HAMLET treatment delays bladder cancer development.
Mossberg, Ann-Kristin; Hou, Yuchuan; Svensson, Majlis; Holmqvist, Bo; Svanborg, Catharina
2010-04-01
HAMLET is a protein-lipid complex that kills different types of cancer cells. Recently we observed a rapid reduction in human bladder cancer size after intravesical HAMLET treatment. In this study we evaluated the therapeutic effect of HAMLET in the mouse MB49 bladder carcinoma model. Bladder tumors were established by intravesical injection of MB49 cells into poly L-lysine treated bladders of C57BL/6 mice. Treatment groups received repeat intravesical HAMLET instillations and controls received alpha-lactalbumin or phosphate buffer. Effects of HAMLET on tumor size and putative apoptotic effects were analyzed in bladder tissue sections. Whole body imaging was used to study HAMLET distribution in tumor bearing mice compared to healthy bladder tissue. HAMLET caused a dose dependent decrease in MB49 cell viability in vitro. Five intravesical HAMLET instillations significantly decreased tumor size and delayed development in vivo compared to controls. TUNEL staining revealed selective apoptotic effects in tumor areas but not in adjacent healthy bladder tissue. On in vivo imaging Alexa-HAMLET was retained for more than 24 hours in the bladder of tumor bearing mice but not in tumor-free bladders or in tumor bearing mice that received Alexa-alpha-lactalbumin. Results show that HAMLET is active as a tumoricidal agent and suggest that topical HAMLET administration may delay bladder cancer development. Copyright (c) 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Twentyman, P.R.; Kallman, R.F.; Brown, J.M.
1979-09-01
Experiments have been carried out to determine the effect of different time intervals between the administration of x-radiation (1200 rad) and bleomycin (20 mg/kg) on the growth delay produced in three mouse tumors. The tumors used were the EMT6 tumor in BALB/c mice and the KHT and RIF-1 sarcomas in C3H mice. All tumors were grown intramuscularly in the gastrocnemius muscle and treatment was carried out at a mean tumor weight of 450 mg. Time to reach 2X (for KHT) or 4X (for EMT6 and RIF-1) treatment volume was used as the endpoint of response. The drug was administered bymore » the intraperitoneal route either 24, 6, or 2 hr before radiation, immediately before the start of radiation, or 3, 6, or 24 hr after radiation. All irradiations were carried out in unanesthetized mice. For a single administration at this dose level, bleomycin alone did not produce a significant growth delay in any of the tumors. In the RIF-1 tumor, growth delays following combination treatments were equal to the addition of the single agent growth delays. In two experiments with EMT6, contrary results were obtained, one producing longer delays following combination treatments than predicted and the other producing shorter delays. This is apparently due to the variability in the growth delay after treatment with radiation alone for this tumor. For the KHT tumor, only small differences from the addition of single agent delays were seen.« less
Kim, Peter S.; Lee, Peter P.
2012-01-01
A next generation approach to cancer envisions developing preventative vaccinations to stimulate a person's immune cells, particularly cytotoxic T lymphocytes (CTLs), to eliminate incipient tumors before clinical detection. The purpose of our study is to quantitatively assess whether such an approach would be feasible, and if so, how many anti-cancer CTLs would have to be primed against tumor antigen to provide significant protection. To understand the relevant dynamics, we develop a two-compartment model of tumor-immune interactions at the tumor site and the draining lymph node. We model interactions at the tumor site using an agent-based model (ABM) and dynamics in the lymph node using a system of delay differential equations (DDEs). We combine the models into a hybrid ABM-DDE system and investigate dynamics over a wide range of parameters, including cell proliferation rates, tumor antigenicity, CTL recruitment times, and initial memory CTL populations. Our results indicate that an anti-cancer memory CTL pool of 3% or less can successfully eradicate a tumor population over a wide range of model parameters, implying that a vaccination approach is feasible. In addition, sensitivity analysis of our model reveals conditions that will result in rapid tumor destruction, oscillation, and polynomial rather than exponential decline in the tumor population due to tumor geometry. PMID:23133347
Delayed hemorrhage after surgery and radiation in suprasellar pilocytic astrocytomas
Turel, Mazda K.; Kiehl, Tim-Rasmus; Gentili, Fred
2016-01-01
Delayed intracranial hemorrhage is a rare complication of treatment for central nervous system tumors. This may be secondary to malignant transformation of the tumor or vasculopathy related to radiation therapy (RT). While most reports on radiation-induced vasculopathy in children with optic pathway gliomas are associated with ischemic complications, there are only two reports of hemorrhagic complications in these patients. In both cases, the hemorrhage was asymptomatic and remote from the site of the original tumor but within the field of irradiation. We describe a female patient who underwent surgery for an optico-chiasmatic pilocytic astrocytoma (PA) at the age of 12 followed by RT at the age of 17 for tumor progression. The patient was followed with serial magnetic resonance imaging (MRI) scans showing marginal regression and no subsequent evidence of tumor recurrence, including the most recent MRI done only 6 months before the latest presentation. She then developed a symptomatic intratumoral hemorrhage at the age of 32 for which she underwent emergent surgery. To our knowledge, this is the first report of a nonaneurysmal-delayed hemorrhage within the site of previous surgery, several years after RT for a suprasellar PA. We review literature on delayed vasculopathy following the treatment of pediatric optic pathway gliomas and discuss the possible mechanisms of hemorrhage in our case. These long-term follow-up outcomes add significant insight and have implications in patient management. PMID:27857781
Periodic and chaotic oscillations in a tumor and immune system interaction model with three delays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bi, Ping; Center for Partial Differential Equations, East China Normal University, 500 Dongchuan Rd., Shanghai 200241; Ruan, Shigui, E-mail: ruan@math.miami.edu
2014-06-15
In this paper, a tumor and immune system interaction model consisted of two differential equations with three time delays is considered in which the delays describe the proliferation of tumor cells, the process of effector cells growth stimulated by tumor cells, and the differentiation of immune effector cells, respectively. Conditions for the asymptotic stability of equilibria and existence of Hopf bifurcations are obtained by analyzing the roots of a second degree exponential polynomial characteristic equation with delay dependent coefficients. It is shown that the positive equilibrium is asymptotically stable if all three delays are less than their corresponding critical valuesmore » and Hopf bifurcations occur if any one of these delays passes through its critical value. Numerical simulations are carried out to illustrate the rich dynamical behavior of the model with different delay values including the existence of regular and irregular long periodic oscillations.« less
Kataoka, Ken; Kim, Dae Joon; Carbajal, Steve; Clifford, John L; DiGiovanni, John
2008-06-01
Constitutive activation of signal transducer and activator of transcription 3 (Stat3) has been found in a variety of human malignancies and has been suggested to play an important role in carcinogenesis. Recently, our laboratory demonstrated that Stat3 is required for the development of skin tumors via two-stage carcinogenesis using skin-specific loss-of-function transgenic mice. To investigate further the role of Stat3 in each stage of chemical carcinogenesis in mouse skin, i.e. initiation and promotion stages, we generated inducible Stat3-deficient mice (K5.Cre-ER(T2) x Stat3(fl/fl)) that show epidermal-specific disruption of Stat3 following topical treatment with 4-hydroxytamoxifen (TM). The epidermis of inducible Stat3-deficient mice treated with TM showed a significant increase in apoptosis induced by 7,12-dimethylbenz[a]anthracene (DMBA) and reduced proliferation following exposure to 12-O-tetradecanoylphorbol-13-acetate. In two-stage skin carcinogenesis assays, inducible Stat3-deficient mice treated with TM during the promotion stage showed a significant delay of tumor development and a significantly reduced number of tumors compared with control groups. Inducible Stat3-deficient mice treated with TM before initiation with DMBA also showed a significant delay in tumor development and a significantly reduced number of tumors compared with control groups. Finally, treatment of inducible Stat3-deficient mice that had existing skin tumors generated by the two-stage carcinogenesis protocol with TM (by intraperitoneal injection) led to inhibition of tumor growth compared with tumors formed in control groups. Collectively, these results directly demonstrate that Stat3 is required for skin tumor development during both the initiation and promotion stages of skin carcinogenesis in vivo.
Roussos, Evanthia T; Wang, Yarong; Wyckoff, Jeffrey B; Sellers, Rani S; Wang, Weigang; Li, Jiufeng; Pollard, Jeffrey W; Gertler, Frank B; Condeelis, John S
2010-01-01
The actin binding protein Mammalian enabled (Mena), has been implicated in the metastatic progression of solid tumors in humans. Mena expression level in primary tumors is correlated with metastasis in breast, cervical, colorectal and pancreatic cancers. Cells expressing high Mena levels are part of the tumor microenvironment for metastasis (TMEM), an anatomical structure that is predictive for risk of breast cancer metastasis. Previously we have shown that forced expression of Mena adenocarcinoma cells enhances invasion and metastasis in xenograft mice. Whether Mena is required for tumor progression is still unknown. Here we report the effects of Mena deficiency on tumor progression, metastasis and on normal mammary gland development. To investigate the role of Mena in tumor progression and metastasis, Mena deficient mice were intercrossed with mice carrying a transgene expressing the polyoma middle T oncoprotein, driven by the mouse mammary tumor virus. The progeny were investigated for the effects of Mena deficiency on tumor progression via staging of primary mammary tumors and by evaluation of morbidity. Stages of metastatic progression were investigated using an in vivo invasion assay, intravital multiphoton microscopy, circulating tumor cell burden, and lung metastases. Mammary gland development was studied in whole mount mammary glands of wild type and Mena deficient mice. Mena deficiency decreased morbidity and metastatic dissemination. Loss of Mena increased mammary tumor latency but had no affect on mammary tumor burden or histologic progression to carcinoma. Elimination of Mena also significantly decreased epidermal growth factor (EGF) induced in vivo invasion, in vivo motility, intravasation and metastasis. Non-tumor bearing mice deficient for Mena also showed defects in mammary gland terminal end bud formation and branching. Deficiency of Mena decreases metastasis by slowing tumor progression and reducing tumor cell invasion and intravasation. Mena deficiency during development causes defects in invasive processes involved in mammary gland development. These findings suggest that functional intervention targeting Mena in breast cancer patients may provide a valuable treatment option to delay tumor progression and decrease invasion and metastatic spread leading to an improved prognostic outcome.
Omega-3 fatty acid supplementation delays the progression of neuroblastoma in vivo.
Gleissman, Helena; Segerström, Lova; Hamberg, Mats; Ponthan, Frida; Lindskog, Magnus; Johnsen, John Inge; Kogner, Per
2011-04-01
Epidemiological and preclinical studies have revealed that omega-3 fatty acids have anticancer properties. We have previously shown that the omega-3 fatty acid docosahexaenoic acid (DHA) induces apoptosis of neuroblastoma cells in vitro by mechanisms involving intracellular peroxidation of DHA by means of 15-lipoxygenase or autoxidation. In our study, the effects of DHA supplementation on neuroblastoma tumor growth in vivo were investigated using two complementary approaches. For the purpose of prevention, DHA as a dietary supplement was fed to athymic rats before the rats were xenografted with human neuroblastoma cells. For therapeutic purposes, athymic rats with established neuroblastoma xenografts were given DHA daily by gavage and tumor growth was monitored. DHA levels in plasma and tumor tissue were analyzed by gas liquid chromatography. DHA delayed neuroblastoma xenograft development and inhibited the growth of established neuroblastoma xenografts in athymic rats. A revised version of the Pediatric Preclinical Testing Program evaluation scheme used as a measurement of treatment response showed that untreated control animals developed progressive disease, whereas treatment with DHA resulted in stable disease or partial response, depending on the DHA concentration. In conclusion, prophylactic treatment with DHA delayed neuroblastoma development, suggesting that DHA could be a potential agent in the treatment of minimal residual disease and should be considered for prevention in selected cases. Treatment results on established aggressive neuroblastoma tumors suggest further studies aiming at a clinical application in children with high-risk neuroblastoma. Copyright © 2010 UICC.
Bay, Christiane; Togsverd-Bo, Katrine; Lerche, Catharina M; Haedersdal, Merete
2016-01-01
Photodynamic therapy (PDT) delays ultraviolet (UV) radiation-induced squamous cell carcinomas (SCCs) in hairless mice. Efficacy may be enhanced by combining PDT with antineoplastic or pro-differentiating agents. We investigated if pretreatment with 5-fluorouracil (5FU), imiquimod (IMIQ) or calcipotriol (CAL) before PDT further delays tumor onset. Hairless mice (n=224) were exposed 3 times weekly to 3 standard erythema doses (SED) of UV radiation. Methyl-aminolevulinate (MAL)-PDT sessions were given on days 45 and 90 before SCC development. Three applications of topical 5FU, IMIQ or CAL were given before each PDT session. Fluorescence photography quantified protoporphyrin IX (PpIX) formation. PDT delayed UV-induced SCC development by 59 days (212 days UV-MAL-PDT vs. 153 days UV-control, P<0.001). Pretreatment with 5FU, IMIQ or CAL before PDT did not further delay SCC onset compared to PDT alone (207 days UV-5FU-MAL-PDT, 215 days UV-IMIQ-MAL-PDT, 206 days UV-CAL-MAL-PDT vs. 212 days UV-MAL-PDT, P=ns). PpIX fluorescence intensified by 5FU-pretreatment (median 21,392 au UV-5FU-MAL-PDT, P=0.011), decreased after IMIQ-pretreatment (12,452 au UV-IMIQ-MAL-PDT, P<0.001), and was unaffected by CAL-pretreatment (19,567 au UV-CAL-MAL-PDT, P=ns) compared to MAL alone (18,083 au UV-MAL-PDT). Short-term three-day pretreatment with 5FU, IMIQ and CAL before PDT does not further delay tumor onset in UV-exposed hairless mice. Copyright © 2015 Elsevier B.V. All rights reserved.
Chuang, Ho-Chiao; Hsu, Hsiao-Yu; Nieh, Shu-Kan; Tien, Der-Chi
2015-01-01
The purpose of this study is to assess the feasibility of using the analytical technique of ultrasound images in combination with an auto tumor localization system. During respiration, the activity of breathing in and out causes organs displacement at the lower lobe of the lung, and the maximum displacement range happens in the Superior-Inferior (SI) direction. Therefore, in this study all the tumor positioning is in SI direction under respiratory compensation, in which the compensations are carried out to the organs at the lower lobe and adjacent to the lower lobe of lung.In this research, due to the processes of ultrasound imaging generation, image analysis and signal transmission, when the captured respiratory signals are sent to auto tumor localization system, there was a signal time delay. The total delay time of the entire signal transmission process was 0.254 ± 0.023 seconds (with the lowest standard deviation) after implementing a series of analyses. To compensate for this signal delay time (0.254 ± 0.023 sec), a phase lead compensator (PLC) was designed and built into the auto tumor localization system. By analyzing the impact of the delay time and the respiratory waveforms under different frequencies on the phase lead compensator, an overall system delay time can be configured. Results showed as the respiratory frequency increased, variable value ``a'' and the subsequent gain ``k'' in the controller becomes larger. Moreover, value ``a'' and ``k'' increased as the system delay time increased when the respiratory frequency was fixed. The relationship of value ``a'' and ``k'' to the respiratory frequency can be obtained by using the curve fitting method to compensate for the respiratory motion for tumor localization. Through the comparison of the uncompensated signal and the compensated signal performed by the auto tumor localization system on the simulated respiratory signal, the feasibility of using ultrasound image analysis technology combined with the developed auto tumor localization system can be evaluated. The results show that the simulated respiratory signals under different frequencies of 0.5, 0.333, 0.25, 0.2 and 0.167 Hz with phase lead compensators were improved and stabilized. The compensation rate increased to the range of 7.04$∼ $18.82%, and the final compensation rate is about 97%. Therefore the auto tumor localization system combined with the ultrasound image analysis techniques is feasible.In this study, the developed ultrasound image analysis techniques combined into the auto tumor localization system has the following four advantages: (1) It is a non-invasive way (ultrasonic images) to monitor the entire compensating process of the active respiration instead of using a C-arm (invasive) to observe the organs motion. (2) During radiation therapy, the whole treatment process can be continuous, which can save the overall treatment time. (3) It is an independent system, which can be mounted onto any treatment couch. (4) Users can operate this system easily without the need of prior complicated training process.
Stochastic resonance in a tumor-immune system subject to bounded noises and time delay
NASA Astrophysics Data System (ADS)
Guo, Wei; Mei, Dong-Cheng
2014-12-01
Immunotherapy is one of the most recent approaches in cancer therapy. A mathematical model of tumor-immune interaction, subject to a periodic immunotherapy treatment (imitated by a periodic signal), correlative and bounded stochastic fluctuations and time delays, is investigated by numerical simulations for its signal power amplification (SPA). Within the tailored parameter regime, the synchronous response of tumor growth to the immunotherapy, stochastic resonance (SR), versus both the noises and delays is obtained. The details are as follows (i) the peak values of SPA versus the noise intensity (A) in the proliferation term of tumor cells decrease as the frequency of periodic signal increases, i.e. an increase of the frequency restrains the SR; (ii) an increase of the amplitude of periodic signal restrains the SR versus A, but boosts up the SR versus the noise intensity B in the immune term; (iii) there is an optimum cross-correlated degree between the two bounded noises, at which the system exhibits the strongest SR versus the delay time τα(the reaction time of tumor cell population to their surrounding environment constraints); (iv) upon increasing the delay time τα, double SR versus the delay time τβ (the time taken by both the tumor antigen identification and tumor-stimulated proliferation of effectors) emerges. These results may be helpful for an immunotherapy treatment for the sufferer.
Effects of interstitial heating on the RIF-1 tumor using an Nd:YAG laser with multiple fibers.
Tobin, K M; Waldow, S M
1996-01-01
Hyperthermia was induced in tumor-bearing C3H mice using a Nd:YAG laser emitting near-infrared radiation at 1,064 nm. The efficacy of multiple implanted fiberoptics in the control of the RIF-1 tumor was investigated. RIF-1 tumors in the right hind leg were heated interstitially at 42, 44, or 46 degrees C for 30 or 60 minutes. Two, three, or four 400-microns quartz fibers terminating in a 1.0-cm cylindrical diffusor were inserted into each tumor, as were five microthermocouples to monitor temperature during treatment. Laser Doppler Flow (LDF) was also recorded pre- and post-treatment to determine changes in red blood cell flux in overlying skin (42, 44, or 46 degrees C) and the center of the tumor (46 degrees C). These experiments indicated that interstitial heating at 42, 44, and 46 degrees C resulted in tumor growth delay, although long-term control of tumors was not achieved. Treatment using four fibers resulted in the greatest tumor growth delay at 42 and 44 degrees C, increasing tumor doubling time by 50% or greater compared to control tumors; tumor growth delay following 46 degrees C treatments was seven times greater than that in control tumors. Significant changes (decreases) in LDF (P < .05) were seen in four treatment groups, using two fibers at 42 degrees C for 30 minutes, four fibers at 44 and 46 degrees C for 60 minutes on the overlying skin, and 46 degrees C for 60 minutes in the center of the tumor. Initial data indicate that interstitial heating with multiple fibers increases tumor growth delay compared to previous single fiber treatments, with tumor growth delay increasing with increasing treatment temperature; however, long-term tumor control was not achieved under the conditions investigated. Follow-up studies will explore the use of higher temperatures and/or longer treatment times in order to optimize tumor response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Twentyman, P.R.; Kallman, R.F.; Brown, J.M.
1979-08-01
Experiments have been carried out to determine the effect of different time intervals between the administration of x-irradiation (1200 rad) and cis-diamminedichloroplatinum (cis-DDP) (7 mg/kg) on the growth delay produced in three mouse tumors. The tumors used were the EMT6 tumor in BALB/c mice and the KHT and RIF-1 sarcomas in C3H mice. All tumors were grown intramuscularly in the gastrocnemius muscle and treatment was carried out at a mean tumor weight of 450 mg. Time to reach 2X (for KHT) or 4X (for EMT6 and RIF-1) treatment volume was used as the endpoint of response. The drug was administeredmore » by the intraperitoneal route either 24, 6, or 2 h before radiation, immediately before the start of radiation, or 3, 6, or 24 h after radiation. All irradiations were carried out in unanesthetized mice. The growth delays due to the drug alone were 2, 10, and 2 days for the EMT6, RIF-1, and KHT tumors, respectively. In the RIF-1 and KHT tumors, the combined modality groups tend to show longer growth delays than predicted by the addition of the growth delays for the single agents. For the EMT6 tumor, however, the trend is in the opposite direction. There is no particular timing between irradiation and drug administration which appears to produce consistently longer or shorter growth delays from system to system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Twentyman, P.R.; Kallman, R.F.; Brown, J.M.
1979-09-01
Experiments have been carried out to determine the effect of different intervals between the administration of x-radiation (1200 rad) and actinomycin-D (200 ..mu..g/kg) on the growth delay produced in three mouse tumors. The tumors used were the EMT6 tumor in BALB/c mice and the KHT and RIF-1 sarcomas in C3H mice. All tumors were grown intramuscularly in the gastrocnemius muscle, and treatment was carried out at a mean tumor weight of 450 mg. Time to reach 2 x (for KHT) or 4 x (for EMT6 and RIF-1) treatment volume was used as the endpoint of response. The drug was administeredmore » intraperitoneally either 24, 6, or 2 hr before radiation, immediately before the start of radiation, or 3, 6, or 24 hr after radiation. All irradiations were carried out in unanesthetized mice. For a single administration at this dose level (close to the maximum tolerated dose) actinomycin-D did not produce a significant delay in the growth of any of the tumors. For the RIF-1 and KHT tumors, the growth delays produced by drug/radiation combinations generally were not significantly greater than that produced by irradiation alone. For the EMT6 tumor, great variability in the growth delays of combined modality groups seen, with mean growth delays significantly longer than predicted by the radiation alone data. No consistent dependence on timing between irradiation and drug administration was seen.« less
... pituitary gland. They often involve the third ventricle, optic nerve, and pituitary gland. Description Crangiopharyngiomas are localized ... tumor. Other symptoms result from pressure on the optic tract and pituitary gland. Obesity, delayed development, impaired ...
Shinohara, Eric T; Geng, Ling; Tan, Jiahui; Chen, Heidi; Shir, Yu; Edwards, Eric; Halbrook, James; Kesicki, Edward A; Kashishian, Adam; Hallahan, Dennis E
2005-06-15
DNA-dependent protein kinase (DNA-PK)-defective severe combined immunodeficient (SCID) mice have a greater sensitivity to ionizing radiation compared with wild-type mice due to deficient repair of DNA double-strand break. SCID cells were therefore studied to determine whether radiosensitization by the specific inhibitor of DNA-PK, IC87361, is eliminated in the absence of functional DNA-PK. IC87361 enhanced radiation sensitivity in wild-type C57BL6 endothelial cells but not in SCID cells. The tumor vascular window model was used to assess IC87361-induced radiosensitization of SCID and wild-type tumor microvasculature. Vascular density was 5% in irradiated SCID host compared with 50% in C57BL6 mice (P < 0.05). IC87361 induced radiosensitization of tumor microvasculature in wild-type mice that resembled the radiosensitive phenotype of tumor vessels in SCID mice. Radiosensitization by IC87361 was eliminated in SCID tumor vasculature, which lack functional DNA-PK. Irradiated LLC and B16F0 tumors implanted into SCID mice showed greater tumor growth delay compared with tumors implanted into either wild-type C57BL6 or nude mice. Furthermore, LLC tumors treated with radiation and IC87361 showed tumor growth delay that was significantly greater than tumors treated with radiation alone (P < 0.01 for 3 Gy alone versus 3 Gy + IC87361). DNA-PK inhibitors induced no cytotoxicity and no toxicity in mouse normal tissues. Mouse models deficient in enzyme activity are useful to assess the specificity of novel kinase inhibitors. DNA-PK is an important target for the development of novel radiation-sensitizing drugs that have little intrinsic cytotoxicity.
Pirazzoli, Valentina; Ayeni, Deborah; Meador, Catherine B.; Sanganahalli, Basavaraju G.; Hyder, Fahmeed; de Stanchina, Elisa; Goldberg, Sarah; Pao, William; Politi, Katerina
2015-01-01
Purpose The EGFR tyrosine kinase inhibitors (TKIs), erlotinib and afatinib, have transformed the treatment of advanced EGFR mutant lung adenocarcinoma. However, almost all patients who respond develop acquired resistance on average ~1 year after starting therapy. Resistance is commonly due to a secondary mutation in EGFR (EGFRT790M). We previously found that the combination of the EGFR TKI afatinib and the EGFR antibody cetuximab could overcome EGFRT790M-mediated resistance in preclinical models. This combination has shown a 29% response rate in a clinical trial in patients with acquired resistance to first-generation TKIs. An outstanding question is whether this regimen is beneficial when used as front-line therapy. Experimental Design Using mouse models of EGFR mutant lung cancer, we tested whether the combination of afatinib plus cetuximab delivered upfront to mice with TKI-naïve EGFRL858R-induced lung adenocarcinomas delayed tumor relapse and drug-resistance compared to single agent TKI. Results Afatinib plus cetuximab markedly delayed the time to relapse and incidence of drug-resistant tumors, which occurred in only 63% of the mice, in contrast to erlotinib or afatinib treatment where 100% of mice developed resistance. Mechanisms of tumor escape observed in afatinib plus cetuximab resistant tumors include the EGFRT790M mutation and Kras mutations. Experiments in cell lines and xenografts confirmed that the afatinib plus cetuximab combination does not suppress the emergence of EGFRT790M. Conclusions These results highlight the potential of afatinib plus cetuximab as an effective treatment strategy for patients with TKI-naïve EGFR mutant lung cancer and indicate that clinical trial development in this area is warranted. PMID:26341921
DuPage, Michel; Cheung, Ann; Mazumdar, Claire; Winslow, Monte M.; Bronson, Roderick; Schmidt, Leah M.; Crowley, Denise; Chen, Jianzhu; Jacks, Tyler
2010-01-01
SUMMARY Neoantigens derived from somatic mutations in tumors may provide a critical link between the adaptive immune system and cancer. Here we describe a system to introduce exogenous antigens into genetically engineered mouse lung cancers to mimic tumor neoantigens. We show that endogenous T cells respond to and infiltrate tumors, significantly delaying malignant progression. Despite continued antigen expression, T cell infiltration does not persist and tumors ultimately escape immune attack. Transplantation of cell lines derived from these lung tumors or prophylactic vaccination against the autochthonous tumors, however, results in rapid tumor eradication or selection of tumors that lose antigen expression. These results provide insight into the dynamic nature of the immune response to naturally arising tumors. PMID:21251614
Factors affecting professional delay in diagnosis and treatment of oral cancer in Iran.
Esmaelbeigi, Farhad; Hadji, Maryam; Harirchi, Iraj; Omranipour, Ramesh; vand Rajabpour, Mojtaba; Zendehdel, Kazem
2014-04-01
Oral cancer is the most common malignant tumor among head and neck cancers. Delay in diagnosis affects the treatment and prognosis of oral cancer. We measured the professional delay in the diagnosis and its attributes in the Cancer Institute of Iran, the largest referral center for oral cancer patients in the country. We interviewed oral cancer patients to measure the delay and used case-control approach to study association of various prognostic factors with professional delay and tumor stage. Out of 206 patients, 71.4% were diagnosed at the advanced stage. The median of the patient, professional and total delays were 45, 86 and 140 day, receptively. In the univariate model, prescription of medicines like analgesics (OR = 5.3, 95% CI 2.2-12.9) and history of dental procedure (OR=6.8, 95% CI 1.7-26.9) were associated with higher risk of delay compared to patient who were biopsied from the beginning. History of loose teeth increased risk of delay 4 times (OR = 4.0, 95% CI 1.6-9.8). Patients with primary education had 70% lower risk of delay compared to the illiterate patients (OR = 0.3, 95% CI 0.1-0.7) and the risk was lower among patients who had diploma (OR = 0.04, 95% CI 0-0.7) and college education (OR = 0.1, 95% CI 0-0.4). The delayed patients were diagnosed in more advanced stage compared to the patients without delay (OR = 2.1, 95% CI 1.0-4.4). Development of a national guideline for follow-up of oral lesions, training and awareness of health care professionals about oral cancer diagnosis may decrease the delay and improve the oral cancer outcome in Iran.
NASA Astrophysics Data System (ADS)
Chaudhury, Baishali; Zhou, Mu; Goldgof, Dmitry B.; Hall, Lawrence O.; Gatenby, Robert A.; Gillies, Robert J.; Drukteinis, Jennifer S.
2015-03-01
The ability to identify aggressive tumors from indolent tumors using quantitative analysis on dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) would dramatically change the breast cancer treatment paradigm. With this prognostic information, patients with aggressive tumors that have the ability to spread to distant sites outside of the breast could be selected for more aggressive treatment and surveillance regimens. Conversely, patients with tumors that do not have the propensity to metastasize could be treated less aggressively, avoiding some of the morbidity associated with surgery, radiation and chemotherapy. We propose a computer aided detection framework to determine which breast cancers will metastasize to the loco-regional lymph nodes as well as which tumors will eventually go on to develop distant metastses using quantitative image analysis and radiomics. We defined a new contrast based tumor habitat and analyzed textural kinetic features from this habitat for classification purposes. The proposed tumor habitat, which we call combined-habitat, is derived from the intersection of two individual tumor sub-regions: one that exhibits rapid initial contrast uptake and the other that exhibits rapid delayed contrast washout. Hence the combined-habitat represents the tumor sub-region within which the pixels undergo both rapid initial uptake and rapid delayed washout. We analyzed a dataset of twenty-seven representative two dimensional (2D) images from volumetric DCE-MRI of breast tumors, for classification of tumors with no lymph nodes from tumors with positive number of axillary lymph nodes. For this classification an accuracy of 88.9% was achieved. Twenty of the twenty-seven patients were analyzed for classification of distant metastatic tumors from indolent cancers (tumors with no lymph nodes), for which the accuracy was 84.3%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuuring, Janneke; Department of Neurology, Groene Hart Hospital, Gouda; Bussink, Johan
Purpose: The combination of irradiation and the antiangiogenic compound SU5416 was tested and compared with irradiation alone in a human glioblastoma tumor line xenografted in nude mice. The aim of this study was to monitor microenvironmental changes and growth delay. Methods and materials: A human glioblastoma xenograft tumor line was implanted in nude mice. Irradiations consisted of 10 Gy or 20 Gy with and without SU5416. Several microenvironmental parameters (tumor cell hypoxia, tumor blood perfusion, vascular volume, and microvascular density) were analyzed after imunohistochemical staining. Tumor growth delay was monitored for up to 200 days after treatment. Results: SU5416, whenmore » combined with irradiation, has an additive effect over treatment with irradiation alone. Analysis of the tumor microenvironment showed a decreased vascular density during treatment with SU5416. In tumors regrowing after reaching only a partial remission, vascular characteristics normalized shortly after cessation of SU5416. However, in tumors regrowing after reaching a complete remission, permanent microenvironmental changes and an increase of tumor necrosis with a subsequent slower tumor regrowth was found. Conclusions: Permanent vascular changes were seen after combined treatment resulting in complete remission. Antiangiogenic treatment with SU5416 when combined with irradiation has an additive effect over treatment with irradiation or antiangiogenic treatment alone.« less
Mathematical and Computational Modeling for Tumor Virotherapy with Mediated Immunity.
Timalsina, Asim; Tian, Jianjun Paul; Wang, Jin
2017-08-01
We propose a new mathematical modeling framework based on partial differential equations to study tumor virotherapy with mediated immunity. The model incorporates both innate and adaptive immune responses and represents the complex interaction among tumor cells, oncolytic viruses, and immune systems on a domain with a moving boundary. Using carefully designed computational methods, we conduct extensive numerical simulation to the model. The results allow us to examine tumor development under a wide range of settings and provide insight into several important aspects of the virotherapy, including the dependence of the efficacy on a few key parameters and the delay in the adaptive immunity. Our findings also suggest possible ways to improve the virotherapy for tumor treatment.
Normal Fibroblasts Induce E-Cadherin Loss and Increase Lymph Node Metastasis in Gastric Cancer
Xu, Wen; Hu, Xinlei; Chen, Zhongting; Zheng, Xiaoping; Zhang, Chenjing; Wang, Gang; Chen, Yu; Zhou, Xinglu; Tang, Xiaoxiao; Luo, Laisheng; Xu, Xiang; Pan, Wensheng
2014-01-01
Background A tumor is considered a heterogeneous complex in a three-dimensional environment that is flush with pathophysiological and biomechanical signals. Cell-stroma interactions guide the development and generation of tumors. Here, we evaluate the contributions of normal fibroblasts to gastric cancer. Methodology/Principal Findings By coculturing normal fibroblasts in monolayers of BGC-823 gastric cancer cells, tumor cells sporadically developed short, spindle-like morphological characteristics and demonstrated enhanced proliferation and invasive potential. Furthermore, the transformed tumor cells demonstrated decreased tumor formation and increased lymphomatic and intestinal metastatic potential. Non-transformed BGC-823 cells, in contrast, demonstrated primary tumor formation and delayed intestinal and lymph node invasion. We also observed E-cadherin loss and the upregulation of vimentin expression in the transformed tumor cells, which suggested that the increase in metastasis was induced by epithelial-to-mesenchymal transition. Conclusion Collectively, our data indicated that normal fibroblasts sufficiently induce epithelial-to-mesenchymal transition in cancer cells, thereby leading to metastasis. PMID:24845259
Distributed delays in a hybrid model of tumor-immune system interplay.
Caravagna, Giulio; Graudenzi, Alex; d'Onofrio, Alberto
2013-02-01
A tumor is kinetically characterized by the presence of multiple spatio-temporal scales in which its cells interplay with, for instance, endothelial cells or Immune system effectors, exchanging various chemical signals. By its nature, tumor growth is an ideal object of hybrid modeling where discrete stochastic processes model low-numbers entities, and mean-field equations model abundant chemical signals. Thus, we follow this approach to model tumor cells, effector cells and Interleukin-2, in order to capture the Immune surveillance effect. We here present a hybrid model with a generic delay kernel accounting that, due to many complex phenomena such as chemical transportation and cellular differentiation, the tumor-induced recruitment of effectors exhibits a lag period. This model is a Stochastic Hybrid Automata and its semantics is a Piecewise Deterministic Markov process where a two-dimensional stochastic process is interlinked to a multi-dimensional mean-field system. We instantiate the model with two well-known weak and strong delay kernels and perform simulations by using an algorithm to generate trajectories of this process. Via simulations and parametric sensitivity analysis techniques we (i) relate tumor mass growth with the two kernels, we (ii) measure the strength of the Immune surveillance in terms of probability distribution of the eradication times, and (iii) we prove, in the oscillatory regime, the existence of a stochastic bifurcation resulting in delay-induced tumor eradication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Twentyman, P.R.; Kallman, R.F.; Brown, J.M.
1979-09-01
Experiments have been carried out to determine the effect of different time intervals between the administration of x-radiation (1200 rad) and cyclophosphamide (100 mg/kg) on the growth delay produced in 3 mouse tumors. The tumors used were the EMT6 tumor in BALB/c mice and the KHT and RIF-1 sarcomas in C3H mice. All tumors were grown intramuscularly in the gastrocnemius muscle and treatment was carried out at a mean tumor weight of 450 mg. Time to reach 2X (for KHT) or 4X (for EMT6 and RIF-1) treatment volume was used as the endpoint of response. The drug was administered intraperitoneallymore » either 24, 6, or 2 hr before radiation, immediately before the start of radiation, or 3, 6, or 24 hr after radiation. All irradiations were carried out in unanesthetized mice. For the RIF-1, EMT6, and KHT tumors, the growth delays due to the drug alone were 11, 4.5, and 12 days, respectively. In the RIF-1 system, the growth delays following combination treatment tended to be longer than predicted by the addition of the single agent delays. For the KHT tumor, the opposite trend was seen, whereas in EMT6, there was no significant trend in either direction. No consistent dependence upon the timing between irradiation and drug administration was seen from system to system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lelieveld, P.; Twentyman, P.R.; Kallman, R.F.
1979-09-01
Experiments have been carried out to determine the effect of different time intervals between the administration of x-irradiation (1200 rad) and BCNU (15 mg/kg) on the growth delay produced in three mouse tumors. The tumors used were the EMT6 tumor in BALB/c mice and the KHT and RIF-1 sarcomas in C3H mice. All tumors were grown intramuscularly in the gastrocnemius muscle and treatment was carried out at a mean tumor weight of 450 mg. Time to reach 2X (for KHT) or 4X (for EMT6 and RIF-1) treatment volume was used as the endpoint of response. The drug was administered bymore » the intraperitoneal route either 24, 6, or 2 hr before radiation. All irradiations were carried out in unanesthetized mice. The growth delays due to the drug alone were 2,6, and 11 days for the RIF-1, EMT6, and KHT tumors, respectively. No consistent general pattern emerged from the results of combination treatments. For the RIF-1 tumor, the growth delays following combination treatments were generally less than predicted by the simple addition of the growth delays for the single modalities. For EMT6 this was true when BCNU was administered immediately before x-rays, but not for other timings. In the KHT tumor an unexpectedly high incidence of long-term tumor controls was seen in the group which received BCNU at 2 hr before x-rays. In addition to the single dose studies (above), fractionated regimens in which radiation and BCNU were combined in several different ways were tested with the RIF-1 tumor. None of the combination schedules tested showed a greater-than-additive effect.« less
Metabolic interrogation as a tool to optimize chemotherapeutic regimens.
Sandulache, Vlad C; Chen, Yunyun; Feng, Lei; William, William N; Skinner, Heath D; Myers, Jeffrey N; Meyn, Raymond E; Li, Jinzhong; Mijiti, Ainiwaer; Bankson, James A; Fuller, Clifton D; Konopleva, Marina Y; Lai, Stephen Y
2017-03-14
Platinum-based (Pt) chemotherapy is broadly utilized in the treatment of cancer. Development of more effective, personalized treatment strategies require identification of novel biomarkers of treatment response. Since Pt compounds are inactivated through cellular metabolic activity, we hypothesized that metabolic interrogation can predict the effectiveness of Pt chemotherapy in a pre-clinical model of head and neck squamous cell carcinoma (HNSCC).We tested the effects of cisplatin (CDDP) and carboplatin (CBP) on DNA damage, activation of cellular death cascades and tumor cell metabolism, specifically lactate production. Pt compounds induced an acute dose-dependent, transient drop in lactate generation in vitro, which correlated with effects on DNA damage and cell death. Neutralization of free radical stress abrogated these effects. The magnitude of this effect on lactate production correlated with the differential sensitivity of HNSCC cells to Pt compounds (CDDP vs CBP) and p53-driven Pt chemotherapy resistance. Using dual flank xenograft tumors, we demonstrated that Pt-driven effects on lactate levels correlate with effects on tumor growth delay in a dose-dependent manner and that lactate levels can define the temporal profile of Pt chemotherapy-induced metabolic stress. Lactate interrogation also predicted doxorubicin effects on cell death in both solid tumor (HNSCC) and acute myelogenous leukemia (AML) cell lines.Real-time metabolic interrogation of acute changes in cell and tumor lactate levels reflects chemotherapy effects on DNA damage, cell death and tumor growth delay. We have identified a real-time biomarker of chemotherapy effectiveness which can be used to develop adaptive, iterative and personalized treatment regimens against a variety of solid and hematopoietic malignancies.
Metabolic interrogation as a tool to optimize chemotherapeutic regimens
Feng, Lei; William, William N.; Skinner, Heath D.; Myers, Jeffrey N.; Meyn, Raymond E.; Li, Jinzhong; Mijiti, Ainiwaer; Bankson, James A.; Fuller, Clifton D.; Konopleva, Marina Y.; Lai, Stephen Y.
2017-01-01
Platinum-based (Pt) chemotherapy is broadly utilized in the treatment of cancer. Development of more effective, personalized treatment strategies require identification of novel biomarkers of treatment response. Since Pt compounds are inactivated through cellular metabolic activity, we hypothesized that metabolic interrogation can predict the effectiveness of Pt chemotherapy in a pre-clinical model of head and neck squamous cell carcinoma (HNSCC). We tested the effects of cisplatin (CDDP) and carboplatin (CBP) on DNA damage, activation of cellular death cascades and tumor cell metabolism, specifically lactate production. Pt compounds induced an acute dose-dependent, transient drop in lactate generation in vitro, which correlated with effects on DNA damage and cell death. Neutralization of free radical stress abrogated these effects. The magnitude of this effect on lactate production correlated with the differential sensitivity of HNSCC cells to Pt compounds (CDDP vs CBP) and p53-driven Pt chemotherapy resistance. Using dual flank xenograft tumors, we demonstrated that Pt-driven effects on lactate levels correlate with effects on tumor growth delay in a dose-dependent manner and that lactate levels can define the temporal profile of Pt chemotherapy-induced metabolic stress. Lactate interrogation also predicted doxorubicin effects on cell death in both solid tumor (HNSCC) and acute myelogenous leukemia (AML) cell lines. Real-time metabolic interrogation of acute changes in cell and tumor lactate levels reflects chemotherapy effects on DNA damage, cell death and tumor growth delay. We have identified a real-time biomarker of chemotherapy effectiveness which can be used to develop adaptive, iterative and personalized treatment regimens against a variety of solid and hematopoietic malignancies. PMID:28184025
Vila-Leahey, Ava; Oldford, Sharon A.; Marignani, Paola A.; Wang, Jun; Haidl, Ian D.; Marshall, Jean S.
2016-01-01
ABSTRACT Histamine receptor 2 (H2) antagonists are widely used clinically for the control of gastrointestinal symptoms, but also impact immune function. They have been reported to reduce tumor growth in established colon and lung cancer models. Histamine has also been reported to modify populations of myeloid-derived suppressor cells (MDSCs). We have examined the impact of the widely used H2 antagonist ranitidine, on both myeloid cell populations and tumor development and spread, in three distinct models of breast cancer that highlight different stages of cancer progression. Oral ranitidine treatment significantly decreased the monocytic MDSC population in the spleen and bone marrow both alone and in the context of an orthotopic breast tumor model. H2 antagonists ranitidine and famotidine, but not H1 or H4 antagonists, significantly inhibited lung metastasis in the 4T1 model. In the E0771 model, ranitidine decreased primary tumor growth while omeprazole treatment had no impact on tumor development. Gemcitabine treatment prevented the tumor growth inhibition associated with ranitidine treatment. In keeping with ranitidine-induced changes in myeloid cell populations in non-tumor-bearing mice, ranitidine also delayed the onset of spontaneous tumor development, and decreased the number of tumors that developed in LKB1−/−/NIC mice. These results indicate that ranitidine alters monocyte populations associated with MDSC activity, and subsequently impacts breast tumor development and outcome. Ranitidine has potential as an adjuvant therapy or preventative agent in breast cancer and provides a novel and safe approach to the long-term reduction of tumor-associated immune suppression. PMID:27622015
Feng, Liang; Wang, Wei; Yao, Hang-Ping; Zhou, Jianwei; Zhang, Ruiwen; Wang, Ming-Hai
2015-01-01
Targeting receptor tyrosine kinases by therapeutic monoclonal antibodies and antibody-drug conjugates has met with tremendous success in clinical oncology. Currently, numerous therapeutic monoclonal antibodies are under preclinical development. The potential for moving candidate antibodies into clinical trials relies heavily on therapeutic efficacy validated by human tumor xenografts in mice. Here we describe methods used to determine therapeutic efficacy of monoclonal antibodies or antibody-drug conjugates specific to human receptor tyrosine kinase using human tumor xenografts in mice as the model. The end point of the study is to determine whether treatment of tumor-bearing mice with a monoclonal antibody or antibody-drug conjugates results in significant delay of tumor growth.
Dao, Pascal; Jarray, Rafika; Smith, Nikaia; Lepelletier, Yves; Le Coq, Johanne; Lietha, Daniel; Hadj-Slimane, Réda; Herbeuval, Jean-Philippe; Garbay, Christiane; Raynaud, Françoise; Chen, Huixiong
2014-06-28
FAK and FGFR2 signaling pathways play important roles in cancer development, progression and tumor angiogenesis. PHM16 is a novel ATP competitive inhibitor of FAK and FGFR2. To evaluate the therapeutic efficacy of this agent, we examined its anti-angiogenic effect in HUVEC and its anti-tumor effect in different cancer cell lines. We showed PHM16 inhibited endothelial cell viability, adherence and tube formation along with the added ability to induce endothelial cell apoptosis. This compound significantly delayed tumor cell growth. Together, these data showed that inhibition of both FAK and FGFR2 signaling pathways can enhance anti-tumor and anti-angiogenic activities. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Absence of ERK5/MAPK7 delays tumorigenesis in Atm-/- mice.
Granados-Jaén, Alba; Angulo-Ibáñez, Maria; Rovira-Clavé, Xavier; Gamez, Celina Paola Vasquez; Soriano, Francesc X; Reina, Manuel; Espel, Enric
2016-11-15
Ataxia-telangiectasia mutated (ATM) is a cell cycle checkpoint kinase that upon activation by DNA damage leads to cell cycle arrest and DNA repair or apoptosis. The absence of Atm or the occurrence of loss-of-function mutations in Atm predisposes to tumorigenesis. MAPK7 has been implicated in numerous types of cancer with pro-survival and pro-growth roles in tumor cells, but its functional relation with tumor suppressors is not clear. In this study, we show that absence of MAPK7 delays death due to spontaneous tumor development in Atm-/- mice. Compared with Atm-/- thymocytes, Mapk7-/-Atm-/- thymocytes exhibited an improved response to DNA damage (increased phosphorylation of H2AX) and a restored apoptotic response after treatment of mice with ionizing radiation. These findings define an antagonistic function of ATM and MAPK7 in the thymocyte response to DNA damage, and suggest that the lack of MAPK7 inhibits thymic lymphoma growth in Atm-/- mice by partially restoring the DNA damage response in thymocytes.
Maitz, Charles A.; Khan, Aslam A.; Kueffer, Peter J.; ...
2017-08-01
Boron neutron capture therapy (BNCT) was performed at the University of Missouri Research Reactor in mice bearing CT26 colon carcinoma flank tumors and the results were compared with previously performed studies with mice bearing EMT6 breast cancer flank tumors. We implanted mice with CT26 tumors subcutaneously in the caudal flank and were given two separate tail vein injections of unilamellar liposomes composed of cholesterol, 1,2-distearoyl-sn-glycer-3-phosphocholine, and K[nido-7-CH 3(CH 2) 15–7,8-C 2B 9H 11] in the lipid bilayer and encapsulated Na 3[1-(2`-B 10H 9)-2-NH 3B 10H 8] within the liposomal core. Mice were irradiated 30 hours after the second injection inmore » a thermal neutron beam for various lengths of time. The tumor size was monitored daily for 72 days. In spite of relatively lower tumor boron concentrations, as compared to EMT6 tumors, a 45 minute neutron irradiation BNCT resulted in complete resolution of the tumors in 50% of treated mice, 50% of which never recurred. Median time to tumor volume tripling was 38 days in BNCT treated mice, 17 days in neutron-irradiated mice given no boron compounds, and 4 days in untreated controls. Tumor response in mice with CT26 colon carcinoma was markedly more pronounced than in previous reports of mice with EMT6 tumors, a difference which increased with dose. The slope of the dose response curve of CT26 colon carcinoma tumors is 1.05 times tumor growth delay per Gy compared to 0.09 times tumor growth delay per Gy for EMT6 tumors, indicating that inherent radiosensitivity of tumors plays a role in boron neutron capture therapy and should be considered in the development of clinical applications of BNCT in animals and man.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maitz, Charles A.; Khan, Aslam A.; Kueffer, Peter J.
Boron neutron capture therapy (BNCT) was performed at the University of Missouri Research Reactor in mice bearing CT26 colon carcinoma flank tumors and the results were compared with previously performed studies with mice bearing EMT6 breast cancer flank tumors. We implanted mice with CT26 tumors subcutaneously in the caudal flank and were given two separate tail vein injections of unilamellar liposomes composed of cholesterol, 1,2-distearoyl-sn-glycer-3-phosphocholine, and K[nido-7-CH 3(CH 2) 15–7,8-C 2B 9H 11] in the lipid bilayer and encapsulated Na 3[1-(2`-B 10H 9)-2-NH 3B 10H 8] within the liposomal core. Mice were irradiated 30 hours after the second injection inmore » a thermal neutron beam for various lengths of time. The tumor size was monitored daily for 72 days. In spite of relatively lower tumor boron concentrations, as compared to EMT6 tumors, a 45 minute neutron irradiation BNCT resulted in complete resolution of the tumors in 50% of treated mice, 50% of which never recurred. Median time to tumor volume tripling was 38 days in BNCT treated mice, 17 days in neutron-irradiated mice given no boron compounds, and 4 days in untreated controls. Tumor response in mice with CT26 colon carcinoma was markedly more pronounced than in previous reports of mice with EMT6 tumors, a difference which increased with dose. The slope of the dose response curve of CT26 colon carcinoma tumors is 1.05 times tumor growth delay per Gy compared to 0.09 times tumor growth delay per Gy for EMT6 tumors, indicating that inherent radiosensitivity of tumors plays a role in boron neutron capture therapy and should be considered in the development of clinical applications of BNCT in animals and man.« less
Hao, Guang-Wei; Chen, Yu-Sheng; He, De-Ming; Wang, Hai-Yu; Wu, Guo-Hao; Zhang, Bo
2015-01-01
Tumors are largely unable to metabolize ketone bodies for energy due to various deficiencies in one or both of the key mitochondrial enzymes, which may provide a rationale for therapeutic strategies that inhibit tumor growth by administration of a ketogenic diet with average protein but low in carbohydrates and high in fat. Thirty-six male BALB/C nude mice were injected subcutaneously with tumor cells of the colon cancer cell line HCT116. The animals were then randomly split into three feeding groups and fed either a ketogenic diet rich in omega-3 fatty acids and MCT (MKD group; n=12) or lard only (LKD group; n=12) or a standard diet (SD group; n=12) ad libitum. Experiments were ended upon attainment of the target tumor volume of 600 mm3 to 700 mm3. The three diets were compared for tumor growth and survival time (interval between tumor cell injection and attainment of target tumor volume). The tumor growth in the MKD and LKD groups was significantly delayed compared to that in the SD group. Application of an unrestricted ketogenic diet delayed tumor growth in a mouse xenograft model. Further studies are needed to address the mechanism of this diet intervention and the impact on other tumor-relevant parameters such as invasion and metastasis.
USDA-ARS?s Scientific Manuscript database
Biologically-active vitamin D (1,25(OH)2D) is synthetized from inactive prohormone 25(OH)D by the enzyme CYP27B1 1-a-hydroxylase in kidney and several extra-renal tissues including breast. While the development of breast cancer has been linked to inadequate vitamin D status, the importance of bioac...
Joo, Yeon Hee; Kim, Jin Pyeong; Park, Jung Je
2014-01-01
Objectives The goal of this study was to define the radiologic characteristics of two-phase computed tomography (CT) of salivary gland Warthin tumors and to compare them to pleomorphic adenomas. We also aimed to provide a foundation for selecting a surgical method on the basis of radiologic findings. Methods We prospectively enrolled 116 patients with parotid gland tumors, who underwent two-phase CT preoperatively. Early and delayed phase scans were obtained, with scanning delays of 30 and 120 seconds, respectively. The attenuation changes and enhancement patterns were analyzed. In cases when the attenuation changes were decreased, we presumed Warthin tumor preoperatively and performed extracapsular dissection. When the attenuation changes were increased, superficial parotidectomy was performed on the parotid gland tumors. We analyzed the operation times, incision sizes, complications, and recurrence rates. Results Attenuation of Warthin tumors was decreased from early to delayed scans. The ratio of CT numbers in Warthin tumors was also significantly different from other tumors. Warthin tumors were diagnosed with a sensitivity of 96.1% and specificity of 97% using two-phase CT. The mean operation time was 38 minutes and the mean incision size was 36.2 mm for Warthin tumors. However, for the other parotid tumors, the average operation time was 122 minutes and the average incision size was 91.8 mm (P<0.05). Conclusion Salivary Warthin tumor has a distinct pattern of contrast enhancement on two-phase CT, which can guide treatment decisions. The preoperative diagnosis of Warthin tumor made extracapsular dissection possible instead of superficial parotidectomy. PMID:25177439
Joo, Yeon Hee; Kim, Jin Pyeong; Park, Jung Je; Woo, Seung Hoon
2014-09-01
The goal of this study was to define the radiologic characteristics of two-phase computed tomography (CT) of salivary gland Warthin tumors and to compare them to pleomorphic adenomas. We also aimed to provide a foundation for selecting a surgical method on the basis of radiologic findings. We prospectively enrolled 116 patients with parotid gland tumors, who underwent two-phase CT preoperatively. Early and delayed phase scans were obtained, with scanning delays of 30 and 120 seconds, respectively. The attenuation changes and enhancement patterns were analyzed. In cases when the attenuation changes were decreased, we presumed Warthin tumor preoperatively and performed extracapsular dissection. When the attenuation changes were increased, superficial parotidectomy was performed on the parotid gland tumors. We analyzed the operation times, incision sizes, complications, and recurrence rates. Attenuation of Warthin tumors was decreased from early to delayed scans. The ratio of CT numbers in Warthin tumors was also significantly different from other tumors. Warthin tumors were diagnosed with a sensitivity of 96.1% and specificity of 97% using two-phase CT. The mean operation time was 38 minutes and the mean incision size was 36.2 mm for Warthin tumors. However, for the other parotid tumors, the average operation time was 122 minutes and the average incision size was 91.8 mm (P<0.05). Salivary Warthin tumor has a distinct pattern of contrast enhancement on two-phase CT, which can guide treatment decisions. The preoperative diagnosis of Warthin tumor made extracapsular dissection possible instead of superficial parotidectomy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moschouris, Hippocrates; Malagari, Katerina; Papadaki, Marina Georgiou
The purpose of this study was to assess the use of contrast-enhanced ultrasonography (CEUS) and the sustained antitumor effect of drug-eluting beads used for transarterial chemoembolisation (TACE) of unresectable hepatocellular carcinoma (HCC). Ten patients with solitary, unresectable HCC underwent CEUS before, 2 days after, and 35 to 40 days after TACE using a standard dose (4 ml) of drug-eluting beads (DC Beads; Biocompatibles, Surrey, UK) preloaded with doxorubicin (25 mg doxorubicin/ml hydrated beads). For CEUS, a second-generation contrast agent (SonoVue, Bracco, Milan, Italy) and a low mechanical-index technique were used. A part of the tumor was characterized as necrotic ifmore » it showed complete lack of enhancement. The percentage of necrosis was calculated at the sonographic section that depicted the largest diameter of the tumor. Differences in the extent of early (2 days after TACE) and delayed (35 to 40 days after TACE) necrosis were quantitatively and subjectively assessed. Early post-TACE tumor necrosis ranged from 21% to 70% (mean 43.5% {+-} 19%). There was a statistically significant (p = 0.0012, paired Student t test) higher percentage of delayed tumor necrosis, which ranged from 24% to 88% (mean 52.3% {+-} 20.3%). Subjective evaluation showed a delayed obvious increase of the necrotic areas in 5 patients. In 2 patients, tumor vessels that initially remained patent disappeared on the delayed follow-up. A part of tumor necrosis after chemoembolisation of HCC with DEB seems to take place later than 2 days after TACE. CEUS may provide evidence for the sustained antitumor effect of DEB-TACE. Nevertheless, the ideal time for the imaging evaluation of tumor response remains to be defined.« less
Vestibular schwannoma management: Part II. Failed radiosurgery and the role of delayed microsurgery.
Pollock, Bruce E; Lunsford, L Dade; Kondziolka, Douglas; Sekula, Raymond; Subach, Brian R; Foote, Robert L; Flickinger, John C
2013-12-01
The indications, operative findings, and outcomes of vestibular schwannoma microsurgery are controversial when it is performed after stereotactic radiosurgery. To address these issues, the authors reviewed the experience at two academic medical centers. During a 10-year interval, 452 patients with unilateral vestibular schwannomas underwent gamma knife radiosurgery. Thirteen patients (2.9%) underwent delayed microsurgery at a median of 27 months (range 7–72 months) after they had undergone radiosurgery. Six of the 13 patients had undergone one or more microsurgical procedures before they underwent radiosurgery. The indications for surgery were tumor enlargement with stable symptoms in five patients, tumor enlargement with new or increased symptoms in five patients, and increased symptoms without evidence of tumor growth in three patients. Gross-total resection was achieved in seven patients and near-gross-total resection in four patients. The surgery was described as more difficult than that typically performed for schwannoma in eight patients, no different in four patients, and easier in one patient. At the last follow-up evaluation, three patients had normal or near-normal facial function, three patients had moderate facial dysfunction, and seven had facial palsies. Three patients were incapable of caring for themselves, and one patient died of progression of a malignant triton tumor. Failed radiosurgery in cases of vestibular schwannoma was rare. No clear relationship was demonstrated between the use of radiosurgery and the subsequent ease or difficulty of delayed microsurgery. Because some patients have temporary enlargement of their tumor after radiosurgery, the need for surgical resection after radiosurgery should be reviewed with the neurosurgeon who performed the radiosurgery and should be delayed until sustained tumor growth is confirmed. A subtotal tumor resection should be considered for patients who require surgical resection of their tumor after vestibular schwannoma radiosurgery.
Balci, Tugce B; Davila, Jorge; Lewis, Denice; Boafo, Addo; Sell, Erick; Richer, Julie; Nikkel, Sarah M; Armour, Christine M; Tomiak, Eva; Lines, Matthew A; Sawyer, Sarah L
2018-01-01
White matter lesions have been described in patients with PTEN hamartoma tumor syndrome (PHTS). How these lesions correlate with the neurocognitive features associated with PTEN mutations, such as autism spectrum disorder (ASD) or developmental delay, has not been well established. We report nine patients with PTEN mutations and white matter changes on brain magnetic resonance imaging (MRI), eight of whom were referred for reasons other than developmental delay or ASD. Their clinical presentations ranged from asymptomatic macrocephaly with normal development/intellect, to obsessive compulsive disorder, and debilitating neurological disease. To our knowledge, this report constitutes the first detailed description of PTEN-related white matter changes in adult patients and in children with normal development and intelligence. We present a detailed assessment of the neuropsychological phenotype of our patients and discuss the relationship between the wide array of neuropsychiatric features and observed white matter findings in the context of these individuals. © 2017 Wiley Periodicals, Inc.
Shiraki, Katsuhisa; Lu, Huimei; Ishimura, Yoshimasa; Kashiwabara, Shoji; Uesaka, Toshihiro; Katoh, Osamu; Watanabe, Hiromitsu
2002-09-01
In this experiment, methylnitrosourea (MNU) was administered, followed by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), to assess effects of surrogate mothering on tumor. One or two day old male SD pups were treated with or without 30 mg/kg body weight of MNU and nursed by SD or ACI surrogate mothers for 5 weeks. When 6-weeks-old they were then treated with 100 ppm MNNG or tap water for 16 weeks. The tumor incidence in the MNNG alone group was significantly lower than with MNU alone or MNU+MNNG (p < 0.01). Kidney or nerve tumors mainly developed in the MNU group, gastric tumors in the MNNG group, and the two combined in the MNU+MNNG group. The incidence and mean number of tumors did not significantly differ between the two weaning groups. However, mean survival time with the ACI surrogate mothers after treatment with MNU was increased as compared with the SD mother group. Cumulative development of tumors in the ACI surrogate mother group was also delayed (p < 0.05). Similar results were obtained with MNU+MNNG and MNNG alone. The present experiment suggested that tumor induction might be effected by components of the mother's milk.
/sup 125/I interstitial implants in the RIF-1 murine flank tumor: an animal model for brachytherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernstein, M.; Gutin, P.H.; Weaver, D.A.
1982-09-01
The development of a model for interstitial brachytherapy that uses high-activity, removable /sup 125/I sources in the RIF-1 murine flank tumor is reported. Experimental end points are clonogenic cell and tumor regrowth delay assays. For the clonogenic cell assay, interestitial radiation is delivered at total doses of 500-10,000 rad at dose rates of 0.9-2.7 rad/min to cells in annuli of tissue in the tumor. Dose-survival curves are characterized by an initial shoulder followed by a straight (exponential) portion, with D/sub 0/ similar to that of the curve obtained by external irradiation of the RIF-1 tumor in a self-contained cesium irradiatormore » at similar dose rates. Tumor regrowth curves have been obtained for minimum tumor doses of 500-5000 rad; marked tumor regression has been observed with minimum tumor doses as low as 2000 rad, but results are not as reproducible as the results obtained with the clonogenic cell assay.« less
Factors influencing delay in the diagnosis of colorectal cancer: a study protocol
Esteva, Magdalena; Ramos, Maria; Cabeza, Elena; Llobera, Joan; Ruiz, Amador; Pita, Salvador; Segura, Josep M; Cortés, Jose M; González-Lujan, Luis
2007-01-01
Background Colorectal cancer (CRC) is the second most frequent tumor in developed countries. Since survival from CRC depends mostly on disease stage at the time of diagnosis, individuals with symptoms or signs suspicious of CRC should be examined without delay. Many factors, however, intervene between symptom onset and diagnosis. This study was designed to: 1) Describe the diagnostic process of CRC from the onset of first symptoms to diagnosis and treatment. 2) Establish the time interval from initial symptoms to diagnosis and treatment, globally and considering patient's and doctors' delay, with the latter due to family physician and/or hospital services. 3) Identify the factors related to defined types of delay. 4) Assess the concordance between information included in primary health care and hospital clinical records regarding onset of first symptoms. Methods/Design Descriptive study, coordinated, with 5 participant groups of 5 different Spanish regions (Balearic Islands, Galicia, Catalunya, Aragón and Valencia Health Districts), with a total of 8 acute public hospitals and 140 primary care centers. Incident cases of CRC during the study period, as identified from pathology services at the involved hospitals. A sample size of 896 subjects has been estimated, 150 subjects for each participant group. Information will be collected through patient interviews and primary health care and hospital clinical records. Patient variables will include sociodemographic variables, family history of cancer, symptom perception, and confidence in the family physician; tumor variables will include tumor site, histological type, grade and stage; symptom variables will include date of onset, type and number of symptoms; health system variables will include number of patient contacts with family physician, type and content of the referral, hospital services attending the patient, diagnostic modalities and results; and delay intervals, including global delays and delays attributed to the patient, family physician and hospital. Discussion To obtain a nonrestricted sample of patients with CRC we have minimized selection risk by identifying the patients from pathology services. A greater constraint may be associated with information sources based on clinical records. Due to inherent features of coordinated studies, it is important to standardize the collection of information. PMID:17697332
Interleukin-12 Immunomodulation Delays the Onset of Lethal Peritoneal Disease of Ovarian Cancer.
Cohen, Courtney A; Shea, Amanda A; Heffron, C Lynn; Schmelz, Eva M; Roberts, Paul C
2016-01-01
The omental fat band (OFB) is the predominant site for metastatic seeding of ovarian cancer. Previously, we highlighted the influx and accumulation of neutrophils and macrophages in the OFB following syngeneic ovarian cancer cell seeding as an important factor in the development of a protumorigenic cascade. Here we investigated localized immunomodulation as a means of promoting a successful protective response. As an important TH1-type immunomodulator, interleukin (IL)-12 has previously been investigated clinically as an anticancer therapeutic. However, systemic IL-12 administration was associated with serious side effects, galvanizing the development of immune or accessory cells engineered to express secreted or membrane-bound IL-12 (mbIL-12). Using an mbIL-12-expressing cell variant, we demonstrate that localized IL-12 in the tumor microenvironment significantly delays disease development. The mbIL-12-mediated decrease in tumor burden was associated with a significant reduction in neutrophil and macrophage infiltration in the OFB, and correlated with a reduced expression of neutrophil and macrophage chemoattractants (CXCL1, -2, -3 and CCL2, -7). Vaccination with mitotically impaired tumor cells did not confer protection against subsequent tumor challenge, indicating that IL-12 did not impact the immunogenicity of the cancer cells. Our findings are in agreement with previous reports suggesting that IL-12 may hold promise when delivered in a targeted and sustained manner to the omental microenvironment. Furthermore, resident cells within the omental microenvironment may provide a reservoir that can be activated and mobilized to prevent metastatic seeding within the peritoneum and, therefore, may be targets for chemotherapeutics.
Interleukin-12 Immunomodulation Delays the Onset of Lethal Peritoneal Disease of Ovarian Cancer
Cohen, Courtney A.; Shea, Amanda A.; Heffron, C. Lynn
2016-01-01
The omental fat band (OFB) is the predominant site for metastatic seeding of ovarian cancer. Previously, we highlighted the influx and accumulation of neutrophils and macrophages in the OFB following syngeneic ovarian cancer cell seeding as an important factor in the development of a protumorigenic cascade. Here we investigated localized immunomodulation as a means of promoting a successful protective response. As an important TH1-type immunomodulator, interleukin (IL)-12 has previously been investigated clinically as an anticancer therapeutic. However, systemic IL-12 administration was associated with serious side effects, galvanizing the development of immune or accessory cells engineered to express secreted or membrane-bound IL-12 (mbIL-12). Using an mbIL-12-expressing cell variant, we demonstrate that localized IL-12 in the tumor microenvironment significantly delays disease development. The mbIL-12-mediated decrease in tumor burden was associated with a significant reduction in neutrophil and macrophage infiltration in the OFB, and correlated with a reduced expression of neutrophil and macrophage chemoattractants (CXCL1, -2, -3 and CCL2, -7). Vaccination with mitotically impaired tumor cells did not confer protection against subsequent tumor challenge, indicating that IL-12 did not impact the immunogenicity of the cancer cells. Our findings are in agreement with previous reports suggesting that IL-12 may hold promise when delivered in a targeted and sustained manner to the omental microenvironment. Furthermore, resident cells within the omental microenvironment may provide a reservoir that can be activated and mobilized to prevent metastatic seeding within the peritoneum and, therefore, may be targets for chemotherapeutics. PMID:26430781
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pai Panandiker, Atmaram S., E-mail: atmaram.pai-panandiker@stjude.org; Merchant, Thomas E.; Beltran, Chris
Purpose: To assess the pattern of treatment failure associated with current therapeutic paradigms for childhood atypical teratoid rhabdoid tumors (AT/RT). Methods and Materials: Pediatric patients with AT/RT of the central nervous system treated at our institution between 1987 and 2007 were retrospectively evaluated. Overall survival (OS), progression-free survival, and cumulative incidence of local failure were correlated with age, sex, tumor location, extent of disease, and extent of surgical resection. Radiotherapy (RT) sequencing, chemotherapy, dose, timing, and volume administered after resection were also evaluated. Results: Thirty-one patients at a median age of 2.3 years at diagnosis (range, 0.45-16.87 years) were enrolledmore » into protocols that included risk- and age-stratified RT. Craniospinal irradiation with focal tumor bed boost (median dose, 54 Gy) was administered to 18 patients. Gross total resection was achieved in 16. Ten patients presented with metastases at diagnosis. RT was delayed more than 3 months in 20 patients and between 1 and 3 months in 4; 7 patients received immediate postoperative irradiation preceding high-dose alkylator-based chemotherapy. At a median follow-up of 48 months, the cumulative incidence of local treatment failure was 37.5% {+-} 9%; progression-free survival was 33.2% {+-} 10%; and OS was 53.5% {+-} 10%. Children receiving delayed RT ({>=}1 month postoperatively) were more likely to experience local failure (hazard ratio [HR] 1.23, p = 0.007); the development of distant metastases before RT increased the risk of progression (HR 3.49, p = 0.006); and any evidence of disease progressionbefore RT decreased OS (HR 20.78, p = 0.004). Disease progression occurred in 52% (11/21) of children with initially localized tumors who underwent gross total resection, and the progression rate increased proportionally with increasing delay from surgery to RT. Conclusions: Delayed RT is associated with a higher rate of local and metastatic disease progression in children with AT/RT. Current treatment regimens for pediatric patients with AT/RT are distinctly age stratified; novel protocols investigating RT volumes and sequencing are needed.« less
New mouse tumor model system (RIF-1) for comparison of end-point studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Twentyman, P.R.; Brown, J.M.; Gray, J.W.
1980-03-01
A new tumor model system (RIF-1) was developed that is very suitable for studies in which clonogenic survival is compared with growth delay and control probability following various forms of treatment. The tumor was a radiation-induced sarcoma in the inbred female C3H/Km mouse. It had a low median tumor dose, had a satisfactory plating efficiency direct from in vivo to in vitro, was nonimmunogenic or minimally immunogenic, and metastasized only at a relatively advanced stage of growth. The cell line grew either as a monolayer on plastic dishes, as tumor spheroids in spinner culture, as lung nodules following injection ofmore » a single-cell suspension into the tall veins of syngeneic mice, or as a solid tumor. Both diploid and tetraploid clonogenic cells were found in monolayer cultures of the RIF-1 line.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ning Shoucheng; Knox, Susan J.
2006-06-01
Purpose: The primary objective was to optimize the combined treatment regimen using arsenic trioxide (ATO) and fractionated radiotherapy for the treatment of malignant glioma. Methods and Materials: Nude mice with human glioma xenograft tumors were treated with fractionated local tumor radiation of 250 cGy/fraction/day and 5 mg/kg ATO for 5-10 days. Results: Time course experiments demonstrated that maximal tumor growth delay occurred when ATO was administered between 0 and 4 h after radiation. The combination treatment of ATO and radiation synergistically inhibited tumor growth and produced a tumor growth delay time of 13.2 days, compared with 1.4 days and 6.5more » days for ATO and radiation alone (p < 0.01), respectively. The use of concurrent therapy of radiation and ATO initially, followed by ATO as maintenance therapy, was superior to the use of preloading with ATO before combined therapy and produced a tumor growth delay time of 22.7 days as compared with 11.7 days for the ATO preloading regimen (p < 0.01). The maintenance dose of ATO after concurrent therapy was effective and important for continued inhibition of tumor growth. Conclusions: The combined use of fractionated radiation and ATO is effective for the treatment of glioma xenograft tumors. ATO was most effective when administered 0-4 h after radiation without pretreatment with ATO. These results have important implications for the optimization of treatment regimen using ATO and fractionated radiotherapy for the treatment of brain tumors.« less
Oxygen nanobubbles revert hypoxia by methylation programming.
Bhandari, Pushpak N; Cui, Yi; Elzey, Bennett D; Goergen, Craig J; Long, Christopher M; Irudayaraj, Joseph
2017-08-24
Targeting the hypoxic tumor microenvironment has a broad impact in cancer epigenetics and therapeutics. Oxygen encapsulated nanosize carboxymethyl cellulosic nanobubbles were developed for mitigating the hypoxic regions of tumors to weaken the hypoxia-driven pathways and inhibit tumor growth. We show that 5-methylcytosine (5mC) hypomethylation in hypoxic regions of a tumor can be reverted to enhance cancer treatment by epigenetic regulation, using oxygen nanobubbles in the sub-100 nm size range, both, in vitro and in vivo. Oxygen nanobubbles were effective in significantly delaying tumor progression and improving survival rates in mice models. Further, significant hypermethylation was observed in promoter DNA region of BRCA1 due to oxygen nanobubble (ONB) treatment. The nanobubbles can also reprogram several hypoxia associated and tumor suppressor genes such as MAT2A and PDK-1, in addition to serving as an ultrasound contrast agent. Our approach to develop nanosized oxygen encapsulated bubbles as an ultrasound contrast agent for methylation reversal is expected to have a significant impact in epigenetic programming and to serve as an adjuvant to cancer treatment.
Absence of ERK5/MAPK7 delays tumorigenesis in Atm−/− mice
Rovira-Clavé, Xavier; Gamez, Celina Paola Vasquez; Soriano, Francesc X.; Reina, Manuel; Espel, Enric
2016-01-01
Ataxia-telangiectasia mutated (ATM) is a cell cycle checkpoint kinase that upon activation by DNA damage leads to cell cycle arrest and DNA repair or apoptosis. The absence of Atm or the occurrence of loss-of-function mutations in Atm predisposes to tumorigenesis. MAPK7 has been implicated in numerous types of cancer with pro-survival and pro-growth roles in tumor cells, but its functional relation with tumor suppressors is not clear. In this study, we show that absence of MAPK7 delays death due to spontaneous tumor development in Atm−/− mice. Compared with Atm−/− thymocytes, Mapk7−/−Atm−/− thymocytes exhibited an improved response to DNA damage (increased phosphorylation of H2AX) and a restored apoptotic response after treatment of mice with ionizing radiation. These findings define an antagonistic function of ATM and MAPK7 in the thymocyte response to DNA damage, and suggest that the lack of MAPK7 inhibits thymic lymphoma growth in Atm−/− mice by partially restoring the DNA damage response in thymocytes. PMID:27793024
Poudel, Rishi R; Tiwari, Vivek; Kumar, Venkatesan S; Bakhshi, Sameer; Gamanagatti, Shivanand; Khan, Shah Alam; Rastogi, Shishir
2017-04-01
Local control of disease is one of the main goals of osteosarcoma management. We conducted a retrospective evaluation of 95 operated cases of osteosarcoma over 7 years to know about the factors associated with local recurrence in resource-challenged environment of the developing world. The factors which were evaluated and compared between local recurrence and non-local recurrence groups included demographic profile, site of tumor, whether biopsy done outside, type of surgery (limb salvage or amputation), presence of pathological fracture, vicinity of neurovascular bundle, tumor volume, histological subtype, chemotherapy induced necrosis, surgical margins, and delay in surgery. The time to local recurrence after surgery was also noted in the local recurrence group. At a mean follow-up of 2.8 years, biopsy done from outside the treating center and delay in surgery after completion of neo-adjuvant chemotherapy emerged as significant risk factors for local recurrence. Most of the local recurrences (80%) occurred within 12 months of the primary surgery. Lack of financial resources and availability of few tertiary care centers dealing with musculoskeletal oncology in the developing countries, lead to overburden with a long waiting list for tumor surgery making the scenario different from the Western world. © 2017 Wiley Periodicals, Inc.
Wafa, Latif A; Cheng, Helen; Plaa, Nathan; Ghaidi, Fariba; Fukumoto, Takahiro; Fazli, Ladan; Gleave, Martin E; Cox, Michael E; Rennie, Paul S
2012-06-15
The androgen receptor (AR) plays a central role in prostate cancer progression to the castration-resistant (CR) lethal state. L-Dopa decarboxylase (DDC) is an AR coactivator that increases in expression with disease progression and is coexpressed with the receptor in prostate adenocarcinoma cells, where it may enhance AR activity. Here, we hypothesize that the DDC enzymatic inhibitor, carbidopa, can suppress DDC-coactivation of AR and retard prostate tumor growth. Treating LNCaP prostate cancer cells with carbidopa in transcriptional assays suppressed the enhanced AR transactivation seen with DDC overexpression and decreased prostate-specific antigen (PSA) mRNA levels. Carbidopa dose-dependently inhibited cell growth and decreased survival in LNCaP cell proliferation and apoptosis assays. The inhibitory effect of carbidopa on DDC-coactivation of AR and cell growth/survival was also observed in PC3 prostate cancer cells (stably expressing AR). In vivo studies demonstrated that serum PSA velocity and tumor growth rates elevated ∼2-fold in LNCaP xenografts, inducibly overexpressing DDC, were reverted to control levels with carbidopa administration. In castrated mice, treating LNCaP tumors, expressing endogenous DDC, with carbidopa delayed progression to the CR state from 6 to 10 weeks, while serum PSA and tumor growth decreased 4.3-fold and 5.4-fold, respectively. Our study is a first time demonstration that carbidopa can abrogate DDC-coactivation of AR in prostate cancer cells and tumors, decrease serum PSA, reduce tumor growth and delay CR progression. Since carbidopa is clinically approved, it may be readily used as a novel therapeutic strategy to suppress aberrant AR activity and delay prostate cancer progression. Copyright © 2011 UICC.
LONG-TERM HEALTH EFFECTS FOLLOWING GESTATIONAL EXPOSURE TO PFOA IN MICE
Perfluorooctanoic acid (PFOA) is used in many commercial products as a surfactant. It has been shown to induce mammary tumors in lifetime fed adult female rats and to delay mammary gland development in mouse pups exposed to the compound prenatally. To evaluate the long-term healt...
... They are also more likely to develop gastric cancer and gastric carcinoid tumors. Brain and nervous system problems may continue or be permanent if treatment is delayed. A woman with a low B12 level may have a false positive Pap ... MD, Hematology/Oncology, Florida Cancer Specialists & Research Institute, Wellington, FL. Review provided by ...
Role of the TGF-Beta 1 in the Prevention of Prostate Cancer
2001-04-01
the prostate or seminal vesicles delayed tumor development in the TRAMP mice through autocrine and paracrine pathways. 14. SUBJECT TERMS 15. NUMBER OF...it imperative to develop prevention strategies against this disease. Modifications in environmental, dietary, endocrine, or genetic factors may play a...This hypothesis is being tested in TRAMP transgenic mice, which develop spontaneous prostate cancer with features similar to that of human prostate
Basic fibroblast growth factor in an animal model of spontaneous mammary tumor progression.
Kao, Steven; Mo, Jeffrey; Baird, Andrew; Eliceiri, Brian P
2012-06-01
Although basic fibroblast growth factor (FGF2) was the first pro-angiogenic molecule discovered, it has numerous activities on the growth and differentiation of non-vascular cell types. FGF2 is both stimulatory and inhibitory, depending on the cell type evaluated, the experimental design used and the context in which it is tested. Here, we investigated the effects of manipulating endogenous FGF2 on the development of mammary cancer to determine whether its endogenous contribution in vivo is pro- or anti-tumorigenic. Specifically, we examined the effects of FGF2 gene dosing in a cross between a spontaneous breast tumor model (PyVT+ mice) and FGF2-/- (FGF KO) mice. Using these mice, the onset and progression of mammary tumors was determined. As predicted, female FGF2 WT mice developed mammary tumors starting around 60 days after birth and by 80 days, 100% of FGF2 WT female mice had mammary tumors. In contrast, 80% of FGF2 KO female mice had no palpable tumors until nearly three weeks later (85 days) at times when 100% of the WT cohort was tumor positive. All FGF KO mice were tumor-bearing by 115 days. When we compared the onset of mammary tumor development and the tumor progression curves between FGF het and FGF KO mice, we observed a difference, which suggested a gene dosing effect. Analysis of the tumors demonstrated that there were significant differences in tumor size depending on FGF2 status. The delay in tumor onset supports a functional role for FGF2 in mammary tumor progression, but argues against an essential role for FGF2 in overall mammary tumor progression.
Ma, Zhikun; Blackwelder, Amanda J.; Lee, Harry; Zhao, Ming; Yang, Xiaohe
2015-01-01
There is increasing evidence that prenatal exposure to environmental factors may modify breast cancer risk later in life. This study aimed to investigate the effects of in utero exposure to low-dose alcohol on mammary development and tumor risk. Pregnant MMTV-erbB-2 mice were exposed to alcohol (6 g/kg/day) between day 13 and day 19 of gestation, and the female offspring were examined for tumor risk. Whole mount analysis indicated that in utero exposure to low-dose alcohol induced significant increases in ductal extension at 10 weeks of age. Molecular analysis showed that in utero alcohol exposure induced upregulation of ERα signaling and activation of Akt and Erk1/2 in pubertal mammary glands. However, enhanced signaling in the EGFR/erbB-2 pathway appeared to be more prominent in 10-week-old glands than did signaling in the other pathways. Interestingly, tumor development in mice with in utero exposure to low-dose alcohol was slightly delayed compared to control mice, but tumor multiplicity was increased. The results indicate that in utero exposure to low-dose alcohol induces the reprogramming of mammary development by mechanisms that include altered signaling in the estrogen receptor (ER) and erbB-2 pathways. The intriguing tumor development pattern might be related to alcohol dose and exposure conditions, and warrants further investigation. PMID:25853264
Igf-I regulates pheochromocytoma cell proliferation and survival in vitro and in vivo.
Fernández, María Celia; Venara, Marcela; Nowicki, Susana; Chemes, Héctor E; Barontini, Marta; Pennisi, Patricia A
2012-08-01
IGFs are involved in malignant transformation and growth of several tissues, including the adrenal medulla. The present study was designed to evaluate the impact of IGF-I on pheochromocytoma development. We used a murine pheochromocytoma (MPC) cell line (MPC4/30) and an animal model with a reduction of 75% in circulating IGF-I levels [liver-IGF-I-deficient (LID) mice] to perform studies in vitro and in vivo. We found that, in culture, IGF-I stimulation increases proliferation, migration, and anchorage-independent growth, whereas it inhibits apoptosis of MPC cells. When injected to control and to LID mice, MPC cells grow and form tumors with features of pheochromocytoma. Six weeks after cell inoculation, all control mice developed sc tumors. In contrast, in 73% of LID mice, tumor development was delayed to 7-12 wk, and the remaining 27% did not develop tumors up to 12 wk after inoculation. LID mice harboring MPC cells and treated with recombinant human IGF-I (LID+) developed tumors as controls. Tumors developed in control, LID, and LID+ mice had similar histology and were similarly positive for IGF-I receptor expression. The apoptotic index was higher in tumors from LID mice compared with those from control mice, whereas vascular density was decreased. In summary, our work demonstrates that IGF-I has a critical role in maintaining tumor phenotype and survival of already transformed pheochromocytoma cells and is required for the initial establishment of these tumors, providing encouragement to carry on research studies to address the IGF-I/IGF-I receptor system as a target of therapeutic strategies for pheochromocytoma treatment in the future.
Reproducibility of Digital PCR Assays for Circulating Tumor DNA Analysis in Advanced Breast Cancer
Hrebien, Sarah; O’Leary, Ben; Beaney, Matthew; Schiavon, Gaia; Fribbens, Charlotte; Bhambra, Amarjit; Johnson, Richard; Turner, Nicholas
2016-01-01
Circulating tumor DNA (ctDNA) analysis has the potential to allow non-invasive analysis of tumor mutations in advanced cancer. In this study we assessed the reproducibility of digital PCR (dPCR) assays of circulating tumor DNA in a cohort of patients with advanced breast cancer and assessed delayed plasma processing using cell free DNA preservative tubes. We recruited a cohort of 96 paired samples from 71 women with advanced breast cancer who had paired blood samples processed either immediately or delayed in preservative tubes with processing 48–72 hours after collection. Plasma DNA was analysed with multiplex digital PCR (mdPCR) assays for hotspot mutations in PIK3CA, ESR1 and ERBB2, and for AKT1 E17K. There was 94.8% (91/96) agreement in mutation calling between immediate and delayed processed tubes, kappa 0.88 95% CI 0.77–0.98). Discordance in mutation calling resulted from low allele frequency and likely stochastic effects. In concordant samples there was high correlation in mutant copies per ml plasma (r2 = 0.98; p<0.0001). There was elevation of total cell free plasma DNA concentrations in 10.3% of delayed processed tubes, although overall quantification of total cell free plasma DNA had similar prognostic effects in immediate (HR 3.6) and delayed (HR 3.0) tubes. There was moderate agreement in changes in allele fraction between sequential samples in quantitative mutation tracking (r = 0.84, p = 0.0002). Delayed processing of samples using preservative tubes allows for centralized ctDNA digital PCR mutation screening in advanced breast cancer. The potential of preservative tubes in quantitative mutation tracking requires further research. PMID:27760227
Reproducibility of Digital PCR Assays for Circulating Tumor DNA Analysis in Advanced Breast Cancer.
Hrebien, Sarah; O'Leary, Ben; Beaney, Matthew; Schiavon, Gaia; Fribbens, Charlotte; Bhambra, Amarjit; Johnson, Richard; Garcia-Murillas, Isaac; Turner, Nicholas
2016-01-01
Circulating tumor DNA (ctDNA) analysis has the potential to allow non-invasive analysis of tumor mutations in advanced cancer. In this study we assessed the reproducibility of digital PCR (dPCR) assays of circulating tumor DNA in a cohort of patients with advanced breast cancer and assessed delayed plasma processing using cell free DNA preservative tubes. We recruited a cohort of 96 paired samples from 71 women with advanced breast cancer who had paired blood samples processed either immediately or delayed in preservative tubes with processing 48-72 hours after collection. Plasma DNA was analysed with multiplex digital PCR (mdPCR) assays for hotspot mutations in PIK3CA, ESR1 and ERBB2, and for AKT1 E17K. There was 94.8% (91/96) agreement in mutation calling between immediate and delayed processed tubes, kappa 0.88 95% CI 0.77-0.98). Discordance in mutation calling resulted from low allele frequency and likely stochastic effects. In concordant samples there was high correlation in mutant copies per ml plasma (r2 = 0.98; p<0.0001). There was elevation of total cell free plasma DNA concentrations in 10.3% of delayed processed tubes, although overall quantification of total cell free plasma DNA had similar prognostic effects in immediate (HR 3.6) and delayed (HR 3.0) tubes. There was moderate agreement in changes in allele fraction between sequential samples in quantitative mutation tracking (r = 0.84, p = 0.0002). Delayed processing of samples using preservative tubes allows for centralized ctDNA digital PCR mutation screening in advanced breast cancer. The potential of preservative tubes in quantitative mutation tracking requires further research.
Craniopharyngioma and Cushing disease: case report.
Caceres, Adrian; Reitman, Aaron J; Tomita, Tadanori
2005-04-01
Craniopharyngioma is a common sellar region tumor occurring in children. It usually manifests as endocrinological deficits such as short stature, delayed puberty, and obesity. Patients with craniopharyngioma commonly present with visual deficits and hydrocephalus. The authors present the case of a child who presented with short stature and clinical evidence of Cushing disease (CD) associated with a suprasellar tumor. The patient underwent insertion of an Ommaya reservoir into the tumor's cystic portion. High adrenocorticotropic hormone (ACTH) levels were demonstrated within the cyst's fluid and in the serum. After adequate decompression of the tumor, the patient underwent total resection. The tumor pathology was compatible with an adamantinomatous craniopharyngioma and immunohistochemical studies failed to show staining for ACTH. Panhypopituitarism developed postoperatively in the patient and he received hormone substitution therapy with final adequate height and normal-high weight. The neurosurgical implications of CD along with a possible mechanism for this patient's presentation are discussed in detail on the basis of the pertinent literature.
[A Case of Delayed Dia-gnosis of Acral Lentiginous Melanoma].
Gottvaldová, M; Jedličková, H; Poprach, A; Vašků, V
2015-01-01
Melanoma is a malignant skin disease. The tumor development is caused by an uncontrollable proliferation of melanocytes. The most common occurrence is on the skin, but melanoma may also develop on the mucous membrane, meninges, and eyes. Some melanomas develop from melanocytic nevus. Acral lentiginous melanoma occurs on palms, feet, fingers and under nails, and is the most common type of melanoma for phototype VI. The most important factor for successful treatment of malignant melanoma is an early detection, excision of the primary tumor and histological staging. Surgical treatment of an early-stage melanoma is a key to successful therapy; however, many patients (mostly men) do not seek medical attention before it istoo late. This case study presents a 59-year-old patient, who suffers from white coat syndrome and whose finger was amputated for alleged gangrene. Subsequently, brownish black nodules appeared across his arm. Histological examination proved metastases of malignant melanoma. It was only at this phase, when the patient admitted a nevus at the tip of his amputated finger, from which ulceration and gangrene gradually emerged. This case demonstrates a combination of multiple unfavorable factors, which led to delayed diagnosis and therapy.
Adenoid cystic carcinoma: A review of recent advances, molecular targets, and clinical trials.
Dillon, Patrick M; Chakraborty, Samhita; Moskaluk, Christopher A; Joshi, Prashant J; Thomas, Christopher Y
2016-04-01
Adenoid cystic carcinoma (ACC) is a rare tumor of secretory glands. In this study, recent advances in molecular characterization and in therapeutics are reviewed. A search of articles in PubMed and of abstracts from national meetings was performed regarding ACC. Recent genetic analyses found that recurrent chromosome 6:9 translocations in ACC generate an MYB:NFIB gene fusion resulting in overexpression of the MYB oncoprotein. Several other frequent mutations are recently published that may be relevant for drug development. Several trials of targeted drugs are reviewed. Some agents delay tumor progression, but tumor responses remain rare. ACCs have a characteristic chromosomal translocation, but also frequently pick up additional mutations. Clinical research is limited by the rarity and slow growth of ACC. Several ongoing trials are testing agents that inhibit fibroblast growth factor receptor signaling or other signaling pathways. Novel treatments based on the recently sequenced tumor genome are under development. © 2015 Wiley Periodicals, Inc.
Sasa health exerts a protective effect on Her2/NeuN mammary tumorigenesis.
Ren, Mingqiang; Reilly, R Todd; Sacchi, Nicoletta
2004-01-01
Bamboo grass leaves of different Sasa species have been widely used in food and medicine in Eastern Asia for hundreds of years. Of special interest are Kumazasa (Sasa senanensis rehder) leaves used to prepare an alkaline extract known as Sasa Health. This extract was reported to inhibit both the development and growth of mammary tumors in a mammary tumor strain of virgin SHN mice (1). We found that Sasa Health exerts a significant protective effect on spontaneous mammary tumorigenesis in another mouse model of human breast cancer, the transgenic FVB-Her2/NeuN mouse model. Two cohorts of Her2/NeuN female mice of different age (eleven-week-old and twenty-four-week-old) chronically treated with Sasa Health in drinking water showed both a delay in the development of tumors and reduced tumor multiplicity. Sasa Health also induced inhibition of mammary duct branching and side bud development in association with reduced angiogenesis. Altogether these findings indicate that Sasa Health contains phytochemicals that can effectively retard spontaneous mammary tumorigenesis.
NASA Astrophysics Data System (ADS)
Kozikowski, Raymond T.; Sorg, Brian S.
2012-03-01
Chemotherapy is a standard treatment for metastatic cancer. However drug toxicity limits the dosage that can safely be used, thus reducing treatment efficacy. Drug carrier particles, like liposomes, can help reduce toxicity by shielding normal tissue from drug and selectively depositing drug in tumors. Over years of development, liposomes have been optimized to avoid uptake by the Reticuloendothelial System (RES) as well as effectively retain their drug content during circulation. As a result, liposomes release drug passively, by slow leakage, but this uncontrolled drug release can limit treatment efficacy as it can be difficult to achieve therapeutic concentrations of drug at tumor sites even with tumor-specific accumulation of the carriers. Lipid membranes can be photochemically lysed by both Type I (photosensitizer-substrate) and Type II (photosensitizer-oxygen) reactions. It has been demonstrated in red blood cells (RBCs) in vitro that these photolysis reactions can occur in two distinct steps: a light-initiated reaction followed by a thermally-initiated reaction. These separable activation steps allow for the delay of photohemolysis in a controlled manner using the irradiation energy, temperature and photosensitizer concentration. In this work we have translated this technique from RBCs to liposomal nanoparticles. To that end, we present in vitro data demonstrating this delayed bolus release from liposomes, as well as the ability to control the timing of this event. Further, we demonstrate for the first time the improved delivery of bioavailable cargo selectively to target sites in vivo.
Metformin improves defective hematopoiesis and delays tumor formation in Fanconi anemia mice.
Zhang, Qing-Shuo; Tang, Weiliang; Deater, Matthew; Phan, Ngoc; Marcogliese, Andrea N; Li, Hui; Al-Dhalimy, Muhsen; Major, Angela; Olson, Susan; Monnat, Raymond J; Grompe, Markus
2016-12-15
Fanconi anemia (FA) is an inherited bone marrow failure disorder associated with a high incidence of leukemia and solid tumors. Bone marrow transplantation is currently the only curative therapy for the hematopoietic complications of this disorder. However, long-term morbidity and mortality remain very high, and new therapeutics are badly needed. Here we show that the widely used diabetes drug metformin improves hematopoiesis and delays tumor formation in Fancd2 -/- mice. Metformin is the first compound reported to improve both of these FA phenotypes. Importantly, the beneficial effects are specific to FA mice and are not seen in the wild-type controls. In this preclinical model of FA, metformin outperformed the current standard of care, oxymetholone, by improving peripheral blood counts in Fancd2 -/- mice significantly faster. Metformin increased the size of the hematopoietic stem cell compartment and enhanced quiescence in hematopoietic stem and progenitor cells. In tumor-prone Fancd2 -/- Trp53 +/- mice, metformin delayed the onset of tumors and significantly extended the tumor-free survival time. In addition, we found that metformin and the structurally related compound aminoguanidine reduced DNA damage and ameliorated spontaneous chromosome breakage and radials in human FA patient-derived cells. Our results also indicate that aldehyde detoxification might be one of the mechanisms by which metformin reduces DNA damage in FA cells. © 2016 by The American Society of Hematology.
Hirakawa, Hirokazu; Fujisawa, Hiroshi; Masaoka, Aya; Noguchi, Miho; Hirayama, Ryoichi; Takahashi, Momoko; Fujimori, Akira; Okayasu, Ryuichi
2015-03-01
Hsp90 inhibitors have become well-studied antitumor agents for their selective property against tumors versus normal cells. The combined treatment of Hsp90 inhibitor and conventional photon radiation also showed more effective tumor growth delay than radiation alone. However, little is known regarding the combined treatment of Hsp90 inhibitor and heavy-ion irradiation. In this study, SQ5 human lung tumor cells were used in vitro for clonogenic cell survival and in vivo for tumor growth delay measurement using a mouse xenograft model after 17-allylamino-17-demethoxygeldanamycin (17AAG) pretreatment and carbon ion irradiation. Repair of DNA double strand breaks (DSBs) was also assessed along with expressions of DSB repair-related proteins. Cell cycle analysis after the combined treatment was also performed. The combined treatment of 17AAG and carbon ions revealed a promising treatment option in both in vitro and in vivo studies. One likely cause of this effectiveness was shown to be the inhibition of homologous recombination repair by 17AAG. The more intensified G2 cell cycle delay was also associated with the combined treatment when compared with carbon ion treatment alone. Our findings indicate that the combination of Hsp90 inhibition and heavy-ion irradiation provides a new effective therapeutic alternative for treatment of solid tumors. © 2015 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Yingling, Jonathan M.; McMillen, William T.; Yan, Lei; Huang, Huocong; Sawyer, J. Scott; Graff, Jeremy; Clawson, David K.; Britt, Karen S.; Anderson, Bryan D.; Beight, Douglas W.; Desaiah, Durisala; Lahn, Michael M.; Benhadji, Karim A.; Lallena, Maria J.; Holmgaard, Rikke B.; Xu, Xiaohong; Zhang, Faming; Manro, Jason R.; Iversen, Philip W.; Iyer, Chandrasekar V.; Brekken, Rolf A.; Kalos, Michael D.; Driscoll, Kyla E.
2018-01-01
Transforming growth factor-β (TGFβ) is an important driver of tumor growth via intrinsic and extrinsic mechanisms, and is therefore an attractive target for developing cancer therapeutics. Using preclinical models, we characterized the anti-tumor activity of a small molecule inhibitor of TGFβ receptor I (TGFβRI), galunisertib (LY2157299 monohydrate). Galunisertib demonstrated potent and selective inhibition of TGFβRI with corresponding inhibition of downstream signaling via inhibition of SMAD phosphorylation (pSMAD). Galunisertib also inhibited TGFβ-induced pSMAD in vivo, which enabled a pharmacokinetic/pharmacodynamic profile in Calu6 and EMT6-LM2 tumors. Galunisertib demonstrated anti-tumor activity including inhibition of tumor cell migration and mesenchymal phenotype, reversal of TGFβ-mediated immune-suppression, and tumor growth delay. A concentration-effect relationship was established with a dosing schedule to achieve the optimal level of target modulation. Finally, a rat model demonstrated a correlation between galunisertib-dependent inhibition of pSMAD in tumor tissues and in PBMCs, supporting the use of PBMCs for assessing pharmacodynamic effects. Galunisertib has been tested in several clinical studies with evidence of anti-tumor activity observed in subsets of patients. Here, we demonstrate that galunisertib inhibits a number of TGFβ-dependent functions leading to anti-tumor activity. The enhanced understanding of galunisertib provides rationale for further informed clinical development of TGFβ pathway inhibitors. PMID:29467918
Remote acute demyelination after focal proton radiation therapy for optic nerve meningioma.
Redjal, Navid; Agarwalla, Pankaj K; Dietrich, Jorg; Dinevski, Nikolaj; Stemmer-Rachamimov, Anat; Nahed, Brian V; Loeffler, Jay S
2015-08-01
We present a unique patient with delayed onset, acute demyelination that occurred distant to the effective field of radiation after proton beam radiotherapy for an optic nerve sheath meningioma. The use of stereotactic radiotherapy as an effective treatment modality for some brain tumors is increasing, given technological advances which allow for improved targeting precision. Proton beam radiotherapy improves the precision further by reducing unnecessary radiation to surrounding tissues. A 42-year-old woman was diagnosed with an optic nerve sheath meningioma after initially presenting with vision loss. After biopsy of the lesion to establish diagnosis, the patient underwent stereotactic proton beam radiotherapy to a small area localized to the tumor. Subsequently, the patient developed a large enhancing mass-like lesion with edema in a region outside of the effective radiation field in the ipsilateral frontal lobe. Given imaging features suggestive of possible primary malignant brain tumor, biopsy of this new lesion was performed and revealed an acute demyelinating process. This patient illustrates the importance of considering delayed onset acute demyelination in the differential diagnosis of enhancing lesions in patients previously treated with radiation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chen, Ling; Zang, Fengchao; Wu, Haoan; Li, Jianzhong; Xie, Jun; Ma, Ming; Gu, Ning; Zhang, Yu
2018-01-25
Micelle drugs based on a polymeric platform offer great advantages over liposomal drugs for tumor treatment. Although nearly all of the nanomedicines approved in the clinical use can passively target to the tumor tissues on the basis of an enhanced permeability and retention (EPR) effect, the nanodrugs have shown heterogenous responses in the patients. This phenomenon may be traced back to the EPR effect of tumor, which is extremely variable in the individuals from extensive studies. Nevertheless, there is a lack of experimental data describing the EPR effect and predicting its impact on therapeutic efficacy of nanoagents. Herein, we developed 32 nm magnetic iron oxide nanoparticles (MION) as a T 2 -weighted contrast agent to describe the EPR effect of each tumor by in vivo magnetic resonance imaging (MRI). The MION were synthesized by a thermal decomposition method and modified with DSPE-PEG2000 for biological applications. The PEGylated MION (Fe 3 O 4 @PEG) exhibited high r 2 of 571 mM -1 s -1 and saturation magnetization (M s ) of 94 emu g -1 Fe as well as long stability and favorable biocompatibility through the in vitro studies. The enhancement intensities of the tumor tissue from the MR images were quantitatively measured as TNR (Tumor/Normal tissue signal Ratio) values, which were correlated with the delay of tumor growth after intravenous administration of the PLA-PEG/PTX micelle drug. The results demonstrated that the group with the smallest TNR values (TNR < 0.5) displayed the best tumor inhibitory effect. In addition, there was a superior correlation between TNR value and relative tumor delay in individual mice. These analysis results indicated that the TNR value of the tumor region enhanced by Fe 3 O 4 @PEG (d = 32 nm) could be used to predict the therapeutic efficacy of the micelle drugs (d ≤ 32 nm) in a certain period of time. Fe 3 O 4 @PEG has a potential to serve as an ideal MRI contrast agent to visualize the EPR effect in patients for accurate medication guidance of micelle drugs in the future treatment of tumors.
The High Radiosensitizing Efficiency of a Trace of Gadolinium-Based Nanoparticles in Tumors
NASA Astrophysics Data System (ADS)
Dufort, Sandrine; Le Duc, Géraldine; Salomé, Murielle; Bentivegna, Valerie; Sancey, Lucie; Bräuer-Krisch, Elke; Requardt, Herwig; Lux, François; Coll, Jean-Luc; Perriat, Pascal; Roux, Stéphane; Tillement, Olivier
2016-07-01
We recently developed the synthesis of ultrasmall gadolinium-based nanoparticles (GBN), (hydrodynamic diameter <5 nm) characterized by a safe behavior after intravenous injection (renal clearance, preferential accumulation in tumors). Owing to the presence of gadolinium ions, GBN can be used as contrast agents for magnetic resonance imaging (MRI) and as radiosensitizers. The attempt to determine the most opportune delay between the intravenous injection of GBN and the irradiation showed that a very low content of radiosensitizing nanoparticles in the tumor area is sufficient (0.1 μg/g of particles, i.e. 15 ppb of gadolinium) for an important increase of the therapeutic effect of irradiation. Such a promising and unexpected result is assigned to a suited distribution of GBN within the tumor, as revealed by the X-ray fluorescence (XRF) maps.
Ling, Wenwu; Ma, Xuelei; Luo, Yan; Chen, Linyan; Wang, Huiyao; Wang, Xiaoling; Chen, Ni; Zeng, Hao; Li, Yongzhong; Cai, Diming
2017-01-01
This study was to investigate the features of renal carcinomas associated with Xp11.2 translocations/TFE3 gene fusions (Xp11.2-RCC) on conventional ultrasound (US) and contrast-enhanced ultrasound (CEUS). US and CEUS features of twenty-two cases with histopathologically proven Xp11.2-RCC were retrospectively reviewed. 22 patients (11 males, 11 females) were included in this study, with a mean age of 28.3 ± 20.4 years. Eight tumors (36.3%, 8/22) were in left kidney, and 14 tumors (63.7%, 14/22) were in right kidney. All tumors (100%, 22/22) were mixed echogenicity type. 13 tumors (59.1%, 13/22) presented small dotted calcifications. The boundary of 14 tumors (63.6%, 14/22) was sharp and the other 8 tumors' (36.4%, 8/22) boundary was blurry. By CEUS, in early phase, the solid element of all tumors showed obvious enhancement. In delayed phase, 13 tumors showed hypoenhancement, seven tumors showed isoenhancement, and 2 tumors showed hyperenhancement. There were irregular nonenhancement areas in all tumors inside. By US and CEUS, when children and adolescents were found to have hyperechoic mixed tumor in kidney with sharp margin and calcification, and the tumors showed obvious enhancement and hypoenhancement with irregular nonenhancement areas in the tumor in early phase and delayed phase, respectively, Xp11.2-RCC should be suspected.
Chen, Chien P; Weinberg, Vivian K; Jahan, Thierry M; Jablons, David M; Yom, Sue S
2011-11-01
For patients with stage III non-small cell lung cancer treated with induction chemotherapy (ICT), delayed initiation of subsequent radiotherapy (RT) may allow for repopulation in the interval between treatment modalities and during the early phase of RT. We quantified the impact of postinduction RT timing by evaluating the pace of tumor regrowth. Institutionally approved retrospective review identified 21 analyzable patients with stage III non-small cell lung cancer who had platinum-based ICT followed by RT+/- chemotherapy from 2002 to 2009. Radiographic response was determined by RECIST criteria and the volume of the single largest tumor mass on the pre-ICT, post-ICT, and RT-planning computed tomography scans. After ICT, the median percent volume change from pre-ICT baseline was -41% (range -86 to +86%). By the RT-planning computed tomography scan, the median percent volume change from the post-ICT timepoint was +40% (range -11 to +311%) and the median volume change was +20 ml (range -4 to 102 ml); these changes were significant (p = 0.0002). Similar results were seen for tumor diameter. A correlation was observed between the amount of delay and degree of regrowth for percent volume (p = 0.0006) and percent diameter change (p = 0.003). A delay greater than 21 days produced greater increases in percent volume change (p = 0.002) and percent diameter (p = 0.055) than lesser delays. After ICT, tumor regrowth can occur within a few weeks. Radiation treatment planning should begin as soon as possible after the administration of ICT to maximize the benefits of cytoreduction.
Yu, Fang; Shi, Ying; Wang, Junfeng; Li, Juan; Fan, Daping; Ai, Walden
2013-01-01
Increasing evidence indicates that myeloid-derived suppressor cells (MDSCs) negatively regulate immune responses during tumor progression, inflammation and infection. However, the underlying molecular mechanisms of their development and mobilization remain to be fully delineated. Kruppel-like factor KLF4 is a transcription factor that has an oncogenic function in breast cancer development, but its function in tumor microenvironment, a critical component for tumorigenesis, has not been examined. By using a spontaneously metastatic 4T1 breast cancer mouse model and an immunodeficient NOD/SCID mouse model, we demonstrated that KLF4 knockdown delayed tumor development and inhibited pulmonary metastasis, which was accompanied by decreased accumulation of MDSCs in bone marrow, spleens and primary tumors. Mechanistically, we found that KLF4 knockdown resulted in a significant decrease of circulating GM-CSF, an important cytokine for MDSC biology. Consistently, recombinant GM-CSF restored the frequency of MDSCs in purified bone marrow cells incubated with conditioned medium from KLF4 deficient cells. In addition, we identified CXCL5 as a critical mediator to enhance the expression and function of GM-CSF. Reduced CXCL5 expression by KLF4 knockdown in primary tumors and breast cancer cells was correlated with a decreased GM-CSF expression in our mouse models. Finally, we found that CXCL5/CXCR2 axis facilitated MDSC migration and that anti-GM-CSF antibodies neutralized CXCL5-induced accumulation of MDSCs. Taken together, our data suggest that KLF4 modulates maintenance of MDSCs in bone marrow by inducing GM-CSF production via CXCL5 and regulates recruitment of MDSCs into the primary tumors through the CXCL5/CXCR2 axis, both of which contribute to KLF4-mediated mammary tumor development. PMID:23737434
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, J.M.; Twentyman, P.R.; Zamvil, S.S.
1980-03-01
The radiation response of logarithmic growth phase and fed plateau phase RIF-1 cells in vitro was found to be characterized by D/sub 0/ values of 110 and 133 rads and extrapolation numbs of 36 and 28, respectively. The response of the tumor in vivo to X-irradiation in nonanesthetized mice showed a dependence on the tumor implantation site. In the leg muscle, the response indicated that most cells were at an intermediate level of oxygenation, whereas in the subcutaneous tissue of the flank, the response of the tumor indicated that it had a small fraction of hypoxic cells of maximum radioresistance.more » Misonidazole radiosensitized the leg-implanted tumor as measured both by cell survival and regrowth delay. The tumor was relatively insensitive to a single dose of 1,3-bis(2-chloroethyl)-1-nitrosourea, sensitive to a single dose of cis-platinum, and highly sensitive to a single dose of cyclophosphamide.« less
Anaplastic sarcoma of the kidney.
Labanaris, Apostolos; Zugor, Vahudin; Smiszek, Robert; Nützel, Reinhold; Kühn, Reinhard
2009-02-15
Wilms tumor can appear with a wide spectrum of morphologic features and can sometimes cover or delay the recognition of other clinicopathologic entities of the kidney. We present a case of a new tumor entity of the kidney, namely the anaplastic sarcoma of the kidney, a tumor of high malignancy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, B; He, W; Cvetkovic, D
Purpose: It has recently been shown that non-thermal pulsed high intensity focused ultrasound (pHIFU) has a cell-killing effect. The purpose of the study is to investigate the sonosensitizing effect of 5-Aminolevulinic Acid (5-ALA) in non-thermal pHIFU cancer therapy. Methods: FaDu human head and neck squamous cell carcinoma cells were injected subcutaneously in the flanks of nude mice. After one to two weeks, the tumors reached the volume of 112 ± 8 mm3 and were assigned randomly into a non-thermal pHIFU group (n=9) and a non-thermal sonodynamic therapy (pHIFU after 5-ALA administration) group (n=7). The pHIFU treatments (parameters: 1 MHz frequency;more » 25 W acoustic power; 0.1 duty cycle; 60 seconds duration) were delivered using an InSightec ExAblate 2000 system with a GE Signa 1.5T MR scanner. The mice in the non-thermal sonodynamic group received 5-ALA tail-vein injection 4 hours prior to the pHIFU treatment. The tumor growth was monitored using the CT scanner on a Sofie-Biosciences G8 PET/CT system. Results: The tumors in this study grew very aggressively and about 60% of the tumors in this study developed ulcerations at various stages. Tumor growth delay after treatments was observed by comparing the treated (n=9 in pHIFU group; n=7 in sonodynamic group) and untreated tumors (n=17). However, no statistically significant differences were found between the non-thermal pHIFU and non-thermal sonodynamic group. The mean normalized tumor volume of the untreated tumors on Day 7 after their first CT scans was 7.05 ± 0.54, while the normalized volume of the treated tumors on Day 7 after treatment was 5.89 ± 0.79 and 6.27 ± 0.47 for the sonodynamic group and pHIFU group, respectively. Conclusion: In this study, no significant sonosensitizing effects of 5-ALA were obtained on aggressive FaDu tumors despite apparent tumor growth delay in some mice treated with non-thermal sonodynamic therapy.« less
Jiang, Q; Da, W; Ou, Y
2001-11-01
Two kinds of murine interleukin-12 (mIL-12) fusion gene vaccines were used to treat the murine low-load malignant T cell lymphoma EL4 as minimal residual disease (MRD) model. C57BL/6 synergistical mice were subcutaneously inoculated with 1 x 10(6) wild-type (wt) EL4 tumor cells as low-load lymphoma model treated with two mIL-12 gene vaccines. Package cell line PA317/12 producing mIL-12 retrovirus (RV) was used as in vivo vaccine and EL4 tumor cells transferred with mIL-12 gene as ex vivo vaccine. In both mIL-12 gene vaccine-treated groups, there was no tumor growth in 50% mice 60 days after inoculation. Nine of these no tumor growth mice were re-challenged with 5 x 10(5) wt EL4 cells, and 5 of them survived without tumors in another 60 days. All control mice died with tumors within one month after inoculation. Among those developed tumors in both vaccine-treated groups, the development of tumors was delayed, the survival period prolonged (P < 0.01), and the tumors size at death smaller (P < 0.05) as compared with the controls. In the long-survived vaccine-treated mice, no residual tumor cells were found by morphological examination. Both IL-12 gene vaccines can efficiently eliminate wt EL4 MRD in C57BL/6 mice.
Targeted delayed scanning at CT urography: a worthwhile use of radiation?
Hack, Kalesha; Pinto, Patricia A; Gollub, Marc J
2012-10-01
To determine whether ureteral segments not filled with contrast material at computed tomographic (CT) urography ever contain tumor detectable only by filling these segments with contrast material. In this institutional review board-approved, HIPAA-compliant retrospective study, with waiver of informed consent, databases were searched for all patients who underwent heminephroureterectomy or ureteroscopy between January 1, 2001, and December 31, 2009, with available CT urography findings in the 12 months prior to surgery or biopsy and patients who had undergone at least two CT urography procedures with a minimum 5-year follow-up between studies. One of two radiologists blinded to results of pathologic examination recorded location of unfilled segments, time of scan, subsequent filling, and pathologic or 5-year follow-up CT urography results. Tumors were considered missed in an unfilled segment if tumor was found at pathologic examination or follow-up CT urography in the same one-third of the ureter and there were no secondary signs of a mass with other index CT urography sequences. Estimated radiation dose for additional delayed sequences was calculated with a 32-cm phantom. In 59 male and 33 female patients (mean age, 66 years) undergoing heminephroureterectomy, 27 tumors were present in 41 partially nonopacified ureters in 20 patients. Six tumors were present in nonopacified segments (one multifocal, none bilateral); all were identifiable by means of secondary signs present with earlier sequences. Among 182 lesions biopsied at ureteroscopy in 124 male and 53 female patients (mean age, 69 years), 28 tumors were present in nonopacified segments in 25 patients (four multifocal, none bilateral), all with secondary imaging signs detectable without delayed scanning. In 64 male and 29 female patients (mean age, 69 years) who underwent 5-year follow-up CT urography, three new tumors were revealed in three patients; none occurred in the unfilled ureter at index CT urography. Estimated radiation dose from additional sequences was 4.3 mSv per patient. Targeted delayed scanning at CT urography yielded no additional ureteral tumors and resulted in additional radiation exposure. © RSNA, 2012.
Flores, Leo G; Yeh, Hsin-Hsien; Soghomonyan, Suren; Young, Daniel; Bankson, James; Hu, Qianghua; Alauddin, Mian; Huff, Vicki; Gelovani, Juri G
2013-04-01
The understanding of the role of genetic alterations in Wilms tumor development could be greatly advanced using a genetically engineered mouse models that can replicate the development and progression of this disease in human patients and can be monitored using non-invasive structural and molecular imaging optimized for renal tumors. Repetitive dual-contrast computed tomography (CT; intravenous and intraperitoneal contrast), T2-weighted magnetic resonance imaging (MRI), and delayed 2-deoxy-2-[(18)F]fluoro-D-glucose ((18)F-FDG) positron emission tomography (PET) were utilized for characterization of Igf2 biallelic expression/Wt1 knockout mouse model of Wilms tumor. For CT imaging, Ioversol 678 mg/ml in 200 μl was administered i.p. followed by 100 μl injected intravenously at 20 and 15 min prior to imaging, respectively. Static PET imaging studies were acquired at 1, 2, and 3 h after i.v. administration of (18)F-FDG (400 μCi). Coronal and sagittal T1-weighted images (TE/TR 8.5/620 ms) were acquired before and immediately after i.v. injection of 0.4 ml/kg gadopentetate dimeglumine followed by T2-weighted images (TE/TR 60/300 ms). Tumor tissue samples were characterized by histopathology and immunohistochemistry for Glut1, FASN, Ki67, and CD34. In addition, six Wt1-Igf2 mice were treated with a mitogen-activated protein kinase (MEK) inhibitor U0126 (50 μmol/kg i.p.) every 4 days for 6 weeks. (18)F-FDG PET/CT imaging was repeated at different days after initiation of therapy with U0126. The percent change of initial tumor volume and SUV was compared to non-treated historic control animals. Overall, the best tumor-to-adjacent kidney contrast as well as soft tissue contrast for other abdominal organs was achieved using T2-weighted MRI. Delayed (18)F-FDG PET (3-h post (18)F-FDG administration) and dual-contrast CT (intravenous and intraperitoneal contrast) provided a more accurate anatomic and metabolic characterization of Wilms tumors in Wt1-Igf2 mice during early development and progression of renal tumors. Over the 8-month period, 46 Wt1-Igf2 mice and 8 littermate control mice were studied. Renal tumors were identified in 54.3 % of Wt1-Igf2 mice between post-natal 50-100 days. In 35.6 % of Wt1-Igf2 mice, tumors were localized in the right kidney; in 24 %, in the left kidney, while 40.4 % of Wt1-Igf2 mice had bilateral kidney tumors. Metastatic lesions were identified in 15.4 % of Wt1-Igf2 mice. Increased levels of Glut1 and IGF1R expression, high Ki67 labeling index, and a dense network of CD34+ microvessels in renal tumors was consistent with increased (18)F-FDG accumulation. Treatment with a MEK 1/2 inhibitor U0126 did not cause the inhibition of tumor growth as compared to untreated animals. However, after the first three to four doses (~2 weeks of treatment), a decrease in (18)F-FDG SUV was observed, as compared to pre-treatment levels (p < 0.05, paired Student t test), which constitutes a metabolic response. Six weeks later, despite continuing therapy, the (18)F-FDG SUV increased again to previous levels. The optimized dual contrast PET/CT imaging with early post i.v. and i.p. contrast CT and 3 h delayed PET imaging after (18)F-FDG administration provides a sensitive and reliable method for detecting early tumor lesions in this endogenous mouse model of Wilms tumor and for monitoring their growth in response to targeted therapies. Therapy with MEK inhibitor U0126 produces only a transient inhibition of tumor glycolytic activity but does not inhibit tumor growth, which is due to continuing IGF2-induced signaling from IGF1R through the PI3K-AKT-mTOR pathway.
Erbb2 up-regulation of ADAM12 expression accelerates skin cancer progression.
Rao, Velidi H; Vogel, Kristen; Yanagida, Jodi K; Marwaha, Nitin; Kandel, Amrit; Trempus, Carol; Repertinger, Susan K; Hansen, Laura A
2015-10-01
Solar ultraviolet (UV) radiation can cause severe damage to the skin and is the primary cause of most skin cancer. UV radiation causes DNA damage leading to mutations and also activates the Erbb2/HER2 receptor through indirect mechanisms involving reactive oxygen species. We hypothesized that Erbb2 activation accelerates the malignant progression of UV-induced skin cancer. Following the induction of benign squamous papillomas by UV exposure of v-ras(Ha) transgenic Tg.AC mice, mice were treated topically with the Erbb2 inhibitor AG825 and tumor progression monitored. AG825 treatment reduced tumor volume, increased tumor regression, and delayed the development of malignant squamous cell carcinoma (SCC). Progression to malignancy was associated with increased Erbb2 and ADAM12 (A Disintegin And Metalloproteinase 12) transcripts and protein, while inhibition of Erbb2 blocked the increase in ADAM12 message upon malignant progression. Similarly, human SCC and SCC cell lines had increased ADAM12 protein and transcripts when compared to normal controls. To determine whether Erbb2 up-regulation of ADAM12 contributed to malignant progression of skin cancer, Erbb2 expression was modulated in cultured SCC cells using forced over-expression or siRNA targeting, demonstrating up-regulation of ADAM12 by Erbb2. Furthermore, ADAM12 transfection or siRNA targeting revealed that ADAM12 increased both the migration and invasion of cutaneous SCC cells. Collectively, these results suggest Erbb2 up-regulation of ADAM12 as a novel mechanism contributing to the malignant progression of UV-induced skin cancer. Inhibition of Erbb2/HER2 reduced tumor burden, increased tumor regression, and delayed the progression of benign skin tumors to malignant SCC in UV-exposed mice. Inhibition of Erbb2 suppressed the increase in metalloproteinase ADAM12 expression in skin tumors, which in turn increased migration and tumor cell invasiveness. © 2014 Wiley Periodicals, Inc.
Tumor radiosensitization by monomethyl auristatin E: mechanism of action and targeted delivery.
Buckel, Lisa; Savariar, Elamprakash N; Crisp, Jessica L; Jones, Karra A; Hicks, Angel M; Scanderbeg, Daniel J; Nguyen, Quyen T; Sicklick, Jason K; Lowy, Andrew M; Tsien, Roger Y; Advani, Sunil J
2015-04-01
Intrinsic tumor resistance to radiotherapy limits the efficacy of ionizing radiation (IR). Sensitizing cancer cells specifically to IR would improve tumor control and decrease normal tissue toxicity. The development of tumor-targeting technologies allows for developing potent radiosensitizing drugs. We hypothesized that the anti-tubulin agent monomethyl auristatin E (MMAE), a component of a clinically approved antibody-directed conjugate, could function as a potent radiosensitizer and be selectively delivered to tumors using an activatable cell-penetrating peptide targeting matrix metalloproteinases and RGD-binding integrins (ACPP-cRGD-MMAE). We evaluated the ability of MMAE to radiosensitize both established cancer cells and a low-passage cultured human pancreatic tumor cell line using clonogenic and DNA damage assays. MMAE sensitized colorectal and pancreatic cancer cells to IR in a schedule- and dose-dependent manner, correlating with mitotic arrest. Radiosensitization was evidenced by decreased clonogenic survival and increased DNA double-strand breaks in irradiated cells treated with MMAE. MMAE in combination with IR resulted in increased DNA damage signaling and activation of CHK1. To test a therapeutic strategy of MMAE and IR, PANC-1 or HCT-116 murine tumor xenografts were treated with nontargeted free MMAE or tumor-targeted MMAE (ACPP-cRGD-MMAE). While free MMAE in combination with IR resulted in tumor growth delay, tumor-targeted ACPP-cRGD-MMAE with IR produced a more robust and significantly prolonged tumor regression in xenograft models. Our studies identify MMAE as a potent radiosensitizer. Importantly, MMAE radiosensitization can be localized to tumors by targeted activatable cell-penetrating peptides. ©2015 American Association for Cancer Research.
Tumor radiosensitization by monomethyl auristatin E: mechanism of action and targeted delivery
Crisp, Jessica L.; Jones, Karra A.; Hicks, Angel M.; Scanderbeg, Daniel J.; Nguyen, Quyen T.; Sicklick, Jason K.; Lowy, Andrew M.; Tsien, Roger Y.; Advani, Sunil J.
2015-01-01
Intrinsic tumor resistance to radiotherapy limits the efficacy of ionizing radiation (IR). Sensitizing cancer cells specifically to IR would improve tumor control and decrease normal tissue toxicity. The development of tumor targeting technologies allows for developing potent radiosensitizing drugs. We hypothesized that the anti-tubulin agent monomethyl auristatin E (MMAE), a component of a clinically approved antibody-directed conjugate, could function as a potent radiosensitizer and be selectively delivered to tumors using an activatable cell penetrating peptide targeting matrix metalloproteinases and RGD binding integrins (ACPP-cRGD-MMAE). We evaluated the ability of MMAE to radiosensitize both established cancer cells and a low passage cultured human pancreatic tumor cell line using clonogenic and DNA damage assays. MMAE sensitized colorectal and pancreatic cancer cells to IR in a schedule and dose dependent manner correlating with mitotic arrest. Radiosensitization was evidenced by decreased clonogenic survival and increased DNA double strand breaks in irradiated cells treated with MMAE. MMAE in combination with IR resulted in increased DNA damage signaling and activation of CHK1. To test a therapeutic strategy of MMAE and IR, PANC-1 or HCT-116 murine tumor xenografts were treated with non-targeted free MMAE or tumor targeted MMAE (ACPP-cRGD-MMAE). While free MMAE in combination with IR resulted in tumor growth delay, tumor targeted ACPP-cRGD-MMAE with IR produced a more robust and significantly prolonged tumor regression in xenograft models. Our studies identify MMAE as a potent radiosensitizer. Importantly, MMAE radiosensitization can be localized to tumors by targeted activatable cell penetrating peptides. PMID:25681274
Wang, Huaijun; Miranda Cona, Marlein; Chen, Feng; Li, Junjie; Yu, Jie; Feng, Yuanbo; Peeters, Ronald; De Keyzer, Frederik; Marchal, Guy; Ni, Yicheng
2011-09-01
: To compare a commercial contrast agent (CA) Dotarem and a necrosis-avid CA (NACA) for their ability to evaluate the therapeutic necrosis with a vascular disrupting agent (VDA) on magnetic resonance imaging in rodent liver tumors to determine which could better correlate with the histopathologic outcome. : After the VDA treatment, 16 rats with 32 liver rhabdomyosarcomas were randomized into Dotarem and NACA groups (n = 8 per group) for both interindividual and intraindividual comparisons. T2-weighted imaging, T1-weighted imaging (T1WI), contrast-enhanced T1-weighted imaging (CE-T1WI), and diffusion-weighted imaging were performed at baseline, after VDA treatment and CA injections. The enhancing efficacy of CAs at immediate and delayed enhancement on CE-T1WI in viable tumor and necrosis was compared. Tumor necrosis ratios calculated from NACA and Dotarem were compared and correlated with gold-standard histopathology. : On the immediate CE-T1WI, viable tumor was enhanced by either CA. On the delayed CE-T1WI at 30 minutes, both CAs failed to demarcate viable tumor from necrosis. At 24 hours post-NACA, the necrosis was clearly distinguished from viable tumor and thus derived necrosis ratio matched that from histopathology (P = 0.99); necrosis ratio from Dotarem was significantly lower than that from NACA and histopathology (P < 0.05, both), with a higher correlation of NACA than that of Dotarem with histopathology (r = 0.99 vs. r = 0.82). : NACA better evaluated VDA-induced tumor necrosis than nonspecific CA on T1WI in tumor models of rat liver. NACA showed a closer correlation with histopathology than nonspecific CA for the delineation of true necrosis. Delayed enhancement on T1WI with nonspecific CA is not suitable for the assessment of VDA-induced tumor necrosis.
Zeng, Hao
2017-01-01
Objective This study was to investigate the features of renal carcinomas associated with Xp11.2 translocations/TFE3 gene fusions (Xp11.2-RCC) on conventional ultrasound (US) and contrast-enhanced ultrasound (CEUS). Methods US and CEUS features of twenty-two cases with histopathologically proven Xp11.2-RCC were retrospectively reviewed. Results 22 patients (11 males, 11 females) were included in this study, with a mean age of 28.3 ± 20.4 years. Eight tumors (36.3%, 8/22) were in left kidney, and 14 tumors (63.7%, 14/22) were in right kidney. All tumors (100%, 22/22) were mixed echogenicity type. 13 tumors (59.1%, 13/22) presented small dotted calcifications. The boundary of 14 tumors (63.6%, 14/22) was sharp and the other 8 tumors' (36.4%, 8/22) boundary was blurry. By CEUS, in early phase, the solid element of all tumors showed obvious enhancement. In delayed phase, 13 tumors showed hypoenhancement, seven tumors showed isoenhancement, and 2 tumors showed hyperenhancement. There were irregular nonenhancement areas in all tumors inside. Conclusions By US and CEUS, when children and adolescents were found to have hyperechoic mixed tumor in kidney with sharp margin and calcification, and the tumors showed obvious enhancement and hypoenhancement with irregular nonenhancement areas in the tumor in early phase and delayed phase, respectively, Xp11.2-RCC should be suspected. PMID:29333109
Gordon, Nancy; Koshkina, Nadezhda V.; Jia, Shu-Fang; Khanna, Chand; Mendoza, Arnulfo; Worth, Laura L.; Kleinerman, Eugenie S.
2015-01-01
Purpose Pulmonary metastases continue to be a significant problem in osteosarcoma. Apoptosis dysfunction is known to influence tumor development. Fas (CD95, APO-1)/FasL is one of the most extensively studied apoptotic pathways. Because FasL is constitutively expressed in the lung, cells that express Fas should be eliminated by lung endothelium. Cells with low or no cell surface Fas expression may be able to evade this innate defense mechanism. The purpose of these studies was to evaluate Fas expression in osteosarcoma lung metastases and the effect of gemcitabine on Fas expression and tumor growth. Experimental Design and Results Using the K7M2 murine osteosarcoma model, Fas expression was quantified using immunohistochemistry. High levels of Fas were present in primary tumors, but no Fas expression was present in actively growing lung metastases. Blocking the Fas pathway using Fas-associated death domain dominant-negative delayed tumor cell clearance from the lung and increased metastatic potential. Treatment of mice with aerosol gemcitabine resulted in increased Fas expression and subsequent tum or regression. Conclusions We conclude that corruption of the Fas pathway is critical to the ability of osteosarcoma cells to grow in the lung. Agents such as gemcitabine that up-regulate cell surface Fas expression may therefore be effective in treating osteosarcoma lung metastases. These data also suggest that an additional mechanism by which gemcitabine induces regression of osteosarcoma lung metastases is mediated by enhancing the sensitivity of the tumor cells to the constitutive FasL in the lung. PMID:17671136
Delay in breast cancer: implications for stage at diagnosis and survival.
Caplan, Lee
2014-01-01
Breast cancer continues to be a disease with tremendous public health significance. Primary prevention of breast cancer is still not available, so efforts to promote early detection continue to be the major focus in fighting breast cancer. Since early detection is associated with decreased mortality, one would think that it is important to minimize delays in detection and diagnosis. There are two major types of delay. Patient delay is delay in seeking medical attention after self-discovering a potential breast cancer symptom. System delay is delay within the health care system in getting appointments, scheduling diagnostic tests, receiving a definitive diagnosis, and initiating therapy. Earlier studies of the consequences of delay on prognosis tended to show that increased delay is associated with more advanced stage cancers at diagnosis, thus resulting in poorer chances for survival. More recent studies have had mixed results, with some studies showing increased survival with longer delays. One hypothesis is that diagnostic difficulties could perhaps account for this survival paradox. A rapidly growing lump may suggest cancer to both doctors and patients, while a slow growing lump or other symptoms could be less obvious to them. If this is the case, then the shorter delays would be seen with the more aggressive tumors for which the prognosis is worse leading to reduced survival. It seems logical that a tumor that is more advanced at diagnosis would lead to shorter survival but the several counter-intuitive studies in this review show that it is dangerous to make assumptions.
Yang, Yuan; Du, Ting; Zhang, Jiumeng; Kang, Tianyi; Luo, Li; Tao, Jie; Gou, Zhiyuan; Chen, Shaochen; Du, Yanan; He, Jiankang; Jiang, Shu; Mao, Qing; Gou, Maling
2017-08-01
Gene therapy has great promise for glioblastoma treatment; however, it remains a great challenge to efficiently deliver genes to the brain. The incomplete resection of glioblastoma always leads to poor prognosis. Here, a 3D-engineered conformal implant for eradicating the postsurgery residual glioblastoma is designed. This implant is constructed by 3D-printing technology to match the tumor cavity and release an oncolytic virus-inspired DNA nanocomplex to kill glioblastoma cells through apoptosis induction. Meanwhile, a 3D-engineered subcutaneous glioblastoma xenograft is built to mimic the resection tumor cavity in mice. Insertion of the implant into the glioblastoma resection cavity efficiently delays tumor recurrence and significantly prolongs overall survival. This study provides a proof-of-concept of glioblastoma therapy using a conformal implant that releases oncolytic DNA nanocomplexs. This strategy can lead to the development of future precision therapy for eradicating postsurgery residual tumors.
Teratoma of the nervous system: A case series.
Algahtani, Hussein; Shirah, Bader; Abdullah, Ahad; Bazaid, Abdulrahman
Teratoma is a common form of germ cell tumors composed of multiple tissues foreign to the site in which arise with a histological representation of all three germ cell layers. Intracranial teratomas are very rare. In this study, we report three cases of intracranial teratomas with an interesting clinical course, neuroradiology, and outcome. In addition, we review the literature and convey important messages to the neuroscience community regarding issues related to the management of these rare tumors. The present cases are interesting examples of intracranial teratoma in terms of location of the tumor and neuroimaging findings. Delay in surgical intervention may complicate the course of the disease with progressive enlargement of tumors and development of complication including hydrocephalus. Using endoscopic surgical techniques may emerge as the preferred intervention option as compared to other traditional methods. We recommend the establishment of a national and international registry for intracranial tumors. Copyright © 2017 Sociedad Española de Neurocirugía. Publicado por Elsevier España, S.L.U. All rights reserved.
Efficacy of a cancer vaccine against ALK-rearranged lung tumors
Voena, Claudia; Di Giacomo, Filomena; Longo, Dario Livio; Castella, Barbara; Merlo, Maria Elena Boggio; Ambrogio, Chiara; Wang, Qi; Minero, Valerio Giacomo; Poggio, Teresa; Martinengo, Cinzia; D'Amico, Lucia; Panizza, Elena; Mologni, Luca; Cavallo, Federica; Altruda, Fiorella; Butaney, Mohit; Capelletti, Marzia; Inghirami, Giorgio; Jänne, Pasi A.; Chiarle, Roberto
2015-01-01
Non-small cell lung cancer (NSCLC) harboring chromosomal rearrangements of the anaplastic lymphoma kinase (ALK) gene is treated with ALK tyrosine kinase inhibitors (TKIs), but is successful for only a limited amount of time; most cases relapse due to the development of drug resistance. Here we show that a vaccine against ALK induced a strong and specific immune response that both prophylactically and therapeutically impaired the growth of ALK-positive lung tumors in mouse models. The ALK vaccine was efficacious also in combination with ALK TKI treatment and significantly delayed tumor relapses after TKI suspension. We found that lung tumors containing ALK rearrangements induced an immunosuppressive microenvironment, regulating the expression of PD-L1 on the surface of lung tumor cells. High PD-L1 expression reduced ALK vaccine efficacy, which could be restored by administration of anti-PD-1 immunotherapy. Thus, combinations of ALK vaccine with TKIs and immune checkpoint blockade therapies might represent a powerful strategy for the treatment of ALK-driven NSCLC. PMID:26419961
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stratton, R.F.; Lazarus, K.H.; Ritchie, E.J.L.
1994-02-01
The authors report on a 4-year-old girl with moderate development delay, horseshoe kidney, bilateral duplication of the ureters with right upper pole obstruction, hydronephrosis and nonfunction, and subsequent Wilms tumor of the right lower pole. She had an interstitial deletion of the long arm of chromosome 11 involving the region 11(q14.1q21). 22 refs., 2 figs., 1 tab.
Grieb, Brian C; Boyd, Kelli; Mitra, Ramkrishna; Eischen, Christine M
2016-10-30
Alterations of specific genes can modulate aging. Myc, a transcription factor that regulates the expression of many genes involved in critical cellular functions was shown to have a role in controlling longevity. Decreased expression of Myc inhibited many of the deleterious effects of aging and increased lifespan in mice. Without altering Myc expression, reduced levels of Mtbp, a recently identified regulator of Myc, limit Myc transcriptional activity and proliferation, while increased levels promote Myc-mediated effects. To determine the contribution of Mtbp to the effects of Myc on aging, we studied a large cohort of Mtbp heterozygous mice and littermate matched wild-type controls. Mtbp haploinsufficiency significantly increased longevity and maximal survival in mice. Reduced levels of Mtbp did not alter locomotor activity, litter size, or body size, but Mtbp heterozygous mice did exhibit elevated markers of metabolism, particularly in the liver. Mtbp +/- mice also had a significant delay in spontaneous cancer development, which was most prominent in the hematopoietic system, and an altered tumor spectrum compared to Mtbp +/+ mice. Therefore, the data suggest Mtbp is a regulator of longevity in mice that mimics some, but not all, of the properties of Myc in aging.
Cortez, Eliane; Gladh, Hanna; Braun, Sebastian; Bocci, Matteo; Cordero, Eugenia; Björkström, Niklas K; Miyazaki, Hideki; Michael, Iacovos P; Eriksson, Ulf; Folestad, Erika; Pietras, Kristian
2016-02-16
Intratumoral heterogeneity is an inherent feature of most human cancers and has profound implications for cancer therapy. As a result, there is an emergent need to explore previously unmapped mechanisms regulating distinct subpopulations of tumor cells and to understand their contribution to tumor progression and treatment response. Aberrant platelet-derived growth factor receptor beta (PDGFRβ) signaling in cancer has motivated the development of several antagonists currently in clinical use, including imatinib, sunitinib, and sorafenib. The discovery of a novel ligand for PDGFRβ, platelet-derived growth factor (PDGF)-DD, opened the possibility of a previously unidentified signaling pathway involved in tumor development. However, the precise function of PDGF-DD in tumor growth and invasion remains elusive. Here, making use of a newly generated Pdgfd knockout mouse, we reveal a functionally important malignant cell heterogeneity modulated by PDGF-DD signaling in pancreatic neuroendocrine tumors (PanNET). Our analyses demonstrate that tumor growth was delayed in the absence of signaling by PDGF-DD. Surprisingly, ablation of PDGF-DD did not affect the vasculature or stroma of PanNET; instead, we found that PDGF-DD stimulated bulk tumor cell proliferation by induction of paracrine mitogenic signaling between heterogeneous malignant cell clones, some of which expressed PDGFRβ. The presence of a subclonal population of tumor cells characterized by PDGFRβ expression was further validated in a cohort of human PanNET. In conclusion, we demonstrate a previously unrecognized heterogeneity in PanNET characterized by signaling through the PDGF-DD/PDGFRβ axis.
Cortez, Eliane; Gladh, Hanna; Braun, Sebastian; Bocci, Matteo; Cordero, Eugenia; Björkström, Niklas K.; Miyazaki, Hideki; Michael, Iacovos P.; Eriksson, Ulf; Folestad, Erika; Pietras, Kristian
2016-01-01
Intratumoral heterogeneity is an inherent feature of most human cancers and has profound implications for cancer therapy. As a result, there is an emergent need to explore previously unmapped mechanisms regulating distinct subpopulations of tumor cells and to understand their contribution to tumor progression and treatment response. Aberrant platelet-derived growth factor receptor beta (PDGFRβ) signaling in cancer has motivated the development of several antagonists currently in clinical use, including imatinib, sunitinib, and sorafenib. The discovery of a novel ligand for PDGFRβ, platelet-derived growth factor (PDGF)-DD, opened the possibility of a previously unidentified signaling pathway involved in tumor development. However, the precise function of PDGF-DD in tumor growth and invasion remains elusive. Here, making use of a newly generated Pdgfd knockout mouse, we reveal a functionally important malignant cell heterogeneity modulated by PDGF-DD signaling in pancreatic neuroendocrine tumors (PanNET). Our analyses demonstrate that tumor growth was delayed in the absence of signaling by PDGF-DD. Surprisingly, ablation of PDGF-DD did not affect the vasculature or stroma of PanNET; instead, we found that PDGF-DD stimulated bulk tumor cell proliferation by induction of paracrine mitogenic signaling between heterogeneous malignant cell clones, some of which expressed PDGFRβ. The presence of a subclonal population of tumor cells characterized by PDGFRβ expression was further validated in a cohort of human PanNET. In conclusion, we demonstrate a previously unrecognized heterogeneity in PanNET characterized by signaling through the PDGF-DD/PDGFRβ axis. PMID:26831065
Herriges, John C; Brown, Sara; Longhurst, Maria; Ozmore, Jillian; Moeschler, John B; Janze, Aura; Meck, Jeanne; South, Sarah T; Andersen, Erica F
2018-04-24
DICER1 encodes an RNase III endonuclease protein that regulates the production of small non-coding RNAs. Germline mutations in DICER1 are associated with an autosomal dominant hereditary cancer predisposition syndrome that confers an increased risk for the development of several rare childhood and adult-onset tumors, the most frequent of which include pleuropulmonary blastoma, ovarian sex cord-stromal tumors, cystic nephroma, and thyroid gland neoplasia. The majority of reported germline DICER1 mutations are truncating sequence-level alterations, suggesting that a loss-of-function type mechanism drives tumor formation in DICER1 syndrome. However, reports of patients with germline DICER1 whole gene deletions are limited, and thus far, only two have reported an association with tumor development. Here we report the clinical findings of three patients from two unrelated families with 14q32 deletions that encompass the DICER1 locus. The deletion identified in Family I is 1.4 Mb and was initially identified in a 6-year-old male referred for developmental delay, hypotonia, macrocephaly, obesity, and behavioral problems. Subsequent testing revealed that this deletion was inherited from his mother, who had a clinical history that included bilateral multinodular goiter and papillary thyroid carcinoma. The second deletion is 5.0 Mb and was identified in a 15-year-old female who presented with autism, coarse facial features, Sertoli-Leydig cell tumor, and Wilms' tumor. These findings provide additional supportive evidence that germline deletion of DICER1 confers an increased risk for DICER1-related tumor development, and provide new insight into the clinical significance of deletions involving the 14q32 region. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Casado-Medrano, Victoria; Barrio-Real, Laura; García-Rostán, Ginesa; Baumann, Matti; Rocks, Oliver; Caloca, María J.
2016-01-01
β2-chimaerin is a Rac1-specific negative regulator and a candidate tumor suppressor in breast cancer but its precise function in mammary tumorigenesis in vivo is unknown. Here, we study for the first time the role of β2-chimaerin in breast cancer using a mouse model and describe an unforeseen role for this protein in epithelial cell-cell adhesion. We demonstrate that expression of β2-chimaerin in breast cancer epithelial cells reduces E-cadherin protein levels, thus loosening cell-cell contacts. In vivo, genetic ablation of β2-chimaerin in the MMTV-Neu/ErbB2 mice accelerates tumor onset, but delays tumor progression. Finally, analysis of clinical databases revealed an inverse correlation between β2-chimaerin and E-cadherin gene expressions in Her2+ breast tumors. Furthermore, breast cancer patients with low β2-chimaerin expression have reduced relapse free survival but develop metastasis at similar times. Overall, our data redefine the role of β2-chimaerin as tumor suppressor and provide the first in vivo evidence of a dual function in breast cancer, suppressing tumor initiation but favoring tumor progression. PMID:27058424
Roma-Rodrigues, Catarina; Raposo, Luís R.; Cabral, Rita; Paradinha, Fabiana; Baptista, Pedro V.; Fernandes, Alexandra R.
2017-01-01
Exosomes are nanovesicles formed in the endosomal pathway with an important role in paracrine and autocrine cell communication. Exosomes secreted by cancer cells, malicious exosomes, have important roles in tumor microenvironment maturation and cancer progression. The knowledge of the role of exosomes in tumorigenesis prompted a new era in cancer diagnostics and therapy, taking advantage of the use of circulating exosomes as tumor biomarkers due to their stability in body fluids and targeting malignant exosomes’ release and/or uptake to inhibit or delay tumor development. In recent years, nanotechnology has paved the way for the development of a plethora of new diagnostic and therapeutic platforms, fostering theranostics. The unique physical and chemical properties of gold nanoparticles (AuNPs) make them suitable vehicles to pursuit this goal. AuNPs’ properties such as ease of synthesis with the desired shape and size, high surface:volume ratio, and the possibility of engineering their surface as desired, potentiate AuNPs’ role in nanotheranostics, allowing the use of the same formulation for exosome detection and restraining the effect of malicious exosomes in cancer progression. PMID:28098821
Roma-Rodrigues, Catarina; Raposo, Luís R; Cabral, Rita; Paradinha, Fabiana; Baptista, Pedro V; Fernandes, Alexandra R
2017-01-14
Exosomes are nanovesicles formed in the endosomal pathway with an important role in paracrine and autocrine cell communication. Exosomes secreted by cancer cells, malicious exosomes, have important roles in tumor microenvironment maturation and cancer progression. The knowledge of the role of exosomes in tumorigenesis prompted a new era in cancer diagnostics and therapy, taking advantage of the use of circulating exosomes as tumor biomarkers due to their stability in body fluids and targeting malignant exosomes' release and/or uptake to inhibit or delay tumor development. In recent years, nanotechnology has paved the way for the development of a plethora of new diagnostic and therapeutic platforms, fostering theranostics. The unique physical and chemical properties of gold nanoparticles (AuNPs) make them suitable vehicles to pursuit this goal. AuNPs' properties such as ease of synthesis with the desired shape and size, high surface:volume ratio, and the possibility of engineering their surface as desired, potentiate AuNPs' role in nanotheranostics, allowing the use of the same formulation for exosome detection and restraining the effect of malicious exosomes in cancer progression.
Focal nodular hyperplasia coexistent with hepatoblastoma in a 36-d-old infant
Gong, Ying; Chen, Lian; Qiao, Zhong-Wei; Ma, Yang-Yang
2015-01-01
Focal nodular hyperplasia (FNH) is a benign hepatic tumor characterized by hepatocyte hyperplasia and a central stellate scar. The association of FNH with other hepatic lesions, such as adenomas, hemangiomas and hepatocellular carcinoma, has been previously reported, but FNH associated with another hepatic tumor is rare in infants. Here we report a case of FNH coexistent with hepatoblastoma in a 36-d-old girl. Computed tomography (CT) imaging showed an ill-delineated, inhomogeneous enhanced mass with a central star-like scar in the right lobe of the liver. The tumor showed early mild enhancement at the arterial phase (from 40HU without contrast to 52HU at the arterial phase), intense enhancement at the portal phase (87.7HU) and 98.1HU in the 3-min delay scan. A central scar in the tumor presented as low density on non-contrast CT and slightly enhanced at delayed contrast-enhanced scanning. This infant underwent surgical resection of the tumor. Histopathology demonstrated typical FNH coexistent with a focal hepatoblastoma, which showed epithelioid tumor cells separated by proliferated fibrous tissue. PMID:25624742
Focal nodular hyperplasia coexistent with hepatoblastoma in a 36-d-old infant.
Gong, Ying; Chen, Lian; Qiao, Zhong-Wei; Ma, Yang-Yang
2015-01-21
Focal nodular hyperplasia (FNH) is a benign hepatic tumor characterized by hepatocyte hyperplasia and a central stellate scar. The association of FNH with other hepatic lesions, such as adenomas, hemangiomas and hepatocellular carcinoma, has been previously reported, but FNH associated with another hepatic tumor is rare in infants. Here we report a case of FNH coexistent with hepatoblastoma in a 36-d-old girl. Computed tomography (CT) imaging showed an ill-delineated, inhomogeneous enhanced mass with a central star-like scar in the right lobe of the liver. The tumor showed early mild enhancement at the arterial phase (from 40HU without contrast to 52HU at the arterial phase), intense enhancement at the portal phase (87.7HU) and 98.1HU in the 3-min delay scan. A central scar in the tumor presented as low density on non-contrast CT and slightly enhanced at delayed contrast-enhanced scanning. This infant underwent surgical resection of the tumor. Histopathology demonstrated typical FNH coexistent with a focal hepatoblastoma, which showed epithelioid tumor cells separated by proliferated fibrous tissue.
Wright, Karen D; Panetta, John C; Onar-Thomas, Arzu; Reddick, Wilburn E; Patay, Zoltan; Qaddoumi, Ibrahim; Broniscer, Alberto; Robinson, Giles; Boop, Frederick A; Klimo, Paul; Ward, Deborah; Gajjar, Amar; Stewart, Clinton F
2015-01-01
High-dose methotrexate (HD-MTX) has been used to treat children with central nervous system tumors. Accumulation of MTX within pleural, peritoneal, or cardiac effusions has led to delayed excretion and increased risk of systemic toxicity. This retrospective study analyzed the association of intracranial post-resection fluid collections with MTX plasma disposition in infants and young children with brain tumors. Brain MRI findings were analyzed for postoperative intracranial fluid collections in 75 pediatric patients treated with HD-MTX and for whom serial MTX plasma concentrations (MTX) were collected. Delayed plasma excretion was defined as (MTX) ≥1 μM at 42 hours (h). Leucovorin was administered at 42 h and then every 6 h until (MTX) <0.1 μM. Population and individual MTX pharmacokinetic parameters were estimated by nonlinear mixed-effects modeling. Fifty-eight patients had intracranial fluid collections present. Population average (inter-individual variation) MTX clearance was 96.0 ml/min/m² (41.1 CV %) and increased with age. Of the patients with intracranial fluid collections, 24 had delayed excretion; only 2 of the 17 without fluid collections (P < 0.04) had delayed excretion. Eleven patients had grade 3 or 4 toxicities attributed to HD-MTX. No significant difference was observed in intracranial fluid collection, total leucovorin dosing, or hydration fluids between those with and without toxicity. Although an intracranial fluid collection is associated with delayed MTX excretion, HD-MTX can be safely administered with monitoring of infants and young children with intracranial fluid collections. Infants younger than 1 year may need additional monitoring to avoid toxicity.
Therapeutic limitations in tumor-specific CD8+ memory T cell engraftment
Bathe, Oliver F; Dalyot-Herman, Nava; Malek, Thomas R
2003-01-01
Background Adoptive immunotherapy with cytotoxic T lymphocytes (CTL) represents an alternative approach to treating solid tumors. Ideally, this would confer long-term protection against tumor. We previously demonstrated that in vitro-generated tumor-specific CTL from the ovalbumin (OVA)-specific OT-I T cell receptor transgenic mouse persisted long after adoptive transfer as memory T cells. When recipient mice were challenged with the OVA-expressing E.G7 thymoma, tumor growth was delayed and sometimes prevented. The reasons for therapeutic failures were not clear. Methods OT-I CTL were adoptively transferred to C57BL/6 mice 21 – 28 days prior to tumor challenge. At this time, the donor cells had the phenotypical and functional characteristics of memory CD8+ T cells. Recipients which developed tumor despite adoptive immunotherapy were analyzed to evaluate the reason(s) for therapeutic failure. Results Dose-response studies demonstrated that the degree of tumor protection was directly proportional to the number of OT-I CTL adoptively transferred. At a low dose of OT-I CTL, therapeutic failure was attributed to insufficient numbers of OT-I T cells that persisted in vivo, rather than mechanisms that actively suppressed or anergized the OT-I T cells. In recipients of high numbers of OT-I CTL, the E.G7 tumor that developed was shown to be resistant to fresh OT-I CTL when examined ex vivo. Furthermore, these same tumor cells no longer secreted a detectable level of OVA. In this case, resistance to immunotherapy was secondary to selection of clones of E.G7 that expressed a lower level of tumor antigen. Conclusions Memory engraftment with tumor-specific CTL provides long-term protection against tumor. However, there are several limitations to this immunotherapeutic strategy, especially when targeting a single antigen. This study illustrates the importance of administering large numbers of effectors to engraft sufficiently efficacious immunologic memory. It also demonstrates the importance of targeting several antigens when developing vaccine strategies for cancer. PMID:12882650
Magnetic nanoparticle hyperthermia as an adjuvant cancer therapy with chemotherapy
NASA Astrophysics Data System (ADS)
Petryk, Alicia Ailie
Magnetic nanoparticle hyperthermia (mNPH) is an emerging cancer therapy which has shown to be most effective when applied in the adjuvant setting with chemotherapy, radiation or surgery. Although mNPH employs heat as a primary therapeutic modality, conventional heat may not be the only cytotoxic effect. As such, my studies have focused on the mechanism and use of mNPH alone and in conjunction with cisplatinum chemotherapy in murine breast cancer cells and a related in vivo model. MNPH was compared to conventional microwave tumor heating, with results suggesting that mNPH (mNP directly injected into the tumor and immediately activated) and 915 MHz microwave hyperthermia, at the same thermal dose, result in similar tumor regrowth delay kinetics. However, mNPH shows significantly less peri-tumor normal tissue damage. MNPH combined with cisplatinum also demonstrated significant improvements in regrowth delay over either modality applied as a monotherapy. Additional studies demonstrated that a relatively short tumor incubation time prior to AMF exposure (less than 10 minutes) as compared to a 4-hour incubation time, resulted in faster heating rates, but similar regrowth delays when treated to the same thermal dose. The reduction of heating rate correlated well with the observed reduction in mNP concentration in the tumor observed with 4 hour incubation. The ability to effectively deliver cytotoxic mNPs to metastatic tumors is the hope and goal of systemic mNP therapy. However, delivering relevant levels of mNP is proving to be a formidable challenge. To address this issue, I assessed the ability of cisplatinum to simultaneously treat a tumor and improve the uptake of systemically delivered mNPs. Following a cisplatinum pretreatment, systemic mNPs uptake was increased by 3.1 X, in implanted murine breast tumors. Additional in vitro studies showed the necessity of a specific mNP/ Fe architecture and spatial relation for heat-based cytotoxicity in cultured cells.
Han, Ji Yeon; Choi, Jung Won; Wang, Kyu Chang; Phi, Ji Hoon; Lee, Ji Yeoun; Chae, Jong Hee; Park, Sung Hye; Cheon, Jung Eun; Kim, Seung Ki
2017-11-01
Radiotherapy is one of the standard treatments for medulloblastoma. However, therapeutic central nervous system irradiation in children may carry delayed side effects, such as radiation-induced tumor and vasculopathy. Here, we report the first case of coexisting meningioma and moyamoya syndrome, presenting 10 years after radiotherapy for medulloblastoma. A 13-year-old boy presented with an enhancing mass at the cerebral falx on magnetic resonance imaging (MRI) after surgery, radiotherapy (30.6 Gy craniospinal axis, 19.8 Gy posterior fossa) and chemotherapy against medulloblastoma 10 years ago, previously. The second tumor was meningioma. On postoperative day 5, he complained of right-sided motor weakness, motor dysphasia, dysarthria, and dysphagia. MRI revealed acute cerebral infarction in the left frontal lobe and both basal ganglia. MR and cerebral angiography confirmed underlying moyamoya syndrome. Four months after the meningioma surgery, the patient presented with headaches, dysarthria, and dizziness. Indirect bypass surgery was performed. He has been free from headaches since one month after the surgery. For patients who received radiotherapy for medulloblastoma at a young age, clinicians should consider the possibility of the coexistence of several complications. Careful follow up for development of secondary tumor and delayed vasculopathy is required. © 2017 The Korean Academy of Medical Sciences.
Use of Fenbendazole-Containing Therapeutic Diets for Mice in Experimental Cancer Therapy Studies
Duan, Qiwen; Liu, Yanfeng; Booth, Carmen J; Rockwell, Sara
2012-01-01
Pinworm infection (oxyuriasis) is a common problem in rodent colonies. Facility-wide prophylactic treatment of all mice with a diet containing therapeutic levels of fenbendazole for several weeks is often used to control pinworm outbreaks. We examined the effect of feeding a therapeutic diet containing 150 ppm fenbendazole on the growth of EMT6 mouse mammary tumors implanted into BALB/c Rw mice. Mice were randomized to receive either a fenbendazole-containing or control diet for 1 wk before tumor cells were injected intradermally in the flanks and throughout tumor growth. Tumor growth was monitored by serial measurements of tumor diameters from the time tumors became palpable until they reached 1000 mm3. The medicated diet did not alter tumor growth, invasion, or metastasis. When tumors reached volumes of approximately 100 mm3, some were irradiated locally with 10 Gy of X-rays. Irradiation significantly delayed tumor growth; fenbendazole did not alter the radiation-induced growth delay. However, cell culture studies showed that fenbendazole concentrations not far above those expected in the tissues of mice on this diet altered the growth of the tumor cells in culture. Recent data from other laboratories also have demonstrated effects of fenbendazole that could complicate experiments. Care should therefore be exercised in deciding whether chow containing fenbendazole should be administered to mouse colonies being used in cancer research. PMID:22776123
Use of fenbendazole-containing therapeutic diets for mice in experimental cancer therapy studies.
Duan, Qiwen; Liu, Yanfeng; Booth, Carmen J; Rockwell, Sara
2012-03-01
Pinworm infection (oxyuriasis) is a common problem in rodent colonies. Facility-wide prophylactic treatment of all mice with a diet containing therapeutic levels of fenbendazole for several weeks is often used to control pinworm outbreaks. We examined the effect of feeding a therapeutic diet containing 150 ppm fenbendazole on the growth of EMT6 mouse mammary tumors implanted into BALB/c Rw mice. Mice were randomized to receive either a fenbendazole-containing or control diet for 1 wk before tumor cells were injected intradermally in the flanks and throughout tumor growth. Tumor growth was monitored by serial measurements of tumor diameters from the time tumors became palpable until they reached 1000 mm3. The medicated diet did not alter tumor growth, invasion, or metastasis. When tumors reached volumes of approximately 100 mm3, some were irradiated locally with 10 Gy of X-rays. Irradiation significantly delayed tumor growth; fenbendazole did not alter the radiation-induced growth delay. However, cell culture studies showed that fenbendazole concentrations not far above those expected in the tissues of mice on this diet altered the growth of the tumor cells in culture. Recent data from other laboratories also have demonstrated effects of fenbendazole that could complicate experiments. Care should therefore be exercised in deciding whether chow containing fenbendazole should be administered to mouse colonies being used in cancer research.
Kajii, T; Ikeuchi, T; Yang, Z Q; Nakamura, Y; Tsuji, Y; Yokomori, K; Kawamura, M; Fukuda, S; Horita, S; Asamoto, A
2001-11-15
Five infants (two girls and three boys) from four families all had severe pre- and postnatal growth retardation, profound developmental delay, microcephaly, hypoplasia of the brain with Dandy-Walker complex or other posterior fossa malformations, and developed uncontrollable clonic seizures. Four infants developed Wilms tumors, and one showed cystic lesions in bilateral kidneys. All five infants showed variegated mosaic aneuploidy in cultured lymphocytes. In two infants whose chromosomes were prepared by us, 48.5%-83.2% lymphocytes showed total premature chromatid separation (PCS). Their parents had 3.5%-41.7% of their lymphocytes in total PCS. The remaining three infants and their parents, whose chromosomes were prepared at outside laboratories, tended to show lower frequencies of total PCS. Another five infants reported with the disorder were reviewed together with the five infants we described. Together, their clinical and cytogenetic manifestations were similar enough to suggest a syndrome. Seven of the 10 infants developed proven or probable Wilms tumors. The age at diagnosis of the tumors was younger than usual at 2-16 months. The tumors were bilateral in four infants and unilateral in three infants, and cystic changes were present in six infants. Two infants developed botryoid rhabdomyosarcoma. The carriers of the syndrome are thus liable to tumorigenesis. The possible role of mitotic checkpoint defects, proven in two infants with the syndrome (Matsuura et al. [2000: Am J Hum Genet 69:483-486]), was discussed in connection with tumor development and progression. Copyright 2001 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfe, T; Grant, J; Wolfe, A
Purpose: Assess tumor-growth delay and survival in a mouse model of prostate cancer treated with tumor-targeting gold nanoparticles (AuNPs) and proton therapy. Methods: We first examined the accumulation of targeting nanoparticles within prostate tumors by imaging AuNPs with ultrasound-guided photoacoustics at 24h after the intravenous administration of goserelin-conjugated AuNPs (gAuNP) in three mice. Nanoparticles were also imaged at the cellular level with TEM in PC3 cells incubated with gAuNP for 24h. Pegylated AuNPs (pAuNP) were also imaged in vivo and in vitro for comparison. PC3 cells were then implanted subcutaneously in nude mice; 51mice with 8–10mm tumors were included. AuNPsmore » were injected intravenously at 0.2%w/w final gold concentration 24h before irradiation. A special jig was designed to facilitate tumor irradiation perpendicular to the proton beam. Proton energy was set to 180MeV, the radiation field was 18×18cm{sup 2}, and 9cm or 13.5cm thick solid-water compensators were used to position the tumors at either the beam entrance (BE) or the SOBP. Physical doses of 5Gy were delivered to all tumors on a patient beam line at MD Anderson's Proton Therapy Center. Results: The photoacoustic experiment reveled that our nanoparticles leak from the tumor-feeding vasculature and accumulate within the tumor volume over time. Additionally, TEM images showed gAuNP are internalized in cancer cells, accumulating within the cytoplasm, whereas pAuNP are not. Tumor-growth was delayed by 11 or 32days in mice receiving gAuNP irradiated at the BE or the SOBP, relative to proton radiation alone. Survival curves (ongoing experiment) reveal that gAuNPs improved survival by 36% or 74% for tumors irradiated at the BE or SOBP. Conclusion: These important, albeit preliminary, in vivo findings reveal nanoparticles to be potent sensitizers to proton therapy. Further, conjugation of AuNPs to tumor-specific antigens that promote enhanced cellular internalization improved both tumor-growth delay and survival of mice after proton therapy.« less
Supradiaphragmatic ectopic liver: delayed traumatic hepatic hernia mimics pulmonary tumor.
Huang, C-S; Hsu, W-H; Hsia, C-Y
2007-06-01
We present a rare case of a 63-year-old woman, the oldest one in the literature, with supradiaphragmatic ectopic liver that mimics a pulmonary nodule. The chest roentgenogram and chest computer tomography showed a lobulated tumor nearby the diaphragm. Pathological examination of the resected tumor disclosed only remarkable fatty liver change. Ectopic liver should be kept in mind to differentiate for the pulmonary tumor nearby the diaphragm.
Mahasa, Khaphetsi Joseph; Eladdadi, Amina; de Pillis, Lisette; Ouifki, Rachid
2017-01-01
In the present paper, we address by means of mathematical modeling the following main question: How can oncolytic virus infection of some normal cells in the vicinity of tumor cells enhance oncolytic virotherapy? We formulate a mathematical model describing the interactions between the oncolytic virus, the tumor cells, the normal cells, and the antitumoral and antiviral immune responses. The model consists of a system of delay differential equations with one (discrete) delay. We derive the model's basic reproductive number within tumor and normal cell populations and use their ratio as a metric for virus tumor-specificity. Numerical simulations are performed for different values of the basic reproduction numbers and their ratios to investigate potential trade-offs between tumor reduction and normal cells losses. A fundamental feature unravelled by the model simulations is its great sensitivity to parameters that account for most variation in the early or late stages of oncolytic virotherapy. From a clinical point of view, our findings indicate that designing an oncolytic virus that is not 100% tumor-specific can increase virus particles, which in turn, can further infect tumor cells. Moreover, our findings indicate that when infected tissues can be regenerated, oncolytic viral infection of normal cells could improve cancer treatment.
Asp, Michelle L; Tian, Min; Kliewer, Kara L; Belury, Martha A
2011-12-01
Cachexia is characterized by severe weight loss, including adipose and muscle wasting, and occurs in a large percentage of cancer patients. Insulin resistance contributes to dysregulated metabolism in cachexia and occurs prior to weight loss in mice with colon-26 tumor-induced cachexia. Therefore, we hypothesized that the insulin sensitizer, rosiglitazone, would attenuate the loss of adipose and muscle to result in improved outcomes for mice with late-stage cachexia. Male CD2F1 mice were inoculated with colon-26 adenocarcinoma cells or vehicle. Treatments included vehicle, rosiglitazone (10 mg/kg body weight/day) or rosiglitazone plus pair-feeding to food intake of vehicle-treated mice with tumors. Rosiglitazone delayed weight loss onset by 2 d over the 16 d duration of this aggressive tumor model. This finding was associated, in part, with increased food intake. In addition, adipose mass, adipocyte cross-sectional area and inflammation were improved with rosiglitazone. However, at the time of necropsy 16 d after tumor inoculation rosiglitazone had no effect on retention of muscle mass, strength or proteolysis in late-stage cachexia. We did not measure stamina or endurance in this study. In early-stage cachexia, rosiglitazone normalized PDK4 and PPAR-delta mRNA in quadriceps muscle and rescued the decrease in insulin-stimulated glucose disappearance in mice with tumors. Rosiglitazone may delay weight loss onset by decreasing tumor-induced markers of metabolic change in early-stage cachexia. These changes predict for modest improvement in adipose, but no improvement in muscle strength in late-stage cachexia.
Asp, Michelle L.; Tian, Min; Kliewer, Kara L.
2011-01-01
Cachexia is characterized by severe weight loss, including adipose and muscle wasting, and occurs in a large percentage of cancer patients. Insulin resistance contributes to dysregulated metabolism in cachexia and occurs prior to weight loss in mice with colon-26 tumor-induced cachexia. Therefore, we hypothesized that the insulin sensitizer, rosiglitazone, would attenuate the loss of adipose and muscle to result in improved outcomes for mice with late-stage cachexia. Male CD2F1 mice were inoculated with colon-26 adenocarcinoma cells or vehicle. Treatments included vehicle, rosiglitazone (10 mg/kg body weight/day) or rosiglitazone plus pair-feeding to food intake of vehicle-treated mice with tumors. Rosiglitazone delayed weight loss onset by 2 d over the 16 d duration of this aggressive tumor model. This finding was associated, in part, with increased food intake. In addition, adipose mass, adipocyte cross-sectional area and inflammation were improved with rosiglitazone. However, at the time of necropsy 16 d after tumor inoculation rosiglitazone had no effect on retention of muscle mass, strength or proteolysis in late-stage cachexia. We did not measure stamina or endurance in this study. In early-stage cachexia, rosiglitazone normalized PDK4 and PPAR-delta mRNA in quadriceps muscle and rescued the decrease in insulin-stimulated glucose disappearance in mice with tumors. Rosiglitazone may delay weight loss onset by decreasing tumor-induced markers of metabolic change in early-stage cachexia. These changes predict for modest improvement in adipose, but no improvement in muscle strength in late-stage cachexia. PMID:22104958
2012-01-01
Background The receptor tyrosine kinase family includes many transmembrane proteins with diverse physiological and pathophysiological functions. The involvement of tyrosine kinase signaling in promoting a more aggressive tumor phenotype within the context of chemotherapeutic evasion is gaining recognition. The Ron receptor is a tyrosine kinase receptor that has been implicated in the progression of breast cancer and evasion of tamoxifen therapy. Results Here, we report that Ron expression is correlated with in situ, estrogen receptor alpha (ERα)-positive tumors, and is higher in breast tumors following neoadjuvant tamoxifen therapy. We also demonstrate that the majority of mammary tumors isolated from transgenic mice with mammary specific-Ron overexpression (MMTV-Ron mice), exhibit appreciable ER expression. Moreover, genetic-ablation of ERα, in the context of Ron overexpression, leads to delayed mammary tumor initiation and growth, but also results in an increased metastasis. Conclusions Ron receptor overexpression is associated with ERα-positive human and murine breast tumors. In addition, loss of ERα on a Ron overexpressing background in mice leads to the development of breast tumors which grow slower but which exhibit more metastasis and suggests that targeting of ERα, as in the case of tamoxifen therapy, may reduce the growth of Ron overexpressing breast cancers but may cause these tumors to be more metastatic. PMID:22226043
Gao, Yunfei; Zhang, Dongqing; Sun, Buxiang; Fujii, Hajime; Kosuna, Ken-Ichi; Yin, Zhinan
2006-10-01
Active hexose correlated compound (AHCC) is a mixture of polysaccharides, amino acids, lipids and minerals derived from cocultured mycelia of several species of Basidiomycete mushrooms. AHCC has been implicated to modulate immune functions and plays a protective role against infection. However, the potential role of AHCC in tumor immune surveillance is unknown. In this study, C57BL/6 mice were orally administered AHCC or water, followed by tumor cell inoculation. We showed that compared to pure water-treated mice, AHCC treatment significantly delayed tumor development after inoculation of either melanoma cell line B16F0 or lymphoma cell line EL4. Treatment with AHCC enhanced both Ag-specific activation and proliferation of CD4(+) and CD8(+) T cells, increased the number of tumor Ag-specific CD8(+) T cells, and more importantly, increased the frequency of tumor Ag-specific IFN-gamma producing CD8(+) T cells. Interestingly, AHCC treatment also showed increased cell number of NK and gammadelta T cells, indicating the role of AHCC in activating these innate-like lymphocytes. In summary, our results demonstrate that AHCC can enhance tumor immune surveillance through regulating both innate and adaptive immune responses.
Kohli, Kirpal; Liu, Jeff; Schellenberg, Devin; Karvat, Anand; Parameswaran, Ash; Grewal, Parvind; Thomas, Steven
2014-10-14
In radiotherapy, temporary translocations of the internal organs and tumor induced by respiratory and cardiac activities can undesirably lead to significantly lower radiation dose on the targeted tumor but more harmful radiation on surrounding healthy tissues. Respiratory and cardiac gated radiotherapy offers a potential solution for the treatment of tumors located in the upper thorax. The present study focuses on the design and development of simultaneous acquisition of respiratory and cardiac signal using electrical impedance technology for use in dual gated radiotherapy. An electronic circuitry was developed for monitoring the bio-impedance change due to respiratory and cardiac motions and extracting the cardiogenic ECG signal. The system was analyzed in terms of reliability of signal acquisition, time delay, and functionality in a high energy radiation environment. The resulting signal of the system developed was also compared with the output of the commercially available Real-time Position Management™ (RPM) system in both time and frequency domains. The results demonstrate that the bioimpedance-based method can potentially provide reliable tracking of respiratory and cardiac motion in humans, alternative to currently available methods. When compared with the RPM system, the impedance-based system developed in the present study shows similar output pattern but different sensitivities in monitoring different respiratory rates. The tracking of cardiac motion was more susceptible to interference from other sources than respiratory motion but also provided synchronous output compared with the ECG signal extracted. The proposed hardware-based implementation was observed to have a worst-case time delay of approximately 33 ms for respiratory monitoring and 45 ms for cardiac monitoring. No significant effect on the functionality of the system was observed when it was tested in a radiation environment with the electrode lead wires directly exposed to high-energy X-Rays. The developed system capable of rendering quality signals for tracking both respiratory and cardiac motions can potentially provide a solution for simultaneous dual-gated radiotherapy.
Zinonos, Irene; Labrinidis, Agatha; Lee, Michelle; Liapis, Vasilios; Hay, Shelley; Ponomarev, Vladimir; Diamond, Peter; Zannettino, Andrew C.W.; Findlay, David M.; Evdokiou, Andreas
2017-01-01
Apomab, a fully human agonistic DR5 monoclonal antibody, triggers apoptosis through activation of the extrinsic apoptotic signaling pathway. In this study, we assessed the cytotoxic effect of Apomab in vitro and evaluated its antitumor activity in murine models of breast cancer development and progression. MDA-MB-231-TXSA breast cancer cells were transplanted into the mammary fat pad or directly into the tibial marrow cavity of nude mice. Apomab was administered early, postcancer cell transplantation, or after tumors progressed to an advanced stage. Tumor burden was monitored progressively using bioluminescence imaging, and the development of breast cancer–induced osteolysis was measured using micro-computed tomography. In vitro, Apomab treatment induced apoptosis in a panel of breast cancer cell lines but was without effect on normal human primary osteoblasts, fibroblasts, or mammary epithelial cells. In vivo, Apomab exerted remarkable tumor suppressive activity leading to complete regression of well-advanced mammary tumors. All animals transplanted with breast cancer cells directly into their tibiae developed large osteolytic lesions that eroded the cortical bone. In contrast, treatment with Apomab following an early treatment protocol inhibited both intraosseous and extraosseous tumor growth and prevented breast cancer–induced osteolysis. In the delayed treatment protocol, Apomab treatment resulted in the complete regression of advanced tibial tumors with progressive restoration of both trabecular and cortical bone leading to full resolution of osteolytic lesions. Apomab represents a potent immunotherapeutic agent with strong activity against the development and progression of breast cancer and should be evaluated in patients with primary and metastatic disease. PMID:19808976
NASA Astrophysics Data System (ADS)
Badea, C. T.; Ghaghada, K.; Espinosa, G.; Strong, L.; Annapragada, A.
2011-03-01
Multi-modality PET-CT imaging is playing an important role in the field of oncology. While PET imaging facilitates functional interrogation of tumor status, the use of CT imaging is primarily limited to anatomical reference. In an attempt to extract comprehensive information about tumor cells and its microenvironment, we used a nanoparticle xray contrast agent to image tumor vasculature and vessel 'leakiness' and 18F-FDG to investigate the metabolic status of tumor cells. In vivo PET/CT studies were performed in mice implanted with 4T1 mammary breast cancer cells.Early-phase micro-CT imaging enabled visualization 3D vascular architecture of the tumors whereas delayedphase micro-CT demonstrated highly permeable vessels as evident by nanoparticle accumulation within the tumor. Both imaging modalities demonstrated the presence of a necrotic core as indicated by a hypo-enhanced region in the center of the tumor. At early time-points, the CT-derived fractional blood volume did not correlate with 18F-FDG uptake. At delayed time-points, the tumor enhancement in 18F-FDG micro-PET images correlated with the delayed signal enhanced due to nanoparticle extravasation seen in CT images. The proposed hybrid imaging approach could be used to better understand tumor angiogenesis and to be the basis for monitoring and evaluating anti-angiogenic and nano-chemotherapies.
Ortega-Molina, Ana; Boss, Isaac W; Canela, Andres; Pan, Heng; Jiang, Yanwen; Zhao, Chunying; Jiang, Man; Hu, Deqing; Agirre, Xabier; Niesvizky, Itamar; Lee, Ji-Eun; Chen, Hua-Tang; Ennishi, Daisuke; Scott, David W; Mottok, Anja; Hother, Christoffer; Liu, Shichong; Cao, Xing-Jun; Tam, Wayne; Shaknovich, Rita; Garcia, Benjamin A; Gascoyne, Randy D; Ge, Kai; Shilatifard, Ali; Elemento, Olivier; Nussenzweig, Andre; Melnick, Ari M; Wendel, Hans-Guido
2015-10-01
The gene encoding the lysine-specific histone methyltransferase KMT2D has emerged as one of the most frequently mutated genes in follicular lymphoma and diffuse large B cell lymphoma; however, the biological consequences of KMT2D mutations on lymphoma development are not known. Here we show that KMT2D functions as a bona fide tumor suppressor and that its genetic ablation in B cells promotes lymphoma development in mice. KMT2D deficiency also delays germinal center involution and impedes B cell differentiation and class switch recombination. Integrative genomic analyses indicate that KMT2D affects methylation of lysine 4 on histone H3 (H3K4) and expression of a set of genes, including those in the CD40, JAK-STAT, Toll-like receptor and B cell receptor signaling pathways. Notably, other KMT2D target genes include frequently mutated tumor suppressor genes such as TNFAIP3, SOCS3 and TNFRSF14. Therefore, KMT2D mutations may promote malignant outgrowth by perturbing the expression of tumor suppressor genes that control B cell-activating pathways.
Ortega-Molina, Ana; Boss, Isaac W.; Canela, Andres; Pan, Heng; Jiang, Yanwen; Zhao, Chunying; Jiang, Man; Hu, Deqing; Agirre, Xabier; Niesvizky, Itamar; Lee, Ji-Eun; Chen, Hua-Tang; Ennishi, Daisuke; Scott, David W.; Mottok, Anja; Hother, Christoffer; Liu, Shichong; Cao, Xing-Jun; Tam, Wayne; Shaknovich, Rita; Garcia, Benjamin A.; Gascoyne, Randy D.; Ge, Kai; Shilatifard, Ali; Elemento, Olivier; Nussenzweig, Andre; Melnick, Ari M.; Wendel, Hans-Guido
2015-01-01
The lysine-specific histone methyltransferase KMT2D has emerged as one of the most frequently mutated genes in follicular lymphoma (FL) and diffuse large B cell lymphoma (DLBCL). However, the biological consequences of KMT2D mutations on lymphoma development are not known. Here we show that KMT2D functions as a bona fide tumor suppressor and that its genetic ablation in B cells promotes lymphoma development in mice. KMT2D deficiency also delays germinal center (GC) involution, impedes B cell differentiation and class switch recombination (CSR). Integrative genomic analyses indicate that KMT2D affects H3K4 methylation and expression of a specific set of genes including those in the CD40, JAK-STAT, Toll-like receptor, and B cell receptor pathways. Notably, other KMT2D target genes include frequently mutated tumor suppressor genes such as TNFAIP3, SOCS3, and TNFRSF14. Therefore, KMT2D mutations may promote malignant outgrowth by perturbing the expression of tumor suppressor genes that control B cell activating pathways. PMID:26366710
VEGF-C and VEGF-D blockade inhibits inflammatory skin carcinogenesis.
Alitalo, Annamari K; Proulx, Steven T; Karaman, Sinem; Aebischer, David; Martino, Stefania; Jost, Manuela; Schneider, Nicole; Bry, Maija; Detmar, Michael
2013-07-15
VEGF-C and VEGF-D were identified as lymphangiogenic growth factors and later shown to promote tumor metastasis, but their effects on carcinogenesis are poorly understood. Here, we have studied the effects of VEGF-C and VEGF-D on tumor development in the murine multistep chemical carcinogenesis model of squamous cell carcinoma by using a soluble VEGF-C/VEGF-D inhibitor. After topical treatment with a tumor initiator and repeated tumor promoter applications, transgenic mice expressing a soluble VEGF-C/VEGF-D receptor (sVEGFR-3) in the skin developed significantly fewer squamous cell tumors with a delayed onset when compared with wild-type mice or mice expressing sVEGFR-3 lacking the ligand-binding site. Epidermal proliferation was reduced in the carcinogen-treated transgenic skin, whereas epidermal keratinocyte proliferation in vitro was not affected by VEGF-C or VEGF-D, indicating indirect effects of sVEGFR-3 expression. Importantly, transgenic mouse skin was less sensitive to tumor promoter-induced inflammation, with reduced angiogenesis and blood vessel leakage. Cutaneous leukocytes, especially macrophages, were reduced in transgenic skin without major changes in macrophage polarization or blood monocyte numbers. Several macrophage-associated cytokines were also reduced in transgenic papillomas, although the dermal macrophages themselves did not express VEGFR-3. These findings indicate that VEGF-C/VEGF-D are involved in shaping the inflammatory tumor microenvironment that regulates early tumor progression. Our results support the use of VEGF-C/VEGF-D-blocking agents not only to inhibit metastatic progression, but also during the early stages of tumor growth. ©2013 AACR.
Hou, Huagang; Mupparaju, Sriram P.; Lariviere, Jean P.; Hodge, Sassan; Gui, Jiang; Swartz, Harold M.; Khan, Nadeem
2013-01-01
Tumor hypoxia impedes the outcome of radiotherapy. As the extent of hypoxia in solid tumors varies during the course of radiotherapy, methods that can provide repeated assessment of tumor pO2 such as EPR oximetry may enhance the efficacy of radiotherapy by scheduling irradiations when the tumors are oxygenated. The repeated measurements of tumor pO2 may also identify responders, and thereby facilitate the design of better treatment plans for nonresponding tumors. We have investigated the temporal changes in the ectopic 9L and C6 glioma pO2 irradiated with single radiation doses less than 10 Gy by EPR oximetry. The 9L and C6 tumors were hypoxic with pO2 of approximately 5–9 mmHg. The pO2 of C6 tumors increased significantly with irradiation of 4.8–9.3 Gy. However, no change in the 9L tumor pO2 was observed. The irradiation of the oxygenated C6 tumors with a second dose of 4.8 Gy resulted in a significant delay in growth compared to hypoxic and 2 Gy × 5 treatment groups. The C6 tumors with an increase in pO2 of greater than 50% from the baseline of irradiation with 4.8 Gy (responders) had a significant tumor growth delay compared to nonresponders. These results indicate that the ectopic 9L and C6 tumors responded differently to radiotherapy. We propose that the repeated measurement of the oxygen levels in the tumors during radiotherapy can be used to identify responders and to design tumor oxygen guided treatment plans to improve the outcome. PMID:23391148
Leveraging Hypoxia-Activated Prodrugs to Prevent Drug Resistance in Solid Tumors.
Lindsay, Danika; Garvey, Colleen M; Mumenthaler, Shannon M; Foo, Jasmine
2016-08-01
Experimental studies have shown that one key factor in driving the emergence of drug resistance in solid tumors is tumor hypoxia, which leads to the formation of localized environmental niches where drug-resistant cell populations can evolve and survive. Hypoxia-activated prodrugs (HAPs) are compounds designed to penetrate to hypoxic regions of a tumor and release cytotoxic or cytostatic agents; several of these HAPs are currently in clinical trial. However, preliminary results have not shown a survival benefit in several of these trials. We hypothesize that the efficacy of treatments involving these prodrugs depends heavily on identifying the correct treatment schedule, and that mathematical modeling can be used to help design potential therapeutic strategies combining HAPs with standard therapies to achieve long-term tumor control or eradication. We develop this framework in the specific context of EGFR-driven non-small cell lung cancer, which is commonly treated with the tyrosine kinase inhibitor erlotinib. We develop a stochastic mathematical model, parametrized using clinical and experimental data, to explore a spectrum of treatment regimens combining a HAP, evofosfamide, with erlotinib. We design combination toxicity constraint models and optimize treatment strategies over the space of tolerated schedules to identify specific combination schedules that lead to optimal tumor control. We find that (i) combining these therapies delays resistance longer than any monotherapy schedule with either evofosfamide or erlotinib alone, (ii) sequentially alternating single doses of each drug leads to minimal tumor burden and maximal reduction in probability of developing resistance, and (iii) strategies minimizing the length of time after an evofosfamide dose and before erlotinib confer further benefits in reduction of tumor burden. These results provide insights into how hypoxia-activated prodrugs may be used to enhance therapeutic effectiveness in the clinic.
Kroesen, Michiel; Nierkens, Stefan; Ansems, Marleen; Wassink, Melissa; Orentas, Rimas J; Boon, Louis; den Brok, Martijn H; Hoogerbrugge, Peter M; Adema, Gosse J
2014-03-15
Current multimodal treatments for patients with neuroblastoma (NBL), including anti-disialoganglioside (GD2) monoclonal antibody (mAb) based immunotherapy, result in a favorable outcome in around only half of the patients with advanced disease. To improve this, novel immunocombinational strategies need to be developed and tested in autologous preclinical NBL models. A genetically well-explored autologous mouse model for NBL is the TH-MYCN model. However, the immunobiology of the TH-MYCN model remains largely unexplored. We developed a mouse model using a transplantable TH-MYCN cell line in syngeneic C57Bl/6 mice and characterized the immunobiology of this model. In this report, we show the relevance and opportunities of this model to study immunotherapy for human NBL. Similar to human NBL cells, syngeneic TH-MYCN-derived 9464D cells endogenously express the tumor antigen GD2 and low levels of MHC Class I. The presence of the adaptive immune system had little or no influence on tumor growth, showing the low immunogenicity of the NBL cells. In contrast, depletion of NK1.1+ cells resulted in enhanced tumor outgrowth in both wild-type and Rag1(-/-) mice, showing an important role for NK cells in the natural anti-NBL immune response. Analysis of the tumor infiltrating leukocytes ex vivo revealed the presence of both tumor associated myeloid cells and T regulatory cells, thus mimicking human NBL tumors. Finally, anti-GD2 mAb mediated NBL therapy resulted in ADCC in vitro and delayed tumor outgrowth in vivo. We conclude that the transplantable TH-MYCN model represents a relevant model for the development of novel immunocombinatorial approaches for NBL patients. © 2013 UICC.
Developing vascular and hypoxia based theranostics in solid tumors
NASA Astrophysics Data System (ADS)
Koonce, Nathan A.
Tissue hypoxia was recognized for its biological attenuating effects on ionizing radiation over a century ago and is a characteristic feature of many solid tumors. Clinical and experimental evidence indicates tumor hypoxia plays diverse and key roles in tumor progression, angiogenesis, and resistance to chemotherapy/radiotherapy. Hypoxia has known effects on progression and resistance to several standard treatment approaches and the significant history of study might suggest diagnostic imaging and therapeutic interventions would be routine in oncological practice. Curiously, this is not the case and the research results involved in this report will attempt to better understand and contribute to why this gap in knowledge exists and a rationale for harnessing the potential of detecting and targeting hypoxia. Despite the addition of oxygen and reversal of hypoxia being known as the best radiosensitizer, hypoxia remains unexploited in clinical cancer therapy. The studies reported herein detail development of a novel imaging technique to detect a subtype of tumor hypoxia, vascular hypoxia or hypoxemia, with a 17-fold increase (p<0.05) in uptake of pimonidazole targeted microbubbles observed compared to controls. This technique creates the potential to study the role of hypoxemia in progression and therapeutic response. Additionally, description of a nanoparticle-based therapy that targets tumor areas associated with tumor hypoxia and the tumor microenvironment in general is reported. TNF-loaded nanoparticles combined with radiotherapy resulted in a 5.25-fold growth delay that was found to be synergistic (p<0.05) and suggests clinical evaluation is warranted. An additional study to evaluate an approach to use thermal ablation of intratumoral hypoxia by an image-guided technique developed in our group is described along with a sequence dependence of radiation preceding ablation. A final study on the use of galectin-1 antagonist to significantly decrease (p<0.05) hypoxia in the tumor microenvironment by altering tumor vessel characteristics is illustrated in Chapter 5. Overall, this thesis details imaging approaches of tumor hypoxia and its detection, quantification and targeting in therapeutic approaches.
Antitumor activity of cryptophycins: effect of infusion time and combination studies.
Menon, K; Alvarez, E; Forler, P; Phares, V; Amsrud, T; Shih, C; Al-Awar, R; Teicher, B A
2000-01-01
Cryptophycins are a family of antitubulin antitumor agents. A synthetic cryptophycin derivative (LY355703, CRYPTO 52) is in early clinical evaluation. The effect of infusion time on the antitumor activity of four cryptophycins was assessed in rats bearing the 13762 mammary carcinoma and combination treatment regimens were assessed in nude mice bearing human tumor xenografts. The cryptophycins were prepared in 2% PEG300/8% cremophor/90% normal saline and delivered by jugular vein catheter on days 7, 9 and 11 post tumor implant to 13762 tumor-bearing rats. The cryptophycins prepared in the same formulation were administered by intravenous bolus injection on an alternate day schedule for five doses to human tumor xenograft bearing nude mice. An infusion time of 2 h in the rats increased the tumor growth delay produced by CRYPTO 52 and CRYPTO 55, while increasing the infusion time to 6 h continued to increase the tumor growth delay for CRYPTO 292 and CRYPTO 296. Administering CRYPTO 292 at a higher dose two times was more effective than administering it at a lower dose three times. The tumor growth delays produced by the cryptophycins in the rat 13762 mammary carcinoma were greater than those with cisplatin, doxorubicin, 5-fluorouracil and 5 x 3 Gray and comparable with cyclophosphamide and gemcitabine. Combination studies were carried out in human tumor xenografts including the MX-1 breast carcinoma, the Calu-6 non-small cell lung carcinoma, the H82 small cell lung carcinoma and the SW-2 small cell lung carcinoma. CRYPTO 52 and CRYPTO 55 combined with doxorubicin, paclitaxel and 5-fluorouracil to form highly effective regimens against the human MX-1 breast carcinoma. CRYPTO 52 and CRYPTO 55 were also highly effective against the three lung carcinoma xenografts when combined with the antitumor platinum complexes, cisplatin, carboplatin or oxaliplatin. Cryptophycins represent a promising new class of antitumor agents that may be optimally administered by intravenous infusion and in combination with doxorubicin, paclitaxel and 5-fluorouracil.
A non-metastatic remote effect of lung carcinoma.
van der Pol, B A; Planten, J T
1987-01-01
A 37-year-old man, who had an oat cell carcinoma of the left lung, lost in a few months a substantial part of both visual fields, on account of a destructive retinal process. This syndrome is known in the literature as a visual paraneoplastic syndrome, which clinically shows the very rapid development of a pseudoretinitis pigmentosa sine pigmento. For most of the patients described the visual problem was the presenting symptom. In contrast with most other described cases, our patient responded very well to systemic tumor treatment and his ocular process also came to a standstill after some delay. The nature of the relationship between the primary tumor and the photoreceptor destruction is not yet clear in detail. An auto-immune process probably forms the basis of the syndrome, but hormonal activity of the tumor could not be excluded in all cases.
Mafuvadze, Benford; Benakanakere, Indira; Lopez, Franklin; Besch-Williford, Cynthia; Ellersieck, Mark R.; Hyder, Salman M.
2011-01-01
The use of progestins as a component of hormone replacement therapy has been linked to an increase in breast cancer risk in postmenopausal women. We have previously shown that medroxyprogesterone acetate (MPA), a commonly administered synthetic progestin, increases production of the potent angiogenic factor vascular endothelial growth factor (VEGF) by tumor cells, leading to the development of new blood vessels and tumor growth. We sought to identify nontoxic chemicals that would inhibit progestin-induced tumorigenesis. We used a recently developed progestin-dependent mammary cancer model in which tumors are induced in Sprague-Dawley rats by 7,12-dimethylbenz(a)anthracene (DMBA) treatment. The flavonoid apigenin, which we previously found to inhibit progestin-dependent VEGF synthesis in human breast cancer cells in vitro, significantly delayed the development of, and decreased the incidence and multiplicity of, MPA-accelerated DMBA-induced mammary tumors in this animal model. Whereas apigenin decreased the occurrence of such tumors, it did not block MPA-induced intraductal and lobular epithelial cell hyperplasia in the mammary tissue. Apigenin blocked MPA-dependent increases in VEGF, and suppressed VEGF receptor-2 (VEGFR-2) but not VEGFR-1 in regions of hyperplasia. No differences were observed in estrogen or progesterone receptor levels, or the number of estrogen receptor-positive cells, within the mammary gland of MPA-treated animals administered apigenin, MPA-treated animals, and placebo treated animals. However, the number of progesterone receptor-positive cells was reduced in animals treated with MPA or MPA and apigenin compared with those treated with placebo. These findings suggest that apigenin has important chemopreventive properties for those breast cancers that develop in response to progestins. PMID:21505181
Qayum, Naseer; Im, Jaehong; Stratford, Michael R; Bernhard, Eric J; McKenna, W Gillies; Muschel, Ruth J
2012-01-01
Because effective drug delivery is often limited by inadequate vasculature within the tumor, the ability to modulate the tumor microenvironment is one strategy that may achieve better drug distribution. We have previously shown that treatment of mice bearing tumors with phosphoinositide-3 kinase (PI3K) inhibitors alters vascular structure in a manner analogous to vascular normalization and results in increased perfusion of the tumor. On the basis of that result, we asked whether inhibition of PI3K would improve chemotherapy delivery. Mice with xenografts using the cell line SQ20B bearing a hypoxia marker or MMTV-neu transgenic mice with spontaneous breast tumors were treated with the class I PI3K inhibitor GDC-0941. The tumor vasculature was evaluated by Doppler ultrasound, and histology. The delivery of doxorubicin was assessed using whole animal fluorescence, distribution on histologic sections, high-performance liquid chromatography on tumor lysates, and tumor growth delay. Treatment with GDC-0941 led to approximately three-fold increases in perfusion, substantially reduced hypoxia and vascular normalization by histology. Significantly increased amounts of doxorubicin were delivered to the tumors correlating with synergistic tumor growth delay. The GDC-0941 itself had no effect on tumor growth. Inhibition of PI3K led to vascular normalization and improved delivery of a chemotherapeutic agent. This study highlights the importance of the microvascular effects of some novel oncogenic signaling inhibitors and the need to take those changes into account in the design of clinical trials many of which use combinations of chemotherapeutic agents. © 2011 AACR.
Tumor growth delay by adjuvant alternating electric fields which appears non-thermally mediated.
Castellví, Quim; Ginestà, Mireia M; Capellà, Gabriel; Ivorra, Antoni
2015-10-01
Delivery of the so-called Tumor Treatment Fields (TTFields) has been proposed as a cancer therapy. These are low magnitude alternating electric fields at frequencies from 100 to 300 kHz which are applied continuously in a non-invasive manner. Electric field delivery may produce an increase in temperature which cannot be neglected. We hypothesized that the reported results obtained by applying TTFields in vivo could be due to heat rather than to electrical forces as previously suggested. Here, an in vivo study is presented in which pancreatic tumors subcutaneously implanted in nude mice were treated for a week either with mild hyperthermia (41 °C) or with TTFields (6 V/cm, 150 kHz) and tumor growth was assessed. Although the TTFields applied singly did not produce any significant effect, the combination with chemotherapy did show a delay in tumor growth in comparison to animals treated only with chemotherapy (median relative reduction=47%). We conclude that concomitant chemotherapy and TTFields delivery show a beneficial impact on pancreatic tumor growth. Contrary to our hypothesis, this impact is non-related with the induced temperature increase. Copyright © 2015 Elsevier B.V. All rights reserved.
Focused tandem shock waves in water and their potential application in cancer treatment
NASA Astrophysics Data System (ADS)
Lukes, P.; Sunka, P.; Hoffer, P.; Stelmashuk, V.; Pouckova, P.; Zadinova, M.; Zeman, J.; Dibdiak, L.; Kolarova, H.; Tomankova, K.; Binder, S.; Benes, J.
2014-01-01
The generator of two focused successive (tandem) shock waves (FTSW) in water produced by underwater multichannel electrical discharges at two composite electrodes, with a time delay between the first and second shock waves of 10 s, was developed. It produces, at the focus, a strong shock wave with a peak positive pressure of up to 80 MPa, followed by a tensile wave with a peak negative pressure of up to MPa, thus generating at the focus a large amount of cavitation. Biological effects of FTSW were demonstrated in vitro on hemolysis of erythrocytes and cell viability of human acute lymphoblastic leukemia cells as well as on tumor growth delay ex vivo and in vivo experiments performed with B16 melanoma, T-lymphoma, and R5-28 sarcoma cell lines. It was demonstrated in vivo that FTSW can enhance antitumor effects of chemotherapeutic drugs, such as cisplatin, most likely due to increased permeability of the membrane of cancer cells induced by FTSW. Synergetic cytotoxicity of FTSW with sonosensitive porphyrin-based drug Photosan on tumor growth was observed, possibly due to the cavitation-induced sonodynamic effect of FTSW.
Zhang, Qiang; Cai, Jian-Qun; Xiang, Li; Wang, Zhen; de Liu, Si; Bai, Yang
2017-08-01
Background and study aims Submucosal tunneling endoscopic resection with double opening (DO-STER) was developed by our group for the resection of submucosal tumors in the esophagus and gastric fundus near the cardia. This study aimed to provide a preliminary evaluation of feasibility and safety of DO-STER. Methods The key to DO-STER is the creation of a tunnel opening in the mucosa over the inferior border of the tumor. During resection, the tumor can be gradually pushed out of the submucosal tunnel through the opening, leaving enough space for operation within the tunnel. A total of 10 tumors resected by DO-STER were retrospectively reviewed. Results All tumors were successfully resected by DO-STER. One tumor was located at the lower esophagus, four at the esophagogastric junction, and five at the gastric fundus near the cardia. Tumor size ranged from 1.0 × 1.2 cm to 3.5 × 5.0 cm, and all tumors originated from the muscularis propria. Operative times ranged from 45 to 150 minutes. No delayed bleeding or perforation occurred. Conclusion DO-STER seems to provide an alternative approach for resection of tumors in the esophagus and gastric fundus near the cardia. © Georg Thieme Verlag KG Stuttgart · New York.
Woo, Seung Hoon; Choi, Dae-Seob; Kim, Jin-pyeong; Park, Jung Je; Joo, Yeon Hee; Chung, Phil-Sang; Kim, Bo-Young; Ko, Young-Hyeh; Jeong, Han-Sin; Kim, Hyung-Jin
2013-01-01
The objective of this study was to define the radiological characteristics of 2-phase computed tomography (CT) of parotid gland Warthin tumors (WTs) with a pathologic basis for these findings. We prospectively enrolled 116 patients with parotid gland tumor who underwent preoperative 2-phase CT scans(scanning delays of 30 and 120 seconds). The attenuation changes and enhancement patterns were analyzed according to pathology. We also evaluated size-matched samples of WTs and pleomorphic adenoma by staining CD31, vascular endothelial growth factor-receptor 2, collagen IV, and smooth muscle actin. Computed tomography numbers in WTs were significantly higher than those in other tumors in early-phase scans and lower in delayed scans. Pathologically, CD31(+) blood vessel area was significantly higher in WTs than in pleomorphic adenomas. In addition, WTs had an extensive capillary network and many leaky blood vessels. The enhancement pattern of early fill-in and early washout is the typical finding of WTs on 2-phase CT scans, which may be attributed pathologically to abundant blood vessel and extensive capillary network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Kurt; Krueger, Sarah A.; Kane, Jonathan L.
Purpose: To assess the efficacy of 3-week schedules of low-dose pulsed radiation treatment (PRT) and standard radiation therapy (SRT), with concurrent cisplatin (CDDP) in a head and neck squamous cell carcinoma xenograft model. Methods and Materials: Subcutaneous UT-SCC-14 tumors were established in athymic NIH III HO female mice. A total of 30 Gy was administered as 2 Gy/d, 5 d/wk for 3 weeks, either by PRT (10 × 0.2 Gy/d, with a 3-minute break between each 0.2-Gy dose) or SRT (2 Gy/d, uninterrupted delivery) in combination with concurrent 2 mg/kg CDDP 3 times per week in the final 2 weeks of radiation therapy. Treatment-induced growth delays were defined from twice-weeklymore » tumor volume measurements. Tumor hypoxia was assessed by {sup 18}F-fluoromisonidazole positron emission tomography imaging, and calculated maximum standardized uptake values compared with tumor histology. Tumor vessel density and hypoxia were measured by quantitative immunohistochemistry. Normal tissues effects were evaluated in gut and skin. Results: Untreated tumors grew to 1000 mm{sup 3} in 25.4 days (±1.2), compared with delays of 62.3 days (±3.5) for SRT + CDDP and 80.2 days (±5.0) for PRT + CDDP. Time to reach 2× pretreatment volume ranged from 8.2 days (±1.8) for untreated tumors to 67.1 days (±4.7) after PRT + CDDP. Significant differences in tumor growth delay were observed for SRT versus SRT + CDDP (P=.04), PRT versus PRT + CDDP (P=.035), and SRT + CDDP versus PRT + CDDP (P=.033), and for survival between PRT versus PRT + CDDP (P=.017) and SRT + CDDP versus PRT + CDDP (P=.008). Differences in tumor hypoxia were evident by {sup 18}F-fluoromisonidazole positron emission tomography imaging between SRT and PRT (P=.025), although not with concurrent CDDP. Tumor vessel density differed between SRT + CDDP and PRT + CDDP (P=.011). No differences in normal tissue parameters were seen. Conclusions: Concurrent CDDP was more effective in combination PRT than SRT at restricting tumor growth. Significant differences in tumor vascular density were evident between PRT and SRT, suggesting a preservation of vascular network with PRT.« less
Enhancing dendritic cell immunotherapy for melanoma using a simple mathematical model.
Castillo-Montiel, E; Chimal-Eguía, J C; Tello, J Ignacio; Piñon-Zaráte, G; Herrera-Enríquez, M; Castell-Rodríguez, A E
2015-06-09
The immunotherapy using dendritic cells (DCs) against different varieties of cancer is an approach that has been previously explored which induces a specific immune response. This work presents a mathematical model of DCs immunotherapy for melanoma in mice based on work by Experimental Immunotherapy Laboratory of the Medicine Faculty in the Universidad Autonoma de Mexico (UNAM). The model is a five delay differential equation (DDEs) which represents a simplified view of the immunotherapy mechanisms. The mathematical model takes into account the interactions between tumor cells, dendritic cells, naive cytotoxic T lymphocytes cells (inactivated cytotoxic cells), effector cells (cytotoxic T activated cytotoxic cells) and transforming growth factor β cytokine (T G F-β). The model is validated comparing the computer simulation results with biological trial results of the immunotherapy developed by the research group of UNAM. The results of the growth of tumor cells obtained by the control immunotherapy simulation show a similar amount of tumor cell population than the biological data of the control immunotherapy. Moreover, comparing the increase of tumor cells obtained from the immunotherapy simulation and the biological data of the immunotherapy applied by the UNAM researchers obtained errors of approximately 10 %. This allowed us to use the model as a framework to test hypothetical treatments. The numerical simulations suggest that by using more doses of DCs and changing the infusion time, the tumor growth decays compared with the current immunotherapy. In addition, a local sensitivity analysis is performed; the results show that the delay in time " τ", the maximal growth rate of tumor "r" and the maximal efficiency of tumor cytotoxic cells rate "aT" are the most sensitive model parameters. By using this mathematical model it is possible to simulate the growth of the tumor cells with or without immunotherapy using the infusion protocol of the UNAM researchers, to obtain a good approximation of the biological trials data. It is worth mentioning that by manipulating the different parameters of the model the effectiveness of the immunotherapy may increase. This last suggests that different protocols could be implemented by the Immunotherapy Laboratory of UNAM in order to improve their results.
Efficacy of a Cancer Vaccine against ALK-Rearranged Lung Tumors.
Voena, Claudia; Menotti, Matteo; Mastini, Cristina; Di Giacomo, Filomena; Longo, Dario Livio; Castella, Barbara; Merlo, Maria Elena Boggio; Ambrogio, Chiara; Wang, Qi; Minero, Valerio Giacomo; Poggio, Teresa; Martinengo, Cinzia; D'Amico, Lucia; Panizza, Elena; Mologni, Luca; Cavallo, Federica; Altruda, Fiorella; Butaney, Mohit; Capelletti, Marzia; Inghirami, Giorgio; Jänne, Pasi A; Chiarle, Roberto
2015-12-01
Non-small cell lung cancer (NSCLC) harboring chromosomal rearrangements of the anaplastic lymphoma kinase (ALK) gene is treated with ALK tyrosine kinase inhibitors (TKI), but the treatment is successful for only a limited amount of time; most patients experience a relapse due to the development of drug resistance. Here, we show that a vaccine against ALK induced a strong and specific immune response that both prophylactically and therapeutically impaired the growth of ALK-positive lung tumors in mouse models. The ALK vaccine was efficacious also in combination with ALK TKI treatment and significantly delayed tumor relapses after TKI suspension. We found that lung tumors containing ALK rearrangements induced an immunosuppressive microenvironment, regulating the expression of PD-L1 on the surface of lung tumor cells. High PD-L1 expression reduced ALK vaccine efficacy, which could be restored by administration of anti-PD-1 immunotherapy. Thus, combinations of ALK vaccine with TKIs and immune checkpoint blockade therapies might represent a powerful strategy for the treatment of ALK-driven NSCLC. ©2015 American Association for Cancer Research.
Endoscopic submucosal dissection for esophageal granular cell tumor using the clutch cutter
Komori, Keishi; Akahoshi, Kazuya; Tanaka, Yoshimasa; Motomura, Yasuaki; Kubokawa, Masaru; Itaba, Soichi; Hisano, Terumasa; Osoegawa, Takashi; Nakama, Naotaka; Iwao, Risa; Oya, Masafumi; Nakamura, Kazuhiko
2012-01-01
Endoscopic submucosal dissection (ESD) with a knife is a technically demanding procedure associated with a high complication rate. The shortcomings of this method are the deficiencies of fixing the knife to the target lesion, and of compressing it. These shortcomings can lead to major complications such as perforation and bleeding. To reduce the risk of complications related to ESD, we developed a new grasping type scissors forceps (Clutch Cutter®, Fujifilm, Japan) which can grasp and incise the targeted tissue using an electrosurgical current. Esophagogastroduodenoscopy on a 59-year-old Japanese man revealed a 16mm esophageal submucosal nodule with central depression. Endoscopic ultrasonography demonstrated a hypoechoic solid tumor limited to the submucosa without lymph node involvement. The histologic diagnosis of the specimen obtained by biopsy was granular cell tumor. It was safely and accurately resected without unexpected incision by ESD using the CC. No delayed hemorrhage or perforation occurred. Histological examination confirmed that the granular cell tumor was completely excised with negative resection margin.We report herein a case of esophageal granular cell tumor successfully treated by an ESD technique using the CC. PMID:22267979
Widney, Daniel P.; Olafsen, Tove; Wu, Anna M.; Kitchen, Christina M. R.; Said, Jonathan W.; Smith, Jeffrey B.; Peña, Guadalupe; Magpantay, Larry I.; Penichet, Manuel L.; Martinez-Maza, Otoniel
2013-01-01
Currently, few rodent models of AIDS-associated non-Hodgkin’s lymphoma (AIDS-NHL) exist. In these studies, a novel mouse/human xenograft model of AIDS-associated Burkitt lymphoma (AIDS-BL) was created by injecting cells of the human AIDS-BL cell line, 2F7, intraperitoneally into NOD-SCID mice. Mice developed tumors in the peritoneal cavity, with metastases to the spleen, thymus, and mesenteric lymph nodes. Expression of the chemokine receptor, CXCR5, was greatly elevated in vivo on BL tumor cells in this model, as shown by flow cytometry. CXCL13 is the ligand for CXCR5, and serum and ascites levels of murine, but not human, CXCL13 showed a striking elevation in tumor-bearing mice, with levels as high as 200,000 pg/ml in ascites, as measured by ELISA. As shown by immunohistochemistry, murine CXCL13 was associated with macrophage-like tumor-infiltrating cells that appeared to be histiocytes. Blocking CXCR5 on 2F7 cells with neutralizing antibodies prior to injection into the mice substantially delayed tumor formation. The marked elevations in tumor cell CXCR5 expression and in murine CXCL13 levels seen in the model may potentially identify an important link between tumor-interacting histiocytes and tumor cells in AIDS-BL. These results also identify CXCL13 as a potential biomarker for this disease, which is consistent with previous studies showing that serum levels of CXCL13 were elevated in human subjects who developed AIDS-lymphoma. This mouse model may be useful for future studies on the interactions of the innate immune system and AIDS-BL tumor cells, as well as for the assessment of potential tumor biomarkers for this disease. PMID:23936541
Widney, Daniel P; Olafsen, Tove; Wu, Anna M; Kitchen, Christina M R; Said, Jonathan W; Smith, Jeffrey B; Peña, Guadalupe; Magpantay, Larry I; Penichet, Manuel L; Martinez-Maza, Otoniel
2013-01-01
Currently, few rodent models of AIDS-associated non-Hodgkin's lymphoma (AIDS-NHL) exist. In these studies, a novel mouse/human xenograft model of AIDS-associated Burkitt lymphoma (AIDS-BL) was created by injecting cells of the human AIDS-BL cell line, 2F7, intraperitoneally into NOD-SCID mice. Mice developed tumors in the peritoneal cavity, with metastases to the spleen, thymus, and mesenteric lymph nodes. Expression of the chemokine receptor, CXCR5, was greatly elevated in vivo on BL tumor cells in this model, as shown by flow cytometry. CXCL13 is the ligand for CXCR5, and serum and ascites levels of murine, but not human, CXCL13 showed a striking elevation in tumor-bearing mice, with levels as high as 200,000 pg/ml in ascites, as measured by ELISA. As shown by immunohistochemistry, murine CXCL13 was associated with macrophage-like tumor-infiltrating cells that appeared to be histiocytes. Blocking CXCR5 on 2F7 cells with neutralizing antibodies prior to injection into the mice substantially delayed tumor formation. The marked elevations in tumor cell CXCR5 expression and in murine CXCL13 levels seen in the model may potentially identify an important link between tumor-interacting histiocytes and tumor cells in AIDS-BL. These results also identify CXCL13 as a potential biomarker for this disease, which is consistent with previous studies showing that serum levels of CXCL13 were elevated in human subjects who developed AIDS-lymphoma. This mouse model may be useful for future studies on the interactions of the innate immune system and AIDS-BL tumor cells, as well as for the assessment of potential tumor biomarkers for this disease.
Endoscopic submucosal dissection of a rectal carcinoid tumor using grasping type scissors forceps
Akahoshi, Kazuya; Motomura, Yasuaki; Kubokawa, Masaru; Matsui, Noriaki; Oda, Manami; Okamoto, Risa; Endo, Shingo; Higuchi, Naomi; Kashiwabara, Yumi; Oya, Masafumi; Akahane, Hidefumi; Akiba, Haruo
2009-01-01
Endoscopic submucosal dissection (ESD) with a knife is a technically demanding procedure associated with a high complication rate. The shortcomings of this method are the inability to fix the knife to the target lesion, and compression of the lesion. These can lead to major complications such as perforation and bleeding. To reduce the risk of complications related to ESD, we developed a new grasping type scissors forceps (GSF), which can grasp and incise the targeted tissue using electrosurgical current. Colonoscopy on a 55-year-old woman revealed a 10-mm rectal submucosal nodule. The histological diagnosis of the specimen obtained by biopsy was carcinoid tumor. Endoscopic ultrasonography demonstrated a hypoechoic solid tumor limited to the submucosa without lymph node involvement. It was safely and accurately resected without unexpected incision by ESD using a GSF. No delayed hemorrhage or perforation occurred. Histological examination confirmed the carcinoid tumor was completely excised with negative resection margin. PMID:19418591
Exosomes genetic cargo in lung cancer: a truly Pandora’s box
Reclusa, Pablo; Sirera, Rafael; Araujo, Antonio; Giallombardo, Marco; Valentino, Anna; Sorber, Laure; Bazo, Ignacio Gil; Pauwels, Patrick
2016-01-01
Lung cancer is a highly lethal disease. Targeted therapies have been developed in last years, however survival rates are not improving due to the delay in the diagnosis, making biomarkers one of the most interesting fields of study in cancer. Liquid biopsy has raised as an alternative to tissue biopsy due to improvements in analytical techniques for circulating tumor cells (CTCs), cell free DNA and exosomes. Among all, exosomes have raised as one of the most promising tools to understand the tumor due to their stability in the blood and their similarity to the cells of origin. In the last years, different alterations have been described inside the exosomes derived from non-small cell lung cancer (NSCLC) cells mirroring the processes inside these tumoral cells, such as EGFR mutation, translocations or microRNA (miRNA) deregulation. All these studies have opened the window to a new world of possibilities in the study of tumor biomarkers. PMID:27826529
Maenhout, Sarah K.; Four, Stephanie Du; Corthals, Jurgen; Neyns, Bart; Thielemans, Kris; Aerts, Joeri L.
2014-01-01
AZD1480 is a potent, competitive small-molecule inhibitor of JAK1/2 kinase which inhibits STAT3 phosphorylation and tumor growth. Here we investigated the effects of AZD1480 on the function of different immune cell populations in a melanoma model. When MO4 tumor-bearing mice were treated with AZD1480 we observed a strong inhibition of tumor growth as well as a prolonged survival. Moreover, a significant decrease in the percentage of myeloid-derived suppressor cells (MDSCs) was observed after treatment with AZD1480. However, AZD1480 enhanced the suppressive capacity of murine MDSCs while at the same time impairing the proliferative as well as the IFN-γ secretion capacity of murine T cells. The addition of AZD1480 to co-cultures of human MDSCs and T cells does not affect the suppressive activity of MDSCs but it does reduce the IFN-γ secretion and the proliferative capacity of T cells. We showed that although AZD1480 has the ability to delay the tumor growth of MO4 tumor-bearing mice, this drug has detrimental effects on several aspects of the immune system. These data indicate that systemic targeting of the JAK/STAT pathway by JAK1/2 inhibition can have divergent effects on tumor growth and anti-tumor immune responses. PMID:25149535
Tran, Ly-Binh-An; Bol, Anne; Labar, Daniel; Karroum, Oussama; Bol, Vanesa; Jordan, Bénédicte; Grégoire, Vincent; Gallez, Bernard
2014-11-01
Hypoxia-driven intervention (oxygen manipulation or dose escalation) could overcome radiation resistance linked to tumor hypoxia. Here, we evaluated the value of hypoxia imaging using (18)F-FAZA PET to predict the outcome and guide hypoxia-driven interventions. Two hypoxic rat tumor models were used: rhabdomyosarcoma and 9L-glioma. For the irradiated groups, the animals were divided into two subgroups: breathing either room air or carbogen. (18)F-FAZA PET images were obtained just before the irradiation to monitor the hypoxic level of each tumor. Absolute pO2 were also measured using EPR oximetry. Dose escalation was used in Rhabdomyosarcomas. For 9L-gliomas, a significant correlation between (18)F-FAZA T/B ratio and tumor growth delay was found; additionally, carbogen breathing dramatically improved the tumor response to irradiation. On the contrary, Rhabdomyosarcomas were less responsive to hyperoxic challenge. For that model, an increase in growth delay was observed using dose escalation, but not when combining irradiation with carbogen. (18)F-FAZA uptake may be prognostic of outcome following radiotherapy and could assess the response of tumor to carbogen breathing. (18)F-FAZA PET may help to guide the hypoxia-driven intervention with irradiation: carbogen breathing in responsive tumors or dose escalation in tumors non-responsive to carbogen. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Kim, So Young; Kang, Dongxu; Choi, Hye Jin; Joo, Yeonsoo; Kim, Joo-Hang; Song, Jae J
2017-02-28
A successful DNA vaccine for the treatment of tumors should break established immune tolerance to tumor antigen. However, due to the relatively low immunogenicity of DNA vaccines, compared to other kinds of vaccines using live virus or protein, a recombinant viral vector was used to enhance humoral and cellular immunity. In the current study, we sought to develop a novel anti-cancer agent as a complex of DNA and oncolytic adenovirus for the treatment of malignant melanoma in the C57BL/6 mouse model. MART1, a human melanoma-specific tumor antigen, was used to induce an increased immune reaction, since a MART1-protective response is required to overcome immune tolerance to the melanoma antigen MelanA. Because GM-CSF is a potent inducer of anti-tumor immunity and TGF-β2 is involved in tumor survival and host immune suppression, mouse GM-CSF (mGM-CSF) and shRNA of mouse TGF-β2 (shmTGF-β2) genes were delivered together with MART1 via oncolytic adenovirus. MART1 plasmid was also used for antigen-priming. To compare the anti-tumor effect of oncolytic adenovirus expressing both mGM-CSF and shmTGF-β2 (AdGshT) with that of oncolytic adenovirus expressing mGM-CSF only (AdG), each virus was intratumorally injected into melanoma-bearing C57BL/6 mice. As a result, mice that received AdGshT showed delayed tumor growth than those that received AdG. Heterologous prime-boost immunization was combined with oncolytic AdGshT and MART1 expression to result in further delayed tumor growth. This regression is likely due to the following 4 combinations: MART1-derived mouse melanoma antigen-specific immune reaction, immune stimulation by mGM-CSF/shmTGF-β2, tumor growth inhibition by shmTGF-β2, and tumor cell-specific lysis via an oncolytic adenovirus. Immune activation was mainly induced by mature tumor-infiltrating dendritic cell (TIDC) and lowered regulatory T cells in tumor-infiltrating lymphocytes (TIL). Taken together, these findings demonstrate that human MART1 induces a mouse melanoma antigen-specific immune reaction. In addition, the results also indicate that combination therapy of MART1 plasmid, together with an oncolytic adenovirus expressing MART1, mGM-CSF, and shmTGF-β2, is a promising candidate for the treatment of malignant melanoma.
Choi, Hye Jin; Joo, Yeonsoo; Kim, Joo-Hang; Song, Jae J.
2017-01-01
A successful DNA vaccine for the treatment of tumors should break established immune tolerance to tumor antigen. However, due to the relatively low immunogenicity of DNA vaccines, compared to other kinds of vaccines using live virus or protein, a recombinant viral vector was used to enhance humoral and cellular immunity. In the current study, we sought to develop a novel anti-cancer agent as a complex of DNA and oncolytic adenovirus for the treatment of malignant melanoma in the C57BL/6 mouse model. MART1, a human melanoma-specific tumor antigen, was used to induce an increased immune reaction, since a MART1-protective response is required to overcome immune tolerance to the melanoma antigen MelanA. Because GM-CSF is a potent inducer of anti-tumor immunity and TGF-β2 is involved in tumor survival and host immune suppression, mouse GM-CSF (mGM-CSF) and shRNA of mouse TGF-β2 (shmTGF-β2) genes were delivered together with MART1 via oncolytic adenovirus. MART1 plasmid was also used for antigen-priming. To compare the anti-tumor effect of oncolytic adenovirus expressing both mGM-CSF and shmTGF-β2 (AdGshT) with that of oncolytic adenovirus expressing mGM-CSF only (AdG), each virus was intratumorally injected into melanoma-bearing C57BL/6 mice. As a result, mice that received AdGshT showed delayed tumor growth than those that received AdG. Heterologous prime-boost immunization was combined with oncolytic AdGshT and MART1 expression to result in further delayed tumor growth. This regression is likely due to the following 4 combinations: MART1-derived mouse melanoma antigen-specific immune reaction, immune stimulation by mGM-CSF/shmTGF-β2, tumor growth inhibition by shmTGF-β2, and tumor cell-specific lysis via an oncolytic adenovirus. Immune activation was mainly induced by mature tumor-infiltrating dendritic cell (TIDC) and lowered regulatory T cells in tumor-infiltrating lymphocytes (TIL). Taken together, these findings demonstrate that human MART1 induces a mouse melanoma antigen-specific immune reaction. In addition, the results also indicate that combination therapy of MART1 plasmid, together with an oncolytic adenovirus expressing MART1, mGM-CSF, and shmTGF-β2, is a promising candidate for the treatment of malignant melanoma. PMID:28178658
S100A9 Interaction with TLR4 Promotes Tumor Growth
Källberg, Eva; Vogl, Thomas; Liberg, David; Olsson, Anders; Björk, Per; Wikström, Pernilla; Bergh, Anders; Roth, Johannes; Ivars, Fredrik; Leanderson, Tomas
2012-01-01
By breeding TRAMP mice with S100A9 knock-out (S100A9−/−) animals and scoring the appearance of palpable tumors we observed a delayed tumor growth in animals devoid of S100A9 expression. CD11b+ S100A9 expressing cells were not observed in normal prostate tissue from control C57BL/6 mice but were readily detected in TRAMP prostate tumors. Also, S100A9 expression was observed in association with CD68+ macrophages in biopsies from human prostate tumors. Delayed growth of TRAMP tumors was also observed in mice lacking the S100A9 ligand TLR4. In the EL-4 lymphoma model tumor growth inhibition was observed in S100A9−/− and TLR4−/−, but not in RAGE−/− animals lacking an alternative S100A9 receptor. When expression of immune-regulating genes was analyzed using RT-PCR the only common change observed in mice lacking S100A9 and TLR4 was a down-regulation of TGFβ expression in splenic CD11b+ cells. Lastly, treatment of mice with a small molecule (ABR-215050) that inhibits S100A9 binding to TLR4 inhibited EL4 tumor growth. Thus, S100A9 and TLR4 appear to be involved in promoting tumor growth in two different tumor models and pharmacological inhibition of S100A9-TLR4 interactions is a novel and promising target for anti-tumor therapies. PMID:22470535
Toyohara, Yukiyo; Hashitani, Susumu; Kishimoto, Hiromitsu; Noguchi, Kazuma; Yamamoto, Nobuto; Urade, Masahiro
2011-07-01
This study investigated the inhibitory effect of vitamin D-binding protein-derived macrophage-activating factor (GcMAF) on carcinogenesis and tumor growth, using a 9,10-dimethyl-1,2-benzanthracene (DMBA)-induced hamster cheek pouch carcinogenesis model, as well as the cytocidal effect of activated macrophages against HCPC-1, a cell line established from DMBA-induced cheek pouch carcinoma. DMBA application induced squamous cell carcinoma in all 15 hamsters of the control group at approximately 10 weeks, and all 15 hamsters died of tumor burden within 20 weeks. By contrast, 2 out of the 14 hamsters with GcMAF administration did not develop tumors and the remaining 12 hamsters showed a significant delay of tumor development for approximately 3.5 weeks. The growth of tumors formed was significantly suppressed and none of the hamsters died within the 20 weeks during which they were observed. When GcMAF administration was stopped at the 13th week of the experiment in 4 out of the 14 hamsters in the GcMAF-treated group, tumor growth was promoted, but none of the mice died within the 20-week period. On the other hand, when GcMAF administration was commenced after the 13th week in 5 out of the 15 hamsters in the control group, tumor growth was slightly suppressed and all 15 hamsters died of tumor burden. However, the mean survival time was significantly extended. GcMAF treatment activated peritoneal macrophages in vitro and in vivo, and these activated macrophages exhibited a marked cytocidal effect on HCPC-1 cells. Furthermore, the cytocidal effect of activated macrophages was enhanced by the addition of tumor-bearing hamster serum. These findings indicated that GcMAF possesses an inhibitory effect on tumor development and growth in a DMBA-induced hamster cheek pouch carcinogenesis model.
TOYOHARA, YUKIYO; HASHITANI, SUSUMU; KISHIMOTO, HIROMITSU; NOGUCHI, KAZUMA; YAMAMOTO, NOBUTO; URADE, MASAHIRO
2011-01-01
This study investigated the inhibitory effect of vitamin D-binding protein-derived macrophage-activating factor (GcMAF) on carcinogenesis and tumor growth, using a 9,10-dimethyl-1,2-benzanthracene (DMBA)-induced hamster cheek pouch carcinogenesis model, as well as the cytocidal effect of activated macrophages against HCPC-1, a cell line established from DMBA-induced cheek pouch carcinoma. DMBA application induced squamous cell carcinoma in all 15 hamsters of the control group at approximately 10 weeks, and all 15 hamsters died of tumor burden within 20 weeks. By contrast, 2 out of the 14 hamsters with GcMAF administration did not develop tumors and the remaining 12 hamsters showed a significant delay of tumor development for approximately 3.5 weeks. The growth of tumors formed was significantly suppressed and none of the hamsters died within the 20 weeks during which they were observed. When GcMAF administration was stopped at the 13th week of the experiment in 4 out of the 14 hamsters in the GcMAF-treated group, tumor growth was promoted, but none of the mice died within the 20-week period. On the other hand, when GcMAF administration was commenced after the 13th week in 5 out of the 15 hamsters in the control group, tumor growth was slightly suppressed and all 15 hamsters died of tumor burden. However, the mean survival time was significantly extended. GcMAF treatment activated peritoneal macrophages in vitro and in vivo, and these activated macrophages exhibited a marked cytocidal effect on HCPC-1 cells. Furthermore, the cytocidal effect of activated macrophages was enhanced by the addition of tumor-bearing hamster serum. These findings indicated that GcMAF possesses an inhibitory effect on tumor development and growth in a DMBA-induced hamster cheek pouch carcinogenesis model. PMID:22848250
Comprehensive Quantitative Analysis of Ovarian and Breast Cancer Tumor Peptidomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Zhe; Wu, Chaochao; Xie, Fang
Aberrant degradation of proteins is associated with many pathological states, including cancers. Mass spectrometric analysis of tumor peptidomes, the intracellular and intercellular products of protein degradation, has the potential to provide biological insights on proteolytic processing in cancer. However, attempts to use the information on these smaller protein degradation products from tumors for biomarker discovery and cancer biology studies have been fairly limited to date, largely due to the lack of effective approaches for robust peptidomics identification and quantification, and the prevalence of confounding factors and biases associated with sample handling and processing. Herein, we have developed an effective andmore » robust analytical platform for comprehensive analyses of tissue peptidomes, and which is suitable for high throughput quantitative studies. The reproducibility and coverage of the platform, as well as the suitability of clinical ovarian tumor and patient-derived breast tumor xenograft samples with post-excision delay of up to 60 min before freezing for peptidomics analysis, have been demonstrated. Additionally, our data also show that the peptidomics profiles can effectively separate breast cancer subtypes, reflecting tumor-associated protease activities. In conclusion, peptidomics complements results obtainable from conventional bottom-up proteomics, and provides insights not readily obtainable from such approaches.« less
Comprehensive Quantitative Analysis of Ovarian and Breast Cancer Tumor Peptidomes
Xu, Zhe; Wu, Chaochao; Xie, Fang; ...
2014-10-28
Aberrant degradation of proteins is associated with many pathological states, including cancers. Mass spectrometric analysis of tumor peptidomes, the intracellular and intercellular products of protein degradation, has the potential to provide biological insights on proteolytic processing in cancer. However, attempts to use the information on these smaller protein degradation products from tumors for biomarker discovery and cancer biology studies have been fairly limited to date, largely due to the lack of effective approaches for robust peptidomics identification and quantification, and the prevalence of confounding factors and biases associated with sample handling and processing. Herein, we have developed an effective andmore » robust analytical platform for comprehensive analyses of tissue peptidomes, and which is suitable for high throughput quantitative studies. The reproducibility and coverage of the platform, as well as the suitability of clinical ovarian tumor and patient-derived breast tumor xenograft samples with post-excision delay of up to 60 min before freezing for peptidomics analysis, have been demonstrated. Additionally, our data also show that the peptidomics profiles can effectively separate breast cancer subtypes, reflecting tumor-associated protease activities. In conclusion, peptidomics complements results obtainable from conventional bottom-up proteomics, and provides insights not readily obtainable from such approaches.« less
Neuropsychological profiles of breast cancer and brain tumor cohorts in Northeast Ontario, Canada.
Mariani, Matias; Collins, Mark William Glister
2018-05-17
As developments in cancer treatment have improved outcomes, research has increasingly focused on the role of cancer-related cognitive impairment (CRCI) in quality of life for cancer survivors. Impairment profiles have been heterogeneous across studies, necessitating the study of these effects across different cohorts. The purpose of this preliminary study is to compare the memory profiles of Northeast Ontario breast and CNS cancer patients, as there is no literature which exists for profiling CRCI within this largely rural region. Sixty-three outpatients with breast cancer (n = 32) or CNS tumors (n = 30) at the Northeast Cancer Centre in Sudbury, Canada, were administered a neuropsychological test battery as part of their clinical examination. Domains measured within this study included attention and concentration, processing speed, motor function, language skills, verbal and visual memory, and executive functioning. Participants with brain tumors scored poorer on most neuropsychological measures than participants with breast cancer. Initial verbal memory for individuals with breast cancer was lower than delayed recall and recognition trials. Trial 1 performance for this group was also negatively correlated with self-reported anxiety scores. Consistent with the literature, participants with breast cancer obtained higher scores on most test measures than participants with CNC tumors. Breast cancer participants had lower verbal memory scores on initial trials compared to delayed recall, potentially due to relationships with anxiety and attention. Further research into this cohort will strive to gain greater understanding of the patterns of deficits experienced and how these may inform individuals with cancer in other regions.
Efficacy of Precut Endoscopic Mucosal Resection for Treatment of Rectal Neuroendocrine Tumors
So, Hoonsub; Yoo, Su Hyun; Han, Seungbong; Kim, Gwang-un; Seo, Myeongsook; Hwang, Sung Wook; Yang, Dong-Hoon; Byeon, Jeong-Sik
2017-01-01
Background/Aims Endoscopic resection is the first-line treatment for rectal neuroendocrine tumors (NETs) measuring <1 cm and those between 1 and 2 cm in size. However, conventional endoscopic resection cannot achieve complete resection in all cases. We aimed to analyze clinical outcomes of precut endoscopic mucosal resection (EMR-P) used for the management of rectal NET. Methods EMR-P was used to treat rectal NET in 72 patients at a single tertiary center between 2011 and 2015. Both, circumferential precutting and EMR were performed with the same snare device in all patients. Demographics, procedural details, and histopathological features were reviewed for all cases. Results Mean size of the tumor measured endoscopically was 6.8±2.8 mm. En bloc and complete resection was achieved in 71 (98.6%) and 67 patients (93.1%), respectively. The mean time required for resection was 9.0±5.6 min. Immediate and delayed bleeding developed in six (8.3%) and 4 patients (5.6%), respectively. Immediate bleeding observed during EMR-P was associated with the risk of delayed bleeding. Conclusions Both, the en bloc and complete resection rates of EMR-P in the treatment of rectal NETs using the same snare for precutting and EMR were noted to be high. The procedure was short and safe. EMR-P may be a good treatment choice for the management of rectal NETs. PMID:29020763
A novel multi-drug metronomic chemotherapy significantly delays tumor growth in mice.
Tagliamonte, Maria; Petrizzo, Annacarmen; Napolitano, Maria; Luciano, Antonio; Rea, Domenica; Barbieri, Antonio; Arra, Claudio; Maiolino, Piera; Tornesello, Marialina; Ciliberto, Gennaro; Buonaguro, Franco M; Buonaguro, Luigi
2016-02-24
The tumor immunosuppressive microenvironment represents a major obstacle to an effective tumor-specific cellular immune response. In the present study, the counterbalance effect of a novel metronomic chemotherapy protocol on such an immunosuppressive microenvironment was evaluated in a mouse model upon sub-cutaneous ectopic implantation of B16 melanoma cells. The chemotherapy consisted of a novel multi-drug cocktail including taxanes and alkylating agents, administered in a daily metronomic fashion. The newly designed strategy was shown to be safe, well tolerated and significantly efficacious. Treated animals showed a remarkable delay in tumor growth and prolonged survival as compared to control group. Such an effect was directly correlated with CD4(+) T cell reduction and CD8(+) T cell increase. Furthermore, a significant reduction in the percentage of both CD25(+)FoxP3(+) and CD25(+)CD127(low) regulatory T cell population was found both in the spleens and in the tumor lesions. Finally, the metronomic chemotherapy induced an intrinsic CD8(+) T cell response specific to B16 naturally expressed Trp2 TAA. The novel multi-drug daily metronomic chemotherapy evaluated in the present study was very effective in counterbalancing the immunosuppressive tumor microenvironment. Consequently, the intrinsic anti-tumor T cell immunity could exert its function, targeting specific TAA and significantly containing tumor growth. Overall, the results show that this represents a promising adjuvant approach to significantly enhance efficacy of intrinsic or vaccine-elicited tumor-specific cellular immunity.
Bakkali, Tarik; Hormatallah, Mohamed; Bounssir, Ayoub; Aghtoutane, Nabil; Taous, Hamza; Idrissi, Redouane; Sefiani, Yasser; Lekhel, Brahim; Mesnaoui, Abbes; Bensaid, Younes
2018-05-19
Exostoses or osteochondromas are benign osseous tumors that develop on the bone surface and can be sporadic or hereditary. Their evolution is generally benign but they may be complicated in some patients by conflicts with the surrounding nervous or vascular structures, in particular arteries. We report a case of false aneurysm of the popliteal artery secondary to an isolated exostosis of the left femur in a 20-year-old young woman. A delay in the diagnosis allowed the development of the false aneurysm which was at the origin of a major venous compression. The surgical treatment consisted in aneurysmectomy and reconstruction by end to end anastomosis associated to the resection of the osseous tumor, and the deep venous thrombosis was treated medically. Copyright © 2018. Published by Elsevier Inc.
Parabkaharan, Sangeetha; Melody, Megan; Trotta, Rose; Lleshi, Amina; Sun, Weihong; Smith, Paul D; Khakpour, Nazanin; Dayicioglu, Deniz
2016-06-01
Women who have undergone prior augmentation mammoplasty represent a unique subset of breast cancer patients with several options available for breast reconstruction. We performed a single institution review of surgical outcomes of breast reconstruction performed in patients with breast cancer with prior history of subpectoral breast augmentation. Institutional review board-approved retrospective review was conducted among patients with previously mentioned criteria treated at our institution between 2000 and 2014. Reconstructions were grouped into 2 categories as follows: (1) removal of preexisting subpectoral implant during mastectomy with immediate tissue expander placement and (2) implant-sparing mastectomy followed by delayed exchange to a larger implant. We reviewed demographics, tumor features, and reconstruction outcomes of these groups. Fifty-three patients had preexisting subpectoral implants. Of the 63 breast reconstructions performed, 18 (28.6%) had immediate tissue expander placed and 45 (71.4%) had implant-sparing mastectomy followed by delayed implant exchange. The groups were comparable based on age, body mass index, cancer type, tumor grade, TNM stage at presentation, and hormonal receptor status. No significant difference was noted between tumor margins or subsequent recurrence, mastectomy specimen weight, removed implant volume, volume of implant placed during reconstruction, or time from mastectomy to final implant placement. Rates of complications were significantly higher in the tissue expander group compared to the implant-sparing mastectomy group 7 (38.9%) versus 4 (8.9%) (P = 0.005). Implant-sparing mastectomy with delayed implant exchange in patients with preexisting subpectoral implants is safe and has fewer complications compared to tissue expander placement. There was no difference noted in the final volume of implant placed, time interval for final implant placement, or tumor margins.
Hemangiopericytoma/solitary fibrous tumor of pectoralis major muscle mimicking a breast mass
Dragoumis, Dimitrios; Desiris, Klearchos; Kyropoulou, Aikaterini; Malandri, Maria; Assimaki, Anthoula; Tsiftsoglou, Aris
2013-01-01
INTRODUCTION Hemangiopericytoma (HPC)/solitary fibrous tumor (SFT) is a very uncommon tumor of uncertain malignant behavior. In 1942, Stout and Murray first characterized these neoplasms as “vascular tumors arising from Zimmerman's pericytes” and till now hemangiopericytomas and solitary fibrous tumors of the soft tissues are regarded as features of the same entity in the soft tissue fascicle. PRESENTATION OF CASE We present a case of hemangiopericytoma/solitary fibrous tumor of the pectoralis major muscle in a 33-year-old female. She first noticed a painless mass in her right breast. Ultrasound of the breast revealed a large heterogeneously hypoechoic lesion within the pectoralis major muscle. Fine needle aspiration of the tumor did not produce any meaningful result. The lesion was completely removed by surgical resection. Histologically, the tumor had staghorn-like vasculature and immunohistochemistry for CD34 was positive, whereas desmin, smooth-muscle actin, S-100 protein, cytokeratins (AE1/AE3) and epithelial membrane antigen (EMA) were all negative. A diagnosis of hemangiopericytoma/solitary fibrous tumor was rendered. DISCUSSION Tumors comprising the HPC/SFT spectrum represent a small subset of soft tissue sarcomas and are found virtually at any site in the body. Wide surgical resection can achieve favorable long-term survival. CONCLUSION Due to the rarity and unpredictable biological potential of these tumors, long-term follow-up is mandatory even after radical resection, because recurrence or development of metastasis may be delayed many years. PMID:23416503
Liu, Zhiyong; He, Min; Chen, Hongxu; Liu, Yi; Li, Qiang; Li, Lin; Li, Jin; Chen, Haifeng; Xu, Jianguo
2015-01-01
Gamma Knife has become a major therapeutic method for intracranial meningiomas, vascular malformations and schwannomas with exact effect. In recent years an increasing number of delayed complications after Gamma Knife surgery have been reported, such as secondary tumors, cystic changes or cyst formation. But angiomatous lesion and delayed cyst formation after Gamma Knife for intracranial lesion has rarely been reported. Here we report the first case of angiomatous lesion and delayed cyst formation following Gamma Knife for intracranial meningioma and discuss its pathogenesis.
Denosumab for the management of bone disease in patients with solid tumors.
Body, Jean-Jacques
2012-03-01
Many patients with advanced cancer develop bone metastases, which reduces their quality of life. Bone metastases are associated with an increased risk of skeletal-related events, which can lead to increased morbidity and mortality. In patients with bone metastases, tumor cells disrupt the normal process of bone remodeling, leading to increased bone destruction. Denosumab is a fully human monoclonal antibody against receptor activator of NF-κB ligand (RANKL), a key regulatory factor in bone remodeling. By binding to RANKL, denosumab disrupts the cycle of bone destruction. In clinical studies in patients with prostate or breast cancer and bone metastases, denosumab was superior to the current standard of care, zoledronic acid, for delaying skeletal-related events, while in patients with other solid tumors or multiple myeloma, denosumab was noninferior to zoledronic acid. This article examines the pharmacokinetics, efficacy, and safety and tolerability of denosumab for the management of bone events in patients with cancer.
Chen, Zehong; Hu, Kang; Feng, Lieting; Su, Ruxiong; Lai, Nan; Yang, Zike; Kang, Shijun
2018-06-01
Various types of vaccines have been proposed as approaches for prevention or delay of the onset of cancer by boosting the endogenous immune system. We previously developed a senescent-cell-based vaccine, induced by radiation and veliparib, as a preventive and therapeutic tool against triple-negative breast cancer. However, the programmed death receptor-1/programmed death ligand-1 (PD-1/PD-L1) pathway was found to play an important role in vaccine failure. Hence, we further developed soluble programmed death receptor-1 (sPD1)-expressing senescent cells to overcome PD-L1/PD-1-mediated immune suppression while vaccinating to promote dendritic cell (DC) maturity, thereby amplifying T-cell activation. In the present study, sPD1-expressing senescent cells showed a particularly active status characterized by growth arrest and modified immunostimulatory cytokine secretion in vitro. As expected, sPD1-expressing senescent tumor cell vaccine (STCV/sPD-1) treatment attracted more mature DC and fewer exhausted-PD1 + T cells in vivo. During the course of the vaccine studies, we observed greater safety and efficacy for STCV/sPD-1 than for control treatments. STCV/sPD-1 pre-injections provided complete protection from 4T1 tumor challenge in mice. Additionally, the in vivo therapeutic study of mice with s.c. 4T1 tumor showed that STCV/sPD-1 vaccination delayed tumorigenesis and suppressed tumor progression at early stages. These results showed that STCV/sPD-1 effectively induced a strong antitumor immune response against cancer and suggested that it might be a potential strategy for TNBC prevention. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Malignant pericytes expressing GT198 give rise to tumor cells through angiogenesis.
Zhang, Liyong; Wang, Yan; Rashid, Mohammad H; Liu, Min; Angara, Kartik; Mivechi, Nahid F; Maihle, Nita J; Arbab, Ali S; Ko, Lan
2017-08-01
Angiogenesis promotes tumor development. Understanding the crucial factors regulating tumor angiogenesis may reveal new therapeutic targets. Human GT198 ( PSMC3IP or Hop2) is an oncoprotein encoded by a DNA repair gene that is overexpressed in tumor stromal vasculature to stimulate the expression of angiogenic factors. Here we show that pericytes expressing GT198 give rise to tumor cells through angiogenesis. GT198 + pericytes and perivascular cells are commonly present in the stromal compartment of various human solid tumors and rodent xenograft tumor models. In human oral cancer, GT198 + pericytes proliferate into GT198 + tumor cells, which migrate into lymph nodes. Increased GT198 expression is associated with increased lymph node metastasis and decreased progression-free survival in oral cancer patients. In rat brain U-251 glioblastoma xenografts, GT198 + pericytes of human tumor origin encase endothelial cells of rat origin to form mosaic angiogenic blood vessels, and differentiate into pericyte-derived tumor cells. The net effect is continued production of glioblastoma tumor cells from malignant pericytes via angiogenesis. In addition, activation of GT198 induces the expression of VEGF and promotes tube formation in cultured U251 cells. Furthermore, vaccination using GT198 protein as an antigen in mouse xenograft of GL261 glioma delayed tumor growth and prolonged mouse survival. Together, these findings suggest that GT198-expressing malignant pericytes can give rise to tumor cells through angiogenesis, and serve as a potential source of cells for distant metastasis. Hence, the oncoprotein GT198 has the potential to be a new target in anti-angiogenic therapies in human cancer.
Ultrasound image-guided therapy enhances antitumor effect of cisplatin.
Sasaki, Noboru; Kudo, Nobuki; Nakamura, Kensuke; Lim, Sue Yee; Murakami, Masahiro; Kumara, W R Bandula; Tamura, Yu; Ohta, Hiroshi; Yamasaki, Masahiro; Takiguchi, Mitsuyoshi
2014-01-01
The aim of this study was to clarify whether ultrasound image-guided cisplatin delivery with an intratumor microbubble injection enhances the antitumor effect in a xenograft mouse model. Canine thyroid adenocarcinoma cells were used for all experiments. Before in vivo experiments, the cisplatin and microbubble concentration and ultrasound exposure time were optimized in vitro. For in vivo experiments, cells were implanted into the back of nude mice. Observed by a diagnostic ultrasound machine, a mixture of cisplatin and ultrasound contrast agent, Sonazoid, microbubbles was injected directly into tumors. The amount of injected cisplatin and microbubbles was 1 μg/tumor and 1.2 × 10(7) microbubbles/tumor, respectively, with a total injected volume of 20 μl. Using the same diagnostic machine, tumors were exposed to ultrasound for 15 s. The treatment was repeated four times. The combination of cisplatin, microbubbles, and ultrasound significantly delayed tumor growth as compared with no treatment (after 18 days, 157 ± 55 vs. 398 ± 49 mm(3), P = 0.049). Neither cisplatin alone nor the combination of cisplatin and ultrasound delayed tumor growth. The treatment did not decrease the body weight of mice. Ultrasound image-guided anticancer drug delivery may enhance the antitumor effects of drugs without obvious side effects.
Wnt signaling potentiates nevogenesis
Pawlikowski, Jeff S.; McBryan, Tony; van Tuyn, John; Drotar, Mark E.; Hewitt, Rachael N.; Maier, Andrea B.; King, Ayala; Blyth, Karen; Wu, Hong; Adams, Peter D.
2013-01-01
Cellular senescence is a stable proliferation arrest associated with an altered secretory pathway (senescence-associated secretory phenotype). Cellular senescence is also a tumor suppressor mechanism, to which both proliferation arrest and senescence-associated secretory phenotype are thought to contribute. The melanocytes within benign human nevi are a paradigm for tumor-suppressive senescent cells in a premalignant neoplasm. Here a comparison of proliferating and senescent melanocytes and melanoma cell lines by RNA sequencing emphasizes the importance of senescence-associated proliferation arrest in suppression of transformation. Previous studies showed that activation of the Wnt signaling pathway can delay or bypass senescence. Consistent with this, we present evidence that repression of Wnt signaling contributes to melanocyte senescence in vitro. Surprisingly, Wnt signaling is active in many senescent human melanocytes in nevi, and this is linked to histological indicators of higher proliferative and malignant potential. In a mouse, activated Wnt signaling delays senescence-associated proliferation arrest to expand the population of senescent oncogene-expressing melanocytes. These results suggest that Wnt signaling can potentiate nevogenesis in vivo by delaying senescence. Further, we suggest that activated Wnt signaling in human nevi undermines senescence-mediated tumor suppression and enhances the probability of malignancy. PMID:24043806
Wnt signaling potentiates nevogenesis.
Pawlikowski, Jeff S; McBryan, Tony; van Tuyn, John; Drotar, Mark E; Hewitt, Rachael N; Maier, Andrea B; King, Ayala; Blyth, Karen; Wu, Hong; Adams, Peter D
2013-10-01
Cellular senescence is a stable proliferation arrest associated with an altered secretory pathway (senescence-associated secretory phenotype). Cellular senescence is also a tumor suppressor mechanism, to which both proliferation arrest and senescence-associated secretory phenotype are thought to contribute. The melanocytes within benign human nevi are a paradigm for tumor-suppressive senescent cells in a premalignant neoplasm. Here a comparison of proliferating and senescent melanocytes and melanoma cell lines by RNA sequencing emphasizes the importance of senescence-associated proliferation arrest in suppression of transformation. Previous studies showed that activation of the Wnt signaling pathway can delay or bypass senescence. Consistent with this, we present evidence that repression of Wnt signaling contributes to melanocyte senescence in vitro. Surprisingly, Wnt signaling is active in many senescent human melanocytes in nevi, and this is linked to histological indicators of higher proliferative and malignant potential. In a mouse, activated Wnt signaling delays senescence-associated proliferation arrest to expand the population of senescent oncogene-expressing melanocytes. These results suggest that Wnt signaling can potentiate nevogenesis in vivo by delaying senescence. Further, we suggest that activated Wnt signaling in human nevi undermines senescence-mediated tumor suppression and enhances the probability of malignancy.
Macrophage tumoricidal mechanisms are selectively altered by prenatal chlordane exposure.
Theus, S A; Tabor, D R; Soderberg, L S; Barnett, J B
1992-09-01
Macrophages (m phi) derived from mice treated in utero with chlordane show a significant delay of tumoricidal induction activity. In this study, m phi from chlordane-treated animals required a 48 h in vitro period of induction with interferon-gamma and lipopolysaccharide (IFN/LPS) before they could kill P815 targets. Similarly, m phi from chlordane-treated animals also failed to produce an immediate H2O2 burst upon perturbation. Conversely, their stimulated control m phi counterparts were tumoricidal by 2 h and exhibited a respiratory burst without any delay. Moreover, levels of the second messenger, inositol triphosphate (IP3), were significantly delayed in chlordane-treated animals following interaction with IFN/LPS. When nitrate/nitrite production was analyzed as an alternate mechanism for killing tumors, stimulated m phi from both normal and chlordane-treated animals responded equally. The data show that chlordane differentially introduces defects in m phi biochemical mechanisms associated with tumor killing.
Henares-Molina, Araceli; Benzekry, Sebastien; Lara, Pedro C; García-Rojo, Marcial; Pérez-García, Víctor M; Martínez-González, Alicia
2017-01-01
Grade II gliomas are slowly growing primary brain tumors that affect mostly young patients. Cytotoxic therapies (radiotherapy and/or chemotherapy) are used initially only for patients having a bad prognosis. These therapies are planned following the "maximum dose in minimum time" principle, i. e. the same schedule used for high-grade brain tumors in spite of their very different behavior. These tumors transform after a variable time into high-grade gliomas, which significantly decreases the patient's life expectancy. In this paper we study mathematical models describing the growth of grade II gliomas in response to radiotherapy. We find that protracted metronomic fractionations, i.e. therapeutical schedules enlarging the time interval between low-dose radiotherapy fractions, may lead to a better tumor control without an increase in toxicity. Other non-standard fractionations such as protracted or hypoprotracted schemes may also be beneficial. The potential survival improvement depends on the tumor's proliferation rate and can be even of the order of years. A conservative metronomic scheme, still being a suboptimal treatment, delays the time to malignant progression by at least one year when compared to the standard scheme.
[Fibrous tissue(s): a key for lesion characterization in digestive diseases].
Régent, D; Laurent, V; Antunes, L; Debelle, L; Cannard, L; Leclerc, Jc; Beot, S
2002-02-01
Fibrosis is one of the hallmarks of inflammatory and repair processes in pathology. Various exogenous and endogenous stimuli, including tumor development, can induce inflammatory reactions. During the post-equilibrium phase after IV injection of non specific contrast media, CT and/or MR allow the study of these inflammatory answers to tumoral or infectious processes. Delayed enhancement of collagenic fibrous tissue during the late post-equilibrium phase is an essential complementary data in the characterization of many liver lesions: cirrhosis, cholangiocarcinoma, focal nodular hyperplasia, fibrous metastasis. but also for the differential diagnosis of pancreatic diseases (groove pancreatitis vs ductal adenocarcinoma) or of gastro-intestinal diseases (gastric adenocarcinoma vs lymphoma, mechanical complication vs inflammatory bouts of ileal Crohn's disease).
Management of musculoskeletal tumors during pregnancy: a retrospective study.
Postl, Lukas K; Gradl, Guntmar; von Eisenhart-Rothe, Rüdiger; Toepfer, Andreas; Pohlig, Florian; Burgkart, Rainer; Rechl, Hans; Kirchhoff, Chlodwig
2015-06-10
In recent years, scientific research has increasingly focused on malignancies during pregnancy. However, the development of musculoskeletal tumors during pregnancy has only been the subject of a few studies so far. The primary aim of this study was to identify the incidence of sarcomas during pregnancy at our musculoskeletal tumor center (MSTC). Secondarily we intended to analyze these cases and discuss possible recommendations regarding diagnostic work-up as well as therapy on the basis of the literature. All female patients who had been treated for soft tissue or bone sarcoma at our academic MSTC in the period between the years 2002 and 2010 were screened retrospectively for anamnestic annotations of pregnancy or records of pregnancy in the obstetrical database of our university hospital. The patients who met the criteria for inclusion (diagnosed sarcoma and pregnancy) were enrolled. For every pregnant patient two age-matched female control patients that suffered from tumors with the same histologic type were included. In the period between 2002 and 2010, 240 female patients between the age of 16 and 45 were treated for sarcoma. In eight out of the 240 cases the tumor disease developed or progressed during pregnancy. The delay in diagnosis was approximately eight months and turned out to be significantly higher for pregnant patients compared to non- pregnant controls. Each woman's tumor was misdiagnosed at least once. Diagnostic follow-up of pregnant women presenting with a growing or painful mass, which is suspected to be a musculoskeletal tumor, should be performed at a specialized tumor center. We recommend a multidisciplinary approach and discussing all possible consequences for mother and child intensively in accordance with the available literature.
Preferential action of arsenic trioxide in solid-tumor microenvironment enhances radiation therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffin, Robert J.; Williams, Brent W.; Park, Heon Joo
2005-04-01
Purpose: To investigate the effect of arsenic trioxide, Trisenox (TNX), on primary cultures of endothelial cells and tumor tissue under varying pH and pO{sub 2} environments and the effects of combined TNX and radiation therapy on experimental tumors. Methods and Materials: Human dermal microvascular endothelial cells were cultured in vitro and exposed to TNX under various combinations of aerobic, hypoxic, neutral, or acidic conditions, and levels of activated JNK MAP kinase were assessed by Western blotting. FSaII fibrosarcoma cells grown in the hind limb of female C3H mice were used to study the effect of TNX on tumor blood perfusionmore » and oxygenation. The tumor-growth delay after a single or fractionated irradiation with or without TNX treatment was assessed. Results: A single intraperitoneal injection of 8 mg/kg TNX reduced the blood perfusion in FSaII tumors by 53% at 2 hours after injection. To increase the oxygenation of the tumor vasculature during TNX treatment, some animals were allowed to breathe carbogen (95% O{sub 2}/5% CO{sub 2}). Carbogen breathing alone for 2 hours reduced tumor perfusion by 33%. When carbogen breathing was begun immediately after TNX injection, no further reduction occurred in tumor blood perfusion at 2 hours after injection. In vitro, TNX exposure increased activity JNK MAP kinase preferentially in endothelial cells cultured in an acidic or hypoxic environment. In vivo, the median oxygenation in FSaII tumors measured at 3 or 5 days after TNX injection was found to be significantly elevated compared with control tumors. Subsequently, radiation-induced tumor-growth delay was synergistically increased when radiation and TNX injection were fractionated at 3-day or 5-day intervals. Conclusions: Trisenox has novel vascular-damaging properties, preferentially against endothelium in regions of low pH or pO{sub 2}, which leads to tumor cell death and enhancement of the response of tumors to radiotherapy.« less
[Cancer chemotherapy with special reference to pharmacokinetics of nitrosoureas].
Wakui, A
1982-08-01
This paper provides an overview of cancer chemotherapy with special reference to the pharmacokinetics of the nitrosoureas. At physiological PH, the chloroethylnitrosoureas can be decomposed into an isocyanate and 2-chloroethyl diazene hydroxide. Therefore, it is clear that they have both alkylation and carbamoylation actions. In addition to the spontaneous chemical dissociation, the nitrosoureas can be metabolized by liver microsomal enzymes to more polar hydroxylated products, and certain nitrosoureas can be denitrosated by these enzymes to the parent urea. Since the lipid-soluble nitrosoureas and some of the water-soluble nitrosoureas such as ACNU and MCNU demonstrated to cross the blood-brain barrier, they have been used in the treatment of primary brain tumors and tumors and tumors of metastatic origin. It has been demonstrated from the results of our study and other reports that the alkylation of DNA by ACNU progresses more slowly as compared with that of other alkylating agents. This is an important finding in relation to the appearance of delayed myelosuppression of the nitrosoureas and in the design of dose schedules of these agents. The major clinical emphasis has been directed towards the more active chloroethylnitrosoureas with reduced myelosuppression, and attempts are now made for this purpose. Unfortunately, the results of phase I and II trials of the newly developed nitrosoureas suggest that these agents produce delayed and cumulative bone marrow toxicity. Antitumor activity of the nitrosoureas is frequestly observed in chronic myelocytic leukemia, malignant lymphoma, brain tumors and small cell carcinoma of the lung, and less frequently in gastrointestinal carcinoma, multiple myeloma and malignant melanoma. In order to enhance clinical effects of the nitrosoureas, further investigation of the design in therapeutic schedules on the basis of their pharmacokinetic characteristics will be needed.
Bhargava, Puneet; Lee, Jean Hwa; Gupta, Saurabh; Seyal, Adeel Rahim; Vakar-Lopez, Funda; Moshiri, Mariam; Dighe, Manjiri Kiran
2012-01-01
We report a case of a solitary fibrous tumor of prostate presenting with urinary retention and a large prostate mass. We describe the clinical presentation, magnetic resonance imaging findings, and histopathology of this rare, benign tumor. Although clinical and radiologic appearances embrace various differential diagnoses including sarcoma, this mass was confirmed by histologic analysis following surgical resection. We report this rare, benign tumor to help the radiologist suggest the diagnosis when presented with a similar case.
Heinrich, Anne-Kathrin; Lucas, Henrike; Schindler, Lucie; Chytil, Petr; Etrych, Tomáš; Mäder, Karsten; Mueller, Thomas
2016-05-01
The success of chemotherapy is limited by poor selectivity of active drugs combined with occurrence of tumor resistance. New star-like structured N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer-based drug delivery systems containing doxorubicin attached via a pH-sensitive hydrazone bond were designed and investigated for their ability to overcome chemotherapy resistance. These conjugates combine two strategies to achieve a high drug concentration selectively at the tumor site: (I) high accumulation by passive tumor targeting based on enhanced permeability and retention effect and (II) pH-sensitive site-specific drug release due to an acidic tumor microenvironment. Mice bearing doxorubicin-resistant xenograft tumors were treated with doxorubicin, PBS, poly HPMA (pHPMA) precursor or pHPMA-doxorubicin conjugate at different equivalent doses of 5 mg/kg bodyweight doxorubicin up to a 7-fold total dose using different treatment schedules. Intratumoral drug accumulation was analyzed by fluorescence imaging utilizing intrinsic fluorescence of doxorubicin. Free doxorubicin induced significant toxicity but hardly any tumor-inhibiting effects. Administering at least a 3-fold dose of pHPMA-doxorubicin conjugate was necessary to induce a transient response, whereas doses of about 5- to 6-fold induced strong regressions. Tumors completely disappeared in some cases. The onset of response was differential delayed depending on the tumor model, which could be ascribed to distinct characteristics of the microenvironment. Further fluorescence imaging-based analyses regarding underlying mechanisms of the delayed response revealed a related switch to a more supporting intratumoral microenvironment for effective drug release. In conclusion, the current study demonstrates that the concept of tumor site-restricted high-dose chemotherapy is able to overcome therapy resistance. Mol Cancer Ther; 15(5); 998-1007. ©2016 AACR. ©2016 American Association for Cancer Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Zhe; Wu, Chaochao; Xie, Fang
Aberrant degradation of proteins is associated with many pathological states, including cancers. Mass spectrometric analysis of tumor peptidomes, the intracellular and intercellular products of protein degradation, has the potential to provide biological insights on proteolytic processing in cancer. However, attempts to use the information on these smaller protein degradation products from tumors for biomarker discovery and cancer biology studies have been fairly limited to date, largely due to the lack of effective approaches for robust peptidomics identification and quantification, and the prevalence of confounding factors and biases associated with sample handling and processing. Herein, we have developed an effective andmore » robust analytical platform for comprehensive analyses of tissue peptidomes, which is suitable for high throughput quantitative studies. The reproducibility and coverage of the platform, as well as the suitability of clinical ovarian tumor and patient-derived breast tumor xenograft samples with post-excision delay of up to 60 min before freezing for peptidomics analysis, have been demonstrated. Moreover, our data also show that the peptidomics profiles can effectively separate breast cancer subtypes, reflecting tumor-associated protease activities. Peptidomics complements results obtainable from conventional bottom-up proteomics, and provides insights not readily obtainable from such approaches.« less
Schwartz, Laurent; Guais, Adeline; Israël, Maurice; Junod, Bernard; Steyaert, Jean-Marc; Crespi, Elisabetta; Baronzio, Gianfranco; Abolhassani, Mohammad
2013-04-01
Cellular metabolic alterations are now well described as implicated in cancer and some strategies are currently developed to target these different pathways. In previous papers, we demonstrated that a combination of molecules (namely alpha-lipoic acid and hydroxycitrate, i.e. Metabloc™) targeting the cancer metabolism markedly decreased tumor cell growth in mice. In this work, we demonstrate that the addition of capsaicin further delays tumor growth in mice in a dose dependant manner. This is true for the three animal model tested: lung (LLC) cancer, bladder cancer (MBT-2) and melanoma B16F10. There was no apparent side effect of this ternary combination. The addition of a fourth drug (octreotide) is even more effective resulting in tumor regression in mice bearing LLC cancer. These four compounds are all known to target the cellular metabolism not its DNA. The efficacy, the apparent lack of toxicity, the long clinical track records of these medications in human medicine, all points toward the need for a clinical trial. The dramatic efficacy of treatment suggests that cancer may simply be a disease of dysregulated cellular metabolism.
Models of breast cancer growth and investigations of adjuvant surgical oophorectomy.
Love, Richard R; Niederhuber, John E
2004-09-01
Clinical observations of the natural history of breast cancer and its response to a variety of therapeutic interventions have contributed to changing concepts about the growth and metastatic spread of this disease. Increased attention has been given to tumor cell dormancy and the occurrence of greatly delayed metastatic disease development, which has been important to rethinking therapy. Although gene profiling of breast tumors recently has highlighted the importance of individual tumor characteristics in patients' prognosis, considerable data also support the concept of breast cancer as a problem of macro- and microenvironmental regulatory imbalance and dynamic chaos. Observations of unexpectedly large survival benefits from adjuvant surgical oophorectomy done in the luteal phase of the menstrual cycle in premenopausal women are consistent with an interpretation that extratumoral interactions in the host environment are important in prognosis. These observations also suggest that a treatment paradigm shift from an exclusive focus on cell kill and specific tumor cell molecular targets to one focused also on broad host regulatory control may be useful. Clinical trials and laboratory mechanistic investigations based on these data and observations can determine the potential impact of therapeutic interventions targeting host system macro and micro tumor cell environments.
A zebrafish model of chordoma initiated by notochord-driven expression of HRASV12
Burger, Alexa; Vasilyev, Aleksandr; Tomar, Ritu; Selig, Martin K.; Nielsen, G. Petur; Peterson, Randall T.; Drummond, Iain A.; Haber, Daniel A.
2014-01-01
Chordoma is a malignant tumor thought to arise from remnants of the embryonic notochord, with its origin in the bones of the axial skeleton. Surgical resection is the standard treatment, usually in combination with radiation therapy, but neither chemotherapeutic nor targeted therapeutic approaches have demonstrated success. No animal model and only few chordoma cell lines are available for preclinical drug testing, and, although no druggable genetic drivers have been identified, activation of EGFR and downstream AKT-PI3K pathways have been described. Here, we report a zebrafish model of chordoma, based on stable transgene-driven expression of HRASV12 in notochord cells during development. Extensive intra-notochordal tumor formation is evident within days of transgene expression, ultimately leading to larval death. The zebrafish tumors share characteristics of human chordoma as demonstrated by immunohistochemistry and electron microscopy. The mTORC1 inhibitor rapamycin, which has some demonstrated activity in a chordoma cell line, delays the onset of tumor formation in our zebrafish model, and improves survival of tumor-bearing fish. Consequently, the HRASV12-driven zebrafish model of chordoma could enable high-throughput screening of potential therapeutic agents for the treatment of this refractory cancer. PMID:24311731
Noonan syndrome, PTPN11 mutations, and brain tumors. A clinical report and review of the literature.
Siegfried, Aurore; Cances, Claude; Denuelle, Marie; Loukh, Najat; Tauber, Maïté; Cavé, Hélène; Delisle, Marie-Bernadette
2017-04-01
Noonan syndrome (NS), an autosomal dominant disorder, is characterized by short stature, congenital heart defects, developmental delay, and facial dysmorphism. PTPN11 mutations are the most common cause of NS. PTPN11 encodes a non-receptor protein tyrosine phosphatase, SHP2. Hematopoietic malignancies and solid tumors are associated with NS. Among solid tumors, brain tumors have been described in children and young adults but remain rather rare. We report a 16-year-old boy with PTPN11-related NS who, at the age of 12, was incidentally found to have a left temporal lobe brain tumor and a cystic lesion in the right thalamus. He developed epilepsy 2 years later. The temporal tumor was surgically resected because of increasing crises and worsening radiological signs. Microscopy showed nodules with specific glioneuronal elements or glial nodules, leading to the diagnosis of dysembryoplastic neuroepithelial tumor (DNT). Immunohistochemistry revealed positive nuclear staining with Olig2 and pERK in small cells. SHP2 plays a key role in RAS/MAPK pathway signaling which controls several developmental cell processes and oncogenesis. An amino-acid substitution in the N-terminal SHP2 domain disrupts the self-locking conformation and leads to ERK activation. Glioneuronal tumors including DNTs and pilocytic astrocytomas have been described in NS. This report provides further support for the relation of DNTs with RASopathies and for the implication of RAS/MAPK pathways in sporadic low-grade glial tumors including DNTs. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Percutaneous Microwave Ablation of Renal Angiomyolipomas.
Cristescu, Mircea; Abel, E Jason; Wells, Shane; Ziemlewicz, Timothy J; Hedican, Sean P; Lubner, Megan G; Hinshaw, J Louis; Brace, Christopher L; Lee, Fred T
2016-03-01
To evaluate the safety and efficacy of US-guided percutaneous microwave (MW) ablation in the treatment of renal angiomyolipoma (AML). From January 2011 to April 2014, seven patients (5 females and 2 males; mean age 51.4) with 11 renal AMLs (9 sporadic type and 2 tuberous sclerosis associated) with a mean size of 3.4 ± 0.7 cm (range 2.4-4.9 cm) were treated with high-powered, gas-cooled percutaneous MW ablation under US guidance. Tumoral diameter, volume, and CT/MR enhancement were measured on pre-treatment, immediate post-ablation, and delayed post-ablation imaging. Clinical symptoms and creatinine were assessed on follow-up visits. All ablations were technically successful and no major complications were encountered. Mean ablation parameters were ablation power of 65 W (range 60-70 W), using 456 mL of hydrodissection fluid per patient, over 4.7 min (range 3-8 min). Immediate post-ablation imaging demonstrated mean tumor diameter and volume decreases of 1.8% (3.4-3.3 cm) and 1.7% (27.5-26.3 cm(3)), respectively. Delayed imaging follow-up obtained at a mean interval of 23.1 months (median 17.6; range 9-47) demonstrated mean tumor diameter and volume decreases of 29% (3.4-2.4 cm) and 47% (27.5-12.1 cm(3)), respectively. Tumoral enhancement decreased on immediate post-procedure and delayed imaging by CT/MR parameters, indicating decreased tumor vascularity. No patients required additional intervention and no patients experienced spontaneous bleeding post-ablation. Our early experience with high-powered, gas-cooled percutaneous MW ablation demonstrates it to be a safe and effective modality to devascularize and decrease the size of renal AMLs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gandlihon, P.; Melancon, R.; Djiane, J.
1982-08-01
Prolonged exposure to retinyl acetate (RA) in the diet inhibits the development of 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary cancers in rats. The effectiveness of RA was examined when given 6 months after the administration of DMBA. Non-inbred female Sprague-Dawley rats with DMBA-induced mammary tumors were divided into 3 groups and treated for 4 weeks as follows: Group 1 served as controls, group 2 was ovariectomized, and group 3 received 328 mg RA/kg diet. Ovariectomy (OVX) markedly reduced both the number and size of the tumors. RA administration failed to induce any significant regression in tumor number but significantly retarded tumor growth whenmore » compared to tumor growth in group 1 controls. The levels of estradiol, progestin, and prolactin (PRL) receptors were significantly reduced after OVX, whereas only the levels of PRL receptors declined significantly after RA administration. Circulating progesterone concentrations were not affected in the RA-treated group but the plasma PRL level was significantly increased. The present studies show that if treatment with RA is delayed until 6 months after carcinogen administration, the protective effect of RA can still be observed although its effectiveness is less dramatic than when it is administered earlier.« less
Tumor suppressor Lzap regulates cell cycle progression, doming and zebrafish epiboly
Liu, Dan; Wang, Wen-Der; Melville, David B.; Cha, Yong I.; Yin, Zhirong; Issaeva, Natalia; Knapik, Ela W.; Yarbrough, Wendell G.
2012-01-01
Initial stages of embryonic development rely on rapid, synchronized cell divisions of the fertilized egg followed by a set of morphogenetic movements collectively called epiboly and gastrulation. Lzap is a putative tumor suppressor whose expression is lost in 30% of head and neck squamous cell carcinomas. Lzap activities include regulation of cell cycle progression and response to therapeutic agents. Here we explore developmental roles of the lzap gene during zebrafish morphogenesis. Lzap is highly conserved among vertebrates and is maternally deposited. Expression is initially ubiquitous during gastrulation, and later becomes more prominent in the pharyngeal arches, digestive tract and brain. Antisense morpholino-mediated depletion of Lzap resulted in delayed cell divisions and apoptosis during blastomere formation, resulting in fewer, larger cells. Cell cycle analysis suggested that Lzap loss in early embryonic cells resulted in a G2/M arrest. Furthermore, the Lzap-deficient embryos failed to initiate epiboly – the earliest morphogenetic movement in animal development – which has been shown to be dependent on cell adhesion and migration of epithelial sheets. Our results strongly implicate Lzap in regulation of cell cycle progression, adhesion and migratory activity of epithelial cell sheets during early development. These functions provide further insight into Lzap activity that may contribute not only to development, but also to tumor formation. PMID:21523853
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Ting; Zhao, Jing; Hu, Ping
Pentachlorophenol (PCP) is a prevalent pollutant in the environment and has been demonstrated to be a serious toxicant to humans and animals. However, little is known regarding the molecular mechanism underlying its toxic effects on vertebrate early development. To explore the impacts and underlying mechanisms of PCP on early development, zebrafish (Danio rerio) embryos were exposed to PCP at concentrations of 0, 20 and 50 μg/L, and microscopic observation and cDNA microarray analysis were subsequently conducted at gastrulation stage. The morphological observations revealed that PCP caused a developmental delay of zebrafish embryos in a concentration-dependent manner. Transcriptomic data showed thatmore » 50 μg/L PCP treatment resulted in significant changes in gene expression level, and the genes involved in energy metabolism and cell behavior were identified based on gene functional enrichment analysis. The energy production of embryos was influenced by PCP via the activation of glycolysis along with the inhibition of oxidative phosphorylation (OXPHOS). The results suggested that PCP acts as an inhibitor of OXPHOS at 8 hpf (hours postfertilization). Consistent with the activated glycolysis, the cell cycle activity of PCP-treated embryos was higher than the controls. These characteristics are similar to the Warburg effect, which occurs in human tumors. The microinjection of exogenous ATP confirmed that an additional energy supply could rescue PCP-treated embryos from the developmental delay due to the energy deficit. Taken together, our results demonstrated that PCP causes a Warburg-like effect on zebrafish embryos during gastrulation, and the affected embryos had the phenotype of developmental delay. - Highlights: • We treat zebrafish embryos with PCP at gastrula stage. • PCP acts as an oxidative phosphorylation inhibitor, not an uncoupler, in gastrulation. • Exogenous ATP injection will rescue the development of effected embryos. • The transcriptome of PCP-treated embryo exhibits a Warburg-like effect in tumor cell.« less
Recurrent subcutaneous trunk leiomyosarcoma: Management and review of the literature.
Salemis, Nikolaos S
2013-01-01
Superficial leiomyosarcomas are rare malignant smooth-muscle tumors accounting for 4-6.5% of all soft-tissue sarcomas, less than 2-3% of cutaneous soft-tissue neoplasms and 0.04% of all cancers. They are divided into cutaneous or dermal and subcutaneous leiomyosarcomas. Subcutaneous tumors have been reported to be associated with an increased risk of local recurrences and distant metastases, compared to their cutaneous counterparts. In this study, we describe a rare case of a recurrent subcutaneous trunk leiomyosarcoma in a 68-year-old male patient. Local recurrence developed two years after the complete surgical resection with wide margins and adjuvant postoperative radiotherapy. The management of the patient is discussed along with a review of the literature. We conclude that subcutaneous leiomyosarcoma is a rare clinical entity which may be associated with an atypical clinical presentation. Physicians should be aware of the misleading features of this tumor in order to avoid delay in diagnosis and treatment. Early complete surgical resection with wide margins of at least 2 cm is the cornerstone of treatment and has been reported to mostly influence the prognosis. However, the tumor has a high tendency to recur locally and metastasize. Recurrence may develop despite wide resection and radiotherapy. Long-term follow-up is mandatory.
Recurrent subcutaneous trunk leiomyosarcoma: Management and review of the literature
Salemis, Nikolaos S.
2013-01-01
Superficial leiomyosarcomas are rare malignant smooth-muscle tumors accounting for 4-6.5% of all soft-tissue sarcomas, less than 2-3% of cutaneous soft-tissue neoplasms and 0.04% of all cancers. They are divided into cutaneous or dermal and subcutaneous leiomyosarcomas. Subcutaneous tumors have been reported to be associated with an increased risk of local recurrences and distant metastases, compared to their cutaneous counterparts. In this study, we describe a rare case of a recurrent subcutaneous trunk leiomyosarcoma in a 68-year-old male patient. Local recurrence developed two years after the complete surgical resection with wide margins and adjuvant postoperative radiotherapy. The management of the patient is discussed along with a review of the literature. We conclude that subcutaneous leiomyosarcoma is a rare clinical entity which may be associated with an atypical clinical presentation. Physicians should be aware of the misleading features of this tumor in order to avoid delay in diagnosis and treatment. Early complete surgical resection with wide margins of at least 2 cm is the cornerstone of treatment and has been reported to mostly influence the prognosis. However, the tumor has a high tendency to recur locally and metastasize. Recurrence may develop despite wide resection and radiotherapy. Long-term follow-up is mandatory. PMID:23633873
MicroRNA-206: Effective Inhibition of Gastric Cancer Progression through the c-Met Pathway
Zheng, Zhiqiang; Yan, Dongsheng; Chen, Xiaoyan; Huang, He; Chen, Ke; Li, Guangjing; Zhou, Linglin; Zheng, Dandan; Tu, LiLi; Dong, Xiang Da
2015-01-01
MicroRNAs are endogenous short chain nucleotide RNAs that regulate gene function by direct binding of target mRNAs. In this study, we investigated the effects of microRNA-206 (miR-206) on the development of gastric cancer. miR-206 was first confirmed to be downregulated in gastric cancer specimens. Conversely, upregulation of c-Met was confirmed in tissue samples of human gastric cancer, with its level inversely correlated with miR-206 expression. Introduction of miR-206 inhibited cellular proliferation by inducing G1 cell cycle arrest, as well as migration and invasion. Moreover, important proliferation and/or migration related molecules such as c-Met, CDK4, p-Rb, p-Akt and p-ERK were confirmed to be downregulated by Western blot analysis. Targeting of c-Met also directly affected AGS cell proliferation, migration and invasion. In vivo, miR-206 expressing tumor cells also displayed growth delay in comparison to unaffected tumor cells. Our results demonstrated that miR-206 suppressed c-Met expression in gastric cancer and could function as a potent tumor suppressor in c-Met overexpressing tumors. Inhibition of miR-206 function could contribute to aberrant cell proliferation and migration, leading to gastric cancer development. PMID:26186594
Single-scan dual-tracer FLT+FDG PET tumor characterization.
Kadrmas, Dan J; Rust, Thomas C; Hoffman, John M
2013-02-07
Rapid multi-tracer PET aims to image two or more tracers in a single scan, simultaneously characterizing multiple aspects of physiology and function without the need for repeat imaging visits. Using dynamic imaging with staggered injections, constraints on the kinetic behavior of each tracer are applied to recover individual-tracer measures from the multi-tracer PET signal. The ability to rapidly and reliably image both (18)F-fluorodeoxyglucose (FDG) and (18)F-fluorothymidine (FLT) would provide complementary measures of tumor metabolism and proliferative activity, with important applications in guiding oncologic treatment decisions and assessing response. However, this tracer combination presents one of the most challenging dual-tracer signal-separation problems--both tracers have the same radioactive half-life, and the injection delay is short relative to the half-life and tracer kinetics. This work investigates techniques for single-scan dual-tracer FLT+FDG PET tumor imaging, characterizing the performance of recovering static and dynamic imaging measures for each tracer from dual-tracer datasets. Simulation studies were performed to characterize dual-tracer signal-separation performance for imaging protocols with both injection orders and injection delays of 10-60 min. Better performance was observed when FLT was administered first, and longer delays before administration of FDG provided more robust signal-separation and recovery of the single-tracer imaging measures. An injection delay of 30 min led to good recovery (R > 0.96) of static image values (e.g. SUV), K(net), and K(1) as compared to values from separate, single-tracer time-activity curves. Recovery of higher order rate parameters (k(2), k(3)) was less robust, indicating that information regarding these parameters was harder to recover in the presence of statistical noise and dual-tracer effects. Performance of the dual-tracer FLT(0 min)+FDG(32 min) technique was further evaluated using PET/CT imaging studies in five patients with primary brain tumors where the data from separate scans of each tracer were combined to synthesize dual-tracer scans with known single-tracer components; results demonstrated similar dual-tracer signal recovery performance. We conclude that rapid dual-tracer FLT+FDG tumor imaging is feasible and can provide quantitative tumor imaging measures comparable to those from conventional separate-scan imaging.
Single-scan dual-tracer FLT+FDG PET tumor characterization
NASA Astrophysics Data System (ADS)
Kadrmas, Dan J.; Rust, Thomas C.; Hoffman, John M.
2013-02-01
Rapid multi-tracer PET aims to image two or more tracers in a single scan, simultaneously characterizing multiple aspects of physiology and function without the need for repeat imaging visits. Using dynamic imaging with staggered injections, constraints on the kinetic behavior of each tracer are applied to recover individual-tracer measures from the multi-tracer PET signal. The ability to rapidly and reliably image both 18F-fluorodeoxyglucose (FDG) and 18F-fluorothymidine (FLT) would provide complementary measures of tumor metabolism and proliferative activity, with important applications in guiding oncologic treatment decisions and assessing response. However, this tracer combination presents one of the most challenging dual-tracer signal-separation problems—both tracers have the same radioactive half-life, and the injection delay is short relative to the half-life and tracer kinetics. This work investigates techniques for single-scan dual-tracer FLT+FDG PET tumor imaging, characterizing the performance of recovering static and dynamic imaging measures for each tracer from dual-tracer datasets. Simulation studies were performed to characterize dual-tracer signal-separation performance for imaging protocols with both injection orders and injection delays of 10-60 min. Better performance was observed when FLT was administered first, and longer delays before administration of FDG provided more robust signal-separation and recovery of the single-tracer imaging measures. An injection delay of 30 min led to good recovery (R > 0.96) of static image values (e.g. SUV), Knet, and K1 as compared to values from separate, single-tracer time-activity curves. Recovery of higher order rate parameters (k2, k3) was less robust, indicating that information regarding these parameters was harder to recover in the presence of statistical noise and dual-tracer effects. Performance of the dual-tracer FLT(0 min)+FDG(32 min) technique was further evaluated using PET/CT imaging studies in five patients with primary brain tumors where the data from separate scans of each tracer were combined to synthesize dual-tracer scans with known single-tracer components; results demonstrated similar dual-tracer signal recovery performance. We conclude that rapid dual-tracer FLT+FDG tumor imaging is feasible and can provide quantitative tumor imaging measures comparable to those from conventional separate-scan imaging.
Single-scan dual-tracer FLT+FDG PET tumor characterization
Kadrmas, Dan J; Rust, Thomas C; Hoffman, John M
2013-01-01
Rapid multi-tracer PET aims to image two or more tracers in a single scan, simultaneously characterizing multiple aspects of physiology and function without the need for repeat imaging visits. Using dynamic imaging with staggered injections, constraints on the kinetic behavior of each tracer are applied to recover individual-tracer measures from the multi-tracer PET signal. The ability to rapidly and reliably image both 18F-fluorodeoxyglucose (FDG) and 18F-fluorothymidine (FLT) would provide complementary measures of tumor metabolism and proliferative activity, with important applications in guiding oncologic treatment decisions and assessing response. However, this tracer combination presents one of the most challenging dual-tracer signal-separation problems—both tracers have the same radioactive half-life, and the injection delay is short relative to the half-life and tracer kinetics. This work investigates techniques for single-scan dual-tracer FLT+FDG PET tumor imaging, characterizing the performance of recovering static and dynamic imaging measures for each tracer from dual-tracer datasets. Simulation studies were performed to characterize dual-tracer signal-separation performance for imaging protocols with both injection orders and injection delays of 10–60 min. Better performance was observed when FLT was administered first, and longer delays before administration of FDG provided more robust signal-separation and recovery of the single-tracer imaging measures. An injection delay of 30 min led to good recovery (R > 0.96) of static image values (e.g. SUV), Knet, and K1 as compared to values from separate, single-tracer time-activity curves. Recovery of higher order rate parameters (k2, k3) was less robust, indicating that information regarding these parameters was harder to recover in the presence of statistical noise and dual-tracer effects. Performance of the dual-tracer FLT(0 min)+FDG(32 min) technique was further evaluated using PET/CT imaging studies in five patients with primary brain tumors where the data from separate scans of each tracer were combined to synthesize dual-tracer scans with known single-tracer components; results demonstrated similar dual-tracer signal recovery performance. We conclude that rapid dual-tracer FLT+FDG tumor imaging is feasible and can provide quantitative tumor imaging measures comparable to those from conventional separate-scan imaging. PMID:23296314
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsunaga, Shigeo, E-mail: shigeo-m@mui.biglobe.ne.jp; Shuto, Takashi; Takase, Hajime
Purpose: Semiquantitative analysis of thallium-201 chloride single photon emission computed tomography ({sup 201}Tl SPECT) was evaluated for the discrimination between recurrent brain tumor and delayed radiation necrosis after gamma knife surgery (GKS) for metastatic brain tumors and high-grade gliomas. Methods and Materials: The medical records were reviewed of 75 patients, including 48 patients with metastatic brain tumor and 27 patients with high-grade glioma who underwent GKS in our institution, and had suspected tumor recurrence or radiation necrosis on follow-up neuroimaging and deteriorating clinical status after GKS. Analysis of {sup 201}Tl SPECT data used the early ratio (ER) and the delayedmore » ratio (DR) calculated as tumor/normal average counts on the early and delayed images, and the retention index (RI) as the ratio of DR to ER. Results: A total of 107 tumors were analyzed with {sup 201}Tl SPECT. Nineteen lesions were removed surgically and histological diagnoses established, and the other lesions were evaluated with follow-up clinical and neuroimaging examinations after GKS. The final diagnosis was considered to be recurrent tumor in 65 lesions and radiation necrosis in 42 lesions. Semiquantitative analysis demonstrated significant differences in DR (P=.002) and RI (P<.0001), but not in ER (P=.372), between the tumor recurrence and radiation necrosis groups, and no significant differences between metastatic brain tumors and high-grade gliomas in all indices (P=.926 for ER, P=.263 for DR, and P=.826 for RI). Receiver operating characteristics analysis indicated that RI was the most informative index with the optimum threshold of 0.775, which provided 82.8% sensitivity, 83.7% specificity, and 82.8% accuracy. Conclusions: Semiquantitative analysis of {sup 201}Tl SPECT provides useful information for the differentiation between tumor recurrence and radiation necrosis in metastatic brain tumors and high-grade gliomas after GKS, and the RI may be the most valuable index for this purpose.« less
Focal neuronal gigantism: a rare complication of therapeutic radiation.
Gaughen, J R; Bourne, T D; Aregawi, D; Shah, L M; Schiff, D
2009-11-01
Radiation therapy, a mainstay in the treatment of many brain tumors, results in a variety of well-documented acute and chronic complications. Isolated cortical damage following irradiation represents an extremely rare delayed therapeutic complication, described only twice in the medical literature. We report this rare delayed complication in a patient following treatment of a right frontal anaplastic oligodendroglioma.
Cote, David J; Alzarea, Abdulaziz; Acosta, Michael A; Hulou, Mohamed Maher; Huang, Kevin T; Almutairi, Hamoud; Alharbi, Ahmad; Zaidi, Hasan A; Algrani, Majed; Alatawi, Ahmad; Mekary, Rania A; Smith, Timothy R
2016-04-01
Delayed symptomatic hyponatremia (DSH) is a known complication of transsphenoidal surgery that can lead to prolonged hospital stay, readmission, and in rare cases, death. Many potential predictors for development of DSH have been investigated. A better understanding of DSH risk can lead to better patient outcomes. We performed a systematic review to determine the rates and predictors of DSH after both endoscopic transsphenoidal surgery and microscopic transsphenoidal surgery. A systematic search of the literature was conducted using MEDLINE/PUBMED, EMBASE, and Cochrane databases. Inclusion criteria were 1) case series with at least 10 cases reported, 2) adult patients who underwent eTSS or mTSS for pituitary tumors, and 3) reported occurrence of DSH (defined as serum sodium level <135 mEq/L with associated symptoms) after postoperative day 3. Data were analyzed using CMA V.3 Statistical Software (2014). Ten case series satisfied the inclusion criteria for a total of 2947 patients. Various factors including age, gender, cerebrospinal fluid leak, and tumor size were investigated as potential predictors of DSH. DSH event rates for both mTSS and eTSS fell between around 4 and 12 percent and included a variety of proposed predictors. Age, gender, tumor size, rate of decline of blood sodium, and Cushing disease are potential predictors of DSH. By identifying patients at high risk for DSH, preventative efforts can be implemented in the perioperative setting to reduce the incidence of potentially catastrophic hyponatremia following transsphenoidal surgery. Copyright © 2016 Elsevier Inc. All rights reserved.
Tuli, Richard; Surmak, Andrew; Reyes, Juvenal; Hacker-Prietz, Amy; Armour, Michael; Leubner, Ashley; Blackford, Amanda; Tryggestad, Erik; Jaffee, Elizabeth M; Wong, John; Deweese, Theodore L; Herman, Joseph M
2012-04-01
We report on a novel preclinical pancreatic cancer research model that uses bioluminescence imaging (BLI)-guided irradiation of orthotopic xenograft tumors, sparing of surrounding normal tissues, and quantitative, noninvasive longitudinal assessment of treatment response. Luciferase-expressing MiaPaCa-2 pancreatic carcinoma cells were orthotopically injected in nude mice. BLI was compared to pathologic tumor volume, and photon emission was assessed over time. BLI was correlated to positron emission tomography (PET)/computed tomography (CT) to estimate tumor dimensions. BLI and cone-beam CT (CBCT) were used to compare tumor centroid location and estimate setup error. BLI and CBCT fusion was performed to guide irradiation of tumors using the small animal radiation research platform (SARRP). DNA damage was assessed by γ-H2Ax staining. BLI was used to longitudinally monitor treatment response. Bioluminescence predicted tumor volume (R = 0.8984) and increased linearly as a function of time up to a 10-fold increase in tumor burden. BLI correlated with PET/CT and necropsy specimen in size (P < .05). Two-dimensional BLI centroid accuracy was 3.5 mm relative to CBCT. BLI-guided irradiated pancreatic tumors stained positively for γ-H2Ax, whereas surrounding normal tissues were spared. Longitudinal assessment of irradiated tumors with BLI revealed significant tumor growth delay of 20 days relative to controls. We have successfully applied the SARRP to a bioluminescent, orthotopic preclinical pancreas cancer model to noninvasively: 1) allow the identification of tumor burden before therapy, 2) facilitate image-guided focal radiation therapy, and 3) allow normalization of tumor burden and longitudinal assessment of treatment response.
Tuli, Richard; Surmak, Andrew; Reyes, Juvenal; Hacker-Prietz, Amy; Armour, Michael; Leubner, Ashley; Blackford, Amanda; Tryggestad, Erik; Jaffee, Elizabeth M; Wong, John; DeWeese, Theodore L; Herman, Joseph M
2012-01-01
PURPOSE: We report on a novel preclinical pancreatic cancer research model that uses bioluminescence imaging (BLI)-guided irradiation of orthotopic xenograft tumors, sparing of surrounding normal tissues, and quantitative, noninvasive longitudinal assessment of treatment response. MATERIALS AND METHODS: Luciferase-expressing MiaPaCa-2 pancreatic carcinoma cells were orthotopically injected in nude mice. BLI was compared to pathologic tumor volume, and photon emission was assessed over time. BLI was correlated to positron emission tomography (PET)/computed tomography (CT) to estimate tumor dimensions. BLI and cone-beam CT (CBCT) were used to compare tumor centroid location and estimate setup error. BLI and CBCT fusion was performed to guide irradiation of tumors using the small animal radiation research platform (SARRP). DNA damage was assessed by γ-H2Ax staining. BLI was used to longitudinally monitor treatment response. RESULTS: Bioluminescence predicted tumor volume (R = 0.8984) and increased linearly as a function of time up to a 10-fold increase in tumor burden. BLI correlated with PET/CT and necropsy specimen in size (P < .05). Two-dimensional BLI centroid accuracy was 3.5 mm relative to CBCT. BLI-guided irradiated pancreatic tumors stained positively for γ-H2Ax, whereas surrounding normal tissues were spared. Longitudinal assessment of irradiated tumors with BLI revealed significant tumor growth delay of 20 days relative to controls. CONCLUSIONS: We have successfully applied the SARRP to a bioluminescent, orthotopic preclinical pancreas cancer model to noninvasively: 1) allow the identification of tumor burden before therapy, 2) facilitate image-guided focal radiation therapy, and 3) allow normalization of tumor burden and longitudinal assessment of treatment response. PMID:22496923
Immunotherapy using regulatory T cells in cancer suggests more flavors of hypersensitivity type IV.
Pakravan, Nafiseh; Hassan, Zuhair Mohammad
2018-03-01
Regulatory T cells (Tregs) profoundly affect tumor microenvironment and exert dominant suppression over antitumor immunity in response to self-antigen expressed by tumor. Immunotherapy targeting Tregs lead to a significant improvement in antitumor immunity. Intradermal injection of tumor antigen results in negative delayed-type hypersensitivity (DTH) type IV. However, anti-Tregs treatment/use of adjuvant along with tumor antigens turns DTH to positive. Considering Tregs as the earliest tumor sensor/responders, tumor can be regarded as Treg-mediated type IV hypersensitivity and negative DTH to tumor antigen is due to anti-inflammatory action of Tregs to tumor antigens at the injection site. Such a view would help us in basic and clinical situations to testify a candidate vaccine via dermal administration and evaluation of Treg proportion at injection site.
Bémeur, Chantal; Qu, Hong; Desjardins, Paul; Butterworth, Roger F
2010-01-01
Previous reports suggested that brain-derived proinflammatory cytokines are involved in the pathogenesis of hepatic encephalopathy (HE) and brain edema in acute liver failure (ALF). To further address this issue, expression of interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) mRNAs were measured in the brains of mice with acute liver failure resulting from exposure to azoxymethane. In addition, time to severe encephalopathy (coma) was assessed in mice lacking genes coding for interferon-gamma, the tumor necrosis factor receptor-1 or the interleukin-1 type 1 receptor. Interleukin-1beta, tumor necrosis factor-alpha and interferon-gamma expression were quantified using RT-PCR. Significant increases in interleukin-1beta and tumor necrosis factor-alpha mRNA were observed in the frontal cortex of azoxymethane-treated wild-type mice at coma stages of encephalopathy. Interferon-gamma, however, could not be detected in the brains of these animals. Onset of severe encephalopathy (coma) and brain edema in ALF mice were significantly delayed in interleukin-1 type 1 receptor or tumor necrosis factor receptor-1 knockout mice. Deletion of the interferon-gamma gene, on the other hand, had no significative effect on the neurological status or brain water content of acute liver failure mice. These results demonstrate that toxic liver injury resulting from exposure to azoxymethane is associated with selective induction of proinflammatory cytokines in the brain and that deletion of tumor necrosis factor receptor-1 or interlukin-1 type 1 receptor delays the onset of coma and brain edema in this model of acute liver failure. These findings further support a role for selective brain-derived cytokines in the pathogenesis of the cerebral complications in acute liver failure and suggest that anti-inflammatory strategies could be beneficial in their prevention. Copyright 2009 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wobb, Jessica; Krueger, Sarah A.; Kane, Jonathan L.
2015-07-15
Purpose: To evaluate the efficacy of low-dose pulsed radiation therapy (PRT) in 2 head and neck squamous cell carcinoma (HNSCC) xenografts and to investigate the mechanism of action of PRT compared with standard radiation therapy (SRT). Methods and Materials: Subcutaneous radiosensitive UT-SCC-14 and radioresistant UT-SCC-15 xenografts were established in athymic NIH III HO female mice. Tumors were irradiated with 2 Gy/day by continuous standard delivery (SRT: 2 Gy) or discontinuous low-dose pulsed delivery (PRT: 0.2 Gy × 10 with 3-min pulse interval) to total doses of 20 Gy (UT14) or 40 Gy (UT15) using a clinical 5-day on/2-day off schedule. Treatment response was assessed by changes inmore » tumor volume, {sup 18}F-fluorodeoxyglucose (FDG) (tumor metabolism), and {sup 18}F-fluoromisonidazole (FMISO) (hypoxia) positron emission tomography (PET) imaging before, at midpoint, and after treatment. Tumor hypoxia using pimonidazole staining and vascular density (CD34 staining) were assessed by quantitative histopathology. Results: UT15 and UT14 tumors responded similarly in terms of growth delay to either SRT or PRT. When compared with UT14 tumors, UT15 tumors demonstrated significantly lower uptake of FDG at all time points after irradiation. UT14 tumors demonstrated higher levels of tumor hypoxia after SRT when compared with PRT as measured by {sup 18}F-FMISO PET. By contrast, no differences were seen in {sup 18}F-FMISO PET imaging between SRT and PRT for UT15 tumors. Histologic analysis of pimonidazole staining mimicked the {sup 18}F-FMISO PET imaging data, showing an increase in hypoxia in SRT-treated UT14 tumors but not PRT-treated tumors. Conclusions: Differences in {sup 18}F-FMISO uptake for UT14 tumors after radiation therapy between PRT and SRT were measurable despite the similar tumor growth delay responses. In UT15 tumors, both SRT and PRT were equally effective at reducing tumor hypoxia to a significant level as measured by {sup 18}F-FMISO and pimonidazole.« less
Microprocessor-controlled Nd:YAG laser for hyperthermia induction in the RIF-1 tumor.
Waldow, S M; Russell, G E; Wallner, P E
1992-01-01
Near-infrared radiation from a Nd:YAG laser at 1,064 nm was used interstitially or superficially to induce hyperthermia in RIF-1 tumors in C3H male mice. A single 600-microns quartz fiber with a 0.5-cm cylindrical diffusor or a weakly diverging microlens at its distal end was used to deliver laser energy to tumors in the hind leg (mean volume = 100 mm3). Two thermocouples were inserted into each tumor. One thermocouple controlled a microprocessor-driven hyperthermia program (maximum output of 3.5 Watts) to maintain the desired temperature. Tumors were exposed to various temperature-time combinations (42-45 degrees C/30 min). Our initial results indicated that excellent temperature control to within 0.2 degrees C of the desired temperature at the feedback thermocouple was achievable during both superficial and interstitial heat treatments. Temperatures at the second thermocouple, however, were found to be lower by as much as 2.3 degrees C (using the cylindrical diffusor) or higher by up to 4.6 degrees C (using the microlens) when compared to the feedback thermocouple temperature. Several correlations were seen between total dose, tumor growth delay, percent skin necrosis, and temperature at the second thermocouple after several superficial and interstitial treatments. Statistically significant improvements in tumor growth delay (at 42 and 45 degrees C) and increased percent skin necrosis at all temperatures were observed after superficial versus interstitial treatment.
Meningeal hemangiopericytoma with delayed multiple distant metastases.
Chang, Chiung-Chih; Chang, Yung-Yee; Lui, Chun-Chung; Huang, Chao-Cheng; Liu, Jia-Shou
2004-10-01
A 43-year-old housewife suffered from an occipital headache, and brain computed tomography (CT) showed an occipital meningeal tumor. She received a complete tumor excision and the tumor pathology was interpreted as atypical meningioma. Five years later, a subacute left neck pain with radiation to the left arm occurred. A tumor invading the second and third cervical vertebrae with compression on the dural sac was found. Angiography revealed hypervascular tumor staining supplied from the left vertebral artery. CT-guided biopsy was performed and nests of atypical spindle cells accompanied by staghorn vascular pattern were revealed histologically. Immunohistochemical studies showed positive vimentin staining but negative reactions to epithelial membrane antigen, cytokeratin low molecular weight, cytokeratin high molecular weight, CD34 and S-100 protein. Estimation of the Ki-67 proliferative (mitotic) index by using MIB-1 monoclonal antibody was 12%. Later on, a systemic survey revealed lesions in the left lung, liver and kidney. The diagnosis was revised to hemangiopericytoma. Distant metastasis is common in this tumor. However, the delayed multiple metastases without local recurrence were relatively rare. The clinical course in this patient also supported that a high mitotic activity may correlate with a poor prognosis even if the pathology is taken from the metastatic tissue, and that long-term follow-up is mandatory. Detailed immunohistochemical staining is helpful in avoiding misdiagnosis of meningioma.
Autophagy-deficient breast cancer shows early tumor recurrence and escape from dormancy
Aqbi, Hussein F.; Tyutyunyk-Massey, Liliya; Keim, Rebecca C.; Butler, Savannah E.; Thekkudan, Theresa; Joshi, Supriya; Smith, Timothy M.; Bandyopadhyay, Dipankar; Idowu, Michael O.; Bear, Harry D.; Payne, Kyle K.; Gewirtz, David A.; Manjili, Masoud H.
2018-01-01
Breast cancer patients who initially respond to cancer therapies often succumb to distant recurrence of the disease. It is not clear why people with the same type of breast cancer respond to treatments differently; some escape from dormancy and relapse earlier than others. In addition, some tumor clones respond to immunotherapy while others do not. We investigated how autophagy plays a role in accelerating or delaying recurrence of neu-overexpressing mouse mammary carcinoma (MMC) following adriamycin (ADR) treatment, and in affecting response to immunotherapy. We explored two strategies: 1) transient blockade of autophagy with chloroquine (CQ), which blocks fusion of autophagosomes and lysosomes during ADR treatment, and 2) permanent inhibition of autophagy by a stable knockdown of ATG5 (ATG5KD), which inhibits the formation of autophagosomes in MMC during and after ADR treatment. We found that while CQ prolonged tumor dormancy, but that stable knockdown of autophagy resulted in early escape from dormancy and recurrence. Interestingly, ATG5KD MMC contained an increased frequency of ADR-induced polyploid-like cells and rendered MMC resistant to immunotherapy. On the other hand, a transient blockade of autophagy did not affect the sensitivity of MMC to immunotherapy. Our observations suggest that while chemotherapy-induced autophagy may facilitate tumor relapse, cell-intrinsic autophagy delays tumor relapse, in part, by inhibiting the formation of polyploid-like tumor dormancy. PMID:29774126
Kalber, Tammy L; Campbell-Washburn, Adrienne E; Siow, Bernard M; Sage, Elizabeth; Price, Anthony N; Ordidge, Katherine L; Walker-Samuel, Simon; Janes, Sam M; Lythgoe, Mark F
2013-01-01
To use primed infusions of the magnetic resonance imaging (MRI) contrast agent Gd.DTPA (Magnevist), to achieve an equilibrium between blood and tissue (eqMRI). This may increase tumor Gd concentrations as a novel cancer imaging methodology for the enhancement of small tumor nodules within the low signal-to-noise background of the lung. A primed infusion with a delay before equilibrium (eqMRI) of the Gd(III) chelator Gd.DTPA, via the intraperitoneal route, was used to evaluate gadolinium tumor enhancement as a function of a bolus injection, which is applied routinely in the clinic, compared to gadolinium maintained at equilibrium. A double gated (respiration and cardiac) spin-echo sequence at 9.4T was used to evaluate whole lungs pre contrast and then at 15 (representative of bolus enhancement), 25 and 35 minutes (representative of eqMRI). This was carried out in two lung metastasis models representative of high and low tumor cell seeding. Lungs containing discrete tumor nodes where inflation fixed and taken for haematoxylin and eosin staining as well as CD34 staining for correlation to MRI. We demonstrate that sustained Gd enhancement, afforded by Gd equilibrium, increases the detection of pulmonary metastases compared to bolus enhancement and those tumors which enhance at equilibrium are sub-millimetre in size (<0.7 mm(2)) with a similar morphology to early bronchoalveolar cell carcinomas. As Gd-chelates are routinely used in the clinic for detecting tumors by MRI, this methodology is readily transferable to the clinic and advances MRI as a methodology for the detection of small pulmonary tumors.
Wang, Yabo; Wang, Xingyu; Le Bitoux, Marie-Aude; Wagnieres, Georges; Vandenbergh, Hubert; Gonzalez, Michel; Ris, Hans-Beat; Perentes, Jean Y; Krueger, Thorsten
2015-04-01
The pre-conditioning of tumor vessels by low-dose photodynamic therapy (L-PDT) was shown to enhance the distribution of chemotherapy in different tumor types. However, how light dose affects drug distribution and tumor response is unknown. Here we determined the effect of L-PDT fluence on vascular transport in human mesothelioma xenografts. The best L-PDT conditions regarding drug transport were then combined with Lipoplatin(®) to determine tumor response. Nude mice bearing dorsal skinfold chambers were implanted with H-Meso1 cells. Tumors were treated by Visudyne(®) -mediated photodynamic therapy with 100 mW/cm(2) fluence rate and a variable fluence (5, 10, 30, and 50 J/cm(2) ). FITC-Dextran (FITC-D) distribution was assessed in real time in tumor and normal tissues. Tumor response was then determined with best L-PDT conditions combined to Lipoplatin(®) and compared to controls in luciferase expressing H-Meso1 tumors by size and whole body bioluminescence assessment (n = 7/group). Tumor uptake of FITC-D following L-PDT was significantly enhanced by 10-fold in the 10 J/cm(2) but not in the 5, 30, and 50 J/cm(2) groups compared to controls. Normal surrounding tissue uptake of FITC-D following L-PDT was significantly enhanced in the 30 J/cm(2) and 50 J/cm(2) groups compared to controls. Altogether, the FITC-D tumor to normal tissue ratio was significantly higher in the 10 J/cm(2) group compared others. Tumor growth was significantly delayed in animals treated by 10 J/cm2-L-PDT combined to Lipoplatin(®) compared to controls. Fluence of L-PDT is critical for the optimal distribution and effect of subsequently administered chemotherapy. These findings have an importance for the clinical translation of the vascular L-PDT concept in the clinics. © 2015 Wiley Periodicals, Inc.
Late prostatic metastasis of an uveal melanoma in a miniature Schnauzer dog.
Delgado, Esmeralda; Silva, João X; Pissarra, Hugo; Peleteiro, Maria C; Dubielzig, Richard R
2016-07-01
This manuscript describes a previously unreported clinical case of canine uveal melanoma in a miniature Schnauzer dog with an unusual location of metastasis (prostate) and delayed occurrence (3 years after primary tumor diagnosis and enucleation). Immunohistochemical labeling of both tumors with Melan A, Ki-67, and c-kit added some valuable information.
Tao, Youshan; Guo, Qian; Aihara, Kazuyuki
2014-10-01
Hormonal therapy with androgen suppression is a common treatment for advanced prostate tumors. The emergence of androgen-independent cells, however, leads to a tumor relapse under a condition of long-term androgen deprivation. Clinical trials suggest that intermittent androgen suppression (IAS) with alternating on- and off-treatment periods can delay the relapse when compared with continuous androgen suppression (CAS). In this paper, we propose a mathematical model for prostate tumor growth under IAS therapy. The model elucidates initial hormone sensitivity, an eventual relapse of a tumor under CAS therapy, and a delay of a relapse under IAS therapy, which are due to the coexistence of androgen-dependent cells, androgen-independent cells resulting from reversible changes by adaptation, and androgen-independent cells resulting from irreversible changes by genetic mutations. The model is formulated as a free boundary problem of partial differential equations that describe the evolution of populations of the abovementioned three types of cells during on-treatment periods and off-treatment periods. Moreover, the model can be transformed into a piecewise linear ordinary differential equation model by introducing three new volume variables, and the study of the resulting model may help to devise optimal IAS schedules.
Watanabe, Takuya; Sakata, Jun; Ishikawa, Takashi; Shirai, Yoshio; Suda, Takeyasu; Hirono, Haruka; Hasegawa, Katsuhiko; Soga, Kenji; Shibasaki, Koichi; Saito, Yukifumi; Umezu, Hajime
2009-10-31
As a result of having undergone computed tomography (CT), a 75-year-old woman with type-C liver cirrhosiswas shown to have two tumors on the ventral and dorsal sides of subsegment 3 (S3). The tumor on the ventral side was diagnosed as a classic hepatocellular carcinoma (HCC), while that on the dorsal side was considered atypical for a HCC. Although the indocyanine green (ICG) findings indicated poor hepatic reserve, the prothrombin time (PT) was relatively good. An operation was performed in February 2007; however, this resulted in exploratory laparotomy. Dynamic CT performed 12 mo after the operation revealed that the tumor on the dorsal side of S3 had apparently increased. The marginal portion of the tumor was shown to be in the early and parenchymal phases, while the internal portion was found to have grown only slightly in the delayed phase. We diagnosed this tumor as a cholangiocellular carcinoma (CCC). S3 subsegmentectomy was performed in April 2008. The tumor on the ventral side was pathologically diagnosed as a moderately differentiated HCC, and that on the dorsal side was diagnosed as a CCC. We can therefore report a rare case of synchronous development of HCC and CCC in the same subsegment of the liver in a patient with type-C liver cirrhosis. We also add a literature review for all the reported cases published in Japan and around the world, and summarize the features of double cancer exhibiting both HCC and CCC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flandin, Isabelle; Department of Radiotherapy/Oncology, Hospital Lyon Sud, Lyon; Hartmann, Olivier
2006-04-01
Purpose: To determine the contribution of total body irradiation (TBI) to late sequelae in children treated with high-dose chemotherapy and autologous bone marrow transplantation for Stage IV neuroblastoma. Patients and Methods: We compared two populations that were similar with regard to age, stage, pre-autologous bone marrow transplantation chemotherapy (CT) regimen, period of treatment, and follow-up (12 years). The TBI group (n = 32) received TBI as part of the megatherapy procedure (1982-1993), whereas the CT group (n 30) received conditioning without TBI (1985-1992). Analysis 12 years later focused on growth, weight and corpulence (body mass index) delay; hormonal deficiencies; liver,more » kidney, heart, ear, eye, and dental sequelae; school performance; and the incidence of secondary tumors. Results: Impact of TBI was most marked in relation to growth and weight delay, although the mean delay was not severe, probably because of treatment with growth hormones. Other consequences of TBI were thyroid insufficiency, cataracts, and a high incidence of secondary tumors. Hearing loss and dental agenesis were more prominent in the group treated with CT alone. No differences were observed in school performance. Conclusion: The most frequent side effects of TBI were cataracts, thyroid insufficiency, and growth delay, but more worrying is the risk of secondary tumors. Because of the young mean age of patients and the toxicity of TBI regimens without any survival advantage, regimens without TBI are preferable in the management of Stage IV neuroblastoma.« less
Curry, Jonathan L; Tetzlaff, Michael T; Wang, Sa A; Landon, Gene; Alouch, Nail; Patel, Sapna P; Nagarajan, Priyadharsini; Gupta, Shiva; Aung, Phyu P; Devine, Catherine E; Khoury, Joseph D; Loghavi, Sanam; Prieto, Victor G; DiNardo, Courtney D; Gershenwald, Jeffrey E
2018-06-01
Myeloid sarcoma is a rare extramedullary hematologic malignancy. Accurate and timely diagnosis may be challenging because myeloid sarcoma is known to mimic solid tumors, including hepatobiliary, nasopharyngeal, and breast carcinomas. We report a case of myeloid sarcoma that developed in the primary tumor lymphatic drainage field of a previously treated intermediate-thickness cutaneous melanoma, clinically and radiographically mimicking an in-transit metastasis, in a patient with myelodysplastic syndrome. The diagnosis of myeloid sarcoma was achieved after surgical excision of the mass and pathological examination that included extensive immunohistochemical studies. Awareness of such an unusual clinical presentation can help reduce diagnostic delay and ensure that adequate tissue is obtained for pathological examination and ancillary studies that are critical for accurate diagnosis and appropriate patient management.
Li, Xuan; Meng, Yiming; Plotnikoff, Nicolas P; Youkilis, Gene; Griffin, Noreen; Wang, Enhua; Lu, Changlong; Shan, Fengping
2015-01-01
Methionine enkephalin (MENK), an endogenous neuropeptide, plays an crucial role in both neuroendocrine and immune systems. CD4+Foxp3+ regulatory T cells (Tregs) are identified as a major subpopulation of T lymphocytes in suppressing immune system to keep balanced immunity. The aim of this research work was to elucidate the mechanisms via which MENK interacts with Tregs in cancer situation. The influence of MENK on transforming growth factor-β (TGF-β) mediated conversion from naïve CD4+CD25- T cells to CD4+CD25+ Tregs was determined and the data from flow cytometry (FCM) analysis indicated that MENK effectively inhibited the expression of Foxp3 during the process of TGF-βinduction. Furthermore, this inhibiting process was accompanied by diminishing phosphorylation and nuclear translocation of Smad2/3, confirmed by western blot (WB) analysis and immunofluorescence (IF) at molecular level. We established sarcoma mice model with S180 to investigate whether MENK could modulate Tregs in tumor circumstance. Our findings showed that MENK delayed the development of tumor in S180 tumor bearing mice and down-regulated level of Tregs. Together, these novel findings reached a conclusion that MENK could inhibit Tregs activity directly and retard tumor development through down-regulating Tregs in mice. This work advances the deepening understanding of the influence of MENK on Tregs in cancer situation, and relation of MENK with immune system, supporting the implication of MENK as a new strategy for cancer immunotherapy.
[Desmoid tumors in three patients].
Mohos, E; Kovács, T; Brittig, F; Nagy, A
2001-12-01
Desmoids are rare tumors of the connective tissue. It develops about 1:1000 times more in patients with familial adenomatous polyposis (FAP, Gardner syndrome) compared to normal population. It has been shown in molecular genetic examinations, that different mutations of the APC gene are responsible for desmoid tumors in FAP. It means, that this disease is one of the extraintestinal manifestations of Gardner syndrome. This tumor has high recurrence rate and is growing rapidly, and as a result it is the second most common cause of death in FAP patients. That is why genetic examination for FAP patients is advised to decide if the patient has higher risk for desmoid formation. If the result of the genetic test is positive, it is advisable to try to slow the progression of polyposis with medical treatment, and so to delay the date of the colectomy because the surgical intervention--and connective tissue damage--can induce desmoid formation in these patients. At the same time it is reasonable to examine and regularly control patients with sporadic desmoid tumors searching for other manifestations of Gardner syndrome (colon, stomach and duodenum polyposis, tumor of papilla Vateri, retinopathy, etc.). Palliative surgery is not indicated in patients with inoperable intraabdominal desmoid tumors, because partial resections (R1, R2, debulking) result in further tumor progression. In these patients medical treatment (sulindac, tamoxifen), chemotherapy (doxorubicin, dacarbazin) and radiotherapy or combination of them can result tumor remission. We describe our three patients (an abdominal wall desmoid four years following Cesarean section; a desmoid tumor in the retroperitoneum and in the pelvis diagnosed three years after total colectomy; and a retroperitoneal and abdominal wall desmoid one year after total colectomy) and etiology, diagnosis and therapy of desmoid tumors are discussed.
Fischer, Walter; Gustafsson, Lotta; Mossberg, Ann-Kristin; Gronli, Janne; Mork, Sverre; Bjerkvig, Rolf; Svanborg, Catharina
2004-03-15
Malignant brain tumors present a major therapeutic challenge because no selective or efficient treatment is available. Here, we demonstrate that intratumoral administration of human alpha-lactalbumin made lethal to tumor cells (HAMLET) prolongs survival in a human glioblastoma (GBM) xenograft model, by selective induction of tumor cell apoptosis. HAMLET is a protein-lipid complex that is formed from alpha-lactalbumin when the protein changes its tertiary conformation and binds oleic acid as a cofactor. HAMLET induces apoptosis in a wide range of tumor cells in vitro, but the therapeutic effect in vivo has not been examined. In this study, invasively growing human GBM tumors were established in nude rats (Han:rnu/rnu Rowett, n = 20) by transplantation of human GBM biopsy spheroids. After 7 days, HAMLET was administered by intracerebral convection-enhanced delivery for 24 h into the tumor area; and alpha-lactalbumin, the native, folded variant of the same protein, was used as a control. HAMLET reduced the intracranial tumor volume and delayed the onset of pressure symptoms in the tumor-bearing rats. After 8 weeks, all alpha-lactalbumin-treated rats had developed pressure symptoms, but the HAMLET-treated rats remained asymptomatic. Magnetic resonance imaging scans revealed large differences in tumor volume (456 versus 63 mm(3)). HAMLET caused apoptosis in vivo in the tumor but not in adjacent intact brain tissue or in nontransformed human astrocytes, and no toxic side effects were observed. The results identify HAMLET as a new candidate in cancer therapy and suggest that HAMLET should be additionally explored as a novel approach to controlling GBM progression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeo, Seung-Gu; Department of Radiation Oncology, Soonchunhyang University College of Medicine, Cheonan; Oh, Jae Hwan
Purpose: A prospective phase 2 multicenter trial was performed to investigate the efficacy and safety of preoperative short-course concurrent chemoradiation therapy (CRT) followed by delayed surgery for patients with locally advanced rectal cancer. Methods and Materials: Seventy-three patients with cT3-4 rectal cancer were enrolled. Radiation therapy of 25 Gy in 5 fractions was delivered over 5 consecutive days using helical tomotherapy. Concurrent chemotherapy was administered on the same 5 days with intravenous bolus injection of 5-fluorouracil (400 mg/m{sup 2}/day) and leucovorin (20 mg/m{sup 2}/day). After 4 to 8 weeks, total mesorectal excision was performed. The primary endpoint was the pathologicmore » downstaging (ypStage 0-I) rate, and secondary endpoints included tumor regression grade, tumor volume reduction rate, and toxicity. Results: Seventy-one patients completed the planned preoperative CRT and surgery. Downstaging occurred in 20 (28.2%) patients, including 1 (1.4%) with a pathologic complete response. Favorable tumor regression (grade 4-3) was observed in 4 (5.6%) patients, and the mean tumor volume reduction rate was 62.5 ± 21.3%. Severe (grade ≥3) treatment toxicities were reported in 27 (38%) patients from CRT until 3 months after surgery. Conclusions: Preoperative short-course concurrent CRT followed by delayed surgery for patients with locally advanced rectal cancer demonstrated poor pathologic responses compared with conventional long-course CRT, and it yielded considerable toxicities despite the use of an advanced radiation therapy technique.« less
A nonlinear competitive model of the prostate tumor growth under intermittent androgen suppression.
Yang, Jing; Zhao, Tong-Jun; Yuan, Chang-Qing; Xie, Jing-Hui; Hao, Fang-Fang
2016-09-07
Hormone suppression has been the primary modality of treatment for prostate cancer. However long-term androgen deprivation may induce androgen-independent (AI) recurrence. Intermittent androgen suppression (IAS) is a potential way to delay or avoid the AI relapse. Mathematical models of tumor growth and treatment are simple while they are capable of capturing the essence of complicated interactions. Game theory models have analyzed that tumor cells can enhance their fitness by adopting genetically determined survival strategies. In this paper, we consider the survival strategies as the competitive advantage of tumor cells and propose a new model to mimic the prostate tumor growth in IAS therapy. Then we investigate the competition effect in tumor development by numerical simulations. The results indicate that successfully IAS-controlled states can be achieved even though the net growth rate of AI cells is positive for any androgen level. There is crucial difference between the previous models and the new one in the phase diagram of successful and unsuccessful tumor control by IAS administration, which means that the suggestions from the models for medication can be different. Furthermore we introduce quadratic logistic terms to the competition model to simulate the tumor growth in the environment with a finite carrying capacity considering the nutrients or inhibitors. The simulations show that the tumor growth can reach an equilibrium state or an oscillatory state with the net growth rate of AI cells being androgen independent. Our results suggest that the competition and the restraint of a limited environment can enhance the possibility of relapse prevention. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jabłonowski, Zbigniew; Kędzierski, Robert; Sosnowski, Marek
2011-01-01
Tumors originating from transitional epithelium of the renal pelvis and ureter are infrequent. Their course is asymptomatic at early stages of the disease, and diagnosis and institution of appropriate treatment delayed. The aim of the study is to assess the results of treatment in patients with upper urinary tract transitional cell carcinomas (UUT-TCC). Fifteen patients treated in 2005-2010 for UUT-TCC were qualified for the retrospective study. Clinical symptoms, diagnostic methods, tumor location, clinical stage and histopathological characteristics of the tumors were assessed. Then, the instituted treatment and its results were analyzed. The average follow-up period was 51 month (range 6-65), UUT-TCC accounted for 6.7% of renal tumors treated. Concurrent treated vesical tumors were observed in 4 (26.7%) patients. Primary UUT-TCC was diagnosed in 10 (66.7%) patients. Radical surgery was performed in 10 (66.7%) patients, whereas 5 (33.3%) underwent sparing operations. Macroscopic hematuria was the predominant clinical symptom. In most cases T2-T3 clinical stage (60.0%) and high-grade (66.7%) were observed. Development of an upper urinary tract tumor after treatment of a vesical tumor was noted in 4 (26.7%) patients. During the follow-up period, urinary bladder carcinomas were diagnosed in 5 (33.3%) patients with primary upper urinary tract tumors. Nephroureterectomy remains the standard treatment for UUT-TCC. Organ-sparing surgery is possible in selected patients with low clinical stage and low grade tumors. Patients treated for urinary bladder carcinomas require regular monitoring of the upper urinary tract.
Heme oxygenase-1 accelerates tumor angiogenesis of human pancreatic cancer.
Sunamura, Makoto; Duda, Dan G; Ghattas, Maivel H; Lozonschi, Lucian; Motoi, Fuyuhiko; Yamauchi, Jun-Ichiro; Matsuno, Seiki; Shibahara, Shigeki; Abraham, Nader G
2003-01-01
Angiogenesis is necessary for the continued growth of solid tumors, invasion and metastasis. Several studies clearly showed that heme oxygenase-1 (HO-1) plays an important role in angiogenesis. In this study, we used the vital microscope system, transparent skinfold model, lung colonization model and transduced pancreatic cancer cell line (Panc-1)/human heme oxygenase-1 (hHO-1) cells, to precisely analyze, for the first time, the effect of hHO-1 gene on tumor growth, angiogenesis and metastasis. Our results revealed that HO-1 stimulates angiogenesis of pancreatic carcinoma in severe combined immune deficient mice. Overexpression of human hHO-1 after its retroviral transfer into Panc-1 cells did not interfere with tumor growth in vitro. While in vivo the development of tumors was accelerated upon transfection with hHO-1. On the other hand, inhibition of heme oxygenase (HO) activity by stannous mesoporphyrin was able transiently to delay tumor growth in a dose dependent manner. Tumor angiogenesis was markedly increased in Panc-1/hHO-1 compared to mock transfected and wild type. Lectin staining and Ki-67 proliferation index confirmed these results. In addition hHO-1 stimulated in vitro tumor angiogenesis and increased endothelial cell survival. In a lung colonization model, overexpression of hHO-1 increased the occurrence of metastasis, while inhibition of HO activity by stannous mesoporphyrin completely inhibited the occurrence of metastasis. In conclusion, overexpression of HO-1 genes potentiates pancreatic cancer aggressiveness, by increasing tumor growth, angiogenesis and metastasis and that the inhibition of the HO system may be of useful benefit for the future treatment of the disease.
The Dynamical Behaviors for a Class of Immunogenic Tumor Model with Delay
Muthoni, Mutei Damaris; Pang, Jianhua
2017-01-01
This paper aims at studying the model proposed by Kuznetsov and Taylor in 1994. Inspired by Mayer et al., time delay is introduced in the general model. The dynamic behaviors of this model are studied, which include the existence and stability of the equilibria and Hopf bifurcation of the model with discrete delays. The properties of the bifurcated periodic solutions are studied by using the normal form on the center manifold. Numerical examples and simulations are given to illustrate the bifurcation analysis and the obtained results. PMID:29312457
Rastogi, Ashita; Assing, Mathew; Taggart, Mellisa; Rao, Brinda; Sun, Jia; Elsayes, Khaled; Tamm, Eric; Bhosale, Priya
The aim of the study was to assess the ability of contrast-enhanced computed tomography (CECT) to differentiate aggressive from nonaggressive solid pseudopapillary neoplasms (SPNs). Forty treatment-naive patients with pathologically proven pancreatic SPNs were included. Imaging characteristics were determined by consensus of 3 radiologists blinded to histopathologic aggressiveness. All patients underwent 4-phase CECT using a pancreatic protocol. The regions of interest of the tumor and the normal pancreas were documented on all phases. Lymph nodes were considered metastatic if greater than 1.0 cm in short-axis diameter.Fisher exact and Wilcoxon rank-sum tests were used to compare between aggressive and nonaggressive tumors. No significant difference was noted between imaging covariates, such as internal hemorrhage, calcification, wall thickness perceptibility, vascular invasion, margins, cystic component, and pancreatic and biliary ductal dilation. Tumors with greater than 62.5 Hounsfield units and progressive enhancement during the delayed phase had aggressive characteristics (P = 0.03). On delayed phase CECT, pathologically aggressive SPNs may show greater enhancement than nonaggressive SPNs.
Yoshimoto, Yuya; Suzuki, Yoshiyuki; Mimura, Kousaku; Ando, Ken; Oike, Takahiro; Sato, Hiro; Okonogi, Noriyuki; Maruyama, Takanori; Izawa, Shinichiro; Noda, Shin-ei; Fujii, Hideki; Kono, Koji; Nakano, Takashi
2014-01-01
Purpose There is growing evidence that tumor-specific immune responses play an important role in anti-cancer therapy, including radiotherapy. Using mouse tumor models we demonstrate that irradiation-induced anti-tumor immunity is essential for the therapeutic efficacy of irradiation and can be augmented by modulation of cytotoxic T lymphocyte (CTL) activity. Methods and Materials C57BL/6 mice, syngeneic EL4 lymphoma cells, and Lewis lung carcinoma (LL/C) cells were used. Cells were injected into the right femurs of mice. Ten days after inoculation, tumors were treated with 30 Gy of local X-ray irradiation and their growth was subsequently measured. The effect of irradiation on tumor growth delay (TGD) was defined as the time (in days) for tumors to grow to 500 mm3 in the treated group minus that of the untreated group. Cytokine production and serum antibodies were measured by ELISA and flow cytometry. Results In the EL4 tumor model, tumors were locally controlled by X-ray irradiation and re-introduced EL4 cells were completely rejected. Mouse EL4-specific systemic immunity was confirmed by splenocyte cytokine production and detection of tumor-specific IgG1 antibodies. In the LL/C tumor model, X-ray irradiation also significantly delayed tumor growth (TGD: 15.4 days) and prolonged median survival time (MST) to 59 days (versus 28 days in the non-irradiated group). CD8(+) cell depletion using an anti-CD8 antibody significantly decreased the therapeutic efficacy of irradiation (TGD, 8.7 days; MST, 49 days). Next, we examined whether T cell modulation affected the efficacy of radiotherapy. An anti-CTLA-4 antibody significantly increased the anti-tumor activity of radiotherapy (TGD was prolonged from 13.1 to 19.5 days), while anti-FR4 and anti-GITR antibodies did not affect efficacy. Conclusions Our results indicate that tumor-specific immune responses play an important role in the therapeutic efficacy of irradiation. Immunomodulation, including CTLA-4 blockade, may be a promising treatment in combination with radiotherapy. PMID:24686897
Yoshimoto, Yuya; Suzuki, Yoshiyuki; Mimura, Kousaku; Ando, Ken; Oike, Takahiro; Sato, Hiro; Okonogi, Noriyuki; Maruyama, Takanori; Izawa, Shinichiro; Noda, Shin-ei; Fujii, Hideki; Kono, Koji; Nakano, Takashi
2014-01-01
There is growing evidence that tumor-specific immune responses play an important role in anti-cancer therapy, including radiotherapy. Using mouse tumor models we demonstrate that irradiation-induced anti-tumor immunity is essential for the therapeutic efficacy of irradiation and can be augmented by modulation of cytotoxic T lymphocyte (CTL) activity. C57BL/6 mice, syngeneic EL4 lymphoma cells, and Lewis lung carcinoma (LL/C) cells were used. Cells were injected into the right femurs of mice. Ten days after inoculation, tumors were treated with 30 Gy of local X-ray irradiation and their growth was subsequently measured. The effect of irradiation on tumor growth delay (TGD) was defined as the time (in days) for tumors to grow to 500 mm3 in the treated group minus that of the untreated group. Cytokine production and serum antibodies were measured by ELISA and flow cytometry. In the EL4 tumor model, tumors were locally controlled by X-ray irradiation and re-introduced EL4 cells were completely rejected. Mouse EL4-specific systemic immunity was confirmed by splenocyte cytokine production and detection of tumor-specific IgG1 antibodies. In the LL/C tumor model, X-ray irradiation also significantly delayed tumor growth (TGD: 15.4 days) and prolonged median survival time (MST) to 59 days (versus 28 days in the non-irradiated group). CD8(+) cell depletion using an anti-CD8 antibody significantly decreased the therapeutic efficacy of irradiation (TGD, 8.7 days; MST, 49 days). Next, we examined whether T cell modulation affected the efficacy of radiotherapy. An anti-CTLA-4 antibody significantly increased the anti-tumor activity of radiotherapy (TGD was prolonged from 13.1 to 19.5 days), while anti-FR4 and anti-GITR antibodies did not affect efficacy. Our results indicate that tumor-specific immune responses play an important role in the therapeutic efficacy of irradiation. Immunomodulation, including CTLA-4 blockade, may be a promising treatment in combination with radiotherapy.
Ohata, Ken; Muramoto, Takashi; Minato, Yohei; Chiba, Hideyuki; Sakai, Eiji; Matsuhashi, Nobuyuki
2018-02-01
Since colorectal endoscopic submucosal dissection (ESD) remains technically difficult, hybrid ESD was developed as an alternative therapeutic option to achieve en bloc resection of relatively large lesions. In this feasibility study, we evaluated the safety and efficacy of hybrid colorectal ESD using a newly developed multifunctional snare. From June to August 2016, we prospectively enrolled 10 consecutive patients with non-pedunculated intramucosal colorectal tumors 20 - 30 mm in diameter. All of the hybrid ESD steps were performed using the "SOUTEN" snare. The knob-shaped tip attached to the loop top helps to stabilize the needle-knife, making it less likely to slip during circumferential incision and enables partial submucosal dissection. All of the lesions were curatively resected by hybrid ESD, with a short mean procedure time (16.1 ± 4.8 minutes). The mean diameters of the resected specimens and tumors were 30.5 ± 4.9 and 26.0 ± 3.5 mm, respectively. No perforations occurred, while delayed bleeding occurred in 1 patient. In conclusion, hybrid ESD using a multifunctional snare enables easy, safe, and cost-effective resection of relatively large colorectal tumors to be achieved. UMIN000022545.
Watson, K L; Konrad, K D; Woods, D F; Bryant, P J
1992-01-01
The tumor suppressor gene lethal(1)aberrant immune response 8 (air8) of Drosophila melanogaster encodes a homolog of the human S6 ribosomal protein. P element insertions that prevent expression of this gene cause overgrowth of the lymph glands (the hematopoietic organs), abnormal blood cell differentiation, and melanotic tumor formation. They also cause delayed development, inhibit growth of most of the larval organs, and lead to larval lethality. Mitotic recombination experiments indicate that the normal S6 gene is required for clone survival in the germ line and imaginal discs. The S6 gene produces a 1.1-kilobase transcript that is abundant throughout development in wild-type animals and in revertants derived from the insertional mutants but is barely detectable in the mutant larvae. cDNAs corresponding to this transcript show a 248-amino acid open reading frame with 75.4% identity and 94.8% similarity to both human and rat S6 ribosomal protein sequences. The results reveal a regulatory function of this ribosomal protein in the hematopoietic system of Drosophila that may be related to its developmentally regulated phosphorylation. Images PMID:1454811
Sources of delayed provision of neurosurgical care in a rural kenyan setting
Mansouri, Alireza; Chan, Vivien; Njaramba, Veronica; Cadotte, David W.; Albright, A. Leland; Bernstein, Mark
2015-01-01
Background: Delay to neurosurgical care can result in significant morbidity and mortality. In this study, we aim to identify and quantify the sources of delay to neurosurgical consultation and care at a rural setting in Kenya. Methods: A mixed-methods, cross-sectional analysis of all patients admitted to the neurosurgical department at Kijabe Hospital (KH) was conducted: A retrospective analysis of admissions from October 1 to December 31, 2013 and a prospective analysis from June 2 to June 20, 2014. Sources of delay were categorized and quantified. The Kruskal–Wallis test was used to identify an overall significant difference among diagnoses. The Mann–Whitney U test was used for pairwise comparisons within groups; the Bonferroni correction was applied to the alpha level of significance (0.05) according to the number of comparisons conducted. IBM SPSS version 22.0 (SPSS, Chicago, IL) was used for statistical analyses. Results: A total of 332 admissions were reviewed (237 retrospective, 95 prospective). The majority was pediatric admissions (median age: 3 months). Hydrocephalus (35%) and neural tube defects (NTDs; 27%) were most common. At least one source of delay was identified in 192 cases (58%); 39 (12%) were affected by multiple sources. Delay in primary care (PCPs), in isolation or combined with other sources, comprised 137 of total (71%); misdiagnosis or incorrect management comprised 46 (34%) of these. Finances contributed to delays in 25 of 95 prospective cases. At a median delay of 49 and 200.5 days, the diagnoses of hydrocephalus and tumors were associated with a significantly longer delay compared with NTDs (P < 0.001). Conclusion: A substantial proportion of patients experienced delays in procuring pediatric neurosurgical care. Improvement in PCP knowledge base, implementation of a triage and referral process, and development of community-based funding strategies can potentially reduce these delays. PMID:25745587
Komohara, Yoshihiro; Takemura, Kenichi; Lei, Xiao Feng; Sakashita, Naomi; Harada, Mamoru; Suzuki, Hiroshi; Kodama, Tatsuhiko; Takeya, Motohiro
2009-11-01
Class A scavenger receptors (SR-A, CD204) are highly expressed in tumor-associated macrophages (TAM). To investigate the function of SR-A in TAM, wild-type and SR-A-deficient (SR-A(-/-)) mice were injected with EL4 cells. Although these groups of mice did not differ in the numbers of infiltrating macrophages and lymphocytes and in neovascularization, SR-A(-/-) mice had delayed growth of EL4 tumors. Expression of inducible nitric oxide (NO) synthase and interferon (IFN)-gamma mRNA increased significantly in tumor tissues from SR-A(-/-) mice. Engulfment of necrotic EL4 cells induced upregulation of NO and IFN-gamma production by cultured macrophages, and production of NO and IFN-gamma increased in SR-A(-/-) macrophages in vitro. IFN-beta production by cultured macrophages was also elevated in SR-A(-/-) macrophages in vitro. These results suggested that the antitumor activity of macrophages increased in SR-A(-/-) mice because of upregulation of NO and IFN-gamma production. These data indicate an important role of SR-A in regulating TAM function by inhibiting toll-like receptor (TLR)4-IFN-beta signaling.
DeWire, Mariko; Green, Daniel M; Sklar, Charles A; Merchant, Thomas E; Wallace, Dana; Lin, Tong; Vern-Gross, Tamara; Kun, Larry E; Krasin, Matthew J; Boyett, James M; Wright, Karen D; Wetmore, Cynthia; Broniscer, Alberto; Gajjar, Amar
2015-02-01
Female survivors of central nervous system (CNS) tumors are at an increased risk for gonadal damage and variations in the timing of puberty following radiotherapy and alkylating agent-based chemotherapy. Clinical and laboratory data were obtained from 30 evaluable female patients with newly diagnosed embryonal CNS tumors treated on a prospective protocol (SJMB 96) at St. Jude Children's Research Hospital (SJCRH). Pubertal development was evaluated by Tanner staging. Primary ovarian insufficiency (POI) was determined by Tanner staging and FSH level. Females with Tanner stage I-II and FSH > 15 mIU/ml, or Tanner stage III-V, FSH > 25 mIU/ml and FSH greater than LH were defined to have ovarian insufficiency. Recovery of ovarian function was defined as normalization of FSH without therapeutic intervention. Median length of follow-up post completion of therapy was 7.2 years (4.0-10.8 years). The cumulative incidence of pubertal onset was 75.6% by the age of 13. Precocious puberty was observed in 11.1% and delayed puberty in 11.8%. The cumulative incidence of POI was 82.8%, though recovery was observed in 38.5%. Treatment for primary CNS embryonal tumors may cause variations in the timing of pubertal development, impacting physical and psychosocial development. Female survivors are at risk for POI, a subset of whom will recover function over time. Further refinement of therapies is needed in order to reduce late ovarian insufficiency. Pediatr Blood Cancer 2015;62:329-334. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.
Kalber, Tammy L.; Campbell-Washburn, Adrienne E.; Siow, Bernard M.; Sage, Elizabeth; Price, Anthony N.; Ordidge, Katherine L.; Walker-Samuel, Simon
2013-01-01
Objectives To use primed infusions of the magnetic resonance imaging (MRI) contrast agent Gd.DTPA (Magnevist), to achieve an equilibrium between blood and tissue (eqMRI). This may increase tumor Gd concentrations as a novel cancer imaging methodology for the enhancement of small tumor nodules within the low signal-to-noise background of the lung. Methods A primed infusion with a delay before equilibrium (eqMRI) of the Gd(III) chelator Gd.DTPA, via the intraperitoneal route, was used to evaluate gadolinium tumor enhancement as a function of a bolus injection, which is applied routinely in the clinic, compared to gadolinium maintained at equilibrium. A double gated (respiration and cardiac) spin-echo sequence at 9.4T was used to evaluate whole lungs pre contrast and then at 15 (representative of bolus enhancement), 25 and 35 minutes (representative of eqMRI). This was carried out in two lung metastasis models representative of high and low tumor cell seeding. Lungs containing discrete tumor nodes where inflation fixed and taken for haematoxylin and eosin staining as well as CD34 staining for correlation to MRI. Results We demonstrate that sustained Gd enhancement, afforded by Gd equilibrium, increases the detection of pulmonary metastases compared to bolus enhancement and those tumors which enhance at equilibrium are sub-millimetre in size (<0.7 mm2) with a similar morphology to early bronchoalveolar cell carcinomas. Conclusion As Gd-chelates are routinely used in the clinic for detecting tumors by MRI, this methodology is readily transferable to the clinic and advances MRI as a methodology for the detection of small pulmonary tumors. PMID:23382996
Uroporphyrinogen decarboxylase is a radiosensitizing target for head and neck cancer.
Ito, Emma; Yue, Shijun; Moriyama, Eduardo H; Hui, Angela B; Kim, Inki; Shi, Wei; Alajez, Nehad M; Bhogal, Nirmal; Li, Guohua; Datti, Alessandro; Schimmer, Aaron D; Wilson, Brian C; Liu, Peter P; Durocher, Daniel; Neel, Benjamin G; O'Sullivan, Brian; Cummings, Bernard; Bristow, Rob; Wrana, Jeff; Liu, Fei-Fei
2011-01-26
Head and neck cancer (HNC) is the eighth most common malignancy worldwide, comprising a diverse group of cancers affecting the head and neck region. Despite advances in therapeutic options over the last few decades, treatment toxicities and overall clinical outcomes have remained disappointing, thereby underscoring a need to develop novel therapeutic approaches in HNC treatment. Uroporphyrinogen decarboxylase (UROD), a key regulator of heme biosynthesis, was identified from an RNA interference-based high-throughput screen as a tumor-selective radiosensitizing target for HNC. UROD knockdown plus radiation induced caspase-mediated apoptosis and cell cycle arrest in HNC cells in vitro and suppressed the in vivo tumor-forming capacity of HNC cells, as well as delayed the growth of established tumor xenografts in mice. This radiosensitization appeared to be mediated by alterations in iron homeostasis and increased production of reactive oxygen species, resulting in enhanced tumor oxidative stress. Moreover, UROD was significantly overexpressed in HNC patient biopsies. Lower preradiation UROD mRNA expression correlated with improved disease-free survival, suggesting that UROD could potentially be used to predict radiation response. UROD down-regulation also radiosensitized several different models of human cancer, as well as sensitized tumors to chemotherapeutic agents, including 5-fluorouracil, cisplatin, and paclitaxel. Thus, our study has revealed UROD as a potent tumor-selective sensitizer for both radiation and chemotherapy, with potential relevance to many human malignancies.
p53 prevents progression of nevi to melanoma predominantly through cell cycle regulation
Terzian, Tamara; Torchia, Enrique C.; Dai, Daisy; Robinson, Steven E.; Murao, Kazutoshi; Stiegmann, Regan A.; Gonzalez, Victoria; Boyle, Glen M.; Powell, Marianne B.; Pollock, Pamela M.; Lozano, Guillermina; Robinson, William A.; Roop, Dennis R.; Box, Neil F.
2011-01-01
p53 is the central member of a critical tumor suppressor pathway in virtually all tumor types, where it is silenced mainly by missense mutations. In melanoma, p53 predominantly remains wild type, thus its role has been neglected. To study the effect of p53 on melanocyte function and melanomagenesis, we crossed the ‘high-p53’ Mdm4+/− mouse to the well-established TP-ras0/+ murine melanoma progression model. After treatment with the carcinogen dimethylbenzanthracene (DMBA), TP-ras0/+ mice on the Mdm4+/− background developed fewer tumors with a delay in the age of onset of melanomas compared to TP-ras0/+ mice. Furthermore, we observed a dramatic decrease in tumor growth, lack of metastasis with increased survival of TP-ras0/+: Mdm4+/− mice. Thus, p53 effectively prevented the conversion of small benign tumors to malignant and metastatic melanoma. p53 activation in cultured primary melanocyte and melanoma cell lines using Nutlin-3, a specific Mdm2 antagonist, supported these findings. Moreover, global gene expression and network analysis of Nutlin-3-treated primary human melanocytes indicated that cell cycle regulation through the p21WAF1/CIP1 signaling network may be the key anti-melanomagenic activity of p53. PMID:20849464
A zebrafish model of chordoma initiated by notochord-driven expression of HRASV12.
Burger, Alexa; Vasilyev, Aleksandr; Tomar, Ritu; Selig, Martin K; Nielsen, G Petur; Peterson, Randall T; Drummond, Iain A; Haber, Daniel A
2014-07-01
Chordoma is a malignant tumor thought to arise from remnants of the embryonic notochord, with its origin in the bones of the axial skeleton. Surgical resection is the standard treatment, usually in combination with radiation therapy, but neither chemotherapeutic nor targeted therapeutic approaches have demonstrated success. No animal model and only few chordoma cell lines are available for preclinical drug testing, and, although no druggable genetic drivers have been identified, activation of EGFR and downstream AKT-PI3K pathways have been described. Here, we report a zebrafish model of chordoma, based on stable transgene-driven expression of HRASV12 in notochord cells during development. Extensive intra-notochordal tumor formation is evident within days of transgene expression, ultimately leading to larval death. The zebrafish tumors share characteristics of human chordoma as demonstrated by immunohistochemistry and electron microscopy. The mTORC1 inhibitor rapamycin, which has some demonstrated activity in a chordoma cell line, delays the onset of tumor formation in our zebrafish model, and improves survival of tumor-bearing fish. Consequently, the HRASV12-driven zebrafish model of chordoma could enable high-throughput screening of potential therapeutic agents for the treatment of this refractory cancer. © 2014. Published by The Company of Biologists Ltd.
Lactic acid delays the inflammatory response of human monocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter, Katrin, E-mail: katrin.peter@ukr.de; Rehli, Michael, E-mail: michael.rehli@ukr.de; RCI Regensburg Center for Interventional Immunology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg
2015-02-13
Lactic acid (LA) accumulates under inflammatory conditions, e.g. in wounds or tumors, and influences local immune cell functions. We previously noted inhibitory effects of LA on glycolysis and TNF secretion of human LPS-stimulated monocytes. Here, we globally analyze the influence of LA on gene expression during monocyte activation. To separate LA-specific from lactate- or pH-effects, monocytes were treated for one or four hours with LPS in the presence of physiological concentrations of LA, sodium lactate (NaL) or acidic pH. Analyses of global gene expression profiles revealed striking effects of LA during the early stimulation phase. Up-regulation of most LPS-induced genesmore » was significantly delayed in the presence of LA, while this inhibitory effect was attenuated in acidified samples and not detected after incubation with NaL. LA targets included genes encoding for important monocyte effector proteins like cytokines (e.g. TNF and IL-23) or chemokines (e.g. CCL2 and CCL7). LA effects were validated for several targets by quantitative RT-PCR and/or ELISA. Further analysis of LPS-signaling pathways revealed that LA delayed the phosphorylation of protein kinase B (AKT) as well as the degradation of IκBα. Consistently, the LPS-induced nuclear accumulation of NFκB was also diminished in response to LA. These results indicate that the broad effect of LA on gene expression and function of human monocytes is at least partially caused by its interference with immediate signal transduction events after activation. This mechanism might contribute to monocyte suppression in the tumor environment. - Highlights: • Lactic acid broadly delays LPS-induced gene expression in human monocytes. • Expression of important monocyte effector molecules is affected by lactic acid. • Interference of lactic acid with TLR signaling causes the delayed gene expression. • The profound effect of lactic acid might contribute to immune suppression in tumors.« less
Prevalence of metastasis at diagnosis of osteosarcoma: an international comparison
Marko, Tracy A.; Diessner, Brandon J.; Spector, Logan G.
2016-01-01
Background Osteosarcoma is the most common primary malignant bone tumor in many countries, with metastatic disease responsible for most patient deaths. This study compares the prevalence of metastatic osteosarcoma at diagnosis across countries to inform the critical question of whether diagnostic delay or tumor biology drives metastases development prior to diagnosis. Procedure A literature search of the PubMed database was conducted to compare the prevalence of metastatic disease at the time of OS diagnosis between countries. A pooled prevalence with 95% confidence intervals was calculated for each study meeting inclusion criteria. Studies were grouped for analysis based on human development index (HDI) scores. Results Our analysis found an 18% (95% CI: 15%, 20%) average global pooled proportion of metastasis at osteosarcoma diagnosis. The average prevalence of metastasis at diagnosis increased as HDI groupings decreased, with very high HDI, high HDI, and medium/ low HDI groups found to be 15% (95% CI: 13%, 17%), 20% (95% CI: 14%, 28%), and 31% (95% CI: 15%, 52%), respectively. Conclusions Our evidence suggests there is a biological baseline for metastatic OS at diagnosis, which is observed in countries with very high HDI. In countries with medium/ low HDI, where there are more barriers to accessing healthcare, the higher prevalence of metastasis may result from treatment delay or an artificial prevalence inflation due to patients with less severe symptoms not presenting to clinic. Additional research in countries with medium/ low HDI may reveal that earlier detection and treatment could improve patient outcomes in those countries. PMID:26929018
Behavioral stress accelerates prostate cancer development in mice
Hassan, Sazzad; Karpova, Yelena; Baiz, Daniele; Yancey, Dana; Pullikuth, Ashok; Flores, Anabel; Register, Thomas; Cline, J. Mark; D’Agostino, Ralph; Danial, Nika; Datta, Sandeep Robert; Kulik, George
2013-01-01
Prostate cancer patients have increased levels of stress and anxiety. Conversely, men who take beta blockers, which interfere with signaling from the stress hormones adrenaline and noradrenaline, have a lower incidence of prostate cancer; however, the mechanisms underlying stress–prostate cancer interactions are unknown. Here, we report that stress promotes prostate carcinogenesis in mice in an adrenaline-dependent manner. Behavioral stress inhibited apoptosis and delayed prostate tumor involution both in phosphatase and tensin homolog–deficient (PTEN-deficient) prostate cancer xenografts treated with PI3K inhibitor and in prostate tumors of mice with prostate-restricted expression of c-MYC (Hi-Myc mice) subjected to androgen ablation therapy with bicalutamide. Additionally, stress accelerated prostate cancer development in Hi-Myc mice. The effects of stress were prevented by treatment with the selective β2-adrenergic receptor (ADRB2) antagonist ICI118,551 or by inducible expression of PKA inhibitor (PKI) or of BCL2-associated death promoter (BAD) with a mutated PKA phosphorylation site (BADS112A) in xenograft tumors. Effects of stress were also blocked in Hi-Myc mice expressing phosphorylation-deficient BAD (BAD3SA). These results demonstrate interactions between prostate tumors and the psychosocial environment mediated by activation of an adrenaline/ADRB2/PKA/BAD antiapoptotic signaling pathway. Our findings could be used to identify prostate cancer patients who could benefit from stress reduction or from pharmacological inhibition of stress-induced signaling. PMID:23348742
Spontaneous delayed brain herniation through a subdural membrane after tumor surgery.
Van Dycke, Annelies; Okito, Jean-Pierre Kalala; Acou, Marjan; Deblaere, Karel; Hemelsoet, Dimitri; Van Roost, Dirk
2013-12-01
We report on a rare case of spontaneous cerebral herniation through a subdural membrane in a 54-year-old patient. Brain herniation in adults as a complication of chronic subdural hematomas shortly after a neurosurgical intervention is rare. We are the first to report a case of delayed local herniation in an adult patient more than 1 year after a neurosurgical procedure. The patient suffered from a low-grade oligodendroglioma since 1993. Radiotherapy was then applied, followed by resective surgery and chemotherapy in 2008 because of tumor progression. Subsequently, he developed a symptomatic subdural hygroma treated with a subduro-atrial cerebrospinal fluid shunt. In January 2010, the shunt was occluded. Follow-up brain imaging showed a stable situation after tumor resection, with a cyst in the temporal resection cavity and a stable subdural hygroma. In February 2011, the patient visited the emergency department because of an acute right hemiparesis and progressive motor aphasia. Urgent magnetic resonance imaging was suspicious of a herniation of brain parenchyma in the left middle cranial fossa. Explorative surgery showed a locally incarcerated brain herniation through a membrane with a ring-like aperture. Resection of this membrane led to normalization of the position of the brain tissue and to clinical improvement. Brain herniation through a subdural membrane is an extremely rare complication, but must be a differential diagnosis in patients with a known chronic subdural hematoma or hygroma and clinical deterioration, even in the absence of recent surgery. Urgent surgical intervention of the herniated brain is recommended to reduce the risk of permanent neurological damage. Georg Thieme Verlag KG Stuttgart · New York.
Targeting the HER family with Pan-HER effectively overcomes resistance to cetuximab
Iida, Mari; Bahrar, Harsh; Brand, Toni M; Pearson, Hannah E; Coan, John P; Orbuch, Rachel A; Flanigan, Bailey G; Swick, Adam D; Prabakaran, Prashanth; Lantto, Johan; Horak, Ivan D.; Kragh, Michael; Salgia, Ravi; Kimple, Randy J; Wheeler, Deric L
2016-01-01
Cetuximab, an antibody against the Epidermal Growth Factor Receptor (EGFR) has shown efficacy in treating head and neck squamous cell carcinoma (HNSCC), metastatic colorectal cancer and non-small cell lung cancer (NSCLC). Despite the clinical success of cetuximab, many patients do not respond to cetuximab. Furthermore, virtually all patients who do initially respond become refractory, highlighting both intrinsic and acquired resistance to cetuximab as significant clinical problems. To understand mechanistically how cancerous cells acquire resistance, we previously developed models of acquired resistance using the H226 NSCLC and UM-SCC1 HNSCC cell lines. Cetuximab-resistant clones showed a robust upregulation and dependency on the HER family receptors EGFR, HER2 and HER3. Here, we examined Pan-HER, a mixture of six antibodies targeting these receptors on cetuximab-resistant clones. In cells exhibiting acquired or intrinsic resistance to cetuximab, Pan-HER treatment decreased all three receptors’ protein levels and down-stream activation of AKT and MAPK. This correlated with decreased cell proliferation in cetuximab-resistant clones. To determine whether Pan-HER had a therapeutic benefit in vivo, we established de novo cetuximab-resistant mouse xenografts and treated resistant tumors with Pan-HER. This regimen resulted in a superior growth delay of cetuximab-resistant xenografts compared to mice continued on cetuximab. Furthermore, intrinsically cetuximab-resistant HNSCC patient-derived xenograft tumors treated with Pan-HER exhibited significant growth delay compared to vehicle/cetuximab controls. These results suggest that targeting HER family receptors simultaneously with Pan-HER is a promising treatment strategy for tumors displaying intrinsic or acquired resistance to cetuximab. PMID:27422810
Toyota, Hiroko; Yanase, Noriko; Yoshimoto, Takayuki; Harada, Mitsunori; Kato, Yasuki; Mizuguchi, Junichiro
2015-01-01
Immunotherapy has gained special attention due to its specific effects on tumor cells and systemic action to block metastasis. We recently demonstrated that ovalbumin (OVA) conjugated to the surface of nanoparticles (NPs) (OVA‑NPs) can manipulate humoral immune responses. In the present study, we aimed to ascertain whether vaccination with OVA-NPs entrapping IL-7 (OVA-NPs-IL-7) are able to induce antitumor immune responses in vivo. Pretreatment with a subcutaneous inoculation of OVA-NPs delayed the growth of thymic lymphoma cells expressing a model tumor antigen OVA (E.G7-OVA), and OVA-NPs-IL-7 substantially blocked the growth of E.G7-OVA tumor cells, although NPs-IL-7 alone had a meager effect, as assessed by the mean tumor size and the percentage of tumor-free mice. However, pretreatment with OVA-NPs-IL-7 failed to reduce the growth of parental thymic tumor cells, suggesting that the antitumor effect was antigen-specific. A tetramer assay revealed that vaccination with OVA-NPs-IL-7 tended to enhance the proportion of cytotoxic T cells (CTLs) specific for OVA. When the tumor-free mice inoculated with OVA-NPs-IL-7 plus EG.7 cells were rechallenged with E.G7-OVA cells, they demonstrated reduced growth compared with that in the control mice. Thus, a single subcutaneous injection of OVA-NPs-IL-7 into mice induced tumor-specific and also memory-like immune responses, resulting in regression of tumor cells. Antigens on NPs entrapping IL-7 would be a promising carrier to develop and enhance immune responses, including humoral and cellular immunity as well as a method of drug delivery to a specific target of interest.
Hedgehog signaling in the murine melanoma microenvironment.
Geng, Ling; Cuneo, Kyle C; Cooper, Michael K; Wang, Hong; Sekhar, Konjeti; Fu, Allie; Hallahan, Dennis E
2007-01-01
The Hedgehog intercellular signaling pathway regulates cell proliferation and differentiation. This pathway has been implicated to play a role in the pathogenesis of cancer and in embryonic blood vessel development. In the current study, Hedgehog signaling in tumor related vasculature and microenvironment was examined using human umbilical vein endothelial cells and B16F0 (murine melanoma) tumors models. Use of exogenous Sonic hedgehog (Shh) peptide significantly increased BrdU incorporation in endothelial cells in vitro by a factor of 2 (P < 0.001). The Hedgehog pathway antagonist cyclopamine effectively reduced Shh-induced proliferation to control levels. To study Hedgehog signaling in vivo a hind limb tumor model with the B16F0 cell line was used. Treatment with 25 mg/kg cyclopamine significantly attenuated BrdU incorporation in tumor cells threefold (P < 0.001), in tumor related endothelial cells threefold (P = 0.004), and delayed tumor growth by 4 days. Immunohistochemistry revealed that the Hedgehog receptor Patched was localized to the tumor stroma and that B16F0 cells expressed Shh peptide. Furthermore, mouse embryonic fibroblasts required the presence of B16F0 cells to express Patched in a co-culture assay system. These studies indicate that Shh peptide produced by melanoma cells induces Patched expression in fibroblasts. To study tumor related angiogenesis a vascular window model was used to monitor tumor vascularity. Treatment with cyclopamine significantly attenuated vascular formation by a factor of 2.5 (P < 0.001) and altered vascular morphology. Furthermore, cyclopamine reduced tumor blood vessel permeability to FITC labeled dextran while having no effect on normal blood vessels. These studies suggest that Hedgehog signaling regulates melanoma related vascular formation and function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Fang-Hsin; Fu, Sheng-Yung; Yang, Ying-Chieh
2013-07-15
Purpose: To investigate vascular responses during fractionated radiation therapy (F-RT) and the effects of targeting pericytes or bone marrow-derived cells (BMDCs) on the efficacy of F-RT. Methods and Materials: Murine prostate TRAMP-C1 tumors were grown in control mice or mice transplanted with green fluorescent protein-tagged bone marrow (GFP-BM), and irradiated with 60 Gy in 15 fractions. Mice were also treated with gefitinib (an epidermal growth factor receptor inhibitor) or AMD3100 (a CXCR4 antagonist) to examine the effects of combination treatment. The responses of tumor vasculatures to these treatments and changes of tumor microenvironment were assessed. Results: After F-RT, the tumormore » microvascular density (MVD) was reduced; however, the surviving vessels were dilated, incorporated with GFP-positive cells, tightly adhered to pericytes, and well perfused with Hoechst 33342, suggesting a more mature structure formed primarily via vasculogenesis. Although the gefitinib+F-RT combination affected the vascular structure by dissociating pericytes from the vascular wall, it did not further delay tumor growth. These tumors had higher MVD and better vascular perfusion function, leading to less hypoxia and tumor necrosis. By contrast, the AMD3100+F-RT combination significantly enhanced tumor growth delay more than F-RT alone, and these tumors had lower MVD and poorer vascular perfusion function, resulting in increased hypoxia. These tumor vessels were rarely covered by pericytes and free of GFP-positive cells. Conclusions: Vasculogenesis is a major mechanism for tumor vessel survival during F-RT. Complex interactions occur between vessel-targeting agents and F-RT, and a synergistic effect may not always exist. To enhance F-RT, using CXCR4 inhibitor to block BM cell influx and the vasculogenesis process is a better strategy than targeting pericytes by epidermal growth factor receptor inhibitor.« less
Johnson, Jennifer; Ascierto, Maria Libera; Mittal, Sandeep; Newsome, David; Kang, Liang; Briggs, Michael; Tanner, Kirk; Marincola, Francesco M; Berens, Michael E; Vande Woude, George F; Xie, Qian
2015-09-17
Constitutive MET signaling promotes invasiveness in most primary and recurrent GBM. However, deployment of available MET-targeting agents is confounded by lack of effective biomarkers for selecting suitable patients for treatment. Because endogenous HGF overexpression often causes autocrine MET activation, and also indicates sensitivity to MET inhibitors, we investigated whether it drives the expression of distinct genes which could serve as a signature indicating vulnerability to MET-targeted therapy in GBM. Interrogation of genomic data from TCGA GBM (Student's t test, GBM patients with high and low HGF expression, p ≤ 0.00001) referenced against patient-derived xenograft (PDX) models (Student's t test, sensitive vs. insensitive models, p ≤ 0.005) was used to identify the HGF-dependent signature. Genomic analysis of GBM xenograft models using both human and mouse gene expression microarrays (Student's t test, treated vs. vehicle tumors, p ≤ 0.01) were performed to elucidate the tumor and microenvironment cross talk. A PDX model with EGFR(amp) was tested for MET activation as a mechanism of erlotinib resistance. We identified a group of 20 genes highly associated with HGF overexpression in GBM and were up- or down-regulated only in tumors sensitive to MET inhibitor. The MET inhibitors regulate tumor (human) and host (mouse) cells within the tumor via distinct molecular processes, but overall impede tumor growth by inhibiting cell cycle progression. EGFR (amp) tumors undergo erlotinib resistance responded to a combination of MET and EGFR inhibitors. Combining TCGA primary tumor datasets (human) and xenograft tumor model datasets (human tumor grown in mice) using therapeutic efficacy as an endpoint may serve as a useful approach to discover and develop molecular signatures as therapeutic biomarkers for targeted therapy. The HGF dependent signature may serve as a candidate predictive signature for patient enrollment in clinical trials using MET inhibitors. Human and mouse microarrays maybe used to dissect the tumor-host interactions. Targeting MET in EGFR (amp) GBM may delay the acquired resistance developed during treatment with erlotinib.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jeong-Eun; Woo, Seon Rang; Department of Biochemistry, College of Medicine, Korea University, Seoul 136-705
Research highlights: {yields} Paclitaxel serves as a stimulator of chromosomal fusion in cells in which telomeres are dysfunctional. {yields} Typical fusions involve p-arms, but paclitaxel-induced fusions occur between both q- and p-arms. {yields} Paclitaxel-stimulated fusions in cells in which telomeres are dysfunctional evoke prolonged G2/M cell cycle arrest and delay multinucleation. {yields} Upon telomere erosion, paclitaxel promotes chromosomal instability and subsequent apoptosis. {yields} Chromosomal fusion enhances paclitaxel chemosensitivity under telomere dysfunction. -- Abstract: The anticancer effect of paclitaxel is attributable principally to irreversible promotion of microtubule stabilization and is hampered upon development of chemoresistance by tumor cells. Telomere shortening, andmore » eventual telomere erosion, evoke chromosomal instability, resulting in particular cellular responses. Using telomerase-deficient cells derived from mTREC-/-p53-/- mice, here we show that, upon telomere erosion, paclitaxel propagates chromosomal instability by stimulating chromosomal end-to-end fusions and delaying the development of multinucleation. The end-to-end fusions involve both the p- and q-arms in cells in which telomeres are dysfunctional. Paclitaxel-induced chromosomal fusions were accompanied by prolonged G2/M cell cycle arrest, delayed multinucleation, and apoptosis. Telomere dysfunctional cells with mutlinucleation eventually underwent apoptosis. Thus, as telomere erosion proceeds, paclitaxel stimulates chromosomal fusion and instability, and both apoptosis and chemosensitization eventually develop.« less
De Vlieghere, Elly; Gremonprez, Félix; Verset, Laurine; Mariën, Lore; Jones, Christopher J; De Craene, Bram; Berx, Geert; Descamps, Benedicte; Vanhove, Christian; Remon, Jean-Paul; Ceelen, Wim; Demetter, Pieter; Bracke, Marc; De Geest, Bruno G; De Wever, Olivier
2015-06-01
Peritoneal metastasis is life threatening and is the result of an extensive communication between disseminated cancer cells, mesothelial cells and cancer-associated fibroblasts (CAF). CAFs secrete extracellular matrix (ECM) proteins creating a receptive environment for peritoneal implantation. Considering cancer as an ecosystem may provide opportunities to exploit CAFs to create biomimetic traps to deceive and redirect cancer cells. We have designed microparticles (MP) containing a CAF-derived ECM-surface that is intended to compete with natural niches. CAFs were encapsulated in alginate/gelatine beads (500-750 μm in diameter) functionalised with a polyelectrolyte coating (MP[CAF]). The encapsulated CAFs remain viable and metabolically active (≥35 days), when permanently encapsulated. CAF-derived ECM proteins are retained by the non-biodegradable coating. Adhesion experiments mimicking the environment of the peritoneal cavity show the selective capture of floating cancer cells from different tumor origins by MP[CAF] compared to control MP. MP[CAF] are distributed throughout the abdominal cavity without attachment to intestinal organs and without signs of inflammatory reaction. Intraperitoneal delivery of MP[CAF] and sequential removal redirects cancer cell adhesion from the surgical wound to the MP[CAF], delays peritoneal metastasis formation and prolongs animal survival. Our experiments suggest the use of a biomimetic trap based on tumor-environment interactions to delay peritoneal metastasis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Don, Manuel; Elberling, Claus; Maloff, Erin
2009-02-01
The Stacked ABR (auditory brainstem response) attempts at the output of the auditory periphery to compensate for the temporal dispersion of neural activation caused by the cochlear traveling wave in response to click stimulation. Compensation can also be made at the input by using a chirp stimulus. It has been demonstrated that the Stacked ABR is sensitive to small tumors that are often missed by standard ABR latency measures. Because a chirp stimulus requires only a single data acquisition run whereas the Stacked ABR requires six, we try to evaluate some indirect evidence justifying the use of a chirp for small tumor detection. We compared the sensitivity and specificity of different Stacked ABRs formed by aligning the derived-band ABRs according to (1) the individual's peak latencies, (2) the group mean latencies, and (3) the modeled latencies used to develop a chirp. For tumor detection with a chosen sensitivity of 95%, a relatively high specificity of 85% may be achieved with a chirp. It appears worthwhile to explore the actual use of a chirp because significantly shorter test and analysis times might be possible.
Pulmonary manifestations of Birt-Hogg-Dubé syndrome
Seyama, Kuniaki; McCormack, Francis X.
2015-01-01
Birt-Hogg-Dubé syndrome (BHD) is a rare, autosomal dominant disorder characterized by the development of hair follicle tumors, renal tumors and pulmonary cysts. BHD is caused by heterozygous, predominantly truncating mutations in the folliculin (FLCN) gene located on chromosome 17, which encodes a highly conserved tumor suppressor protein. Although management of renal tumors of low malignant potential is the primary focus of longitudinal care, pulmonary manifestations including cyst formation and spontaneous pneumothorax are among the most common manifestations in BHD. Due to the lack of awareness, there is commonly a delay in the pulmonary diagnosis of BHD and patients are frequently mislabeled as having chronic obstructive lung disease, emphysema or common bullae/blebs. A family history of pneumothorax is present in 35 % of patients with BHD. Certain imaging characteristics of the cysts, including size, basilar and peripheral predominance, perivascular and periseptal localization, and elliptical or lentiform shape can suggest the diagnosis of BHD based on inspection of the chest CT scan alone. Recurrent pneumothoraces are common and early pleurodesis is recommended. A better understanding of role of FLCN in pulmonary cyst formation and long term studies to define the natural history of the pulmonary manifestations of BHD are needed. PMID:23715758
... the ovaries A tumor in the pituitary gland Turner syndrome , a genetic disorder ... child's growth: The MAGIC Foundation -- www.magicfoundation.org Turner Syndrome Society of the United States -- www.turnersyndrome.org
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cristescu, Mircea, E-mail: mcristescu@uwhealth.org; Abel, E. Jason, E-mail: abel@urology.wisc.edu; Wells, Shane, E-mail: swells@uwhealth.org
PurposeTo evaluate the safety and efficacy of US-guided percutaneous microwave (MW) ablation in the treatment of renal angiomyolipoma (AML).Materials and MethodsFrom January 2011 to April 2014, seven patients (5 females and 2 males; mean age 51.4) with 11 renal AMLs (9 sporadic type and 2 tuberous sclerosis associated) with a mean size of 3.4 ± 0.7 cm (range 2.4–4.9 cm) were treated with high-powered, gas-cooled percutaneous MW ablation under US guidance. Tumoral diameter, volume, and CT/MR enhancement were measured on pre-treatment, immediate post-ablation, and delayed post-ablation imaging. Clinical symptoms and creatinine were assessed on follow-up visits.ResultsAll ablations were technically successful and no major complicationsmore » were encountered. Mean ablation parameters were ablation power of 65 W (range 60–70 W), using 456 mL of hydrodissection fluid per patient, over 4.7 min (range 3–8 min). Immediate post-ablation imaging demonstrated mean tumor diameter and volume decreases of 1.8 % (3.4–3.3 cm) and 1.7 % (27.5–26.3 cm{sup 3}), respectively. Delayed imaging follow-up obtained at a mean interval of 23.1 months (median 17.6; range 9–47) demonstrated mean tumor diameter and volume decreases of 29 % (3.4–2.4 cm) and 47 % (27.5–12.1 cm{sup 3}), respectively. Tumoral enhancement decreased on immediate post-procedure and delayed imaging by CT/MR parameters, indicating decreased tumor vascularity. No patients required additional intervention and no patients experienced spontaneous bleeding post-ablation.ConclusionOur early experience with high-powered, gas-cooled percutaneous MW ablation demonstrates it to be a safe and effective modality to devascularize and decrease the size of renal AMLs.« less
MUC1-specific cytotoxic T lymphocytes eradicate tumors when adoptively transferred in vivo.
Mukherjee, P; Ginardi, A R; Tinder, T L; Sterner, C J; Gendler, S J
2001-03-01
We have reported previously that MUC1 transgenic mice with spontaneous tumors of the pancreas (designated MET) naturally develop MHC class I-restricted, MUC1-specific CTLs as tumors progress (P. Mukherjee et al., J. Immunol., 165: 3451-3460, 2000). From these MET mice, we have isolated, expanded, and cloned naturally occurring MUC1-specific CTLs in vitro. In this report, we show that the CTL line is predominantly CD8+ T cells and expresses T-cell receptor Vbeta chains 5.1/5.2, 11, 13, and 2 and Valpha chains 2, 8.3, 3.2, and 11.1/11.2. These CTLs recognize several epitopes on the MUC1 tandem repeat with highest affinity to APGSTAPPA. The CTL clone, on the other hand, is 100% CD8+ cells and expresses a single Vbeta chain of 5.1/5.2 and Valpha2. It recognizes only the H-2Db class I-restricted epitope of MUC1, APGSTAPPA. When adoptively transferred, the CTLs were effective in eradicating MUC1-expressing injected tumor cells including mammary gland cells (C57mg) and B16 melanomas. These results suggest that MUC1-specific CTLs are capable of possibly preventing, or at least substantially delaying, MUC1-expressing tumor formation. To our knowledge, this is the first evidence that demonstrates that the naturally occurring MUC1-specific CTLs isolated from one tumor model has antitumor effects on other MUC1-expressing tumors in vivo. Therefore, our data confirm that MUC1 is an important tumor rejection antigen and can serve as a target for immunotherapy.
Schmuck, Sebastian; Mamach, Martin; Wilke, Florian; von Klot, Christoph A; Henkenberens, Christoph; Thackeray, James T; Sohns, Jan M; Geworski, Lilli; Ross, Tobias L; Wester, Hans-Juergen; Christiansen, Hans; Bengel, Frank M; Derlin, Thorsten
2017-06-01
The aims of this study were to gain mechanistic insights into prostate cancer biology using dynamic imaging and to evaluate the usefulness of multiple time-point Ga-prostate-specific membrane antigen (PSMA) I&T PET/CT for the assessment of primary prostate cancer before prostatectomy. Twenty patients with prostate cancer underwent Ga-PSMA I&T PET/CT before prostatectomy. The PET protocol consisted of early dynamic pelvic imaging, followed by static scans at 60 and 180 minutes postinjection (p.i.). SUVs, time-activity curves, quantitative analysis based on a 2-tissue compartment model, Patlak analysis, histopathology, and Gleason grading were compared between prostate cancer and benign prostate gland. Primary tumors were identified on both early dynamic and delayed imaging in 95% of patients. Tracer uptake was significantly higher in prostate cancer compared with benign prostate tissue at any time point (P ≤ 0.0003) and increased over time. Consequently, the tumor-to-nontumor ratio within the prostate gland improved over time (2.8 at 10 minutes vs 17.1 at 180 minutes p.i.). Tracer uptake at both 60 and 180 minutes p.i. was significantly higher in patients with higher Gleason scores (P < 0.01). The influx rate (Ki) was higher in prostate cancer than in reference prostate gland (0.055 [r = 0.998] vs 0.017 [r = 0.996]). Primary prostate cancer is readily identified on early dynamic and static delayed Ga-PSMA ligand PET images. The tumor-to-nontumor ratio in the prostate gland improves over time, supporting a role of delayed imaging for optimal visualization of prostate cancer.
Calvo, Alfonso; Yokoyama, Yumi; Smith, Lois E; Ali, Iqbal; Shih, Shu-Ching; Feldman, Andrew L; Libutti, Steven K; Sundaram, Ramakrishnan; Green, Jeffrey E
2002-09-20
Cancer therapies based on the inhibition of angiogenesis by endostatin have recently been developed. We demonstrate that a mutated form of human endostatin (P125A) can inhibit the angiogenic switch in the C3(1)/Tag mammary cancer model. P125A has a stronger growth-inhibitory effect on endothelial cell proliferation than wild-type endostatin. We characterize the angiogenic switch, which occurs during the transition from preinvasive lesions to invasive carcinoma in this model, and which is accompanied by a significant increase in total protein levels of vascular endothelial growth factor (VEGF) and an invasion of blood vessels. Expression of the VEGF(188) mRNA isoform, however, is suppressed in invasive carcinomas. The VEGF receptors fetal liver kinase-1 (Flk-1) and Fms-like tyrosine kinase-1 (Flt-1) become highly expressed in epithelial tumor and endothelial cells in the mammary carcinomas, suggesting a potential autocrine effect for VEGF on tumor cell growth. Angiopoietin-2 mRNA levels are also increased during tumor progression. CD-31 (platelet-endothelial cell adhesion molecule [PECAM]) staining revealed that blood vessels developed in tumors larger than 1 mm The administration of P125A human endostatin in C3(1)/Tag females resulted in a significant delay in tumor onset, decreased tumor multiplicity and tumor burden and prolonged survival of the animals. Endostatin treatment did not reduce the number of preinvasive lesions, proliferation rates or apoptotic index, compared with controls. However, mRNA levels of a variety of proangiogenic factors (VEGF, VEGF receptors Flk-1 and Flt-1, angiopoietin-2, Tie-1, cadherin-5 and PECAM) were significantly decreased in the endostatin-treated group compared with controls. These results demonstrate that P125A endostatin inhibits the angiogenic switch during mammary gland adenocarcinoma tumor progression in the C3(1)/Tag transgenic model. Copyright 2002 Wiley-Liss, Inc.
El Meskini, Rajaa; Iacovelli, Anthony J; Kulaga, Alan; Gumprecht, Michelle; Martin, Philip L; Baran, Maureen; Householder, Deborah B; Van Dyke, Terry; Weaver Ohler, Zoë
2015-01-01
Current therapies for glioblastoma multiforme (GBM), the highest grade malignant brain tumor, are mostly ineffective, and better preclinical model systems are needed to increase the successful translation of drug discovery efforts into the clinic. Previous work describes a genetically engineered mouse (GEM) model that contains perturbations in the most frequently dysregulated networks in GBM (driven by RB, KRAS and/or PI3K signaling and PTEN) that induce development of Grade IV astrocytoma with properties of the human disease. Here, we developed and characterized an orthotopic mouse model derived from the GEM that retains the features of the GEM model in an immunocompetent background; however, this model is also tractable and efficient for preclinical evaluation of candidate therapeutic regimens. Orthotopic brain tumors are highly proliferative, invasive and vascular, and express histology markers characteristic of human GBM. Primary tumor cells were examined for sensitivity to chemotherapeutics and targeted drugs. PI3K and MAPK pathway inhibitors, when used as single agents, inhibited cell proliferation but did not result in significant apoptosis. However, in combination, these inhibitors resulted in a substantial increase in cell death. Moreover, these findings translated into the in vivo orthotopic model: PI3K or MAPK inhibitor treatment regimens resulted in incomplete pathway suppression and feedback loops, whereas dual treatment delayed tumor growth through increased apoptosis and decreased tumor cell proliferation. Analysis of downstream pathway components revealed a cooperative effect on target downregulation. These concordant results, together with the morphologic similarities to the human GBM disease characteristics of the model, validate it as a new platform for the evaluation of GBM treatment. © 2015. Published by The Company of Biologists Ltd.
El Meskini, Rajaa; Iacovelli, Anthony J.; Kulaga, Alan; Gumprecht, Michelle; Martin, Philip L.; Baran, Maureen; Householder, Deborah B.; Van Dyke, Terry; Weaver Ohler, Zoë
2015-01-01
Current therapies for glioblastoma multiforme (GBM), the highest grade malignant brain tumor, are mostly ineffective, and better preclinical model systems are needed to increase the successful translation of drug discovery efforts into the clinic. Previous work describes a genetically engineered mouse (GEM) model that contains perturbations in the most frequently dysregulated networks in GBM (driven by RB, KRAS and/or PI3K signaling and PTEN) that induce development of Grade IV astrocytoma with properties of the human disease. Here, we developed and characterized an orthotopic mouse model derived from the GEM that retains the features of the GEM model in an immunocompetent background; however, this model is also tractable and efficient for preclinical evaluation of candidate therapeutic regimens. Orthotopic brain tumors are highly proliferative, invasive and vascular, and express histology markers characteristic of human GBM. Primary tumor cells were examined for sensitivity to chemotherapeutics and targeted drugs. PI3K and MAPK pathway inhibitors, when used as single agents, inhibited cell proliferation but did not result in significant apoptosis. However, in combination, these inhibitors resulted in a substantial increase in cell death. Moreover, these findings translated into the in vivo orthotopic model: PI3K or MAPK inhibitor treatment regimens resulted in incomplete pathway suppression and feedback loops, whereas dual treatment delayed tumor growth through increased apoptosis and decreased tumor cell proliferation. Analysis of downstream pathway components revealed a cooperative effect on target downregulation. These concordant results, together with the morphologic similarities to the human GBM disease characteristics of the model, validate it as a new platform for the evaluation of GBM treatment. PMID:25431423
Bhatnagar, Priyanka; Pant, Aditya B; Shukla, Yogeshwer; Chaudhari, Bhushan; Kumar, Pradeep; Gupta, Kailash C
2015-04-01
Conventional cancer chemotherapy leads to severe side effects, which limits its use. Nanoparticles (NPs) based delivery systems offer an effective alternative. Several evidences highlight the importance of Bromelain (BL), a proteolytic enzyme, as an anti-tumor agent which however has been limited due to the requirement of high doses at the tumor site. Therefore, we illustrate the development of BL loaded poly (lactic-co-glycolic acid) NPs that show enhanced anti-tumor effects compared to free BL. The formulated NPs with a mean particle size of 130.4 ± 8.81 nm exhibited sustained release of BL. Subsequent investigation revealed enhanced anti-tumor ability of NPs in 2-stage skin tumorigenesis mice model. Reduction in average number of tumors (∼ 2.3 folds), delay in tumorigenesis (∼ 2 weeks), percent tumorigenesis (∼ 4 folds), and percent mortality rate as well as a reduction in the average tumor volume (∼ 2.5 folds) in mice as compared to free BL were observed. The NPs were found to be superior in exerting chemopreventive effects over chemotherapeutic effects at 10 fold reduced dose than free BL, validated by the enhanced ability of NPs (∼ 1.8 folds) to protect the DNA from induced damage. The effects were also supported by histopathological evaluations. NPs were also capable of modulating the expression of pro-apoptotic (P53, Bax) and anti-apoptotic (Bcl2) proteins. Therefore, our findings demonstrate that developed NPs formulation could be used to improve the efficacy of chemotherapy by exerting chemo-preventive effects against induced carcinogenesis at lower dosages. Copyright © 2015 Elsevier B.V. All rights reserved.
Yu, Xiu-chun; Xu, Ming; Song, Ruo-xian; Fu, Zhi-hou; Liu, Xiao-ping
2010-08-01
To study the long-term outcomes and complications of giant cell tumors around the knee treated with en bloc resection and reconstruction with prosthesis. From January 1991 to March 2005, 19 patients (11 men, 8 women, average age 35.4 years) were treated in our hospital with en bloc resection and reconstruction with domestic prosthesis (15 hinge knee and 4 rotating-hinge knee). The distal femur was involved in 12 and the proximal tibia in 7 cases. Nine tumors were primary and 10 recurrent. All cases were Campanacci grade III. The affected limb functions were evaluated by the Musculoskeletal Tumor Society scoring system. All patients underwent operation successfully with no complications. The mean follow-up time was 128.9 months (60 to 216 months). Apart from one patient who underwent amputation because of wound infection two years after reoperation, the range of knee motion of 18 patients was 30°-110°. The mean functional score of the affected limb was 22.7 (15 to 27 points). The length of the lower extremities was equal in nine cases; the affected limb was 2-9 cm shorter in the other ten cases. Prosthesis fracture and loosening developed in one, prosthesis aseptic loosening in three, and delayed deep infection and prosthesis loosening in two cases. The prosthesis loosening rate was 31.6%. One patient developed a proximal femur fracture. En bloc resection and reconstruction with prosthesis is a feasible method for treating giant cell tumor of bone around the knee. Complications related to the prosthesis, mainly prosthesis loosening and limb shortening, increase gradually with longer survival time. © 2010 Tianjin Hospital and Blackwell Publishing Asia Pty Ltd.
Neale, Jeffrey A.
2011-01-01
Tumors that arise in the retrorectal (presacral) space are uncommon lesions that present with nonspecific signs and symptoms, which lead to difficult diagnoses. For complete evaluation of the lesion, cross-sectional imaging is required to determine the extent of resection and the appropriate surgical approach. Surgical removal leads to favorable outcomes for patients with benign purely cystic retrorectal tumors. Preoperative tissue diagnosis with transperineal and transsacral biopsies of solid or heterogeneous cystic lesions, are essential to determine the necessity of neoadjuvant therapy, which may decrease local recurrence after surgery and avoid an unnecessary delay in systemic therapy. PMID:22942797
Primary hyperparathyroidism associated with a giant cell tumor: One case in the distal radius.
Ouzaa, M R; Bennis, A; Iken, M; Abouzzahir, A; Boussouga, M; Jaafar, A
2015-10-01
Hyperparathyroidism can present itself as brown tumors (or osteolytic expansive lesions) that usually disappear after normalization of calcium and phosphate levels. It rarely occurs simultaneously with a giant cell tumor. The authors report one case of a localized form at the distal radius in a patient being followed for primary hyperparathyroidism. The diagnostic challenges related to the clinical and radiological similarities of these two pathological entities are discussed, as they can lead to delays in therapeutic management. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Targeting ornithine decarboxylase in Myc-induced lymphomagenesis prevents tumor formation.
Nilsson, Jonas A; Keller, Ulrich B; Baudino, Troy A; Yang, Chunying; Norton, Sara; Old, Jennifer A; Nilsson, Lisa M; Neale, Geoffrey; Kramer, Debora L; Porter, Carl W; Cleveland, John L
2005-05-01
Checkpoints that control Myc-mediated proliferation and apoptosis are bypassed during tumorigenesis. Genes encoding polyamine biosynthetic enzymes are overexpressed in B cells from E mu-Myc transgenic mice. Here, we report that disabling one of these Myc targets, Ornithine decarboxylase (Odc), abolishes Myc-induced suppression of the Cdk inhibitors p21(Cip1) and p27(Kip1), thereby impairing Myc's proliferative, but not apoptotic, response. Moreover, lymphoma development was markedly delayed in E mu-Myc;Odc(+/-) transgenic mice and in E mu-Myc mice treated with the Odc inhibitor difluoromethylornithine (DFMO). Strikingly, tumors ultimately arising in E mu-Myc;Odc(+/-) transgenics lacked deletions of Arf, suggesting that targeting Odc forces other routes of transformation. Therefore, Odc is a critical Myc transcription target that regulates checkpoints that guard against tumorigenesis and is an effective target for cancer chemoprevention.
Ferrari, Andrea; Lo Vullo, Salvatore; Giardiello, Daniele; Veneroni, Laura; Magni, Chiara; Clerici, Carlo Alfredo; Chiaravalli, Stefano; Casanova, Michela; Luksch, Roberto; Terenziani, Monica; Spreafico, Filippo; Meazza, Cristina; Catania, Serena; Schiavello, Elisabetta; Biassoni, Veronica; Podda, Marta; Bergamaschi, Luca; Puma, Nadia; Massimino, Maura; Mariani, Luigi
2016-03-01
The potential impact of diagnostic delays on patients' outcomes is a debated issue in pediatric oncology and discordant results have been published so far. We attempted to tackle this issue by analyzing a prospective series of 351 consecutive children and adolescents with solid malignancies using innovative statistical tools. To address the nonlinear complexity of the association between symptom interval and overall survival (OS), a regression tree algorithm was constructed with sequential binary splitting rules and used to identify homogeneous patient groups vis-à-vis functional relationship between diagnostic delay and OS. Three different groups were identified: group A, with localized disease and good prognosis (5-year OS 85.4%); group B, with locally or regionally advanced, or metastatic disease and intermediate prognosis (5-year OS 72.9%), including neuroblastoma, Wilms tumor, non-rhabdomyosarcoma soft tissue sarcoma, and germ cell tumor; and group C, with locally or regionally advanced, or metastatic disease and poor prognosis (5-year OS 45%), including brain tumors, rhabdomyosarcoma, and bone sarcoma. The functional relationship between symptom interval and mortality risk differed between the three subgroups, there being no association in group A (hazard ratio [HR]: 0.96), a positive linear association in group B (HR: 1.48), and a negative linear association in group C (HR: 0.61). Our analysis suggests that at least a subset of patients can benefit from an earlier diagnosis in terms of survival. For others, intrinsic aggressiveness may mask the potential effect of diagnostic delays. Based on these findings, early diagnosis should remain a goal for pediatric cancer patients. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sean S.; Chunta, John L.; Robertson, John M.
2011-07-01
Purpose: Glioblastoma multiforme (GBM) is an aggressive tumor that typically causes death due to local progression. To assess a novel low-dose radiotherapy regimen for treating GBM, we developed an orthotopic murine model of human GBM and evaluated in vivo treatment efficacy using micro-positron-emission tomography/computed tomography (microPET/CT) tumor imaging. Methods: Orthotopic GBM xenografts were established in nude mice and treated with standard 2-Gy fractionation or 10 0.2-Gy pulses with 3-min interpulse intervals, for 7 consecutive days, for a total dose of 14 Gy. Tumor growth was quantified weekly using the Flex Triumph (GE Healthcare/Gamma Medica-Ideas, Waukesha, WI) combined PET-single-photon emission CTmore » (SPECT)-CT imaging system and necropsy histopathology. Normal tissue damage was assessed by counting dead neural cells in tissue sections from irradiated fields. Results: Tumor engraftment efficiency for U87MG cells was 86%. Implanting 0.5 x 10{sup 6} cells produced a 50- to 70-mm{sup 3} tumor in 10 to 14 days. A significant correlation was seen between CT-derived tumor volume and histopathology-measured volume (p = 0.018). The low-dose 0.2-Gy pulsed regimen produced a significantly longer tumor growth delay than standard 2-Gy fractionation (p = 0.045). Less normal neuronal cell death was observed after the pulsed delivery method (p = 0.004). Conclusion: This study successfully demonstrated the feasibility of in vivo brain tumor imaging and longitudinal assessment of tumor growth and treatment response with microPET/CT. Pulsed radiation treatment was more efficacious than the standard fractionated treatment and was associated with less normal tissue damage.« less
Park, Sean S; Chunta, John L; Robertson, John M; Martinez, Alvaro A; Oliver Wong, Ching-Yee; Amin, Mitual; Wilson, George D; Marples, Brian
2011-07-01
Glioblastoma multiforme (GBM) is an aggressive tumor that typically causes death due to local progression. To assess a novel low-dose radiotherapy regimen for treating GBM, we developed an orthotopic murine model of human GBM and evaluated in vivo treatment efficacy using micro-positron-emission tomography/computed tomography (microPET/CT) tumor imaging. Orthotopic GBM xenografts were established in nude mice and treated with standard 2-Gy fractionation or 10 0.2-Gy pulses with 3-min interpulse intervals, for 7 consecutive days, for a total dose of 14 Gy. Tumor growth was quantified weekly using the Flex Triumph (GE Healthcare/Gamma Medica-Ideas, Waukesha, WI) combined PET-single-photon emission CT (SPECT)-CT imaging system and necropsy histopathology. Normal tissue damage was assessed by counting dead neural cells in tissue sections from irradiated fields. Tumor engraftment efficiency for U87MG cells was 86%. Implanting 0.5 × 10(6) cells produced a 50- to 70-mm(3) tumor in 10 to 14 days. A significant correlation was seen between CT-derived tumor volume and histopathology-measured volume (p = 0.018). The low-dose 0.2-Gy pulsed regimen produced a significantly longer tumor growth delay than standard 2-Gy fractionation (p = 0.045). Less normal neuronal cell death was observed after the pulsed delivery method (p = 0.004). This study successfully demonstrated the feasibility of in vivo brain tumor imaging and longitudinal assessment of tumor growth and treatment response with microPET/CT. Pulsed radiation treatment was more efficacious than the standard fractionated treatment and was associated with less normal tissue damage. Copyright © 2011 Elsevier Inc. All rights reserved.
Cancer-induced anorexia in tumor-bearing mice is dependent on cyclooxygenase-1.
Ruud, Johan; Nilsson, Anna; Engström Ruud, Linda; Wang, Wenhua; Nilsberth, Camilla; Iresjö, Britt-Marie; Lundholm, Kent; Engblom, David; Blomqvist, Anders
2013-03-01
It is well-established that prostaglandins (PGs) affect tumorigenesis, and evidence indicates that PGs also are important for the reduced food intake and body weight loss, the anorexia-cachexia syndrome, in malignant cancer. However, the identity of the PGs and the PG producing cyclooxygenase (COX) species responsible for cancer anorexia-cachexia is unknown. Here, we addressed this issue by transplanting mice with a tumor that elicits anorexia. Meal pattern analysis revealed that the anorexia in the tumor-bearing mice was due to decreased meal frequency. Treatment with a non-selective COX inhibitor attenuated the anorexia, and also tumor growth. When given at manifest anorexia, non-selective COX-inhibitors restored appetite and prevented body weight loss without affecting tumor size. Despite COX-2 induction in the cerebral blood vessels of tumor-bearing mice, a selective COX-2 inhibitor had no effect on the anorexia, whereas selective COX-1 inhibition delayed its onset. Tumor growth was associated with robust increase of PGE(2) levels in plasma - a response blocked both by non-selective COX-inhibition and by selective COX-1 inhibition, but not by COX-2 inhibition. However, there was no increase in PGE(2)-levels in the cerebrospinal fluid. Neutralization of plasma PGE(2) with specific antibodies did not ameliorate the anorexia, and genetic deletion of microsomal PGE synthase-1 (mPGES-1) affected neither anorexia nor tumor growth. Furthermore, tumor-bearing mice lacking EP(4) receptors selectively in the nervous system developed anorexia. These observations suggest that COX-enzymes, most likely COX-1, are involved in cancer-elicited anorexia and weight loss, but that these phenomena occur independently of host mPGES-1, PGE(2) and neuronal EP(4) signaling. Copyright © 2013 Elsevier Inc. All rights reserved.
Tan, Yan; Xiao, En-hua
2012-10-01
To evaluate the dynamic CT, MRI, ultrasonography, and pathologic features of hepatic perivascular epithelioid cell tumor (PEComa), improving the understanding and diagnosis of the tumor. A retrospective analysis of CT, MRI, ultrasonography, and pathologic features of 7 hepatic PEComas diagnosed by pathology during 1st January 2005 to 1st September 2011 in our hospital. The performance of dynamic CT, MRI, and ultrasonography revealed that lesions were regular masses with well-defined borders, the maximum diameters were 2.5-8.5 cm (mean = 4 cm), density was homogeneous, contrast-enhanced CT and MRI showed the lesions were significantly and heterogeneously enhanced on arterial phase, less enhanced on portal venous phase, and slightly hypodense on delayed phase. One patient had multiple hepatic lesions and had delayed enhancement. There were no backgrounds of hepatitis and cirrhosis, enlarged lymph nodes, or distant metastases. Pathology showed the gross appearance of the tumor was smooth. Tumor cells were round or polygonal, with clear boundaries and clear membranes, and had abundant translucent cytoplasm. Nuclei were round, with medium size. Tumor cells were epithelial-like cells and arranged in dense sheets. Immunohistochemistry showed that most of them were positive in HMB45 and MelanA, S-100, SMA, while negative in CgA, Syn, CK, CD117, CD10, and CD34. Dynamic CT, MRI, ultrasonography, and pathology of PEComa had some characteristics of benign tumor's performance. Enhanced scan showed PEComa quickly enhanced on arterial phase and enhanced less on portal venous phase. Knowing these characteristics could help to improve the understanding and diagnosis of hepatic PEComa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, David Y.; Chunta, John L.; Park, Sean S.
Purpose: To evaluate the efficacy of pulsed low-dose radiation therapy (PLRT) combined with temozolomide (TMZ) as a novel treatment approach for radioresistant glioblastoma multiforme (GBM) in a murine model. Methods and Materials: Orthotopic U87MG hGBM tumors were established in Nu-Foxn1{sup nu} mice and imaged weekly using a small-animal micropositron emission tomography (PET)/computed tomography (CT) system. Tumor volume was determined from contrast-enhanced microCT images and tumor metabolic activity (SUVmax) from the F18-FDG microPET scan. Tumors were irradiated 7 to 10 days after implantation with a total dose of 14 Gy in 7 consecutive days. The daily treatment was given as amore » single continuous 2-Gy dose (RT) or 10 pulses of 0.2 Gy using an interpulse interval of 3 minutes (PLRT). TMZ (10 mg/kg) was given daily by oral gavage 1 hour before RT. Tumor vascularity and normal brain damage were assessed by immunohistochemistry. Results: Radiation therapy with TMZ resulted in a significant 3- to 4-week tumor growth delay compared with controls, with PLRT+TMZ the most effective. PLRT+TMZ resulted in a larger decline in SUVmax than RT+TMZ. Significant differences in survival were evident. Treatment after PLRT+TMZ was associated with increased vascularization compared with RT+TMZ. Significantly fewer degenerating neurons were seen in normal brain after PLRT+TMZ compared with RT+TMZ. Conclusions: PLRT+TMZ produced superior tumor growth delay and less normal brain damage when compared with RT+TMZ. The differential effect of PLRT on vascularization may confirm new treatment avenues for GBM.« less
Zhang, Lei; Shamaladevi, Nagarajarao; Jayaprakasha, Guddadarangavvanahally K.; Patil, Bhimu S.; Lokeshwar, Bal L.
2015-01-01
Bioactive compounds from edible plants have limited efficacy in treating advanced cancers, but they have potential to increase the efficacy of chemotherapy drugs in a combined treatment. An aqueous extract of berries of Pimenta dioica (Allspice) shows promise as one such candidate for combination therapy or chemoprevention. An aqueous extract of Allspice (AAE) was tested against human breast cancer (BrCa) cells in vitro and in vivo. AAE reduced the viability and clonogenic growth of several types of BrCa cells (IC50 ≤ 100 μg/ml) with limited toxicity in non-tumorigenic, quiescent cells (IC50 >200 μg/ml). AAE induced cytotoxicity in BrCa was inconsistent with apoptosis, but was associated with increased levels of autophagy markers LC3B and LC3B-positive puncta. Silencing the expression of autophagy related genes (ATGs) prevented AAE-induced cell death. Further, AAE caused inhibition of Akt/mTOR signaling, and showed enhanced cytotoxicity when combined with rapamycin, a chemotherapy drug and an inhibitor of mTOR signaling. Oral administration (gavage) of AAE into athymic mice implanted with MDA-MB231 tumors inhibited tumor growth slightly but not significantly (mean decrease ~ 14%, p ≥ 0.20) if mice were gavaged post-tumor implant. Tumor growth showed a significant delay (38%) in tumor palpability and growth rate (time to reach tumor volume ≥ 1,000 mm3) when mice were pre-dosed with AAE for two weeks. Analysis of tumor tissues showed increased levels of LC3B in AAE treated tumors, indicating elevated autophagic tumor cell death in vivo in treated mice. These results demonstrate antitumor and chemo-preventive activity of AAE against BrCa and potential for adjuvant to mTOR inhibition. PMID:25945840
Hyodo, Ryota; Suzuki, Kojiro; Ogawa, Hiroshi; Komada, Tomohiro; Naganawa, Shinji
2015-11-01
To evaluate dynamic contrast-enhanced computed tomography (CT) features of pancreatic neuroendocrine tumors (PNETs) containing areas of iso- or hypoattenuation and the relationship with pathological grading. Between June 2006 and March 2014, 61 PNETs in 58 consecutive patients (29 male, 29 female; median-age 55 years), which were surgically diagnosed, underwent preoperative dynamic contrast-enhanced CT. PNETs were classified based on contrast enhancement patterns in the pancreatic phase: iso/hypo-PNETs were defined as tumors containing areas of iso- or hypoattenuation except for cystic components, and hyper-PNETs were tumors showing hyperattenuation over the whole area. CT findings and contrast-enhancement patterns of the tumors were evaluated retrospectively by two radiologists and compared with the pathological grading. Iso/hypo-PNETs comprised 26 tumors, and hyper-PNETs comprised 35 tumors. Not only hyper-PNETs but also most iso/hypo-PNETs showed peak enhancement in the pancreatic phase and a washout from the portal venous phase to the delayed phase. Iso/hypo-PNETs showed larger tumor size than the hyper-PNETs (mean, 3.7 cm vs. 1.6 cm; P<0.001), and were significantly correlated with unclear tumor margins (n=4 vs. n=0; P=0.029), the existence of cystic components (n=10 vs. n=3; P=0.006), intratumoral blood vessels in the early arterial phase (n=13 vs. n=3; P<0.001), and a smooth rim enhancement in the delayed phase (n=12 vs. n=6; P=0.019). Iso/hypo-PNETs also showed significantly higher pathological grading (WHO 2010 classification; iso/hypo, G1=14, G2=11, G3=1; hyper, G1=34, G2=1; P<0.001). PNETs containing iso/hypo-areas showed a rapid enhancement pattern as well as hyper-PNETs, various radiological features and higher malignant potential. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Riabov, V.; Tretyakova, I.; Alexander, R. B.; Pushko, P.; Klyushnenkova, E. N.
2015-01-01
The goal of this study was to determine if an alphavirus-based vaccine encoding human Prostate-Specific Antigen (PSA) could generate an effective anti-tumor immune response in a stringent mouse model of prostate cancer. DR2bxPSA F1 male mice expressing human PSA and HLA-DRB1*1501 transgenes were vaccinated with virus-like particle vector encoding PSA (VLPV-PSA) followed by the challenge with Transgenic Adenocarcinoma of Mouse Prostate cells engineered to express PSA (TRAMP-PSA). PSA-specific cellular and humoral immune responses were measured before and after tumor challenge. PSA and CD8 reactivity in the tumors was detected by immunohistochemistry. Tumor growth was compared in vaccinated and control groups. We found that VLPV-PSA could infect mouse dendritic cells in vitro and induce a robust PSA-specific immune response in vivo. A substantial proportion of splenic CD8+ T cells (19.6±7.4%) produced IFNγ in response to the immunodominant peptide PSA65–73. In the blood of vaccinated mice, 18.4±4.1% of CD8+ T cells were PSA-specific as determined by the staining with H-2Db/PSA65–73 dextramers. VLPV-PSA vaccination also strongly stimulated production of IgG2a/b anti-PSA antibodies. Tumors in vaccinated mice showed low levels of PSA expression and significant CD8 T cell infiltration. Tumor growth in VLPV-PSA vaccinated mice was significantly delayed at early time points (p=0.002, Gehan-Breslow test). Our data suggest that TC-83-based VLPV-PSA vaccine can efficiently overcome immune tolerance to PSA, mediate rapid clearance of PSA-expressing tumor cells and delay tumor growth. The VLPV-PSA vaccine will undergo further testing for the immunotherapy of prostate cancer. PMID:26319744
Ito, Fumito; Ku, Amy W; Bucsek, Mark J; Muhitch, Jason B; Vardam-Kaur, Trupti; Kim, Minhyung; Fisher, Daniel T; Camoriano, Marta; Khoury, Thaer; Skitzki, Joseph J; Gollnick, Sandra O; Evans, Sharon S
2015-01-01
While surgical resection is a cornerstone of cancer treatment, local and distant recurrences continue to adversely affect outcome in a significant proportion of patients. Evidence that an alternative debulking strategy involving radiofrequency ablation (RFA) induces antitumor immunity prompted the current investigation of the efficacy of performing RFA prior to surgical resection (pre-resectional RFA) in a preclinical mouse model. Therapeutic efficacy and systemic immune responses were assessed following pre-resectional RFA treatment of murine CT26 colon adenocarcinoma. Treatment with pre-resectional RFA significantly delayed tumor growth and improved overall survival compared to sham surgery, RFA, or resection alone. Mice in the pre-resectional RFA group that achieved a complete response demonstrated durable antitumor immunity upon tumor re-challenge. Failure to achieve a therapeutic benefit in immunodeficient mice confirmed that tumor control by pre-resectional RFA depends on an intact adaptive immune response rather than changes in physical parameters that make ablated tumors more amenable to a complete surgical excision. RFA causes a marked increase in intratumoral CD8+ T lymphocyte infiltration, thus substantially enhancing the ratio of CD8+ effector T cells: FoxP3+ regulatory T cells. Importantly, pre-resectional RFA significantly increases the number of antigen-specific CD8+ T cells within the tumor microenvironment and tumor-draining lymph node but had no impact on infiltration by myeloid-derived suppressor cells, M1 macrophages or M2 macrophages at tumor sites or in peripheral lymphoid organs (i.e., spleen). Finally, pre-resectional RFA of primary tumors delayed growth of distant tumors through a mechanism that depends on systemic CD8+ T cell-mediated antitumor immunity. Improved survival and antitumor systemic immunity elicited by pre-resectional RFA support the translational potential of this neoadjuvant treatment for cancer patients with high-risk of local and systemic recurrence.
Karsy, Michael; Patel, Daxa M; Bollo, Robert J
2018-05-01
Magnetic resonance imaging-guided stereotactic laser ablation of intracranial targets, including brain tumors, has expanded dramatically over the past decade, but there have been few reports of complications, especially those occurring in a delayed fashion. Laser ablation of subependymal giant cell astrocytomas (SEGAs) is an attractive alternative to maintenance immunotherapy in some children with tuberous sclerosis complex (TSC); however, the effect of treatment on disease progression and the nature and frequency of potential complications remains largely unknown. The authors report the case of a 5-year-old boy with TSC who underwent stereotactic laser ablation of a SEGA at the right foramen of Monro on 2 separate occasions. After the second ablation, immediate posttreatment MRI revealed gadolinium extravasation from the tumor into the lateral ventricle. Nine months later, the patient presented with papilledema and delayed obstructive hydrocephalus secondary to intraventricular adhesions causing a trapped right lateral ventricle. This was successfully treated with endoscopic septostomy. The authors discuss the potential cause and clinical management of a delayed complication not previously reported after a relatively novel surgical therapy.
Maugeri, Rosario; Giugno, Antonella; Graziano, Francesca; Visocchi, Massimiliano; Giller, Cole; Iacopino, Domenico Gerardo
2016-01-01
To demonstrate that the diagnosis of an intracranial subdural hematoma should be considered for patients presenting with acute or delayed symptoms of intracranial pathology following resection of a spinal tumor. We present a case of a 57-year-old woman found to have a chronic subdural hematoma 1 month following resection of a thoracic extramedullary ependymoma. Evacuation of the hematoma through a burr hole relieved the presenting symptoms and signs. Resolution of the hematoma was confirmed with a computed tomography (CT) scan. Headache and other symptoms not referable to spinal pathology should be regarded as a warning sign of an intracranial subdural hematoma, and a CT scan of the head should be obtained. The mechanism of the development of the hematoma may be related to the leakage of cerebrospinal fluid with subsequent intracranial hypotension leading to an expanding subdural space and hemorrhage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lelieveld, P.; Scoles, M.A.; Brown, J.M.
1985-01-01
RIF-1 tumors, implanted syngeneically in the gastrocnemius muscles of the right hind legs of C3H/Km mice, were treated either with X ray alone, drug alone, or drug and X ray combined. The drugs tested were bleomycin, BCNU, cis-diamminedichloro platinum, adriamycin, cyclophosphamide, and actinomycin-D. All drugs were administered either in the maximum tolerated dose or a dose that causes minimal tumor growth delay. Both drugs and X rays were administered either as a single dose or in five daily fractions. In addition to the single modality controls, seven different schedules of combined modalities were tested. Tumors were measured periodically after treatmentmore » in order that the day at which each tumor reached 4 times its initial cross-sectional area, i.e., its size at the time of treatment, could be determined. The effect of treatment on tumors was based upon excess growth delay (GD), i.e., T400% (treated)-T400% (untreated control). Treatment effects for the same combined modality schedules were also determined for normal skin, using the early skin reaction as an endpoint. Dose effect factors (DEF) were computed for all combined modality schedules and were based upon calculated radiation dose equivalents. We also calculated supra-additivity ratios, SR/sub I/ and SR/sub II/, therapeutic gain factors and adjusted therapeutic gain factors. The only drugs to produce significant supra-additivity with X rays were cis-Pt and cyclo.« less
Koonce, Nathan A; Quick, Charles M; Hardee, Matthew E; Jamshidi-Parsian, Azemat; Dent, Judith A; Paciotti, Giulio F; Nedosekin, Dmitry; Dings, Ruud P M; Griffin, Robert J
2015-11-01
Although remarkable preclinical antitumor effects have been shown for tumor necrosis factor-α (TNF) alone and combined with radiation, its clinical use has been hindered by systemic dose-limiting toxicities. We investigated the physiological and antitumor effects of radiation therapy combined with the novel nanomedicine CYT-6091, a 27-nm average-diameter polyethylene glycol-TNF-coated gold nanoparticle, which recently passed through phase 1 trials. The physiologic and antitumor effects of single and fractionated radiation combined with CYT-6091 were studied in the murine 4T1 breast carcinoma and SCCVII head and neck tumor squamous cell carcinoma models. In the 4T1 murine breast tumor model, we observed a significant reduction in the tumor interstitial fluid pressure (IFP) 24 hours after CYT-6091 alone and combined with a radiation dose of 12 Gy (P<.05 vs control). In contrast, radiation alone (12 Gy) had a negligible effect on the IFP. In the SCCVII head and neck tumor model, the baseline IFP was not markedly elevated, and little additional change occurred in the IFP after single-dose radiation or combined therapy (P>.05 vs control) despite extensive vascular damage observed. The IFP reduction in the 4T1 model was also associated with marked vascular damage and extravasation of red blood cells into the tumor interstitium. A sustained reduction in tumor cell density was observed in the combined therapy group compared with all other groups (P<.05). Finally, we observed a more than twofold delay in tumor growth when CYT-6091 was combined with a single 20-Gy radiation dose-notably, irrespective of the treatment sequence. Moreover, when hypofractionated radiation (12 Gy × 3) was applied with CYT-6091 treatment, a more than five-fold growth delay was observed in the combined treatment group of both tumor models and determined to be synergistic. Our results have demonstrated that TNF-labeled gold nanoparticles combined with single or fractionated high-dose radiation therapy is effective in reducing IFP and tumor growth and shows promise for clinical translation. Copyright © 2015 Elsevier Inc. All rights reserved.
Walker, Eric; Brian, Pam; Longo, Victor; Fox, Edward J; Frauenhoffer, Elizabeth E; Murphey, Mark
2013-07-01
This article discusses the most common diagnostic dilemmas when trying to distinguish between tumor and sports injury or other trauma. Bone tumors frequently occur in the same young active patients who experience sports injuries. If the pain persists longer than expected, imaging studies should be obtained to prevent a delay in diagnosis or an inappropriate arthroscopy. A history of spontaneous fracture or a fracture after minor trauma should raise suspicion for underlying lesion as the cause. Occasionally necrosis and/or hemorrhage within a soft tissue sarcoma is so extensive that only a small cuff of viable tumor tissue is present. Copyright © 2013 Elsevier Inc. All rights reserved.
Finocchiaro, Liliana M E; Villaverde, Marcela S; Gil-Cardeza, María L; Riveros, María D; Glikin, Gerardo C
2011-10-01
Eleven soft tissue- and five osteosarcoma canine patients were subjected to: (i) periodic subcutaneous injection of irradiated xenogeneic cells secreting hGM-CSF and hIL-2 mixed with allogeneic or autologous tumor homogenates; and (ii) injections of cIFN-β and HSVtk-carrying lipoplexes and ganciclovir, marginal (after surgery) and/or intratumoral (in the case of partial tumor resection, local relapse or small surface tumors). This treatment alone (4 patients) or as surgery adjuvant (12 patients), was safe and well tolerated. In those patients presenting local disease (6/11), the suicide gene plus cIFN-β treatment induced local antitumor activity evidenced by the objective responses (3 complete, 2 partial) and stable diseases (2). In addition, the treatment prevented or delayed local relapse, regional metastases (lymph nodes developed only in 3/16) and distant metastases (0/16), suggesting a strong systemic antitumor immunity. The most encouraging result was the long survival times of 10 patients (>1 year, with good quality of life). Copyright © 2011 Elsevier Ltd. All rights reserved.
Role of human and mouse HspB1 in metastasis.
Nagaraja, G M; Kaur, P; Asea, A
2012-11-01
Heat shock proteins (HSP) are a group of physiologically-essential, highly-conserved proteins that are induced by heat shock, as well as by other environmental and pathophysiological stressors. The twentyseven kDa heat shock protein (Hsp27; HspB1) is highly expressed in tumor tissues of patients diagnosed with cancer and expression levels correlate with poor prognosis. HspB1 plays a dual role in cancer and promotes both cancer development by suppressing host anti-cancer response, such as apoptosis and senescence, and facilitates the enhanced expression of metastastic genes. HspB1-mediated protection from tumor cell apoptosis induced by chemotherapeutic drugs occurs through several mechanisms, including decreased production of reactive oxygen species, restoration of protein homeostasis and promotion of cell survival by protein folding, stabilization of actin-cytoskeleton, delayed release of cytochrome c from mitochondria and inhibition of activation of caspase-3. High levels of HSP expression affect tumor susceptibility to adjuvant cancer treatments, including chemotherapy, hyperthermia, and radiation. This review highlights the most recent findings and role of HspB1 in metastasis.
Management of craniofacial chondroid tumors.
Cherekaev, Vasily A; Golbin, Denis A; Gasparyan, Tigran G; Shishkina, Lyudmila V; Tsukanova, Tatiana V
2015-01-01
Craniofacial chondroid tumors (CFCTs) constitute less than 1% of all intracranial mass lesions. No protocol for evaluation and management of CFCTs is developed at the moment. We analyzed 51 patients with CFCTs operated on in Burdenko Neurosurgical Institute from 1980 until 2012, which included chondroma (15), chondroblastoma (3), chondromyxoid fibroma (11), and chondrosarcoma (22). Age varied from 2 to 76 years (mean, 40 y); the series included 23 women and 28 men. All tumors were divided into 4 groups: midline unilateral (8),midline bilateral (21), anterolateral (19), and lateral (3). This division was based on differences in surgical approaches (P = 0.009). All patients underwent surgical treatment. Complete removal was achieved in 20; subtotal, in 21; and partial, in 10. Two patients died, and early complications were observed in 10 cases. Early outcomes correlated with the benign nature of the tumors (P = 0.002). Follow-up data were available in 22 patients. Fifteen of 51 patients were reoperated on because of recurrence (a total of 43 reoperations were performed). The mean recurrence-free period was 45 months. In 3 patients, the tumor metastasized, and malignant transformation was observed in 3 cases. Sixteen patients received postoperative radiation therapy. Delayed sequelae occurred in 5 observations, and 5 patients died during long-term follow-up. Three-year survival in benign and malignant tumors was 87.5% and 55.6%, respectively, and 5-year survival was 83.3% and 40.0%, respectively. Surgical resection is the mainstay in treatment of both benign and malignant craniofacial tumors, and adjuvant radiation therapy is mandatory in malignant lesions; however, it should be avoided in benign lesions.
Optimal Design for Informative Protocols in Xenograft Tumor Growth Inhibition Experiments in Mice.
Lestini, Giulia; Mentré, France; Magni, Paolo
2016-09-01
Tumor growth inhibition (TGI) models are increasingly used during preclinical drug development in oncology for the in vivo evaluation of antitumor effect. Tumor sizes are measured in xenografted mice, often only during and shortly after treatment, thus preventing correct identification of some TGI model parameters. Our aims were (i) to evaluate the importance of including measurements during tumor regrowth and (ii) to investigate the proportions of mice included in each arm. For these purposes, optimal design theory based on the Fisher information matrix implemented in PFIM4.0 was applied. Published xenograft experiments, involving different drugs, schedules, and cell lines, were used to help optimize experimental settings and parameters using the Simeoni TGI model. For each experiment, a two-arm design, i.e., control versus treatment, was optimized with or without the constraint of not sampling during tumor regrowth, i.e., "short" and "long" studies, respectively. In long studies, measurements could be taken up to 6 g of tumor weight, whereas in short studies the experiment was stopped 3 days after the end of treatment. Predicted relative standard errors were smaller in long studies than in corresponding short studies. Some optimal measurement times were located in the regrowth phase, highlighting the importance of continuing the experiment after the end of treatment. In the four-arm designs, the results showed that the proportions of control and treated mice can differ. To conclude, making measurements during tumor regrowth should become a general rule for informative preclinical studies in oncology, especially when a delayed drug effect is suspected.
Optimal design for informative protocols in xenograft tumor growth inhibition experiments in mice
Lestini, Giulia; Mentré, France; Magni, Paolo
2016-01-01
Tumor growth inhibition (TGI) models are increasingly used during preclinical drug development in oncology for the in vivo evaluation of antitumor effect. Tumor sizes are measured in xenografted mice, often only during and shortly after treatment, thus preventing correct identification of some TGI model parameters. Our aims were i) to evaluate the importance of including measurements during tumor regrowth; ii) to investigate the proportions of mice included in each arm. For these purposes, optimal design theory based on the Fisher information matrix implemented in PFIM4.0 was applied. Published xenograft experiments, involving different drugs, schedules and cell lines, were used to help optimize experimental settings and parameters using the Simeoni TGI model. For each experiment, a two-arm design, i.e. control vs treatment, was optimized with or without the constraint of not sampling during tumor regrowth, i.e. “short” and “long” studies, respectively. In long studies, measurements could be taken up to 6 grams of tumor weight, whereas in short studies the experiment was stopped three days after the end of treatment. Predicted relative standard errors were smaller in long studies than in corresponding short studies. Some optimal measurement times were located in the regrowth phase, highlighting the importance of continuing the experiment after the end of treatment. In the four-arm designs, the results showed that the proportions of control and treated mice can differ. To conclude, making measurements during tumor regrowth should become a general rule for informative preclinical studies in oncology, especially when a delayed drug effect is suspected. PMID:27306546
Kim, K D; Kim, J K; Kim, S J; Choe, I S; Chung, T H; Choe, Y K; Lim, J S
1999-08-01
Dendritic cells (DCs) are potent professional antigen-presenting cells (APC) capable of inducing the primary T cell response to antigen. Although tumor cells express target antigens, they are incapable of stimulating a tumor-specific immune response due to a defect in the costimulatory signal that is required for optimal activation of T cells. In this work, we describe a new approach using tumor-DC coculture to improve the antigen presenting capacity of tumor cells, which does not require a source of tumor-associated antigen. Immunization of a weakly immunogenic and progressive tumor cocultured with bone marrow-derived DCs generated an effective tumor vaccine. Immunization with the cocultured DCs was able to induce complete protective immunity against tumor challenges and was effective for the induction of tumor-specific CTL (cytotoxic T lymphocyte) activity. Furthermore, high NK cell activity was observed in mice in which tumors were rejected. In addition, immunization with tumor-pulsed DCs induced delayed tumor growth, but not tumor eradication in tumor-bearing mice. Our results demonstrate that coculture of DCs with tumors generated antitumor immunity due to the NK cell activation as well as tumor-specific T cell. This approach would be useful for designing tumor vaccines using DCs when the information about tumor antigens is limited.
[Disorders of endocrine function after brain tumor therapy in childhood].
Marx, M; Langer, T; Beck, J D; Dörr, H G
1999-07-01
Advances in the therapy of malignant brain tumors in children have led to a significant improvement in survival rates over the last few decades. As a result, the recognition and treatment of late effects have become more important. In addition to secondary tumors and deficiencies in cognitive and intellectual skills, the resulting endocrine disturbances play an important role. Own data and literature review. Deviations from the normal growth hormone secretion are usually recognized first and are most common, and have already been observed after conventional whole brain irradiation with 18 Gy. With some delay, other hypothalamo-pituitary deficiencies may occur, including panhypopituitarism. Puberty may come too early or too late or may not appear at all. Girls in particular, frequently experience an early and rapid pubertal development after brain tumor therapy, which may lead to further reduction in height due to an accelerated bone maturation. Functional disturbances of the thyroid and adrenal glands due to hypothalamic or pituitary deficiency are less common, and usually seen only after a radiation dose of over 40 Gy. Survivors of childhood brain tumors must be considered as long-term survivors, in whom the first therapy-induced long-term side effects appear almost immediately after the end of therapy. Maximum quality of life for the individual patient can only be achieved by long-term care and close cooperation of specialists in the different medical disciplines involved.
Optic nerve pilomyxoid astrocytoma in a patient with Noonan syndrome.
Nair, Sushmita; Fort, John A; Yachnis, Anthony T; Williams, Charles A
2015-06-01
Noonan syndrome (NS; MIM 163950) is an autosomal dominant syndrome which is clinically diagnosed by the distinct facial features, short stature, cardiac anomalies and developmental delay. About 50% of cases are associated with gain of function mutations in PTPN11 gene which leads to activation of the RAS/mitogen-activated protein kinase signaling pathway. This is known to have a role in tumorigenesis. Despite this, only limited reports of solid tumors (Fryssira H, Leventopoulos G, Psoni S, et al. Tumor development in three patients with Noonan syndrome. Eur J Pediatr 2008;167:1025-1031; Schuettpelz LG, McDonald S, Whitesell K et al. Pilocytic astrocytoma in a child with Noonan syndrome. Pediatr Blood Cancer 2009;53:1147-1149; Sherman CB, Ali-Nazir A, Gonzales-Gomez I, et al. Primary mixed glioneuronal tumor of the central nervous system in a patient with Noonan syndrome. J Pediatr Hematol Oncol 2009;31:61-64; Sanford RA, Bowman R, Tomita T, et al. A 16 year old male with Noonan's syndrome develops progressive scoliosis and deteriorating gait. Pediatr Neurosurg 1999;30:47-52) and no prior reports of optic gliomas have been described in patients with NS. We present here a patient with NS with a PTPN11 mutation and an optic pathway pilomyxoid astrocytoma. © 2015 Wiley Periodicals, Inc.
Wada, M; Canals, D; Adada, M; Coant, N; Salama, M F; Helke, K L; Arthur, J S; Shroyer, K R; Kitatani, K; Obeid, L M; Hannun, Y A
2017-11-23
The protein p38 mitogen-activated protein kinase (MAPK) delta isoform (p38δ) is a poorly studied member of the MAPK family. Data analysis from The Cancer Genome Atlas database revealed that p38δ is highly expressed in all types of human breast cancers. Using a human breast cancer tissue array, we confirmed elevation in cancer tissue. The breast cancer mouse model, MMTV-PyMT (PyMT), developed breast tumors with lung metastasis; however, mice deleted in p38δ (PyMT/p38δ -/- ) exhibited delayed primary tumor formation and highly reduced lung metastatic burden. At the cellular level, we demonstrate that targeting of p38δ in breast cancer cells, MCF-7 and MDA-MB-231 resulted in a reduced rate of cell proliferation. In addition, cells lacking p38δ also displayed an increased cell-matrix adhesion and reduced cell detachment. This effect on cell adhesion was molecularly supported by the regulation of the focal adhesion kinase by p38δ in the human breast cell lines. These studies define a previously unappreciated role for p38δ in breast cancer development and evolution by regulating tumor growth and altering metastatic properties. This study proposes MAPK p38δ protein as a key factor in breast cancer. Lack of p38δ resulted in reduced primary tumor size and blocked the metastatic potential to the lungs.
MDR1A deficiency restrains tumor growth in murine colitis-associated carcinogenesis
Hennenberg, Eva Maria; Eyking, Annette; Reis, Henning
2017-01-01
Patients with Ulcerative Colitis (UC) have an increased risk to develop colitis-associated colorectal cancer (CAC). Here, we found that protein expression of ABCB1 (ATP Binding Cassette Subfamily B Member 1) / MDR1 (multidrug resistance 1) was diminished in the intestinal mucosa of patients with active UC with or without CAC, but not in non-UC patients with sporadic colon cancer. We investigated the consequences of ABCB1/MDR1 loss-of-function in a common murine model for CAC (AOM/DSS). Mice deficient in MDR1A (MDR1A KO) showed enhanced intratumoral inflammation and cellular damage, which were associated with reduced colonic tumor size and decreased degree of dysplasia, when compared to wild-type (WT). Increased cell injury correlated with reduced capacity for growth of MDR1A KO tumor spheroids cultured ex-vivo. Gene expression analysis by microarray demonstrated that MDR1A deficiency shaped the inflammatory response towards an anti-tumorigenic microenvironment by downregulating genes known to be important mediators of cancer progression (PTGS2 (COX2), EREG, IL-11). MDR1A KO tumors showed increased gene expression of TNFSF10 (TRAIL), a known inducer of cancer cell death, and CCL12, a strong trigger of B cell chemotaxis. Abundant B220+ B lymphocyte infiltrates with interspersed CD138+ plasma cells were recruited to the MDR1A KO tumor microenvironment, concomitant with high levels of immunoglobulin light chain genes. In contrast, MDR1A deficiency in RAG2 KO mice that lack both B and T cells aggravated colonic tumor progression. MDR1A KO CD19+ B cells, but not WT CD19+ B cells, suppressed growth of colonic tumor-derived spheroids from AOM/DSS-WT mice in an ex-vivo co-culture system, implying that B-cell regulated immune responses contributed to delayed tumor development in MDR1A deficiency. In conclusion, we provide first evidence that loss of ABCB1/MDR1 function may represent an essential tumor-suppressive host defense mechanism in CAC. PMID:28686677
MDR1A deficiency restrains tumor growth in murine colitis-associated carcinogenesis.
Hennenberg, Eva Maria; Eyking, Annette; Reis, Henning; Cario, Elke
2017-01-01
Patients with Ulcerative Colitis (UC) have an increased risk to develop colitis-associated colorectal cancer (CAC). Here, we found that protein expression of ABCB1 (ATP Binding Cassette Subfamily B Member 1) / MDR1 (multidrug resistance 1) was diminished in the intestinal mucosa of patients with active UC with or without CAC, but not in non-UC patients with sporadic colon cancer. We investigated the consequences of ABCB1/MDR1 loss-of-function in a common murine model for CAC (AOM/DSS). Mice deficient in MDR1A (MDR1A KO) showed enhanced intratumoral inflammation and cellular damage, which were associated with reduced colonic tumor size and decreased degree of dysplasia, when compared to wild-type (WT). Increased cell injury correlated with reduced capacity for growth of MDR1A KO tumor spheroids cultured ex-vivo. Gene expression analysis by microarray demonstrated that MDR1A deficiency shaped the inflammatory response towards an anti-tumorigenic microenvironment by downregulating genes known to be important mediators of cancer progression (PTGS2 (COX2), EREG, IL-11). MDR1A KO tumors showed increased gene expression of TNFSF10 (TRAIL), a known inducer of cancer cell death, and CCL12, a strong trigger of B cell chemotaxis. Abundant B220+ B lymphocyte infiltrates with interspersed CD138+ plasma cells were recruited to the MDR1A KO tumor microenvironment, concomitant with high levels of immunoglobulin light chain genes. In contrast, MDR1A deficiency in RAG2 KO mice that lack both B and T cells aggravated colonic tumor progression. MDR1A KO CD19+ B cells, but not WT CD19+ B cells, suppressed growth of colonic tumor-derived spheroids from AOM/DSS-WT mice in an ex-vivo co-culture system, implying that B-cell regulated immune responses contributed to delayed tumor development in MDR1A deficiency. In conclusion, we provide first evidence that loss of ABCB1/MDR1 function may represent an essential tumor-suppressive host defense mechanism in CAC.
Shen, Juqun; Vil, Marie Danielle; Prewett, Marie; Damoci, Chris; Zhang, Haifan; Li, Huiling; Jimenez, Xenia; Deevi, Dhanvanthri S; Iacolina, Michelle; Kayas, Anthony; Bassi, Rajiv; Persaud, Kris; Rohoza-Asandi, Anna; Balderes, Paul; Loizos, Nick; Ludwig, Dale L; Tonra, James; Witte, Larry; Zhu, Zhenping
2009-01-01
Platelet-derived growth factor receptor β (PDGFRβ) is upregulated in most of solid tumors. It is expressed by pericytes/smooth muscle cells, fibroblast, macrophage, and certain tumor cells. Several PDGF receptor-related antagonists are being developed as potential antitumor agents and have demonstrated promising antitumor activity in both preclinical and clinical settings. Here, we produced a fully human neutralizing antibody, IMC-2C5, directed against PDGFRβ from an antibody phage display library. IMC-2C5 binds to both human and mouse PDGFRβ and blocks PDGF-B from binding to the receptor. IMC-2C5 also blocks ligand-stimulated activation of PDGFRβ and downstream signaling molecules in tumor cells. In animal studies, IMC-2C5 significantly delayed the growth of OVCAR-8 and NCI-H460 human tumor xenografts in nude mice but failed to show antitumor activities in OVCAR-5 and Caki-1 xenografts. Our results indicate that the antitumor efficacy of IMC-2C5 is primarily due to its effects on tumor stroma, rather than on tumor cells directly. Combination of IMC-2C5 and DC101, an anti-mouse vascular endothelial growth factor receptor 2 antibody, resulted in significantly enhanced antitumor activity in BxPC-3, NCI-H460, and HCT-116 xenografts, compared with DC101 alone, and the trend of additive effects to DC101 treatment in several other tumor models. ELISA analysis of NCI-H460 tumor homogenates showed that IMC-2C5 attenuated protein level of vascular endothelial growth factor and basic fibroblast growth factor elevated by DC101 treatment. Finally, IMC-2C5 showed a trend of additive effects when combined with DC101/chemotherapy in MIA-PaCa-2 and NCI-H460 models. Taken together, these results lend great support to the use of PDGFRβ antagonists in combination with other antiangiogenic agents in the treatment of a broad range of human cancers. PMID:19484148
Sym004, a Novel EGFR Antibody Mixture, Can Overcome Acquired Resistance to Cetuximab1
Iida, Mari; Brand, Toni M; Starr, Megan M; Li, Chunrong; Huppert, Evan J; Luthar, Neha; Pedersen, Mikkel W; Horak, Ivan D; Kragh, Michael; Wheeler, Deric L
2013-01-01
The epidermal growth factor receptor (EGFR) is a central regulator of tumor progression in a variety of human cancers. Cetuximab is an anti-EGFR monoclonal antibody that has been approved for head and neck and colorectal cancer treatment, but many patients treated with cetuximab don't respond or eventually acquire resistance. To determine how tumor cells acquire resistance to cetuximab, we previously developed a model of acquired resistance using the non-small cell lung cancer line NCI-H226. These cetuximab-resistant (CtxR) cells exhibit increased steady-state EGFR expression secondary to alterations in EGFR trafficking and degradation and, further, retained dependence on EGFR signaling for enhanced growth potential. Here, we examined Sym004, a novel mixture of antibodies directed against distinct epitopes on the extracellular domain of EGFR, as an alternative therapy for CtxR tumor cells. Sym004 treatment of CtxR clones resulted in rapid EGFR degradation, followed by robust inhibition of cell proliferation and down-regulation of several mitogen-activated protein kinase pathways. To determine whether Sym004 could have therapeutic benefit in vivo, we established de novo CtxR NCI-H226 mouse xenografts and subsequently treated CtxR tumors with Sym004. Sym004 treatment of mice harboring CtxR tumors resulted in growth delay compared to mice continued on cetuximab. Levels of total and phospho-EGFR were robustly decreased in CtxR tumors treated with Sym004. Immunohistochemical analysis of these Sym004-treated xenograft tumors further demonstrated decreased expression of Ki67, and phospho-rpS6, as well as a modest increase in cleaved caspase-3. These results indicate that Sym004 may be an effective targeted therapy for CtxR tumors. PMID:24204198
Pols, San Y C V; van Veelen, Marie Lise C; Aarsen, Femke K; Gonzalez Candel, Antonia; Catsman-Berrevoets, Coriene E
2017-07-01
OBJECTIVE Postoperative cerebellar mutism syndrome (pCMS) occurs in 7%-50% of children after cerebellar tumor surgery. Typical features include a latent onset of 1-2 days after surgery, transient mutism, emotional lability, and a wide variety of motor and neurobehavioral abnormalities. Sequelae of this syndrome usually persist long term. The principal causal factor is bilateral surgical damage (regardless of tumor location) to any component of the proximal efferent cerebellar pathway, which leads to temporary dysfunction of cerebral cortical regions as a result of diaschisis. Tumor type, cerebellar midline location, and brainstem involvement are risk factors for pCMS that have been identified repeatedly, but they do not explain its latent onset. Ambiguous or negative results for other factors, such as hydrocephalus, postoperative meningitis, length of vermian incision, and tumor size, have been reached. The aim of this study was to identify perioperative clinical, radiological, and laboratory factors that also increase risk for the development of pCMS. The focus was on factors that might explain the delayed onset of pCMS and thus might provide a time window for taking precautionary measures to prevent pCMS or reduce its severity. The study was focused specifically on children who had undergone surgery for medulloblastoma. METHODS In this single-center retrospective cohort study, the authors included 71 children with medulloblastoma, 28 of whom developed pCMS after primary resection. Clinical and laboratory data were collected prospectively and analyzed systematically. Variables were included for univariate and multivariate analysis. RESULTS Univariate regression analysis revealed 7 variables that had a significant influence on pCMS onset, namely, tumor size, maximum tumor diameter > 5 cm, tumor infiltration or compression of the brainstem, significantly larger decreases in hemoglobin (p = 0.010) and hematocrit (p = 0.003) in the pCMS group after surgery than in the no-pCMS group, significantly more reported incidents of severe bleeding in the tumor bed during surgery in the pCMS group, preoperative hydrocephalus, and a mean body temperature rise of 0.5°C in the first 4 days after surgery in the pCMS group. Multiple regression analysis revealed that tumor size, tumor infiltration into or compression of the brainstem, and higher mean body temperature in the first 4 postoperative days were independent and highly significant predictors for pCMS. CONCLUSIONS The authors confirmed earlier findings that tumor-associated preoperative conditions, such as a maximum tumor diameter ≥ 5 cm and infiltration into or compression of the brainstem, are associated with a higher risk for the development of pCMS. Most importantly, the authors found that a 0.5°C higher mean body temperature in the first 4 postoperative days increased the odds ratio for the development of pCMS almost 5-fold. These data suggest that an important focus for the prevention of pCMS in children who have undergone medulloblastoma surgery might be rigorous maintenance of normothermia as standard care after surgery.
[(99)Tc(m)N-NOET dual-phase SPECT in differential diagnosis of benign and malignant lung tumors].
Liu, Haiyan; Li, Sijin; Yang, Suyun; Wu, Zhifang
2014-01-01
To investigate the value of (99)Tc(m)N-NOET dual-phase SPECT in differential diagnosis of benign and malignant lung tumors. CT scan, early (20 to 30 min) and delayed (2 h) imaging of NOET SPECT were performed on 61 patients suspected of lung lesions before operation. The results were compared with the pathological findings. All cases were not treated with radiotherapy, chemotherapy or surgery before checks. Moreover, all patients had pathological diagnosis. To determine the value in differential diagnosis of tumors by analyzing the tumor uptake and excretion of (99)Tc(m)N-NOET, and the results were compared with that of CT. The value of early T/N ratio (ER) in the malignant (G1) and benign (G2) groups was 1.25 ± 0.15 and 1.09 ± 0.11 (P < 0.001), respectively, and delayed T/N ratio (DR) was 1.40 ± 0.17 and 1.18 ± 0.21 (P < 0.001). The retention index (RI) of groups G1 was (12.22 ± 6.38)% and group G2 was (8.3 ± 10.91)%, with a non-significant difference between them (P > 0.05). The ER, DR and RI of NOET SPECT in the malignant patients were not significantly correlated with TNM staging, pathological types, tumor diameter, cavity in the lung tumor mass, history of smoking, tumor size and patient gender (P > 0.05). The sensitivity of NOET dual-phase SPECT and CT in the differential diagnosis of benign and malignant lung tumors was 94.1% vs. 90.2%, specificity was 70.0% vs. 80.0% , positive predictive value (PPV) was 94.1% vs. 95.8%, negative predictive value (NPV) was 70.0% vs. 61.5 %, and accuracy was 90.2%. vs. 88.5% (P > 0.05 for all). (99)Tc(m)N- NOET dual-phase SPECT could be used in differential diagnosis of benign and malignant lung tumors, with no significant differences compared with the efficacy of CT imaging. The semiquantitative indexes (ER, DR and RI) of NOET SPECT can also be used in differential diagnosis of benign and malignant lung tumors, and are not significantly correlated with TNM staging, pathological types, tumor diameter, cavity of the lung tumor mass, history of smoking, tumor size and patient gender.
Combined calcitriol and menadione reduces experimental murine triple negative breast tumor.
Bohl, Luciana; Guizzardi, Solange; Rodríguez, Valeria; Hinrichsen, Lucila; Rozados, Viviana; Cremonezzi, David; Tolosa de Talamoni, Nori; Picotto, Gabriela
2017-10-01
Calcitriol (D) or 1,25(OH) 2 D 3 inhibits the growth of several tumor cells including breast cancer cells, by activating cell death pathways. Menadione (MEN), a glutathione-depleting compound, may be used to potentiate the antiproliferative actions of D on cancer cells. We have previously shown in vitro that MEN improved D-induced growth arrest on breast cancer cell lines, inducing oxidative stress and DNA damage via ROS generation. Treatment with MEN+D resulted more effective than D or MEN alone. To study the in vivo effect of calcitriol, MEN or their combination on the development of murine transplantable triple negative breast tumor M-406 in its syngeneic host. Tumor M-406 was inoculated s.c., and when tumors reached the desired size, animals were randomly assigned to one of four groups receiving daily i.p. injections of either sterile saline solution (controls, C), MEN, D, or both (MEN+D). Body weight and tumor volume were recorded three times a week. Serum calcium was determined before and at the end of the treatment, at which time tumor samples were obtained for histological examination. None of the drugs, alone or in combination, affected mice body weight in the period studied. The combined treatment reduced tumor growth rate (C vs. MEN+D, P<0.05) and the corresponding histological sections exhibited small remaining areas of viable tumor only in the periphery. A concomitant DNA fragmentation was observed in all treated groups and MEN potentiated the calcitriol effect on tumor growth. As previously observed in vitro, treatment with MEN and D delayed tumor growth in vivo more efficiently than the individual drugs, with evident signals of apoptosis induction. Our results propose an alternative protocol to treat triple negative breast cancer, using GSH depleting drugs together with calcitriol, which would allow lower doses of the steroid to maintain the antitumor effect while diminishing its adverse pharmacological effects. Copyright © 2017. Published by Elsevier Masson SAS.
Giant liposarcoma of the esophagus: A case report
Lin, Zhi-Chao; Chang, Xiang-Zhen; Huang, Xiu-Fang; Zhang, Chun-Lai; Yu, Geng-Sheng; Wu, Shuo-Yun; Ye, Min; He, Jian-Xing
2015-01-01
Liposarcomas rarely develop in the aerodigestive tract. Here, we present a primary esophageal liposarcoma that was discovered between the T3 and T7 levels of the esophagus during right pleural exploration of a 51-year-old male patient. The patient had presented with non-specific symptoms, including progressive dysphagia over the previous 6 mo, without complaints of chest or epigastric pain, regurgitation, or weight loss. A radical three-hole esophagectomy was performed. The tumor was extremely large (14 cm × 7.0 cm × 6.5 cm), but completely encapsulated. Upon histological examination, the tumor was diagnosed as a giant, well-differentiated esophageal liposarcoma with a dedifferentiated component. Non-specific radiological and endoscopic results during the clinical work-up delayed diagnosis until post-operative histology was performed. In this report, the clinical, radiological and endoscopic diagnostic challenges specific to the case are discussed, as well as the surgical and pathological findings. PMID:26361432
Ou, Xuan; Chae, Hee-Don; Wang, Rui-Hong; Shelley, William C.; Cooper, Scott; Taylor, Tammi; Kim, Young-June; Deng, Chu-Xia; Yoder, Mervin C.
2011-01-01
SIRT1 is a founding member of a sirtuin family of 7 proteins and histone deacetylases. It is involved in cellular resistance to stress, metabolism, differentiation, aging, and tumor suppression. SIRT1−/− mice demonstrate embryonic and postnatal development defects. We examined hematopoietic and endothelial cell differentiation of SIRT1−/− mouse embryonic stem cells (ESCs) in vitro, and hematopoietic progenitors in SIRT1+/++/−, and −/− mice. SIRT1−/− ESCs formed fewer mature blast cell colonies. Replated SIRT1−/− blast colony-forming cells demonstrated defective hematopoietic potential. Endothelial cell production was unaltered, but there were defects in formation of a primitive vascular network from SIRT1−/−-derived embryoid bodies. Development of primitive and definitive progenitors derived from SIRT1−/− ESCs were also delayed and/or defective. Differentiation delay/defects were associated with delayed capacity to switch off Oct4, Nanog and Fgf5 expression, decreased β-H1 globin, β-major globin, and Scl gene expression, and reduced activation of Erk1/2. Ectopic expression of SIRT1 rescued SIRT1−/− ESC differentiation deficiencies. SIRT1−/− yolk sacs manifested fewer primitive erythroid precursors. SIRT1−/− and SIRT1+/− adult marrow had decreased numbers and cycling of hematopoietic progenitors, effects more apparent at 5%, than at 20%, oxygen tension, and these progenitors survived less well in vitro under conditions of delayed growth factor addition. This suggests a role for SIRT1 in ESC differentiation and mouse hematopoiesis. PMID:20966168
Chen, Xijuan; Hu, Qinchao; Wu, Tong; Wang, Chunyang; Xia, Juan; Yang, Linglan; Cheng, Bin; Chen, Xiaobing
2018-03-01
The majority of cases of oral squamous cell carcinoma (OSCC) develop from oral potentially malignant disorders, which have been confirmed to be involved in chronic oxidative stimulation. However, no effective treatment approaches have been used to prevent the development of dysplasia into cancerous lesions thus far. In the present study, a well-established OSCC model was used to detect proteomics profiles at different stages during oral malignant transformation. Of the 15 proteins that were found to be upregulated in both the dysplasia and carcinoma stages, the oxidative stress-associated proteins, thioredoxin-1 (Trx-1), glutaredoxin-1 and peroxiredoxin-2 were note as the proteins with significant changes in expression Trx-1 was identified to be the most significantly upregulated protein in the precancerous stage. Validation experiments confirmed that Trx-1 was overexpressed both in dysplasia and cancerous tissue samples, and the inhibition of Trx-1 was able to promote the apoptosis of OSCC cells under hypoxic conditions. Furthermore, the experimental application of a Trx-1-specific inhibitory agent in an animal model led to a lower cancerization rate and a delay in tumor formation. The possible mechanisms were associated with the increased apoptosis via a reactive oxygen species (ROS)-dependent pathway. Taken together, our findings indicate that Trx-1 may be an important target for delaying oral malignant transformation, which provides a novel therapeutic strategy for the prevention and treatment of OSCC.
NASA Astrophysics Data System (ADS)
Gu, Yueqing; Bourke, Vincent; Kim, Jae Gwan; Xia, Mengna; Constantinescu, Anca; Mason, Ralph P.; Liu, Hanli
2003-07-01
Three oxygen-sensitive parameters (arterial hemoglobin oxygen saturation SaO2, tumor vascular oxygenated hemoglobin concentration [HbO2], and tumor oxygen tension pO2) were measured simultaneously by three different optical techniques (pulse oximeter, near infrared spectroscopy, and FOXY) to evaluate dynamic responses of breast tumors to carbogen (5% CO2 and 95% O2) intervention. All three parameters displayed similar trends in dynamic response to carbogen challenge, but with different response times. These response times were quantified by the time constants of the exponential fitting curves, revealing the immediate and the fastest response from the arterial SaO2, followed by changes in global tumor vascular [HbO2], and delayed responses for pO2. The consistency of the three oxygen-sensitive parameters demonstrated the ability of NIRS to monitor therapeutic interventions for rat breast tumors in-vivo in real time.
The liquid biopsy in lung cancer.
Ansari, Junaid; Yun, Jungmi W; Kompelli, Anvesh R; Moufarrej, Youmna E; Alexander, Jonathan S; Herrera, Guillermo A; Shackelford, Rodney E
2016-11-01
The incidence of lung cancer has significantly increased over the last century, largely due to smoking, and remains the most common cause of cancer deaths worldwide. This is often due to lung cancer first presenting at late stages and a lack of curative therapeutic options at these later stages. Delayed diagnoses, inadequate tumor sampling, and lung cancer misdiagnoses are also not uncommon due to the limitations of the tissue biopsy. Our better understanding of the tumor microenvironment and the systemic actions of tumors, combined with the recent advent of the liquid biopsy, may allow molecular diagnostics to be done on circulating tumor markers, particularly circulating tumor DNA. Multiple liquid biopsy molecular methods are presently being examined to determine their efficacy as surrogates to the tumor tissue biopsy. This review will focus on new liquid biopsy technologies and how they may assist in lung cancer detection, diagnosis, and treatment.
Ching, Tsui-Ting; Chiang, Wei-Chung; Chen, Ching-Shih; Hsu, Ao-Lin
2011-01-01
Summary One goal of aging research is to develop interventions that combat age-related illnesses and slow aging. Although numerous mutations have been shown to achieve this in various model organisms, only a handful of chemicals have been identified to slow aging. Here we report that celecoxib, a non-steroidal anti-inflammatory drug (NSAID) widely used to treat pain and inflammation, extends C. elegans lifespan and delays the age-associated physiological changes, such as motor activity declines. Celecoxib also delays the progression of age-related proteotoxicity as well as tumor growth in C. elegans. Celecoxib was originally developed as a potent COX-2 inhibitor. However, the result from a structural-activity analysis demonstrated that the anti-aging effect of celecoxib might be independent of its COX-2 inhibitory activity, as analogs of celecoxib that lack cyclooxygenase-2 (COX-2) inhibitory activity produces a similar effect on lifespan. Furthermore, we found that celecoxib acts directly on 3’-phosphoinositide-dependent kinase-1 (PDK-1), a component of the insulin/IGF-1 signaling (IIS) cascade to increase lifespan. PMID:21348927
Cui, Tianxiang; Diao, Xinwei; Chen, Xiewan; Huang, Shaojiang; Sun, Jianguo
2016-07-27
Sorafenib is the standard first-line therapy for hepatocellular carcinoma (HCC) and probably ectopic hepatocellular carcinoma (EHCC) as well. No report involves a side effect of delayed high fever of sorafenib. This manuscript describes a case of EHCC in the thoracic and abdominal cavities, who showed a delayed high fever and maculopapules during sorafenib treatment. The patient is a 63-year-old Chinese male with advanced EHCC, taking sorafenib 400 mg twice daily. On the tenth day, red maculopapules appeared all over the body. On the same day, the patient began to suffer from continuous high fever. Due to these effects, the patient was asked to cease sorafenib treatment, and the high fever and maculopapules were alleviated quickly. However, the symptoms were present again upon re-challenge of sorafenib. Prednisone was then administered to control the symptoms, with the dosage gradually reduced from 30 to 5 mg/day in 1.5 months. No recurrence of fever or maculopapules has been found. Tumor response reached partial response (PR) and progression free survival (PFS) reached 392 days + by the date of Apr. 14th, 2016. EHCC could be treated like orthotopic HCC by oral administration of sorafenib, which shows good tumor response and survival benefit. Delayed high fever and maculopapules are potential, rare and severe side effects of sorafenib, and could be effectively controlled by glucocorticoid.
Cytokine-induced killer cells eradicate bone and soft-tissue sarcomas.
Sangiolo, Dario; Mesiano, Giulia; Gammaitoni, Loretta; Leuci, Valeria; Todorovic, Maja; Giraudo, Lidia; Cammarata, Cristina; Dell'Aglio, Carmine; D'Ambrosio, Lorenzo; Pisacane, Alberto; Sarotto, Ivana; Miano, Sara; Ferrero, Ivana; Carnevale-Schianca, Fabrizio; Pignochino, Ymera; Sassi, Francesco; Bertotti, Andrea; Piacibello, Wanda; Fagioli, Franca; Aglietta, Massimo; Grignani, Giovanni
2014-01-01
Unresectable metastatic bone sarcoma and soft-tissue sarcomas (STS) are incurable due to the inability to eradicate chemoresistant cancer stem-like cells (sCSC) that are likely responsible for relapses and drug resistance. In this study, we investigated the preclinical activity of patient-derived cytokine-induced killer (CIK) cells against autologous bone sarcoma and STS, including against putative sCSCs. Tumor killing was evaluated both in vitro and within an immunodeficient mouse model of autologous sarcoma. To identify putative sCSCs, autologous bone sarcoma and STS cells were engineered with a CSC detector vector encoding eGFP under the control of the human promoter for OCT4, a stem cell gene activated in putative sCSCs. Using CIK cells expanded from 21 patients, we found that CIK cells efficiently killed allogeneic and autologous sarcoma cells in vitro. Intravenous infusion of CIK cells delayed autologous tumor growth in immunodeficient mice. Further in vivo analyses established that CIK cells could infiltrate tumors and that tumor growth inhibition occurred without an enrichment of sCSCs relative to control-treated animals. These results provide preclinical proof-of-concept for an effective strategy to attack autologous sarcomas, including putative sCSCs, supporting the clinical development of CIK cells as a novel class of immunotherapy for use in settings of untreatable metastatic disease.
Lucky, Sasidharan Swarnalatha; Idris, Niagara Muhammad; Huang, Kai; Kim, Jaejung; Li, Zhengquan; Thong, Patricia Soo Ping; Xu, Rong; Soo, Khee Chee; Zhang, Yong
2016-01-01
Despite the advantages of using photodynamic therapy (PDT) for the treatment of head and neck tumors, it can only be used to treat early stage flat lesions due to the limited tissue penetration ability of the visible light. Here, we developed near-infrared (NIR) excitable upconversion nanoparticle (UCN) based PDT agent that can specifically target epithelial growth factor receptor (EGFR) overexpressing oral cancer cells, in a bid to widen the application of PDT against thick and solid advanced or recurrent head and neck cancers. In vivo studies using the synthesized anti-EGFR-PEG-TiO2-UCNs following systemic administration displayed no major sub-acute or long term toxic effects in terms of blood biochemical, hematological or histopathological changes at a concentration of 50 mg/kg. NIR-PDT even in the presence of a 10 mm tissue phantom placed over the xenograft tumor, showed significant delay in tumor growth and improved survival rate compared to conventional chlorin-e6 (Ce6) PDT using 665 nm red light. Our work, one of the longest study till date in terms of safety (120 d), PDT efficacy (35 d) and survival (60 d), demonstrates the usefulness of UCN based PDT technology for targeted treatment of thick and bulky head and neck tumors. PMID:27570555
Tumor spheroid model for the biologically targeted radiotherapy of neuroblastoma micrometastases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, K.A.; Mairs, R.; Murray, T.
Neuroblastoma is a pediatric malignancy with a poor prognosis at least partly attributable to an early pattern of dissemination. New approaches to treatment of micrometastases include targeted radiotherapy using radiolabeled antibodies or molecules which are taken up preferentially by tumor cells. Multicellular tumor spheroids (MTS) resemble micrometastases during the avascular phase of their development. A human neuroblastoma cell line (NBl-G) was grown as MTS and incubated briefly with a radiolabeled monoclonal antibody ({sup 131}I-UJ13A) directed against neuroectodermal antigens. Spheroid response was evaluated in terms of regrowth delay or proportion sterilized. A dose-response relationship was demonstrated in terms of {sup 131}Imore » activity or duration of incubation. Control experiments using unlabeled UJ13A, radiolabeled nonspecific antibody (T2.10), radiolabeled human serum albumin, and radiolabeled sodium iodide showed these to be relatively ineffective compared to {sup 131}I-UJ13A. The cell line NBl-G grown as MTS has also been found to preferentially accumulate the radiolabeled catecholamine precursor molecule m-({sup 131}I)iodobenzylguanidine compared to cell lines derived from other tumor types. NBl-G cells grown as MTS provide a promising laboratory model for targeted radiotherapy of neuroblastoma micrometastases using radiolabeled antibodies or m-iodobenzylguanidine.« less
Li, Chung-Pin; Buza, Elizabeth L.; Blomberg, Rachel; Govindaraju, Priya; Avery, Diana; Monslow, James; Hsiao, Michael
2017-01-01
Pancreatic ductal adenocarcinomas (PDAs) are desmoplastic and can undergo epithelial-to-mesenchymal transition to confer metastasis and chemoresistance. Studies have demonstrated that phenotypically and functionally distinct stromal cell populations exist in PDAs. Fibroblast activation protein–expressing (FAP-expressing) cells act to enhance PDA progression, while α–smooth muscle actin myofibroblasts can restrain PDA. Thus, identification of precise molecular targets that mediate the protumorigenic activity of FAP+ cells will guide development of therapy for PDA. Herein, we demonstrate that FAP overexpression in the tumor microenvironment correlates with poor overall and disease-free survival of PDA patients. Genetic deletion of FAP delayed onset of primary tumor and prolonged survival of mice in the KPC mouse model of PDA. While genetic deletion of FAP did not affect primary tumor weight in advanced disease, FAP deficiency increased tumor necrosis and impeded metastasis to multiple organs. Lineage-tracing studies unexpectedly showed that FAP is not only expressed by stromal cells, but can also be detected in a subset of CD90+ mesenchymal PDA cells, representing up to 20% of total intratumoral FAP+ cells. These data suggest that FAP may regulate PDA progression and metastasis in cell-autonomous and/or non-cell-autonomous fashions. Together, these data support pursuing FAP as a therapeutic target in PDA. PMID:28978805
Zhou, Min; Chen, Yunyun; Adachi, Makoto; Wen, Xiaoxia; Erwin, Bill; Mawlawi, Osama; Lai, Stephen Y.; Li, Chun
2015-01-01
Anaplastic thyroid carcinoma (ATC) is one of the most aggressive human malignancies. The aggressive behavior of ATC and its resistance to traditional treatment limit the efficacy of radiotherapy, chemotherapy, and surgery. The purpose of this study is aimed at enhancing the therapeutic efficacy of radiotherapy (RT) combined with photothermal therapy (PTT) in murine orthotopic model of ATC, based on our developed single radioactive copper sulfide (CuS) nanoparticle platform. We prepare a new dual-modality therapy for ATC consisting of a single-compartment nanoplatform, polyethylene glycol-coated [64Cu]CuS NPs, in which the radiotherapeutic property of 64Cu is combined with the plasmonic properties of CuS NPs. Mice with Hth83 ATC were treated with PEG[64Cu]CuS NPs and/or near infrared laser. Antitumor effects were assessed by tumor growth and animal survival. We found that in mice bearing orthotopic human Hth83 ATC tumors, micro-PET/CT imaging and biodistribution studies showed that about 50% of the injected dose of PEG-[64Cu]CuS NPs was retained in tumor 48 h after intratumoral injection. Human absorbed doses were calculated from biodistribution data. In antitumor experiments, tumor growth was delayed by PEG-[64Cu]CuS NP-mediated RT, PTT, and combined RT/PTT, with combined RT/PTT being most effective. In addition, combined RT/PTT significantly prolonged the survival of Hth83 tumor-bearing mice compared to no treatment, laser treatment alone, or NP treatment alone without producing acute toxic effects. These findings indicate that this single-compartment multifunctional NPs platform merits further development as a novel therapeutic agent for ATC. PMID:25913249
Daoud, J; Ben Salah, H; Kammoun, W; Ghorbel, A; Frikha, M; Jlidi, R; Besbes, M; Drira, M M; Maalej, M
2000-01-01
Radio-induced tumor have been known for a long time to occur after treatment of cancer during childhood. This entity is exceptional following radiotherapy of the cavum. Skull and facial osteosarcoma were described after treatment of UCNT. We report two observations of radio-induced tumors arising, respectively three and seven years after treatment of UCNT. The first one is a temporoparietal glioblastoma and the second is a rhino- and pharyngeal myxoma. The two patients are alive after treatment of the second tumor. The delay of appearance of these tumors, their situation in the field's irradiated and dose received suggests their radio-induced nature. However, the cytogenetic study is necessary to confirm the implication of radiotherapy in the genesis of these cancers.
Mourelatos, D; Dozi-Vassiliades, J; Kotsis, A; Gourtsas, C
1988-03-01
Enhanced cytogenetic damage by cyclophosphamide (CP) was observed when Ehrlich ascites tumor cells were exposed in vivo to nontoxic concentrations of caffeine. One h before i.p. injection of 5-bromodeoxyuridine adsorbed to activated charcoal Ehrlich ascites tumor-bearing mice treated i.p. with CP appear to have a dose-dependent increase in sister chromatid exchange rates and cell division delays. Caffeine increased the survival time of the Ehrlich ascites tumor-bearing mice treated with CP and markedly reduced the ascitic volume. Therefore, the in vivo antitumor effect by CP in conjunction with caffeine appears to correlate well with the in vivo synergistic effect on cytogenetic damage caused by the combined CP plus caffeine treatment.
Morais, Barbara Albuquerque; Cardeal, Daniel Dante; Ribeiro E Ribeiro, Renan; Frassetto, Fernando Pereira; Andrade, Fernanda Goncalves; Matushita, Hamilton; Teixeira, Manoel Jacobsen
2017-08-01
Intramedullary hemangioblastomas are rare benign vascular tumors, infrequent in pediatric patients. Clinical symptoms vary according to the age of presentation, tumor size, location, and concomitant syringomyelia. This is the second reported case of hemangioblastoma presenting with acute hydrocephalus. A 3-month-old infant with acute hydrocephalus was asymptomatic after a ventriculoperitoneal shunt was placed. She returned 3 months later with irritability, acute paraplegia, and respiratory distress. Magnetic resonance imaging (MRI) showed an intramedullary T8-T9 tumor with syringomyelia. She underwent surgical resection with good results during the 6-month follow-up. Intramedullary tumors may present as hydrocephalus and other nonspecific symptoms, with invariably delayed diagnosis in children, but must be considered in suspicious cases.
More Adventures in Photodynamic Therapy.
Kessel, David
2015-07-03
Photodynamic therapy is a procedure that can provide a selective eradication of neoplastic disease if sufficient drug, light, and oxygen are available. As this description suggests, it involves the photosensitization of malignant tissues to irradiation with photons in the visible range. While not suitable for tumors at unknown loci, it can be of use for eradication of cancer at surgical margins and therapy at sites where substantial surgery might otherwise be involved. Drug development has been delayed by several factors including the reluctance of major pharmaceutical firms in the United States to invest in this technology along with some unwise approaches in the past.
Delayed diagnosis of endobronchial mucoepidermoid carcinoma in a 29-year-old male
Jain, Akanksha; Madan, Neha Kawatra; Arava, Sudheer; Pandey, Durgatosh; Madan, Karan
2016-01-01
Mucoepidermoid carcinoma (MEC) is an uncommon primary lung tumor. It usually involves large airways and presents clinically and radiologically with nonspecific features. Because of nonspecific presentation diagnosis is frequently delayed. We report the case of a 29-year-old male patient wherein a clinico-radiological consideration of tuberculosis (TB) led to a prolonged treatment with anti-TB medications without response. Flexible bronchoscopic biopsy confirmed the diagnosis of MEC following that the patient underwent curative surgical resection. PMID:27186000
Pecori, Biagio; Lastoria, Secondo; Caracò, Corradina; Celentani, Marco; Tatangelo, Fabiana; Avallone, Antonio; Rega, Daniela; De Palma, Giampaolo; Mormile, Maria; Budillon, Alfredo; Muto, Paolo; Bianco, Francesco; Aloj, Luigi; Petrillo, Antonella; Delrio, Paolo
2017-01-01
Previous studies indicate that FDG PET/CT may predict pathological response in patients undergoing neoadjuvant chemo-radiotherapy for locally advanced rectal cancer (LARC). Aim of the current study is evaluate if pathological response can be similarly predicted in LARC patients after short course radiation therapy alone. Methods: Thirty-three patients with cT2-3, N0-2, M0 rectal adenocarcinoma treated with hypo fractionated short course neoadjuvant RT (5x5 Gy) with delayed surgery (SCRTDS) were prospectively studied. All patients underwent 3 PET/CT studies at baseline, 10 days from RT end (early), and 53 days from RT end (delayed). Maximal standardized uptake value (SUVmax), mean standardized uptake value (SUVmean) and total lesion glycolysis (TLG) of the primary tumor were measured and recorded at each PET/CT study. We use logistic regression analysis to aggregate different measures of metabolic response to predict the pathological response in the course of SCRTDS. Results: We provide straightforward formulas to classify response and estimate the probability of being a major responder (TRG1-2) or a complete responder (TRG1) for each individual. The formulas are based on the level of TLG at the early PET and on the overall proportional reduction of TLG between baseline and delayed PET studies. Conclusions: This study demonstrates that in the course of SCRTDS it is possible to estimate the probabilities of pathological tumor responses on the basis of PET/CT with FDG. Our formulas make it possible to assess the risks associated to LARC borne by a patient in the course of SCRTDS. These risk assessments can be balanced against other health risks associated with further treatments and can therefore be used to make informed therapy adjustments during SCRTDS. PMID:28060889
Pecori, Biagio; Lastoria, Secondo; Caracò, Corradina; Celentani, Marco; Tatangelo, Fabiana; Avallone, Antonio; Rega, Daniela; De Palma, Giampaolo; Mormile, Maria; Budillon, Alfredo; Muto, Paolo; Bianco, Francesco; Aloj, Luigi; Petrillo, Antonella; Delrio, Paolo
2017-01-01
Previous studies indicate that FDG PET/CT may predict pathological response in patients undergoing neoadjuvant chemo-radiotherapy for locally advanced rectal cancer (LARC). Aim of the current study is evaluate if pathological response can be similarly predicted in LARC patients after short course radiation therapy alone. Thirty-three patients with cT2-3, N0-2, M0 rectal adenocarcinoma treated with hypo fractionated short course neoadjuvant RT (5x5 Gy) with delayed surgery (SCRTDS) were prospectively studied. All patients underwent 3 PET/CT studies at baseline, 10 days from RT end (early), and 53 days from RT end (delayed). Maximal standardized uptake value (SUVmax), mean standardized uptake value (SUVmean) and total lesion glycolysis (TLG) of the primary tumor were measured and recorded at each PET/CT study. We use logistic regression analysis to aggregate different measures of metabolic response to predict the pathological response in the course of SCRTDS. We provide straightforward formulas to classify response and estimate the probability of being a major responder (TRG1-2) or a complete responder (TRG1) for each individual. The formulas are based on the level of TLG at the early PET and on the overall proportional reduction of TLG between baseline and delayed PET studies. This study demonstrates that in the course of SCRTDS it is possible to estimate the probabilities of pathological tumor responses on the basis of PET/CT with FDG. Our formulas make it possible to assess the risks associated to LARC borne by a patient in the course of SCRTDS. These risk assessments can be balanced against other health risks associated with further treatments and can therefore be used to make informed therapy adjustments during SCRTDS.
Radiation associated tumors following therapeutic cranial radiation
Chowdhary, Abhineet; Spence, Alex M.; Sales, Lindsay; Rostomily, Robert C.; Rockhill, Jason K.; Silbergeld, Daniel L.
2012-01-01
Background: A serious, albeit rare, sequel of therapeutic ionizing radiotherapy is delayed development of a new, histologically distinct neoplasm within the radiation field. Methods: We identified 27 cases, from a 10-year period, of intracranial tumors arising after cranial irradiation. The original lesions for which cranial radiation was used for treatment included: tinea capitis (1), acute lymphoblastic leukemia (ALL; 5), sarcoma (1), scalp hemangioma (1), cranial nerve schwannoma (1) and primary (13) and metastatic (1) brain tumors, pituitary tumor (1), germinoma (1), pinealoma (1), and unknown histology (1). Dose of cranial irradiation ranged from 1800 to 6500 cGy, with a mean of 4596 cGy. Age at cranial irradiation ranged from 1 month to 43 years, with a mean of 13.4 years. Results: Latency between radiotherapy and diagnosis of a radiation-induced neoplasm ranged from 4 to 47 years (mean 18.8 years). Radiation-induced tumors included: meningiomas (14), sarcomas (7), malignant astrocytomas (4), and medulloblastomas (2). Data were analyzed to evaluate possible correlations between gender, age at irradiation, dose of irradiation, latency, use of chemotherapy, and radiation-induced neoplasm histology. Significant correlations existed between age at cranial irradiation and development of either a benign neoplasm (mean age 8.5 years) versus a malignant neoplasm (mean age 20.3; P = 0.012), and development of either a meningioma (mean age 7.0 years) or a sarcoma (mean age 27.4 years; P = 0.0001). There was also a significant positive correlation between latency and development of either a meningioma (mean latency 21.8 years) or a sarcoma (mean latency 7.7 years; P = 0.001). The correlation between dose of cranial irradiation and development of either a meningioma (mean dose 4128 cGy) or a sarcoma (mean dose 5631 cGy) approached significance (P = 0.059). Conclusions: Our study is the first to show that younger patients had a longer latency period and were more likely to have lower-grade lesions (e.g. meningiomas) as a secondary neoplasm, while older patients had a shorter latency period and were more likely to have higher-grade lesions (e.g. sarcomas). PMID:22629485
LI, MINGYUE; XING, SHUGANG; ZHANG, HAIYING; SHANG, SIQI; LI, XIANGXIANG; REN, BO; LI, GAIYUN; CHANG, XIAONA; LI, YILEI; LI, WEI
2016-01-01
Anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) treatment is effective for the treatment of primary tumors, but not sufficient for the treatment of metastatic tumors, likely owing to the effects of the tumor microenvironment. In this study, we aimed to determine the therapeutic effects of combined treatment with a matrix metalloproteinase (MMP) inhibitor (MMPI) and anti-CTLA-4 antibody in a breast cancer model in mice. Interestingly, combined treatment with MMPI and anti-CTLA-4 antibody delayed tumor growth and reduced lung and liver metastases compared with anti-CTLA-4 alone or vehicle treatment. The functions of the liver and kidney in mice in the different groups did not differ significantly compared with that in normal mice. The CD8+/CD4+ ratio in T cells in the spleen and tumor were increased after monotherapy or combined anti-CTLA-4 antibody plus MMPI therapy compared with that in vehicle-treated mice. Anti-CTLA-4 antibody plus MMPI therapy reduced the percentage of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) and decreased the Treg/Th17 cell ratio in the spleen compared with those in the vehicle-treated group. Additionally, anti-CTLA-4 antibody plus MMPI therapy reduced the percentages of regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and Th17 cells in tumors compared with that in the vehicle-treated group. Moreover, combined treatment with MMPI and anti-CTLA-4 antibody reduced the microvessel density (MVD) in tumors compared with that in vehicle or MMPI-treated mice. There was a negative correlation between MVD and the CD8+ T cell percentage, CD4+ T cell percentage, and CD8+/CD4+ T cell ratio, but a positive correlation with Tregs, Th17 cells, Treg/Th17 cell ratio, and MDSCs. Thus, these data demonstrated that addition of MMPI enhanced the effects of anti-CTLA-4 antibody treatment in a mouse model of breast cancer by delaying tumor growth and reducing metastases. PMID:26752000
Yadav, Vipin; Burke, Teresa F; Huber, Lysiane; Van Horn, Robert D; Zhang, Youyan; Buchanan, Sean G; Chan, Edward M; Starling, James J; Beckmann, Richard P; Peng, Sheng-Bin
2014-10-01
B-RAF selective inhibitors, including vemurafenib, were recently developed as effective therapies for melanoma patients with B-RAF V600E mutation. However, most patients treated with vemurafenib eventually develop resistance largely due to reactivation of MAPK signaling. Inhibitors of MAPK signaling, including MEK1/2 inhibitor trametinib, failed to show significant clinical benefit in patients with acquired resistance to vemurafenib. Here, we describe that cell lines with acquired resistance to vemurafenib show reactivation of MAPK signaling and upregulation of cyclin D1 and are sensitive to inhibition of LY2835219, a selective inhibitor of cyclin-dependent kinase (CDK) 4/6. LY2835219 was demonstrated to inhibit growth of melanoma A375 tumor xenografts and delay tumor recurrence in combination with vemurafenib. Furthermore, we developed an in vivo vemurafenib-resistant model by continuous administration of vemurafenib in A375 xenografts. Consistently, we found that MAPK is reactivated and cyclin D1 is elevated in vemurafenib-resistant tumors, as well as in the resistant cell lines derived from these tumors. Importantly, LY2835219 exhibited tumor growth regression in a vemurafenib-resistant model. Mechanistic analysis revealed that LY2835219 induced apoptotic cell death in a concentration-dependent manner in vemurafenib-resistant cells whereas it primarily mediated cell-cycle G1 arrest in the parental cells. Similarly, RNAi-mediated knockdown of cyclin D1 induced significantly higher rate of apoptosis in the resistant cells than in parental cells, suggesting that elevated cyclin D1 activity is important for the survival of vemurafenib-resistant cells. Altogether, we propose that targeting cyclin D1-CDK4/6 signaling by LY2835219 is an effective strategy to overcome MAPK-mediated resistance to B-RAF inhibitors in B-RAF V600E melanoma. ©2014 American Association for Cancer Research.
New targets and therapies for gastrointestinal stromal tumors.
Wozniak, Agnieszka; Gebreyohannes, Yemarshet K; Debiec-Rychter, Maria; Schöffski, Patrick
2017-12-01
The majority of gastrointestinal stromal tumors (GIST) are driven by an abnormal receptor tyrosine kinase (RTK) signaling, occurring mainly due to somatic mutations in KIT or platelet derived growth factor receptor alpha (PDGFRA). Although the introduction of tyrosine kinase inhibitors (TKIs) has revolutionized therapy for GIST patients, with time the vast majority of them develop TKI resistance. Advances in understanding the molecular background of GIST resistance allows for the identification of new targets and the development of novel strategies to overcome or delay its occurrence. Areas covered: The focus of this review is on novel, promising therapeutic approaches to overcome heterogeneous resistance to registered TKIs. These approaches involve new TKIs, including drugs specific for a mutated form of KIT/PDGFRA, drugs with inhibitory effect against multiple RTKs, compounds targeting dysregulated downstream signaling pathways, drugs affecting KIT expression and degradation, inhibitors of cell cycle, and immunotherapeutics. Expert commentary: As the resistance to standard TKI treatment can be heterogeneous, a combinational approach for refractory GIST could be beneficial. Moreover, the understanding of the molecular background of resistant disease would allow development of a more personalized approach for these patients and their response to targeted therapy could be monitored closely using 'liquid biopsy'.
Erlotinib is a viable treatment for tumors with acquired resistance to cetuximab
Brand, Toni M; Dunn, Emily F; Iida, Mari; Myers, Rebecca A; Kostopoulos, Kellie T; Li, Chunrong; Peet, Chimera R
2011-01-01
The epidermal growth factor receptor (EGFR) is an ubiquitously expressed receptor tyrosine kinase (RTK) and is recognized as a key mediator of tumorigenesis in many human tumors. Currently there are five EGFR inhibitors used in oncology, two monoclonal antibodies (panitumumab and cetuximab) and three tyrosine kinase inhibitors (erlotinib, gefitinib and lapatinib). Both strategies of EGFR inhibition have demonstrated clinical success; however, many tumors remain non-responsive or acquire resistance during therapy. To explore potential molecular mechanisms of acquired resistance to cetuximab we previously established a series of cetuximab-resistant clones by chronically exposing the NCI-H226 NSCLC cell line to escalating doses of cetuximab. Cetuximab-resistant clones exhibited a dramatic increase in the activation of EGFR, HER2 and HER3 receptors as well as increased signaling through the MAP K and AKT pathways. RNAi studies demonstrated dependence of cetuximab-resistant clones on the EGFR signaling network. These findings prompted investigation on whether or not cells with acquired resistance to cetuximab would be sensitive to the EGFR targeted TKI erlotinib. In vitro, erlotinib was able to decrease signaling through the EGFR axis, decrease cellular proliferation and induce apoptosis. To determine if erlotinib could have therapeutic benefit in vivo, we established cetuximab-resistant NCI-H226 mouse xenografts, and subsequently treated them with erlotinib. Mice harboring cetuximab-resistant tumors treated with erlotinib exhibited either a tumor regression or growth delay as compared with vehicle controls. Analysis of the erlotinib treated tumors demonstrated a decrease in cell proliferation and increased rates of apoptosis. The work presented herein suggests that (1) cells with acquired resistance to cetuximab maintain their dependence on EGFR and (2) tumors developing resistance to cetuximab can benefit from subsequent treatment with erlotinib, providing rationale for its use in the setting of cetuximab resistance. PMID:21725209
Capsule endoscopy in neoplastic diseases
Pennazio, Marco; Rondonotti, Emanuele; de Franchis, Roberto
2008-01-01
Until recently, diagnosis and management of small-bowel tumors were delayed by the difficulty of access to the small bowel and the poor diagnostic capabilities of the available diagnostic techniques. An array of new methods has recently been developed, increasing the possibility of detecting these tumors at an earlier stage. Capsule endoscopy (CE) appears to be an ideal tool to recognize the presence of neoplastic lesions along this organ, since it is non-invasive and enables the entire small bowel to be visualized. High-quality images of the small-bowel mucosa may be captured and small and flat lesions recognized, without exposure to radiation. Recent studies on a large population of patients undergoing CE have reported small-bowel tumor frequency only slightly above that reported in previous surgical series (range, 1.6%-2.4%) and have also confirmed that the main clinical indication to CE in patients with small-bowel tumors is obscure gastrointestinal (GI) bleeding. The majority of tumors identified by CE are malignant; many were unsuspected and not found by other methods. However, it remains difficult to identify pathology and tumor type based on the lesion’s endoscopic appearance. Despite its limitations, CE provides crucial information leading in most cases to changes in subsequent patient management. Whether the use of CE in combination with other new diagnostic (MRI or multidetector CT enterography) and therapeutic (Push-and-pull enteroscopy) techniques will lead to earlier diagnosis and treatment of these neoplasms, ultimately resulting in a survival advantage and in cost savings, remains to be determined through carefully-designed studies. PMID:18785274
Stafford, Jason H.; Hirai, Takahisa; Deng, Lei; Chernikova, Sophia B.; Urata, Kimiko; West, Brian L.; Brown, J. Martin
2016-01-01
Background Glioblastoma (GBM) may initially respond to treatment with ionizing radiation (IR), but the prognosis remains extremely poor because the tumors invariably recur. Using animal models, we previously showed that inhibiting stromal cell–derived factor 1 signaling can prevent or delay GBM recurrence by blocking IR-induced recruitment of myeloid cells, specifically monocytes that give rise to tumor-associated macrophages. The present study was aimed at determining if inhibiting colony stimulating factor 1 (CSF-1) signaling could be used as an alternative strategy to target pro-tumorigenic myeloid cells recruited to irradiated GBM. Methods To inhibit CSF-1 signaling in myeloid cells, we used PLX3397, a small molecule that potently inhibits the tyrosine kinase activity of the CSF-1 receptor (CSF-1R). Combined IR and PLX3397 therapy was compared with IR alone using 2 different human GBM intracranial xenograft models. Results GBM xenografts treated with IR upregulated CSF-1R ligand expression and increased the number of CD11b+ myeloid-derived cells in the tumors. Treatment with PLX3397 both depleted CD11b+ cells and potentiated the response of the intracranial tumors to IR. Median survival was significantly longer for mice receiving combined therapy versus IR alone. Analysis of myeloid cell differentiation markers indicated that CSF-1R inhibition prevented IR-recruited monocyte cells from differentiating into immunosuppressive, pro-angiogenic tumor-associated macrophages. Conclusion CSF-1R inhibition may be a promising strategy to improve GBM response to radiotherapy. PMID:26538619
Central Nervous System Injury and Neurobiobehavioral Function in Children With Brain Tumors
Nelson, Mary Baron; Compton, Peggy; Patel, Sunita K.; Jacob, Eufemia; Harper, Ronald
2018-01-01
Background Children with brain tumors present a complex set of factors when considering treatment decisions, including type and location of tumor and age of the child. Two-thirds of children will survive, but historically have had poorer neurocognitive and quality-of-life outcomes when compared with survivors of other childhood cancers. Delaying or forgoing cranial radiation completely is thought to lead to improved neurobiobehavioral outcomes, but there is still relatively little research in this area. Objectives The objectives of this study were to review and consolidate what is known about the effects of cranial radiation and chemotherapy on normal brain tissue and to synthesize that information relative to neurobiobehavioral findings in children with brain tumors. Methods A literature search using PubMed and PsycINFO from 2000 to 2011 was done using a variety of terms related to childhood brain tumor treatment and outcome. A total of 70 articles were reviewed, and 40 were chosen for inclusion in the review based on most relevance to this population. Results Both cranial radiation and certain chemotherapy agents cause damage to or loss of healthy neurons, as well as a decrease in the number of progenitor cells of the hippocampus. However, in general, children treated with chemotherapy alone appear to have less of a neurobiobehavioral impact than those treated with cranial radiation. Conclusions The trend toward delaying or postponing cranial radiation when possible may improve overall neurocognitive and quality-of-life outcomes. Implications for Practice Nurses require knowledge of these issues when discussing treatment with families and with caring for long-term survivors. PMID:22781957
Emura, Fabian; Mejía, Juan; Donneys, Alberto; Ricaurte, Orlando; Sabbagh, Luis; Giraldo-Cadavid, Luis; Oda, Ichiro; Saito, Yutaka; Osorio, Camilo
2015-11-01
Large multicenter gastric cancer endoscopic submucosal dissection (ESD) studies conducted at major Japanese institutions have reported en bloc resection, en bloc tumor-free margin resection, and curative resection rates of 92.7% to 96.1%, 82.6% to 94.5%, and 73.6% to 85.4%, respectively, with delayed bleeding and perforation rates of 0.6% to 6.0% and 3.6% to 4.7%, respectively. Although ESD is currently an alternative treatment in some countries, particularly in Asia, it remains uncertain whether ESD therapeutic outcomes in Western endoscopy settings can be comparable to those achieved in Japan. To evaluate the ESD therapeutic outcomes for differentiated early gastric cancer (EGC) in a Western endoscopy setting. Consecutive case series performed by an expertly trained Western endoscopist. Fifty-three patients with 54 lesions. ESD for early gastric cancers (T1) satisfying expanded inclusion criteria. En bloc resection, en bloc tumor-free margin resection, and curative resection rates were 98%, 93%, and 83%, respectively. The delayed bleeding rate was 7%, and the perforation rate was 4%. The mean patient age was 67 years, and the mean tumor size was 19.8 mm, with 54% of the lesions located in the lesser curvature. The median procedure time was 61 minutes, with ESD procedures 60 minutes or longer associated with submucosal fibrosis (P < .001) and tumor size 25 mm or larger (P = .03). In every ESD procedure, both circumferential incision and submucosal dissection were performed by using a single knife. Two of the 4 delayed bleeding cases required surgery, and all perforations were successfully managed by using endoscopic clips. Long-term outcome data are currently unavailable. ESD for differentiated EGC resulted in favorable therapeutic outcomes in a Western endoscopy setting comparable to those achieved at major Japanese institutions. Copyright © 2015 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.
Anti-tumor immunotherapy by blockade of the PD-1/PD-L1 pathway with recombinant human PD-1-IgV.
Zhang, C; Wu, S; Xue, X; Li, M; Qin, X; Li, W; Han, W; Zhang, Y
2008-01-01
Blockade of the programmed death-1 (PD-1)/PD-ligand 1 (PD-L1) pathway can delay tumor growth and prolong the survival of tumor-bearing mice. The extracellular immunoglobulin (Ig) V domain of PD-1 is important for the interaction between PD-1 and PD-L1, suggesting that PD-1-IgV may be a potential target for anti-tumor immunotherapy. The extracellular sequence of human PD-1-IgV (hPD-1-IgV) was expressed in Escherichia coli and purified. The anti-tumor effect of hPD-1-IgV on tumor-bearing mice was tested. hPD-1-IgV recombinant protein could bind PD-L1 at molecular and cellular levels and enhance Cytotoxic T Lymphocyte (CTL) activity and anti-tumor effect on tumor-bearing mice in vivo. The percentage of CD4(+)CD25(+) T cells in tumor-bearing mice was decreased compared with control mice after administration of the recombinant protein. Our results suggest that inhibition of the interaction between PD-1 and PD-L1 by hPD-1-IgV may be a promising strategy for specific tumor immunotherapy.
Ye, Li-ping; Zhu, Lin-hong; Zhou, Xian-bin; Mao, Xin-li; Zhang, Yu
2015-01-01
This study was designed to evaluate the safety and efficacy of endoscopic excavation for esophageal subepithelial tumors originating from the muscularis propria. Forty-five patients with esophageal subepithelial tumors originating from the muscularis propria were treated with endoscopic excavation between January 2010 and June 2012. The key steps were: (1) making several dots around the tumor; (2) incising the mucosa along with the marker dots, and then seperating the tumor from the muscularis propria by using a hook knife or an insulated-tip knife; (3) closing the artificial ulcer with clips after the tumor was removed. The mean tumor diameter was 1.1 ± 0.6 cm. Endoscopic excavation was successfully performed in 43 out of 45 cases (95.6%), the other 2 cases were ligated with nylon rope. During the procedure perforation occurred in 4 (8.9%) patients, who recovered after conservative treatment. No massive bleeding or delayed bleeding occurred. Histologic diagnosis was obtained from 43 (95.6%) patients. Pathological diagnoses of these tumors were leiomyomas (38/43) and gastrointestinal stromal tumors (5/43). Endoscopic excavation is a safe and effective method for the treatment of small esophageal subepithelial tumors originating from the muscularis propria.
Zhang, Ying; Ertl, Hildegund C.J.
2016-01-01
The tumor stroma, which is essential to support growth and metastasis of malignant cells, provides targets for active immunotherapy of cancer. Previous studies have shown that depleting fibroblast activation protein (FAP)-expressing stromal cells reduces tumor progression and concomitantly increases tumor antigen (TA)-specific T cell responses. However the underlying pathways remain ill defined. Here we identify that immunosuppressive cells (ISCs) from tumor-bearing mice impose metabolic stress on CD8+T cells, which is associated with increased expression of the co-inhibitor PD-1. In two mouse melanoma models, depleting FAP+ stroma cells from the tumor microenvironment (TME) upon vaccination with an adenoviral-vector reduces frequencies and functions of ISCs. This is associated with changes in the cytokine/chemokine milieu in the TME and decreased activity of STAT6 signaling within ISCs. Decreases in ISCs upon FAP+stromal cell depletion is associated with reduced metabolic stress of vaccine-induced tumor infiltrating CD8+T cells and their delayed progression towards functional exhaustion, resulting in prolonged survival of tumor-bearing mice. PMID:26943036
Zhang, Ying; Ertl, Hildegund C J
2016-04-26
The tumor stroma, which is essential to support growth and metastasis of malignant cells, provides targets for active immunotherapy of cancer. Previous studies have shown that depleting fibroblast activation protein (FAP)-expressing stromal cells reduces tumor progression and concomitantly increases tumor antigen (TA)-specific T cell responses. However the underlying pathways remain ill defined. Here we identify that immunosuppressive cells (ISCs) from tumor-bearing mice impose metabolic stress on CD8+T cells, which is associated with increased expression of the co-inhibitor PD-1. In two mouse melanoma models, depleting FAP+ stroma cells from the tumor microenvironment (TME) upon vaccination with an adenoviral-vector reduces frequencies and functions of ISCs. This is associated with changes in the cytokine/chemokine milieu in the TME and decreased activity of STAT6 signaling within ISCs. Decreases in ISCs upon FAP+stromal cell depletion is associated with reduced metabolic stress of vaccine-induced tumor infiltrating CD8+T cells and their delayed progression towards functional exhaustion, resulting in prolonged survival of tumor-bearing mice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, L; Cvetkovic, D; Chen, X
Purpose: Our previous study demonstrated significant tumor growth delay in the mice treated with pulsed high intensity focused ultrasound (pHIFU). The purpose of this study is to understand the cell killing mechanisms of pHIFU. Methods: Prostate cancer cells (LNCaP), were grown orthotopically in 17 nude mice. Tumor-bearing mice were treated using pHIFU with an acoustic power of 25W, pulse width 100msec and 300 pulses in one sonication under MR guidance. Mutiple sonications were used to cover the whole tumor volume. The temperature (less than 40 degree centigrade in the focal spot) was monitored using MR thermometry. Animals were euthanized atmore » pre-determined time points (n=2) after treatment: 0 hours; 6 hrs; 24 hrs; 48 hrs; 4 days and 7 days. Two tumorbearing mice were used as control. Three tumor-bearing mice were treated with radiation (RT, 2 Gy) using 6 MV photon beams. RT treated mice were euthanized at 0 hr, 6 hrs and 24 hrs. The tumors were processed for immunohistochemical (IHC) staining for PARP (a surrogate of apoptosis). A multispectral imaging analysis system was used to quantify the expression of PARP staining. Cell apoptosis was calculated based on the PARP expression level using the DAB analysis software. Results: Our data showed that PARP related apoptosis peaked at 48 hrs and 7 days in pHIFU treated mice, which is comparable to that for the RT group at 24 hrs. The preliminary results from this study were consistent with our previous study on tumor growth delay using pHIFU. Conclusion: Our results demonstrated that non-thermal pHIFU increased apoptotic tumor cell death through the PARP related pathway. MR guided pHIFU may have a great potential as a safe, noninvasive treatment modality for cancer therapy. This treatment modality may synergize with PARP inhibitors to achieve better therapeutic result.« less
SU-E-T-245: MR Guided Focused Ultrasound Increased PARP Related Apoptosis On Prostate Cancer in Vivo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, L; Chen, X; Cvetkovic, D
2014-06-01
Purpose: Our previous study demonstrated that significant tumor growth delay was observed in the mice treated with pulsed high intensity focused ultrasound (pHIFU). The purpose of this study is to understand the cell killing mechanisms of pHIFU. Methods: Prostate cancer cells (LNCaP), were grown orthotopically in 17 nude mice. Tumor-bearing mice were treated using pHIFU with an acoustic power of 25W, pulse width 100msec and 300 pulses in one sonication under MR guidance. Mutiple sonications were used to cover the whole tumor volume. Temperature (less than 40 degree centigrade in the focal spot) was monitored using MR thermometry. Animals weremore » euthanized at pre-determined time points (n=2) after treatment: 0 hours; 6 hrs; 24 hrs; 48 hrs; 4 days and 7 days. Two tumorbearing mice were used as control. Three tumor-bearing mice were treated with radiation (RT, 2 Gy) using 6 MV photon beams. RT treated mice were euthanized at 0 hr, 6 hrs and 24 hrs. The tumors were processed for immunohistochemical (IHC) staining for PARP (a surrogate of apoptosis). A multispectral imaging analysis system was used to quantify the expression of PARP staining. Cell apoptosis was calculated based on the PARP expression level, which is the intensity of the DAB reaction. Results: Our data showed that PARP related apoptosis peaked at 48 hrs and 7 days in pHIFU treated mice, which is comparable to that for the RT group at 24 hrs. The preliminary results from this study were consistent with our previous study on tumor growth delay using pHIFU. Conclusion: Our results demonstrated that non-thermal pHIFU increased apoptotic tumor cell death through the PARP related pathway. MR guided pHIFU may have a great potential as a safe, noninvasive treatment modality for cancer therapy. This treatment modality might be able to synergize with PARP inhibitors to achieve better result.« less
Singh, Narendra P.; Singh, Udai P.; Hegde, Venkatesh L.; Guan, Hongbing; Hofseth, Lorne; Nagarkatti, Mitzi; Nagarkatti, Prakash S.
2012-01-01
Scope Understanding the molecular mechanisms through which natural products and dietary supplements exhibit anticancer properties is crucial and can lead to drug discovery and chemoprevention. The current study sheds new light on the mode of action of Resveratarol (RES), a plant-derived polyphenolic compound, against EL-4 lymphoma growth. Methods and results Immuno-compromised NOD/SCID mice injected with EL-4 tumor cells and treated with RES (100 mg/kg body weight) showed delayed development and progression of tumor growth and increased mean survival time. RES caused apoptosis in EL4 cells through activation of aryl hydrocarbon receptor (AhR) and upregulation of Fas and FasL expression in vitro. Blocking of RES-induced apoptosis in EL4 cells by FasL mAb, cleavage of caspases and PARP, and release of cytochorme c, demonstrated the participation of both extrinsic and intrinsic pathways of apoptosis. RES also induced upregulation of SIRT1 and downregulation of NF-kB in EL4 cells. SiRNA-mediated down regulation of SIRT1 in EL4 cells increased the activation of NF-kB but decreased RES-mediated apoptosis, indicating the critical role of SIRT1 in apoptosis via blocking activation of NF-kB. Conclusion These data suggest that RES-induced SIRT1 upregulation promotes tumor cell apoptosis through negative regulation of NF-kB, leading to suppression of tumor growth. PMID:21520490
Kunstfeld, Rainer; Hawighorst, Thomas; Streit, Michael; Hong, Young-Kwon; Nguyen, Lynh; Brown, Lawrence F; Detmar, Michael
2014-05-01
We have previously reported stromal upregulation of the endogenous angiogenesis inhibitor thrombospondin-2 (TSP-2) during multistep carcinogenesis, and we found accelerated and enhanced skin angiogenesis and carcinogenesis in TSP-2 deficient mice. To investigate whether enhanced levels of TSP-2 might protect from skin cancer development. We established transgenic mice with targeted overexpression of TSP-2 in the skin and subjected hemizygous TSP-2 transgenic mice and their wild-type littermates to a chemical skin carcinogenesis regimen. TSP-2 transgenic mice showed a significantly delayed onset of tumor formation compared to wild-type mice, whereas the ratio of malignant conversion to squamous cell carcinomas was comparable in both genotypes. Computer-assisted morphometric analysis of blood vessels revealed pronounced tumor angiogenesis already in the early stages of carcinogenesis in wild type mice. TSP-2 overexpression significantly reduced tumor blood vessel density in transgenic mice but had no overt effect on LYVE-1 positive lymphatic vessels. The percentage of desmin surrounded, mature tumor-associated blood vessels and the degree of epithelial differentiation remained unaffected. The antiangiogenic effect of transgenic TSP-2 was accompanied by a significantly increased number of apoptotic tumor cells in transgenic mice. Our results demonstrate that enhanced levels of TSP-2 in the skin result in reduced susceptibility to chemically-induced skin carcinogenesis and identify TSP-2 as a new target for the prevention of skin cancer. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
Advances in evaluation of primary brain tumors.
Chen, Wei; Silverman, Daniel H S
2008-07-01
The evaluation of primary brain tumor is challenging. Neuroimaging plays a significant role. At diagnosis, imaging is needed to establish a differential diagnosis, provide prognostic information, as well as direct biopsy. After the initial treatment, imaging is needed to distinguish recurrent disease from treatment-related changes such as radiation necrosis. In low-grade gliomas, this also includes monitoring anaplastic transformation into high-grade tumors. Recently, targeted treatments have been an extremely active area of research. Evaluation in clinical trials of such targeted treatments demands advanced roles of imaging such as treatment planning, monitoring response, and predicting treatment outcomes. Current clinical gold standard magnetic resonance imaging provides superior structural detail but poor specificity in identifying viable tumors in treated brain with surgery/radiation/chemotherapy. (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) is capable of identifying anaplastic transformation and has prognostic value. The sensitivity and specificity of FDG in evaluating recurrent tumor and treatment-induced changes can be significantly improved by coregistration with magnetic resonance imaging and potentially by delayed imaging 3 to 8 hours after injection. Amino acid PET tracers can be more sensitive than FDG in imaging some recurrent tumors, in particular recurrent low-grade tumors. They are also promising for differentiating between recurrent tumors and treatment-induced changes. Newer PET tracers to image important aspects of tumor biology have been actively studied. Tracers for imaging membrane transport such as (18)F-choline have shown promise in differential diagnosis. (18)F-labeled nucleotide analogs such as 3'-deoxy-3'-[(18)F]-fluorothymidine (FLT) and (18)F-FMAU have been developed to image proliferation. The use of FLT has demonstrated prognostic power in predicting treatment response in patients treated with an antiangiogenic agent. Tracers for imaging hypoxia such as (18)F-FMISO have been studied and appear promising in providing prognostic information as well as planning treatment.
Orchestration of Angiogenesis by Immune Cells
Bruno, Antonino; Pagani, Arianna; Pulze, Laura; Albini, Adriana; Dallaglio, Katiuscia; Noonan, Douglas M.; Mortara, Lorenzo
2014-01-01
It is widely accepted that the tumor microenvironment (TUMIC) plays a major role in cancer and is indispensable for tumor progression. The TUMIC involves many “players” going well beyond the malignant-transformed cells, including stromal, immune, and endothelial cells (ECs). The non-malignant cells can acquire tumor-promoting functions during carcinogenesis. In particular, these cells can “orchestrate” the “symphony” of the angiogenic switch, permitting the creation of new blood vessels that allows rapid expansion and progression toward malignancy. Considerable attention within the context of tumor angiogenesis should focus not only on the ECs, representing a fundamental unit, but also on immune cells and on the inflammatory tumor infiltrate. Immune cells infiltrating tumors typically show a tumor-induced polarization associated with attenuation of anti-tumor functions and generation of pro-tumor activities, among these angiogenesis. Here, we propose a scenario suggesting that the angiogenic switch is an immune switch arising from the pro-angiogenic polarization of immune cells. This view links immunity, inflammation, and angiogenesis to tumor progression. Here, we review the data in the literature and seek to identify the “conductors” of this “orchestra.” We also suggest that interrupting the immune → inflammation → angiogenesis → tumor progression process can delay or prevent tumor insurgence and malignant disease. PMID:25072019
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habr-Gama, Angelita; Perez, Rodrigo Oliva; Proscurshim, Igor
Background: The optimal interval between neoadjuvant chemoradiation therapy (CRT) and surgery in the treatment of patients with distal rectal cancer is controversial. The purpose of this study is to evaluate whether this interval has an impact on survival. Methods and Materials: Patients who underwent surgery after CRT were retrospectively reviewed. Patients with a sustained complete clinical response (cCR) 1 year after CRT were excluded from this study. Clinical and pathologic characteristics and overall and disease-free survival were compared between patients undergoing surgery 12 weeks or less from CRT and patients undergoing surgery longer than 12 weeks from CRT completion andmore » between patients with a surgery delay caused by a suspected cCR and those with a delay for other reasons. Results: Two hundred fifty patients underwent surgery, and 48.4% had CRT-to-surgery intervals of 12 weeks or less. There were no statistical differences in overall survival (86% vs. 81.6%) or disease-free survival rates (56.5% and 58.9%) between patients according to interval ({<=}12 vs. >12 weeks). Patients with intervals of 12 weeks or less had significantly higher rates of Stage III disease (34% vs. 20%; p = 0.009). The delay in surgery was caused by a suspected cCR in 23 patients (interval, 48 {+-} 10.3 weeks). Five-year overall and disease-free survival rates for this subset were 84.9% and 51.6%, not significantly different compared with the remaining group (84%; p = 0.96 and 57.8%; p = 0.76, respectively). Conclusions: Delay in surgery for the evaluation of tumor response after neoadjuvant CRT is safe and does not negatively affect survival. These results support the hypothesis that shorter intervals may interrupt ongoing tumor necrosis.« less
Phuphanich, Surasak; Yu, John; Bannykh, Serguei; Zhu, Jay-Jiguang
2014-01-01
BACKGROUND: Previously reports of pseudo-progression in patients with brain tumor after therapeutic vaccines in pediatric and adult glioma (Pollack, JCO online on June 2, 2014 and Okada, JCO Jan 20, 2011; 29: 330-336) demonstrated that RANO criteria for tumor progression may not be adequate for immunotherapy trials. Similar observations were also seen in other checkpoint inhibitor in melanoma and NSLSC. METHODS: We identified 2 patients, who developed tumor progression by RANO criteria, underwent surgery following enrollment in a phase 2 randomized ICT-107 (an autologous vaccine consisting of patient dendritic cells pulsed with peptides from AIM-2, TRP-2, HER2/neu, IL-13Ra2, gp100, MAGE1) after radiation and Temozolomide (TMZ). RESULTS: The first case is a 69 years old Chinese male, who underwent 1st surgery of gross total resection right occipital GBM on 10/26/2011. Subsequently he received 19 cycles of TMZ and 9 vaccines/placebo. MRI from 7/2/2013 showed enhancement surrounding surgical cavity. After 2nd surgery, pathology showed only rare residual tumor cells with macrophages and positive CD 8 cells. He continued on this vaccine program and MRI showed more progression with finger-like extension into parietal lobe 4 months later. The 3rd surgery also showed extensive reactive changes with no active tumor cells. For 2nd case, a 62 years old male, who underwent first surgery on 7/11/2011 of right temporal lobe, developed 2 areas of enhancement after 6 cycles of TMZ and 7 vaccines/placebo on 4/18/2012. With 2nd surgery, pathology showed reactive gliosis without active tumor. The subject continued in this trial. CONCLUSION: Pseudo-progression was confirmed by pathology in these 2 patients at 20 and 9 months which were delayed comparing to pseudo-progression observed in patients treated with concurrent XRT/TMZ (3-6 months). Future iRANO criteria development is essential for immunotherapy trials. Accurately identifying and managing such patients is necessary to avoid premature termination of therapy.
Liver metastasis of meningeal hemangiopericytoma: a study of 5 cases
Lo, Regina C.; Suriawinata, Arief A.; Rubin, Brian P.
2016-01-01
Mesenchymal tumors in the liver, whether primary or metastatic, are rare. Meningeal hemangiopericytoma (HPC) is characteristically associated with delayed metastasis and the liver is one of the most common sites. Despite its consistent histological features, a pathological diagnosis of HPC in the liver is sometimes not straightforward due to its rarity and usually remote medical history of the primary meningeal tumor. In this report, the clinicopathological features of 5 cases of metastatic HPC to the liver were reviewed and described. PMID:27044772
Woo, Victoria L; Landesberg, Regina; Imel, Erik A; Singer, Steven R; Folpe, Andrew L; Econs, Michael J; Kim, Taeyun; Harik, Lara R; Jacobs, Thomas P
2009-12-01
Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome that results in renal phosphate wasting with hypophosphatemia. In most cases, the underlying cause of TIO is a small mesenchymal neoplasm that is often difficult to detect, resulting in delayed diagnosis. One such neoplasm is the phosphaturic mesenchymal tumor, mixed connective tissue variant (PMTMCT), an unusual entity with unique morphologic and biochemical features. Most of these tumors are found at appendicular sites with only rare cases reported in the jaws. We describe a PMTMCT involving the mandible in a patient with a protracted history of osteomalacia. A review of the current literature is provided with emphasis on the clinical and histologic features, etiopathogenesis, and management of PMTMCT in the setting of TIO.
Woo, Victoria L.; Landesberg, Regina; Imel, Erik A.; Singer, Steven R.; Folpe, Andrew L.; Econs, Michael J.; Kim, Taeyun; Harik, Lara R.; Jacobs, Thomas P.
2009-01-01
Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome that results in renal phosphate wasting with hypophosphatemia. In most cases, the underlying cause of TIO is a small mesenchymal neoplasm that is often difficult to detect, resulting in delayed diagnosis. One such neoplasm is the phosphaturic mesenchymal tumor, mixed connective tissue variant (PMTMCT), an unusual entity with unique morphologic and biochemical features. The majority of these tumors are found at appendicular sites with only rare cases reported in the jaws. We describe a PMTMCT involving the mandible in a patient with a protracted history of osteomalacia. A review of the current literature is provided with emphasis on the clinical and histologic features, etiopathogenesis, and management of PMTMCT in the setting of TIO. PMID:19828339
Value of Surgery In Patients With Negative Imaging And Sporadic Zollinger-Ellison Syndrome (ZES)
Norton, Jeffrey A.; Fraker, Douglas L.; Alexander, H. Richard; Jensen, Robert T
2012-01-01
Objectives To address the value of surgery in sporadic Zollinger-Ellison syndrome (ZES) patients with negative imaging studies. Background Medical control of acid hypersecretion in patients with sporadic Zollinger-Ellison syndrome (ZES) is highly effective. This has led to these patients frequently not sent to surgery, especially if preoperative imaging studies are negative, due in large part because almost no data exists on the success of surgery in this group. Methods 58 prospectively studied sporadic ZES patients (17% of total studied) had negative imaging studies and their surgical outcome was compared to 117 patients with positive imaging results. Results 35 patients had negative imaging in the pre-somatostatin receptor scintigraphy era (SRS) and 23 in the post-SRS era. The image negative patients had long disease histories prior to surgery (mean±SEM, from onset=7.9±1[range −0.25-35 yrs]) and 25% were followed ≥2yrs from diagnosis. At surgery, gastrinoma was found in 57/58 patients (98%). Tumors were small (mean=0.8cm, 60% < 1 cm). The most common primary sites were: duodenal 64%, pancreatic 17%, and lymph node (LN)(10%). 50% had a primary only, 41% primary + LN, and 7% had liver metastases. 35/58(60%) were cured immediately postoperatively and at last follow-up [mean-9.4yrs, range 0.2-22yrs], 27 patients (46%) remained cured. During follow-up 3 patients died, each was found to have liver metastases at surgery. In comparison to the image positive patients, those with negative imaging had lower preop fasting gastrin levels; a longer delay prior to surgery; more frequently had a small duodenal tumors; less frequently had a pancreatic tumor, multiple tumors or developed a new lesion postoperatively and had a longer survival. Conclusions Imaging negative sporadic ZES patients are not rare even in the post-SRS period. An experienced surgeon can find gastrinoma in almost every patient (98%) and nearly one-half (46%) are cured, a rate similar to imaging positive tumor patients. Because liver metastases were found in 7%, which may have been caused by a long delay in surgery and all the disease-related deaths occurred in this group, surgery should be routinely undertaken early in ZES patients despite negative imaging studies. PMID:22868363
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhu, Suma
Despite enormous advances in remedies developed for breast cancer, an effective therapeutic strategy by targeting malignant cells with the least normal tissue toxicity is yet to be developed. Hsp90 is considered to be an important therapeutic target to inhibit cell proliferation. Geldanamycin (GDM), a potent inhibitor of Hsp90 was withdrawn from clinical trials due to its undesirable hepatotoxicity. We report a superparamagnetic iron oxide (SPION) based polymeric nanocomposite of GDM augmenting anticancer competence with decreased hepatic toxicity. The particle size of nanocomposite was ascertained to be 76 ± 10 nm with acceptable stability. A comparative dose dependent in vitro validationmore » of cytotoxicity showed an enhanced cellular damage and necrosis in breast cancer (MCF-7) cell line at a low dose of 5.49 nM (in GDM nanocomposite) in contrast to 20 nM of pure GDM, while normal breast epithelial cells (MCF-10A) were least affected. Besides, in vivo study (in breast cancer xenografts) substantiated 2.7 fold delay in tumor progression mediated by redundancy in the downstream functions of p-Akt and MAPK-Erk leading to apoptosis with negligible hepatotoxicity. Pure GDM disrupted the function and morphology of liver with lesser therapeutic efficacy than the GDM nanocomposite. These findings deduce that GDM based polymeric magnetite nanocomposite play a vital role in efficacious therapy while vanquishing normal cells and hepatic toxicity and thereby promising it to be reinstated in clinics. - Highlights: • GDM nanocomposite shows selective cell kill of cancerous breast cells. • Nanocomposite delays the growth of tumor in comparison to pure GDM treatment. • GDM promotes apoptosis by down-regulation of p-Akt and MAPK-Erk. • GDM nanocomposite nullifies the hepatotoxicity generally exhibited by pure GDM.« less
Mather, Quang; Priego, Jonathon; Ward, Kristi; Kundan, Verma; Tran, Dat; Dwivedi, Alok; Bryan, Brad A
2017-09-01
Benign lipomas and well-differentiated liposarcomas share many histological and molecular features. Due to their similarities, patients with these lipomatous tumors are misdiagnosed up to 40% of the time following radiological detection, up to 17% of the time following histological examination, and in as many as 15% of cases following fluorescent in situ hybridization for chromosomal anomalies. Incorrect classification of these two tumor types leads to increased costs to the patient and delayed accurate diagnoses. In this study, we used genomics analysis to identify several genes whose mRNA expression patterns were significantly altered between lipomas and well-differentiated liposarcomas. We confirmed our findings at the protein level using a panel of 30 human lipomatous tumors, revealing that C4BPB, class II, major histocompatibility complex, CIITA, EPHB2, HOXB7, GLS2, RBBP5, and regulator of RGS2 protein levels were increased in well-differentiated liposarcomas compared to lipomas. We developed a multi-protein model of these markers to increase discriminatory ability, finding the combined expression model with CIITA and RGS2 provided a high ability (AUC=0.93) to differentiate between lipomas and well-differentiated liposarcomas with sensitivity at 83.3% and specificity at 90.9%.
Wang, Yi-Zarn; King, Heather; Diebold, Anne
2013-08-01
Neuroendocrine tumors (NETs) are relatively rare with an indolent nature. As a result, treatment is often delayed and passive. The most commonly recognized disease progression leading to death is from the sequelae of bowel obstruction, ischemia, or liver failure secondary to liver metastasis. We recently recognized a rare cocoon-like formation in patients with metastatic gastroenteropancreatic NETs and hypothesize that this may be a distinct, final pathway for these patients. Ten patients with stage IV gastroenteropancreatic NETs, seen at our center between October 2008 and November 2011, who developed a cocoon were identified. Patient's charts, operative reports, pathology, and tumor markers were reviewed. No discernable predictors were identified as precursors to this condition. One patient survived 13 months after cocoon diagnosis, and the remaining 9 patients were all deceased within 5 months. Surgical treatment was attempted in 6 patients and was only partially successful in 1 patient who had the earliest stage of cocoon formation (type 1). Cocoon-like formations in patients with stage IV gastroenteropancreatic NETs is rare and may be a terminal disease progression that has not been previously recognized. The best treatment option remains unknown. Surgical treatment is not advisable, with the exception of type 1 abdominal cocoons.
Mahmoud, Salma; Ibrahim, Mohammed; Hago, Ahmed; Huang, Yuhong; Wei, Yuanyi; Zhang, Jun; Zhang, Qingqing; Xiao, Yu; Wang, Jingwen; Adam, Munkaila; Guo, Yu; Wang, Li; Zhou, Shuting; Xin, Boyi; Xuan, Wei; Tang, Jianwu
2016-11-15
Lymphatic vessels function as transport channels for tumor cells to metastasize from the primary site into the lymph nodes. In this experiment we evaluated the effect of Sulfatase-1 (Sulf-1) on metastasis by upregulating it in murine hepatocarcinoma cell line Hca-F with high lymph node metastatic rate of >75%. The study in vitro showed that up regulation of Sulf-1 in Hca-F cells significantly reduced cell proliferation, migration and invasion (p<0.05). Also, the forced expression of Sulf-1 down regulated Mesothelin (Msln) at both the protein and mRNA levels. The experiment in vivo further showed that up-regulation of Sulf-1 with the attendant downregulation of mesothelin delayed tumor growth and decreased lymph node metastasis. In conclusion, our findings show that Sulf-1 is an important tumor suppressor gene in hepatocellular carcinoma (HCC), and its over expression downregulates Msln and results in a decrease in HCC cell proliferation, migration, invasion, and lymphatic metastasis. This functional relationship between Sulf-1 and Msln could be exploited for the development of a novel liver cancer therapy.
Mahmoud, Salma; Ibrahim, Mohammed; Hago, Ahmed; Huang, Yuhong; Wei, Yuanyi; Zhang, Jun; Zhang, Qingqing; Xiao, Yu; Wang, Jingwen; Adam, Munkaila; Guo, Yu; Wang, Li; Zhou, Shuting; Xin, Boyi; Xuan, Wei; Tang, Jianwu
2016-01-01
Lymphatic vessels function as transport channels for tumor cells to metastasize from the primary site into the lymph nodes. In this experiment we evaluated the effect of Sulfatase-1 (Sulf-1) on metastasis by upregulating it in murine hepatocarcinoma cell line Hca-F with high lymph node metastatic rate of >75%. The study in vitro showed that upregulation of Sulf-1 in Hca-F cells significantly reduced cell proliferation, migration and invasion (p<0.05). Also, the forced expression of Sulf-1 downregulated Mesothelin (Msln) at both the protein and mRNA levels. The experiment in vivo further showed that up-regulation of Sulf-1 with the attendant downregulation of mesothelin delayed tumor growth and decreased lymph node metastasis. In conclusion, our findings show that Sulf-1 is an important tumor suppressor gene in hepatocellular carcinoma (HCC), and its overexpression downregulates Msln and results in a decrease in HCC cell proliferation, migration, invasion, and lymphatic metastasis. This functional relationship between Sulf-1 and Msln could be exploited for the development of a novel liver cancer therapy. PMID:27626699
Delayed Complications After Transsphenoidal Surgery for Pituitary Adenomas.
Alzhrani, Gmaan; Sivakumar, Walavan; Park, Min S; Taussky, Philipp; Couldwell, William T
2018-01-01
Perioperative complications after transsphenoidal surgery for pituitary adenomas have been well documented in the literature; however, some complications can occur in a delayed fashion postoperatively, and reports are sparse about their occurrence, management, and outcome. Here, we describe delayed complications after transsphenoidal surgery and discuss the incidence, temporality from the surgery, and management of these complications based on the findings of studies that reported delayed postoperative epistaxis, delayed postoperative cavernous carotid pseudoaneurysm formation and rupture, vasospasm, delayed symptomatic hyponatremia, hypopituitarism, hydrocephalus, and sinonasal complications. Our findings from this review revealed an incidence of 0.6%-3.3% for delayed postoperative epistaxis at 1-3 weeks postoperatively, 18 reported cases of delayed carotid artery pseudoaneurysm formation at 2 days to 10 years postoperatively, 30 reported cases of postoperative vasospasm occurring 8 days postoperatively, a 3.6%-19.8% rate of delayed symptomatic hyponatremia at 4-7 days postoperatively, a 3.1% rate of new-onset hypopituitarism at 2 months postoperatively, and a 0.4%-5.8% rate of hydrocephalus within 2.2 months postoperatively. Sinonasal complications are commonly reported after transsphenoidal surgery, but spontaneous resolutions within 3-12 months have been reported. Although the incidence of some of these complications is low, providing preoperative counseling to patients with pituitary tumors regarding these delayed complications and proper postoperative follow-up planning is an important part of treatment planning. Copyright © 2017 Elsevier Inc. All rights reserved.
Anderberg, Charlotte; Cunha, Sara I.; Zhai, Zhenhua; Cortez, Eliane; Pardali, Evangelia; Johnson, Jill R.; Franco, Marcela; Páez-Ribes, Marta; Cordiner, Ross; Fuxe, Jonas; Johansson, Bengt R.; Goumans, Marie-José; Casanovas, Oriol; ten Dijke, Peter; Arthur, Helen M.
2013-01-01
Therapy-induced resistance remains a significant hurdle to achieve long-lasting responses and cures in cancer patients. We investigated the long-term consequences of genetically impaired angiogenesis by engineering multiple tumor models deprived of endoglin, a co-receptor for TGF-β in endothelial cells actively engaged in angiogenesis. Tumors from endoglin-deficient mice adapted to the weakened angiogenic response, and refractoriness to diminished endoglin signaling was accompanied by increased metastatic capability. Mechanistic studies in multiple mouse models of cancer revealed that deficiency for endoglin resulted in a tumor vasculature that displayed hallmarks of endothelial-to-mesenchymal transition, a process of previously unknown significance in cancer biology, but shown by us to be associated with a reduced capacity of the vasculature to avert tumor cell intra- and extravasation. Nevertheless, tumors deprived of endoglin exhibited a delayed onset of resistance to anti-VEGF (vascular endothelial growth factor) agents, illustrating the therapeutic utility of combinatorial targeting of multiple angiogenic pathways for the treatment of cancer. PMID:23401487
First noninvasive thermal ablation of a brain tumor with MR-guided focused ultrasound
2014-01-01
Magnetic resonance-guided focused ultrasound surgery (MRgFUS) allows for precise thermal ablation of target tissues. While this emerging modality is increasingly used for the treatment of various types of extracranial soft tissue tumors, it has only recently been acknowledged as a modality for noninvasive neurosurgery. MRgFUS has been particularly successful for functional neurosurgery, whereas its clinical application for tumor neurosurgery has been delayed for various technical and procedural reasons. Here, we report the case of a 63-year-old patient presenting with a centrally located recurrent glioblastoma who was included in our ongoing clinical phase I study aimed at evaluating the feasibility and safety of transcranial MRgFUS for brain tumor ablation. Applying 25 high-power sonications under MR imaging guidance, partial tumor ablation could be achieved without provoking neurological deficits or other adverse effects in the patient. This proves, for the first time, the feasibility of using transcranial MR-guided focused ultrasound to safely ablate substantial volumes of brain tumor tissue. PMID:25671132
Evaluation of mechanical accuracy for couch‐based tracking system (CBTS)
Lee, Suk; Chang, Kyung‐Hwan; Shim, Jand Bo; Cao, Yuanjie; Lee, Chang Ki; Cho, Sam Ju; Yang, Dae Sik; Park, Young Je; Yoon, Won Seob
2012-01-01
This study evaluated the mechanical accuracy of an in‐house–developed couch‐based tracking system (CBTS) according to respiration data. The overall delay time of the CBTS was calculated, and the accuracy, reproducibility, and loading effect of the CBTS were evaluated according to the sinusoidal waveform and various respiratory motion data of real patients with and without a volunteer weighing 75 kg. The root mean square (rms) error of the accuracy, the reproducibility, and the sagging measurements were calculated for the three axes (X, Y, and Z directions) of the CBTS. The overall delay time of the CBTS was 0.251 sec. The accuracy and reproducibility in the Z direction in real patient data were poor, as indicated by high rms errors. The results of the loading effect were within 1.0 mm in all directions. This novel CBTS has the potential for clinical application for tumor tracking in radiation therapy. PACS number: 87.55.ne PMID:23149775
Coordinated therapeutic effects of immune modulators and interferon.
Cerutti, I; Chany, C
1983-01-01
Immune modulators injected 24 h before encephalomyocarditis virus significantly increase antiviral resistance in mice when interferon is administered 1 h after the virus. These immune modulators can be crude bacterial extracts or synthetic drugs. In some cases, the responses are additive; in others, they are clearly cooperative. To protect the mice against the development of 180 TG Crocker sarcomas, the association of bacterial extracts and interferon is highly effective under the condition that the drug concentrations and chronological order and number of injections are well defined. In contrast, the conjunction of interferon and synthetic immune modulators, in particular cimetidine, result in delayed tumor development with no significant change in the final survival rate in the experimental model described here. PMID:6315585
Masliah-Planchon, Julien; Lévy, Dominique; Héron, Delphine; Giuliano, Fabienne; Badens, Catherine; Fréneaux, Paul; Galmiche, Louise; Guinebretierre, Jean-Marc; Cellier, Cécile; Waterfall, Joshua J; Aït-Raïs, Khadija; Pierron, Gaëlle; Glorion, Christophe; Desguerre, Isabelle; Soler, Christine; Deville, Anne; Delattre, Olivier; Michon, Jean; Bourdeaut, Franck
2018-04-30
Osteosarcoma is the most common malignant bone tumor in adolescents and young adults. Most osteosarcomas are sporadic but the risk of osteosarcoma is also increased by germline variants in TP53, RB1 and RECQL4 genes. ATRX germline variations are responsible for the rare genetic disorder X-linked alpha-thalassemia mental retardation (ATR-X) syndrome characterized by severe developmental delay and alpha-thalassemia but no obvious increased risk of cancer. Here we report two children with ATR-X syndrome who developed osteosarcoma. Notably, one of the children developed two osteosarcomas separated by 10 years. Those two cases raise the possibility that ATRX germline variant could be associated with an increased risk of osteosarcoma.
New Targeted Treatment May Slow Disease in Patients with Advanced GIST
A new oral drug, regorafenib (Stivarga®), may delay the progression of advanced gastrointestinal stromal tumors (GIST) that are resistant to treatment, according to results from an international clinical trial published November 22, 2012, in The Lancet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koonce, Nathan A.; Quick, Charles M.; Hardee, Matthew E.
Purpose: Although remarkable preclinical antitumor effects have been shown for tumor necrosis factor-α (TNF) alone and combined with radiation, its clinical use has been hindered by systemic dose-limiting toxicities. We investigated the physiological and antitumor effects of radiation therapy combined with the novel nanomedicine CYT-6091, a 27-nm average-diameter polyethylene glycol-TNF-coated gold nanoparticle, which recently passed through phase 1 trials. Methods and Materials: The physiologic and antitumor effects of single and fractionated radiation combined with CYT-6091 were studied in the murine 4T1 breast carcinoma and SCCVII head and neck tumor squamous cell carcinoma models. Results: In the 4T1 murine breast tumormore » model, we observed a significant reduction in the tumor interstitial fluid pressure (IFP) 24 hours after CYT-6091 alone and combined with a radiation dose of 12 Gy (P<.05 vs control). In contrast, radiation alone (12 Gy) had a negligible effect on the IFP. In the SCCVII head and neck tumor model, the baseline IFP was not markedly elevated, and little additional change occurred in the IFP after single-dose radiation or combined therapy (P>.05 vs control) despite extensive vascular damage observed. The IFP reduction in the 4T1 model was also associated with marked vascular damage and extravasation of red blood cells into the tumor interstitium. A sustained reduction in tumor cell density was observed in the combined therapy group compared with all other groups (P<.05). Finally, we observed a more than twofold delay in tumor growth when CYT-6091 was combined with a single 20-Gy radiation dose—notably, irrespective of the treatment sequence. Moreover, when hypofractionated radiation (12 Gy × 3) was applied with CYT-6091 treatment, a more than five-fold growth delay was observed in the combined treatment group of both tumor models and determined to be synergistic. Conclusions: Our results have demonstrated that TNF-labeled gold nanoparticles combined with single or fractionated high-dose radiation therapy is effective in reducing IFP and tumor growth and shows promise for clinical translation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, Diane E.; Program of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA; Hoover, Benjamin
2014-09-01
We have previously designed and characterized versions of anthrax lethal toxin that are selectively cytotoxic in the tumor microenvironment and which display broad and potent anti-tumor activities in vivo. Here, we have performed the first direct comparison of the safety and efficacy of three engineered anthrax lethal toxin variants requiring activation by either matrix-metalloproteinases (MMPs), urokinase plasminogen activator (uPA) or co-localized MMP/uPA activities. C57BL/6J mice were challenged with six doses of engineered toxins via intraperitoneal (I.P.) or intravenous (I.V.) dose routes to determine the maximum tolerated dose for six administrations (MTD6) and dose-limiting toxicities. Efficacy was evaluated using the B16-BL6more » syngraft model of melanoma; mice bearing established tumors were treated with six I.P. doses of toxin and tumor measurements and immunohistochemistry, paired with terminal blood work, were used to elaborate upon the anti-tumor mechanism and relative efficacy of each variant. We found that MMP-, uPA- and dual MMP/uPA-activated anthrax lethal toxins exhibited the same dose-limiting toxicity; dose-dependent GI toxicity. In terms of efficacy, all three toxins significantly reduced primary B16-BL6 tumor burden, ranging from 32% to 87% reduction, and they also delayed disease progression as evidenced by dose-dependent normalization of blood work values. While target organ toxicity and effective doses were similar amongst the variants, the dual MMP/uPA-activated anthrax lethal toxin exhibited the highest I.P. MTD6 and was 1.5–3-fold better tolerated than the single MMP- and uPA-activated toxins. Overall, we demonstrate that this dual MMP/uPA-activated anthrax lethal toxin can be administered safely and is highly effective in a preclinical model of melanoma. This modified bacterial cytotoxin is thus a promising candidate for further clinical development and evaluation for use in treating human cancers. - Highlights: • Toxicity and anti-tumor activity of protease-activated anthrax toxins were evaluated. • All anthrax toxin variants exhibited potent systemic anti-tumor activity in mice. • A dual MMP/uPA-activated anthrax toxin displayed a superior safety profile. • Clinical development of a dual MMP/uPA-activated anthrax toxin is feasible.« less
Nakanishi, Masako; Hanley, Matthew P; Zha, Ruochen; Igarashi, Yuichi; Hull, Mark A; Mathias, Gary; Sciavolino, Frank; Grady, James J; Rosenberg, Daniel W
2018-03-08
Familial adenomatous polyposis (FAP) is a genetic disorder characterized by the development of hundreds of polyps throughout the colon. Without prophylactic colectomy, most individuals with FAP develop colorectal cancer at an early age. Treatment with EPA in the free fatty acid form (EPA-FFA) has been shown to reduce polyp burden in FAP patients. Since high-purity EPA-FFA is subject to rapid oxidation, a stable form of EPA compound has been developed in the form of magnesium l-lysinate bis-eicosapentaenoate (TP-252). We assessed the chemopreventive efficacy of TP-252 on intestinal tumor formation using ApcΔ14/+ mice and compared it with EPA-FFA. TP-252 was supplemented in a modified AIN-93G diet at 1, 2 or 4% and EPA-FFA at 2.5% by weight and administered to mice for 11 weeks. We found that administration of TP-252 significantly reduced tumor number and size in the small intestine and colon in a dose-related manner and as effectively as EPA-FFA. To gain further insight into the cancer protection afforded to the colon, we performed a comprehensive lipidomic analysis of total fatty acid composition and eicosanoid metabolites. Treatment with TP-252 significantly decreased the levels of arachidonic acid (AA) and increased EPA concentrations within the colonic mucosa. Furthermore, a classification and regression tree (CART) analysis revealed that a subset of fatty acids, including EPA and docosahexaenoic acid (DHA), and their downstream metabolites, including PGE3 and 14-hydroxy-docosahexaenoic acid (HDoHE), were strongly associated with antineoplastic activity. These results indicate that TP-252 warrants further clinical development as a potential strategy for delaying colectomy in adolescent FAP patients.
Delivery of Chemotherapeutics Across the Blood–Brain Barrier: Challenges and Advances
Doolittle, Nancy D.; Muldoon, Leslie L.; Culp, Aliana Y.; Neuwelt, Edward A.
2017-01-01
The blood–brain barrier (BBB) limits drug delivery to brain tumors. We utilize intraarterial infusion of hyperosmotic mannitol to reversibly open the BBB by shrinking endothelial cells and opening tight junctions between the cells. This approach transiently increases the delivery of chemotherapy, antibodies, and nanoparticles to brain. Our preclinical studies have optimized the BBB disruption (BBBD) technique and clinical studies have shown its safety and efficacy. The delivery of methotrexate-based chemotherapy in conjunction with BBBD provides excellent outcomes in primary central nervous system lymphoma (PCNSL) including stable or improved cognitive function in survivors a median of 12 years (range 2–26 years) after diagnosis. The addition of rituximab to chemotherapy with BBBD for PCNSL can be safely accomplished with excellent overall survival. Our translational studies of thiol agents to protect against platinum-induced toxicities led to the development of a two-compartment model in brain tumor patients. We showed that delayed high-dose sodium thiosulfate protects against carboplatin-induced hearing loss, providing the framework for large cooperative group trials of hearing chemoprotection. Neuroimaging studies have identified that ferumoxytol, an iron oxide nanoparticle blood pool agent, appears to be a superior contrast agent to accurately assess therapy-induced changes in brain tumor vasculature, in brain tumor response to therapy, and in differentiating central nervous system lesions with inflammatory components. This chapter reviews the breakthroughs, challenges, and future directions for BBBD. PMID:25307218
Hippo Cascade Controls Lineage Commitment of Liver Tumors in Mice and Humans.
Zhang, Shanshan; Wang, Jingxiao; Wang, Haichuan; Fan, Lingling; Fan, Biao; Zeng, Billy; Tao, Junyan; Li, Xiaolei; Che, Li; Cigliano, Antonio; Ribback, Silvia; Dombrowski, Frank; Chen, Bin; Cong, Wenming; Wei, Lixin; Calvisi, Diego F; Chen, Xin
2018-04-01
Primary liver cancer consists mainly of hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). A subset of human HCCs expresses a ICC-like gene signature and is classified as ICC-like HCC. The Hippo pathway is a critical regulator of normal and malignant liver development. However, the precise function(s) of the Hippo cascade along liver carcinogenesis remain to be fully delineated. The role of the Hippo pathway in a murine mixed HCC/ICC model induced by activated forms of AKT and Ras oncogenes (AKT/Ras) was investigated. The authors demonstrated the inactivation of Hippo in AKT/Ras liver tumors leading to nuclear localization of Yap and TAZ. Coexpression of AKT/Ras with Lats2, which activates Hippo, or the dominant negative form of TEAD2 (dnTEAD2), which blocks Yap/TAZ activity, resulted in delayed hepatocarcinogenesis and elimination of ICC-like lesions in the liver. Mechanistically, Notch2 expression was found to be down-regulated by the Hippo pathway in liver tumors. Overexpression of Lats2 or dnTEAD2 in human HCC cell lines inhibited their growth and led to the decreased expression of ICC-like markers, as well as Notch2 expression. Altogether, this study supports the key role of the Hippo cascade in regulating the differentiation status of liver tumors. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Erkes, Dan A; Xu, Guangwu; Daskalakis, Constantine; Zurbach, Katherine A; Wilski, Nicole A; Moghbeli, Toktam; Hill, Ann B; Snyder, Christopher M
2016-01-01
Cytomegalovirus is an attractive cancer vaccine platform because it induces strong, functional CD8+ T-cell responses that accumulate over time and migrate into most tissues. To explore this, we used murine cytomegalovirus expressing a modified gp100 melanoma antigen. Therapeutic vaccination by the intraperitoneal and intradermal routes induced tumor infiltrating gp100-specific CD8+ T-cells, but provided minimal benefit for subcutaneous lesions. In contrast, intratumoral infection of established tumor nodules greatly inhibited tumor growth and improved overall survival in a CD8+ T-cell-dependent manner, even in mice previously infected with murine cytomegalovirus. Although murine cytomegalovirus could infect and kill B16F0s in vitro, infection was restricted to tumor-associated macrophages in vivo. Surprisingly, the presence of a tumor antigen in the virus only slightly increased the efficacy of intratumoral infection and tumor-specific CD8+ T-cells in the tumor remained dysfunctional. Importantly, combining intratumoral murine cytomegalovirus infection with anti-PD-L1 therapy was synergistic, resulting in tumor clearance from over half of the mice and subsequent protection against tumor challenge. Thus, while a murine cytomegalovirus-based vaccine was poorly effective against established subcutaneous tumors, direct infection of tumor nodules unexpectedly delayed tumor growth and synergized with immune checkpoint blockade to promote tumor clearance and long-term protection. PMID:27434584
Müller, Andrea M.; Schmohl, Kathrin A.; Knoop, Kerstin; Schug, Christina; Urnauer, Sarah; Hagenhoff, Anna; Clevert, Dirk-André; Ingrisch, Michael; Niess, Hanno; Carlsen, Janette; Zach, Christian; Wagner, Ernst; Bartenstein, Peter; Nelson, Peter J.; Spitzweg, Christine
2016-01-01
Adoptively transferred mesenchymal stem cells (MSCs) home to solid tumors. Biologic features within the tumor environment can be used to selectively activate transgenes in engineered MSCs after tumor invasion. One of the characteristic features of solid tumors is hypoxia. We evaluated a hypoxia-based imaging and therapy strategy to target expression of the sodium iodide symporter (NIS) gene to experimental hepatocellular carcinoma (HCC) delivered by MSCs. MSCs engineered to express transgenes driven by a hypoxia-responsive promoter showed robust transgene induction under hypoxia as demonstrated by mCherry expression in tumor cell spheroid models, or radioiodide uptake using NIS. Subcutaneous and orthotopic HCC xenograft mouse models revealed significant levels of perchlorate-sensitive NIS-mediated tumoral radioiodide accumulation by tumor-recruited MSCs using 123I-scintigraphy or 124I-positron emission tomography. Functional NIS expression was further confirmed by ex vivo 123I-biodistribution analysis. Administration of a therapeutic dose of 131I in mice treated with NIS-transfected MSCs resulted in delayed tumor growth and reduced tumor perfusion, as shown by contrast-enhanced sonography, and significantly prolonged survival of mice bearing orthotopic HCC tumors. Interestingly, radioiodide uptake into subcutaneous tumors was not sufficient to induce therapeutic effects. Our results demonstrate the potential of using tumor hypoxia-based approaches to drive radioiodide therapy in non-thyroidal tumors. PMID:27458162
Liu, Chien-An; Chiu, Nai-Chi; Chiou, Yi-You
2018-03-03
Hemorrhagic complications are the most common major complications that occur after radiofrequency ablation, but hematemesis as a complication after radiofrequency ablation for hepatic tumor has not been mentioned before. A hepatogastric fistula as a delayed complication is also rare. We present the case of a 77-year-old man with severe hematemesis that occurred 2 months after radiofrequency ablation of a liver metastasis of gastric cancer. A ruptured hepatic artery pseudoaneurysm and a hepatogastric fistula were confirmed through serial imaging examinations. The current case is reported in combination with 2 rare major complications after radiofrequency ablation of a liver tumor. Copyright © 2018. Published by Elsevier Inc.
[Cytogenomic studies of hydatiform moles and gestational choriocarcinoma].
Poaty, Henriette; Coullin, Philippe; Leguern, Eric; Dessen, Philippe; Valent, Alexandre; Afoutou, José-Marie; Peko, Jean-Félix; Candelier, Jean-Jacques; Gombé-Mbalawa, Charles; Picard, Jean-Yves; Bernheim, Alain
2012-09-01
The complete hydatidiform mole (CHM), a gestational trophoblastic disease, is usually caused by the development of an androgenic egg whose genome is exclusively paternal. Due to parental imprinting, only trophoblasts develop in the absence of a fetus. CHM are diploid and no abnormal karyotype is observed. It is 46,XX in most cases and less frequently 46,XY. The major complication of this disease is gestational choriocarcinoma, a metastasizing tumor and a true allografted malignancy. This complication is infrequent in developed countries, but is more common in the developing countries and is then worsened by delayed care. The malignancies are often accompanied by acquired, possibly etiological genomic abnormalities. We investigated the presence of recurrent cytogenetic abnormalities in CHM and post-molar choriocarcinoma using metaphasic CGH (mCGH) and high-resolution 244K aCGH techniques. The 10 CHM studied by mCGH showed no chromosomal gains or losses. For post-molar choriocarcinoma, 11 tumors, whose diagnosis was verified by histopathology, were investigated by aCGH. Their androgenic nature and the absence of tumor DNA contamination by maternal DNA were verified by the analysis of microsatellite markers. Three choriocarcinoma cell lines (BeWo, JAR and JEG) were also analyzed by aCGH. The results allowed us to observe some chromosomal rearrangements in primary tumors, and more in the cell lines. Chromosomal abnormalities were confirmed by FISH and functional effect by immunohistochemical analysis of gene expression. Forty minimum critical regions (MCR) were defined on chromosomes. Candidate genes implicated in choriocarcinoma oncogenesis were selected. The presence in the MCR of many miRNA clusters whose expression is modulated by parental imprinting has been observed, for example in 14q32 or in 19q13.4. This suggests that, in gestational choriocarcinoma, the consequences of gene abnormalities directly linked to acquired chromosomal abnormalities are superimposed upon those of imprinted genes altered at fertilization.
Kushnirsky, Marina; Nguyen, Vinh; Katz, Joel S; Steinklein, Jared; Rosen, Lisa; Warshall, Craig; Schulder, Michael; Knisely, Jonathan P S
2016-02-01
Contrast-enhanced MRI is the preeminent diagnostic test for brain metastasis (BM). Detection of BMs for stereotactic radiosurgery (SRS) planning may improve with a time delay following administration of a high-relaxivity agent for 1.5-T and 3-T imaging systems. Metastasis detection with time-delayed MRI was evaluated in this study. Fifty-three volumetric MRI studies from 38 patients undergoing SRS for BMs were evaluated. All studies used 0.1-mmol/kg gadobenate dimeglumine (MultiHance; Bracco Diagnostics) immediately after injection, followed by 2 more axial T1-weighted sequences after 5-minute intervals (final image acquisition commenced 15 minutes after contrast injection). Two studies were motion limited and excluded. Two hundred eighty-seven BMs were identified. The studies were randomized and examined separately by 3 radiologists, who were blinded to the temporal sequence. Each radiologist recorded the number of BMs detected per scan. A Wilcoxon signed-rank test compared BM numbers between scans. One radiologist determined the scan on which BMs were best defined. All confirmed, visible tumors were contoured using iPlan RT treatment planning software on each of the 3 MRI data sets. A linear mixed model was used to analyze volume changes. The interclass correlations for Scans 1, 2, and 3 were 0.7392, 0.7951, and 0.7290, respectively, demonstrating excellent interrater reliability. At least 1 new lesion was detected in the second scan as compared with the first in 35.3% of subjects (95% CI 22.4%-49.9%). The increase in BM numbers between Scans 1 and 2 ranged from 1 to 10. At least 1 new lesion was detected in the third scan as compared with the second in 21.6% of subjects (95% CI 11.3%-35.3%). The increase in BM numbers between Scans 2 and 3 ranged from 1 to 9. Between Scans 1 and 3, additional tumors were seen on 43.1% of scans (increase ranged from 1 to 14). The median increase in tumor number for all comparisons was 1. There was a significant increase in number of BMs detected from Scan 1 to Scan 2 (p < 0.0367) and from Scan 1 to Scan 3 (p < 0.0264). In 34 of the 51 subjects (66.7%), the radiologist selected the third scan as the one providing the clearest tumor definition. There was an average 25.4% increase in BM volume between Scans 1 and 2 (p < 0.0001) and a 9% increase in BM volume between Scans 2 and 3 (p = 0.0001). In patients who are being prepared for SRS of BMs, delayed MRI after contrast injection revealed more targets that needed treatment. In addition, apparent treatment volumes increased with a time delay. To avoid missing tumors that could be treated at the time of planned SRS and resultant "treatment failures," the authors recommend that postcontrast MR images be acquired between 10 and 15 minutes after injection in patients undergoing SRS for treatment of BMs.
NASA Astrophysics Data System (ADS)
Zhou, Min; Zhao, Jun; Tian, Mei; Song, Shaoli; Zhang, Rui; Gupta, Sanjay; Tan, Dongfeng; Shen, Haifa; Ferrari, Mauro; Li, Chun
2015-11-01
Tumor Initiating Cells (TICs) are resistant to radiotherapy and chemotherapy, and are believed to be responsible for tumor recurrence and metastasis. Combination therapies can overcome the limitation of conventional cancer treatments, and have demonstrated promising application in the clinic. Here, we show that dual modality radiotherapy (RT) and photothermal therapy (PTT) mediated by a single compartment nanosystem copper-64-labeled copper sulfide nanoparticles ([64Cu]CuS NPs) could suppress breast tumor metastasis through eradication of TICs. Positron electron tomography (PET) imaging and biodistribution studies showed that more than 90% of [64Cu]CuS NPs was retained in subcutaneously grown BT474 breast tumor 24 h after intratumoral (i.t.) injection, indicating the NPs are suitable for the combination therapy. Combined RT/PTT therapy resulted in significant tumor growth delay in the subcutaneous BT474 breast cancer model. Moreover, RT/PTT treatment significantly prolonged the survival of mice bearing orthotopic 4T1 breast tumors compared to no treatment, RT alone, or PTT alone. The RT/PTT combination therapy significantly reduced the number of tumor nodules in the lung and the formation of tumor mammospheres from treated 4T1 tumors. No obvious side effects of the CuS NPs were noted in the treated mice in a pilot toxicity study. Taken together, our data support the feasibility of a therapeutic approach for the suppression of tumor metastasis through localized RT/PTT therapy.Tumor Initiating Cells (TICs) are resistant to radiotherapy and chemotherapy, and are believed to be responsible for tumor recurrence and metastasis. Combination therapies can overcome the limitation of conventional cancer treatments, and have demonstrated promising application in the clinic. Here, we show that dual modality radiotherapy (RT) and photothermal therapy (PTT) mediated by a single compartment nanosystem copper-64-labeled copper sulfide nanoparticles ([64Cu]CuS NPs) could suppress breast tumor metastasis through eradication of TICs. Positron electron tomography (PET) imaging and biodistribution studies showed that more than 90% of [64Cu]CuS NPs was retained in subcutaneously grown BT474 breast tumor 24 h after intratumoral (i.t.) injection, indicating the NPs are suitable for the combination therapy. Combined RT/PTT therapy resulted in significant tumor growth delay in the subcutaneous BT474 breast cancer model. Moreover, RT/PTT treatment significantly prolonged the survival of mice bearing orthotopic 4T1 breast tumors compared to no treatment, RT alone, or PTT alone. The RT/PTT combination therapy significantly reduced the number of tumor nodules in the lung and the formation of tumor mammospheres from treated 4T1 tumors. No obvious side effects of the CuS NPs were noted in the treated mice in a pilot toxicity study. Taken together, our data support the feasibility of a therapeutic approach for the suppression of tumor metastasis through localized RT/PTT therapy. Electronic supplementary information (ESI) available: Details of methods used for radiolabeling efficiency and stability of 64Cu-labeled CuS NPs. See DOI: 10.1039/c5nr04587h
DAT-230, a Novel Microtubule Inhibitor, Induced Aberrant Mitosis and Apoptosis in SGC-7901 Cells.
Qiao, Foxiao; Zuo, Daiying; Wang, Haifeng; Li, Zengqiang; Qi, Huan; Zhang, Weige; Wu, Yingliang
2013-01-01
2-Methoxy-5-(2-(3,4,5-trimethoxyphenyl)thiophen-3-yl) aniline (DAT-230) is a novel synthesized compound of combretastatin-A-4 derivative with more stability. The present study is to investigate its anti-tumor activity and molecular mechanisms in human gastric adenocarcinoma SGC-7901 cells. DAT-230 inhibited SGC-7901 cells growth. The treatment of DAT-230 resulted in microtubule de-polymerization and G2/M phase arrest. Besides the accumulation and translocation of Cyclin B1, reduction of p-14/15-cdc2 and mitosis delay denoted the Cyclin B1-cdc2 complex active and M phase arrest in SGC-7901 cells treated with DAT-230. Mitochondria pathway participated in apoptosis after G2/M arrest in SGC-7901 cells treated with DAT-230, which was characterized by DNA fragmentation, cleavage of poly(ADP-ribose) polymerase (PARP), activation of caspase-3 and caspase-9, changes of Bcl-2 and Bax expression, decrease of mitochondrial membrane potential and release of cytochrome c from mitochondria. In vivo, DAT-230 delayed tumor growth in BALB/c nude mice with human gastric adenocarcinoma xenografts. Besides apoptosis was detected with terminal deoxynucleotidyl transferase mediated deoxyuridine triphosphate nick-end labeling (TUNEL) assay in tumor tissue. In conclusion, DAT-230 is a promising microtubule inhibitor with great anti-tumor activity to SGC-7901, in vitro and in vivo. Its potential to be a candidate of anti-cancer agent is worth of being further investigated.
Management of difficult airway in intratracheal tumor surgery.
Goyal, Amit; Tyagi, Isha; Tewari, Prabhat; Agarwal, Surendra K; Syal, Rajan
2005-06-07
Tracheal malignancies are usual victim of delay in diagnosis by virtue of their symptoms resembling asthma. Sometimes delayed diagnosis may lead to almost total airway obstruction. For difficult airways, not leaving any possibility of manipulation into neck region or endoscopic intervention, femorofemoral cardiopulmonary bypass can be a promising approach. We are presenting a case of tracheal adenoid cystic carcinoma (cylindroma) occupying about 90% of the tracheal lumen. It was successfully managed by surgical excision of mass by sternotomy and tracheotomy under femorofemoral cardiopulmonary bypass (CPB). Any patient with recurrent respiratory symptoms should be evaluated by radiological and endoscopic means earlier to avoid delay in diagnosis of such conditions. Femorofemoral cardiopulmonary bypass is a relatively safe way of managing certain airway obstructions.
Management of difficult airway in intratracheal tumor surgery
Goyal, Amit; Tyagi, Isha; Tewari, Prabhat; Agarwal, Surendra K; Syal, Rajan
2005-01-01
Background Tracheal malignancies are usual victim of delay in diagnosis by virtue of their symptoms resembling asthma. Sometimes delayed diagnosis may lead to almost total airway obstruction. For difficult airways, not leaving any possibility of manipulation into neck region or endoscopic intervention, femorofemoral cardiopulmonary bypass can be a promising approach. Case Presentation We are presenting a case of tracheal adenoid cystic carcinoma (cylindroma) occupying about 90% of the tracheal lumen. It was successfully managed by surgical excision of mass by sternotomy and tracheotomy under femorofemoral cardiopulmonary bypass (CPB). Conclusion Any patient with recurrent respiratory symptoms should be evaluated by radiological and endoscopic means earlier to avoid delay in diagnosis of such conditions. Femorofemoral cardiopulmonary bypass is a relatively safe way of managing certain airway obstructions. PMID:15941480
Lu, Chenghui; Wang, Xufu; Liu, Bin; Liu, Xinfeng; Wang, Guoming; Zhang, Qin
2017-08-01
The aim of the present study was to investigate the application value of 99m Tc-methoxyisobutylisonitrile (MIBI) imaging to differentiate between benign and malignant thymic masses. A total of 32 patients with space-occupying mediastinal masses were enrolled and early and delayed-phase images were collected following injection with the imaging agent. The tumor to background ratio (T/N) values at the different phases were also recorded. The sensitivity of the qualitative analysis to distinguish between benign and malignant thymic masses was 95.24%, with specificity as 90.91%. The T/N values in the early and delayed phases were not significantly different in the group with benign thymic masses, but demonstrated statistical significant differences in the groups with low- and intermediate-grade malignant thymic masses. The T/N values at the above early and delayed phase were significantly different between the benign and low-grade malignancy groups, as well as between low- and moderate-grade malignancy groups. Those between the benign and moderate-grade malignancy groups demonstrated no significant difference. 99m Tc-MIBI imaging was able to differentiate between benign and malignant thymic masses, and the simultaneous semi-quantitative analysis of the T/N values of the tumors may be able to initially determine the degree of malignancy of thymoma.
Sokolova, Alexandra; Chan, Onyee; Ullah, Waqas; Hamdani, Auon Abbas; Anwer, Faiz
2017-04-11
High-dose chemotherapy with autologous stem cell rescue is commonly used for the treatment of relapsed germ cell tumors. We report the first case of delayed rhabdomyolysis with paclitaxel, ifosfamide, carboplatin, and etoposide regimen. We report a case of a 21-year-old African-American man diagnosed with relapsed non-seminomatous germ cell tumor who received high-dose chemotherapy with carboplatin and etoposide following TIGER trial arm B off-protocol. His course was complicated by muscle pain and rhabdomyolysis after cycle 4 on day +12 after infusion of autologous stem cells. To the best of our knowledge, this complication has not been reported with this regimen. A differential diagnosis of sepsis and neutropenic fever along with side effects of high-dose chemotherapy were considered, but based on the timing of events, it was concluded that the etiology of rhabdomyolysis is high-dose chemotherapy. Rhabdomyolysis was successfully treated with hydration and did not recur during subsequent cycle 5. Delayed rhabdomyolysis after high-dose chemotherapy with paclitaxel, ifosfamide, carboplatin, and etoposide regimen has not been previously reported and needs to be considered for preventive strategy and prompt diagnosis and treatment to avoid renal complications. Physicians should have a low threshold to check creatine kinase enzymes in patients with unexplained muscle pain or renal insufficiency after high-dose chemotherapy.
Chaudary, Naz; Pintilie, Melania; Jelveh, Salomeh; Lindsay, Patricia; Hill, Richard P; Milosevic, Michael
2017-03-01
Purpose: There is an important need to improve the effectiveness of radio-chemotherapy (RTCT) for cervical cancer. The CXCL12/CXCR4 pathway can influence RT response by recruiting normal myeloid cells to the tumor microenvironment that in turn can exert radioprotective effects, and may promote metastases. The objective of this study was to explore the efficacy and toxicity of combining RTCT with CXCL12/CXCR4 inhibition in cervical cancer. Experimental Design: CXCR4 expression was measured in 115 patients with cervical cancer. Two primary orthotopic cervical cancer xenografts (OCICx) with different levels of CXCR4 expression were treated with RT (30 Gy: 15 daily fractions) and weekly cisplatin (4 mg/kg), with or without the CXCR4 inhibitor Plerixafor (5 mg/kg/day). The endpoints were tumor growth delay and lymph node metastases. Acute intestinal toxicity was assessed using a crypt cell assay. Results: There was a fivefold variation in CXCR4 mRNA expression in the patient samples, and good correlation between the expression in patients and in the xenografts. The combination of RTCT and Plerixafor produced substantial tumor growth delay and reduced lymph node metastases compared with RTCT alone in both of the xenograft models. There was a trend toward reduced acute intestinal toxicity with the addition of Plerixafor to RTCT. There were no changes in normal organ morphology to suggest increased late toxicity. Conclusions: This study demonstrates that the addition of Plerixafor to standard RTCT improves primary tumor response and reduces metastases in cervical cancer with no increase in toxicity. This combination warrants further investigation in phase I/II clinical trials. Clin Cancer Res; 23(5); 1242-9. ©2016 AACR . ©2016 American Association for Cancer Research.
Controlled release microspheres loaded with BMP7 suppress primary tumors from human glioblastoma
González-Gómez, P.; de la Fuente, M.; Hernández-Laín, Aurelio; Mira, H.; Sánchez-Gómez, P.; Garcia-Fuentes, M.
2015-01-01
Glioblastoma tumor initiating cells are believed to be the main drivers behind tumor recurrence, and therefore therapies that specifically manage this population are of great medical interest. In a previous work, we synthesized controlled release microspheres optimized for intracranial delivery of BMP7, and showed that these devices are able to stop the in vitro growth of a glioma cell line. Towards the translational development of this technology, we now explore these microspheres in further detail and characterize the mechanism of action and the in vivo therapeutic potential using tumor models relevant for the clinical setting: human primary glioblastoma cell lines. Our results show that BMP7 can stop the proliferation and block the self-renewal capacity of those primary cell lines that express the receptor BMPR1B. BMP7 was encapsulated in poly (lactic-co-glycolic acid) microspheres in the form of a complex with heparin and Tetronic, and the formulation provided effective release for several weeks, a process controlled by carrier degradation. Data from xenografts confirmed reduced and delayed tumor formation for animals treated with BMP7-loaded microspheres. This effect was coincident with the activation of the canonical BMP signaling pathway. Importantly, tumors treated with BMP7-loaded microspheres also showed downregulation of several markers that may be related to a malignant stem cell-like phenotype: CD133+, Olig2, and GFAPδ. We also observed that tumors treated with BMP7-loaded microspheres showed enhanced expression of cell cycle inhibitors and reduced expression of the proliferation marker PCNA. In summary, BMP7-loaded controlled release microspheres are able to inhibit GBM growth and reduce malignancy markers. We envisage that this kind of selective therapy for tumor initiating cells could have a synergistic effect in combination with conventional cytoreductive therapy (chemo-, radiotherapy) or with immunotherapy. PMID:25860932
The European approach to in-transit melanoma lesions.
Hoekstra, H J
2008-05-01
The biological behavior of melanoma is unpredictable. Three to five per cent of melanoma patients will develop in-transit lesions and the median time to recurrence ranges between 13-16 months. At the time of recurrence the risk of occult nodal metastasis, with clinically negative regional lymph nodes, is as high as 50%. The risk of in-transit lesions depends on the tumor biology and not on the surgical approach to the regional lymph nodes. The high incidence of in-transit lesions at the lower limb may be caused by the gravity and delayed lymphatic drainage. The treatment of limited disease is local excision, laser ablation, cryosurgery, while multiple in-transit lesions or bulky disease located in a limb can be successfully treated with regional chemotherapy, a therapeutic isolated limb perfusion or infusion with melphalan or a combination of melphalan and tumor necrosis factor (TNF) alpha. If local regional treatment or systemic dacarbazine based systemic treatment fails, novel systemic treatment strategies with vaccines, antibodies and gene therapy are currently investigated.
Squamous cell carcinoma of the bladder mimicking interstitial cystitis and voiding dysfunction.
Prudnick, Colton; Morley, Chad; Shapiro, Robert; Zaslau, Stanley
2013-01-01
Squamous cell carcinoma (SCC) of the bladder is a relatively uncommon cause of bladder cancer accounting for <5% of bladder tumors in the western countries. SCC has a slight male predominance and tends to occur in the seventh decade of life. The main presenting symptom of SCC is hematuria, and development of this tumor in the western world is associated most closely with chronic indwelling catheters and spinal cord injuries. A 39-year-old Caucasian female presented with bladder and lower abdominal pain, urinary frequency, and nocturia which was originally believed to be interstitial cystitis (IC) but was later diagnosed as SCC of the bladder. Presentation of SCC without hematuria is an uncommon presentation, but the absence of this symptom should not lead a practitioner to exclude the diagnosis of SCC. This case is being reported in an attempt to explain the delay and difficulty of diagnosis. Background on the risk factors for SCC of the bladder and the typical presenting symptoms of bladder SCC and IC are also reviewed.
Brunocilla, E; Borghesi, M; Schiavina, R; Palmieri, F; Pernetti, R; Monti, C; Martorana, G
2014-01-01
Aim of this study is to provide our results after long-term active surveillance (AS) protocol for small renal masses (SRMs), and to report the outcomes of patients who remained in AS compared to those who underwent delayed surgical intervention. We retrospectively reviewed our database of 58 patients diagnosed with 60 contrast enhancing SRMs suspicious for renal cell carcinoma (RCC). All patients had clinical and radiological follow-up every 6 months. We evaluated the differences between patients who remained on AS and those who underwent surgical delayed intervention. The mean age was 75 years, the mean follow-up was 88.5 months. The median initial tumor size at presentation was 2.6cm, and the median estimated tumor volume was 8.7cm(3). The median linear growth rate of the cohort was 0.7cm/year, and the median volumetric growth rate was 8.8 cm(3)/year. Death for metastatic disease occurred in 2 patients (3.4%). No correlation was found between initial tumor size and size growth rate. The mean linear and volumetric growth rates of the group of patients who underwent surgery was higher than in those who remained on surveillance (1.9 vs. 0.4cm/year and 16.1 vs. 4.6 cm(3)/year, respectively; P<.001). Most of SRMs demonstrate to have an indolent course and low metastatic potential. Malignant disease could have faster linear and volumetric growth rates, thus suggesting the need for a delayed surgical intervention. In properly selected patients with low life-expectancy, AS could be a reasonable option in the management of SRMs. Copyright © 2013 AEU. Published by Elsevier Espana. All rights reserved.
Tumor formation initiated by nondividing epidermal cells via an inflammatory infiltrate.
Arwert, Esther N; Lal, Rohit; Quist, Sven; Rosewell, Ian; van Rooijen, Nico; Watt, Fiona M
2010-11-16
In mammalian epidermis, integrin expression is normally confined to the basal proliferative layer that contains stem cells. However, in epidermal hyperproliferative disorders and tumors, integrins are also expressed by suprabasal cells, with concomitant up-regulation of Erk mitogen-activated protein kinase (MAPK) signaling. In transgenic mice, expression of activated MAPK kinase 1 (MEK1) in the suprabasal, nondividing, differentiated cell layers (InvEE transgenics) results in epidermal hyperproliferation and skin inflammation. We now demonstrate that wounding induces benign tumors (papillomas and keratoacanthomas) in InvEE mice. By generating chimeras between InvEE mice and mice that lack the MEK1 transgene, we demonstrate that differentiating, nondividing cells that express MEK1 stimulate adjacent transgene-negative cells to divide and become incorporated into the tumor mass. Dexamethasone treatment inhibits tumor formation, suggesting that inflammation is involved. InvEE skin and tumors express high levels of IL1α; treatment with an IL1 receptor antagonist delays tumor onset and reduces incidence. Depletion of γδ T cells and macrophages also reduces tumor incidence. Because a hallmark of cancer is uncontrolled proliferation, it is widely assumed that tumors arise only from dividing cells. In contrast, our studies show that differentiated epidermal cells can initiate tumor formation without reacquiring the ability to divide and that they do so by triggering an inflammatory infiltrate.
Jiao, Shu-Fan; Sun, Kai; Chen, Xiao-Jing; Zhao, Xue; Cai, Ning; Liu, Yan-Jun; Xu, Long-Mei; Kong, Xian-Ming; Wei, Li-Xin
2014-01-08
Patients with colorectal cancer (CRC) often develop liver metastases, in which case surgery is considered the only potentially curative treatment option. However, liver surgery is associated with a risk of ischemia-reperfusion (IR) injury, which is thought to promote the growth of colorectal liver metastases. The influence of IR-induced tumor necrosis factor alpha (TNF-α) elevation in the process still is unknown. To investigate the role of TNF-α in the growth of pre-existing micrometastases in the liver following IR, we used a mouse model of colorectal liver metastases. In this model, mice received IR treatment seven days after intrasplenic injections of colorectal CT26 cells. Prior to IR treatment, either TNF-α blocker Enbrel or low-dose TNF-α, which could inhibit IR-induced TNF-α elevation, was administered by intraperitoneal injection. Hepatic IR treatment significantly promoted CT26 tumor growth in the liver, but either Enbrel or low-dose TNF-α pretreatment reversed this trend. Further studies showed that the CT26 + IR group prominently increased the levels of ALT and AST, liver necrosis, inflammatory infiltration and the expressions of hepatic IL-6, MMP9 and E-selectin compared to those of CT26 group. Inhibition of TNF-α elevation remarkably attenuated the increases of these liver inflammatory damage indicators and tumor-promoting factors. These findings suggested that inhibition of TNF-α elevation delayed the IR-enhanced outgrowth of colorectal liver metastases by reducing IR-induced inflammatory damage and the formation of tumor-promoting microenvironments. Both Enbrel and low-dose TNF-α represented the potential therapeutic approaches for the protection of colorectal liver metastatic patients against IR injury-induced growth of liver micrometastases foci.
2014-01-01
Background Patients with colorectal cancer (CRC) often develop liver metastases, in which case surgery is considered the only potentially curative treatment option. However, liver surgery is associated with a risk of ischemia-reperfusion (IR) injury, which is thought to promote the growth of colorectal liver metastases. The influence of IR-induced tumor necrosis factor alpha (TNF-α) elevation in the process still is unknown. To investigate the role of TNF-α in the growth of pre-existing micrometastases in the liver following IR, we used a mouse model of colorectal liver metastases. In this model, mice received IR treatment seven days after intrasplenic injections of colorectal CT26 cells. Prior to IR treatment, either TNF-α blocker Enbrel or low-dose TNF-α, which could inhibit IR-induced TNF-α elevation, was administered by intraperitoneal injection. Results Hepatic IR treatment significantly promoted CT26 tumor growth in the liver, but either Enbrel or low-dose TNF-α pretreatment reversed this trend. Further studies showed that the CT26 + IR group prominently increased the levels of ALT and AST, liver necrosis, inflammatory infiltration and the expressions of hepatic IL-6, MMP9 and E-selectin compared to those of CT26 group. Inhibition of TNF-α elevation remarkably attenuated the increases of these liver inflammatory damage indicators and tumor-promoting factors. Conclusion These findings suggested that inhibition of TNF-α elevation delayed the IR-enhanced outgrowth of colorectal liver metastases by reducing IR-induced inflammatory damage and the formation of tumor-promoting microenvironments. Both Enbrel and low-dose TNF-α represented the potential therapeutic approaches for the protection of colorectal liver metastatic patients against IR injury-induced growth of liver micrometastases foci. PMID:24397824
Impact of false-negative sentinel lymph node biopsy on survival in patients with cutaneous melanoma.
Caracò, C; Marone, U; Celentano, E; Botti, G; Mozzillo, N
2007-09-01
Sentinel lymph node biopsy is widely accepted as standard care in melanoma despite lack of pertinent randomized trials results. A possible pitfall of this procedure is the inaccurate identification of the sentinel lymph node leading to biopsy and analysis of a nonsentinel node. Such a technical failure may yield a different prognosis. The purpose of this study is to analyze the incidence of false negativity and its impact on clinical outcome and to try to understand its causes. The Melanoma Data Base at National Cancer Institute of Naples was analyzed comparing results between false-negative and tumor-positive sentinel node patients focusing on overall survival and prognostic factors influencing the clinical outcome. One hundred fifty-one cases were diagnosed to be tumor-positive after sentinel lymph node biopsy and were subjected to complete lymph node dissection. Thirty-four (18.4%)patients with tumor-negative sentinel node subsequently developed lymph node metastases in the basin site of the sentinel procedure. With a median follow-up of 42.8 months the 5-year overall survival was 48.4% and 66.3% for false-negative and tumor-positive group respectively with significant statistical differences (P < .03). The sensitivity of sentinel lymph node biopsy was 81.6%, and a regional nodal basin recurrence after negative-sentinel node biopsy means a worse prognosis, compared with patients submitted to complete lymph node dissection after a positive sentinel biopsy. The evidence of higher number of tumor-positive nodes after delayed lymphadenectomy in false-negative group compared with tumor-positive sentinel node cases, confirmed the importance of an early staging of lymph nodal involvement. Further data will better clarify the role of prognostic factors to identify cases with a more aggressive biological behavior of the disease.
A new kink in an old theory of carcinogenesis.
Prehn, Richmond T; Prehn, Liisa M
2013-02-18
According to Berenblum's two-stage hypothesis, the first stage in carcinogenesis is the production of benign premalignant lesions. Between this initiation stage and the formation of a malignant tumor there is often a long lag phase. We propose that this lag is caused by the delay in the formation of a new and rare tumor-specific antigen, which induces an immune response that stimulates tumor growth. Such tumor-specific antigens could arise as a result of a mutator-like phenotype, which is supposedly present in the benign initial stage of carcinogenesis. According to this hypothesis, the first stage lesion provides a weakly mutagenic environment conducive to the formation of the new antigen(s). If no such new antigens appear so there is no consequent immune response, it is argued that carcinogenesis would seldom if ever ensue.
A new kink in an old theory of carcinogenesis
2013-01-01
According to Berenblum’s two-stage hypothesis, the first stage in carcinogenesis is the production of benign premalignant lesions. Between this initiation stage and the formation of a malignant tumor there is often a long lag phase. We propose that this lag is caused by the delay in the formation of a new and rare tumor-specific antigen, which induces an immune response that stimulates tumor growth. Such tumor-specific antigens could arise as a result of a mutator-like phenotype, which is supposedly present in the benign initial stage of carcinogenesis. According to this hypothesis, the first stage lesion provides a weakly mutagenic environment conducive to the formation of the new antigen(s). If no such new antigens appear so there is no consequent immune response, it is argued that carcinogenesis would seldom if ever ensue. PMID:23414486
Myung, Jae-Kyung; Wang, Gang; Chiu, Helen H L; Wang, Jun; Mawji, Nasrin R; Sadar, Marianne D
2017-01-01
Androgen receptor (AR) is a member of the steroid receptor family and a therapeutic target for all stages of prostate cancer. AR is activated by ligand binding within its C-terminus ligand-binding domain (LBD). Here we show that overexpression of the AR NTD to generate decoy molecules inhibited both the growth and progression of prostate cancer in castrated hosts. Specifically, it was shown that lentivirus delivery of decoys delayed hormonal progression in castrated hosts as indicated by increased doubling time of tumor volume, prolonged time to achieve pre-castrate levels of serum prostate-specific antigen (PSA) and PSA nadir. These clinical parameters are indicative of delayed hormonal progression and improved therapeutic response and prognosis. Decoys reduced the expression of androgen-regulated genes that correlated with reduced in situ interaction of the AR with androgen response elements. Decoys did not reduce levels of AR protein or prevent nuclear localization of the AR. Nor did decoys interact directly with the AR. Thus decoys did not inhibit AR transactivation by a dominant negative mechanism. This work provides evidence that the AR NTD plays an important role in the hormonal progression of prostate cancer and supports the development of AR antagonists that target the AR NTD.
Myung, Jae-Kyung; Wang, Gang; Chiu, Helen H. L.; Wang, Jun; Mawji, Nasrin R.; Sadar, Marianne D.
2017-01-01
Androgen receptor (AR) is a member of the steroid receptor family and a therapeutic target for all stages of prostate cancer. AR is activated by ligand binding within its C-terminus ligand-binding domain (LBD). Here we show that overexpression of the AR NTD to generate decoy molecules inhibited both the growth and progression of prostate cancer in castrated hosts. Specifically, it was shown that lentivirus delivery of decoys delayed hormonal progression in castrated hosts as indicated by increased doubling time of tumor volume, prolonged time to achieve pre-castrate levels of serum prostate-specific antigen (PSA) and PSA nadir. These clinical parameters are indicative of delayed hormonal progression and improved therapeutic response and prognosis. Decoys reduced the expression of androgen-regulated genes that correlated with reduced in situ interaction of the AR with androgen response elements. Decoys did not reduce levels of AR protein or prevent nuclear localization of the AR. Nor did decoys interact directly with the AR. Thus decoys did not inhibit AR transactivation by a dominant negative mechanism. This work provides evidence that the AR NTD plays an important role in the hormonal progression of prostate cancer and supports the development of AR antagonists that target the AR NTD. PMID:28306720
Berti, Aldo; Granville, Michelle; Jacobson, Robert E
2018-01-12
A case of an extremely healthy, active, 96-year-old patient, nonsmoker, is reviewed. He was initially treated for left V1, V2, and V3 trigeminal neuralgia in 2001, at age 80, with stereotactic radiosurgery (SRS) with a dose of 80 Gy to the left retrogasserian trigeminal nerve. He remained asymptomatic for nine years until his trigeminal pain recurred in 2010. He was first treated medically but was intolerant to increasing doses of carbamazepine and gabapentin. He underwent a second SRS in 2012 with a dose of 65.5 Gy to the same retrogasserian area of the trigeminal nerve, making the total cumulative dose 125.5 Gy. In late 2016, four years after the 2 nd SRS, he was found to have invasive keratinizing squamous cell carcinoma in the left posterior mandibular oral mucosa. Keratinizing squamous cell carcinoma is seen primarily in smokers or associated with the human papillomavirus, neither of which was found in this patient. A review of his two SRS plans shows that the left lower posterior mandibular area was clearly within the radiation fields for both SRS treatments. It is postulated that his cancer developed secondary to the long-term radiation effect with a very localized area being exposed twice to a focused, cumulative, high-dose radiation. There are individual reports in the literature of oral mucositis immediately after radiation for trigeminal neuralgia and the delayed development of malignant tumors, including glioblastoma found after SRS for acoustic neuromas, but there are no reports of delayed malignant tumors developing within the general radiation field. Using repeat SRS is an accepted treatment for recurrent trigeminal neuralgia, but physicians and patients should be aware of the potential effects of higher cumulative radiation effects within the treatment field when patients undergo repeat procedures.
Tršan, Tihana; Vuković, Kristina; Filipović, Petra; Brizić, Ana Lesac; Lemmermann, Niels A W; Schober, Kilian; Busch, Dirk H; Britt, William J; Messerle, Martin; Krmpotić, Astrid; Jonjić, Stipan
2017-08-01
Designing CD8 + T-cell vaccines, which would provide protection against tumors is still considered a great challenge in immunotherapy. Here we show the robust potential of cytomegalovirus (CMV) vector expressing the NKG2D ligand RAE-1γ as CD8 + T cell-based vaccine against malignant tumors. Immunization with the CMV vector expressing RAE-1γ, delayed tumor growth or even provided complete protection against tumor challenge in both prophylactic and therapeutic settings. Moreover, a potent tumor control in mice vaccinated with this vector can be further enhanced by blocking the immune checkpoints TIGIT and PD-1. CMV vector expressing RAE-1γ potentiated expansion of KLRG1 + CD8 + T cells with enhanced effector properties. This vaccination was even more efficient in neonatal mice, resulting in the expansion and long-term maintenance of epitope-specific CD8 + T cells conferring robust resistance against tumor challenge. Our data show that immunomodulation of CD8 + T-cell responses promoted by herpesvirus expressing a ligand for NKG2D receptor can provide a powerful platform for the prevention and treatment of CD8 + T-cell sensitive tumors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kozin, S V; Shkarin, P; Gerweck, L E
2001-06-15
The extracellular pH is lower in tumor than in normal tissue, whereas their intracellular pH is similar. In this study, we show that the tumor-specific pH gradient may be exploited for the treatment of cancer by weak acid chemotherapeutics. i.v.-injected glucose substantially decreased the electrode estimated extracellular pH in a xenografted human tumor while its intracellular pH, evaluated by (31)P magnetic resonance spectroscopy, remained virtually unchanged. The resulting increase in the average cell pH gradient caused a parallel increase in tumor growth delay by the weak acid chlorambucil (CHL). Regardless of glucose administration, the effect of CHL was significantly greater in tumors preirradiated with a large dose of ionizing radiation. This suggests that CHL was especially pronounced in radioresistant hypoxic cells possessing a larger transmembrane pH gradient. These results indicate that the naturally occurring cell pH gradient difference between tumor and normal tissue is a major and exploitable determinant of the uptake of weak acids in the complex tumor microenvironment. The use of such drugs may be especially effective in combination with radiation.
Sphere-derived tumor cells exhibit impaired metastasis by a host-mediated quiescent phenotype
Bleau, Anne-Marie; Zandueta, Carolina; Redrado, Miriam; Martínez-Canarias, Susana; Larzábal, Leyre; Montuenga, Luis M.
2015-01-01
The spread of lung cancer cells to distant sites represents a common event associated with poor prognosis. A fraction of tumor cells named cancer stem cells (CSCs) have the ability to overcome therapeutic stress and remain quiescent. However, whether these CSCs have also the capacity to initiate and sustain metastasis remains unclear. Here, we used tumor sphere cultures (TSC) isolated from mouse and human lung cancer models to enrich for CSCs, and assessed their metastatic potential as compared to non-CSCs. As expected, TSC overexpressed a variety of stem cell markers and displayed chemoresistance. The CSC phenotype of TSC was confirmed by their higher growth ability in soft agar and tumorigenic potential in vivo, despite their reduced in vitro cell growth kinetics. Surprisingly, the appearance of spontaneous lung metastases was strongly delayed in mice injected with TSC as compared to non-TSC cells. Similarly, this finding was confirmed in several other models of metastasis, an effect associated with a retarded colonization activity. Interestingly, such delay correlated with a quiescent phenotype whose underlined mechanisms included an increase in p27 protein and lower phospho-ERK1/2 levels. Thus, these data suggest that cells enriched for CSC properties display an impaired metastatic activity, a finding with potential clinical implications. PMID:26318423
Dessens, Arianne B; van Herwerden, Michael C; Aarsen, Femke K; Birnie, Erwin; Catsman-Berrevoets, Coriene E
2016-08-01
The survival of childhood brain tumors has improved in the past 30 years, but acquired brain injury due to damage caused by tumor invasion and side effects of different treatment modalities frequently occurs. This study focused on residual impairments, health-related quality of life (HRQoL), and emotional and behavioral problems in 2 cohorts of survivors diagnosed and treated for various types of brain tumors. Survivors in the 2004 cohort visited the Erasmus Medical Centre for standardized follow-up between 2003 and 2004, and in the 2014 cohort, between 2012 and 2014. Data of neurologically impairments of all children were extracted from medical records. Parents and survivors filled out questionnaires on quality of life and emotional and behavioral problems. In both cohorts, approximately 55% of the survivors displayed neurologic impairments. In comparison with the healthy reference group, a reduced parent-reported quality of life was found on the Motor, Cognition, and Autonomy (Cohort 2004) scales. Comparison between the cohorts showed that parents in the 2004 cohort reported a higher HRQoL on the Motor and Cognitive functioning scales. In the 2014 cohort, children reported less negative emotions than healthy children. No increase in emotional or behavioral problems were reported by children in both cohorts, whereas parents reported problems in social functioning and isolation related to a delay in emotional development. Children surviving brain tumor treatment have a reduced quality of life. The authors therefore recommend regular screening of HRQoL and emotional and behavioral problems and referral to specific aftercare.
Singh, Narendra P; Singh, Udai P; Hegde, Venkatesh L; Guan, Hongbing; Hofseth, Lorne; Nagarkatti, Mitzi; Nagarkatti, Prakash S
2011-08-01
Understanding the molecular mechanisms through which natural products and dietary supplements exhibit anticancer properties is crucial and can lead to drug discovery and chemoprevention. The current study sheds new light on the mode of action of resveratrol (RES), a plant-derived polyphenolic compound, against EL-4 lymphoma growth. Immuno-compromised NOD/SCID mice injected with EL-4 tumor cells and treated with RES (100 mg/kg body weight) showed delayed development and progression of tumor growth and increased mean survival time. RES caused apoptosis in EL4 cells through activation of aryl hydrocarbon receptor (AhR) and upregulation of Fas and FasL expression in vitro. Blocking of RES-induced apoptosis in EL4 cells by FasL mAb, cleavage of caspases and PARP, and release of cytochorme c, demonstrated the participation of both extrinsic and intrinsic pathways of apoptosis. RES also induced upregulation of silent mating type information regulation 2 homolog, 1 (SIRT1) and downregulation of nuclear factor kappa B (NF-κB) in EL4 cells. siRNA-mediated downregulation of SIRT1 in EL4 cells increased the activation of NF-κB but decreased RES-mediated apoptosis, indicating the critical role of SIRT1 in apoptosis via blocking activation of NF-κB. These data suggest that RES-induced SIRT1 upregulation promotes tumor cell apoptosis through negative regulation of NF-κB, leading to suppression of tumor growth. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moretti, Luigi; Department of Radiation Oncology, Institut Jules Bordet, Universite Libre de Bruxelles, Brussels; Niermann, Kenneth
2011-07-15
Purpose: To determine whether MLN8054, an Aurora kinase A (Aurora-A) inhibitor causes radiosensitization in androgen-insensitive prostate cancer cells in vitro and in vivo. Methods and Materials: In vitro studies consisted of culturing PC3 and DU145 prostate cancer cells and then immunoblotting Aurora A and phospho-Aurora A after radiation and/or nocodazole with MLN8054. Phases of the cell cycle were measured with flow cytometry. PC3 and DU145 cell lines were measured for survival after treatment with MLN8054 and radiation. Immunofluorescence measured {gamma}-H2AX in the PC3 and DU145 cells after treatment. In vivo studies looked at growth delay of PC3 tumor cells inmore » athymic nude mice. PC3 cells grew for 6 to 8 days in mice treated with radiation, MLN8054, or combined for 7 more days. Tumors were resected and fixed on paraffin and stained for von Willebrand factor, Ki67, and caspase-3. Results: In vitro inhibition of Aurora-A by MLN8054 sensitized prostate cancer cells, as determined by dose enhancement ratios in clonogenic assays. These effects were associated with sustained DNA double-strand breaks, as evidenced by increased immunofluorescence for {gamma}-H2AX and significant G2/M accumulation and polyploidy. In vivo, the addition of MLN8054 (30 mg/kg/day) to radiation in mouse prostate cancer xenografts (PC3 cells) significantly increased tumor growth delay and apoptosis (caspase-3 staining), with reduction in cell proliferation (Ki67 staining) and vascular density (von Willebrand factor staining). Conclusion: MLN8054, a novel small molecule Aurora-A inhibitor showed radiation sensitization in androgen-insensitive prostate cancer in vitro and in vivo. This warrants the clinical development of MLN8054 with radiation for prostate cancer patients.« less
USDA-ARS?s Scientific Manuscript database
Metabolic activation of 1,25(OH)2D3 occurs at extra renal sites in several organs, including the breast. The purpose of this study was to determine if this local tumoral 25OHD3-1alphahydroxylase expression modulates any or all of the stages of breast tumor progression. For this purpose we used the...
Computed tomography of infantile hepatic hemangioendothelioma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucaya, J.; Enriquez, G.; Amat, L.
1985-04-01
Computed tomography (CT) was performed on five infants with hepatic hemangioendothelioma. Precontrast scans showed solitary or multiple, homogeneous, circumscribed areas with reduced attenuation values. Tiny tumoral calcifications were identified in two patients. Serial scans, after injection of a bolus of contrast material, showed early massive enhancement, which was either diffuse or peripheral. On delayed scans, multinocular tumors became isodense with surrounding liver, while all solitary ones showed varied degrees of centripetal enhancement and persistent central cleftlike unenhanced areas. The authors believe that these CT features are characteristic and obviate arteriographic confirmation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heravi, Mitra; Department of Radiation Oncology, McGill University, Montreal; Segal Cancer Center, Jewish General Hospital, Montreal
2015-06-01
Purpose: ZRBA1 is a combi-molecule designed to induce DNA alkylating lesions and to block epidermal growth factor receptor (EGFR) TK domain. Inasmuch as ZRBA1 downregulates the EGFR TK-mediated antisurvival signaling and induces DNA damage, we postulated that it might be a radiosensitizer. The aim of this study was to further investigate the potentiating effect of ZRBA1 in combination with radiation and to elucidate the possible mechanisms of interaction between these 2 treatment modalities. Methods and Materials: The triple negative human breast MDA-MB-468 cancer cell line and mouse mammary cancer 4T1 cell line were used in this study. Clonogenic assay, Westernmore » blot analysis, and DNA damage analysis were performed at multiple time points after treatment. To confirm our in vitro findings, in vivo tumor growth delay assay was performed. Results: Our results show that a combination of ZRBA1 and radiation increases the radiation sensitivity of both cell lines significantly with a dose enhancement factor of 1.56, induces significant numbers of DNA strand breaks, prolongs higher DNA damage up to 24 hours after treatment, and significantly increases tumor growth delay in a syngeneic mouse model. Conclusions: Our data suggest that the higher efficacy of this combination could be partially due to increased DNA damage and delayed DNA repair process and to the inhibition of EGFR. The encouraging results of this combination demonstrated a significant improvement in treatment efficiency and therefore could be applicable in early clinical trial settings.« less
Grill, Alex E; Shahani, Komal; Koniar, Brenda; Panyam, Jayanth
2018-04-01
Curcumin has shown promising inhibitory activity against HER-2-positive tumor cells in vitro but suffers from poor oral bioavailability in vivo. Our lab has previously developed a polymeric microparticle formulation for sustained delivery of curcumin for chemoprevention. The goal of this study was to examine the anticancer efficacy of curcumin-loaded polymeric microparticles in a transgenic mouse model of HER-2 cancer, Balb-neuT. Microparticles were injected monthly, and mice were examined for tumor appearance and growth. Initiating curcumin microparticle treatment at 2 or 4 weeks of age delayed tumor appearance by 2-3 weeks compared to that in control mice that received empty microparticles. At 12 weeks, abnormal (lobular hyperplasia, carcinoma in situ, and invasive carcinoma) mammary tissue area was significantly decreased in curcumin microparticle-treated mice, as was CD-31 staining. Curcumin treatment decreased mammary VEGF levels significantly, which likely contributed to slower tumor formation. When compared to saline controls, however, blank microparticles accelerated tumorigenesis and curcumin treatment abrogated this effect, suggesting that PLGA microparticles enhance tumorigenesis in this model. PLGA microparticle administration was shown to be associated with higher plasma lactic acid levels and increased activation of NF-κΒ. The unexpected side effects of PLGA microparticles may be related to the high dose of the microparticles that was needed to achieve sustained curcumin levels in vivo. Approaches that can decrease the overall dose of curcumin (for example, by increasing its potency or reducing its clearance rate) may allow the development of sustained release curcumin dosage forms as a practical approach to cancer chemoprevention.
Du, Yu-Jia; Lin, Ze-Min; Zhao, Ying-Hua; Feng, Xiu-Ping; Wang, Chang-Qing; Wang, Gang; Wang, Chun-Di; Shi, Wei; Zuo, Jian-Ping; Li, Fan; Wang, Cheng-Zhong
2013-02-01
The anti‑erbB2 scFv‑Fc‑IL‑2 fusion protein (HFI) is the basis for development of a novel targeted anticancer drug, in particular for the treatment of HER2‑positive cancer patients. HFI was fused with the anti‑erbB2 antibody and human IL‑2 by genetic engineering technology and by antibody targeting characteristics of HFI. IL‑2 was recruited to target cells to block HER2 signaling, inhibit or kill tumor cells, improve the immune capacity, reduce the dose of antibody and IL‑2 synergy. In order to analyse HFI drug ability, HFI plasmid stability was verified by HFI expression of the trend of volume changes. Additionally, HFI could easily precipitate and had progressive characteristics and thus, the buffer system of the additive phosphate‑citric acid buffer, arginine, Triton X‑100 or Tween‑80, the establishment of a microfiltration, ion exchange, affinity chromatography and gel filtration chromatography‑based purification process were explored. HFI samples were obtained according to the requirements of purity, activity and homogeneity. In vivo, HFI significantly delayed HER2 overexpression of non‑small cell lung cancer (Calu‑3) in human non‑small cell lung cancer xenografts in nude mice, and the inhibition rate was more than 60% (P<0.05) in the group treated with 1 mg/kg the HFI dose; HFI significantly inhibited HER2 expression of breast cancer (FVB/neu) transgenic mouse tumor growth in 1 mg/kg of the HFI dose group, and in the following treatment the 400 mm3 tumors disappeared completely. Combined with other HFI test data analysis, HFI not only has good prospects, but also laid the foundation for the development of antibody‑cytokine fusion protein‑like drugs.
Development of ipilimumab: contribution to a new paradigm for cancer immunotherapy.
Hoos, Axel; Ibrahim, Ramy; Korman, Alan; Abdallah, Kald; Berman, David; Shahabi, Vafa; Chin, Kevin; Canetta, Renzo; Humphrey, Rachel
2010-10-01
Identification of cytotoxic T-lymphocyte antigen-4 (CTLA-4) as a key negative regulator of T-cell activity led to development of the fully human, monoclonal antibody ipilimumab to block CTLA-4 and potentiate antitumor T-cell responses. Animal studies first provided insight into the ability of an anti-CTLA-4 antibody to cause tumor regression, particularly in combination regimens. Early clinical studies defined ipilimumab pharmacokinetics and possibilities for combinability. Phase II trials of ipilimumab in advanced melanoma showed objective responses, but a greater number of patients had disease stabilization. In a phase III trial, ipilimumab was the first agent to demonstrate an improvement in overall survival in patients with previously treated, advanced melanoma. The adverse event profile associated with ipilimumab was primarily immune-related. Adverse events can be severe and life-threatening, but most were reversible using treatment guidelines. Ipilimumab monotherapy exhibits conventional and new patterns of activity in advanced melanoma, with a delayed separation of Kaplan-Meier survival curves. The observation of some new response patterns with ipilimumab, which are not captured by standard response criteria, led to novel criteria for the evaluation of immunotherapy in solid tumors. Overall, lessons from the development of ipilimumab contributed to a new clinical paradigm for cancer immunotherapy evolved by the Cancer Immunotherapy Consortium. Copyright © 2010 Elsevier Inc. All rights reserved.
The immunotherapy of canine osteosarcoma: a historical and systematic review.
Wycislo, K L; Fan, T M
2015-01-01
Osteosarcoma is a malignant mesenchymal neoplasm that accounts for the majority of primary bone tumors in dogs and shares biological and clinical similarities with osteosarcoma in humans. Despite dose intensification with conventional cytotoxic therapies, survival times for dogs and humans diagnosed with high-grade osteosarcoma have not changed in the past 20 years, with the principal cause of mortality being the development of pulmonary metastases. Given the therapeutic plateau reached for delaying metastatic progression with cytotoxic agents, exploration of alterative adjuvant therapies for improving management of osteosarcoma micrometastases is clinically justified. Evidence suggests that osteosarcoma is an immunogenic tumor, and development of immunotherapies for the treatment of microscopic lung metastases might improve long-term outcomes. In this review, the history and foundational knowledge of immune interactions to canine osteosarcoma are highlighted. In parallel, immunotherapeutic strategies that have been explored for the treatment of canine osteosarcoma are summarized. With a greater understanding and awareness for how the immune system might be redirected toward combating osteosarcoma metastases, the rational development of diverse immune strategies for managing osteosarcoma holds substantial promise for transforming the therapeutic landscape and improving disease management in both dogs and human beings. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.
NASA Astrophysics Data System (ADS)
Falk, Martin; Horakova, Zuzana; Svobodova, Marketa; Masarik, Michal; Kopecna, Olga; Gumulec, Jaromir; Raudenska, Martina; Depes, Daniel; Bacikova, Alena; Falkova, Iva; Binkova, Hana
2017-09-01
In order to improve patients' post-treatment quality of life, a shift from surgery to non-surgical (chemo)radio-treatment is recognized in head and neck oncology. However, about half of HNSCC tumors are resistant to irradiation and an efficient marker of individual tumor radiosensitivity is still missing. We analyzed whether various parameters of DNA double strand break (DSB) repair determined in vitro can predict, prior to clinical treatment initiation, the radiosensitivity of tumors. We compared formation and decrease of γH2AX/53BP1 foci in 48 h after irradiating tumor cell primocultures with 2 Gy of γ-rays. To better understand complex tumor behavior, three different cell type primocultures - CD90-, CD90+, and a mixed culture of these cells - were isolated from 1 clinically radioresistant, 2 radiosensitive, and 4 undetermined HPV-HNSCC tumors and followed separately. While DSB repair was delayed and the number of persisting DSBs increased in the radiosensitive tumors, the results for the radioresistant tumor were similar to cultured normal human skin fibroblasts. Hence, DSB repair kinetics/efficiency may correlate with clinical response to radiotherapy for a subset of HNSCC tumors but the size (and therefore practical relevance) of this subset remains to be determined. The same is true for contribution of different cell type primocultures to tumor radioresistance.
Overexpression of IGF-I receptor in HeLa cells enhances in vivo radioresponse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaneko, Haruna; Yu, Dong; Miura, Masahiko
2007-11-30
Insulin-like growth factor I receptor (IGF-IR) is a transmembrane receptor tyrosine kinase whose activation strongly promotes cell growth and survival. We previously reported that IGF-IR activity confers intrinsic radioresistance in mouse embryo fibroblasts in vitro. However, it is still unclear whether tumor cells overexpressing IGF-IR exhibit radioresistance in vivo. For this purpose, we established HeLa cells that overexpress IGF-IR (HeLa-R), subcutaneously transplanted these cells into nude mice, and examined radioresponse in the resulting solid tumors. HeLa-R cells exhibited typical in vitro phenotypes generally observed in IGF-IR-overexpressing cells, as well as significant intrinsic radioresistance in vitro compared with parent cells. Asmore » expected, the transplanted HeLa-R tumors grew at a remarkably higher rate than parent tumors. Histological analysis revealed that HeLa-R tumors expressed more VEGF and had a higher density of tumor vessels. Unexpectedly, a marked growth delay was observed in HeLa-R tumors following 10 Gy of X-irradiation. Immunostaining of HeLa-R tumors for the hypoxia marker pimonidazole revealed a significantly lower level of hypoxic cells. Moreover, clamp hypoxia significantly increased radioresistance in HeLa-R tumors. Tumor microenvironments in vivo generated by the IGF-IR expression thus could be a major factor in determining the tumor radioresponse in vivo.« less
Chou, Cassie K.; Schietinger, Andrea; Liggitt, H. Denny; Tan, Xiaoxia; Funk, Sarah; Freeman, Gordon J.; Ratliff, Timothy L.; Greenberg, Norman M.; Greenberg, Philip D.
2012-01-01
Adoptive T cell therapy (ACT) for the treatment of established cancers is actively being pursued in clinical trials. However, poor in vivo persistence and maintenance of anti-tumor activity of transferred T cells remain major problems. Transforming growth factor beta (TGFβ) is a potent immunosuppressive cytokine that is often expressed at high levels within the tumor microenvironment, potentially limiting T cell mediated anti-tumor activity. Here, we used a model of autochthonous murine prostate cancer to evaluate the effect of cell intrinsic abrogation of TGFβ signaling in self/tumor specific CD8 T cells used in ACT to target the tumor in situ. We found that persistence and anti-tumor activity of adoptively transferred effector T cells deficient in TGFβ signaling was significantly improved in the cancerous prostate. However, over time, despite persistence in peripheral lymphoid organs, the numbers of transferred cells in the prostate decreased and the residual prostate infiltrating T cells were no longer functional. These findings reveal that TGFβ negatively regulates the accumulation and effector function of transferred self/tumor specific CD8 T cells and highlight that, when targeting a tumor antigen that is also expressed as a self-protein, additional substantive obstacles are operative within the tumor microenvironment, potentially hampering the success of ACT for solid tumors. PMID:22984076
Hypoxia-activated prodrug enhances therapeutic effect of sunitinib in melanoma
Liu, Shujing; Tetzlaff, Michael T.; Wang, Tao; Chen, Xiang; Yang, Ruifeng; Kumar, Suresh M.; Vultur, Adina; Li, Pengxiang; Martin, James S.; Herlyn, Meenhard; Amaravadi, Ravi
2017-01-01
Angiogenesis is a critical step during tumor progression. Anti-angiogenic therapy has only provided modest benefits in delaying tumor progression despite its early promise in cancer treatment. It has been postulated that anti-angiogenic therapy may promote the emergence of a more aggressive cancer cell phenotype by generating increased tumor hypoxia—a well-recognized promoter of tumor progression. TH-302 is a 2-nitroimidazole triggered hypoxia-activated prodrug (HAP) which has been shown to selectively target the hypoxic tumor compartment and reduce tumor volume. Here, we show that melanoma cells grown under hypoxic conditions exhibit increased resistance to a wide variety of therapeutic agents in vitro and generate larger and more aggressive tumors in vivo than melanoma cells grown under normoxic conditions. However, hypoxic melanoma cells exhibit a pronounced sensitivity to TH-302 which is further enhanced by the addition of sunitinib. Short term sunitinib treatment fails to prolong the survival of melanoma bearing genetically engineered mice (Tyr::CreER; BRafCA;Ptenlox/lox) but increases tumor hypoxia. Long term TH-302 alone modestly prolongs the overall survival of melanoma bearing mice. Combination therapy of TH-302 with sunitinib further increases the survival of treated mice. These studies provide a translational rationale for combining hypoxic tumor cell targeted therapies with anti-angiogenics for treatment of melanoma. PMID:29383148
NASA Astrophysics Data System (ADS)
Koller, Manfred R.; Hanania, Elie G.; Eisfeld, Timothy; O'Neal, Robert A.; Khovananth, Kevin M.; Palsson, Bernhard O.
2001-04-01
High-dose chemotherapy, followed by autologous hematopoietic stem cell (HSC) transplantation, is widely used for the treatment of cancer. However, contaminating tumor cells within HSC harvests continue to be of major concern since re-infused tumor cells have proven to contribute to disease relapse. Many tumor purging methods have been evaluated, but all leave detectable tumor cells in the transplant and result in significant loss of HSCs. These shortcomings cause engraftment delays and compromise the therapeutic value of purging. A novel approach integrating automated scanning cytometry, image analysis, and selective laser-induced killing of labeled cells within a cell mixture is described here. Non-Hodgkin's lymphoma (NHL) cells were spiked into cell mixtures, and fluorochrome-conjugated antibodies were used to label tumor cells within the mixture. Cells were then allowed to settle on a surface, and as the surface was scanned with a fluorescence excitation source, a laser pulse was fired at every detected tumor cell using high-speed beam steering mirrors. Tumor cells were selectively killed with little effect on adjacent non-target cells, demonstrating the feasibility of this automated cell processing approach. This technology has many potential research and clinical applications, one example of which is tumor cell purging for autologous HSC transplantation.
Scarpelli, Karime C; Valladão, Maria L; Metze, Konradin
2010-03-01
Canine transmissible venereal tumor (CTVT) is a neoplasm transmitted by transplantation. Monochemotherapy with vincristine is considered to be effective, but treatment time until complete clinical remission may vary. The aim of this study was to determine which clinical data at diagnosis could predict the responsiveness of CTVT to vincristine chemotherapy. One hundred dogs with CTVT entered this prospective study. The animals were treated with vincristine sulfate (0.025 mg/kg) at weekly intervals until the tumor had macroscopically disappeared. The time to complete remission was recorded. A multivariate Cox regression model indicated that larger tumor mass, increased age and therapy during hot and rainy months were independent significant unfavorable predictive factors retarding remission, whereas sex, weight, status as owned dog or breed were of no predictive relevance. Further studies are necessary to investigate whether these results are due to changes in immunological response mechanisms in animals with a diminished immune surveillance, resulting in delays in tumor regression. 2008 Elsevier Ltd. All rights reserved.
Early Ectopic Recurrence of Craniopharyngioma in the Cerebellopontine Angle.
Mahdi, Mohamad-Motaz Al; Krauss, Joachim K; Nakamura, Makoto; Brandis, Almuth; Hong, Bujung
2018-01-01
Ectopic recurrence of craniopharyngioma in the cerebellopontine angle after surgical resection of a suprasellar craniopharyngioma is rare. Thus, only 5 cases were reported with a delay ranging between 4 and 26 years after removal of the primary tumor. We report a unique case of ectopic recurrence of craniopharyngioma in the cerebellopontine angle, which occurred at only 4 months after surgical resection of the primary tumor. A 24-year-old man underwent resection of a suprasellar craniopharyngioma via a right pterional approach four months earlier. During follow-up, cerebral magnetic resonance imaging (MRI) showed a round homogeneous contrast-enhancing tumor in the right cerebellopontine angle with neither relation to the internal auditory canal nor to the dura mater. After microsurgical resection, histopathological findings revealed ectopic recurrence of craniopharyngioma with similar tumors like the primary tumor. Although infrequent, craniopharyngioma may disseminate via the cerebrospinal fluid during surgical resection and grow in an ectopic place. Early follow-up and MRI scan following resection of a craniopharyngioma is recommended.
Treatment of canine hemangiopericytomas with photodynamic therapy.
McCaw, D L; Payne, J T; Pope, E R; West, M K; Tompson, R V; Tate, D
2001-01-01
Canine hemangiopericytomas are a commonly occurring neoplasm with a clinical course of recurrence after surgical removal. This study sought to evaluate Photochlor (HPPH) photodynamic therapy (HPPH-PDT) as an adjuvant therapy to prevent recurrence of tumor after surgical removal. Sixteen dogs with naturally occurring hemangiopericytomas were treated with surgical removal of the tumor followed by PDT using Photochlor as the photosensitizer. Photochlor was injected intravenously at a dose of 0.3 mg/kg. Forty-eight hours later the treatment consisted of surgical removal of the tumor followed by HPPH-PDT. Nine dogs (56%) had recurrence of tumor from 2 to 29 (median 9) months after treatment. These results are comparable or not as good as other forms of therapy. Photochlor photodynamic therapy applied after surgery appears to have no advantage over other forms of therapy in regards to preventing recurrence. Delayed wound healing and infections are problematic and make HPPH-PDT an undesirable addition to surgery for the treatment of this tumor type. Copyright 2001 Wiley-Liss, Inc.
Targeting breast cancer with sugar-coated carbon nanotubes
Fahrenholtz, Cale D; Hadimani, Mallinath; King, S Bruce; Torti, Suzy V; Singh, Ravi
2015-01-01
Aims To evaluate the use of glucosamine functionalized multiwalled carbon nanotubes (glyco-MWCNTs) for breast cancer targeting. Materials & methods Two types of glucosamine functionalized MWCNTs were developed (covalently linked glucosamine and non-covalently phospholipid-glucosamine coated) and evaluated for their potential to bind and target breast cancer cells in vitro and in vivo. Results & conclusion Binding of glyco-MWCNTs in breast cancer cells is mediated by specific interaction with glucose transporters. Glyco-MWCNTs prepared by non-covalent coating with phospholipid-glucosamine displayed an extended blood circulation time, delayed urinary clearance, low tissue retention and increased breast cancer tumor accumulation in vivo. These studies lay the foundation for development of a cancer diagnostic agent based upon glyco-MWCNTs with the potential for superior accuracy over current radiopharmaceuticals. PMID:26296098
Feng, Liang; Yao, Hang-Ping; Wang, Wei; Zhou, Yong-Qing; Zhou, Jianwei; Zhang, Ruiwen; Wang, Ming-Hai
2014-12-01
The receptor tyrosine kinase RON is critical in epithelial tumorigenesis and a drug target for cancer therapy. Here, we report the development and therapeutic efficacy of a novel anti-RON antibody Zt/g4-maytansinoid (DM1) conjugates for targeted colorectal cancer (CRC) therapy. Zt/g4 (IgG1a/κ) was conjugated to DM1 via thioether linkage to form Zt/g4-DM1 with a drug-antibody ratio of 4:1. CRC cell lines expressing different levels of RON were tested in vitro to determine Zt/g4-DM1-induced RON endocytosis, cell-cycle arrest, and cytotoxicity. Efficacy of Zt/g4-DM1 in vivo was evaluated in mouse xenograft CRC tumor model. Zt/g4-DM1 rapidly induced RON endocytosis, arrested cell cycle at G2-M phase, reduced cell viability, and caused massive cell death within 72 hours. In mouse xenograft CRC models, Zt/g4-DM1 at a single dose of 20 mg/kg body weight effectively delayed CRC cell-mediated tumor growth up to 20 days. In a multiple dose-ranging study with a five injection regimen, Zt/g4-DM1 inhibited more than 90% tumor growth at doses of 7, 10, and 15 mg/kg body weight. The minimal dose achieving 50% of tumor inhibition was approximately 5.0 mg/kg. The prepared Zt/g4-DM1 is stable at 37°C for up to 30 days. At 60 mg/kg, Zt/g4-DM1 had a moderate toxicity in vivo with an average of 12% reduction in mouse body weight. Zt/g4-DM1 is highly effective in targeted inhibition of CRC cell-derived tumor growth in mouse xenograft models. This work provides the basis for development of humanized Zt/g4-DM1 for RON-targeted CRC therapy in the future. ©2014 American Association for Cancer Research.
Antigen localization controls T cell-mediated tumor immunity.
Zeelenberg, Ingrid S; van Maren, Wendy W C; Boissonnas, Alexandre; Van Hout-Kuijer, Maaike A; Den Brok, Martijn H M G M; Wagenaars, Jori A L; van der Schaaf, Alie; Jansen, Eric J R; Amigorena, Sebastian; Théry, Clotilde; Figdor, Carl G; Adema, Gosse J
2011-08-01
Effective antitumor immunotherapy requires the identification of suitable target Ags. Interestingly, many of the tumor Ags used in clinical trials are present in preparations of secreted tumor vesicles (exosomes). In this study, we compared T cell responses elicited by murine MCA101 fibrosarcoma tumors expressing a model Ag at different localizations within the tumor cell in association with secreted vesicles (exosomes), as a nonsecreted cell-associated protein, or as secreted soluble protein. Remarkably, we demonstrated that only the tumor-secreting vesicle-bound Ag elicited a strong Ag-specific CD8(+) T cell response, CD4(+) T cell help, Ag-specific Abs, and a decrease in the percentage of immunosuppressive regulatory T cells in the tumor. Moreover, in a therapeutic tumor model of cryoablation, only in tumors secreting vesicle-bound Ag could Ag-specific CD8(+) T cells still be detected up to 16 d after therapy. We concluded that the localization of an Ag within the tumor codetermines whether a robust immunostimulatory response is elicited. In vivo, vesicle-bound Ag clearly skews toward a more immunogenic phenotype, whereas soluble or cell-associated Ag expression cannot prevent or even delay outgrowth and results in tumor tolerance. This may explain why particular immunotherapies based on these vesicle-bound tumor Ags are potentially successful. Therefore, we conclude that this study may have significant implications in the discovery of new tumor Ags suitable for immunotherapy and that their location should be taken into account to ensure a strong antitumor immune response.
The Antivascular Actions of Mild Intensity Ultrasound on a Murine Neoplasm
NASA Astrophysics Data System (ADS)
Wood, Andrew K. W.; Bunte, Ralph M.; Ansaloni, Sara; Lee, William M.-F.; Sehgal, Chandra M.
2006-05-01
This study was aimed at determining whether mild intensity ultrasound affected the fragile and leaky angiogenic blood vessels in a tumor. In 27 mice (C3HV/HeN strain) a subcutaneous melanoma (K173522) was insonated with continuous physiotherapy ultrasound (1 MHz; spatial-average-temporal-average = 2.3 W cm-2). Analyses of contrast enhanced power Doppler observations showed that insonation significantly increased the avascular area in the neoplasm. A linear regression analysis demonstrated that each min of insonation lead to a 25% reduction in tumor vascularity. The predominant acute effect of insonation was an apparently irreparable dilation of the tumor capillaries; liquefactive necrosis of neoplastic cells, related to a secondary ischemia, was a delayed effect.
Oosterhof, G O; Smiths, G A; deRuyter, J E; Schalken, J A; Debruyne, F M
1990-01-01
We have studied the effect of high-energy shock waves (HESW) alone or in combination with biological response modifiers (BRMs) or Adriamycin on the growth of the NU-1 human kidney cancer xenograft. When HESW are administered repeatedly (four sessions of 800 shock waves on days 0, 2, 4 and 6) a prolonged delay in tumor growth was found compared with that following a single administration. This effect was temporary, and several days after stopping the HESW administration the tumor regained its original growth potential (same doubling time). Tumor growth was suppressed for a longer period by the combination of 4 sessions of HESW and a single administration of Adriamycin, 5 mg/kg. Combination of HESW treatment with interferon alpha (5.0 ng/g body weight, three times/week) and tumor necrosis factor alpha (500 ng/g body weight, 5 days/week) s.c. around the tumor resulted in a complete cessation of tumor growth. While Adriamycin had an additive effect on HESW treatment, the combination with BRMs was highly synergistic.
Electroretinography and Visual Evoked Potentials in Childhood Brain Tumor Survivors.
Pietilä, Sari; Lenko, Hanna L; Oja, Sakari; Koivisto, Anna-Maija; Pietilä, Timo; Mäkipernaa, Anne
2016-07-01
This population-based cross-sectional study evaluates the clinical value of electroretinography and visual evoked potentials in childhood brain tumor survivors. A flash electroretinography and a checkerboard reversal pattern visual evoked potential (or alternatively a flash visual evoked potential) were done for 51 survivors (age 3.8-28.7 years) after a mean follow-up time of 7.6 (1.5-15.1) years. Abnormal electroretinography was obtained in 1 case, bilaterally delayed abnormal visual evoked potentials in 22/51 (43%) cases. Nine of 25 patients with infratentorial tumor location, and altogether 12 out of 31 (39%) patients who did not have tumors involving the visual pathways, had abnormal visual evoked potentials. Abnormal electroretinographies are rarely observed, but abnormal visual evoked potentials are common even without evident anatomic lesions in the visual pathway. Bilateral changes suggest a general and possibly multifactorial toxic/adverse effect on the visual pathway. Electroretinography and visual evoked potential may have clinical and scientific value while evaluating long-term effects of childhood brain tumors and tumor treatment. © The Author(s) 2016.
Hua, Chiaho; Wu, Shengjie; Chemaitilly, Wassim; Lukose, Renin C; Merchant, Thomas E
2012-11-15
To develop a mathematical model utilizing more readily available measures than stimulation tests that identifies brain tumor survivors with high likelihood of abnormal growth hormone secretion after radiotherapy (RT), to avoid late recognition and a consequent delay in growth hormone replacement therapy. We analyzed 191 prospectively collected post-RT evaluations of peak growth hormone level (arginine tolerance/levodopa stimulation test), serum insulin-like growth factor 1 (IGF-1), IGF-binding protein 3, height, weight, growth velocity, and body mass index in 106 children and adolescents treated for ependymoma (n=72), low-grade glioma (n=28) or craniopharyngioma (n=6), who had normal growth hormone levels before RT. Normal level in this study was defined as the peak growth hormone response to the stimulation test≥7 ng/mL. Independent predictor variables identified by multivariate logistic regression with high statistical significance (p<0.0001) included IGF-1 z score, weight z score, and hypothalamic dose. The developed predictive model demonstrated a strong discriminatory power with an area under the receiver operating characteristic curve of 0.883. At a potential cutoff point of probability of 0.3 the sensitivity was 80% and specificity 78%. Without unpleasant and expensive frequent stimulation tests, our model provides a quantitative approach to closely follow the growth hormone secretory capacity of brain tumor survivors. It allows identification of high-risk children for subsequent confirmatory tests and in-depth workup for diagnosis of growth hormone deficiency. Copyright © 2012 Elsevier Inc. All rights reserved.
Improved Endpoints for Cancer Immunotherapy Trials
Eggermont, Alexander M. M.; Janetzki, Sylvia; Hodi, F. Stephen; Ibrahim, Ramy; Anderson, Aparna; Humphrey, Rachel; Blumenstein, Brent; Wolchok, Jedd
2010-01-01
Unlike chemotherapy, which acts directly on the tumor, cancer immunotherapies exert their effects on the immune system and demonstrate new kinetics that involve building a cellular immune response, followed by changes in tumor burden or patient survival. Thus, adequate design and evaluation of some immunotherapy clinical trials require a new development paradigm that includes reconsideration of established endpoints. Between 2004 and 2009, several initiatives facilitated by the Cancer Immunotherapy Consortium of the Cancer Research Institute and partner organizations systematically evaluated an immunotherapy-focused clinical development paradigm and created the principles for redefining trial endpoints. On this basis, a body of clinical and laboratory data was generated that supports three novel endpoint recommendations. First, cellular immune response assays generate highly variable results. Assay harmonization in multicenter trials may minimize variability and help to establish cellular immune response as a reproducible biomarker, thus allowing investigation of its relationship with clinical outcomes. Second, immunotherapy may induce novel patterns of antitumor response not captured by Response Evaluation Criteria in Solid Tumors or World Health Organization criteria. New immune-related response criteria were defined to more comprehensively capture all response patterns. Third, delayed separation of Kaplan–Meier curves in randomized immunotherapy trials can affect results. Altered statistical models describing hazard ratios as a function of time and recognizing differences before and after separation of curves may allow improved planning of phase III trials. These recommendations may improve our tools for cancer immunotherapy trials and may offer a more realistic and useful model for clinical investigation. PMID:20826737
Willow Leaves' Extracts Contain Anti-Tumor Agents Effective against Three Cell Types
El-Shemy, Hany A.; Aboul-Enein, Ahmed M.; Aboul-Enein, Khalid Mostafa; Fujita, Kounosuke
2007-01-01
Many higher plants contain novel metabolites with antimicrobial, antifungal and antiviral properties. However, in the developed world almost all clinically used chemotherapeutics have been produced by in vitro chemical synthesis. Exceptions, like taxol and vincristine, were structurally complex metabolites that were difficult to synthesize in vitro. Many non-natural, synthetic drugs cause severe side effects that were not acceptable except as treatments of last resort for terminal diseases such as cancer. The metabolites discovered in medicinal plants may avoid the side effect of synthetic drugs, because they must accumulate within living cells. The aim here was to test an aqueous extract from the young developing leaves of willow (Salix safsaf, Salicaceae) trees for activity against human carcinoma cells in vivo and in vitro. In vivo Ehrlich Ascites Carcinoma Cells (EACC) were injected into the intraperitoneal cavity of mice. The willow extract was fed via stomach tube. The (EACC) derived tumor growth was reduced by the willow extract and death was delayed (for 35 days). In vitro the willow extract could kill the majority (75%–80%) of abnormal cells among primary cells harvested from seven patients with acute lymphoblastic leukemia (ALL) and 13 with AML (acute myeloid leukemia). DNA fragmentation patterns within treated cells inferred targeted cell death by apoptosis had occurred. The metabolites within the willow extract may act as tumor inhibitors that promote apoptosis, cause DNA damage, and affect cell membranes and/or denature proteins. PMID:17264881
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gondi, Vinai; Hermann, Bruce P.; Mehta, Minesh P.
2012-07-15
Purpose: To prospectively evaluate the association between hippocampal dose and long-term neurocognitive function (NCF) impairment for benign or low-grade adult brain tumors treated with fractionated stereotactic radiotherapy (FSRT). Methods and Materials: Adult patients with benign or low-grade adult brain tumors were treated with FSRT per institutional practice. No attempt was made to spare the hippocampus. NCF testing was conducted at baseline and 18 months follow-up, on a prospective clinical trial. Regression-based standardized z scores were calculated by using similar healthy control individuals evaluated at the same test-retest interval. NCF impairment was defined as a z score {<=}-1.5. After delineation ofmore » the bilateral hippocampi according to the Radiation Therapy Oncology Group contouring atlas, dose-volume histograms were generated for the left and right hippocampi and for the composite pair. Biologically equivalent doses in 2-Gy fractions (EQD{sub 2}) assuming an {alpha}/{beta} ratio of 2 Gy were computed. Fisher's exact test and binary logistic regression were used for univariate and multivariate analyses, respectively. Dose-response data were fit to a nonlinear model. Results: Of 29 patients enrolled in this trial, 18 completed both baseline and 18-month NCF testing. An EQD{sub 2} to 40% of the bilateral hippocampi >7.3 Gy was associated with impairment in Wechsler Memory Scale-III Word List (WMS-WL) delayed recall (odds ratio [OR] 19.3; p = 0.043). The association between WMS-WL delayed recall and EQD{sub 2} to 100% of the bilateral hippocampi >0.0 Gy trended to significance (OR 14.8; p = 0.068). Conclusion: EQD{sub 2} to 40% of the bilateral hippocampi greater than 7.3 Gy is associated with long-term impairment in list-learning delayed recall after FSRT for benign or low-grade adult brain tumors. Given that modern intensity-modulated radiotherapy techniques can reduce the dose to the bilateral hippocampi below this dosimetric threshold, patients should be enrolled in ongoing prospective trials of hippocampal sparing during cranial irradiation to confirm these preliminary results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gondi, Vinai; Hermann, Bruce P.; Mehta, Minesh P.
2013-02-01
Purpose: To prospectively evaluate the association between hippocampal dose and long-term neurocognitive function (NCF) impairment for benign or low-grade adult brain tumors treated with fractionated stereotactic radiotherapy (FSRT). Methods and Materials: Adult patients with benign or low-grade adult brain tumors were treated with FSRT per institutional practice. No attempt was made to spare the hippocampus. NCF testing was conducted at baseline and 18 months follow-up, on a prospective clinical trial. Regression-based standardized z scores were calculated by using similar healthy control individuals evaluated at the same test-retest interval. NCF impairment was defined as a z score {<=}-1.5. After delineation ofmore » the bilateral hippocampi according to the Radiation Therapy Oncology Group contouring atlas, dose-volume histograms were generated for the left and right hippocampi and for the composite pair. Biologically equivalent doses in 2-Gy fractions (EQD{sub 2}) assuming an {alpha}/{beta} ratio of 2 Gy were computed. Fisher's exact test and binary logistic regression were used for univariate and multivariate analyses, respectively. Dose-response data were fit to a nonlinear model. Results: Of 29 patients enrolled in this trial, 18 completed both baseline and 18-month NCF testing. An EQD{sub 2} to 40% of the bilateral hippocampi >7.3 Gy was associated with impairment in Wechsler Memory Scale-III Word List (WMS-WL) delayed recall (odds ratio [OR] 19.3; p = 0.043). The association between WMS-WL delayed recall and EQD{sub 2} to 100% of the bilateral hippocampi >0.0 Gy trended to significance (OR 14.8; p = 0.068). Conclusion: EQD{sub 2} to 40% of the bilateral hippocampi greater than 7.3 Gy is associated with long-term impairment in list-learning delayed recall after FSRT for benign or low-grade adult brain tumors. Given that modern intensity-modulated radiotherapy techniques can reduce the dose to the bilateral hippocampi below this dosimetric threshold, patients should be enrolled in ongoing prospective trials of hippocampal sparing during cranial irradiation to confirm these preliminary results.« less
Metastasizing leiomyoma to heart.
Consamus, Erin N; Reardon, Michael J; Ayala, Alberto G; Schwartz, Mary R; Ro, Jae Y
2014-01-01
Cardiac smooth muscle tumors are rare. Three different clinical settings for these tumors have been reported, including benign metastasizing leiomyoma from the uterus, primary cardiac leiomyoma and leiomyosarcoma, and intravenous cardiac extension of pelvic leiomyoma, which is the most common. We present a case of a 55-year-old woman with a benign metastasizing leiomyoma to the heart 17 years after hysterectomy and 16 years after metastasis to the lung. Immunohistochemical stains for smooth muscle actin, desmin, and estrogen and progesterone receptors were positive, indicating a smooth muscle tumor of uterine origin. To our knowledge, this is only the fourth reported case of benign metastasizing leiomyoma to the heart and the first case of long-delayed cardiac metastasis after successful treatment of pulmonary metastasis. It illustrates that benign metastasizing leiomyoma should be included in the differential diagnosis of cardiac tumors in patients with a history of uterine leiomyoma, especially when associated with pulmonary metastasis.
Salemis, Nikolaos S
2015-02-01
Atypical lipomatous tumor (ALT)/well-differentiated liposarcoma (WDL) of the pectoralis major muscle is an exceedingly rare clinical entity. We describe here a case of intramuscular ALT/WDL of the pectoralis major muscle in a female patient who presented with clinical manifestations of a rapidly growing breast tumor. Diagnostic evaluation and management of the patient are discussed along with a review of the relevant literature. We conclude that although the clinical examination may be inconclusive, the mammogram and especially the magnetic resonance imaging scan can precisely delineate the anatomic location and extent of the ALT/WDL of the pectoralis major muscle, thus allowing a correct preoperative diagnosis and adequate preoperative surgical planning. Complete resection is the treatment of choice for ALT/WDL. Long-term follow-up, however, remains mandatory because of the risk of local recurrence or delayed dedifferentiation.
Salemis, Nikolaos S.
2015-01-01
Atypical lipomatous tumor (ALT)/well-differentiated liposarcoma (WDL) of the pectoralis major muscle is an exceedingly rare clinical entity. We describe here a case of intramuscular ALT/WDL of the pectoralis major muscle in a female patient who presented with clinical manifestations of a rapidly growing breast tumor. Diagnostic evaluation and management of the patient are discussed along with a review of the relevant literature. We conclude that although the clinical examination may be inconclusive, the mammogram and especially the magnetic resonance imaging scan can precisely delineate the anatomic location and extent of the ALT/WDL of the pectoralis major muscle, thus allowing a correct preoperative diagnosis and adequate preoperative surgical planning. Complete resection is the treatment of choice for ALT/WDL. Long-term follow-up, however, remains mandatory because of the risk of local recurrence or delayed dedifferentiation. PMID:25692417
Cell of Origin and Cancer Stem Cells in Tumor Suppressor Mouse Models of Glioblastoma.
Alcantara Llaguno, Sheila R; Xie, Xuanhua; Parada, Luis F
2016-01-01
The cellular origins and the mechanisms of progression, maintenance of tumorigenicity, and therapeutic resistance are central questions in the glioblastoma multiforme (GBM) field. Using tumor suppressor mouse models, our group recently reported two independent populations of adult GBM-initiating central nervous system progenitors. We found different functional and molecular subtypes depending on the tumor-initiating cell lineage, indicating that the cell of origin is a driver of GBM subtype diversity. Using an in vivo model, we also showed that GBM cancer stem cells (CSCs) or glioma stem cells (GSCs) contribute to resistance to chemotherapeutic agents and that genetic ablation of GSCs leads to a delay in tumor progression. These studies are consistent with the cell of origin and CSCs as critical regulators of the pathogenesis of GBM. © 2016 Alcantara Llaguno et al; Published by Cold Spring Harbor Laboratory Press.
Characterization of Arginase Expression in Glioma-Associated Microglia and Macrophages
Zhang, Leying; Gao, Hang; Song, Yanyan; Ren, Hui; Ouyang, Mao; Wu, Xiwei; D’Apuzzo, Massimo; Badie, Behnam
2016-01-01
Microglia (MG) and macrophages (MPs) represent a significant component of the inflammatory response to gliomas. When activated, MG/MP release a variety of pro-inflammatory cytokines, however, they also secrete anti-inflammatory factors that limit their cytotoxic function. The balance between pro and anti-inflammatory functions dictates their antitumor activity. To evaluate potential variations in MG and MP function in gliomas, we isolated these cells (and other Gr1+ cells) from intracranial GL261 murine gliomas by FACS and evaluated their gene expression profiles by microarray analysis. As expected, arginase 1 (Arg1, M2 marker) was highly expressed by tumor-associated Gr1+, MG and MP. However, in contrast to MP and Gr1+ cells that expressed Arg1 shortly after tumor trafficking, Arg1 expression in MG was delayed and occurred in larger tumors. Interestingly, depletion of MPs in tumors did not prevent MG polarization, suggesting direct influence of tumor-specific factors on MG Arg1 upregulation. Finally, Arg1 expression was confirmed in human GBM samples, but most Arg1+ cells were neutrophils and not MPs. These findings confirm variations in tumor MG and MP polarization states and its dependency on tumor microenvironmental factors. PMID:27936099
Characterization of Arginase Expression in Glioma-Associated Microglia and Macrophages.
Zhang, Ian; Alizadeh, Darya; Liang, Junling; Zhang, Leying; Gao, Hang; Song, Yanyan; Ren, Hui; Ouyang, Mao; Wu, Xiwei; D'Apuzzo, Massimo; Badie, Behnam
2016-01-01
Microglia (MG) and macrophages (MPs) represent a significant component of the inflammatory response to gliomas. When activated, MG/MP release a variety of pro-inflammatory cytokines, however, they also secrete anti-inflammatory factors that limit their cytotoxic function. The balance between pro and anti-inflammatory functions dictates their antitumor activity. To evaluate potential variations in MG and MP function in gliomas, we isolated these cells (and other Gr1+ cells) from intracranial GL261 murine gliomas by FACS and evaluated their gene expression profiles by microarray analysis. As expected, arginase 1 (Arg1, M2 marker) was highly expressed by tumor-associated Gr1+, MG and MP. However, in contrast to MP and Gr1+ cells that expressed Arg1 shortly after tumor trafficking, Arg1 expression in MG was delayed and occurred in larger tumors. Interestingly, depletion of MPs in tumors did not prevent MG polarization, suggesting direct influence of tumor-specific factors on MG Arg1 upregulation. Finally, Arg1 expression was confirmed in human GBM samples, but most Arg1+ cells were neutrophils and not MPs. These findings confirm variations in tumor MG and MP polarization states and its dependency on tumor microenvironmental factors.
Lambda phage-based vaccine induces antitumor immunity in hepatocellular carcinoma.
Iwagami, Yoshifumi; Casulli, Sarah; Nagaoka, Katsuya; Kim, Miran; Carlson, Rolf I; Ogawa, Kosuke; Lebowitz, Michael S; Fuller, Steve; Biswas, Biswajit; Stewart, Solomon; Dong, Xiaoqun; Ghanbari, Hossein; Wands, Jack R
2017-09-01
Hepatocellular carcinoma (HCC) is a difficult to treat tumor with a poor prognosis. Aspartate β-hydroxylase (ASPH) is a highly conserved enzyme overexpressed on the cell surface of both murine and human HCC cells. We evaluated therapeutic effects of nanoparticle lambda (λ) phage vaccine constructs against ASPH expressing murine liver tumors. Mice were immunized before and after subcutaneous implantation of a syngeneic BNL HCC cell line. Antitumor actively was assessed by generation of antigen specific cellular immune responses and the identification of tumor infiltrating lymphocytes. Prophylactic and therapeutic immunization significantly delayed HCC growth and progression. ASPH-antigen specific CD4+ and CD8+ lymphocytes were identified in the spleen of tumor bearing mice and cytotoxicity was directed against ASPH expressing BNL HCC cells. Furthermore, vaccination generated antigen specific Th1 and Th2 cytokine secretion by immune cells. There was widespread necrosis with infiltration of CD3+ and CD8+ T cells in HCC tumors of λ phage vaccinated mice compared to controls. Moreover, further confirmation of anti-tumor effects on ASPH expressing tumor cell growth were obtained in another murine syngeneic vaccine model with pulmonary metastases. These observations suggest that ASPH may serve as a highly antigenic target for immunotherapy.
A case report of phosphaturic mesenchymal tumor-induced osteomalacia
Wu, Weiqian; Wang, Chongyang; Ruan, Jianwei; Chen, Feng; Li, Ningjun; Chen, Fanghu
2017-01-01
Abstract Rationale: Tumor-induced osteomalacia (TIO) is a rare and often misdiagnosed syndrome. Surgical resection is currently the first line treatment for TIO. Patient concerns: Here we report the case of a 49-year-old woman presented with intermittent pain in the right chest and bilateral hip that had persisted for over two years. Diagnoses: She was diagnosed of TIO caused by a phosphaturic mesenchymal tumor based on the following examinations. Laboratory tests revealed high serum alkaline phosphatase, high urinary phosphorus, hypophosphatemia and normal serum calcium levels. 18-FDG PET/CT indicated a systemic multi-site symmetrical pseudo fracture and a tumor in the 7th right rib. Interventions: Curettage of the tumor was performed, and pathological analysis also confirmed our diagnoses as a phosphaturic mesenchymal tumor. Outcomes: At seven months post-surgery, the symptoms were relieved, proximal muscle strength was improved and serum levels of phosphorus and alkaline phosphatase normalized. The bilateral femoral neck and bilateral pubic bone fractures were blurred in the pelvic plain X-ray, suggesting that the fracture was healing. Lessons: This case report strengthened the importance of recognition of this rare disease to avoid delay of diagnosis and surgical removal of the causative tumor is recommended. PMID:29390586
Three-dimensional segmentation of the tumor mass in computed tomographic images of neuroblastoma
NASA Astrophysics Data System (ADS)
Deglint, Hanford J.; Rangayyan, Rangaraj M.; Boag, Graham S.
2004-05-01
Tumor definition and diagnosis require the analysis of the spatial distribution and Hounsfield unit (HU) values of voxels in computed tomography (CT) images, coupled with a knowledge of normal anatomy. Segmentation of the tumor in neuroblastoma is complicated by the fact that the mass is almost always heterogeneous in nature; furthermore, viable tumor, necrosis, fibrosis, and normal tissue are often intermixed. Rather than attempt to separate these tissue types into distinct regions, we propose to explore methods to delineate the normal structures expected in abdominal CT images, remove them from further consideration, and examine the remaining parts of the images for the tumor mass. We explore the use of fuzzy connectivity for this purpose. Expert knowledge provided by the radiologist in the form of the expected structures and their shapes, HU values, and radiological characteristics are also incorporated in the segmentation algorithm. Segmentation and analysis of the tissue composition of the tumor can assist in quantitative assessment of the response to chemotherapy and in the planning of delayed surgery for resection of the tumor. The performance of the algorithm is evaluated using cases acquired from the Alberta Children's Hospital.
Intrinsic Astrocyte Heterogeneity Influences Tumor Growth in Glioma Mouse Models.
Irvin, David M; McNeill, Robert S; Bash, Ryan E; Miller, C Ryan
2017-01-01
The influence of cellular origin on glioma pathogenesis remains elusive. We previously showed that mutations inactivating Rb and Pten and activating Kras transform astrocytes and induce tumorigenesis throughout the adult mouse brain. However, it remained unclear whether astrocyte subpopulations were susceptible to these mutations. We therefore used genetic lineage tracing and fate mapping in adult conditional, inducible genetically engineered mice to monitor transformation of glial fibrillary acidic protein (GFAP) and glutamate aspartate transporter (GLAST) astrocytes and immunofluorescence to monitor cellular composition of the tumor microenvironment over time. Because considerable regional heterogeneity exists among astrocytes, we also examined the influence of brain region on tumor growth. GFAP astrocyte transformation induced uniformly rapid, regionally independent tumor growth, but transformation of GLAST astrocytes induced slowly growing tumors with significant regional bias. Transformed GLAST astrocytes had reduced proliferative response in culture and in vivo and malignant progression was delayed in these tumors. Recruited glial cells, including proliferating astrocytes, oligodendrocyte progenitors and microglia, were the majority of GLAST, but not GFAP astrocyte-derived tumors and their abundance dynamically changed over time. These results suggest that intrinsic astrocyte heterogeneity, and perhaps regional brain microenvironment, significantly contributes to glioma pathogenesis. © 2016 International Society of Neuropathology.
Wallace, Adam N; Vyhmeister, Ross; Hsi, Andy C; Robinson, Clifford G; Chang, Randy O; Jennings, Jack W
2015-12-01
Stereotactic radiosurgery and percutaneous radiofrequency ablation are emerging therapies for pain palliation and local control of spinal metastases. However, the post-treatment imaging findings are not well characterized and the risk of long-term complications is unknown. We present the case of a 46-year-old woman with delayed vertebral body collapse after stereotactic radiosurgery and radiofrequency ablation of a painful lumbar metastasis. Histopathologic-MRI correlation confirmed osteonecrosis as the underlying etiology and demonstrated that treatment-induced vascular fibrosis and tumor progression can have identical imaging appearances. © The Author(s) 2015.
Usefulness of Guided Breathing for Dose Rate-Regulated Tracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han-Oh, Sarah; Department of Radiation Oncology, University of Maryland Medical System, Baltimore, MD; Yi, Byong Yong
2009-02-01
Purpose: To evaluate the usefulness of guided breathing for dose rate-regulated tracking (DRRT), a new technique to compensate for intrafraction tumor motion. Methods and Materials: DRRT uses a preprogrammed multileaf collimator sequence that tracks the tumor motion derived from four-dimensional computed tomography and the corresponding breathing signals measured before treatment. Because the multileaf collimator speed can be controlled by adjusting the dose rate, the multileaf collimator positions are adjusted in real time during treatment by dose rate regulation, thereby maintaining synchrony with the tumor motion. DRRT treatment was simulated with free, audio-guided, and audiovisual-guided breathing signals acquired from 23 lungmore » cancer patients. The tracking error and duty cycle for each patient were determined as a function of the system time delay (range, 0-1.0 s). Results: The tracking error and duty cycle averaged for all 23 patients was 1.9 {+-} 0.8 mm and 92% {+-} 5%, 1.9 {+-} 1.0 mm and 93% {+-} 6%, and 1.8 {+-} 0.7 mm and 92% {+-} 6% for the free, audio-guided, and audiovisual-guided breathing, respectively, for a time delay of 0.35 s. The small differences in both the tracking error and the duty cycle with guided breathing were not statistically significant. Conclusion: DRRT by its nature adapts well to variations in breathing frequency, which is also the motivation for guided-breathing techniques. Because of this redundancy, guided breathing does not result in significant improvements for either the tracking error or the duty cycle when DRRT is used for real-time tumor tracking.« less
Tumor Regression and Delayed Onset Toxicity Following B7-H4 CAR T Cell Therapy
Smith, Jenessa B; Lanitis, Evripidis; Dangaj, Denarda; Buza, Elizabeth; Poussin, Mathilde; Stashwick, Caitlin; Scholler, Nathalie; Powell, Daniel J
2016-01-01
B7-H4 protein is frequently overexpressed in ovarian cancer. Here, we engineered T cells with novel B7-H4-specific chimeric antigen receptors (CARs) that recognized both human and murine B7-H4 to test the hypothesis that B7-H4 CAR T cell therapy can be applied safely in preclinical models. B7-H4 CAR T cells specifically secreted IFN-γ and lysed B7-H4(+) targets. In vivo, B7-H4 CAR T cells displayed antitumor reactivity against B7-H4(+) human ovarian tumor xenografts. Unexpectedly, B7-H4 CAR T cell treatment reproducibly showed delayed, lethal toxicity 6–8 weeks after therapy. Comprehensive assessment of murine B7-H4 protein distribution uncovered expression in ductal and mucosal epithelial cells in normal tissues. Postmortem analysis revealed the presence of widespread histologic lesions that correlated with B7-H4(+) expression, and were inconsistent with graft versus host disease. Lastly, expression patterns of B7-H4 protein in normal human tissue were comparable to distribution in mice, advancing our understanding of B7-H4. We conclude that B7-H4 CAR therapy mediates control of cancer outgrowth. However, long-term engraftment of B7-H4 CAR T cells mediates lethal, off-tumor toxicity that is likely due to wide expression of B7-H4 in healthy mouse organs. This model system provides a unique opportunity for preclinical evaluation of safety approaches that limit CAR-mediated toxicity after tumor destruction in vivo. PMID:27439899
Access to care issues adversely affect breast cancer patients in Mexico: oncologists' perspective.
Chavarri-Guerra, Yanin; St Louis, Jessica; Liedke, Pedro E R; Symecko, Heather; Villarreal-Garza, Cynthia; Mohar, Alejandro; Finkelstein, Dianne M; Goss, Paul E
2014-09-09
Despite recently implemented access to care programs, Mexican breast cancer (BC) mortality rates remain substantially above those in the US. We conducted a survey among Mexican Oncologists to determine whether practice patterns may be responsible for these differences. A web-based survey was sent to 851 oncologists across Mexico using the Vanderbilt University REDCap database. Analyses of outcomes are reported using exact and binomial confidence bounds and tests. 138 participants (18.6% of those surveyed) from the National capital and 26 Mexican states, responded. Respondents reported that 58% of newly diagnosed BC patients present with stage III-IV disease; 63% undergo mastectomy, 52% axillary lymph node dissection (ALND) and 48% sentinel lymph node biopsy (SLNB). Chemotherapy is recommended for tumors > 1 cm (89%), positive nodes (86.5%), triple-negative (TN) (80%) and HER2 positive tumors (58%). Trastuzumab is prescribed in 54.3% and 77.5% for HER2 < 1 cm and > 1 cm tumors, respectively. Tamoxifen is indicated for premenopausal hormone receptor (HR) positive tumors in 86.5% of cases and aromatase inhibitors (AI's) for postmenopausal in 86%. 24% of physicians reported treatment limitations, due to delayed or incomplete pathology reports and delayed or limited access to medications. Even though access to care programs have been recently applied nationwide, women commonly present with advanced BC, leading to increased rates of mastectomy and ALND. Mexican physicians are dissatisfied with access to appropriate medical care. Our survey detects specific barriers that may impact BC outcomes in Mexico and warrant further investigation.
Scharf, Valery F; Farese, James P; Coomer, Alastair R; Milner, Rowan J; Taylor, David P; Salute, Marc E; Chang, Myron N; Neal, Dan; Siemann, Dietmar W
2013-05-01
Objective-To investigate the effects of bevacizumab, a human monoclonal antibody against vascular endothelial growth factor, on the angiogenesis and growth of canine osteosarcoma cells xenografted in mice. Animals-27 athymic nude mice. Procedures-To each mouse, highly metastasizing parent osteosarcoma cells of canine origin were injected into the left gastrocnemius muscle. Each mouse was then randomly allocated to 1 of 3 treatment groups: high-dose bevacizumab (4 mg/kg, IP), low-dose bevacizumab (2 mg/kg, IP), or control (no treatment). Tumor growth (the number of days required for the tumor to grow from 8 to 13 mm), vasculature, histomorphology, necrosis, and pulmonary metastasis were evaluated. Results-Mice in the high-dose bevacizumab group had significantly delayed tumor growth (mean ± SD, 13.4 ± 3.8 days; range, 9 to 21 days), compared with that for mice in the low-dose bevacizumab group (mean ± SD, 9.4 ± 1.5 days; range, 7 to 11 days) or control group (mean ± SD, 7. 2 ± 1.5 days; range, 4 to 9 days). Mice in the low-dose bevacizumab group also had significantly delayed tumor growth, compared with that for mice in the control group. Conclusions and Clinical Relevance-Results indicated that bevacizumab inhibited growth of canine osteosarcoma cells xenografted in mice, which suggested that vascular endothelial growth factor inhibitors may be clinically useful for the treatment of osteosarcoma in dogs. Impact for Human Medicine-Canine osteosarcoma is used as a research model for human osteosarcoma; therefore, bevacizumab may be clinically beneficial for the treatment of osteosarcoma in humans.
Peters, Diane E; Hoover, Benjamin; Cloud, Loretta Grey; Liu, Shihui; Molinolo, Alfredo A; Leppla, Stephen H; Bugge, Thomas H
2014-09-01
We have previously designed and characterized versions of anthrax lethal toxin that are selectively cytotoxic in the tumor microenvironment and which display broad and potent anti-tumor activities in vivo. Here, we have performed the first direct comparison of the safety and efficacy of three engineered anthrax lethal toxin variants requiring activation by either matrix-metalloproteinases (MMPs), urokinase plasminogen activator (uPA) or co-localized MMP/uPA activities. C57BL/6J mice were challenged with six doses of engineered toxins via intraperitoneal (I.P.) or intravenous (I.V.) dose routes to determine the maximum tolerated dose for six administrations (MTD6) and dose-limiting toxicities. Efficacy was evaluated using the B16-BL6 syngraft model of melanoma; mice bearing established tumors were treated with six I.P. doses of toxin and tumor measurements and immunohistochemistry, paired with terminal blood work, were used to elaborate upon the anti-tumor mechanism and relative efficacy of each variant. We found that MMP-, uPA- and dual MMP/uPA-activated anthrax lethal toxins exhibited the same dose-limiting toxicity; dose-dependent GI toxicity. In terms of efficacy, all three toxins significantly reduced primary B16-BL6 tumor burden, ranging from 32% to 87% reduction, and they also delayed disease progression as evidenced by dose-dependent normalization of blood work values. While target organ toxicity and effective doses were similar amongst the variants, the dual MMP/uPA-activated anthrax lethal toxin exhibited the highest I.P. MTD6 and was 1.5-3-fold better tolerated than the single MMP- and uPA-activated toxins. Overall, we demonstrate that this dual MMP/uPA-activated anthrax lethal toxin can be administered safely and is highly effective in a preclinical model of melanoma. This modified bacterial cytotoxin is thus a promising candidate for further clinical development and evaluation for use in treating human cancers. Published by Elsevier Inc.
Peters, Diane E.; Hoover, Benjamin; Cloud, Loretta Grey; Liu, Shihui; Molinolo, Alfredo A.; Leppla, Stephen H.; Bugge, Thomas H.
2014-01-01
We have previously designed and characterized versions of anthrax lethal toxin that are selectively cytotoxic in the tumor microenvironment and which display broad and potent anti-tumor activities in vivo. Here, we have performed the first direct comparison of the safety and efficacy of three engineered anthrax lethal toxin variants requiring activation by either matrix-metalloproteinases (MMPs), urokinase plasminogen activator (uPA) or co-localized MMP/uPA activities. C57BL/6J mice were challenged with six doses of engineered toxins via intraperitoneal (I.P.) or intravenous (I.V.) dose routes to determine the maximum tolerated dose for six administrations (MTD6) and dose-limiting toxicities. Efficacy was evaluated using the B16-BL6 syngraft model of melanoma; Mice bearing established tumors were treated with six I.P. doses of toxin and tumor measurements and immunohistochemistry, paired with terminal blood work, were used to elaborate upon the anti-tumor mechanism and relative efficacy of each variant. We found that MMP-, uPA- and dual MMP/uPA- activated anthrax lethal toxins exhibited the same dose-limiting toxicity; dose-dependent GI toxicity. In terms of efficacy, all three toxins significantly reduced primary B16-BL6 tumor burden, ranging from 32%–87% reduction, and they also delayed disease progression as evidenced by dose-dependent normalization of blood work values. While target organ toxicity and effective doses were similar amongst the variants, the dual MMP/uPA-activated anthrax lethal toxin exhibited the highest I.P. MTD6 and was 1.5–3-fold better tolerated than the single MMP- and uPA-activated toxins. Overall, we demonstrate that this dual MMP/uPA-activated anthrax lethal toxin can be administered safely and is highly effective in a preclinical model of melanoma. This modified bacterial cytotoxin is thus a promising candidate for further clinical development and evaluation for use in treating human cancers. PMID:24971906
Selenium for the Prevention of Cutaneous Melanoma
Cassidy, Pamela B.; Fain, Heidi D.; Cassidy, James P.; Tran, Sally M.; Moos, Philip J.; Boucher, Kenneth M.; Gerads, Russell; Florell, Scott R.; Grossman, Douglas; Leachman, Sancy A.
2013-01-01
The role of selenium (Se) supplementation in cancer prevention is controversial; effects often depend on the nutritional status of the subject and on the chemical form in which Se is provided. We used a combination of in vitro and in vivo models to study two unique therapeutic windows for intervention in the process of cutaneous melanomagenisis, and to examine the utility of two different chemical forms of Se for prevention and treatment of melanoma. We studied the effects of Se in vitro on UV-induced oxidative stress in melanocytes, and on apoptosis and cell cycle progression in melanoma cells. In vivo, we used the HGF transgenic mouse model of UV-induced melanoma to demonstrate that topical treatment with l-selenomethionine results in a significant delay in the time required for UV-induced melanoma development, but also increases the rate of growth of those tumors once they appear. In a second mouse model, we found that oral administration of high dose methylseleninic acid significantly decreases the size of human melanoma xenografts. Our findings suggest that modestly elevation of selenium levels in the skin might risk acceleration of growth of incipient tumors. Additionally, certain Se compounds administered at very high doses could have utility for the treatment of fully-malignant tumors or prevention of recurrence. PMID:23470450
Clinicopathologic features and surgical management of primary umbilical melanoma: a case series.
Di Monta, Gianluca; Caracò, Corrado; Marone, Ugo; Grimaldi, Antonio Maria; Anniciello, Anna Maria; Di Marzo, Massimiliano; Simeone, Ester; Mori, Stefano
2015-04-15
Primary umbilical melanoma is an uncommon tumor that is poorly described in the medical literature. The umbilical region is a particular anatomic site owing to the presence of embryonal remnants, which can be a potential metastatic pathway, as well as the braided lymphatic network drainage. Hence, primary malignant neoplasms affecting the umbilicus require a different and more radical surgical approach compared with other melanomas. In this report, we describe a series of three patients of Caucasian ethnicity who presented with primary umbilical melanoma at the National Cancer Institute of Naples, Italy. All patients underwent wide excision of the tumor including the underlying peritoneum. No surgical complications, either immediate or delayed, were observed in any of the patients. Sentinel lymph node biopsy was negative in two cases. Two of the patients developed metastatic disease and died after systemic medical therapy. The other patient is currently in follow-up, and remains disease-free after 21 months. The umbilicus has vascular and embryological connections with the underlying peritoneum, so that early visceral involvement is more likely to occur with primary umbilical melanomas. As such, tumor resection including the underlying peritoneum is required to avoid local relapse, whilst sentinel lymph node biopsy appears to be of poor diagnostic value.
Noninvasive imaging of hepatocellular carcinoma: From diagnosis to prognosis
Jiang, Han-Yu; Chen, Jie; Xia, Chun-Chao; Cao, Li-Kun; Duan, Ting; Song, Bin
2018-01-01
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and a major public health problem worldwide. Hepatocarcinogenesis is a complex multistep process at molecular, cellular, and histologic levels with key alterations that can be revealed by noninvasive imaging modalities. Therefore, imaging techniques play pivotal roles in the detection, characterization, staging, surveillance, and prognosis evaluation of HCC. Currently, ultrasound is the first-line imaging modality for screening and surveillance purposes. While based on conclusive enhancement patterns comprising arterial phase hyperenhancement and portal venous and/or delayed phase wash-out, contrast enhanced dynamic computed tomography and magnetic resonance imaging (MRI) are the diagnostic tools for HCC without requirements for histopathologic confirmation. Functional MRI techniques, including diffusion-weighted imaging, MRI with hepatobiliary contrast agents, perfusion imaging, and magnetic resonance elastography, show promise in providing further important information regarding tumor biological behaviors. In addition, evaluation of tumor imaging characteristics, including nodule size, margin, number, vascular invasion, and growth patterns, allows preoperative prediction of tumor microvascular invasion and patient prognosis. Therefore, the aim of this article is to review the current state-of-the-art and recent advances in the comprehensive noninvasive imaging evaluation of HCC. We also provide the basic key concepts of HCC development and an overview of the current practice guidelines. PMID:29904242
Specificity in the immunosuppression induced by avian reticuloendotheliosis virus.
Walker, M H; Rup, B J; Rubin, A S; Bose, H R
1983-01-01
Several parameters of the cellular and humoral immune responses of chickens infected with reticuloendotheliosis virus (REV-T), an avian defective acute leukemia virus, or with its helper virus, reticuloendotheliosis-associated virus (REV-A), were evaluated. Spleen cells from chickens infected with REV-T (REV-A) or REV-A exhibited depressed mixed lymphocyte and mitogen responses in vitro. Allograft rejection was delayed by 6 to 14 days in birds infected with REV-A. The specific antitumor cell immune response was also studied by a 51Cr-release cytotoxicity assay. Lymphocytes from chickens infected with low numbers of the REV-T-transformed cells exhibited significant levels of cytolytic reactivity against the 51Cr-labeled REV-T tumor cells in vitro. The mitogen response of lymphocytes from these injected birds was similar to that of uninjected chickens. In contrast, lymphocytes from chickens injected with higher numbers of REV-T-transformed cells exhibited suppressed mitogen reactivity and failed to develop detectable levels of cytotoxic activity directed against the REV-T tumor cells. These results suggest that the general depression of cellular immune competence which occurs during REV-T (REV-A) infection could contribute to the development of this acute leukemia by inhibiting the proliferation of cytotoxic cells directed against the tumor cell antigens. The cytotoxic effect observed after the injection of chickens with non-immunosuppressive levels of REV-T-transformed cells appears to be specific for the REV-T tumor cell antigens since cells transformed by Marek's disease virus or avian erythroblastosis virus were not lysed. In marked contrast, birds whose cellular immune responses were suppressed by infection with REV-A were capable of producing a humoral immune response to viral antigens. Detectable levels of viral antibody, however, did not appear until 12 to 15 days after REV-A infection. Since REV-T (REV-A) induced an acute leukemia resulting in death within 7 to 14 days, it appears unlikely that the ability of chickens to make antiviral antibody influences the development of lethal reticuloendotheliosis. Images PMID:6187691
Raben, David; Bianco, Cataldo; Damiano, Vincenzo; Bianco, Roberto; Melisi, Davide; Mignogna, Chiara; D'Armiento, Francesco Paolo; Cionini, Luca; Bianco, A Raffaele; Tortora, Giampaolo; Ciardiello, Fortunato; Bunn, Paul
2004-08-01
Targeting the tumor vasculature may offer an alternative or complementary therapeutic approach to targeting growth factor signaling in lung cancer. The aim of these studies was to evaluate the antitumor effects in vivo of the combination of ZD6126, a tumor-selective vascular-targeting agent; ZD1839 (gefitinib, Iressa), an epidermal growth factor receptor tyrosine kinase inhibitor; and ionizing radiation in the treatment of non-small cell lung cancer xenograft model. Athymic nude mice with established flank A549 human non-small cell lung cancer xenograft model xenografts were treated with fractionated radiation therapy, ZD6126, ZD1839, or combinations of each treatment. ZD6126 (150 mg/kg) was given i.p. the day after each course of radiation. Animals treated with ZD1839 received 100 mg/kg per dose per animal, 5 or 7 days/wk for 2 weeks. Immunohistochemistry was done to evaluate the effects on tumor growth using an anti-Ki67 monoclonal antibody. Effects on tumor-induced vascularization were quantified using an anti-factor VIII-related antigen monoclonal antibody. ZD6126 attenuated the growth of human A549 flank xenografts compared with untreated animals. Marked antitumor effects were observed when animals were treated with a combination of ZD6126 and fractionated radiation therapy with protracted tumor regression. ZD6126 + ZD1839 resulted in a greater tumor growth delay than either agent alone. Similar additive effects were seen with ZD1839 + fractionated radiation. Finally, the addition of ZD6126 to ZD1839 and radiation therapy seemed to further improve tumor growth control, with a significant tumor growth delay compared with animals treated with single agent or with double combinations. Immunohistochemistry showed that ZD1839 induced a marked reduction in A549 tumor cell proliferation. Both ZD1839 and ZD6126 treatment substantially reduced tumor-induced angiogenesis. ZD6126 caused marked vessel destruction through loss of endothelial cells and thrombosis, substantially increasing the level of necrosis seen when combined with radiation therapy. The combination of radiation therapy, ZD6126, and ZD1839 induced the greatest effects on tumor growth and angiogenesis. This first report shows that a selective vascular-targeting agent (ZD6126) + an anti-epidermal growth factor receptor agent (ZD1839) and radiation have additive in vivo effects in a human cancer model. Targeting the tumor vasculature offers an excellent strategy to enhance radiation cytotoxicity. Polytargeted therapy with agents that interfere with both growth factor and angiogenic signaling warrants further investigation.
Schmidt, Adam T; Martin, Rebecca B; Ozturk, Arzu; Kates, Wendy R; Wharam, Moody D; Mahone, E Mark; Horska, Alena
2010-02-01
Intracranial tumors are the most common neoplasms of childhood, accounting for approximately 20% of all pediatric malignancies. Radiation therapy has led directly to significant increases in survival of children with certain types of intracranial tumors; however, given the aggressive nature of this therapy, children are at risk for exhibiting changes in brain structure, neuronal biochemistry, and neurocognitive functioning. In this case report, we present neuropsychological, magnetic resonance imaging, proton magnetic resonance spectroscopic imaging, and diffusion tensor imaging data for two adolescents (one patient with ependymal spinal cord tumor with intracranial metastases, and one healthy, typically developing control) from three time points as defined by the patient's radiation schedule (baseline before the patient's radiation therapy, 6 months following completion of the patient's radiation, and 27 months following the patient's radiation). In the patient, there were progressive decreases in gray and white matter volumes as well as early decreases in mean N-acetyl aspartate/choline (NAA/Cho) ratios and fractional anisotropy (FA) in regions with normal appearance on conventional MRI. At the last follow-up, NAA/Cho and FA tended to change in the direction to normal values in selected regions. At the same time, the patient had initial reduction in language and motor skills, followed by return to baseline, but later onset delay in visuospatial and visual perceptual skills. Results are discussed in terms of sensitivity of the four techniques to early and late effects of treatment, and avenues for future investigations.
Delivery of chemotherapeutics across the blood-brain barrier: challenges and advances.
Doolittle, Nancy D; Muldoon, Leslie L; Culp, Aliana Y; Neuwelt, Edward A
2014-01-01
The blood-brain barrier (BBB) limits drug delivery to brain tumors. We utilize intraarterial infusion of hyperosmotic mannitol to reversibly open the BBB by shrinking endothelial cells and opening tight junctions between the cells. This approach transiently increases the delivery of chemotherapy, antibodies, and nanoparticles to brain. Our preclinical studies have optimized the BBB disruption (BBBD) technique and clinical studies have shown its safety and efficacy. The delivery of methotrexate-based chemotherapy in conjunction with BBBD provides excellent outcomes in primary central nervous system lymphoma (PCNSL) including stable or improved cognitive function in survivors a median of 12 years (range 2-26 years) after diagnosis. The addition of rituximab to chemotherapy with BBBD for PCNSL can be safely accomplished with excellent overall survival. Our translational studies of thiol agents to protect against platinum-induced toxicities led to the development of a two-compartment model in brain tumor patients. We showed that delayed high-dose sodium thiosulfate protects against carboplatin-induced hearing loss, providing the framework for large cooperative group trials of hearing chemoprotection. Neuroimaging studies have identified that ferumoxytol, an iron oxide nanoparticle blood pool agent, appears to be a superior contrast agent to accurately assess therapy-induced changes in brain tumor vasculature, in brain tumor response to therapy, and in differentiating central nervous system lesions with inflammatory components. This chapter reviews the breakthroughs, challenges, and future directions for BBBD. © 2014 Elsevier Inc. All rights reserved.
Klement, Giannoula; Baruchel, Sylvain; Rak, Janusz; Man, Shan; Clark, Katherine; Hicklin, Daniel J.; Bohlen, Peter; Kerbel, Robert S.
2000-01-01
Various conventional chemotherapeutic drugs can block angiogenesis or even kill activated, dividing endothelial cells. Such effects may contribute to the antitumor efficacy of chemotherapy in vivo and may delay or prevent the acquisition of drug-resistance by cancer cells. We have implemented a treatment regimen that augments the potential antivascular effects of chemotherapy, that is devoid of obvious toxic side effects, and that obstructs the development of drug resistance by tumor cells. Xenografts of 2 independent neuroblastoma cell lines were subjected to either continuous treatment with low doses of vinblastine, a monoclonal neutralizing antibody (DC101) targeting the flk-1/KDR (type 2) receptor for VEGF, or both agents together. The rationale for this combination was that any antivascular effects of the low-dose chemotherapy would be selectively enhanced in cells of newly formed vessels when survival signals mediated by VEGF are blocked. Both DC101 and low-dose vinblastine treatment individually resulted in significant but transient xenograft regression, diminished tumor vascularity, and direct inhibition of angiogenesis. Remarkably, the combination therapy resulted in full and sustained regressions of large established tumors, without an ensuing increase in host toxicity or any signs of acquired drug resistance during the course of treatment, which lasted for >6 months. This article may have been published online in advance of the print edition. The date of publication is available from the JCI website, http://www.jci.org. J. Clin. Invest. 105:R15–R24 (2000). PMID:10772661
Ma, Yan-Hui; Cheng, Wei-Zhi; Gong, Fang; Ma, An-Lun; Yu, Qi-Wen; Zhang, Ji-Ying; Hu, Chao-Ying; Chen, Xue-Hua; Zhang, Dong-Qing
2008-01-01
AIM: To investigate the potential role of Active Chinese mistletoe lectin-55 (ACML-55) in tumor immune surveillance. METHODS: In this study, an experimental model was established by hypodermic inoculating the colon cancer cell line CT26 (5 × 105 cells) into BALB/c mice. The experimental treatment was orally administered with ACML-55 or PBS, followed by the inoculation of colon cancer cell line CT26. Intracellular cytokine staining was used to detect IFN-γ production by tumor antigen specific CD8+ T cells. FACS analysis was employed to profile composition and activation of CD4+, CD8+, γδ T and NK cells. RESULTS: Our results showed, compared to PBS treated mice, ACML-55 treatment significantly delayed colon cancer development in colon cancer -bearing Balb/c mice in vivo. Treatment with ACML-55 enhanced both Ag specific activation and proliferation of CD4+ and CD8+ T cells, and increased the number of tumor Ag specific CD8+ T cells. It was more important to increase the frequency of tumor Ag specific IFN-γ producing-CD8+ T cells. Interestingly, ACML-55 treatment also showed increased cell number of NK, and γδT cells, indicating the role of ACML-55 in activation of innate lymphocytes. CONCLUSION: Our results demonstrate that ACML-55 therapy can enhance function in immune surveillance in colon cancer-bearing mice through regulating both innate and adaptive immune responses. PMID:18785279
Slit2 promotes tumor growth and invasion in chemically induced skin carcinogenesis.
Qi, Cuiling; Lan, Haimei; Ye, Jie; Li, Weidong; Wei, Ping; Yang, Yang; Guo, Simei; Lan, Tian; Li, Jiangchao; Zhang, Qianqian; He, Xiaodong; Wang, Lijing
2014-07-01
Slit, a neuronal guidance cue, binds to Roundabout (Robo) receptors to modulate neuronal, leukocytic, and endothelial migration. Slit has been reported to have an important effect on tumor growth and metastasis. In the current study, we evaluated the role of Slit2 in skin tumor growth and invasion in mice using a two-step chemical carcinogenesis protocol. We found that Slit2 expression correlated with the loss of basement membrane in the samples of human skin squamous cell carcinoma at different stages of disease progression. Slit2-Tg mice developed significantly more skin tumors than wild-type mice. Furthermore, the skin tumors that occurred in Slit2-Tg mice were significantly larger than those in the wild-type mice 10 weeks after 7,12-dimethylbenz[a]anthracene initiation until the end of the experiment. We also found that pathological development of the wild-type mice was delayed compared with that of Slit2-Tg mice. To further investigate the mechanism of increasing tumors in Slit2-Tg mice, we analyzed the expression of 5-bromo-2'-deoxyuridine (BrdU) in mouse skin lesions and found that the number of BrdU-positive cells and microvessel density in skin lesions were significantly higher in Slit2-Tg mice than in wild-type mice. Histological staining of PAS and type IV collagen and the colocalization of Slit2 and type IV collagen demonstrated varying degrees of loss of the basement membrane in the skin lesions from Slit2-Tg mice that were at the stage of carcinoma in situ. However, the basement membrane was well defined in the wild-type mice. In addition, MMP2, but not MMP9, was upregulated in the skin tissue of Slit2-Tg mice. Interruption of Slit2-Robo1 signaling by the antibody R5 significantly repressed the invasive capability of the squamous cell carcinoma cell line A431. Taken together, our findings reveal that Slit2 promotes DMBA/TPA-induced skin tumorigenesis by increasing cell proliferation, microvessel density, and invasive behavior of cutaneous squamous cell carcinoma, along with loss of basement membrane, by upregulation of MMP2 expression.
Wion, Didier
2017-07-01
Surgery precedes both radiotherapy and chemotherapy as the first-line therapy for glioma. However, despite multimodal treatment, most glioma patients die from local recurrence in the resection margin. Glioma surgery is inherently lesional, and the response of brain tissue to surgery includes hemostasis, angiogenesis, reactive gliosis and inflammation. Unfortunately, these processes are also associated with tumorigenic side-effects. An increasing amount of evidence indicates that the response to a surgery-related brain injury is hijacked by residual glioma cells and participates in the local regeneration of tumor tissues at the resection margin. Inducing therapeutic hypothermia in the brain has long been used to treat the secondary damage, such as neuroinflammation and edema, that are caused by accidental traumatic brain injuries. There is compelling evidence to suggest that inducing therapeutic hypothermia at the resection margin would delay the local recurrence of glioma by (i) limiting cell proliferation, (ii) disrupting the pathological connection between inflammation and glioma recurrence, and (iii) limiting the consequences of the functional heterogeneity and complexity inherent to the tumor ecosystem. While the global whole-body cooling methods that are currently used to treat stroke in clinical practice may not adequately treat the resection margin, the future lies in implantable focal microcooling devices similar to those under development for the treatment of epilepsy. Preclinical and clinical strategies to evaluate focal hypothermia must be implemented to prevent glioma recurrence in the resection margin. Placing the resection margin in a state of hibernation may potentially provide such a long-awaited therapeutic breakthrough.
Neoadjuvant Long-Course Chemoradiotherapy for Rectal Cancer: Does Time to Surgery Matter?
Panagiotopoulou, Ioanna G.; Parashar, Deepak; Qasem, Eyas; Mezher-Sikafi, Rasha; Parmar, Jitesh; Wells, Alan D.; Bajwa, Farrukh M.; Menon, Madhav; Jephcott, Catherine R.
2015-01-01
The objective of this paper was to evaluate whether delaying surgery following long-course chemoradiotherapy for rectal cancer correlates with pathologic complete response. Pre-operative chemoradiotherapy (CRT) is standard practice in the UK for the management of locally advanced rectal cancer. Optimal timing of surgery following CRT is still not clearly defined. All patients with a diagnosis of rectal cancer who had undergone long-course CRT prior to surgery between January 2008 and December 2011 were included. Statistical analysis was performed using Stata 11. Fifty-nine patients received long-course CRT prior to surgery in the selected period. Twenty-seven percent (16/59) of patients showed a complete histopathologic response and 59.3% (35/59) of patients had tumor down-staging from radiologically-assessed node positive to histologically-proven node negative disease. There was no statistically significant delay to surgery after completion of CRT in the 16 patients with complete response (CR) compared with the rest of the group [IR: incomplete response; CR group median: 74.5 days (IQR: 70–87.5) and IR group median: 72 days (IQR: 57–83), P = 0.470]. Although no statistically significant predictors of either complete response or tumor nodal status down-staging were identified in logistic regression analyses, a trend toward complete response was seen with longer delay to surgery following completion of long-course CRT. PMID:26414816
Simond, Alexandra M.; Rao, Trisha; Zuo, Dongmei; Zhao, Jean J.; Muller, William J.
2017-01-01
Breast cancer is the most common cancer among women and 30% will be diagnosed with an ErbB2-positive cancer. Forty percent of ErbB2-positive breast tumors have an activating mutation in p110α, a catalytic subunit of phosphoinositide 3-kinase (PI3K). Clinical and experimental data show that breast tumors treated with a p110α-specific inhibitor often circumvent inhibition and resume growth. To understand this mechanism of resistance, we crossed a p110α conditional (p110αflx/flx) mouse model with mice that overexpresses the ErbB2/Neu-IRES-Cre transgene (NIC) specifically in the mammary epithelium. Although mammary-specific deletion of p110α dramatically delays tumor onset, tumors eventually arise and are dependent on p110β. Through biochemical analyses we find that a proportion of p110α-deficient tumors (23%) display downregulation of the Pten tumor suppressor. We further demonstrate that loss of one allele of PTEN is sufficient to shift isoform dependency from p110α to p110β in vivo. These results provide insight into the molecular mechanism by which ErbB2-positive breast cancer escapes p110α inhibition. PMID:28783168
Tumors Alter Inflammation and Impair Dermal Wound Healing in Female Mice
Pyter, Leah M.; Husain, Yasmin; Calero, Humberto; McKim, Daniel B.; Lin, Hsin-Yun; Godbout, Jonathan P.; Sheridan, John F.; Engeland, Christopher G.; Marucha, Phillip T.
2016-01-01
Tissue repair is an integral component of cancer treatment (e.g., due to surgery, chemotherapy, radiation). Previous work has emphasized the immunosuppressive effects of tumors on adaptive immunity and has shown that surgery incites cancer metastases. However, the extent to which and how tumors may alter the clinically-relevant innate immune process of wound healing remains an untapped potential area of improvement for treatment, quality of life, and ultimately, mortality of cancer patients. In this study, 3.5 mm full-thickness dermal excisional wounds were placed on the dorsum of immunocompetent female mice with and without non-malignant flank AT-84 murine oral squamous cell carcinomas. Wound closure rate, inflammatory cell number and inflammatory signaling in wounds, and circulating myeloid cell concentrations were compared between tumor-bearing and tumor-free mice. Tumors delayed wound closure, suppressed inflammatory signaling, and altered myeloid cell trafficking in wounds. An in vitro scratch “wounding” assay of adult dermal fibroblasts treated with tumor cell-conditioned media supported the in vivo findings. This study demonstrates that tumors are sufficient to disrupt fundamental and clinically-relevant innate immune functions. The understanding of these underlying mechanisms provides potential for therapeutic interventions capable of improving the treatment of cancer while reducing morbidities and mortality. PMID:27548621
Lawrence, Yaacov Richard; Blumenthal, Deborah T; Matceyevsky, Diana; Kanner, Andrew A; Bokstein, Felix; Corn, Benjamin W
2011-10-01
Glioblastoma is a malignant tumor characterized by a rapid proliferation rate. Contemporary multi-modality treatment consists of maximal surgical resection followed by radiation therapy (RT) combined with cytotoxic chemotherapy. The optimal timing of these different steps is not known. Four studies from the pre-temozolomide era, encompassing a total of 4,584 subjects, have examined the consequences of a delay between resection and starting RT. Whereas the two small single-institution studies found this delay to be detrimental, two large multi-institutional studies found delay to be either slightly beneficial or at least not harmful. Here, we critically compare the methodologies and results presented in these studies, and include a novel analysis of the combined datasets. We conclude that moderate wait periods (up to 4-6 weeks post-operatively) are safe and may be modestly beneficial. Conversely, there is no evidence to justify waiting longer than 6 weeks. Underlying radiobiological principles are discussed.
A genetic platform to model sarcomagenesis from primary adult mesenchymal stem cells
Guarnerio, Jlenia; Riccardi, Luisa; Taulli, Riccardo; Maeda, Takahiro; Wang, Guocan; Hobbs, Robin M.; Song, Min Sup; Sportoletti, Paolo; Bernardi, Rosa; Bronson, Roderick T.; Castillo-Martin, Mireia; Cordon-Cardo, Carlos; Lunardi, Andrea; Pandolfi, Pier Paolo
2015-01-01
The regulatory factors governing adult mesenchymal stem cells (MSCs) physiology and their tumorigenic potential are still largely unknown, which substantially delays the identification of effective therapeutic approaches for the treatment of aggressive and lethal form of MSC-derived mesenchymal tumors, such as undifferentiated sarcomas. Here we have developed a novel platform to screen and quickly identify genes and pathways responsible for adult MSCs transformation, modeled undifferentiated sarcoma in vivo, and, ultimately, tested the efficacy of targeting the identified oncopathways. Importantly, by taking advantage of this new platform, we demonstrate the key role of an aberrant LRF-DLK1-SOX9 pathway in the pathogenesis of undifferentiated sarcoma with important therapeutic implications. PMID:25614485
Nistala, K; Murray, K J
2001-09-01
We describe 2 pediatric patients with sickle cell disease (SCD) who developed seropositive juvenile rheumatoid arthritis (JRA). Both patients have severe joint damage, the compound effect of both disease processes. The bone and cartilage destruction, which poses serious therapeutic challenges, highlights the difficulty of making a diagnosis of chronic inflammatory disease in the setting of SCD. There may be a correlation between increased levels of tumor necrosis factor-alpha in the synovial tissue of joints damaged by arthritis and local sickling. The resultant ischemia and corresponding inflammatory infiltrates could in turn worsen existing synovial proliferation and cartilage destruction as well as trigger further sickling.
Thotala, Dinesh; Craft, Jeffrey M; Ferraro, Daniel J; Kotipatruni, Rama P; Bhave, Sandeep R; Jaboin, Jerry J; Hallahan, Dennis E
2013-01-01
Lung cancer remains the leading cause of cancer deaths in the United States and the rest of the world. The advent of molecularly directed therapies holds promise for improvement in therapeutic efficacy. Cytosolic phospholipase A2 (cPLA2) is associated with tumor progression and radioresistance in mouse tumor models. Utilizing the cPLA2 specific inhibitor PLA-695, we determined if cPLA2 inhibition radiosensitizes non small cell lung cancer (NSCLC) cells and tumors. Treatment with PLA-695 attenuated radiation induced increases of phospho-ERK and phospho-Akt in endothelial cells. NSCLC cells (LLC and A549) co-cultured with endothelial cells (bEND3 and HUVEC) and pre-treated with PLA-695 showed radiosensitization. PLA-695 in combination with irradiation (IR) significantly reduced migration and proliferation in endothelial cells (HUVEC & bEND3) and induced cell death and attenuated invasion by tumor cells (LLC &A549). In a heterotopic tumor model, the combination of PLA-695 and radiation delayed growth in both LLC and A549 tumors. LLC and A549 tumors treated with a combination of PLA-695 and radiation displayed reduced tumor vasculature. In a dorsal skin fold model of LLC tumors, inhibition of cPLA2 in combination with radiation led to enhanced destruction of tumor blood vessels. The anti-angiogenic effects of PLA-695 and its enhancement of the efficacy of radiotherapy in mouse models of NSCLC suggest that clinical trials for its capacity to improve radiotherapy outcomes are warranted.
Photodynamic Therapy of the Murine LM3 Tumor Using Meso-Tetra (4-N,N,N-Trimethylanilinium) Porphine.
Colombo, L L; Juarranz, A; Cañete, M; Villanueva, A; Stockert, J C
2007-12-01
Photodynamic therapy (PDT) of cancer is based on the cytotoxicity induced by a photosensitizer in the presence of oxygen and visible light, resulting in cell death and tumor regression. This work describes the response of the murine LM3 tumor to PDT using meso-tetra (4-N,N,N-trimethylanilinium) porphine (TMAP). BALB/c mice with intradermal LM3 tumors were subjected to intravenous injection of TMAP (4 mg/kg) followed 24 h later by blue-red light irradiation (λmax: 419, 457, 650 nm) for 60 min (total dose: 290 J/cm(2)) on depilated and glycerol-covered skin over the tumor of anesthetized animals. Control (drug alone, light alone) and PDT treatments (drug + light) were performed once and repeated 48 h later. No significant differences were found between untreated tumors and tumors only treated with TMAP or light. PDT-treated tumors showed almost total but transitory tumor regression (from 3 mm to less than 1 mm) in 8/9 animals, whereas no regression was found in 1/9. PDT response was heterogeneous and each tumor showed different regression and growth delay. The survival of PDT-treated animals was significantly higher than that of TMAP and light controls, showing a lower number of lung metastasis but increased tumor-draining lymph node metastasis. Repeated treatment and reduction of tissue light scattering by glycerol could be useful approaches in studies on PDT of cancer.
Photodynamic Therapy of the Murine LM3 Tumor Using Meso-Tetra (4-N,N,N-Trimethylanilinium) Porphine
Colombo, L. L.; Juarranz, A.; Cañete, M.; Villanueva, A.; Stockert, J. C.
2007-01-01
Photodynamic therapy (PDT) of cancer is based on the cytotoxicity induced by a photosensitizer in the presence of oxygen and visible light, resulting in cell death and tumor regression. This work describes the response of the murine LM3 tumor to PDT using meso-tetra (4-N,N,N-trimethylanilinium) porphine (TMAP). BALB/c mice with intradermal LM3 tumors were subjected to intravenous injection of TMAP (4 mg/kg) followed 24 h later by blue-red light irradiation (λmax: 419, 457, 650 nm) for 60 min (total dose: 290 J/cm2) on depilated and glycerol-covered skin over the tumor of anesthetized animals. Control (drug alone, light alone) and PDT treatments (drug + light) were performed once and repeated 48 h later. No significant differences were found between untreated tumors and tumors only treated with TMAP or light. PDT-treated tumors showed almost total but transitory tumor regression (from 3 mm to less than 1 mm) in 8/9 animals, whereas no regression was found in 1/9. PDT response was heterogeneous and each tumor showed different regression and growth delay. The survival of PDT-treated animals was significantly higher than that of TMAP and light controls, showing a lower number of lung metastasis but increased tumor-draining lymph node metastasis. Repeated treatment and reduction of tissue light scattering by glycerol could be useful approaches in studies on PDT of cancer. PMID:23675051
Tosch, C; Geist, M; Ledoux, C; Ziller-Remi, C; Paul, S; Erbs, P; Corvaia, N; Von Hoegen, P; Balloul, J-M; Haegel, H
2009-04-01
The delivery of stimulatory signals to dendritic cells (DCs) in the tumor microenvironment could be an effective means to break tumor-induced tolerance. The work presented here evaluates the immunostimulatory properties of pathogen-associated molecular patterns (PAMPs), microbial molecules which bind Toll-like receptors and deliver activating signals to immune cells, when expressed in tumor cells using adenoviral (Ad) vectors. In vitro, transduction of A549 tumor cells with Ad vectors expressing either flagellin from Listeria monocytogenes or P40 protein from Klebsiella pneumoniae induced the maturation of human monocyte-derived DCs in co-cultures. In mixed lymphocyte reactions (MLRs), Ad-flagellin and Ad-P40 transduction of tumor cells stimulated lymphocyte proliferation and the secretion of IFN-gamma. In vivo, these vectors were used either as stand-alone immunoadjuvants injected intratumorally or as vaccine adjuvants combined with a tumor antigen-expressing vector. When Ad-PAMPs were administered intratumorally to mice bearing subcutaneous syngeneic B16F0-CAR (cocksackie-adenovirus receptor) melanomas, tumor progression was transiently inhibited by Ad-P40. In a therapeutic vaccine setting, the combination of Ad-MUC1 and Ad-PAMP vectors injected subcutaneously delayed the growth of implanted RenCa-MUC1 tumors and improved tumor rejection when compared with vaccination with Ad-MUC1 alone. These results suggest that Ad-PAMPs could be effective immunoadjuvants for cancer immunotherapy.
Sato, Iori; Higuchi, Akiko; Yanagisawa, Takaaki; Murayama, Shiho; Kumabe, Toshihiro; Sugiyama, Kazuhiko; Mukasa, Akitake; Saito, Nobuhito; Sawamura, Yutaka; Terasaki, Mizuhiko; Shibui, Soichiro; Takahashi, Jun; Nishikawa, Ryo; Ishida, Yasushi; Kamibeppu, Kiyoko
2018-04-30
Some childhood cancer survivors experience employment difficulties. This study aimed to describe pediatric brain-tumor survivors' employment status. A cross-sectional, observational study was conducted, with questionnaires distributed to 101 pediatric brain-tumor survivors (aged 15 years or older) and their attending physicians from nine institutions in Japan. We compared category and time-series histories for participants' first-time employment using national census information. Factors related to delayed employment or early employment termination were examined using survival-time analyses. Excluding students and homemakers, 38 brain-tumor survivors (median age 27 years, with 15 years since diagnosis) were of working age. Of these, 12 (32%) were unemployed and 9 (24%) had never been employed. First-time employment occurred later for brain-tumor survivors than the general population, particularly in those with lower educational levels. The number of brain-tumor survivors whose first job was terminated within the first year was higher than that for the general population, particularly in male survivors and germ cell-tumor survivors. Brain-tumor survivors described their working patterns (irregular), job types (specialist or professional), reasons for early termination (unsuitable job), and thoughts about working (they wished to serve their communities but lacked confidence). Brain-tumor survivors are associated with high unemployment rates and multiple unemployment-related factors. Education and welfare systems should identify individual methods of social participation for this group.
Liu, Yanling; Zhang, Yujuan; Zheng, Xiufen; Zhang, Xusheng; Wang, Hongmei; Li, Qin; Yuan, Keng; Zhou, Nanjing; Yu, Yanrong; Song, Na; Fu, Jiamin; Min, Weiping
2016-05-31
Indoleamine 2,3-dioxygenase 2 (IDO2) is a newly discovered enzyme that catalyzes the initial and rate-limiting step in the degradation of tryptophan. As a homologous protein of IDO1, IDO2 plays an inhibitory role in T cell proliferation, and it is essential for regulatory T cell (Treg) generation in healthy conditions. Little is known about the immune-independent functions of IDO2 relevant to its specific contributions to physiology and pathophysiology in cancer cells. The purpose of this study was to assess the impact of IDO2 gene silencing as a way to inhibit B16-BL6 cancer cells in a murine model. Here, for the first time, we show that knockdown of IDO2 using small interfering RNA (siRNA) inhibits cancer cell proliferation, arrests cell cycle in G1, induces greater cell apoptosis, and reduces cell migration in vitro. Knockdown of IDO2 decreased the generation of nicotinamide adenine dinucleotide (NAD+) while increasing the generation of reactive oxygen species (ROS). We further demonstrate that cell apoptosis, induced by IDO2 downregulation, can be weakened by addition of exogenous NAD+, suggesting a novel mechanism by which IDO2 promotes tumor growth through its metabolite product NAD+. In addition to in vitro findings, we also demonstrate that IDO2 silencing in tumor cells using short hairpin RNA (shRNA) delayed tumor formation and arrested tumor growth in vivo. In conclusion, this study demonstrates a new non-immune-associated mechanism of IDO2 in vitro and IDO2 expression in B16-BL6 cells contributes to cancer development and progression. Our research provides evidence of a novel target for gene silencing that has the potential to enhance cancer therapy.
Liu, Yanling; Zhang, Yujuan; Zheng, Xiufen; Zhang, Xusheng; Wang, Hongmei; Li, Qin; Yuan, Keng; Zhou, Nanjing; Yu, Yanrong; Song, Na; Fu, Jiamin; Min, Weiping
2016-01-01
Indoleamine 2,3-dioxygenase 2 (IDO2) is a newly discovered enzyme that catalyzes the initial and rate-limiting step in the degradation of tryptophan. As a homologous protein of IDO1, IDO2 plays an inhibitory role in T cell proliferation, and it is essential for regulatory T cell (Treg) generation in healthy conditions. Little is known about the immune-independent functions of IDO2 relevant to its specific contributions to physiology and pathophysiology in cancer cells. The purpose of this study was to assess the impact of IDO2 gene silencing as a way to inhibit B16-BL6 cancer cells in a murine model. Here, for the first time, we show that knockdown of IDO2 using small interfering RNA (siRNA) inhibits cancer cell proliferation, arrests cell cycle in G1, induces greater cell apoptosis, and reduces cell migration in vitro. Knockdown of IDO2 decreased the generation of nicotinamide adenine dinucleotide (NAD+) while increasing the generation of reactive oxygen species (ROS). We further demonstrate that cell apoptosis, induced by IDO2 downregulation, can be weakened by addition of exogenous NAD+, suggesting a novel mechanism by which IDO2 promotes tumor growth through its metabolite product NAD+. In addition to in vitro findings, we also demonstrate that IDO2 silencing in tumor cells using short hairpin RNA (shRNA) delayed tumor formation and arrested tumor growth in vivo. In conclusion, this study demonstrates a new non-immune-associated mechanism of IDO2 in vitro and IDO2 expression in B16-BL6 cells contributes to cancer development and progression. Our research provides evidence of a novel target for gene silencing that has the potential to enhance cancer therapy. PMID:27058624
Akbari, Hamed; Macyszyn, Luke; Da, Xiao; Bilello, Michel; Wolf, Ronald L.; Martinez-Lage, Maria; Biros, George; Alonso-Basanta, Michelle; O’Rourke, Donald M.; Davatzikos, Christos
2016-01-01
Background Glioblastoma is an aggressive and highly infiltrative brain cancer. Standard surgical resection is guided by enhancement on postcontrast T1-weighted (T1) magnetic resonance imaging (MRI), which is insufficient for delineating surrounding infiltrating tumor. Objective To develop imaging biomarkers that delineate areas of tumor infiltration and predict early recurrence in peritumoral tissue. Such markers would enable intensive, yet targeted, surgery and radiotherapy, thereby potentially delaying recurrence and prolonging survival. Methods Preoperative multiparametric MRIs (T1, T1-Gad, T2-weighted [T2], T2-fluid-attenuated inversion recovery [FLAIR], diffusion tensor imaging (DTI), and dynamic susceptibility contrast-enhanced [DSC]-MRI) from 31 patients were combined using machine learning methods, thereby creating predictive spatial maps of infiltrated peritumoral tissue. Cross validation was used in the retrospective cohort to achieve generalizable biomarkers. Subsequently, the imaging signatures learned from the retrospective study were used in a replication cohort of 34 new patients. Spatial maps representing likelihood of tumor infiltration and future early recurrence were compared to regions of recurrence on postresection follow-up studies with pathology confirmation. Results This technique produced predictions of early recurrence with a mean area under the curve (AUC) of 0.84, sensitivity of 91%, specificity of 93%, and odds ratio estimates of 9.29 (99% CI, 8.95–9.65) for tissue predicted to be heavily infiltrated in the replication study. Regions of tumor recurrence were found to have subtle, yet fairly distinctive multiparametric imaging signatures when analyzed quantitatively by pattern analysis and machine learning. Conclusion Visually imperceptible imaging patterns discovered via multiparametric pattern analysis methods were found to estimate the extent of infiltration and location of future tumor recurrence, paving the way for improved targeted treatment. PMID:26813856
Cai, De; Qiu, Zhiqing; Yao, Weimin; Liu, Yuyu; Huang, Haixiang; Liao, Sihai; Luo, Qun; Xie, Liming; Lin, Zhixiu
2016-06-01
Microtubules play a central role in various fundamental cell functions and thus become an attractive target for cancer therapy. A novel compound YSL-12 is a combretastatin A-4 (CA-4) analogue with more stability. We investigated its anti-tumor activity and mechanisms in vitro and in vivo for the first time. Cytotoxicity was evaluated by MTT method. In vitro microtubule polymerization assay was performed using a fluorescence-based method by multifunction fluorescence microplate reader. Intracellular microtubule network was detected by immunofluorescence method. Cell cycle analysis and apoptosis were measured by flow cytometry. Metabolic stability was recorded by liquid chromatography-ultraviolet detection and liquid chromatography-mass spectrometry. In vivo anti-tumor activity was assessed using HT-29 colon carcinoma xenografts established in BALB/c nude mice. YSL-12 displayed nanomolar-level cytotoxicity against various human cancer cell lines. A high selectivity toward normal cells and potent activity toward drug-resistant cells were also observed. YSL-12 was identified as tubulin polymerization inhibitor evidenced by effectively inhibits tubulin polymerization and heavily disrupted microtubule networks in living HT-29 cells. YSL-12 displayed potent disruption effect of pre-established tumor vasculature in vitro. In addition, YSL-12 treatment also caused cell cycle arrest in the G2/M phase and induced cell apoptosis in a dose-dependent manner. In vitro metabolic stability study revealed YSL-12 displayed considerable better stability than CA-4 in liver microsomes. In vivo, YSL-12 delayed tumor growth with 69.4 % growth inhibition. YSL-12 is a promising microtubule inhibitor that has great potential for the treatment of colon carcinoma in vitro and in vivo and worth being a candidate for further development of cancer therapy.
Ferrante, Emanuele; Ferraroni, Monica; Castrignanò, Tristana; Menicatti, Laura; Anagni, Mascia; Reimondo, Giuseppe; Del Monte, Patrizia; Bernasconi, Donatella; Loli, Paola; Faustini-Fustini, Marco; Borretta, Giorgio; Terzolo, Massimo; Losa, Marco; Morabito, Alberto; Spada, Anna; Beck-Peccoz, Paolo; Lania, Andrea G
2006-12-01
The long-term outcome of non-functioning pituitary adenoma (NFPA) patients is not clearly established, probably due to the low annual incidence and prolonged natural history of these rare tumors. The aim of this study was to evaluate clinical data at presentation and long-term post-surgery and radiotherapy outcome in a cohort of patients with NFPA. A computerized database was developed using Access 2000 software (Microsoft Corporation, 1999). Retrospective registration of 295 NFPA patients was performed in seven Endocrinological Centers of North West Italy. Data were analyzed by STATA software. The main presenting symptoms were visual defects (67.8%) and headache (41.4%) and the most frequent pituitary deficit was hypogonadism (43.3%), since almost all tumors were macroadenomas (96.5%). Surgery was the first choice treatment (98% of patients) and total debulking was achieved in 35.5%. Radiotherapy was performed as adjuvant therapy after surgery in 41% of patients. At the follow-up, recurrence occurred in 19.2% of patients without post-surgical residual tumor after 7.5 +/- 2.6 years, regrowth in 58.4% of patients with post-surgical remnant after 5.3 +/- 4.0 years and residue enlargement in 18.4% of patients post-surgically treated with radiotherapy after 8.1 +/- 7.3 years. Our database indicates that the goal of a definitive surgical cure has been achieved during the last decade in a low percentage of patients with NFPA. This tumor database may help to reduce the delay between symptom onset and diagnosis, to assess prognostic parameters for the follow-up of patients with different risk of recurrence and to define the efficacy and safety of different treatments and their association with mortality/morbidity.
Chen, Jing; Wu, Hua; Han, Deyan; Xie, Changsheng
2006-01-18
To study the biodistribution of a new radioimmunoconjugate-131I-anti-VEGF monoclonal antibody (Sc-7269)-Dextran Magnetic Nanoparticles (DMN) in nude mice bearing human liver cancer where an external magnetic field was focused on, and to evaluate its therapeutic effects and safety. Tumor Growth Delay (TGD) and tumor inhibition rate were observed as antitumor effect. Peripheral white blood cells counts and the loss of body weight were tested as an indicator of systemic toxicity. The results suggests that the radioimmunotherapy of intratumoral injection of 131I-Sc-7269-DMN may be safe and efficient for the treatment of liver cancer. Furthermore, the radioimmunotherapy using DMN as a 'carrier system' may be a highly potential approach in the treatment of other kind of tumors.
Headache due to an osteochondroma of the axis.
Kouwenhoven, J W M; Wuisman, P I J M; Ploegmakers, J F
2004-12-01
We reported a case of a 42-year-old man with a 3-year history of headache due to a spinal osteochondroma. Repeated neurological evaluation, including EEG studies and CT of the cerebrum, revealed no pathology. More recently the patient presented with persistent headache and a slight limitation of neck motion. MRI studies of the cerebrum including the cervical spine showed a high cervical extradural tumor. Additional CT angiography showed a bony tumor suspected of being a spinal osteochondroma. An en bloc resection of the tumor was performed; histological evaluation confirmed the diagnosis. Immediately after intervention, all symptoms disappeared. In most patients with a spinal osteochondroma, the lesion causes no symptoms, or symptoms are aspecific. Therefore, there is often a significant delay between initial complaints and the diagnosis, as in the current case.
Behroozi, Farnaz; Abdkhodaie, Mohammad-Jafar; Sadeghi Abandansari, Hamid; Satarian, Leila; Molazem, Mohammad; Al-Jamal, Khuloud T; Baharvand, Hossein
2018-06-18
The oxidation-reduction (redox)-responsive micelle system is based on a diselenide-containing triblock copolymer, poly(ε-caprolactone)-bis(diselenide-methoxy poly(ethylene glycol)/poly(ethylene glycol)-folate) [PCL-(SeSe-mPEG/PEG-FA) 2 ]. This has helped in the development of tumor-targeted delivery for hydrophobic anticancer drugs. The diselenide bond, as a redox-sensitive linkage, was designed in such a manner that it is located at the hydrophilic-hydrophobic hinge to allow complete collapse of the micelle and thus efficient drug release in redox environments. The amphiphilic block copolymers self-assembled into micelles at concentrations higher than the critical micelle concentration (CMC) in an aqueous environment. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) analyses showed that the micelles were spherical with an average diameter of 120 nm. The insoluble anticancer drug paclitaxel (PTX) was loaded into micelles, and its triggered release behavior under different redox conditions was verified. Folate-targeting micelles showed an enhanced uptake in 4T1 breast cancer cells and in vitro cytotoxicity by flow cytometry and (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) assay, respectively. Delayed tumor growth was confirmed in the subcutaneously implanted 4T1 breast cancer in mice after intraperitoneal injection. The proposed redox-responsive copolymer offers a new type of biomaterial for drug delivery into cancer cells in vivo. On-demand drug actuation is highly desired. Redox-responsive polymeric DDSs have been shown to be able to respond and release their cargo in a selective manner when encountering a significant change in the potential difference, such as that present between cancerous and healthy tissues. This study offers an added advantage to the field of redox-responsive polymers by reporting a new type of shell-sheddable micelle based on an amphiphilic triblock co-polymer, containing diselenide as a redox-sensitive linkage. The linkage was smartly located at the hydrophilic-hydrophilic bridge in the co-polymer offering complete collapse of the micelle when exposed to the right trigger. The system was able to delay tumor growth and reduce toxicity in a breast cancer tumor model following intraperitoneal injection in mice. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Value of surgery in patients with negative imaging and sporadic Zollinger-Ellison syndrome.
Norton, Jeffrey A; Fraker, Douglas L; Alexander, H Richard; Jensen, Robert T
2012-09-01
To address the value of surgery in patients with sporadic Zollinger-Ellison syndrome (ZES) with negative imaging studies. Medical control of acid hypersecretion in patients with sporadic ZES is highly effective. This has led to these patients frequently not being sent to surgery, especially if preoperative imaging studies are negative, due, in large part, to existence of almost no data on the success of surgery in this group. Fifty-eight prospectively studied patients with sporadic ZES (17% of total studied) had negative imaging studies, and their surgical outcome was compared with 117 patients with positive imaging results. Thirty-five patients had negative imaging studies in the pre-somatostatin receptor scintigraphy (SRS) era, and 23 patients in the post-SRS era. Patients with negative imaging studies had long disease histories before surgery [mean ± SEM (from onset) = 7.9 ± 1 [range, -0.25 to 35 years]) and 25% were followed for 2 or more years from diagnosis. At surgery, gastrinoma was found in 57 of 58 patients (98%). Tumors were small (mean = 0.8 cm, 60% <1 cm). The most common primary sites were duodenal 64%, pancreatic 17%, and lymph node (10%). Fifty percent had a primary-only, 41% primary + lymph node, and 7% had liver metastases. Thirty-five of 58 patients (60%) were cured immediately postoperatively, and at last follow-up [mean = -9.4 years; range, 0.2-22 years], 27 patients (46%) remained cured. During follow-up, 3 patients died, each had liver metastases at surgery. In comparison to positive imaging patients, those with negative imaging studies had lower preoperative fasting gastrin levels; had a longer delay before surgery; more frequently had a small duodenal tumor; less frequently had a pancreatic tumor, multiple tumors, or developed a new lesion postoperatively; and had a longer survival. Sporadic ZES patients with negative imaging studies are not rare even in the post-SRS period. An experienced surgeon can find gastrinoma in almost every patient (98%) and nearly one half (46%) are cured, a rate similar to patients with positive imaging findings. Because liver metastases were found in 7%, which may have been caused by a long delay in surgery and all the disease-related deaths occurred in this group, surgery should be routinely undertaken early in ZES patients despite negative imaging studies.
Ionizing radiation and cell cycle progression in ataxia telangiectasia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beamish, H.; Khanna, K.K.; Lavin, M.F.
1994-04-01
Exposure of mammalian cells to ionizing radiation causes delay in normal progress through the cell cycle at a number of different checkpoints. Abnormalities in these checkpoints have been described for ataxia telangiectasia cells after irradiation. In this report we show that these abnormalities occur at different phases in the cell cycle in several ataxia telangiectasia lymphoblastoid cells. Ataxia telangiectasia cells, synchronized in late G{sub 1} phase with either mimosine or aphidicolin and exposed to radiation, showed a reduced delay in entering S phase compared to irradiated control cells. Failure to exhibit G{sub 1}-phase delay in ataxia telangiectasia cells is accompaniedmore » by a reduced ability of radiation to activate the product of the tumor suppressor gene p53, a protein involved in G{sub 1}/S-phase delay. When the progress of irradiated G{sub 1}-phase cells was followed into the subsequent G{sub 2} and G{sub 1} phases ataxia telangiectasia cells showed a more pronounced accumulation in G{sub 2} phase than control cells. When cells were irradiated in S phase and extent of delay was more evident in G{sub 2} phase and ataxia telangiectasia cells were delayed to a greater extent. These results suggest that the lack of initial delay in both G{sub 1} and S phases to the radiosensitivity observed in this syndrome. 26 refs., 3 figs., 2 tabs.« less
Chen, Edward P.; Markosyan, Nune; Connolly, Emma; Lawson, John A.; Li, Xuanwen; Grant, Gregory R.; Grosser, Tilo; FitzGerald, Garret A.; Smyth, Emer M.
2014-01-01
Cyclooxygenase-2 (COX-2) expression is associated with poor prognosis across a range of human cancers, including breast cancer. The contribution of tumor cell-derived COX-2 to tumorigenesis has been examined in numerous studies; however, the role of stromal-derived COX-2 is ill-defined. Here, we examined how COX-2 in myeloid cells, an immune cell subset that includes macrophages, influences mammary tumor progression. In mice engineered to selectively lack myeloid cell COX-2 [myeloid-COX-2 knockout (KO) mice], spontaneous neu oncogene-induced tumor onset was delayed, tumor burden reduced, and tumor growth slowed compared with wild-type (WT). Similarly, growth of neu-transformed mammary tumor cells as orthotopic tumors in immune competent syngeneic myeloid-COX-2 KO host mice was reduced compared with WT. By flow cytometric analysis, orthotopic myeloid-COX-2 KO tumors had lower tumor-associated macrophage (TAM) infiltration consistent with impaired colony stimulating factor-1-dependent chemotaxis by COX-2 deficient macrophages in vitro. Further, in both spontaneous and orthotopic tumors, COX-2-deficient TAM displayed lower immunosuppressive M2 markers and this was coincident with less suppression of CD8+ cytotoxic T lymphocytes (CTLs) in myeloid-COX-2 KO tumors. These studies suggest that reduced tumor growth in myeloid-COX-2 KO mice resulted from disruption of M2-like TAM function, thereby enhancing T-cell survival and immune surveillance. Antibody-mediated depletion of CD8+, but not CD4+ cells, restored tumor growth in myeloid-COX-2 KO to WT levels, indicating that CD8+ CTLs are dominant antitumor effectors in myeloid-COX-2 KO mice. Our studies suggest that inhibition of myeloid cell COX-2 can potentiate CTL-mediated tumor cytotoxicity and may provide a novel therapeutic approach in breast cancer therapy. PMID:24590894
It has been shown that prenatal exposure to the chlorotriazine herbicide atrazine (ATR) during mammary bud outgrowth (late gestation) delays postnatal mammary epithelial progression in Long Evans (LE) rats. Our laboratory has recently found that prenatal exposure to ATR also effe...
Camoutsis, C; Catsoulacos, D; Karayiann, V; Papageorgiou, A; Mourelatos, D; Mioglou, E; Kritsi, Z; Nikolaropoulos, S
2001-01-01
The present work was undertaken in order to test the hypothesis that the Sister Chromatid Exchange (SCE) assay in vitro can be used for the prediction of in vivo tumor response to newly synthesized potential chemotherapeutics. The effect of three homo-aza-steroidal esters containing the -CONH- in the steroidal nucleus, 1, 2, and 3 on SCE rates and on cell kinetics in cultured human lymphocytes was studied. The antitumor activity of these compounds was tested on leukemia P388- and leukemia L1210-bearing mice. The three substances induced statistically significant enhancement of SCEs and of cell division delays. Compounds 1 and 3 were identified, on a molar basis, as more effective inducers of SCEs and of cell division delays compared with compound 2. Compounds 1 and 3 had upon both experimental tumors better therapeutic effects compared with compound 2 at equitoxic doses. Therefore, the order of the antitumor effectiveness of the three compounds coincided with the order of the cytogenetic effects they induced.
Desserud, Kari F; Bukholm, Ida; Søreide, Jon Arne
2017-10-01
Management of patients with neuroendocrine tumors of the gastrointestinal tract or pancreas (GEP-NENs) poses diagnostic and therapeutic challenges. This study described the medico-legal claims reported to a national governmental system that oversees compensation to patients with GEP-NENs Materials and Methods: An electronic search of the Norwegian System of Compensation to Patients database was performed to identify claims evaluated between 2005-2016. The clinical information and the medico-legal evaluation were reviewed. We identified seven patients, five women and two men, with a median age of 57 (range=47-73) years. Delayed diagnosis (median diagnostic delay of 18 (range=6-48) months) was the main cause for claims in six out of the seven patients). Four patients received financial compensation based on the claim judgement. This review of claims that were evaluated by the Norwegian System of Compensation to Patients showed that a timely diagnosis of GEP-NENs remains a clinical challenge. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Novel Hsp90 inhibitor NVP-AUY922 radiosensitizes prostate cancer cells
Gandhi, Nishant; Wild, Aaron T.; Chettiar, Sivarajan T.; Aziz, Khaled; Kato, Yoshinori; Gajula, Rajendra P.; Williams, Russell D.; Cades, Jessica A.; Annadanam, Anvesh; Song, Danny; Zhang, Yonggang; Hales, Russell K.; Herman, Joseph M.; Armour, Elwood; DeWeese, Theodore L.; Schaeffer, Edward M.; Tran, Phuoc T.
2013-01-01
Outcomes for poor-risk localized prostate cancers treated with radiation are still insufficient. Targeting the “non-oncogene” addiction or stress response machinery is an appealing strategy for cancer therapeutics. Heat-shock-protein-90 (Hsp90), an integral member of this machinery, is a molecular chaperone required for energy-driven stabilization and selective degradation of misfolded “client” proteins, that is commonly overexpressed in tumor cells. Hsp90 client proteins include critical components of pathways implicated in prostate cancer cell survival and radioresistance, such as androgen receptor signaling and the PI3K-Akt-mTOR pathway. We examined the effects of a novel non-geldanamycin Hsp90 inhibitor, AUY922, combined with radiation (RT) on two prostate cancer cell lines, Myc-CaP and PC3, using in vitro assays for clonogenic survival, apoptosis, cell cycle distribution, γ-H2AX foci kinetics and client protein expression in pathways important for prostate cancer survival and radioresistance. We then evaluated tumor growth delay and effects of the combined treatment (RT-AUY922) on the PI3K-Akt-mTOR and AR pathways in a hind-flank tumor graft model. We observed that AUY922 caused supra-additive radiosensitization in both cell lines at low nanomolar doses with enhancement ratios between 1.4–1.7 (p < 0.01). RT-AUY922 increased apoptotic cell death compared with either therapy alone, induced G2-M arrest and produced marked changes in client protein expression. These results were confirmed in vivo, where RT-AUY922 combination therapy produced supra-additive tumor growth delay compared with either therapy by itself in Myc-CaP and PC3 tumor grafts (both p < 0.0001). Our data suggest that combined RT-AUY922 therapy exhibits promising activity against prostate cancer cells, which should be investigated in clinical studies. PMID:23358469
Novel Hsp90 inhibitor NVP-AUY922 radiosensitizes prostate cancer cells.
Gandhi, Nishant; Wild, Aaron T; Chettiar, Sivarajan T; Aziz, Khaled; Kato, Yoshinori; Gajula, Rajendra P; Williams, Russell D; Cades, Jessica A; Annadanam, Anvesh; Song, Danny; Zhang, Yonggang; Hales, Russell K; Herman, Joseph M; Armour, Elwood; DeWeese, Theodore L; Schaeffer, Edward M; Tran, Phuoc T
2013-04-01
Outcomes for poor-risk localized prostate cancers treated with radiation are still insufficient. Targeting the "non-oncogene" addiction or stress response machinery is an appealing strategy for cancer therapeutics. Heat-shock-protein-90 (Hsp90), an integral member of this machinery, is a molecular chaperone required for energy-driven stabilization and selective degradation of misfolded "client" proteins, that is commonly overexpressed in tumor cells. Hsp90 client proteins include critical components of pathways implicated in prostate cancer cell survival and radioresistance, such as androgen receptor signaling and the PI3K-Akt-mTOR pathway. We examined the effects of a novel non-geldanamycin Hsp90 inhibitor, AUY922, combined with radiation (RT) on two prostate cancer cell lines, Myc-CaP and PC3, using in vitro assays for clonogenic survival, apoptosis, cell cycle distribution, γ-H2AX foci kinetics and client protein expression in pathways important for prostate cancer survival and radioresistance. We then evaluated tumor growth delay and effects of the combined treatment (RT-AUY922) on the PI3K-Akt-mTOR and AR pathways in a hind-flank tumor graft model. We observed that AUY922 caused supra-additive radiosensitization in both cell lines at low nanomolar doses with enhancement ratios between 1.4-1.7 (p < 0.01). RT-AUY922 increased apoptotic cell death compared with either therapy alone, induced G 2-M arrest and produced marked changes in client protein expression. These results were confirmed in vivo, where RT-AUY922 combination therapy produced supra-additive tumor growth delay compared with either therapy by itself in Myc-CaP and PC3 tumor grafts (both p < 0.0001). Our data suggest that combined RT-AUY922 therapy exhibits promising activity against prostate cancer cells, which should be investigated in clinical studies.
Garetto, Stefano; Sardi, Claudia; Martini, Elisa; Roselli, Giuliana; Morone, Diego; Angioni, Roberta; Cianciotti, Beatrice Claudia; Trovato, Anna Elisa; Franchina, Davide Giuseppe; Castino, Giovanni Francesco; Vignali, Debora; Erreni, Marco; Marchesi, Federica; Rumio, Cristiano; Kallikourdis, Marinos
2016-07-12
In recent years, tumor Adoptive Cell Therapy (ACT), using administration of ex vivo-enhanced T cells from the cancer patient, has become a promising therapeutic strategy. However, efficient homing of the anti-tumoral T cells to the tumor or metastatic site still remains a substantial hurdle. Yet the tumor site itself attracts both tumor-promoting and anti-tumoral immune cell populations through the secretion of chemokines. We attempted to identify these chemokines in a model of spontaneous metastasis, in order to "hijack" their function by expressing matching chemokine receptors on the cytotoxic T cells used in ACT, thus allowing us to enhance the recruitment of these therapeutic cells. Here we show that this enabled the modified T cells to preferentially home into spontaneous lymph node metastases in the TRAMP model, as well as in an inducible tumor model, E.G7-OVA. Due to the improved homing, the modified CD8+ T cells displayed an enhanced in vivo protective effect, as seen by a significant delay in E.G7-OVA tumor growth. These results offer a proof of principle for the tailored application of chemokine receptor modification as a means of improving T cell homing to the target tumor, thus enhancing ACT efficacy. Surprisingly, we also uncover that the formation of the peri-tumoral fibrotic capsule, which has been shown to impede T cell access to tumor, is partially dependent on host T cell presence. This finding, which would be impossible to observe in immunodeficient model studies, highlights possible conflicting roles that T cells may play in a therapeutic context.
Ochoa, Maria Carmen; Minute, Luna; López, Ascensión; Pérez-Ruiz, Elisabeth; Gomar, Celia; Vasquez, Marcos; Inoges, Susana; Etxeberria, Iñaki; Rodriguez, Inmaculada; Garasa, Saray; Mayer, Jan-Peter Andreas; Wirtz, Peter; Melero, Ignacio; Berraondo, Pedro
2018-01-01
Enhancement of antibody-dependent cellular cytotoxicity (ADCC) may potentiate the antitumor efficacy of tumor-targeted monoclonal antibodies. Increasing the numbers and antitumor activity of NK cells is a promising strategy to maximize the ADCC of standard-of-care tumor-targeted antibodies. For this purpose, we have preclinically tested a recombinant chimeric protein encompassing the sushi domain of the IL15Rα, IL-15, and apolipoprotein A-I (Sushi-IL15-Apo) as produced in CHO cells. The size-exclusion purified monomeric fraction of this chimeric protein was stable and retained the IL-15 and the sushi domain bioactivity as measured by CTLL-2 and Mo-7e cell proliferation and STAT5 phosphorylation in freshly isolated human NK and CD8 + T cells. On cell cultures, Sushi-IL15-Apo increases NK cell proliferation and survival as well as spontaneous and antibody-mediated cytotoxicity. Scavenger receptor class B type I (SR-B1) is the receptor for ApoA-I and is expressed on the surface of tumor cells. SR-B1 can adsorb the chimeric protein on tumor cells and can transpresent IL-15 to NK and CD8 + T cells. A transient NK-humanized murine model was developed to test the increase of ADCC attained by the chimeric protein in vivo . The EGFR + human colon cancer cell line HT-29 was intraperitoneally inoculated in immune-deficient Rag2 -/- γc -/- mice that were reconstituted with freshly isolated PBMCs and treated with the anti-EGFR mAb cetuximab. The combination of the Sushi-IL15-Apo protein and cetuximab reduced the number of remaining tumor cells in the peritoneal cavity and delayed tumor engraftment in the peritoneum. Furthermore, Sushi-IL15-Apo increased the anti-tumor effect of a murine anti-EGFR mAb in Rag1 -/- mice bearing subcutaneous MC38 colon cancer transfected to express EGFR. Thus, Sushi-IL15-Apo is a potent tool to increase the number and the activation of NK cells to promote the ADCC activity of antibodies targeting tumor antigens.
Kawame, H; Sugio, Y; Fuyama, Y; Hayashi, Y; Suzuki, H; Kurosawa, K; Maekawa, K
1999-01-01
We report a male infant with multiple congenital anomalies and mosaic variegated aneuploidy; a rare cytogenetic abnormality characterized by mosaicism for several different aneuploidies involving many different chromosomes. He had prenatal-onset growth retardation, microcephaly, dysmorphic face, seizures, hypotonia, feeding difficulty, and developmental delay. In addition, he developed bilateral Wilms tumors. Neuroradiological examination revealed Dandy-Walker malformation and hypoplasia of the cerebral hemisphere and pons. Cytogenetic analysis revealed various multiple numerical aneuploidies in blood lymphocytes, fibroblasts, and bone marrow cells, together with premature centromere division (PCD). Peripheral blood chromosome analysis from his parents also showed PCD, but no aneuploid cells. The clinical phenotype and multiple aneuploidies of the patient may be a consequence of the homozygous PCD trait inherited from his parents. Comparison with previously reported cases of multiple aneuploidy suggests that mosaic variegated aneuploidy with PCD may be a clinically recognizable syndrome with major phenotypes being mental retardation, microcephaly, structural brain anomalies (including Dandy-Walker malformation), and possible cancer predisposition.
2011-01-01
Objectives Reconstruction of large mandiblular defects following ablative oncologic surgery could be done by using vascularized bone transfer or, more often, primarily with simultaneous or delayed bone grafting, using load bearing reconstruction plates. Bending of these reconstruction plates is typically directed along the outer contour of the original mandible. Simultaneously or in a second operation vascularized or non-vascularized bone is fixed to the reconstruction plate. However, the prosthodontic-driven backward planning to ease bony reconstruction of the mandible in terms of dental rehabilitation using implant-retained overdentures might be an eligible solution. The purpose of this work was to develop, establish and clinically evaluate a novel 3D planning procedure for mandibular reconstruction. Materials and methods Three patients with tumors involving the mandible, which included squamous cell carcinoma in the floor of the mouth and keratocystic odontogenic tumor, were treated surgically by hemimandibulectomy. Results In primary alloplastic mandible reconstruction, shape and size of the reconstruction plate could be predefined and prebent prior to surgery. Clinical relevance This study provides modern treatment strategies for mandibular reconstruction. PMID:21968330
Idiotypic Cascades in Cancer Patients Treated with Monoclonal Antibody CO17-1A
NASA Astrophysics Data System (ADS)
Wettendorff, Martine; Iliopoulos, Dimitrios; Tempero, Margaret; Kay, David; Defreitas, Elaine; Koprowski, Hilary; Herlyn, Dorothee
1989-05-01
We have previously shown that gastrointestinal cancer patients treated with monoclonal antibody CO17-1A (Ab1) developed anti-idiotypic antibodies (Ab2) to the Ab1. We now demonstrate that patients produce anti-anti-idiotypic antibodies (Ab3) to their autologous Ab2. Ab3 were demonstrated in culture supernatants of peripheral blood mononuclear cells from five Ab1-treated patients after stimulation of the cells with heterologous Ab2 that functionally mimicked the tumor antigen (Ag) defined by Ab1 and immunologically cross reacted with the patients' Ab2. Ab3 shared idiotopes with Ab1 and were Ab1-like in their binding specificities to tumor cells, Ag, and Ab2. Such antibodies were also elicited by stimulating cells with Ag. However, they were not produced by stimulating posttreatment mononuclear cells with control proteins or by stimulating pretreatment cells with either Ag or Ab2. Our results demonstrate idiotypic cascades in cancer patients treated with monoclonal antibody. Ag-specific Ab3 responses may underlie delayed clinical responses often observed in cancer patients treated with monoclonal antibodies of various specificities.
[Clinical analysis of 31 patients with gastric stromal tumors].
Li, Junxia; Liu, Ping; Wang, Huahong; Yu, Jing; Xie, Pengyan; Liu, Xinguang
2002-11-01
To investigate the clinical manifestations, diagnosis and treatment of gastric stromal tumors. 31 patients with gastric stromal tumors treated from 1993, 1 - 2001, 9 were analyzed retrospectively. All cases were diagnosed by pathological and immunohistochemistry examinations. According to Levin's standard combining with Hurliman's and Goldbum's methods, the patients were classified. There are no significant difference between male and female patients. 50 - 60 years old patients have high incidence. The distribution of gastric tromal tumors is fundus > body > antrum. Diagnosis of this condition is sometimes difficult and treatment is often delayed because patients usually present with nonspecific abdominal symptoms. The main manifestations of gastric stromal tumors are upper gastrointestinal hemorrhage 61.3% (19/31), 7 patients with acute hemorrhage and 12 with chronic hemorrhage. Most of them were malignant. Abdominal malaises and/or distention 32.3% (10/31) and abdominal pain 22.6% (7/31). Gastroscopy, ultrasound gastroscopy, computed tomography, B type ultrasound and upper gastrointestinal X-ray series are helpful to diagnosis. But the final diagnosis is decided by pathological and immunohistochemistry examinations. Gastric stromal tumors exhibit consistent immunohistochemical expressions of CD(117) and/or CD(34). The operative treatment is thought of the first choice. Effect of the chemotherapy isn't satisfied. There is no standard chemotherapy for gastric stromal tumors. Gastric stromal tumor is a kind of separated submucosal tumor which is different from leiomyoma, leiomyosarcoma and neurogenic tumors. Pathological and immunohistochemistry inspectations are very important to make clear diagnosis. Early diagnosis and rational treatment are the keys to improve the prognosis.
Pineal and ectopic pineal tumors: the role of radiation therapy. [X ray; /sup 60/Co
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Y.T.R.; Medini, E.; Haselow, R.E.
Seventeen patients with pineal tumors and one ectopic (suprasellar) germinoma were treated with radiation therapy. Surgery was restricted to decompression in 16 patients, and only two patients had resection of the tumor. Thirteen of 18 patients are alive without evidence for disease with a ten-year surrvival rate of 88%. The tumor dose ranged from 4000 rads to 6000 rads. No age or dose dependence in survival was noted, but patients with whole brain irradiation or generous volume to include ventricular system had better survival. No case of spinal metastasis was noted. The possibility of increased incidence of meningeal seeding followingmore » surgical intervention is considered. From their data, the authors feel that radiation therapy with or without surgical decompression should be the primary treatment for pinealoma. Surgery can be used for diagnosis and/or treatment of patients who show delayed response to radiation. Recommendation is made for the use of whole brain irradiation to 4000 rads followed by a boost to the tumor area to 5000 rads.« less
Insight into the epidemiology of cutaneous squamous cell carcinoma with perineural spread.
Warren, Timothy A; Whiteman, David C; Porceddu, Sandro V; Panizza, Benedict J
2016-09-01
Perineural spread (PNS) of cutaneous squamous cell carcinoma of the head and neck (SCCHN) can be associated with poor outcomes. Disease understanding and awareness is limited leading to delayed diagnosis and treatment. The purpose of this study was to identify epidemiological features of patients with PNS of cutaneous SCCHN. Tumor characteristics and demographics of patients with PNS of cutaneous SCCHN managed through a single institution were collected between 1998 and 2013. One hundred twenty patients were included in this study. The majority had a history of skin cancer (85.8%). The median time from primary tumor treatment to PNS symptom onset was 16 months (range, 1-86 months). A total of 34.2% had no perineural invasion (PNI) detected in the primary, and 22.5% had no known primary tumor. Only 5.8% of the patients had nodal involvement at presentation. Patients can present with PNS from cutaneous SCCHN with no known primary tumor or with primary tumors without PNI. The majority of patients presented without regional nodal involvement. © 2016 Wiley Periodicals, Inc. Head Neck 38: 1416-1420, 2016. © 2016 Wiley Periodicals, Inc.
PD-L1 expression on malignant cells is no prerequisite for checkpoint therapy.
Kleinovink, Jan Willem; Marijt, Koen A; Schoonderwoerd, Mark J A; van Hall, Thorbald; Ossendorp, Ferry; Fransen, Marieke F
2017-01-01
Immunotherapy with PD-1/PD-L1-blocking antibodies is clinically effective for several tumor types, but the mechanism is not fully understood. PD-L1 expression on tumor biopsies is generally regarded as an inclusion criterion for this cancer therapy. Here, we describe the PD-L1-blocking therapeutic responses of preclinical tumors in which PD-L1 expression was removed from cancer cells, but not from immune infiltrate. Lack of PD-L1 expression on malignant cells delayed tumor outgrowth in a CD8 + T cell-mediated fashion, showing the importance of this molecule in immune suppression. PD-L1 expression was evident on myeloid-infiltrating cells in the microenvironment of these tumors and targeting stromal PD-L1 with blocking antibody therapy had additional antitumor effect, demonstrating that PD-L1 on both malignant cells and immune cells is involved in the mechanism of immunotherapeutic antibodies. Importantly, comparable results were obtained with PD-1-blocking therapy. These findings have implications for inclusion of cancer patients in PD-1/PD-L1 blockade immunotherapies.
PD-L1 expression on malignant cells is no prerequisite for checkpoint therapy
Marijt, Koen A.; Schoonderwoerd, Mark J. A.; Ossendorp, Ferry; Fransen, Marieke F.
2017-01-01
ABSTRACT Immunotherapy with PD-1/PD-L1-blocking antibodies is clinically effective for several tumor types, but the mechanism is not fully understood. PD-L1 expression on tumor biopsies is generally regarded as an inclusion criterion for this cancer therapy. Here, we describe the PD-L1-blocking therapeutic responses of preclinical tumors in which PD-L1 expression was removed from cancer cells, but not from immune infiltrate. Lack of PD-L1 expression on malignant cells delayed tumor outgrowth in a CD8+ T cell-mediated fashion, showing the importance of this molecule in immune suppression. PD-L1 expression was evident on myeloid-infiltrating cells in the microenvironment of these tumors and targeting stromal PD-L1 with blocking antibody therapy had additional antitumor effect, demonstrating that PD-L1 on both malignant cells and immune cells is involved in the mechanism of immunotherapeutic antibodies. Importantly, comparable results were obtained with PD-1-blocking therapy. These findings have implications for inclusion of cancer patients in PD-1/PD-L1 blockade immunotherapies. PMID:28507803
Shibata, Teishiki; Tanikawa, Motoki; Sakata, Tomohiro; Mase, Mitsuhito
2018-01-01
Craniopharyngiomas are benign tumors and account for approximately 5.6-13% of all intracranial tumors in children. Diagnosis of pediatric craniopharyngioma is often delayed until the tumor becomes relatively large and manifests severe visual and/or endocrine disturbance. Endoscopic endonasal approaches have recently been introduced to surgery for craniopharyngioma. These techniques, however, have rarely been utilized in patients affected with craniopharyngioma as young as 1 year old. This report documents a 12-month-old male infant with sellar craniopharyngioma who presented with acute total vision loss. To increase the chances of visual recovery, an endoscopic endonasal optic nerve decompression was performed as an urgent procedure. After decompression, which resulted in improvement of his visual disturbance, gross total resection of the tumor was undertaken through an anterior interhemispheric approach at a later date. Tumor mass reduction through an endoscopic endonasal transsphenoidal approach followed by secondary radical total resection under craniotomy was considered to be useful in cases such as this when urgent optic nerve decompression is required. © 2018 S. Karger AG, Basel.
Ali, Selman A; Lynam, June; McLean, Cornelia S; Entwisle, Claire; Loudon, Peter; Rojas, José M; McArdle, Stephanie E B; Li, Geng; Mian, Shahid; Rees, Robert C
2002-04-01
Direct intratumor injection of a disabled infectious single cycle HSV-2 virus encoding the murine GM-CSF gene (DISC/mGM-CSF) into established murine colon carcinoma CT26 tumors induced a significant delay in tumor growth and complete tumor regression in up to 70% of animals. Pre-existing immunity to HSV did not reduce the therapeutic efficacy of DISC/mGM-CSF, and, when administered in combination with syngeneic dendritic cells, further decreased tumor growth and increased the incidence of complete tumor regression. Direct intratumor injection of DISC/mGM-CSF also inhibited the growth of CT26 tumor cells implanted on the contralateral flank or seeded into the lungs following i.v. injection of tumor cells (experimental lung metastasis). Proliferation of splenocytes in response to Con A was impaired in progressor and tumor-bearer, but not regressor, mice. A potent tumor-specific CTL response was generated from splenocytes of all mice with regressing, but not progressing tumors following in vitro peptide stimulation; this response was specific for the gp70 AH-1 peptide SPSYVYHQF and correlated with IFN-gamma, but not IL-4 cytokine production. Depletion of CD8(+) T cells from regressor splenocytes before in vitro stimulation with the relevant peptide abolished their cytolytic activity, while depletion of CD4(+) T cells only partially inhibited CTL generation. Tumor regression induced by DISC/mGM-CSF virus immunotherapy provides a unique model for evaluating the immune mechanism(s) involved in tumor rejection, upon which tumor immunotherapy regimes may be based.
Enhancement of radiation therapy by the novel vascular targeting agent ZD6126.
Siemann, Dietmar W; Rojiani, Amyn M
2002-05-01
The aim of this study was to evaluate the antitumor efficacy of the novel vascular targeting agent ZD6126 (N-acetylcochinol-O-phosphate) in the rodent KHT sarcoma model, either alone or in combination with single- or fractionated-dose radiation therapy. C3H/HeJ mice bearing i.m. KHT tumors were injected i.p. with ZD6126 doses ranging from 10 to 150 mg/kg. Tumors were irradiated locally in unanesthetized mice using a linear accelerator. Tumor response to ZD6126 administered alone or in combination with radiation was assessed by clonogenic cell survival assay or tumor growth delay. Treatment with ZD6126 led to a rapid tumor vascular shutdown as determined by Hoechst 33342 diffusion. Histologic evaluation showed morphologic damage of tumor cells within a few hours after drug exposure, followed by extensive central tumor necrosis and neoplastic cell death as a result of prolonged ischemia. When combined with radiation, a 150 mg/kg dose of ZD6126 reduced tumor cell survival 10-500-fold compared with radiation alone. These enhancements in tumor cell killing could be achieved for ZD6126 given both before and after radiation exposure. Further, the shape of the cell survival curve observed after the combination therapy suggested that including ZD6126 in the treatment had a major effect on the radiation-resistant hypoxic cell subpopulation associated with this tumor. Finally, when given on a once-weekly basis in conjunction with fractionated radiotherapy, ZD6126 treatment was found to significantly increase the tumor response to daily 2.5 Gy fractions. The present results demonstrated that in the KHT sarcoma, ZD6126 caused rapid tumor vascular shutdown, induction of central tumor necrosis, tumor cell death secondary to ischemia, and enhancement of the antitumor effects of radiation therapy.
Jia, Xiao-Hua; Du, Yang; Mao, Duo; Wang, Zhong-Liang; He, Zhen-Qiang; Qiu, Jing-Dan; Ma, Xi-Bo; Shang, Wen-Ting; Ding, Dan; Tian, Jie
2015-09-22
Zoledronic acid (ZA) has been tested in clinical trials as an additive therapy for early-stage breast cancer. However, the mechanism by which ZA exerts its antitumor activity is still unclear. The aim of this study is to investigate whether the prevention of tumor growth by ZA is through regulating the mesenchymal stem cells (MSC)-monocyte chemotactic protein 1 (MCP-1)-macrophages axis in the tumor microenvironment. To address this issue, MDA-MB-231-FLUC human breast cancer cells were cultured and injected either alone, or coupled with MSC into the mammary fat pads of nude mice. MSC were treated with either ZA or untreated. Tumor growth was determined by using an in vivo bioluminescence imaging (BLI) and the tumor-associated macrophages (TAMs) in tumor tissues were immunohistochemically analyzed by using CD206 antibody. The effects of ZA on the cytokine related gene expression of MSC were assessed by using real-time PCR. In this study, we found that ZA-treated mice showed a significant delay in tumor growth. In addition, our data revealed that ZA weakened the ability of MSC to promote tumor growth by impairing TAMs recruitment and tumor vascularization. Furthermore, it was found that ZA decreased MCP-1 expression of MSC, and therefore reduced the recruitment of TAMs to the tumor sites and hence inhibited the tumor growth. Altogether, our study demonstrated ZA can prevent the tumor-promoting effects of MSC. The antitumor effects of ZA were caused by decreasing the MCP-1 expression of MSC, which further decreased the infiltration of TAMs into tumor sites, and therefore inhibited the tumor growth.
Schmidt, Ingo
2017-01-01
Background: Non-traumatic radial nerve palsy (RNP) caused by local tumors is a rare and uncommon entity. Methods: A 62-year-old female presented with a left non-traumatic RNP, initially starting with weakness only. It was caused by a benign giant lipoma at the proximal forearm that was misdiagnosed over a period of 2 years. The slowly growth of the tumor led to an irreparable overstretching-related partial nerve disruption. For functional recovery of the patient, a triple tendon transfer procedure had to be performed. Results: Four months after surgery, the patient was completely able to perform her activities of daily living again. At the 10-months follow-up, strength of wrist extension, thumb's extension and abduction, and long fingers II-V extension had all improved to grade 4 in Medical Research Council scale (0-5). In order to restore motion, the patient reported that she would undergo the same triple tendon transfer procedure a second time where necessary. Due to the initially misdiagnosed tumor, there was an overall delayed duration of time for functional recovery of the patient. Conclusion: The triple tendon transfer procedure offers a useful and reliable method to restore functionality for patients sustaining irreparable RNP. However, it must be noted critically with our patient that this procedure probably would have been avoided. Initially, there was weakness only by entrapment of the radial nerve. RNP caused by local tumors are uncommon but known from the literature, and so it should be considered generally in differential diagnosis of non-traumatic RNP. PMID:28979592
Iyer, Deepa; Patil, U K
2014-01-01
Salvadora indica Wight (Salvadoraceae) contains a number of medically beneficial properties including abrasives, astringents and antiseptics. Traditionally, it was used by ancient Arabs to whiten and polish teeth. This study explores the antihyperlipidemic and antitumor effects of an ethanol extract of S. indica and its isolated phytoconstituents in rodents. Flash chromatography was used for the isolation of phytoconstituents from the stems of S. indica. An antihyperlipidemic study was carried out in Triton loaded rats. Animal groups were given intraperitoneal (i.p.) injection of Triton WR 1339 at dose of 400 mg/kg body weight (b.w.). Furthermore, antitumor activity was investigated in hybrid mice (of C57BL strain + Swiss albino strain). The animals were observed for tumor growth after injection of B16F10 melanoma cells into the dorsal skin of mice. The stems of S. indica yielded xanthotoxin and umbelliferone through chromatographic separation techniques. The structures of the compounds were elucidated by spectroscopic data interpretation and showed antihyperlipidemic activity. The study showed significant reduction in total cholesterol (TC) (p < 0.01), triglycerides (TGs) (p < 0.001), low-density lipoproteins (p < 0.01) level whereas increased in high-density lipoprotein (p < 0.01) at a significant level, after the treatment. Pretreatment with the extract and phytoconstituents also showed delayed tumor growth by increasing the volume doubling time (VDT) (p < 0.01), growth delay (GD) (p < 0.01) and mean survival time (p < 0.001). Acute treatment caused a stimulatory effect on high density lipoprotein level and inhibition in TC and TG elevation induced by Triton. Tumor regression studies showed a regression response for tumor growth in vivo of murine mouse melanoma as demonstrated by increasing the VDT and GD.
Steve, M; Ernenwein, D; Chaine, A; Bertolus, C; Goudot, P; Ruhin-Poncet, B
2011-11-01
Osteosarcoma (OS) is the most frequent bone malignant tumor. It is usually found on long bones, 5 to 10% are located on jaws, accounting for 0.5 to 1% of all facial tumors. There is little published data which concerns only few patients. Our aim was to study retrospectively cases of facial bone OS in adults, and to compare our results with published data to suggest an optimal management scheme. Thirty-three patients were managed for an OS, from January 1997 to January 2007. Fourteen patients with a maxillary and mandibular OS, treated in first-intention in our unit, were included. The following data were analyzed: age; personal history; circumstance of discovery; clinical, functional, and physical signs; loco-regional extension and metastasis radiological investigation. The histological slides were systematically reviewed. The protocol, therapeutic outcome, and follow-up were studied. The mean age at diagnosis was 43. Swelling was the most frequent functional sign. The mean delay before management was 3.4 months. The most frequent radiological presentation was a lytic and hyperdense image. The diagnosis was suggested after CT scan in 57.1% of cases. The biopsy was correlated to the anatomopathological analysis in 78.6% of cases. The most common treatment was surgical exeresis completed by chemotherapy. The 5-year survival rate was 50%. Jaw OS are specific because of their localization and specific bone ultrastructure. Their management remains controversial: should they be managed like limb OS or treated more specifically? Neoadjuvant chemotherapy, even if it delays exeresis for 3 months, seems to stop the growth or reduce the tumor. An early anatomopathological analysis of the surgical piece determines adjuvant therapy. The negative prognostic factors are: maxillary localization because of limited exeresis margins, tumoral size, and osteoblastic sub-type. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Brungs, Daniel; Lynch, David; Luk, Alison Ws; Minaei, Elahe; Ranson, Marie; Aghmesheh, Morteza; Vine, Kara L; Carolan, Martin; Jaber, Mouhannad; de Souza, Paul; Becker, Therese M
2018-02-21
To demonstrate the feasibility of cryopreservation of peripheral blood mononuclear cells (PBMCs) for prognostic circulating tumor cell (CTC) detection in gastroesophageal cancer. Using 7.5 mL blood samples collected in EDTA tubes from patients with gastroesopheagal adenocarcinoma, CTCs were isolated by epithelial cell adhesion molecule based immunomagnetic capture using the IsoFlux platform. Paired specimens taken during the same blood draw ( n = 15) were used to compare number of CTCs isolated from fresh and cryopreserved PBMCs. Blood samples were processed within 24 h to recover the PBMC fraction, with PBMCs used for fresh analysis immediately processed for CTC isolation. Cryopreservation of PBMCs lasted from 2 wk to 25.2 mo (median 14.6 mo). CTCs isolated from pre-treatment cryopreserved PBMCs ( n = 43) were examined for associations with clinicopathological variables and survival outcomes. While there was a significant trend to a decrease in CTC numbers associated with cryopreserved specimens (mean number of CTCs 34.4 vs 51.5, P = 0.04), this was predominately in samples with a total CTC count of > 50, with low CTC count samples less affected ( P = 0.06). There was no significant association between the duration of cryopreservation and number of CTCs. In cryopreserved PBMCs from patient samples prior to treatment, a high CTC count (> 17) was associated with poorer overall survival (OS) ( n = 43, HR = 4.4, 95%CI: 1.7-11.7, P = 0.0013). In multivariate analysis, after controlling for sex, age, stage, ECOG performance status, and primary tumor location, a high CTC count remained significantly associated with a poorer OS (HR = 3.7, 95%CI: 1.2-12.4, P = 0.03). PBMC cryopreservation for delayed CTC isolation is a valid strategy to assist with sample collection, transporting and processing.
Hao, Shuyu; Song, Hua; Zhang, Wei; Seldomridge, Ashlee; Jung, Jinkyu; Giles, Amber J; Hutchinson, Marsha-Kay; Cao, Xiaoyu; Colwell, Nicole; Lita, Adrian; Larion, Mioara; Maric, Dragan; Abu-Asab, Mones; Quezado, Martha; Kramp, Tamalee; Camphausen, Kevin; Zhuang, Zhengping; Gilbert, Mark R; Park, Deric M
2018-05-18
Standard therapy for chordoma consists of surgical resection followed by high-dose irradiation. Protein phosphatase 2A (PP2A) is a ubiquitously expressed serine/threonine phosphatase involved in signal transduction, cell cycle progression, cell differentiation, and DNA repair. LB100 is a small-molecule inhibitor of PP2A designed to sensitize cancer cells to DNA damage from irradiation and chemotherapy. A recently completed phase I trial of LB100 in solid tumors demonstrated its safety. Here, we show the therapeutic potential of LB100 in chordoma. Three patient-derived chordoma cell lines were used: U-CH1, JHC7, and UM-Chor1. Cell proliferation was determined with LB100 alone and in combination with irradiation. Cell cycle progression was assessed by flow cytometry. Quantitative γ-H2AX immunofluorescence and immunoblot evaluated the effect of LB100 on radiation-induced DNA damage. Ultrastructural evidence for nuclear damage was investigated using Raman imaging and transmission electron microscopy. A xenograft model was established to determine potential clinical utility of adding LB100 to irradiation. PP2A inhibition in concert with irradiation demonstrated in vitro growth inhibition. The combination of LB100 and radiation also induced accumulation at the G2/M phase of the cell cycle, the stage most sensitive to radiation-induced damage. LB100 enhanced radiation-induced DNA double-strand breaks. Animals implanted with chordoma cells and treated with the combination of LB100 and radiation demonstrated tumor growth delay. Combining LB100 and radiation enhanced DNA damage-induced cell death and delayed tumor growth in an animal model of chordoma. PP2A inhibition by LB100 treatment may improve the effectiveness of radiation therapy for chordoma.
Han, Hyun Jin; Chang, Won Seok; Jung, Hyun Ho; Park, Yong Gou
2016-01-01
Background Up to 15% of all patients with brain metastases have no clearly detected primary site despite intensive evaluation, and this incidence has decreased with the use of improved imaging technology. Radiosurgery has been evaluated as one of the treatment modality for patients with limited brain metastases. In this study, we evaluated the effectiveness of radiosurgery for brain metastases from unknown primary tumors. Methods We retrospectively evaluated 540 patients who underwent gamma knife radiosurgery (GKRS) for brain metastases radiologically diagnosed between August 1992 and September 2007 in our institution. First, the brain metastases were grouped into metachronous, synchronous, and precocious presentations according to the timing of diagnosis of the brain metastases. Then, synchronous and precocious brain metastases were further grouped into 1) unknown primary; 2) delayed known primary; and 3) synchronous metastases according to the timing of diagnosis of the primary origin. We analyzed the survival time and time to new brain metastasis in each group. Results Of the 540 patients, 29 (5.4%) presented precocious or synchronous metastases (34 GKRS procedures for 174 lesions). The primary tumor was not found even after intensive and repeated systemic evaluation in 10 patients (unknown primary, 34.5%); found after 8 months in 3 patients (delayed known primary, 1.2%); and diagnosed at the same time as the brain metastases in 16 patients (synchronous metastasis, 55.2%). No statistically significant differences in survival time and time to new brain metastasis were found among the three groups. Conclusion Identification of a primary tumor before GKRS did not affect the patient outcomes. If other possible differential diagnoses were completely excluded, early GKRS can be an effective treatment option for brain metastases from unknown primary tumor. PMID:27867920
Fadel, Maha; Kassab, Kawser; Fadeel, Doa Abdel
2010-03-01
Nanoparticles formulated from the biodegradable copolymer poly(lactic-coglycolic acid) (PLGA) were investigated as a drug delivery system to enhance tissue uptake, permeation, and targeting of zinc(II) phthalocyanine (ZnPc) for photodynamic therapy. Three ZnPc nanoparticle formulations were prepared using a solvent emulsion evaporation method and the influence of sonication time on nanoparticle shape, encapsulation and size distribution, in vitro release, and in vivo photodynamic efficiency in tumor-bearing mice were studied. Sonication time did not affect the process yield or encapsulation efficiency, but did affect significantly the particle size. Sonication for 20 min reduced the mean particle size to 374.3 nm and the in vitro release studies demonstrated a controlled release profile of ZnPc. Tumor-bearing mice injected with ZnPc nanoparticles exhibited significantly smaller mean tumor volume, increased tumor growth delay and longer survival compared with the control group and the group injected with free ZnPc during the time course of the experiment. Histopathological examination of tumor from animals treated with PLGA ZnPc showed regression of tumor cells, in contrast to those obtained from animals treated with free ZnPc. The results indicate that ZnPc encapsulated in PLGA nanoparticles is a successful delivery system for improving photodynamic activity in the target tissue.
Liu, Min; Luo, Fengling; Ding, Chuanlin; Albeituni, Sabrin; Hu, Xiaoling; Ma, Yunfeng; Cai, Yihua; McNally, Lacey; Sanders, Mary Ann; Jain, Dharamvir; Kloecker, Goetz; Bousamra, Michael; Zhang, Huang-ge; Higashi, Richard M.; Lane, Andrew N.; Fan, Teresa W-M.; Yan, Jun
2015-01-01
Tumor-associated macrophages (TAM) with an M2-like phenotype have been linked to tumor-elicited inflammation, immunosuppression, and resistance to chemotherapies in cancer, thus representing an attractive target for an effective cancer immunotherapy. Here, we demonstrate that particulate yeast-derived β-glucan, a natural polysaccharide compound, converts polarized M2 macrophages or immunosuppressive TAM into an M1-like phenotype with potent immuno-stimulating activity. This process is associated with macrophage metabolic reprograming with enhanced glycolysis, krebs cycle and glutamine utilization. In addition, particulate β-glucan converts immunosuppressive TAM via the C-type lectin receptor dectin-1-induced Syk-Card9-Erk pathway. Further in vivo studies show that oral particulate β-glucan treatment significantly delays tumor growth, which is associated with in vivo TAM phenotype conversion and enhanced effector T cell activation. Mice injected with particulate β-glucan-treated TAM mixed with tumor cells have significantly reduced tumor burden with less blood vascular vessels compared to those with TAM plus tumor cell injection. In addition, macrophage depletion significantly reduced the therapeutic efficacy of particulate β-glucan in tumor-bearing mice. These findings have established a new paradigm for macrophage polarization and immunosuppressive TAM conversion and shed the light on the action mode of β-glucan treatment in cancer. PMID:26453753
A case report of phosphaturic mesenchymal tumor-induced osteomalacia.
Wu, Weiqian; Wang, Chongyang; Ruan, Jianwei; Chen, Feng; Li, Ningjun; Chen, Fanghu
2017-12-01
Tumor-induced osteomalacia (TIO) is a rare and often misdiagnosed syndrome. Surgical resection is currently the first line treatment for TIO. Here we report the case of a 49-year-old woman presented with intermittent pain in the right chest and bilateral hip that had persisted for over two years. She was diagnosed of TIO caused by a phosphaturic mesenchymal tumor based on the following examinations. Laboratory tests revealed high serum alkaline phosphatase, high urinary phosphorus, hypophosphatemia and normal serum calcium levels. 18-FDG PET/CT indicated a systemic multi-site symmetrical pseudo fracture and a tumor in the 7th right rib. Curettage of the tumor was performed, and pathological analysis also confirmed our diagnoses as a phosphaturic mesenchymal tumor. At seven months post-surgery, the symptoms were relieved, proximal muscle strength was improved and serum levels of phosphorus and alkaline phosphatase normalized. The bilateral femoral neck and bilateral pubic bone fractures were blurred in the pelvic plain X-ray, suggesting that the fracture was healing. This case report strengthened the importance of recognition of this rare disease to avoid delay of diagnosis and surgical removal of the causative tumor is recommended. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.
Wild, Aaron T; Gandhi, Nishant; Chettiar, Sivarajan T; Aziz, Khaled; Gajula, Rajendra P; Williams, Russell D; Kumar, Rachit; Taparra, Kekoa; Zeng, Jing; Cades, Jessica A; Velarde, Esteban; Menon, Siddharth; Geschwind, Jean F; Cosgrove, David; Pawlik, Timothy M; Maitra, Anirban; Wong, John; Hales, Russell K; Torbenson, Michael S; Herman, Joseph M; Tran, Phuoc T
2013-01-01
Sorafenib (SOR) is the only systemic agent known to improve survival for hepatocellular carcinoma (HCC). However, SOR prolongs survival by less than 3 months and does not alter symptomatic progression. To improve outcomes, several phase I-II trials are currently examining SOR with radiation (RT) for HCC utilizing heterogeneous concurrent and sequential treatment regimens. Our study provides preclinical data characterizing the effects of concurrent versus sequential RT-SOR on HCC cells both in vitro and in vivo. Concurrent and sequential RT-SOR regimens were tested for efficacy among 4 HCC cell lines in vitro by assessment of clonogenic survival, apoptosis, cell cycle distribution, and γ-H2AX foci formation. Results were confirmed in vivo by evaluating tumor growth delay and performing immunofluorescence staining in a hind-flank xenograft model. In vitro, concurrent RT-SOR produced radioprotection in 3 of 4 cell lines, whereas sequential RT-SOR produced decreased colony formation among all 4. Sequential RT-SOR increased apoptosis compared to RT alone, while concurrent RT-SOR did not. Sorafenib induced reassortment into less radiosensitive phases of the cell cycle through G1-S delay and cell cycle slowing. More double-strand breaks (DSBs) persisted 24 h post-irradiation for RT alone versus concurrent RT-SOR. In vivo, sequential RT-SOR produced the greatest tumor growth delay, while concurrent RT-SOR was similar to RT alone. More persistent DSBs were observed in xenografts treated with sequential RT-SOR or RT alone versus concurrent RT-SOR. Sequential RT-SOR additionally produced a greater reduction in xenograft tumor vascularity and mitotic index than either concurrent RT-SOR or RT alone. In conclusion, sequential RT-SOR demonstrates greater efficacy against HCC than concurrent RT-SOR both in vitro and in vivo. These results may have implications for clinical decision-making and prospective trial design.
Chettiar, Sivarajan T.; Aziz, Khaled; Gajula, Rajendra P.; Williams, Russell D.; Kumar, Rachit; Taparra, Kekoa; Zeng, Jing; Cades, Jessica A.; Velarde, Esteban; Menon, Siddharth; Geschwind, Jean F.; Cosgrove, David; Pawlik, Timothy M.; Maitra, Anirban; Wong, John; Hales, Russell K.; Torbenson, Michael S.; Herman, Joseph M.; Tran, Phuoc T.
2013-01-01
Sorafenib (SOR) is the only systemic agent known to improve survival for hepatocellular carcinoma (HCC). However, SOR prolongs survival by less than 3 months and does not alter symptomatic progression. To improve outcomes, several phase I-II trials are currently examining SOR with radiation (RT) for HCC utilizing heterogeneous concurrent and sequential treatment regimens. Our study provides preclinical data characterizing the effects of concurrent versus sequential RT-SOR on HCC cells both in vitro and in vivo. Concurrent and sequential RT-SOR regimens were tested for efficacy among 4 HCC cell lines in vitro by assessment of clonogenic survival, apoptosis, cell cycle distribution, and γ-H2AX foci formation. Results were confirmed in vivo by evaluating tumor growth delay and performing immunofluorescence staining in a hind-flank xenograft model. In vitro, concurrent RT-SOR produced radioprotection in 3 of 4 cell lines, whereas sequential RT-SOR produced decreased colony formation among all 4. Sequential RT-SOR increased apoptosis compared to RT alone, while concurrent RT-SOR did not. Sorafenib induced reassortment into less radiosensitive phases of the cell cycle through G1-S delay and cell cycle slowing. More double-strand breaks (DSBs) persisted 24 h post-irradiation for RT alone versus concurrent RT-SOR. In vivo, sequential RT-SOR produced the greatest tumor growth delay, while concurrent RT-SOR was similar to RT alone. More persistent DSBs were observed in xenografts treated with sequential RT-SOR or RT alone versus concurrent RT-SOR. Sequential RT-SOR additionally produced a greater reduction in xenograft tumor vascularity and mitotic index than either concurrent RT-SOR or RT alone. In conclusion, sequential RT-SOR demonstrates greater efficacy against HCC than concurrent RT-SOR both in vitro and in vivo. These results may have implications for clinical decision-making and prospective trial design. PMID:23762417
Ozen, Seza; Kuemmerle-Deschner, Jasmin B; Cimaz, Rolando; Livneh, Avi; Quartier, Pierre; Kone-Paut, Isabelle; Zeft, Andrew; Spalding, Steve; Gul, Ahmet; Hentgen, Veronique; Savic, Sinisa; Foeldvari, Ivan; Frenkel, Joost; Cantarini, Luca; Patel, Dony; Weiss, Jeffrey; Marinsek, Nina; Degun, Ravi; Lomax, Kathleen G; Lachmann, Helen J
2017-04-01
Periodic fever syndrome (PFS) conditions are characterized by recurrent attacks of fever and localized inflammation. This study examined the diagnostic pathway and treatments at tertiary centers for familial Mediterranean fever (FMF), tumor necrosis factor receptor-associated periodic syndrome (TRAPS), and mevalonate kinase deficiency (MKD)/hyperimmunoglobulinemia D syndrome (HIDS). PFS specialists at medical centers in the US, the European Union, and the eastern Mediterranean participated in a retrospective chart review, providing de-identified data in an electronic case report form. Patients were treated between 2008 and 2012, with at least 1 year of followup; all had clinical and/or genetically proven disease and were on/eligible for biologic treatment. A total of 134 patients were analyzed: FMF (n = 49), TRAPS (n = 47), and MKD/HIDS (n = 38). Fever was commonly reported as severe across all indications. Other frequently reported severe symptoms were serositis for FMF patients and elevated acute-phase reactants and gastrointestinal upset for TRAPS and MKD/HIDS. A long delay from disease onset to diagnosis was seen within TRAPS and MKD/HIDS (5.8 and 7.1 years, respectively) compared to a 1.8-year delay in FMF patients. An equal proportion of TRAPS patients first received anti-interleukin-1 (anti-IL-1) and anti-tumor necrosis factor (anti-TNF) biologic agents, whereas IL-1 blockade was the main choice for FMF patients resistant to colchicine and MKD/HIDS patients. For TRAPS patients, treatment with anakinra versus anti-TNF treatments as first biologic agent resulted in significantly higher clinical and biochemical responses (P = 0.03 and P < 0.01, respectively). No significant differences in responses were observed between biologic agents among other cohorts. Referral patterns and diagnostic delays highlight the need for greater awareness and improved diagnostics for PFS. This real-world treatment assessment supports the need for further refinement of treatment practices. © 2016, American College of Rheumatology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hua Chiaho, E-mail: Chia-Ho.Hua@stjude.org; Wu Shengjie; Chemaitilly, Wassim
Purpose: To develop a mathematical model utilizing more readily available measures than stimulation tests that identifies brain tumor survivors with high likelihood of abnormal growth hormone secretion after radiotherapy (RT), to avoid late recognition and a consequent delay in growth hormone replacement therapy. Methods and Materials: We analyzed 191 prospectively collected post-RT evaluations of peak growth hormone level (arginine tolerance/levodopa stimulation test), serum insulin-like growth factor 1 (IGF-1), IGF-binding protein 3, height, weight, growth velocity, and body mass index in 106 children and adolescents treated for ependymoma (n = 72), low-grade glioma (n = 28) or craniopharyngioma (n = 6),more » who had normal growth hormone levels before RT. Normal level in this study was defined as the peak growth hormone response to the stimulation test {>=}7 ng/mL. Results: Independent predictor variables identified by multivariate logistic regression with high statistical significance (p < 0.0001) included IGF-1 z score, weight z score, and hypothalamic dose. The developed predictive model demonstrated a strong discriminatory power with an area under the receiver operating characteristic curve of 0.883. At a potential cutoff point of probability of 0.3 the sensitivity was 80% and specificity 78%. Conclusions: Without unpleasant and expensive frequent stimulation tests, our model provides a quantitative approach to closely follow the growth hormone secretory capacity of brain tumor survivors. It allows identification of high-risk children for subsequent confirmatory tests and in-depth workup for diagnosis of growth hormone deficiency.« less
Muhammad, A.K.M. Ghulam; Candolfi, Marianela; King, Gwendalyn D.; Yagiz, Kader; Foulad, David; Mineharu, Yohei; Kroeger, Kurt M.; Treuer, Katherine A.; Nichols, W. Stephen; Sanderson, Nicholas S.; Yang, Jieping; Khayznikov, Maksim; Van Rooijen, Nico; Lowenstein, Pedro R.; Castro, Maria G.
2009-01-01
Purpose Glioblastoma multiforme is a deadly primary brain cancer. Because the tumor kills due to recurrences, we tested the hypothesis that a new treatment would lead to immunological memory in a rat model of recurrent glioblastoma multiforme. Experimental Design We developed a combined treatment using an adenovirus (Ad) expressing fms-like tyrosine kinase-3 ligand (Flt3L), which induces the infiltration of immune cells into the tumor microenvironment, and an Ad expressing herpes simplex virus-1–thymidine kinase (TK), which kills proliferating tumor cells in the presence of ganciclovir. Results This treatment induced immunological memory that led to rejection of a second glioblastoma multiforme implanted in the contralateral hemisphere and of an extracranial glioblastoma multiforme implanted intradermally. Rechallenged long-term survivors exhibited anti-glioblastoma multiforme–specific T cells and displayed specific delayed-type hypersensitivity. Using depleting antibodies, we showed that rejection of the second tumor was dependent on CD8+ T cells. Circulating anti-glioma antibodies were observed when glioblastoma multiforme cells were implanted intradermally in naïve rats or in long-term survivors. However, rats bearing intracranial glioblastoma multiforme only exhibited circulating antitumoral antibodies upon treatment with Ad-Flt3L + Ad-TK. This combined treatment induced tumor regression and release of the chromatin-binding protein high mobility group box 1 in two further intracranial glioblastoma multiforme models, that is, Fisher rats bearing intracranial 9L and F98 glioblastoma multiforme cells. Conclusions Treatment with Ad-Flt3L + Ad-TK triggered systemic anti–glioblastoma multiforme cellular and humoral immune responses, and anti–glioblastoma multiforme immunological memory. Release of the chromatin-binding protein high mobility group box 1 could be used as a noninvasive biomarker of therapeutic efficacy for glioblastoma multiforme. The robust treatment efficacy lends further support to its implementation in a phase I clinical trial. PMID:19789315
Geng, Ling; Rachakonda, Girish; Morré, D. James; Morré, Dorothy M.; Crooks, Peter A.; Sonar, Vijayakumar N.; Roti, Joseph L. Roti; Rogers, Buck E.; Greco, Suellen; Ye, Fei; Salleng, Kenneth J.; Sasi, Soumya; Freeman, Michael L.; Sekhar, Konjeti R.
2009-01-01
There is a need for novel strategies that target tumor vasculature, specifically those that synergize with cytotoxic therapy, in order to overcome resistance that can develop with current therapeutics. A chemistry-driven drug discovery screen was employed to identify novel compounds that inhibit endothelial cell tubule formation. Cell-based phenotypic screening revealed that noncytotoxic concentrations of (Z)-(±)-2-(1-benzenesulfonylindol-3-ylmethylene)-1-azabicyclo[2. 2.2]octan-3-ol (analog I) and (Z)-(±)-2-(1-benzylindol-3-ylmethylene)-1-azabicyclo[2.2.2]octan-3-ol (analog II) inhibited endothelial cell migration and the ability to form capillary-like structures in Matrigel by ≥70%. The ability to undergo neoangiogenesis, as measured in a window-chamber model, was also inhibited by 70%. Screening of biochemical pathways revealed that analog II inhibited the enzyme ENOX1 (EC50 = 10 μM). Retroviral-mediated shRNA suppression of endothelial ENOX1 expression inhibited cell migration and tubule formation, recapitulating the effects observed with the small-molecule analogs. Genetic or chemical suppression of ENOX1 significantly increased radiation-mediated Caspase3-activated apoptosis, coincident with suppression of p70S6K1 phosphorylation. Administration of analog II prior to fractionated X-irradiation significantly diminished the number and density of tumor microvessels, as well as delayed syngeneic and xenograft tumor growth compared to results obtained with radiation alone. Analysis of necropsies suggests that the analog was well tolerated. These results suggest that targeting ENOX1 activity represents a novel therapeutic strategy for enhancing the radiation response of tumors.—Geng, L., Rachakonda, G., Morré, D. J., Morré, D. M., Crooks, P. A., Sonar, V. N., Roti Roti, J. L., Rogers, B. E., Greco, S., Ye, F., Salleng, K. J., Sasi, S., Freeman, M. L., Sekhar, K. R. Indolyl-quinuclidinols inhibit ENOX activity and endothelial cell morphogenesis while enhancing radiation-mediated control of tumor vasculature. PMID:19395476
Schottelius, Margret; Osl, Theresa; Poschenrieder, Andreas; Hoffmann, Frauke; Beykan, Seval; Hänscheid, Heribert; Schirbel, Andreas; Buck, Andreas K.; Kropf, Saskia; Schwaiger, Markus; Keller, Ulrich; Lassmann, Michael; Wester, Hans-Jürgen
2017-01-01
Purpose: Based on the clinical relevance of the chemokine receptor 4 (CXCR4) as a molecular target in cancer and on the success of [68Ga]pentixafor as an imaging probe for high-contrast visualization of CXCR4-expression, the spectrum of clinical CXCR4-targeting was expanded towards peptide receptor radionuclide therapy (PRRT) by the development of [177Lu]pentixather. Experimental design: CXCR4 affinity, binding specificity, hCXCR4 selectivity and internalization efficiency of [177Lu]pentixather were evaluated using different human and murine cancer cell lines. Biodistribution studies (1, 6, 48, 96h and 7d p.i.) and in vivo metabolite analyses were performed using Daudi-lymphoma bearing SCID mice. Extrapolated organ doses were cross-validated with human dosimetry (pre-therapeutic and during [177Lu]pentixather PRRT) in a patient with multiple myeloma (MM). Results: [177Lu]pentixather binds with high affinity, specificity and selectivity to hCXCR4 and shows excellent in vivo stability. Consequently, and supported by >96% plasma protein binding and a logP=-1.76, delaying whole-body clearance of [177Lu]pentixather, tumor accumulation was high and persistent, both in the Daudi model and the MM patient. Tumor/background ratios (7d p.i.) in mice were 499±202, 33±7, 4.0±0.8 and 116±22 for blood, intestine, kidney and muscle, respectively. In the patient, high tumor/kidney and tumor/liver dose ratios of 3.1 and 6.4 were observed during [177Lu]pentixather PRRT (7.8 GBq), with the kidneys being the dose-limiting organs. Conclusions: [177Lu]pentixather shows excellent in vivo CXCR4-targeting characteristics and a suitable pharmacokinetic profile, leading to high tumor uptake and retention and thus high radiation doses to tumor tissue during PRRT, suggesting high clinical potential of this [68Ga]pentixafor/[177Lu]pentixather based CXCR4-targeted theranostic concept. PMID:28744319
Gene therapy enhances chemotherapy tolerance and efficacy in glioblastoma patients.
Adair, Jennifer E; Johnston, Sandra K; Mrugala, Maciej M; Beard, Brian C; Guyman, Laura A; Baldock, Anne L; Bridge, Carly A; Hawkins-Daarud, Andrea; Gori, Jennifer L; Born, Donald E; Gonzalez-Cuyar, Luis F; Silbergeld, Daniel L; Rockne, Russell C; Storer, Barry E; Rockhill, Jason K; Swanson, Kristin R; Kiem, Hans-Peter
2014-09-01
Temozolomide (TMZ) is one of the most potent chemotherapy agents for the treatment of glioblastoma. Unfortunately, almost half of glioblastoma tumors are TMZ resistant due to overexpression of methylguanine methyltransferase (MGMT(hi)). Coadministration of O6-benzylguanine (O6BG) can restore TMZ sensitivity, but causes off-target myelosuppression. Here, we conducted a prospective clinical trial to test whether gene therapy to confer O6BG resistance in hematopoietic stem cells (HSCs) improves chemotherapy tolerance and outcome. We enrolled 7 newly diagnosed glioblastoma patients with MGMT(hi) tumors. Patients received autologous gene-modified HSCs following single-agent carmustine administration. After hematopoietic recovery, patients underwent O6BG/TMZ chemotherapy in 28-day cycles. Serial blood samples and tumor images were collected throughout the study. Chemotherapy tolerance was determined by the observed myelosuppression and recovery following each cycle. Patient-specific biomathematical modeling of tumor growth was performed. Progression-free survival (PFS) and overall survival (OS) were also evaluated. Gene therapy permitted a significant increase in the mean number of tolerated O6BG/TMZ cycles (4.4 cycles per patient, P < 0.05) compared with historical controls without gene therapy (n = 7 patients, 1.7 cycles per patient). One patient tolerated an unprecedented 9 cycles and demonstrated long-term PFS without additional therapy. Overall, we observed a median PFS of 9 (range 3.5-57+) months and OS of 20 (range 13-57+) months. Furthermore, biomathematical modeling revealed markedly delayed tumor growth at lower cumulative TMZ doses in study patients compared with patients that received standard TMZ regimens without O6BG. These data support further development of chemoprotective gene therapy in combination with O6BG and TMZ for the treatment of glioblastoma and potentially other tumors with overexpression of MGMT. Clinicaltrials.gov NCT00669669. R01CA114218, R01AI080326, R01HL098489, P30DK056465, K01DK076973, R01HL074162, R01CA164371, R01NS060752, U54CA143970.
Chang, Meng-Ya; Shiau, Ai-Li; Chen, Yu-Hung; Chang, Chih-Jui; Chen, Helen H-W; Wu, Chao-Liang
2008-07-01
High atomic number material, such as gold, may be used in conjunction with radiation to provide dose enhancement in tumors. In the current study, we investigated the dose-enhancing effect and apoptotic potential of gold nanoparticles in combination with single-dose clinical electron beams on B16F10 melanoma tumor-bearing mice. We revealed that the accumulation of gold nanoparticles was detected inside B16F10 culture cells after 18 h of incubation, and moreover, the gold nanoparticles were shown to be colocalized with endoplasmic reticulum and Golgi apparatus in cells. Furthermore, gold nanoparticles radiosensitized melanoma cells in the colony formation assay (P = 0.02). Using a B16F10 tumor-bearing mouse model, we further demonstrated that gold nanoparticles in conjunction with ionizing radiation significantly retarded tumor growth and prolonged survival compared to the radiation alone controls (P < 0.05). Importantly, an increase of apoptotic signals was detected inside tumors in the combined treatment group (P < 0.05). Knowing that radiation-induced apoptosis has been considered a determinant of tumor responses to radiation therapy, and the length of tumor regrowth delay correlated with the extent of apoptosis after single-dose radiotherapy, these results may suggest the clinical potential of gold nanoparticles in improving the outcome of melanoma radiotherapy.
Zhu, Qing-Qiang; Wang, Zhong-Qiu; Zhu, Wen-Rong; Chen, Wen-Xin; Wu, Jing-Tao
2013-04-01
Renal cell carcinoma associated with Xp11.2 translocation and TFE gene fusion (Xp11.2/TFE RCC), and collecting duct carcinoma (CDC) are uncommon subtypes of renal cell carcinomas. To investigate the multislice CT (MSCT) characteristics of these two tumor types. Nine patients with Xp11.2/TFE RCC and 10 patients with CDC were studied retrospectively. MSCT was undertaken to investigate differences in tumor characteristics and enhancement patterns. All patients had single tumors centered in the renal medulla. Two patients with each tumor type had lymph node involvement and there was a single case of hepatic metastasis (Xp11.2/TFE RCC). The mean tumor diameter of Xp11.2/TFE RCC tumors was significantly larger than for CDC tumors. Two patients with Xp11.2/TFE RCC had cystic components as did eight patients with CDC (P < 0.05). Calcifications were present in six patients, each with CDC. Clear tumor boundaries were visible in two patients with CDC and in nine with Xp11.2/TFE RCC (P < 0.05). The density of Xp11.2/TFE RCC tumors was greater than that of CDC tumors, normal renal cortex, or medulla on unenhanced CT. Enhancement was higher with Xp11.2/TFE RCC than with CDC tumors during all phases. Xp11.2/TFE RCC enhancement was higher than in the renal medulla during cortical and medullary phase but lower than in normal renal medulla during the delayed phase. CDC tumor enhancement was lower than that for normal renal medulla during all enhanced phases. Both tumor types originated from the renal medulla. Distinguishing features included density on unenhanced CT, enhancement patterns, and capsule signs. Identifying these differences may aid diagnosis.
Ferraro, Daniel J.; Kotipatruni, Rama P.; Bhave, Sandeep R.; Jaboin, Jerry J.; Hallahan, Dennis E.
2013-01-01
Lung cancer remains the leading cause of cancer deaths in the United States and the rest of the world. The advent of molecularly directed therapies holds promise for improvement in therapeutic efficacy. Cytosolic phospholipase A2 (cPLA2) is associated with tumor progression and radioresistance in mouse tumor models. Utilizing the cPLA2 specific inhibitor PLA-695, we determined if cPLA2 inhibition radiosensitizes non small cell lung cancer (NSCLC) cells and tumors. Treatment with PLA-695 attenuated radiation induced increases of phospho-ERK and phospho-Akt in endothelial cells. NSCLC cells (LLC and A549) co-cultured with endothelial cells (bEND3 and HUVEC) and pre-treated with PLA-695 showed radiosensitization. PLA-695 in combination with irradiation (IR) significantly reduced migration and proliferation in endothelial cells (HUVEC & bEND3) and induced cell death and attenuated invasion by tumor cells (LLC &A549). In a heterotopic tumor model, the combination of PLA-695 and radiation delayed growth in both LLC and A549 tumors. LLC and A549 tumors treated with a combination of PLA-695 and radiation displayed reduced tumor vasculature. In a dorsal skin fold model of LLC tumors, inhibition of cPLA2 in combination with radiation led to enhanced destruction of tumor blood vessels. The anti-angiogenic effects of PLA-695 and its enhancement of the efficacy of radiotherapy in mouse models of NSCLC suggest that clinical trials for its capacity to improve radiotherapy outcomes are warranted. PMID:23894523
Reirradiation of tumors in cats and dogs.
Turrel, J M; Théon, A P
1988-08-15
Fifty-one cats and dogs with tumor recurrence after irradiation were treated with a second course of radiotherapy, using either teletherapy or brachytherapy. Eighty-six percent of the tumors had partial or complete response at 2 months after reirradiation. Tumor response was significantly (P = 0.041) affected when the interval between the 2 courses of irradiation was greater than 5 months. The estimated local tumor control rate was 38% at 1 year after reirradiation. Of all the factors examined, complete response at 2 months, reirradiation field size less than or equal to 10 cm2, and reirradiation dose greater than 40 gray emerged as predictors of local tumor control. The estimated overall survival rate was 47% at 2 years. Tumor location had a significant (P = 0.001) influence on overall survival; animals with cutaneous tumors had the longest survival times, and those with oral tumors had the shortest survival times. The other significant (P = 0.001) factor affecting overall survival time was the field size of the reirradiated site. Estimated survival time after reirradiation was 41% at 1 year. Favorable prognostic indicators were complete response at 2 months and location of tumor; animals with skin tumors had a favorable prognosis. The acute effects of reirradiation on normal tissues were acceptable, but 12% of the animals had severe delayed complications. Significant risk of complications after reirradiation was associated with squamous cell carcinoma (P = 0.015) and reirradiated field size greater than 30 cm2 (P = 0.056). When the interval between irradiations was greater than 5 months, the risk of complications was significantly (P = 0.022) lower.(ABSTRACT TRUNCATED AT 250 WORDS)
Cabrales, Luis E Bergues; Nava, Juan J Godina; Aguilera, Andrés Ramírez; Joa, Javier A González; Ciria, Héctor M Camué; González, Maraelys Morales; Salas, Miriam Fariñas; Jarque, Manuel Verdecia; González, Tamara Rubio; Mateus, Miguel A O'Farril; Brooks, Soraida C Acosta; Palencia, Fabiola Suárez; Zamora, Lisset Ortiz; Quevedo, María C Céspedes; Seringe, Sarah Edward; Cuitié, Vladimir Crombet; Cabrales, Idelisa Bergues; González, Gustavo Sierra
2010-10-28
Electrotherapy effectiveness at different doses has been demonstrated in preclinical and clinical studies; however, several aspects that occur in the tumor growth kinetics before and after treatment have not yet been revealed. Mathematical modeling is a useful instrument that can reveal some of these aspects. The aim of this paper is to describe the complete growth kinetics of unperturbed and perturbed tumors through use of the modified Gompertz equation in order to generate useful insight into the mechanisms that underpin this devastating disease. The complete tumor growth kinetics for control and treated groups are obtained by interpolation and extrapolation methods with different time steps, using experimental data of fibrosarcoma Sa-37. In the modified Gompertz equation, a delay time is introduced to describe the tumor's natural history before treatment. Different graphical strategies are used in order to reveal new information in the complete kinetics of this tumor type. The first stage of complete tumor growth kinetics is highly non linear. The model, at this stage, shows different aspects that agree with those reported theoretically and experimentally. Tumor reversibility and the proportionality between regions before and after electrotherapy are demonstrated. In tumors that reach partial remission, two antagonistic post-treatment processes are induced, whereas in complete remission, two unknown antitumor mechanisms are induced. The modified Gompertz equation is likely to lead to insights within cancer research. Such insights hold promise for increasing our understanding of tumors as self-organizing systems and, the possible existence of phase transitions in tumor growth kinetics, which, in turn, may have significant impacts both on cancer research and on clinical practice.
Zhang, Qiang; Wang, Fei; Wei, Gong; Cai, Jian-Qun; Zhi, Fa-Chao; Bai, Yang
2017-01-01
Endoscopic tunneling resection is a relatively novel endoscopic technology for removing gastric submucosal tumors. Our study aimed to compare the differences between tunneling and nontunneling resection for gastric submucosal tumors. Resections of gastric submucosal tumors (n = 97) performed from 2010 to 2015 at our endoscopy center were reviewed, and PubMed was searched for clinical studies on gastric submucosal tumor resection by endoscopic nontunneling and tunneling techniques. At our endoscopy center, nontunneling (Group 1) and tunneling resection (Group 2) were performed for 78 and 19 submucosal tumors, respectively; median tumor diameters were 15 and 20 mm (P = 0.086), median procedural times were 50 and 75 min (P = 0.017), successful resection rates were 94.9% (74/78) and 89.5% (17/19) (P = 0.334), and en bloc resection rates were 95.9% (71/74) and 94.1% (16/17) (P = 0.569) in the Groups 1 and 2, respectively. Postoperative fever, delayed hemorrhage and perforation, hospitalization time, and hospitalization expense were statistically similar between the 2 groups. A literature review on gastric submucosal tumor resection suggested that the en bloc resection rates of the two methods for tumors with a median diameter of 15-30 mm were also high, and there were no relapses during the follow-up period. Both endoscopic nontunneling and tunneling resection seem to be effective and safe methods for removing relatively small gastric submucosal tumors. Compared with endoscopic nontunneling, tunneling resection does not seem to have distinct advantages for gastric submucosal tumors, and has a longer mean operative time.
Kyuno, Daisuke; Ohno, Keisuke; Katsuki, Shinichi; Fujita, Tomoki; Konno, Ai; Murakami, Takeshi; Waga, Eriko; Takanashi, Kunihiro; Kitaoka, Keisuke; Komatsu, Yuya; Sasaki, Kazuaki; Hirata, Koichi
2015-11-01
The use of endoscopic submucosal dissection (ESD) for duodenal neoplasms has increased in recent years, but delayed perforation and bleeding are also known to frequently occur. We present two cases in which duodenal adenoma was successfully treated with laparoscopic-endoscopic cooperative surgery. ESD was combined with laparoscopic seromuscular sutures. The lesions in both cases were located in the second portion of the duodenum. The patients requested resection of the lesion, and we performed laparoscopic-endoscopic cooperative surgery. After the laparoscopic surgeon mobilized the duodenum, the endoscopic surgeon performed ESD for the duodenal tumor without perforation. The laparoscopic surgeon sutured the duodenal wall in the seromuscular layer to strengthen the ulcer bed after ESD. Histopathological studies confirmed that the surgical margins were tumor-free in both cases. The patients were discharged with no complications. This unique laparoscopic-endoscopic cooperative procedure is a safe and effective method for resecting superficial nonampullary duodenal tumors. © 2015 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and Wiley Publishing Asia Pty Ltd.
Targeted imaging of cancer by fluorocoxib C, a near-infrared cyclooxygenase-2 probe
NASA Astrophysics Data System (ADS)
Uddin, Md. Jashim; Crews, Brenda C.; Ghebreselasie, Kebreab; Daniel, Cristina K.; Kingsley, Philip J.; Xu, Shu; Marnett, Lawrence J.
2015-05-01
Cyclooxygenase-2 (COX-2) is a promising target for the imaging of cancer in a range of diagnostic and therapeutic settings. We report a near-infrared COX-2-targeted probe, fluorocoxib C (FC), for visualization of solid tumors by optical imaging. FC exhibits selective and potent COX-2 inhibition in both purified protein and human cancer cell lines. In vivo optical imaging shows selective accumulation of FC in COX-2-overexpressing human tumor xenografts [1483 head and neck squamous cell carcinoma (HNSCC)] implanted in nude mice, while minimal uptake is detectable in COX-2-negative tumor xenografts (HCT116) or 1483 HNSCC xenografts preblocked with the COX-2-selective inhibitor celecoxib. Time course imaging studies conducted from 3 h to 7-day post-FC injection revealed a marked reduction in nonspecific fluorescent signals with retention of fluorescence in 1483 HNSCC tumors. Thus, use of FC in a delayed imaging protocol offers an approach to improve imaging signal-to-noise that should improve cancer detection in multiple preclinical and clinical settings.
Early impact of social isolation and breast tumor progression in mice.
Madden, Kelley S; Szpunar, Mercedes J; Brown, Edward B
2013-03-01
Evidence from cancer patients and animal models of cancer indicates that exposure to psychosocial stress can promote tumor growth and metastasis, but the pathways underlying stress-induced cancer pathogenesis are not fully understood. Social isolation has been shown to promote tumor progression. We examined the impact of social isolation on breast cancer pathogenesis in adult female severe combined immunodeficiency (SCID) mice using the human breast cancer cell line, MDA-MB-231, a high β-adrenergic receptor (AR) expressing line. When group-adapted mice were transferred into single housing (social isolation) one week prior to MB-231 tumor cell injection into a mammary fat pad (orthotopic), no alterations in tumor growth or metastasis were detected compared to group-housed mice. When social isolation was delayed until tumors were palpable, tumor growth was transiently increased in singly-housed mice. To determine if sympathetic nervous system activation was associated with increased tumor growth, spleen and tumor norepinephrine (NE) was measured after social isolation, in conjunction with tumor-promoting macrophage populations. Three days after transfer to single housing, spleen weight was transiently increased in tumor-bearing and non-tumor-bearing mice in conjunction with reduced splenic NE concentration and elevated CD11b+Gr-1+ macrophages. At day 10 after social isolation, no changes in spleen CD11b+ populations or NE were detected in singly-housed mice. In the tumors, social isolation increased CD11b+Gr-1+, CD11b+Gr-1-, and F4/80+ macrophage populations, with no change in tumor NE. The results indicate that a psychological stressor, social isolation, elicits dynamic but transient effects on macrophage populations that may facilitate tumor growth. The transiency of the changes in peripheral NE suggest that homeostatic mechanisms may mitigate the impact of social isolation over time. Studies are underway to define the neuroendocrine mechanisms underlying the tumor-promoting effects of social isolation, and to determine the contributions of increased tumor macrophages to tumor pathogenesis. Copyright © 2012 Elsevier Inc. All rights reserved.
Yan, Lisa; Da Silva, Diane M; Verma, Bhavna; Gray, Andrew; Brand, Heike E; Skeate, Joseph G; Porras, Tania B; Kanodia, Shreya; Kast, W Martin
2015-02-15
LIGHT, a ligand for lymphotoxin-β receptor (LTβR) and herpes virus entry mediator, is predominantly expressed on activated immune cells and LTβR signaling leads to the recruitment of lymphocytes. The interaction between LIGHT and LTβR has been previously shown to activate immune cells and result in tumor regression in a virally-induced tumor model, but the role of LIGHT in tumor immunosuppression or in a prostate cancer setting, where self antigens exist, has not been explored. We hypothesized that forced expression of LIGHT in prostate tumors would shift the pattern of immune cell infiltration toward an anti-tumoral milieu, would inhibit T regulatory cells (Tregs) and would induce prostate cancer tumor associated antigen (TAA) specific T cells that would eradicate tumors. Real Time PCR was used to evaluate expression of forced LIGHT and other immunoregulatory genes in prostate tumors samples. For in vivo studies, adenovirus encoding murine LIGHT was injected intratumorally into TRAMP-C2 prostate cancer cell tumor bearing mice. Chemokine and cytokine concentrations were determined by multiplex ELISA. Flow cytometry was used to phenotype tumor infiltrating lymphocytes and expression of LIGHT on the tumor cell surface. Tumor-specific lymphocytes were quantified via ELISpot assay. Treg induction and Treg suppression assays determined Treg functionality after LIGHT treatment. LIGHT in combination with a therapeutic vaccine, PSCA TriVax, reduced tumor burden. LIGHT expression peaked within 48 hr of infection, recruited effector T cells that recognized mouse prostate stem cell antigen (PSCA) into the tumor microenvironment, and inhibited infiltration of Tregs. Tregs isolated from tumor draining lymph nodes had impaired suppressive capability after LIGHT treatment. Forced LIGHT treatment combined with PSCA TriVax therapeutic vaccination delays prostate cancer progression in mice by recruiting effector T lymphocytes to the tumor and inhibiting Treg mediated immunosuppression. Prostate 75:280-291, 2015. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.
Li, Guangming; Montgomery, Stephanie A.; Montgomery, Nathan D.; Su, Lishan; Pagano, Joseph S.
2015-01-01
ABSTRACT BPLF1 of Epstein-Barr virus (EBV) is classified as a late lytic cycle protein but is also found in the viral tegument, suggesting its potential involvement at both initial and late stages of viral infection. BPLF1 possesses both deubiquitinating and deneddylating activity located in its N-terminal domain and is involved in processes that affect viral infectivity, viral DNA replication, DNA repair, and immune evasion. A recently constructed EBV BPLF1-knockout (KO) virus was used in conjunction with a humanized mouse model that can be infected with EBV, enabling the first characterization of BPLF1 function in vivo. Results demonstrate that the BPLF1-knockout virus is approximately 90% less infectious than wild-type (WT) virus. Transformation of human B cells, a hallmark of EBV infection, was delayed and reduced with BPLF1-knockout virus. Humanized mice infected with EBV BPLF1-knockout virus showed less weight loss and survived longer than mice infected with equivalent infectious units of WT virus. Additionally, splenic tumors formed in 100% of mice infected with WT EBV but in only 25% of mice infected with BPLF1-KO virus. Morphological features of spleens containing tumors were similar to those in EBV-induced posttransplant lymphoproliferative disease (PTLD) and were almost identical to cases seen in human diffuse large B-cell lymphoma. The presence of EBV genomes was detected in all mice that developed tumors. The results implicate BPLF1 in human B-cell transformation and tumor formation in humanized mice. PMID:26489865
CXCR4 regulates growth of both primary and metastatic breast cancer.
Smith, Matthew C P; Luker, Kathryn E; Garbow, Joel R; Prior, Julie L; Jackson, Erin; Piwnica-Worms, David; Luker, Gary D
2004-12-01
The chemokine receptor CXCR4 and its cognate ligand CXCL12 recently have been proposed to regulate the directional trafficking and invasion of breast cancer cells to sites of metastases. However, effects of CXCR4 on the growth of primary breast cancer tumors and established metastases and survival have not been determined. We used stable RNAi to reduce expression of CXCR4 in murine 4T1 cells, a highly metastatic mammary cancer cell line that is a model for stage IV human breast cancer. Using noninvasive bioluminescence and magnetic resonance imaging, we showed that knockdown of CXCR4 significantly limited the growth of orthotopically transplanted breast cancer cells. Mice in which parental 4T1 cells were implanted had progressively enlarging tumors that spontaneously metastasized, and these animals all died from metastatic disease. Remarkably, RNAi of CXCR4 prevented primary tumor formation in some mice, and all mice transplanted with CXCR RNAi cells survived without developing macroscopic metastases. To analyze effects of CXCR4 on metastases to the lung, an organ commonly affected by metastatic breast cancer, we injected tumor cells intravenously and monitored cell growth with bioluminescence imaging. Inhibiting CXCR4 with RNAi, or the specific antagonist AMD3100, substantially delayed the growth of 4T1 cells in the lung, although neither RNAi nor AMD3100 prolonged overall survival in mice with experimental lung metastases. These data indicate that CXCR4 is required to initiate proliferation and/or promote survival of breast cancer cells in vivo and suggest that CXCR4 inhibitors will improve treatment of patients with primary and metastatic breast cancer.
Zhao, Zhiqiang; Wu, Man-Si; Zou, Changye; Tang, Qinglian; Lu, Jinchang; Liu, Dawei; Wu, Yuanzhong; Yin, Junqiang; Xie, Xianbiao; Shen, Jingnan; Kang, Tiebang; Wang, Jin
2014-01-01
Monocarboxylate transporter isoform 1 (MCT1) is an important member of the proton-linked MCT family and has been reported in an array of human cancer cell lines and primary human tumors. MCT1 expression is associated with developing a new therapeutic approach for cancer. In this study, we initially showed that MCT1 is expressed in a variety of human osteosarcoma cell lines. Moreover, we evaluated the therapeutic response of targeting MCT1 using shRNA or MCT1 inhibitor. Inhibiting MCT1 delayed tumor growth in vitro and in vivo, including in an orthotopic model of osteosarcoma. Targeting MCT1 greatly enhanced the sensitivity of human osteosarcoma cells to the chemotherapeutic drugs adriamycin (ADM). In addition, we observed that MCT1 knockdown significantly suppressed the metastatic activity of osteosarcoma, including wound healing, invasion and migration. Further mechanistic studies revealed that the antitumor effects of targeting MCT1 might be related to the NF-κB pathway. Immunochemistry assay showed that MCT1 was an independent positive prognostic marker in osteosarcoma patients. In conclusion, our data, for the first time, demonstrate that MCT1 inhibition has antitumor potential which is associated with the NF-κB pathway, and high MCT1 expression predicates poor overall survival in patients with osteosarcoma. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Sundram, Vasudha; Ganju, Aditya; Hughes, Joshua E.; Khan, Sheema; Chauhan, Subhash C.; Jaggi, Meena
2014-01-01
Over 80% of colon cancer development and progression is a result of the dysregulation of β-catenin signaling pathway. Herein, for the first time, we demonstrate that a serine-threonine kinase, Protein Kinase D1 (PKD1), modulates the functions of β-catenin to suppress colon cancer growth. Analysis of normal and colon cancer tissues reveals downregulation of PKD1 expression in advanced stages of colon cancer and its co-localization with β-catenin in the colon crypts. This PKD1 downregulation corresponds with the aberrant expression and nuclear localization of β-catenin. In-vitro investigation of the PKD1-β-catenin interaction in colon cancer cells reveal that PKD1 overexpression suppresses cell proliferation and clonogenic potential and enhances cell-cell aggregation. We demonstrate that PKD1 directly interacts with β-catenin and attenuates β-catenin transcriptional activity by decreasing nuclear β-catenin levels. Additionally, we show that inhibition of nuclear β-catenin transcriptional activity is predominantly influenced by nucleus targeted PKD1. This subcellular modulation of β-catenin results in enhanced membrane localization of β-catenin and thereby increases cell-cell adhesion. Studies in a xenograft mouse model indicate that PKD1 overexpression delayed tumor appearance, enhanced necrosis and lowered tumor hypoxia. Overall, our results demonstrate a putative tumor-suppressor function of PKD1 in colon tumorigenesis via modulation of β-catenin functions in cells. PMID:25149539
Late-onset chemosis in patients with head or neck tumors.
Harris, Gerald J; Woo, Kyung In; Schultz, Christopher J; Tayani, Ramin; Cancel, Efrain M
2004-11-01
To describe a series of patients with chemosis and a history of head or neck tumor, and to propose possible mechanisms for the findings. Retrospective, consecutive case series (1993-2001), with review of: site and histopathologic type of the primary tumor; dates and details of tumor treatment; approximate date of chemosis onset; ocular findings and results of orbital, head, and neck imaging upon referral to the authors; and follow-up outcome. Three male and 3 female patients ranged from 35-68 years of age. Primary tumors were adenoid cystic carcinomas of minor salivary glands of the buccal sulcus (1) and the anterior palate (1), squamous cell carcinomas of the posterior hard palate (1) and the nasopharynx (1), and pleomorphic adenomas of the parotid gland (2). Tumor treatment involved surgery alone (2), surgery and radiation (3), or radiation alone (1). Exposure of regional lymphatics ranged from 50-68 Gy; in 2 cases, orbital exposure was 58-60 Gy. Intervals from treatment to chemosis onset ranged from 5-59 months (mean, 25 months). Imaging showed no orbital mass, recurrence at the primary site, or nodal enlargement in any case. Chemosis remained relatively stable, and no tumor recurrence was noted in additional follow-up of 12-132 months (median, between 26 and 33 months). Patients with chemosis and a history of head or neck tumor should be evaluated for tumor recurrence at the primary site, in regional nodes, and in the orbital apex. However, the finding may be a delayed sequela of surgery and/or radiation.
Quezada, Sergio A.; Peggs, Karl S.; Curran, Michael A.; Allison, James P.
2006-01-01
CTL-associated antigen 4 (CTLA4) blockade releases inhibitory controls on T cell activation and proliferation, inducing antitumor immunity in both preclinical and early clinical trials. We examined the mechanisms of action of anti-CTLA4 and a GM-CSF–transduced tumor cell vaccine (Gvax) and their impact on the balance of effector T cells (Teffs) and Tregs in an in vivo model of B16/BL6 melanoma. Tumor challenge increased the frequency of Tregs in lymph nodes, and untreated tumors became infiltrated by CD4+Foxp3– and CD4+Foxp3+ T cells but few CD8+ T cells. Anti-CTLA4 did not deplete Tregs or permanently impair their function but acted in a cell-intrinsic manner on both Tregs and Teffs, allowing them to expand, most likely in response to self antigen. While Gvax primed the tumor-reactive Teff compartment, inducing activation, tumor infiltration, and a delay in tumor growth, the combination with CTLA4 blockade induced greater infiltration and a striking change in the intratumor balance of Tregs and Teffs that directly correlated with tumor rejection. The data suggest that Tregs control both CD4+ and CD8+ T cell activity within the tumor, highlight the importance of the intratumor ratio of effectors to regulators, and demonstrate inversion of the ratio and correlation with tumor rejection during Gvax/anti-CTLA4 immunotherapy. PMID:16778987