Sample records for delayed time-point imaging

  1. Limited diagnostic value of Dual-Time-Point (18)F-FDG PET/CT imaging for classifying solitary pulmonary nodules in granuloma-endemic regions both at visual and quantitative analyses.

    PubMed

    Chen, Song; Li, Xuena; Chen, Meijie; Yin, Yafu; Li, Na; Li, Yaming

    2016-10-01

    This study is aimed to compare the diagnostic power of using quantitative analysis or visual analysis with single time point imaging (STPI) PET/CT and dual time point imaging (DTPI) PET/CT for the classification of solitary pulmonary nodules (SPN) lesions in granuloma-endemic regions. SPN patients who received early and delayed (18)F-FDG PET/CT at 60min and 180min post-injection were retrospectively reviewed. Diagnoses are confirmed by pathological results or follow-ups. Three quantitative metrics, early SUVmax, delayed SUVmax and retention index(the percentage changes between the early SUVmax and delayed SUVmax), were measured for each lesion. Three 5-point scale score was given by blinded interpretations performed by physicians based on STPI PET/CT images, DTPI PET/CT images and CT images, respectively. ROC analysis was performed on three quantitative metrics and three visual interpretation scores. One-hundred-forty-nine patients were retrospectively included. The areas under curve (AUC) of the ROC curves of early SUVmax, delayed SUVmax, RI, STPI PET/CT score, DTPI PET/CT score and CT score are 0.73, 0.74, 0.61, 0.77 0.75 and 0.76, respectively. There were no significant differences between the AUCs in visual interpretation of STPI PET/CT images and DTPI PET/CT images, nor in early SUVmax and delayed SUVmax. The differences of sensitivity, specificity and accuracy between STPI PET/CT and DTPI PET/CT were not significantly different in either quantitative analysis or visual interpretation. In granuloma-endemic regions, DTPI PET/CT did not offer significant improvement over STPI PET/CT in differentiating malignant SPNs in both quantitative analysis and visual interpretation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Multiple Time-Point 68Ga-PSMA I&T PET/CT for Characterization of Primary Prostate Cancer: Value of Early Dynamic and Delayed Imaging.

    PubMed

    Schmuck, Sebastian; Mamach, Martin; Wilke, Florian; von Klot, Christoph A; Henkenberens, Christoph; Thackeray, James T; Sohns, Jan M; Geworski, Lilli; Ross, Tobias L; Wester, Hans-Juergen; Christiansen, Hans; Bengel, Frank M; Derlin, Thorsten

    2017-06-01

    The aims of this study were to gain mechanistic insights into prostate cancer biology using dynamic imaging and to evaluate the usefulness of multiple time-point Ga-prostate-specific membrane antigen (PSMA) I&T PET/CT for the assessment of primary prostate cancer before prostatectomy. Twenty patients with prostate cancer underwent Ga-PSMA I&T PET/CT before prostatectomy. The PET protocol consisted of early dynamic pelvic imaging, followed by static scans at 60 and 180 minutes postinjection (p.i.). SUVs, time-activity curves, quantitative analysis based on a 2-tissue compartment model, Patlak analysis, histopathology, and Gleason grading were compared between prostate cancer and benign prostate gland. Primary tumors were identified on both early dynamic and delayed imaging in 95% of patients. Tracer uptake was significantly higher in prostate cancer compared with benign prostate tissue at any time point (P ≤ 0.0003) and increased over time. Consequently, the tumor-to-nontumor ratio within the prostate gland improved over time (2.8 at 10 minutes vs 17.1 at 180 minutes p.i.). Tracer uptake at both 60 and 180 minutes p.i. was significantly higher in patients with higher Gleason scores (P < 0.01). The influx rate (Ki) was higher in prostate cancer than in reference prostate gland (0.055 [r = 0.998] vs 0.017 [r = 0.996]). Primary prostate cancer is readily identified on early dynamic and static delayed Ga-PSMA ligand PET images. The tumor-to-nontumor ratio in the prostate gland improves over time, supporting a role of delayed imaging for optimal visualization of prostate cancer.

  3. Time delay of critical images in the vicinity of cusp point of gravitational-lens systems

    NASA Astrophysics Data System (ADS)

    Alexandrov, A.; Zhdanov, V.

    2016-12-01

    We consider approximate analytical formulas for time-delays of critical images of a point source in the neighborhood of a cusp-caustic. We discuss zero, first and second approximations in powers of a parameter that defines the proximity of the source to the cusp. These formulas link the time delay with characteristics of the lens potential. The formula of zero approximation was obtained by Congdon, Keeton & Nordgren (MNRAS, 2008). In case of a general lens potential we derived first order correction thereto. If the potential is symmetric with respect to the cusp axis, then this correction is identically equal to zero. For this case, we obtained second order correction. The relations found are illustrated by a simple model example.

  4. IDENTIFYING ANOMALIES IN GRAVITATIONAL LENS TIME DELAYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Congdon, Arthur B.; Keeton, Charles R.; Nordgren, C. Erik, E-mail: acongdon@jpl.nasa.go, E-mail: keeton@physics.rutgers.ed, E-mail: nordgren@sas.upenn.ed

    2010-02-01

    We examine the ability of gravitational lens time delays to reveal complex structure in lens potentials. In a previous paper, we predicted how the time delay between the bright pair of images in a 'fold' lens scales with the image separation, for smooth lens potentials. Here we show that the proportionality constant increases with the quadrupole moment of the lens potential, and depends only weakly on the position of the source along the caustic. We use Monte Carlo simulations to determine the range of time delays that can be produced by realistic smooth lens models consisting of isothermal ellipsoid galaxiesmore » with tidal shear. We can then identify outliers as 'time delay anomalies'. We find evidence for anomalies in close image pairs in the cusp lenses RX J1131 - 1231 and B1422+231. The anomalies in RX J1131 - 1231 provide strong evidence for substructure in the lens potential, while at this point the apparent anomalies in B1422+231 mainly indicate that the time delay measurements need to be improved. We also find evidence for time delay anomalies in larger-separation image pairs in the fold lenses, B1608+656 and WFI 2033 - 4723, and the cusp lens RX J0911+0551. We suggest that these anomalies are caused by some combination of substructure and a complex lens environment. Finally, to assist future monitoring campaigns we use our smooth models with shear to predict the time delays for all known four-image lenses.« less

  5. Identifying Anomalies in Gravitational Lens Time Delays

    NASA Astrophysics Data System (ADS)

    Congdon, Arthur B.; Keeton, Charles R.; Nordgren, C. Erik

    2010-02-01

    We examine the ability of gravitational lens time delays to reveal complex structure in lens potentials. In a previous paper, we predicted how the time delay between the bright pair of images in a "fold" lens scales with the image separation, for smooth lens potentials. Here we show that the proportionality constant increases with the quadrupole moment of the lens potential, and depends only weakly on the position of the source along the caustic. We use Monte Carlo simulations to determine the range of time delays that can be produced by realistic smooth lens models consisting of isothermal ellipsoid galaxies with tidal shear. We can then identify outliers as "time delay anomalies." We find evidence for anomalies in close image pairs in the cusp lenses RX J1131 - 1231 and B1422+231. The anomalies in RX J1131 - 1231 provide strong evidence for substructure in the lens potential, while at this point the apparent anomalies in B1422+231 mainly indicate that the time delay measurements need to be improved. We also find evidence for time delay anomalies in larger-separation image pairs in the fold lenses, B1608+656 and WFI 2033 - 4723, and the cusp lens RX J0911+0551. We suggest that these anomalies are caused by some combination of substructure and a complex lens environment. Finally, to assist future monitoring campaigns we use our smooth models with shear to predict the time delays for all known four-image lenses.

  6. Analytic relations for magnifications and time delays in gravitational lenses with fold and cusp configurations

    NASA Astrophysics Data System (ADS)

    Congdon, Arthur B.; Keeton, Charles R.; Nordgren, C. Erik

    2008-09-01

    Gravitational lensing provides a unique and powerful probe of the mass distributions of distant galaxies. Four-image lens systems with fold and cusp configurations have two or three bright images near a critical point. Within the framework of singularity theory, we derive analytic relations that are satisfied for a light source that lies a small but finite distance from the astroid caustic of a four-image lens. Using a perturbative expansion of the image positions, we show that the time delay between the close pair of images in a fold lens scales with the cube of the image separation, with a constant of proportionality that depends on a particular third derivative of the lens potential. We also apply our formalism to cusp lenses, where we develop perturbative expressions for the image positions, magnifications and time delays of the images in a cusp triplet. Some of these results were derived previously for a source asymptotically close to a cusp point, but using a simplified form of the lens equation whose validity may be in doubt for sources that lie at astrophysically relevant distances from the caustic. Along with the work of Keeton, Gaudi & Petters, this paper demonstrates that perturbation theory plays an important role in theoretical lensing studies.

  7. A single-chip 32-channel analog beamformer with 4-ns delay resolution and 768-ns maximum delay range for ultrasound medical imaging with a linear array transducer.

    PubMed

    Um, Ji-Yong; Kim, Yoon-Jee; Cho, Seong-Eun; Chae, Min-Kyun; Kim, Byungsub; Sim, Jae-Yoon; Park, Hong-June

    2015-02-01

    A single-chip 32-channel analog beamformer is proposed. It achieves a delay resolution of 4 ns and a maximum delay range of 768 ns. It has a focal-point based architecture, which consists of 7 sub-analog beamformers (sub-ABF). Each sub-ABF performs a RX focusing operation for a single focal point. Seven sub-ABFs perform a time-interleaving operation to achieve the maximum delay range of 768 ns. Phase interpolators are used in sub-ABFs to generate sampling clocks with the delay resolution of 4 ns from a low frequency system clock of 5 MHz. Each sub-ABF samples 32 echo signals at different times into sampling capacitors, which work as analog memory cells. The sampled 32 echo signals of each sub-ABF are originated from one target focal point at one instance. They are summed at one instance in a sub-ABF to perform the RX focusing for the target focal point. The proposed ABF chip has been fabricated in a 0.13- μ m CMOS process with an active area of 16 mm (2). The total power consumption is 287 mW. In measurement, the digital echo signals from a commercial ultrasound medical imaging machine were applied to the fabricated chip through commercial DAC chips. Due to the speed limitation of the DAC chips, the delay resolution was relaxed to 10 ns for the real-time measurement. A linear array transducer with no steering operation is used in this work.

  8. Validation of early image acquisitions following Tc-99 m sestamibi injection using a semiconductors camera of cadmium-zinc-telluride.

    PubMed

    Meyer, Celine; Weinmann, Pierre

    2017-08-01

    Cadmium-zinc-telluride (CZT) cameras allow to decrease significantly the acquisition time of myocardial perfusion imaging (MPI), but the duration of the examination is still long. Therefore, this study was performed to test the feasibility of early imaging following injection of Tc-99 m sestamibi using a CZT camera. Seventy patients underwent both an early and a delayed image acquisition after exercise stress test (n = 30), dipyridamole stress test (n = 20), and at rest (n = 20). After injection of Tc-99 m sestamibi, the early image acquisition started on average within 5 minutes for the exercise and rest groups, and 3 minutes 30 seconds for the dipyridamole group. Two independent observers evaluated image quality and extracardiac uptake on four-point scales. The difference between early and later images for each patient was scored on a five-point scale. The image quality and extracardiac uptake of early and delayed image acquisitions were not different for the three groups (P > .05). There was no significant difference between early and delayed image acquisitions in the exercise, dipyridamole, and rest groups, respectively, in 63%, 40%, and 80% of cases. In the exercise group and rest group, a defect was only present in early MPI, respectively, in 13% and 20% of cases. A defect was only present in delayed images in 10% of cases in the exercise group and in 45% of cases in the dipyridamole group. There was no difference between early and later image acquisitions in terms of quality. This protocol reduces the length of the procedure for the patient. Beginning with early image acquisitions may help to overcome the artifacts that are observed at the delayed time.

  9. SU-E-J-141: Assessment of the Magnitude and Impact of Trigger Delay in Respiratory Triggered Real-Time Imaging during Radiotherapy.

    PubMed

    Duan, J; Shen, S; Popple, R; Wu, X; Cardan, R; Brezovich, I

    2012-06-01

    To assess the trigger delay in respiratory triggered real-time imaging and its impact on image guided radiotherapy (IGRT) with Varian TrueBeam System. A sinusoidal motion phantom with 2cm motion amplitude was used. The trigger delay was determined directly with video image, and indirectly by the distance between expected and actual triggering phantom positions. For the direct method, a fluorescent screen was placed on the phantom to visualize the x-ray. The motion of the screen was recorded at 60 frames/second. The number of frames between the time when the phantom reached expected triggering position and the time when the screen was illuminated by the x-ray was used to determine the trigger delay. In the indirect method, triggered kV x-ray images were acquired in real-time during 'treatment' with triggers set at 25% and 75% respiratory phases where the phantom moved at the maximum speed. 39-40 triggered images were acquired continuously in each series. The distance between the expected and actual triggering points, d, was measured on the images to determine the delay time t by d=Asin(wt), where w=2π/T, T=period and A=amplitude. Motion periods of 2s and 4s were used in the measurement. The trigger delay time determined with direct video imaging was 125ms (7.5 video frames). The average distance between the expected and actual triggering positions determined by the indirect method was 3.93±0.74mm for T=4s and 7.02±1.25mm for T=2s, yielding mean trigger delay times of 126±24ms and 120±22ms, respectively. Although the mean over-travel distance is significant at 25% and 75% phases, clinically, the target over-travel resulted from the trigger delay at the end of expiration (50% phase) is negligibly small(< 0.5mm). The trigger delay in respiration-triggered imaging is in the range of 120-126ms. This delay has negligible clinical effect on gated IGRT. © 2012 American Association of Physicists in Medicine.

  10. Time delay of critical images of a point source near the gravitational lens fold-caustic

    NASA Astrophysics Data System (ADS)

    Alexandrov, A.; Zhdanov, V.

    2016-06-01

    Within the framework of the analytical theory of the gravitational lensing we derive asymptotic formula for the time delay of critical images of apoint source, which is situated near a fold-caustic. We found corrections of the first and second order in powers of a parameter, which describescloseness of the source to the caustic. Our formula modifies earlier result by Congdon, Keeton &Nordgren (MNRAS, 2008) obtained in zero-orderapproximation. We have proved the hypothesis put forward by these authors that the first-order correction to the relative time delay of two criticalmages is identically zero. The contribution of the corrections is illustrated in model example by comparison with exact expression.

  11. Dual time-point (18)F-FDG PET/CT to assess response to radiofrequency ablation of lung metastases.

    PubMed

    Lafuente, S; Fuster, D; Arguis, P; Granados, U; Perlaza, P; Paredes, P; Vollmer, I; Sánchez, M; Lomeña, F

    2016-01-01

    To establish the usefulness of dual time-point PET/CT imaging in determining the response to radiofrequency ablation (RFA) of solitary lung metastases from gastrointestinal cancer. This prospective study included 18 cases (3 female, 15 male, mean age 71±15 yrs) with solitary lung metastases from malignant digestive tract tumors candidates for RFA. PET/CT images 1h after injection of 4.07MBq/kg of (18)F-FDG (standard images) were performed at baseline, 1 month, and 3 months after RFA. PET/CT images 2h after injection centered in the thorax at 1 month after RFA were also performed (delayed images). A retention index (RI) of dual time-point images was calculated as follows: RI=(SUVmax delayed image-SUVmax standard image/SUVmax standard image)*100. Pathological confirmation of residual tumor by histology of the treated lesion was considered as local recurrence. A negative imaging follow-up was considered as complete response. Local recurrence was found in 6/18 lesions, and complete response in the remaining 12. The mean percentage change in SUVmax at 1 month and at 3 months showed a sensitivity and specificity for PET/CT of 50% and 33%, and 67% and 92%, respectively. The RI at 1 month after RFA showed a sensitivity and specificity of 83% and 92%, respectively. Dual time point PET/CT can predict the outcome at one month after RFA in lung metastases from digestive tract cancers. The RI can be used to indicate the need for further procedures to rule out persistent tumor due to incomplete RFA. Copyright © 2015 Elsevier España, S.L.U. and SEMNIM. All rights reserved.

  12. A study of the method of the video image presentation for the manipulation of forceps.

    PubMed

    Kono, Soichi; Sekioka, Toshiharu; Matsunaga, Katsuya; Shidoji, Kazunori; Matsuki, Yuji

    2005-01-01

    Recently, surgical operations have sometimes been tried under laparoscopic video images using teleoperation robots or forceps manipulators. Therefore, in this paper, forceps manipulation efficiencies were evaluated when images for manipulation had some transmission delay (Experiment 1), and when the convergence point of the stereoscopic video cameras was either fixed and variable (Experiment 2). The operators' tasks in these experiments were sewing tasks which simulated telesurgery under 3-dimensional scenography. As a result of experiment 1, the operation at a 200+/-100 ms delay was kept at almost the same accuracy as that without delay. As a result of experiment 2, work accuracy was improved by using the zooming lens function; however the working time became longer. These results seemed to show the relation of a trade-off between working time and working accuracy.

  13. Evaluation of left ventricular scar identification from contrast enhanced magnetic resonance imaging for guidance of ventricular catheter ablation therapy

    NASA Astrophysics Data System (ADS)

    Rettmann, M. E.; Lehmann, H. I.; Johnson, S. B.; Packer, D. L.

    2016-03-01

    Patients with ventricular arrhythmias typically exhibit myocardial scarring, which is believed to be an important anatomic substrate for reentrant circuits, thereby making these regions a key target in catheter ablation therapy. In ablation therapy, a catheter is guided into the left ventricle and radiofrequency energy is delivered into the tissue to interrupt arrhythmic electrical pathways. Low bipolar voltage regions are typically localized during the procedure through point-by-point construction of an electroanatomic map by sampling the endocardial surface with the ablation catheter and are used as a surrogate for myocardial scar. This process is time consuming, requires significant skill, and has the potential to miss low voltage sites. This has led to efforts to quantify myocardial scar preoperatively using delayed, contrast-enhanced MRI. In this paper, we evaluate the utility of left ventricular scar identification from delayed contrast enhanced magnetic resonance imaging for guidance of catheter ablation of ventricular arrhythmias. Myocardial infarcts were created in three canines followed by a delayed, contrast enhanced MRI scan and electroanatomic mapping. The left ventricle and myocardial scar is segmented from preoperative MRI images and sampled points from the procedural electroanatomical map are registered to the segmented endocardial surface. Sampled points with low bipolar voltage points visually align with the segmented scar regions. This work demonstrates the potential utility of using preoperative delayed, enhanced MRI to identify myocardial scarring for guidance of ventricular catheter ablation therapy.

  14. Teleseismic P-wave Delay Time Tomography of the southern Superior Province and Midcontinent Rift System (MRS) Region

    NASA Astrophysics Data System (ADS)

    Bollmann, T. A.; van der Lee, S.; Frederiksen, A. W.; Wolin, E.; Aleqabi, G. I.; Revenaugh, J.; Wiens, D. A.; Darbyshire, F. A.

    2014-12-01

    The Superior Province Rifting Earthscope Experiment (SPREE) and the northern midwest footprint of USArray's Transportable Array recorded continuous ground motion for a period of 2.5 years. From around 400 M>5.5 teleseismic earthquakes recorded at 337 stations, we measured body wave delay times for 255 of these earthquakes. The P wave delays are accumulated over more than 45 thousand wave paths with turning points in the lower mantle. We combine these delay times with a similar number delay times used in previous tomographic studies of the study region. The latter delay times stem from fewer stations, including Polaris and CNSN stations, and nearly a thousand earthquakes. We combine these two sets of delay times to image the three-dimensional distribution of seismic velocity variations beneath the southern Superior Province and surrounding provinces. This combined data coverage is illustrated in the accompanying figure for a total number of 447 stations . The coverage and the combined delays form the best configuration yet to image the three-dimensional distribution of seismic P and S-wave velocity variations beneath the southern Superior and surrounding provinces. Closely spaced stations (~12 km) along and across the MRS provide higher resolving power for lithospheric structure beneath the rift system. Conforming to expectations that the entire region is underlain by thick, cool lithosphere, a mean delay of -.55 +/- .54 s. This is very similar to the mean delays -.6s +/- .37s measured for this region before 2012. Event corrections range from -.2 +/-.54 s and correlate with tectonics for 80% of the earthquakes. An inversion of these nearly one hundred thousand P and around thirty thousand S-wave delay times for high-resolution P and S-wave velocity structure, respectively, does not show structures that are obviously related to the crustal signature of the MRS. None of structures imaged, align with or have a similar shape to the high Mid-continent Gravity Anomaly (MGA). However, a low-velocity structure is imaged in the lithosphere just east of the MGA.

  15. Comparison of Inner Ear Contrast Enhancement among Patients with Unilateral Inner Ear Symptoms in MR Images Obtained 10 Minutes and 4 Hours after Gadolinium Injection.

    PubMed

    Kim, T Y; Park, D W; Lee, Y J; Lee, J Y; Lee, S H; Chung, J H; Lee, S

    2015-12-01

    Recently 4-hour delayed-enhanced 3D-FLAIR MR imaging has been used in pathophysiologic analysis of the inner ear in many auditory diseases, including sudden sensorineural hearing loss, but comparison among different time points is not clear in patients with unilateral inner ear symptoms. We compared the signal-intensity ratios of the inner ears in patients with unilateral inner ear symptoms on 10-minute delayed-enhanced and 4-hour delayed-enhanced 3D-FLAIR MR images after IV gadolinium injection. The 10-minute delayed-enhanced and 4-hour delayed-enhanced 3D-FLAIR MR images were retrospectively analyzed. Signal-intensity ratios between the cerebellum and inner ear structures, such as the cochleae, vestibules, and vestibulocochlear nerve were assessed. Multiple comparisons were performed. Signal-intensity ratios of the affected cochleae, vestibules, and vestibulocochlear nerve were higher than those of unaffected sides in both 10-minute delayed-enhanced and 4-hour delayed-enhanced images. At the affected side, signal-intensity ratios of the vestibulocochlear nerve were higher in patients with nonsudden sensorineural hearing loss than in those with sudden sensorineural hearing loss on both 10-minute delayed-enhanced and 4-hour delayed-enhanced images. The signal-intensity ratios of some affected inner ear structures were higher than those of the unaffected sides in a group of 30 patients with sudden sensorineural hearing loss and 20 patients with nonsudden sensorineural hearing loss on 10-minute delayed-enhanced and 4-hour delayed-enhanced images. Signal-intensity ratios of the inner ear show statistically significant increases in many diseases, especially neuritis, in 10-minute delayed-enhanced and 4-hour delayed-enhanced images. The 4-hour delayed-enhanced images may be superior in neural inflammatory-dominant conditions, while 10-minute delayed-enhanced images may be superior in neural noninflammatory-dominant conditions. © 2015 by American Journal of Neuroradiology.

  16. The Application of MRI for Depiction of Subtle Blood Brain Barrier Disruption in Stroke

    PubMed Central

    Israeli, David; Tanne, David; Daniels, Dianne; Last, David; Shneor, Ran; Guez, David; Landau, Efrat; Roth, Yiftach; Ocherashvilli, Aharon; Bakon, Mati; Hoffman, Chen; Weinberg, Amit; Volk, Talila; Mardor, Yael

    2011-01-01

    The development of imaging methodologies for detecting blood-brain-barrier (BBB) disruption may help predict stroke patient's propensity to develop hemorrhagic complications following reperfusion. We have developed a delayed contrast extravasation MRI-based methodology enabling real-time depiction of subtle BBB abnormalities in humans with high sensitivity to BBB disruption and high spatial resolution. The increased sensitivity to subtle BBB disruption is obtained by acquiring T1-weighted MRI at relatively long delays (~15 minutes) after contrast injection and subtracting from them images acquired immediately after contrast administration. In addition, the relatively long delays allow for acquisition of high resolution images resulting in high resolution BBB disruption maps. The sensitivity is further increased by image preprocessing with corrections for intensity variations and with whole body (rigid+elastic) registration. Since only two separate time points are required, the time between the two acquisitions can be used for acquiring routine clinical data, keeping the total imaging time to a minimum. A proof of concept study was performed in 34 patients with ischemic stroke and 2 patients with brain metastases undergoing high resolution T1-weighted MRI acquired at 3 time points after contrast injection. The MR images were pre-processed and subtracted to produce BBB disruption maps. BBB maps of patients with brain metastases and ischemic stroke presented different patterns of BBB opening. The significant advantage of the long extravasation time was demonstrated by a dynamic-contrast-enhancement study performed continuously for 18 min. The high sensitivity of our methodology enabled depiction of clear BBB disruption in 27% of the stroke patients who did not have abnormalities on conventional contrast-enhanced MRI. In 36% of the patients, who had abnormalities detectable by conventional MRI, the BBB disruption volumes were significantly larger in the maps than in conventional MRI. These results demonstrate the advantages of delayed contrast extravasation in increasing the sensitivity to subtle BBB disruption in ischemic stroke patients. The calculated disruption maps provide clear depiction of significant volumes of BBB disruption unattainable by conventional contrast-enhanced MRI. PMID:21209786

  17. The application of MRI for depiction of subtle blood brain barrier disruption in stroke.

    PubMed

    Israeli, David; Tanne, David; Daniels, Dianne; Last, David; Shneor, Ran; Guez, David; Landau, Efrat; Roth, Yiftach; Ocherashvilli, Aharon; Bakon, Mati; Hoffman, Chen; Weinberg, Amit; Volk, Talila; Mardor, Yael

    2010-12-26

    The development of imaging methodologies for detecting blood-brain-barrier (BBB) disruption may help predict stroke patient's propensity to develop hemorrhagic complications following reperfusion. We have developed a delayed contrast extravasation MRI-based methodology enabling real-time depiction of subtle BBB abnormalities in humans with high sensitivity to BBB disruption and high spatial resolution. The increased sensitivity to subtle BBB disruption is obtained by acquiring T1-weighted MRI at relatively long delays (~15 minutes) after contrast injection and subtracting from them images acquired immediately after contrast administration. In addition, the relatively long delays allow for acquisition of high resolution images resulting in high resolution BBB disruption maps. The sensitivity is further increased by image preprocessing with corrections for intensity variations and with whole body (rigid+elastic) registration. Since only two separate time points are required, the time between the two acquisitions can be used for acquiring routine clinical data, keeping the total imaging time to a minimum. A proof of concept study was performed in 34 patients with ischemic stroke and 2 patients with brain metastases undergoing high resolution T1-weighted MRI acquired at 3 time points after contrast injection. The MR images were pre-processed and subtracted to produce BBB disruption maps. BBB maps of patients with brain metastases and ischemic stroke presented different patterns of BBB opening. The significant advantage of the long extravasation time was demonstrated by a dynamic-contrast-enhancement study performed continuously for 18 min. The high sensitivity of our methodology enabled depiction of clear BBB disruption in 27% of the stroke patients who did not have abnormalities on conventional contrast-enhanced MRI. In 36% of the patients, who had abnormalities detectable by conventional MRI, the BBB disruption volumes were significantly larger in the maps than in conventional MRI. These results demonstrate the advantages of delayed contrast extravasation in increasing the sensitivity to subtle BBB disruption in ischemic stroke patients. The calculated disruption maps provide clear depiction of significant volumes of BBB disruption unattainable by conventional contrast-enhanced MRI.

  18. Robust estimation of pulse wave transit time using group delay.

    PubMed

    Meloni, Antonella; Zymeski, Heather; Pepe, Alessia; Lombardi, Massimo; Wood, John C

    2014-03-01

    To evaluate the efficiency of a novel transit time (Δt) estimation method from cardiovascular magnetic resonance flow curves. Flow curves were estimated from phase contrast images of 30 patients. Our method (TT-GD: transit time group delay) operates in the frequency domain and models the ascending aortic waveform as an input passing through a discrete-component "filter," producing the observed descending aortic waveform. The GD of the filter represents the average time delay (Δt) across individual frequency bands of the input. This method was compared with two previously described time-domain methods: TT-point using the half-maximum of the curves and TT-wave using cross-correlation. High temporal resolution flow images were studied at multiple downsampling rates to study the impact of differences in temporal resolution. Mean Δts obtained with the three methods were comparable. The TT-GD method was the most robust to reduced temporal resolution. While the TT-GD and the TT-wave produced comparable results for velocity and flow waveforms, the TT-point resulted in significant shorter Δts when calculated from velocity waveforms (difference: 1.8±2.7 msec; coefficient of variability: 8.7%). The TT-GD method was the most reproducible, with an intraobserver variability of 3.4% and an interobserver variability of 3.7%. Compared to the traditional TT-point and TT-wave methods, the TT-GD approach was more robust to the choice of temporal resolution, waveform type, and observer. Copyright © 2013 Wiley Periodicals, Inc.

  19. Multi-modality PET-CT imaging of breast cancer in an animal model using nanoparticle x-ray contrast agent and 18F-FDG

    NASA Astrophysics Data System (ADS)

    Badea, C. T.; Ghaghada, K.; Espinosa, G.; Strong, L.; Annapragada, A.

    2011-03-01

    Multi-modality PET-CT imaging is playing an important role in the field of oncology. While PET imaging facilitates functional interrogation of tumor status, the use of CT imaging is primarily limited to anatomical reference. In an attempt to extract comprehensive information about tumor cells and its microenvironment, we used a nanoparticle xray contrast agent to image tumor vasculature and vessel 'leakiness' and 18F-FDG to investigate the metabolic status of tumor cells. In vivo PET/CT studies were performed in mice implanted with 4T1 mammary breast cancer cells.Early-phase micro-CT imaging enabled visualization 3D vascular architecture of the tumors whereas delayedphase micro-CT demonstrated highly permeable vessels as evident by nanoparticle accumulation within the tumor. Both imaging modalities demonstrated the presence of a necrotic core as indicated by a hypo-enhanced region in the center of the tumor. At early time-points, the CT-derived fractional blood volume did not correlate with 18F-FDG uptake. At delayed time-points, the tumor enhancement in 18F-FDG micro-PET images correlated with the delayed signal enhanced due to nanoparticle extravasation seen in CT images. The proposed hybrid imaging approach could be used to better understand tumor angiogenesis and to be the basis for monitoring and evaluating anti-angiogenic and nano-chemotherapies.

  20. Investigation of the influence of sampling schemes on quantitative dynamic fluorescence imaging

    PubMed Central

    Dai, Yunpeng; Chen, Xueli; Yin, Jipeng; Wang, Guodong; Wang, Bo; Zhan, Yonghua; Nie, Yongzhan; Wu, Kaichun; Liang, Jimin

    2018-01-01

    Dynamic optical data from a series of sampling intervals can be used for quantitative analysis to obtain meaningful kinetic parameters of probe in vivo. The sampling schemes may affect the quantification results of dynamic fluorescence imaging. Here, we investigate the influence of different sampling schemes on the quantification of binding potential (BP) with theoretically simulated and experimentally measured data. Three groups of sampling schemes are investigated including the sampling starting point, sampling sparsity, and sampling uniformity. In the investigation of the influence of the sampling starting point, we further summarize two cases by considering the missing timing sequence between the probe injection and sampling starting time. Results show that the mean value of BP exhibits an obvious growth trend with an increase in the delay of the sampling starting point, and has a strong correlation with the sampling sparsity. The growth trend is much more obvious if throwing the missing timing sequence. The standard deviation of BP is inversely related to the sampling sparsity, and independent of the sampling uniformity and the delay of sampling starting time. Moreover, the mean value of BP obtained by uniform sampling is significantly higher than that by using the non-uniform sampling. Our results collectively suggest that a suitable sampling scheme can help compartmental modeling of dynamic fluorescence imaging provide more accurate results and simpler operations. PMID:29675325

  1. Local Stability of AIDS Epidemic Model Through Treatment and Vertical Transmission with Time Delay

    NASA Astrophysics Data System (ADS)

    Novi W, Cascarilla; Lestari, Dwi

    2016-02-01

    This study aims to explain stability of the spread of AIDS through treatment and vertical transmission model. Human with HIV need a time to positively suffer AIDS. The existence of a time, human with HIV until positively suffer AIDS can be delayed for a time so that the model acquired is the model with time delay. The model form is a nonlinear differential equation with time delay, SIPTA (susceptible-infected-pre AIDS-treatment-AIDS). Based on SIPTA model analysis results the disease free equilibrium point and the endemic equilibrium point. The disease free equilibrium point with and without time delay are local asymptotically stable if the basic reproduction number is less than one. The endemic equilibrium point will be local asymptotically stable if the time delay is less than the critical value of delay, unstable if the time delay is more than the critical value of delay, and bifurcation occurs if the time delay is equal to the critical value of delay.

  2. Photoacoustic image reconstruction from ultrasound post-beamformed B-mode image

    NASA Astrophysics Data System (ADS)

    Zhang, Haichong K.; Guo, Xiaoyu; Kang, Hyun Jae; Boctor, Emad M.

    2016-03-01

    A requirement to reconstruct photoacoustic (PA) image is to have a synchronized channel data acquisition with laser firing. Unfortunately, most clinical ultrasound (US) systems don't offer an interface to obtain synchronized channel data. To broaden the impact of clinical PA imaging, we propose a PA image reconstruction algorithm utilizing US B-mode image, which is readily available from clinical scanners. US B-mode image involves a series of signal processing including beamforming, followed by envelope detection, and end with log compression. Yet, it will be defocused when PA signals are input due to incorrect delay function. Our approach is to reverse the order of image processing steps and recover the original US post-beamformed radio-frequency (RF) data, in which a synthetic aperture based PA rebeamforming algorithm can be further applied. Taking B-mode image as the input, we firstly recovered US postbeamformed RF data by applying log decompression and convoluting an acoustic impulse response to combine carrier frequency information. Then, the US post-beamformed RF data is utilized as pre-beamformed RF data for the adaptive PA beamforming algorithm, and the new delay function is applied by taking into account that the focus depth in US beamforming is at the half depth of the PA case. The feasibility of the proposed method was validated through simulation, and was experimentally demonstrated using an acoustic point source. The point source was successfully beamformed from a US B-mode image, and the full with at the half maximum of the point improved 3.97 times. Comparing this result to the ground-truth reconstruction using channel data, the FWHM was slightly degraded with 1.28 times caused by information loss during envelope detection and convolution of the RF information.

  3. Identifying Anomalies in Gravitational Lens Time Delays

    NASA Astrophysics Data System (ADS)

    Congdon, Arthur B.; Keeton, C. R.; Nordgren, C. E.

    2009-05-01

    Gravitational lensing has become a powerful probe of cold dark matter substructure. Earlier work using anomalous flux ratios in four-image quasar lenses has shown that lensing is sensitive to substructure which raises the exciting prospect of constraining the mass function and spatial distribution of dark matter satellites in galaxies. We examine the ability of gravitational lens time delays to reveal complex structure in lens potentials. We use Monte Carlo simulations to determine the range of time delays that can be produced by realistic smooth lens models consisting of isothermal ellipsoid galaxies with tidal shear. We can then identify outliers as "time-delay anomalies." We find evidence for anomalies in close image pairs in the cusp lenses RX J1131-1231 and B1422+231. The anomalies in RX J1131-1231 provide strong evidence for substructure in the lens potential, while at this point the apparent anomalies in B1422+231 mainly indicate that the time delay measurements need to be improved. We also find evidence for time-delay anomalies in larger-separation image pairs in four additional lenses. We suggest that these anomalies are caused by some combination of substructure and a complex lens environment. Our work argues for a large sample of strong lenses with precisely-measured time delays. The first of these objectives will be readily achievable as the next generation of optical and radio telescopes come online, while the second will require a dedicated one-meter class space-based observatory. Meeting these goals will make it possible to examine the properties of dark matter on sub-galactic scales, which is essential for distinguishing among the various dark matter candidates from particle physics. Part of this work was funded by NSF grant AST-0747311. ABC is currently supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, administered by Oak Ridge Associated Universities through a contract with NASA.

  4. Generation of real-time mode high-resolution water vapor fields from GPS observations

    NASA Astrophysics Data System (ADS)

    Yu, Chen; Penna, Nigel T.; Li, Zhenhong

    2017-02-01

    Pointwise GPS measurements of tropospheric zenith total delay can be interpolated to provide high-resolution water vapor maps which may be used for correcting synthetic aperture radar images, for numeral weather prediction, and for correcting Network Real-time Kinematic GPS observations. Several previous studies have addressed the importance of the elevation dependency of water vapor, but it is often a challenge to separate elevation-dependent tropospheric delays from turbulent components. In this paper, we present an iterative tropospheric decomposition interpolation model that decouples the elevation and turbulent tropospheric delay components. For a 150 km × 150 km California study region, we estimate real-time mode zenith total delays at 41 GPS stations over 1 year by using the precise point positioning technique and demonstrate that the decoupled interpolation model generates improved high-resolution tropospheric delay maps compared with previous tropospheric turbulence- and elevation-dependent models. Cross validation of the GPS zenith total delays yields an RMS error of 4.6 mm with the decoupled interpolation model, compared with 8.4 mm with the previous model. On converting the GPS zenith wet delays to precipitable water vapor and interpolating to 1 km grid cells across the region, validations with the Moderate Resolution Imaging Spectroradiometer near-IR water vapor product show 1.7 mm RMS differences by using the decoupled model, compared with 2.0 mm for the previous interpolation model. Such results are obtained without differencing the tropospheric delays or water vapor estimates in time or space, while the errors are similar over flat and mountainous terrains, as well as for both inland and coastal areas.

  5. Does Delayed-Time-Point Imaging Improve 18F-FDG-PET in Patients With MALT Lymphoma?: Observations in a Series of 13 Patients.

    PubMed

    Mayerhoefer, Marius E; Giraudo, Chiara; Senn, Daniela; Hartenbach, Markus; Weber, Michael; Rausch, Ivo; Kiesewetter, Barbara; Herold, Christian J; Hacker, Marcus; Pones, Matthias; Simonitsch-Klupp, Ingrid; Müllauer, Leonhard; Dolak, Werner; Lukas, Julius; Raderer, Markus

    2016-02-01

    To determine whether in patients with extranodal marginal zone B-cell lymphoma of the mucosa-associated lymphoid tissue lymphoma (MALT), delayed-time-point 2-F-fluoro-2-deoxy-d-glucose-positron emission tomography (F-FDG-PET) performs better than standard-time-point F-FDG-PET. Patients with untreated histologically verified MALT lymphoma, who were undergoing pretherapeutic F-FDG-PET/computed tomography (CT) and consecutive F-FDG-PET/magnetic resonance imaging (MRI), using a single F-FDG injection, in the course of a larger-scale prospective trial, were included. Region-based sensitivity and specificity, and patient-based sensitivity of the respective F-FDG-PET scans at time points 1 (45-60 minutes after tracer injection, TP1) and 2 (100-150 minutes after tracer injection, TP2), relative to the reference standard, were calculated. Lesion-to-liver and lesion-to-blood SUVmax (maximum standardized uptake values) ratios were also assessed. F-FDG-PET at TP1 was true positive in 15 o f 23 involved regions, and F-FDG-PET at TP2 was true-positive in 20 of 23 involved regions; no false-positive regions were noted. Accordingly, region-based sensitivities and specificities were 65.2% (confidence interval [CI], 45.73%-84.67%) and 100% (CI, 100%-100%) for F-FDG-PET at TP1; and 87.0% (CI, 73.26%-100%) and 100% (CI, 100%-100%) for F-FDG-PET at TP2, respectively. FDG-PET at TP1 detected lymphoma in at least one nodal or extranodal region in 7 of 13 patients, and F-FDG-PET at TP2 in 10 of 13 patients; accordingly, patient-based sensitivity was 53.8% (CI, 26.7%-80.9%) for F-FDG-PET at TP1, and 76.9% (CI, 54.0%-99.8%) for F-FDG-PET at TP2. Lesion-to-liver and lesion-to-blood maximum standardized uptake value ratios were significantly lower at TP1 (ratios, 1.05 ± 0.40 and 1.52 ± 0.62) than at TP2 (ratios, 1.67 ± 0.74 and 2.56 ± 1.10; P = 0.003 and P = 0.001). Delayed-time-point imaging may improve F-FDG-PET in MALT lymphoma.

  6. Fermi-LAT Detection of Gravitational Lens Delayed Gamma-Ray Flares from Blazar B0218+357

    NASA Technical Reports Server (NTRS)

    Cheung, C. C.; Larsson, S.; Scargle, J. D.; Amin, M. A.; Blandford, R. D.; Bulmash, D.; Chiang, J.; Ciprini, S.; Corbet, R. D. H.; Falco, E. E.; hide

    2014-01-01

    Using data from the Fermi Large Area Telescope (LAT), we report the first clear gamma-ray measurement of a delay between flares from the gravitationally lensed images of a blazar. The delay was detected in B0218+357, a known double-image lensed system, during a period of enhanced gamma-ray activity with peak fluxes consistently observed to reach greater than 20-50 times its previous average flux. An auto-correlation function analysis identified a delay in the gamma-ray data of 11.46 plus or minus 0.16 days (1 sigma) that is approximately 1 day greater than previous radio measurements. Considering that it is beyond the capabilities of the LAT to spatially resolve the two images, we nevertheless decomposed individual sequences of superposing gamma-ray flares/delayed emissions. In three such approximately 8-10 day-long sequences within an approximately 4-month span, considering confusion due to overlapping flaring emission and flux measurement uncertainties, we found flux ratios consistent with approximately 1, thus systematically smaller than those from radio observations. During the first, best-defined flare, the delayed emission was detailed with a Fermi pointing, and we observed flux doubling timescales of approximately 3-6 hours implying as well extremely compact gamma-ray emitting regions.

  7. LiDAR-IMU Time Delay Calibration Based on Iterative Closest Point and Iterated Sigma Point Kalman Filter.

    PubMed

    Liu, Wanli

    2017-03-08

    The time delay calibration between Light Detection and Ranging (LiDAR) and Inertial Measurement Units (IMUs) is an essential prerequisite for its applications. However, the correspondences between LiDAR and IMU measurements are usually unknown, and thus cannot be computed directly for the time delay calibration. In order to solve the problem of LiDAR-IMU time delay calibration, this paper presents a fusion method based on iterative closest point (ICP) and iterated sigma point Kalman filter (ISPKF), which combines the advantages of ICP and ISPKF. The ICP algorithm can precisely determine the unknown transformation between LiDAR-IMU; and the ISPKF algorithm can optimally estimate the time delay calibration parameters. First of all, the coordinate transformation from the LiDAR frame to the IMU frame is realized. Second, the measurement model and time delay error model of LiDAR and IMU are established. Third, the methodology of the ICP and ISPKF procedure is presented for LiDAR-IMU time delay calibration. Experimental results are presented that validate the proposed method and demonstrate the time delay error can be accurately calibrated.

  8. Chronologic Evaluation of Cerebral Hemodynamics by Dynamic Susceptibility Contrast Magnetic Resonance Imaging After Indirect Bypass Surgery for Moyamoya Disease.

    PubMed

    Ishii, Yosuke; Tanaka, Yoji; Momose, Toshiya; Yamashina, Motoshige; Sato, Akihito; Wakabayashi, Shinichi; Maehara, Taketoshi; Nariai, Tadashi

    2017-12-01

    Although indirect bypass surgery is an effective treatment option for patients with ischemic-onset moyamoya disease (MMD), the time point after surgery at which the patient's hemodynamic status starts to improve and the time point at which the improvement reaches a maximum have not been known. The objective of the present study is to evaluate the hemodynamic status time course after indirect bypass surgery for MMD, using dynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI). We retrospectively analyzed the cases of 25 patients with MMD (37 sides; mean age, 14.7 years; range, 3-36 years) who underwent indirect bypass surgery and repeated DSC-MRI measurement within 6 months after the operation. The difference in the mean transit time (MTT) between the target regions and the control region (cerebellum) was termed the MTT delay, and we measured the MTT delay's chronologic changes after surgery. The postoperative MTT delay was 1.81 ± 1.16 seconds within 1 week after surgery, 1.57 ± 1.01 at weeks 1-2, 1.55 ± 0.68 at weeks 2-4, 1.32 ± 0.68 at months 1-2, 0.95 ± 0.32 at months 2-3, and 0.77 ± 0.33 at months 3-6. Compared with the preoperative value (2.11 ± 0.98 seconds), the MTT delay decreased significantly from 2 to 4 weeks after surgery (P < 0.05). The amelioration of cerebral hemodynamics by indirect bypass surgery began soon after surgery and gradually reached a maximum at 3 months after surgery. DSC-MRI detected small changes in hemodynamic improvement, which are suspected to be caused by the initiation of angiogenesis and arteriogenesis in the early postoperative period. Copyright © 2017. Published by Elsevier Inc.

  9. Correction of ultrasonic wave aberration with a time delay and amplitude filter.

    PubMed

    Måsøy, Svein-Erik; Johansen, Tonni F; Angelsen, Bjørn

    2003-04-01

    Two-dimensional simulations with propagation through two different heterogeneous human body wall models have been performed to analyze different correction filters for ultrasonic wave aberration due to forward wave propagation. The different models each produce most of the characteristic aberration effects such as phase aberration, relatively strong amplitude aberration, and waveform deformation. Simulations of wave propagation from a point source in the focus (60 mm) of a 20 mm transducer through the body wall models were performed. Center frequency of the pulse was 2.5 MHz. Corrections of the aberrations introduced by the two body wall models were evaluated with reference to the corrections obtained with the optimal filter: a generalized frequency-dependent phase and amplitude correction filter [Angelsen, Ultrasonic Imaging (Emantec, Norway, 2000), Vol. II]. Two correction filters were applied, a time delay filter, and a time delay and amplitude filter. Results showed that correction with a time delay filter produced substantial reduction of the aberration in both cases. A time delay and amplitude correction filter performed even better in both cases, and gave correction close to the ideal situation (no aberration). The results also indicated that the effect of the correction was very sensitive to the accuracy of the arrival time fluctuations estimate, i.e., the time delay correction filter.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnello, A.; et al.

    We present gravitational lens models of the multiply imaged quasar DES J0408-5354, recently discovered in the Dark Energy Survey (DES) footprint, with the aim of interpreting its remarkable quad-like configuration. We first model the DES single-epochmore » $grizY$ images as a superposition of a lens galaxy and four point-like objects, obtaining spectral energy distributions (SEDs) and relative positions for the objects. Three of the point sources (A,B,D) have SEDs compatible with the discovery quasar spectra, while the faintest point-like image (G2/C) shows significant reddening and a `grey' dimming of $$\\approx0.8$$mag. In order to understand the lens configuration, we fit different models to the relative positions of A,B,D. Models with just a single deflector predict a fourth image at the location of G2/C but considerably brighter and bluer. The addition of a small satellite galaxy ($$R_{\\rm E}\\approx0.2$$") in the lens plane near the position of G2/C suppresses the flux of the fourth image and can explain both the reddening and grey dimming. All models predict a main deflector with Einstein radius between $1.7"$ and $2.0",$ velocity dispersion $267-280$km/s and enclosed mass $$\\approx 6\\times10^{11}M_{\\odot},$$ even though higher resolution imaging data are needed to break residual degeneracies in model parameters. The longest time-delay (B-A) is estimated as $$\\approx 85$$ (resp. $$\\approx125$$) days by models with (resp. without) a perturber near G2/C. The configuration and predicted time-delays of J0408-5354 make it an excellent target for follow-up aimed at understanding the source quasar host galaxy and substructure in the lens, and measuring cosmological parameters. We also discuss some lessons learnt from J0408-5354 on lensed quasar finding strategies, due to its chromaticity and morphology.« less

  11. Models of the strongly lensed quasar DES J0408−5354

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnello, A.; et al.

    We present gravitational lens models of the multiply imaged quasar DES J0408-5354, recently discovered in the Dark Energy Survey (DES) footprint, with the aim of interpreting its remarkable quad-like configuration. We first model the DES single-epochmore » $grizY$ images as a superposition of a lens galaxy and four point-like objects, obtaining spectral energy distributions (SEDs) and relative positions for the objects. Three of the point sources (A,B,D) have SEDs compatible with the discovery quasar spectra, while the faintest point-like image (G2/C) shows significant reddening and a `grey' dimming of $$\\approx0.8$$mag. In order to understand the lens configuration, we fit different models to the relative positions of A,B,D. Models with just a single deflector predict a fourth image at the location of G2/C but considerably brighter and bluer. The addition of a small satellite galaxy ($$R_{\\rm E}\\approx0.2$$") in the lens plane near the position of G2/C suppresses the flux of the fourth image and can explain both the reddening and grey dimming. All models predict a main deflector with Einstein radius between $1.7"$ and $2.0",$ velocity dispersion $267-280$km/s and enclosed mass $$\\approx 6\\times10^{11}M_{\\odot},$$ even though higher resolution imaging data are needed to break residual degeneracies in model parameters. The longest time-delay (B-A) is estimated as $$\\approx 85$$ (resp. $$\\approx125$$) days by models with (resp. without) a perturber near G2/C. The configuration and predicted time-delays of J0408-5354 make it an excellent target for follow-up aimed at understanding the source quasar host galaxy and substructure in the lens, and measuring cosmological parameters. We also discuss some lessons learnt from J0408-5354 on lensed quasar finding strategies, due to its chromaticity and morphology.« less

  12. LiDAR-IMU Time Delay Calibration Based on Iterative Closest Point and Iterated Sigma Point Kalman Filter

    PubMed Central

    Liu, Wanli

    2017-01-01

    The time delay calibration between Light Detection and Ranging (LiDAR) and Inertial Measurement Units (IMUs) is an essential prerequisite for its applications. However, the correspondences between LiDAR and IMU measurements are usually unknown, and thus cannot be computed directly for the time delay calibration. In order to solve the problem of LiDAR-IMU time delay calibration, this paper presents a fusion method based on iterative closest point (ICP) and iterated sigma point Kalman filter (ISPKF), which combines the advantages of ICP and ISPKF. The ICP algorithm can precisely determine the unknown transformation between LiDAR-IMU; and the ISPKF algorithm can optimally estimate the time delay calibration parameters. First of all, the coordinate transformation from the LiDAR frame to the IMU frame is realized. Second, the measurement model and time delay error model of LiDAR and IMU are established. Third, the methodology of the ICP and ISPKF procedure is presented for LiDAR-IMU time delay calibration. Experimental results are presented that validate the proposed method and demonstrate the time delay error can be accurately calibrated. PMID:28282897

  13. Structural Acoustic UXO Detection and Identification in Marine Environments

    DTIC Science & Technology

    2016-05-01

    BOSS Buried Object Scanning Sonar DVL Doppler Velocity Log EW East/West IMU Inertial Measurement Unit NRL Naval Research Laboratory NSWC-PCD... Inertial Measurement Unit (IMU) to time-delay and coherently sum matched-filtered phase histories from subsurface focal points over a large number of... Measurement Unit (IMU) systems. In our imaging algorithm, the 2D depth image of a target, i.e. one mapped over x and z or y and z, presents the

  14. Investigating flow patterns and related dynamics in multi-instability turbulent plasmas using a three-point cross-phase time delay estimation velocimetry scheme

    NASA Astrophysics Data System (ADS)

    Brandt, C.; Thakur, S. C.; Tynan, G. R.

    2016-04-01

    Complexities of flow patterns in the azimuthal cross-section of a cylindrical magnetized helicon plasma and the corresponding plasma dynamics are investigated by means of a novel scheme for time delay estimation velocimetry. The advantage of this introduced method is the capability of calculating the time-averaged 2D velocity fields of propagating wave-like structures and patterns in complex spatiotemporal data. It is able to distinguish and visualize the details of simultaneously present superimposed entangled dynamics and it can be applied to fluid-like systems exhibiting frequently repeating patterns (e.g., waves in plasmas, waves in fluids, dynamics in planetary atmospheres, etc.). The velocity calculations are based on time delay estimation obtained from cross-phase analysis of time series. Each velocity vector is unambiguously calculated from three time series measured at three different non-collinear spatial points. This method, when applied to fast imaging, has been crucial to understand the rich plasma dynamics in the azimuthal cross-section of a cylindrical linear magnetized helicon plasma. The capabilities and the limitations of this velocimetry method are discussed and demonstrated for two completely different plasma regimes, i.e., for quasi-coherent wave dynamics and for complex broadband wave dynamics involving simultaneously present multiple instabilities.

  15. Investigating flow patterns and related dynamics in multi-instability turbulent plasmas using a three-point cross-phase time delay estimation velocimetry scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, C.; Max-Planck-Institute for Plasma Physics, Wendelsteinstr. 1, D-17491 Greifswald; Thakur, S. C.

    2016-04-15

    Complexities of flow patterns in the azimuthal cross-section of a cylindrical magnetized helicon plasma and the corresponding plasma dynamics are investigated by means of a novel scheme for time delay estimation velocimetry. The advantage of this introduced method is the capability of calculating the time-averaged 2D velocity fields of propagating wave-like structures and patterns in complex spatiotemporal data. It is able to distinguish and visualize the details of simultaneously present superimposed entangled dynamics and it can be applied to fluid-like systems exhibiting frequently repeating patterns (e.g., waves in plasmas, waves in fluids, dynamics in planetary atmospheres, etc.). The velocity calculationsmore » are based on time delay estimation obtained from cross-phase analysis of time series. Each velocity vector is unambiguously calculated from three time series measured at three different non-collinear spatial points. This method, when applied to fast imaging, has been crucial to understand the rich plasma dynamics in the azimuthal cross-section of a cylindrical linear magnetized helicon plasma. The capabilities and the limitations of this velocimetry method are discussed and demonstrated for two completely different plasma regimes, i.e., for quasi-coherent wave dynamics and for complex broadband wave dynamics involving simultaneously present multiple instabilities.« less

  16. Optimal time-point for 68Ga-PSMA-11 PET/CT imaging in assessment of prostate cancer: feasibility of sterile cold-kit tracer preparation?

    PubMed

    Beheshti, Mohsen; Paymani, Zeinab; Brilhante, Joana; Geinitz, Hans; Gehring, Daniela; Leopoldseder, Thomas; Wouters, Ludovic; Pirich, Christian; Loidl, Wolfgang; Langsteger, Werner

    2018-07-01

    In this prospective study, we evaluated the optimal time-point for 68 Ga-PSMA-11 PET/CT acquisition in the assessment of prostate cancer. We also examined, for the first time the feasibility of tracer production using a PSMA-11 sterile cold-kit in the clinical workflow of PET/CT centres. Fifty prostate cancer patients (25 staging, 25 biochemical recurrence) were enrolled in this study. All patients received an intravenous dose of 2.0 MBq/kg body weight 68 Ga-PSMA-11 prepared using a sterile cold kit (ANMI SA, Liege, Belgium), followed by an early (20 min after injection) semi-whole-body PET/CT scan and a standard-delay (100 min after injection) abdominopelvic PET/CT scan. The detection rates with 68 Ga-PSMA-11 were compared between the two acquisitions. The pattern of physiological background activity and tumour to background ratio were also analysed. The total preparation time was reduced to 5 min using the PSMA-11 sterile cold kit, which improved the final radionuclide activity by about 30% per single 68 Ge/ 68 Ga generator elution. Overall, 158 pathological lesions were analysed in 45 patients (90%) suggestive of malignancy on both (early and standard-delay) 68 Ga-PSMA PET/CT images. There was a significant (p < 0.001) increase in SUVmax on delayed images in suspicious prostates (11.6 ± 8.2 to 14.8 ± 1.0) and lymph nodes (LNs; 9.7 ± 5.9 to 12.3 ± 8.8), while bone lesions showed no significant increase (8.5 ± 5.6 to 9.2 ± 7.0, p = 0.188). However, the SUVmax of suspicious lesions on early images was adequate to support the criteria for correct interpretation (mean SUVmax 9.83 ± 6.7).In 26 of 157 lesions, but a decrease in SUV was seen, mostly in subcentimetre lesions in patients with multiple metastases. However, it did not affect the staging of the disease or patient management. The tumour to background ratio of primary prostate lesions and LNs showed a significant (p < 0.001) increase from the early to the standard-delay acquisition, but no significant increase was seen in bony lesions (p = 0.11). The PSMA-11 sterile cold kit seems to be feasible for use in routine clinical practice, and it has a shorter radionuclide preparation time and is less operator-dependent than the synthesizer-based production method. In addition, early 68 Ga-PSMA-11 PET/CT imaging seems to provide a detection rate comparable with that of standard-delay imaging. Furthermore, the shorter preparation time using the 68 Ga-PSMA-11 sterile cold kit and promising value of early PET/CT scanning could allow tailoring of imaging protocols which may reduce the costs and improve the time efficiency in PET/CT centres.

  17. Detection and characterization of Budd-Chiari syndrome with inferior vena cava obstruction: Comparison of fixed and flexible delayed scan time of computed tomography venography.

    PubMed

    Zhou, Peng-Li; Wu, Gang; Han, Xin-Wei; Bi, Yong-Hua; Zhang, Wen-Guang; Wu, Zheng-Yang

    2017-06-01

    To compare the results of computed tomography venography (CTV) with a fixed and a flexible delayed scan time for Budd-Chiari syndrome (BCS) with inferior vena cava (IVC) obstruction. A total of 209 consecutive BCS patients with IVC obstruction underwent either a CTV with a fixed delayed scan time of 180s (n=87) or a flexible delayed scan time for good image quality according to IVC blood flow in color Doppler ultrasonography (n=122). The IVC blood flow velocity was measured using a color Doppler ultrasound prior to CT scan. Image quality was classified as either good, moderate, or poor. Image quality, surrounding structures and the morphology of the IVC obstruction were compared between the two groups using a χ 2 -test or paired or unpaired t-tests as appropriate. Inter-observer agreement was assessed using Kappa statistics. There was no significant difference in IVC blood flow velocity between the two groups. Overall image quality, surrounding structures and IVC obstruction morphology delineation on the flexible delayed scan time of CTV images were rated better relative to those obtained by fixed delayed scan time of CTV images (p<0.001). Evaluation of CTV data sets was significantly facilitated with flexible delayed scan time of CTV. There were no significant differences in Kappa statistics between Group A and Group B. The flexible delayed scan time of CTV was associated with better detection and more reliable characterization of BCS with IVC obstruction compared to a fixed delayed scan time. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Zero-Extra-Dose PET Delayed Imaging with Data-Driven Attenuation Correction Estimation.

    PubMed

    Pang, Lifang; Zhu, Wentao; Dong, Yun; Lv, Yang; Shi, Hongcheng

    2018-05-08

    Delayed positron emission tomography (PET) imaging may improve sensitivity and specificity in lesion detection. We proposed a PET data-driven method to estimate the attenuation map (AM) for the delayed scan without an additional x-ray computed tomography (CT). An emission-attenuation-scatter joint estimation framework was developed. Several practical issues for clinical datasets were addressed. Particularly, the unknown scatter correction was incorporated in the joint estimation algorithm. The scaling problem was solved using prior information from the early CT scan. Fourteen patient datasets were added to evaluate the method. These patients went through two separate PET/CT scans. The delayed CT-based AM served as ground truth for the delayed scan. Standard uptake values (SUVmean and SUVmax) of lesion and normal tissue regions of interests (ROIs) in the early and delayed phase and the respective %DSUV (percentage change of SUVmean at two different time points) were analyzed, all with estimated and the true AM. Three radiologists participated in lesion detection tasks with images reconstructed with both AMs and rated scores for detectability. The mean relative difference of SUVmean in lesion and normal liver tissue were 3.30 and 6.69 %. The average lesion-to-background contrast (detectability) with delayed PET images using CT AM was 60 % higher than that of the earlier PET image, and was 64 % higher when using the data-based AM. %DSUV for lesions and liver backgrounds with CT-based AM were - 0.058 ± 0.25 and - 0.33 ± 0.08 while with data-based AM were - 0.00 ± 0.26 and - 0.28 ± 0.08. Only slight significance difference was found between using CT-based AM and using the data-based AM reconstruction delay phase on %DSUV of lesion. The scores associated with the two AMs matched well consistently. Our method may be used in delayed PET imaging, which allows no secondary CT radiation in delayed phase. The quantitative analysis for lesion detection purpose could be ensured.

  19. The Effect of Spatial Heterogeneities on Nucleation Kinetics in Amorphous Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Shen, Ye

    The mechanical property of the Al based metallic glass could be enhanced significantly by introducing the high number density of Al-fcc nanocrystals (1021 ˜1023 m-3) to the amorphous matrix through annealing treatments, which motivates the study of the nucleation kinetics for the microstructure control. With the presence of a high number density (1025 m-3) of aluminum-like medium range order (MRO), the Al-Y-Fe metallic glass is considered to be spatially heterogeneous. Combining the classical nucleation theory with the structural configuration, a MRO seeded nucleation model has been proposed and yields theoretical steady state nucleation rates consistent with the experimental results. In addition, this model satisfies all the thermodynamic and kinetic constraints to be reasonable. Compared with the Al-Y-Fe system, the primary crystallization onset temperature decreases significantly and the transient delay time (tau) is shorter in the Al-Y-Fe-Pb(In) systems because the insoluble Pb and In nanoparticles in the amorphous matrix served as extrinsic spatial heterogeneity to provide the nucleation sites for Al-fcc precipitation and the high-resolution transmission electron microscopy (HRTEM) images of the Pb-Al interface revealed a good wetting behavior between the Al and Pb nanoparticles. The study of the transient delay time (tau) could provide insight on the transport behavior during the nucleation and a more convenient approach to evaluate the delay time has been developed by measuring the Al-Y-Fe amorphous alloy glass transition temperature (Tg) shift with the increasing annealing time (tannealing) in FlashDSC. The break point in the Tg vs. log(tannealing) plot has been identified to correspond to the delay time by the TEM characterization. FlashDSC tests with different heating rates and different compositions (Al-Y-Fe-Pb and Zn-Mg-Ca-Yb amorphous alloys) further confirmed the break point and delay time relationship. The amorphous matrix composition and the enthalpy analysis indicates that there are different mechanisms leading to the Tg shift before and after the break point. Before the break point, Tg shifts solely due to the increased glass stability through a relaxation process. However, after the break point, Tg shifts to higher temperatures because of both the relaxation and the composition change effects.

  20. How does signal fade on photo-stimulable storage phosphor imaging plates when scanned with a delay and what is the effect on image quality?

    PubMed

    Ang, Dan B; Angelopoulos, Christos; Katz, Jerald O

    2006-11-01

    The goals of this in vitro study were to determine the effect of signal fading of DenOptix photo-stimulable storage phosphor imaging plates scanned with a delay and to determine the effect on the diagnostic quality of the image. In addition, we sought to correlate signal fading with image spatial resolution and average pixel intensity values. Forty-eight images were obtained of a test specimen apparatus and scanned at 6 delayed time intervals: immediately scanned, 1 hour, 8 hours, 24 hours, 72 hours, and 168 hours. Six general dentists using Vixwin2000 software performed a measuring task to determine the location of an endodontic file tip and root apex. One-way ANOVA with repeated measures was used to determine the effect of signal fading (delayed scan time) on diagnostic image quality and average pixel intensity value. There was no statistically significant difference in diagnostic image quality resulting from signal fading. No difference was observed in spatial resolution of the images. There was a statistically significant difference in the pixel intensity analysis of an 8-step aluminum wedge between immediate scanning and 24-hour delayed scan time. There was an effect of delayed scanning on the average pixel intensity value. However, there was no effect on image quality and raters' ability to perform a clinical identification task. Proprietary software of the DenOptix digital imaging system demonstrates an excellent ability to process a delayed scan time signal and create an image of diagnostic quality.

  1. Cooperative processing in primary somatosensory cortex and posterior parietal cortex during tactile working memory.

    PubMed

    Ku, Yixuan; Zhao, Di; Bodner, Mark; Zhou, Yong-Di

    2015-08-01

    In the present study, causal roles of both the primary somatosensory cortex (SI) and the posterior parietal cortex (PPC) were investigated in a tactile unimodal working memory (WM) task. Individual magnetic resonance imaging-based single-pulse transcranial magnetic stimulation (spTMS) was applied, respectively, to the left SI (ipsilateral to tactile stimuli), right SI (contralateral to tactile stimuli) and right PPC (contralateral to tactile stimuli), while human participants were performing a tactile-tactile unimodal delayed matching-to-sample task. The time points of spTMS were 300, 600 and 900 ms after the onset of the tactile sample stimulus (duration: 200 ms). Compared with ipsilateral SI, application of spTMS over either contralateral SI or contralateral PPC at those time points significantly impaired the accuracy of task performance. Meanwhile, the deterioration in accuracy did not vary with the stimulating time points. Together, these results indicate that the tactile information is processed cooperatively by SI and PPC in the same hemisphere, starting from the early delay of the tactile unimodal WM task. This pattern of processing of tactile information is different from the pattern in tactile-visual cross-modal WM. In a tactile-visual cross-modal WM task, SI and PPC contribute to the processing sequentially, suggesting a process of sensory information transfer during the early delay between modalities. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Two-dimensional Imaging Velocity Interferometry: Technique and Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erskine, D J; Smith, R F; Bolme, C

    2011-03-23

    We describe the data analysis procedures for an emerging interferometric technique for measuring motion across a two-dimensional image at a moment in time, i.e. a snapshot 2d-VISAR. Velocity interferometers (VISAR) measuring target motion to high precision have been an important diagnostic in shockwave physics for many years Until recently, this diagnostic has been limited to measuring motion at points or lines across a target. We introduce an emerging interferometric technique for measuring motion across a two-dimensional image, which could be called a snapshot 2d-VISAR. If a sufficiently fast movie camera technology existed, it could be placed behind a traditional VISARmore » optical system and record a 2d image vs time. But since that technology is not yet available, we use a CCD detector to record a single 2d image, with the pulsed nature of the illumination providing the time resolution. Consequently, since we are using pulsed illumination having a coherence length shorter than the VISAR interferometer delay ({approx}0.1 ns), we must use the white light velocimetry configuration to produce fringes with significant visibility. In this scheme, two interferometers (illuminating, detecting) having nearly identical delays are used in series, with one before the target and one after. This produces fringes with at most 50% visibility, but otherwise has the same fringe shift per target motion of a traditional VISAR. The 2d-VISAR observes a new world of information about shock behavior not readily accessible by traditional point or 1d-VISARS, simultaneously providing both a velocity map and an 'ordinary' snapshot photograph of the target. The 2d-VISAR has been used to observe nonuniformities in NIF related targets (polycrystalline diamond, Be), and in Si and Al.« less

  3. Spectroscopy and high-resolution imaging of the gravitational lens SDSS J1206+4332

    NASA Astrophysics Data System (ADS)

    Agnello, Adriano; Sonnenfeld, Alessandro; Suyu, Sherry H.; Treu, Tommaso; Fassnacht, Christopher D.; Mason, Charlotte; Bradač, Maruša; Auger, Matthew W.

    2016-06-01

    We present spectroscopy and laser guide star adaptive optics (LGSAO) images of the doubly imaged lensed quasar SDSS J1206+4332. We revise the deflector redshift proposed previously to zd = 0.745, and measure for the first time its velocity dispersion σ = (290 ± 30) km s-1. The LGSAO data show the lensed quasar host galaxy stretching over the astroid caustic thus forming an extra pair of merging images, which was previously thought to be an unrelated galaxy in seeing limited data. Owing to the peculiar geometry, the lens acts as a natural coronagraph on the broad-line region of the quasar so that only narrow C III]emission is found in the fold arc. We use the data to reconstruct the source structure and deflector potential, including nearby perturbers. We reconstruct the point-spread function (PSF) from the quasar images themselves, since no additional point source is present in the field of view. From gravitational lensing and stellar dynamics, we find the slope of the total mass density profile to be γ' = -log ρ/log r = 1.93 ± 0.09. We discuss the potential of SDSS J1206+4332 for measuring a time-delay distance (and thus H0 and other cosmological parameters), or as a standard ruler, in combination with the time-delay published by the COSMOGRAIL collaboration. We conclude that this system is very promising for cosmography. However, in order to achieve competitive precision and accuracy, an independent characterization of the PSF is needed. Spatially resolved kinematics of the deflector would reduce the uncertainties further. Both are within the reach of current observational facilities.

  4. Demonstration of Imaging Fourier Transform Spectrometer (FTS) Performance for Planetary and Geostationary Earth Observing

    NASA Technical Reports Server (NTRS)

    Revercomb, Henry E.; Sromovsky, Lawrence A.; Fry, Patrick M.; Best, Fred A.; LaPorte, Daniel D.

    2001-01-01

    The combination of massively parallel spatial sampling and accurate spectral radiometry offered by imaging FTS makes it extremely attractive for earth and planetary remote sensing. We constructed a breadboard instrument to help assess the potential for planetary applications of small imaging FTS instruments in the 1 - 5 micrometer range. The results also support definition of the NASA Geostationary Imaging FTS (GIFTS) instrument that will make key meteorological and climate observations from geostationary earth orbit. The Planetary Imaging FTS (PIFTS) breadboard is based on a custom miniaturized Bomen interferometer that uses corner cube reflectors, a wishbone pivoting voice-coil delay scan mechanism, and a laser diode metrology system. The interferometer optical output is measured by a commercial infrared camera procured from Santa Barbara Focalplane. It uses an InSb 128x128 detector array that covers the entire FOV of the instrument when coupled with a 25 mm focal length commercial camera lens. With appropriate lenses and cold filters the instrument can be used from the visible to 5 micrometers. The delay scan is continuous, but slow, covering the maximum range of +/- 0.4 cm in 37.56 sec at a rate of 500 image frames per second. Image exposures are timed to be centered around predicted zero crossings. The design allows for prediction algorithms that account for the most recent fringe rate so that timing jitter produced by scan speed variations can be minimized. Response to a fixed source is linear with exposure time nearly to the point of saturation. Linearity with respect to input variations was demonstrated to within 0.16% using a 3-point blackbody calibration. Imaging of external complex scenes was carried out at low and high spectral resolution. These require full complex calibration to remove background contributions that vary dramatically over the instrument FOV. Testing is continuing to demonstrate the precise radiometric accuracy and noise characteristics.

  5. Theory of Parabolic Arcs in Interstellar Scintillation Spectra

    NASA Astrophysics Data System (ADS)

    Cordes, James M.; Rickett, Barney J.; Stinebring, Daniel R.; Coles, William A.

    2006-01-01

    Interstellar scintillation (ISS), observed as time variation in the intensity of a compact radio source, is caused by small-scale structure in the electron density of the interstellar plasma. Dynamic spectra of ISS show modulation in radio frequency and time. Here we relate the (two-dimensional) power spectrum of the dynamic spectrum-the secondary spectrum-to the scattered image of the source. Recent work has identified remarkable parabolic arcs in secondary spectra. Each point in a secondary spectrum corresponds to interference between points in the scattered image with a certain Doppler shift and a certain delay. The parabolic arc corresponds to the quadratic relation between differential Doppler shift and delay through their common dependence on scattering angle. We show that arcs will occur in all media that scatter significant power at angles larger than the rms angle. Thus, effects such as source diameter, steep spectra, and dissipation scales, which truncate high angle scattering, also truncate arcs. Arcs are equally visible in simulations of nondispersive scattering. They are enhanced by anisotropic scattering when the spatial structure is elongated perpendicular to the velocity. In weak scattering the secondary spectrum is directly mapped from the scattered image, and this mapping can be inverted. We discuss additional observed phenomena including multiple arcs and reverse arclets oriented oppositely to the main arc. These phenomena persist for many refractive scattering times, suggesting that they are due to large-scale density structures, rather than low-frequency components of Kolmogorov turbulence.

  6. Flickering Quasar Helps Chandra Measure the Expansion Rate of the universe

    NASA Astrophysics Data System (ADS)

    2000-11-01

    Astronomers using the Chandra X-ray Observatory have identified a flickering, four-way mirage image of a distant quasar. A carefully planned observation of this mirage may be used to determine the expansion rate of the universe as well as to measure the distances to extragalactic objects, arguably two of the most important pursuits in modern astronomy. quasar RX J0911.4+0551 This figure is a composite of the X-ray image of the gravitational lens RX J0911.4+551 (top panel) and the light curves of the lensed images A2 (left panel) and A1 (right panel). Credit: NASA George Chartas, senior research associate at The Pennsylvania State University (Penn State) and Marshall W. Bautz, principal research scientist at the Massachusetts Institute of Technology (MIT) Center for Space Research, present their findings today at the meeting of the High Energy Astrophysics Division of the American Astronomical Society in Honolulu, Hawaii. "With a carefully planned follow-up, the Chandra observation of quasar RX J0911.4+0551 may lead to a measurement of the Hubble constant, the expansion rate of the universe, in less than a day," said Chartas. The observation would be done not with mirrors but with mirages--four images of a single quasar that capture the quasar's light at different moments of time due to the speed of light and the location of the mirages. Quasars are extremely distant galaxies with cores that glow with the intensity of 10 trillion Suns, a phenomenon likely powered by a supermassive black hole in the heart of the galaxy. This single "point source" image of a quasar may appear as four or five sources when the quasar--from our vantage point on Earth--is behind a massive intervening deflector, such as a dim galaxy. A mirage of images form when the gravity of the intervening deflector forces light rays to bend and take different paths to reach us. The time it takes for light to reach us from the distant object will depend on which path a ray decides to take. "An intervening galaxy can act as a lens," said Bautz. "Now imagine that the distant lensed quasar suddenly became brighter. The mirage images of the quasar will brighten up at different times depending on the difference in the light travel delay." Unlike ordinary galaxies, quasars do vary greatly in their intensity, especially in the X-ray waveband, said Gordon Garmire, Evan Pugh Professor of Astronomy and Astrophysics at Penn State. This is caused by the violent and erratic flow of gas into the black hole that is powering the quasar. In quasar RX J0911.4+0551, the astronomers saw a sudden brightening of X-ray intensity that lasted for about 2,000 seconds. This was observed in one of the four mirage images. Measuring the time-delay of the 2,000-second flare--or any flare-- from mirage to mirage can provide the absolute distance to the deflector (intervening galaxy) and can thus be used to estimate the expansion rate of the universe. Sjur Refsdal first proposed this promising method in 1964. The method avoids many uncertainties associated with the classic distance-ladder technique used to measure objects and the Hubble constant. The main difficulty in measuring time-delays is that the brightness of each image has to be carefully monitored over several periods of the time-delay. Also, the quasar has to show sufficient variability over time scales smaller than the time-delay. Most attempts to measure time-delays until now have been made in the optical and radio bands. The modest variability of quasars in these wavebands, however, has made it extremely difficult to place accurate constraints on time-delays. X-ray observations of gravitationally lensed quasars, on the other hand, show strong variability over time scales of hours to days. For example, it has taken almost 20 years of optical and radio monitoring to obtain a universal accepted time-delay for the lensed quasar Q0957+561 to an accuracy of 3percent. Chandra has the potential, the team has found, to determine the time-delay in one observation. "Based on computer models developed at Penn State and MIT, we have identified about ten gravitational lens systems with time-delays of less than a day," said Chartas. "One long observation of each source with a superior X-ray telescope could provide enough data to nail down the Hubble constant in the blink of an eye." The team is planning to apply the gravitational-lens method in the near future to several of these systems using the Chandra and XMM-Newton X-ray observatories. The Chandra observations of quasar RX J0911.4+0551 were made on November 2, 1999, using the Advanced CCD Imaging Spectrometer (ACIS). The effort involved several scientists from Penn State and MIT. ACIS was conceived and developed for NASA by Penn State and MIT under Garmire's leadership. NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. TRW, Inc., in Redondo Beach, California, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Massachusetts. RX J0911.4+551 Handout Constellation Hydra To follow Chandra's progress, visit the Chandra site at: http://chandra.harvard.edu AND http://chandra.nasa.gov

  7. Radar Imaging of Asteroids

    NASA Astrophysics Data System (ADS)

    Ostro, S. J.

    1996-09-01

    Measurements of the distribution of echo power in time delay (range) and Doppler frequency (line-of-sight velocity) can synthesize images of near-Earth and main-belt asteroids (NEAs and MBAs) that traverse the detectability windows of groundbased radar telescopes. Under ideal circumstances, current radar waveforms can achieve decameter surface resolution. The number of useful pixels obtainable in an imaging data set is of the same order as the signal-to-noise ratio, SNR, of an optimally filtered, weighted sum of all the data. (SNR increases as the square root of the integration time.) The upgraded Arecibo telescope which is about to become operational, should be able to achieve single-date SNRs {\\underline>} (20,100) for an average of (35,5) MBAs per year and single-date SNRs {\\underline>} (20,100,1000) for an average of (10,6,2) of the currently catalogued NEAs per year; optical surveying of the NEA population could increase the frequency of opportunities by an order of magnitude. The strongest imaging opportunities predicted for Arecibo between now and the end of 1997 include (the peak SNR/date is in parentheses): 9 Metis (110), 27 Euterpe (170), 80 Sappho (100), 139 Juewa (140), 144 Vibilia (140), 253 Mathilde (100), 2102 Tantalus (570), 3671 Dionysus (170), 3908 1980PA (4400), 4179 Toutatis (16000), 4197 1982TA (1200), 1991VK (700), and 1994PC1 (7400). A delay-Doppler image projects the echo power distribution onto the target's apparent equatorial plane. One cannot know a priori whether one or two (or more) points on the asteroid contributed power to a given pixel, so accurate interpretation of delay-Doppler images requires modeling (Hudson, 1993, Remote Sensing Rev. 8, 195-203). Inversion of an imaging sequence with enough orientational coverage can remove "north/south" ambiguities and can provide estimates of the target's three-dimensional shape, spin state, radar scattering properties, and delay-Doppler trajectory (e.g., Ostro et al. 1995, Science 270, 80-83; Hudson and Ostro 1995, Science 270, 84-86).

  8. Iterative Minimum Variance Beamformer with Low Complexity for Medical Ultrasound Imaging.

    PubMed

    Deylami, Ali Mohades; Asl, Babak Mohammadzadeh

    2018-06-04

    Minimum variance beamformer (MVB) improves the resolution and contrast of medical ultrasound images compared with delay and sum (DAS) beamformer. The weight vector of this beamformer should be calculated for each imaging point independently, with a cost of increasing computational complexity. The large number of necessary calculations limits this beamformer to application in real-time systems. A beamformer is proposed based on the MVB with lower computational complexity while preserving its advantages. This beamformer avoids matrix inversion, which is the most complex part of the MVB, by solving the optimization problem iteratively. The received signals from two imaging points close together do not vary much in medical ultrasound imaging. Therefore, using the previously optimized weight vector for one point as initial weight vector for the new neighboring point can improve the convergence speed and decrease the computational complexity. The proposed method was applied on several data sets, and it has been shown that the method can regenerate the results obtained by the MVB while the order of complexity is decreased from O(L 3 ) to O(L 2 ). Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  9. The rates and time-delay distribution of multiply imaged supernovae behind lensing clusters

    NASA Astrophysics Data System (ADS)

    Li, Xue; Hjorth, Jens; Richard, Johan

    2012-11-01

    Time delays of gravitationally lensed sources can be used to constrain the mass model of a deflector and determine cosmological parameters. We here present an analysis of the time-delay distribution of multiply imaged sources behind 17 strong lensing galaxy clusters with well-calibrated mass models. We find that for time delays less than 1000 days, at z = 3.0, their logarithmic probability distribution functions are well represented by P(log Δt) = 5.3 × 10-4Δttilde beta/M2502tilde beta, with tilde beta = 0.77, where M250 is the projected cluster mass inside 250 kpc (in 1014M⊙), and tilde beta is the power-law slope of the distribution. The resultant probability distribution function enables us to estimate the time-delay distribution in a lensing cluster of known mass. For a cluster with M250 = 2 × 1014M⊙, the fraction of time delays less than 1000 days is approximately 3%. Taking Abell 1689 as an example, its dark halo and brightest galaxies, with central velocity dispersions σ>=500kms-1, mainly produce large time delays, while galaxy-scale mass clumps are responsible for generating smaller time delays. We estimate the probability of observing multiple images of a supernova in the known images of Abell 1689. A two-component model of estimating the supernova rate is applied in this work. For a magnitude threshold of mAB = 26.5, the yearly rate of Type Ia (core-collapse) supernovae with time delays less than 1000 days is 0.004±0.002 (0.029±0.001). If the magnitude threshold is lowered to mAB ~ 27.0, the rate of core-collapse supernovae suitable for time delay observation is 0.044±0.015 per year.

  10. Identification of Location Specific Feature Points in a Cardiac Cycle Using a Novel Seismocardiogram Spectrum System.

    PubMed

    Lin, Wen-Yen; Chou, Wen-Cheng; Chang, Po-Cheng; Chou, Chung-Chuan; Wen, Ming-Shien; Ho, Ming-Yun; Lee, Wen-Chen; Hsieh, Ming-Jer; Lin, Chung-Chih; Tsai, Tsai-Hsuan; Lee, Ming-Yih

    2018-03-01

    Seismocardiogram (SCG) or mechanocardiography is a noninvasive cardiac diagnostic method; however, previous studies used only a single sensor to detect cardiac mechanical activities that will not be able to identify location-specific feature points in a cardiac cycle corresponding to the four valvular auscultation locations. In this study, a multichannel SCG spectrum measurement system was proposed and examined for cardiac activity monitoring to overcome problems like, position dependency, time delay, and signal attenuation, occurring in traditional single-channel SCG systems. ECG and multichannel SCG signals were simultaneously recorded in 25 healthy subjects. Cardiac echocardiography was conducted at the same time. SCG traces were analyzed and compared with echocardiographic images for feature point identification. Fifteen feature points were identified in the corresponding SCG traces. Among them, six feature points, including left ventricular lateral wall contraction peak velocity, septal wall contraction peak velocity, transaortic peak flow, transpulmonary peak flow, transmitral ventricular relaxation flow, and transmitral atrial contraction flow were identified. These new feature points were not observed in previous studies because the single-channel SCG could not detect the location-specific signals from other locations due to time delay and signal attenuation. As the results, the multichannel SCG spectrum measurement system can record the corresponding cardiac mechanical activities with location-specific SCG signals and six new feature points were identified with the system. This new modality may help clinical diagnoses of valvular heart diseases and heart failure in the future.

  11. Symmetry, Hopf bifurcation, and the emergence of cluster solutions in time delayed neural networks.

    PubMed

    Wang, Zhen; Campbell, Sue Ann

    2017-11-01

    We consider the networks of N identical oscillators with time delayed, global circulant coupling, modeled by a system of delay differential equations with Z N symmetry. We first study the existence of Hopf bifurcations induced by the coupling time delay and then use symmetric Hopf bifurcation theory to determine how these bifurcations lead to different patterns of symmetric cluster oscillations. We apply our results to a case study: a network of FitzHugh-Nagumo neurons with diffusive coupling. For this model, we derive the asymptotic stability, global asymptotic stability, absolute instability, and stability switches of the equilibrium point in the plane of coupling time delay (τ) and excitability parameter (a). We investigate the patterns of cluster oscillations induced by the time delay and determine the direction and stability of the bifurcating periodic orbits by employing the multiple timescales method and normal form theory. We find that in the region where stability switching occurs, the dynamics of the system can be switched from the equilibrium point to any symmetric cluster oscillation, and back to equilibrium point as the time delay is increased.

  12. Performance of various branch-point tolerant phase reconstructors with finite time delays and measurement noise

    NASA Astrophysics Data System (ADS)

    Zetterlind, Virgil E., III; Magee, Eric P.

    2002-06-01

    This study extends branch point tolerant phase reconstructor research to examine the effect of finite time delays and measurement error on system performance. Branch point tolerant phase reconstruction is particularly applicable to atmospheric laser weapon and communication systems, which operate in extended turbulence. We examine the relative performance of a least squares reconstructor, least squares plus hidden phase reconstructor, and a Goldstein branch point reconstructor for various correction time-delays and measurement noise scenarios. Performance is evaluated using a wave-optics simulation that models a 100km atmospheric propagation of a point source beacon to a transmit/receive aperture. Phase-only corrections are then calculated using the various reconstructor algorithms and applied to an outgoing uniform field. Point Strehl is used as the performance metric. Results indicate that while time delays and measurement noise reduce the performance of branch point tolerant reconstructors, these reconstructors can still outperform least squares implementations in many cases. We also show that branch point detection becomes the limiting factor in measurement noise corrupted scenarios.

  13. Computational photoacoustic imaging with sparsity-based optimization of the initial pressure distribution

    NASA Astrophysics Data System (ADS)

    Shang, Ruibo; Archibald, Richard; Gelb, Anne; Luke, Geoffrey P.

    2018-02-01

    In photoacoustic (PA) imaging, the optical absorption can be acquired from the initial pressure distribution (IPD). An accurate reconstruction of the IPD will be very helpful for the reconstruction of the optical absorption. However, the image quality of PA imaging in scattering media is deteriorated by the acoustic diffraction, imaging artifacts, and weak PA signals. In this paper, we propose a sparsity-based optimization approach that improves the reconstruction of the IPD in PA imaging. A linear imaging forward model was set up based on time-and-delay method with the assumption that the point spread function (PSF) is spatial invariant. Then, an optimization equation was proposed with a regularization term to denote the sparsity of the IPD in a certain domain to solve this inverse problem. As a proof of principle, the approach was applied to reconstructing point objects and blood vessel phantoms. The resolution and signal-to-noise ratio (SNR) were compared between conventional back-projection and our proposed approach. Overall these results show that computational imaging can leverage the sparsity of PA images to improve the estimation of the IPD.

  14. Mark Tracking: Position/orientation measurements using 4-circle mark and its tracking experiments

    NASA Technical Reports Server (NTRS)

    Kanda, Shinji; Okabayashi, Keijyu; Maruyama, Tsugito; Uchiyama, Takashi

    1994-01-01

    Future space robots require position and orientation tracking with visual feedback control to track and capture floating objects and satellites. We developed a four-circle mark that is useful for this purpose. With this mark, four geometric center positions as feature points can be extracted from the mark by simple image processing. We also developed a position and orientation measurement method that uses the four feature points in our mark. The mark gave good enough image measurement accuracy to let space robots approach and contact objects. A visual feedback control system using this mark enabled a robot arm to track a target object accurately. The control system was able to tolerate a time delay of 2 seconds.

  15. Predicting fluctuations-caused regime shifts in a time delayed dynamics of an invading species

    NASA Astrophysics Data System (ADS)

    Xie, Qingshuang; Wang, Tonghuan; Zeng, Chunhua; Dong, Xiaohui; Guan, Lin

    2018-03-01

    In this paper, we investigate early warning signals (EWS) of regime shifts in a density-dependent invading population model with time delay, in which the population density is assumed to be disturbed by intrinsic and extrinsic fluctuations. It is shown that the time delay and noises can cause the regime shifts between low and high population density states. The regime shift time (RST) as a function of noise intensity exhibits a maximum, which identifies the signature of the noise-enhanced stability of the low density state, while the time delay weakens the stability of the low density state. Applying the Kramers time technique, we also discuss the intersection point of the RST between low and high population density states, i.e., a critical point in the RST is found. Therefore, the critical point may give an EWS of regime shifts from one alternative state to another one for the changes in the noise parameters and time delay.

  16. COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses: XVI. Time delays for the quadruply imaged quasar DES J0408–5354 with high-cadence photometric monitoring* [COSMOGRAIL XVI: Time delays for the quadruply imaged quasar DES J0408–5354 with high-cadence photometric monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Courbin, F.; Bonvin, V.; Buckley-Geer, E.

    Here, we present time-delay measurements for the new quadruple imaged quasar DES J0408–5354, the first quadruple imaged quasar found in the Dark Energy Survey (DES). Our result is made possible by implementing a new observational strategy using almost daily observations with the MPIA 2.2 m telescope at La Silla observatory and deep exposures reaching a signal-to-noise ratio of about 1000 per quasar image. This data qualityallows us to catch small photometric variations (a few mmag rms) of the quasar, acting on temporal scales much shorter than microlensing, and hence making the time delay measurement very robust against microlensing. In onlymore » seven months we very accurately measured one of the time delays in DES J0408–5354: Δt(AB) = –112.1 ± 2.1 days (1.8%) using only the MPIA 2.2 m data. In combination with data taken with the 1.2 m Euler Swiss telescope, we also measured two delays involving the D component of the system Δt(AD) = –155.5 ± 12.8 days (8.2%) and Δt(BD) = –42.4 ± 17.6 days (41%), where all the error bars include systematics. Turning these time delays into cosmological constraints will require deep Hubble Space Telescope (HST) imaging or ground-based adaptive optics (AO), and information on the velocity field of the lensing galaxy.« less

  17. COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses: XVI. Time delays for the quadruply imaged quasar DES J0408–5354 with high-cadence photometric monitoring* [COSMOGRAIL XVI: Time delays for the quadruply imaged quasar DES J0408–5354 with high-cadence photometric monitoring

    DOE PAGES

    Courbin, F.; Bonvin, V.; Buckley-Geer, E.; ...

    2018-01-09

    Here, we present time-delay measurements for the new quadruple imaged quasar DES J0408–5354, the first quadruple imaged quasar found in the Dark Energy Survey (DES). Our result is made possible by implementing a new observational strategy using almost daily observations with the MPIA 2.2 m telescope at La Silla observatory and deep exposures reaching a signal-to-noise ratio of about 1000 per quasar image. This data qualityallows us to catch small photometric variations (a few mmag rms) of the quasar, acting on temporal scales much shorter than microlensing, and hence making the time delay measurement very robust against microlensing. In onlymore » seven months we very accurately measured one of the time delays in DES J0408–5354: Δt(AB) = –112.1 ± 2.1 days (1.8%) using only the MPIA 2.2 m data. In combination with data taken with the 1.2 m Euler Swiss telescope, we also measured two delays involving the D component of the system Δt(AD) = –155.5 ± 12.8 days (8.2%) and Δt(BD) = –42.4 ± 17.6 days (41%), where all the error bars include systematics. Turning these time delays into cosmological constraints will require deep Hubble Space Telescope (HST) imaging or ground-based adaptive optics (AO), and information on the velocity field of the lensing galaxy.« less

  18. Comparison of dynamic FDG-microPET study in a rabbit turpentine-induced inflammatory model and in a rabbit VX2 tumor model.

    PubMed

    Hamazawa, Yoshimasa; Koyama, Koichi; Okamura, Terue; Wada, Yasuhiro; Wakasa, Tomoko; Okuma, Tomohisa; Watanabe, Yasuyoshi; Inoue, Yuichi

    2007-01-01

    We investigated the optimum time for the differentiation tumor from inflammation using dynamic FDG-microPET scans obtained by a MicroPET P4 scanner in animal models. Forty-six rabbits with 92 inflammatory lesions that were induced 2, 5, 7, 14, 30 and 60 days after 0.2 ml (Group 1) or 1.0 ml (Group 2) of turpentine oil injection were used as inflammatory models. Five rabbits with 10 VX2 tumors were used as the tumor model. Helical CT scans were performed before the PET studies. In the PET study, after 4 hours fasting, and following transmission scans and dynamic emission data acquisitions were performed until 2 hours after intravenous FDG injection. Images were reconstructed every 10 minutes using a filtered-back projection method. PET images were analyzed visually referring to CT images. For quantitative analysis, the inflammation-to-muscle (I/M) ratio and tumor-to-muscle (T/M) ratio were calculated after regions of interest were set in tumors and muscles referring to CT images and the time-I/M ratio and time-T/M ratio curves (TRCs) were prepared to show the change over time in these ratios. The histological appearance of both inflammatory lesions and tumor lesions were examined and compared with the CT and FDG-microPET images. In visual and quantitative analysis, All the I/M ratios and the T/M ratios increased over time except that Day 60 of Group 1 showed an almost flat curve. The TRC of the T/M ratio showed a linear increasing curve over time, while that of the I/M ratios showed a parabolic increasing over time at the most. FDG uptake in the inflammatory lesions reflected the histological findings. For differentiating tumors from inflammatory lesions with the early image acquired at 40 min for dual-time imaging, the delayed image must be acquired 30 min after the early image, while imaging at 90 min or later after intravenous FDG injection was necessary in single-time-point imaging. Our results suggest the possibility of shortening the overall testing time in clinical practice by adopting dual-time-point imaging rather than single-time-point imaging.

  19. Single-shot polarimetry imaging of multicore fiber.

    PubMed

    Sivankutty, Siddharth; Andresen, Esben Ravn; Bouwmans, Géraud; Brown, Thomas G; Alonso, Miguel A; Rigneault, Hervé

    2016-05-01

    We report an experimental test of single-shot polarimetry applied to the problem of real-time monitoring of the output polarization states in each core within a multicore fiber bundle. The technique uses a stress-engineered optical element, together with an analyzer, and provides a point spread function whose shape unambiguously reveals the polarization state of a point source. We implement this technique to monitor, simultaneously and in real time, the output polarization states of up to 180 single-mode fiber cores in both conventional and polarization-maintaining fiber bundles. We demonstrate also that the technique can be used to fully characterize the polarization properties of each individual fiber core, including eigen-polarization states, phase delay, and diattenuation.

  20. Delayed coma in head injury: consider cerebral fat embolism.

    PubMed

    Metting, Zwany; Rödiger, Lars A; Regtien, Joost G; van der Naalt, Joukje

    2009-09-01

    To describe a case of a young man with delayed coma after mild head injury, suggestive of cerebral fat embolism (CFE). To underline the value of MR imaging in the differential diagnosis of secondary deterioration in mild head injury. A 21-year-old man admitted with mild head injury after a fall with facial fractures and long bone fractures. He was admitted to the intensive care unit and was mechanically ventilated. Weaning was not possible because of desaturations and pulmonary congestion. Low platelet count and anaemia developed. On several time points during his admission cerebral imaging data were obtained. Non-contrast CT on admission was normal while follow-up MRI showed extensive white matter abnormalities. These imaging abnormalities combined with the clinical presentation suggests cerebral fat embolism (CFE) as the most likely cause of secondary deterioration in our patient. In head injured patients with long bone fractures one should consider cerebral fat embolism. When the classical clinical syndrome is not present, MR imaging is warranted for diagnosis and to exclude other causes of secondary deterioration.

  1. Constructing Hopf bifurcation lines for the stability of nonlinear systems with two time delays

    NASA Astrophysics Data System (ADS)

    Nguimdo, Romain Modeste

    2018-03-01

    Although the plethora real-life systems modeled by nonlinear systems with two independent time delays, the algebraic expressions for determining the stability of their fixed points remain the Achilles' heel. Typically, the approach for studying the stability of delay systems consists in finding the bifurcation lines separating the stable and unstable parameter regions. This work deals with the parametric construction of algebraic expressions and their use for the determination of the stability boundaries of fixed points in nonlinear systems with two independent time delays. In particular, we concentrate on the cases for which the stability of the fixed points can be ascertained from a characteristic equation corresponding to that of scalar two-delay differential equations, one-component dual-delay feedback, or nonscalar differential equations with two delays for which the characteristic equation for the stability analysis can be reduced to that of a scalar case. Then, we apply our obtained algebraic expressions to identify either the parameter regions of stable microwaves generated by dual-delay optoelectronic oscillators or the regions of amplitude death in identical coupled oscillators.

  2. Pump-probe micro-spectroscopy by means of an ultra-fast acousto-optics delay line.

    PubMed

    Audier, Xavier; Balla, Naveen; Rigneault, Hervé

    2017-01-15

    We demonstrate femtosecond pump-probe transient absorption spectroscopy using a programmable dispersive filter as an ultra-fast delay line. Combined with fast synchronous detection, this delay line allows for recording of 6 ps decay traces at 34 kHz. With such acquisition speed, we perform single point pump-probe spectroscopy on bulk samples in 80 μs and hyperspectral pump-probe imaging over a field of view of 100 μm in less than a second. The usability of the method is illustrated in a showcase experiment to image and discriminate between two pigments in a mixture.

  3. Time delay and magnification centroid due to gravitational lensing by black holes and naked singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virbhadra, K. S.; Keeton, C. R.; Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854

    We model the massive dark object at the center of the Galaxy as a Schwarzschild black hole as well as Janis-Newman-Winicour naked singularities, characterized by the mass and scalar charge parameters, and study gravitational lensing (particularly time delay, magnification centroid, and total magnification) by them. We find that the lensing features are qualitatively similar (though quantitatively different) for Schwarzschild black holes, weakly naked, and marginally strongly naked singularities. However, the lensing characteristics of strongly naked singularities are qualitatively very different from those due to Schwarzschild black holes. The images produced by Schwarzschild black hole lenses and weakly naked and marginallymore » strongly naked singularity lenses always have positive time delays. On the other hand, strongly naked singularity lenses can give rise to images with positive, zero, or negative time delays. In particular, for a large angular source position the direct image (the outermost image on the same side as the source) due to strongly naked singularity lensing always has a negative time delay. We also found that the scalar field decreases the time delay and increases the total magnification of images; this result could have important implications for cosmology. As the Janis-Newman-Winicour metric also describes the exterior gravitational field of a scalar star, naked singularities as well as scalar star lenses, if these exist in nature, will serve as more efficient cosmic telescopes than regular gravitational lenses.« less

  4. Precision cosmology with time delay lenses: High resolution imaging requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Xiao -Lei; Treu, Tommaso; Agnello, Adriano

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ``Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration ofmore » the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρ tot∝ r–γ' for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. Furthermore, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive Optics System, and TMT, will only be of order a few minutes per system, thus making the follow-up of hundreds of systems a practical and efficient cosmological probe.« less

  5. Precision cosmology with time delay lenses: high resolution imaging requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Xiao-Lei; Liao, Kai; Treu, Tommaso

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ''Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration ofmore » the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρ{sub tot}∝ r{sup −γ'} for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. However, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive Optics System, and TMT, will only be of order a few minutes per system, thus making the follow-up of hundreds of systems a practical and efficient cosmological probe.« less

  6. Real-time correction of beamforming time delay errors in abdominal ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Rigby, K. W.

    2000-04-01

    The speed of sound varies with tissue type, yet commercial ultrasound imagers assume a constant sound speed. Sound speed variation in abdominal fat and muscle layers is widely believed to be largely responsible for poor contrast and resolution in some patients. The simplest model of the abdominal wall assumes that it adds a spatially varying time delay to the ultrasound wavefront. The adequacy of this model is controversial. We describe an adaptive imaging system consisting of a GE LOGIQ 700 imager connected to a multi- processor computer. Arrival time errors for each beamforming channel, estimated by correlating each channel signal with the beamsummed signal, are used to correct the imager's beamforming time delays at the acoustic frame rate. A multi- row transducer provides two-dimensional sampling of arrival time errors. We observe significant improvement in abdominal images of healthy male volunteers: increased contrast of blood vessels, increased visibility of the renal capsule, and increased brightness of the liver.

  7. Scattering and; Delay, Scale, and Sum Migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehman, S K

    How do we see? What is the mechanism? Consider standing in an open field on a clear sunny day. In the field are a yellow dog and a blue ball. From a wave-based remote sensing point of view the sun is a source of radiation. It is a broadband electromagnetic source which, for the purposes of this introduction, only the visible spectrum is considered (approximately 390 to 750 nanometers or 400 to 769 TeraHertz). The source emits an incident field into the known background environment which, for this example, is free space. The incident field propagates until it strikes anmore » object or target, either the yellow dog or the blue ball. The interaction of the incident field with an object results in a scattered field. The scattered field arises from a mis-match between the background refractive index, considered to be unity, and the scattering object refractive index ('yellow' for the case of the dog, and 'blue' for the ball). This is also known as an impedance mis-match. The scattering objects are referred to as secondary sources of radiation, that radiation being the scattered field which propagates until it is measured by the two receivers known as 'eyes'. The eyes focus the measured scattered field to form images which are processed by the 'wetware' of the brain for detection, identification, and localization. When time series representations of the measured scattered field are available, the image forming focusing process can be mathematically modeled by delayed, scaled, and summed migration. This concept of optical propagation, scattering, and focusing have one-to-one equivalents in the acoustic realm. This document is intended to present the basic concepts of scalar scattering and migration used in wide band wave-based remote sensing and imaging. The terms beamforming and (delayed, scaled, and summed) migration are used interchangeably but are to be distinguished from the narrow band (frequency domain) beamforming to determine the direction of arrival of a signal, and seismic migration in which wide band time series are shifted but not to form images per se. Section 3 presents a mostly graphically-based motivation and summary of delay, scale, and sum beamforming. The model for incident field propagation in free space is derived in Section 4 under specific assumptions. General object scattering is derived in Section 5 and simplified under the Born approximation in Section 6. The model of this section serves as the basis in the derivation of time-domain migration. The Foldy-Lax, full point scatterer scattering, method is derived in Section 7. With the previous forward models in hand, delay, scale, and sum beamforming is derived in Section 8. Finally, proof-of-principle experiments are present in Section 9.« less

  8. Interpreting the Strongly Lensed Supernova iPTF16geu: Time Delay Predictions, Microlensing, and Lensing Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    More, Anupreeta; Oguri, Masamune; More, Surhud

    2017-02-01

    We present predictions for time delays between multiple images of the gravitationally lensed supernova, iPTF16geu, which was recently discovered from the intermediate Palomar Transient Factory (iPTF). As the supernova is of Type Ia where the intrinsic luminosity is usually well known, accurately measured time delays of the multiple images could provide tight constraints on the Hubble constant. According to our lens mass models constrained by the Hubble Space Telescope F814W image, we expect the maximum relative time delay to be less than a day, which is consistent with the maximum of 100 hr reported by Goobar et al. but placesmore » a stringent upper limit. Furthermore, the fluxes of most of the supernova images depart from expected values suggesting that they are affected by microlensing. The microlensing timescales are small enough that they may pose significant problems to measure the time delays reliably. Our lensing rate calculation indicates that the occurrence of a lensed SN in iPTF is likely. However, the observed total magnification of iPTF16geu is larger than expected, given its redshift. This may be a further indication of ongoing microlensing in this system.« less

  9. COSMOGRAIL XVII: Time Delays for the Quadruply Imaged Quasar PG 1115+080

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonvin, V.; et al.

    We present time-delay estimates for the quadruply imaged quasar PG 1115+080. Our resuls are based on almost daily observations for seven months at the ESO MPIA 2.2m telescope at La Silla Observatory, reaching a signal-to-noise ratio of about 1000 per quasar image. In addition, we re-analyse existing light curves from the literature that we complete with an additional three seasons of monitoring with the Mercator telescope at La Palma Observatory. When exploring the possible source of bias we consider the so-called microlensing time delay, a potential source of systematic error so far never directly accounted for in previous time-delay publications.more » In fifteen years of data on PG 1115+080, we find no strong evidence of microlensing time delay. Therefore not accounting for this effect, our time-delay estimates on the individual data sets are in good agreement with each other and with the literature. Combining the data sets, we obtain the most precise time-delay estimates to date on PG 1115+080, with Dt(AB) = 8.3+1.5-1.6 days (18.7% precision), Dt(AC) = 9.9+1.1-1.1 days (11.1%) and Dt(BC) = 18.8+1.6-1.6 days (8.5%). Turning these time delays into cosmological constraints is done in a companion paper that makes use of ground-based Adaptive Optics (AO) with the Keck telescope.« less

  10. Lens Model and Time Delay Predictions for the Sextuply Lensed Quasar SDSS J2222+2745*

    NASA Technical Reports Server (NTRS)

    Sharon, Keren; Bayliss, Matthew B.; Dahle, Hakon; Florian, Michael K.; Gladders, Michael D.; Johnson, Traci L.; Paterno-Mahler, Rachel; Rigby, Jane R.; Whitaker, Katherine E.; Wuyts, Eva

    2017-01-01

    SDSS J2222+2745 is a galaxy cluster at z = 0.49, strongly lensing a quasar at z = 2.805 into six widely separated images. In recent Hubble Space Telescope imaging of the field, we identify additional multiply lensed galaxies and confirm the sixth quasar image that was identified by Dahle et al. We used the Gemini-North telescope to measure a spectroscopic redshift of z = 4.56 of one of the lensed galaxies. These data are used to refine the lens model of SDSS J2222+2745, compute the time delay and magnifications of the lensed quasar images, and reconstruct the source image of the quasar host and a lensed galaxy at z = 2.3. This galaxy also appears in absorption in our Gemini spectra of the lensed quasar, at a projected distance of 34 kpc. Our model is in agreement with the recent time delay measurements of Dahle et al., who found T(sub AB) = 47.7 +/- 6.0 days and T(sub AC) = 722 +/- 24 days. We use the observed time delays to further constrain the model, and find that the model-predicted time delays of the three faint images of the quasar are T(sub AD) = 502+/- 68 days, T( sub AE) = 611 +/- 75 days, and T(sub AF) = 415 +/- 72 days. We have initiated a follow-up campaign to measure these time delays with Gemini North. Finally, we present initial results from an X-ray monitoring program with Swift, indicating the presence of hard X-ray emission from the lensed quasar, as well as extended X-ray emission from the cluster itself, which is consistent with the lensing mass measurement and the cluster velocity dispersion.

  11. LENS MODEL AND TIME DELAY PREDICTIONS FOR THE SEXTUPLY LENSED QUASAR SDSS J2222+2745

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharon, Keren; Johnson, Traci L.; Paterno-Mahler, Rachel

    2017-01-20

    SDSS J2222+2745 is a galaxy cluster at z = 0.49, strongly lensing a quasar at z = 2.805 into six widely separated images. In recent Hubble Space Telescope imaging of the field, we identify additional multiply lensed galaxies and confirm the sixth quasar image that was identified by Dahle et al. We used the Gemini-North telescope to measure a spectroscopic redshift of z = 4.56 of one of the lensed galaxies. These data are used to refine the lens model of SDSS J2222+2745, compute the time delay and magnifications of the lensed quasar images, and reconstruct the source image ofmore » the quasar host and a lensed galaxy at z = 2.3. This galaxy also appears in absorption in our Gemini spectra of the lensed quasar, at a projected distance of 34 kpc. Our model is in agreement with the recent time delay measurements of Dahle et al., who found τ {sub AB} = 47.7 ± 6.0 days and τ {sub AC} = −722 ± 24 days. We use the observed time delays to further constrain the model, and find that the model-predicted time delays of the three faint images of the quasar are τ {sub AD} = 502 ± 68 days, τ {sub AE} = 611 ± 75 days, and τ {sub AF} = 415 ± 72 days. We have initiated a follow-up campaign to measure these time delays with Gemini North. Finally, we present initial results from an X-ray monitoring program with Swift , indicating the presence of hard X-ray emission from the lensed quasar, as well as extended X-ray emission from the cluster itself, which is consistent with the lensing mass measurement and the cluster velocity dispersion.« less

  12. Contrast in Terahertz Images of Archival Documents—Part II: Influence of Topographic Features

    NASA Astrophysics Data System (ADS)

    Bardon, Tiphaine; May, Robert K.; Taday, Philip F.; Strlič, Matija

    2017-04-01

    We investigate the potential of terahertz time-domain imaging in reflection mode to reveal archival information in documents in a non-invasive way. In particular, this study explores the parameters and signal processing tools that can be used to produce well-contrasted terahertz images of topographic features commonly found in archival documents, such as indentations left by a writing tool, as well as sieve lines. While the amplitude of the waveforms at a specific time delay can provide the most contrasted and legible images of topographic features on flat paper or parchment sheets, this parameter may not be suitable for documents that have a highly irregular surface, such as water- or fire-damaged documents. For analysis of such documents, cross-correlation of the time-domain signals can instead yield images with good contrast. Analysis of the frequency-domain representation of terahertz waveforms can also provide well-contrasted images of topographic features, with improved spatial resolution when utilising high-frequency content. Finally, we point out some of the limitations of these means of analysis for extracting information relating to topographic features of interest from documents.

  13. Noise and time delay induce critical point in a bistable system

    NASA Astrophysics Data System (ADS)

    Zhang, Jianqiang; Nie, Linru; Yu, Lilong; Zhang, Xinyu

    2014-07-01

    We study relaxation time Tc of time-delayed bistable system driven by two cross-correlated Gaussian white noises that one is multiplicative and the other is additive. By means of numerical calculations, the results indicate that: (i) Combination of noise and time delay can induce two critical points about the relaxation time at some certain noise cross-correlation strength λ under the condition that the multiplicative intensity D equals to the additive noise intensity α. (ii) For each fixed D or α, there are two symmetrical critical points which locates in the regions of positive and negative correlations, respectively. Namely, as λ equals to the critical value λc, Tc is independent of the delay time and the result of Tc versus τ is a horizontal line, but as |λ|>|λc| (or |λ|<|λc|), the relaxation time Tc monotonically increases (or decreases) with the delay time increasing. (iii) In the presence of D = α, the change of λc with D is two symmetrical curves about the axis of λc = 0, and the critical value λc is close to zero for a smaller D, which approaches to +1 or -1 for a greater D.

  14. The time delay in strong gravitational lensing with Gauss-Bonnet correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Man, Jingyun; Cheng, Hongbo, E-mail: jingyunman@mail.ecust.edu.cn, E-mail: hbcheng@ecust.edu.cn

    2014-11-01

    The time delay between two relativistic images in the strong gravitational lensing governed by Gauss-Bonnet gravity is studied. We make a complete analytical derivation of the expression of time delay in presence of Gauss-Bonnet coupling. With respect to Schwarzschild, the time delay decreases as a consequence of the shrinking of the photon sphere. As the coupling increases, the second term in the time delay expansion becomes more relevant. Thus time delay in strong limit encodes some new information about geometry in five-dimensional spacetime with Gauss-Bonnet correction.

  15. Sources of image degradation in fundamental and harmonic ultrasound imaging using nonlinear, full-wave simulations.

    PubMed

    Pinton, Gianmarco F; Trahey, Gregg E; Dahl, Jeremy J

    2011-04-01

    A full-wave equation that describes nonlinear propagation in a heterogeneous attenuating medium is solved numerically with finite differences in the time domain (FDTD). This numerical method is used to simulate propagation of a diagnostic ultrasound pulse through a measured representation of the human abdomen with heterogeneities in speed of sound, attenuation, density, and nonlinearity. Conventional delay-andsum beamforming is used to generate point spread functions (PSF) that display the effects of these heterogeneities. For the particular imaging configuration that is modeled, these PSFs reveal that the primary source of degradation in fundamental imaging is reverberation from near-field structures. Reverberation clutter in the harmonic PSF is 26 dB higher than the fundamental PSF. An artificial medium with uniform velocity but unchanged impedance characteristics indicates that for the fundamental PSF, the primary source of degradation is phase aberration. An ultrasound image is created in silico using the same physical and algorithmic process used in an ultrasound scanner: a series of pulses are transmitted through heterogeneous scattering tissue and the received echoes are used in a delay-and-sum beamforming algorithm to generate images. These beamformed images are compared with images obtained from convolution of the PSF with a scatterer field to demonstrate that a very large portion of the PSF must be used to accurately represent the clutter observed in conventional imaging. © 2011 IEEE

  16. Quantification of FDG-PET/CT with delayed imaging in patients with newly diagnosed recurrent breast cancer.

    PubMed

    Baun, Christina; Falch, Kirsten; Gerke, Oke; Hansen, Jeanette; Nguyen, Tram; Alavi, Abass; Høilund-Carlsen, Poul-Flemming; Hildebrandt, Malene G

    2018-05-09

    Several studies have shown the advantage of delayed-time-point imaging with 18F-FDG-PET/CT to distinguish malignant from benign uptake. This may be relevant in cancer diseases with low metabolism, such as breast cancer. We aimed at examining the change in SUV from 1 h (1h) to 3 h (3h) time-point imaging in local and distant lesions in patients with recurrent breast cancer. Furthermore, we investigated the effect of partial volume correction in the different types of metastases, using semi-automatic quantitative software (ROVER™). One-hundred and two patients with suspected breast cancer recurrence underwent whole-body PET/CT scans 1h and 3h after FDG injection. Semi-quantitative standardised uptake values (SUVmax, SUVmean) and partial volume corrected SUVmean (cSUVmean), were estimated in malignant lesions, and as reference in healthy liver tissue. The change in quantitative measures from 1h to 3h was calculated, and SUVmean was compared to cSUVmean. Metastases were verified by biopsy. Of the 102 included patients, 41 had verified recurrent disease with in median 15 lesions (range 1-70) amounting to a total of 337 malignant lesions included in the analysis. SUVmax of malignant lesions increased from 6.4 ± 3.4 [0.9-19.7] (mean ± SD, min and max) at 1h to 8.1 ± 4.4 [0.7-29.7] at 3h. SUVmax in breast, lung, lymph node and bone lesions increased significantly (p < 0.0001) between 1h and 3h by on average 25, 40, 33, and 27%, respectively. A similar pattern was observed with (uncorrected) SUVmean. Partial volume correction increased SUVmean significantly, by 63 and 71% at 1h and 3h imaging, respectively. The highest impact was in breast lesions at 3h, where cSUVmean increased by 87% compared to SUVmean. SUVs increased from 1h to 3h in malignant lesions, SUVs of distant recurrence were in general about twice as high as those of local recurrence. Partial volume correction caused significant increases in these values. However, it is questionable, if these relatively modest quantitative advances of 3h imaging are sufficient to warrant delayed imaging in this patient group. ClinicalTrails.gov NCT01552655 . Registered 28 February 2012, partly retrospectively registered.

  17. Erratum: Sources of Image Degradation in Fundamental and Harmonic Ultrasound Imaging: A Nonlinear, Full-Wave, Simulation Study

    PubMed Central

    Pinton, Gianmarco F.; Trahey, Gregg E.; Dahl, Jeremy J.

    2015-01-01

    A full-wave equation that describes nonlinear propagation in a heterogeneous attenuating medium is solved numerically with finite differences in the time domain. This numerical method is used to simulate propagation of a diagnostic ultrasound pulse through a measured representation of the human abdomen with heterogeneities in speed of sound, attenuation, density, and nonlinearity. Conventional delay-and-sum beamforming is used to generate point spread functions (PSFs) that display the effects of these heterogeneities. For the particular imaging configuration that is modeled, these PSFs reveal that the primary source of degradation in fundamental imaging is due to reverberation from near-field structures. Compared with fundamental imaging, reverberation clutter in harmonic imaging is 27.1 dB lower. Simulated tissue with uniform velocity but unchanged impedance characteristics indicates that for harmonic imaging, the primary source of degradation is phase aberration. PMID:21693410

  18. The Hubble Constant from SN Refsdal

    NASA Astrophysics Data System (ADS)

    Vega-Ferrero, J.; Diego, J. M.; Miranda, V.; Bernstein, G. M.

    2018-02-01

    Hubble Space Telescope observations from 2015 December 11 detected the expected fifth counter-image of supernova (SN) Refsdal at z = 1.49. In this Letter, we compare the time-delay predictions from numerous models with the measured value derived by Kelly et al. from very early data in the light curve of the SN Refsdal and find a best value for {H}0={64}-11+9 {km} {{{s}}}-1 {{Mpc}}-1 (68% CL), in excellent agreement with predictions from cosmic microwave background and recent weak lensing data + baryon acoustic oscillations + Big Bang nucleosynthesis (from the DES Collaboration). This is the first constraint on H 0 derived from time delays between multiple-lensed SN images, and the first with a galaxy cluster lens, subject to systematic effects different from other time-delay H 0 estimates. Additional time-delay measurements from new multiply imaged SNe will allow derivation of competitive constraints on H 0.

  19. High-frequency spectral ultrasound imaging (SUSI) visualizes early post-traumatic heterotopic ossification (HO) in a mouse model.

    PubMed

    Ranganathan, Kavitha; Hong, Xiaowei; Cholok, David; Habbouche, Joe; Priest, Caitlin; Breuler, Christopher; Chung, Michael; Li, John; Kaura, Arminder; Hsieh, Hsiao Hsin Sung; Butts, Jonathan; Ucer, Serra; Schwartz, Ean; Buchman, Steven R; Stegemann, Jan P; Deng, Cheri X; Levi, Benjamin

    2018-04-01

    Early treatment of heterotopic ossification (HO) is currently limited by delayed diagnosis due to limited visualization at early time points. In this study, we validate the use of spectral ultrasound imaging (SUSI) in an animal model to detect HO as early as one week after burn tenotomy. Concurrent SUSI, micro CT, and histology at 1, 2, 4, and 9weeks post-injury were used to follow the progression of HO after an Achilles tenotomy and 30% total body surface area burn (n=3-5 limbs per time point). To compare the use of SUSI in different types of injury models, mice (n=5 per group) underwent either burn/tenotomy or skin incision injury and were imaged using a 55MHz probe on VisualSonics VEVO 770 system at one week post injury to evaluate the ability of SUSI to distinguish between edema and HO. Average acoustic concentration (AAC) and average scatterer diameter (ASD) were calculated for each ultrasound image frame. Micro CT was used to calculate the total volume of HO. Histology was used to confirm bone formation. Using SUSI, HO was visualized as early as 1week after injury. HO was visualized earliest by 4weeks after injury by micro CT. The average acoustic concentration of HO was 33% more than that of the control limb (n=5). Spectroscopic foci of HO present at 1week that persisted throughout all time points correlated with the HO present at 9weeks on micro CT imaging. SUSI visualizes HO as early as one week after injury in an animal model. SUSI represents a new imaging modality with promise for early diagnosis of HO. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Estimation of time-delayed mutual information and bias for irregularly and sparsely sampled time-series

    PubMed Central

    Albers, D. J.; Hripcsak, George

    2012-01-01

    A method to estimate the time-dependent correlation via an empirical bias estimate of the time-delayed mutual information for a time-series is proposed. In particular, the bias of the time-delayed mutual information is shown to often be equivalent to the mutual information between two distributions of points from the same system separated by infinite time. Thus intuitively, estimation of the bias is reduced to estimation of the mutual information between distributions of data points separated by large time intervals. The proposed bias estimation techniques are shown to work for Lorenz equations data and glucose time series data of three patients from the Columbia University Medical Center database. PMID:22536009

  1. Measurement of time delay for a prospectively gated CT simulator.

    PubMed

    Goharian, M; Khan, R F H

    2010-04-01

    For the management of mobile tumors, respiratory gating is the ideal option, both during imaging and during therapy. The major advantage of respiratory gating during imaging is that it is possible to create a single artifact-free CT data-set during a selected phase of the patient's breathing cycle. The purpose of the present work is to present a simple technique to measure the time delay during acquisition of a prospectively gated CT. The time delay of a Philips Brilliance BigBore (Philips Medical Systems, Madison, WI) scanner attached to a Varian Real-Time Position Management (RPM) system (Varian Medical Systems, Palo Alto, CA) was measured. Two methods were used to measure the CT time delay: using a motion phantom and using a recorded data file from the RPM system. In the first technique, a rotating wheel phantom was altered by placing two plastic balls on its axis and rim, respectively. For a desired gate, the relative positions of the balls were measured from the acquired CT data and converted into corresponding phases. Phase difference was calculated between the measured phases and the desired phases. Using period of motion, the phase difference was converted into time delay. The Varian RPM system provides an external breathing signal; it also records transistor-transistor logic (TTL) 'X-Ray ON' status signal from the CT scanner in a text file. The TTL 'X-Ray ON' indicates the start of CT image acquisition. Thus, knowledge of the start time of CT acquisition, combined with the real-time phase and amplitude data from the external respiratory signal, provides time-stamping of all images in an axial CT scan. The TTL signal with time-stamp was used to calculate when (during the breathing cycle) a slice was recorded. Using the two approaches, the time delay between the prospective gating signal and CT simulator has been determined to be 367 +/- 40 ms. The delay requires corrections both at image acquisition and while setting gates for the treatment delivery; otherwise the simulation and treatment may not be correlated with the patient's breathing.

  2. The phantom robot - Predictive displays for teleoperation with time delay

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K.; Kim, Won S.; Venema, Steven C.

    1990-01-01

    An enhanced teleoperation technique for time-delayed bilateral teleoperator control is discussed. The control technique selected for time delay is based on the use of a high-fidelity graphics phantom robot that is being controlled in real time (without time delay) against the static task image. Thus, the motion of the phantom robot image on the monitor predicts the motion of the real robot. The real robot's motion will follow the phantom robot's motion on the monitor with the communication time delay implied in the task. Real-time high-fidelity graphics simulation of a PUMA arm is generated and overlaid on the actual camera view of the arm. A simple camera calibration technique is used for calibrated graphics overlay. A preliminary experiment is performed with the predictive display by using a very simple tapping task. The results with this simple task indicate that predictive display enhances the human operator's telemanipulation task performance significantly during free motion when there is a long time delay. It appears, however, that either two-view or stereoscopic predictive displays are necessary for general three-dimensional tasks.

  3. The time-delayed inverted pendulum: Implications for human balance control

    NASA Astrophysics Data System (ADS)

    Milton, John; Cabrera, Juan Luis; Ohira, Toru; Tajima, Shigeru; Tonosaki, Yukinori; Eurich, Christian W.; Campbell, Sue Ann

    2009-06-01

    The inverted pendulum is frequently used as a starting point for discussions of how human balance is maintained during standing and locomotion. Here we examine three experimental paradigms of time-delayed balance control: (1) mechanical inverted time-delayed pendulum, (2) stick balancing at the fingertip, and (3) human postural sway during quiet standing. Measurements of the transfer function (mechanical stick balancing) and the two-point correlation function (Hurst exponent) for the movements of the fingertip (real stick balancing) and the fluctuations in the center of pressure (postural sway) demonstrate that the upright fixed point is unstable in all three paradigms. These observations imply that the balanced state represents a more complex and bounded time-dependent state than a fixed-point attractor. Although mathematical models indicate that a sufficient condition for instability is for the time delay to make a corrective movement, τn, be greater than a critical delay τc that is proportional to the length of the pendulum, this condition is satisfied only in the case of human stick balancing at the fingertip. Thus it is suggested that a common cause of instability in all three paradigms stems from the difficulty of controlling both the angle of the inverted pendulum and the position of the controller simultaneously using time-delayed feedback. Considerations of the problematic nature of control in the presence of delay and random perturbations ("noise") suggest that neural control for the upright position likely resembles an adaptive-type controller in which the displacement angle is allowed to drift for small displacements with active corrections made only when θ exceeds a threshold. This mechanism draws attention to an overlooked type of passive control that arises from the interplay between retarded variables and noise.

  4. Precise Time Delays from Strongly Gravitationally Lensed Type Ia Supernovae with Chromatically Microlensed Images

    NASA Astrophysics Data System (ADS)

    Goldstein, Daniel A.; Nugent, Peter E.; Kasen, Daniel N.; Collett, Thomas E.

    2018-03-01

    Time delays between the multiple images of strongly gravitationally lensed Type Ia supernovae (glSNe Ia) have the potential to deliver precise cosmological constraints, but the effects of microlensing on time delay extraction have not been studied in detail. Here we quantify the effect of microlensing on the glSN Ia yield of the Large Synoptic Survey Telescope (LSST) and the effect of microlensing on the precision and accuracy of time delays that can be extracted from LSST glSNe Ia. Microlensing has a negligible effect on the LSST glSN Ia yield, but it can be increased by a factor of ∼2 over previous predictions to 930 systems using a novel photometric identification technique based on spectral template fitting. Crucially, the microlensing of glSNe Ia is achromatic until three rest-frame weeks after the explosion, making the early-time color curves microlensing-insensitive time delay indicators. By fitting simulated flux and color observations of microlensed glSNe Ia with their underlying, unlensed spectral templates, we forecast the distribution of absolute time delay error due to microlensing for LSST, which is unbiased at the sub-percent level and peaked at 1% for color curve observations in the achromatic phase, while for light-curve observations it is comparable to state-of-the-art mass modeling uncertainties (4%). About 70% of LSST glSN Ia images should be discovered during the achromatic phase, indicating that microlensing time delay uncertainties can be minimized if prompt multicolor follow-up observations are obtained. Accounting for microlensing, the 1–2 day time delay on the recently discovered glSN Ia iPTF16geu can be measured to 40% precision, limiting its cosmological utility.

  5. Precise Time Delays from Strongly Gravitationally Lensed Type Ia Supernovae with Chromatically Microlensed Images

    DOE PAGES

    Goldstein, Daniel A.; Nugent, Peter E.; Kasen, Daniel N.; ...

    2018-03-01

    Time delays between the multiple images of strongly gravitationally lensed Type Ia supernovae (glSNe Ia) have the potential to deliver precise cosmological constraints, but the effects of microlensing on time delay extraction have not been studied in detail. Here we quantify the effect of microlensing on the glSN Ia yield of the Large Synoptic Survey Telescope (LSST) and the effect of microlensing on the precision and accuracy of time delays that can be extracted from LSST glSNe Ia. Microlensing has a negligible effect on the LSST glSN Ia yield, but it can be increased by a factor of ~2 overmore » previous predictions to 930 systems using a novel photometric identification technique based on spectral template fitting. Crucially, the microlensing of glSNe Ia is achromatic until three rest-frame weeks after the explosion, making the early-time color curves microlensing-insensitive time delay indicators. By fitting simulated flux and color observations of microlensed glSNe Ia with their underlying, unlensed spectral templates, we forecast the distribution of absolute time delay error due to microlensing for LSST, which is unbiased at the sub-percent level and peaked at 1% for color curve observations in the achromatic phase, while for light-curve observations it is comparable to state-of-the-art mass modeling uncertainties (4%). About 70% of LSST glSN Ia images should be discovered during the achromatic phase, indicating that microlensing time delay uncertainties can be minimized if prompt multicolor follow-up observations are obtained. Lastly, accounting for microlensing, the 1-2 day time delay on the recently discovered glSN Ia iPTF16geu can be measured to 40% precision, limiting its cosmological utility.« less

  6. Precise Time Delays from Strongly Gravitationally Lensed Type Ia Supernovae with Chromatically Microlensed Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldstein, Daniel A.; Nugent, Peter E.; Kasen, Daniel N.

    Time delays between the multiple images of strongly gravitationally lensed Type Ia supernovae (glSNe Ia) have the potential to deliver precise cosmological constraints, but the effects of microlensing on time delay extraction have not been studied in detail. Here we quantify the effect of microlensing on the glSN Ia yield of the Large Synoptic Survey Telescope (LSST) and the effect of microlensing on the precision and accuracy of time delays that can be extracted from LSST glSNe Ia. Microlensing has a negligible effect on the LSST glSN Ia yield, but it can be increased by a factor of ~2 overmore » previous predictions to 930 systems using a novel photometric identification technique based on spectral template fitting. Crucially, the microlensing of glSNe Ia is achromatic until three rest-frame weeks after the explosion, making the early-time color curves microlensing-insensitive time delay indicators. By fitting simulated flux and color observations of microlensed glSNe Ia with their underlying, unlensed spectral templates, we forecast the distribution of absolute time delay error due to microlensing for LSST, which is unbiased at the sub-percent level and peaked at 1% for color curve observations in the achromatic phase, while for light-curve observations it is comparable to state-of-the-art mass modeling uncertainties (4%). About 70% of LSST glSN Ia images should be discovered during the achromatic phase, indicating that microlensing time delay uncertainties can be minimized if prompt multicolor follow-up observations are obtained. Lastly, accounting for microlensing, the 1-2 day time delay on the recently discovered glSN Ia iPTF16geu can be measured to 40% precision, limiting its cosmological utility.« less

  7. Micromachined silicon parallel acoustic delay lines as time-delayed ultrasound detector array for real-time photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Cho, Y.; Chang, C.-C.; Wang, L. V.; Zou, J.

    2016-02-01

    This paper reports the development of a new 16-channel parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT). The PADLs were directly fabricated from single-crystalline silicon substrates using deep reactive ion etching. Compared with other acoustic delay lines (e.g., optical fibers), the micromachined silicon PADLs offer higher acoustic transmission efficiency, smaller form factor, easier assembly, and mass production capability. To demonstrate its real-time photoacoustic imaging capability, the silicon PADL array was interfaced with one single-element ultrasonic transducer followed by one channel of data acquisition electronics to receive 16 channels of photoacoustic signals simultaneously. A PAT image of an optically-absorbing target embedded in an optically-scattering phantom was reconstructed, which matched well with the actual size of the imaged target. Because the silicon PADL array allows a signal-to-channel reduction ratio of 16:1, it could significantly simplify the design and construction of ultrasonic receivers for real-time PAT.

  8. GPU accelerated real-time confocal fluorescence lifetime imaging microscopy (FLIM) based on the analog mean-delay (AMD) method

    PubMed Central

    Kim, Byungyeon; Park, Byungjun; Lee, Seungrag; Won, Youngjae

    2016-01-01

    We demonstrated GPU accelerated real-time confocal fluorescence lifetime imaging microscopy (FLIM) based on the analog mean-delay (AMD) method. Our algorithm was verified for various fluorescence lifetimes and photon numbers. The GPU processing time was faster than the physical scanning time for images up to 800 × 800, and more than 149 times faster than a single core CPU. The frame rate of our system was demonstrated to be 13 fps for a 200 × 200 pixel image when observing maize vascular tissue. This system can be utilized for observing dynamic biological reactions, medical diagnosis, and real-time industrial inspection. PMID:28018724

  9. Strong Lens Time Delay Challenge. I. Experimental Design

    NASA Astrophysics Data System (ADS)

    Dobler, Gregory; Fassnacht, Christopher D.; Treu, Tommaso; Marshall, Phil; Liao, Kai; Hojjati, Alireza; Linder, Eric; Rumbaugh, Nicholas

    2015-02-01

    The time delays between point-like images in gravitational lens systems can be used to measure cosmological parameters. The number of lenses with measured time delays is growing rapidly; the upcoming Large Synoptic Survey Telescope (LSST) will monitor ~103 strongly lensed quasars. In an effort to assess the present capabilities of the community, to accurately measure the time delays, and to provide input to dedicated monitoring campaigns and future LSST cosmology feasibility studies, we have invited the community to take part in a "Time Delay Challenge" (TDC). The challenge is organized as a set of "ladders," each containing a group of simulated data sets to be analyzed blindly by participating teams. Each rung on a ladder consists of a set of realistic mock observed lensed quasar light curves, with the rungs' data sets increasing in complexity and realism. The initial challenge described here has two ladders, TDC0 and TDC1. TDC0 has a small number of data sets, and is designed to be used as a practice set by the participating teams. The (non-mandatory) deadline for completion of TDC0 was the TDC1 launch date, 2013 December 1. The TDC1 deadline was 2014 July 1. Here we give an overview of the challenge, we introduce a set of metrics that will be used to quantify the goodness of fit, efficiency, precision, and accuracy of the algorithms, and we present the results of TDC0. Thirteen teams participated in TDC0 using 47 different methods. Seven of those teams qualified for TDC1, which is described in the companion paper.

  10. Lens Model and Time Delay Predictions for the Sextuply Lensed Quasar SDSS J2222+2745

    NASA Astrophysics Data System (ADS)

    Sharon, Keren; Bayliss, Matthew B.; Dahle, Håkon; Florian, Michael K.; Gladders, Michael D.; Johnson, Traci L.; Paterno-Mahler, Rachel; Rigby, Jane R.; Whitaker, Katherine E.; Wuyts, Eva

    2017-01-01

    SDSS J2222+2745 is a galaxy cluster at z = 0.49, strongly lensing a quasar at z = 2.805 into six widely separated images. In recent Hubble Space Telescope imaging of the field, we identify additional multiply lensed galaxies and confirm the sixth quasar image that was identified by Dahle et al. We used the Gemini-North telescope to measure a spectroscopic redshift of z = 4.56 of one of the lensed galaxies. These data are used to refine the lens model of SDSS J2222+2745, compute the time delay and magnifications of the lensed quasar images, and reconstruct the source image of the quasar host and a lensed galaxy at z = 2.3. This galaxy also appears in absorption in our Gemini spectra of the lensed quasar, at a projected distance of 34 kpc. Our model is in agreement with the recent time delay measurements of Dahle et al., who found τAB = 47.7 ± 6.0 days and τAC = -722 ± 24 days. We use the observed time delays to further constrain the model, and find that the model-predicted time delays of the three faint images of the quasar are τAD = 502 ± 68 days, τAE = 611 ± 75 days, and τAF = 415 ± 72 days. We have initiated a follow-up campaign to measure these time delays with Gemini North. Finally, we present initial results from an X-ray monitoring program with Swift, indicating the presence of hard X-ray emission from the lensed quasar, as well as extended X-ray emission from the cluster itself, which is consistent with the lensing mass measurement and the cluster velocity dispersion. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-13337.

  11. Micromachined silicon acoustic delay line with 3D-printed micro linkers and tapered input for improved structural stability and acoustic directivity

    NASA Astrophysics Data System (ADS)

    Cho, Y.; Kumar, A.; Xu, S.; Zou, J.

    2016-10-01

    Recent studies have shown that micromachined silicon acoustic delay lines can provide a promising solution to achieve real-time photoacoustic tomography without the need for complex transducer arrays and data acquisition electronics. To achieve deeper imaging depth and wider field of view, a longer delay time and therefore delay length are required. However, as the length of the delay line increases, it becomes more vulnerable to structural instability due to reduced mechanical stiffness. In this paper, we report the design, fabrication, and testing of a new silicon acoustic delay line enhanced with 3D printed polymer micro linker structures. First, mechanical deformation of the silicon acoustic delay line (with and without linker structures) under gravity was simulated by using finite element method. Second, the acoustic crosstalk and acoustic attenuation caused by the polymer micro linker structures were evaluated with both numerical simulation and ultrasound transmission testing. The result shows that the use of the polymer micro linker structures significantly improves the structural stability of the silicon acoustic delay lines without creating additional acoustic attenuation and crosstalk. In addition, the improvement of the acoustic acceptance angle of the silicon acoustic delay lines was also investigated to better suppress the reception of unwanted ultrasound signals outside of the imaging plane. These two improvements are expected to provide an effective solution to eliminate current limitations on the achievable acoustic delay time and out-of-plane imaging resolution of micromachined silicon acoustic delay line arrays.

  12. COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. XVI. Time delays for the quadruply imaged quasar DES J0408-5354 with high-cadence photometric monitoring

    NASA Astrophysics Data System (ADS)

    Courbin, F.; Bonvin, V.; Buckley-Geer, E.; Fassnacht, C. D.; Frieman, J.; Lin, H.; Marshall, P. J.; Suyu, S. H.; Treu, T.; Anguita, T.; Motta, V.; Meylan, G.; Paic, E.; Tewes, M.; Agnello, A.; Chao, D. C.-Y.; Chijani, M.; Gilman, D.; Rojas, K.; Williams, P.; Hempel, A.; Kim, S.; Lachaume, R.; Rabus, M.; Abbott, T. M. C.; Allam, S.; Annis, J.; Banerji, M.; Bechtol, K.; Benoit-Lévy, A.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; D'Andrea, C. B.; da Costa, L. N.; Davis, C.; DePoy, D. L.; Desai, S.; Flaugher, B.; Fosalba, P.; García-Bellido, J.; Gaztanaga, E.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; McMahon, R. G.; Menanteau, F.; Miquel, R.; Nord, B.; Plazas, A. A.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Tucker, D. L.; Walker, A. R.; Wester, W.

    2018-01-01

    We present time-delay measurements for the new quadruple imaged quasar DES J0408-5354, the first quadruple imaged quasar found in the Dark Energy Survey (DES). Our result is made possible by implementing a new observational strategy using almost daily observations with the MPIA 2.2 m telescope at La Silla observatory and deep exposures reaching a signal-to-noise ratio of about 1000 per quasar image. This data qualityallows us to catch small photometric variations (a few mmag rms) of the quasar, acting on temporal scales much shorter than microlensing, and hence making the time delay measurement very robust against microlensing. In only seven months we very accurately measured one of the time delays in DES J0408-5354: Δt(AB) = -112.1 ± 2.1 days (1.8%) using only the MPIA 2.2 m data. In combination with data taken with the 1.2 m Euler Swiss telescope, we also measured two delays involving the D component of the system Δt(AD) = -155.5 ± 12.8 days (8.2%) and Δt(BD) = -42.4 ± 17.6 days (41%), where all the error bars include systematics. Turning these time delays into cosmological constraints will require deep Hubble Space Telescope (HST) imaging or ground-based adaptive optics (AO), and information on the velocity field of the lensing galaxy. Lightcurves are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A71

  13. Cardiac-driven Pulsatile Motion of Intracranial Cerebrospinal Fluid Visualized Based on a Correlation Mapping Technique.

    PubMed

    Yatsushiro, Satoshi; Sunohara, Saeko; Hayashi, Naokazu; Hirayama, Akihiro; Matsumae, Mitsunori; Atsumi, Hideki; Kuroda, Kagayaki

    2018-04-10

    A correlation mapping technique delineating delay time and maximum correlation for characterizing pulsatile cerebrospinal fluid (CSF) propagation was proposed. After proofing its technical concept, this technique was applied to healthy volunteers and idiopathic normal pressure hydrocephalus (iNPH) patients. A time-resolved three dimensional-phase contrast (3D-PC) sampled the cardiac-driven CSF velocity at 32 temporal points per cardiac period at each spatial location using retrospective cardiac gating. The proposed technique visualized distributions of propagation delay and correlation coefficient of the PC-based CSF velocity waveform with reference to a waveform at a particular point in the CSF space. The delay time was obtained as the amount of time-shift, giving the maximum correlation for the velocity waveform at an arbitrary location with that at the reference location. The validity and accuracy of the technique were confirmed in a flow phantom equipped with a cardiovascular pump. The technique was then applied to evaluate the intracranial CSF motions in young, healthy (N = 13), and elderly, healthy (N = 13) volunteers and iNPH patients (N = 13). The phantom study demonstrated that root mean square error of the delay time was 2.27%, which was less than the temporal resolution of PC measurement used in this study (3.13% of a cardiac cycle). The human studies showed a significant difference (P < 0.01) in the mean correlation coefficient between the young, healthy group and the other two groups. A significant difference (P < 0.05) was also recognized in standard deviation of the correlation coefficients in intracranial CSF space among all groups. The result suggests that the CSF space compliance of iNPH patients was lower than that of healthy volunteers. The correlation mapping technique allowed us to visualize pulsatile CSF velocity wave propagations as still images. The technique may help to classify diseases related to CSF dynamics, such as iNPH.

  14. Neural activation during delay discounting is associated with 6-month change in risky sexual behavior in adolescents.

    PubMed

    Gardiner, Casey K; Karoly, Hollis C; Thayer, Rachel E; Gillman, Arielle S; Sabbineni, Amithrupa; Bryan, Angela D

    2018-04-19

    Identifying cognitive and neural mechanisms of decision making in adolescence can enhance understanding of, and interventions to reduce, risky health behaviors in adolescence. Delay discounting, or the propensity to discount the magnitude of temporally distal rewards, has been associated with diverse health risk behaviors, including risky sex. This cognitive process involves recruitment of reward and cognitive control brain regions, which develop on different trajectories in adolescence and are also implicated in real-world risky decision making. However, no extant research has examined how neural activation during delay discounting is associated with adolescents' risky sexual behavior. To determine whether a relationship exists between adolescents' risky sexual behavior and neural activation during delay discounting. Adolescent participants completed a delay discounting paradigm during functional magnetic resonance imaging (fMRI) scanning, and they reported risky sexual behavior at baseline, 3-, 6-, 9-, and 12-month follow-up time points. Latent growth curve models were employed to determine relationships between brain activation during delay discounting and change in risky sexual behavior over time. Greater activation in brain regions associated with reward and cognitive control (caudate, putamen, nucleus accumbens, anterior cingulate, insula, orbitofrontal cortex, inferior frontal gyrus, dorsolateral prefrontal cortex) during delay discounting was associated with lower mean levels of risky sexual behavior but greater growth over the period from baseline to 6 months. Neural activation during delay discounting is cross-sectionally and prospectively associated with risky sexual behavior in adolescence, highlighting a neural basis of risky decision-making as well as opportunities for early identification and intervention.

  15. Analysis and experiments for delay compensation in attitude control of flexible spacecraft

    NASA Astrophysics Data System (ADS)

    Sabatini, Marco; Palmerini, Giovanni B.; Leonangeli, Nazareno; Gasbarri, Paolo

    2014-11-01

    Space vehicles are often characterized by highly flexible appendages, with low natural frequencies which can generate coupling phenomena during orbital maneuvering. The stability and delay margins of the controlled system are deeply affected by the presence of bodies with different elastic properties, assembled to form a complex multibody system. As a consequence, unstable behavior can arise. In this paper the problem is first faced from a numerical point of view, developing accurate multibody mathematical models, as well as relevant navigation and control algorithms. One of the main causes of instability is identified with the unavoidable presence of time delays in the GNC loop. A strategy to compensate for these delays is elaborated and tested using the simulation tool, and finally validated by means of a free floating platform, replicating the flexible spacecraft attitude dynamics (single axis rotation). The platform is equipped with thrusters commanded according to the on-off modulation of the Linear Quadratic Regulator (LQR) control law. The LQR is based on the estimate of the full state vector, i.e. including both rigid - attitude - and elastic variables, that is possible thanks to the on line measurement of the flexible displacements, realized by processing the images acquired by a dedicated camera. The accurate mathematical model of the system and the rigid and elastic measurements enable a prediction of the state, so that the control is evaluated taking the predicted state relevant to a delayed time into account. Both the simulations and the experimental campaign demonstrate that by compensating in this way the time delay, the instability is eliminated, and the maneuver is performed accurately.

  16. HIGH SPEED KERR CELL FRAMING CAMERA

    DOEpatents

    Goss, W.C.; Gilley, L.F.

    1964-01-01

    The present invention relates to a high speed camera utilizing a Kerr cell shutter and a novel optical delay system having no moving parts. The camera can selectively photograph at least 6 frames within 9 x 10/sup -8/ seconds during any such time interval of an occurring event. The invention utilizes particularly an optical system which views and transmits 6 images of an event to a multi-channeled optical delay relay system. The delay relay system has optical paths of successively increased length in whole multiples of the first channel optical path length, into which optical paths the 6 images are transmitted. The successively delayed images are accepted from the exit of the delay relay system by an optical image focusing means, which in turn directs the images into a Kerr cell shutter disposed to intercept the image paths. A camera is disposed to simultaneously view and record the 6 images during a single exposure of the Kerr cell shutter. (AEC)

  17. Measuring the Value of the Hubble Constant “à la Refsdal”

    NASA Astrophysics Data System (ADS)

    Grillo, C.; Rosati, P.; Suyu, S. H.; Balestra, I.; Caminha, G. B.; Halkola, A.; Kelly, P. L.; Lombardi, M.; Mercurio, A.; Rodney, S. A.; Treu, T.

    2018-06-01

    Realizing Refsdal’s original idea from 1964, we present estimates of the Hubble constant that are complementary to, and potentially competitive with, those of other cosmological probes. We use the observed positions of 89 multiple images, with extensive spectroscopic information, from 28 background sources and the measured time delays between the images S1–S4 and SX of supernova “Refsdal” (z = 1.489), which were obtained thanks to Hubble Space Telescope deep imaging and Multi Unit Spectroscopic Explorer data. We extend the strong-lensing modeling of the Hubble Frontier Fields galaxy cluster MACS J1149.5+2223 (z = 0.542), published by Grillo et al. (2016), and explore different ΛCDM models. Taking advantage of the lensing information associated to the presence of very close pairs of multiple images at various redshifts, and to the extended surface brightness distribution of the SN Refsdal host, we can reconstruct the total mass-density profile of the cluster very precisely. The combined dependence of the multiple-image positions and time delays on the cosmological parameters allows us to infer the values of H 0 and Ωm with relative (1σ) statistical errors of, respectively, 6% (7%) and 31% (26%) in flat (general) cosmological models, assuming a conservative 3% uncertainty on the final time delay of image SX and, remarkably, no priors from other cosmological experiments. Our best estimate of H 0, based on the model described in this work, will be presented when the final time-delay measurement becomes available. Our results show that it is possible to utilize time delays in lens galaxy clusters as an important alternative tool for measuring the expansion rate and the geometry of the universe.

  18. Viscoelasticity imaging using ultrasound: parameters and error analysis

    PubMed Central

    Sridhar, M; Liu, J

    2009-01-01

    Techniques are being developed to image viscoelastic features of soft tissues from time-varying strain. A compress-hold-release stress stimulus commonly used in creep-recovery measurements is applied to samples to form images of elastic strain and strain retardance times. While the intended application is diagnostic breast imaging, results in gelatin hydrogels are presented to demonstrate the techniques. The spatiotemporal behaviour of gelatin is described by linear viscoelastic theory formulated for polymeric solids. Measured creep responses of polymers are frequently modelled as sums of exponentials whose time constants describe the delay or retardation of the full strain response. We found the spectrum of retardation times τ to be continuous and bimodal, where the amplitude at each τ represents the relative number of molecular bonds with a given strength and conformation. Such spectra indicate that the molecular weight of the polymer fibres between bonding points is large. Imaging parameters are found by summarizing these complex spectral distributions at each location in the medium with a second-order Voigt rheological model. This simplification reduces the dimensionality of the data for selecting imaging parameters while preserving essential information on how the creeping deformation describes fluid flow and collagen matrix restructuring in the medium. The focus of this paper is on imaging parameter estimation from ultrasonic echo data, and how jitter from hand-held force applicators used for clinical applications propagate through the imaging chain to generate image noise. PMID:17440244

  19. Time Delay Measurements for the Cluster-lensed Sextuple Quasar SDSS J2222+2745

    NASA Astrophysics Data System (ADS)

    Dahle, H.; Gladders, M. D.; Sharon, K.; Bayliss, M. B.; Rigby, J. R.

    2015-11-01

    We report first results from an ongoing monitoring campaign to measure time delays between the six images of the quasar SDSS J2222+2745, gravitationally lensed by a galaxy cluster. The time delay between A and B, the two most highly magnified images, is measured to be {τ }{{AB}}=47.7+/- 6.0 days (95% confidence interval), consistent with previous model predictions for this lens system. The strong intrinsic variability of the quasar also allows us to derive a time delay value of {τ }{{CA}}=722+/- 24 days between image C and A, in spite of modest overlap between their light curves in the current data set. Image C, which is predicted to lead all the other lensed quasar images, has undergone a sharp, monotonic flux increase of 60%-75% during 2014. A corresponding brightening is firmly predicted to occur in images A and B during 2016. The amplitude of this rise indicates that time delays involving all six known images in this system, including those of the demagnified central images D-F, will be obtainable from further ground-based monitoring of this system during the next few years. Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, and including observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnologi´a e Innovación Productiva (Argentina).

  20. Transmission ultrasonography. [time delay spectrometry for soft tissue transmission imaging

    NASA Technical Reports Server (NTRS)

    Heyser, R. C.; Le Croissette, D. H.

    1973-01-01

    Review of the results of the application of an advanced signal-processing technique, called time delay spectrometry, in obtaining soft tissue transmission images by transmission ultrasonography, both in vivo and in vitro. The presented results include amplitude ultrasound pictures and phase ultrasound pictures obtained by this technique. While amplitude ultrasonographs of tissue are closely analogous to X-ray pictures in that differential absorption is imaged, phase ultrasonographs represent an entirely new source of information based on differential time of propagation. Thus, a new source of information is made available for detailed analysis.

  1. A time-resolved image sensor for tubeless streak cameras

    NASA Astrophysics Data System (ADS)

    Yasutomi, Keita; Han, SangMan; Seo, Min-Woong; Takasawa, Taishi; Kagawa, Keiichiro; Kawahito, Shoji

    2014-03-01

    This paper presents a time-resolved CMOS image sensor with draining-only modulation (DOM) pixels for tube-less streak cameras. Although the conventional streak camera has high time resolution, the device requires high voltage and bulky system due to the structure with a vacuum tube. The proposed time-resolved imager with a simple optics realize a streak camera without any vacuum tubes. The proposed image sensor has DOM pixels, a delay-based pulse generator, and a readout circuitry. The delay-based pulse generator in combination with an in-pixel logic allows us to create and to provide a short gating clock to the pixel array. A prototype time-resolved CMOS image sensor with the proposed pixel is designed and implemented using 0.11um CMOS image sensor technology. The image array has 30(Vertical) x 128(Memory length) pixels with the pixel pitch of 22.4um. .

  2. Deficits in agency in schizophrenia, and additional deficits in body image, body schema, and internal timing, in passivity symptoms.

    PubMed

    Graham, Kyran T; Martin-Iverson, Mathew T; Holmes, Nicholas P; Jablensky, Assen; Waters, Flavie

    2014-01-01

    Individuals with schizophrenia, particularly those with passivity symptoms, may not feel in control of their actions, believing them to be controlled by external agents. Cognitive operations that contribute to these symptoms may include abnormal processing in agency as well as body representations that deal with body schema and body image. However, these operations in schizophrenia are not fully understood, and the questions of general versus specific deficits in individuals with different symptom profiles remain unanswered. Using the projected-hand illusion (a digital video version of the rubber-hand illusion) with synchronous and asynchronous stroking (500 ms delay), and a hand laterality judgment task, we assessed sense of agency, body image, and body schema in 53 people with clinically stable schizophrenia (with a current, past, and no history of passivity symptoms) and 48 healthy controls. The results revealed a stable trait in schizophrenia with no difference between clinical subgroups (sense of agency) and some quantitative (specific) differences depending on the passivity symptom profile (body image and body schema). Specifically, a reduced sense of self-agency was a common feature of all clinical subgroups. However, subgroup comparisons showed that individuals with passivity symptoms (both current and past) had significantly greater deficits on tasks assessing body image and body schema, relative to the other groups. In addition, patients with current passivity symptoms failed to demonstrate the normal reduction in body illusion typically seen with a 500 ms delay in visual feedback (asynchronous condition), suggesting internal timing problems. Altogether, the results underscore self-abnormalities in schizophrenia, provide evidence for both trait abnormalities and state changes specific to passivity symptoms, and point to a role for internal timing deficits as a mechanistic explanation for external cues becoming a possible source of self-body input.

  3. Diagnostic performance of a streamlined 18F-choline PET-CT protocol for the detection of prostate carcinoma recurrence in combination with appropriate-use criteria.

    PubMed

    Frood, R; Baren, J; McDermott, G; Bottomley, D; Patel, C; Scarsbrook, A

    2018-04-30

    To evaluate the efficacy of single time-point half-body (skull base to thighs) fluorine-18 choline positron emission tomography-computed tomography (PET-CT) compared to a triple-phase acquisition protocol in the detection of prostate carcinoma recurrence. Consecutive choline PET-CT studies performed at a single tertiary referral centre in patients with biochemical recurrence of prostate carcinoma between September 2012 and March 2017 were reviewed retrospectively. The indication for the study, imaging protocol used, imaging findings, whether management was influenced by the PET-CT, and subsequent patient outcome were recorded. Ninety-one examinations were performed during the study period; 42 were carried out using a triple-phase protocol (dynamic pelvic imaging for 20 minutes after tracer injection, half-body acquisition at 60 minutes and delayed pelvic scan at 90 minutes) between 2012 and August 2015. Subsequently following interim review of diagnostic performance, a streamlined protocol and appropriate-use criteria were introduced. Forty-nine examinations were carried out using the single-phase protocol between 2015 and 2017. Twenty-nine (69%) of the triple-phase studies were positive for recurrence compared to 38 (78%) of the single-phase studies. Only one patient who had a single-phase study would have benefited from a dynamic acquisition, they have required no further treatment or imaging and are currently under prostate-specific antigen (PSA) surveillance. Choline PET-CT remains a useful tool for the detection of prostate recurrence when used in combination with appropriate-use criteria. Removal of dynamic and delayed acquisition phases reduces study time without adversely affecting accuracy. Benefits include shorter imaging time which improves patient comfort, reduced cost, and improved scanner efficiency. Copyright © 2018 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  4. Image encryption based on a delayed fractional-order chaotic logistic system

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Huang, Xia; Li, Ning; Song, Xiao-Na

    2012-05-01

    A new image encryption scheme is proposed based on a delayed fractional-order chaotic logistic system. In the process of generating a key stream, the time-varying delay and fractional derivative are embedded in the proposed scheme to improve the security. Such a scheme is described in detail with security analyses including correlation analysis, information entropy analysis, run statistic analysis, mean-variance gray value analysis, and key sensitivity analysis. Experimental results show that the newly proposed image encryption scheme possesses high security.

  5. An alternative approach to calculating Area-Under-the-Curve (AUC) in delay discounting research.

    PubMed

    Borges, Allison M; Kuang, Jinyi; Milhorn, Hannah; Yi, Richard

    2016-09-01

    Applied to delay discounting data, Area-Under-the-Curve (AUC) provides an atheoretical index of the rate of delay discounting. The conventional method of calculating AUC, by summing the areas of the trapezoids formed by successive delay-indifference point pairings, does not account for the fact that most delay discounting tasks scale delay pseudoexponentially, that is, time intervals between delays typically get larger as delays get longer. This results in a disproportionate contribution of indifference points at long delays to the total AUC, with minimal contribution from indifference points at short delays. We propose two modifications that correct for this imbalance via a base-10 logarithmic transformation and an ordinal scaling transformation of delays. These newly proposed indices of discounting, AUClog d and AUCor d, address the limitation of AUC while preserving a primary strength (remaining atheoretical). Re-examination of previously published data provides empirical support for both AUClog d and AUCor d . Thus, we believe theoretical and empirical arguments favor these methods as the preferred atheoretical indices of delay discounting. © 2016 Society for the Experimental Analysis of Behavior.

  6. Construction of high frame rate images with Fourier transform

    NASA Astrophysics Data System (ADS)

    Peng, Hu; Lu, Jian-Yu

    2002-05-01

    Traditionally, images are constructed with a delay-and-sum method that adjusts the phases of received signals (echoes) scattered from the same point in space so that they are summed in phase. Recently, the relationship between the delay-and-sum method and the Fourier transform is investigated [Jian-yu Lu, Anjun Liu, and Hu Peng, ``High frame rate and delay-and-sum imaging methods,'' IEEE Trans. Ultrason. Ferroelectr. Freq. Control (submitted)]. In this study, a generic Fourier transform method is developed. Two-dimensional (2-D) or three-dimensional (3-D) high frame rate images can be constructed using the Fourier transform with a single transmission of an ultrasound pulse from an array as long as the transmission field of the array is known. To verify our theory, computer simulations have been performed with a linear array, a 2-D array, a convex curved array, and a spherical 2-D array. The simulation results are consistent with our theory. [Work supported in part by Grant 5RO1 HL60301 from NIH.

  7. Bit-level plane image encryption based on coupled map lattice with time-varying delay

    NASA Astrophysics Data System (ADS)

    Lv, Xiupin; Liao, Xiaofeng; Yang, Bo

    2018-04-01

    Most of the existing image encryption algorithms had two basic properties: confusion and diffusion in a pixel-level plane based on various chaotic systems. Actually, permutation in a pixel-level plane could not change the statistical characteristics of an image, and many of the existing color image encryption schemes utilized the same method to encrypt R, G and B components, which means that the three color components of a color image are processed three times independently. Additionally, dynamical performance of a single chaotic system degrades greatly with finite precisions in computer simulations. In this paper, a novel coupled map lattice with time-varying delay therefore is applied in color images bit-level plane encryption to solve the above issues. Spatiotemporal chaotic system with both much longer period in digitalization and much excellent performances in cryptography is recommended. Time-varying delay embedded in coupled map lattice enhances dynamical behaviors of the system. Bit-level plane image encryption algorithm has greatly reduced the statistical characteristics of an image through the scrambling processing. The R, G and B components cross and mix with one another, which reduces the correlation among the three components. Finally, simulations are carried out and all the experimental results illustrate that the proposed image encryption algorithm is highly secure, and at the same time, also demonstrates superior performance.

  8. Influencing Factors of the Initiation Point in the Parachute-Bomb Dynamic Detonation System

    NASA Astrophysics Data System (ADS)

    Qizhong, Li; Ye, Wang; Zhongqi, Wang; Chunhua, Bai

    2017-12-01

    The parachute system has been widely applied in modern armament design, especially for the fuel-air explosives. Because detonation of fuel-air explosives occurs during flight, it is necessary to investigate the influences of the initiation point to ensure successful dynamic detonation. In fact, the initiating position exist the falling area in the fuels, due to the error of influencing factors. In this paper, the major influencing factors of initiation point were explored with airdrop and the regularity between initiation point area and factors were obtained. Based on the regularity, the volume equation of initiation point area was established to predict the range of initiation point in the fuel. The analysis results showed that the initiation point appeared area, scattered on account of the error of attitude angle, secondary initiation charge velocity, and delay time. The attitude angle was the major influencing factors on a horizontal axis. On the contrary, secondary initiation charge velocity and delay time were the major influencing factors on a horizontal axis. Overall, the geometries of initiation point area were sector coupled with the errors of the attitude angle, secondary initiation charge velocity, and delay time.

  9. Spatiotemporal matrix image formation for programmable ultrasound scanners

    NASA Astrophysics Data System (ADS)

    Berthon, Beatrice; Morichau-Beauchant, Pierre; Porée, Jonathan; Garofalakis, Anikitos; Tavitian, Bertrand; Tanter, Mickael; Provost, Jean

    2018-02-01

    As programmable ultrasound scanners become more common in research laboratories, it is increasingly important to develop robust software-based image formation algorithms that can be obtained in a straightforward fashion for different types of probes and sequences with a small risk of error during implementation. In this work, we argue that as the computational power keeps increasing, it is becoming practical to directly implement an approximation to the matrix operator linking reflector point targets to the corresponding radiofrequency signals via thoroughly validated and widely available simulations software. Once such a spatiotemporal forward-problem matrix is constructed, standard and thus highly optimized inversion procedures can be leveraged to achieve very high quality images in real time. Specifically, we show that spatiotemporal matrix image formation produces images of similar or enhanced quality when compared against standard delay-and-sum approaches in phantoms and in vivo, and show that this approach can be used to form images even when using non-conventional probe designs for which adapted image formation algorithms are not readily available.

  10. Sources of Delay in the Acute Limb Ischemia Patient Pathway.

    PubMed

    Normahani, Pasha; Standfield, Nigel J; Jaffer, Usman

    2017-01-01

    Acute limb ischemia (ALI) continues to pose a significant challenge to clinicians and is associated with an unacceptably high rate of morbidity and mortality. Despite its time critical nature, little is known regarding the delays encountered during the patient pathway. The aim of this study was to identify sources of delay in the patient pathway at our institution. Sixty-seven cases of ALI of the lower extremities from 66 patients, who had presented to our center between May 2003 and April 2014, were identified for retrospective analysis. Data were retrieved from the patient records, discharge summaries and hospital laboratory, emergency department and radiology databases. Median time from onset of symptom to arrival at our institution was 11.35 hr (interquartile range [IQR] 6.27-72). Median cumulative time taken from arrival to vascular team review was 40 min (22.5-120), to imaging being performed was 4.75 hr (2.42-17.25), and to intervention being performed was 10.2 hr (4-31). There were significantly longer delays to presentation in those transferred from inpatient beds as compared with those transferred from the emergency department of other hospitals (66 hr [10.3-98] vs. 8 hr [5.6-14.9], P = 0.007). In total, 84.6% of patients underwent preoperative arterial imaging. Time taken from arrival to diagnostic arterial imaging was significantly longer in patients presenting out-of-ours (15 hr [6.5-20.75]) as compared with patients presenting in-hours (3.5 hr [2-6.5], P = 0.014) or during the weekend (2 hr [2-3], P = 0.022). Time from presentation to intervention was significantly shorter in patients presenting over the weekend (3.9 hr [2.6-5.1]) as compared with those presenting in-hours (14.2 hr [6.2-29], P = 0.006) and out-of-hours (16 hr [10-33], P = 0.021). Out-of-hours, a significant portion of the delay, was attributable to imaging (median time to imaging 15 hr). This study demonstrates the systematic nature of delays in the patient pathway from onset of symptoms to treatment. Several factors including time to patient presentation and time to imaging and delays in timely transfer to an appropriate facility contribute to this. Strategies need to be deployed to reduce time to revascularization. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. The giant acoustic atom - a single quantum system with a deterministic time delay

    NASA Astrophysics Data System (ADS)

    Guo, Lingzhen; Grimsmo, Arne; Frisk Kockum, Anton; Pletyukhov, Mikhail; Johansson, Göran

    2017-04-01

    We investigate the quantum dynamics of a single transmon qubit coupled to surface acoustic waves (SAWs) via two distant connection points. Since the acoustic speed is five orders of magnitude slower than the speed of light, the travelling time between the two connection points needs to be taken into account. Therefore, we treat the transmon qubit as a giant atom with a deterministic time delay. We find that the spontaneous emission of the system, formed by the giant atom and the SAWs between its connection points, initially follows a polynomial decay law instead of an exponential one, as would be the case for a small atom. We obtain exact analytical results for the scattering properties of the giant atom up to two-phonon processes by using a diagrammatic approach. The time delay gives rise to novel features in the reflection, transmission, power spectra, and second-order correlation functions of the system. Furthermore, we find the short-time dynamics of the giant atom for arbitrary drive strength by a numerically exact method for open quantum systems with a finite-time-delay feedback loop. L. G. acknowledges financial support from Carl-Zeiss Stiftung (0563-2.8/508/2).

  12. Flash trajectory imaging of target 3D motion

    NASA Astrophysics Data System (ADS)

    Wang, Xinwei; Zhou, Yan; Fan, Songtao; He, Jun; Liu, Yuliang

    2011-03-01

    We present a flash trajectory imaging technique which can directly obtain target trajectory and realize non-contact measurement of motion parameters by range-gated imaging and time delay integration. Range-gated imaging gives the range of targets and realizes silhouette detection which can directly extract targets from complex background and decrease the complexity of moving target image processing. Time delay integration increases information of one single frame of image so that one can directly gain the moving trajectory. In this paper, we have studied the algorithm about flash trajectory imaging and performed initial experiments which successfully obtained the trajectory of a falling badminton. Our research demonstrates that flash trajectory imaging is an effective approach to imaging target trajectory and can give motion parameters of moving targets.

  13. Characterization of tissue response to radiofrequency ablation using 3D model-based analysis of interventional MR images

    NASA Astrophysics Data System (ADS)

    Weinberg, Brent D.; Lazebnik, Roee S.; Breen, Michael S.; Lewin, Jonathan S.; Wilson, David L.

    2003-05-01

    Using magnetic resonance imaging (MRI), real-time guidance is feasible for radiofrequency (RF) current ablation of pathologic tissue. Lesions have a characteristic two-zone appearance: an inner core (Zone I) surrounded by a hyper-intense rim (Zone II). A better understanding of both the immediate (hyper-acute) and delayed (sub-acute) physiological response of the target tissue will aid development of minimally invasive tumor treatment strategies. We performed in vivo RF ablations in a rabbit thigh model and characterized the tissue response to treatment through contrast enhanced (CE) T1 and T2 weighted MR images at two time points. We measured zonal grayscale changes as well as zone volume changes using a 3D computationally fitted globally deformable parametric model. Comparison over time demonstrated an increase in the volume of both the inner necrotic core (mean 56.5% increase) and outer rim (mean 16.8% increase) of the lesion. Additionally, T2 images of the lesion exhibited contrast greater than or equal to CE T1 (mean 35% improvement). This work establishes a foundation for the clinical use of T2 MR images coupled with a geometric model of the ablation for noninvasive lesion monitoring and characterization.

  14. STRONG LENS TIME DELAY CHALLENGE. I. EXPERIMENTAL DESIGN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobler, Gregory; Fassnacht, Christopher D.; Rumbaugh, Nicholas

    2015-02-01

    The time delays between point-like images in gravitational lens systems can be used to measure cosmological parameters. The number of lenses with measured time delays is growing rapidly; the upcoming Large Synoptic Survey Telescope (LSST) will monitor ∼10{sup 3} strongly lensed quasars. In an effort to assess the present capabilities of the community, to accurately measure the time delays, and to provide input to dedicated monitoring campaigns and future LSST cosmology feasibility studies, we have invited the community to take part in a ''Time Delay Challenge'' (TDC). The challenge is organized as a set of ''ladders'', each containing a groupmore » of simulated data sets to be analyzed blindly by participating teams. Each rung on a ladder consists of a set of realistic mock observed lensed quasar light curves, with the rungs' data sets increasing in complexity and realism. The initial challenge described here has two ladders, TDC0 and TDC1. TDC0 has a small number of data sets, and is designed to be used as a practice set by the participating teams. The (non-mandatory) deadline for completion of TDC0 was the TDC1 launch date, 2013 December 1. The TDC1 deadline was 2014 July 1. Here we give an overview of the challenge, we introduce a set of metrics that will be used to quantify the goodness of fit, efficiency, precision, and accuracy of the algorithms, and we present the results of TDC0. Thirteen teams participated in TDC0 using 47 different methods. Seven of those teams qualified for TDC1, which is described in the companion paper.« less

  15. Delayed gadolinium-enhanced MRI of the fibrocartilage disc of the temporomandibular joint – a feasibility study

    PubMed Central

    Pittschieler, Elisabeth; Szomolanyi, Pavol; Schmid-Schwap, Martina; Weber, Michael; Egerbacher, Monika; Traxler, Hannes; Trattnig, Siegfried

    2014-01-01

    Objective To 1) test the feasibility of delayed Gadolinium-Enhanced Magnetic Resonance Imaging of Cartilage (dGEMRIC) at 3 T in the temporomandibular joint (TMJ) and 2) to determine the optimal delay for measurements of the TMJ disc after i.v. contrast agent (CA) administration. Design MRI of the right and left TMJ of six asymptomatic volunteers was performed at 3 T using a dedicated coil. 2D inversion recovery (2D-IR) sequences were performed at 4 time points covering 120 minutes and 3D gradient-echo (3D GRE) dual flip-angle sequences were performed at 14 time points covering 130 minutes after the administration of 0.2 mmol/kg of Gd-diethylenetriamine pentaacetic acid ion (Gd-DTPA)2-, i.e., 0.4 mL of Magnevist™ per kg body weight. Pair-wise tests were used to assess differences between pre-and post-contrast T1 values. Results 2D-IR sequences showed a statistically significant drop (p < 0.001) in T1 values after i.v. CA administration. The T1 drop of 50% was reached 60 minutes after bolus injection in the TMJ disc. The 3D GRE dual flip-angle sequences confirmed these results and show plateau of T1 after 60 minutes. Conclusions T1(Gd) maps calculated from dGEMRIC data allow in vivo assessment of the fibrocartilage disc of the TMJ. The recommended measurement time for dGEMRIC in the TMJ after i.v. CA administration is from 60 to 120 minutes. PMID:25131629

  16. Delayed gadolinium-enhanced MRI of the fibrocartilage disc of the temporomandibular joint--a feasibility study.

    PubMed

    Pittschieler, Elisabeth; Szomolanyi, Pavol; Schmid-Schwap, Martina; Weber, Michael; Egerbacher, Monika; Traxler, Hannes; Trattnig, Siegfried

    2014-12-01

    To 1) test the feasibility of delayed Gadolinium-Enhanced Magnetic Resonance Imaging of Cartilage (dGEMRIC) at 3 T in the temporomandibular joint (TMJ) and 2) to determine the optimal delay for measurements of the TMJ disc after i.v. contrast agent (CA) administration. MRI of the right and left TMJ of six asymptomatic volunteers was performed at 3 T using a dedicated coil. 2D inversion recovery (2D-IR) sequences were performed at 4 time points covering 120 minutes and 3D gradient-echo (3D GRE) dual flip-angle sequences were performed at 14 time points covering 130 minutes after the administration of 0.2 mmol/kg of Gd-diethylenetriamine pentaacetic acid ion (Gd-DTPA)(2-), i.e., 0.4 mL of Magnevist™ per kg body weight. Pair-wise tests were used to assess differences between pre-and post-contrast T1 values. 2D-IR sequences showed a statistically significant drop (p<0.001) in T1 values after i.v. CA administration. The T1 drop of 50% was reached 60 minutes after bolus injection in the TMJ disc. The 3D GRE dual flip-angle sequences confirmed these results and show plateau of T1 after 60 minutes. T1(Gd) maps calculated from dGEMRIC data allow in vivo assessment of the fibrocartilage disc of the TMJ. The recommended measurement time for dGEMRIC in the TMJ after i.v. CA administration is from 60 to 120 minutes. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Time-resolved delayed luminescence image microscopy using an europium ion chelate complex.

    PubMed Central

    Marriott, G.; Heidecker, M.; Diamandis, E. P.; Yan-Marriott, Y.

    1994-01-01

    Improvements and extended applications of time-resolved delayed luminescence imaging microscopy (TR-DLIM) in cell biology are described. The emission properties of europium ion complexed to a fluorescent chelating group capable of labeling proteins are exploited to provide high contrast images of biotin labeled ligands through detection of the delayed emission. The streptavidin-based macromolecular complex (SBMC) employs streptavidin cross-linked to thyroglobulin multiply labeled with the europium-fluorescent chelate. The fluorescent chelate is efficiently excited with 340-nm light, after which it sensitizes europium ion emission at 612 nm hundreds of microseconds later. The SBMC complex has a high quantum yield orders of magnitude higher than that of eosin, a commonly used delayed luminescent probe, and can be readily seen by the naked eye, even in specimens double-labeled with prompt fluorescent probes. Unlike triplet-state phosphorescent probes, sensitized europium ion emission is insensitive to photobleaching and quenching by molecular oxygen; these properties have been exploited to obtain delayed luminescence images of living cells in aerated medium thus complementing imaging studies using prompt fluorescent probes. Since TR-DLIM has the unique property of rejecting enormous signals that originate from scattered light, autofluorescence, and prompt fluorescence it has been possible to resolve double emission images of living amoeba cells containing an intensely stained lucifer yellow in pinocytosed vesicles and membrane surface-bound SBMC-labeled biotinylated concanavalin A. Images of fixed cells represented in terms of the time decay of the sensitized emission show the lifetime of the europium ion emission is sensitive to the environment in which it is found. Through the coupling of SBMC to streptavidin,a plethora of biotin-based tracer molecules are available for immunocytochemical studies. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 PMID:7811952

  18. Methotrexate Elimination When Coadministered With Levetiracetam.

    PubMed

    Reeves, David; DiDominick, Sarah; Finn, Suzanne; Kim, Hyeon Jin; Shake, Amanda

    2016-12-01

    Delayed elimination of methotrexate was previously reported in 2 patients receiving concomitant levetiracetam. To explore the potential interaction between methotrexate and levetiracetam in patients receiving high-dose methotrexate. This retrospective study reviewed the records of 81 adults receiving 280 cycles of methotrexate to determine the effects of levetiracetam on methotrexate elimination. Institutional review board approval was obtained. Levetiracetam was administered in 33 (12%) cycles of methotrexate. Patients receiving levetiracetam had significantly lower 24-hour methotrexate concentrations compared with those not receiving levetiracetam (2.91 vs 7.37 µmol/L, P = 0.005). Despite this difference, concentrations at 48 and 72 hours were similar between groups. Times to nontoxic methotrexate concentration (<0.1 µmol/L) were the same regardless of the presence of levetiracetam. The frequency of delayed elimination at 24, 48, and 72 hours was similar in both groups as was the frequency of delayed elimination at any time point. Cox regression demonstrated that levetiracetam was not a significant predictor of time to nontoxic methotrexate concentration (P = 0.796; HR = 1.058; 95% CI = 0.692-1.617), and logistic regression demonstrated that levetiracetam was not a significant predictor of delayed elimination at any time point. Levetiracetam use was similar between groups when comparing patients experiencing delayed elimination at any time point with those without delayed elimination (13% vs 10%, respectively, P = 0.527). This study does not support the previous reports of a significant interaction between levetiracetam and methotrexate. A clinically significant interaction is unlikely in those without additional risk factors for delayed elimination. © The Author(s) 2016.

  19. Fermi Large Area Telescope detection of gravitational lens delayed γ-ray flares from Blazar B0218+357

    DOE PAGES

    Cheung, C. C.; Larsson, S.; Scargle, J. D.; ...

    2014-01-30

    We report the first clear γ-ray measurement of a delay between flares from the gravitationally lensed images of a blazar, using data from the Fermi Large Area Telescope (LAT). We detected a delay in B0218+357, a known double-image lensed system, during a period of enhanced γ-ray activity with peak fluxes consistently observed to reach >20-50 × its previous average flux. An auto-correlation function analysis identified a delay in the γ-ray data of 11.46 ± 0.16 days (1σ) that is ~1 day greater than previous radio measurements. Considering that it is beyond the capabilities of the LAT to spatially resolve themore » two images, we nevertheless decomposed individual sequences of superposing γ-ray flares/delayed emissions. In three such ~8-10 day-long sequences within a ~4 month span, considering confusion due to overlapping flaring emission and flux measurement uncertainties, we found flux ratios consistent with ~1, thus systematically smaller than those from radio observations. During the first, best-defined flare, the delayed emission was detailed with a Fermi pointing, and we observed flux doubling timescales of ~3-6 hr implying as well extremely compact γ-ray emitting regions.« less

  20. Deja Vu All Over Again: The Reappearance of Supernova Refsdal

    NASA Astrophysics Data System (ADS)

    Kelly, P. L.; Rodney, S. A.; Treu, T.; Strolger, L.-G.; Foley, R. J.; Jha, S. W.; Selsing, J.; Brammer, G.; Bradač, M.; Cenko, S. B.; Graur, O.; Filippenko, A. V.; Hjorth, J.; McCully, C.; Molino, A.; Nonino, M.; Riess, A. G.; Schmidt, K. B.; Tucker, B.; von der Linden, A.; Weiner, B. J.; Zitrin, A.

    2016-03-01

    In Hubble Space Telescope (HST) imaging taken on 2014 November 10, four images of supernova (SN) “Refsdal” (redshift z = 1.49) appeared in an Einstein-cross-like configuration (images S1-S4) around an early-type galaxy in the cluster MACS J1149.5+2223 (z = 0.54). Almost all lens models of the cluster have predicted that the SN should reappear within a year in a second host-galaxy image created by the cluster’s potential. In HST observations taken on 2015 December 11, we find a new source at the predicted position of the new image of SN Refsdal approximately 8\\prime\\prime from the previous images S1-S4. This marks the first time the appearance of a SN at a particular time and location in the sky was successfully predicted in advance! We use these data and the light curve from the first four observed images of SN Refsdal to place constraints on the relative time delay and magnification of the new image (SX) compared to images S1-S4. This enables us, for the first time, to test “blind” lens model predictions of both magnifications and time delays for a lensed SN. We find that the timing and brightness of the new image are consistent with the blind predictions of a fraction of the models. The reappearance illustrates the discriminatory power of this blind test and its utility to uncover sources of systematic uncertainty. From planned HST photometry, we expect to reach a precision of 1%-2% on the time delay between S1-S4 and SX.

  1. Deja Vu All Over Again: The Reappearance of Supernova Refsdal

    NASA Technical Reports Server (NTRS)

    Kelly, P.L.; Rodney, S.A.; Treu, T.; Strolger, L.-G.; Foley, R.J.; Jha, S.W.; Selsing, J.; Brammer, G.; Bradac, M.; Cenko, S. B.

    2016-01-01

    In Hubble Space Telescope (HST) imaging taken on 2014 November 10, four images of supernova (SN) Refsdal(redshift z1.49) appeared in an Einstein-cross-like configuration (images S1S4) around an early-type galaxy in the cluster MACS J1149.5+2223 (z0.54). Almost all lens models of the cluster have predicted that the SN should reappear within a year in a second host-galaxy image created by the clusters potential. In HST observations taken on 2015 December 11, we find a new source at the predicted position of the new image of SN Refsdal approximately 8 from the previous images S1S4. This marks the first time the appearance of a SN at a particular time and location in the sky was successfully predicted in advance! We use these data and the light curve from the first four observed images of SN Refsdal to place constraints on the relative time delay and magnification of the new image (SX) compared to images S1S4. This enables us, for the first time, to test blind lens model predictions of both magnifications and time delays for a lensed SN. We find that the timing and brightness of the new image are consistent with the blind predictions of a fraction of the models. The reappearance illustrates the discriminatory power of this blind test and its utility to uncover sources of systematic uncertainty. From planned HST photometry, we expect to reach a precision of 12 on the time delay between S1S4 and SX.

  2. Multi-ray medical ultrasound simulation without explicit speckle modelling.

    PubMed

    Tuzer, Mert; Yazıcı, Abdulkadir; Türkay, Rüştü; Boyman, Michael; Acar, Burak

    2018-05-04

    To develop a medical ultrasound (US) simulation method using T1-weighted magnetic resonance images (MRI) as the input that offers a compromise between low-cost ray-based and high-cost realistic wave-based simulations. The proposed method uses a novel multi-ray image formation approach with a virtual phased array transducer probe. A domain model is built from input MR images. Multiple virtual acoustic rays are emerged from each element of the linear transducer array. Reflected and transmitted acoustic energy at discrete points along each ray is computed independently. Simulated US images are computed by fusion of the reflected energy along multiple rays from multiple transducers, while phase delays due to differences in distances to transducers are taken into account. A preliminary implementation using GPUs is presented. Preliminary results show that the multi-ray approach is capable of generating view point-dependent realistic US images with an inherent Rician distributed speckle pattern automatically. The proposed simulator can reproduce the shadowing artefacts and demonstrates frequency dependence apt for practical training purposes. We also have presented preliminary results towards the utilization of the method for real-time simulations. The proposed method offers a low-cost near-real-time wave-like simulation of realistic US images from input MR data. It can further be improved to cover the pathological findings using an improved domain model, without any algorithmic updates. Such a domain model would require lesion segmentation or manual embedding of virtual pathologies for training purposes.

  3. A position- and time-sensitive photon-counting detector with delay- line read-out

    NASA Astrophysics Data System (ADS)

    Jagutzki, Ottmar; Dangendorf, Volker; Lauck, Ronald; Czasch, Achim; Milnes, James

    2007-05-01

    We have developed image intensifier tubes with delay-anode read-out for time- and position-sensitive photon counting. The timing precision is better than 1 ns with 1000x1000 pixels position resolution and up to one megacounts/s processing rate. Large format detectors of 40 and 75 mm active diameter with internal helical-wire delay-line anodes have been produced and specified. A different type of 40 and 25 mm tubes with semi-conducting screen for image charge read-out allow for an economic and robust tube design and for placing the read-out anodes outside the sealed housing. Two types of external delay-line anodes, i.e. pick-up electrodes for the image charge, have been tested. We present tests of the detector and anode performance. Due to the low background this technique is well suited for applications with very low light intensity and especially if a precise time tagging for each photon is required. As an example we present the application of scintillator read-out in time-of-flight (TOF) neutron radiography. Further applications so far are Fluorescence Life-time Microscopy (FLIM) and Astronomy.

  4. Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging.

    PubMed Central

    Blamire, A M; Ogawa, S; Ugurbil, K; Rothman, D; McCarthy, G; Ellermann, J M; Hyder, F; Rattner, Z; Shulman, R G

    1992-01-01

    We report the use of high-speed magnetic resonance imaging to follow the changes in image intensity in the human visual cortex during stimulation by a flashing checkerboard stimulus. Measurements were made in a 2.1-T, 1-m-diameter magnet, part of a Bruker Biospec spectrometer that we had programmed to do echo-planar imaging. A 15-cm-diameter surface coil was used to transmit and receive signals. Images were acquired during periods of stimulation from 2 s to 180 s. Images were acquired in 65.5 ms in a 10-mm slice with in-plane voxel size of 6 x 3 mm. Repetition time (TR) was generally 2 s, although for the long flashing periods, TR = 8 s was used. Voxels were located onto an inversion recovery image taken with 2 x 2 mm in-plane resolution. Image intensity increased after onset of the stimulus. The mean change in signal relative to the prestimulation level (delta S/S) was 9.7% (SD = 2.8%, n = 20) with an echo time of 70 ms. Irrespective of the period of stimulation, the increase in magnetic resonance signal intensity was delayed relative to the stimulus. The mean delay measured from the start of stimulation for each protocol was as follows: 2-s stimulation, delay = 3.5 s (SD = 0.5 s, n = 10) (the delay exceeds stimulus duration); 20- to 24-s stimulation, delay = 5 s (SD = 2 s, n = 20). PMID:1438317

  5. Chaos control in delayed phase space constructed by the Takens embedding theory

    NASA Astrophysics Data System (ADS)

    Hajiloo, R.; Salarieh, H.; Alasty, A.

    2018-01-01

    In this paper, the problem of chaos control in discrete-time chaotic systems with unknown governing equations and limited measurable states is investigated. Using the time-series of only one measurable state, an algorithm is proposed to stabilize unstable fixed points. The approach consists of three steps: first, using Takens embedding theory, a delayed phase space preserving the topological characteristics of the unknown system is reconstructed. Second, a dynamic model is identified by recursive least squares method to estimate the time-series data in the delayed phase space. Finally, based on the reconstructed model, an appropriate linear delayed feedback controller is obtained for stabilizing unstable fixed points of the system. Controller gains are computed using a systematic approach. The effectiveness of the proposed algorithm is examined by applying it to the generalized hyperchaotic Henon system, prey-predator population map, and the discrete-time Lorenz system.

  6. The difference of delay time in monitoring system of facial acupressure learning media using bluetooth, wireless and ethernet

    NASA Astrophysics Data System (ADS)

    Agustin, Eny Widhia; Hangga, Arimaz; Fahrian, Muhammad Iqbal; Azhari, Anis Fikri

    2018-03-01

    The implementation of monitoring system in the facial acupressure learning media could increase the students' proficiency. However the common learning media still has not implemented a monitoring system in their learning process. This research was conducted to implement monitoring system in the mannequin head prototype as a learning media of facial acupressure using Bluetooth, wireless and Ethernet. The results of the implementation of monitoring system in the prototype showed that there were differences in the delay time between Bluetooth and wireless or Ethernet. The results data showed no difference in the average delay time between the use of Bluetooth with wireless and the use of Bluetooth with Ethernet in monitoring system of facial acupressure learning media. From all the facial acupressure points, the forehead facial acupressure point has the longest delay time of 11.93 seconds. The average delay time in all 3 class rooms was 1.96 seconds therefore the use of Bluetooth, wireless and Ethernet is highly recommended in the monitoring system of facial acupressure.

  7. Printing line/space patterns on nonplanar substrates using a digital micromirror device-based point-array scanning technique

    NASA Astrophysics Data System (ADS)

    Kuo, Hung-Fei; Kao, Guan-Hsuan; Zhu, Liang-Xiu; Hung, Kuo-Shu; Lin, Yu-Hsin

    2018-02-01

    This study used a digital micromirror device (DMD) to produce point-array patterns and employed a self-developed optical system to define line-and-space patterns on nonplanar substrates. First, field tracing was employed to analyze the aerial images of the lithographic system, which comprised an optical system and the DMD. Multiobjective particle swarm optimization was then applied to determine the spot overlapping rate used. The objective functions were set to minimize linewidth and maximize image log slope, through which the dose of the exposure agent could be effectively controlled and the quality of the nonplanar lithography could be enhanced. Laser beams with 405-nm wavelength were employed as the light source. Silicon substrates coated with photoresist were placed on a nonplanar translation stage. The DMD was used to produce lithographic patterns, during which the parameters were analyzed and optimized. The optimal delay time-sequence combinations were used to scan images of the patterns. Finally, an exposure linewidth of less than 10 μm was successfully achieved using the nonplanar lithographic process.

  8. Estimation of network path segment delays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, Kathleen Marie

    A method for estimation of a network path segment delay includes determining a scaled time stamp for each packet of a plurality of packets by scaling a time stamp for each respective packet to minimize a difference of at least one of a frequency and a frequency drift between a transport protocol clock of a host and a monitoring point. The time stamp for each packet is provided by the transport protocol clock of the host. A corrected time stamp for each packet is determined by removing from the scaled time stamp for each respective packet, a temporal offset betweenmore » the transport protocol clock and the monitoring clock by minimizing a temporal delay variation of the plurality of packets traversing a segment between the host and the monitoring point.« less

  9. Photoacoustic image reconstruction: a quantitative analysis

    NASA Astrophysics Data System (ADS)

    Sperl, Jonathan I.; Zell, Karin; Menzenbach, Peter; Haisch, Christoph; Ketzer, Stephan; Marquart, Markus; Koenig, Hartmut; Vogel, Mika W.

    2007-07-01

    Photoacoustic imaging is a promising new way to generate unprecedented contrast in ultrasound diagnostic imaging. It differs from other medical imaging approaches, in that it provides spatially resolved information about optical absorption of targeted tissue structures. Because the data acquisition process deviates from standard clinical ultrasound, choice of the proper image reconstruction method is crucial for successful application of the technique. In the literature, multiple approaches have been advocated, and the purpose of this paper is to compare four reconstruction techniques. Thereby, we focused on resolution limits, stability, reconstruction speed, and SNR. We generated experimental and simulated data and reconstructed images of the pressure distribution using four different methods: delay-and-sum (DnS), circular backprojection (CBP), generalized 2D Hough transform (HTA), and Fourier transform (FTA). All methods were able to depict the point sources properly. DnS and CBP produce blurred images containing typical superposition artifacts. The HTA provides excellent SNR and allows a good point source separation. The FTA is the fastest and shows the best FWHM. In our study, we found the FTA to show the best overall performance. It allows a very fast and theoretically exact reconstruction. Only a hardware-implemented DnS might be faster and enable real-time imaging. A commercial system may also perform several methods to fully utilize the new contrast mechanism and guarantee optimal resolution and fidelity.

  10. Do presenting symptoms explain sex differences in emergency department delays among patients with acute stroke?

    PubMed

    Gargano, Julia Warner; Wehner, Susan; Reeves, Mathew J

    2009-04-01

    Previous studies report that women with stroke may experience longer delays in diagnostic workup than men after arriving at the emergency department. We hypothesized that presenting symptom differences could explain these delays. Data were collected on 1922 acute stroke cases who presented to 15 hospitals participating in a statewide stroke registry. We evaluated 2 in-hospital time intervals: emergency department arrival to physician examination ("door-to-doctor") and emergency department arrival to brain imaging ("door-to-image"). We used parametric survival models to estimate time ratios, which represent the ratio of average times comparing women to men, after adjusting for symptom presentation and other confounders. Women were significantly less likely than men to present with any stroke warning sign or suspected stroke (87.5% versus 91.4%) or to report trouble with walking, balance, or dizziness (9.5% versus 13.7%). Difficulty speaking and loss of consciousness were associated with shorter door-to-doctor times. Weakness, facial droop, difficulty speaking, and loss of consciousness were associated with shorter door-to-image times, whereas difficulty with walking/balance was associated with longer door-to-image times. In adjusted analyses, women had 11% longer door-to-doctor intervals (time ratio, 1.11; 95%, CI 1.02 to 1.22) and 15% longer door-to-image intervals (time ratio, 1.15; 95% CI, 1.08 to 1.25) after accounting for presenting symptoms, age, and other confounders. Furthermore, these sex differences remained evident after restricting to patients who arrived within 6 or within 2 hours of symptom onset. Women with acute stroke experienced greater emergency department delays than men, which were not attributable to differences in presenting symptoms, time of arrival, age, or other confounders.

  11. Dual time point fluorodeoxyglucose positron emission tomography/computed tomography in differentiation between malignant and benign lesions in cancer patients. Does it always work?

    PubMed

    Saleh Farghaly, Hussein Rabie; Mohamed Sayed, Mohamed Hosny; Nasr, Hatem Ahmed; Abdelaziz Maklad, Ahmed Marzok

    2015-01-01

    Assess the added value of dual time point F-18-fluorodeoxyglucose positron emission tomography/computed tomography (DTP F-18-FDG-PET/CT) in the differentiation of malignant from a benign lesion in cancer patients. Totally, 140 F-18-FDG PET/CT scans of 60 cancer patients who underwent DTP protocol (early whole body PET/CT [E] at 60 min [range, 45-76 min] and delayed limited PET/CT [D] on areas of interest at 120 min [range, 108-153 min] after the tracer injection) were retrospectively reviewed. Visual and semi-quantitative analysis was performed on both early and delayed images. All findings were confirmed by histopathology and/or at least 3 months follow-up (F-18-FDG PET/CT, CT, or magnetic resonance imaging). The result was considered true positive (TP) if delayed standardized uptake value (SUV) of suspicious lesions increased and confirmed to be malignant, false positive (FP) if delayed SUV increased and confirmed to be benign, true negative (TN) if delayed SUV unchanged or decreased and confirmed to be benign, and false negative (FN) if delayed SUV unchanged or decreased and confirmed to be malignant. A total of 164 suspicious lesions were detected (20 presacral lesions, 18 lung nodules, 18 Hodgkin's disease (HD) lesions, 16 rectal lesions, 16 head and neck (H and N) lesions, 14 hepatic lesions, 14 non-Hodgkin's lymphoma (NHL) lesions, 12 mediastinal lymph nodes (LNs), 10 focal gastric uptake, 10 soft tissue lesions, 8 breast lesions, 4 peritoneal nodule, and 4 others). Sixty-four lesions were pathologically confirmed, and 100 lesions were confirmed based on 3-6 months follow-up. There were 62 TP lesions, 44 FP, 58 TN and no FN results. The overall sensitivity was 100% of DTP F-18-FDG PET/CT in detecting suspicious lesions. The specificity was 57% in differentiating malignant from benign lesions, and the accuracy was 73%. Positive predictive value was 59%, negative predictive value (NPV) 100%. All hepatic lesions were TP. Accuracy in metastatic hepatic lesions HD, presacral soft tissue, lung nodules, H, and N cancer, breast cancer, NHL and mediastinal LN was100%, 88.8%, 80%, 78%, 75%, 75%, 71%, and 33.3%, respectively. DTP F-18-FDG-PET/CT protocol does not always work in differentiation between benign and malignant lesions. However; it has high NPV, and promising results was noted in hepatic lesions, lymphoma, and recurrent rectal cancer.

  12. Impact of dual-time-point F-18 FDG PET/CT in the assessment of pleural effusion in patients with non-small-cell lung cancer.

    PubMed

    Alkhawaldeh, Khaled; Biersack, Hans-J; Henke, Anna; Ezziddin, Samer

    2011-06-01

    The aim of this study was to assess the utility of dual-time-point F-18 fluorodeoxyglucose positron emission tomography (F-18 FDG PET) in differentiating benign from malignant pleural disease, in patients with non-small-cell lung cancer. A total of 61 patients with non-small-cell lung cancer and pleural effusion were included in this retrospective study. All patients had whole-body FDG PET/CT imaging at 60 ± 10 minutes post-FDG injection, whereas 31 patients had second-time delayed imaging repeated at 90 ± 10 minutes for the chest. Maximum standardized uptake values (SUV(max)) and the average percent change in SUV(max) (%SUV) between time point 1 and time point 2 were calculated. Malignancy was defined using the following criteria: (1) visual assessment using 3-points grading scale; (2) SUV(max) ≥2.4; (3) %SUV ≥ +9; and (4) SUV(max) ≥2.4 and/or %SUV ≥ +9. Analysis of variance test and receiver operating characteristic analysis were used in statistical analysis. P < 0.05 was considered significant. Follow-up revealed 29 patient with malignant pleural disease and 31 patients with benign pleural effusion. The average SUV(max) in malignant effusions was 6.5 ± 4 versus 2.2 ± 0.9 in benign effusions (P < 0.0001). The average %SUV in malignant effusions was +13 ± 10 versus -8 ± 11 in benign effusions (P < 0.0004). Sensitivity, specificity, and accuracy for the 5 criteria were as follows: (1) 86%, 72%, and 79%; (2) 93%, 72%, and 82%; (3) 67%, 94%, and 81%; (4) 100%, 94%, and 97%. Dual-time-point F-18 FDG PET can improve the diagnostic accuracy in differentiating benign from malignant pleural disease, with high sensitivity and good specificity.

  13. 1.0 T open-configuration magnetic resonance-guided microwave ablation of pig livers in real time

    PubMed Central

    Dong, Jun; Zhang, Liang; Li, Wang; Mao, Siyue; Wang, Yiqi; Wang, Deling; Shen, Lujun; Dong, Annan; Wu, Peihong

    2015-01-01

    The current fastest frame rate of each single image slice in MR-guided ablation is 1.3 seconds, which means delayed imaging for human at an average reaction time: 0.33 seconds. The delayed imaging greatly limits the accuracy of puncture and ablation, and results in puncture injury or incomplete ablation. To overcome delayed imaging and obtain real-time imaging, the study was performed using a 1.0-T whole-body open configuration MR scanner in the livers of 10 Wuzhishan pigs. A respiratory-triggered liver matrix array was explored to guide and monitor microwave ablation in real-time. We successfully performed the entire ablation procedure under MR real-time guidance at 0.202 s, the fastest frame rate for each single image slice. The puncture time ranged from 23 min to 3 min. For the pigs, the mean puncture time was shorted to 4.75 minutes and the mean ablation time was 11.25 minutes at power 70 W. The mean length and widths were 4.62 ± 0.24 cm and 2.64 ± 0.13 cm, respectively. No complications or ablation related deaths during or after ablation were observed. In the current study, MR is able to guide microwave ablation like ultrasound in real-time guidance showing great potential for the treatment of liver tumors. PMID:26315365

  14. From fast fluorescence imaging to molecular diffusion law on live cell membranes in a commercial microscope.

    PubMed

    Di Rienzo, Carmine; Gratton, Enrico; Beltram, Fabio; Cardarelli, Francesco

    2014-10-09

    It has become increasingly evident that the spatial distribution and the motion of membrane components like lipids and proteins are key factors in the regulation of many cellular functions. However, due to the fast dynamics and the tiny structures involved, a very high spatio-temporal resolution is required to catch the real behavior of molecules. Here we present the experimental protocol for studying the dynamics of fluorescently-labeled plasma-membrane proteins and lipids in live cells with high spatiotemporal resolution. Notably, this approach doesn't need to track each molecule, but it calculates population behavior using all molecules in a given region of the membrane. The starting point is a fast imaging of a given region on the membrane. Afterwards, a complete spatio-temporal autocorrelation function is calculated correlating acquired images at increasing time delays, for example each 2, 3, n repetitions. It is possible to demonstrate that the width of the peak of the spatial autocorrelation function increases at increasing time delay as a function of particle movement due to diffusion. Therefore, fitting of the series of autocorrelation functions enables to extract the actual protein mean square displacement from imaging (iMSD), here presented in the form of apparent diffusivity vs average displacement. This yields a quantitative view of the average dynamics of single molecules with nanometer accuracy. By using a GFP-tagged variant of the Transferrin Receptor (TfR) and an ATTO488 labeled 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine (PPE) it is possible to observe the spatiotemporal regulation of protein and lipid diffusion on µm-sized membrane regions in the micro-to-milli-second time range.

  15. Analysis of plasmaspheric plumes: CLUSTER and IMAGE observations and numerical simulations

    NASA Technical Reports Server (NTRS)

    Darouzet, Fabien; DeKeyser, Johan; Decreau, Pierrette; Gallagher, Dennis; Pierrard, Viviane; Lemaire, Joseph; Dandouras, Iannis; Matsui, Hiroshi; Dunlop, Malcolm; Andre, Mats

    2005-01-01

    Plasmaspheric plumes have been routinely observed by CLUSTER and IMAGE. The CLUSTER mission provides high time resolution four-point measurements of the plasmasphere near perigee. Total electron density profiles can be derived from the plasma frequency and/or from the spacecraft potential (note that the electron spectrometer is usually not operating inside the plasmasphere); ion velocity is also measured onboard these satellites (but ion density is not reliable because of instrumental limitations). The EUV imager onboard the IMAGE spacecraft provides global images of the plasmasphere with a spatial resolution of 0.1 RE every 10 minutes; such images acquired near apogee from high above the pole show the geometry of plasmaspheric plumes, their evolution and motion. We present coordinated observations for 3 plume events and compare CLUSTER in-situ data (panel A) with global images of the plasmasphere obtained from IMAGE (panel B), and with numerical simulations for the formation of plumes based on a model that includes the interchange instability mechanism (panel C). In particular, we study the geometry and the orientation of plasmaspheric plumes by using a four-point analysis method, the spatial gradient. We also compare several aspects of their motion as determined by different methods: (i) inner and outer plume boundary velocity calculated from time delays of this boundary observed by the wave experiment WHISPER on the four spacecraft, (ii) ion velocity derived from the ion spectrometer CIS onboard CLUSTER, (iii) drift velocity measured by the electron drift instrument ED1 onboard CLUSTER and (iv) global velocity determined from successive EUV images. These different techniques consistently indicate that plasmaspheric plumes rotate around the Earth, with their foot fully co-rotating, but with their tip rotating slower and moving farther out.

  16. Simultaneous auto-calibration and gradient delays estimation (SAGE) in non-Cartesian parallel MRI using low-rank constraints.

    PubMed

    Jiang, Wenwen; Larson, Peder E Z; Lustig, Michael

    2018-03-09

    To correct gradient timing delays in non-Cartesian MRI while simultaneously recovering corruption-free auto-calibration data for parallel imaging, without additional calibration scans. The calibration matrix constructed from multi-channel k-space data should be inherently low-rank. This property is used to construct reconstruction kernels or sensitivity maps. Delays between the gradient hardware across different axes and RF receive chain, which are relatively benign in Cartesian MRI (excluding EPI), lead to trajectory deviations and hence data inconsistencies for non-Cartesian trajectories. These in turn lead to higher rank and corrupted calibration information which hampers the reconstruction. Here, a method named Simultaneous Auto-calibration and Gradient delays Estimation (SAGE) is proposed that estimates the actual k-space trajectory while simultaneously recovering the uncorrupted auto-calibration data. This is done by estimating the gradient delays that result in the lowest rank of the calibration matrix. The Gauss-Newton method is used to solve the non-linear problem. The method is validated in simulations using center-out radial, projection reconstruction and spiral trajectories. Feasibility is demonstrated on phantom and in vivo scans with center-out radial and projection reconstruction trajectories. SAGE is able to estimate gradient timing delays with high accuracy at a signal to noise ratio level as low as 5. The method is able to effectively remove artifacts resulting from gradient timing delays and restore image quality in center-out radial, projection reconstruction, and spiral trajectories. The low-rank based method introduced simultaneously estimates gradient timing delays and provides accurate auto-calibration data for improved image quality, without any additional calibration scans. © 2018 International Society for Magnetic Resonance in Medicine.

  17. Facial Expression Presentation for Real-Time Internet Communication

    NASA Astrophysics Data System (ADS)

    Dugarry, Alexandre; Berrada, Aida; Fu, Shan

    2003-01-01

    Text, voice and video images are the most common forms of media content for instant communication on the Internet. Studies have shown that facial expressions convey much richer information than text and voice during a face-to-face conversation. The currently available real time means of communication (instant text messages, chat programs and videoconferencing), however, have major drawbacks in terms of exchanging facial expression. The first two means do not involve the image transmission, whilst video conferencing requires a large bandwidth that is not always available, and the transmitted image sequence is neither smooth nor without delay. The objective of the work presented here is to develop a technique that overcomes these limitations, by extracting the facial expression of speakers and to realise real-time communication. In order to get the facial expressions, the main characteristics of the image are emphasized. Interpolation is performed on edge points previously detected to create geometric shapes such as arcs, lines, etc. The regional dominant colours of the pictures are also extracted and the combined results are subsequently converted into Scalable Vector Graphics (SVG) format. The application based on the proposed technique aims at being used simultaneously with chat programs and being able to run on any platform.

  18. Discrete-time bidirectional associative memory neural networks with variable delays

    NASA Astrophysics Data System (ADS)

    Liang, variable delays [rapid communication] J.; Cao, J.; Ho, D. W. C.

    2005-02-01

    Based on the linear matrix inequality (LMI), some sufficient conditions are presented in this Letter for the existence, uniqueness and global exponential stability of the equilibrium point of discrete-time bidirectional associative memory (BAM) neural networks with variable delays. Some of the stability criteria obtained in this Letter are delay-dependent, and some of them are delay-independent, they are less conservative than the ones reported so far in the literature. Furthermore, the results provide one more set of easily verified criteria for determining the exponential stability of discrete-time BAM neural networks.

  19. Effect of Combined 68Ga-PSMAHBED-CC Uptake Pattern and Multiparametric MRI Derived With Simultaneous PET/MRI in the Diagnosis of Primary Prostate Cancer: Initial Experience.

    PubMed

    Taneja, Sangeeta; Jena, Amarnath; Taneja, Rajesh; Singh, Aru; Ahuja, Aashim

    2018-06-01

    The purpose of this study is to assess whether temporal changes in 68 Ga-prostate-specific membrane antigen (PSMA)-HBED-CC uptake and multiparametric MRI parameters derived using PET/MRI can aid in characterization of benign and malignant prostate lesions. Thirty-five men with 29 malignant and six benign prostate lesions undergoing complete clinical workup including histologic analysis were enrolled for this retrospective study. All had undergone simultaneous whole-body 68 Ga-PSMAHBED-CC PET/MRI. Prostate Imaging Reporting and Data System version 2 (PI-RADSv2) assessment was made using a 5-point scale showing the likelihood of cancer with the combination of multiparametric MRI findings. Gallium-68-PSMA uptake was recorded at two time points: early (7 minutes) and delayed (54 minutes), adopting a copy-and-paste function of the ROI defined on MR images. ROC curve analysis was performed to test the diagnostic accuracy of early versus delayed PSMA uptake (measured as maximum standardized uptake value [SUV]). A multiple-ROI analysis was done to obtain ROCs for combined PET SUV and multiparametric MRI datasets. Spearman analysis was performed to assess the correlations. There was a significant difference between early and delayed PSMA uptake in malignant prostatic lesions (p < 0.01), which was able to characterize prostate lesions with an AUC of 0.83 and 0.94. Combined ROC analysis of PI-RADSv2 category derived from multiparametric MRI and differential PSMA uptake in characterizing prostatic lesions improved the AUC to 0.99. Dual-phase PSMA uptake improves accuracy of classifying malignant versus benign prostate lesions and complements multiparametric MRI in the diagnosis of prostate cancer.

  20. Human self-control and the density of reinforcement

    PubMed Central

    Flora, Stephen R.; Pavlik, William B.

    1992-01-01

    Choice responding in adult humans on a discrete-trial button-pressing task was examined as a function of amount, delay, and overall density (points per unit time) of reinforcement. Reinforcement consisted of points that were exchangeable for money. In T 0 conditions, an impulsive response produced 4 points immediately and a self-control response produced 10 points after a delay of 15 s. In T 15 conditions, a constant delay of 15 s was added to both prereinforcer delays. Postreinforcer delays, which consisted of 15 s added to the end of each impulsive trial, equated trial durations regardless of choice, and was manipulated in both T 0 and T 15 conditions. In all conditions, choice was predicted directly from the relative reinforcement densities of the alternatives. Self-control was observed in all conditions except T 0 without postreinforcer delays, where the impulsive choices produced the higher reinforcement density. These results support previous studies showing that choice is a direct function of the relative reinforcement densities when conditioned (point) reinforcers are used. In contrast, where responding produces intrinsic (immediately consumable) reinforcers, immediacy of reinforcement appears to account for preference when density does not. PMID:16812652

  1. Spotlight-Mode Synthetic Aperture Radar Processing for High-Resolution Lunar Mapping

    NASA Technical Reports Server (NTRS)

    Harcke, Leif; Weintraub, Lawrence; Yun, Sang-Ho; Dickinson, Richard; Gurrola, Eric; Hensley, Scott; Marechal, Nicholas

    2010-01-01

    During the 2008-2009 year, the Goldstone Solar System Radar was upgraded to support radar mapping of the lunar poles at 4 m resolution. The finer resolution of the new system and the accompanying migration through resolution cells called for spotlight, rather than delay-Doppler, imaging techniques. A new pre-processing system supports fast-time Doppler removal and motion compensation to a point. Two spotlight imaging techniques which compensate for phase errors due to i) out of focus-plane motion of the radar and ii) local topography, have been implemented and tested. One is based on the polar format algorithm followed by a unique autofocus technique, the other is a full bistatic time-domain backprojection technique. The processing system yields imagery of the specified resolution. Products enabled by this new system include topographic mapping through radar interferometry, and change detection techniques (amplitude and coherent change) for geolocation of the NASA LCROSS mission impact site.

  2. Healthy Aging Delays Scalp EEG Sensitivity to Noise in a Face Discrimination Task

    PubMed Central

    Rousselet, Guillaume A.; Gaspar, Carl M.; Pernet, Cyril R.; Husk, Jesse S.; Bennett, Patrick J.; Sekuler, Allison B.

    2010-01-01

    We used a single-trial ERP approach to quantify age-related changes in the time-course of noise sensitivity. A total of 62 healthy adults, aged between 19 and 98, performed a non-speeded discrimination task between two faces. Stimulus information was controlled by parametrically manipulating the phase spectrum of these faces. Behavioral 75% correct thresholds increased with age. This result may be explained by lower signal-to-noise ratios in older brains. ERP from each subject were entered into a single-trial general linear regression model to identify variations in neural activity statistically associated with changes in image structure. The fit of the model, indexed by R2, was computed at multiple post-stimulus time points. The time-course of the R2 function showed significantly delayed noise sensitivity in older observers. This age effect is reliable, as demonstrated by test–retest in 24 subjects, and started about 120 ms after stimulus onset. Our analyses suggest also a qualitative change from a young to an older pattern of brain activity at around 47 ± 4 years old. PMID:21833194

  3. Operative Outcome and Patient Satisfaction in Early and Delayed Laparoscopic Cholecystectomy for Acute Cholecystitis

    PubMed Central

    Hokkam, Emad N.

    2014-01-01

    Introduction. Early laparoscopic cholecystectomy is usually associated with reduced hospital stay, sick leave, and health care expenditures. Early diagnosis and treatment of acute cholecystitis reduce both mortality and morbidity and the accurate diagnosis requires specific diagnostic criteria of clinical data and imaging studies. Objectives. To compare early versus delayed laparoscopic cholecystectomy regarding the operative outcome and patient satisfaction. Patients and Methods. Patients with acute cholecystitis were divided into two groups, early (A) and delayed (B) cholecystectomy. Diagnosis of acute cholecystitis was confirmed by clinical examination, laboratory data, and ultrasound study. The primary end point was operative and postoperative outcome and the secondary was patient's satisfaction. Results. The number of readmissions in delayed treatment group B was three times in 10% of patients, twice in 23.3%, and once in 66.7% while the number of readmissions was once only in patients in group A and the mean total hospital stays were higher in group B than in group A. The overall patient's satisfaction was 92.66 ± 6.8 in group A compared with 75.34 ± 12.85 in group B. Conclusion. Early laparoscopic cholecystectomy resulted in significant reduction in length of hospital stay and accepted rate of operative complications and conversion rates when compared with delayed techniques. PMID:25197568

  4. Transmission mode adaptive beamforming for planar phased arrays and its application to 3D ultrasonic transcranial imaging

    NASA Astrophysics Data System (ADS)

    Shapoori, Kiyanoosh; Sadler, Jeffrey; Wydra, Adrian; Malyarenko, Eugene; Sinclair, Anthony; Maev, Roman G.

    2013-03-01

    A new adaptive beamforming method for accurately focusing ultrasound behind highly scattering layers of human skull and its application to 3D transcranial imaging via small-aperture planar phased arrays are reported. Due to its undulating, inhomogeneous, porous, and highly attenuative structure, human skull bone severely distorts ultrasonic beams produced by conventional focusing methods in both imaging and therapeutic applications. Strong acoustical mismatch between the skull and brain tissues, in addition to the skull's undulating topology across the active area of a planar ultrasonic probe, could cause multiple reflections and unpredictable refraction during beamforming and imaging processes. Such effects could significantly deflect the probe's beam from the intended focal point. Presented here is a theoretical basis and simulation results of an adaptive beamforming method that compensates for the latter effects in transmission mode, accompanied by experimental verification. The probe is a custom-designed 2 MHz, 256-element matrix array with 0.45 mm element size and 0.1mm kerf. Through its small footprint, it is possible to accurately measure the profile of the skull segment in contact with the probe and feed the results into our ray tracing program. The latter calculates the new time delay patterns adapted to the geometrical and acoustical properties of the skull phantom segment in contact with the probe. The time delay patterns correct for the refraction at the skull-brain boundary and bring the distorted beam back to its intended focus. The algorithms were implemented on the ultrasound open-platform ULA-OP (developed at the University of Florence).

  5. Motion corrected photoacoustic difference imaging of fluorescent contrast agents

    NASA Astrophysics Data System (ADS)

    Märk, Julia; Wagener, Asja; Pönick, Sarah; Grötzinger, Carsten; Zhang, Edward; Laufer, Jan

    2016-03-01

    In fluorophores, such as exogenous dyes and genetically expressed proteins, the excited state lifetime can be modulated using pump-probe excitation at wavelengths corresponding to the absorption and fluorescence spectra. Simultaneous pump-probe pulses induce stimulated emission (SE) which, in turn, modulates the thermalized energy, and hence the photoacoustic (PA) signal amplitude. For time-delayed pulses, by contrast, SE is suppressed. Since this is not observed in endogenous chromophores, the location of the fluorophore can be determined by subtracting images acquired using simultaneous and time-delayed pump-probe excitation. This simple experimental approach exploits a fluorophorespecific contrast mechanism, and has the potential to enable deep-tissue molecular imaging at fluences below the MPE. In this study, some of the challenges to its in vivo implementation are addressed. First, the PA signal amplitude generated in fluorophores in vivo is often much smaller than that in blood. Second, tissue motion can give rise to artifacts that correspond to endogenous chromophores in the difference image. This would not allow the unambiguous detection of fluorophores. A method to suppress motion artifacts based on fast switching between simultaneous and time-delayed pump-probe excitation was developed. This enables the acquisition of PA signals using the two excitation modes with minimal time delay (20 ms), thus minimizing the effects of tissue motion. The feasibility of this method is demonstrated by visualizing a fluorophore (Atto680) in tissue phantoms, which were moved during the image acquisition to mimic tissue motion.

  6. A Low-Cost Tele-Imaging Platform for Developing Countries

    PubMed Central

    Adambounou, Kokou; Adjenou, Victor; Salam, Alex P.; Farin, Fabien; N’Dakena, Koffi Gilbert; Gbeassor, Messanvi; Arbeille, Philippe

    2014-01-01

    Purpose: To design a “low-cost” tele-imaging method allowing real-time tele-ultrasound expertise, delayed tele-ultrasound diagnosis, and tele-radiology between remote peripherals hospitals and clinics (patient centers) and university hospital centers (expert center). Materials and methods: A system of communication via internet (IP camera and remote access software) enabling transfer of ultrasound videos and images between two centers allows a real-time tele-radiology expertise in the presence of a junior sonographer or radiologist at the patient center. In the absence of a sonographer or radiologist at the patient center, a 3D reconstruction program allows a delayed tele-ultrasound diagnosis with images acquired by a lay operator (e.g., midwife, nurse, technician). The system was tested both with high and low bandwidth. The system can further accommodate non-ultrasound tele-radiology (conventional radiography, mammography, and computer tomography for example). The system was tested on 50 patients between CHR Tsevie in Togo (40 km from Lomé-Togo and 4500 km from Tours-France) and CHU Campus at Lomé and CHU Trousseau in Tours. Results: A real-time tele-expertise was successfully performed with a delay of approximately 1.5 s with an internet bandwidth of around 1 Mbps (IP Camera) and 512 kbps (remote access software). A delayed tele-ultrasound diagnosis was also performed with satisfactory results. The transmission of radiological images from the patient center to the expert center was of adequate quality. Delayed tele-ultrasound and tele-radiology was possible even in the presence of a low-bandwidth internet connection. Conclusion: This tele-imaging method, requiring nothing by readily available and inexpensive technology and equipment, offers a major opportunity for telemedicine in developing countries. PMID:25250306

  7. Internet Teleprescence by Real-Time View-Dependent Image Generation with Omnidirectional Video Camera

    NASA Astrophysics Data System (ADS)

    Morita, Shinji; Yamazawa, Kazumasa; Yokoya, Naokazu

    2003-01-01

    This paper describes a new networked telepresence system which realizes virtual tours into a visualized dynamic real world without significant time delay. Our system is realized by the following three steps: (1) video-rate omnidirectional image acquisition, (2) transportation of an omnidirectional video stream via internet, and (3) real-time view-dependent perspective image generation from the omnidirectional video stream. Our system is applicable to real-time telepresence in the situation where the real world to be seen is far from an observation site, because the time delay from the change of user"s viewing direction to the change of displayed image is small and does not depend on the actual distance between both sites. Moreover, multiple users can look around from a single viewpoint in a visualized dynamic real world in different directions at the same time. In experiments, we have proved that the proposed system is useful for internet telepresence.

  8. Tamper to delay motion and decrease ionization of a sample during short pulse x-ray imaging

    DOEpatents

    London, Richard A [Orinda, CA; Szoke,; Abraham, Hau-Riege [Fremont, CA; Stefan P. , Chapman; Henry, N [Livermore, CA

    2007-06-26

    A system for x-ray imaging of a small sample comprising positioning a tamper so that it is operatively connected to the sample, directing short intense x-ray pulses onto the tamper and the sample, and detecting an image from the sample. The tamper delays the explosive motion of the sample during irradiation by the short intense x-ray pulses, thereby extending the time to obtain an x-ray image of the original structure of the sample.

  9. Early or delayed provision of an ankle-foot orthosis in patients with acute and subacute stroke: a randomized controlled trial.

    PubMed

    Nikamp, Corien Dm; Buurke, Jaap H; van der Palen, Job; Hermens, Hermie J; Rietman, Johan S

    2017-06-01

    (1) To study the effects of providing ankle-foot orthoses in subjects with (sub)acute stroke; and (2) to study whether the point in time at which an ankle-foot orthosis is provided post-stroke (early or delayed) influences these effects. Randomized controlled trial. Rehabilitation centre. Unilateral hemiparetic stroke subjects with indication for use of an ankle-foot orthosis and maximal six weeks post-stroke. Subjects were randomly assigned to: early provision (at inclusion; Week 1) or delayed provision (eight weeks later; Week 9). 10-metre walk test, 6-minute walk test, Timed Up and Go Test, stairs test, Functional Ambulation Categories, Berg Balance Scale, Rivermead Mobility Index and Barthel Index; assessed in Weeks 1, 3, 9 and 11. A total of 33 subjects were randomized (16 early, 17 delayed). Positive effects of ankle-foot orthoses were found two weeks after provision, both when provided early (significant effects on all outcomes) or delayed (Berg Balance Scale p = 0.011, Functional Ambulation Categories p = 0.008, 6-minute walk test p = 0.005, Timed Up and Go Test p = 0.028). Comparing effects after early and delayed provision showed that early provision resulted in increased levels of improvement on Berg Balance Scale (+5.1 points, p = 0.002), Barthel Index (+1.9 points, p = 0.002) and non-significant improvements on 10-metre walk test (+0.14 m/s, p = 0.093) and Timed Up and Go Test (-5.4 seconds, p = 0.087), compared with delayed provision. We found positive effects of providing ankle-foot orthoses in (sub)acute stroke subjects that had not used these orthoses before.

  10. Quantitative evaluation of multi-parametric MR imaging marker changes post-laser interstitial ablation therapy (LITT) for epilepsy

    NASA Astrophysics Data System (ADS)

    Tiwari, Pallavi; Danish, Shabbar; Wong, Stephen; Madabhushi, Anant

    2013-03-01

    Laser-induced interstitial thermal therapy (LITT) has recently emerged as a new, less invasive alternative to craniotomy for treating epilepsy; which allows for focussed delivery of laser energy monitored in real time by MRI, for precise removal of the epileptogenic foci. Despite being minimally invasive, the effects of laser ablation on the epileptogenic foci (reflected by changes in MR imaging markers post-LITT) are currently unknown. In this work, we present a quantitative framework for evaluating LITT-related changes by quantifying per-voxel changes in MR imaging markers which may be more reflective of local treatment related changes (TRC) that occur post-LITT, as compared to the standard volumetric analysis which involves monitoring a more global volume change across pre-, and post-LITT MRI. Our framework focuses on three objectives: (a) development of temporal MRI signatures that characterize TRC corresponding to patients with seizure freedom by comparing differences in MR imaging markers and monitoring them over time, (b) identification of the optimal time point when early LITT induced effects (such as edema and mass effect) subside by monitoring TRC at subsequent time-points post-LITT, and (c) identification of contributions of individual MRI protocols towards characterizing LITT-TRC for epilepsy by identifying MR markers that change most dramatically over time and employ individual contributions to create a more optimal weighted MP-MRI temporal profile that can better characterize TRC compared to any individual imaging marker. A cohort of patients were monitored at different time points post-LITT via MP-MRI involving T1-w, T2-w, T2-GRE, T2-FLAIR, and apparent diffusion coefficient (ADC) protocols. Post affine registration of individual MRI protocols to a reference MRI protocol pre-LITT, differences in individual MR markers are computed on a per-voxel basis, at different time-points with respect to baseline (pre-LITT) MRI as well as across subsequent time-points. A time-dependent MRI profile corresponding to successful (seizure-free) is then created that captures changes in individual MR imaging markers over time. Our preliminary analysis on two patient studies suggests that (a) LITT related changes (attributed to swelling and edema) appear to subside within 4-weeks post-LITT, (b) ADC may be more sensitive for evaluating early TRC (up to 3-months), and T1-w may be more sensitive in evaluating early delayed TRC (1-month, 3-months), while T2-w and T2-FLAIR appeared to be more sensitive in identifying late TRC (around 6-months post-LITT) compared to the other MRI protocols under evaluation. T2-GRE was found to be only nominally sensitive in identifying TRC at any follow-up time-point post-LITT. The framework presented in this work thus serves as an important precursor to a comprehensive treatment evaluation framework that can be used to identify sensitive MR markers corresponding to patient response (seizure-freedom or seizure recurrence), with an ultimate objective of making prognostic predictions about patient outcome post-LITT.

  11. Beyond endoscopic assessment in inflammatory bowel disease: real-time histology of disease activity by non-linear multimodal imaging

    NASA Astrophysics Data System (ADS)

    Chernavskaia, Olga; Heuke, Sandro; Vieth, Michael; Friedrich, Oliver; Schürmann, Sebastian; Atreya, Raja; Stallmach, Andreas; Neurath, Markus F.; Waldner, Maximilian; Petersen, Iver; Schmitt, Michael; Bocklitz, Thomas; Popp, Jürgen

    2016-07-01

    Assessing disease activity is a prerequisite for an adequate treatment of inflammatory bowel diseases (IBD) such as Crohn’s disease and ulcerative colitis. In addition to endoscopic mucosal healing, histologic remission poses a promising end-point of IBD therapy. However, evaluating histological remission harbors the risk for complications due to the acquisition of biopsies and results in a delay of diagnosis because of tissue processing procedures. In this regard, non-linear multimodal imaging techniques might serve as an unparalleled technique that allows the real-time evaluation of microscopic IBD activity in the endoscopy unit. In this study, tissue sections were investigated using the non-linear multimodal microscopy combination of coherent anti-Stokes Raman scattering (CARS), two-photon excited auto fluorescence (TPEF) and second-harmonic generation (SHG). After the measurement a gold-standard assessment of histological indexes was carried out based on a conventional H&E stain. Subsequently, various geometry and intensity related features were extracted from the multimodal images. An optimized feature set was utilized to predict histological index levels based on a linear classifier. Based on the automated prediction, the diagnosis time interval is decreased. Therefore, non-linear multimodal imaging may provide a real-time diagnosis of IBD activity suited to assist clinical decision making within the endoscopy unit.

  12. A micromachined silicon parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT)

    NASA Astrophysics Data System (ADS)

    Cho, Young Y.; Chang, Cheng-Chung; Wang, Lihong V.; Zou, Jun

    2015-03-01

    To achieve real-time photoacoustic tomography (PAT), massive transducer arrays and data acquisition (DAQ) electronics are needed to receive the PA signals simultaneously, which results in complex and high-cost ultrasound receiver systems. To address this issue, we have developed a new PA data acquisition approach using acoustic time delay. Optical fibers were used as parallel acoustic delay lines (PADLs) to create different time delays in multiple channels of PA signals. This makes the PA signals reach a single-element transducer at different times. As a result, they can be properly received by single-channel DAQ electronics. However, due to their small diameter and fragility, using optical fiber as acoustic delay lines poses a number of challenges in the design, construction and packaging of the PADLs, thereby limiting their performances and use in real imaging applications. In this paper, we report the development of new silicon PADLs, which are directly made from silicon wafers using advanced micromachining technologies. The silicon PADLs have very low acoustic attenuation and distortion. A linear array of 16 silicon PADLs were assembled into a handheld package with one common input port and one common output port. To demonstrate its real-time PAT capability, the silicon PADL array (with its output port interfaced with a single-element transducer) was used to receive 16 channels of PA signals simultaneously from a tissue-mimicking optical phantom sample. The reconstructed PA image matches well with the imaging target. Therefore, the silicon PADL array can provide a 16× reduction in the ultrasound DAQ channels for real-time PAT.

  13. Multi-images deconvolution improves signal-to-noise ratio on gated stimulated emission depletion microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castello, Marco; DIBRIS, University of Genoa, Via Opera Pia 13, Genoa 16145; Diaspro, Alberto

    2014-12-08

    Time-gated detection, namely, only collecting the fluorescence photons after a time-delay from the excitation events, reduces complexity, cost, and illumination intensity of a stimulated emission depletion (STED) microscope. In the gated continuous-wave- (CW-) STED implementation, the spatial resolution improves with increased time-delay, but the signal-to-noise ratio (SNR) reduces. Thus, in sub-optimal conditions, such as a low photon-budget regime, the SNR reduction can cancel-out the expected gain in resolution. Here, we propose a method which does not discard photons, but instead collects all the photons in different time-gates and recombines them through a multi-image deconvolution. Our results, obtained on simulated andmore » experimental data, show that the SNR of the restored image improves relative to the gated image, thereby improving the effective resolution.« less

  14. Multistability of neural networks with discontinuous non-monotonic piecewise linear activation functions and time-varying delays.

    PubMed

    Nie, Xiaobing; Zheng, Wei Xing

    2015-05-01

    This paper is concerned with the problem of coexistence and dynamical behaviors of multiple equilibrium points for neural networks with discontinuous non-monotonic piecewise linear activation functions and time-varying delays. The fixed point theorem and other analytical tools are used to develop certain sufficient conditions that ensure that the n-dimensional discontinuous neural networks with time-varying delays can have at least 5(n) equilibrium points, 3(n) of which are locally stable and the others are unstable. The importance of the derived results is that it reveals that the discontinuous neural networks can have greater storage capacity than the continuous ones. Moreover, different from the existing results on multistability of neural networks with discontinuous activation functions, the 3(n) locally stable equilibrium points obtained in this paper are located in not only saturated regions, but also unsaturated regions, due to the non-monotonic structure of discontinuous activation functions. A numerical simulation study is conducted to illustrate and support the derived theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Describing-function analysis of a ripple regulator with slew-rate limits and time delays

    NASA Technical Reports Server (NTRS)

    Wester, Gene W.

    1990-01-01

    The effects of time delays and slew-rate limits on the steady-state operating points and performance of a free-running ripple regulator are evaluated using describing-function analysis. The describing function of an ideal comparator (no time delays or slew rate limits) has no phase shift and is independent of frequency. It is found that turn-on delay and turn-off delay have different effects on gain and phase and cannot be combined. Comparator hysteresis affects both gain and phase; likewise, time delays generally affect both gain and phase. It is found that the effective time delay around the feedback loop is one half the sum of turn-on and turn-off delays, regardless of whether the delays are caused by storage time or slew rate limits. Expressions are formulated for the switching frequency, switch duty ratio, dc output, and output ripple. For the case of no hysteresis, a simple, graphical solution for the switching frequency is possible, and the resulting switching frequency is independent of first-order variations of input or load.

  16. Contrast fluoroscopic evaluation of gastrointestinal transit times with and without the use of falconry hoods in red-tailed hawks (Buteo jamaicensis).

    PubMed

    Doss, Grayson A; Williams, Jackie M; Mans, Christoph

    2017-11-01

    OBJECTIVE To evaluate gastrointestinal transit times in red-tailed hawks (Buteo jamaicensis) by use of contrast fluoroscopic imaging and investigate the effect of falconry hooding in these hawks on gastrointestinal transit time. DESIGN Prospective, randomized, blinded, complete crossover study. ANIMALS 9 healthy red-tailed hawks. PROCEDURES Hawks were gavage-fed a 30% weight-by-volume barium suspension (25 mL/kg [11.3 mL/lb]) into the crop. Fluoroscopic images were obtained at multiple time points after barium administration. Time to filling and emptying of various gastrointestinal tract organs and overall transit time were measured. The effect of hooding (hooded vs nonhooded) on these variables was assessed in a randomized complete crossover design. RESULTS In nonhooded birds, overall gastrointestinal transit time ranged from 30 to 180 minutes (mean ± SD, 100 ± 52 min). Time to complete crop emptying ranged from 30 to 180 minutes (83 ± 49 min). Contrast medium was present in the ventriculus in all birds within 5 minutes of administration and in the small intestines within 5 to 15 minutes (median, 5 min). Hooding of red-tailed hawks resulted in a significant delay of complete crop emptying (no hood, 83 ± 49 minutes; hood, 133 ± 48 minutes), but no significant effects of hooding were found on other measured variables. CONCLUSIONS AND CLINICAL RELEVANCE These results indicated that overall gastrointestinal transit times are faster in red-tailed hawks than has been reported for psittacines and that the use of a falconry hood in red-tailed hawks may result in delayed crop emptying. Hooding did not exert significant effects on overall gastrointestinal transit time in this raptorial species.

  17. SU-E-J-11: A New Optical Method to Register Patient External Motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbes, B; Azcona, J; Moreno, M

    2014-06-01

    Purpose: To devise and implement a new system to measure and register the patient motion during radiotherapy treatments. Methods: The system can obtain the position of several points in the 3D-space, through their projections in the 2D-images recorded by two cameras. The algorithm needs a series of constants, that are obtained using the images of a calibrated phantom.To test the system, some adhesive labels were placed on the surface of an object. Two cameras recorded the moving object over time. An in-house developed software localized the labels in each image. In the first pair of images, the program used amore » first approximation given by the user. In the subsequent images, it used the last position as an approximate location. The final exact coordinates of the point were obtained in a two-step process using the contrast of the images. From the 2D-positions of the point in each frame, the 3D-trajectories of each of these marks were obtained.The system was tested with linear displacements, oscillations of a mechanical oscillator, circular trajectories of a rotating disk, and with respiratory motion of a volunteer. Results: Trajectories of several points were reproduced with sub-millimeter accuracy in the three directions of the space. The system was able to follow periodic motion with amplitudes lower than 0.5mm; and trajectories of rotating points at speeds up to 200mm/s. The software could also track accurately the respiration motion of a person. Conclusion: A new, inexpensive optical tracking system for patient motion has been demonstrated. The system detects motion with high accuracy. Installation and calibration of the system is simple and quick. Data collection is not expected to involve any discomfort for the patient, nor any delay for the treatment. The system could be also used as a method of warning for patient movements, and for gating. We acknowledge financial support from Fundacion Mutua Madrilena, Madrid, Spain.« less

  18. Imprints of the quasar structure in time-delay light curves: Microlensing-aided reverberation mapping

    NASA Astrophysics Data System (ADS)

    Sluse, D.; Tewes, M.

    2014-11-01

    The advent of large area photometric surveys has raised a great deal of interest in the possibility of using broadband photometric data, instead of spectra, to measure the size of the broad line region of active galactic nuclei. We describe here a new method that uses time-delay lensed quasars where one or several images are affected by microlensing due to stars in the lensing galaxy. Because microlensing decreases (or increases) the flux of the continuum compared to the broad line region, it changes the contrast between these two emission components. We show that this effect can be used to effectively disentangle the intrinsic variability of those two regions, offering the opportunity to perform reverberation mapping based on single-band photometric data. Based on simulated light curves generated using a damped random walk model of quasar variability, we show that measurement of the size of the broad line region can be achieved using this method, provided one spectrum has been obtained independently during the monitoring. This method is complementary to photometric reverberation mapping and could also be extended to multi-band data. Because the effect described above produces a variability pattern in difference light curves between pairs of lensed images that is correlated with the time-lagged continuum variability, it can potentially produce systematic errors in measurement of time delays between pairs of lensed images. Simple simulations indicate that time-delay measurement techniques that use a sufficiently flexible model for the extrinsic variability are not affected by this effect and produce accurate time delays.

  19. Time-resolved coherent Raman spectroscopy by high-speed pump-probe delay scanning.

    PubMed

    Domingue, S R; Winters, D G; Bartels, R A

    2014-07-15

    Using a spinning window pump-probe delay scanner, we demonstrate a means of acquiring time-resolved vibrational spectra at rates up to 700 Hz. The time-dependent phase shift accumulated by the probe pulse in the presence of a coherently vibrating sample gives rise to a Raman-induced frequency shifting readily detectable in a balanced detector. This rapid delay scanning system represents a 23-fold increase in averaging speed and is >10× faster than state-of-the-art voice coil delay lines. These advancements make pump-probe spectroscopy a more practical means of imaging complex media.

  20. Wide-Field Imaging Interferometry Spatial-Spectral Image Synthesis Algorithms

    NASA Technical Reports Server (NTRS)

    Lyon, Richard G.; Leisawitz, David T.; Rinehart, Stephen A.; Memarsadeghi, Nargess; Sinukoff, Evan J.

    2012-01-01

    Developed is an algorithmic approach for wide field of view interferometric spatial-spectral image synthesis. The data collected from the interferometer consists of a set of double-Fourier image data cubes, one cube per baseline. These cubes are each three-dimensional consisting of arrays of two-dimensional detector counts versus delay line position. For each baseline a moving delay line allows collection of a large set of interferograms over the 2D wide field detector grid; one sampled interferogram per detector pixel per baseline. This aggregate set of interferograms, is algorithmically processed to construct a single spatial-spectral cube with angular resolution approaching the ratio of the wavelength to longest baseline. The wide field imaging is accomplished by insuring that the range of motion of the delay line encompasses the zero optical path difference fringe for each detector pixel in the desired field-of-view. Each baseline cube is incoherent relative to all other baseline cubes and thus has only phase information relative to itself. This lost phase information is recovered by having point, or otherwise known, sources within the field-of-view. The reference source phase is known and utilized as a constraint to recover the coherent phase relation between the baseline cubes and is key to the image synthesis. Described will be the mathematical formalism, with phase referencing and results will be shown using data collected from NASA/GSFC Wide-Field Imaging Interferometry Testbed (WIIT).

  1. The impact of diagnostic imaging wait times on the prognosis of lung cancer.

    PubMed

    Byrne, Suzanne C; Barrett, Brendan; Bhatia, Rick

    2015-02-01

    This study was performed to determine whether gaps in patient flow from initial lung imaging to computed tomography (CT) guided lung biopsy in patients with non-small cell lung cancer (NSCLC) was associated with a change in tumour size, stage, and thus prognosis. All patients who had a CT-guided lung biopsy in 2009 (phase I) and in 2011 (phase II) with a pathologic diagnosis of primary lung cancer (NSCLC) at Eastern Health, Newfoundland, were identified. Dates of initial abnormal imaging, confirmatory CT (if performed), and CT-guided biopsy were recorded, along with tumour size and resulting T stage at each time point. In 2010, wait times for diagnostic imaging at Eastern Health were reduced. The stage and prognosis of NSCLC in 2009 was compared with 2011. In phase 1, there was a statistically significant increase in tumour size (mean difference, 0.67 cm; P < .0001) and stage (P < .0001) from initial image to biopsy. There was a moderate correlation between the time (in days) between the images and change in size (r = 0.33, P = .008) or stage (r = 0.26, P = .036). In phase II, the median wait time from initial imaging to confirmatory CT was reduced to 7.5 days (from 19 days). At this reduced wait time, there was no statistically significant increase in tumour size (mean difference, 0.02; P > .05) or stage (P > .05) from initial imaging to confirmatory CT. Delays in patient flow through diagnostic imaging resulted in an increase in tumour size and stage, with a negative impact on prognosis of NSCLC. This information contributed to the hiring of additional CT technologists and extended CT hours to decrease the wait time for diagnostic imaging. With reduced wait times, the prognosis of NSCLC was not adversely impacted as patients navigated through diagnostic imaging. Copyright © 2015 Canadian Association of Radiologists. All rights reserved.

  2. A Critique of the DoD Materiel Distribution Study,

    DTIC Science & Technology

    1979-03-01

    are generated on order cycle times by their components: communication times, depot order processing times, depot capacity delay times, and transit...exceeded, the order was placed in one of three priority queues. The order processing time was determined by priority group by depot. A 20-point probability...time was defined to be the sum of communication, depot order processing , depot capacity delay, and transit times. As has been argued, the first three of

  3. A uniform energy consumption algorithm for wireless sensor and actuator networks based on dynamic polling point selection.

    PubMed

    Li, Shuo; Peng, Jun; Liu, Weirong; Zhu, Zhengfa; Lin, Kuo-Chi

    2013-12-19

    Recent research has indicated that using the mobility of the actuator in wireless sensor and actuator networks (WSANs) to achieve mobile data collection can greatly increase the sensor network lifetime. However, mobile data collection may result in unacceptable collection delays in the network if the path of the actuator is too long. Because real-time network applications require meeting data collection delay constraints, planning the path of the actuator is a very important issue to balance the prolongation of the network lifetime and the reduction of the data collection delay. In this paper, a multi-hop routing mobile data collection algorithm is proposed based on dynamic polling point selection with delay constraints to address this issue. The algorithm can actively update the selection of the actuator's polling points according to the sensor nodes' residual energies and their locations while also considering the collection delay constraint. It also dynamically constructs the multi-hop routing trees rooted by these polling points to balance the sensor node energy consumption and the extension of the network lifetime. The effectiveness of the algorithm is validated by simulation.

  4. SAR imaging - Seeing the unseen

    NASA Technical Reports Server (NTRS)

    Kobrick, M.

    1982-01-01

    The functional abilities and operations of synthetic aperture radar (SAR) are described. SAR employs long wavelength radio waves in bursts, imaging a target by 'listening' to the small frequency changes that result from the Doppler shift due to the relative motion of the imaging craft and the motions of the target. The time delay of the signal return allows a determination of the location of the target, leading to the build up of a two-dimensional image. The uses of both Doppler shifts and time delay enable detailed imagery which is independent of distance. The synthetic aperture part of the name of SAR derives from the beaming of multiple pulses, which result in a picture that is effectively the same as using a large antenna. Mechanisms contributing to the fineness of SAR images are outlined.

  5. Design of teleoperation system with a force-reflecting real-time simulator

    NASA Technical Reports Server (NTRS)

    Hirata, Mitsunori; Sato, Yuichi; Nagashima, Fumio; Maruyama, Tsugito

    1994-01-01

    We developed a force-reflecting teleoperation system that uses a real-time graphic simulator. This system eliminates the effects of communication time delays in remote robot manipulation. The simulator provides the operator with predictive display and feedback of computed contact forces through a six-degree of freedom (6-DOF) master arm on a real-time basis. With this system, peg-in-hole tasks involving round-trip communication time delays of up to a few seconds were performed at three support levels: a real image alone, a predictive display with a real image, and a real-time graphic simulator with computed-contact-force reflection and a predictive display. The experimental results indicate the best teleoperation efficiency was achieved by using the force-reflecting simulator with two images. The shortest work time, lowest sensor maximum, and a 100 percent success rate were obtained. These results demonstrate the effectiveness of simulated-force-reflecting teleoperation efficiency.

  6. Influence of nurse navigation on wait times for breast cancer care in a Canadian regional cancer center.

    PubMed

    Baliski, Christopher; McGahan, Colleen E; Liberto, Caitlyn M; Broughton, Sandra; Ellard, Susan; Taylor, Marianne; Bates, Janet; Lai, Anky

    2014-05-01

    The wait times for breast cancer care in our region do not meet acceptable benchmarks. We implemented the Interior Breast Rapid Access Investigation and Diagnosis (IB-RAPID) nurse navigation program to address this issue. The IB-RAPID prospective database was reviewed for patients entering the program between April 1, 2011 and April 30, 2012 (2011/2012 cohort), and was compared with patients from the same area in 2010. The main end point was the time between the 1st diagnostic imaging test and the surgery. Multiple linear regression was performed to investigate factors influencing the wait times. The wait times decreased with the introduction of IB-RAPID (59 vs 48 days; median). Stage of disease, total number of biopsies, and magnetic resonance imaging (MRI) use influenced wait times. MRI significantly delayed surgical intervention in both groups with those not having an MRI having a shorter wait time to surgery (68.5 vs 57.6 days; mean) in 2011/2012. The implementation of nurse navigation for patients with breast cancer appears to be effective at reducing the wait times for surgical treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Effects of stochastic time-delayed feedback on a dynamical system modeling a chemical oscillator.

    PubMed

    González Ochoa, Héctor O; Perales, Gualberto Solís; Epstein, Irving R; Femat, Ricardo

    2018-05-01

    We examine how stochastic time-delayed negative feedback affects the dynamical behavior of a model oscillatory reaction. We apply constant and stochastic time-delayed negative feedbacks to a point Field-Körös-Noyes photosensitive oscillator and compare their effects. Negative feedback is applied in the form of simulated inhibitory electromagnetic radiation with an intensity proportional to the concentration of oxidized light-sensitive catalyst in the oscillator. We first characterize the system under nondelayed inhibitory feedback; then we explore and compare the effects of constant (deterministic) versus stochastic time-delayed feedback. We find that the oscillatory amplitude, frequency, and waveform are essentially preserved when low-dispersion stochastic delayed feedback is used, whereas small but measurable changes appear when a large dispersion is applied.

  8. Effects of stochastic time-delayed feedback on a dynamical system modeling a chemical oscillator

    NASA Astrophysics Data System (ADS)

    González Ochoa, Héctor O.; Perales, Gualberto Solís; Epstein, Irving R.; Femat, Ricardo

    2018-05-01

    We examine how stochastic time-delayed negative feedback affects the dynamical behavior of a model oscillatory reaction. We apply constant and stochastic time-delayed negative feedbacks to a point Field-Körös-Noyes photosensitive oscillator and compare their effects. Negative feedback is applied in the form of simulated inhibitory electromagnetic radiation with an intensity proportional to the concentration of oxidized light-sensitive catalyst in the oscillator. We first characterize the system under nondelayed inhibitory feedback; then we explore and compare the effects of constant (deterministic) versus stochastic time-delayed feedback. We find that the oscillatory amplitude, frequency, and waveform are essentially preserved when low-dispersion stochastic delayed feedback is used, whereas small but measurable changes appear when a large dispersion is applied.

  9. Streak camera based SLR receiver for two color atmospheric measurements

    NASA Technical Reports Server (NTRS)

    Varghese, Thomas K.; Clarke, Christopher; Oldham, Thomas; Selden, Michael

    1993-01-01

    To realize accurate two-color differential measurements, an image digitizing system with variable spatial resolution was designed, built, and integrated to a photon-counting picosecond streak camera, yielding a temporal scan resolution better than 300 femtosecond/pixel. The streak camera is configured to operate with 3 spatial channels; two of these support green (532 nm) and uv (355 nm) while the third accommodates reference pulses (764 nm) for real-time calibration. Critical parameters affecting differential timing accuracy such as pulse width and shape, number of received photons, streak camera/imaging system nonlinearities, dynamic range, and noise characteristics were investigated to optimize the system for accurate differential delay measurements. The streak camera output image consists of three image fields, each field is 1024 pixels along the time axis and 16 pixels across the spatial axis. Each of the image fields may be independently positioned across the spatial axis. Two of the image fields are used for the two wavelengths used in the experiment; the third window measures the temporal separation of a pair of diode laser pulses which verify the streak camera sweep speed for each data frame. The sum of the 16 pixel intensities across each of the 1024 temporal positions for the three data windows is used to extract the three waveforms. The waveform data is processed using an iterative three-point running average filter (10 to 30 iterations are used) to remove high-frequency structure. The pulse pair separations are determined using the half-max and centroid type analysis. Rigorous experimental verification has demonstrated that this simplified process provides the best measurement accuracy. To calibrate the receiver system sweep, two laser pulses with precisely known temporal separation are scanned along the full length of the sweep axis. The experimental measurements are then modeled using polynomial regression to obtain a best fit to the data. Data aggregation using normal point approach has provided accurate data fitting techniques and is found to be much more convenient than using the full rate single shot data. The systematic errors from this model have been found to be less than 3 ps for normal points.

  10. Time resolved optical diagnostics of ZnO plasma plumes in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Shyam L.; Singh, Ravi Pratap; Thareja, Raj K.

    2013-10-15

    We report dynamical evolution of laser ablated ZnO plasma plumes using interferometry and shadowgraphy; 2-D fast imaging and optical emission spectroscopy in air ambient at atmospheric pressure. Recorded interferograms using Nomarski interferometer and shadowgram images at various time delays show the presence of electrons and neutrals in the ablated plumes. The inference drawn from sign change of fringe shifts is consistent with two dimensional images of the plume and optical emission spectra at varying time delays with respect to ablating pulse. Zinc oxide plasma plumes are created by focusing 1.06 μm radiation on to ZnO target in air and 532more » nm is used as probe beam.« less

  11. Advanced Photon Counting Imaging Detectors with 100ps Timing for Astronomical and Space Sensing Applications

    NASA Astrophysics Data System (ADS)

    Siegmund, O.; Vallerga, J.; Welsh, B.; Rabin, M.; Bloch, J.

    In recent years EAG has implemented a variety of high-resolution, large format, photon-counting MCP detectors in space instrumentation for satellite FUSE, GALEX, IMAGE, SOHO, HST-COS, rocket, and shuttle payloads. Our scheme of choice has been delay line readouts encoding photon event position centroids, by determination of the difference in arrival time of the event charge at the two ends of a distributed resistive-capacitive (RC) delay line. Our most commonly used delay line configuration is the cross delay line (XDL). In its simplest form the delay-line encoding electronics consists of a fast amplifier for each end of the delay line, followed by time-to-digital converters (TDC's). We have achieved resolutions of < 25 μm in tests over 65 mm x 65 mm (3k x3k resolution elements) with excellent linearity. Using high speed TDC's, we have been able to encode event positions for random photon rates of ~1 MHz, while time tagging events using the MCP output signal to better than 100 ps. The unique ability to record photon X,Y,T high fidelity information has advantages over "frame driven" recording devices for some important applications. For example we have built open face and sealed tube cross delay line detectors used for biological fluorescence lifetime imaging, observation of flare stars, orbital satellites and space debris with the GALEX satellite, and time resolved imaging of the Crab Pulsar with a telescope as small as 1m. Although microchannel plate delay line detectors meet many of the imaging and timing demands of various applications, they have limitations. The relatively high gain (107) reduces lifetime and local counting rate, and the fixed delay (10's of ns) makes multiple simultaneous event recording problematic. To overcome these limitations we have begun development of cross strip readout anodes for microchannel plate detectors. The cross strip (XS) anode is a coarse (~0.5 mm) multi-layer metal and ceramic pattern of crossed fingers on an alumina substrate. The charge cloud is matched to the anode period so that it is collected on several neighboring fingers to ensure an accurate event charge centroid can be determined. Each finger of the anode is connected to a low noise charge sensitive amplifier and followed by subsequent A/D conversion of individual strip charge values and a hardware centroid determination of better than 1/100 of a strip are possible. Recently we have commissioned a full 32 x 32 mm XS open face laboratory detector and demonstrated excellent resolution (<6 μm FWHM, ~5k x 5k resolution) using low MCP gain (<5 x 105) thus increasing the MCP local counting rate capacity and overall lifetime of the detector system. In collaboration with Los Alamos National Laboratory, NASA and NSF we are developing high rate (>107 Hz) XS encoding electronics that will encode temporally simultaneous events (non spatially overlapping). Sealed tube XS detectors with GaAs and other photocathodes are also under development to increase detection efficiency and extend the sensitivity range. This type of sensor could be a significant enabling technology for several important applications, including airborne and space situational awareness, high-speed adaptive optics (by increasing the SNR and speed in the control loop), astronomy of transient and time-variable sources, optical metrology, and secure quantum communication (as a receiver of cryptographic keys for three-dimensional imaging), single-molecule fluorescence lifetime microscopy (simultaneously tracking and measuring ~1000 molecules), optical/NIR LIDAR, hybrid mass spectrometry and optical night-time/reconnaissance (LANL-ASPIRE).

  12. H0LiCOW – IV. Lens mass model of HE 0435-1223 and blind measurement of its time-delay distance for cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Kenneth C.; Suyu, Sherry H.; Auger, Matthew W.

    Strong gravitational lenses with measured time delays between the multiple images allow a direct measurement of the time-delay distance to the lens, and thus a measure of cosmological parameters, particularly the Hubble constant, H0. We present a blind lens model analysis of the quadruply imaged quasar lens HE 0435-1223 using deep Hubble Space Telescope imaging, updated time-delay measurements from the COSmological MOnitoring of GRAvItational Lenses (COSMOGRAIL), a measurement of the velocity dispersion of the lens galaxy based on Keck data, and a characterization of the mass distribution along the line of sight. HE 0435-1223 is the third lens analysed as a part of the H0 Lenses in COSMOGRAIL's Wellspring (H0LiCOW) project. We account for various sources of systematic uncertainty, including the detailed treatment of nearby perturbers, the parametrization of the galaxy light and mass profile, and the regions used for lens modelling. We constrain the effective time-delay distance to be D Δt=2612more » $$+208\\atop{-191}$$Mpc, a precision of 7.6 per cent. From HE 0435-1223 alone, we infer a Hubble constant of H 0=73.1$$+5.7\\atop{-6.0}$$kms -1Mpc -1 assuming a flat ΛCDM cosmology. Lastly, the cosmographic inference based on the three lenses analysed by H0LiCOW to date is presented in a companion paper (H0LiCOW Paper V).« less

  13. H0LiCOW – IV. Lens mass model of HE 0435-1223 and blind measurement of its time-delay distance for cosmology

    DOE PAGES

    Wong, Kenneth C.; Suyu, Sherry H.; Auger, Matthew W.; ...

    2016-11-29

    Strong gravitational lenses with measured time delays between the multiple images allow a direct measurement of the time-delay distance to the lens, and thus a measure of cosmological parameters, particularly the Hubble constant, H0. We present a blind lens model analysis of the quadruply imaged quasar lens HE 0435-1223 using deep Hubble Space Telescope imaging, updated time-delay measurements from the COSmological MOnitoring of GRAvItational Lenses (COSMOGRAIL), a measurement of the velocity dispersion of the lens galaxy based on Keck data, and a characterization of the mass distribution along the line of sight. HE 0435-1223 is the third lens analysed as a part of the H0 Lenses in COSMOGRAIL's Wellspring (H0LiCOW) project. We account for various sources of systematic uncertainty, including the detailed treatment of nearby perturbers, the parametrization of the galaxy light and mass profile, and the regions used for lens modelling. We constrain the effective time-delay distance to be D Δt=2612more » $$+208\\atop{-191}$$Mpc, a precision of 7.6 per cent. From HE 0435-1223 alone, we infer a Hubble constant of H 0=73.1$$+5.7\\atop{-6.0}$$kms -1Mpc -1 assuming a flat ΛCDM cosmology. Lastly, the cosmographic inference based on the three lenses analysed by H0LiCOW to date is presented in a companion paper (H0LiCOW Paper V).« less

  14. EVALUATION OF THE EFFECTS OF PROCESSING DELAYS AND PROTECTIVE PLASTIC CASES ON IMAGE QUALITY OF A PHOTOSTIMULABLE PHOSPHOR PLATE SYSTEM

    PubMed Central

    Bramante, Clóvis Monteiro; Bramante, Alexandre Silva; de Souza, Rogério Emílio; Moraes, Ivaldo Gomes; Bernardineli, Norberti; Garcia, Roberto Brandão

    2008-01-01

    This ex vivo study evaluated the quality of digital radiographic images obtained with the photostimulable phosphor plate system (Digora) according to the processing delay and maintenance of optical plates in either opaque (supplied with the system) or transparent protective plastic cases during this period. Five radiographs were obtained from the mandibular molar region of a dry human mandible using optical plates. These plates were placed in the protective plastic cases before obtaining the radiographs and were processed immediately or after processing delays of 5, 60 and 120 min, when the case was removed. The results revealed a reduction in image quality when processing was delay 120 min compared to the other times. The opaque case provided better protection to the sensor than the transparent case. In conclusion, a 120-min processing delay for the Digora system caused a reduction in image quality, yet without interfering with the quality of diagnosis. The opaque case supplied by the system's manufacturer provided better protection to the optical plate than the transparent case. PMID:19089233

  15. Gravitational lensing, time delay, and gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Mao, Shude

    1992-01-01

    The probability distributions of time delay in gravitational lensing by point masses and isolated galaxies (modeled as singular isothermal spheres) are studied. For point lenses (all with the same mass) the probability distribution is broad, and with a peak at delta(t) of about 50 S; for singular isothermal spheres, the probability distribution is a rapidly decreasing function with increasing time delay, with a median delta(t) equals about 1/h month, and its behavior depends sensitively on the luminosity function of galaxies. The present simplified calculation is particularly relevant to the gamma-ray bursts if they are of cosmological origin. The frequency of 'recurrent' bursts due to gravitational lensing by galaxies is probably between 0.05 and 0.4 percent. Gravitational lensing can be used as a test of the cosmological origin of gamma-ray bursts.

  16. Time delay in Swiss cheese gravitational lensing

    NASA Astrophysics Data System (ADS)

    Chen, B.; Kantowski, R.; Dai, X.

    2010-08-01

    We compute time delays for gravitational lensing in a flat Λ dominated cold dark matter Swiss cheese universe. We assume a primary and secondary pair of light rays are deflected by a single point mass condensation described by a Kottler metric (Schwarzschild with Λ) embedded in an otherwise homogeneous cosmology. We find that the cosmological constant’s effect on the difference in arrival times is nonlinear and at most around 0.002% for a large cluster lens; however, we find differences from time delays predicted by conventional linear lensing theory that can reach ˜4% for these large lenses. The differences in predicted delay times are due to the failure of conventional lensing to incorporate the lensing mass into the mean mass density of the universe.

  17. Evaluation of a Delay-Doppler Imaging Algorithm Based on the Wigner-Ville Distribution

    DTIC Science & Technology

    1989-10-18

    exchanging the frequency and time variables. 2.3 PROPERTIES OF THE WIGNER - VILLE DISTRIBUTION A partial list of the properties of the WVD is provided...ESD-TH-89-163 N Technical Report (N R55 00 Lfl Evaluation of a Delay-Doppler Imaging Algorithm Based on the Wigner - Ville Distribution K.I. Schultz 18...DOPPLER IMAGING ALGORITHM BASED ON THE WIGNER - VILLE DISTRIBUTION K.I. SCHULTZ Group 52 TECHNICAL REPORT 855 18 OCTOBER 1989 Approved for public release

  18. Full image-processing pipeline in field-programmable gate array for a small endoscopic camera

    NASA Astrophysics Data System (ADS)

    Mostafa, Sheikh Shanawaz; Sousa, L. Natércia; Ferreira, Nuno Fábio; Sousa, Ricardo M.; Santos, Joao; Wäny, Martin; Morgado-Dias, F.

    2017-01-01

    Endoscopy is an imaging procedure used for diagnosis as well as for some surgical purposes. The camera used for the endoscopy should be small and able to produce a good quality image or video, to reduce discomfort of the patients, and to increase the efficiency of the medical team. To achieve these fundamental goals, a small endoscopy camera with a footprint of 1 mm×1 mm×1.65 mm is used. Due to the physical properties of the sensors and human vision system limitations, different image-processing algorithms, such as noise reduction, demosaicking, and gamma correction, among others, are needed to faithfully reproduce the image or video. A full image-processing pipeline is implemented using a field-programmable gate array (FPGA) to accomplish a high frame rate of 60 fps with minimum processing delay. Along with this, a viewer has also been developed to display and control the image-processing pipeline. The control and data transfer are done by a USB 3.0 end point in the computer. The full developed system achieves real-time processing of the image and fits in a Xilinx Spartan-6LX150 FPGA.

  19. Protection by an oral disubstituted hydroxylamine derivative against loss of retinal ganglion cell differentiation following optic nerve crush.

    PubMed

    Lindsey, James D; Duong-Polk, Karen X; Dai, Yi; Nguyen, Duy H; Leung, Christopher K; Weinreb, Robert N

    2013-01-01

    Thy-1 is a cell surface protein that is expressed during the differentiation of retinal ganglion cells (RGCs). Optic nerve injury induces progressive loss in the number of RGCs expressing Thy-1. The rate of this loss is fastest during the first week after optic nerve injury and slower in subsequent weeks. This study was undertaken to determine whether oral treatment with a water-soluble N-hydroxy-2,2,6,6-tetramethylpiperidine derivative (OT-440) protects against loss of Thy-1 promoter activation following optic nerve crush and whether this effect targets the earlier quick phase or the later slow phase. The retina of mice expressing cyan fluorescent protein under control of the Thy-1 promoter (Thy1-CFP mice) was imaged using a blue-light confocal scanning laser ophthalmoscope (bCSLO). These mice then received oral OT-440 prepared in cream cheese or dissolved in water, or plain vehicle, for two weeks and were imaged again prior to unilateral optic nerve crush. Treatments and weekly imaging continued for four more weeks. Fluorescent neurons were counted in the same defined retinal areas imaged at each time point in a masked fashion. When the counts at each time point were directly compared, the numbers of fluorescent cells at each time point were greater in the animals that received OT-440 in cream cheese by 8%, 27%, 52% and 60% than in corresponding control animals at 1, 2, 3 and 4 weeks after optic nerve crush. Similar results were obtained when the vehicle was water. Rate analysis indicated the protective effect of OT-440 was greatest during the first two weeks and was maintained in the second two weeks after crush for both the cream cheese vehicle study and water vehicle study. Because most of the fluorescent cells detected by bCSLO are RGCs, these findings suggest that oral OT-440 can either protect against or delay early degenerative responses occurring in RGCs following optic nerve injury.

  20. Analyzing Impact Factors of Airport Taxiing Delay Based on Ads-B Data

    NASA Astrophysics Data System (ADS)

    Li, J.; Wang, X.; Xu, Y.; Li, Q.; He, C.; Li, Y.

    2017-09-01

    Identifying the factors that cause taxiing delay on airports is a prerequisite for optimizing aircraft taxiing schemes, and helps improve the efficiency of taxiing system. Few of current studies had quantified the potential influencing factors and further investigated their intrinsic relationship. In view of these problems, this paper uses ADS-B data to calculate taxiing delay time by restoring taxiing route and identifying key status points, and further analyzes the impact factors of airport taxiing delay by investigating the relationship between delay time and environmental data such as weather, wind, visibility etc. The case study in Guangzhou Baiyun Airport validates the effectiveness of the proposed method.

  1. Verification of the Solar Dynamics Observatory High Gain Antenna Pointing Algorithm Using Flight Data

    NASA Technical Reports Server (NTRS)

    Bourkland, Kristin L.; Liu, Kuo-Chia

    2011-01-01

    The Solar Dynamics Observatory (SDO) is a NASA spacecraft designed to study the Sun. It was launched on February 11, 2010 into a geosynchronous orbit, and uses a suite of attitude sensors and actuators to finely point the spacecraft at the Sun. SDO has three science instruments: the Atmospheric Imaging Assembly (AIA), the Helioseismic and Magnetic Imager (HMI), and the Extreme Ultraviolet Variability Experiment (EVE). SDO uses two High Gain Antennas (HGAs) to send science data to a dedicated ground station in White Sands, New Mexico. In order to meet the science data capture budget, the HGAs must be able to transmit data to the ground for a very large percentage of the time. Each HGA is a dual-axis antenna driven by stepper motors. Both antennas transmit data at all times, but only a single antenna is required in order to meet the transmission rate requirement. For portions of the year, one antenna or the other has an unobstructed view of the White Sands ground station. During other periods, however, the view from both antennas to the Earth is blocked for different portions of the day. During these times of blockage, the two HGAs take turns pointing to White Sands, with the other antenna pointing out to space. The HGAs handover White Sands transmission responsibilities to the unblocked antenna. There are two handover seasons per year, each lasting about 72 days, where the antennas hand off control every twelve hours. The non-tracking antenna slews back to the ground station by following a ground commanded trajectory and arrives approximately 5 minutes before the formerly tracking antenna slews away to point out into space. The SDO Attitude Control System (ACS) runs at 5 Hz, and the HGA Gimbal Control Electronics (GCE) run at 200 Hz. There are 40 opportunities for the gimbals to step each ACS cycle, with a hardware limitation of no more than one step every three GCE cycles. The ACS calculates the desired gimbal motion for tracking the ground station or for slewing, and sends the command to the GCE at 5 Hz. This command contains the number of gimbals steps for that ACS cycle, the direction of motion, the spacing of the steps, and the delay before taking the first step. The AIA and HMI instruments are sensitive to spacecraft jitter. Pre-flight analysis showed that jitter from the motion of the HGAs was a cause of concern. Three jitter mitigation techniques were developed to overcome the effects of jitter from different sources. The first method is the random step delay, which avoids gimbal steps hitting a cadence on a jitter-critical mode by pseudo-randomly delaying the first gimbal step in an ACS cycle. The second method of jitter mitigation is stagger stepping, which forbids the two antennas from taking steps during the same ACS cycle in order to avoid constructively adding jitter from two antennas. The third method is the inclusion of an instrument No Step Request (NSR), which allows the instruments to request a stoppage in gimbal stepping during the times when they are taking images. During the commissioning phase of the mission, a jitter test was performed onboard the spacecraft. Various sources of jitter, such as the reaction wheels, the High Gain Antenna motors, and the motion of the instrument filter wheels, were examined to determine the level of their effect on the instruments. During the HGA portion of the test, the jitter amplitudes from the single step of a gimbal were examined, as well as the amplitudes due to the execution of various gimbal rates. These jitter levels are compared with the gimbal jitter allocations for each instrument. Additionally, the jitter test provided insight into a readback delay that exists with the GCE. Pre-flight analysis suggested that gimbal steps scheduled to occur during the later portion of an ACS cycle would not be read during that cycle, resulting in a delay in the telemetered current gimbal position. Flight data from the jitter test confirmed this expectation. Analysis is presentehat shows the readback delay does not have a negative impact on gimbal control. The decision was made to consider implementing two of the jitter mitigation techniques on board the spacecraft: stagger stepping and the NSR. Flight data from two sets of handovers, one set without jitter mitigation and the other with mitigation enabled, were examined. The trajectory of the predicted handover was compared with the measured trajectory for the two cases, showing that tracking was not negatively impacted with the addition of the jitter mitigation techniques. Additionally, the individual gimbal steps were examined, and it was confirmed that the stagger stepping and NSRs worked as designed. An Image Quality Test was performed to determine the amount of cumulative jitter from the reaction wheels, HGAs, and instruments during various combinations of typical operations. In this paper, the flight results are examined from a test where the HGAs are following the path of a nominal handover with stagger stepping on and HMI NSRs enabled. In this case, the reaction wheels are moving at low speed and the instruments are taking pictures in their standard sequence. The flight data shows the level of jitter that the instruments see when their shutters are open. The HGA-induced jitter is well within the jitter requirement when the stagger step and NSR mitigation options are enabled. The SDO HGA pointing algorithm was designed to achieve nominal antenna pointing at the ground station, perform slews during handover season, and provide three HGA-induced jitter mitigation options without compromising pointing objectives. During the commissioning phase, flight data sets were collected to verify the HGA pointing algorithm and demonstrate its jitter mitigation capabilities.

  2. Annual longitudinal survey at up to five time points reveals reciprocal effects of bedtime delay and depression/anxiety in adolescents.

    PubMed

    Tochigi, Mamoru; Usami, Satoshi; Matamura, Misato; Kitagawa, Yuko; Fukushima, Masako; Yonehara, Hiromi; Togo, Fumiharu; Nishida, Atsushi; Sasaki, Tsukasa

    2016-01-01

    To investigate the longitudinal relationship between sleep habits and mental health in adolescents. Multipoint observation data of up to five years were employed from a prospective cohort study of sleep habits and mental health status conducted from 2009 to 2013 in a unified junior and senior high school (grades 7-12) in Tokyo, Japan. A total of 1078 students answered a self-report questionnaire, including items on usual bed and wake-up times on school days, and the Japanese version of the 12-item General Health Questionnaire (GHQ-12). Latent growth model (LGM) analysis, which requires three or more time point data, showed that longitudinal changes in bedtime and GHQ-12 score (or score for depression/anxiety) were significantly and moderately correlated (correlation coefficient = 0.510, p < 0.05). Another result of interest was that, using an autoregressive cross-lagged (ARCL) model, bedtime and the depression/anxiety score had reciprocal effects the following year: ie, bedtime significantly affects the following year's depression/anxiety, and vice versa. In addition, the analysis provided estimates of mutually predicted changes: one-hour bedtime delay may worsen the GHQ-12 score by 0.2 points, and one-point worsening of the score may delay bedtime by 2.2 minutes. By using up to five multiple time point data, the present study confirms the correlational and reciprocally longitudinal relationship between bedtime delay and mental health status in Japanese adolescents. The results indicate that preventing late bedtime may have a significant effect on improving mental health in adolescents. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Electro-Optical Imaging Fourier-Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Zhou, Hanying

    2006-01-01

    An electro-optical (E-O) imaging Fourier-transform spectrometer (IFTS), now under development, is a prototype of improved imaging spectrometers to be used for hyperspectral imaging, especially in the infrared spectral region. Unlike both imaging and non-imaging traditional Fourier-transform spectrometers, the E-O IFTS does not contain any moving parts. Elimination of the moving parts and the associated actuator mechanisms and supporting structures would increase reliability while enabling reductions in size and mass, relative to traditional Fourier-transform spectrometers that offer equivalent capabilities. Elimination of moving parts would also eliminate the vibrations caused by the motions of those parts. Figure 1 schematically depicts a traditional Fourier-transform spectrometer, wherein a critical time delay is varied by translating one the mirrors of a Michelson interferometer. The time-dependent optical output is a periodic representation of the input spectrum. Data characterizing the input spectrum are generated through fast-Fourier-transform (FFT) post-processing of the output in conjunction with the varying time delay.

  4. Stabilizing embedology: Geometry-preserving delay-coordinate maps

    NASA Astrophysics Data System (ADS)

    Eftekhari, Armin; Yap, Han Lun; Wakin, Michael B.; Rozell, Christopher J.

    2018-02-01

    Delay-coordinate mapping is an effective and widely used technique for reconstructing and analyzing the dynamics of a nonlinear system based on time-series outputs. The efficacy of delay-coordinate mapping has long been supported by Takens' embedding theorem, which guarantees that delay-coordinate maps use the time-series output to provide a reconstruction of the hidden state space that is a one-to-one embedding of the system's attractor. While this topological guarantee ensures that distinct points in the reconstruction correspond to distinct points in the original state space, it does not characterize the quality of this embedding or illuminate how the specific parameters affect the reconstruction. In this paper, we extend Takens' result by establishing conditions under which delay-coordinate mapping is guaranteed to provide a stable embedding of a system's attractor. Beyond only preserving the attractor topology, a stable embedding preserves the attractor geometry by ensuring that distances between points in the state space are approximately preserved. In particular, we find that delay-coordinate mapping stably embeds an attractor of a dynamical system if the stable rank of the system is large enough to be proportional to the dimension of the attractor. The stable rank reflects the relation between the sampling interval and the number of delays in delay-coordinate mapping. Our theoretical findings give guidance to choosing system parameters, echoing the tradeoff between irrelevancy and redundancy that has been heuristically investigated in the literature. Our initial result is stated for attractors that are smooth submanifolds of Euclidean space, with extensions provided for the case of strange attractors.

  5. Stabilizing embedology: Geometry-preserving delay-coordinate maps.

    PubMed

    Eftekhari, Armin; Yap, Han Lun; Wakin, Michael B; Rozell, Christopher J

    2018-02-01

    Delay-coordinate mapping is an effective and widely used technique for reconstructing and analyzing the dynamics of a nonlinear system based on time-series outputs. The efficacy of delay-coordinate mapping has long been supported by Takens' embedding theorem, which guarantees that delay-coordinate maps use the time-series output to provide a reconstruction of the hidden state space that is a one-to-one embedding of the system's attractor. While this topological guarantee ensures that distinct points in the reconstruction correspond to distinct points in the original state space, it does not characterize the quality of this embedding or illuminate how the specific parameters affect the reconstruction. In this paper, we extend Takens' result by establishing conditions under which delay-coordinate mapping is guaranteed to provide a stable embedding of a system's attractor. Beyond only preserving the attractor topology, a stable embedding preserves the attractor geometry by ensuring that distances between points in the state space are approximately preserved. In particular, we find that delay-coordinate mapping stably embeds an attractor of a dynamical system if the stable rank of the system is large enough to be proportional to the dimension of the attractor. The stable rank reflects the relation between the sampling interval and the number of delays in delay-coordinate mapping. Our theoretical findings give guidance to choosing system parameters, echoing the tradeoff between irrelevancy and redundancy that has been heuristically investigated in the literature. Our initial result is stated for attractors that are smooth submanifolds of Euclidean space, with extensions provided for the case of strange attractors.

  6. The feasibility of the auto tuning respiratory compensation system with ultrasonic image tracking technique.

    PubMed

    Chuang, Ho-Chiao; Hsu, Hsiao-Yu; Nieh, Shu-Kan; Tien, Der-Chi

    2015-01-01

    The purpose of this study is to assess the feasibility of using the analytical technique of ultrasound images in combination with an auto tumor localization system. During respiration, the activity of breathing in and out causes organs displacement at the lower lobe of the lung, and the maximum displacement range happens in the Superior-Inferior (SI) direction. Therefore, in this study all the tumor positioning is in SI direction under respiratory compensation, in which the compensations are carried out to the organs at the lower lobe and adjacent to the lower lobe of lung.In this research, due to the processes of ultrasound imaging generation, image analysis and signal transmission, when the captured respiratory signals are sent to auto tumor localization system, there was a signal time delay. The total delay time of the entire signal transmission process was 0.254 ± 0.023 seconds (with the lowest standard deviation) after implementing a series of analyses. To compensate for this signal delay time (0.254 ± 0.023 sec), a phase lead compensator (PLC) was designed and built into the auto tumor localization system. By analyzing the impact of the delay time and the respiratory waveforms under different frequencies on the phase lead compensator, an overall system delay time can be configured. Results showed as the respiratory frequency increased, variable value ``a'' and the subsequent gain ``k'' in the controller becomes larger. Moreover, value ``a'' and ``k'' increased as the system delay time increased when the respiratory frequency was fixed. The relationship of value ``a'' and ``k'' to the respiratory frequency can be obtained by using the curve fitting method to compensate for the respiratory motion for tumor localization. Through the comparison of the uncompensated signal and the compensated signal performed by the auto tumor localization system on the simulated respiratory signal, the feasibility of using ultrasound image analysis technology combined with the developed auto tumor localization system can be evaluated. The results show that the simulated respiratory signals under different frequencies of 0.5, 0.333, 0.25, 0.2 and 0.167 Hz with phase lead compensators were improved and stabilized. The compensation rate increased to the range of 7.04$∼ $18.82%, and the final compensation rate is about 97%. Therefore the auto tumor localization system combined with the ultrasound image analysis techniques is feasible.In this study, the developed ultrasound image analysis techniques combined into the auto tumor localization system has the following four advantages: (1) It is a non-invasive way (ultrasonic images) to monitor the entire compensating process of the active respiration instead of using a C-arm (invasive) to observe the organs motion. (2) During radiation therapy, the whole treatment process can be continuous, which can save the overall treatment time. (3) It is an independent system, which can be mounted onto any treatment couch. (4) Users can operate this system easily without the need of prior complicated training process.

  7. Performance of an extended dynamic range time delay integration charge coupled device (XDR TDI CCD) for high-intrascene dynamic range scanning

    NASA Astrophysics Data System (ADS)

    Levine, Peter A.; Dawson, Robin M.; Andrews, James T.; Bhaskaran, Mahalingham; Furst, David; Hsueh, Fu-Lung; Meray, Grazyna M.; Sudol, Thomas M.; Swain, Pradyumna K.; Tower, John R.

    2003-05-01

    Many applications, such as industrial inspection and overhead reconnaissance benefit from line scanning architectures where time delay integration (TDI) significantly improves sensitivity. CCDs are particularly well suited to the TDI architecture since charge is transferred virtually noiselessly down the column. Sarnoff's TDI CCDs have demonstrated extremely high speeds where a 7200 x 64, 8 um pixel device with 120 output ports demonstrated a vertical line transfer rate greater than 800 kHz. The most recent addition to Sarnoff's TDI technology is the implementation of extended dynamic range (XDR) in high speed, back illuminated TDI CCDs. The optical, intrascene dynamic range can be adjusted in the design of the imager with measured dynamic ranges exceeding 2,000,000:1 with no degradation in low light performance. The device provides a piecewise linear response to light where multiple slopes and break points can be set during the CCD design. A description of the device architecture and measured results from fabricated XDR TDI CCDs are presented.

  8. Global asymptotic stability of hybrid bidirectional associative memory neural networks with time delays

    NASA Astrophysics Data System (ADS)

    Arik, Sabri

    2006-02-01

    This Letter presents a sufficient condition for the existence, uniqueness and global asymptotic stability of the equilibrium point for bidirectional associative memory (BAM) neural networks with distributed time delays. The results impose constraint conditions on the network parameters of neural system independently of the delay parameter, and they are applicable to all bounded continuous non-monotonic neuron activation functions. The results are also compared with the previous results derived in the literature.

  9. Characteristics of nonlinear imaging of broadband laser stacked by chirped pulses

    NASA Astrophysics Data System (ADS)

    Wang, Youwen; You, Kaiming; Chen, Liezun; Lu, Shizhuan; Dai, Zhiping; Ling, Xiaohui

    2014-11-01

    Nanosecond-level pulses of specific shape is usually generated by stacking chirped pulses for high-power inertial confinement fusion driver, in which nonlinear imaging of scatterers may damage precious optical elements. We present a numerical study of the characteristics of nonlinear imaging of scatterers in broadband laser stacked by chirped pulses to disclose the dependence of location and intensity of images on the parameters of the stacked pulse. It is shown that, for sub-nanosecond long sub-pulses with chirp or transform-limited sub-pulses, the time-mean intensity and location of images through normally dispersive and anomalously dispersive self-focusing medium slab are almost identical; While for picosecond-level short sub-pulses with chirp, the time-mean intensity of images for weak normal dispersion is slightly higher than that for weak anomalous dispersion through a thin nonlinear slab; the result is opposite to that for strong dispersion in a thick nonlinear slab; Furthermore, for given time delay between neighboring sub-pulses, the time-mean intensity of images varies periodically with chirp of the sub-pulse increasing; for a given pulse width of sub-pulse, the time-mean intensity of images decreases with the time delay between neighboring sub-pulses increasing; additionally, there is a little difference in the time-mean intensity of images of the laser stacked by different numbers of sub-pulses. Finally, the obtained results are also given physical explanations.

  10. High speed, real-time, camera bandwidth converter

    DOEpatents

    Bower, Dan E; Bloom, David A; Curry, James R

    2014-10-21

    Image data from a CMOS sensor with 10 bit resolution is reformatted in real time to allow the data to stream through communications equipment that is designed to transport data with 8 bit resolution. The incoming image data has 10 bit resolution. The communication equipment can transport image data with 8 bit resolution. Image data with 10 bit resolution is transmitted in real-time, without a frame delay, through the communication equipment by reformatting the image data.

  11. Revised Lens Model and Predictions of Time Delay for the Multiply Imaged Lensed Supernova, “SN Refsdal”, in the FF cluster MACS J1149+2223

    NASA Astrophysics Data System (ADS)

    Sharon, Keren; Johnson, Traci Lin

    2015-08-01

    We present a revised lens model of MACS J1149+2223, in which the first resolved multiply imaged lensed supernova (SN) was discovered. The lens model is based on the model of Johnson et al. with some modifications. We include more lensing constraints from the host galaxy of the newly discovered SN, and increase the flexibility of the model in order to better reproduce the lensing signal in the vicinity of this galaxy. The revised model accurately reconstructs the positions of the lensed SN, provides magnifications, predicts the time delay between the instances of the SN, and derive their uncertainties. We find that the time delays between the four observed images are a few days: t(S2) = 2 +10/-6 days, t(S3)=-5 +13/-7 days, t(S4)=7 +16/-3 days. At the positions of the other images of the same host galaxy, an image of the SN had appeared on the opposite side of the cluster some 11-13 years ago, and another is predicted to appear approximately 180-280 days after S1, i.e., in a 3-month window around July 2015. This image will be less magnified than the ones already detected, with magnification of mu=5 (compared to mu~10-20 of the four images that were observed in 2014, making it about three times fainter). Finally, we reconstruct the source image of the host galaxy, and position the SN on one of its spiral arms. New lensing constraints from the full depth FF imaging will improve the accuracy of future lens models. Products of this lens model are available to the community through MAST.

  12. VDES J2325-5229 a z = 2.7 gravitationally lensed quasar discovered using morphology-independent supervised machine learning

    NASA Astrophysics Data System (ADS)

    Ostrovski, Fernanda; McMahon, Richard G.; Connolly, Andrew J.; Lemon, Cameron A.; Auger, Matthew W.; Banerji, Manda; Hung, Johnathan M.; Koposov, Sergey E.; Lidman, Christopher E.; Reed, Sophie L.; Allam, Sahar; Benoit-Lévy, Aurélien; Bertin, Emmanuel; Brooks, David; Buckley-Geer, Elizabeth; Carnero Rosell, Aurelio; Carrasco Kind, Matias; Carretero, Jorge; Cunha, Carlos E.; da Costa, Luiz N.; Desai, Shantanu; Diehl, H. Thomas; Dietrich, Jörg P.; Evrard, August E.; Finley, David A.; Flaugher, Brenna; Fosalba, Pablo; Frieman, Josh; Gerdes, David W.; Goldstein, Daniel A.; Gruen, Daniel; Gruendl, Robert A.; Gutierrez, Gaston; Honscheid, Klaus; James, David J.; Kuehn, Kyler; Kuropatkin, Nikolay; Lima, Marcos; Lin, Huan; Maia, Marcio A. G.; Marshall, Jennifer L.; Martini, Paul; Melchior, Peter; Miquel, Ramon; Ogando, Ricardo; Plazas Malagón, Andrés; Reil, Kevin; Romer, Kathy; Sanchez, Eusebio; Santiago, Basilio; Scarpine, Vic; Sevilla-Noarbe, Ignacio; Soares-Santos, Marcelle; Sobreira, Flavia; Suchyta, Eric; Tarle, Gregory; Thomas, Daniel; Tucker, Douglas L.; Walker, Alistair R.

    2017-03-01

    We present the discovery and preliminary characterization of a gravitationally lensed quasar with a source redshift zs = 2.74 and image separation of 2.9 arcsec lensed by a foreground zl = 0.40 elliptical galaxy. Since optical observations of gravitationally lensed quasars show the lens system as a superposition of multiple point sources and a foreground lensing galaxy, we have developed a morphology-independent multi-wavelength approach to the photometric selection of lensed quasar candidates based on Gaussian Mixture Models (GMM) supervised machine learning. Using this technique and gi multicolour photometric observations from the Dark Energy Survey (DES), near-IR JK photometry from the VISTA Hemisphere Survey (VHS) and WISE mid-IR photometry, we have identified a candidate system with two catalogue components with IAB = 18.61 and IAB = 20.44 comprising an elliptical galaxy and two blue point sources. Spectroscopic follow-up with NTT and the use of an archival AAT spectrum show that the point sources can be identified as a lensed quasar with an emission line redshift of z = 2.739 ± 0.003 and a foreground early-type galaxy with z = 0.400 ± 0.002. We model the system as a single isothermal ellipsoid and find the Einstein radius θE ˜ 1.47 arcsec, enclosed mass Menc ˜ 4 × 1011 M⊙ and a time delay of ˜52 d. The relatively wide separation, month scale time delay duration and high redshift make this an ideal system for constraining the expansion rate beyond a redshift of 1.

  13. SN Refsdal: Photometry and Time Delay Measurements of the First Einstein Cross Supernova

    NASA Astrophysics Data System (ADS)

    Rodney, S. A.; Strolger, L.-G.; Kelly, P. L.; Bradač, M.; Brammer, G.; Filippenko, A. V.; Foley, R. J.; Graur, O.; Hjorth, J.; Jha, S. W.; McCully, C.; Molino, A.; Riess, A. G.; Schmidt, K. B.; Selsing, J.; Sharon, K.; Treu, T.; Weiner, B. J.; Zitrin, A.

    2016-03-01

    We present the first year of Hubble Space Telescope imaging of the unique supernova (SN) “Refsdal,” a gravitationally lensed SN at z = 1.488 ± 0.001 with multiple images behind the galaxy cluster MACS J1149.6+2223. The first four observed images of SN Refsdal (images S1-S4) exhibited a slow rise (over ˜150 days) to reach a broad peak brightness around 2015 April 20. Using a set of light curve templates constructed from SN 1987A-like peculiar Type II SNe, we measure time delays for the four images relative to S1 of 4 ± 4 (for S2), 2 ± 5 (S3), and 24 ± 7 days (S4). The measured magnification ratios relative to S1 are 1.15 ± 0.05 (S2), 1.01 ± 0.04 (S3), and 0.34 ± 0.02 (S4). None of the template light curves fully captures the photometric behavior of SN Refsdal, so we also derive complementary measurements for these parameters using polynomials to represent the intrinsic light curve shape. These more flexible fits deliver fully consistent time delays of 7 ± 2 (S2), 0.6 ± 3 (S3), and 27 ± 8 days (S4). The lensing magnification ratios are similarly consistent, measured as 1.17 ± 0.02 (S2), 1.00 ± 0.01 (S3), and 0.38 ± 0.02 (S4). We compare these measurements against published predictions from lens models, and find that the majority of model predictions are in very good agreement with our measurements. Finally, we discuss avenues for future improvement of time delay measurements—both for SN Refsdal and for other strongly lensed SNe yet to come.

  14. Time course evaluation of myocardial perfusion after reperfusion therapy by 99mTc-tetrofosmin SPECT in patients with acute myocardial infarction.

    PubMed

    Tanaka, R; Nakamura, T

    2001-09-01

    Myocardial perfusion imaging with 99mTc-labeled agents immediately after reperfusion therapy can underestimate myocardial salvage. It is also conceivable that delayed imaging is useful for assessing the risk area. However, to our knowledge, very few studies have sequentially evaluated these image changes. We conducted 99mTc-tetrofosmin (TF) and 123I-beta-methyl-p-iodophenylpentadecanoic acid (BMIPP) SPECT before and after reperfusion to treat acute myocardial infarction and quantified changes in TF myocardial accumulation and reverse redistribution. Seventeen patients with a first myocardial infarction underwent successful reperfusion. We examined SPECT images obtained at the onset (preimage), those acquired 30 min (early image) and 6 h (delayed image) after TF injection, and images acquired 1, 4, 7, and 20 d after reperfusion (post-1-d, post-4-d, post-7-d, and post-20-d image, respectively). We also examined BMIPP SPECT images after 7 +/- 1.8 d (BMIPP image). Polar maps were divided into 48 segments to calculate percentage uptake, and time course changes in segment numbers below 60% were observed as abnormal area. Moreover, cardiac function was analyzed by gated TF SPECT on 1 and 20 d after reperfusion. In reference to the abnormal area on the early images, the post-1-d image was significantly improved compared with the preimage (P < 0.01) as was the post-7-d image compared with the post-1-d and post-4-d images (P < 0.05, respectively). However, post-20-d and post-7-d images did not significantly differ. Therefore, the improvement in myocardial accumulation reached a plateau 7 d after reperfusion. On the other hand, the abnormal area on the delayed images was significantly greater (P < 0.01) compared with that on the early images from 4 to 20 d after reperfusion, as the value was essentially constant. The correlations of the abnormal area between the preimage and the post-7-d delayed image, the preimage and the BMIPP image, and the post-7-d delayed image and the BMIPP image were very close (r = 0.963, r = 0.981, and r = 0.975, respectively). Gated TF SPECT revealed that the left ventricular ejection fraction was not significantly different (P = not significant) between 1 and 20 d after reperfusion, but regional wall motion was significantly different after reperfusion (P < 0.05). These results suggest that the interval between reperfusion therapy and TF SPECT should be 7 d to evaluate the salvage effect and that TF delayed and BMIPP images are both useful in estimation of risk area.

  15. Effects of point massage of liver and stomach channel combined with pith and trotter soup on postpartum lactation start time.

    PubMed

    Luo, Qiong; Hu, Yin; Zhang, Hui

    2017-10-01

    Delay in lactation initiation causes maternal anxiety and subsequent adverse impact on maternal exclusive breast feeding. It is important to explore a safe and convenient way to promote lactation initiation. The feasibility of point massage of liver and stomach channel combined with pith and trotter soup on prevention of delayed lactation initiation was investigated in the present study. 320 women were enrolled and randomly divided into four groups, control group (80 women), point massage group (80 women), pith and trotter soup group (80 women), and massage + soup group (80 women) to compare the lactation initiation time. We found that women in point massage group, pith and trotter soup group and massage + soup group had earlier initiation of lactation compared with control group. Women in massage + soup group had the earliest initiation time of lactation. There were significant differences between massage + soup group and pith and trotter soup group. But, there were no significant differences between massage + soup group and massage group. We conclude that point massage of the liver and stomach channel is easy to operate and has the preventive effect on delayed lactation initiation. Impact statement What is already known on this subject: Initiation of lactation is a critical period in postpartum milk secretion. Delays in lactation initiation lead to maternal anxiety and have an adverse impact on maternal exclusive breastfeeding. Sucking frequently by babies and mammary massage might be effective but insufficient for delayed lactation initiation. What the results of this study add: We found in the present study that lactation initiation is significantly earlier in women receiving routine nursing combined with point massage of liver and stomach channel, or pith trotters soup, or massage of liver and stomach channel with pith and trotters soup than in a control group receiving routine nursing. These three methods are all effective, while the most effective method is point massage combined with pith trotter soup. There was no maternal drug allergy, postpartum bleeding or other adverse reactions noted in all women. What the implications are of these findings for clinical practice and/or further research: The present study suggested that the application of point massage in clinic might be useful for preventing lack of milk postpartum by delayed lactation initiation and improving the exclusive breastfeeding rate. Further research might explore that molecular mechanism of lactation promotion by point massage using blood samples or animal models.

  16. Measurements and interpretation of shock tube ignition delay times in highly CO 2 diluted mixtures using multiple diagnostics

    DOE PAGES

    Vasu, Subith S.; Pryor, Owen; Barak, Samuel; ...

    2017-03-12

    Common definitions for ignition delay time are often hard to determine due to the issue of bifurcation and other non-idealities that result from high levels of CO 2 addition. Using high-speed camera imagery in comparison with more standard methods (e.g., pressure, emission, and laser absorption spectroscopy) to measure the ignition delay time, the effect of bifurcation has been examined in this study. Experiments were performed at pressures between 0.6 and 1.2 atm for temperatures between 1650 and 2040 K. The equivalence ratio for all experiments was kept at a constant value of 1 with methane as the fuel. The COmore » 2 mole fraction was varied between a value of X CO2 = 0.00 to 0.895. The ignition delay time was determined from three different measurements at the sidewall: broadband chemiluminescent emission captured via a photodetector, CH 4 concentrations determined using a distributed feedback interband cascade laser centered at 3403.4 nm, and pressure recorded via a dynamic Kistler type transducer. All methods for the ignition delay time were compared to high-speed camera images taken of the axial cross-section during combustion. Methane time-histories and the methane decay times were also measured using the laser. It was determined that the flame could be correlated to the ignition delay time measured at the side wall but that the flame as captured by the camera was not homogeneous as assumed in typical shock tube experiments. The bifurcation of the shock wave resulted in smaller flames with large boundary layers and that the flame could be as small as 30% of the cross-sectional area of the shock tube at the highest levels of CO 2 dilution. Here, comparisons between the camera images and the different ignition delay time methods show that care must be taken in interpreting traditional ignition delay data for experiments with large bifurcation effects as different methods in measuring the ignition delay time could result in different interpretations of kinetic mechanisms and impede the development of future mechanisms.« less

  17. Measurements and interpretation of shock tube ignition delay times in highly CO 2 diluted mixtures using multiple diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasu, Subith S.; Pryor, Owen; Barak, Samuel

    Common definitions for ignition delay time are often hard to determine due to the issue of bifurcation and other non-idealities that result from high levels of CO 2 addition. Using high-speed camera imagery in comparison with more standard methods (e.g., pressure, emission, and laser absorption spectroscopy) to measure the ignition delay time, the effect of bifurcation has been examined in this study. Experiments were performed at pressures between 0.6 and 1.2 atm for temperatures between 1650 and 2040 K. The equivalence ratio for all experiments was kept at a constant value of 1 with methane as the fuel. The COmore » 2 mole fraction was varied between a value of X CO2 = 0.00 to 0.895. The ignition delay time was determined from three different measurements at the sidewall: broadband chemiluminescent emission captured via a photodetector, CH 4 concentrations determined using a distributed feedback interband cascade laser centered at 3403.4 nm, and pressure recorded via a dynamic Kistler type transducer. All methods for the ignition delay time were compared to high-speed camera images taken of the axial cross-section during combustion. Methane time-histories and the methane decay times were also measured using the laser. It was determined that the flame could be correlated to the ignition delay time measured at the side wall but that the flame as captured by the camera was not homogeneous as assumed in typical shock tube experiments. The bifurcation of the shock wave resulted in smaller flames with large boundary layers and that the flame could be as small as 30% of the cross-sectional area of the shock tube at the highest levels of CO 2 dilution. Here, comparisons between the camera images and the different ignition delay time methods show that care must be taken in interpreting traditional ignition delay data for experiments with large bifurcation effects as different methods in measuring the ignition delay time could result in different interpretations of kinetic mechanisms and impede the development of future mechanisms.« less

  18. Gallium 68 PSMA-11 PET/MR Imaging in Patients with Intermediate- or High-Risk Prostate Cancer.

    PubMed

    Park, Sonya Youngju; Zacharias, Claudia; Harrison, Caitlyn; Fan, Richard E; Kunder, Christian; Hatami, Negin; Giesel, Frederik; Ghanouni, Pejman; Daniel, Bruce; Loening, Andreas M; Sonn, Geoffrey A; Iagaru, Andrei

    2018-05-16

    Purpose To report the results of dual-time-point gallium 68 ( 68 Ga) prostate-specific membrane antigen (PSMA)-11 positron emission tomography (PET)/magnetic resonance (MR) imaging prior to prostatectomy in patients with intermediate- or high-risk cancer. Materials and Methods Thirty-three men who underwent conventional imaging as clinically indicated and who were scheduled for radical prostatectomy with pelvic lymph node dissection were recruited for this study. A mean dose of 4.1 mCi ± 0.7 (151.7 MBq ± 25.9) of 68 Ga-PSMA-11 was administered. Whole-body images were acquired starting 41-61 minutes after injection by using a GE SIGNA PET/MR imaging unit, followed by an additional pelvic PET/MR imaging acquisition at 87-125 minutes after injection. PET/MR imaging findings were compared with findings at multiparametric MR imaging (including diffusion-weighted imaging, T2-weighted imaging, and dynamic contrast material-enhanced imaging) and were correlated with results of final whole-mount pathologic examination and pelvic nodal dissection to yield sensitivity and specificity. Dual-time-point metabolic parameters (eg, maximum standardized uptake value [SUV max ]) were compared by using a paired t test and were correlated with clinical and histopathologic variables including prostate-specific antigen level, Gleason score, and tumor volume. Results Prostate cancer was seen at 68 Ga-PSMA-11 PET in all 33 patients, whereas multiparametric MR imaging depicted Prostate Imaging Reporting and Data System (PI-RADS) 4 or 5 lesions in 26 patients and PI-RADS 3 lesions in four patients. Focal uptake was seen in the pelvic lymph nodes in five patients. Pathologic examination confirmed prostate cancer in all patients, as well as nodal metastasis in three. All patients with normal pelvic nodes in PET/MR imaging had no metastases at pathologic examination. The accumulation of 68 Ga-PSMA-11 increased at later acquisition times, with higher mean SUV max (15.3 vs 12.3, P < .001). One additional prostate cancer was identified only at delayed imaging. Conclusion This study found that 68 Ga-PSMA-11 PET can be used to identify prostate cancer, while MR imaging provides detailed anatomic guidance. Hence, 68 Ga-PSMA-11 PET/MR imaging provides valuable diagnostic information and may inform the need for and extent of pelvic node dissection. © RSNA, 2018 Online supplemental material is available for this article.

  19. Time delays in flight simulator visual displays

    NASA Technical Reports Server (NTRS)

    Crane, D. F.

    1980-01-01

    It is pointed out that the effects of delays of less than 100 msec in visual displays on pilot dynamic response and system performance are of particular interest at this time because improvements in the latest computer-generated imagery (CGI) systems are expected to reduce CGI displays delays to this range. Attention is given to data which quantify the effects of display delays in the range of 0-100 msec on system stability and performance, and pilot dynamic response for a particular choice of aircraft dynamics, display, controller, and task. The conventional control system design methods are reviewed, the pilot response data presented, and data for long delays, all suggest lead filter compensation of display delay. Pilot-aircraft system crossover frequency information guides compensation filter specification.

  20. Observed Measures of Negative Parenting Predict Brain Development during Adolescence.

    PubMed

    Whittle, Sarah; Vijayakumar, Nandita; Dennison, Meg; Schwartz, Orli; Simmons, Julian G; Sheeber, Lisa; Allen, Nicholas B

    2016-01-01

    Limited attention has been directed toward the influence of non-abusive parenting behaviour on brain structure in adolescents. It has been suggested that environmental influences during this period are likely to impact the way that the brain develops over time. The aim of this study was to investigate the association between aggressive and positive parenting behaviors on brain development from early to late adolescence, and in turn, psychological and academic functioning during late adolescence, using a multi-wave longitudinal design. Three hundred and sixty seven magnetic resonance imaging (MRI) scans were obtained over three time points from 166 adolescents (11-20 years). At the first time point, observed measures of maternal aggressive and positive behaviors were obtained. At the final time point, measures of psychological and academic functioning were obtained. Results indicated that a higher frequency of maternal aggressive behavior was associated with alterations in the development of right superior frontal and lateral parietal cortical thickness, and of nucleus accumbens volume, in males. Development of the superior frontal cortex in males mediated the relationship between maternal aggressive behaviour and measures of late adolescent functioning. We suggest that our results support an association between negative parenting and adolescent functioning, which may be mediated by immature or delayed brain maturation.

  1. Observed Measures of Negative Parenting Predict Brain Development during Adolescence

    PubMed Central

    Whittle, Sarah; Vijayakumar, Nandita; Dennison, Meg; Schwartz, Orli; Simmons, Julian G.; Sheeber, Lisa; Allen, Nicholas B.

    2016-01-01

    Limited attention has been directed toward the influence of non-abusive parenting behaviour on brain structure in adolescents. It has been suggested that environmental influences during this period are likely to impact the way that the brain develops over time. The aim of this study was to investigate the association between aggressive and positive parenting behaviors on brain development from early to late adolescence, and in turn, psychological and academic functioning during late adolescence, using a multi-wave longitudinal design. Three hundred and sixty seven magnetic resonance imaging (MRI) scans were obtained over three time points from 166 adolescents (11–20 years). At the first time point, observed measures of maternal aggressive and positive behaviors were obtained. At the final time point, measures of psychological and academic functioning were obtained. Results indicated that a higher frequency of maternal aggressive behavior was associated with alterations in the development of right superior frontal and lateral parietal cortical thickness, and of nucleus accumbens volume, in males. Development of the superior frontal cortex in males mediated the relationship between maternal aggressive behaviour and measures of late adolescent functioning. We suggest that our results support an association between negative parenting and adolescent functioning, which may be mediated by immature or delayed brain maturation. PMID:26824348

  2. Global robust stability of bidirectional associative memory neural networks with multiple time delays.

    PubMed

    Senan, Sibel; Arik, Sabri

    2007-10-01

    This correspondence presents a sufficient condition for the existence, uniqueness, and global robust asymptotic stability of the equilibrium point for bidirectional associative memory neural networks with discrete time delays. The results impose constraint conditions on the network parameters of the neural system independently of the delay parameter, and they are applicable to all bounded continuous nonmonotonic neuron activation functions. Some numerical examples are given to compare our results with the previous robust stability results derived in the literature.

  3. Comparison of approaches for mobile document image analysis using server supported smartphones

    NASA Astrophysics Data System (ADS)

    Ozarslan, Suleyman; Eren, P. Erhan

    2014-03-01

    With the recent advances in mobile technologies, new capabilities are emerging, such as mobile document image analysis. However, mobile phones are still less powerful than servers, and they have some resource limitations. One approach to overcome these limitations is performing resource-intensive processes of the application on remote servers. In mobile document image analysis, the most resource consuming process is the Optical Character Recognition (OCR) process, which is used to extract text in mobile phone captured images. In this study, our goal is to compare the in-phone and the remote server processing approaches for mobile document image analysis in order to explore their trade-offs. For the inphone approach, all processes required for mobile document image analysis run on the mobile phone. On the other hand, in the remote-server approach, core OCR process runs on the remote server and other processes run on the mobile phone. Results of the experiments show that the remote server approach is considerably faster than the in-phone approach in terms of OCR time, but adds extra delays such as network delay. Since compression and downscaling of images significantly reduce file sizes and extra delays, the remote server approach overall outperforms the in-phone approach in terms of selected speed and correct recognition metrics, if the gain in OCR time compensates for the extra delays. According to the results of the experiments, using the most preferable settings, the remote server approach performs better than the in-phone approach in terms of speed and acceptable correct recognition metrics.

  4. Chatter detection in turning using persistent homology

    NASA Astrophysics Data System (ADS)

    Khasawneh, Firas A.; Munch, Elizabeth

    2016-03-01

    This paper describes a new approach for ascertaining the stability of stochastic dynamical systems in their parameter space by examining their time series using topological data analysis (TDA). We illustrate the approach using a nonlinear delayed model that describes the tool oscillations due to self-excited vibrations in turning. Each time series is generated using the Euler-Maruyama method and a corresponding point cloud is obtained using the Takens embedding. The point cloud can then be analyzed using a tool from TDA known as persistent homology. The results of this study show that the described approach can be used for analyzing datasets of delay dynamical systems generated both from numerical simulation and experimental data. The contributions of this paper include presenting for the first time a topological approach for investigating the stability of a class of nonlinear stochastic delay equations, and introducing a new application of TDA to machining processes.

  5. Impulsive effect on global exponential stability of BAM fuzzy cellular neural networks with time-varying delays

    NASA Astrophysics Data System (ADS)

    Li, Kelin

    2010-02-01

    In this article, a class of impulsive bidirectional associative memory (BAM) fuzzy cellular neural networks (FCNNs) with time-varying delays is formulated and investigated. By employing delay differential inequality and M-matrix theory, some sufficient conditions ensuring the existence, uniqueness and global exponential stability of equilibrium point for impulsive BAM FCNNs with time-varying delays are obtained. In particular, a precise estimate of the exponential convergence rate is also provided, which depends on system parameters and impulsive perturbation intention. It is believed that these results are significant and useful for the design and applications of BAM FCNNs. An example is given to show the effectiveness of the results obtained here.

  6. Synchronization of Heterogeneous Oscillators by Noninvasive Time-Delayed Cross Coupling.

    PubMed

    Jüngling, Thomas; Fischer, Ingo; Schöll, Eckehard; Just, Wolfram

    2015-11-06

    We demonstrate that nonidentical systems, in particular, nonlinear oscillators with different time scales, can be synchronized if a mutual coupling via time-delayed control signals is implemented. Each oscillator settles on an unstable state, say a fixed point or an unstable periodic orbit, with a coupling force which vanishes in the long time limit. We present the underlying theoretical considerations and numerical simulations, and, moreover, demonstrate the concept experimentally in nonlinear electronic oscillators.

  7. [Comparison of initial and delayed myocardial imaging with beta-methyl-p-[123I]-iodophenylpentadecanoic acid in acute myocardial infarction].

    PubMed

    Naruse, H; Yoshimura, N; Yamamoto, J; Morita, M; Fukutake, N; Ohyanagi, M; Iwasaki, T; Fukuchi, M

    1994-01-01

    Myocardial imaging using beta-methyl-p-[123I]-iodophenylpentadecanoic acid (BMIPP) of 15 patients with acute myocardial infarction was performed to assess "fill-in" and "washout" defects in the delayed myocardial image. The initial and delayed images were evaluated by a visual and quantitative washout rate method. Visual judgement found 8/180 (4%) segments showed "fill-in" defects, and 24/180 segments (13%) showed "washout" defects. There was no relationship between days from onset to the study and the frequency of fill-in and washout defects. The mean washout rate in the segments with "fill-in" defects was 9.0 +/- 16.6%, and that of "washout" defects was 24.9 +/- 18.1% which was significantly higher than in controls (8.7 +/- 15.4%, p < 0.05). There was no correlation between mean washout rate and total blood lipids, total cholesterol, triglyceride and HDL-cholesterol. Therefore, neither time from onset nor blood lipids level was related to changes from the initial image to the delayed image. These changes may be due to relative (false) findings due to changes in circumference, and may be based on myocardial characteristics after myocardial infarction and/or reperfusion.

  8. Crash testing difference-smoothing algorithm on a large sample of simulated light curves from TDC1

    NASA Astrophysics Data System (ADS)

    Rathna Kumar, S.

    2017-09-01

    In this work, we propose refinements to the difference-smoothing algorithm for the measurement of time delay from the light curves of the images of a gravitationally lensed quasar. The refinements mainly consist of a more pragmatic approach to choose the smoothing time-scale free parameter, generation of more realistic synthetic light curves for the estimation of time delay uncertainty and using a plot of normalized χ2 computed over a wide range of trial time delay values to assess the reliability of a measured time delay and also for identifying instances of catastrophic failure. We rigorously tested the difference-smoothing algorithm on a large sample of more than thousand pairs of simulated light curves having known true time delays between them from the two most difficult 'rungs' - rung3 and rung4 - of the first edition of Strong Lens Time Delay Challenge (TDC1) and found an inherent tendency of the algorithm to measure the magnitude of time delay to be higher than the true value of time delay. However, we find that this systematic bias is eliminated by applying a correction to each measured time delay according to the magnitude and sign of the systematic error inferred by applying the time delay estimator on synthetic light curves simulating the measured time delay. Following these refinements, the TDC performance metrics for the difference-smoothing algorithm are found to be competitive with those of the best performing submissions of TDC1 for both the tested 'rungs'. The MATLAB codes used in this work and the detailed results are made publicly available.

  9. A Uniform Energy Consumption Algorithm for Wireless Sensor and Actuator Networks Based on Dynamic Polling Point Selection

    PubMed Central

    Li, Shuo; Peng, Jun; Liu, Weirong; Zhu, Zhengfa; Lin, Kuo-Chi

    2014-01-01

    Recent research has indicated that using the mobility of the actuator in wireless sensor and actuator networks (WSANs) to achieve mobile data collection can greatly increase the sensor network lifetime. However, mobile data collection may result in unacceptable collection delays in the network if the path of the actuator is too long. Because real-time network applications require meeting data collection delay constraints, planning the path of the actuator is a very important issue to balance the prolongation of the network lifetime and the reduction of the data collection delay. In this paper, a multi-hop routing mobile data collection algorithm is proposed based on dynamic polling point selection with delay constraints to address this issue. The algorithm can actively update the selection of the actuator's polling points according to the sensor nodes' residual energies and their locations while also considering the collection delay constraint. It also dynamically constructs the multi-hop routing trees rooted by these polling points to balance the sensor node energy consumption and the extension of the network lifetime. The effectiveness of the algorithm is validated by simulation. PMID:24451455

  10. Comparison of Interferometric Time-Series Analysis Techniques with Implications for Future Mission Design

    NASA Astrophysics Data System (ADS)

    Werner, C. L.; Wegmuller, U.; Strozzi, T.; Wiesmann, A.

    2006-12-01

    Principle contributors to the noise in differential SAR interferograms are temporal phase stability of the surface, geometry relating to baseline and surface slope, and propagation path delay variations due to tropospheric water vapor and the ionosphere. Time series analysis of multiple interferograms generated from a stack of SAR SLC images seeks to determine the deformation history of the surface while reducing errors. Only those scatterers within a resolution element that are stable and coherent for each interferometric pair contribute to the desired deformation signal. Interferograms with baselines exceeding 1/3 the critical baseline have substantial geometrical decorrelation for distributed targets. Short baseline pairs with multiple reference scenes can be combined using least-squares estimation to obtain a global deformation solution. Alternately point-like persistent scatterers can be identified in scenes that do not exhibit geometrical decorrelation associated with large baselines. In this approach interferograms are formed from a stack of SAR complex images using a single reference scene. Stable distributed scatter pixels are excluded however due to the presence of large baselines. We apply both point- based and short-baseline methodologies and compare results for a stack of fine-beam Radarsat data acquired in 2002-2004 over a rapidly subsiding oil field near Lost Hills, CA. We also investigate the density of point-like scatters with respect to image resolution. The primary difficulty encountered when applying time series methods is phase unwrapping errors due to spatial and temporal gaps. Phase unwrapping requires sufficient spatial and temporal sampling. Increasing the SAR range bandwidth increases the range resolution as well as increasing the critical interferometric baseline that defines the required satellite orbital tube diameter. Sufficient spatial sampling also permits unwrapping because of the reduced phase/pixel gradient. Short time intervals further reduce the differential phase due to deformation when the deformation is continuous. Lower frequency systems (L- vs. C-Band) substantially improve the ability to unwrap the phase correctly by directly reducing both interferometric phase amplitude and temporal decorrelation.

  11. Two Effects of Electrical Fields on Chloroplasts 1

    PubMed Central

    Arnold, William A.; Azzi, Jim R.

    1977-01-01

    An electrical field across a suspension of Chenopodium chloroplasts stimulates the emission of delayed light during the time the field is on. This stimulation can be used to calculate the distance over which the electron moves in the untrapping process that gives the delayed light. An electrical field applied at the time of illumination gives a polarization to the suspension of chloroplasts that lasts for some seconds. This polarization is a new way to study delayed light and fluorescence from chloroplasts. Images PMID:16660112

  12. Single-photon imager based on a superconducting nanowire delay line

    NASA Astrophysics Data System (ADS)

    Zhao, Qing-Yuan; Zhu, Di; Calandri, Niccolò; Dane, Andrew E.; McCaughan, Adam N.; Bellei, Francesco; Wang, Hao-Zhu; Santavicca, Daniel F.; Berggren, Karl K.

    2017-03-01

    Detecting spatial and temporal information of individual photons is critical to applications in spectroscopy, communication, biological imaging, astronomical observation and quantum-information processing. Here we demonstrate a scalable single-photon imager using a single continuous superconducting nanowire that is not only a single-photon detector but also functions as an efficient microwave delay line. In this context, photon-detection pulses are guided in the nanowire and enable the readout of the position and time of photon-absorption events from the arrival times of the detection pulses at the nanowire's two ends. Experimentally, we slowed down the velocity of pulse propagation to ∼2% of the speed of light in free space. In a 19.7 mm long nanowire that meandered across an area of 286 × 193 μm2, we were able to resolve ∼590 effective pixels with a temporal resolution of 50 ps (full width at half maximum). The nanowire imager presents a scalable approach for high-resolution photon imaging in space and time.

  13. A Versatile High Speed 250 MHz Pulse Imager for Biomedical Applications

    PubMed Central

    Epel, Boris; Sundramoorthy, Subramanian V.; Mailer, Colin; Halpern, Howard J.

    2009-01-01

    A versatile 250 MHz pulse electron paramagnetic resonance (EPR) instrument for imaging of small animals is presented. Flexible design of the imager hardware and software makes it possible to use virtually any pulse EPR imaging modality. A fast pulse generation and data acquisition system based on general purpose PCI boards performs measurements with minimal additional delays. Careful design of receiver protection circuitry allowed us to achieve very high sensitivity of the instrument. In this article we demonstrate the ability of the instrument to obtain three dimensional images using the electron spin echo (ESE) and single point imaging (SPI) methods. In a phantom that contains a 1 mM solution of narrow line (16 μT, peak-to-peak) paramagnetic spin probe we achieved an acquisition time of 32 seconds per image with a fast 3D ESE imaging protocol. Using an 18 minute 3D phase relaxation (T2e) ESE imaging protocol in a homogeneous sample a spatial resolution of 1.4 mm and a standard deviation of T2e of 8.5% were achieved. When applied to in vivo imaging this precision of T2e determination would be equivalent to 2 torr resolution of oxygen partial pressure in animal tissues. PMID:19924261

  14. A System-on-Chip Solution for Point-of-Care Ultrasound Imaging Systems: Architecture and ASIC Implementation.

    PubMed

    Kang, Jeeun; Yoon, Changhan; Lee, Jaejin; Kye, Sang-Bum; Lee, Yongbae; Chang, Jin Ho; Kim, Gi-Duck; Yoo, Yangmo; Song, Tai-kyong

    2016-04-01

    In this paper, we present a novel system-on-chip (SOC) solution for a portable ultrasound imaging system (PUS) for point-of-care applications. The PUS-SOC includes all of the signal processing modules (i.e., the transmit and dynamic receive beamformer modules, mid- and back-end processors, and color Doppler processors) as well as an efficient architecture for hardware-based imaging methods (e.g., dynamic delay calculation, multi-beamforming, and coded excitation and compression). The PUS-SOC was fabricated using a UMC 130-nm NAND process and has 16.8 GFLOPS of computing power with a total equivalent gate count of 12.1 million, which is comparable to a Pentium-4 CPU. The size and power consumption of the PUS-SOC are 27×27 mm(2) and 1.2 W, respectively. Based on the PUS-SOC, a prototype hand-held US imaging system was implemented. Phantom experiments demonstrated that the PUS-SOC can provide appropriate image quality for point-of-care applications with a compact PDA size ( 200×120×45 mm(3)) and 3 hours of battery life.

  15. Delay discounting as emotional processing: an electrophysiological study.

    PubMed

    Blackburn, Marianna; Mason, Liam; Hoeksma, Marco; Zandstra, Elizabeth H; El-Deredy, Wael

    2012-01-01

    Both theoretical models and functional imaging studies implicate the involvement of emotions within the delay discounting process. However, defining this role has been difficult to establish with neuroimaging techniques given the automaticity of emotional responses. To address this, the current study examined electrophysiological correlates involved in the detection and evaluation of immediate and delayed monetary outcomes. Our results showed that modulation of both early and later ERP components previously associated with affective stimuli processing are sensitive to the signalling of delayed rewards. Together with behavioural reaction times that favoured immediacy, we demonstrated, for the first time, that time delays modify the incentive value of monetary rewards via mechanisms of emotional bias and selective visual attention. Furthermore, our data are consistent with the hypothesis that delayed and thus intangible rewards are perceived less saliently, and rely on emotion as a common currency within decision making. This study provides a new approach to delay discounting and highlights a potential novel route through which delay discounting may be investigated.

  16. Radiologists remember mountains better than radiographs, or do they?

    PubMed

    Evans, Karla K; Marom, Edith M; Godoy, Myrna C B; Palacio, Diana; Sagebiel, Tara; Cuellar, Sonia Betancourt; McEntee, Mark; Tian, Charles; Brennan, Patrick C; Haygood, Tamara Miner

    2016-01-01

    Expertise with encoding material has been shown to aid long-term memory for that material. It is not clear how relevant this expertise is for image memorability (e.g., radiologists' memory for radiographs), and how robust over time. In two studies, we tested scene memory using a standard long-term memory paradigm. One compared the performance of radiologists to naïve observers on two image sets, chest radiographs and everyday scenes, and the other radiologists' memory with immediate as opposed to delayed recognition tests using musculoskeletal radiographs and forest scenes. Radiologists' memory was better than novices for images of expertise but no different for everyday scenes. With the heterogeneity of image sets equated, radiologists' expertise with radiographs afforded them better memory for the musculoskeletal radiographs than forest scenes. Enhanced memory for images of expertise disappeared over time, resulting in chance level performance for both image sets after weeks of delay. Expertise with the material is important for visual memorability but not to the same extent as idiosyncratic detail and variability of the image set. Similar memory decline with time for images of expertise as for everyday scenes further suggests that extended familiarity with an image is not a robust factor for visual memorability.

  17. A simple prediction score for developing a hospital-acquired infection after acute ischemic stroke.

    PubMed

    Friedant, Adam J; Gouse, Brittany M; Boehme, Amelia K; Siegler, James E; Albright, Karen C; Monlezun, Dominique J; George, Alexander J; Beasley, Timothy Mark; Martin-Schild, Sheryl

    2015-03-01

    Hospital-acquired infections (HAIs) are a major cause of morbidity and mortality in acute ischemic stroke patients. Although prior scoring systems have been developed to predict pneumonia in ischemic stroke patients, these scores were not designed to predict other infections. We sought to develop a simple scoring system for any HAI. Patients admitted to our stroke center (July 2008-June 2012) were retrospectively assessed. Patients were excluded if they had an in-hospital stroke, unknown time from symptom onset, or delay from symptom onset to hospital arrival greater than 48 hours. Infections were diagnosed via clinical, laboratory, and imaging modalities using standard definitions. A scoring system was created to predict infections based on baseline patient characteristics. Of 568 patients, 84 (14.8%) developed an infection during their stays. Patients who developed infection were older (73 versus 64, P < .0001), more frequently diabetic (43.9% versus 29.1%, P = .0077), and had more severe strokes on admission (National Institutes of Health Stroke Scale [NIHSS] score 12 versus 5, P < .0001). Ranging from 0 to 7, the overall infection score consists of age 70 years or more (1 point), history of diabetes (1 point), and NIHSS score (0-4 conferred 0 points, 5-15 conferred 3 points, >15 conferred 5 points). Patients with an infection score of 4 or more were at 5 times greater odds of developing an infection (odds ratio, 5.67; 95% confidence interval, 3.28-9.81; P < .0001). In our sample, clinical, laboratory, and imaging information available at admission identified patients at risk for infections during their acute hospitalizations. If validated in other populations, this score could assist providers in predicting infections after ischemic stroke. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  18. The resting-state fMRI arterial signal predicts differential blood transit time through the brain.

    PubMed

    Tong, Yunjie; Yao, Jinxia Fiona; Chen, J Jean; Frederick, Blaise deB

    2018-01-01

    Previous studies have found that aperiodic, systemic low-frequency oscillations (sLFOs) are present in blood-oxygen-level-dependent (BOLD) data. These signals are in the same low frequency band as the "resting state" signal; however, they are distinct signals which represent non-neuronal, physiological oscillations. The same sLFOs are found in the periphery (i.e. finger tips) as changes in oxy/deoxy-hemoglobin concentration using concurrent near-infrared spectroscopy. Together, this evidence points toward an extra-cerebral origin of these sLFOs. If this is the case, it is expected that these sLFO signals would be found in the carotid arteries with time delays that precede the signals found in the brain. To test this hypothesis, we employed the publicly available MyConnectome dataset (a two-year longitudinal study of a single subject) to extract the sLFOs in the internal carotid arteries (ICAs) with the help of the T1/T2-weighted images. Significant, but negative, correlations were found between the LFO BOLD signals from the ICAs and (1) the global signal (GS), (2) the superior sagittal sinus, and (3) the jugulars. We found the consistent time delays between the sLFO signals from ICAs, GS and veins which coincide with the blood transit time through the cerebral vascular tree.

  19. Virtual interactive presence for real-time, long-distance surgical collaboration during complex microsurgical procedures.

    PubMed

    Shenai, Mahesh B; Tubbs, R Shane; Guthrie, Barton L; Cohen-Gadol, Aaron A

    2014-08-01

    The shortage of surgeons compels the development of novel technologies that geographically extend the capabilities of individual surgeons and enhance surgical skills. The authors have developed "Virtual Interactive Presence" (VIP), a platform that allows remote participants to simultaneously view each other's visual field, creating a shared field of view for real-time surgical telecollaboration. The authors demonstrate the capability of VIP to facilitate long-distance telecollaboration during cadaveric dissection. Virtual Interactive Presence consists of local and remote workstations with integrated video capture devices and video displays. Each workstation mutually connects via commercial teleconferencing devices, allowing worldwide point-to-point communication. Software composites the local and remote video feeds, displaying a hybrid perspective to each participant. For demonstration, local and remote VIP stations were situated in Indianapolis, Indiana, and Birmingham, Alabama, respectively. A suboccipital craniotomy and microsurgical dissection of the pineal region was performed in a cadaveric specimen using VIP. Task and system performance were subjectively evaluated, while additional video analysis was used for objective assessment of delay and resolution. Participants at both stations were able to visually and verbally interact while identifying anatomical structures, guiding surgical maneuvers, and discussing overall surgical strategy. Video analysis of 3 separate video clips yielded a mean compositing delay of 760 ± 606 msec (when compared with the audio signal). Image resolution was adequate to visualize complex intracranial anatomy and provide interactive guidance. Virtual Interactive Presence is a feasible paradigm for real-time, long-distance surgical telecollaboration. Delay, resolution, scaling, and registration are parameters that require further optimization, but are within the realm of current technology. The paradigm potentially enables remotely located experts to mentor less experienced personnel located at the surgical site with applications in surgical training programs, remote proctoring for proficiency, and expert support for rural settings and across different counties.

  20. Effect of Multiple Delays in an Eco-Epidemiological Model with Strong Allee Effect

    NASA Astrophysics Data System (ADS)

    Ghosh, Kakali; Biswas, Santanu; Samanta, Sudip; Tiwari, Pankaj Kumar; Alshomrani, Ali Saleh; Chattopadhyay, Joydev

    In the present article, we make an attempt to investigate the effect of two time delays, logistic delay and gestation delay, on an eco-epidemiological model. In the proposed model, strong Allee effect is considered in the growth term of the prey population. We incorporate two time lags and inspect elementary mathematical characteristic of the proposed model such as boundedness, uniform persistence, stability and Hopf-bifurcation for all possible combinations of both delays at the interior equilibrium point of the system. We observe that increase in gestation delay leads to chaotic solutions through the limit cycle. We also observe that the Allee effect play a major role in controlling the chaos. We execute several numerical simulations to illustrate the proposed mathematical model and our analytical findings.

  1. Greater impulsivity is associated with decreased brain activation in obese women during a delay discounting task.

    PubMed

    Stoeckel, Luke E; Murdaugh, Donna L; Cox, James E; Cook, Edwin W; Weller, Rosalyn E

    2013-06-01

    Impulsivity and poor inhibitory control are associated with higher rates of delay discounting (DD), or a greater preference for smaller, more immediate rewards at the expense of larger, but delayed rewards. Of the many functional magnetic resonance imaging (fMRI) studies of DD, few have investigated the correlation between individual differences in DD rate and brain activation related to DD trial difficulty, with difficult DD trials expected to activate putative executive function brain areas involved in impulse control. In the current study, we correlated patterns of brain activation as measured by fMRI during difficult vs. easy trials of a DD task with DD rate (k) in obese women. Difficulty was defined by how much a reward choice deviated from an individual's 'indifference point', or the point where the subjective preference for an immediate and a delayed reward was approximately equivalent. We found that greater delay discounting was correlated with less modulation of activation in putative executive function brain areas, such as the middle and superior frontal gyri and inferior parietal lobule, in response to difficult compared to easy DD trials. These results support the suggestion that increased impulsivity is associated with deficient functioning of executive function areas of the brain.

  2. Interpreting the handling qualities of aircraft with stability and control augmentation

    NASA Technical Reports Server (NTRS)

    Hodgkinson, J.; Potsdam, E. H.; Smith, R. E.

    1990-01-01

    The general process of designing an aircraft for good flying qualities is first discussed. Lessons learned are pointed out, with piloted evaluation emerging as a crucial element. Two sources of rating variability in performing these evaluations are then discussed. First, the finite endpoints of the Cooper-Harper scale do not bias parametric statistical analyses unduly. Second, the wording of the scale does introduce some scatter. Phase lags generated by augmentation systems, as represented by equivalent time delays, often cause poor flying qualities. An analysis is introduced which allows a designer to relate any level of time delay to a probability of loss of aircraft control. This view of time delays should, it is hoped, allow better visibility of the time delays in the design process.

  3. Impact of Medicaid disenrollment in Tennessee on breast cancer stage at diagnosis and treatment.

    PubMed

    Tarazi, Wafa W; Bradley, Cathy J; Bear, Harry D; Harless, David W; Sabik, Lindsay M

    2017-09-01

    States routinely may consider rollbacks of Medicaid expansions to address statewide economic conditions. To the authors' knowledge, little is known regarding the effects of public insurance contractions on health outcomes. The current study examined the effects of the 2005 Medicaid disenrollment in Tennessee on breast cancer stage at the time of diagnosis and delays in treatment among nonelderly women. The authors used Tennessee Cancer Registry data from 2002 through 2008 and estimated a difference-in-difference model comparing women diagnosed with breast cancer who lived in low-income zip codes (and therefore were more likely to be subject to disenrollment) with a similar group of women who lived in high-income zip codes before and after the 2005 Medicaid disenrollment. The study outcomes were changes in stage of disease at the time of diagnosis and delays in treatment of >60 days and >90 days. Overall, nonelderly women in Tennessee were diagnosed at later stages of disease and experienced more delays in treatment in the period after disenrollment. Disenrollment was found to be associated with a 3.3-percentage point increase in late stage of disease at the time of diagnosis (P = .024), a 1.9-percentage point decrease in having a delay of >60 days in surgery (P = .024), and a 1.4-percentage point decrease in having a delay of >90 days in treatment (P = .054) for women living in low-income zip codes compared with women residing in high-income zip codes. The results of the current study indicate that Medicaid disenrollment is associated with a later stage of disease at the time of breast cancer diagnosis, thereby providing evidence of the potential negative health impacts of Medicaid contractions. Cancer 2017;123:3312-9. © 2017 American Cancer Society. © 2017 American Cancer Society.

  4. On the convergence of ionospheric constrained precise point positioning (IC-PPP) based on undifferential uncombined raw GNSS observations.

    PubMed

    Zhang, Hongping; Gao, Zhouzheng; Ge, Maorong; Niu, Xiaoji; Huang, Ling; Tu, Rui; Li, Xingxing

    2013-11-18

    Precise Point Positioning (PPP) has become a very hot topic in GNSS research and applications. However, it usually takes about several tens of minutes in order to obtain positions with better than 10 cm accuracy. This prevents PPP from being widely used in real-time kinematic positioning services, therefore, a large effort has been made to tackle the convergence problem. One of the recent approaches is the ionospheric delay constrained precise point positioning (IC-PPP) that uses the spatial and temporal characteristics of ionospheric delays and also delays from an a priori model. In this paper, the impact of the quality of ionospheric models on the convergence of IC-PPP is evaluated using the IGS global ionospheric map (GIM) updated every two hours and a regional satellite-specific correction model. Furthermore, the effect of the receiver differential code bias (DCB) is investigated by comparing the convergence time for IC-PPP with and without estimation of the DCB parameter. From the result of processing a large amount of data, on the one hand, the quality of the a priori ionosphere delays plays a very important role in IC-PPP convergence. Generally, regional dense GNSS networks can provide more precise ionosphere delays than GIM and can consequently reduce the convergence time. On the other hand, ignoring the receiver DCB may considerably extend its convergence, and the larger the DCB, the longer the convergence time. Estimating receiver DCB in IC-PPP is a proper way to overcome this problem. Therefore, current IC-PPP should be enhanced by estimating receiver DCB and employing regional satellite-specific ionospheric correction models in order to speed up its convergence for more practical applications.

  5. On the Convergence of Ionospheric Constrained Precise Point Positioning (IC-PPP) Based on Undifferential Uncombined Raw GNSS Observations

    PubMed Central

    Zhang, Hongping; Gao, Zhouzheng; Ge, Maorong; Niu, Xiaoji; Huang, Ling; Tu, Rui; Li, Xingxing

    2013-01-01

    Precise Point Positioning (PPP) has become a very hot topic in GNSS research and applications. However, it usually takes about several tens of minutes in order to obtain positions with better than 10 cm accuracy. This prevents PPP from being widely used in real-time kinematic positioning services, therefore, a large effort has been made to tackle the convergence problem. One of the recent approaches is the ionospheric delay constrained precise point positioning (IC-PPP) that uses the spatial and temporal characteristics of ionospheric delays and also delays from an a priori model. In this paper, the impact of the quality of ionospheric models on the convergence of IC-PPP is evaluated using the IGS global ionospheric map (GIM) updated every two hours and a regional satellite-specific correction model. Furthermore, the effect of the receiver differential code bias (DCB) is investigated by comparing the convergence time for IC-PPP with and without estimation of the DCB parameter. From the result of processing a large amount of data, on the one hand, the quality of the a priori ionosphere delays plays a very important role in IC-PPP convergence. Generally, regional dense GNSS networks can provide more precise ionosphere delays than GIM and can consequently reduce the convergence time. On the other hand, ignoring the receiver DCB may considerably extend its convergence, and the larger the DCB, the longer the convergence time. Estimating receiver DCB in IC-PPP is a proper way to overcome this problem. Therefore, current IC-PPP should be enhanced by estimating receiver DCB and employing regional satellite-specific ionospheric correction models in order to speed up its convergence for more practical applications. PMID:24253190

  6. Role of delay and screening in controlling AIDS

    NASA Astrophysics Data System (ADS)

    Chauhan, Sudipa; Bhatia, Sumit Kaur; Gupta, Surbhi

    2016-06-01

    We propose a non-linear HIV/ AIDS model to analyse the spread and control of HIV/AIDS. The population is divided into three classes, susceptible, infective and AIDS patients. The model is developed under the assumptions of vertical transmission and time delay in infective class. Time delay is also included to show sexual maturity period of infected newborns. We study dynamics of the model and obtain the reproduction number. Now to control the epidemic, we study the model where aware infective class is also added, i.e., people are made aware of their medical status by way of screening. To make the model more realistic, we consider the situation where aware infective class also interacts with other people. The model is analysed qualitatively by stability theory of ODE. Stability analysis of both disease-free and endemic equilibrium is studied based on reproduction number. Also, it is proved that if (R0)1, R1 ≤ 1 then, disease free equilibrium point is locally asymptotically stable and if (R0)1, R1 > 1 then, disease free equilibrium is unstable. Also, the stability analysis of endemic equilibrium point has been done and it is shown that for (R0)1 > 1 endemic equilibrium point is stable. Global stability analysis of endemic equilibrium point has also been done. At last, it is shown numerically that the delay in sexual maturity of infected individuals result in less number of AIDS patients.

  7. Astronomical Research with the MicroObservatory Net

    NASA Astrophysics Data System (ADS)

    Brecher, K.; Sadler, P.; Gould, R.; Leiker, S.; Antonucci, P.; Deutsch, F.

    1997-05-01

    We have developed a fully integrated automated astronomical telescope system which combines the imaging power of a cooled CCD, with a self-contained and weatherized 15 cm reflecting optical telescope and mount. The MicroObservatory Net consists of five of these telescopes. They are currently being deployed around the world at widely distributed longitudes. Remote access to the MicroObservatories over the Internet has now been implemented. Software for computer control, pointing, focusing, filter selection as well as pattern recognition have all been developed as part of the project. The telescopes can be controlled in real time or in delay mode, from a Macintosh, PC or other computer using Web-based software. The Internet address of the telescopes is http://cfa- www.harvard.edu/cfa/sed/MicroObservatory/MicroObservatory.html. In the real-time mode, individuals have access to all of the telescope control functions without the need for an `on-site' operator. Users can sign up for a specific period of ti me. In the batch mode, users can submit requests for delayed telescope observations. After a MicroObservatory completes a job, the user is automatically notified by e-mail that the image is available for viewing and downloading from the Web site. The telescopes were designed for classroom instruction, as well as for use by students and amateur astronomers for original scientific research projects. We are currently examining a variety of technical and educational questions about the use of the telescopes including: (1) What are the best approaches to scheduling real-time versus batch mode observations? (2) What criteria should be used for allocating telescope time? (3) With deployment of more than one telescope, is it advantageous for each telescope to be used for just one type of observation, i.e., some for photometric use, others for imaging? And (4) What are the most valuable applications of the MicroObservatories in astronomical research? Support for the MicroObservatory Net has been provided by the NSF, Apple Computer, Inc. and Kodak, Inc.

  8. Usefulness of the dynamic gadolinium-enhanced magnetic resonance imaging with simultaneous acquisition of coronal and sagittal planes for detection of pituitary microadenomas.

    PubMed

    Lee, Han Bee; Kim, Sung Tae; Kim, Hyung-Jin; Kim, Keon Ha; Jeon, Pyoung; Byun, Hong Sik; Choi, Jin Wook

    2012-03-01

    Does dynamic gadolinium-enhanced imaging with simultaneous acquisition of coronal and sagittal planes improve diagnostic accuracy of pituitary microadenomas compared with coronal images alone? Fifty-six patients underwent 3-T sella MRI including dynamic simultaneous acquisition of coronal and sagittal planes after gadolinium injection. According to conspicuity, lesions were divided into four scores (0, no; 1, possible; 2, probable; 3, definite delayed enhancing lesion). Additional information on supplementary sagittal images compared with coronal ones was evaluated with a 4-point score (0, no; 1, possible; 2, probable; 3, definite additional information). Accuracy of tumour detection was calculated. Average scores for lesion detection of a combination of two planes, coronal, and sagittal images were 2.59, 2.32, and 2.18. 6/10 lesions negative on coronal images were detected on sagittal ones. Accuracy of a combination of two planes, of coronal and of sagittal images was 92.86%, 82.14% and 75%. Six patients had probable or definite additional information on supplementary sagittal images compared with coronal ones alone (10.71%). Dynamic MRI with combined coronal and sagittal planes was more accurate for detection of pituitary microadenomas than routinely used coronal images. Simultaneous dynamic enhanced acquisition can make study time fast and costs low. We present a new dynamic MRI technique for evaluating pituitary microadenomas • This technique provides simultaneous acquisition of contrast enhanced coronal and sagittal images. • This technique makes the diagnosis more accurate and reduces the examination time. • Such MR imaging only requires one single bolus of contrast agent.

  9. Optimization of Rb-82 PET acquisition and reconstruction protocols for myocardial perfusion defect detection

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Rahmim, Arman; Lautamäki, Riikka; Lodge, Martin A.; Bengel, Frank M.; Tsui, Benjamin M. W.

    2009-05-01

    The purpose of this study is to optimize the dynamic Rb-82 cardiac PET acquisition and reconstruction protocols for maximum myocardial perfusion defect detection using realistic simulation data and task-based evaluation. Time activity curves (TACs) of different organs under both rest and stress conditions were extracted from dynamic Rb-82 PET images of five normal patients. Combined SimSET-GATE Monte Carlo simulation was used to generate nearly noise-free cardiac PET data from a time series of 3D NCAT phantoms with organ activities modeling different pre-scan delay times (PDTs) and total acquisition times (TATs). Poisson noise was added to the nearly noise-free projections and the OS-EM algorithm was applied to generate noisy reconstructed images. The channelized Hotelling observer (CHO) with 32× 32 spatial templates corresponding to four octave-wide frequency channels was used to evaluate the images. The area under the ROC curve (AUC) was calculated from the CHO rating data as an index for image quality in terms of myocardial perfusion defect detection. The 0.5 cycle cm-1 Butterworth post-filtering on OS-EM (with 21 subsets) reconstructed images generates the highest AUC values while those from iteration numbers 1 to 4 do not show different AUC values. The optimized PDTs for both rest and stress conditions are found to be close to the cross points of the left ventricular chamber and myocardium TACs, which may promote an individualized PDT for patient data processing and image reconstruction. Shortening the TATs for <~3 min from the clinically employed acquisition time does not affect the myocardial perfusion defect detection significantly for both rest and stress studies.

  10. An analog integrated circuit beamformer for high-frequency medical ultrasound imaging.

    PubMed

    Gurun, Gokce; Zahorian, Jaime S; Sisman, Alper; Karaman, Mustafa; Hasler, Paul E; Degertekin, F Levent

    2012-10-01

    We designed and fabricated a dynamic receive beamformer integrated circuit (IC) in 0.35-μm CMOS technology. This beamformer IC is suitable for integration with an annular array transducer for high-frequency (30-50 MHz) intravascular ultrasound (IVUS) imaging. The beamformer IC consists of receive preamplifiers, an analog dynamic delay-and-sum beamformer, and buffers for 8 receive channels. To form an analog dynamic delay line we designed an analog delay cell based on the current-mode first-order all-pass filter topology, as the basic building block. To increase the bandwidth of the delay cell, we explored an enhancement technique on the current mirrors. This technique improved the overall bandwidth of the delay line by a factor of 6. Each delay cell consumes 2.1-mW of power and is capable of generating a tunable time delay between 1.75 ns to 2.5 ns. We successfully integrated the fabricated beamformer IC with an 8-element annular array. Experimental test results demonstrated the desired buffering, preamplification and delaying capabilities of the beamformer.

  11. Delay and déjà vu: timing and repetition increase the power of false evidence.

    PubMed

    Wright, Deborah S; Wade, Kimberley A; Watson, Derrick G

    2013-08-01

    False images and videos can induce people to believe in and remember events that never happened. Using a novel method, we examined whether the timing of false evidence would influence its effect (Experiment 1) and determined the relationship between timing and repetition (Experiment 2). Subjects completed a hazard perception driving test and were falsely accused of cheating. Some subjects were shown a fake video or photograph of the cheating either after a 9-min delay (Experiment 1) or more than once with or without a delay (Experiment 2). Subjects were more likely to falsely believe that they had cheated and to provide details about how the cheating happened when the false evidence was delayed or repeated-especially when repeated over time-relative to controls. The results show that even a strikingly short delay between an event and when false evidence is disclosed can distort people's beliefs and that repeating false evidence over a brief delay fosters false beliefs more so than without a delay. These findings have theoretical implications for metacognitive models of autobiographical memory and practical implications for police interrogations.

  12. High resolution three-dimensional robotic synthetic tracked aperture ultrasound imaging: feasibility study

    NASA Astrophysics Data System (ADS)

    Zhang, Haichong K.; Fang, Ting Yun; Finocchi, Rodolfo; Boctor, Emad M.

    2017-03-01

    Three dimensional (3D) ultrasound imaging is becoming a standard mode for medical ultrasound diagnoses. Conventional 3D ultrasound imaging is mostly scanned either by using a two dimensional matrix array or by motorizing a one dimensional array in the elevation direction. However, the former system is not widely assessable due to its cost, and the latter one has limited resolution and field-of-view in the elevation axis. Here, we propose a 3D ultrasound imaging system based on the synthetic tracked aperture approach, in which a robotic arm is used to provide accurate tracking and motion. While the ultrasound probe is moved by a robotic arm, each probe position is tracked and can be used to reconstruct a wider field-of-view as there are no physical barriers that restrict the elevational scanning. At the same time, synthetic aperture beamforming provides a better resolution in the elevation axis. To synthesize the elevational information, the single focal point is regarded as the virtual element, and forward and backward delay-andsum are applied to the radio-frequency (RF) data collected through the volume. The concept is experimentally validated using a general ultrasound phantom, and the elevational resolution improvement of 2.54 and 2.13 times was measured at the target depths of 20 mm and 110 mm, respectively.

  13. TH-AB-202-04: Auto-Adaptive Margin Generation for MLC-Tracked Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glitzner, M; Lagendijk, J; Raaymakers, B

    Purpose: To develop an auto-adaptive margin generator for MLC tracking. The generator is able to estimate errors arising in image guided radiotherapy, particularly on an MR-Linac, which depend on the latencies of machine and image processing, as well as on patient motion characteristics. From the estimated error distribution, a segment margin is generated, able to compensate errors up to a user-defined confidence. Method: In every tracking control cycle (TCC, 40ms), the desired aperture D(t) is compared to the actual aperture A(t), a delayed and imperfect representation of D(t). Thus an error e(t)=A(T)-D(T) is measured every TCC. Applying kernel-density-estimation (KDE), themore » cumulative distribution (CDF) of e(t) is estimated. With CDF-confidence limits, upper and lower error limits are extracted for motion axes along and perpendicular leaf-travel direction and applied as margins. To test the dosimetric impact, two representative motion traces were extracted from fast liver-MRI (10Hz). The traces were applied onto a 4D-motion platform and continuously tracked by an Elekta Agility 160 MLC using an artificially imposed tracking delay. Gafchromic film was used to detect dose exposition for static, tracked, and error-compensated tracking cases. The margin generator was parameterized to cover 90% of all tracking errors. Dosimetric impact was rated by calculating the ratio between underexposed points (>5% underdosage) to the total number of points inside FWHM of static exposure. Results: Without imposing adaptive margins, tracking experiments showed a ratio of underexposed points of 17.5% and 14.3% for two motion cases with imaging delays of 200ms and 300ms, respectively. Activating the margin generated yielded total suppression (<1%) of underdosed points. Conclusion: We showed that auto-adaptive error compensation using machine error statistics is possible for MLC tracking. The error compensation margins are calculated on-line, without the need of assuming motion or machine models. Further strategies to reduce consequential overdosages are currently under investigation. This work was funded by the SoRTS consortium, which includes the industry partners Elekta, Philips and Technolution.« less

  14. The synchronization of asymmetric-structured electric coupling neuronal system

    NASA Astrophysics Data System (ADS)

    Wang, Guanping; Jin, Wuyin; Liu, Hao; Sun, Wei

    2018-02-01

    Based on the Hindmarsh-Rose (HR) model, the synchronization dynamics of asymmetric-structured electric coupling two neuronal system is investigated in this paper. It is discovered that when the time-delay scope and coupling strength for the synchronization are correlated positively under unequal time delay, the time-delay difference does not make a clear distinction between the two individual inter-spike intervals (ISI) bifurcation diagrams of the two coupled neurons. Therefore, the superficial difference of the system synchronization dynamics is not obvious for the unequal time-delay feedback. In the asymmetrical current incentives under asymmetric electric coupled system, the two neurons can only be almost completely synchronized in specific area of the interval which end-pointed with two discharge modes for a single neuron under different stimuli currents before coupling, but the intervention of time-delay feedback, together with the change of the coupling strength, can make the coupled system not only almost completely synchronized within anywhere in the front area, but also outside of it.

  15. Probing small-scale structure in galaxies with strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Congdon, Arthur Benjamin

    We use gravitational lensing to study the small-scale distribution of matter in galaxies. First, we examine galaxies and their dark matter halos. Roughly half of all observed four-image quasar lenses have image flux ratios that differ from the values predicted by simple lens potentials. We show that smooth departures from elliptical symmetry fail to explain anomalous radio fluxes, strengthening the case for dark matter substructure. Our results have important implications for the "missing satellites'' problem. We then consider how time delays between lensed images can be used to identify lens galaxies containing small-scale structure. We derive an analytic relation for the time delay between the close pair of images in a "fold'' lens, and perform Monte Carlo simulations to investigate the utility of time delays for probing small- scale structure in realistic lens populations. We compare our numerical predictions with systems that have measured time delays and discover two anomalous lenses. Next, we consider microlensing, where stars in the lens galaxy perturb image magnifications. This is relevant at optical wavelengths, where the size of the lensed source is comparable to the Einstein radius of a typical star. Our simulations of negative-parity images show that raising the fraction of dark matter relative to stars increases image flux variability for small sources, and decreases it for large sources. This suggests that quasar accretion disks and broad-emission-line regions may respond differently to microlensing. We also consider extended sources with a range of ellipticities, which has relevance to a population of inclined accretion disks. Depending on their orientation, more elongated sources lead to more rapid variability, which may complicate the interpretation of microlensing light curves. Finally, we consider prospects for observing strong lensing by the supermassive black hole at the center of the Milky Way, Sgr A*. Assuming a black hole on the million- solar-mass scale, we predict that the probability of observing strong lensing of a background star is roughly 56%. We also consider how lensing by Sgr A* could be used to test general relativity against alternative theories, concluding that microarcsecond resolution would make this possible.

  16. VDES J2325-5229 a z = 2.7 gravitationally lensed quasar discovered using morphology-independent supervised machine learning

    DOE PAGES

    Ostrovski, Fernanda; McMahon, Richard G.; Connolly, Andrew J.; ...

    2016-11-17

    In this paper, we present the discovery and preliminary characterization of a gravitationally lensed quasar with a source redshift z s = 2.74 and image separation of 2.9 arcsec lensed by a foreground z l = 0.40 elliptical galaxy. Since optical observations of gravitationally lensed quasars show the lens system as a superposition of multiple point sources and a foreground lensing galaxy, we have developed a morphology-independent multi-wavelength approach to the photometric selection of lensed quasar candidates based on Gaussian Mixture Models (GMM) supervised machine learning. Using this technique and gi multicolour photometric observations from the Dark Energy Survey (DES),more » near-IR JK photometry from the VISTA Hemisphere Survey (VHS) and WISE mid-IR photometry, we have identified a candidate system with two catalogue components with i AB = 18.61 and i AB = 20.44 comprising an elliptical galaxy and two blue point sources. Spectroscopic follow-up with NTT and the use of an archival AAT spectrum show that the point sources can be identified as a lensed quasar with an emission line redshift of z = 2.739 ± 0.003 and a foreground early-type galaxy with z = 0.400 ± 0.002. We model the system as a single isothermal ellipsoid and find the Einstein radius θ E ~ 1.47 arcsec, enclosed mass M enc ~ 4 × 10 11 M ⊙ and a time delay of ~52 d. Finally, the relatively wide separation, month scale time delay duration and high redshift make this an ideal system for constraining the expansion rate beyond a redshift of 1.« less

  17. VDES J2325-5229 a z = 2.7 gravitationally lensed quasar discovered using morphology-independent supervised machine learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostrovski, Fernanda; McMahon, Richard G.; Connolly, Andrew J.

    In this paper, we present the discovery and preliminary characterization of a gravitationally lensed quasar with a source redshift z s = 2.74 and image separation of 2.9 arcsec lensed by a foreground z l = 0.40 elliptical galaxy. Since optical observations of gravitationally lensed quasars show the lens system as a superposition of multiple point sources and a foreground lensing galaxy, we have developed a morphology-independent multi-wavelength approach to the photometric selection of lensed quasar candidates based on Gaussian Mixture Models (GMM) supervised machine learning. Using this technique and gi multicolour photometric observations from the Dark Energy Survey (DES),more » near-IR JK photometry from the VISTA Hemisphere Survey (VHS) and WISE mid-IR photometry, we have identified a candidate system with two catalogue components with i AB = 18.61 and i AB = 20.44 comprising an elliptical galaxy and two blue point sources. Spectroscopic follow-up with NTT and the use of an archival AAT spectrum show that the point sources can be identified as a lensed quasar with an emission line redshift of z = 2.739 ± 0.003 and a foreground early-type galaxy with z = 0.400 ± 0.002. We model the system as a single isothermal ellipsoid and find the Einstein radius θ E ~ 1.47 arcsec, enclosed mass M enc ~ 4 × 10 11 M ⊙ and a time delay of ~52 d. Finally, the relatively wide separation, month scale time delay duration and high redshift make this an ideal system for constraining the expansion rate beyond a redshift of 1.« less

  18. Quantization improves stabilization of dynamical systems with delayed feedback

    NASA Astrophysics Data System (ADS)

    Stepan, Gabor; Milton, John G.; Insperger, Tamas

    2017-11-01

    We show that an unstable scalar dynamical system with time-delayed feedback can be stabilized by quantizing the feedback. The discrete time model corresponds to a previously unrecognized case of the microchaotic map in which the fixed point is both locally and globally repelling. In the continuous-time model, stabilization by quantization is possible when the fixed point in the absence of feedback is an unstable node, and in the presence of feedback, it is an unstable focus (spiral). The results are illustrated with numerical simulation of the unstable Hayes equation. The solutions of the quantized Hayes equation take the form of oscillations in which the amplitude is a function of the size of the quantization step. If the quantization step is sufficiently small, the amplitude of the oscillations can be small enough to practically approximate the dynamics around a stable fixed point.

  19. Renewal of radiological equipment.

    PubMed

    2014-10-01

    In this century, medical imaging is at the heart of medical practice. Besides providing fast and accurate diagnosis, advances in radiology equipment offer new and previously non-existing options for treatment guidance with quite low morbidity, resulting in the improvement of health outcomes and quality of life for the patients. Although rapid technological development created new medical imaging modalities and methods, the same progress speed resulted in accelerated technical and functional obsolescence of the same medical imaging equipment, consequently creating a need for renewal. Older equipment has a high risk of failures and breakdowns, which might cause delays in diagnosis and treatment of the patient, and safety problems both for the patient and the medical staff. The European Society of Radiology is promoting the use of up-to-date equipment, especially in the context of the EuroSafe Imaging Campaign, as the use of up-to-date equipment will improve quality and safety in medical imaging. Every healthcare institution or authority should have a plan for medical imaging equipment upgrade or renewal. This plan should look forward a minimum of 5 years, with annual updates. Teaching points • Radiological equipment has a definite life cycle span, resulting in unavoidable breakdown and decrease or loss of image quality which renders equipment useless after a certain time period.• Equipment older than 10 years is no longer state-of-the art equipment and replacement is essential. Operating costs of older equipment will be high when compared with new equipment, and sometimes maintenance will be impossible if no spare parts are available.• Older equipment has a high risk of failure and breakdown, causing delays in diagnosis and treatment of the patient and safety problems both for the patient and the medical staff.• Every healthcare institution or authority should have a plan for medical imaging equipment upgrade or replacement. This plan should look forward a minimum of 5 years, with annual updating.

  20. Causes of delay in door-to-balloon time in south-east Asian patients undergoing primary percutaneous coronary intervention.

    PubMed

    Sim, Wen Jun; Ang, An Shing; Tan, Mae Chyi; Xiang, Wen Wei; Foo, David; Loh, Kwok Kong; Jafary, Fahim Haider; Watson, Timothy James; Ong, Paul Jau Lueng; Ho, Hee Hwa

    2017-01-01

    To evaluate causes and impact of delay in the door-to-balloon (D2B) time for patients undergoing primary percutaneous coronary intervention (PPCI). From January 2009 to December 2012, 1268 patients (86% male, mean age of 58 ± 12 years) presented to our hospital for ST-elevation myocardial infarction (STEMI) and underwent PPCI. They were divided into two groups: Non-delay defined as D2B time ≤ 90 mins and delay group defined as D2B time > 90 mins. Data were collected retrospectively on baseline clinical characteristics, mode of presentation, angiographic findings, therapeutic modality and inhospital outcome. 202 patients had delay in D2B time. There were more female patients in the delay group. They were older and tend to self-present to hospital. They were less likely to be smokers and have a higher prevalence of prior MI. The incidence of posterior MI was higher in the delay group. They also had a higher incidence of triple vessel disease. The 3 most common reasons for D2B delay was delay in the emergency department (39%), atypical clinical presentation (37.6%) and unstable medical condition requiring stabilisation/computed tomographic imaging (26.7%). The inhospital mortality was numerically higher in the delay group (7.4% versus 4.8%, p = 0.12). Delay in D2B occurred in 16% of our patients undergoing PPCI. Several key factors for delay were identified and warrant further intervention.

  1. The Longitudinal Properties of a Solar Energetic Particle Event Investigated Using Modern Solar Imaging

    NASA Technical Reports Server (NTRS)

    Rouillard, A. P.; Sheeley, N.R. Jr.; Tylka, A.; Vourlidas, A.; Ng, C. K.; Rakowski, C.; Cohen, C. M. S.; Mewaldt, R. A.; Mason, G. M.; Reames, D.; hide

    2012-01-01

    We use combined high-cadence, high-resolution, and multi-point imaging by the Solar-Terrestrial Relations Observatory (STEREO) and the Solar and Heliospheric Observatory to investigate the hour-long eruption of a fast and wide coronal mass ejection (CME) on 2011 March 21 when the twin STEREO spacecraft were located beyond the solar limbs. We analyze the relation between the eruption of the CME, the evolution of an Extreme Ultraviolet (EUV) wave, and the onset of a solar energetic particle (SEP) event measured in situ by the STEREO and near-Earth orbiting spacecraft. Combined ultraviolet and white-light images of the lower corona reveal that in an initial CME lateral "expansion phase," the EUV disturbance tracks the laterally expanding flanks of the CME, both moving parallel to the solar surface with speeds of approx 450 km/s. When the lateral expansion of the ejecta ceases, the EUV disturbance carries on propagating parallel to the solar surface but devolves rapidly into a less coherent structure. Multi-point tracking of the CME leading edge and the effects of the launched compression waves (e.g., pushed streamers) give anti-sunward speeds that initially exceed 900 km/s at all measured position angles. We combine our analysis of ultraviolet and white-light images with a comprehensive study of the velocity dispersion of energetic particles measured in situ by particle detectors located at STEREO-A (STA) and first Lagrange point (L1), to demonstrate that the delayed solar particle release times at STA and L1 are consistent with the time required (30-40 minutes) for the CME to perturb the corona over a wide range of longitudes. This study finds an association between the longitudinal extent of the perturbed corona (in EUV and white light) and the longitudinal extent of the SEP event in the heliosphere.

  2. Estimating Real-Time Zenith Tropospheric Delay over Africa Using IGS-RTS Products

    NASA Astrophysics Data System (ADS)

    Abdelazeem, M.

    2017-12-01

    Zenith Tropospheric Delay (ZTD) is a crucial parameter for atmospheric modeling, severe weather monitoring and forecasting applications. Currently, the international global navigation satellite system (GNSS) real-time service (IGS-RTS) products are used extensively in real-time atmospheric modeling applications. The objective of this study is to develop a real time zenith tropospheric delay estimation model over Africa using the IGS-RTS products. The real-time ZTDs are estimated based on the real-time precise point positioning (PPP) solution. GNSS observations from a number of reference stations are processed over a period of 7 days. Then, the estimated real-time ZTDs are compared with the IGS tropospheric products counterparts. The findings indicate that the estimated real-time ZTDs have millimeter level accuracy in comparison with the IGS counterparts.

  3. Time delay and distance measurement

    NASA Technical Reports Server (NTRS)

    Abshire, James B. (Inventor); Sun, Xiaoli (Inventor)

    2011-01-01

    A method for measuring time delay and distance may include providing an electromagnetic radiation carrier frequency and modulating one or more of amplitude, phase, frequency, polarization, and pointing angle of the carrier frequency with a return to zero (RZ) pseudo random noise (PN) code. The RZ PN code may have a constant bit period and a pulse duration that is less than the bit period. A receiver may detect the electromagnetic radiation and calculate the scattering profile versus time (or range) by computing a cross correlation function between the recorded received signal and a three-state RZ PN code kernel in the receiver. The method also may be used for pulse delay time (i.e., PPM) communications.

  4. Stability and Hopf Bifurcation for Two Advertising Systems, Coupled with Delay

    NASA Astrophysics Data System (ADS)

    Sterpu, Mihaela; Rocşoreanu, Carmen

    2007-09-01

    Two advertising systems were linearly coupled via the first variable, with time delay. The stability and the Hopf bifurcation corresponding to the symmetric equilibrium point (the origin) in the 4D system are analyzed. Different types of oscillations corresponding to the limit cycles are compared.

  5. Radiologists remember mountains better than radiographs, or do they?

    PubMed Central

    Evans, Karla K.; Marom, Edith M.; Godoy, Myrna C. B.; Palacio, Diana; Sagebiel, Tara; Cuellar, Sonia Betancourt; McEntee, Mark; Tian, Charles; Brennan, Patrick C.; Haygood, Tamara Miner

    2015-01-01

    Abstract. Expertise with encoding material has been shown to aid long-term memory for that material. It is not clear how relevant this expertise is for image memorability (e.g., radiologists’ memory for radiographs), and how robust over time. In two studies, we tested scene memory using a standard long-term memory paradigm. One compared the performance of radiologists to naïve observers on two image sets, chest radiographs and everyday scenes, and the other radiologists’ memory with immediate as opposed to delayed recognition tests using musculoskeletal radiographs and forest scenes. Radiologists’ memory was better than novices for images of expertise but no different for everyday scenes. With the heterogeneity of image sets equated, radiologists’ expertise with radiographs afforded them better memory for the musculoskeletal radiographs than forest scenes. Enhanced memory for images of expertise disappeared over time, resulting in chance level performance for both image sets after weeks of delay. Expertise with the material is important for visual memorability but not to the same extent as idiosyncratic detail and variability of the image set. Similar memory decline with time for images of expertise as for everyday scenes further suggests that extended familiarity with an image is not a robust factor for visual memorability. PMID:26870748

  6. Chaos control by electric current in an enzymatic reaction.

    PubMed

    Lekebusch, A; Förster, A; Schneider, F W

    1996-09-01

    We apply the continuous delayed feedback method of Pyragas to control chaos in the enzymatic Peroxidase-Oxidase (PO) reaction, using the electric current as the control parameter. At each data point in the time series, a time delayed feedback function applies a small amplitude perturbation to inert platinum electrodes, which causes redox processes on the surface of the electrodes. These perturbations are calculated as the difference between the previous (time delayed) signal and the actual signal. Unstable periodic P1, 1(1), and 1(2) orbits (UPOs) were stabilized in the CSTR (continuous stirred tank reactor) experiments. The stabilization is demonstrated by at least three conditions: A minimum in the experimental dispersion function, the equality of the delay time with the period of the stabilized attractor and the embedment of the stabilized periodic attractor in the chaotic attractor.

  7. Software for Verifying Image-Correlation Tie Points

    NASA Technical Reports Server (NTRS)

    Klimeck, Gerhard; Yagi, Gary

    2008-01-01

    A computer program enables assessment of the quality of tie points in the image-correlation processes of the software described in the immediately preceding article. Tie points are computed in mappings between corresponding pixels in the left and right images of a stereoscopic pair. The mappings are sometimes not perfect because image data can be noisy and parallax can cause some points to appear in one image but not the other. The present computer program relies on the availability of a left- right correlation map in addition to the usual right left correlation map. The additional map must be generated, which doubles the processing time. Such increased time can now be afforded in the data-processing pipeline, since the time for map generation is now reduced from about 60 to 3 minutes by the parallelization discussed in the previous article. Parallel cluster processing time, therefore, enabled this better science result. The first mapping is typically from a point (denoted by coordinates x,y) in the left image to a point (x',y') in the right image. The second mapping is from (x',y') in the right image to some point (x",y") in the left image. If (x,y) and(x",y") are identical, then the mapping is considered perfect. The perfect-match criterion can be relaxed by introducing an error window that admits of round-off error and a small amount of noise. The mapping procedure can be repeated until all points in each image not connected to points in the other image are eliminated, so that what remains are verified correlation data.

  8. Photo-Carrier Multi-Dynamical Imaging at the Nanometer Scale in Organic and Inorganic Solar Cells.

    PubMed

    Fernández Garrillo, Pablo A; Borowik, Łukasz; Caffy, Florent; Demadrille, Renaud; Grévin, Benjamin

    2016-11-16

    Investigating the photocarrier dynamics in nanostructured and heterogeneous energy materials is of crucial importance from both fundamental and technological points of view. Here, we demonstrate how noncontact atomic force microscopy combined with Kelvin probe force microscopy under frequency-modulated illumination can be used to simultaneously image the surface photopotential dynamics at different time scales with a sub-10 nm lateral resolution. The basic principle of the method consists in the acquisition of spectroscopic curves of the surface potential as a function of the illumination frequency modulation on a two-dimensional grid. We show how this frequency-spectroscopy can be used to probe simultaneously the charging rate and several decay processes involving short-lived and long-lived carriers. With this approach, dynamical images of the trap-filling, trap-delayed recombination and nongeminate recombination processes have been acquired in nanophase segregated organic donor-acceptor bulk heterojunction thin films. Furthermore, the spatial variation of the minority carrier lifetime has been imaged in polycrystalline silicon thin films. These results establish two-dimensional multidynamical photovoltage imaging as a universal tool for local investigations of the photocarrier dynamics in photoactive materials and devices.

  9. SN REFSDAL: PHOTOMETRY AND TIME DELAY MEASUREMENTS OF THE FIRST EINSTEIN CROSS SUPERNOVA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodney, S. A.; Strolger, L.-G.; Brammer, G.

    2016-03-20

    We present the first year of Hubble Space Telescope imaging of the unique supernova (SN) “Refsdal,” a gravitationally lensed SN at z = 1.488 ± 0.001 with multiple images behind the galaxy cluster MACS J1149.6+2223. The first four observed images of SN Refsdal (images S1–S4) exhibited a slow rise (over ∼150 days) to reach a broad peak brightness around 2015 April 20. Using a set of light curve templates constructed from SN 1987A-like peculiar Type II SNe, we measure time delays for the four images relative to S1 of 4 ± 4 (for S2), 2 ± 5 (S3), and 24 ± 7 days (S4). The measured magnification ratios relative tomore » S1 are 1.15 ± 0.05 (S2), 1.01 ± 0.04 (S3), and 0.34 ± 0.02 (S4). None of the template light curves fully captures the photometric behavior of SN Refsdal, so we also derive complementary measurements for these parameters using polynomials to represent the intrinsic light curve shape. These more flexible fits deliver fully consistent time delays of 7 ± 2 (S2), 0.6 ± 3 (S3), and 27 ± 8 days (S4). The lensing magnification ratios are similarly consistent, measured as 1.17 ± 0.02 (S2), 1.00 ± 0.01 (S3), and 0.38 ± 0.02 (S4). We compare these measurements against published predictions from lens models, and find that the majority of model predictions are in very good agreement with our measurements. Finally, we discuss avenues for future improvement of time delay measurements—both for SN Refsdal and for other strongly lensed SNe yet to come.« less

  10. Robustness analysis of uncertain dynamical neural networks with multiple time delays.

    PubMed

    Senan, Sibel

    2015-10-01

    This paper studies the problem of global robust asymptotic stability of the equilibrium point for the class of dynamical neural networks with multiple time delays with respect to the class of slope-bounded activation functions and in the presence of the uncertainties of system parameters of the considered neural network model. By using an appropriate Lyapunov functional and exploiting the properties of the homeomorphism mapping theorem, we derive a new sufficient condition for the existence, uniqueness and global robust asymptotic stability of the equilibrium point for the class of neural networks with multiple time delays. The obtained stability condition basically relies on testing some relationships imposed on the interconnection matrices of the neural system, which can be easily verified by using some certain properties of matrices. An instructive numerical example is also given to illustrate the applicability of our result and show the advantages of this new condition over the previously reported corresponding results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Lesions Responsible for Delayed Oral Transit Time in Post-stroke Dysphagia.

    PubMed

    Moon, Hyun Im; Yoon, Seo Yeon; Yi, Tae Im; Jeong, Yoon Jeong; Cho, Tae Hwan

    2018-06-01

    Some stroke patients show oral phase dysphagia, characterized by a markedly prolonged oral transit time that hinders oral feeding. The aim of this study was to clarify the clinical characteristics and lesions responsible for delayed swallowing. We reviewed 90 patients with stroke. The oral processing time plus the postfaucial aggregation time required to swallow semisolid food was assessed. The patients were divided into two groups according to oral transit time, and we analyzed the differences in characteristics such as demographic factors, lesion factors, and cognitive function. Logistic regression analyses were performed to examine the predictors of delayed oral transit time. Lesion location and volume were measured on brain magnetic resonance images. We generated statistic maps of lesions related to delayed oral phase in swallowing using voxel-based lesion symptom mapping (VLSM). The group of patients who showed delayed oral transit time had significantly low cognitive function. Also, in a regression model, delayed oral phase was predicted with low K-MMSE (Korean version of the Mini Mental Status Exam). Using VLSM, we found the lesion location to be associated with delayed oral phase after adjusting for K-MMSE score. Although these results did not reach statistical significance, they showed the lesion pattern with predominant distribution in the left frontal lobe. Delayed oral phase in post-stroke patients was not negligible clinically. Patients' cognitive impairments affect the oral transit time. When adjusting it, we found a trend that the lesion responsible for delayed oral phase was located in the left frontal lobe, though the association did not reach significance. The delay might be related to praxis function.

  12. Multistability of memristive Cohen-Grossberg neural networks with non-monotonic piecewise linear activation functions and time-varying delays.

    PubMed

    Nie, Xiaobing; Zheng, Wei Xing; Cao, Jinde

    2015-11-01

    The problem of coexistence and dynamical behaviors of multiple equilibrium points is addressed for a class of memristive Cohen-Grossberg neural networks with non-monotonic piecewise linear activation functions and time-varying delays. By virtue of the fixed point theorem, nonsmooth analysis theory and other analytical tools, some sufficient conditions are established to guarantee that such n-dimensional memristive Cohen-Grossberg neural networks can have 5(n) equilibrium points, among which 3(n) equilibrium points are locally exponentially stable. It is shown that greater storage capacity can be achieved by neural networks with the non-monotonic activation functions introduced herein than the ones with Mexican-hat-type activation function. In addition, unlike most existing multistability results of neural networks with monotonic activation functions, those obtained 3(n) locally stable equilibrium points are located both in saturated regions and unsaturated regions. The theoretical findings are verified by an illustrative example with computer simulations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. T-ray tomography.

    PubMed

    Mittleman, D M; Hunsche, S; Boivin, L; Nuss, M C

    1997-06-15

    We demonstrate tomographic T-ray imaging, using the timing information present in terahertz (THz) pulses in a reflection geometry. THz pulses are reflected from refractive-index discontinuities inside an object, and the time delays of these pulses are used to determine the positions of the discontinuities along the propagation direction. In this fashion a tomographic image can be constructed.

  14. Time and decision making: differential contribution of the posterior insular cortex and the striatum during a delay discounting task.

    PubMed

    Wittmann, Marc; Leland, David S; Paulus, Martin P

    2007-06-01

    Delay discounting refers to the fact that an immediate reward is valued more than the same reward if it occurs some time in the future. To examine the neural substrates underlying this process, we studied 13 healthy volunteers who repeatedly had to decide between an immediate and parametrically varied delayed hypothetical reward using a delay discounting task during event-related functional magnetic resonance imaging. Subject's preference judgments resulted in different discounting slopes for shorter (<1 year) and for longer (> or =1 year) delays. Neural activation associated with the shorter delays relative to the longer delays was associated with increased activation in the head of the left caudate nucleus and putamen. When individuals selected the delayed relative to the immediate reward, a strong activation was found in bilateral posterior insular cortex. Several brain areas including the left caudate nucleus showed a correlation between the behaviorally determined discounting and brain activation for the contrast of intervals with delays <1 and > or =1 year. These results suggest that (1) the posterior insula, which is a critical component of the decision-making neural network, is involved in delaying gratification and (2) the degree of neural activation in the striatum, which plays a fundamental role in reward prediction and in time estimation, may code for the time delay.

  15. Optimization of hepatobiliary phase delay time of Gd-EOB-DTPA-enhanced magnetic resonance imaging for identification of hepatocellular carcinoma in patients with cirrhosis of different degrees of severity.

    PubMed

    Wu, Jian-Wei; Yu, Yue-Cheng; Qu, Xian-Li; Zhang, Yan; Gao, Hong

    2018-01-21

    To optimize the hepatobiliary phase delay time (HBP-DT) of Gd-EOB-DTPA-enhanced magnetic resonance imaging (GED-MRI) for more efficient identification of hepatocellular carcinoma (HCC) occurring in different degrees of cirrhosis assessed by Child-Pugh (CP) score. The liver parenchyma signal intensity (LPSI), the liver parenchyma (LP)/HCC signal ratios, and the visibility of HCC at HBP-DT of 5, 10, 15, 20, and 25 min ( i.e ., DT-5, DT-10, DT-15, DT-20, and DT-25 ) after injection of Gd-EOB-DTPA were collected and analyzed in 73 patients with cirrhosis of different degrees of severity (including 42 patients suffering from HCC) and 18 healthy adult controls. The LPSI increased with HBP-DT more significantly in the healthy group than in the cirrhosis group ( F = 17.361, P < 0.001). The LP/HCC signal ratios had a significant difference ( F = 12.453, P < 0.001) among various HBP-DT points, as well as between CP-A and CP-B/C subgroups ( F = 9.761, P < 0.001). The constituent ratios of HCC foci identified as obvious hypointensity (+++), moderate hypointensity (++), and mild hypointensity or isointensity (+/-) kept stable from DT-10 to DT-25: 90.6%, 9.4%, and 0.0% in the CP-A subgroup; 50.0%, 50.0%, and 0.0% in the CP-B subgroup; and 0.0%, 0.0%, and 100.0% in the CP-C subgroup, respectively. The severity of liver cirrhosis has significant negative influence on the HCC visualization by GED-MRI. DT-10 is more efficient and practical than other HBP-DT points to identify most of HCC foci emerging in CP-A cirrhosis, as well as in CP-B cirrhosis; but an HBP-DT of 15 min or longer seems more appropriate than DT-10 for visualization of HCC in patients with CP-C cirrhosis.

  16. Analysis of short single rest/activation epoch fMRI by self-organizing map neural network

    NASA Astrophysics Data System (ADS)

    Erberich, Stephan G.; Dietrich, Thomas; Kemeny, Stefan; Krings, Timo; Willmes, Klaus; Thron, Armin; Oberschelp, Walter

    2000-04-01

    Functional magnet resonance imaging (fMRI) has become a standard non invasive brain imaging technique delivering high spatial resolution. Brain activation is determined by magnetic susceptibility of the blood oxygen level (BOLD effect) during an activation task, e.g. motor, auditory and visual tasks. Usually box-car paradigms have 2 - 4 rest/activation epochs with at least an overall of 50 volumes per scan in the time domain. Statistical test based analysis methods need a large amount of repetitively acquired brain volumes to gain statistical power, like Student's t-test. The introduced technique based on a self-organizing neural network (SOM) makes use of the intrinsic features of the condition change between rest and activation epoch and demonstrated to differentiate between the conditions with less time points having only one rest and one activation epoch. The method reduces scan and analysis time and the probability of possible motion artifacts from the relaxation of the patients head. Functional magnet resonance imaging (fMRI) of patients for pre-surgical evaluation and volunteers were acquired with motor (hand clenching and finger tapping), sensory (ice application), auditory (phonological and semantic word recognition task) and visual paradigms (mental rotation). For imaging we used different BOLD contrast sensitive Gradient Echo Planar Imaging (GE-EPI) single-shot pulse sequences (TR 2000 and 4000, 64 X 64 and 128 X 128, 15 - 40 slices) on a Philips Gyroscan NT 1.5 Tesla MR imager. All paradigms were RARARA (R equals rest, A equals activation) with an epoch width of 11 time points each. We used the self-organizing neural network implementation described by T. Kohonen with a 4 X 2 2D neuron map. The presented time course vectors were clustered by similar features in the 2D neuron map. Three neural networks were trained and used for labeling with the time course vectors of one, two and all three on/off epochs. The results were also compared by using a Kolmogorov-Smirnov statistical test of all 66 time points. To remove non- periodical time courses from training an auto-correlation function and bandwidth limiting Fourier filtering in combination with Gauss temporal smoothing was used. None of the trained maps, with one, two and three epochs, were significantly different which indicates that the feature space of only one on/off epoch is sufficient to differentiate between the rest and task condition. We found, that without pre-processing of the data no meaningful results can be achieved because of the huge amount of the non-activated and background voxels represents the majority of the features and is therefore learned by the SOM. Thus it is crucial to remove unnecessary capacity load of the neural network by selection of the training input, using auto-correlation function and/or Fourier spectrum analysis. However by reducing the time points to one rest and one activation epoch either strong auto- correlation or a precise periodical frequency is vanishing. Self-organizing maps can be used to separate rest and activation epochs of with only a 1/3 of the usually acquired time points. Because of the nature of the SOM technique, the pattern or feature separation, only the presence of a state change between the conditions is necessary for differentiation. Also the variance of the individual hemodynamic response function (HRF) and the variance of the spatial different regional cerebral blood flow (rCBF) is learned from the subject and not compared with a fixed model done by statistical evaluation. We found that reducing the information to only a few time points around the BOLD effect was not successful due to delays of rCBF and the insufficient extension of the BOLD feature in the time space. Especially for patient routine observation and pre-surgical planing a reduced scan time is of interest.

  17. Telerobotic Surgery: An Intelligent Systems Approach to Mitigate the Adverse Effects of Communication Delay. Chapter 4

    NASA Technical Reports Server (NTRS)

    Cardullo, Frank M.; Lewis, Harold W., III; Panfilov, Peter B.

    2007-01-01

    An extremely innovative approach has been presented, which is to have the surgeon operate through a simulator running in real-time enhanced with an intelligent controller component to enhance the safety and efficiency of a remotely conducted operation. The use of a simulator enables the surgeon to operate in a virtual environment free from the impediments of telecommunication delay. The simulator functions as a predictor and periodically the simulator state is corrected with truth data. Three major research areas must be explored in order to ensure achieving the objectives. They are: simulator as predictor, image processing, and intelligent control. Each is equally necessary for success of the project and each of these involves a significant intelligent component in it. These are diverse, interdisciplinary areas of investigation, thereby requiring a highly coordinated effort by all the members of our team, to ensure an integrated system. The following is a brief discussion of those areas. Simulator as a predictor: The delays encountered in remote robotic surgery will be greater than any encountered in human-machine systems analysis, with the possible exception of remote operations in space. Therefore, novel compensation techniques will be developed. Included will be the development of the real-time simulator, which is at the heart of our approach. The simulator will present real-time, stereoscopic images and artificial haptic stimuli to the surgeon. Image processing: Because of the delay and the possibility of insufficient bandwidth a high level of novel image processing is necessary. This image processing will include several innovative aspects, including image interpretation, video to graphical conversion, texture extraction, geometric processing, image compression and image generation at the surgeon station. Intelligent control: Since the approach we propose is in a sense predictor based, albeit a very sophisticated predictor, a controller, which not only optimizes end effector trajectory but also avoids error, is essential. We propose to investigate two different approaches to the controller design. One approach employs an optimal controller based on modern control theory; the other one involves soft computing techniques, i.e. fuzzy logic, neural networks, genetic algorithms and hybrids of these.

  18. Light beam range finder

    DOEpatents

    McEwan, Thomas E.

    1998-01-01

    A "laser tape measure" for measuring distance which includes a transmitter such as a laser diode which transmits a sequence of electromagnetic pulses in response to a transmit timing signal. A receiver samples reflections from objects within the field of the sequence of visible electromagnetic pulses with controlled timing, in response to a receive timing signal. The receiver generates a sample signal in response to the samples which indicates distance to the object causing the reflections. The timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the reflection such that the time between transmission of pulses in the sequence in sampling by the receiver sweeps over a range of delays. The transmit timing signal causes the transmitter to transmit the sequence of electromagnetic pulses at a pulse repetition rate, and the received timing signal sweeps over the range of delays in a sweep cycle such that reflections are sampled at the pulse repetition rate and with different delays in the range of delays, such that the sample signal represents received reflections in equivalent time. The receiver according to one aspect of the invention includes an avalanche photodiode and a sampling gate coupled to the photodiode which is responsive to the received timing signal. The transmitter includes a laser diode which supplies a sequence of visible electromagnetic pulses. A bright spot projected on to the target clearly indicates the point that is being measured, and the user can read the range to that point with precision of better than 0.1%.

  19. Light beam range finder

    DOEpatents

    McEwan, T.E.

    1998-06-16

    A ``laser tape measure`` for measuring distance is disclosed which includes a transmitter such as a laser diode which transmits a sequence of electromagnetic pulses in response to a transmit timing signal. A receiver samples reflections from objects within the field of the sequence of visible electromagnetic pulses with controlled timing, in response to a receive timing signal. The receiver generates a sample signal in response to the samples which indicates distance to the object causing the reflections. The timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The receive timing signal causes the receiver to sample the reflection such that the time between transmission of pulses in the sequence in sampling by the receiver sweeps over a range of delays. The transmit timing signal causes the transmitter to transmit the sequence of electromagnetic pulses at a pulse repetition rate, and the received timing signal sweeps over the range of delays in a sweep cycle such that reflections are sampled at the pulse repetition rate and with different delays in the range of delays, such that the sample signal represents received reflections in equivalent time. The receiver according to one aspect of the invention includes an avalanche photodiode and a sampling gate coupled to the photodiode which is responsive to the received timing signal. The transmitter includes a laser diode which supplies a sequence of visible electromagnetic pulses. A bright spot projected on to the target clearly indicates the point that is being measured, and the user can read the range to that point with precision of better than 0.1%. 7 figs.

  20. Point-of-Care Autofluorescence Imaging for Real-Time Sampling and Treatment Guidance of Bioburden in Chronic Wounds: First-in-Human Results

    PubMed Central

    DaCosta, Ralph S.; Kulbatski, Iris; Lindvere-Teene, Liis; Starr, Danielle; Blackmore, Kristina; Silver, Jason I.; Opoku, Julie; Wu, Yichao Charlie; Medeiros, Philip J.; Xu, Wei; Xu, Lizhen; Wilson, Brian C.; Rosen, Cheryl; Linden, Ron

    2015-01-01

    Background Traditionally, chronic wound infection is diagnosed by visual inspection under white light and microbiological sampling, which are subjective and suboptimal, respectively, thereby delaying diagnosis and treatment. To address this, we developed a novel handheld, fluorescence imaging device (PRODIGI) that enables non-contact, real-time, high-resolution visualization and differentiation of key pathogenic bacteria through their endogenous autofluorescence, as well as connective tissues in wounds. Methods and Findings This was a two-part Phase I, single center, non-randomized trial of chronic wound patients (male and female, ≥18 years; UHN REB #09-0015-A for part 1; UHN REB #12-5003 for part 2; clinicaltrials.gov Identifier: NCT01378728 for part 1 and NCT01651845 for part 2). Part 1 (28 patients; 54% diabetic foot ulcers, 46% non-diabetic wounds) established the feasibility of autofluorescence imaging to accurately guide wound sampling, validated against blinded, gold standard swab-based microbiology. Part 2 (12 patients; 83.3% diabetic foot ulcers, 16.7% non-diabetic wounds) established the feasibility of autofluorescence imaging to guide wound treatment and quantitatively assess treatment response. We showed that PRODIGI can be used to guide and improve microbiological sampling and debridement of wounds in situ, enabling diagnosis, treatment guidance and response assessment in patients with chronic wounds. PRODIGI is safe, easy to use and integrates into the clinical workflow. Clinically significant bacterial burden can be detected in seconds, quantitatively tracked over days-to-months and their biodistribution mapped within the wound bed, periphery, and other remote areas. Conclusions PRODIGI represents a technological advancement in wound sampling and treatment guidance for clinical wound care at the point-of-care. Trial Registration ClinicalTrials.gov NCT01651845; ClinicalTrials.gov NCT01378728 PMID:25790480

  1. Calibration of the KA Band Tracking of the Bepi-Colombo Spacecraft (more Experiment)

    NASA Astrophysics Data System (ADS)

    Barriot, J.; Serafini, J.; Sichoix, L.

    2013-12-01

    The radiosciences Bepi-Colombo MORE experiment will use X/X, X/Ka and Ka/Ka band radio links to make accurate measurements of the spacecraft range and range rate. Tropospheric zenith wet delays range from 1.5 cm to 10 cm, with high variability (less than 1000 s) and will impair these accurate measurements. Conditions vary from summer (worse) to winter (better), from day (worse) to night (better). These wet delays cannot be estimated from ground weather measurements and alternative calibration methods should be used in order to cope with the MORE requirements (no more than 3 mm at 1000 s). Due to the Mercury orbit, MORE measurements will be performed by daylight and more frequently in summer than in winter (from Northern hemisphere). Two systems have been considered to calibrate this wet delay: Water Vapor Radiometers (WVRs) and GPS receivers. The Jet Propulsion Laboratory has developed a new class of WVRs reaching a 5 percent accuracy for the wet delay calibration (0.75 mm to 5 mm), but these WVRs are expensive to build and operate. GPS receivers are also routinely used for the calibration of data from NASA Deep Space probes, but several studies have shown that GPS receivers can give good calibration (through wet delay mapping functions) for long time variations, but are not accurate enough for short time variations (100 to 1000 s), and that WVRs must be used to efficiently calibrate the wet troposphere delays over such time spans. We think that such a calibration could be done by assimilating data from all the GNSS constellations (GPS, GLONASS, Galileo, Beidou and IRNSS) that will be available at the time of the Bepi-Colombo arrival at Mercury (2021), provided that the underlying physics of the turbulent atmosphere and evapotranspiration processes are properly taken into account at such time scales. This implies to do a tomographic image of the troposphere overlying each Deep Space tracking station at time scales of less than 1000 s. For this purpose, we have developed a full representation of the wet refractivity of the atmosphere over the ground station along a basis of 3D Zernike functions with time-variable coefficients. We detail the algorithm that is used to constraint the inverse imaging of the wet troposphere at the target time scales, and give examples of such imaging from GPS data only.

  2. Fast Simulation of Dynamic Ultrasound Images Using the GPU.

    PubMed

    Storve, Sigurd; Torp, Hans

    2017-10-01

    Simulated ultrasound data is a valuable tool for development and validation of quantitative image analysis methods in echocardiography. Unfortunately, simulation time can become prohibitive for phantoms consisting of a large number of point scatterers. The COLE algorithm by Gao et al. is a fast convolution-based simulator that trades simulation accuracy for improved speed. We present highly efficient parallelized CPU and GPU implementations of the COLE algorithm with an emphasis on dynamic simulations involving moving point scatterers. We argue that it is crucial to minimize the amount of data transfers from the CPU to achieve good performance on the GPU. We achieve this by storing the complete trajectories of the dynamic point scatterers as spline curves in the GPU memory. This leads to good efficiency when simulating sequences consisting of a large number of frames, such as B-mode and tissue Doppler data for a full cardiac cycle. In addition, we propose a phase-based subsample delay technique that efficiently eliminates flickering artifacts seen in B-mode sequences when COLE is used without enough temporal oversampling. To assess the performance, we used a laptop computer and a desktop computer, each equipped with a multicore Intel CPU and an NVIDIA GPU. Running the simulator on a high-end TITAN X GPU, we observed two orders of magnitude speedup compared to the parallel CPU version, three orders of magnitude speedup compared to simulation times reported by Gao et al. in their paper on COLE, and a speedup of 27000 times compared to the multithreaded version of Field II, using numbers reported in a paper by Jensen. We hope that by releasing the simulator as an open-source project we will encourage its use and further development.

  3. Sodium-23 magnetic resonance imaging has potential for improving penumbra detection but not for estimating stroke onset time

    PubMed Central

    Wetterling, Friedrich; Gallagher, Lindsay; Mullin, Jim; Holmes, William M; McCabe, Chris; Macrae, I Mhairi; Fagan, Andrew J

    2015-01-01

    Tissue sodium concentration increases in irreversibly damaged (core) tissue following ischemic stroke and can potentially help to differentiate the core from the adjacent hypoperfused but viable penumbra. To test this, multinuclear hydrogen-1/sodium-23 magnetic resonance imaging (MRI) was used to measure the changing sodium signal and hydrogen-apparent diffusion coefficient (ADC) in the ischemic core and penumbra after rat middle cerebral artery occlusion (MCAO). Penumbra and core were defined from perfusion imaging and histologically defined irreversibly damaged tissue. The sodium signal in the core increased linearly with time, whereas the ADC rapidly decreased by >30% within 20 minutes of stroke onset, with very little change thereafter (0.5–6 hours after MCAO). Previous reports suggest that the time point at which tissue sodium signal starts to rise above normal (onset of elevated tissue sodium, OETS) represents stroke onset time (SOT). However, extrapolating core data back in time resulted in a delay of 72±24 minutes in OETS compared with actual SOT. At the OETS in the core, penumbra sodium signal was significantly decreased (88±6%, P=0.0008), whereas penumbra ADC was not significantly different (92±18%, P=0.2) from contralateral tissue. In conclusion, reduced sodium-MRI signal may serve as a viability marker for penumbra detection and can complement hydrogen ADC and perfusion MRI in the time-independent assessment of tissue fate in acute stroke patients. PMID:25335803

  4. Mitigating fringing in discrete frequency infrared imaging using time-delayed integration

    PubMed Central

    Ran, Shihao; Berisha, Sebastian; Mankar, Rupali; Shih, Wei-Chuan; Mayerich, David

    2018-01-01

    Infrared (IR) spectroscopic microscopes provide the potential for label-free quantitative molecular imaging of biological samples, which can be used to aid in histology, forensics, and pharmaceutical analysis. Most IR imaging systems use broadband illumination combined with a spectrometer to separate the signal into spectral components. This technique is currently too slow for many biomedical applications such as clinical diagnosis, primarily due to the availability of bright mid-infrared sources and sensitive MCT detectors. There has been a recent push to increase throughput using coherent light sources, such as synchrotron radiation and quantum cascade lasers. While these sources provide a significant increase in intensity, the coherence introduces fringing artifacts in the final image. We demonstrate that applying time-delayed integration in one dimension can dramatically reduce fringing artifacts with minimal alterations to the standard infrared imaging pipeline. The proposed technique also offers the potential for less expensive focal plane array detectors, since linear arrays can be more readily incorporated into the proposed framework. PMID:29552416

  5. Vulnerability to paroxysmal oscillations in delayed neural networks: A basis for nocturnal frontal lobe epilepsy?

    NASA Astrophysics Data System (ADS)

    Quan, Austin; Osorio, Ivan; Ohira, Toru; Milton, John

    2011-12-01

    Resonance can occur in bistable dynamical systems due to the interplay between noise and delay (τ) in the absence of a periodic input. We investigate resonance in a two-neuron model with mutual time-delayed inhibitory feedback. For appropriate choices of the parameters and inputs three fixed-point attractors co-exist: two are stable and one is unstable. In the absence of noise, delay-induced transient oscillations (referred to herein as DITOs) arise whenever the initial function is tuned sufficiently close to the unstable fixed-point. In the presence of noisy perturbations, DITOs arise spontaneously. Since the correlation time for the stationary dynamics is ˜τ, we approximated a higher order Markov process by a three-state Markov chain model by rescaling time as t → 2sτ, identifying the states based on whether the sub-intervals were completely confined to one basin of attraction (the two stable attractors) or straddled the separatrix, and then determining the transition probability matrix empirically. The resultant Markov chain model captured the switching behaviors including the statistical properties of the DITOs. Our observations indicate that time-delayed and noisy bistable dynamical systems are prone to generate DITOs as switches between the two attractors occur. Bistable systems arise transiently in situations when one attractor is gradually replaced by another. This may explain, for example, why seizures in certain epileptic syndromes tend to occur as sleep stages change.

  6. Global asymptotic stability analysis of bidirectional associative memory neural networks with time delays.

    PubMed

    Arik, Sabri

    2005-05-01

    This paper presents a sufficient condition for the existence, uniqueness and global asymptotic stability of the equilibrium point for bidirectional associative memory (BAM) neural networks with distributed time delays. The results impose constraint conditions on the network parameters of neural system independently of the delay parameter, and they are applicable to all continuous nonmonotonic neuron activation functions. It is shown that in some special cases of the results, the stability criteria can be easily checked. Some examples are also given to compare the results with the previous results derived in the literature.

  7. Delay-Encoded Harmonic Imaging (DE-HI) in Multiplane-Wave Compounding.

    PubMed

    Gong, Ping; Song, Pengfei; Chen, Shigao

    2017-04-01

    The development of ultrafast ultrasound imaging brings great opportunities to improve imaging technologies such as shear wave elastography and ultrafast Doppler imaging. In ultrafast imaging, several tilted plane or diverging wave images are coherently combined to form a compounded image, leading to trade-offs among image signal-to-noise ratio (SNR), resolution, and post-compounded frame rate. Multiplane wave (MW) imaging is proposed to solve this trade-off by encoding multiple plane waves with Hadamard matrix during one transmission event (i.e. pulse-echo event), to improve image SNR without sacrificing the resolution or frame rate. However, it suffers from stronger reverberation artifacts in B-mode images compared to standard plane wave compounding due to longer transmitted pulses. If harmonic imaging can be combined with MW imaging, the reverberation artifacts and other clutter noises such as sidelobes and multipath scattering clutters should be suppressed. The challenge, however, is that the Hadamard codes used in MW imaging cannot encode the 2 nd harmonic component by inversing the pulse polarity. In this paper, we propose a delay-encoded harmonic imaging (DE-HI) technique to encode the 2 nd harmonic with a one quarter period delay calculated at the transmit center frequency, rather than reversing the pulse polarity during multiplane wave emissions. Received DE-HI signals can then be decoded in the frequency domain to recover the signals as in single plane wave emissions, but mainly with improved SNR at the 2 nd harmonic component instead of the fundamental component. DE-HI was tested experimentally with a point target, a B-mode imaging phantom, and in-vivo human liver imaging. Improvements in image contrast-to-noise ratio (CNR), spatial resolution, and lesion-signal-to-noise ratio ( l SNR) have been achieved compared to standard plane wave compounding, MW imaging, and standard harmonic imaging (maximal improvement of 116% on CNR and 115% on l SNR as compared to standard HI around 55 mm depth in the B-mode imaging phantom study). The potential high frame rate and the stability of encoding and decoding processes of DE-HI were also demonstrated, which made DE-HI promising for a wide spectrum of imaging applications.

  8. A Single-Photon Avalanche Diode Array for Fluorescence Lifetime Imaging Microscopy.

    PubMed

    Schwartz, David Eric; Charbon, Edoardo; Shepard, Kenneth L

    2008-11-21

    We describe the design, characterization, and demonstration of a fully integrated single-photon avalanche diode (SPAD) imager for use in time-resolved fluorescence imaging. The imager consists of a 64-by-64 array of active SPAD pixels and an on-chip time-to-digital converter (TDC) based on a delay-locked loop (DLL) and calibrated interpolators. The imager can perform both standard time-correlated single-photon counting (TCSPC) and an alternative gated-window detection useful for avoiding pulse pile-up when measuring bright signal levels. To illustrate the use of the imager, we present measurements of the decay lifetimes of fluorescent dyes of several types with a timing resolution of 350 ps.

  9. A Single-Photon Avalanche Diode Array for Fluorescence Lifetime Imaging Microscopy

    PubMed Central

    Schwartz, David Eric; Charbon, Edoardo; Shepard, Kenneth L.

    2013-01-01

    We describe the design, characterization, and demonstration of a fully integrated single-photon avalanche diode (SPAD) imager for use in time-resolved fluorescence imaging. The imager consists of a 64-by-64 array of active SPAD pixels and an on-chip time-to-digital converter (TDC) based on a delay-locked loop (DLL) and calibrated interpolators. The imager can perform both standard time-correlated single-photon counting (TCSPC) and an alternative gated-window detection useful for avoiding pulse pile-up when measuring bright signal levels. To illustrate the use of the imager, we present measurements of the decay lifetimes of fluorescent dyes of several types with a timing resolution of 350 ps. PMID:23976789

  10. Oscillatory dynamics of an intravenous glucose tolerance test model with delay interval

    NASA Astrophysics Data System (ADS)

    Shi, Xiangyun; Kuang, Yang; Makroglou, Athena; Mokshagundam, Sriprakash; Li, Jiaxu

    2017-11-01

    Type 2 diabetes mellitus (T2DM) has become prevalent pandemic disease in view of the modern life style. Both diabetic population and health expenses grow rapidly according to American Diabetes Association. Detecting the potential onset of T2DM is an essential focal point in the research of diabetes mellitus. The intravenous glucose tolerance test (IVGTT) is an effective protocol to determine the insulin sensitivity, glucose effectiveness, and pancreatic β-cell functionality, through the analysis and parameter estimation of a proper differential equation model. Delay differential equations have been used to study the complex physiological phenomena including the glucose and insulin regulations. In this paper, we propose a novel approach to model the time delay in IVGTT modeling. This novel approach uses two parameters to simulate not only both discrete time delay and distributed time delay in the past interval, but also the time delay distributed in a past sub-interval. Normally, larger time delay, either a discrete or a distributed delay, will destabilize the system. However, we find that time delay over a sub-interval might not. We present analytically some basic model properties, which are desirable biologically and mathematically. We show that this relatively simple model provides good fit to fluctuating patient data sets and reveals some intriguing dynamics. Moreover, our numerical simulation results indicate that our model may remove the defect in well known Minimal Model, which often overestimates the glucose effectiveness index.

  11. Determining delayed admission to intensive care unit for mechanically ventilated patients in the emergency department.

    PubMed

    Hung, Shih-Chiang; Kung, Chia-Te; Hung, Chih-Wei; Liu, Ber-Ming; Liu, Jien-Wei; Chew, Ghee; Chuang, Hung-Yi; Lee, Wen-Huei; Lee, Tzu-Chi

    2014-08-23

    The adverse effects of delayed admission to the intensive care unit (ICU) have been recognized in previous studies. However, the definitions of delayed admission varies across studies. This study proposed a model to define "delayed admission", and explored the effect of ICU-waiting time on patients' outcome. This retrospective cohort study included non-traumatic adult patients on mechanical ventilation in the emergency department (ED), from July 2009 to June 2010. The primary outcomes measures were 21-ventilator-day mortality and prolonged hospital stays (over 30 days). Models of Cox regression and logistic regression were used for multivariate analysis. The non-delayed ICU-waiting was defined as a period in which the time effect on mortality was not statistically significant in a Cox regression model. To identify a suitable cut-off point between "delayed" and "non-delayed", subsets from the overall data were made based on ICU-waiting time and the hazard ratio of ICU-waiting hour in each subset was iteratively calculated. The cut-off time was then used to evaluate the impact of delayed ICU admission on mortality and prolonged length of hospital stay. The final analysis included 1,242 patients. The time effect on mortality emerged after 4 hours, thus we deduced ICU-waiting time in ED > 4 hours as delayed. By logistic regression analysis, delayed ICU admission affected the outcomes of 21 ventilator-days mortality and prolonged hospital stay, with odds ratio of 1.41 (95% confidence interval, 1.05 to 1.89) and 1.56 (95% confidence interval, 1.07 to 2.27) respectively. For patients on mechanical ventilation at the ED, delayed ICU admission is associated with higher probability of mortality and additional resource expenditure. A benchmark waiting time of no more than 4 hours for ICU admission is recommended.

  12. Sex-Specific Associations between Umbilical Cord Blood Testosterone Levels and Language Delay in Early Childhood

    ERIC Educational Resources Information Center

    Whitehouse, Andrew J. O.; Mattes, Eugen; Maybery, Murray T.; Sawyer, Michael G.; Jacoby, Peter; Keelan, Jeffrey A.; Hickey, Martha

    2012-01-01

    Background: Preliminary evidence suggests that prenatal testosterone exposure may be associated with language delay. However, no study has examined a large sample of children at multiple time-points. Methods: Umbilical cord blood samples were obtained at 861 births and analysed for bioavailable testosterone (BioT) concentrations. When…

  13. Do Adjusting-Amount and Adjusting-Delay Procedures Produce Equivalent Estimates of Subjective Value in Pigeons?

    ERIC Educational Resources Information Center

    Green, Leonard; Myerson, Joel; Shah, Anuj K.; Estle, Sara J.; Holt, Daniel D.

    2007-01-01

    The current experiment examined whether adjusting-amount and adjusting-delay procedures provide equivalent measures of discounting. Pigeons' discounting on the two procedures was compared using a within-subject yoking technique in which the indifference point (number of pellets or time until reinforcement) obtained with one procedure determined…

  14. Power cavitation-guided blood-brain barrier opening with focused ultrasound and microbubbles

    NASA Astrophysics Data System (ADS)

    Burgess, M. T.; Apostolakis, I.; Konofagou, E. E.

    2018-03-01

    Image-guided monitoring of microbubble-based focused ultrasound (FUS) therapies relies on the accurate localization of FUS-stimulated microbubble activity (i.e. acoustic cavitation). Passive cavitation imaging with ultrasound arrays can achieve this, but with insufficient spatial resolution. In this study, we address this limitation and perform high-resolution monitoring of acoustic cavitation-mediated blood-brain barrier (BBB) opening with a new technique called power cavitation imaging. By synchronizing the FUS transmit and passive receive acquisition, high-resolution passive cavitation imaging was achieved by using delay and sum beamforming with absolute time delays. Since the axial image resolution is now dependent on the duration of the received acoustic cavitation emission, short pulses of FUS were used to limit its duration. Image sets were acquired at high-frame rates for calculation of power cavitation images analogous to power Doppler imaging. Power cavitation imaging displays the mean intensity of acoustic cavitation over time and was correlated with areas of acoustic cavitation-induced BBB opening. Power cavitation-guided BBB opening with FUS could constitute a standalone system that may not require MRI guidance during the procedure. The same technique can be used for other acoustic cavitation-based FUS therapies, for both safety and guidance.

  15. Power cavitation-guided blood-brain barrier opening with focused ultrasound and microbubbles.

    PubMed

    Burgess, M T; Apostolakis, I; Konofagou, E E

    2018-03-15

    Image-guided monitoring of microbubble-based focused ultrasound (FUS) therapies relies on the accurate localization of FUS-stimulated microbubble activity (i.e. acoustic cavitation). Passive cavitation imaging with ultrasound arrays can achieve this, but with insufficient spatial resolution. In this study, we address this limitation and perform high-resolution monitoring of acoustic cavitation-mediated blood-brain barrier (BBB) opening with a new technique called power cavitation imaging. By synchronizing the FUS transmit and passive receive acquisition, high-resolution passive cavitation imaging was achieved by using delay and sum beamforming with absolute time delays. Since the axial image resolution is now dependent on the duration of the received acoustic cavitation emission, short pulses of FUS were used to limit its duration. Image sets were acquired at high-frame rates for calculation of power cavitation images analogous to power Doppler imaging. Power cavitation imaging displays the mean intensity of acoustic cavitation over time and was correlated with areas of acoustic cavitation-induced BBB opening. Power cavitation-guided BBB opening with FUS could constitute a standalone system that may not require MRI guidance during the procedure. The same technique can be used for other acoustic cavitation-based FUS therapies, for both safety and guidance.

  16. Heart Rate Recovery, Physical Activity Level, and Functional Status in Subjects With COPD.

    PubMed

    Morita, Andrea A; Silva, Laís K O; Bisca, Gianna W; Oliveira, Joice M; Hernandes, Nidia A; Pitta, Fabio; Furlanetto, Karina C

    2018-05-15

    A normal heart rate reflects the balance between the sympathetic and parasympathetic autonomic nervous system. When the difference between heart rate at the end of an exercise test and after 1 min of recovery, known as the 1-min heart rate recovery, is ≤ 12 beats/min, this may indicate an abnormal delay. We sought to compare physical activity patterns and subjects' functional status with COPD with or without delayed 1-min heart rate recovery after the 6-min walk test (6MWT). 145 subjects with COPD (78 men, median [interquartile range (IQR)] age 65 [60-73] y, body mass index 25 [21-30] kg/m 2 , FEV 1 45 ± 15% predicted) were underwent the following assessments: spirometry, 6MWT, functional status, and physical activity in daily life (PADL). A delayed heart rate recovery of 1 min was defined as ≤ 12 beats/min. Subjects with delayed 1-min heart rate recovery walked a shorter distance in the 6MWT compared to subjects without delayed heart rate recovery (median [IQR] 435 [390-507] m vs 477 [425-515] m, P = .01; 81 [71-87] vs 87 [79-98]% predicted, P = .002). Regarding PADL, subjects with delayed heart rate recovery spent less time in the standing position (mean ± SD 185 ± 89 min vs 250 ± 107 min, P = .002) and more time in sedentary positions (472 ± 110 min vs 394 ± 129 min, P = .002). Scores based on the self-care domain of the London Chest Activity of Daily Living questionnaire and the activity domain of the Pulmonary Functional Status and Dyspnea questionnaire were also worse in the group with delayed heart rate recovery (6 ± 2 points vs 5 ± 2 points; P = .039 and 29 ± 24 points vs 19 ± 17 points; P = .037, respectively). Individuals with COPD who exhibit delayed 1-min heart rate recovery after the 6MWT exhibited worse exercise capacity as well as a more pronounced sedentary lifestyle and worse functional status than those without delayed heart rate recovery. Despite its assessment simplicity, heart rate recovery after the 6MWT can be further explored as a promising outcome in COPD. Copyright © 2018 by Daedalus Enterprises.

  17. Dynamic autofocus for continuous-scanning time-delay-and-integration image acquisition in automated microscopy.

    PubMed

    Bravo-Zanoguera, Miguel E; Laris, Casey A; Nguyen, Lam K; Oliva, Mike; Price, Jeffrey H

    2007-01-01

    Efficient image cytometry of a conventional microscope slide means rapid acquisition and analysis of 20 gigapixels of image data (at 0.3-microm sampling). The voluminous data motivate increased acquisition speed to enable many biomedical applications. Continuous-motion time-delay-and-integrate (TDI) scanning has the potential to speed image acquisition while retaining sensitivity, but the challenge of implementing high-resolution autofocus operating simultaneously with acquisition has limited its adoption. We develop a dynamic autofocus system for this need using: 1. a "volume camera," consisting of nine fiber optic imaging conduits to charge-coupled device (CCD) sensors, that acquires images in parallel from different focal planes, 2. an array of mixed analog-digital processing circuits that measure the high spatial frequencies of the multiple image streams to create focus indices, and 3. a software system that reads and analyzes the focus data streams and calculates best focus for closed feedback loop control. Our system updates autofocus at 56 Hz (or once every 21 microm of stage travel) to collect sharply focused images sampled at 0.3x0.3 microm(2)/pixel at a stage speed of 2.3 mms. The system, tested by focusing in phase contrast and imaging long fluorescence strips, achieves high-performance closed-loop image-content-based autofocus in continuous scanning for the first time.

  18. Online coupled camera pose estimation and dense reconstruction from video

    DOEpatents

    Medioni, Gerard; Kang, Zhuoliang

    2016-11-01

    A product may receive each image in a stream of video image of a scene, and before processing the next image, generate information indicative of the position and orientation of an image capture device that captured the image at the time of capturing the image. The product may do so by identifying distinguishable image feature points in the image; determining a coordinate for each identified image feature point; and for each identified image feature point, attempting to identify one or more distinguishable model feature points in a three dimensional (3D) model of at least a portion of the scene that appears likely to correspond to the identified image feature point. Thereafter, the product may find each of the following that, in combination, produce a consistent projection transformation of the 3D model onto the image: a subset of the identified image feature points for which one or more corresponding model feature points were identified; and, for each image feature point that has multiple likely corresponding model feature points, one of the corresponding model feature points. The product may update a 3D model of at least a portion of the scene following the receipt of each video image and before processing the next video image base on the generated information indicative of the position and orientation of the image capture device at the time of capturing the received image. The product may display the updated 3D model after each update to the model.

  19. An embedded point-of-care malaria screening device for low-resource regions (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Das, Sayantan; Mandal, Subhamoy; Das, Debnath; Malviya, Richa; Garud, Hrushikesh T.; Ray, Ajoy K.

    2016-03-01

    In this article we propose a point-of-care screening device for the detection and identification of malaria parasite, plasmodium vivax, plasmodium malaria, plasmodium oval and plasmodium falciparum with a time frame of 15-20 minute. In our device we can provide 97-98% sensitivity for each species as we are using traditional staining methods for detecting the parasites. In addition, as we are also quantifying the parasites, it is possible to provide an accurate estimate about the malarial stage of the patient. The image processing approach increases the total numbers of samples screened by reducing interventions of trained pathologists. This helps in reducing the delays in screening process arising from increased number of potential cases based on seasonal and local variations. The same reduces mortality rate by faster diagnosis and reduced false negative detections (i.e. increased sensitivity). The system can also be integrated with telemedicine platform to obtain inputs from medical practitioners at tertiary healthcare units for diagnostic decision making. Through this paper, we present the functional prototype of this device containing all the integrated parts. The prototype incorporates image acquisition, image processing, storage, multimedia transmission and reporting environment for a low cost PDA device. It is a portable device capable of scanning slides. The acquired image will be preprocessed and processed to get desired output. The device is capable of transmitting and storing pathological information to database placed in a distant pathological center for further consultation.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, B.; Kantowski, R.; Dai, X.

    We compute time delays for gravitational lensing in a flat {Lambda} dominated cold dark matter Swiss cheese universe. We assume a primary and secondary pair of light rays are deflected by a single point mass condensation described by a Kottler metric (Schwarzschild with {Lambda}) embedded in an otherwise homogeneous cosmology. We find that the cosmological constant's effect on the difference in arrival times is nonlinear and at most around 0.002% for a large cluster lens; however, we find differences from time delays predicted by conventional linear lensing theory that can reach {approx}4% for these large lenses. The differences in predictedmore » delay times are due to the failure of conventional lensing to incorporate the lensing mass into the mean mass density of the universe.« less

  1. Robust optimization for nonlinear time-delay dynamical system of dha regulon with cost sensitivity constraint in batch culture

    NASA Astrophysics Data System (ADS)

    Yuan, Jinlong; Zhang, Xu; Liu, Chongyang; Chang, Liang; Xie, Jun; Feng, Enmin; Yin, Hongchao; Xiu, Zhilong

    2016-09-01

    Time-delay dynamical systems, which depend on both the current state of the system and the state at delayed times, have been an active area of research in many real-world applications. In this paper, we consider a nonlinear time-delay dynamical system of dha-regulonwith unknown time-delays in batch culture of glycerol bioconversion to 1,3-propanediol induced by Klebsiella pneumonia. Some important properties and strong positive invariance are discussed. Because of the difficulty in accurately measuring the concentrations of intracellular substances and the absence of equilibrium points for the time-delay system, a quantitative biological robustness for the concentrations of intracellular substances is defined by penalizing a weighted sum of the expectation and variance of the relative deviation between system outputs before and after the time-delays are perturbed. Our goal is to determine optimal values of the time-delays. To this end, we formulate an optimization problem in which the time delays are decision variables and the cost function is to minimize the biological robustness. This optimization problem is subject to the time-delay system, parameter constraints, continuous state inequality constraints for ensuring that the concentrations of extracellular and intracellular substances lie within specified limits, a quality constraint to reflect operational requirements and a cost sensitivity constraint for ensuring that an acceptable level of the system performance is achieved. It is approximated as a sequence of nonlinear programming sub-problems through the application of constraint transcription and local smoothing approximation techniques. Due to the highly complex nature of this optimization problem, the computational cost is high. Thus, a parallel algorithm is proposed to solve these nonlinear programming sub-problems based on the filled function method. Finally, it is observed that the obtained optimal estimates for the time-delays are highly satisfactory via numerical simulations.

  2. Stability in Cohen Grossberg-type bidirectional associative memory neural networks with time-varying delays

    NASA Astrophysics Data System (ADS)

    Cao, Jinde; Song, Qiankun

    2006-07-01

    In this paper, the exponential stability problem is investigated for a class of Cohen-Grossberg-type bidirectional associative memory neural networks with time-varying delays. By using the analysis method, inequality technique and the properties of an M-matrix, several novel sufficient conditions ensuring the existence, uniqueness and global exponential stability of the equilibrium point are derived. Moreover, the exponential convergence rate is estimated. The obtained results are less restrictive than those given in the earlier literature, and the boundedness and differentiability of the activation functions and differentiability of the time-varying delays are removed. Two examples with their simulations are given to show the effectiveness of the obtained results.

  3. The parallel-sequential field subtraction techniques for nonlinear ultrasonic imaging

    NASA Astrophysics Data System (ADS)

    Cheng, Jingwei; Potter, Jack N.; Drinkwater, Bruce W.

    2018-04-01

    Nonlinear imaging techniques have recently emerged which have the potential to detect cracks at a much earlier stage and have sensitivity to particularly closed defects. This study utilizes two modes of focusing: parallel, in which the elements are fired together with a delay law, and sequential, in which elements are fired independently. In the parallel focusing, a high intensity ultrasonic beam is formed in the specimen at the focal point. However, in sequential focusing only low intensity signals from individual elements enter the sample and the full matrix of transmit-receive signals is recorded; with elastic assumptions, both parallel and sequential images are expected to be identical. Here we measure the difference between these images formed from the coherent component of the field and use this to characterize nonlinearity of closed fatigue cracks. In particular we monitor the reduction in amplitude at the fundamental frequency at each focal point and use this metric to form images of the spatial distribution of nonlinearity. The results suggest the subtracted image can suppress linear features (e.g., back wall or large scatters) and allow damage to be detected at an early stage.

  4. Does Delayed-Time-Point Imaging Improve 18F-FDG-PET in Patients With MALT Lymphoma?

    PubMed Central

    Mayerhoefer, Marius E.; Giraudo, Chiara; Senn, Daniela; Hartenbach, Markus; Weber, Michael; Rausch, Ivo; Kiesewetter, Barbara; Herold, Christian J.; Hacker, Marcus; Pones, Matthias; Simonitsch-Klupp, Ingrid; Müllauer, Leonhard; Dolak, Werner; Lukas, Julius; Raderer, Markus

    2016-01-01

    Purpose To determine whether in patients with extranodal marginal zone B-cell lymphoma of the mucosa-associated lymphoid tissue lymphoma (MALT), delayed–time-point 2-18F-fluoro-2-deoxy-d-glucose-positron emission tomography (18F-FDG-PET) performs better than standard–time-point 18F-FDG-PET. Materials and Methods Patients with untreated histologically verified MALT lymphoma, who were undergoing pretherapeutic 18F-FDG-PET/computed tomography (CT) and consecutive 18F-FDG-PET/magnetic resonance imaging (MRI), using a single 18F-FDG injection, in the course of a larger-scale prospective trial, were included. Region-based sensitivity and specificity, and patient-based sensitivity of the respective 18F-FDG-PET scans at time points 1 (45–60 minutes after tracer injection, TP1) and 2 (100–150 minutes after tracer injection, TP2), relative to the reference standard, were calculated. Lesion-to-liver and lesion-to-blood SUVmax (maximum standardized uptake values) ratios were also assessed. Results 18F-FDG-PET at TP1 was true positive in 15 o f 23 involved regions, and 18F-FDG-PET at TP2 was true-positive in 20 of 23 involved regions; no false-positive regions were noted. Accordingly, region-based sensitivities and specificities were 65.2% (confidence interval [CI], 45.73%–84.67%) and 100% (CI, 100%-100%) for 18F-FDG-PET at TP1; and 87.0% (CI, 73.26%–100%) and 100% (CI, 100%-100%) for 18F-FDG-PET at TP2, respectively. FDG-PET at TP1 detected lymphoma in at least one nodal or extranodal region in 7 of 13 patients, and 18F-FDG-PET at TP2 in 10 of 13 patients; accordingly, patient-based sensitivity was 53.8% (CI, 26.7%–80.9%) for 18F-FDG-PET at TP1, and 76.9% (CI, 54.0%–99.8%) for 18F-FDG-PET at TP2. Lesion-to-liver and lesion-to-blood maximum standardized uptake value ratios were significantly lower at TP1 (ratios, 1.05 ± 0.40 and 1.52 ± 0.62) than at TP2 (ratios, 1.67 ± 0.74 and 2.56 ± 1.10; P = 0.003 and P = 0.001). Conclusions Delayed–time-point imaging may improve 18F-FDG-PET in MALT lymphoma. PMID:26402137

  5. A view finder control system for an earth observation satellite

    NASA Astrophysics Data System (ADS)

    Steyn, H.

    2004-11-01

    A real time TV view finder is used on-board a low earth orbiting (LEO) satellite to manually select targets for imaging from a ground station within the communication footprint of the satellite. The attitude control system on the satellite is used to steer the satellite using commands from the groundstation and a television camera onboard the satellite will then downlink a television signal in real time to a monitor screen in the ground station. The operator in the feedback loop will be able to manually steer the boresight of the satellite's main imager towards interested target areas e.g. to avoid clouds or correct for any attitude pointing errors. Due to a substantial delay (in the order of a second) in the view finding feedback loop and the narrow field of view of the main imager, the operator has to be assisted by the onboard attitude control system to stabilise and track the target area visible on the monitor screen. This paper will present the extended Kalman filter used to estimate the satellite's attitude angles using quaternions and the bias vector component of the 3-axis inertial rate sensors (gyros). Absolute attitude sensors (i.e. sun, horizon and magnetic) are used to supply the measurement vectors to correct the filter states during the view finder manoeuvres. The target tracking and rate steering reaction wheel controllers to accurately point and stabilise the satellite will be presented. The reference generator for the satellite to target attitude and rate vectors as used by the reaction wheel controllers will be derived.

  6. Ionizing radiation accelerates Drp1-dependent mitochondrial fission, which involves delayed mitochondrial reactive oxygen species production in normal human fibroblast-like cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobashigawa, Shinko, E-mail: kobashin@nagasaki-u.ac.jp; Suzuki, Keiji; Yamashita, Shunichi

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer We report first time that ionizing radiation induces mitochondrial dynamic changes. Black-Right-Pointing-Pointer Radiation-induced mitochondrial fission was caused by Drp1 localization. Black-Right-Pointing-Pointer We found that radiation causes delayed ROS from mitochondria. Black-Right-Pointing-Pointer Down regulation of Drp1 rescued mitochondrial dysfunction after radiation exposure. -- Abstract: Ionizing radiation is known to increase intracellular level of reactive oxygen species (ROS) through mitochondrial dysfunction. Although it has been as a basis of radiation-induced genetic instability, the mechanism involving mitochondrial dysfunction remains unclear. Here we studied the dynamics of mitochondrial structure in normal human fibroblast like cells exposed to ionizing radiation. Delayed mitochondrial O{submore » 2}{sup {center_dot}-} production was peaked 3 days after irradiation, which was coupled with accelerated mitochondrial fission. We found that radiation exposure accumulated dynamin-related protein 1 (Drp1) to mitochondria. Knocking down of Drp1 expression prevented radiation induced acceleration of mitochondrial fission. Furthermore, knockdown of Drp1 significantly suppressed delayed production of mitochondrial O{sub 2}{sup {center_dot}-}. Since the loss of mitochondrial membrane potential, which was induced by radiation was prevented in cells knocking down of Drp1 expression, indicating that the excessive mitochondrial fission was involved in delayed mitochondrial dysfunction after irradiation.« less

  7. A time scheduling model of logistics service supply chain based on the customer order decoupling point: a perspective from the constant service operation time.

    PubMed

    Liu, Weihua; Yang, Yi; Xu, Haitao; Liu, Xiaoyan; Wang, Yijia; Liang, Zhicheng

    2014-01-01

    In mass customization logistics service, reasonable scheduling of the logistics service supply chain (LSSC), especially time scheduling, is benefit to increase its competitiveness. Therefore, the effect of a customer order decoupling point (CODP) on the time scheduling performance should be considered. To minimize the total order operation cost of the LSSC, minimize the difference between the expected and actual time of completing the service orders, and maximize the satisfaction of functional logistics service providers, this study establishes an LSSC time scheduling model based on the CODP. Matlab 7.8 software is used in the numerical analysis for a specific example. Results show that the order completion time of the LSSC can be delayed or be ahead of schedule but cannot be infinitely advanced or infinitely delayed. Obtaining the optimal comprehensive performance can be effective if the expected order completion time is appropriately delayed. The increase in supply chain comprehensive performance caused by the increase in the relationship coefficient of logistics service integrator (LSI) is limited. The relative concern degree of LSI on cost and service delivery punctuality leads to not only changes in CODP but also to those in the scheduling performance of the LSSC.

  8. A Time Scheduling Model of Logistics Service Supply Chain Based on the Customer Order Decoupling Point: A Perspective from the Constant Service Operation Time

    PubMed Central

    Yang, Yi; Xu, Haitao; Liu, Xiaoyan; Wang, Yijia; Liang, Zhicheng

    2014-01-01

    In mass customization logistics service, reasonable scheduling of the logistics service supply chain (LSSC), especially time scheduling, is benefit to increase its competitiveness. Therefore, the effect of a customer order decoupling point (CODP) on the time scheduling performance should be considered. To minimize the total order operation cost of the LSSC, minimize the difference between the expected and actual time of completing the service orders, and maximize the satisfaction of functional logistics service providers, this study establishes an LSSC time scheduling model based on the CODP. Matlab 7.8 software is used in the numerical analysis for a specific example. Results show that the order completion time of the LSSC can be delayed or be ahead of schedule but cannot be infinitely advanced or infinitely delayed. Obtaining the optimal comprehensive performance can be effective if the expected order completion time is appropriately delayed. The increase in supply chain comprehensive performance caused by the increase in the relationship coefficient of logistics service integrator (LSI) is limited. The relative concern degree of LSI on cost and service delivery punctuality leads to not only changes in CODP but also to those in the scheduling performance of the LSSC. PMID:24715818

  9. PreSSUB II: The prehospital stroke study at the Universitair Ziekenhuis Brussel II

    PubMed Central

    Espinoza, Alexis Valenzuela; Van Hooff, Robbert-Jan; De Smedt, Ann; Moens, Maarten; Yperzeele, Laetitia; Nieboer, Koenraad; Hubloue, Ives; De Keyser, Jacques; Dupont, Alain; De Wit, Liesbet; Putman, Koen; Brouns, Raf

    2015-01-01

    Rationale Stroke is a time-critical medical emergency requiring specialized treatment. Prehospital delay contributes significantly to delayed or missed treatment opportunities. In-ambulance telemedicine can bring stroke expertise to the prehospital arena and facilitate this complex diagnostic and therapeutic process. Aims This study evaluates the efficacy, safety, feasibility, reliability and cost-effectiveness of in-ambulance telemedicine for patients with suspicion of acute stroke. We hypothesize that this approach will reduce the delay to in-hospital treatment by streamlining the diagnostic process and that prehospital stroke care will be improved by expert stroke support via telemedicine during the ambulance transportation. Design PreSSUB II is an interventional, prospective, randomized, open-blinded, end-point, single-center trial comparing standard emergency care by the Paramedic Intervention Team of the Universitair Ziekenhuis Brussel (control) with standard emergency care complemented with in-ambulance teleconsultation service by stroke experts (PreSSUB). Study Outcomes The primary efficacy endpoint is the call-to-brain imaging time. Secondary endpoints for the efficacy analysis include the prevalence of medical events diagnosed and corrected during in-ambulance teleconsultation, the proportion of patients with ischemic stroke receiving recanalization therapy, the assessment of disability, functional status, quality of life and overall well-being. Mortality at 90 days after stroke is the primary safety endpoint. Secondary safety analysis will involve the registration of any adverse event. Other analyses include assessment of feasibility and reliability and a health economic evaluation. PMID:27847888

  10. TIME-INTERVAL MEASURING DEVICE

    DOEpatents

    Gross, J.E.

    1958-04-15

    An electronic device for measuring the time interval between two control pulses is presented. The device incorporates part of a previous approach for time measurement, in that pulses from a constant-frequency oscillator are counted during the interval between the control pulses. To reduce the possible error in counting caused by the operation of the counter gating circuit at various points in the pulse cycle, the described device provides means for successively delaying the pulses for a fraction of the pulse period so that a final delay of one period is obtained and means for counting the pulses before and after each stage of delay during the time interval whereby a plurality of totals is obtained which may be averaged and multplied by the pulse period to obtain an accurate time- Interval measurement.

  11. On Selberg's trace formula: chaos, resonances and time delays

    NASA Astrophysics Data System (ADS)

    Lévay, Péter

    2000-06-01

    The quantization of the chaotic geodesic motion on Riemann surfaces Σg,κ of constant negative curvature with genus g and a finite number of points κ infinitely far away (cusps) describing scattering channels is investigated. It is shown that terms in Selberg's trace formula describing scattering states can be expressed in terms of a renormalized time delay. This quantity is the time delay associated with the surface in question minus the time delay corresponding to the scattering problem on the Poincaré upper half-plane uniformizing our surface. Poles in these quantities give rise to resonances reflecting the chaos of the underlying classical dynamics. Our results are illustrated for the surfaces Σ1,1 (Gutzwiller's leaky torus), Σ0,3 (pants), and a class of Σg,2 surfaces. The generalization covering the inclusion of an integer B≥2 magnetic field is also presented. It is shown that the renormalized time delay is not dependent on the magnetic field. This shows that the semiclassical dynamics with an integer magnetic field is the same as the free dynamics.

  12. A new delay-independent condition for global robust stability of neural networks with time delays.

    PubMed

    Samli, Ruya

    2015-06-01

    This paper studies the problem of robust stability of dynamical neural networks with discrete time delays under the assumptions that the network parameters of the neural system are uncertain and norm-bounded, and the activation functions are slope-bounded. By employing the results of Lyapunov stability theory and matrix theory, new sufficient conditions for the existence, uniqueness and global asymptotic stability of the equilibrium point for delayed neural networks are presented. The results reported in this paper can be easily tested by checking some special properties of symmetric matrices associated with the parameter uncertainties of neural networks. We also present a numerical example to show the effectiveness of the proposed theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. X-Ray Scattering Echoes and Ghost Halos from the Intergalactic Medium: Relation to the Nature of AGN Variability

    NASA Astrophysics Data System (ADS)

    Corrales, Lia

    2015-05-01

    X-ray bright quasars might be used to trace dust in the circumgalactic and intergalactic medium through the phenomenon of X-ray scattering, which is observed around Galactic objects whose light passes through a sufficient column of interstellar gas and dust. Of particular interest is the abundance of gray dust larger than 0.1 μ m, which is difficult to detect at other wavelengths. To calculate X-ray scattering from large grains, one must abandon the traditional Rayleigh-Gans approximation. The Mie solution for the X-ray scattering optical depth of the universe is ∼ 1%. This presents a great difficulty for distinguishing dust scattered photons from the point source image of Chandra, which is currently unsurpassed in imaging resolution. The variable nature of AGNs offers a solution to this problem, as scattered light takes a longer path and thus experiences a time delay with respect to non-scattered light. If an AGN dims significantly (≳ 3 dex) due to a major feedback event, the Chandra point source image will be suppressed relative to the scattering halo, and an X-ray echo or ghost halo may become visible. I estimate the total number of scattering echoes visible by Chandra over the entire sky: {{N}ech}∼ {{10}3}({{ν }fb}/y{{r}-1}), where {{ν }fb} is the characteristic frequency of feedback events capable of dimming an AGN quickly.

  14. Dynamics of localized structures in reaction-diffusion systems induced by delayed feedback

    NASA Astrophysics Data System (ADS)

    Gurevich, Svetlana V.

    2013-05-01

    We are interested in stability properties of a single localized structure in a three-component reaction-diffusion system subjected to the time-delayed feedback. We shall show that variation in the product of the delay time and the feedback strength leads to complex dynamical behavior of the system, including formation of target patterns, spontaneous motion, and spontaneous breathing as well as various complex structures, arising from combination of different oscillatory instabilities. In the case of spontaneous motion, we provide a bifurcation analysis of the delayed system and derive an order parameter equation for the position of the localized structure, explicitly describing its temporal evolution in the vicinity of the bifurcation point. This equation is a subject to a nonlinear delay differential equation, which can be transformed to the normal form of the pitchfork drift bifurcation.

  15. Experimental Evaluation of a Deformable Registration Algorithm for Motion Correction in PET-CT Guided Biopsy.

    PubMed

    Khare, Rahul; Sala, Guillaume; Kinahan, Paul; Esposito, Giuseppe; Banovac, Filip; Cleary, Kevin; Enquobahrie, Andinet

    2013-01-01

    Positron emission tomography computed tomography (PET-CT) images are increasingly being used for guidance during percutaneous biopsy. However, due to the physics of image acquisition, PET-CT images are susceptible to problems due to respiratory and cardiac motion, leading to inaccurate tumor localization, shape distortion, and attenuation correction. To address these problems, we present a method for motion correction that relies on respiratory gated CT images aligned using a deformable registration algorithm. In this work, we use two deformable registration algorithms and two optimization approaches for registering the CT images obtained over the respiratory cycle. The two algorithms are the BSpline and the symmetric forces Demons registration. In the first optmization approach, CT images at each time point are registered to a single reference time point. In the second approach, deformation maps are obtained to align each CT time point with its adjacent time point. These deformations are then composed to find the deformation with respect to a reference time point. We evaluate these two algorithms and optimization approaches using respiratory gated CT images obtained from 7 patients. Our results show that overall the BSpline registration algorithm with the reference optimization approach gives the best results.

  16. Effects of additional food in a delayed predator-prey model.

    PubMed

    Sahoo, Banshidhar; Poria, Swarup

    2015-03-01

    We examine the effects of supplying additional food to predator in a gestation delay induced predator-prey system with habitat complexity. Additional food works in favor of predator growth in our model. Presence of additional food reduces the predatory attack rate to prey in the model. Supplying additional food we can control predator population. Taking time delay as bifurcation parameter the stability of the coexisting equilibrium point is analyzed. Hopf bifurcation analysis is done with respect to time delay in presence of additional food. The direction of Hopf bifurcations and the stability of bifurcated periodic solutions are determined by applying the normal form theory and the center manifold theorem. The qualitative dynamical behavior of the model is simulated using experimental parameter values. It is observed that fluctuations of the population size can be controlled either by supplying additional food suitably or by increasing the degree of habitat complexity. It is pointed out that Hopf bifurcation occurs in the system when the delay crosses some critical value. This critical value of delay strongly depends on quality and quantity of supplied additional food. Therefore, the variation of predator population significantly effects the dynamics of the model. Model results are compared with experimental results and biological implications of the analytical findings are discussed in the conclusion section. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Design and End Points of Clinical Trials for Patients With Progressive Prostate Cancer and Castrate Levels of Testosterone: Recommendations of the Prostate Cancer Clinical Trials Working Group

    PubMed Central

    Scher, Howard I.; Halabi, Susan; Tannock, Ian; Morris, Michael; Sternberg, Cora N.; Carducci, Michael A.; Eisenberger, Mario A.; Higano, Celestia; Bubley, Glenn J.; Dreicer, Robert; Petrylak, Daniel; Kantoff, Philip; Basch, Ethan; Kelly, William Kevin; Figg, William D.; Small, Eric J.; Beer, Tomasz M.; Wilding, George; Martin, Alison; Hussain, Maha

    2014-01-01

    Purpose To update eligibility and outcome measures in trials that evaluate systemic treatment for patients with progressive prostate cancer and castrate levels of testosterone. Methods A committee of investigators experienced in conducting trials for prostate cancer defined new consensus criteria by reviewing previous criteria, Response Evaluation Criteria in Solid Tumors (RECIST), and emerging trial data. Results The Prostate Cancer Clinical Trials Working Group (PCWG2) recommends a two-objective paradigm: (1) controlling, relieving, or eliminating disease manifestations that are present when treatment is initiated and (2) preventing or delaying disease manifestations expected to occur. Prostate cancers progressing despite castrate levels of testosterone are considered castration resistant and not hormone refractory. Eligibility is defined using standard disease assessments to authenticate disease progression, prior treatment, distinct clinical subtypes, and predictive models. Outcomes are reported independently for prostate-specific antigen (PSA), imaging, and clinical measures, avoiding grouped categorizations such as complete or partial response. In most trials, early changes in PSA and/or pain are not acted on without other evidence of disease progression, and treatment should be continued for at least 12 weeks to ensure adequate drug exposure. Bone scans are reported as “new lesions” or “no new lesions,” changes in soft-tissue disease assessed by RECIST, and pain using validated scales. Defining eligibility for prevent/delay end points requires attention to estimated event frequency and/or random assignment to a control group. Conclusion PCWG2 recommends increasing emphasis on time-to-event end points (ie, failure to progress) as decision aids in proceeding from phase II to phase III trials. Recommendations will evolve as data are generated on the utility of intermediate end points to predict clinical benefit. PMID:18309951

  18. Multiple μ-stability of neural networks with unbounded time-varying delays.

    PubMed

    Wang, Lili; Chen, Tianping

    2014-05-01

    In this paper, we are concerned with a class of recurrent neural networks with unbounded time-varying delays. Based on the geometrical configuration of activation functions, the phase space R(n) can be divided into several Φη-type subsets. Accordingly, a new set of regions Ωη are proposed, and rigorous mathematical analysis is provided to derive the existence of equilibrium point and its local μ-stability in each Ωη. It concludes that the n-dimensional neural networks can exhibit at least 3(n) equilibrium points and 2(n) of them are μ-stable. Furthermore, due to the compatible property, a set of new conditions are presented to address the dynamics in the remaining 3(n)-2(n) subset regions. As direct applications of these results, we can get some criteria on the multiple exponential stability, multiple power stability, multiple log-stability, multiple log-log-stability and so on. In addition, the approach and results can also be extended to the neural networks with K-level nonlinear activation functions and unbounded time-varying delays, in which there can store (2K+1)(n) equilibrium points, (K+1)(n) of them are locally μ-stable. Numerical examples are given to illustrate the effectiveness of our results. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Micromachined silicon acoustic delay line with improved structural stability and acoustic directivity for real-time photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Cho, Young; Kumar, Akhil; Xu, Song; Zou, Jun

    2017-03-01

    Recent studies have shown that micromachined silicon acoustic delay lines can provide a promising solution to achieve real-time photoacoustic tomography without the need for complex transducer arrays and data acquisition electronics. However, as its length increases to provide longer delay time, the delay line becomes more vulnerable to structural instability due to reduced mechanical stiffness. In addition, the small cross-section area of the delay line results in a large acoustic acceptance angle and therefore poor directivity. To address these two issues, this paper reports the design, fabrication, and testing of a new silicon acoustic delay line enhanced with 3D printed polymer micro linker structures. First, mechanical deformation of the silicon acoustic delay line (with and without linker structures) under gravity was simulated by using finite element method. Second, the acoustic crosstalk and acoustic attenuation caused by the polymer micro linker structures were evaluated with both numerical simulation and ultrasound transmission testing. The result shows that the use of the polymer micro linker structures significantly improves the structural stability of the silicon acoustic delay lines without creating additional acoustic attenuation and crosstalk. In addition, a new tapered design for the input terminal of the delay line was also investigate to improve its acoustic directivity by reducing the acoustic acceptance angle. These two improvements are expected to provide an effective solution to eliminate current limitations on the achievable acoustic delay time and out-of-plane imaging resolution of micromachined silicon acoustic delay line arrays.

  20. Variable Delay Multi-Pulse Train for Fast Chemical Exchange Saturation Transfer and Relayed-Nuclear Overhauser Enhancement MRI

    PubMed Central

    Xu, Jiadi; Yadav, Nirbhay N.; Bar-Shir, Amnon; Jones, Craig K.; Chan, Kannie W. Y.; Zhang, Jiangyang; Walczak, P.; McMahon, Michael T.; van Zijl, Peter C. M.

    2013-01-01

    Purpose Chemical exchange saturation transfer (CEST) imaging is a new MRI technology allowing the detection of low concentration endogenous cellular proteins and metabolites indirectly through their exchangeable protons. A new technique, variable delay multi-pulse CEST (VDMP-CEST), is proposed to eliminate the need for recording full Z-spectra and performing asymmetry analysis to obtain CEST contrast. Methods The VDMP-CEST scheme involves acquiring images with two (or more) delays between radiofrequency saturation pulses in pulsed CEST, producing a series of CEST images sensitive to the speed of saturation transfer. Subtracting two images or fitting a time series produces CEST and relayed-nuclear Overhauser enhancement CEST maps without effects of direct water saturation and, when using low radiofrequency power, minimal magnetization transfer contrast interference. Results When applied to several model systems (bovine serum albumin, crosslinked bovine serum albumin, l-glutamic acid) and in vivo on healthy rat brain, VDMP-CEST showed sensitivity to slow to intermediate range magnetization transfer processes (rate < 100–150 Hz), such as amide proton transfer and relayed nuclear Overhauser enhancement-CEST. Images for these contrasts could be acquired in short scan times by using a single radiofrequency frequency. Conclusions VDMP-CEST provides an approach to detect CEST effect by sensitizing saturation experiments to slower exchange processes without interference of direct water saturation and without need to acquire Z-spectra and perform asymmetry analysis. PMID:23813483

  1. Longitudinal Outcomes of Start Time Delay on Sleep, Behavior, and Achievement in High School.

    PubMed

    Thacher, Pamela V; Onyper, Serge V

    2016-02-01

    To establish whether sleep, health, mood, behavior, and academics improved after a 45-minute delay in high school start time, and whether changes persisted longitudinally. We collected data from school records and student self-report across a number of domains at baseline (May 2012) and at two follow-up time points (November 2012 and May 2013), at a public high school in upstate New York. Students enrolled during academic years (AY) 2011-2012 and 2012-2013 completed the Pittsburgh Sleep Quality Index; the DASS-21; the "Owl-Lark" Scale; the Daytime Sleepiness Index; and a brief self-report of health. Reports from school records regarding attendance, tardiness, disciplinary violations, and academic performance were collected for AY 2010-2011 through 2013-2014. Students delayed but did not extend their sleep period; we found lasting improvements in tardiness and disciplinary violations after the start-time delay, but no changes to other variables. At the first follow-up, students reported 20 minutes longer sleep, driven by later rise times and stable bed times. At the second follow-up, students maintained later rise times but delayed bedtimes, returning total sleep to baseline levels. A delay in rise time, paralleling the delay in the start time that occurred, resulted in less tardiness and decreased disciplinary incidents, but larger improvements to sleep patterns may be necessary to affect health, attendance, sleepiness, and academic performance. Later start times improved tardiness and disciplinary issues at this school district. A delay in start time may be a necessary but not sufficient means to increase sleep time and may depend on preexisting individual differences. A commentary on this article appears in this issue on page 267. © 2016 Associated Professional Sleep Societies, LLC.

  2. Observational selection biases in time-delay strong lensing and their impact on cosmography

    NASA Astrophysics Data System (ADS)

    Collett, Thomas E.; Cunnington, Steven D.

    2016-11-01

    Inferring cosmological parameters from time-delay strong lenses requires a significant investment of telescope time; it is therefore tempting to focus on the systems with the brightest sources, the highest image multiplicities and the widest image separations. We investigate if this selection bias can influence the properties of the lenses studied and the cosmological parameters inferred. Using an ellipsoidal power-law deflector population, we build a sample of double- and quadruple-image systems. Assuming reasonable thresholds on image separation and flux, based on current lens monitoring campaigns, we find that the typical density profile slopes of monitorable lenses are significantly shallower than the input ensemble. From a sample of quads, we find that this selection function can introduce a 3.5 per cent bias on the inferred time-delay distances if the properties of the input ensemble are (incorrectly) used as priors on the lens model. This bias remains at the 2.4 per cent level when high-resolution imaging of the quasar host is used to precisely infer the properties of individual lenses. We also investigate if the lines of sight for monitorable strong lenses are biased. The expectation value for the line-of-sight convergence is increased by 0.009 (0.004) for quads (doubles) implying a 0.9 per cent (0.4 per cent) bias on H0. We therefore conclude that whilst the properties of typical quasar lenses and their lines of sight do deviate from the global population, the total magnitude of this effect is likely to be a subdominant effect for current analyses, but has the potential to be a major systematic for samples of ˜25 or more lenses.

  3. Microscopic time-resolved imaging of singlet oxygen by delayed fluorescence in living cells.

    PubMed

    Scholz, Marek; Dědic, Roman; Hála, Jan

    2017-11-08

    Singlet oxygen is a highly reactive species which is involved in a number of processes, including photodynamic therapy of cancer. Its very weak near-infrared emission makes imaging of singlet oxygen in biological systems a long-term challenge. We address this challenge by introducing Singlet Oxygen Feedback Delayed Fluorescence (SOFDF) as a novel modality for semi-direct microscopic time-resolved wide-field imaging of singlet oxygen in biological systems. SOFDF has been investigated in individual fibroblast cells incubated with a well-known photosensitizer aluminium phthalocyanine tetrasulfonate. The SOFDF emission from the cells is several orders of magnitude stronger and much more readily detectable than the very weak near-infrared phosphorescence of singlet oxygen. Moreover, the analysis of SOFDF kinetics enables us to estimate the lifetimes of the involved excited states. Real-time SOFDF images with micrometer spatial resolution and submicrosecond temporal-resolution have been recorded. Interestingly, a steep decrease in the SOFDF intensity after the photodynamically induced release of a photosensitizer from lysosomes has been demonstrated. This effect could be potentially employed as a valuable diagnostic tool for monitoring and dosimetry in photodynamic therapy.

  4. Frequency correction method for improved spatial correlation of hyperpolarized 13C metabolites and anatomy.

    PubMed

    Cunningham, Charles H; Dominguez Viqueira, William; Hurd, Ralph E; Chen, Albert P

    2014-02-01

    Blip-reversed echo-planar imaging (EPI) is investigated as a method for measuring and correcting the spatial shifts that occur due to bulk frequency offsets in (13)C metabolic imaging in vivo. By reversing the k-space trajectory for every other time point, the direction of the spatial shift for a given frequency is reversed. Here, mutual information is used to find the 'best' alignment between images and thereby measure the frequency offset. Time-resolved 3D images of pyruvate/lactate/urea were acquired with 5 s temporal resolution over a 1 min duration in rats (N = 6). For each rat, a second injection was performed with the demodulation frequency purposely mis-set by +35 Hz, to test the correction for erroneous shifts in the images. Overall, the shift induced by the 35 Hz frequency offset was 5.9 ± 0.6 mm (mean ± standard deviation). This agrees well with the expected 5.7 mm shift based on the 2.02 ms delay between k-space lines (giving 30.9 Hz per pixel). The 0.6 mm standard deviation in the correction corresponds to a frequency-detection accuracy of 4 Hz. A method was presented for ensuring the spatial registration between (13)C metabolic images and conventional anatomical images when long echo-planar readouts are used. The frequency correction method was shown to have an accuracy of 4 Hz. Summing the spatially corrected frames gave a signal-to-noise ratio (SNR) improvement factor of 2 or greater, compared with the highest single frame. Copyright © 2013 John Wiley & Sons, Ltd.

  5. Coexistence and local μ-stability of multiple equilibrium points for memristive neural networks with nonmonotonic piecewise linear activation functions and unbounded time-varying delays.

    PubMed

    Nie, Xiaobing; Zheng, Wei Xing; Cao, Jinde

    2016-12-01

    In this paper, the coexistence and dynamical behaviors of multiple equilibrium points are discussed for a class of memristive neural networks (MNNs) with unbounded time-varying delays and nonmonotonic piecewise linear activation functions. By means of the fixed point theorem, nonsmooth analysis theory and rigorous mathematical analysis, it is proven that under some conditions, such n-neuron MNNs can have 5 n equilibrium points located in ℜ n , and 3 n of them are locally μ-stable. As a direct application, some criteria are also obtained on the multiple exponential stability, multiple power stability, multiple log-stability and multiple log-log-stability. All these results reveal that the addressed neural networks with activation functions introduced in this paper can generate greater storage capacity than the ones with Mexican-hat-type activation function. Numerical simulations are presented to substantiate the theoretical results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Dynamic Analysis of a Reaction-Diffusion Rumor Propagation Model

    NASA Astrophysics Data System (ADS)

    Zhao, Hongyong; Zhu, Linhe

    2016-06-01

    The rapid development of the Internet, especially the emergence of the social networks, leads rumor propagation into a new media era. Rumor propagation in social networks has brought new challenges to network security and social stability. This paper, based on partial differential equations (PDEs), proposes a new SIS rumor propagation model by considering the effect of the communication between the different rumor infected users on rumor propagation. The stabilities of a nonrumor equilibrium point and a rumor-spreading equilibrium point are discussed by linearization technique and the upper and lower solutions method, and the existence of a traveling wave solution is established by the cross-iteration scheme accompanied by the technique of upper and lower solutions and Schauder’s fixed point theorem. Furthermore, we add the time delay to rumor propagation and deduce the conditions of Hopf bifurcation and stability switches for the rumor-spreading equilibrium point by taking the time delay as the bifurcation parameter. Finally, numerical simulations are performed to illustrate the theoretical results.

  7. Multi-slice computed tomography 5-minute delayed scan is superior to immediate scan after contrast media application in characterization of intracranial tuberculosis.

    PubMed

    Hou, Dailun; Qu, Huifang; Zhang, Xu; Li, Ning; Liu, Cheng; Ma, Xiangxing

    2014-09-02

    The aim of this study was to determine whether the diagnosis of intracranial tuberculosis (TB) can be improved when multi-slice computed tomography (MSCT) scans are taken with a 5-min delay after contrast media application. Pre- and post-contrast CT scans of the head were obtained from 30 patients using a 16-slice spiral CT. Dual-phase acquisition was performed immediately and 5 min after contrast agent injection. Diagnostic values of different images were compared using a scoring system applied by 2 experienced radiologists. We found 526 lesions in 30 patients, including 22 meningeal thickenings, 235 meningeal tuberculomas/tubercles, and 269 parenchymal tuberculomas/tubercles. Images obtained with 5-min delayed scan time were superior in terms of lesion size and meningeal thickening outlining in all disease types (P<0.01). The ability to distinguish between vascular sections from the cerebral sulcus and tubercle was also improved (P<0.01). Image acquisition with 5-min delay after contrast agent injection should be performed as a standard scanning protocol to diagnose intracranial TB.

  8. Comment on “Based on interval type-2 adaptive fuzzy H∞ tracking controller for SISO time-delay nonlinear systems”

    NASA Astrophysics Data System (ADS)

    Pan, Yongping; Huang, Daoping

    2011-03-01

    In this comment, we point out the inappropriateness of Theorem 1 in the article [Tsung-Chih Lin, Mehdi Roopaei. Based on interval type-2 adaptive fuzzy H∞ tracking controller for SISO time-delay nonlinear systems. Commun Nonlinear Sci Numer Simulat 2010;15:4065-75]. For solving this problem, some formular mistakes are corrected and novel parameter adaptive laws of interval type-2 fuzzy neural network system are given.

  9. Thermally activated delayed fluorescence of fluorescein derivative for time-resolved and confocal fluorescence imaging.

    PubMed

    Xiong, Xiaoqing; Song, Fengling; Wang, Jingyun; Zhang, Yukang; Xue, Yingying; Sun, Liangliang; Jiang, Na; Gao, Pan; Tian, Lu; Peng, Xiaojun

    2014-07-09

    Compared with fluorescence imaging utilizing fluorophores whose lifetimes are in the order of nanoseconds, time-resolved fluorescence microscopy has more advantages in monitoring target fluorescence. In this work, compound DCF-MPYM, which is based on a fluorescein derivative, showed long-lived luminescence (22.11 μs in deaerated ethanol) and was used in time-resolved fluorescence imaging in living cells. Both nanosecond time-resolved transient difference absorption spectra and time-correlated single-photon counting (TCSPC) were employed to explain the long lifetime of the compound, which is rare in pure organic fluorophores without rare earth metals and heavy atoms. A mechanism of thermally activated delayed fluorescence (TADF) that considers the long wavelength fluorescence, large Stokes shift, and long-lived triplet state of DCF-MPYM was proposed. The energy gap (ΔEST) of DCF-MPYM between the singlet and triplet state was determined to be 28.36 meV by the decay rate of DF as a function of temperature. The ΔE(ST) was small enough to allow efficient intersystem crossing (ISC) and reverse ISC, leading to efficient TADF at room temperature. The straightforward synthesis of DCF-MPYM and wide availability of its starting materials contribute to the excellent potential of the compound to replace luminescent lanthanide complexes in future time-resolved imaging technologies.

  10. Dexamethasone therapy for preventing delayed encephalopathy after carbon monoxide poisoning.

    PubMed

    Li, Q; Song, J J; Zhang, H Y; Fu, K; Lan, H B; Deng, Y

    2015-01-01

    We investigated dexamethasone therapy for preventing delayed encephalopathy after carbon monoxide (CO) poisoning. Eighty healthy male rats were exposed to CO and randomly divided into four groups: hyperbaric oxygen treatment (H), treatment (D), combined hyperbaric and dexamethasone treatment (C), and a control (M) group in which the rats inhaled CO to coma in the hyperbaric oxygen chamber, then were removed without further treatment. Twelve rats were put into the hyperbaric oxygen chamber and treated with air for 60 min (N) group. An eight arm maze was used to evaluate cognitive and memory abilities of these mice. Serum myelin basic protein (MBP) levels were evaluated using ELISA, and magnetic resonance imaging was used to observe brain demyelination and morbidity associated with delayed encephalopathy. A sample of the hippocampus from each group was examined by light microscopy. Cognitive and memory functions decreased in the control group M. Three days after CO poisoning, the serum MBP level of each group increased significantly. On Day 10 after CO poisoning, the MBP levels in groups C and D decreased significantly, but returned to normal on Day 18. MBP levels in the M and H groups were elevated at all time points. Brain MRIs showed significant differences among C, D, H and control M groups. Hematoxylin & eosin staining of the hippocampus showed greater damage in the control M and H groups. Early dexamethasone treatment may be useful for preventing delayed encephalopathy after CO poisoning and may reduce serum MBP levels.

  11. Delayed central nervous system manifestation of Chikungunya virus with magnetic resonance T2 weighted imaging high signal changes—a case report

    PubMed Central

    Hamilton, Preci L; Cruickshank, Garth

    2018-01-01

    Abstract CHIKV is a relatively new virus and we are still learning about the illness. Very little is known about CNS its involvement and even less about its delayed or long-term manifestations if any. It therefore behoves us to consider delayed CNS involvement when assessing patients with CHIKV infections that may not have had an acute neurological manifestation at the time of diagnosis coupled with new onset neurological manifestations and MRI abnormalities. It seems likely that patients with CHIKV may experience delayed CNS manifestation of the viral infection. This report highlights the importance of a travel history when assessing patients with a neurological complaint. The pathway to best manage such cases is with repeated imaging to assess if the signal changes either progress, resolve or more importantly if there is any MRI correlation should changes in neurology develop during the surveillance period. PMID:29942482

  12. Staggered overdose pattern and delay to hospital presentation are associated with adverse outcomes following paracetamol-induced hepatotoxicity

    PubMed Central

    Craig, Darren G N; Bates, Caroline M; Davidson, Janice S; Martin, Kirsty G; Hayes, Peter C; Simpson, Kenneth J

    2012-01-01

    AIMS Paracetamol (acetaminophen) poisoning remains the major cause of severe acute hepatotoxicity in the UK. In this large single centre cohort study we examined the clinical impact of staggered overdoses and delayed presentation following paracetamol overdose. RESULTS Between 1992 and 2008, 663 patients were admitted with paracetamol-induced severe liver injury, of whom 161 (24.3%) had taken a staggered overdose. Staggered overdose patients were significantly older and more likely to abuse alcohol than single time point overdose patients. Relief of pain (58.2%) was the commonest rationale for repeated supratherapeutic ingestion. Despite lower total ingested paracetamol doses and lower admission serum alanine aminotransferase concentrations, staggered overdose patients were more likely to be encephalopathic on admission, require renal replacement therapy or mechanical ventilation and had higher mortality rates compared with single time point overdoses (37.3% vs. 27.8%, P = 0.025), although this overdose pattern did not independently predict death. The King's College poor prognostic criteria had reduced sensitivity (77.6, 95% CI 70.8, 81.5) for this pattern of overdose. Of the 396/450 (88.0%) single time point overdoses in whom accurate timings could be obtained, 178 (44.9%) presented to medical services >24 h following overdose. Delayed presentation beyond 24 h post overdose was independently associated with death/liver transplantation (OR 2.25, 95% CI 1.23, 4.12, P = 0.009). CONCLUSIONS Both delayed presentation and staggered overdose pattern are associated with adverse outcomes following paracetamol overdose. These patients are at increased risk of developing multi-organ failure and should be considered for early transfer to specialist liver centres. PMID:22106945

  13. The dynamics and spectral characteristics of the GPS TEC wave packets excited by the solar terminator

    NASA Astrophysics Data System (ADS)

    Afraimovich, E. L.; Edemsky, I. K.; Voeykov, S. V.; Yasukevich, Y. V.; Zhivetiev, I. V.

    2009-04-01

    The great variety of solar terminator (ST) -linked phenomena in the atmosphere gave rise to a num¬ber of studies on the analysis of ionosphere parameter variations obtained by different ionosphere sounding methods. Main part of experimental data was obtained using methods for analyzing the spectrum of ionosphere parameter variations in separate local points. To identify ST-generated wave disturbances it is necessary to measure the dynamic and spectral characteristics of the wave disturbances and to compare it with spatial-temporal characteristics of ST. Using TEC measurements from the dense network of GPS sites GEONET (Japan), we have obtained the first GPS-TEC image of the space structure of medium-scale traveling wave packets (MS TWP) excited by the solar terminator. We use two known forms of the 2D GPS-TEC image for our presentation of the space structure of ST-generated MS TWP: 1) - the diagram "distance-time"; 2) - the 2D-space distribution of the values of filtered TEC series dI (λ, φ, t) on the latitude φ and longitude λ for each 30-sec TEC counts. We found that the time period and wave-length of ST-generated wave packets are about 10-20 min and 200-300 km, respectively. Dynamic images analysis of dI (λ, φ, t) gives precise estimation of velocity and azimuth of TWP wave front propagation. We use the method of determining velocity of traveling ionosphere disturbances (SADM-GPS), which take into account the relative moving of subionosphere points. We found that the velocity of the TWP phase front, traveling along GEONET sites, varies in accordance with the velocity of the ST line displacement. The space image of MS TWP manifests itself in pronounced anisotropy and high coherence over a long distance of about 2000 km. The TWP wave front extends along the ST line with the angular shift of about 20°. The hypothesis on the connection between the TWP generation and the solar terminator can be tested in the terminator local time (TLT) system: dT=TOBS-TST, where ТOBS is the observation time at the given point; TST is the arrival time of ST at the altitude of H over this point. The time delay dT of TWP appearance varies from 2.5 hrs at 30°N to 6 hrs at 45°N. We acknowledge the GEONET scientific group for providing GPS data used in this study. The work was supported by the SB RAS and FEB RAS collaboration project N 3.24, the RFBR-GFEN grant N 06-05-39026 and RFBR grant 07-05-00127.

  14. Circuit design and simulation of a transmit beamforming ASIC for high-frequency ultrasonic imaging systems.

    PubMed

    Athanasopoulos, Georgios I; Carey, Stephen J; Hatfield, John V

    2011-07-01

    This paper describes the design of a programmable transmit beamformer application-specific integrated circuit (ASIC) with 8 channels for ultrasound imaging systems. The system uses a 20-MHz reference clock. A digital delay-locked loop (DLL) was designed with 50 variable delay elements, each of which provides a clock with different phase from a single reference. Two phase detectors compare the phase difference of the reference clock with the feedback clock, adjusting the delay of the delay elements to bring the feedback clock signal in phase with the reference clock signal. Two independent control voltages for the delay elements ensure that the mark space ratio of the pulses remain at 50%. By combining a 10- bit asynchronous counter with the delays from the DLL, each channel can be programmed to give a maximum time delay of 51 μs with 1 ns resolution. It can also give bursts of up to 64 pulses. Finally, for a single pulse, it can adjust the pulse width between 9 ns and 100 ns by controlling the current flowing through a capacitor in a one-shot circuit, for use with 40-MHz and 5-MHz transducers, respectively.

  15. Aerosol Plume Detection Algorithm Based on Image Segmentation of Scanning Atmospheric Lidar Data

    DOE PAGES

    Weekley, R. Andrew; Goodrich, R. Kent; Cornman, Larry B.

    2016-04-06

    An image-processing algorithm has been developed to identify aerosol plumes in scanning lidar backscatter data. The images in this case consist of lidar data in a polar coordinate system. Each full lidar scan is taken as a fixed image in time, and sequences of such scans are considered functions of time. The data are analyzed in both the original backscatter polar coordinate system and a lagged coordinate system. The lagged coordinate system is a scatterplot of two datasets, such as subregions taken from the same lidar scan (spatial delay), or two sequential scans in time (time delay). The lagged coordinatemore » system processing allows for finding and classifying clusters of data. The classification step is important in determining which clusters are valid aerosol plumes and which are from artifacts such as noise, hard targets, or background fields. These cluster classification techniques have skill since both local and global properties are used. Furthermore, more information is available since both the original data and the lag data are used. Performance statistics are presented for a limited set of data processed by the algorithm, where results from the algorithm were compared to subjective truth data identified by a human.« less

  16. Dynamics and control of gold-encapped gallium arsenide nanowires imaged by 4D electron microscopy

    PubMed Central

    Chen, Bin; Fu, Xuewen; Tang, Jau; Lysevych, Mykhaylo; Tan, Hark Hoe; Jagadish, Chennupati; Zewail, Ahmed H.

    2017-01-01

    Eutectic-related reaction is a special chemical/physical reaction involving multiple phases, solid and liquid. Visualization of a phase reaction of composite nanomaterials with high spatial and temporal resolution provides a key understanding of alloy growth with important industrial applications. However, it has been a rather challenging task. Here, we report the direct imaging and control of the phase reaction dynamics of a single, as-grown free-standing gallium arsenide nanowire encapped with a gold nanoparticle, free from environmental confinement or disturbance, using four-dimensional (4D) electron microscopy. The nondestructive preparation of as-grown free-standing nanowires without supporting films allows us to study their anisotropic properties in their native environment with better statistical character. A laser heating pulse initiates the eutectic-related reaction at a temperature much lower than the melting points of the composite materials, followed by a precisely time-delayed electron pulse to visualize the irreversible transient states of nucleation, growth, and solidification of the complex. Combined with theoretical modeling, useful thermodynamic parameters of the newly formed alloy phases and their crystal structures could be determined. This technique of dynamical control aided by 4D imaging of phase reaction processes on the nanometer-ultrafast time scale opens new venues for engineering various reactions in a wide variety of other systems. PMID:29158393

  17. A Delayed Choice Quantum Eraser Explained by the Transactional Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Fearn, H.

    2016-01-01

    This paper explains the delayed choice quantum eraser of Kim et al. (A delayed choice quantum eraser, 1999) in terms of the transactional interpretation (TI) of quantum mechanics by Cramer (Rev Mod Phys 58:647, 1986, The quantum handshake, entanglement, nonlocality and transactions, 1986). It is kept deliberately mathematically simple to help explain the transactional technique. The emphasis is on a clear understanding of how the instantaneous "collapse" of the wave function due to a measurement at a specific time and place may be reinterpreted as a relativistically well-defined collapse over the entire path of the photon and over the entire transit time from slit to detector. This is made possible by the use of a retarded offer wave, which is thought to travel from the slits (or rather the small region within the parametric crystal where down-conversion takes place) to the detector and an advanced counter wave traveling backward in time from the detector to the slits. The point here is to make clear how simple the transactional picture is and how much more intuitive the collapse of the wave function becomes if viewed in this way. Also, any confusion about possible retro-causal signaling is put to rest. A delayed choice quantum eraser does not require any sort of backward in time communication. This paper makes the point that it is preferable to use the TI over the usual Copenhagen interpretation for a more intuitive understanding of the quantum eraser delayed choice experiment. Both methods give exactly the same end results and can be used interchangeably.

  18. Acetylcholinesterase inhibitor treatment alleviated cognitive impairment caused by delayed encephalopathy due to carbon monoxide poisoning: Two case reports and a review of the literature.

    PubMed

    Yanagiha, Kumi; Ishii, Kazuhiro; Tamaoka, Akira

    2017-02-01

    Delayed encephalopathy due to carbon monoxide (CO) poisoning can even occur in patients with mild symptoms of acute CO poisoning. Some cases taking conventional hyperbaric oxygen (HBO) therapy or steroid-pulse therapy may be insufficient, and AchEI may be effective. We report two cases of delayed encephalopathy after acute CO poisoning involving two women aged 69 (Case 1) and 60 years (Case 2) whose cognitive function improved with acetylcholinesterase inhibitor (AchEI) treatment. Delayed encephalopathy occurred 25 and 35 days after acute CO poisoning in Case 1 and Case 2, respectively. Both patients demonstrated cognitive impairment, apathy, and hypokinesia on admission. Although hyperbaric oxygen therapy did not yield any significant improvements, cognitive dysfunction improved substantially. This was evidenced by an improved Mini-Mental State Examination score ffom 9 to 28 points in Case 1 and an improved Hasegawa's dementia rating scale score from 4 to 25 points in Case 2 after administration of an AchEI. In Case 1, we administered galantamine hydrobromide, which was related with improved white matter lesions initially detected on brain magnetic resonance imaging. However, in Case 2 white matter lesions persisted despite AchEI treatment. AchEI treatment may result in improved cognitive and frontal lobe function by increasing low acetylcholine concentrations in the hippocampus and frontal lobe caused by decreased nicotinic acetylcholine receptor levels in delayed encephalopathy after CO poisoning. Physicians should consider AchEIs for patients demonstrating delayed encephalopathy due to CO poisoning.

  19. Neutron-flux profile monitor for use in a fission reactor

    DOEpatents

    Kopp, M.K.; Valentine, K.H.

    1981-09-15

    A neutron flux monitor is provided which consists of a plurality of fission counters arranged as spaced-apart point detectors along a delay line. As a fission event occurs in any one of the counters, two delayed current pulses are generated at the output of the delay line. The time separation of the pulses identifies the counter in which the particular fission event occurred. Neutron flux profiles of reactor cores can be more accurately measured as a result.

  20. Neutron flux profile monitor for use in a fission reactor

    DOEpatents

    Kopp, Manfred K.; Valentine, Kenneth H.

    1983-01-01

    A neutron flux monitor is provided which consists of a plurality of fission counters arranged as spaced-apart point detectors along a delay line. As a fission event occurs in any one of the counters, two delayed current pulses are generated at the output of the delay line. The time separation of the pulses identifies the counter in which the particular fission event occured. Neutron flux profiles of reactor cores can be more accurately measured as a result.

  1. Bifurcation to large period oscillations in physical systems controlled by delay

    NASA Astrophysics Data System (ADS)

    Erneux, Thomas; Walther, Hans-Otto

    2005-12-01

    An unusual bifurcation to time-periodic oscillations of a class of delay differential equations is investigated. As we approach the bifurcation point, both the amplitude and the frequency of the oscillations go to zero. The class of delay differential equations is a nonlinear extension of a nonevasive control method and is motivated by a recent study of the foreign exchange rate oscillations. By using asymptotic methods, we determine the bifurcation scaling laws for the amplitude and the period of the oscillations.

  2. 3D CT cerebral angiography technique using a 320-detector machine with a time-density curve and low contrast medium volume: comparison with fixed time delay technique.

    PubMed

    Das, K; Biswas, S; Roughley, S; Bhojak, M; Niven, S

    2014-03-01

    To describe a cerebral computed tomography angiography (CTA) technique using a 320-detector CT machine and a small contrast medium volume (35 ml, 15 ml for test bolus). Also, to compare the quality of these images with that of the images acquired using a larger contrast medium volume (90 or 120 ml) and a fixed time delay (FTD) of 18 s using a 16-detector CT machine. Cerebral CTA images were acquired using a 320-detector machine by synchronizing the scanning time with the time of peak enhancement as determined from the time-density curve (TDC) using a test bolus dose. The quality of CTA images acquired using this technique was compared with that obtained using a FTD of 18 s (by 16-detector CT), retrospectively. Average densities in four different intracranial arteries, overall opacification of arteries, and the degree of venous contamination were graded and compared. Thirty-eight patients were scanned using the TDC technique and 40 patients using the FTD technique. The arterial densities achieved by the TDC technique were higher (significant for supraclinoid and basilar arteries, p < 0.05). The proportion of images deemed as having "good" arterial opacification was 95% for TDC and 90% for FTD. The degree of venous contamination was significantly higher in images produced by the FTD technique (p < 0.001%). Good diagnostic quality CTA images with significant reduction of venous contamination can be achieved with a low contrast medium dose using a 320-detector machine by coupling the time of data acquisition with the time of peak enhancement. Copyright © 2013 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  3. H0LiCOW - I. H0 Lenses in COSMOGRAIL's Wellspring: program overview

    NASA Astrophysics Data System (ADS)

    Suyu, S. H.; Bonvin, V.; Courbin, F.; Fassnacht, C. D.; Rusu, C. E.; Sluse, D.; Treu, T.; Wong, K. C.; Auger, M. W.; Ding, X.; Hilbert, S.; Marshall, P. J.; Rumbaugh, N.; Sonnenfeld, A.; Tewes, M.; Tihhonova, O.; Agnello, A.; Blandford, R. D.; Chen, G. C.-F.; Collett, T.; Koopmans, L. V. E.; Liao, K.; Meylan, G.; Spiniello, C.

    2017-07-01

    Strong gravitational lens systems with time delays between the multiple images allow measurements of time-delay distances, which are primarily sensitive to the Hubble constant that is key to probing dark energy, neutrino physics and the spatial curvature of the Universe, as well as discovering new physics. We present H0LiCOW (H0 Lenses in COSMOGRAIL's Wellspring), a program that aims to measure H0 with <3.5 per cent uncertainty from five lens systems (B1608+656, RXJ1131-1231, HE 0435-1223, WFI2033-4723 and HE 1104-1805). We have been acquiring (1) time delays through COSMOGRAIL and Very Large Array monitoring, (2) high-resolution Hubble Space Telescope imaging for the lens mass modelling, (3) wide-field imaging and spectroscopy to characterize the lens environment and (4) moderate-resolution spectroscopy to obtain the stellar velocity dispersion of the lenses for mass modelling. In cosmological models with one-parameter extension to flat Λ cold dark matter, we expect to measure H0 to <3.5 per cent in most models, spatial curvature Ωk to 0.004, w to 0.14 and the effective number of neutrino species to 0.2 (1σ uncertainties) when combined with current cosmic microwave background (CMB) experiments. These are, respectively, a factor of ˜15, ˜2 and ˜1.5 tighter than CMB alone. Our data set will further enable us to study the stellar initial mass function of the lens galaxies, and the co-evolution of supermassive black holes and their host galaxies. This program will provide a foundation for extracting cosmological distances from the hundreds of time-delay lenses that are expected to be discovered in current and future surveys.

  4. Global exponential stability of neutral high-order stochastic Hopfield neural networks with Markovian jump parameters and mixed time delays.

    PubMed

    Huang, Haiying; Du, Qiaosheng; Kang, Xibing

    2013-11-01

    In this paper, a class of neutral high-order stochastic Hopfield neural networks with Markovian jump parameters and mixed time delays is investigated. The jumping parameters are modeled as a continuous-time finite-state Markov chain. At first, the existence of equilibrium point for the addressed neural networks is studied. By utilizing the Lyapunov stability theory, stochastic analysis theory and linear matrix inequality (LMI) technique, new delay-dependent stability criteria are presented in terms of linear matrix inequalities to guarantee the neural networks to be globally exponentially stable in the mean square. Numerical simulations are carried out to illustrate the main results. © 2013 ISA. Published by ISA. All rights reserved.

  5. Longitudinal Outcomes of Start Time Delay on Sleep, Behavior, and Achievement in High School

    PubMed Central

    Thacher, Pamela V.; Onyper, Serge V.

    2016-01-01

    Study Objectives: To establish whether sleep, health, mood, behavior, and academics improved after a 45-minute delay in high school start time, and whether changes persisted longitudinally. Methods: We collected data from school records and student self-report across a number of domains at baseline (May 2012) and at two follow-up time points (November 2012 and May 2013), at a public high school in upstate New York. Students enrolled during academic years (AY) 2011–2012 and 2012–2013 completed the Pittsburgh Sleep Quality Index; the DASS-21; the “Owl-Lark” Scale; the Daytime Sleepiness Index; and a brief self-report of health. Reports from school records regarding attendance, tardiness, disciplinary violations, and academic performance were collected for AY 2010–2011 through 2013–2014. Results: Students delayed but did not extend their sleep period; we found lasting improvements in tardiness and disciplinary violations after the start-time delay, but no changes to other variables. At the first follow-up, students reported 20 minutes longer sleep, driven by later rise times and stable bed times. At the second follow-up, students maintained later rise times but delayed bedtimes, returning total sleep to baseline levels. A delay in rise time, paralleling the delay in the start time that occurred, resulted in less tardiness and decreased disciplinary incidents, but larger improvements to sleep patterns may be necessary to affect health, attendance, sleepiness, and academic performance. Conclusions: Later start times improved tardiness and disciplinary issues at this school district. A delay in start time may be a necessary but not sufficient means to increase sleep time and may depend on preexisting individual differences. Commentary: A commentary on this article appears in this issue on page 267. Citation: Thacher PV, Onyper SV. Longitudinal outcomes of start time delay on sleep, behavior, and achievement in high school. SLEEP 2016;39(2):271–281. PMID:26446106

  6. Time-delayed autosynchronous swarm control.

    PubMed

    Biggs, James D; Bennet, Derek J; Dadzie, S Kokou

    2012-01-01

    In this paper a general Morse potential model of self-propelling particles is considered in the presence of a time-delayed term and a spring potential. It is shown that the emergent swarm behavior is dependent on the delay term and weights of the time-delayed function, which can be set to induce a stationary swarm, a rotating swarm with uniform translation, and a rotating swarm with a stationary center of mass. An analysis of the mean field equations shows that without a spring potential the motion of the center of mass is determined explicitly by a multivalued function. For a nonzero spring potential the swarm converges to a vortex formation about a stationary center of mass, except at discrete bifurcation points where the center of mass will periodically trace an ellipse. The analytical results defining the behavior of the center of mass are shown to correspond with the numerical swarm simulations.

  7. Development of a real-time, high-frequency ultrasound digital beamformer for high-frequency linear array transducers.

    PubMed

    Hu, Chang-Hong; Xu, Xiao-Chen; Cannata, Jonathan M; Yen, Jesse T; Shung, K Kirk

    2006-02-01

    A real-time digital beamformer for high-frequency (>20 MHz) linear ultrasonic arrays has been developed. The system can handle up to 64-element linear array transducers and excite 16 channels and receive simultaneously at 100 MHz sampling frequency with 8-bit precision. Radio frequency (RF) signals are digitized, delayed, and summed through a real-time digital beamformer, which is implemented using a field programmable gate array (FPGA). Using fractional delay filters, fine delays as small as 2 ns can be implemented. A frame rate of 30 frames per second is achieved. Wire phantom (20 microm tungsten) images were obtained and -6 dB axial and lateral widths were measured. The results showed that, using a 30 MHz, 48-element array with a pitch of 100 microm produced a -6 dB width of 68 microm in the axial and 370 microm in the lateral direction at 6.4 mm range. Images from an excised rabbit eye sample also were acquired, and fine anatomical structures, such as the cornea and lens, were resolved.

  8. High spatial resolution shortwave infrared imaging technology based on time delay and digital accumulation method

    NASA Astrophysics Data System (ADS)

    Jia, Jianxin; Wang, Yueming; Zhuang, Xiaoqiong; Yao, Yi; Wang, Shengwei; Zhao, Ding; Shu, Rong; Wang, Jianyu

    2017-03-01

    Shortwave infrared (SWIR) imaging technology attracts more and more attention by its fascinating ability of penetrating haze and smoke. For application of spaceborne remote sensing, spatial resolution of SWIR is lower compared with that of visible light (VIS) wavelength. It is difficult to balance between the spatial resolution and signal to noise ratio (SNR). Some conventional methods, such as enlarging aperture of telescope, image motion compensation, and analog time delay and integration (TDI) technology are used to gain SNR. These techniques bring in higher cost of satellite, complexity of system or other negative factors. In this paper, time delay and digital accumulation (TDDA) method is proposed to achieve higher spatial resolution. The method can enhance the SNR and non-uniformity of system theoretically. A prototype of SWIR imager consists of opto-mechanical, 1024 × 128 InGaAs detector, and electronics is designed and integrated to prove TDDA method. Both of measurements and experimental results indicate TDDA method can promote SNR of system approximated of the square root of accumulative stage. The results exhibit that non-uniformity of system is also improved by this approach to some extent. The experiment results are corresponded with the theoretical analysis. Based on the experiments results, it is proved firstly that the goal of 1 m ground sample distance (GSD) in orbit of 500 km is feasible with the TDDA stage of 30 for SWIR waveband (0.9-1.7 μm).

  9. A Time-Domain CMOS Oscillator-Based Thermostat with Digital Set-Point Programming

    PubMed Central

    Chen, Chun-Chi; Lin, Shih-Hao

    2013-01-01

    This paper presents a time-domain CMOS oscillator-based thermostat with digital set-point programming [without a digital-to-analog converter (DAC) or external resistor] to achieve on-chip thermal management of modern VLSI systems. A time-domain delay-line-based thermostat with multiplexers (MUXs) was used to substantially reduce the power consumption and chip size, and can benefit from the performance enhancement due to the scaling down of fabrication processes. For further cost reduction and accuracy enhancement, this paper proposes a thermostat using two oscillators that are suitable for time-domain curvature compensation instead of longer linear delay lines. The final time comparison was achieved using a time comparator with a built-in custom hysteresis to generate the corresponding temperature alarm and control. The chip size of the circuit was reduced to 0.12 mm2 in a 0.35-μm TSMC CMOS process. The thermostat operates from 0 to 90 °C, and achieved a fine resolution better than 0.05 °C and an improved inaccuracy of ± 0.6 °C after two-point calibration for eight packaged chips. The power consumption was 30 μW at a sample rate of 10 samples/s. PMID:23385403

  10. The wavenumber algorithm for full-matrix imaging using an ultrasonic array.

    PubMed

    Hunter, Alan J; Drinkwater, Bruce W; Wilcox, Paul D

    2008-11-01

    Ultrasonic imaging using full-matrix capture, e.g., via the total focusing method (TFM), has been shown to increase angular inspection coverage and improve sensitivity to small defects in nondestructive evaluation. In this paper, we develop a Fourier-domain approach to full-matrix imaging based on the wavenumber algorithm used in synthetic aperture radar and sonar. The extension to the wavenumber algorithm for full-matrix data is described and the performance of the new algorithm compared with the TFM, which we use as a representative benchmark for the time-domain algorithms. The wavenumber algorithm provides a mathematically rigorous solution to the inverse problem for the assumed forward wave propagation model, whereas the TFM employs heuristic delay-and-sum beamforming. Consequently, the wavenumber algorithm has an improved point-spread function and provides better imagery. However, the major advantage of the wavenumber algorithm is its superior computational performance. For large arrays and images, the wavenumber algorithm is several orders of magnitude faster than the TFM. On the other hand, the key advantage of the TFM is its flexibility. The wavenumber algorithm requires a regularly sampled linear array, while the TFM can handle arbitrary imaging geometries. The TFM and the wavenumber algorithm are compared using simulated and experimental data.

  11. Tracking delays in report availability caused by incorrect exam status with Web-based issue tracking: a quality initiative.

    PubMed

    Awan, Omer Abdulrehman; van Wagenberg, Frans; Daly, Mark; Safdar, Nabile; Nagy, Paul

    2011-04-01

    Many radiology information systems (RIS) cannot accept a final report from a dictation reporting system before the exam has been completed in the RIS by a technologist. A radiologist can still render a report in a reporting system once images are available, but the RIS and ancillary systems may not get the results because of the study's uncompleted status. This delay in completing the study caused an alarming number of delayed reports and was undetected by conventional RIS reporting techniques. We developed a Web-based reporting tool to monitor uncompleted exams and automatically page section supervisors when a report was being delayed by its incomplete status in the RIS. Institutional Review Board exemption was obtained. At four imaging centers, a Python script was developed to poll the dictation system every 10 min for exams in five different modalities that were signed by the radiologist but could not be sent to the RIS. This script logged the exams into an existing Web-based tracking tool using PHP and a MySQL database. The script also text-paged the modality supervisor. The script logged the time at which the report was finally sent, and statistics were aggregated onto a separate Web-based reporting tool. Over a 1-year period, the average number of uncompleted exams per month and time to problem resolution decreased at every imaging center and in almost every imaging modality. Automated feedback provides a vital link in improving technologist performance and patient care without assigning a human resource to manage report queues.

  12. Reducing Delay in Diagnosis: Multistage Recommendation Tracking.

    PubMed

    Wandtke, Ben; Gallagher, Sarah

    2017-11-01

    The purpose of this study was to determine whether a multistage tracking system could improve communication between health care providers, reducing the risk of delay in diagnosis related to inconsistent communication and tracking of radiology follow-up recommendations. Unconditional recommendations for imaging follow-up of all diagnostic imaging modalities excluding mammography (n = 589) were entered into a database and tracked through a multistage tracking system for 13 months. Tracking interventions were performed for patients for whom completion of recommended follow-up imaging could not be identified 1 month after the recommendation due date. Postintervention compliance with the follow-up recommendation required examination completion or clinical closure (i.e., biopsy, limited life expectancy or death, or subspecialist referral). Baseline radiology information system checks performed 1 month after the recommendation due date revealed timely completion of 43.1% of recommended imaging studies at our institution before intervention. Three separate tracking interventions were studied, showing effectiveness between 29.0% and 57.8%. The multistage tracking system increased the examination completion rate to 70.5% (a 52% increase) and reduced the rate of unknown follow-up compliance and the associated risk of delay in diagnosis to 13.9% (a 74% decrease). Examinations completed after tracking intervention generated revenue of 4.1 times greater than the labor cost. Performing sequential radiology recommendation tracking interventions can substantially reduce the rate of unknown follow-up compliance and add value to the health system. Unknown follow-up compliance is a risk factor for delay in diagnosis, a form of preventable medical error commonly identified in malpractice claims involving radiologists and office-based practitioners.

  13. Laser-Induced Fluorescence Velocity Measurements in Supersonic Underexpanded Impinging Jets

    NASA Technical Reports Server (NTRS)

    Inman, Jennifer A.; Danehy, Paul M.; Barthel, Brett; Alderfer, David W.; Novak, Robert J.

    2010-01-01

    We report on an application of nitric oxide (NO) flow-tagging velocimetry to impinging underexpanded jet flows issuing from a Mach 2.6 nozzle. The technique reported herein utilizes a single laser, single camera system to obtain planar maps of the streamwise component of velocity. Whereas typical applications of this technique involve comparing two images acquired at different time delays, this application uses a single image and time delay. The technique extracts velocity by assuming that particular regions outside the jet flowfield have negligible velocity and may therefore serve as a stationary reference against which to measure motion of the jet flowfield. By taking the average of measurements made in 100 single-shot images for each flow condition, streamwise velocities of between -200 and +1,000 m/s with accuracies of between 15 and 50 m/s are reported within the jets. Velocity measurements are shown to explain otherwise seemingly anomalous impingement surface pressure measurements.

  14. A Method for Measuring the Effective Throughput Time Delay in Simulated Displays Involving Manual Control

    NASA Technical Reports Server (NTRS)

    Jewell, W. F.; Clement, W. F.

    1984-01-01

    The advent and widespread use of the computer-generated image (CGI) device to simulate visual cues has a mixed impact on the realism and fidelity of flight simulators. On the plus side, CGIs provide greater flexibility in scene content than terrain boards and closed circuit television based visual systems, and they have the potential for a greater field of view. However, on the minus side, CGIs introduce into the visual simulation relatively long time delays. In many CGIs, this delay is as much as 200 ms, which is comparable to the inherent delay time of the pilot. Because most GCIs use multiloop processing and smoothing algorithms and are linked to a multiloop host computer, it is seldom possible to identify a unique throughput time delay, and it is therefore difficult to quantify the performance of the closed loop pilot simulator system relative to the real world task. A method to address these issues using the critical task tester is described. Some empirical results from applying the method are presented, and a novel technique for improving the performance of GCIs is discussed.

  15. Application of Time-Delay Absorber to Suppress Vibration of a Dynamical System to Tuned Excitation.

    PubMed

    El-Ganaini, W A A; El-Gohary, H A

    2014-08-01

    In this work, we present a comprehensive investigation of the time delay absorber effects on the control of a dynamical system represented by a cantilever beam subjected to tuned excitation forces. Cantilever beam is one of the most widely used system in too many engineering applications, such as mechanical and civil engineering. The main aim of this work is to control the vibration of the beam at simultaneous internal and combined resonance condition, as it is the worst resonance case. Control is conducted via time delay absorber to suppress chaotic vibrations. Time delays often appear in many control systems in the state, in the control input, or in the measurements. Time delay commonly exists in various engineering, biological, and economical systems because of the finite speed of the information processing. It is a source of performance degradation and instability. Multiple time scale perturbation method is applied to obtain a first order approximation for the nonlinear differential equations describing the system behavior. The different resonance cases are reported and studied numerically. The stability of the steady-state solution at the selected worst resonance case is investigated applying Runge-Kutta fourth order method and frequency response equations via Matlab 7.0 and Maple11. Time delay absorber is effective, but within a specified range of time delay. It is the critical factor in selecting such absorber. Time delay absorber is better than the ordinary one as from the effectiveness point of view. The effects of the different absorber parameters on the system behavior and stability are studied numerically. A comparison with the available published work showed a close agreement with some previously published work.

  16. Probing Motion of Fast Radio Burst Sources by Timing Strongly Lensed Repeaters

    NASA Astrophysics Data System (ADS)

    Dai, Liang; Lu, Wenbin

    2017-09-01

    Given the possible repetitive nature of fast radio bursts (FRBs), their cosmological origin, and their high occurrence, detection of strongly lensed sources due to intervening galaxy lenses is possible with forthcoming radio surveys. We show that if multiple images of a repeating source are resolved with VLBI, using a method independent of lens modeling, accurate timing could reveal non-uniform motion, either physical or apparent, of the emission spot. This can probe the physical nature of FRBs and their surrounding environments, constraining scenarios including orbital motion around a stellar companion if FRBs require a compact star in a special system, and jet-medium interactions for which the location of the emission spot may randomly vary. The high timing precision possible for FRBs (˜ms) compared with the typical time delays between images in galaxy lensing (≳10 days) enables the measurement of tiny fractional changes in the delays (˜ {10}-9) and hence the detection of time-delay variations induced by relative motions between the source, the lens, and the Earth. We show that uniform cosmic peculiar velocities only cause the delay time to drift linearly, and that the effect from the Earth’s orbital motion can be accurately subtracted, thus enabling a search for non-trivial source motion. For a timing accuracy of ˜1 ms and a repetition rate (of detected bursts) of ˜0.05 per day of a single FRB source, non-uniform displacement ≳0.1-1 au of the emission spot perpendicular to the line of sight is detectable if repetitions are seen over a period of hundreds of days.

  17. Fan tomography of the tropospheric water vapor for the calibration of the Ka band tracking of the Bepi-Colombo spacecraft (MORE experiment).

    NASA Astrophysics Data System (ADS)

    Barriot, Jean-Pierre; Serafini, Jonathan; Sichoix, Lydie

    2012-07-01

    The radiosciences Bepi-Colombo MORE experiment will use X/X, X/Ka and Ka/Ka band radio links to make accurate measurements of the spacecraft range and range rate. Tropospheric zenith wet delays range from 1.5 cm to 10 cm, with high variability (less than 1000 s) and will impair these accurate measurements. Conditions vary from summer (worse) to winter (better), from day (worse) to night (better). These wet delays cannot be estimated from ground weather measurements and alternative calibration methods should be used in order to cope with the MORE requirements (no more than 3 mm at 1000 s). Due to the Mercury orbit, MORE measurements will be performed by daylight and more frequently in summer than in winter (from Northern hemisphere). Two systems have been considered to calibrate this wet delay: Water Vapour Radiometers (WVRs) and GPS receivers. The Jet Propulsion Laboratory has developed a new class of WVRs reaching a 5 percent accuracy for the wet delay calibration (0.75 mm to 5 mm), but these WVRs are expensive to build and operate. GPS receivers are also routinely used for the calibration of data from NASA Deep Space probes, but several studies have shown that GPS receivers can give good calibration (through wet delay mapping functions) for long time variations, but are not accurate enough for short time variations (100 to 1000 s), and that WVRs must be used to efficiently calibrate the wet troposphere delays over such time spans. We think that such a calibration could be done by assimilating data from all the GNSS constellations (GPS, GLONASS, Galileo, Beidou and IRNSS) that will be available at the time of the Bepi-Colombo arrival at Mercury (2021), provided that the underlying physics of the turbulent atmosphere and evapotranspiration processes are properly taken into account at such time scales. This implies to do a tomographic image of the troposphere overlying each Deep Space tracking station at time scales of less than 1000 s. For this purpose, we have developed a full representation of the wet refractivity of the atmosphere over the ground station along a basis of 3D Zernike functions with time-variable coefficients. We detail the algorithm and the covariance functions derived from radiosoundings that are used to constraint the inverse imaging of the wet troposphere at the target time scales, and give examples of such imaging from GPS data only.

  18. Manipulating flexible parts using a teleoperated system with time delay: An experiment

    NASA Technical Reports Server (NTRS)

    Kotoku, T.; Takamune, K.; Tanie, K.; Komoriya, K.; Matsuhira, N.; Asakura, M.; Bamba, H.

    1994-01-01

    This paper reports experiments involving the handling of flexible parts (e.g. wires) when using a teleoperated system with time delay. The task is principally a peg-in-hole task involving the wrapping of a wire around two posts on the task-board. It is difficult to estimate the effects of the flexible parts; therefore, on-line teleoperation is indispensable for this class of unpredictable task. We first propose a teleoperation system based on the predictive image display, then describe an experimental teleoperation testbed with a four second transmission time delay. Finally, we report on wire handling operations that were performed to evaluate the performance of this system. Those experiments will contribute to future advanced experiments for the MITI ETS-7 mission.

  19. Real-time multiple-look synthetic aperture radar processor for spacecraft applications

    NASA Technical Reports Server (NTRS)

    Wu, C.; Tyree, V. C. (Inventor)

    1981-01-01

    A spaceborne synthetic aperture radar (SAR) having pipeline multiple-look data processing is described which makes use of excessive azimuth bandwidth in radar echo signals to produce multiple-looking images. Time multiplexed single-look image lines from an azimuth correlator go through an energy analyzer which analyzes the mean energy in each separate look to determine the radar antenna electric boresight for use in generating the correct reference functions for the production of high quality SAR images. The multiplexed single look image lines also go through a registration delay to produce multi-look images.

  20. Global exponential stability of positive periodic solution of the n-species impulsive Gilpin-Ayala competition model with discrete and distributed time delays.

    PubMed

    Zhao, Kaihong

    2018-12-01

    In this paper, we study the n-species impulsive Gilpin-Ayala competition model with discrete and distributed time delays. The existence of positive periodic solution is proved by employing the fixed point theorem on cones. By constructing appropriate Lyapunov functional, we also obtain the global exponential stability of the positive periodic solution of this system. As an application, an interesting example is provided to illustrate the validity of our main results.

  1. Analysis of actuator delay and its effect on uncertainty quantification for real-time hybrid simulation

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Xu, Weijie; Guo, Tong; Chen, Kai

    2017-10-01

    Uncertainties in structure properties can result in different responses in hybrid simulations. Quantification of the effect of these uncertainties would enable researchers to estimate the variances of structural responses observed from experiments. This poses challenges for real-time hybrid simulation (RTHS) due to the existence of actuator delay. Polynomial chaos expansion (PCE) projects the model outputs on a basis of orthogonal stochastic polynomials to account for influences of model uncertainties. In this paper, PCE is utilized to evaluate effect of actuator delay on the maximum displacement from real-time hybrid simulation of a single degree of freedom (SDOF) structure when accounting for uncertainties in structural properties. The PCE is first applied for RTHS without delay to determine the order of PCE, the number of sample points as well as the method for coefficients calculation. The PCE is then applied to RTHS with actuator delay. The mean, variance and Sobol indices are compared and discussed to evaluate the effects of actuator delay on uncertainty quantification for RTHS. Results show that the mean and the variance of the maximum displacement increase linearly and exponentially with respect to actuator delay, respectively. Sensitivity analysis through Sobol indices also indicates the influence of the single random variable decreases while the coupling effect increases with the increase of actuator delay.

  2. Modeling tropospheric wet delays with national GNSS reference network in China for BeiDou precise point positioning

    NASA Astrophysics Data System (ADS)

    Zheng, Fu; Lou, Yidong; Gu, Shengfeng; Gong, Xiaopeng; Shi, Chuang

    2017-10-01

    During past decades, precise point positioning (PPP) has been proven to be a well-known positioning technique for centimeter or decimeter level accuracy. However, it needs long convergence time to get high-accuracy positioning, which limits the prospects of PPP, especially in real-time applications. It is expected that the PPP convergence time can be reduced by introducing high-quality external information, such as ionospheric or tropospheric corrections. In this study, several methods for tropospheric wet delays modeling over wide areas are investigated. A new, improved model is developed, applicable in real-time applications in China. Based on the GPT2w model, a modified parameter of zenith wet delay exponential decay wrt. height is introduced in the modeling of the real-time tropospheric delay. The accuracy of this tropospheric model and GPT2w model in different seasons is evaluated with cross-validation, the root mean square of the zenith troposphere delay (ZTD) is 1.2 and 3.6 cm on average, respectively. On the other hand, this new model proves to be better than the tropospheric modeling based on water-vapor scale height; it can accurately express tropospheric delays up to 10 km altitude, which potentially has benefits in many real-time applications. With the high-accuracy ZTD model, the augmented PPP convergence performance for BeiDou navigation satellite system (BDS) and GPS is evaluated. It shows that the contribution of the high-quality ZTD model on PPP convergence performance has relation with the constellation geometry. As BDS constellation geometry is poorer than GPS, the improvement for BDS PPP is more significant than that for GPS PPP. Compared with standard real-time PPP, the convergence time is reduced by 2-7 and 20-50% for the augmented BDS PPP, while GPS PPP only improves about 6 and 18% (on average), in horizontal and vertical directions, respectively. When GPS and BDS are combined, the geometry is greatly improved, which is good enough to get a reliable PPP solution, the augmentation PPP improves insignificantly comparing with standard PPP.

  3. Creation of a diagnostic wait times measurement framework based on evidence and consensus.

    PubMed

    Gilbert, Julie E; Dobrow, Mark J; Kaan, Melissa; Dobranowski, Julian; Srigley, John R; Jusko Friedman, Audrey; Irish, Jonathan C

    2014-09-01

    Public reporting of wait times worldwide has to date focused largely on treatment wait times and is limited in its ability to capture earlier parts of the patient journey. The interval between suspicion and diagnosis or ruling out of cancer is a complex phase of the cancer journey. Diagnostic delays and inefficient use of diagnostic imaging procedures can result in poor patient outcomes, both physical and psychosocial. This study was designed to develop a framework that could be adopted for multiple disease sites across different jurisdictions to enable the measurement of diagnostic wait times and diagnostic delay. Diagnostic benchmarks and targets in cancer systems were explored through a targeted literature review and jurisdictional scan. Cancer system leaders and clinicians were interviewed to validate the information found in the jurisdictional scan. An expert panel was assembled to review and, through a modified Delphi consensus process, provide feedback on a diagnostic wait times framework. The consensus process resulted in agreement on a measurement framework that identified suspicion, referral, diagnosis, and treatment as the main time points for measuring this critical phase of the patient journey. This work will help guide initiatives designed to improve patient access to health services by developing an evidence-based approach to standardization of the various waypoints during the diagnostic pathway. The diagnostic wait times measurement framework provides a yardstick to measure the performance of programs that are designed to manage and expedite care processes between referral and diagnosis or ruling out of cancer. Copyright © 2014 by American Society of Clinical Oncology.

  4. Catheter-based time-gated near-infrared fluorescence/OCT imaging system

    NASA Astrophysics Data System (ADS)

    Lu, Yuankang; Abran, Maxime; Cloutier, Guy; Lesage, Frédéric

    2018-02-01

    We developed a new dual-modality intravascular imaging system based on fast time-gated fluorescence intensity imaging and spectral domain optical coherence tomography (SD-OCT) for the purpose of interventional detection of atherosclerosis. A pulsed supercontinuum laser was used for fluorescence and OCT imaging. A double-clad fiber (DCF)- based side-firing catheter was designed and fabricated to have a 23 μm spot size at a 2.2 mm working distance for OCT imaging. Its single-mode core is used for OCT, while its inner cladding transports fluorescence excitation light and collects fluorescent photons. The combination of OCT and fluorescence imaging was achieved by using a DCF coupler. For fluorescence detection, we used a time-gated technique with a novel single-photon avalanche diode (SPAD) working in an ultra-fast gating mode. A custom-made delay chip was integrated in the system to adjust the delay between the excitation laser pulse and the SPAD gate-ON window. This technique allowed to detect fluorescent photons of interest while rejecting most of the background photons, thus leading to a significantly improved signal to noise ratio (SNR). Experiments were carried out in turbid media mimicking tissue with an indocyanine green (ICG) inclusion (1 mM and 100 μM) to compare the time-gated technique and the conventional continuous detection technique. The gating technique increased twofold depth sensitivity, and tenfold SNR at large distances. The dual-modality imaging capacity of our system was also validated with a silicone-based tissue-mimicking phantom.

  5. Globally Deghosting for Marine Streamer with Alternating Minimization Approach in Frequency-slowness Domain

    NASA Astrophysics Data System (ADS)

    Wang, C.; Zhu, Z.; Gu, H.; Liu, C.; Liu, Z.; Jiao, Z.

    2017-12-01

    The ghost effects of the sea surface can generate notch in marine towed-streamer data, which results in narrow bandwidth of seismic data. Currently, deghosting is widely utilized to increase the bandwidth of the seismic data or the images. However, most of the conventional deghosting algorithms havenot considered the error of streamer depth causing a biased ghost-delay time (τ) with respect to primary reflection and amplitude difference coefficient (r) between ghost and primary reflection varies with offset due to rugged seabed and target depth variation. We proposed a ghost filtering operator considering the protentional biases within the ghost-delay time (τ) and the amplitude difference coefficient (r). The up-going wavefield (u), ghost-delay time (τ) and amplitude difference coefficient (r) can be obtained by utilizing alternating minimization approach for minimizing the difference between actual wavefield and theoretical wavefield in frequency-slowness domain. The main idea is to alternatively updating u, τ and r in each iteration: we update u by least-squares when we keep τ and r constant; and we then keep u constant and optimize over τ and r with a closed-form solution which is closely related to matched filtering. The convergence of the proposed algorithm is guaranteed since we have closed-form solutions for each stage. The experiments on synthetic record confirmed the reliability of the proposed algorithm. We also demonstrate our proposed method in marine VDS shot acquisition. After migration stack processing, our ghosting method significantly increases the bandwidth of the average amplitude, amplitude energy of the medium and high frequency spectrum, improving resolution of medium and deep reflection and providing higher signal-to-noise ratio with clear break point. This research is funded by China Important National Science & Technology Specific Projects (2016ZX05026001-001).

  6. Breast cancer delay in Latinas: the role of cultural beliefs and acculturation.

    PubMed

    Tejeda, Silvia; Gallardo, Rani I; Ferrans, Carol Estwing; Rauscher, Garth H

    2017-04-01

    Cultural beliefs about breast cancer may act as a barrier to Latina women seeking preventive services or timely follow-up for breast symptoms regardless of access. This study examines the association between factors and breast cancer cultural beliefs and the extent to which cultural beliefs are associated with delays in breast cancer care. Participants who were Latina, ages 30-79, and had been diagnosed with a primary breast cancer were examined (n = 181). Interviews included a 15-item cultural beliefs scale spanning beliefs inconsistent with motivation to seek timely healthcare. Self-reported date of symptom discovery, date of first medical presentation, and date of first treatment were used to construct measures of prolonged patient, clinical, and total delay. Logistic regression with model-based standardization was used to estimate crude and confounder-adjusted prevalence differences for prolonged delay by number of cultural beliefs held. Women held a mean score of three cultural beliefs. The belief most commonly held was, "Faith in God can protect you from breast cancer" (48 %). Holding three or more cultural beliefs was associated with lower acculturation, lower socioeconomic status and less access to care (p < 0.01). After adjusting for age, education, income, acculturation, trust, and insurance, likelihood of prolonged total delay remained 21 percentage points higher in women who held a higher number cultural beliefs (p = 0.02). Cultural beliefs may predispose Latina women to prolong delays in seeking diagnosis and treatment for breast symptoms. Cultural beliefs represent a potential point of intervention to decrease delays among Latina breast cancer patients.

  7. Breast cancer delay in Latinas: the role of cultural beliefs and acculturation

    PubMed Central

    Tejeda, Silvia; Gallardo, Rani I.; Ferrans, Carol Estwing

    2016-01-01

    Cultural beliefs about breast cancer may act as a barrier to Latina women seeking preventive services or timely follow-up for breast symptoms regardless of access. This study examines the association between factors and breast cancer cultural beliefs and the extent to which cultural beliefs are associated with delays in breast cancer care. Participants who were Latina, ages 30–79, and had been diagnosed with a primary breast cancer were examined (n = 181). Interviews included a 15-item cultural beliefs scale spanning beliefs inconsistent with motivation to seek timely healthcare. Self-reported date of symptom discovery, date of first medical presentation, and date of first treatment were used to construct measures of prolonged patient, clinical, and total delay. Logistic regression with model-based standardization was used to estimate crude and confounder-adjusted prevalence differences for prolonged delay by number of cultural beliefs held. Women held a mean score of three cultural beliefs. The belief most commonly held was, “Faith in God can protect you from breast cancer” (48 %). Holding three or more cultural beliefs was associated with lower acculturation, lower socioeconomic status and less access to care (p < 0.01). After adjusting for age, education, income, acculturation, trust, and insurance, likelihood of prolonged total delay remained 21 percentage points higher in women who held a higher number cultural beliefs (p = 0.02). Cultural beliefs may predispose Latina women to prolong delays in seeking diagnosis and treatment for breast symptoms. Cultural beliefs represent a potential point of intervention to decrease delays among Latina breast cancer patients. PMID:27572092

  8. H0 from ten well-measured time delay lenses

    NASA Astrophysics Data System (ADS)

    Rathna Kumar, S.; Stalin, C. S.; Prabhu, T. P.

    2015-08-01

    In this work, we present a homogeneous curve-shifting analysis using the difference-smoothing technique of the publicly available light curves of 24 gravitationally lensed quasars, for which time delays have been reported in the literature. The uncertainty of each measured time delay was estimated using realistic simulated light curves. The recipe for generating such simulated light curves with known time delays in a plausible range around the measured time delay is introduced here. We identified 14 gravitationally lensed quasars that have light curves of sufficiently good quality to enable the measurement of at least one time delay between the images, adjacent to each other in terms of arrival-time order, to a precision of better than 20% (including systematic errors). We modeled the mass distribution of ten of those systems that have known lens redshifts, accurate astrometric data, and sufficiently simple mass distribution, using the publicly available PixeLens code to infer a value of H0 of 68.1 ± 5.9 km s-1 Mpc-1 (1σ uncertainty, 8.7% precision) for a spatially flat universe having Ωm = 0.3 and ΩΛ = 0.7. We note here that the lens modeling approach followed in this work is a relatively simple one and does not account for subtle systematics such as those resulting from line-of-sight effects and hence our H0 estimate should be considered as indicative.

  9. Imaging study on acupuncture points

    NASA Astrophysics Data System (ADS)

    Yan, X. H.; Zhang, X. Y.; Liu, C. L.; Dang, R. S.; Ando, M.; Sugiyama, H.; Chen, H. S.; Ding, G. H.

    2009-09-01

    The topographic structures of acupuncture points were investigated by using the synchrotron radiation based Dark Field Image (DFI) method. Four following acupuncture points were studied: Sanyinjiao, Neiguan, Zusanli and Tianshu. We have found that at acupuncture point regions there exists the accumulation of micro-vessels. The images taken in the surrounding tissue out of the acupuncture points do not show such kind of structure. It is the first time to reveal directly the specific structure of acupuncture points by X-ray imaging.

  10. Dispersion control with a Fourier-domain optical delay line in a fiber-optic imaging interferometer.

    PubMed

    Lee, Kye-Sung; Akcay, A Ceyhun; Delemos, Tony; Clarkson, Eric; Rolland, Jannick P

    2005-07-01

    Recently, Fourier-domain (FD) optical delay lines (ODLs) were introduced for high-speed scanning and dispersion compensation in imaging interferometry. We investigate the effect of first- and second-order dispersion on the photocurrent signal associated with an optical coherence imaging system implemented with a single-mode fiber, a superluminescent diode centered at 950 nm +/- 35 nm, a FD ODL, a mirror, and a layered LiTAO3 that has suitable dispersion characteristics to model a skin specimen. We present a practical and useful method to minimize the effect of dispersion through the interferometer and the specimen combined, as well as to quantify the results using two general metrics for resolution. Theoretical and associated experimental results show that, under the optimum solution, the maximum broadening of the point-spread function through a 1-mm-deep specimen is limited to 57% of its original rms width value (i.e., 8.1 microm optimal, 12.7 microm at maximum broadening) compared with approximately 110% when compensation is performed without the specimen taken into account.

  11. Age-related delay in visual and auditory evoked responses is mediated by white- and grey-matter differences.

    PubMed

    Price, D; Tyler, L K; Neto Henriques, R; Campbell, K L; Williams, N; Treder, M S; Taylor, J R; Henson, R N A

    2017-06-09

    Slowing is a common feature of ageing, yet a direct relationship between neural slowing and brain atrophy is yet to be established in healthy humans. We combine magnetoencephalographic (MEG) measures of neural processing speed with magnetic resonance imaging (MRI) measures of white and grey matter in a large population-derived cohort to investigate the relationship between age-related structural differences and visual evoked field (VEF) and auditory evoked field (AEF) delay across two different tasks. Here we use a novel technique to show that VEFs exhibit a constant delay, whereas AEFs exhibit delay that accumulates over time. White-matter (WM) microstructure in the optic radiation partially mediates visual delay, suggesting increased transmission time, whereas grey matter (GM) in auditory cortex partially mediates auditory delay, suggesting less efficient local processing. Our results demonstrate that age has dissociable effects on neural processing speed, and that these effects relate to different types of brain atrophy.

  12. Age-related delay in visual and auditory evoked responses is mediated by white- and grey-matter differences

    PubMed Central

    Price, D.; Tyler, L. K.; Neto Henriques, R.; Campbell, K. L.; Williams, N.; Treder, M.S.; Taylor, J. R.; Brayne, Carol; Bullmore, Edward T.; Calder, Andrew C.; Cusack, Rhodri; Dalgleish, Tim; Duncan, John; Matthews, Fiona E.; Marslen-Wilson, William D.; Rowe, James B.; Shafto, Meredith A.; Cheung, Teresa; Davis, Simon; Geerligs, Linda; Kievit, Rogier; McCarrey, Anna; Mustafa, Abdur; Samu, David; Tsvetanov, Kamen A.; van Belle, Janna; Bates, Lauren; Emery, Tina; Erzinglioglu, Sharon; Gadie, Andrew; Gerbase, Sofia; Georgieva, Stanimira; Hanley, Claire; Parkin, Beth; Troy, David; Auer, Tibor; Correia, Marta; Gao, Lu; Green, Emma; Allen, Jodie; Amery, Gillian; Amunts, Liana; Barcroft, Anne; Castle, Amanda; Dias, Cheryl; Dowrick, Jonathan; Fair, Melissa; Fisher, Hayley; Goulding, Anna; Grewal, Adarsh; Hale, Geoff; Hilton, Andrew; Johnson, Frances; Johnston, Patricia; Kavanagh-Williamson, Thea; Kwasniewska, Magdalena; McMinn, Alison; Norman, Kim; Penrose, Jessica; Roby, Fiona; Rowland, Diane; Sargeant, John; Squire, Maggie; Stevens, Beth; Stoddart, Aldabra; Stone, Cheryl; Thompson, Tracy; Yazlik, Ozlem; Barnes, Dan; Dixon, Marie; Hillman, Jaya; Mitchell, Joanne; Villis, Laura; Henson, R. N. A.

    2017-01-01

    Slowing is a common feature of ageing, yet a direct relationship between neural slowing and brain atrophy is yet to be established in healthy humans. We combine magnetoencephalographic (MEG) measures of neural processing speed with magnetic resonance imaging (MRI) measures of white and grey matter in a large population-derived cohort to investigate the relationship between age-related structural differences and visual evoked field (VEF) and auditory evoked field (AEF) delay across two different tasks. Here we use a novel technique to show that VEFs exhibit a constant delay, whereas AEFs exhibit delay that accumulates over time. White-matter (WM) microstructure in the optic radiation partially mediates visual delay, suggesting increased transmission time, whereas grey matter (GM) in auditory cortex partially mediates auditory delay, suggesting less efficient local processing. Our results demonstrate that age has dissociable effects on neural processing speed, and that these effects relate to different types of brain atrophy. PMID:28598417

  13. Superluminal and negative delay times in isotropic-anisotropic one-dimensional photonic crystal

    NASA Astrophysics Data System (ADS)

    Ouchani, N.; El Moussaouy, A.; Aynaou, H.; El Hassouani, Y.; El Boudouti, E. H.; Djafari-Rouhani, B.

    2017-11-01

    In this work, we investigate the possibility of superluminal and negative delay times for electromagnetic wave propagation in a linear and passive periodic structure consisting of alternating isotropic and anisotropic media. This phenomenon is due to the birefringence of the anisotropic layers of the structure. By adjusting the orientations of these layers, the delay times of transmitted waves can be controlled from subluminality to superluminality and vice versa. Numerical results indicate that the apparent superluminal propagation of light occurs inside the photonic band-gaps when the principal axes of the anisotropic layers are parallel or perpendicular to the fixed axes. For other orientations of these layers, tunneling and superluminal regimes appear inside the photonic bandgaps and in the allowed bands for frequencies close to the transmission minima. The effect of the number of unit cells of the photonic crystal structure on the propagation of light with superluminal and negative delay times is also investigated. We show that the structure exhibits the Hartman effect in which the tunneling delay time of the electromagnetic wave through the photonic band-gap of the structure converges asymptotically to a finite value with increasing the number of layers. The Green's function approach has been used to derive the transmission and reflection coefficients, the density of states, and the delay times of electromagnetic waves propagating through the structure. The control of the magnitude and the sign of the delay time of light propagation represent a key point in slow and fast light technologies. The proposed structure in this study represents a new system for controlling the delay times of wave propagation without a need of active or non-linear media as well as lossy or asymmetric periodic structures.

  14. Reporting of quantitative oxygen mapping in EPR imaging

    NASA Astrophysics Data System (ADS)

    Subramanian, Sankaran; Devasahayam, Nallathamby; McMillan, Alan; Matsumoto, Shingo; Munasinghe, Jeeva P.; Saito, Keita; Mitchell, James B.; Chandramouli, Gadisetti V. R.; Krishna, Murali C.

    2012-01-01

    Oxygen maps derived from electron paramagnetic resonance spectral-spatial imaging (EPRI) are based upon the relaxivity of molecular oxygen with paramagnetic spin probes. This technique can be combined with MRI to facilitate mapping of pO 2 values in specific anatomic locations with high precision. The co-registration procedure, which matches the physical and digital dimensions of EPR and MR images, may present the pO 2 map at the higher MRI resolution, exaggerating the spatial resolution of oxygen, making it difficult to precisely distinguish hypoxic regions from normoxic regions. The latter distinction is critical in monitoring the treatment of cancer by radiation and chemotherapy, since it is well-established that hypoxic regions are three or four times more resistant to treatment compared to normoxic regions. The aim of this article is to describe pO 2 maps based on the intrinsic resolution of EPRI. A spectral parameter that affects the intrinsic spatial resolution of EPRI is the full width at half maximum (FWHM) height of the gradient-free EPR absorption line in frequency-encoded imaging. In single point imaging too, the transverse relaxation times (T2∗) limit the resolution since the signal decays by exp(-tp/T2∗) where the delay time after excitation pulse, t p, is related to the resolution. Although the spin densities of two point objects may be resolved at this separation, it is inadequate to evaluate quantitative changes of pO 2 levels since the linewidths are proportionately affected by pO 2. A spatial separation of at least twice this resolution is necessary to correctly identify a change in pO 2 level. In addition, the pO 2 values are blurred by uncertainties arising from spectral dimensions. Blurring due to noise and low resolution modulates the pO 2 levels at the boundaries of hypoxic and normoxic regions resulting in higher apparent pO 2 levels in hypoxic regions. Therefore, specification of intrinsic resolution and pO 2 uncertainties are necessary to interpret digitally processed pO 2 illustrations.

  15. Nondestructive Evaluation of Carbon Fiber Reinforced Polymer Composites Using Reflective Terahertz Imaging

    PubMed Central

    Zhang, Jin; Li, Wei; Cui, Hong-Liang; Shi, Changcheng; Han, Xiaohui; Ma, Yuting; Chen, Jiandong; Chang, Tianying; Wei, Dongshan; Zhang, Yumin; Zhou, Yufeng

    2016-01-01

    Terahertz (THz) time-domain spectroscopy (TDS) imaging is considered a nondestructive evaluation method for composite materials used for examining various defects of carbon fiber reinforced polymer (CFRP) composites and fire-retardant coatings in the reflective imaging modality. We demonstrate that hidden defects simulated by Teflon artificial inserts are imaged clearly in the perpendicular polarization mode. The THz TDS technique is also used to measure the thickness of thin fire-retardant coatings on CFRP composites with a typical accuracy of about 10 micrometers. In addition, coating debonding is successfully imaged based on the time-delay difference of the time-domain waveforms between closely adhered and debonded sample locations. PMID:27314352

  16. A Near-Optimal Distributed QoS Constrained Routing Algorithm for Multichannel Wireless Sensor Networks

    PubMed Central

    Lin, Frank Yeong-Sung; Hsiao, Chiu-Han; Yen, Hong-Hsu; Hsieh, Yu-Jen

    2013-01-01

    One of the important applications in Wireless Sensor Networks (WSNs) is video surveillance that includes the tasks of video data processing and transmission. Processing and transmission of image and video data in WSNs has attracted a lot of attention in recent years. This is known as Wireless Visual Sensor Networks (WVSNs). WVSNs are distributed intelligent systems for collecting image or video data with unique performance, complexity, and quality of service challenges. WVSNs consist of a large number of battery-powered and resource constrained camera nodes. End-to-end delay is a very important Quality of Service (QoS) metric for video surveillance application in WVSNs. How to meet the stringent delay QoS in resource constrained WVSNs is a challenging issue that requires novel distributed and collaborative routing strategies. This paper proposes a Near-Optimal Distributed QoS Constrained (NODQC) routing algorithm to achieve an end-to-end route with lower delay and higher throughput. A Lagrangian Relaxation (LR)-based routing metric that considers the “system perspective” and “user perspective” is proposed to determine the near-optimal routing paths that satisfy end-to-end delay constraints with high system throughput. The empirical results show that the NODQC routing algorithm outperforms others in terms of higher system throughput with lower average end-to-end delay and delay jitter. In this paper, for the first time, the algorithm shows how to meet the delay QoS and at the same time how to achieve higher system throughput in stringently resource constrained WVSNs.

  17. Mid-Infrared Lifetime Imaging for Viability Evaluation of Lettuce Seeds Based on Time-Dependent Thermal Decay Characterization

    PubMed Central

    Kim, Ghiseok; Kim, Geon Hee; Ahn, Chi-Kook; Yoo, Yoonkyu; Cho, Byoung-Kwan

    2013-01-01

    An infrared lifetime thermal imaging technique for the measurement of lettuce seed viability was evaluated. Thermal emission signals from mid-infrared images of healthy seeds and seeds aged for 24, 48, and 72 h were obtained and reconstructed using regression analysis. The emission signals were fitted with a two-term exponential model that had two amplitudes and two time variables as lifetime parameters. The lifetime thermal decay parameters were significantly different for seeds with different aging times. Single-seed viability was visualized using thermal lifetime images constructed from the calculated lifetime parameter values. The time-dependent thermal signal decay characteristics, along with the decay amplitude and delay time images, can be used to distinguish aged lettuce seeds from normal seeds. PMID:23529120

  18. Rates and delay times of Type Ia supernovae in the helium-enriched main-sequence donor scenario

    NASA Astrophysics Data System (ADS)

    Liu, Zheng-Wei; Stancliffe, Richard J.

    2018-04-01

    The nature of the progenitors of Type Ia supernovae (SNe Ia) remains a mystery. Comparing theoretical rates and delay-time distributions of SNe Ia with those inferred observationally can constrain their progenitor models. In this work, taking thermohaline mixing into account in the helium-enriched main-sequence (HEMS) donor scenario, we address rates and delay times of SNe Ia in this channel by combining the results of self-consistent binary evolution calculations with population synthesis models. We find that the Galactic SN Ia rate from the HEMS donor scenario is around 0.6-1.2 × 10-3 yr-1, which is about 30 per cent of the observed rate. Delay times of SNe Ia in this scenario cover a wide range of 0.1-1.0 Gyr. We also present the pre-explosion properties of companion stars in the HEMS donor scenario, which will be helpful for placing constraints on SN Ia progenitors through analysing their pre-explosion images.

  19. Two Years and Five Images of Supernova Refsdal

    NASA Astrophysics Data System (ADS)

    Kelly, Patrick

    2017-01-01

    In 1964, Sjur Refsdal hypothesized that a supernova (SN) whose light takes multiple paths to reach us around a strong gravitational lens could be used as a highly powerful probe. For such a system, the time delays between the images of the SN should depend sensitively on the cosmic expansion rate and the distribution of matter within the lens. I will present observations of the first strongly lensed SN resolved into multiple images, which was found in near-infrared imaging taken in early November 2014 with the Hubble Space Telescope (HST). SN `Refsdal' appeared in an Einstein cross configuration around an early-type galaxy in the MACS J1149.6+2223 cluster (z=0.54), and its light curve and spectrum are broadly similar to those of the peculiar and well-studied SN 1987A. Models of the cluster potential predicted that the SN would reappear within two years in a different image of its spiral host galaxy (z=1.49) closer to the cluster's center. In early December 2015, we detected the new image of the SN with the HST, and we anticipate being able to measure its relative time delay with a 1-2% precision, providing a rare test of blind model predictions.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirvonen, Liisa M.; Le Marois, Alix; Suhling, Klaus, E-mail: klaus.suhling@kcl.ac.uk

    We perform wide-field time-correlated single photon counting-based fluorescence lifetime imaging (FLIM) with a crossed delay line anode image intensifier, where the pulse propagation time yields the photon position. This microchannel plate-based detector was read out with conventional fast timing electronics and mounted on a fluorescence microscope with total internal reflection (TIR) illumination. The picosecond time resolution of this detection system combines low illumination intensity of microwatts with wide-field data collection. This is ideal for fluorescence lifetime imaging of cell membranes using TIR. We show that fluorescence lifetime images of living HeLa cells stained with membrane dye di-4-ANEPPDHQ exhibit a reducedmore » lifetime near the coverslip in TIR compared to epifluorescence FLIM.« less

  1. Phased-array ultrasonic surface contour mapping system and method for solids hoppers and the like

    DOEpatents

    Fasching, George E.; Smith, Jr., Nelson S.

    1994-01-01

    A real time ultrasonic surface contour mapping system is provided including a digitally controlled phased-array of transmitter/receiver (T/R) elements located in a fixed position above the surface to be mapped. The surface is divided into a predetermined number of pixels which are separately scanned by an arrangement of T/R elements by applying phase delayed signals thereto that produce ultrasonic tone bursts from each T/R that arrive at a point X in phase and at the same time relative to the leading edge of the tone burst pulse so that the acoustic energies from each T/R combine in a reinforcing manner at point X. The signals produced by the reception of the echo signals reflected from point X back to the T/Rs are also delayed appropriately so that they add in phase at the input of a signal combiner. This combined signal is then processed to determine the range to the point X using density-corrected sound velocity values. An autofocusing signal is developed from the computed average range for a complete scan of the surface pixels. A surface contour map is generated in real time form the range signals on a video monitor.

  2. Registration of 4D time-series of cardiac images with multichannel Diffeomorphic Demons.

    PubMed

    Peyrat, Jean-Marc; Delingette, Hervé; Sermesant, Maxime; Pennec, Xavier; Xu, Chenyang; Ayache, Nicholas

    2008-01-01

    In this paper, we propose a generic framework for intersubject non-linear registration of 4D time-series images. In this framework, spatio-temporal registration is defined by mapping trajectories of physical points as opposed to spatial registration that solely aims at mapping homologous points. First, we determine the trajectories we want to register in each sequence using a motion tracking algorithm based on the Diffeomorphic Demons algorithm. Then, we perform simultaneously pairwise registrations of corresponding time-points with the constraint to map the same physical points over time. We show this trajectory registration can be formulated as a multichannel registration of 3D images. We solve it using the Diffeomorphic Demons algorithm extended to vector-valued 3D images. This framework is applied to the inter-subject non-linear registration of 4D cardiac CT sequences.

  3. Mental and physical activities delay cognitive decline in older persons with dementia.

    PubMed

    Cheng, Sheung-Tak; Chow, Pizza K; Song, You-Qiang; Yu, Edwin C S; Chan, Alfred C M; Lee, Tatia M C; Lam, John H M

    2014-01-01

    To examine the effects of cognitive stimulation (mahjong) and physical exercise (tai chi [TC]) on cognitive performance in persons with dementia. Cluster-randomized open-label controlled design. Nursing homes. One hundred ten residents, most of whom were cholinesterase-inhibitor naive. Inclusion criteria were Mini-Mental State Examination (MMSE) = 10-24 and suffering from at least very mild dementia (Clinical Dementia Rating ≥ 0.5). Exclusion criteria were being bedbound, audio/visual impairment, regular activity participation before study, or contraindications for physical or group activities. Homes were randomized into three conditions (mahjong, TC, and simple handicrafts [control]). Activities were conducted three times weekly for 12 weeks. Primary outcome was MMSE. Secondary outcomes were immediate/delayed recall, categorical fluency, and digit span. Various biological risk factors, including apolipoprotein E ε4 allele, were included as covariates. Measures were collected at 0 (baseline), 3 (posttreatment), 6, and 9 months. Intent-to-treat analyses were performed using mixed-effects regression. Mahjong's effect varied by time for MMSE, delayed recall, and forward digit span. TC had similar effects but not for delayed recall. The typical pattern was that control participants deteriorated while mahjong and TC participants maintained their abilities over time, leading to enlarged treatment effects as time progressed. By 9 months, mahjong and TC differed from control by 4.5 points (95% confidence interval: 2.0-6.9; d = 0.48) and 3.7 points (95% confidence interval: 1.4-6.0; d = 0.40), respectively, on MMSE. No treatment effects were observed for immediate recall and backward digit span. Mahjong and TC can preserve functioning or delay decline in certain cognitive domains, even in those with significant cognitive impairment. Copyright © 2014 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. High- and low-LET induced chromosome damage in human lymphocytes: a time-course of aberrations in metaphase and interphase

    NASA Technical Reports Server (NTRS)

    George, K.; Wu, H.; Willingham, V.; Furusawa, Y.; Kawata, T.; Cucinotta, F. A.; Dicello, J. F. (Principal Investigator)

    2001-01-01

    PURPOSE: To investigate how cell-cycle delays in human peripheral lymphocytes affect the expression of complex chromosome damage in metaphase following high- and low-LET radiation exposure. MATERIALS AND METHODS: Whole blood was irradiated in vitro with a low and a high dose of 1 GeV u(-1) iron particles, 400MeV u(-1) neon particles or y-rays. Lymphocytes were cultured and metaphase cells were collected at different time points after 48-84h in culture. Interphase chromosomes were prematurely condensed using calyculin-A, either 48 or 72 h after exposure to iron particles or gamma-rays. Cells in first division were analysed using a combination of FISH whole-chromosome painting and DAPI/ Hoechst 33258 harlequin staining. RESULTS: There was a delay in expression of chromosome damage in metaphase that was LET- and dose-dependant. This delay was mostly related to the late emergence of complex-type damage into metaphase. Yields of damage in PCC collected 48 h after irradiation with iron particles were similar to values obtained from cells undergoing mitosis after prolonged incubation. CONCLUSION: The yield of high-LET radiation-induced complex chromosome damage could be underestimated when analysing metaphase cells collected at one time point after irradiation. Chemically induced PCC is a more accurate technique since problems with complicated cell-cycle delays are avoided.

  5. High- and low-LET induced chromosome damage in human lymphocytes: a time-course of aberrations in metaphase and interphase.

    PubMed

    George, K; Wu, H; Willingham, V; Furusawa, Y; Kawata, T; Cucinotta, F A

    2001-02-01

    To investigate how cell-cycle delays in human peripheral lymphocytes affect the expression of complex chromosome damage in metaphase following high- and low-LET radiation exposure. Whole blood was irradiated in vitro with a low and a high dose of 1 GeV u(-1) iron particles, 400MeV u(-1) neon particles or y-rays. Lymphocytes were cultured and metaphase cells were collected at different time points after 48-84h in culture. Interphase chromosomes were prematurely condensed using calyculin-A, either 48 or 72 h after exposure to iron particles or gamma-rays. Cells in first division were analysed using a combination of FISH whole-chromosome painting and DAPI/ Hoechst 33258 harlequin staining. There was a delay in expression of chromosome damage in metaphase that was LET- and dose-dependant. This delay was mostly related to the late emergence of complex-type damage into metaphase. Yields of damage in PCC collected 48 h after irradiation with iron particles were similar to values obtained from cells undergoing mitosis after prolonged incubation. The yield of high-LET radiation-induced complex chromosome damage could be underestimated when analysing metaphase cells collected at one time point after irradiation. Chemically induced PCC is a more accurate technique since problems with complicated cell-cycle delays are avoided.

  6. Blob-hole correlation model for edge turbulence and comparisons with NSTX gas puff imaging data

    NASA Astrophysics Data System (ADS)

    Myra, J. R.; Zweben, S. J.; Russell, D. A.

    2018-07-01

    Gas puff imaging (GPI) observations made in NSTX (Zweben et al 2017 Phys. Plasmas 24 102509) have revealed two-point spatial correlations of edge and scrape-off layer (SOL) turbulence in the plane perpendicular to the magnetic field. A common feature is the occurrence of dipole-like patterns with significant regions of negative correlation. In this paper, we explore the possibility that these dipole patterns may be due to blob-hole pairs. Statistical methods are applied to determine the two-point spatial correlation that results from a model of blob-hole pair formation. It is shown that the model produces dipole correlation patterns that are qualitatively similar to the GPI data in several respects. Effects of the reference location (confined surfaces or SOL), a superimposed random background, hole velocity and lifetime, and background sheared flows are explored and discussed with respect to experimental observations. Additional analysis of the experimental GPI dataset is performed to further test this blob-hole correlation model. A time delay two-point spatial correlation study did not reveal inward propagation of the negative correlation structures that were postulated to correspond to holes in the data nor did it suggest that the negative correlation structures are due to neutral shadowing. However, tracking of the highest and lowest values (extrema) of the normalized GPI fluctuations shows strong evidence for mean inward propagation of minima and outward propagation of maxima, in qualitative agreement with theoretical expectations. Other properties of the experimentally observed extrema are discussed.

  7. A patient-specific segmentation framework for longitudinal MR images of traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Prastawa, Marcel; Irimia, Andrei; Chambers, Micah C.; Vespa, Paul M.; Van Horn, John D.; Gerig, Guido

    2012-02-01

    Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Robust, reproducible segmentations of MR images with TBI are crucial for quantitative analysis of recovery and treatment efficacy. However, this is a significant challenge due to severe anatomy changes caused by edema (swelling), bleeding, tissue deformation, skull fracture, and other effects related to head injury. In this paper, we introduce a multi-modal image segmentation framework for longitudinal TBI images. The framework is initialized through manual input of primary lesion sites at each time point, which are then refined by a joint approach composed of Bayesian segmentation and construction of a personalized atlas. The personalized atlas construction estimates the average of the posteriors of the Bayesian segmentation at each time point and warps the average back to each time point to provide the updated priors for Bayesian segmentation. The difference between our approach and segmenting longitudinal images independently is that we use the information from all time points to improve the segmentations. Given a manual initialization, our framework automatically segments healthy structures (white matter, grey matter, cerebrospinal fluid) as well as different lesions such as hemorrhagic lesions and edema. Our framework can handle different sets of modalities at each time point, which provides flexibility in analyzing clinical scans. We show results on three subjects with acute baseline scans and chronic follow-up scans. The results demonstrate that joint analysis of all the points yields improved segmentation compared to independent analysis of the two time points.

  8. 40 CFR 1054.145 - Are there interim provisions that apply only for a limited time?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... scheduled emission-related maintenance falls within 10 hours of a test point, delay the maintenance until the engine reaches the test point. Measure emissions before and after peforming the maintenance. Use... example, for the fuel line permeation standards starting in 2012, equipment manufacturers may order a...

  9. Integrating the ACR Appropriateness Criteria Into the Radiology Clerkship: Comparison of Didactic Format and Group-Based Learning.

    PubMed

    Stein, Marjorie W; Frank, Susan J; Roberts, Jeffrey H; Finkelstein, Malka; Heo, Moonseong

    2016-05-01

    The aim of this study was to determine whether group-based or didactic teaching is more effective to teach ACR Appropriateness Criteria to medical students. An identical pretest, posttest, and delayed multiple-choice test was used to evaluate the efficacy of the two teaching methods. Descriptive statistics comparing test scores were obtained. On the posttest, the didactic group gained 12.5 points (P < .0001), and the group-based learning students gained 16.3 points (P < .0001). On the delayed test, the didactic group gained 14.4 points (P < .0001), and the group-based learning students gained 11.8 points (P < .001). The gains in scores on both tests were statistically significant for both groups. However, the differences in scores were not statistically significant comparing the two educational methods. Compared with didactic lectures, group-based learning is more enjoyable, time efficient, and equally efficacious. The choice of educational method can be individualized for each institution on the basis of group size, time constraints, and faculty availability. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  10. The Strong Lensing Time Delay Challenge (2014)

    NASA Astrophysics Data System (ADS)

    Liao, Kai; Dobler, G.; Fassnacht, C. D.; Treu, T.; Marshall, P. J.; Rumbaugh, N.; Linder, E.; Hojjati, A.

    2014-01-01

    Time delays between multiple images in strong lensing systems are a powerful probe of cosmology. At the moment the application of this technique is limited by the number of lensed quasars with measured time delays. However, the number of such systems is expected to increase dramatically in the next few years. Hundred such systems are expected within this decade, while the Large Synoptic Survey Telescope (LSST) is expected to deliver of order 1000 time delays in the 2020 decade. In order to exploit this bounty of lenses we needed to make sure the time delay determination algorithms have sufficiently high precision and accuracy. As a first step to test current algorithms and identify potential areas for improvement we have started a "Time Delay Challenge" (TDC). An "evil" team has created realistic simulated light curves, to be analyzed blindly by "good" teams. The challenge is open to all interested parties. The initial challenge consists of two steps (TDC0 and TDC1). TDC0 consists of a small number of datasets to be used as a training template. The non-mandatory deadline is December 1 2013. The "good" teams that complete TDC0 will be given access to TDC1. TDC1 consists of thousands of lightcurves, a number sufficient to test precision and accuracy at the subpercent level, necessary for time-delay cosmography. The deadline for responding to TDC1 is July 1 2014. Submissions will be analyzed and compared in terms of predefined metrics to establish the goodness-of-fit, efficiency, precision and accuracy of current algorithms. This poster describes the challenge in detail and gives instructions for participation.

  11. Temporal binding of neural responses for focused attention in biosonar

    PubMed Central

    Simmons, James A.

    2014-01-01

    Big brown bats emit biosonar sounds and perceive their surroundings from the delays of echoes received by the ears. Broadcasts are frequency modulated (FM) and contain two prominent harmonics sweeping from 50 to 25 kHz (FM1) and from 100 to 50 kHz (FM2). Individual frequencies in each broadcast and each echo evoke single-spike auditory responses. Echo delay is encoded by the time elapsed between volleys of responses to broadcasts and volleys of responses to echoes. If echoes have the same spectrum as broadcasts, the volley of neural responses to FM1 and FM2 is internally synchronized for each sound, which leads to sharply focused delay images. Because of amplitude–latency trading, disruption of response synchrony within the volleys occurs if the echoes are lowpass filtered, leading to blurred, defocused delay images. This effect is consistent with the temporal binding hypothesis for perceptual image formation. Bats perform inexplicably well in cluttered surroundings where echoes from off-side objects ought to cause masking. Off-side echoes are lowpass filtered because of the shape of the broadcast beam, and they evoke desynchronized auditory responses. The resulting defocused images of clutter do not mask perception of focused images for targets. Neural response synchronization may select a target to be the focus of attention, while desynchronization may impose inattention on the surroundings by defocusing perception of clutter. The formation of focused biosonar images from synchronized neural responses, and the defocusing that occurs with disruption of synchrony, quantitatively demonstrates how temporal binding may control attention and bring a perceptual object into existence. PMID:25122915

  12. Double Photon Emission Coincidence Imaging using GAGG-SiPM pixel detectors

    NASA Astrophysics Data System (ADS)

    Shimazoe, K.; Uenomachi, M.; Mizumachi, Y.; Takahashi, H.; Masao, Y.; Shoji, Y.; Kamada, K.; Yoshikawa, A.

    2017-12-01

    Single photon emission computed tomography(SPECT) is a useful medical imaging modality using single photon detection from radioactive tracers, such as 99Tc and 111In, however further development of increasing the contrast in the image is still under investigation. A novel method (Double Photon Emission CT / DPECT) using a coincidence detection of two cascade gamma-rays from 111In is proposed and characterized in this study. 111In, which is well-known and commonly used as a SPECT tracer, emits two cascade photons of 171 keV and 245 keV with a short delay of approximately 85 ns. The coincidence detection of two gamma-rays theoretically determines the position in a single point compared with a line in single photon detection and increases the signal to noise ratio drastically. A fabricated pixel detector for this purpose consists of 8 × 8 array of high-resolution type 1.5 mm thickness Ce:GAGG (3.9% @ 662 keV, 6.63g/cm3, C&A Co. Ce:Gd3Ga2.7Al2.3O12 2.5 × 2.5 × 1.5 mm3) crystals coupled a 3 mm pixel SiPM array (Hamamatsu MPPC S13361-2050NS-08). The signal from each pixel is processed and readout using time over threshold (TOT) based parallel processing circuit to extract the energy and timing information. The coincidence was detected by FPGA with the frequency of 400 MHz. Two pixel detectors coupled to parallel-hole collimators are located at the degree of 90 to determine the position and coincidence events (time window =1 μs) are detected and used for making back-projection image. The basic principle of DPECT is characterized including the detection efficiency and timing resolution.

  13. Towards an SEMG-based tele-operated robot for masticatory rehabilitation.

    PubMed

    Kalani, Hadi; Moghimi, Sahar; Akbarzadeh, Alireza

    2016-08-01

    This paper proposes a real-time trajectory generation for a masticatory rehabilitation robot based on surface electromyography (SEMG) signals. We used two Gough-Stewart robots. The first robot was used as a rehabilitation robot while the second robot was developed to model the human jaw system. The legs of the rehabilitation robot were controlled by the SEMG signals of a tele-operator to reproduce the masticatory motion in the human jaw, supposedly mounted on the moving platform, through predicting the location of a reference point. Actual jaw motions and the SEMG signals from the masticatory muscles were recorded and used as output and input, respectively. Three different methods, namely time-delayed neural networks, time delayed fast orthogonal search, and time-delayed Laguerre expansion technique, were employed and compared to predict the kinematic parameters. The optimal model structures as well as the input delays were obtained for each model and each subject through a genetic algorithm. Equations of motion were obtained by the virtual work method. Fuzzy method was employed to develop a fuzzy impedance controller. Moreover, a jaw model was developed to demonstrate the time-varying behavior of the muscle lengths during the rehabilitation process. The three modeling methods were capable of providing reasonably accurate estimations of the kinematic parameters, although the accuracy and training/validation speed of time-delayed fast orthogonal search were higher than those of the other two aforementioned methods. Also, during a simulation study, the fuzzy impedance scheme proved successful in controlling the moving platform for the accurate navigation of the reference point in the desired trajectory. SEMG has been widely used as a control command for prostheses and exoskeleton robots. However, in the current study by employing the proposed rehabilitation robot the complete continuous profile of the clenching motion was reproduced in the sagittal plane. Copyright © 2016. Published by Elsevier Ltd.

  14. Fast range estimation based on active range-gated imaging for coastal surveillance

    NASA Astrophysics Data System (ADS)

    Kong, Qingshan; Cao, Yinan; Wang, Xinwei; Tong, Youwan; Zhou, Yan; Liu, Yuliang

    2012-11-01

    Coastal surveillance is very important because it is useful for search and rescue, illegal immigration, or harbor security and so on. Furthermore, range estimation is critical for precisely detecting the target. Range-gated laser imaging sensor is suitable for high accuracy range especially in night and no moonlight. Generally, before detecting the target, it is necessary to change delay time till the target is captured. There are two operating mode for range-gated imaging sensor, one is passive imaging mode, and the other is gate viewing mode. Firstly, the sensor is passive mode, only capturing scenes by ICCD, once the object appears in the range of monitoring area, we can obtain the course range of the target according to the imaging geometry/projecting transform. Then, the sensor is gate viewing mode, applying micro second laser pulses and sensor gate width, we can get the range of targets by at least two continuous images with trapezoid-shaped range intensity profile. This technique enables super-resolution depth mapping with a reduction of imaging data processing. Based on the first step, we can calculate the rough value and quickly fix delay time which the target is detected. This technique has overcome the depth resolution limitation for 3D active imaging and enables super-resolution depth mapping with a reduction of imaging data processing. By the two steps, we can quickly obtain the distance between the object and sensor.

  15. Supernovae Discovery Efficiency

    NASA Astrophysics Data System (ADS)

    John, Colin

    2018-01-01

    Abstract:We present supernovae (SN) search efficiency measurements for recent Hubble Space Telescope (HST) surveys. Efficiency is a key component to any search, and is important parameter as a correction factor for SN rates. To achieve an accurate value for efficiency, many supernovae need to be discoverable in surveys. This cannot be achieved from real SN only, due to their scarcity, so fake SN are planted. These fake supernovae—with a goal of realism in mind—yield an understanding of efficiency based on position related to other celestial objects, and brightness. To improve realism, we built a more accurate model of supernovae using a point-spread function. The next improvement to realism is planting these objects close to galaxies and of various parameters of brightness, magnitude, local galactic brightness and redshift. Once these are planted, a very accurate SN is visible and discoverable by the searcher. It is very important to find factors that affect this discovery efficiency. Exploring the factors that effect detection yields a more accurate correction factor. Further inquires into efficiency give us a better understanding of image processing, searching techniques and survey strategies, and result in an overall higher likelihood to find these events in future surveys with Hubble, James Webb, and WFIRST telescopes. After efficiency is discovered and refined with many unique surveys, it factors into measurements of SN rates versus redshift. By comparing SN rates vs redshift against the star formation rate we can test models to determine how long star systems take from the point of inception to explosion (delay time distribution). This delay time distribution is compared to SN progenitors models to get an accurate idea of what these stars were like before their deaths.

  16. Burst wait time simulation of CALIBAN reactor at delayed super-critical state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humbert, P.; Authier, N.; Richard, B.

    2012-07-01

    In the past, the super prompt critical wait time probability distribution was measured on CALIBAN fast burst reactor [4]. Afterwards, these experiments were simulated with a very good agreement by solving the non-extinction probability equation [5]. Recently, the burst wait time probability distribution has been measured at CEA-Valduc on CALIBAN at different delayed super-critical states [6]. However, in the delayed super-critical case the non-extinction probability does not give access to the wait time distribution. In this case it is necessary to compute the time dependent evolution of the full neutron count number probability distribution. In this paper we present themore » point model deterministic method used to calculate the probability distribution of the wait time before a prescribed count level taking into account prompt neutrons and delayed neutron precursors. This method is based on the solution of the time dependent adjoint Kolmogorov master equations for the number of detections using the generating function methodology [8,9,10] and inverse discrete Fourier transforms. The obtained results are then compared to the measurements and Monte-Carlo calculations based on the algorithm presented in [7]. (authors)« less

  17. Optical time-of-flight and absorbance imaging of biologic media.

    PubMed

    Benaron, D A; Stevenson, D K

    1993-03-05

    Imaging the interior of living bodies with light may assist in the diagnosis and treatment of a number of clinical problems, which include the early detection of tumors and hypoxic cerebral injury. An existing picosecond time-of-flight and absorbance (TOFA) optical system has been used to image a model biologic system and a rat. Model measurements confirmed TOFA principles in systems with a high degree of photon scattering; rat images, which were constructed from the variable time delays experienced by a fixed fraction of early-arriving transmitted photons, revealed identifiable internal structure. A combination of light-based quantitative measurement and TOFA localization may have applications in continuous, noninvasive monitoring for structural imaging and spatial chemometric analysis in humans.

  18. Optical Time-of-Flight and Absorbance Imaging of Biologic Media

    NASA Astrophysics Data System (ADS)

    Benaron, David A.; Stevenson, David K.

    1993-03-01

    Imaging the interior of living bodies with light may assist in the diagnosis and treatment of a number of clinical problems, which include the early detection of tumors and hypoxic cerebral injury. An existing picosecond time-of-flight and absorbance (TOFA) optical system has been used to image a model biologic system and a rat. Model measurements confirmed TOFA principles in systems with a high degree of photon scattering; rat images, which were constructed from the variable time delays experienced by a fixed fraction of early-arriving transmitted photons, revealed identifiable internal structure. A combination of light-based quantitative measurement and TOFA localization may have applications in continuous, noninvasive monitoring for structural imaging and spatial chemometric analysis in humans.

  19. High-speed optical coherence tomography using fiberoptic acousto-optic phase modulation

    NASA Astrophysics Data System (ADS)

    Xie, Tuqiang; Wang, Zhenguo; Pan, Yingtian

    2003-12-01

    We report a new rapid-scanning optical delay device suitable for high-speed optical coherence tomography (OCT) in which an acousto-optic modulator (AOM) is used to independently modulate the Doppler frequency shift of the reference light beam for optical heterodyne detection. Experimental results show that the fluctuation of the measured Doppler frequency shift is less than +/-0.2% over 95% duty cycle of OCT imaging, thus allowing for enhanced signal-to-noise ratio of optical heterodyne detection. The increased Doppler frequency shift by AOM also permits complete envelop demodulation without the compromise of reducing axial resolution; if used with a resonant rapid-scanning optical delay, it will permit high-performance real-time OCT imaging. Potentially, this new rapid-scanning optical delay device will improve the performance of high-speed Doppler OCT techniques.

  20. Fermat's least-time principle and the embedded transparent lens

    NASA Astrophysics Data System (ADS)

    Kantowski, R.; Chen, B.; Dai, X.

    2013-10-01

    We present a simplified version of the lowest-order embedded point mass gravitational lens theory and then make the extension of this theory to any embedded transparent lens. Embedding a lens effectively reduces the gravitational potential’s range, i.e., partially shields the lensing potential because the lens mass is made a contributor to the mean mass density of the Universe and not simply superimposed upon it. We give the time-delay function for the embedded point mass lens from which we can derive the simplified lens equation by applying Fermat’s least-time principle. Even though rigorous derivations are only made for the point mass in a flat background, the generalization of the lens equation to lowest order for any distributed lens in any homogeneous background is obvious. We find from this simplified theory that embedding can introduce corrections above the few percent level in weak lensing shears caused by large clusters but only at large impacts. The potential part of the time delay is also affected in strong lensing at the few percent level. Additionally we again confirm that the presence of a cosmological constant alters the gravitational deflection of passing photons.

  1. Dual stage beamforming in the absence of front-end receive focusing

    NASA Astrophysics Data System (ADS)

    Bera, Deep; Bosch, Johan G.; Verweij, Martin D.; de Jong, Nico; Vos, Hendrik J.

    2017-08-01

    Ultrasound front-end receive designs for miniature, wireless, and/or matrix transducers can be simplified considerably by direct-element summation in receive. In this paper we develop a dual-stage beamforming technique that is able to produce a high-quality image from scanlines that are produced with focused transmit, and simple summation in receive (no delays). We call this non-delayed sequential beamforming (NDSB). In the first stage, low-resolution RF scanlines are formed by simple summation of element signals from a running sub-aperture. In the second stage, delay-and-sum beamforming is performed in which the delays are calculated considering the transmit focal points as virtual sources emitting spherical waves, and the sub-apertures as large unfocused receive elements. The NDSB method is validated with simulations in Field II. For experimental validation, RF channel data were acquired with a commercial research scanner using a 5 MHz linear array, and were subsequently processed offline. For NDSB, good average lateral resolution (0.99 mm) and low grating lobe levels (<-40 dB) were achieved by choosing the transmit {{F}\\#} as 0.75 and the transmit focus at 15 mm. NDSB was compared with conventional dynamic receive focusing (DRF) and synthetic aperture sequential beamforming (SASB) with their own respective optimal settings. The full width at half maximum of the NDSB point spread function was on average 20% smaller than that of DRF except for at depths  <30 mm and 10% larger than SASB considering all the depths. NDSB showed only a minor degradation in contrast-to-noise ratio and contrast ratio compared to DRF and SASB when measured on an anechoic cyst embedded in a tissue-mimicking phantom. In conclusion, using simple receive electronics front-end, NDSB can attain an image quality better than DRF and slightly inferior to SASB.

  2. Periodicity and global exponential stability of generalized Cohen-Grossberg neural networks with discontinuous activations and mixed delays.

    PubMed

    Wang, Dongshu; Huang, Lihong

    2014-03-01

    In this paper, we investigate the periodic dynamical behaviors for a class of general Cohen-Grossberg neural networks with discontinuous right-hand sides, time-varying and distributed delays. By means of retarded differential inclusions theory and the fixed point theorem of multi-valued maps, the existence of periodic solutions for the neural networks is obtained. After that, we derive some sufficient conditions for the global exponential stability and convergence of the neural networks, in terms of nonsmooth analysis theory with generalized Lyapunov approach. Without assuming the boundedness (or the growth condition) and monotonicity of the discontinuous neuron activation functions, our results will also be valid. Moreover, our results extend previous works not only on discrete time-varying and distributed delayed neural networks with continuous or even Lipschitz continuous activations, but also on discrete time-varying and distributed delayed neural networks with discontinuous activations. We give some numerical examples to show the applicability and effectiveness of our main results. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. New Approaches For Asteroid Spin State and Shape Modeling From Delay-Doppler Radar Images

    NASA Astrophysics Data System (ADS)

    Raissi, Chedy; Lamee, Mehdi; Mosiane, Olorato; Vassallo, Corinne; Busch, Michael W.; Greenberg, Adam; Benner, Lance A. M.; Naidu, Shantanu P.; Duong, Nicholas

    2016-10-01

    Delay-Doppler radar imaging is a powerful technique to characterize the trajectories, shapes, and spin states of near-Earth asteroids; and has yielded detailed models of dozens of objects. Reconstructing objects' shapes and spins from delay-Doppler data is a computationally intensive inversion problem. Since the 1990s, delay-Doppler data has been analyzed using the SHAPE software. SHAPE performs sequential single-parameter fitting, and requires considerable computer runtime and human intervention (Hudson 1993, Magri et al. 2007). Recently, multiple-parameter fitting algorithms have been shown to more efficiently invert delay-Doppler datasets (Greenberg & Margot 2015) - decreasing runtime while improving accuracy. However, extensive human oversight of the shape modeling process is still required. We have explored two new techniques to better automate delay-Doppler shape modeling: Bayesian optimization and a machine-learning neural network.One of the most time-intensive steps of the shape modeling process is to perform a grid search to constrain the target's spin state. We have implemented a Bayesian optimization routine that uses SHAPE to autonomously search the space of spin-state parameters. To test the efficacy of this technique, we compared it to results with human-guided SHAPE for asteroids 1992 UY4, 2000 RS11, and 2008 EV5. Bayesian optimization yielded similar spin state constraints within a factor of 3 less computer runtime.The shape modeling process could be further accelerated using a deep neural network to replace iterative fitting. We have implemented a neural network with a variational autoencoder (VAE), using a subset of known asteroid shapes and a large set of synthetic radar images as inputs to train the network. Conditioning the VAE in this manner allows the user to give the network a set of radar images and get a 3D shape model as an output. Additional development will be required to train a network to reliably render shapes from delay-Doppler images.This work was supported by NASA Ames, NVIDIA, Autodesk and the SETI Institute as part of the NASA Frontier Development Lab program.

  4. 49 CFR 228.5 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... time spent in travel— (i) Between the employee's residence and the employee's regular reporting point... away-from-home terminal (excluding travel for purposes of an interim release), where such time (including travel delays and room availability) does not exceed 30 minutes. (2) For a signal employee, the...

  5. The vectorization of a ray tracing program for image generation

    NASA Technical Reports Server (NTRS)

    Plunkett, D. J.; Cychosz, J. M.; Bailey, M. J.

    1984-01-01

    Ray tracing is a widely used method for producing realistic computer generated images. Ray tracing involves firing an imaginary ray from a view point, through a point on an image plane, into a three dimensional scene. The intersections of the ray with the objects in the scene determines what is visible at the point on the image plane. This process must be repeated many times, once for each point (commonly called a pixel) in the image plane. A typical image contains more than a million pixels making this process computationally expensive. A traditional ray tracing program processes one ray at a time. In such a serial approach, as much as ninety percent of the execution time is spent computing the intersection of a ray with the surface in the scene. With the CYBER 205, many rays can be intersected with all the bodies im the scene with a single series of vector operations. Vectorization of this intersection process results in large decreases in computation time. The CADLAB's interest in ray tracing stems from the need to produce realistic images of mechanical parts. A high quality image of a part during the design process can increase the productivity of the designer by helping him visualize the results of his work. To be useful in the design process, these images must be produced in a reasonable amount of time. This discussion will explain how the ray tracing process was vectorized and gives examples of the images obtained.

  6. SU-F-R-17: Advancing Glioblastoma Multiforme (GBM) Recurrence Detection with MRI Image Texture Feature Extraction and Machine Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, V; Ruan, D; Nguyen, D

    Purpose: To test the potential of early Glioblastoma Multiforme (GBM) recurrence detection utilizing image texture pattern analysis in serial MR images post primary treatment intervention. Methods: MR image-sets of six time points prior to the confirmed recurrence diagnosis of a GBM patient were included in this study, with each time point containing T1 pre-contrast, T1 post-contrast, T2-Flair, and T2-TSE images. Eight Gray-level co-occurrence matrix (GLCM) texture features including Contrast, Correlation, Dissimilarity, Energy, Entropy, Homogeneity, Sum-Average, and Variance were calculated from all images, resulting in a total of 32 features at each time point. A confirmed recurrent volume was contoured, alongmore » with an adjacent non-recurrent region-of-interest (ROI) and both volumes were propagated to all prior time points via deformable image registration. A support vector machine (SVM) with radial-basis-function kernels was trained on the latest time point prior to the confirmed recurrence to construct a model for recurrence classification. The SVM model was then applied to all prior time points and the volumes classified as recurrence were obtained. Results: An increase in classified volume was observed over time as expected. The size of classified recurrence maintained at a stable level of approximately 0.1 cm{sup 3} up to 272 days prior to confirmation. Noticeable volume increase to 0.44 cm{sup 3} was demonstrated at 96 days prior, followed by significant increase to 1.57 cm{sup 3} at 42 days prior. Visualization of the classified volume shows the merging of recurrence-susceptible region as the volume change became noticeable. Conclusion: Image texture pattern analysis in serial MR images appears to be sensitive to detecting the recurrent GBM a long time before the recurrence is confirmed by a radiologist. The early detection may improve the efficacy of targeted intervention including radiosurgery. More patient cases will be included to create a generalizable classification model applicable to a larger patient cohort. NIH R43CA183390 and R01CA188300.NSF Graduate Research Fellowship DGE-1144087.« less

  7. Delay in seeking treatment and adherence to tuberculosis medications in Russia: a survey of patients from two clinics.

    PubMed

    Woith, Wendy Mann; Larson, Janet L

    2008-08-01

    Tuberculosis is a global problem, especially in high burden countries such as Russia, that is fueled by delay in seeking treatment and nonadherence to prescribed medications. Stigma and illness representation (a person's mental image of a specific illness) have the potential to affect treatment seeking and adherence. To describe the illness representation of tuberculosis in Russians with active pulmonary tuberculosis, and to determine if stigma and illness representation are predictors of delay in seeking treatment and adherence to tuberculosis medications. Cross-sectional, descriptive survey. Two outpatient clinics in the Vladimir Region, Russia. A total of 105 adults, 18 years and older, being treated for active pulmonary tuberculosis, and on outpatient therapy for a minimum of four weeks participated in this study. Delay was measured with a question asking length of time between onset of symptoms and appointment with a physician. Stigma was measured using the Social Impact Scale. Illness representation was measured using the Revised Illness Perception Questionnaire. Participants' outpatient medication records were reviewed for medication adherence. Symptoms reported were not consistent with those described in the medical literature and other studies. Only four subjects suspected tuberculosis based on their symptoms; 60% believed they had other respiratory infections. Multiple regression showed that illness identity (an attribute of illness representation) (beta=0.23) was a significant predictor of delay, accounting for 29% of the variance (p=0.008); and financial insecurity (beta=-0.28) and internalized shame (beta=0.27) (measures of stigma) were both significant predictors of medication adherence, accounting for 23% of the variance (p=0.003). Illness identity was associated with delay. Internalized shame was associated with increased medication adherence while financial insecurity was associated with decreased adherence. Results point to the need for broad, culturally specific patient, family, and community education programs.

  8. Development of a 64 channel ultrasonic high frequency linear array imaging system.

    PubMed

    Hu, ChangHong; Zhang, Lequan; Cannata, Jonathan M; Yen, Jesse; Shung, K Kirk

    2011-12-01

    In order to improve the lateral resolution and extend the field of view of a previously reported 48 element 30 MHz ultrasound linear array and 16-channel digital imaging system, the development of a 256 element 30 MHz linear array and an ultrasound imaging system with increased channel count has been undertaken. This paper reports the design and testing of a 64 channel digital imaging system which consists of an analog front-end pulser/receiver, 64 channels of Time-Gain Compensation (TGC), 64 channels of high-speed digitizer as well as a beamformer. A Personal Computer (PC) is used as the user interface to display real-time images. This system is designed as a platform for the purpose of testing the performance of high frequency linear arrays that have been developed in house. Therefore conventional approaches were taken it its implementation. Flexibility and ease of use are of primary concern whereas consideration of cost-effectiveness and novelty in design are only secondary. Even so, there are many issues at higher frequencies but do not exist at lower frequencies need to be solved. The system provides 64 channels of excitation pulsers while receiving simultaneously at a 20-120 MHz sampling rate to 12-bits. The digitized data from all channels are first fed through Field Programmable Gate Arrays (FPGAs), and then stored in memories. These raw data are accessed by the beamforming processor to re-build the image or to be downloaded to the PC for further processing. The beamformer that applies delays to the echoes of each channel is implemented with the strategy that combines coarse (8.3 ns) and fine delays (2 ns). The coarse delays are integer multiples of the sampling clock rate and are achieved by controlling the write enable pin of the First-In-First-Out (FIFO) memory to obtain valid beamforming data. The fine delays are accomplished with interpolation filters. This system is capable of achieving a maximum frame rate of 50 frames per second. Wire phantom images acquired with this system show a spatial resolution of 146 μm (lateral) and 54 μm (axial). Images with excised rabbit and pig eyeball as well as mouse embryo were also acquired to demonstrate its imaging capability. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Development of a 64 channel ultrasonic high frequency linear array imaging system

    PubMed Central

    Hu, ChangHong; Zhang, Lequan; Cannata, Jonathan M.; Yen, Jesse; Shung, K. Kirk

    2011-01-01

    In order to improve the lateral resolution and extend the field of view of a previously reported 48 element 30 MHz ultrasound linear array and 16-channel digital imaging system, the development of a 256 element 30 MHz linear array and an ultrasound imaging system with increased channel count has been undertaken. This paper reports the design and testing of a 64 channel digital imaging system which consists of an analog front-end pulser/receiver, 64 channels of Time-Gain Compensation (TGC), 64 channels of high-speed digitizer as well as a beamformer. A Personal Computer (PC) is used as the user interface to display real-time images. This system is designed as a platform for the purpose of testing the performance of high frequency linear arrays that have been developed in house. Therefore conventional approaches were taken it its implementation. Flexibility and ease of use are of primary concern whereas consideration of cost-effectiveness and novelty in design are only secondary. Even so, there are many issues at higher frequencies but do not exist at lower frequencies need to be solved. The system provides 64 channels of excitation pulsers while receiving simultaneously at a 20 MHz–120 MHz sampling rate to 12-bits. The digitized data from all channels are first fed through Field Programmable Gate Arrays (FPGAs), and then stored in memories. These raw data are accessed by the beamforming processor to re-build the image or to be downloaded to the PC for further processing. The beamformer that applies delays to the echoes of each channel is implemented with the strategy that combines coarse (8.3ns) and fine delays (2 ns). The coarse delays are integer multiples of the sampling clock rate and are achieved by controlling the write enable pin of the First-In-First-Out (FIFO) memory to obtain valid beamforming data. The fine delays are accomplished with interpolation filters. This system is capable of achieving a maximum frame rate of 50 frames per second. Wire phantom images acquired with this system show a spatial resolution of 146 μm (lateral) and 54 μm (axial). Images with excised rabbit and pig eyeball as well as mouse embryo were also acquired to demonstrate its imaging capability. PMID:21684568

  10. Brute force absorption contrast microtomography

    NASA Astrophysics Data System (ADS)

    Davis, Graham R.; Mills, David

    2014-09-01

    In laboratory X-ray microtomography (XMT) systems, the signal-to-noise ratio (SNR) is typically determined by the X-ray exposure due to the low flux associated with microfocus X-ray tubes. As the exposure time is increased, the SNR improves up to a point where other sources of variability dominate, such as differences in the sensitivities of adjacent X-ray detector elements. Linear time-delay integration (TDI) readout averages out detector sensitivities on the critical horizontal direction and equiangular TDI also averages out the X-ray field. This allows the SNR to be increased further with increasing exposure. This has been used in dentistry to great effect, allowing subtle variations in dentine mineralisation to be visualised in 3 dimensions. It has also been used to detect ink in ancient parchments that are too damaged to physically unroll. If sufficient contrast between the ink and parchment exists, it is possible to virtually unroll the tomographic image of the scroll in order that the text can be read. Following on from this work, a feasibility test was carried out to determine if it might be possible to recover images from decaying film reels. A successful attempt was made to re-create a short film sequence from a rolled length of 16mm film using XMT. However, the "brute force" method of scaling this up to allow an entire film reel to be imaged presents a significant challenge.

  11. MR brain volumetric measurements are predictive of neurobehavioral impairment in the HIV-1 transgenic rat.

    PubMed

    Casas, Rafael; Muthusamy, Siva; Wakim, Paul G; Sinharay, Sanhita; Lentz, Margaret R; Reid, William C; Hammoud, Dima A

    2018-01-01

    HIV infection is known to be associated with brain volume loss, even in optimally treated patients. In this study, we assessed whether dynamic brain volume changes over time are predictive of neurobehavorial performance in the HIV-1 transgenic (Tg) rat, a model of treated HIV-positive patients. Cross-sectional brain MRI imaging was first performed comparing Tg and wild type (WT) rats at 3 and 19 months of age. Longitudinal MRI and neurobehavioral testing of another group of Tg and WT rats was then performed from 5 to 23 weeks of age. Whole brain and subregional image segmentation was used to assess the rate of brain growth over time. We used repeated-measures mixed models to assess differences in brain volumes and to establish how predictive the volume differences are of specific neurobehavioral deficits. Cross-sectional imaging showed smaller whole brain volumes in Tg compared to WT rats at 3 and at 19 months of age. Longitudinally, Tg brain volumes were smaller than age-matched WT rats at all time points, starting as early as 5 weeks of age. The Tg striatal growth rate delay between 5 and 9 weeks of age was greater than that of the whole brain. Striatal volume in combination with genotype was the most predictive of rota-rod scores and in combination with genotype and age was the most predictive of total exploratory activity scores in the Tg rats. The disproportionately delayed striatal growth compared to whole brain between 5 and 9 weeks of age and the role of striatal volume in predicting neurobehavioral deficits suggest an important role of the dopaminergic system in HIV associated neuropathology. This might explain problems with motor coordination and executive decisions in this animal model. Smaller brain and subregional volumes and neurobehavioral deficits were seen as early as 5 weeks of age, suggesting an early brain insult in the Tg rat. Neuroprotective therapy testing in this model should thus target this early stage of development, before brain damage becomes irreversible.

  12. Automatic position calculating imaging radar with low-cost synthetic aperture sensor for imaging layered media

    DOEpatents

    Mast, J.E.

    1998-08-18

    An imaging system for analyzing structures comprises a radar transmitter and receiver connected to a timing mechanism that allows a radar echo sample to be taken at a variety of delay times for each radar pulse transmission. The radar transmitter and receiver are coupled to a position determining system that provides the x,y position on a surface for each group of samples measured for a volume from the surface. The radar transmitter and receiver are moved about the surface to collect such groups of measurements from a variety of x,y positions. Return signal amplitudes represent the relative reflectivity of objects within the volume and the delay in receiving each signal echo represents the depth at which the object lays in the volume and the propagation speeds of the intervening material layers. Successively deeper z-planes are backward propagated from one layer to the next with an adjustment for variations in the expected propagation velocities of the material layers that lie between adjacent z-planes. 10 figs.

  13. Automatic position calculating imaging radar with low-cost synthetic aperture sensor for imaging layered media

    DOEpatents

    Mast, Jeffrey E.

    1998-01-01

    An imaging system for analyzing structures comprises a radar transmitter and receiver connected to a timing mechanism that allows a radar echo sample to be taken at a variety of delay times for each radar pulse transmission. The radar transmitter and receiver are coupled to a position determining system that provides the x,y position on a surface for each group of samples measured for a volume from the surface. The radar transmitter and receiver are moved about the surface to collect such groups of measurements from a variety of x,y positions. Return signal amplitudes represent the relative reflectivity of objects within the volume and the delay in receiving each signal echo represents the depth at which the object lays in the volume and the propagation speeds of the intervening material layers. Successively deeper z-planes are backward propagated from one layer to the next with an adjustment for variations in the expected propagation velocities of the material layers that lie between adjacent z-planes.

  14. Real-Time Precise Point Positioning (RTPPP) with raw observations and its application in real-time regional ionospheric VTEC modeling

    NASA Astrophysics Data System (ADS)

    Liu, Teng; Zhang, Baocheng; Yuan, Yunbin; Li, Min

    2018-01-01

    Precise Point Positioning (PPP) is an absolute positioning technology mainly used in post data processing. With the continuously increasing demand for real-time high-precision applications in positioning, timing, retrieval of atmospheric parameters, etc., Real-Time PPP (RTPPP) and its applications have drawn more and more research attention in recent years. This study focuses on the models, algorithms and ionospheric applications of RTPPP on the basis of raw observations, in which high-precision slant ionospheric delays are estimated among others in real time. For this purpose, a robust processing strategy for multi-station RTPPP with raw observations has been proposed and realized, in which real-time data streams and State-Space-Representative (SSR) satellite orbit and clock corrections are used. With the RTPPP-derived slant ionospheric delays from a regional network, a real-time regional ionospheric Vertical Total Electron Content (VTEC) modeling method is proposed based on Adjusted Spherical Harmonic Functions and a Moving-Window Filter. SSR satellite orbit and clock corrections from different IGS analysis centers are evaluated. Ten globally distributed real-time stations are used to evaluate the positioning performances of the proposed RTPPP algorithms in both static and kinematic modes. RMS values of positioning errors in static/kinematic mode are 5.2/15.5, 4.7/17.4 and 12.8/46.6 mm, for north, east and up components, respectively. Real-time slant ionospheric delays from RTPPP are compared with those from the traditional Carrier-to-Code Leveling (CCL) method, in terms of function model, formal precision and between-receiver differences of short baseline. Results show that slant ionospheric delays from RTPPP are more precise and have a much better convergence performance than those from the CCL method in real-time processing. 30 real-time stations from the Asia-Pacific Reference Frame network are used to model the ionospheric VTECs over Australia in real time, with slant ionospheric delays from both RTPPP and CCL methods for comparison. RMS of the VTEC differences between RTPPP/CCL method and CODE final products is 0.91/1.09 TECU, and RMS of the VTEC differences between RTPPP and CCL methods is 0.67 TECU. Slant Total Electron Contents retrieved from different VTEC models are also validated with epoch-differenced Geometry-Free combinations of dual-frequency phase observations, and mean RMS values are 2.14, 2.33 and 2.07 TECU for RTPPP method, CCL method and CODE final products, respectively. This shows the superiority of RTPPP-derived slant ionospheric delays in real-time ionospheric VTEC modeling.

  15. MWIR imaging spectrometer with digital time delay integration for remote sensing and characterization of solar system objects

    NASA Astrophysics Data System (ADS)

    Kendrick, Stephen E.; Harwit, Alex; Kaplan, Michael; Smythe, William D.

    2007-09-01

    An MWIR TDI (Time Delay and Integration) Imager and Spectrometer (MTIS) instrument for characterizing from orbit the moons of Jupiter and Saturn is proposed. Novel to this instrument is the planned implementation of a digital TDI detector array and an innovative imaging/spectroscopic architecture. Digital TDI enables a higher SNR for high spatial resolution surface mapping of Titan and Enceladus and for improved spectral discrimination and resolution at Europa. The MTIS imaging/spectroscopic architecture combines a high spatial resolution coarse wavelength resolution imaging spectrometer with a hyperspectral sensor to spectrally decompose a portion of the data adjacent to the data sampled in the imaging spectrometer. The MTIS instrument thus maps with high spatial resolution a planetary object while spectrally decomposing enough of the data that identification of the constituent materials is highly likely. Additionally, digital TDI systems have the ability to enable the rejection of radiation induced spikes in high radiation environments (Europa) and the ability to image in low light levels (Titan and Enceladus). The ability to image moving objects that might be missed utilizing a conventional TDI system is an added advantage and is particularly important for characterizing atmospheric effects and separating atmospheric and surface components. This can be accomplished with on-orbit processing or collecting and returning individual non co-added frames.

  16. Research on low-latency MAC protocols for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    He, Chenguang; Sha, Xuejun; Lee, Chankil

    2007-11-01

    Energy-efficient should not be the only design goal in MAC protocols for wireless sensor networks, which involve the use of battery-operated computing and sensing devices. Low-latency operation becomes the same important as energy-efficient in the case that the traffic load is very heavy or the real-time constrain is used in applications like tracking or locating. This paper introduces some causes of traditional time delays which are inherent in a multi-hops network using existing WSN MAC protocols, illuminates the importance of low-latency MAC design for wireless sensor networks, and presents three MACs as examples of low-latency protocols designed specially for sleep delay, wait delay and wakeup delay in wireless sensor networks, respectively. The paper also discusses design trade-offs with emphasis on low-latency and points out their advantages and disadvantages, together with some design considerations and suggestions for MAC protocols for future applications and researches.

  17. The parallel-sequential field subtraction technique for coherent nonlinear ultrasonic imaging

    NASA Astrophysics Data System (ADS)

    Cheng, Jingwei; Potter, Jack N.; Drinkwater, Bruce W.

    2018-06-01

    Nonlinear imaging techniques have recently emerged which have the potential to detect cracks at a much earlier stage than was previously possible and have sensitivity to partially closed defects. This study explores a coherent imaging technique based on the subtraction of two modes of focusing: parallel, in which the elements are fired together with a delay law and sequential, in which elements are fired independently. In the parallel focusing a high intensity ultrasonic beam is formed in the specimen at the focal point. However, in sequential focusing only low intensity signals from individual elements enter the sample and the full matrix of transmit-receive signals is recorded and post-processed to form an image. Under linear elastic assumptions, both parallel and sequential images are expected to be identical. Here we measure the difference between these images and use this to characterise the nonlinearity of small closed fatigue cracks. In particular we monitor the change in relative phase and amplitude at the fundamental frequencies for each focal point and use this nonlinear coherent imaging metric to form images of the spatial distribution of nonlinearity. The results suggest the subtracted image can suppress linear features (e.g. back wall or large scatters) effectively when instrumentation noise compensation in applied, thereby allowing damage to be detected at an early stage (c. 15% of fatigue life) and reliably quantified in later fatigue life.

  18. Delay and Standard Deviation Beamforming to Enhance Specular Reflections in Ultrasound Imaging.

    PubMed

    Bandaru, Raja Sekhar; Sornes, Anders Rasmus; Hermans, Jeroen; Samset, Eigil; D'hooge, Jan

    2016-12-01

    Although interventional devices, such as needles, guide wires, and catheters, are best visualized by X-ray, real-time volumetric echography could offer an attractive alternative as it avoids ionizing radiation; it provides good soft tissue contrast, and it is mobile and relatively cheap. Unfortunately, as echography is traditionally used to image soft tissue and blood flow, the appearance of interventional devices in conventional ultrasound images remains relatively poor, which is a major obstacle toward ultrasound-guided interventions. The objective of this paper was therefore to enhance the appearance of interventional devices in ultrasound images. Thereto, a modified ultrasound beamforming process using conventional-focused transmit beams is proposed that exploits the properties of received signals containing specular reflections (as arising from these devices). This new beamforming approach referred to as delay and standard deviation beamforming (DASD) was quantitatively tested using simulated as well as experimental data using a linear array transducer. Furthermore, the influence of different imaging settings (i.e., transmit focus, imaging depth, and scan angle) on the obtained image contrast was evaluated. The study showed that the image contrast of specular regions improved by 5-30 dB using DASD beamforming compared with traditional delay and sum (DAS) beamforming. The highest gain in contrast was observed when the interventional device was tilted away from being orthogonal to the transmit beam, which is a major limitation in standard DAS imaging. As such, the proposed beamforming methodology can offer an improved visualization of interventional devices in the ultrasound image with potential implications for ultrasound-guided interventions.

  19. Hierarchical and symmetric infant image registration by robust longitudinal-example-guided correspondence detection

    PubMed Central

    Wu, Yao; Wu, Guorong; Wang, Li; Munsell, Brent C.; Wang, Qian; Lin, Weili; Feng, Qianjin; Chen, Wufan; Shen, Dinggang

    2015-01-01

    Purpose: To investigate anatomical differences across individual subjects, or longitudinal changes in early brain development, it is important to perform accurate image registration. However, due to fast brain development and dynamic tissue appearance changes, it is very difficult to align infant brain images acquired from birth to 1-yr-old. Methods: To solve this challenging problem, a novel image registration method is proposed to align two infant brain images, regardless of age at acquisition. The main idea is to utilize the growth trajectories, or spatial-temporal correspondences, learned from a set of longitudinal training images, for guiding the registration of two different time-point images with different image appearances. Specifically, in the training stage, an intrinsic growth trajectory is first estimated for each training subject using the longitudinal images. To register two new infant images with potentially a large age gap, the corresponding images patches between each new image and its respective training images with similar age are identified. Finally, the registration between the two new images can be assisted by the learned growth trajectories from one time point to another time point that have been established in the training stage. To further improve registration accuracy, the proposed method is combined with a hierarchical and symmetric registration framework that can iteratively add new key points in both images to steer the estimation of the deformation between the two infant brain images under registration. Results: To evaluate image registration accuracy, the proposed method is used to align 24 infant subjects at five different time points (2-week-old, 3-month-old, 6-month-old, 9-month-old, and 12-month-old). Compared to the state-of-the-art methods, the proposed method demonstrated superior registration performance. Conclusions: The proposed method addresses the difficulties in the infant brain registration and produces better results compared to existing state-of-the-art registration methods. PMID:26133617

  20. Optical system design for a Lunar Optical Interferometer

    NASA Technical Reports Server (NTRS)

    Colavita, M. M.; Shao, M.; Hines, B. E.; Levine, B. M.; Gershman, R.

    1991-01-01

    The moon offers particular advantages for interferometry, including a vacuum environment, a large stable base on which to assemble multi-kilometer baselines, and a cold nighttime temperature to allow for passive cooling of optics for high IR sensitivity. A baseline design for a Lunar Optical Interferometer (LOI) which exploits these features is presented. The instrument operates in the visible to mid-IL region, and is designed for both astrometry and synthesis imaging. The design uses a Y-shaped array of 12 siderostats, with maximum arm lengths of about 1 km. The inner siderostats are monitored in three dimensions from a central laser metrology structure to allow for high precision astrometry. The outer siderostats, used primarily for synthesis imaging, exploit the availability of bright reference stars in order to determine the instrument geometry. The path delay function is partitioned into coarse and fine components, the former accomplished with switched banks of range mirrors monitored with an absolute laser metrology system, and the latter with a short cat's eye delay line. The back end of the instrument is modular, allowing for beam combiners for astrometry, visible and IR synthesis imaging, and direct planet detection. With 1 m apertures, the instrument will have a point-source imaging sensitivity of about 29 mag; with the laser metrology system, astrometry at the microarcsecond level will be possible.

  1. 40 CFR 1054.145 - Are there interim provisions that apply only for a limited time?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... scheduled emission-related maintenance falls within 10 hours of a test point, delay the maintenance until the engine reaches the test point. Measure emissions before and after peforming the maintenance. Use... data under 40 CFR 1060.235(e) for your emission family. (j) Continued use of 40 CFR part 90 test...

  2. 40 CFR 1054.145 - Are there interim provisions that apply only for a limited time?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... scheduled emission-related maintenance falls within 10 hours of a test point, delay the maintenance until the engine reaches the test point. Measure emissions before and after peforming the maintenance. Use... data under 40 CFR 1060.235(e) for your emission family. (j) Continued use of 40 CFR part 90 test...

  3. Compression performance comparison in low delay real-time video for mobile applications

    NASA Astrophysics Data System (ADS)

    Bivolarski, Lazar

    2012-10-01

    This article compares the performance of several current video coding standards in the conditions of low-delay real-time in a resource constrained environment. The comparison is performed using the same content and the metrics and mix of objective and perceptual quality metrics. The metrics results in different coding schemes are analyzed from a point of view of user perception and quality of service. Multiple standards are compared MPEG-2, MPEG4 and MPEG-AVC and well and H.263. The metrics used in the comparison include SSIM, VQM and DVQ. Subjective evaluation and quality of service are discussed from a point of view of perceptual metrics and their incorporation in the coding scheme development process. The performance and the correlation of results are presented as a predictor of the performance of video compression schemes.

  4. Complex dynamics in the Leslie-Gower type of the food chain system with multiple delays

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Song, Zi-Gen; Xu, Jian

    2014-08-01

    In this paper, we present a Leslie-Gower type of food chain system composed of three species, which are resource, consumer, and predator, respectively. The digestion time delays corresponding to consumer-eat-resource and predator-eat-consumer are introduced for more realistic consideration. It is called the resource digestion delay (RDD) and consumer digestion delay (CDD) for simplicity. Analyzing the corresponding characteristic equation, the stabilities of the boundary and interior equilibrium points are studied. The food chain system exhibits the species coexistence for the small values of digestion delays. Large RDD/CDD may destabilize the species coexistence and induce the system dynamic into recurrent bloom or system collapse. Further, the present of multiple delays can control species population into the stable coexistence. To investigate the effect of time delays on the recurrent bloom of species population, the Hopf bifurcation and periodic solution are investigated in detail in terms of the central manifold reduction and normal form method. Finally, numerical simulations are performed to display some complex dynamics, which include multiple periodic solution and chaos motion for the different values of system parameters. The system dynamic behavior evolves into the chaos motion by employing the period-doubling bifurcation.

  5. Topics in Bayesian Hierarchical Modeling and its Monte Carlo Computations

    NASA Astrophysics Data System (ADS)

    Tak, Hyung Suk

    The first chapter addresses a Beta-Binomial-Logit model that is a Beta-Binomial conjugate hierarchical model with covariate information incorporated via a logistic regression. Various researchers in the literature have unknowingly used improper posterior distributions or have given incorrect statements about posterior propriety because checking posterior propriety can be challenging due to the complicated functional form of a Beta-Binomial-Logit model. We derive data-dependent necessary and sufficient conditions for posterior propriety within a class of hyper-prior distributions that encompass those used in previous studies. Frequency coverage properties of several hyper-prior distributions are also investigated to see when and whether Bayesian interval estimates of random effects meet their nominal confidence levels. The second chapter deals with a time delay estimation problem in astrophysics. When the gravitational field of an intervening galaxy between a quasar and the Earth is strong enough to split light into two or more images, the time delay is defined as the difference between their travel times. The time delay can be used to constrain cosmological parameters and can be inferred from the time series of brightness data of each image. To estimate the time delay, we construct a Gaussian hierarchical model based on a state-space representation for irregularly observed time series generated by a latent continuous-time Ornstein-Uhlenbeck process. Our Bayesian approach jointly infers model parameters via a Gibbs sampler. We also introduce a profile likelihood of the time delay as an approximation of its marginal posterior distribution. The last chapter specifies a repelling-attracting Metropolis algorithm, a new Markov chain Monte Carlo method to explore multi-modal distributions in a simple and fast manner. This algorithm is essentially a Metropolis-Hastings algorithm with a proposal that consists of a downhill move in density that aims to make local modes repelling, followed by an uphill move in density that aims to make local modes attracting. The downhill move is achieved via a reciprocal Metropolis ratio so that the algorithm prefers downward movement. The uphill move does the opposite using the standard Metropolis ratio which prefers upward movement. This down-up movement in density increases the probability of a proposed move to a different mode.

  6. Real-time estimation of ionospheric delay using GPS measurements

    NASA Astrophysics Data System (ADS)

    Lin, Lao-Sheng

    1997-12-01

    When radio waves such as the GPS signals propagate through the ionosphere, they experience an extra time delay. The ionospheric delay can be eliminated (to the first order) through a linear combination of L1 and L2 observations from dual-frequency GPS receivers. Taking advantage of this dispersive principle, one or more dual- frequency GPS receivers can be used to determine a model of the ionospheric delay across a region of interest and, if implemented in real-time, can support single-frequency GPS positioning and navigation applications. The research objectives of this thesis were: (1) to develop algorithms to obtain accurate absolute Total Electron Content (TEC) estimates from dual-frequency GPS observables, and (2) to develop an algorithm to improve the accuracy of real-time ionosphere modelling. In order to fulfil these objectives, four algorithms have been proposed in this thesis. A 'multi-day multipath template technique' is proposed to mitigate the pseudo-range multipath effects at static GPS reference stations. This technique is based on the assumption that the multipath disturbance at a static station will be constant if the physical environment remains unchanged from day to day. The multipath template, either single-day or multi-day, can be generated from the previous days' GPS data. A 'real-time failure detection and repair algorithm' is proposed to detect and repair the GPS carrier phase 'failures', such as the occurrence of cycle slips. The proposed algorithm uses two procedures: (1) application of a statistical test on the state difference estimated from robust and conventional Kalman filters in order to detect and identify the carrier phase failure, and (2) application of a Kalman filter algorithm to repair the 'identified carrier phase failure'. A 'L1/L2 differential delay estimation algorithm' is proposed to estimate GPS satellite transmitter and receiver L1/L2 differential delays. This algorithm, based on the single-site modelling technique, is able to estimate the sum of the satellite and receiver L1/L2 differential delay for each tracked GPS satellite. A 'UNSW grid-based algorithm' is proposed to improve the accuracy of real-time ionosphere modelling. The proposed algorithm is similar to the conventional grid-based algorithm. However, two modifications were made to the algorithm: (1) an 'exponential function' is adopted as the weighting function, and (2) the 'grid-based ionosphere model' estimated from the previous day is used to predict the ionospheric delay ratios between the grid point and reference points. (Abstract shortened by UMI.)

  7. Comparison of Different Control Schemes for Strategic Departure Metering

    NASA Technical Reports Server (NTRS)

    Idris, Husni; Shen, Ni; Saraf, Aditya; Bertino, Jason; Zelinski, Shannon

    2016-01-01

    Airports and their terminal airspaces are key choke points in the air transportation system causing major delays and adding to pollution. A solution aimed at mitigating these chokepoints integrates the scheduling of runway operations, flight release from the gates and ramp into the airport movement area, and merging with other traffic competing for downstream airspace points. Within this integrated concept, we present a simulation-based analysis of the departure metering process, which delays the release of flights into the airport movement area while balancing two competing objectives: (1) maintaining large enough queues at the airport resources to maximize throughput and (2) absorbing excess delays at the gates or in ramp areas to save on fuel consumption, emissions, noise, and passenger discomfort. Three metering strategies are compared which respectively attempt to control the number of flights that (1) left the gate but did not take off, (2) left the ramp but did not take off, and (3) spent their unimpeded transit time to the runway but did not take off. It was observed that under deterministic and demand uncertainty conditions, the first strategy performed better than the other two strategies in terms of maintaining the runway throughput while transferring a significant average delay of two minutes to the gate. On the other hand, under uncertainties of flight transit time and runway service rate, all the strategies struggled to delay flights at the gate without a significant impact on the runway throughput.

  8. Integration and acceleration of virtual microscopy as the key to successful implementation into the routine diagnostic process.

    PubMed

    Wienert, Stephan; Beil, Michael; Saeger, Kai; Hufnagl, Peter; Schrader, Thomas

    2009-01-09

    The virtual microscopy is widely accepted in Pathology for educational purposes and teleconsultation but is far from the routine use in surgical pathology due to the technical requirements and some limitations. A technical problem is the limited bandwidth of a usual network and the delayed transmission rate and presentation time on the screen. In this study the process of secondary diagnostic was evaluated using the "T.Konsult Pathologie" service of the Professional Association of German Pathologists within the German breast cancer screening program. The characteristics of the access to the WSI (Whole Slide Images) have been analyzed to explore the possibilities of prefetching and caching to reduce the presentation and transfer time with the goal to increase user acceptance. The log files of the web server were analyzed to reconstruct the movements of the pathologist on the WSI and to create the observation path. Using a specialized tool the observation paths were extracted automatically from the log files. The attributes linearity, 3-point-linearity, changes per request, and number of consecutive requests were calculated to design, develop and evaluate different caching and prefetching strategies. The analysis of the observation paths showed that a complete accordance of two image requests is a very rare event. But more frequently a partial covering of two requested image areas can be found. In total 257 diagnostic paths from 131 WSI have been extracted and analysed. On average a diagnostic path consists of 16 image requests and takes 189 seconds between first and last image request. The mean linearity was 0,41 and the mean 3-point-linearity 0,85. Three different caching algorithms have been compared with respect to hit rate and additional image requests on the WSI server. Tests demonstrated that 95% of the diagnostic paths could be loaded without any deletion of entries in the cache (cache size 12,2 Megapixel). If the image parts are stored after JPEG compression this complies with less than 2 MB. WSI telepathology is a technology which offers the possibility to break the limitations of conventional static telepathology. The complete histological slide may be investigated instead of sets of images of lesions sampled by the presenting pathologist. The benefit is demonstrated by the high diagnostic security of 95% accordance between first and second diagnosis.

  9. Integration and acceleration of virtual microscopy as the key to successful implementation into the routine diagnostic process

    PubMed Central

    Wienert, Stephan; Beil, Michael; Saeger, Kai; Hufnagl, Peter; Schrader, Thomas

    2009-01-01

    Background The virtual microscopy is widely accepted in Pathology for educational purposes and teleconsultation but is far from the routine use in surgical pathology due to the technical requirements and some limitations. A technical problem is the limited bandwidth of a usual network and the delayed transmission rate and presentation time on the screen. Methods In this study the process of secondary diagnostic was evaluated using the "T.Konsult Pathologie" service of the Professional Association of German Pathologists within the German breast cancer screening program. The characteristics of the access to the WSI (Whole Slide Images) have been analyzed to explore the possibilities of prefetching and caching to reduce the presentation and transfer time with the goal to increase user acceptance. The log files of the web server were analyzed to reconstruct the movements of the pathologist on the WSI and to create the observation path. Using a specialized tool the observation paths were extracted automatically from the log files. The attributes linearity, 3-point-linearity, changes per request, and number of consecutive requests were calculated to design, develop and evaluate different caching and prefetching strategies. Results The analysis of the observation paths showed that a complete accordance of two image requests is a very rare event. But more frequently a partial covering of two requested image areas can be found. In total 257 diagnostic paths from 131 WSI have been extracted and analysed. On average a diagnostic path consists of 16 image requests and takes 189 seconds between first and last image request. The mean linearity was 0,41 and the mean 3-point-linearity 0,85. Three different caching algorithms have been compared with respect to hit rate and additional image requests on the WSI server. Tests demonstrated that 95% of the diagnostic paths could be loaded without any deletion of entries in the cache (cache size 12,2 Megapixel). If the image parts are stored after JPEG compression this complies with less than 2 MB. Discussion WSI telepathology is a technology which offers the possibility to break the limitations of conventional static telepathology. The complete histological slide may be investigated instead of sets of images of lesions sampled by the presenting pathologist. The benefit is demonstrated by the high diagnostic security of 95% accordance between first and second diagnosis. PMID:19134181

  10. Whole-Body Imaging of High-Dose Ionizing Irradiation-Induced Tissue Injuries Using 99mTc-Duramycin

    PubMed Central

    Johnson, Steven E.; Li, Zhixin; Liu, Yu; Moulder, John E.; Zhao, Ming

    2013-01-01

    High-dose ionizing irradiation can cause extensive injuries in susceptible tissues. A noninvasive imaging technique that detects a surrogate marker of apoptosis may help characterize the dynamics of radiation-induced tissue damage. The goal of this study was to prove the concept of imaging the temporal and spatial distribution of damage in susceptible tissues after high-dose radiation exposure, using 99mTc-duramycin as a phosphatidylethanolamine-binding radiopharmaceutical. Methods Rats were subjected to 15 Gy of total-body irradiation with x-rays. Planar whole-body 99mTc-duramycin scanning (n = 4 per time point) was conducted at 24, 48, and 72 h using a clinical γ-camera. On the basis of findings from planar imaging, preclinical SPECT data were acquired on control rats and on irradiated rats at 6 and 24 h after irradiation (n = 4 per time point). Imaging data were validated by γ-counting and histology, using harvested tissues in parallel groups of animals (n = 4). Results Prominent focal uptake was detected in the thymus as early as 6 h after irradiation, followed by a gradual decline in 99mTc-duramycin binding accompanied by extensive thymic atrophy. Early (6–24 h) radioactivity uptake in the gastrointestinal region was detected. Significant signal was seen in major bones in a slightly delayed fashion, at 24 h, which persisted for at least 2 d. This finding was paralleled by an elevation in signal intensity in the kidneys, spleen, and liver. The imaging results were consistent with ex vivo γ-counting results and histology. Relatively high levels of apoptosis were detected from histology in the thymus, guts, and bones, with the thymus undergoing substantial atrophy. Conclusion As a proof of principle, this study demonstrated a noninvasive imaging technique that allows characterization of the temporal and spatial dynamics of injuries in susceptible tissues during the acute phase after high-dose ionizing irradiation. Such an imaging capability will potentially be useful for global, whole-body, assessment of tissue damage after radiation exposure. These data, in turn, will contribute to our general knowledge of tissue susceptibility to ionizing irradiation, as well as the onset and progression of tissue injuries. PMID:23804327

  11. Concept of Operations Evaluation for Using Remote-Guidance Ultrasound for Exploration Spaceflight.

    PubMed

    Hurst, Victor W; Peterson, Sean; Garcia, Kathleen; Ebert, Douglas; Ham, David; Amponsah, David; Dulchavsky, Scott

    2015-12-01

    Remote-guidance (RG) techniques aboard the International Space Station (ISS) have enabled astronauts to collect diagnostic-level ultrasound (US) images. Exploration-class missions will likely require nonformally trained sonographers to operate with greater autonomy given longer communication delays (> 6 s for missions beyond the Moon) and blackouts. Training requirements for autonomous collection of US images by non-US experts are being determined. Novice US operators were randomly assigned to one of three groups to collect standardized US images while drawing expertise from A) RG only, B) a computer training tool only, or C) both RG and a computer training tool. Images were assessed for quality and examination duration. All operators were given a 10-min standardized generic training session in US scanning. The imaging task included: 1) bone fracture assessment in a phantom and 2) Focused Assessment with Sonography in Trauma (FAST) examination in a healthy volunteer. A human factors questionnaire was also completed. Mean time for group B during FAST was shorter (20.4 vs. 22.7 min) than time for the other groups. Image quality scoring was lower than in groups A or C, but all groups produced images of acceptable diagnostic quality. RG produces US images of higher quality than those produced with only computer-based instruction. Extended communication delays in exploration missions will eliminate the option of real-time guidance, thus requiring autonomous operation. The computer program used appears effective and could be a model for future digital US expertise banks. Terrestrially, it also provides adequate self-training and mentoring mechanisms.

  12. Cross delay line sensor characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owens, Israel J; Remelius, Dennis K; Tiee, Joe J

    There exists a wealth of information in the scientific literature on the physical properties and device characterization procedures for complementary metal oxide semiconductor (CMOS), charge coupled device (CCD) and avalanche photodiode (APD) format detectors. Numerous papers and books have also treated photocathode operation in the context of photomultiplier tube (PMT) operation for either non imaging applications or limited night vision capability. However, much less information has been reported in the literature about the characterization procedures and properties of photocathode detectors with novel cross delay line (XDL) anode structures. These allow one to detect single photons and create images by recordingmore » space and time coordinate (X, Y & T) information. In this paper, we report on the physical characteristics and performance of a cross delay line anode sensor with an enhanced near infrared wavelength response photocathode and high dynamic range micro channel plate (MCP) gain (> 10{sup 6}) multiplier stage. Measurement procedures and results including the device dark event rate (DER), pulse height distribution, quantum and electronic device efficiency (QE & DQE) and spatial resolution per effective pixel region in a 25 mm sensor array are presented. The overall knowledge and information obtained from XDL sensor characterization allow us to optimize device performance and assess capability. These device performance properties and capabilities make XDL detectors ideal for remote sensing field applications that require single photon detection, imaging, sub nano-second timing response, high spatial resolution (10's of microns) and large effective image format.« less

  13. An adaptive clustering algorithm for image matching based on corner feature

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Dong, Min; Mu, Xiaomin; Wang, Song

    2018-04-01

    The traditional image matching algorithm always can not balance the real-time and accuracy better, to solve the problem, an adaptive clustering algorithm for image matching based on corner feature is proposed in this paper. The method is based on the similarity of the matching pairs of vector pairs, and the adaptive clustering is performed on the matching point pairs. Harris corner detection is carried out first, the feature points of the reference image and the perceived image are extracted, and the feature points of the two images are first matched by Normalized Cross Correlation (NCC) function. Then, using the improved algorithm proposed in this paper, the matching results are clustered to reduce the ineffective operation and improve the matching speed and robustness. Finally, the Random Sample Consensus (RANSAC) algorithm is used to match the matching points after clustering. The experimental results show that the proposed algorithm can effectively eliminate the most wrong matching points while the correct matching points are retained, and improve the accuracy of RANSAC matching, reduce the computation load of whole matching process at the same time.

  14. Delay-induced depinning of localized structures in a spatially inhomogeneous Swift-Hohenberg model

    NASA Astrophysics Data System (ADS)

    Tabbert, Felix; Schelte, Christian; Tlidi, Mustapha; Gurevich, Svetlana V.

    2017-03-01

    We report on the dynamics of localized structures in an inhomogeneous Swift-Hohenberg model describing pattern formation in the transverse plane of an optical cavity. This real order parameter equation is valid close to the second-order critical point associated with bistability. The optical cavity is illuminated by an inhomogeneous spatial Gaussian pumping beam and subjected to time-delayed feedback. The Gaussian injection beam breaks the translational symmetry of the system by exerting an attracting force on the localized structure. We show that the localized structure can be pinned to the center of the inhomogeneity, suppressing the delay-induced drift bifurcation that has been reported in the particular case where the injection is homogeneous, assuming a continuous wave operation. Under an inhomogeneous spatial pumping beam, we perform the stability analysis of localized solutions to identify different instability regimes induced by time-delayed feedback. In particular, we predict the formation of two-arm spirals, as well as oscillating and depinning dynamics caused by the interplay of an attracting inhomogeneity and destabilizing time-delayed feedback. The transition from oscillating to depinning solutions is investigated by means of numerical continuation techniques. Analytically, we use an order parameter approach to derive a normal form of the delay-induced Hopf bifurcation leading to an oscillating solution. Additionally we model the interplay of an attracting inhomogeneity and destabilizing time delay by describing the localized solution as an overdamped particle in a potential well generated by the inhomogeneity. In this case, the time-delayed feedback acts as a driving force. Comparing results from the later approach with the full Swift-Hohenberg model, we show that the approach not only provides an instructive description of the depinning dynamics, but also is numerically accurate throughout most of the parameter regime.

  15. Textural features and SUV-based variables assessed by dual time point 18F-FDG PET/CT in locally advanced breast cancer.

    PubMed

    Garcia-Vicente, Ana María; Molina, David; Pérez-Beteta, Julián; Amo-Salas, Mariano; Martínez-González, Alicia; Bueno, Gloria; Tello-Galán, María Jesús; Soriano-Castrejón, Ángel

    2017-12-01

    To study the influence of dual time point 18F-FDG PET/CT in textural features and SUV-based variables and their relation among them. Fifty-six patients with locally advanced breast cancer (LABC) were prospectively included. All of them underwent a standard 18F-FDG PET/CT (PET-1) and a delayed acquisition (PET-2). After segmentation, SUV variables (SUVmax, SUVmean, and SUVpeak), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) were obtained. Eighteen three-dimensional (3D) textural measures were computed including: run-length matrices (RLM) features, co-occurrence matrices (CM) features, and energies. Differences between all PET-derived variables obtained in PET-1 and PET-2 were studied. Significant differences were found between the SUV-based parameters and MTV obtained in the dual time point PET/CT, with higher values of SUV-based variables and lower MTV in the PET-2 with respect to the PET-1. In relation with the textural parameters obtained in dual time point acquisition, significant differences were found for the short run emphasis, low gray-level run emphasis, short run high gray-level emphasis, run percentage, long run emphasis, gray-level non-uniformity, homogeneity, and dissimilarity. Textural variables showed relations with MTV and TLG. Significant differences of textural features were found in dual time point 18F-FDG PET/CT. Thus, a dynamic behavior of metabolic characteristics should be expected, with higher heterogeneity in delayed PET acquisition compared with the standard PET. A greater heterogeneity was found in bigger tumors.

  16. Magnetic resonance imaging (MRI) evaluation of developmental delay in pediatric patients.

    PubMed

    Ali, Althaf S; Syed, Naziya P; Murthy, G S N; Nori, Madhavi; Abkari, Anand; Pooja, B K; Venkateswarlu, J

    2015-01-01

    Developmental delay is defined as significant delay in one or more developmental domains. Magnetic Resonance Imaging (MRI) is the best modality to investigate such patients. Evaluation of a child with developmental delay is important not only because it allows early diagnosis and treatment but also helpful for parental counseling regarding the outcome of their child and to identify any possible risk of recurrence in the siblings. Thus this study was undertaken to evaluate the developmental delay in Indian children which will help the clinicians in providing an estimation of the child's ultimate developmental potential and organize specific treatment requirement and also relieve parental apprehension. To study the prevalence of normal and abnormal MRI in pediatric patients presenting with developmental delay and further categorize the abnormal MRI based on its morphological features. It is a prospective, observational & descriptive study of MRI Brain in 81 paediatric patients (46 Males and 35 Females), aged between three months to 12 years; presenting with developmental delay in Deccan College of Medical Sciences, Hyderabad; over a period of three years (Sept 2011 to Sept 2014). MRI brain was done on 1.5T Siemens Magnetom Essenza & 0.35T Magnetom C with appropriate sequences and planes after making the child sleep/sedated/ anesthetized. Various anatomical structures like Ventricles, Corpus callosum, etc were systematically assessed. The MRI findings were divided into various aetiological subgroups. Normal MRI findings were seen in 32% cases and 68% had abnormal findings of which the proportion of Traumatic/ Neurovascular Diseases, Congenital & Developmental, Metabolic and Degenerative, neoplastic and non specific were 31%, 17%, 10%, 2.5% and 7.5% respectively. The ventricles and white matter mainly the corpus callosum were the most commonly affected anatomical structures. The diagnostic yield was found to be 68% and higher yield was seen in patients presenting with developmental delay plus. The clinical diagnosis of developmental delay should not be the end point, but rather a springboard for an effective search for causal factors. MRI is the best investigation with a high yield in such patients.

  17. Magnetic Resonance Imaging (MRI) Evaluation of Developmental Delay in Pediatric Patients

    PubMed Central

    Syed, Naziya P.; Murthy, G.S.N.; Nori, Madhavi; Abkari, Anand; Pooja, B.K.; Venkateswarlu, J.

    2015-01-01

    Introduction: Developmental delay is defined as significant delay in one or more developmental domains. Magnetic Resonance Imaging (MRI) is the best modality to investigate such patients. Evaluation of a child with developmental delay is important not only because it allows early diagnosis and treatment but also helpful for parental counseling regarding the outcome of their child and to identify any possible risk of recurrence in the siblings. Thus this study was undertaken to evaluate the developmental delay in Indian children which will help the clinicians in providing an estimation of the child’s ultimate developmental potential and organize specific treatment requirement and also relieve parental apprehension. Aims and Objectives: To study the prevalence of normal and abnormal MRI in pediatric patients presenting with developmental delay and further categorize the abnormal MRI based on its morphological features. Materials and Methods: It is a prospective, observational & descriptive study of MRI Brain in 81 paediatric patients (46 Males and 35 Females), aged between three months to 12 years; presenting with developmental delay in Deccan College of Medical Sciences, Hyderabad; over a period of three years (Sept 2011 to Sept 2014). MRI brain was done on 1.5T Siemens Magnetom Essenza & 0.35T Magnetom C with appropriate sequences and planes after making the child sleep/sedated/ anesthetized. Various anatomical structures like Ventricles, Corpus callosum, etc were systematically assessed. The MRI findings were divided into various aetiological subgroups. Results: Normal MRI findings were seen in 32% cases and 68% had abnormal findings of which the proportion of Traumatic/ Neurovascular Diseases, Congenital & Developmental, Metabolic and Degenerative, neoplastic and non specific were 31%, 17%, 10%, 2.5% and 7.5% respectively. The ventricles and white matter mainly the corpus callosum were the most commonly affected anatomical structures. The diagnostic yield was found to be 68% and higher yield was seen in patients presenting with developmental delay plus. Conclusion: The clinical diagnosis of developmental delay should not be the end point, but rather a springboard for an effective search for causal factors. MRI is the best investigation with a high yield in such patients. PMID:25738057

  18. The apparent inversion time for optimal delayed enhancement magnetic resonance imaging differs between the right and left ventricles.

    PubMed

    Desai, Milind Y; Gupta, Sandeep; Bomma, Chandra; Tandri, Harikrishna; Foo, Thomas K; Lima, Joao A C; Bluemke, David A

    2005-01-01

    Delayed post-contrast magnetic resonance (MR) imaging involves suppression of signal from myocardium using inversion times (TI) between 150-225 ms, when the myocardium appears dark and fibrotic scar appears bright. We noticed that at a TI optimized for signal suppression of the left ventricle (LV), the right ventricle (RV) appeared brighter. The purpose of this study was to evaluate the TI for signal suppression in RV compared to LV, and to try and identify the cause of this observation. Methods. We studied 31 patients (ages ranged from 17-79 years, 11 females) who had an MR scan on a 1.5 T GE scanner. Delayed post-contrast short-axis images were obtained 20 minutes after injection of 0.2 mmol/kg of intravenous gadolinium chelate. TI optimization was performed by acquiring a range of TI times within a single breath hold, in increments of 25 msec. The TI time that resulted in lowest signal for the RV arid LV was recorded. With the imaging sequence employed, the TI leading to LV signal suppression ranged from 150-225 ms. At the TI that resulted in LV signal suppression, the corrected signal from the RV was significantly higher as compared to the LV (29 +/- 13 au vs. 15 +/- 8 au, p < 0.001). The findings were similar using only the body coil. The TI required to suppress the RV was usually < or =150 msec. The observation persisted before and after gadolinium infusion. The TI for myocardial signal suppression appears to be different between LV and RV. Potential mechanisms include partial volume averaging with fat or blood pool (related to increased trabeculation) in the RV. Alternatively, increased blood pool signal (within Thebesian veins or arterioluminal communications) in RV compared to LV leads to altered TI times due to similar partial volume effects.

  19. Spaceborne electronic imaging systems

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Criteria and recommended practices for the design of the spaceborne elements of electronic imaging systems are presented. A spaceborne electronic imaging system is defined as a device that collects energy in some portion of the electromagnetic spectrum with detector(s) whose direct output is an electrical signal that can be processed (using direct transmission or delayed transmission after recording) to form a pictorial image. This definition encompasses both image tube systems and scanning point-detector systems. The intent was to collect the design experience and recommended practice of the several systems possessing the common denominator of acquiring images from space electronically and to maintain the system viewpoint rather than pursuing specialization in devices. The devices may be markedly different physically, but each was designed to provide a particular type of image within particular limitations. Performance parameters which determine the type of system selected for a given mission and which influence the design include: Sensitivity, Resolution, Dynamic range, Spectral response, Frame rate/bandwidth, Optics compatibility, Image motion, Radiation resistance, Size, Weight, Power, and Reliability.

  20. Refraction Correction in 3D Transcranial Ultrasound Imaging

    PubMed Central

    Lindsey, Brooks D.; Smith, Stephen W.

    2014-01-01

    We present the first correction of refraction in three-dimensional (3D) ultrasound imaging using an iterative approach that traces propagation paths through a two-layer planar tissue model, applying Snell’s law in 3D. This approach is applied to real-time 3D transcranial ultrasound imaging by precomputing delays offline for several skull thicknesses, allowing the user to switch between three sets of delays for phased array imaging at the push of a button. Simulations indicate that refraction correction may be expected to increase sensitivity, reduce beam steering errors, and partially restore lost spatial resolution, with the greatest improvements occurring at the largest steering angles. Distorted images of cylindrical lesions were created by imaging through an acrylic plate in a tissue-mimicking phantom. As a result of correcting for refraction, lesions were restored to 93.6% of their original diameter in the lateral direction and 98.1% of their original shape along the long axis of the cylinders. In imaging two healthy volunteers, the mean brightness increased by 8.3% and showed no spatial dependency. PMID:24275538

  1. Temporal binding of neural responses for focused attention in biosonar.

    PubMed

    Simmons, James A

    2014-08-15

    Big brown bats emit biosonar sounds and perceive their surroundings from the delays of echoes received by the ears. Broadcasts are frequency modulated (FM) and contain two prominent harmonics sweeping from 50 to 25 kHz (FM1) and from 100 to 50 kHz (FM2). Individual frequencies in each broadcast and each echo evoke single-spike auditory responses. Echo delay is encoded by the time elapsed between volleys of responses to broadcasts and volleys of responses to echoes. If echoes have the same spectrum as broadcasts, the volley of neural responses to FM1 and FM2 is internally synchronized for each sound, which leads to sharply focused delay images. Because of amplitude-latency trading, disruption of response synchrony within the volleys occurs if the echoes are lowpass filtered, leading to blurred, defocused delay images. This effect is consistent with the temporal binding hypothesis for perceptual image formation. Bats perform inexplicably well in cluttered surroundings where echoes from off-side objects ought to cause masking. Off-side echoes are lowpass filtered because of the shape of the broadcast beam, and they evoke desynchronized auditory responses. The resulting defocused images of clutter do not mask perception of focused images for targets. Neural response synchronization may select a target to be the focus of attention, while desynchronization may impose inattention on the surroundings by defocusing perception of clutter. The formation of focused biosonar images from synchronized neural responses, and the defocusing that occurs with disruption of synchrony, quantitatively demonstrates how temporal binding may control attention and bring a perceptual object into existence. © 2014. Published by The Company of Biologists Ltd.

  2. Cumulative phase delay imaging - A new contrast enhanced ultrasound modality

    NASA Astrophysics Data System (ADS)

    Demi, Libertario; van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo

    2015-10-01

    Recently, a new acoustic marker for ultrasound contrast agents (UCAs) has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental pressure wave field components is in fact observable for ultrasound propagating through UCAs. This phenomenon is absent in the case of tissue nonlinearity and is dependent on insonating pressure and frequency, UCA concentration, and propagation path length through UCAs. In this paper, ultrasound images based on this marker are presented. The ULA-OP research platform, in combination with a LA332 linear array probe (Esaote, Firenze Italy), were used to image a gelatin phantom containing a PVC plate (used as a reflector) and a cylindrical cavity measuring 7 mm in diameter (placed in between the observation point and the PVC plate). The cavity contained a 240 µL/L SonoVueO® UCA concentration. Two insonating frequencies (3 MHz and 2.5 MHz) were used to scan the gelatine phantom. A mechanical index MI = 0.07, measured in water at the cavity location with a HGL-0400 hydrophone (Onda, Sunnyvale, CA), was utilized. Processing the ultrasound signals backscattered from the plate, ultrasound images were generated in a tomographic fashion using the filtered back-projection method. As already observed in previous studies, significantly higher CPD values are measured when imaging at a frequency of 2.5 MHz, as compared to imaging at 3 MHz. In conclusion, these results confirm the applicability of the discussed CPD as a marker for contrast imaging. Comparison with standard contrast-enhanced ultrasound imaging modalities will be the focus of future work.

  3. Dread and the disvalue of future pain.

    PubMed

    Story, Giles W; Vlaev, Ivaylo; Seymour, Ben; Winston, Joel S; Darzi, Ara; Dolan, Raymond J

    2013-01-01

    Standard theories of decision-making involving delayed outcomes predict that people should defer a punishment, whilst advancing a reward. In some cases, such as pain, people seem to prefer to expedite punishment, implying that its anticipation carries a cost, often conceptualized as 'dread'. Despite empirical support for the existence of dread, whether and how it depends on prospective delay is unknown. Furthermore, it is unclear whether dread represents a stable component of value, or is modulated by biases such as framing effects. Here, we examine choices made between different numbers of painful shocks to be delivered faithfully at different time points up to 15 minutes in the future, as well as choices between hypothetical painful dental appointments at time points of up to approximately eight months in the future, to test alternative models for how future pain is disvalued. We show that future pain initially becomes increasingly aversive with increasing delay, but does so at a decreasing rate. This is consistent with a value model in which moment-by-moment dread increases up to the time of expected pain, such that dread becomes equivalent to the discounted expectation of pain. For a minority of individuals pain has maximum negative value at intermediate delay, suggesting that the dread function may itself be prospectively discounted in time. Framing an outcome as relief reduces the overall preference to expedite pain, which can be parameterized by reducing the rate of the dread-discounting function. Our data support an account of disvaluation for primary punishments such as pain, which differs fundamentally from existing models applied to financial punishments, in which dread exerts a powerful but time-dependent influence over choice.

  4. Dread and the Disvalue of Future Pain

    PubMed Central

    Story, Giles W.; Vlaev, Ivaylo; Seymour, Ben; Winston, Joel S.; Darzi, Ara; Dolan, Raymond J.

    2013-01-01

    Standard theories of decision-making involving delayed outcomes predict that people should defer a punishment, whilst advancing a reward. In some cases, such as pain, people seem to prefer to expedite punishment, implying that its anticipation carries a cost, often conceptualized as ‘dread’. Despite empirical support for the existence of dread, whether and how it depends on prospective delay is unknown. Furthermore, it is unclear whether dread represents a stable component of value, or is modulated by biases such as framing effects. Here, we examine choices made between different numbers of painful shocks to be delivered faithfully at different time points up to 15 minutes in the future, as well as choices between hypothetical painful dental appointments at time points of up to approximately eight months in the future, to test alternative models for how future pain is disvalued. We show that future pain initially becomes increasingly aversive with increasing delay, but does so at a decreasing rate. This is consistent with a value model in which moment-by-moment dread increases up to the time of expected pain, such that dread becomes equivalent to the discounted expectation of pain. For a minority of individuals pain has maximum negative value at intermediate delay, suggesting that the dread function may itself be prospectively discounted in time. Framing an outcome as relief reduces the overall preference to expedite pain, which can be parameterized by reducing the rate of the dread-discounting function. Our data support an account of disvaluation for primary punishments such as pain, which differs fundamentally from existing models applied to financial punishments, in which dread exerts a powerful but time-dependent influence over choice. PMID:24277999

  5. The effects of resonances on time delay estimation for water leak detection in plastic pipes

    NASA Astrophysics Data System (ADS)

    Almeida, Fabrício C. L.; Brennan, Michael J.; Joseph, Phillip F.; Gao, Yan; Paschoalini, Amarildo T.

    2018-04-01

    In the use of acoustic correlation methods for water leak detection, sensors are placed at pipe access points either side of a suspected leak, and the peak in the cross-correlation function of the measured signals gives the time difference (delay) between the arrival times of the leak noise at the sensors. Combining this information with the speed at which the leak noise propagates along the pipe, gives an estimate for the location of the leak with respect to one of the measurement positions. It is possible for the structural dynamics of the pipe system to corrupt the time delay estimate, which results in the leak being incorrectly located. In this paper, data from test-rigs in the United Kingdom and Canada are used to demonstrate this phenomenon, and analytical models of resonators are coupled with a pipe model to replicate the experimental results. The model is then used to investigate which of the two commonly used correlation algorithms, the Basic Cross-Correlation (BCC) function or the Phase Transform (PHAT), is more robust to the undesirable structural dynamics of the pipe system. It is found that time delay estimation is highly sensitive to the frequency bandwidth over which the analysis is conducted. Moreover, it is found that the PHAT is particularly sensitive to the presence of resonances and can give an incorrect time delay estimate, whereas the BCC function is found to be much more robust, giving a consistently accurate time delay estimate for a range of dynamic conditions.

  6. Galactic Shapiro delay to the Crab pulsar and limit on weak equivalence principle violation

    NASA Astrophysics Data System (ADS)

    Desai, Shantanu; Kahya, Emre

    2018-02-01

    We calculate the total galactic Shapiro delay to the Crab pulsar by including the contributions from the dark matter as well as baryonic matter along the line of sight. The total delay due to dark matter potential is about 3.4 days. For baryonic matter, we included the contributions from both the bulge and the disk, which are approximately 0.12 and 0.32 days respectively. The total delay from all the matter distribution is therefore 3.84 days. We also calculate the limit on violations of Weak equivalence principle by using observations of "nano-shot" giant pulses from the Crab pulsar with time-delay <0.4 ns, as well as using time differences between radio and optical photons observed from this pulsar. Using the former, we obtain a limit on violation of Weak equivalence principle in terms of the PPN parameter Δ γ < 2.41× 10^{-15}. From the time-difference between simultaneous optical and radio observations, we get Δ γ < 1.54× 10^{-9}. We also point out differences in our calculation of Shapiro delay and that from two recent papers (Yang and Zhang, Phys Rev D 94(10):101501, 2016; Zhang and Gong, Astrophys J 837:134, 2017), which used the same observations to obtain a corresponding limit on Δ γ.

  7. Blood-pool SPECT in addition to bone SPECT in the viability assessment in mandibular reconstruction.

    PubMed

    Aydogan, F; Akbay, E; Cevik, C; Kalender, E

    2014-01-01

    The assessment of the postoperative viability of vascularized and non-vascularized grafts used in the reconstruction of mandibular defects due to trauma and surgical reasons is a major problem in maxillofacial surgery. In the present study, we evaluated the feasibility and image quality of blood-pool SPECT, which is used for the first time in the literature here in the assessment of mandibular reconstruction, in addition to non-invasive bone scintigraphy and bone SPECT. We also evaluated whether it would be useful in clinical prediction. Micro-vascularized and non-vascularized bone grafts were used in 12 Syrian men with maxillofacial trauma. Between days 5-7 after surgery, three-phase bone scintigraphy, blood-pool SPECT and delayed bone SPECT scans were performed. After month 6, the patients were assessed by control CT scans. Of the non-vascularized grafts, one graft was reported as non-viable at week one. At month 6, graft resorption was demonstrated on the CT images. The remaining non-vascularized grafts and all of the micro-vascularized grafts were considered to be viable according to delayed bone SPECT and blood-pool SPECT images. However, only the anterior and posterior ends could be clearly assessed on delayed SPECT images, while blood-pool SPECT images allowed the clear assessment of the entire graft. The combined use of blood-pool and delayed SPECT scans could allow for better assessment of graft viability in the early period, and can provide more detailed information to clinicians about prognosis in the follow-up of patients undergoing mandibular graft reconstruction.

  8. STRIPE: Remote Driving Using Limited Image Data

    NASA Technical Reports Server (NTRS)

    Kay, Jennifer S.

    1997-01-01

    Driving a vehicle, either directly or remotely, is an inherently visual task. When heavy fog limits visibility, we reduce our car's speed to a slow crawl, even along very familiar roads. In teleoperation systems, an operator's view is limited to images provided by one or more cameras mounted on the remote vehicle. Traditional methods of vehicle teleoperation require that a real time stream of images is transmitted from the vehicle camera to the operator control station, and the operator steers the vehicle accordingly. For this type of teleoperation, the transmission link between the vehicle and operator workstation must be very high bandwidth (because of the high volume of images required) and very low latency (because delayed images can cause operators to steer incorrectly). In many situations, such a high-bandwidth, low-latency communication link is unavailable or even technically impossible to provide. Supervised TeleRobotics using Incremental Polyhedral Earth geometry, or STRIPE, is a teleoperation system for a robot vehicle that allows a human operator to accurately control the remote vehicle across very low bandwidth communication links, and communication links with large delays. In STRIPE, a single image from a camera mounted on the vehicle is transmitted to the operator workstation. The operator uses a mouse to pick a series of 'waypoints' in the image that define a path that the vehicle should follow. These 2D waypoints are then transmitted back to the vehicle, where they are used to compute the appropriate steering commands while the next image is being transmitted. STRIPE requires no advance knowledge of the terrain to be traversed, and can be used by novice operators with only minimal training. STRIPE is a unique combination of computer and human control. The computer must determine the 3D world path designated by the 2D waypoints and then accurately control the vehicle over rugged terrain. The human issues involve accurate path selection, and the prevention of disorientation, a common problem across all types of teleoperation systems. STRIPE is the only semi-autonomous teleoperation system that can accurately follow paths designated in monocular images on varying terrain. The thesis describes the STRIPE algorithm for tracking points using the incremental geometry model, insight into the design and redesign of the interface, an analysis of the effects of potential errors, details of the user studies, and hints on how to improve both the algorithm and interface for future designs.

  9. Ns-scaled time-gated fluorescence lifetime imaging for forensic document examination

    NASA Astrophysics Data System (ADS)

    Zhong, Xin; Wang, Xinwei; Zhou, Yan

    2018-01-01

    A method of ns-scaled time-gated fluorescence lifetime imaging (TFLI) is proposed to distinguish different fluorescent substances in forensic document examination. Compared with Video Spectral Comparator (VSC) which can examine fluorescence intensity images only, TFLI can detect questioned documents like falsification or alteration. TFLI system can enhance weak signal by accumulation method. The two fluorescence intensity images of the interval delay time tg are acquired by ICCD and fitted into fluorescence lifetime image. The lifetimes of fluorescence substances are represented by different colors, which make it easy to detect the fluorescent substances and the sequence of handwritings. It proves that TFLI is a powerful tool for forensic document examination. Furthermore, the advantages of TFLI system are ns-scaled precision preservation and powerful capture capability.

  10. Cumulative phase delay imaging for contrast-enhanced ultrasound tomography

    NASA Astrophysics Data System (ADS)

    Demi, Libertario; van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo

    2015-11-01

    Standard dynamic-contrast enhanced ultrasound (DCE-US) imaging detects and estimates ultrasound-contrast-agent (UCA) concentration based on the amplitude of the nonlinear (harmonic) components generated during ultrasound (US) propagation through UCAs. However, harmonic components generation is not specific to UCAs, as it also occurs for US propagating through tissue. Moreover, nonlinear artifacts affect standard DCE-US imaging, causing contrast to tissue ratio reduction, and resulting in possible misclassification of tissue and misinterpretation of UCA concentration. Furthermore, no contrast-specific modality exists for DCE-US tomography; in particular speed-of-sound changes due to UCAs are well within those caused by different tissue types. Recently, a new marker for UCAs has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental component is in fact observable for US propagating through UCAs, and is absent in tissue. In this paper, tomographic US images based on CPD are for the first time presented and compared to speed-of-sound US tomography. Results show the applicability of this marker for contrast specific US imaging, with cumulative phase delay imaging (CPDI) showing superior capabilities in detecting and localizing UCA, as compared to speed-of-sound US tomography. Cavities (filled with UCA) which were down to 1 mm in diameter were clearly detectable. Moreover, CPDI is free of the above mentioned nonlinear artifacts. These results open important possibilities to DCE-US tomography, with potential applications to breast imaging for cancer localization.

  11. Cumulative phase delay imaging for contrast-enhanced ultrasound tomography.

    PubMed

    Demi, Libertario; van Sloun, Ruud J G; Wijkstra, Hessel; Mischi, Massimo

    2015-11-07

    Standard dynamic-contrast enhanced ultrasound (DCE-US) imaging detects and estimates ultrasound-contrast-agent (UCA) concentration based on the amplitude of the nonlinear (harmonic) components generated during ultrasound (US) propagation through UCAs. However, harmonic components generation is not specific to UCAs, as it also occurs for US propagating through tissue. Moreover, nonlinear artifacts affect standard DCE-US imaging, causing contrast to tissue ratio reduction, and resulting in possible misclassification of tissue and misinterpretation of UCA concentration. Furthermore, no contrast-specific modality exists for DCE-US tomography; in particular speed-of-sound changes due to UCAs are well within those caused by different tissue types. Recently, a new marker for UCAs has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental component is in fact observable for US propagating through UCAs, and is absent in tissue. In this paper, tomographic US images based on CPD are for the first time presented and compared to speed-of-sound US tomography. Results show the applicability of this marker for contrast specific US imaging, with cumulative phase delay imaging (CPDI) showing superior capabilities in detecting and localizing UCA, as compared to speed-of-sound US tomography. Cavities (filled with UCA) which were down to 1 mm in diameter were clearly detectable. Moreover, CPDI is free of the above mentioned nonlinear artifacts. These results open important possibilities to DCE-US tomography, with potential applications to breast imaging for cancer localization.

  12. Basins of attraction of the bistable region of time-delayed cutting dynamics

    NASA Astrophysics Data System (ADS)

    Yan, Yao; Xu, Jian; Wiercigroch, Marian

    2017-09-01

    This paper investigates the effects of bistability in a nonsmooth time-delayed dynamical system, which is often manifested in science and engineering. Previous studies on cutting dynamics have demonstrated persistent coexistence of chatter and chatter-free responses in a bistable region located in the linearly stable zone. As there is no widely accepted definition of basins of attraction for time-delayed systems, bistable regions are coined as unsafe zones (UZs). Hence, we have attempted to define the basins of attraction and stability basins for a typical delayed system to get insight into the bistability in systems with time delays. Special attention was paid to the influences of delayed initial conditions, starting points, and states at time zero on the long-term dynamics of time-delayed systems. By using this concept, it has been confirmed that the chatter is prone to occur when the waviness frequency in the workpiece surface coincides with the effective natural frequency of the cutting process. Further investigations unveil a thin "boundary layer" inside the UZ in the immediate vicinity of the stability boundary, in which we observe an extremely fast growth of the chatter basin stability. The results reveal that the system is more stable when the initial cutting depth is smaller. The physics of the tool deflection at the instant of the tool-workpiece engagement is used to evaluate the cutting safety, and the safe level could be zero when the geometry of tool engagement is unfavorable. Finally, the basins of attraction are used to quench the chatter by a single strike, where the resultant "islands" offer an opportunity to suppress the chatter even when the cutting is very close to the stability boundary.

  13. The near real time image navigation of pictures returned by Voyager 2 at Neptune

    NASA Technical Reports Server (NTRS)

    Underwood, Ian M.; Bachman, Nathaniel J.; Taber, William L.; Wang, Tseng-Chan; Acton, Charles H.

    1990-01-01

    The development of a process for performing image navigation in near real time is described. The process was used to accurately determine the camera pointing for pictures returned by the Voyager 2 spacecraft at Neptune Encounter. Image navigation improves knowledge of the pointing of an imaging instrument at a particular epoch by correlating the spacecraft-relative locations of target bodies in inertial space with the locations of their images in a picture taken at that epoch. More than 8,500 pictures returned by Voyager 2 at Neptune were processed in near real time. The results were used in several applications, including improving pointing knowledge for nonimaging instruments ('C-smithing'), making 'Neptune, the Movie', and providing immediate access to geometrical quantities similar to those traditionally supplied in the Supplementary Experiment Data Record.

  14. And why not thrombolysis in the ambulance (at least for some)?

    PubMed

    Rosenberg, Gilad; Steiner, Israel

    2016-07-12

    The fear that alteplase may aggravate primary intracerebral hemorrhages has led to the mandatory prerequisite for prealteplase imaging in all acute stroke patients in order to exclude such hemorrhages. Consequently, in a situation in which "time is brain," administration of alteplase is delayed until the patients are transferred to a hospital where such imaging is available, at the cost of additional ischemic damage to the brain parenchyma. Yet, theoretical considerations and empirical data suggest that alteplase's effects on primary intracerebral hemorrhages may not be that detrimental. Moreover, at least some of the patients who are at a high risk of having primary cerebral bleeds, or at a high risk of developing symptomatic secondary bleeds, can be excluded from alteplase therapy on clinical grounds, and using nonimaging point-of-care devices, before their hospital arrival. We propose that clinical research should be initiated to define a population of stroke patients in whom alteplase may be administered preimaging, resulting in a greater benefit than harm and in improved functional outcome compared to deferred, postimaging, alteplase treatment. © 2016 American Academy of Neurology.

  15. Singer Responses to Sound Fields with a Simulated Reflection

    NASA Astrophysics Data System (ADS)

    NOSON, D.; SATO, S.; SAKAI, H.; ANDO, Y.

    2000-04-01

    While numerous recent studies have reported results concerning improvements to stage acoustics for orchestral performers, the preferred acoustical conditions on performing stages for singers has received limited attention in the past 20 years. A series of acoustical modifications have been proposed for a Seattle church to improve the acoustics for both the listeners and the performing choir. An on-site preliminary study was made to determine what acoustical changes might be important to singers. During solo fast-tempo singing and duet singing, singer preference increased with simulated short-delay reflections. The results suggest a potential for new reflectors to produce noticeable improvement in the choir acoustics. Subsequently, a solo singer study was conducted to establish preferred range of time delays for a single-simulated reflection. When singing faster-tempo music, the consensus of preference is statistically significant and the preferred delay averages 20 ms, while with a slow-tempo piece, the singers were not consistent in their judgment of preference and a strong individual variability predominated in the pair-comparison tests. The results point the way for an examination of a wider range of time delays and music motifs to acquire a clearer picture of consensus and individual preference for time-delayed reflections.

  16. The dynamics and control of large flexible space structures X, part 1

    NASA Technical Reports Server (NTRS)

    Bainum, Peter M.; Reddy, A. S. S. R.; Li, Feiyue; Diarra, Cheick M.

    1987-01-01

    The effect of delay in the control system input on the stability of a continuously acting controller which is designed without considering the delay is studied. The stability analysis of a second order plant is studied analytically and verified numerically. For this example it is found that the system becomes unstable for a delay which is equivalent to only 16 percent of its natural period of motion. It is also observed that even a small amount of natural damping in the system can increase the amount of delay that can be tolerated before the onset of instability. The delay problem is formulated in the discrete time domain and an analysis procedure suggested. The maximum principle from optimal control theory is applied to minimize the time required for the slewing of a general rigid spacecraft. The slewing motion need not be restricted to a single axis maneuver. The minimum slewing time is calculated based on a quasi-linearization algorithm for the resulting two point boundary value problem. Numerical examples based on the rigidized in-orbit model of the SCOLE also include the more general reflector line-of-sight slewing maneuvers.

  17. An approach of point cloud denoising based on improved bilateral filtering

    NASA Astrophysics Data System (ADS)

    Zheng, Zeling; Jia, Songmin; Zhang, Guoliang; Li, Xiuzhi; Zhang, Xiangyin

    2018-04-01

    An omnidirectional mobile platform is designed for building point cloud based on an improved filtering algorithm which is employed to handle the depth image. First, the mobile platform can move flexibly and the control interface is convenient to control. Then, because the traditional bilateral filtering algorithm is time-consuming and inefficient, a novel method is proposed which called local bilateral filtering (LBF). LBF is applied to process depth image obtained by the Kinect sensor. The results show that the effect of removing noise is improved comparing with the bilateral filtering. In the condition of off-line, the color images and processed images are used to build point clouds. Finally, experimental results demonstrate that our method improves the speed of processing time of depth image and the effect of point cloud which has been built.

  18. Effects of Reinforcer Probability, Delay, and Response Requirements on the Choices of Rats and Pigeons: Possible Species Differences

    ERIC Educational Resources Information Center

    Mazur, James E.

    2005-01-01

    In Experiment 1 with rats, a left lever press led to a 5-s delay and then a possible reinforcer. A right lever press led to an adjusting delay and then a certain reinforcer. This delay was adjusted over trials to estimate an indifference point, or a delay at which the two alternatives were chosen about equally often. Indifference points increased…

  19. Analysis of stability and bifurcations of fixed points and periodic solutions of a lumped model of neocortex with two delays

    PubMed Central

    2012-01-01

    A lumped model of neural activity in neocortex is studied to identify regions of multi-stability of both steady states and periodic solutions. Presence of both steady states and periodic solutions is considered to correspond with epileptogenesis. The model, which consists of two delay differential equations with two fixed time lags is mainly studied for its dependency on varying connection strength between populations. Equilibria are identified, and using linear stability analysis, all transitions are determined under which both trivial and non-trivial fixed points lose stability. Periodic solutions arising at some of these bifurcations are numerically studied with a two-parameter bifurcation analysis. PMID:22655859

  20. Cardiac gating with a pulse oximeter for dual-energy imaging

    NASA Astrophysics Data System (ADS)

    Shkumat, N. A.; Siewerdsen, J. H.; Dhanantwari, A. C.; Williams, D. B.; Paul, N. S.; Yorkston, J.; Van Metter, R.

    2008-11-01

    The development and evaluation of a prototype cardiac gating system for double-shot dual-energy (DE) imaging is described. By acquiring both low- and high-kVp images during the resting phase of the cardiac cycle (diastole), heart misalignment between images can be reduced, thereby decreasing the magnitude of cardiac motion artifacts. For this initial implementation, a fingertip pulse oximeter was employed to measure the peripheral pulse waveform ('plethysmogram'), offering potential logistic, cost and workflow advantages compared to an electrocardiogram. A gating method was developed that accommodates temporal delays due to physiological pulse propagation, oximeter waveform processing and the imaging system (software, filter-wheel, anti-scatter Bucky-grid and flat-panel detector). Modeling the diastolic period allowed the calculation of an implemented delay, timp, required to trigger correctly during diastole at any patient heart rate (HR). The model suggests a triggering scheme characterized by two HR regimes, separated by a threshold, HRthresh. For rates at or below HRthresh, sufficient time exists to expose on the same heartbeat as the plethysmogram pulse [timp(HR) = 0]. Above HRthresh, a characteristic timp(HR) delays exposure to the subsequent heartbeat, accounting for all fixed and variable system delays. Performance was evaluated in terms of accuracy and precision of diastole-trigger coincidence and quantitative evaluation of artifact severity in gated and ungated DE images. Initial implementation indicated 85% accuracy in diastole-trigger coincidence. Through the identification of an improved HR estimation method (modified temporal smoothing of the oximeter waveform), trigger accuracy of 100% could be achieved with improved precision. To quantify the effect of the gating system on DE image quality, human observer tests were conducted to measure the magnitude of cardiac artifact under conditions of successful and unsuccessful diastolic gating. Six observers independently measured the artifact in 111 patient DE images. The data indicate that successful diastolic gating results in a statistically significant reduction (p < 0.001) in the magnitude of cardiac motion artifact, with residual artifact attributed primarily to gross patient motion.

  1. The Time-Course of Lexical Activation During Sentence Comprehension in People With Aphasia

    PubMed Central

    Ferrill, Michelle; Love, Tracy; Walenski, Matthew; Shapiro, Lewis P.

    2012-01-01

    Purpose To investigate the time-course of processing of lexical items in auditorily presented canonical (subject–verb–object) constructions in young, neurologically unimpaired control participants and participants with left-hemisphere damage and agrammatic aphasia. Method A cross modal picture priming (CMPP) paradigm was used to test 114 control participants and 8 participants with agrammatic aphasia for priming of a lexical item (direct object noun) immediately after it is initially encountered in the ongoing auditory stream and at 3 additional time points at 400-ms intervals. Results The control participants demonstrated immediate activation of the lexical item, followed by a rapid loss (decay). The participants with aphasia demonstrated delayed activation of the lexical item. Conclusion This evidence supports the hypothesis of a delay in lexical activation in people with agrammatic aphasia. The delay in lexical activation feeds syntactic processing too slowly, contributing to comprehension deficits in people with agrammatic aphasia. PMID:22355007

  2. SURGE: Smart Ultrasound Remote Guidance Experiment

    NASA Technical Reports Server (NTRS)

    Peterson, Sean

    2009-01-01

    Exploration-class missions lead to longer communication delays with mission control. May not always have communication capability to stream real-time ultrasound images. SURGE explores use of a "just-in-time" learning tool, called OPEL = On-Board Proficiency Enhancer Light as an aid to a hypothetical crew medical officer working autonomously.

  3. Effect of delayed diagnosis on disease course and management of Churg-Strauss syndrome: a retrospective study.

    PubMed

    Sokołowska, Barbara; Szczeklik, Wojciech; Mastalerz, Lucyna; Kuczia, Paweł; Wodkowski, Michał; Stodółkiewicz, Edyta; Macioł, Karolina; Musiał, Jacek

    2013-03-01

    Delayed diagnosis in patients with Churg-Strauss syndrome (CSS) is largely attributed to the variable and nonspecific presentation of the disease's initial symptoms. The aim of the study was to evaluate the effect of delayed diagnosis on the course of CSS. We conducted a retrospective study of 30 CSS patients followed up in our department. In each patient, we assessed the delay in CSS diagnosis (the time when patients already fulfilled four out of six of the American College of Rheumatology criteria and the diagnosis was not yet established), the disease activity at the time of diagnosis, and organ involvement during CSS course. A median value of 2 weeks was chosen as the cutoff point after which the diagnosis was considered as delayed. Sixteen patients were diagnosed before (group 1) and 14 patients after this cutoff point (group 2). In group 2, we found a higher Birmingham Vasculitis Activity Score at the moment of diagnosis (20.4 vs 25.1, p < 0.05) and a more severe disease course, resulting in more frequent hospitalization rates (0.64 vs 2.26/year, p < 0.00001), higher corticosteroids dose requirements (5.87 vs 11.57 mg/day converted to methylprednisolone, p < 0.0001), and additional immunosuppressive therapy administration (56.2 vs 92.8 %, p < 0.05) to maintain disease remission. All six perinuclear pattern of antineutrophil cytoplasmic antibobodies (pANCA)-positive patients (20 %) were found in group 1. Concluding, the delay in diagnosis of CSS of more than 2 weeks was found to be associated with a disease course that was more severe. The presence of the pANCA antibodies may occasionally facilitate establishment of the diagnosis.

  4. DSCOVR Transcendance

    NASA Astrophysics Data System (ADS)

    Herman, J. R.; Boccara, M.; Albers, S. C.

    2017-12-01

    The Earth Polychromatic Imaging Camera (EPIC) onboard the DSCOVR satellite continuously views the sun-illuminated portion of the Earth with spectral coverage in the visible band, among others. Ideally, such a system would be able to provide a video with continuous coverage up to real time. However due to limits in onboard storage, bandwidth, and antenna coverage on the ground, we can receive at most 20 images a day, separated by at least one hour. Also, the processing time to generate the visible image out of the separate RGB channels delays public images delivery by a day or two. Finally, occasional remote tuning of instruments can cause several day periods where the imagery is completely missing. We are proposing a model-based method to fill these gaps and restore images lost in real-time processing. We are combining two sets of algorithms. The first, called Blueturn, interpolates successive images while projecting them on a 3-D model of the Earth, all this being done in real-time using the GPU. The second, called Simulated Weather Imagery (SWIM), makes EPIC-like images utilizing a ray-tracing model of scattering and absorption of sunlight by clouds, atmospheric gases, aerosols, and land surface. Clouds are obtained from 3-D gridded analyses and forecasts using weather modeling systems such as the Local Analysis and Prediction System (LAPS), and the Flow-following finite-volume Finite Icosahedral Model (FIM). SWIM uses EPIC images to validate its models. Typical model grid spacing is about 20km and is roughly commensurate with the EPIC imagery. Calculating one image per hour is enough for Blueturn to generate a smooth video. The synthetic images are designed to be visually realistic and aspire to be indistinguishable from the real ones. Resulting interframe transitions become seamless, and real-time delay is reduced to 1 hour. With Blueturn already available as a free online app, streaming EPIC images directly from NASA's public website, and with another SWIM server to ensure constant interval between key images, this work brings transcendance to EPIC's tribute. Enriched by two years of actual service in space, the most real holistic view of the Earth will be continued at a high degree of fidelity, regardless of EPIC limitations or interruptions.

  5. Eigenspace-based minimum variance beamformer combined with Wiener postfilter for medical ultrasound imaging.

    PubMed

    Zeng, Xing; Chen, Cheng; Wang, Yuanyuan

    2012-12-01

    In this paper, a new beamformer which combines the eigenspace-based minimum variance (ESBMV) beamformer with the Wiener postfilter is proposed for medical ultrasound imaging. The primary goal of this work is to further improve the medical ultrasound imaging quality on the basis of the ESBMV beamformer. In this method, we optimize the ESBMV weights with a Wiener postfilter. With the optimization of the Wiener postfilter, the output power of the new beamformer becomes closer to the actual signal power at the imaging point than the ESBMV beamformer. Different from the ordinary Wiener postfilter, the output signal and noise power needed in calculating the Wiener postfilter are estimated respectively by the orthogonal signal subspace and noise subspace constructed from the eigenstructure of the sample covariance matrix. We demonstrate the performance of the new beamformer when resolving point scatterers and cyst phantom using both simulated data and experimental data and compare it with the delay-and-sum (DAS), the minimum variance (MV) and the ESBMV beamformer. We use the full width at half maximum (FWHM) and the peak-side-lobe level (PSL) to quantify the performance of imaging resolution and the contrast ratio (CR) to quantify the performance of imaging contrast. The FWHM of the new beamformer is only 15%, 50% and 50% of those of the DAS, MV and ESBMV beamformer, while the PSL is 127.2dB, 115dB and 60dB lower. What is more, an improvement of 239.8%, 232.5% and 32.9% in CR using simulated data and an improvement of 814%, 1410.7% and 86.7% in CR using experimental data are achieved compared to the DAS, MV and ESBMV beamformer respectively. In addition, the effect of the sound speed error is investigated by artificially overestimating the speed used in calculating the propagation delay and the results show that the new beamformer provides better robustness against the sound speed errors. Therefore, the proposed beamformer offers a better performance than the DAS, MV and ESBMV beamformer, showing its potential in medical ultrasound imaging. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. THE SOURCE STRUCTURE OF 0642+449 DETECTED FROM THE CONT14 OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ming H.; Wang, Guang L.; Heinkelmann, Robert

    2016-11-01

    The CONT14 campaign with state-of-the-art very long baseline interferometry (VLBI) data has observed the source 0642+449 with about 1000 observables each day during a continuous observing period of 15 days, providing tens of thousands of closure delays—the sum of the delays around a closed loop of baselines. The closure delay is independent of the instrumental and propagation delays and provides valuable additional information about the source structure. We demonstrate the use of this new “observable” for the determination of the structure in the radio source 0642+449. This source, as one of the defining sources in the second realization of themore » International Celestial Reference Frame, is found to have two point-like components with a relative position offset of −426 microarcseconds ( μ as) in R.A. and −66 μ as in decl. The two components are almost equally bright, with a flux-density ratio of 0.92. The standard deviation of closure delays for source 0642+449 was reduced from 139 to 90 ps by using this two-component model. Closure delays larger than 1 ns are found to be related to the source structure, demonstrating that structure effects for a source with this simple structure could be up to tens of nanoseconds. The method described in this paper does not rely on a priori source structure information, such as knowledge of source structure determined from direct (Fourier) imaging of the same observations or observations at other epochs. We anticipate our study to be a starting point for more effective determination of the structure effect in VLBI observations.« less

  7. Blob-hole correlation model for edge turbulence and comparisons with NSTX gas puff imaging data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myra, J. R.; Zweben, S. J.; Russell, D. A.

    We report that gas puff imaging (GPI) observations made in NSTX [Zweben S J, et al., 2017 Phys. Plasmas 24 102509] have revealed two-point spatial correlations of edge and scrape-off layer turbulence in the plane perpendicular to the magnetic field. A common feature is the occurrence of dipole-like patterns with significant regions of negative correlation. In this paper, we explore the possibility that these dipole patterns may be due to blob-hole pairs. Statistical methods are applied to determine the two-point spatial correlation that results from a model of blob-hole pair formation. It is shown that the model produces dipole correlationmore » patterns that are qualitatively similar to the GPI data in several respects. Effects of the reference location (confined surfaces or scrape-off layer), a superimposed random background, hole velocity and lifetime, and background sheared flows are explored and discussed with respect to experimental observations. Additional analysis of the experimental GPI dataset is performed to further test this blob-hole correlation model. A time delay two-point spatial correlation study did not reveal inward propagation of the negative correlation structures that were postulated to correspond to holes in the data nor did it suggest that the negative correlation structures are due to neutral shadowing. However, tracking of the highest and lowest values (extrema) of the normalized GPI fluctuations shows strong evidence for mean inward propagation of minima and outward propagation of maxima, in qualitative agreement with theoretical expectations. Finally, other properties of the experimentally observed extrema are discussed.« less

  8. Blob-hole correlation model for edge turbulence and comparisons with NSTX gas puff imaging data

    DOE PAGES

    Myra, J. R.; Zweben, S. J.; Russell, D. A.

    2018-05-15

    We report that gas puff imaging (GPI) observations made in NSTX [Zweben S J, et al., 2017 Phys. Plasmas 24 102509] have revealed two-point spatial correlations of edge and scrape-off layer turbulence in the plane perpendicular to the magnetic field. A common feature is the occurrence of dipole-like patterns with significant regions of negative correlation. In this paper, we explore the possibility that these dipole patterns may be due to blob-hole pairs. Statistical methods are applied to determine the two-point spatial correlation that results from a model of blob-hole pair formation. It is shown that the model produces dipole correlationmore » patterns that are qualitatively similar to the GPI data in several respects. Effects of the reference location (confined surfaces or scrape-off layer), a superimposed random background, hole velocity and lifetime, and background sheared flows are explored and discussed with respect to experimental observations. Additional analysis of the experimental GPI dataset is performed to further test this blob-hole correlation model. A time delay two-point spatial correlation study did not reveal inward propagation of the negative correlation structures that were postulated to correspond to holes in the data nor did it suggest that the negative correlation structures are due to neutral shadowing. However, tracking of the highest and lowest values (extrema) of the normalized GPI fluctuations shows strong evidence for mean inward propagation of minima and outward propagation of maxima, in qualitative agreement with theoretical expectations. Finally, other properties of the experimentally observed extrema are discussed.« less

  9. Global exponential stability and lag synchronization for delayed memristive fuzzy Cohen-Grossberg BAM neural networks with impulses.

    PubMed

    Yang, Wengui; Yu, Wenwu; Cao, Jinde; Alsaadi, Fuad E; Hayat, Tasawar

    2018-02-01

    This paper investigates the stability and lag synchronization for memristor-based fuzzy Cohen-Grossberg bidirectional associative memory (BAM) neural networks with mixed delays (asynchronous time delays and continuously distributed delays) and impulses. By applying the inequality analysis technique, homeomorphism theory and some suitable Lyapunov-Krasovskii functionals, some new sufficient conditions for the uniqueness and global exponential stability of equilibrium point are established. Furthermore, we obtain several sufficient criteria concerning globally exponential lag synchronization for the proposed system based on the framework of Filippov solution, differential inclusion theory and control theory. In addition, some examples with numerical simulations are given to illustrate the feasibility and validity of obtained results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Integration of transportation for improved mobility.

    DOT National Transportation Integrated Search

    2017-07-04

    Mobility management and improvement have become the focal point of the federal, state, and local transportation agencies over the last decade. Even with decreasing vehicle-miles-traveled (VMT) over the same time span, the congestion and delays have n...

  11. Influence of postmortem time on the outcome of blood cultures among cadaveric tissue donors.

    PubMed

    Saegeman, V; Verhaegen, J; Lismont, D; Verduyckt, B; De Rijdt, T; Ectors, N

    2009-02-01

    Tissue banks provide tissues of human cadaver donors for transplantation. The maximal time limit for tissue retrieval has been set at 24 h postmortem. This study aimed at evaluating the evidence for this limit from a microbiological point of view. The delay of growth in postmortem blood cultures, the identification of the species isolated and clinical/environmental factors were investigated among 100 potential tissue donors. No significant difference was found in the rate of donors with grown blood cultures within (25/65=38%) compared with after (24/65=37%) 24 h of death. Coagulase-negative staphylococci and gastro-intestinal microorganisms were isolated within and after 24 h of death. Two factors--antimicrobial therapy and "delay before body cooling"--were significantly inversely related with donors' blood culture results. From a microbiological point of view, there is no evidence for avoiding tissue retrieval among donors after 24 h of death.

  12. Wide-field time-resolved luminescence imaging and spectroscopy to decipher obliterated documents in forensic science

    NASA Astrophysics Data System (ADS)

    Suzuki, Mototsugu; Akiba, Norimitsu; Kurosawa, Kenji; Kuroki, Kenro; Akao, Yoshinori; Higashikawa, Yoshiyasu

    2016-01-01

    We applied a wide-field time-resolved luminescence (TRL) method with a pulsed laser and a gated intensified charge coupled device (ICCD) for deciphering obliterated documents for use in forensic science. The TRL method can nondestructively measure the dynamics of luminescence, including fluorescence and phosphorescence lifetimes, which prove to be useful parameters for image detection. First, we measured the TRL spectra of four brands of black porous-tip pen inks on paper to estimate their luminescence lifetimes. Next, we acquired the TRL images of 12 obliterated documents at various delay times and gate times of the ICCD. The obliterated contents were revealed in the TRL images because of the difference in the luminescence lifetimes of the inks. This method requires no pretreatment, is nondestructive, and has the advantage of wide-field imaging, which makes it is easy to control the gate timing. This demonstration proves that TRL imaging and spectroscopy are powerful tools for forensic document examination.

  13. Relationships between autofocus methods for SAR and self-survey techniques for SONAR. [Synthetic Aperture Radar (SAR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahl, D.E.; Jakowatz, C.V. Jr.; Ghiglia, D.C.

    1991-01-01

    Autofocus methods in SAR and self-survey techniques in SONAR have a common mathematical basis in that they both involve estimation and correction of phase errors introduced by sensor position uncertainties. Time delay estimation and correlation methods have been shown to be effective in solving the self-survey problem for towed SONAR arrays. Since it can be shown that platform motion errors introduce similar time-delay estimation problems in SAR imaging, the question arises as to whether such techniques could be effectively employed for autofocus of SAR imagery. With a simple mathematical model for motion errors in SAR, we will show why suchmore » correlation/time-delay techniques are not nearly as effective as established SAR autofocus algorithms such as phase gradient autofocus or sub-aperture based methods. This analysis forms an important bridge between signal processing methodologies for SAR and SONAR. 5 refs., 4 figs.« less

  14. Predictive and postdictive mechanisms jointly contribute to visual awareness.

    PubMed

    Soga, Ryosuke; Akaishi, Rei; Sakai, Katsuyuki

    2009-09-01

    One of the fundamental issues in visual awareness is how we are able to perceive the scene in front of our eyes on time despite the delay in processing visual information. The prediction theory postulates that our visual system predicts the future to compensate for such delays. On the other hand, the postdiction theory postulates that our visual awareness is inevitably a delayed product. In the present study we used flash-lag paradigms in motion and color domains and examined how the perception of visual information at the time of flash is influenced by prior and subsequent visual events. We found that both types of event additively influence the perception of the present visual image, suggesting that our visual awareness results from joint contribution of predictive and postdictive mechanisms.

  15. Study on real-time images compounded using spatial light modulator

    NASA Astrophysics Data System (ADS)

    Xu, Jin; Chen, Zhebo; Ni, Xuxiang; Lu, Zukang

    2007-01-01

    Image compounded technology is often used on film and its facture. In common, image compounded use image processing arithmetic, get useful object, details, background or some other things from the images firstly, then compounding all these information into one image. When using this method, the film system needs a powerful processor, for the process function is very complex, we get the compounded image for a few time delay. In this paper, we introduce a new method of image real-time compounded, use this method, we can do image composite at the same time with movie shot. The whole system is made up of two camera-lens, spatial light modulator array and image sensor. In system, the spatial light modulator could be liquid crystal display (LCD), liquid crystal on silicon (LCoS), thin film transistor liquid crystal display (TFTLCD), Deformable Micro-mirror Device (DMD), and so on. Firstly, one camera-lens images the object on the spatial light modulator's panel, we call this camera-lens as first image lens. Secondly, we output an image to the panel of spatial light modulator. Then, the image of the object and image that output by spatial light modulator will be spatial compounded on the panel of spatial light modulator. Thirdly, the other camera-lens images the compounded image to the image sensor, and we call this camera-lens as second image lens. After these three steps, we will gain the compound images by image sensor. For the spatial light modulator could output the image continuously, then the image will be compounding continuously too, and the compounding procedure is completed in real-time. When using this method to compounding image, if we will put real object into invented background, we can output the invented background scene on the spatial light modulator, and the real object will be imaged by first image lens. Then, we get the compounded images by image sensor in real time. The same way, if we will put real background to an invented object, we can output the invented object on the spatial light modulator and the real background will be imaged by first image lens. Then, we can also get the compounded images by image sensor real time. Commonly, most spatial light modulator only can do modulate light intensity, so we can only do compounding BW images if use only one panel which without color filter. If we will get colorful compounded image, we need use the system like three spatial light modulator panel projection. In the paper, the system's optical system framework we will give out. In all experiment, the spatial light modulator used liquid crystal on silicon (LCoS). At the end of the paper, some original pictures and compounded pictures will be given on it. Although the system has a few shortcomings, we can conclude that, using this system to compounding images has no delay to do mathematic compounding process, it is a really real time images compounding system.

  16. Sensors management in robotic neurosurgery: the ROBOCAST project.

    PubMed

    Vaccarella, Alberto; Comparetti, Mirko Daniele; Enquobahrie, Andinet; Ferrigno, Giancarlo; De Momi, Elena

    2011-01-01

    Robot and computer-aided surgery platforms bring a variety of sensors into the operating room. These sensors generate information to be synchronized and merged for improving the accuracy and the safety of the surgical procedure for both patients and operators. In this paper, we present our work on the development of a sensor management architecture that is used is to gather and fuse data from localization systems, such as optical and electromagnetic trackers and ultrasound imaging devices. The architecture follows a modular client-server approach and was implemented within the EU-funded project ROBOCAST (FP7 ICT 215190). Furthermore it is based on very well-maintained open-source libraries such as OpenCV and Image-Guided Surgery Toolkit (IGSTK), which are supported from a worldwide community of developers and allow a significant reduction of software costs. We conducted experiments to evaluate the performance of the sensor manager module. We computed the response time needed for a client to receive tracking data or video images, and the time lag between synchronous acquisition with an optical tracker and ultrasound machine. Results showed a median delay of 1.9 ms for a client request of tracking data and about 40 ms for US images; these values are compatible with the data generation rate (20-30 Hz for tracking system and 25 fps for PAL video). Simultaneous acquisitions have been performed with an optical tracking system and US imaging device: data was aligned according to the timestamp associated with each sample and the delay was estimated with a cross-correlation study. A median value of 230 ms delay was calculated showing that realtime 3D reconstruction is not feasible (an offline temporal calibration is needed), although a slow exploration is possible. In conclusion, as far as asleep patient neurosurgery is concerned, the proposed setup is indeed useful for registration error correction because the brain shift occurs with a time constant of few tens of minutes.

  17. On-resonance Variable Delay Multi Pulse Scheme for Imaging of Fast-exchanging Protons and semi-solid Macromolecules

    PubMed Central

    Xu, Jiadi; Chan, Kannie W.Y.; Xu, Xiang; Yadav, Nibhay; Liu, Guanshu; van Zijl, Peter C. M.

    2016-01-01

    Purpose To develop an on-resonance variable delay multi-pulse (VDMP) scheme to image magnetization transfer contrast (MTC) as well as the chemical exchange saturation transfer (CEST) contrast of total fast-exchanging protons (TFP) with exchange rate above about 1 kHz. Methods A train of high power binomial pulses was applied at the water resonance. The inter-pulse delay, called mixing time, was varied to observe its effect on the water signal reduction, allowing separation and quantification of MTC and CEST contributions due to their different proton transfer rates. The fast-exchanging protons in CEST and MTC are labeled together with the short T2 components in MTC and separated out using a variable mixing time. Results Phantom studies of selected metabolite solutions (glucose, glutamate, creatine, myo-inositol), bovine serum albumin (BSA) and hair conditioner show the capability of on-resonance VDMP to separate out exchangeable protons with exchange rates above 1 kHz. Quantitative MTC and TFP maps were acquired on healthy mouse brains using this method showing strong gray/white matter contrast for the slowly transferring MTC protons while the TFP map was more uniform across the brain but somewhat higher in gray matter. Conclusions The new method provides a simple way of imaging fast-exchanging protons, as well as MTC components with a slow transfer rate. PMID:26900759

  18. The spacing effect in immediate and delayed free recall.

    PubMed

    Godbole, Namrata R; Delaney, Peter F; Verkoeijen, Peter P J L

    2014-01-01

    Spacing repetitions improves learning relative to massing repetitions (the spacing effect). While most studies have examined the spacing effect at short retention intervals, there are contradictory claims about its fate at a delay. Certain empirical findings suggest that the spacing effect persists at a delay. However, a recent theoretical account proposes that in free recall the spacing effect should disappear at a delay. The few studies that have examined the spacing effect at a delay are sub-optimally designed, preventing an unbiased conclusion. The current study used incidental learning and controlled recency and encoding strategy in order to examine the effect of delay on the recall of spaced items within a free recall paradigm. The results demonstrated that the spacing effect persists after a delay. The results point to an important dissociation between intentional forgetting and context-change designs (which produce more forgetting of spaced than massed items) and the passage of time (which produces similar forgetting of spaced and massed items).

  19. Accuracy Assessment of the Precise Point Positioning for Different Troposphere Models

    NASA Astrophysics Data System (ADS)

    Oguz Selbesoglu, Mahmut; Gurturk, Mert; Soycan, Metin

    2016-04-01

    This study investigates the accuracy and repeatability of PPP technique at different latitudes by using different troposphere delay models. Nine IGS stations were selected between 00-800 latitudes at northern hemisphere and southern hemisphere. Coordinates were obtained for 7 days at 1 hour intervals in summer and winter. At first, the coordinates were estimated by using Niell troposphere delay model with and without including north and east gradients in order to investigate the contribution of troposphere delay gradients to the positioning . Secondly, Saastamoinen model was used to eliminate troposphere path delays by using standart atmosphere parameters were extrapolated for all station levels. Finally, coordinates were estimated by using RTCA-MOPS empirical troposphere delay model. Results demonstrate that Niell troposphere delay model with horizontal gradients has better mean values of rms errors 0.09 % and 65 % than the Niell troposphere model without horizontal gradients and RTCA-MOPS model, respectively. Saastamoinen model mean values of rms errors were obtained approximately 4 times bigger than the Niell troposphere delay model with horizontal gradients.

  20. Development of a piecewise linear omnidirectional 3D image registration method

    NASA Astrophysics Data System (ADS)

    Bae, Hyunsoo; Kang, Wonjin; Lee, SukGyu; Kim, Youngwoo

    2016-12-01

    This paper proposes a new piecewise linear omnidirectional image registration method. The proposed method segments an image captured by multiple cameras into 2D segments defined by feature points of the image and then stitches each segment geometrically by considering the inclination of the segment in the 3D space. Depending on the intended use of image registration, the proposed method can be used to improve image registration accuracy or reduce the computation time in image registration because the trade-off between the computation time and image registration accuracy can be controlled for. In general, nonlinear image registration methods have been used in 3D omnidirectional image registration processes to reduce image distortion by camera lenses. The proposed method depends on a linear transformation process for omnidirectional image registration, and therefore it can enhance the effectiveness of the geometry recognition process, increase image registration accuracy by increasing the number of cameras or feature points of each image, increase the image registration speed by reducing the number of cameras or feature points of each image, and provide simultaneous information on shapes and colors of captured objects.

  1. Using learned under-sampling pattern for increasing speed of cardiac cine MRI based on compressive sensing principles

    NASA Astrophysics Data System (ADS)

    Zamani, Pooria; Kayvanrad, Mohammad; Soltanian-Zadeh, Hamid

    2012-12-01

    This article presents a compressive sensing approach for reducing data acquisition time in cardiac cine magnetic resonance imaging (MRI). In cardiac cine MRI, several images are acquired throughout the cardiac cycle, each of which is reconstructed from the raw data acquired in the Fourier transform domain, traditionally called k-space. In the proposed approach, a majority, e.g., 62.5%, of the k-space lines (trajectories) are acquired at the odd time points and a minority, e.g., 37.5%, of the k-space lines are acquired at the even time points of the cardiac cycle. Optimal data acquisition at the even time points is learned from the data acquired at the odd time points. To this end, statistical features of the k-space data at the odd time points are clustered by fuzzy c-means and the results are considered as the states of Markov chains. The resulting data is used to train hidden Markov models and find their transition matrices. Then, the trajectories corresponding to transition matrices far from an identity matrix are selected for data acquisition. At the end, an iterative thresholding algorithm is used to reconstruct the images from the under-sampled k-space datasets. The proposed approaches for selecting the k-space trajectories and reconstructing the images generate more accurate images compared to alternative methods. The proposed under-sampling approach achieves an acceleration factor of 2 for cardiac cine MRI.

  2. Adaptive Optics Imaging of the CLASS Gravitational Lens System B1359+154 with the Canada-France-Hawaii Telescope.

    PubMed

    Rusin; Hall; Nichol; Marlow; Richards; Myers

    2000-04-20

    We present adaptive optics imaging of the CLASS gravitational lens system B1359+154 obtained with the Canada-France-Hawaii Telescope (CFHT) in the infrared K band. The observations show at least three brightness peaks within the ring of lensed images, which we identify as emission from multiple lensing galaxies. The results confirm the suspected compound nature of the lens, as deduced from preliminary mass modeling. The detection of several additional nearby galaxies suggests that B1359+154 is lensed by the compact core of a small galaxy group. We attempted to produce an updated lens model based on the CFHT observations and new 5 GHz radio data obtained with the MERLIN array, but there are too few constraints to construct a realistic model at this time. The uncertainties inherent with modeling compound lenses make B1359+154 a challenging target for Hubble constant determination through the measurement of differential time delays. However, time delays will offer additional constraints to help pin down the mass model. This lens system therefore presents a unique opportunity to directly measure the mass distribution of a galaxy group at intermediate redshift.

  3. Pointing with the Left and Right Hands in Congenitally Blind Children

    ERIC Educational Resources Information Center

    Ittyerah, Miriam; Gaunet, Florence; Rossetti, Yves

    2007-01-01

    Congenitally blind and blindfolded sighted children at ages of 6, 8, 10 and 12 years performed a pointing task with their left and right index fingers at an array of three targets on a touch screen to immediate (0 s) and delayed (4 s) instructions. Accuracy was greater for immediate than delayed pointing and there was an effect of delay for the…

  4. Wideband RELAX and wideband CLEAN for aeroacoustic imaging

    NASA Astrophysics Data System (ADS)

    Wang, Yanwei; Li, Jian; Stoica, Petre; Sheplak, Mark; Nishida, Toshikazu

    2004-02-01

    Microphone arrays can be used for acoustic source localization and characterization in wind tunnel testing. In this paper, the wideband RELAX (WB-RELAX) and the wideband CLEAN (WB-CLEAN) algorithms are presented for aeroacoustic imaging using an acoustic array. WB-RELAX is a parametric approach that can be used efficiently for point source imaging without the sidelobe problems suffered by the delay-and-sum beamforming approaches. WB-CLEAN does not have sidelobe problems either, but it behaves more like a nonparametric approach and can be used for both point source and distributed source imaging. Moreover, neither of the algorithms suffers from the severe performance degradations encountered by the adaptive beamforming methods when the number of snapshots is small and/or the sources are highly correlated or coherent with each other. A two-step optimization procedure is used to implement the WB-RELAX and WB-CLEAN algorithms efficiently. The performance of WB-RELAX and WB-CLEAN is demonstrated by applying them to measured data obtained at the NASA Langley Quiet Flow Facility using a small aperture directional array (SADA). Somewhat surprisingly, using these approaches, not only were the parameters of the dominant source accurately determined, but a highly correlated multipath of the dominant source was also discovered.

  5. Wideband RELAX and wideband CLEAN for aeroacoustic imaging.

    PubMed

    Wang, Yanwei; Li, Jian; Stoica, Petre; Sheplak, Mark; Nishida, Toshikazu

    2004-02-01

    Microphone arrays can be used for acoustic source localization and characterization in wind tunnel testing. In this paper, the wideband RELAX (WB-RELAX) and the wideband CLEAN (WB-CLEAN) algorithms are presented for aeroacoustic imaging using an acoustic array. WB-RELAX is a parametric approach that can be used efficiently for point source imaging without the sidelobe problems suffered by the delay-and-sum beamforming approaches. WB-CLEAN does not have sidelobe problems either, but it behaves more like a nonparametric approach and can be used for both point source and distributed source imaging. Moreover, neither of the algorithms suffers from the severe performance degradations encountered by the adaptive beamforming methods when the number of snapshots is small and/or the sources are highly correlated or coherent with each other. A two-step optimization procedure is used to implement the WB-RELAX and WB-CLEAN algorithms efficiently. The performance of WB-RELAX and WB-CLEAN is demonstrated by applying them to measured data obtained at the NASA Langley Quiet Flow Facility using a small aperture directional array (SADA). Somewhat surprisingly, using these approaches, not only were the parameters of the dominant source accurately determined, but a highly correlated multipath of the dominant source was also discovered.

  6. How Do Health Care Providers Diagnose Precocious Puberty and Delayed Puberty?

    MedlinePlus

    ... NICHD Research Information Find a Study More Information Pharmacology Condition Information NICHD Research Information Find a Study ... organs and blood flow in real time An MRI (magnetic resonance imaging) scan of the brain and ...

  7. Design of barrier bucket kicker control system

    NASA Astrophysics Data System (ADS)

    Ni, Fa-Fu; Wang, Yan-Yu; Yin, Jun; Zhou, De-Tai; Shen, Guo-Dong; Zheng, Yang-De.; Zhang, Jian-Chuan; Yin, Jia; Bai, Xiao; Ma, Xiao-Li

    2018-05-01

    The Heavy-Ion Research Facility in Lanzhou (HIRFL) contains two synchrotrons: the main cooler storage ring (CSRm) and the experimental cooler storage ring (CSRe). Beams are extracted from CSRm, and injected into CSRe. To apply the Barrier Bucket (BB) method on the CSRe beam accumulation, a new BB technology based kicker control system was designed and implemented. The controller of the system is implemented using an Advanced Reduced Instruction Set Computer (RISC) Machine (ARM) chip and a field-programmable gate array (FPGA) chip. Within the architecture, ARM is responsible for data presetting and floating number arithmetic processing. The FPGA computes the RF phase point of the two rings and offers more accurate control of the time delay. An online preliminary experiment on HIRFL was also designed to verify the functionalities of the control system. The result shows that the reference trigger point of two different sinusoidal RF signals for an arbitrary phase point was acquired with a matched phase error below 1° (approximately 2.1 ns), and the step delay time better than 2 ns were realized.

  8. Characterisation of the clinical and activated T cell response to repeat delayed-type hypersensitivity skin challenges in human subjects, with KLH and PPD, as a potential model to test T cell-targeted therapies.

    PubMed

    Belson, Alexandra; Schmidt, Tim; Fernando, Disala; Hardes, Kelly; Scott, Nicola; Brett, Sara; Clark, Deborah; Oliveira, João Joaquim; Davis, Bill; McHugh, Simon; Stone, John

    2016-05-01

    To characterise the delayed-type hypersensitivity (DTH) skin reaction to repeated challenges of keyhole limpet hemocyanin (KLH) and tuberculin purified protein derivative (PPD) in healthy volunteers, as a potential model to test T cell-targeted investigational agents. Forty-nine subjects received either KLH, PPD, or PBS repeat skin challenges, and clinical assessments including induration, erythema and Laser Doppler Imaging. Skin biopsies or suction blisters were taken after challenge to investigate the cellular infiltrate of the challenge site, the T cell activation status, as determined by LAG-3 expression, and, specifically for the blister, the concentrations of inflammatory cytokines. Point estimates, estimates of variation and corresponding 95% confidence intervals were constructed for each type of challenge and timepoint. The DTH response could be measured at 48 and 120 h post-KLH and PPD challenge with induration, erythema and Laser Doppler Imaging, with 48 h post-challenge demonstrating the peak of the response. PPD was well tolerated in subjects after multiple challenges, however, a significant number of KLH-treated subjects demonstrated an injection site reaction 6-7 days following the SC injection. PPD demonstrated a boost effect on the second challenge as measured by increased induration, where as this was not noted consistently for KLH. Compared to unchallenged and PBS control-injected skin, increased T cell numbers were detected in the challenge site by both the skin suction blister and biopsy technique, at either time point following KLH or PPD challenge. Use of the T cell activation marker LAG-3 demonstrated the activated phenotype of these cells. In skin blisters, higher numbers of LAG-3+ T cells were detected at 48 h post-challenge, whereas in the biopsies, similar numbers of LAG-3+ cells were observed at both 48 and 120 h. Analysis of blister T cell subpopulations revealed some differences in phenotypes between the time points and between the CD4 and CD8 T cells. Blister cytokine analysis revealed a pro-inflammatory dominated signature in PPD-challenged skin. In summary, our data support the use of a repeat KLH and PPD DTH challenge in clinical trials and that the clinical measures of induration and to a lesser extent erythema are appropriate to monitor the clinical DTH response. Both the blister and biopsy can be utilised to assess and quantify activated T cells and at the dose used, PPD was better tolerated than KLH and hence may be optimal for future studies.

  9. Reservoir computing with a single time-delay autonomous Boolean node

    NASA Astrophysics Data System (ADS)

    Haynes, Nicholas D.; Soriano, Miguel C.; Rosin, David P.; Fischer, Ingo; Gauthier, Daniel J.

    2015-02-01

    We demonstrate reservoir computing with a physical system using a single autonomous Boolean logic element with time-delay feedback. The system generates a chaotic transient with a window of consistency lasting between 30 and 300 ns, which we show is sufficient for reservoir computing. We then characterize the dependence of computational performance on system parameters to find the best operating point of the reservoir. When the best parameters are chosen, the reservoir is able to classify short input patterns with performance that decreases over time. In particular, we show that four distinct input patterns can be classified for 70 ns, even though the inputs are only provided to the reservoir for 7.5 ns.

  10. Absence of a Periampullary Mass on Cross-sectional Imaging Delays Diagnosis and Time to Pancreatoduodenectomy But Does Not Impair Outcome.

    PubMed

    Takahashi, Hideo; Moslim, Maitham A; Presser, Naftali; O'Rourke, Colin; Wey, Jane; Chalikonda, Sricharan; Walsh, Matthew R; Morris-Stiff, Gareth

    2016-06-01

    The aim of this study was to assess whether the lack of a radiological mass in patients with periampullary malignancies led to protracted diagnosis, delayed resection, and an inferior outcome. The departmental database was interrogated to identify all patients undergoing pancreatoduodenectomy during the period 2000-2014. The absence of a mass on cross-sectional and endoscopic ultrasound was noted. The interval between imaging and surgery was evaluated and related to the absence of a mass. The relationship between mass/no mass and the pathological profile was also assessed. Among 490 patients who underwent pancreatoduodenectomy for periampullary malignancies, masses were detected in 299 patients. Patients with undetected mass on either endoscopic ultrasonography (EUS) or computed tomography (CT)/magnetic resonance imaging (MRI) had a longer median interval from initial imaging to resection than detected mass with no difference in survival (66 vs. 41 days, p = 0.001). The absence of a mass was more common in cholangiocarcinomas (p < 0.001). The absence of a mass on imaging was associated with smaller size on final histopathology (2.4 vs. 2.8 cm; p < 0.001). The absence of a mass with all modalities in patients with a periampullary malignancy leads to a delayed diagnosis without a significant effect on survival.

  11. Challenges in sending large radiology images over military communications channels

    NASA Astrophysics Data System (ADS)

    Cleary, Kevin R.; Levine, Betty A.; Norton, Gary S.; Mundur, Padmavathi V.

    1997-05-01

    In cooperation with the US Army, Georgetown University Medical Center (GUMC) deployed a teleradiology network to sites in Bosnia-Herzegovina, Hungary, and Germany in early 1996. This deployment was part of Operation Primetime III, a military project to provide state-of-the-art medical care to the 20,000 US troops stationed in Bosnia-Herzegovina.In a three-month time frame from January to April 1996, the Imaging Sciences and Information Systems (ISIS) Center at GUMC worked with the Army to design, develop, and deploy a teleradiology network for the digital storage and transmission of radiology images. This paper will discuss some of the problems associated with sending large files over communications networks with significant delays such as those introduced by satellite transmissions.Radiology images of up to 10 megabytes are acquired, stored, and transmitted over the wide area network (WAN). The WAN included leased lines from Germany to Hungary and a satellite link form Germany to Bosnia-Herzegovina. The communications links provided at least a T-1 bandwidth. The satellite link introduces a round-trip delay of approximately 500 milliseconds. This type of high bandwidth, high delay network is called a long fat network. The images are transferred across this network using the Transmission Control Protocol (TCP/IP). By modifying the TCP/IP software to increase the window size, the throughput of the satellite link can be greatly improved.

  12. Detection of urinary extravasation by delayed technetium-99m DTPA renal imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taki, J.; Tonami, N.; Aburano, T.

    Delayed imaging with Tc-99m DTPA renal scintigraphy demonstrated urinary extravasation in a patient with acute anuria in whom early sequential imaging showed no abnormal extrarenal radionuclide accumulation.

  13. Solar corona electron density distribution

    NASA Astrophysics Data System (ADS)

    Esposito, P. B.; Edenhofer, P.; Lueneburg, E.

    1980-07-01

    The paper discusses the three and one-half months of single-frequency time delay data which were acquired from the Helios 2 spacecraft around the time of its solar occultation. The excess time delay due to integrated effect of free electrons along the signal's ray path could be separated and modeled following the determination of the spacecraft trajectory. An average solar corona and equatorial electron density profile during solar minimum were deduced from the time delay measurements acquired within 5-60 solar radii of the sun. As a point of reference at 10 solar radii from the sun, an average electron density was 4500 el/cu cm. However, an asymmetry was found in the electron density as the ray path moved from the west to east solar limb. This may be related to the fact that during entry into occultation the heliographic latitude of the ray path was about 6 deg, while during exit it was 7 deg. The Helios density model is compared with similar models deduced from different experimental techniques.

  14. Comparison of Low-Dose Higher-Relaxivity and Standard-Dose Lower-Relaxivity Contrast Media for Delayed-Enhancement MRI: A Blinded Randomized Crossover Study.

    PubMed

    Cheong, Benjamin Y C; Duran, Cihan; Preventza, Ourania A; Muthupillai, Raja

    2015-09-01

    The gadolinium-based MRI contrast agent gadobenate dimeglumine has nearly twice the MR relaxivity of gadopentetate dimeglumine at 1.5 T. The purpose of this study was to determine whether a lower dose (0.1 mmol/kg) of gadobenate dimeglumine can be used to obtain delayed-enhancement MR images comparable to those obtained with a standard dose (0.2 mmol/kg) of gadopentetate dimeglumine. In this blinded randomized crossover study, 20 patients with known myocardial infarction underwent two separate delayed-enhancement MRI examinations after receiving 0.1 mmol/kg gadobenate dimeglumine and 0.2 mmol/kg gadopentetate dimeglumine (random administration). The conspicuity of lesion enhancement 5, 10, and 20 minutes after contrast administration was quantified as relative enhancement ratio (RER). With either gadolinium-based contrast agent, damaged myocardium had higher signal intensity than normal remote myocardium (RER > 4) on delayed-enhancement MR images, and the blood RER declined over time after contrast administration. The blood RER was not significantly higher for gadobenate dimeglumine than for gadopentetate dimeglumine at 5 and 10 minutes. Nevertheless, there was a larger reduction in blood RER for gadobenate dimeglumine than for gadopentetate dimeglumine between 5 and 10 minutes and between 10 and 20 minutes. The volumes of enhancement were similar for gadobenate dimeglumine (13.6 ± 8.8 cm(3)) and gadopentetate dimeglumine (13.5 ± 8.9 cm(3)) (p = 0.98). The mean difference in Bland-Altman analysis for delayed-enhancement volume between the agents was 0.1 cm(3). Qualitatively and quantitatively, delayed-enhancement MR images of ischemic myocardium obtained with 0.1 mmol/kg gadobenate dimeglumine are comparable to those obtained with 0.2 mmol/kg gadopentetate dimeglumine 5, 10, and 20 minutes after contrast administration.

  15. Limitations to Dual Frequency Ionosphere Corrections for Frequency Switched K-Q-Band Observations with the VLBA

    NASA Technical Reports Server (NTRS)

    Lanyi, Gabor; Gordon, David; Sovers, Ojars J.

    2004-01-01

    A series of VLBA experiments were carried out at K and Q bands for astrometry and imaging within the KQ VLBI Survey Collaboration. The paired K and Q observations of each source are separated by approximately 3 minutes of time. We investigate the delay effect of the ionosphere between K and Q bands involving the interscan separation. This differential delay effect is intermixed with the differential fluctuation effect of the troposphere.

  16. In vivo determination of acute myocardial ischemia based on photoacoustic imaging with a focused transducer

    NASA Astrophysics Data System (ADS)

    Li, Zhifang; Li, Hui; Chen, Haiyu; Xie, Wengming

    2011-07-01

    The location and ischemia extent are two important parameters for evaluating the acute myocardial ischemia (AMI). A focused-transducer-based photoacoustic imaging method was employed to assess time-dependent AMI. Our preliminary results show that the photoacoustic signal could identify the myocardium. The intensity and area of photoacoustic images of myocardium could be used for characterizing the ischemia extent and scope of myocardial ischemia. The results also imply that the intensity and area of photoacoustic images are the rapid fall of an exponential model with an increase of delaying time after the left anterior descending coronary artery (LAD) occlusion. These experimental results were consistent with the clinical characteristics. The findings suggest that the photoacoustic imaging be a potential tool for the real-time assessment of acute myocardial ischemia during surgical operation.

  17. Point process analysis of noise in early invertebrate vision

    PubMed Central

    Vinnicombe, Glenn

    2017-01-01

    Noise is a prevalent and sometimes even dominant aspect of many biological processes. While many natural systems have adapted to attenuate or even usefully integrate noise, the variability it introduces often still delimits the achievable precision across biological functions. This is particularly so for visual phototransduction, the process responsible for converting photons of light into usable electrical signals (quantum bumps). Here, randomness of both the photon inputs (regarded as extrinsic noise) and the conversion process (intrinsic noise) are seen as two distinct, independent and significant limitations on visual reliability. Past research has attempted to quantify the relative effects of these noise sources by using approximate methods that do not fully account for the discrete, point process and time ordered nature of the problem. As a result the conclusions drawn from these different approaches have led to inconsistent expositions of phototransduction noise performance. This paper provides a fresh and complete analysis of the relative impact of intrinsic and extrinsic noise in invertebrate phototransduction using minimum mean squared error reconstruction techniques based on Bayesian point process (Snyder) filters. An integrate-fire based algorithm is developed to reliably estimate photon times from quantum bumps and Snyder filters are then used to causally estimate random light intensities both at the front and back end of the phototransduction cascade. Comparison of these estimates reveals that the dominant noise source transitions from extrinsic to intrinsic as light intensity increases. By extending the filtering techniques to account for delays, it is further found that among the intrinsic noise components, which include bump latency (mean delay and jitter) and shape (amplitude and width) variance, it is the mean delay that is critical to noise performance. As the timeliness of visual information is important for real-time action, this delay could potentially limit the speed at which invertebrates can respond to stimuli. Consequently, if one wants to increase visual fidelity, reducing the photoconversion lag is much more important than improving the regularity of the electrical signal. PMID:29077703

  18. Acute Severe Aortic Regurgitation: Imaging with Pathological Correlation.

    PubMed

    Janardhanan, Rajesh; Pasha, Ahmed Khurshid

    2016-03-01

    Acute aortic regurgitation (AR) is an important finding associated with a wide variety of disease processes. Its timely diagnosis is of utmost importance. Delay in diagnosis could prove fatal. We describe a case of acute severe AR that was timely diagnosed using real time three-dimensional (3D) transesophageal echocardiogram (3D TEE). Not only did it diagnose but also the images obtained by 3D TEE clearly matched with the pathologic specimen. Using this sophisticated imaging modality that is mostly available at the tertiary centers helped in the timely diagnosis, which lead to the optimal management saving his life. Echocardiography and especially 3D TEE can diagnose AR very accurately. Surgical intervention is the definitive treatment but medical therapy is utilized to stabilize the patient initially.

  19. Cumulative phase delay between second harmonic and fundamental components--a marker for ultrasound contrast agents.

    PubMed

    Demi, Libertario; Wijkstra, Hessel; Mischi, Massimo

    2014-12-01

    Several imaging techniques aimed at detecting ultrasound contrast agents (UCAs) echo signals, while suppressing signals coming from the surrounding tissue, have been developed. These techniques are especially relevant for blood flow, perfusion, or contrast dispersion quantification. However, despite several approaches being presented, improving the understanding of the ultrasound/UCAs interaction may support further development of imaging techniques. In this paper, the physical phenomena behind the formation of harmonic components in tissue and UCAs, respectively, are addressed as a possible way to recognize the origin of the echo signals. Simulations based on a modified Rayleigh, Plesset, Noltingk, Neppiras, and Poritsky equation and transmission and backscattering measurements of ultrasound propagating through UCAs performed with a single element transducer and a submergible hydrophone, are presented. Both numerical and in vitro results show the occurrence of a cumulative time delay between the second harmonic and fundamental component which increases with UCA concentration and propagation path length through UCAs, and that was clearly observable at frequencies ( f0 = 2.5 MHz) and pressure regimes (mechanical index = 0.1) of interest for imaging. Most importantly, this delay is not observed in the absence of UCAs. In conclusion, the reported phenomenon represents a marker for UCAs with potential application for imaging.

  20. A Star Image Extractor for Small Satellites

    NASA Astrophysics Data System (ADS)

    Yamada, Yoshiyuki; Yamauchi, Masahiro; Gouda, Naoteru; Kobayashi, Yukiyasu; Tsujimoto, Takuji; Yano, Taihei; Suganuma, Masahiro; Nakasuka, Shinichi; Sako, Nobutada; Inamori, Takaya

    We have developed a Star Image Extractor (SIE) which works as an on-board real-time image processor. It is a logic circuit written on an FPGA(Field Programmable Gate Array) device. It detects and extracts only an object data from raw image data. SIE will be required with the Nano-JASMINE 1) satellite. Nano-JASMINE is the small astrometry satellite that observes objects in our galaxy. It will be launched in 2010 and needs two years mission period. Nano-JASMINE observes an object with the TDI (Time Delayed Integration) observation mode. TDI is one of operation modes of CCD detector. Data is obtained, by rotating the imaging system including CCD at a rated synchronized with a vertical charge transfer of CCD. Obtained image data is sent through SIE to the Mission-controller.

  1. Time-spliced X-ray diffraction imaging of magnetism dynamics in a NdNiO3 thin film

    NASA Astrophysics Data System (ADS)

    Beyerlein, Kenneth R.

    2018-03-01

    Diffraction imaging of nonequilibrium dynamics at atomic resolution is becoming possible with X-ray free-electron lasers. However, there are unresolved problems with applying this method to objects that are confined in only one dimension. Here I show that reliable one-dimensional coherent diffraction imaging is possible by splicing together images recovered from different time delays in an optical pump X-ray probe experiment. The time and space evolution of antiferromagnetic order in a vibrationally excited complex oxide heterostructure is recovered from time-resolved measurements of a resonant soft X-ray diffraction peak. Midinfrared excitation of the substrate is shown to lead to a demagnetization front that propagates at a velocity exceeding the speed of sound, a critical observation for the understanding of driven phase transitions in complex condensed matter.

  2. Time-spliced X-ray diffraction imaging of magnetism dynamics in a NdNiO3 thin film.

    PubMed

    Beyerlein, Kenneth R

    2018-02-27

    Diffraction imaging of nonequilibrium dynamics at atomic resolution is becoming possible with X-ray free-electron lasers. However, there are unresolved problems with applying this method to objects that are confined in only one dimension. Here I show that reliable one-dimensional coherent diffraction imaging is possible by splicing together images recovered from different time delays in an optical pump X-ray probe experiment. The time and space evolution of antiferromagnetic order in a vibrationally excited complex oxide heterostructure is recovered from time-resolved measurements of a resonant soft X-ray diffraction peak. Midinfrared excitation of the substrate is shown to lead to a demagnetization front that propagates at a velocity exceeding the speed of sound, a critical observation for the understanding of driven phase transitions in complex condensed matter.

  3. Novel techniques for data decomposition and load balancing for parallel processing of vision systems: Implementation and evaluation using a motion estimation system

    NASA Technical Reports Server (NTRS)

    Choudhary, Alok Nidhi; Leung, Mun K.; Huang, Thomas S.; Patel, Janak H.

    1989-01-01

    Computer vision systems employ a sequence of vision algorithms in which the output of an algorithm is the input of the next algorithm in the sequence. Algorithms that constitute such systems exhibit vastly different computational characteristics, and therefore, require different data decomposition techniques and efficient load balancing techniques for parallel implementation. However, since the input data for a task is produced as the output data of the previous task, this information can be exploited to perform knowledge based data decomposition and load balancing. Presented here are algorithms for a motion estimation system. The motion estimation is based on the point correspondence between the involved images which are a sequence of stereo image pairs. Researchers propose algorithms to obtain point correspondences by matching feature points among stereo image pairs at any two consecutive time instants. Furthermore, the proposed algorithms employ non-iterative procedures, which results in saving considerable amounts of computation time. The system consists of the following steps: (1) extraction of features; (2) stereo match of images in one time instant; (3) time match of images from consecutive time instants; (4) stereo match to compute final unambiguous points; and (5) computation of motion parameters.

  4. High-frequency ultrasound annular array imaging. Part II: digital beamformer design and imaging.

    PubMed

    Hu, Chang-Hong; Snook, Kevin A; Cao, Pei-Jie; Shung, K Kirk

    2006-02-01

    This is the second part of a two-paper series reporting a recent effort in the development of a high-frequency annular array ultrasound imaging system. In this paper an imaging system composed of a six-element, 43 MHz annular array transducer, a six-channel analog front-end, a field programmable gate array (FPGA)-based beamformer, and a digital signal processor (DSP) microprocessor-based scan converter will be described. A computer is used as the interface for image display. The beamformer that applies delays to the echoes for each channel is implemented with the strategy of combining the coarse and fine delays. The coarse delays that are integer multiples of the clock periods are achieved by using a first-in-first-out (FIFO) structure, and the fine delays are obtained with a fractional delay (FD) filter. Using this principle, dynamic receiving focusing is achieved. The image from a wire phantom obtained with the imaging system was compared to that from a prototype ultrasonic backscatter microscope with a 45 MHz single-element transducer. The improved lateral resolution and depth of field from the wire phantom image were observed. Images from an excised rabbit eye sample also were obtained, and fine anatomical structures were discerned.

  5. Smart Ultrasound Remote Guidance Experiment (SURGE)- Concept of Operations Evaluation for Using Remote Guidance Ultrasound for Planetary Space Flight

    NASA Technical Reports Server (NTRS)

    Hurst, Victor, IV; Peterson, Sean; Garcia, Kathleen; Sargsyan, Ashot; Ebert, Douglas; Ham, David; Amponsah, David; Dulchavsky, Scott

    2010-01-01

    Introduction Use of remote guidance (RG) techniques aboard the International Space Station (ISS) has enabled astronauts to collect diagnostic-level ultrasound images. Exploration class missions will require this cohort of (typically) non-formally trained sonographers to operate with greater autonomy given the longer communication delays (2 seconds for ISS vs. >6 seconds for missions beyond the Moon) and communication blackouts. To determine the feasibility and training requirements for autonomous ultrasound image collection by non-expert ultrasound operators, ultrasound images were collected from a similar cohort using three different image collection protocols: RG only, RG with a computer-based learning tool (LT), and autonomous image collection with LT. The groups were assessed for both image quality and time to collect the images. Methods Subjects were randomized into three groups: RG only, RG with LT, and autonomous with LT. Each subject received 10 minutes of standardized training before the experiment. The subjects were tasked with making the following ultrasound assessments: 1) bone fracture and 2) focused assessment with sonography in trauma (FAST) to assess a patient s abdomen. Human factors-related questionnaire data were collected immediately after the assessments. Results The autonomous group did not out-perform the two groups that received RG. The mean time for the autonomous group to collect images was less than the RG groups, however the mean image quality for the autonomous group was less compared to both RG groups. Discussion Remote guidance continues to produce higher quality ultrasound images than autonomous ultrasound operation. This is likely due to near-instant feedback on image quality from the remote guider. Expansion in communication time delays, however, diminishes the capability to provide this feedback, thus requiring more autonomous ultrasound operation. The LT has the potential to be an excellent training and coaching component for autonomous ultrasound image collection during exploration missions.

  6. Dead-time correction for high-throughput fluorescence lifetime imaging microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Enderlein, Joerg; Ruhlandt, Daja; Chithik, Anna; Ebrecht, René; Wouters, Fred S.; Gregor, Ingo

    2016-02-01

    Fluorescence lifetime microscopy has become an important method of bioimaging, allowing not only to record intensity and spectral, but also lifetime information across an image. One of the most widely used methods of FLIM is based on Time-Correlated Single Photon Counting (TCSPC). In TCSPC, one determines this curve by exciting molecules with a periodic train of short laser pulses, and then measuring the time delay between the first recorded fluorescence photon after each exciting laser pulse. An important technical detail of TCSPC measurements is the fact that the delay times between excitation laser pulses and resulting fluorescence photons are always measured between a laser pulse and the first fluorescence photon which is detected after that pulse. At high count rates, this leads to so-called pile-up: ``early'' photons eclipse long-delay photons, resulting in heavily skewed TCSPC histograms. To avoid pile-up, a rule of thumb is to perform TCSPC measurements at photon count rates which are at least hundred times smaller than the laser-pulse excitation rate. The downside of this approach is that the fluorescence-photon count-rate is restricted to a value below one hundredth of the laser-pulse excitation-rate, reducing the overall speed with which a fluorescence signal can be measured. We present a new data evaluation method which provides pile-up corrected fluorescence decay estimates from TCSPC measurements at high count rates, and we demonstrate our method on FLIM of fluorescently labeled cells.

  7. A fast image matching algorithm based on key points

    NASA Astrophysics Data System (ADS)

    Wang, Huilin; Wang, Ying; An, Ru; Yan, Peng

    2014-05-01

    Image matching is a very important technique in image processing. It has been widely used for object recognition and tracking, image retrieval, three-dimensional vision, change detection, aircraft position estimation, and multi-image registration. Based on the requirements of matching algorithm for craft navigation, such as speed, accuracy and adaptability, a fast key point image matching method is investigated and developed. The main research tasks includes: (1) Developing an improved celerity key point detection approach using self-adapting threshold of Features from Accelerated Segment Test (FAST). A method of calculating self-adapting threshold was introduced for images with different contrast. Hessian matrix was adopted to eliminate insecure edge points in order to obtain key points with higher stability. This approach in detecting key points has characteristics of small amount of computation, high positioning accuracy and strong anti-noise ability; (2) PCA-SIFT is utilized to describe key point. 128 dimensional vector are formed based on the SIFT method for the key points extracted. A low dimensional feature space was established by eigenvectors of all the key points, and each eigenvector was projected onto the feature space to form a low dimensional eigenvector. These key points were re-described by dimension-reduced eigenvectors. After reducing the dimension by the PCA, the descriptor was reduced to 20 dimensions from the original 128. This method can reduce dimensions of searching approximately near neighbors thereby increasing overall speed; (3) Distance ratio between the nearest neighbour and second nearest neighbour searching is regarded as the measurement criterion for initial matching points from which the original point pairs matched are obtained. Based on the analysis of the common methods (e.g. RANSAC (random sample consensus) and Hough transform cluster) used for elimination false matching point pairs, a heuristic local geometric restriction strategy is adopted to discard false matched point pairs further; and (4) Affine transformation model is introduced to correct coordinate difference between real-time image and reference image. This resulted in the matching of the two images. SPOT5 Remote sensing images captured at different date and airborne images captured with different flight attitude were used to test the performance of the method from matching accuracy, operation time and ability to overcome rotation. Results show the effectiveness of the approach.

  8. Kinetics of the formation of chromosome aberrations in X-irradiated human lymphocytes: analysis by premature chromosome condensation with delayed fusion.

    PubMed

    Greinert, R; Detzler, E; Volkmer, B; Harder, D

    1995-11-01

    Human lymphocytes irradiated with graded doses of up to 5 Gy of 150 kV X rays were fused with mitotic CHO cells after delay times ranging from 0 to 14 h after irradiation. The yields of dicentrics seen under PCC conditions, using C-banding for centromere detection, and of excess acentric fragments observed in the PCC experiment were determined by image analysis. At 4 Gy the time course of the yield of dicentrics shows an early plateau for delay times up to 2 h, then an S-shaped rise and a final plateau which is reached after a delay time of about 8 to 10 h. Whereas the dose-yield curve measured at zero delay time is strictly linear, the shape of the curve obtained for 8 h delay time is linear-quadratic. The linear yield component, alpha D, is formed entirely in the fast process manifested in the early plateau, while component beta D2 is developed slowly in the subsequent hours. Analysis of the kinetics of the rise of the S-shaped curve for yield as a function of time leads to the postulate of an "intermediate product" of pairwise DNA lesion interaction, still fragile when subjected to the stress of PCC, but gradually processed into a stable dicentric chromosome. It is concluded that the observed difference in the kinetics of the alpha and beta components explains a number of earlier results, especially the disappearance of the beta component at high LET, and opens possibilities for chemical and physical modification of the beta component during the extended formation process after irradiation observed here.

  9. Strong field gravitational lensing by a charged Galileon black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Shan-Shan; Xie, Yi, E-mail: clefairy035@163.com, E-mail: yixie@nju.edu.cn

    Strong field gravitational lensings are dramatically disparate from those in the weak field by representing relativistic images due to light winds one to infinity loops around a lens before escaping. We study such a lensing caused by a charged Galileon black hole, which is expected to have possibility to evade no-hair theorem. We calculate the angular separations and time delays between different relativistic images of the charged Galileon black hole. All these observables can potentially be used to discriminate a charged Galileon black hole from others. We estimate the magnitudes of these observables for the closest supermassive black hole Sgrmore » A*. The strong field lensing observables of the charged Galileon black hole can be close to those of a tidal Reissner-Nordström black hole or those of a Reissner-Nordström black hole. It will be helpful to distinguish these black holes if we can separate the outermost relativistic images and determine their angular separation, brightness difference and time delay, although it requires techniques beyond the current limit.« less

  10. GERLUMPH Data Release 2: 2.5 Billion Simulated Microlensing Light Curves

    NASA Astrophysics Data System (ADS)

    Vernardos, G.; Fluke, C. J.; Bate, N. F.; Croton, D.; Vohl, D.

    2015-04-01

    In the upcoming synoptic all-sky survey era of astronomy, thousands of new multiply imaged quasars are expected to be discovered and monitored regularly. Light curves from the images of gravitationally lensed quasars are further affected by superimposed variability due to microlensing. In order to disentangle the microlensing from the intrinsic variability of the light curves, the time delays between the multiple images have to be accurately measured. The resulting microlensing light curves can then be analyzed to reveal information about the background source, such as the size of the quasar accretion disk. In this paper we present the most extensive and coherent collection of simulated microlensing light curves; we have generated \\gt 2.5 billion light curves using the GERLUMPH high resolution microlensing magnification maps. Our simulations can be used to train algorithms to measure lensed quasar time delays, plan future monitoring campaigns, and study light curve properties throughout parameter space. Our data are openly available to the community and are complemented by online eResearch tools, located at http://gerlumph.swin.edu.au.

  11. An adaptive, individualized fMRI delay discounting procedure to increase flexibility and optimize scanner time.

    PubMed

    Koffarnus, Mikhail N; Deshpande, Harshawardhan U; Lisinski, Jonathan M; Eklund, Anders; Bickel, Warren K; LaConte, Stephen M

    2017-11-01

    Research on the rate at which people discount the value of future rewards has become increasingly prevalent as discount rate has been shown to be associated with many unhealthy patterns of behavior such as drug abuse, gambling, and overeating. fMRI research points to a fronto-parietal-limbic pathway that is active during decisions between smaller amounts of money now and larger amounts available after a delay. Researchers in this area have used different variants of delay discounting tasks and reported various contrasts between choice trials of different types from these tasks. For instance, researchers have compared 1) choices of delayed monetary amounts to choices of the immediate monetary amounts, 2) 'hard' choices made near one's point of indifference to 'easy' choices that require little thought, and 3) trials where an immediate choice is available versus trials where one is unavailable, regardless of actual eventual choice. These differences in procedure and analysis make comparison of results across studies difficult. In the present experiment, we designed a delay discounting task with the intended capability of being able to construct contrasts of all three comparisons listed above while optimizing scanning time to reduce costs and avoid participant fatigue. This was accomplished with an algorithm that customized the choice trials presented to each participant with the goal of equalizing choice trials of each type. We compared this task, which we refer to here as the individualized discounting task (IDT), to two other delay discounting tasks previously reported in the literature (McClure et al., 2004; Amlung et al., 2014) in 18 participants. Results show that the IDT can examine each of the three contrasts mentioned above, while yielding a similar degree of activation as the reference tasks. This suggests that this new task could be used in delay discounting fMRI studies to allow researchers to more easily compare their results to a majority of previous research while minimizing scanning duration. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. On the Relation Between Facular Bright Points and the Magnetic Field

    NASA Astrophysics Data System (ADS)

    Berger, Thomas; Shine, Richard; Tarbell, Theodore; Title, Alan; Scharmer, Goran

    1994-12-01

    Multi-spectral images of magnetic structures in the solar photosphere are presented. The images were obtained in the summers of 1993 and 1994 at the Swedish Solar Telescope on La Palma using the tunable birefringent Solar Optical Universal Polarimeter (SOUP filter), a 10 Angstroms wide interference filter tuned to 4304 Angstroms in the band head of the CH radical (the Fraunhofer G-band), and a 3 Angstroms wide interference filter centered on the Ca II--K absorption line. Three large format CCD cameras with shuttered exposures on the order of 10 msec and frame rates of up to 7 frames per second were used to create time series of both quiet and active region evolution. The full field--of--view is 60times 80 arcseconds (44times 58 Mm). With the best seeing, structures as small as 0.22 arcseconds (160 km) in diameter are clearly resolved. Post--processing of the images results in rigid coalignment of the image sets to an accuracy comparable to the spatial resolution. Facular bright points with mean diameters of 0.35 arcseconds (250 km) and elongated filaments with lengths on the order of arcseconds (10(3) km) are imaged with contrast values of up to 60 % by the G--band filter. Overlay of these images on contemporal Fe I 6302 Angstroms magnetograms and Ca II K images reveals that the bright points occur, without exception, on sites of magnetic flux through the photosphere. However, instances of concentrated and diffuse magnetic flux and Ca II K emission without associated bright points are common, leading to the conclusion that the presence of magnetic flux is a necessary but not sufficient condition for the occurence of resolvable facular bright points. Comparison of the G--band and continuum images shows a complex relation between structures in the two bandwidths: bright points exceeding 350 km in extent correspond to distinct bright structures in the continuum; smaller bright points show no clear relation to continuum structures. Size and contrast statistical cross--comparisons compiled from measurements of over two-thousand bright point structures are presented. Preliminary analysis of the time evolution of bright points in the G--band reveals that the dominant mode of bright point evolution is fission of larger structures into smaller ones and fusion of small structures into conglomerate structures. The characteristic time scale for the fission/fusion process is on the order of minutes.

  13. Improved mass resolution and mass accuracy in TOF-SIMS spectra and images using argon gas cluster ion beams.

    PubMed

    Shon, Hyun Kyong; Yoon, Sohee; Moon, Jeong Hee; Lee, Tae Geol

    2016-06-09

    The popularity of argon gas cluster ion beams (Ar-GCIB) as primary ion beams in time-of-flight secondary ion mass spectrometry (TOF-SIMS) has increased because the molecular ions of large organic- and biomolecules can be detected with less damage to the sample surfaces. However, Ar-GCIB is limited by poor mass resolution as well as poor mass accuracy. The inferior quality of the mass resolution in a TOF-SIMS spectrum obtained by using Ar-GCIB compared to the one obtained by a bismuth liquid metal cluster ion beam and others makes it difficult to identify unknown peaks because of the mass interference from the neighboring peaks. However, in this study, the authors demonstrate improved mass resolution in TOF-SIMS using Ar-GCIB through the delayed extraction of secondary ions, a method typically used in TOF mass spectrometry to increase mass resolution. As for poor mass accuracy, although mass calibration using internal peaks with low mass such as hydrogen and carbon is a common approach in TOF-SIMS, it is unsuited to the present study because of the disappearance of the low-mass peaks in the delayed extraction mode. To resolve this issue, external mass calibration, another regularly used method in TOF-MS, was adapted to enhance mass accuracy in the spectrum and image generated by TOF-SIMS using Ar-GCIB in the delayed extraction mode. By producing spectra analyses of a peptide mixture and bovine serum albumin protein digested with trypsin, along with image analyses of rat brain samples, the authors demonstrate for the first time the enhancement of mass resolution and mass accuracy for the purpose of analyzing large biomolecules in TOF-SIMS using Ar-GCIB through the use of delayed extraction and external mass calibration.

  14. Polarization independent thermally tunable erbium-doped fiber amplifier gain equalizer using a cascaded Mach-Zehnder coupler.

    PubMed

    Sahu, P P

    2008-02-10

    A thermally tunable erbium-doped fiber amplifier (EDFA) gain equalizer filter based on compact point symmetric cascaded Mach-Zehnder (CMZ) coupler is presented with its mathematical model and is found to be polarization dependent due to stress anisotropy caused by local heating for thermo-optic phase change from its mathematical analysis. A thermo-optic delay line structure with a stress releasing groove is proposed and designed for the reduction of polarization dependent characteristics of the high index contrast point symmetric delay line structure of the device. It is found from thermal analysis by using an implicit finite difference method that temperature gradients of the proposed structure, which mainly causes the release of stress anisotropy, is approximately nine times more than that of the conventional structure. It is also seen that the EDFA gain equalized spectrum by using the point symmetric CMZ device based on the proposed structure is almost polarization independent.

  15. Long-term Study of the Solar Filaments from the Synoptic Maps as Derived from {{\\rm{H}}}_{\\alpha } Spectroheliograms of the Kodaikanal Observatory

    NASA Astrophysics Data System (ADS)

    Chatterjee, Subhamoy; Hegde, Manjunath; Banerjee, Dipankar; Ravindra, B.

    2017-11-01

    The century long (1914-2007) {{{H}}}α (656.28 nm) spectroheliograms from the Kodaikanal Solar Observatory (KSO) have been recently digitized. Using these newly calibrated, processed images we study the evolution of dark elongated on-disk structures called filaments, which are potential representatives of magnetic activities on the Sun. To our knowledge, this is the oldest uniform digitized data set with daily images available today in {{{H}}}α . We generate Carrington maps for the entire time duration and try to find the correlations with maps of the same Carrington rotation from the Ca II K KSO data. Filaments are segmented from the Carrington maps using a semi-automated technique and are studied individually to extract their centroids and tilts. We plot the time-latitude distribution of the filament centroids, producing a butterfly diagram which clearly shows the presence of poleward migration. We separate polar filaments for each cycle and try to estimate the delay between the polar filament number cycle and the sunspot number cycle peaks. We correlate this delay with the delay between polar reversal and sunspot number maxima. This provides new insight on the role of polar filaments on polar reversal.

  16. Consistent and reproducible positioning in longitudinal imaging for phenotyping genetically modified swine

    NASA Astrophysics Data System (ADS)

    Hammond, Emily; Dilger, Samantha K. N.; Stoyles, Nicholas; Judisch, Alexandra; Morgan, John; Sieren, Jessica C.

    2015-03-01

    Recent growth of genetic disease models in swine has presented the opportunity to advance translation of developed imaging protocols, while characterizing the genotype to phenotype relationship. Repeated imaging with multiple clinical modalities provides non-invasive detection, diagnosis, and monitoring of disease to accomplish these goals; however, longitudinal scanning requires repeatable and reproducible positioning of the animals. A modular positioning unit was designed to provide a fixed, stable base for the anesthetized animal through transit and imaging. Post ventilation and sedation, animals were placed supine in the unit and monitored for consistent vitals. Comprehensive imaging was performed with a computed tomography (CT) chest-abdomen-pelvis scan at each screening time point. Longitudinal images were rigidly registered, accounting for rotation, translation, and anisotropic scaling, and the skeleton was isolated using a basic thresholding algorithm. Assessment of alignment was quantified via eleven pairs of corresponding points on the skeleton with the first time point as the reference. Results were obtained with five animals over five screening time points. The developed unit aided in skeletal alignment within an average of 13.13 +/- 6.7 mm for all five subjects providing a strong foundation for developing qualitative and quantitative methods of disease tracking.

  17. Complementary and alternative medicine (CAM) use and delays in presentation and diagnosis of breast cancer patients in public hospitals in Malaysia.

    PubMed

    Mohd Mujar, Noor Mastura; Dahlui, Maznah; Emran, Nor Aina; Abdul Hadi, Imisairi; Wai, Yan Yang; Arulanantham, Sarojah; Hooi, Chea Chan; Mohd Taib, Nur Aishah

    2017-01-01

    Complementary and alternative medicine (CAM) is widely used among the breast cancer patients in Malaysia. Delays in presentation, diagnosis and treatment have been shown to impact the disease prognosis. There is considerable use of CAM amongst breast cancer patients. CAM use has been cited as a cause of delay in diagnosis and treatments in qualitative studies, however there had not been any confirmatory study that confirms its impact on delays. The purpose of this study was to evaluate whether the use of CAM among newly diagnosed breast cancer patients was associated with delays in presentation, diagnosis or treatment of breast cancer. This multi-centre cross-sectional study evaluating the time points of the individual breast cancer patients' journey from first visit, resolution of diagnosis and treatments was conducted in six public hospitals in Malaysia. All newly diagnosed breast cancer patients from 1st January to 31st December 2012 were recruited. Data were collected through medical records review and patient interview by using a structured questionnaire. Complementary and alternative medicine (CAM) was defined as the use of any methods and products not included in conventional allopathic medicine before commencement of treatments. Presentation delay was defined as time taken from symptom discovery to first presentation of more than 3 months. The time points were categorised to diagnosis delay was defined as time taken from first presentation to diagnosis of more than 1 month and treatment delay was defined as time taken from diagnosis to initial treatment of more than 1 month. Multiple logistic regression was used for analysis. A total number of 340 patients participated in this study. The prevalence of CAM use was 46.5% (n = 158). Malay ethnicity (OR 3.32; 95% CI: 1.85, 5.97) and not interpreting symptom as cancerous (OR 1.79; 95% CI: 1.10, 2.92) were significantly associated with CAM use. The use of CAM was associated with delays in presentation (OR 1.65; 95% CI: 1.05, 2.59), diagnosis (OR 2.42; 95% CI: 1.56, 3.77) and treatment of breast cancer (OR 1.74; 95% CI: 1.11, 2.72) on univariate analyses. However, after adjusting with other covariates, CAM use was associated with delays in presentation (OR 1.71; 95% CI: 1.05, 2.78) and diagnosis (OR 2.58; 95% CI: 1.59, 4.17) but not for treatment of breast cancer (OR 1.58; 95% CI: 0.98, 2.55). The prevalence of CAM use among the breast cancer patients was high. Women of Malay ethnicity and not interpreting symptom as cancerous were significantly associated with CAM use. The use of CAM is significantly associated with delay in presentation and resolution of diagnosis. This study suggests further evaluation of access to breast cancer care is needed as poor access may cause the use of CAM. However, since public hospitals in Malaysia are heavily subsidized and readily available to the population, CAM use may impact delays in presentation and diagnosis.

  18. Complementary and alternative medicine (CAM) use and delays in presentation and diagnosis of breast cancer patients in public hospitals in Malaysia

    PubMed Central

    Emran, Nor Aina; Abdul Hadi, Imisairi; Wai, Yan Yang; Arulanantham, Sarojah; Hooi, Chea Chan

    2017-01-01

    Complementary and alternative medicine (CAM) is widely used among the breast cancer patients in Malaysia. Delays in presentation, diagnosis and treatment have been shown to impact the disease prognosis. There is considerable use of CAM amongst breast cancer patients. CAM use has been cited as a cause of delay in diagnosis and treatments in qualitative studies, however there had not been any confirmatory study that confirms its impact on delays. The purpose of this study was to evaluate whether the use of CAM among newly diagnosed breast cancer patients was associated with delays in presentation, diagnosis or treatment of breast cancer. This multi-centre cross-sectional study evaluating the time points of the individual breast cancer patients’ journey from first visit, resolution of diagnosis and treatments was conducted in six public hospitals in Malaysia. All newly diagnosed breast cancer patients from 1st January to 31st December 2012 were recruited. Data were collected through medical records review and patient interview by using a structured questionnaire. Complementary and alternative medicine (CAM) was defined as the use of any methods and products not included in conventional allopathic medicine before commencement of treatments. Presentation delay was defined as time taken from symptom discovery to first presentation of more than 3 months. The time points were categorised to diagnosis delay was defined as time taken from first presentation to diagnosis of more than 1 month and treatment delay was defined as time taken from diagnosis to initial treatment of more than 1 month. Multiple logistic regression was used for analysis. A total number of 340 patients participated in this study. The prevalence of CAM use was 46.5% (n = 158). Malay ethnicity (OR 3.32; 95% CI: 1.85, 5.97) and not interpreting symptom as cancerous (OR 1.79; 95% CI: 1.10, 2.92) were significantly associated with CAM use. The use of CAM was associated with delays in presentation (OR 1.65; 95% CI: 1.05, 2.59), diagnosis (OR 2.42; 95% CI: 1.56, 3.77) and treatment of breast cancer (OR 1.74; 95% CI: 1.11, 2.72) on univariate analyses. However, after adjusting with other covariates, CAM use was associated with delays in presentation (OR 1.71; 95% CI: 1.05, 2.78) and diagnosis (OR 2.58; 95% CI: 1.59, 4.17) but not for treatment of breast cancer (OR 1.58; 95% CI: 0.98, 2.55). The prevalence of CAM use among the breast cancer patients was high. Women of Malay ethnicity and not interpreting symptom as cancerous were significantly associated with CAM use. The use of CAM is significantly associated with delay in presentation and resolution of diagnosis. This study suggests further evaluation of access to breast cancer care is needed as poor access may cause the use of CAM. However, since public hospitals in Malaysia are heavily subsidized and readily available to the population, CAM use may impact delays in presentation and diagnosis. PMID:28448541

  19. Cumulative phase delay imaging - A new contrast enhanced ultrasound modality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demi, Libertario, E-mail: l.demi@tue.nl; Sloun, Ruud J. G. van; Mischi, Massimo

    Recently, a new acoustic marker for ultrasound contrast agents (UCAs) has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental pressure wave field components is in fact observable for ultrasound propagating through UCAs. This phenomenon is absent in the case of tissue nonlinearity and is dependent on insonating pressure and frequency, UCA concentration, and propagation path length through UCAs. In this paper, ultrasound images based on this marker are presented. The ULA-OP research platform, in combination with a LA332 linear array probe (Esaote, Firenze Italy), were used to image a gelatin phantom containing a PVC platemore » (used as a reflector) and a cylindrical cavity measuring 7 mm in diameter (placed in between the observation point and the PVC plate). The cavity contained a 240 µL/L SonoVueO{sup ®} UCA concentration. Two insonating frequencies (3 MHz and 2.5 MHz) were used to scan the gelatine phantom. A mechanical index MI = 0.07, measured in water at the cavity location with a HGL-0400 hydrophone (Onda, Sunnyvale, CA), was utilized. Processing the ultrasound signals backscattered from the plate, ultrasound images were generated in a tomographic fashion using the filtered back-projection method. As already observed in previous studies, significantly higher CPD values are measured when imaging at a frequency of 2.5 MHz, as compared to imaging at 3 MHz. In conclusion, these results confirm the applicability of the discussed CPD as a marker for contrast imaging. Comparison with standard contrast-enhanced ultrasound imaging modalities will be the focus of future work.« less

  20. Ultrasound Picture Archiving And Communication Systems

    NASA Astrophysics Data System (ADS)

    Koestner, Ken; Hottinger, C. F.

    1982-01-01

    The ideal ultrasonic image communication and storage system must be flexible in order to optimize speed and minimize storage requirements. Various ultrasonic imaging modalities are quite different in data volume and speed requirements. Static imaging, for example B-Scanning, involves acquisition of a large amount of data that is averaged or accumulated in a desired manner. The image is then frozen in image memory before transfer and storage. Images are commonly a 512 x 512 point array, each point 6 bits deep. Transfer of such an image over a serial line at 9600 baud would require about three minutes. Faster transfer times are possible; for example, we have developed a parallel image transfer system using direct memory access (DMA) that reduces the time to 16 seconds. Data in this format requires 256K bytes for storage. Data compression can be utilized to reduce these requirements. Real-time imaging has much more stringent requirements for speed and storage. The amount of actual data per frame in real-time imaging is reduced due to physical limitations on ultrasound. For example, 100 scan lines (480 points long, 6 bits deep) can be acquired during a frame at a 30 per second rate. In order to transmit and save this data at a real-time rate requires a transfer rate of 8.6 Megabaud. A real-time archiving system would be complicated by the necessity of specialized hardware to interpolate between scan lines and perform desirable greyscale manipulation on recall. Image archiving for cardiology and radiology would require data transfer at this high rate to preserve temporal (cardiology) and spatial (radiology) information.

Top