MMP-9), is expressed only by fast motor neurons, which are selectively vulnerable. In ALS model mice expressing mutant SOD1, reduction of MMP-9 function using gene ablation, viral gene therapy or pharmacological inhibition significantly delayed muscle denervation. In the presence of mutant SOD1, MMP-9 expressed by fast motor neurons themselves enhances activation of ER stress and is sufficient to trigger axonal die-back. These findings define MMP-9 as a candidate therapeutic target for ALS. The molecular basis of neuronal diversity thus provides novel insights into mechanisms of selective vulnerability to neurodegeneration. PMID:24462097
Floor, E; Wetzel, M G
1998-01-01
The dopaminergic phenotype of neurons in human substantia nigra deteriorates during normal aging, and loss of these neurons is prominent in Parkinson's disease. These degenerative processes are hypothesized to involve oxidative stress. To compare oxidative stress in the nigra and related regions, we measured carbonyl modifications of soluble proteins in postmortem samples of substantia nigra, basal ganglia, and prefrontal cortex from neurologically normal subjects, using an improved 2,4-dinitrophenylhydrazine assay. The protein carbonyl content was found to be about twofold higher in substantia nigra pars compacta than in the other regions. To further analyze this oxidative damage, the distribution of carbonyl groups on soluble proteins was determined by western immunoblot analysis. This method revealed that carbonyl content of the major proteins in each region was linearly dependent on molecular weight. This distribution raises the possibility that protein carbonyl content is controlled by a size-dependent mechanism in vivo. Our results suggest that oxidative stress is elevated in human substantia nigra pars compacta in comparison with other regions and that oxidative damage is higher within the dopaminergic neurons. Elevated oxidative damage may contribute to the degeneration of nigral dopaminergic neurons in aging and in Parkinson's disease.
Neural Plasticity in Multiple Sclerosis: The Functional and Molecular Background
Glabinski, Andrzej
2015-01-01
Multiple sclerosis is an autoimmune neurodegenerative disorder resulting in motor dysfunction and cognitive decline. The inflammatory and neurodegenerative changes seen in the brains of MS patients lead to progressive disability and increasing brain atrophy. The most common type of MS is characterized by episodes of clinical exacerbations and remissions. This suggests the presence of compensating mechanisms for accumulating damage. Apart from the widely known repair mechanisms like remyelination, another important phenomenon is neuronal plasticity. Initially, neuroplasticity was connected with the developmental stages of life; however, there is now growing evidence confirming that structural and functional reorganization occurs throughout our lifetime. Several functional studies, utilizing such techniques as fMRI, TBS, or MRS, have provided valuable data about the presence of neuronal plasticity in MS patients. CNS ability to compensate for neuronal damage is most evident in RR-MS; however it has been shown that brain plasticity is also preserved in patients with substantial brain damage. Regardless of the numerous studies, the molecular background of neuronal plasticity in MS is still not well understood. Several factors, like IL-1β, BDNF, PDGF, or CB1Rs, have been implicated in functional recovery from the acute phase of MS and are thus considered as potential therapeutic targets. PMID:26229689
Pourzaki, Mojtaba; Homayoun, Mansour; Sadeghi, Saeed; Seghatoleslam, Masoumeh; Hosseini, Mahmoud; Ebrahimzadeh Bideskan, Alireza
2017-01-01
Objective: Coriandrum sativum (C. sativum) as a medicinal plant has been pointed to have analgesic, hypnotic and anti-oxidant effects. In the current study, a possible preventive effect of the hydro-alcoholic extract of the plant on neuronal damages was examined in pentylenetetrazole (PTZ) rat model of seizure. Materials and Methods: Forty male rats were divided into five main groups and treated by (1) saline, (2) PTZ: 100 mg/kg PTZ (i.p) and (3-5) 50, 100 and 200 mg/kg of hydro-alcoholic extract of C. sativum during seven consecutive days before PTZ injection. After electrocorticography (ECoG), the brains were removed to use for histological examination. Results: All doses of the extract reduced duration, frequency and amplitude of the burst discharges while prolonged the latency of the seizure attacks (p<0.05, p<0.01, and p<0.001). Administration of all 3 doses of the extract significantly prevented from production of dark neurons (p<0.01, and p<0.001) and apoptotic cells (p<0.05, p<0.01, and p<0.001) in different areas of the hippocampus compared to PTZ group. Conclusion: The results of this study allow us to conclude that C. sativum, because of its antioxidant properties, prevents from neuronal damages in PTZ rat model of seizure. PMID:28348967
Thomas, David M; Francescutti-Verbeem, Dina M; Kuhn, Donald M
2006-03-01
Microglia are the resident antigen-presenting cells within the central nervous system (CNS), and they serve immune-like functions in protecting the brain against injury and invading pathogens. By contrast, activated microglia can secrete numerous reactants that damage neurons. The pathogenesis of various neurodegenerative diseases has been associated with microglial activation, but the signaling pathways that program a neuronally protective or destructive phenotype in microglia are not known. To increase the understanding of microglial activation, microarray analysis was used to profile the transcriptome of BV-2 microglial cells after activation. Microglia were activated by lipopolysaccharide, the HIV neurotoxic protein TAT, and dopamine quinone, each of which has been linked to dopamine neuronal damage. We identified 210 of 9882 genes whose expression was differentially regulated by all activators (116 increased and 94 decreased in expression). Gene ontology analysis assigned up-regulated genes to a number of specific biological processes and molecular functions, including immune response, inflammation, and cytokine/chemokine activity. Genes down-regulated in expression contribute to conditions that are permissive of microglial migration, lowered adhesion to matrix, lessened phagocytosis, and reduction in receptors that oppose chemotaxis and inflammation. These results elaborate a broad profile of microglial genes whose expression is altered by conditions associated with both neurodegenerative diseases and microglial activation.
Qu, Mingyue; Jiang, Zheng; Liao, Yuanxiang; Song, Zhenyao; Nan, Xinzhong
2016-06-01
Brains affected by Alzheimer's disease (AD) show a large spectrum of mitochondrial alterations at both morphological and genetic level. The causal link between β-amyloid (Aβ) and mitochondrial dysfunction has been established in cellular models of AD. We observed previously that lycopene, a member of the carotenoid family of phytochemicals, could counteract neuronal apoptosis and cell damage induced by Aβ and other neurotoxic substances, and that this neuroprotective action somehow involved the mitochondria. The present study aims to investigate the effects of lycopene on mitochondria in cultured rat cortical neurons exposed to Aβ. It was found that lycopene attenuated Aβ-induced oxidative stress, as evidenced by the decreased intracellular reactive oxygen species generation and mitochondria-derived superoxide production. Additionally, lycopene ameliorated Aβ-induced mitochondrial morphological alteration, opening of the mitochondrial permeability transition pores and the consequent cytochrome c release. Lycopene also improved mitochondrial complex activities and restored ATP levels in Aβ-treated neuron. Furthermore, lycopene prevented mitochondrial DNA damages and improved the protein level of mitochondrial transcription factor A in mitochondria. Those results indicate that lycopene protects mitochondria against Aβ-induced damages, at least in part by inhibiting mitochondrial oxidative stress and improving mitochondrial function. These beneficial effects of lycopene may account for its protection against Aβ-induced neurotoxicity.
Forecast on Water Locking Damage of Low Permeable Reservoir with Quantum Neural Network
NASA Astrophysics Data System (ADS)
Zhao, Jingyuan; Sun, Yuxue; Feng, Fuping; Zhao, Fulei; Sui, Dianjie; Xu, Jianjun
2018-01-01
It is of great importance in oil-gas reservoir protection to timely and correctly forecast the water locking damage, the greatest damage for low permeable reservoir. An analysis is conducted on the production mechanism and various influence factors of water locking damage, based on which a quantum neuron is constructed based on the information processing manner of a biological neuron and the principle of quantum neural algorithm, besides, the quantum neural network model forecasting the water locking of the reservoir is established and related software is also made to forecast the water locking damage of the gas reservoir. This method has overcome the defects of grey correlation analysis that requires evaluation matrix analysis and complicated operation. According to the practice in Longxi Area of Daqing Oilfield, this method is characterized by fast operation, few system parameters and high accuracy rate (the general incidence rate may reach 90%), which can provide reliable support for the protection technique of low permeable reservoir.
Senan, Sibel; Arik, Sabri
2007-10-01
This correspondence presents a sufficient condition for the existence, uniqueness, and global robust asymptotic stability of the equilibrium point for bidirectional associative memory neural networks with discrete time delays. The results impose constraint conditions on the network parameters of the neural system independently of the delay parameter, and they are applicable to all bounded continuous nonmonotonic neuron activation functions. Some numerical examples are given to compare our results with the previous robust stability results derived in the literature.
Inhibition delay increases neural network capacity through Stirling transform.
Nogaret, Alain; King, Alastair
2018-03-01
Inhibitory neural networks are found to encode high volumes of information through delayed inhibition. We show that inhibition delay increases storage capacity through a Stirling transform of the minimum capacity which stabilizes locally coherent oscillations. We obtain both the exact and asymptotic formulas for the total number of dynamic attractors. Our results predict a (ln2)^{-N}-fold increase in capacity for an N-neuron network and demonstrate high-density associative memories which host a maximum number of oscillations in analog neural devices.
Inhibition delay increases neural network capacity through Stirling transform
NASA Astrophysics Data System (ADS)
Nogaret, Alain; King, Alastair
2018-03-01
Inhibitory neural networks are found to encode high volumes of information through delayed inhibition. We show that inhibition delay increases storage capacity through a Stirling transform of the minimum capacity which stabilizes locally coherent oscillations. We obtain both the exact and asymptotic formulas for the total number of dynamic attractors. Our results predict a (ln2) -N-fold increase in capacity for an N -neuron network and demonstrate high-density associative memories which host a maximum number of oscillations in analog neural devices.
Noise Induced DNA Damage Within the Auditory Nerve.
Guthrie, O'neil W
2017-03-01
An understanding of the molecular pathology that underlies noise induced neurotoxicity is a prerequisite to the design of targeted therapies. The objective of the current experiment was to determine whether or not DNA damage is part of the pathophysiologic sequela of noise induced neurotoxicity. The experiment consisted of 41 hooded Long-Evans rats (2 month old males) that were randomized into control and noise exposed groups. Both the control and the noise group followed the same time schedule and therefore started and ended the experiment together. The noise dose consisted of a 6000 Hz noise band at 105 dB SPL. Temporal bones from both groups were harvested, and immunohistochemistry was used to identify neurons with DNA damage. Quantitative morphometric analyses was then employed to determine the level of DNA damage. Neural action potentials were recorded to assess the functional impact of noise induced DNA damage. Immunohistochemical reactions revealed that the noise exposure precipitated DNA damage within the nucleus of auditory neurons. Quantitative morphometry confirmed the noise induced increase in DNA damage levels and the precipitation of DNA damage was associated with a significant loss of nerve sensitivity. Therefore, DNA damage is part of the molecular pathology that drives noise induced neurotoxicity. Anat Rec, 300:520-526, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Li, Qin; Bi, Ming Jun; Bi, Wei Kang; Kang, Hai; Yan, Le Jing; Guo, Yun-Liang
2016-03-01
Acute carbon monoxide (CO) poisoning is the most common cause of death from poisoning all over the world and may result in neuropathologic and neurophysiologic changes. Acute brain damage and delayed encephalopathy are the most serious complication, yet their pathogenesis is poorly understood. The present study aimed to evaluate the neuroprotective effects of Edaravone against apoptosis and oxidative stress after acute CO poisoning. The rat model of CO poisoning was established in a hyperbaric oxygen chamber by exposed to CO. Ultrastructure changes were observed by transmission electron microscopy (TEM). TUNEL stain was used to assess apoptosis. Immunohistochemistry and immunofluorescence double stain were used to evaluate the expression levels of heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf-2) protein and their relationship. By dynamically monitored the carboxyhemoglobin (HbCO) level in blood, we successfully established rat model of severe CO poisoning. Ultrastructure changes, including chromatin condensation, cytoplasm dissolution, vacuoles formation, nucleus membrane and cell organelles decomposition, could be observed after CO poisoning. Edaravone could improve the ultrastructure damage. CO poisoning could induce apoptosis. Apoptotic cells were widely distributed in cortex, striatum and hippocampus. Edaravone treatment attenuated neuronal apoptosis as compared with the poisoning group (P < 0.01). Basal expressions of HO-1 and Nrf-2 proteins were found in normal brain tissue. CO poisoning could activate HO-1/Nrf-2 pathway, start oxidative stress response. After the administration of Edaravone, the expression of HO-1 and Nrf-2 significantly increased (P < 0.01). These findings suggest that Edaravone may inhibit apoptosis, activate the Keapl-Nrf/ARE pathway, and thus improve the ultrastructure damage and neurophysiologic changes following acute CO poisoning. © 2014 Wiley Periodicals, Inc.
Chen, Jing; Chen, Yan-Hui; Lv, Hong-Yan; Chen, Li-Ting
2016-07-01
The aim of the present study was to investigate the effect of hyperbaric oxygen (HBO) on lipid peroxidation and visual development in a neonatal rat model of hypoxic-ischemic brain damage (HIBD). The rat models of HIBD were established by delayed uterus dissection and were divided randomly into two groups (10 rats each): HIBD and HBO-treated HIBD (HIBD+HBO) group. Another 20 rats that underwent sham-surgery were also divided randomly into the HBO-treated and control groups. The rats that underwent HBO treatment received HBO (0.02 MPa, 1 h/day) 24 h after the surgery and this continued for 14 days. When rats were 4 weeks old, their flash visual evoked potentials (F-VEPs) were monitored and the ultrastructures of the hippocampus were observed under transmission electron microscope. The levels of superoxide dismutase (SOD) and malonyldialdehyde (MDA) in the brain tissue homogenate were detected by xanthine oxidase and the thiobarbituric acid colorimetric method. Compared with the control group, the ultrastructures of the pyramidal neurons in the hippocampal CA3 area were distorted, the latencies of F-VEPs were prolonged (P<0.01) and the SOD activities were lower while the MDA levels were higher (P<0.01) in the HIBD group. No significant differences in ultrastructure, the latency of F-VEPs or SOD/MDA levels were identified between the HBO-treated HIBD group and the normal control group (P>0.05). HBO enhances antioxidant capacity and reduces the ultrastructural damage induced by hypoxic-ischemia, which may improve synaptic reconstruction and alleviate immature brain damage to promote the habilitation of brain function.
Oxidative/nitrosative stress and antidepressants: targets for novel antidepressants.
Lee, Seung-Yup; Lee, Soo-Jung; Han, Changsu; Patkar, Ashwin A; Masand, Prakash S; Pae, Chi-Un
2013-10-01
The brain is an organ predisposed to oxidative/nitrosative stress. This is especially true in the case of aging as well as several neurodegenerative diseases. Under such circumstances, a decline in the normal antioxidant defense mechanisms leads to an increase in the vulnerability of the brain to the deleterious effects of oxidative damage. Highly reactive oxygen/nitrogen species damage lipids, proteins, and mitochondrial and neuronal genes. Unless antioxidant defenses react appropriately to damage inflicted by radicals, neurons may experience microalteration, microdysfunction, and degeneration. We reviewed how oxidative and nitrosative stresses contribute to the pathogenesis of depressive disorders and reviewed the clinical implications of various antioxidants as future targets for antidepressant treatment. Copyright © 2012 Elsevier Inc. All rights reserved.
Vincenzi, Fabrizio; Ravani, Annalisa; Pasquini, Silvia; Merighi, Stefania; Gessi, Stefania; Setti, Stefania; Cadossi, Ruggero; Borea, Pier Andrea; Varani, Katia
2017-05-01
In the present study, the effect of low-frequency, low-energy pulsed electromagnetic fields (PEMFs) has been investigated by using different cell lines derived from neuron-like cells and microglial cells. In particular, the primary aim was to evaluate the effect of PEMF exposure in inflammation- and hypoxia-induced injury in two different neuronal cell models, the human neuroblastoma-derived SH-SY5Y cells and rat pheochromocytoma PC12 cells and in N9 microglial cells. In neuron-like cells, live/dead and apoptosis assays were performed in hypoxia conditions from 2 to 48 h. Interestingly, PEMF exposure counteracted hypoxia damage significantly reducing cell death and apoptosis. In the same cell lines, PEMFs inhibited the activation of the hypoxia-inducible factor 1α (HIF-1α), the master transcriptional regulator of cellular response to hypoxia. The effect of PEMF exposure on reactive oxygen species (ROS) production in both neuron-like and microglial cells was investigated considering their key role in ischemic injury. PEMFs significantly decreased hypoxia-induced ROS generation in PC12, SH-SY5Y, and N9 cells after 24 or 48 h of incubation. Moreover, PEMFs were able to reduce some of the most well-known pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and IL-8 release in N9 microglial cells stimulated with different concentrations of LPS for 24 or 48 h of incubation time. These results show a protective effect of PEMFs on hypoxia damage in neuron-like cells and an anti-inflammatory effect in microglial cells suggesting that PEMFs could represent a potential therapeutic approach in cerebral ischemic conditions. J. Cell. Physiol. 232: 1200-1208, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Lulli, Matteo; Papucci, Laura; Witort, Ewa; Donnini, Martino; Lapucci, Andrea; Lazzarano, Stefano; Mazzoni, Tiziano; Simoncini, Madine; Falciani, Piergiuseppe; Capaccioli, Sergio
2008-06-01
Several damaging agents have been suggested to affect human vision during long term space travels. Recently, apoptosis induced by DNA-damaging agents has emerged as frequent pathogenetic mechanism of ophthalmologic pathologies. Here, we propose two countermeasures: coenzyme Q10 and bcl-2 downregulation preventing antisense oligoribonucleotides (ORNs), aimed to inhibit cellular apoptotic death. Our studies have been carried out on retina and neuronal cultured cells treated with the following apoptotic stimuli mimicking space environment: a several-day exposure to either 3H-labeled tymidine or to the genotoxic drug doxorubicin, UV irradiation, hypoxia and glucose/growth factor starvation (Locke medium). The preliminary results clearly indicate that CoQ10, as well as bcl-2 down-regulation preventing ORNs, significantly counteract apoptosis in response to different DNA damaging agents in cultured eye and in neuronal cells. This supports the possibility that both could be optimal countermeasures against ophthalmologic lesions during space explorations.
Does Spike-Timing-Dependent Synaptic Plasticity Couple or Decouple Neurons Firing in Synchrony?
Knoblauch, Andreas; Hauser, Florian; Gewaltig, Marc-Oliver; Körner, Edgar; Palm, Günther
2012-01-01
Spike synchronization is thought to have a constructive role for feature integration, attention, associative learning, and the formation of bidirectionally connected Hebbian cell assemblies. By contrast, theoretical studies on spike-timing-dependent plasticity (STDP) report an inherently decoupling influence of spike synchronization on synaptic connections of coactivated neurons. For example, bidirectional synaptic connections as found in cortical areas could be reproduced only by assuming realistic models of STDP and rate coding. We resolve this conflict by theoretical analysis and simulation of various simple and realistic STDP models that provide a more complete characterization of conditions when STDP leads to either coupling or decoupling of neurons firing in synchrony. In particular, we show that STDP consistently couples synchronized neurons if key model parameters are matched to physiological data: First, synaptic potentiation must be significantly stronger than synaptic depression for small (positive or negative) time lags between presynaptic and postsynaptic spikes. Second, spike synchronization must be sufficiently imprecise, for example, within a time window of 5–10 ms instead of 1 ms. Third, axonal propagation delays should not be much larger than dendritic delays. Under these assumptions synchronized neurons will be strongly coupled leading to a dominance of bidirectional synaptic connections even for simple STDP models and low mean firing rates at the level of spontaneous activity. PMID:22936909
Ye, Zhi; Wang, Na; Xia, Pingping; Wang, E; Yuan, Yajing; Guo, Qulian
2012-02-01
Parecoxib is a recently described novel COX-2 inhibitor whose functional significance and neuroprotective mechanisms remain elusive. Therefore, in this study, we aimed to investigate whether delayed administration of parecoxib inhibited mitochondria-mediated neuronal apoptosis induced by ischemic reperfusion injury via phosphorylating Akt and its downstream target protein, glycogen synthase kinase 3β (GSK-3β). Adult male Sprague-Dawley rats were administered parecoxib (10 or 30 mg kg(-1), IP) or isotonic saline twice a day starting 24 h after middle cerebral artery occlusion (MCAO) for three consecutive days. Cerebral infarct volume, apoptotic neuron, caspase-3 immunoreactivity and the protein expression of p-Akt, p-GSK-3β and Cytochrome C in cerebral ischemic cortex were evaluated at 96 h after reperfusion. Parecoxib significantly diminished infarct volume and attenuated neuron apoptosis in a dose-independent manner, compared with MCAO group alone. Increased p-Akt and p-GSK-3β was observed in the ischemic penumbra of parecoxib group after stroke. Moreover, parecoxib also reduced the release of Cytochrome C from mitochondrial into cytosol and attenuated the caspase-3 immunoreactivity in the penumbra. Taken together, these results suggested that parecoxib ameliorated postischemic mitochondria-mediated neuronal apoptosis induced by focal cerebral ischemia in rats and this neuroprotective potential is involved in phosphorylation of Akt and GSK-3β.
Kubanek, J; Wang, C; Snyder, L H
2013-11-01
We often look at and sometimes reach for visible targets. Looking at a target is fast and relatively easy. By comparison, reaching for an object is slower and is associated with a larger cost. We hypothesized that, as a result of these differences, abrupt visual onsets may drive the circuits involved in saccade planning more directly and with less intermediate regulation than the circuits involved in reach planning. To test this hypothesis, we recorded discharge activity of neurons in the parietal oculomotor system (area LIP) and in the parietal somatomotor system (area PRR) while monkeys performed a visually guided movement task and a choice task. We found that in the visually guided movement task LIP neurons show a prominent transient response to target onset. PRR neurons also show a transient response, although this response is reduced in amplitude, is delayed, and has a slower rise time compared with LIP. A more striking difference is observed in the choice task. The transient response of PRR neurons is almost completely abolished and replaced with a slow buildup of activity, while the LIP response is merely delayed and reduced in amplitude. Our findings suggest that the oculomotor system is more closely and obligatorily coupled to the visual system, whereas the somatomotor system operates in a more discriminating manner.
Zitta, Karina; Peeters-Scholte, Cacha; Sommer, Lena; Gruenewald, Matthias; Hummitzsch, Lars; Parczany, Kerstin; Steinfath, Markus; Albrecht, Martin
2017-01-01
Perinatal asphyxia represents one of the major causes of neonatal morbidity and mortality. Hypothermia is currently the only established treatment for hypoxic-ischemic encephalopathy (HIE), but additional pharmacological strategies are being explored to further reduce the damage after perinatal asphyxia. The aim of this study was to evaluate whether 2-iminobiotin (2-IB) superimposed on hypothermia has the potential to attenuate hypoxia-induced injury of neuronal cells. In vitro hypoxia was induced for 7 h in neuronal IMR-32 cell cultures. Afterwards, all cultures were subjected to 25 h of hypothermia (33.5°C), and incubated with vehicle or 2-IB (10, 30, 50, 100, and 300 ng/ml). Cell morphology was evaluated by brightfield microscopy. Cell damage was analyzed by LDH assays. Production of reactive oxygen species (ROS) was measured using fluorometric assays. Western blotting for PARP, Caspase-3, and the phosphorylated forms of akt and erk1/2 was conducted. To evaluate early apoptotic events and signaling, cell protein was isolated 4 h post-hypoxia and human apoptosis proteome profiler arrays were performed. Twenty-five hour after the hypoxic insult, clear morphological signs of cell damage were visible and significant LDH release as well as ROS production were observed even under hypothermic conditions. Post-hypoxic application of 2-IB (10 and 30 ng/ml) reduced the hypoxia-induced LDH release but not ROS production. Phosphorylation of erk1/2 was significantly increased after hypoxia, while phosphorylation of akt, protein expression of Caspase-3 and cleavage of PARP were only slightly increased. Addition of 2-IB did not affect any of the investigated proteins. Apoptosis proteome profiler arrays performed with cellular protein obtained 4 h after hypoxia revealed that post-hypoxic application of 2-IB resulted in a ≥ 25% down regulation of 10/35 apoptosis-related proteins: Bad, Bax, Bcl-2, cleaved Caspase-3, TRAILR1, TRAILR2, PON2, p21, p27, and phospho Rad17. In summary, addition of 2-IB during hypothermia is able to attenuate hypoxia-induced neuronal cell damage in vitro . Combination treatment of hypothermia with 2-IB could be a promising strategy to reduce hypoxia-induced neuronal cell damage and should be considered in further animal and clinical studies.
Niyogi, Ritwik K.; Wong-Lin, KongFatt
2013-01-01
Behavioural and neurophysiological studies in primates have increasingly shown the involvement of urgency signals during the temporal integration of sensory evidence in perceptual decision-making. Neuronal correlates of such signals have been found in the parietal cortex, and in separate studies, demonstrated attention-induced gain modulation of both excitatory and inhibitory neurons. Although previous computational models of decision-making have incorporated gain modulation, their abstract forms do not permit an understanding of the contribution of inhibitory gain modulation. Thus, the effects of co-modulating both excitatory and inhibitory neuronal gains on decision-making dynamics and behavioural performance remain unclear. In this work, we incorporate time-dependent co-modulation of the gains of both excitatory and inhibitory neurons into our previous biologically based decision circuit model. We base our computational study in the context of two classic motion-discrimination tasks performed in animals. Our model shows that by simultaneously increasing the gains of both excitatory and inhibitory neurons, a variety of the observed dynamic neuronal firing activities can be replicated. In particular, the model can exhibit winner-take-all decision-making behaviour with higher firing rates and within a significantly more robust model parameter range. It also exhibits short-tailed reaction time distributions even when operating near a dynamical bifurcation point. The model further shows that neuronal gain modulation can compensate for weaker recurrent excitation in a decision neural circuit, and support decision formation and storage. Higher neuronal gain is also suggested in the more cognitively demanding reaction time than in the fixed delay version of the task. Using the exact temporal delays from the animal experiments, fast recruitment of gain co-modulation is shown to maximize reward rate, with a timescale that is surprisingly near the experimentally fitted value. Our work provides insights into the simultaneous and rapid modulation of excitatory and inhibitory neuronal gains, which enables flexible, robust, and optimal decision-making. PMID:23825935
Partial neuroprotection by nNOS inhibition during profound asphyxia in preterm fetal sheep
Drury, Paul P.; Davidson, Joanne O.; van den Heuij, Lotte G.; Tan, Sidhartha; Silverman, Richard B.; Ji, Haitao; Blood, Arlin B.; Fraser, Mhoyra; Bennet, Laura; Jan Gunn, Alistair
2013-01-01
Preterm brain injury is partly associated with hypoxia-ischemia starting before birth. Excessive nitric oxide production during HI may cause nitrosative stress, leading to cell membrane and mitochondrial damage. We therefore tested the hypothesis that therapy with a new, selective neuronal nitric oxide synthase (nNOS) inhibitor, JI-10 (0.022 mg/kg bolus, n=8), given 30 min before 25 min of complete umbilical cord occlusion was protective in preterm fetal sheep at 101-104 d gestation (term is 147 d), compared to saline (n=8). JI-10 had no effect on fetal blood pressure, heart rate, carotid and femoral blood flow, total EEG power, nuchal activity, temperature or intracerebral oxygenation on near-infrared spectroscopy during or after occlusion. JI-10 was associated with later onset of post-asphyxial seizures compared with saline (p<0.05), and attenuation of the subsequent progressive loss of cytochrome oxidase (p<0.05). After 7 days recovery, JI-10 was associated with improved neuronal survival in the caudate nucleus (p<0.05), but not the putamen or hippocampus, and more CNPase positive oligodendrocytes in the periventricular white matter (p<0.05). In conclusion, prophylactic nNOS inhibition before profound asphyxia was associated with delayed onset of seizures, slower decline of cytochrome oxidase and partial white and grey matter protection, consistent with protection of mitochondrial function. PMID:24120436
Partial neuroprotection by nNOS inhibition during profound asphyxia in preterm fetal sheep.
Drury, Paul P; Davidson, Joanne O; van den Heuij, Lotte G; Tan, Sidhartha; Silverman, Richard B; Ji, Haitao; Blood, Arlin B; Fraser, Mhoyra; Bennet, Laura; Gunn, Alistair Jan
2013-12-01
Preterm brain injury is partly associated with hypoxia-ischemia starting before birth. Excessive nitric oxide production during HI may cause nitrosative stress, leading to cell membrane and mitochondrial damage. We therefore tested the hypothesis that therapy with a new, selective neuronal nitric oxide synthase (nNOS) inhibitor, JI-10 (0.022mg/kg bolus, n=8), given 30min before 25min of complete umbilical cord occlusion was protective in preterm fetal sheep at 101-104day gestation (term is 147days), compared to saline (n=8). JI-10 had no effect on fetal blood pressure, heart rate, carotid and femoral blood flow, total EEG power, nuchal activity, temperature or intracerebral oxygenation on near-infrared spectroscopy during or after occlusion. JI-10 was associated with later onset of post-asphyxial seizures compared with saline (p<0.05), and attenuation of the subsequent progressive loss of cytochrome oxidase (p<0.05). After 7days recovery, JI-10 was associated with improved neuronal survival in the caudate nucleus (p<0.05), but not the putamen or hippocampus, and more CNPase positive oligodendrocytes in the periventricular white matter (p<0.05). In conclusion, prophylactic nNOS inhibition before profound asphyxia was associated with delayed onset of seizures, slower decline of cytochrome oxidase and partial white and gray matter protection, consistent with protection of mitochondrial function. © 2013.
Treating cognitive impairment with transcranial low level laser therapy.
de la Torre, Jack C
2017-03-01
This report examines the potential of low level laser therapy (LLLT) to alter brain cell function and neurometabolic pathways using red or near infrared (NIR) wavelengths transcranially for the prevention and treatment of cognitive impairment. Although laser therapy on human tissue has been used for a number of medical conditions since the late 1960s, it is only recently that several clinical studies have shown its value in raising neurometabolic energy levels that can improve cerebral hemodynamics and cognitive abilities in humans. The rationale for this approach, as indicated in this report, is supported by growing evidence that neurodegenerative damage and cognitive impairment during advanced aging is accelerated or triggered by a neuronal energy crisis generated by brain hypoperfusion. We have previously proposed that chronic brain hypoperfusion in the elderly can worsen in the presence of one or more vascular risk factors, including hypertension, cardiac disease, atherosclerosis and diabetes type 2. Although many unanswered questions remain, boosting neurometabolic activity through non-invasive transcranial laser biostimulation of neuronal mitochondria may be a valuable tool in preventing or delaying age-related cognitive decline that can lead to dementia, including its two major subtypes, Alzheimer's and vascular dementia. The technology to achieve significant improvement of cognitive dysfunction using LLLT or variations of this technique is moving fast and may signal a new chapter in the treatment and prevention of neurocognitive disorders. Copyright © 2017 Elsevier B.V. All rights reserved.
Metaxa, V; Lagoudaki, R; Meditskou, S; Thomareis, O; Oikonomou, L; Sakadamis, A
2014-01-01
Xenon and nitrous oxide have been shown to be neuroprotective in vivo and in vitro, but mainly in models of focal cerebral ischaemia. This study aimed to investigate whether the two gases are able to attenuate cerebral injury after global cerebral ischaemia. Adult male Wistar rats underwent bilateral common carotid artery occlusion and were ventilated for 1 hour with 21% O₂/78% N₂. They were then randomized to three groups which continued to receive atmospheric air, 50% N2O/50% O₂ and 50% Xe/50% O₂ for an additional period of 45 minutes. The number of ischaemic neurons, the cortical volume loss and the immunochemical and molecular expression of c-fos and MMP-9 were evaluated. Xenon reduced the number of ischaemic neurons in the cortex and CA1 hippocampal region (p < 0.001) and decreased the cortical volume loss (p < 0.01). Immunochemical induction of c-fos in the cortex was significantly suppressed (p < 0.01) after administration of xenon. The molecular analysis revealed significant effects of N2O and xenon administration on c-fos and MMP-9 expression. The data indicate that N2O and xenon administration is neuroprotective 1 hour after bilateral common carotid artery occlusion. These findings provide valuable evidence on the beneficial role of N2O and xenon in global cerebral injury.
Mizukami, Taketomo; Orihashi, Kazumasa; Herlambang, Bagus; Takahashi, Shinya; Hamaishi, Makoto; Okada, Kenji; Sueda, Taijiro
2010-12-01
Delayed paraplegia after operation on the thoracoabdominal aorta is considered to be related to vulnerability of motor neurons to ischemia. Previous studies have demonstrated the relationship between neuronal vulnerability and endoplasmic reticulum (ER) stress after transient ischemia in the spinal cord. The aim of this study was to investigate whether sodium 4-phenylbutyrate (PBA), a chemical chaperone that reduces the load of mutant or unfolded proteins retained in the ER during cellular stress, can protect against ischemic spinal cord damage. Spinal cord ischemia was induced in rabbits by direct aortic cross-clamping (below the renal artery and above the bifurcation) for 15 minutes at normothermia. Group A (n = 6) was a sham operation control group. In group B (n = 6) and group C (n = 6), vehicle or 15 mg/kg/h of sodium 4-PBA was infused intravenously, respectively, from 30 minutes before the induction of ischemia until 30 minutes after reperfusion. Neurologic function was assessed at 8 hours, and 2 and 7 days after reperfusion with a Tarlov score. Histologic changes were studied with hematoxylin-eosin staining. Immunohistochemistry analysis for ER stress-related molecules, including caspase12 and GRP78 were examined. The mean Tarlov scores were 4.0 in every group at 8 hours, but were 4.0, 2.5, and 3.9 at 2 days; and 4.0, 0.7, and 4.0 at 7 days in groups A, B, and C, respectively. The numbers of intact motor neurons at 7 days after reperfusion were 47.4, 21.5, and 44.9 in groups A, B, and C, respectively. There was no significant difference in terms of viable neurons between groups A and C. Caspase12 and GRP78 immunoreactivities were induced in motor neurons in group B, whereas they were not observed in groups A and C. Reduction in ER stress-induced spinal cord injury was achieved by the administration of 4-PBA. 4-PBA may be a strong candidate for use as a therapeutic agent in the treatment of ischemic spinal cord injury. Copyright © 2010 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.
Lopez, Jose R; Uryash, A; Kolster, J; Estève, E; Zhang, R; Adams, J A
2018-03-26
We have previously shown that inadequate dystrophin in cortical neurons in mdx mice is associated with age-dependent dyshomeostasis of resting intracellular Ca 2+ ([Ca 2+ ] i ) and Na + ([Na + ] i ), elevated reactive oxygen species (ROS) production, increase in neuronal damage and cognitive deficit. In this study, we assessed the potential therapeutic properties of the whole body periodic acceleration (pGz) to ameliorate the pathology observed in cortical neurons from the mdx mouse. pGz adds small pulses to the circulation, thereby increasing pulsatile shear stress to the vascular endothelium, which in turn increases production of nitric oxide (NO). We found [Ca 2+ ] i and [Na + ] i overload along with reactive oxygen species (ROS) overproduction in mdx neurons and cognitive dysfunction. mdx neurons showed increased activity of superoxide dismutase, glutathione peroxidase, malondialdehyde, and calpain as well as decreased cell viability. mdx neurons were more susceptible to hypoxia-reoxygenation injury than WT. pGz ameliorated the [Ca 2+ ] i , and [Na + ] i elevation and ROS overproduction and further increased the activities of superoxide dismutase, glutathione peroxidase and reduced the malondialdehyde and calpains. pGz diminished cell damage and elevated [Ca 2+ ] i during hypoxia-reoxygenation and improved cognitive function in mdx mice. Moreover, pGz upregulated the expression of utrophin, dystroglycan-β and CAPON, constitutive nitric oxide synthases, prosaposin, brain-derived neurotrophic, and glial cell line-derived neurotrophic factors. The present study demonstrated that pGz is an effective therapeutic approach to improve mdx neurons function, including cognitive functions.
Attenuation of dichlorvos-induced microglial activation and neuronal apoptosis by 4-hydroxy TEMPO.
Sunkaria, Aditya; Sharma, Deep Raj; Wani, Willayat Yousuf; Gill, Kiran Dip
2014-02-01
The neurotoxic consequences of acute high-level as well as chronic low-level organophosphates exposure are associated with a range of abnormalities in nerve functions. Previously, we have shown that after 24 h of dichlorvos exposure, microglia become activated and secrete pro-inflammatory molecules like nitric oxide, tumour necrosis factor-α and interleukin-1β. Here, we extended our findings and focused on the neuronal damage caused by dichlorvos via microglial activation. For this, neurons and microglia were isolated separately from 1-day-old Wistar rat pups. Microglia were treated with dichlorvos for 24 h and supernatant was collected (dichlorvos-induced conditioned medium, DCM). However, when 4-hydroxy TEMPO (4-HT) pretreatment was given, we observed significant attenuation of dichlorvos-induced microglial activation; we also collected the supernatant of this culture (4-HT + DCM, TDCM). Next, we checked the effects of DCM on neurons and found heavy loss in viability as evident from NF-H immunostaining and MTT results, whereas dichlorvos alone-treated neurons showed comparatively less damage. However, we observed significant increase in neuronal viability when cells were treated with TDCM. Semi-quantitative PCR and western blot results revealed significant increase in p53, Bax and cytochrome c levels along with caspase 3 activation after 24 h of DCM treatment. However, TDCM-treated neurons showed significant decrease in the expression of these pro-apoptotic molecules. Taken together, these findings suggest that 4-HT can significantly attenuate dichlorvos-induced microglial activation and prevent apoptotic neuronal cell death.
Zuo, Wen-Qi; Hu, Yu-Juan; Yang, Yang; Zhao, Xue-Yan; Zhang, Yuan-Yuan; Kong, Wen; Kong, Wei-Jia
2015-05-29
With the increasing popularity of mobile phones, the potential hazards of radiofrequency electromagnetic radiation (RF-EMR) on the auditory system remain unclear. Apart from RF-EMR, humans are also exposed to various physical and chemical factors. We established a lipopolysaccharide (LPS)-induced inflammation in vitro model to investigate whether the possible sensitivity of spiral ganglion neurons to damage caused by mobile phone electromagnetic radiation (at specific absorption rates: 2, 4 W/kg) will increase. Spiral ganglion neurons (SGN) were obtained from neonatal (1- to 3-day-old) Sprague Dawley® (SD) rats. After the SGN were treated with different concentrations (0, 20, 40, 50, 100, 200, and 400 μg/ml) of LPS, the Cell Counting Kit-8 (CCK-8) and alkaline comet assay were used to quantify cellular activity and DNA damage, respectively. The SGN were treated with the moderate LPS concentrations before RF-EMR exposure. After 24 h intermittent exposure at an absorption rate of 2 and 4 W/kg, DNA damage was examined by alkaline comet assay, ultrastructure changes were detected by transmission electron microscopy, and expression of the autophagy markers LC3-II and Beclin1 were examined by immunofluorescence and confocal laser scanning microscopy. Reactive oxygen species (ROS) production was quantified by the dichlorofluorescin-diacetate assay. LPS (100 μg/ml) induced DNA damage and suppressed cellular activity (P < 0.05). LPS (40 μg/ml) did not exhibit cellular activity changes or DNA damage (P > 0.05); therefore, 40 μg/ml was used to pretreat the concentration before exposure to RF-EMR. RF-EMR could not directly induce DNA damage. However, the 4 W/kg combined with LPS (40 μg/ml) group showed mitochondria vacuoles, karyopyknosis, presence of lysosomes and autophagosome, and increasing expression of LC3-II and Beclin1. The ROS values significantly increased in the 4 W/kg exposure, 4 W/kg combined with LPS (40 μg/ml) exposure, and H2O2 groups (P < 0.05, 0.01). Short-term exposure to radiofrequency electromagnetic radiation could not directly induce DNA damage in normal spiral ganglion neurons, but it could cause the changes of cellular ultrastructure at special SAR 4.0 W/kg when cells are in fragile or micro-damaged condition. It seems that the sensitivity of SGN to damage caused by mobile phone electromagnetic radiation will increase in a lipopolysaccharide-induced inflammation in vitro model.
Camberos-Luna, Lucy; Gerónimo-Olvera, Cristian; Montiel, Teresa; Rincon-Heredia, Ruth; Massieu, Lourdes
2016-03-01
Glucose is the major energy substrate in brain, however, during ketogenesis induced by starvation or prolonged hypoglycemia, the ketone bodies (KB), acetoacetate and β-hydroxybutyrate (BHB) can substitute for glucose. KB improve neuronal survival in diverse injury models, but the mechanisms by which KB prevent neuronal damage are still not well understood. In the present study we have investigated whether protection by the D isomer of BHB (D-BHB) against neuronal death induced by glucose deprivation (GD), is related to autophagy. Autophagy is a lysosomal-dependent degradation process activated during nutritional stress, which leads to the digestion of damaged proteins and organelles providing energy for cell survival. Results show that autophagy is activated in cortical cultured neurons during GD, as indicated by the increase in the levels of the lipidated form of the microtubule associated protein light chain 3 (LC3-II), and the number of autophagic vesicles. At early phases of glucose reintroduction (GR), the levels of p62 declined suggesting that the degradation of the autophagolysosomal content takes place at this time. In cultures exposed to GD and GR in the presence of D-BHB, the levels of LC3-II and p62 rapidly declined and remained low during GR, suggesting that the KB stimulates the autophagic flux preventing autophagosome accumulation and improving neuronal survival.
Cellular mechanisms of noise-induced hearing loss.
Kurabi, Arwa; Keithley, Elizabeth M; Housley, Gary D; Ryan, Allen F; Wong, Ann C-Y
2017-06-01
Exposure to intense sound or noise can result in purely temporary threshold shift (TTS), or leave a residual permanent threshold shift (PTS) along with alterations in growth functions of auditory nerve output. Recent research has revealed a number of mechanisms that contribute to noise-induced hearing loss (NIHL). The principle cause of NIHL is damage to cochlear hair cells and associated synaptopathy. Contributions to TTS include reversible damage to hair cell (HC) stereocilia or synapses, while moderate TTS reflects protective purinergic hearing adaptation. PTS represents permanent damage to or loss of HCs and synapses. While the substrates of HC damage are complex, they include the accumulation of reactive oxygen species and the active stimulation of intracellular stress pathways, leading to programmed and/or necrotic cell death. Permanent damage to cochlear neurons can also contribute to the effects of NIHL, in addition to HC damage. These mechanisms have translational potential for pharmacological intervention and provide multiple opportunities to prevent HC damage or to rescue HCs and spiral ganglion neurons that have suffered injury. This paper reviews advances in our understanding of cellular mechanisms that contribute to NIHL and their potential for therapeutic manipulation. Published by Elsevier B.V.
Time delay induced different synchronization patterns in repulsively coupled chaotic oscillators
NASA Astrophysics Data System (ADS)
Yao, Chenggui; Yi, Ming; Shuai, Jianwei
2013-09-01
Time delayed coupling plays a crucial role in determining the system's dynamics. We here report that the time delay induces transition from the asynchronous state to the complete synchronization (CS) state in the repulsively coupled chaotic oscillators. In particular, by changing the coupling strength or time delay, various types of synchronous patterns, including CS, antiphase CS, antiphase synchronization (ANS), and phase synchronization, can be generated. In the transition regions between different synchronous patterns, bistable synchronous oscillators can be observed. Furthermore, we show that the time-delay-induced phase flip bifurcation is of key importance for the emergence of CS. All these findings may light on our understanding of neuronal synchronization and information processing in the brain.
van der Stelt, M; Veldhuis, W B; Bär, P R; Veldink, G A; Vliegenthart, J F; Nicolay, K
2001-09-01
Excitotoxicity is a paradigm used to explain the biochemical events in both acute neuronal damage and in slowly progressive, neurodegenerative diseases. Here, we show in a longitudinal magnetic resonance imaging study that Delta(9)-tetrahydrocannabinol (Delta(9)-THC), the main active compound in marijuana, reduces neuronal injury in neonatal rats injected intracerebrally with the Na(+)/K(+)-ATPase inhibitor ouabain to elicit excitotoxicity. In the acute phase Delta(9)-THC reduced the volume of cytotoxic edema by 22%. After 7 d, 36% less neuronal damage was observed in treated rats compared with control animals. Coadministration of the CB(1) cannabinoid receptor antagonist SR141716 prevented the neuroprotective actions of Delta(9)-THC, indicating that Delta(9)-THC afforded protection to neurons via the CB(1) receptor. In Delta(9)-THC-treated rats the volume of astrogliotic tissue was 36% smaller. The CB(1) receptor antagonist did not block this effect. These results provide evidence that the cannabinoid system can serve to protect the brain against neurodegeneration.