Gayarre, Javier; Martín-Gimeno, Paloma; Osorio, Ana; Paumard, Beatriz; Barroso, Alicia; Fernández, Victoria; de la Hoya, Miguel; Rojo, Alejandro; Caldés, Trinidad; Palacios, José; Urioste, Miguel; Benítez, Javier; García, María J
2017-09-26
Despite a high prevalence of deleterious missense variants, most studies of RAD51C ovarian cancer susceptibility gene only provide in silico pathogenicity predictions of missense changes. We identified a novel deleterious RAD51C missense variant (p.Arg312Trp) in a high-risk family, and propose a criteria to prioritise RAD51C missense changes qualifying for functional analysis. To evaluate pathogenicity of p.Arg312Trp variant we used sequence homology, loss of heterozygosity (LOH) and segregation analysis, and a comprehensive functional characterisation. To define a functional-analysis prioritisation criteria, we used outputs for the known functionally confirmed deleterious and benign RAD51C missense changes from nine pathogenicity prediction algorithms. The p.Arg312Trp variant failed to correct mitomycin and olaparib hypersensitivity and to complement abnormal RAD51C foci formation according to functional assays, which altogether with LOH and segregation data demonstrated deleteriousness. Prioritisation criteria were based on the number of predictors providing a deleterious output, with a minimum of 5 to qualify for testing and a PredictProtein score greater than 33 to assign high-priority indication. Our study points to a non-negligible number of RAD51C missense variants likely to impair protein function, provides a guideline to prioritise and encourage their selection for functional analysis and anticipates that reference laboratories should have available resources to conduct such assays.
Rozman, Vita; Kunej, Tanja
2018-05-10
Harnessing the genomics big data requires innovation in how we extract and interpret biologically relevant variants. Currently, there is no established catalog of prioritized missense variants associated with deleterious protein function phenotypes. We report in this study, to the best of our knowledge, the first genome-wide prioritization of sequence variants with the most deleterious effect on protein function (potentially deleterious variants [pDelVars]) in nine vertebrate species: human, cattle, horse, sheep, pig, dog, rat, mouse, and zebrafish. The analysis was conducted using the Ensembl/BioMart tool. Genes comprising pDelVars in the highest number of examined species were identified using a Python script. Multiple genomic alignments of the selected genes were built to identify interspecies orthologous potentially deleterious variants, which we defined as the "ortho-pDelVars." Genome-wide prioritization revealed that in humans, 0.12% of the known variants are predicted to be deleterious. In seven out of nine examined vertebrate species, the genes encoding the multiple PDZ domain crumbs cell polarity complex component (MPDZ) and the transforming acidic coiled-coil containing protein 2 (TACC2) comprise pDelVars. Five interspecies ortho-pDelVars were identified in three genes. These findings offer new ways to harness genomics big data by facilitating the identification of functional polymorphisms in humans and animal models and thus provide a future basis for optimization of protocols for whole genome prioritization of pDelVars and screening of orthologous sequence variants. The approach presented here can inform various postgenomic applications such as personalized medicine and multiomics study of health interventions (iatromics).
Allelic Expression of Deleterious Protein-Coding Variants across Human Tissues
Kukurba, Kimberly R.; Zhang, Rui; Li, Xin; Smith, Kevin S.; Knowles, David A.; How Tan, Meng; Piskol, Robert; Lek, Monkol; Snyder, Michael; MacArthur, Daniel G.; Li, Jin Billy; Montgomery, Stephen B.
2014-01-01
Personal exome and genome sequencing provides access to loss-of-function and rare deleterious alleles whose interpretation is expected to provide insight into individual disease burden. However, for each allele, accurate interpretation of its effect will depend on both its penetrance and the trait's expressivity. In this regard, an important factor that can modify the effect of a pathogenic coding allele is its level of expression; a factor which itself characteristically changes across tissues. To better inform the degree to which pathogenic alleles can be modified by expression level across multiple tissues, we have conducted exome, RNA and deep, targeted allele-specific expression (ASE) sequencing in ten tissues obtained from a single individual. By combining such data, we report the impact of rare and common loss-of-function variants on allelic expression exposing stronger allelic bias for rare stop-gain variants and informing the extent to which rare deleterious coding alleles are consistently expressed across tissues. This study demonstrates the potential importance of transcriptome data to the interpretation of pathogenic protein-coding variants. PMID:24786518
Gu, Wanjun; Gurguis, Christopher I.; Zhou, Jin J.; Zhu, Yihua; Ko, Eun-A.; Ko, Jae-Hong; Wang, Ting; Zhou, Tong
2015-01-01
Genetic variation arising from single nucleotide polymorphisms (SNPs) is ubiquitously found among human populations. While disease-causing variants are known in some cases, identifying functional or causative variants for most human diseases remains a challenging task. Rare SNPs, rather than common ones, are thought to be more important in the pathology of most human diseases. We propose that rare SNPs should be divided into two categories dependent on whether the minor alleles are derived or ancestral. Derived alleles are less likely to have been purified by evolutionary processes and may be more likely to induce deleterious effects. We therefore hypothesized that the rare SNPs with derived minor alleles would be more important for human diseases and predicted that these variants would have larger functional or structural consequences relative to the rare variants for which the minor alleles are ancestral. We systematically investigated the consequences of the exonic SNPs on protein function, mRNA structure, and translation. We found that the functional and structural consequences are more significant for the rare exonic variants for which the minor alleles are derived. However, this pattern is reversed when the minor alleles are ancestral. Thus, the rare exonic SNPs with derived minor alleles are more likely to be deleterious. Age estimation of rare SNPs confirms that these potentially deleterious SNPs are recently evolved in the human population. These results have important implications for understanding the function of genetic variations in human exonic regions and for prioritizing functional SNPs in genome-wide association studies of human diseases. PMID:26454016
An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people
Nelson, Matthew R.; Wegmann, Daniel; Ehm, Margaret G.; Kessner, Darren; St. Jean, Pamela; Verzilli, Claudio; Shen, Judong; Tang, Zhengzheng; Bacanu, Silviu-Alin; Fraser, Dana; Warren, Liling; Aponte, Jennifer; Zawistowski, Matthew; Liu, Xiao; Zhang, Hao; Zhang, Yong; Li, Jun; Li, Yun; Li, Li; Woollard, Peter; Topp, Simon; Hall, Matthew D.; Nangle, Keith; Wang, Jun; Abecasis, Gonçalo; Cardon, Lon R.; Zöllner, Sebastian; Whittaker, John C.; Chissoe, Stephanie L.; Novembre, John; Mooser, Vincent
2015-01-01
Rare genetic variants contribute to complex disease risk; however, the abundance of rare variants in human populations remains unknown. We explored this spectrum of variation by sequencing 202 genes encoding drug targets in 14,002 individuals. We find rare variants are abundant (one every 17 bases) and geographically localized, such that even with large sample sizes, rare variant catalogs will be largely incomplete. We used the observed patterns of variation to estimate population growth parameters, the proportion of variants in a given frequency class that are putatively deleterious, and mutation rates for each gene. Overall we conclude that, due to rapid population growth and weak purifying selection, human populations harbor an abundance of rare variants, many of which are deleterious and have relevance to understanding disease risk. PMID:22604722
Huang, Yi-Fei; Gulko, Brad; Siepel, Adam
2017-04-01
Many genetic variants that influence phenotypes of interest are located outside of protein-coding genes, yet existing methods for identifying such variants have poor predictive power. Here we introduce a new computational method, called LINSIGHT, that substantially improves the prediction of noncoding nucleotide sites at which mutations are likely to have deleterious fitness consequences, and which, therefore, are likely to be phenotypically important. LINSIGHT combines a generalized linear model for functional genomic data with a probabilistic model of molecular evolution. The method is fast and highly scalable, enabling it to exploit the 'big data' available in modern genomics. We show that LINSIGHT outperforms the best available methods in identifying human noncoding variants associated with inherited diseases. In addition, we apply LINSIGHT to an atlas of human enhancers and show that the fitness consequences at enhancers depend on cell type, tissue specificity, and constraints at associated promoters.
Doss, C. George Priya; NagaSundaram, N.
2012-01-01
Background Elucidating the molecular dynamic behavior of Protein-DNA complex upon mutation is crucial in current genomics. Molecular dynamics approach reveals the changes on incorporation of variants that dictate the structure and function of Protein-DNA complexes. Deleterious mutations in APE1 protein modify the physicochemical property of amino acids that affect the protein stability and dynamic behavior. Further, these mutations disrupt the binding sites and prohibit the protein to form complexes with its interacting DNA. Principal Findings In this study, we developed a rapid and cost-effective method to analyze variants in APE1 gene that are associated with disease susceptibility and evaluated their impacts on APE1-DNA complex dynamic behavior. Initially, two different in silico approaches were used to identify deleterious variants in APE1 gene. Deleterious scores that overlap in these approaches were taken in concern and based on it, two nsSNPs with IDs rs61730854 (I64T) and rs1803120 (P311S) were taken further for structural analysis. Significance Different parameters such as RMSD, RMSF, salt bridge, H-bonds and SASA applied in Molecular dynamic study reveals that predicted deleterious variants I64T and P311S alters the structure as well as affect the stability of APE1-DNA interacting functions. This study addresses such new methods for validating functional polymorphisms of human APE1 which is critically involved in causing deficit in repair capacity, which in turn leads to genetic instability and carcinogenesis. PMID:22384055
Predicting the Functional Impact of CDH1 Missense Mutations in Hereditary Diffuse Gastric Cancer
Melo, Soraia; Fernandes, Maria Sofia; Gonçalves, Margarida; Morais-de-Sá, Eurico; Sanches, João Miguel; Seruca, Raquel
2017-01-01
The role of E-cadherin in Hereditary Diffuse Gastric Cancer (HDGC) is unequivocal. Germline alterations in its encoding gene (CDH1) are causative of HDGC and occur in about 40% of patients. Importantly, while in most cases CDH1 alterations result in the complete loss of E-cadherin associated with a well-established clinical impact, in about 20% of cases the mutations are of the missense type. The latter are of particular concern in terms of genetic counselling and clinical management, as the effect of the sequence variants in E-cadherin function is not predictable. If a deleterious variant is identified, prophylactic surgery could be recommended. Therefore, over the last few years, intensive research has focused on evaluating the functional consequences of CDH1 missense variants and in assessing E-cadherin pathogenicity. In that context, our group has contributed to better characterize CDH1 germline missense variants and is now considered a worldwide reference centre. In this review, we highlight the state of the art methodologies to categorize CDH1 variants, as neutral or deleterious. This information is subsequently integrated with clinical data for genetic counseling and management of CDH1 variant carriers. PMID:29231860
The role of the interactome in the maintenance of deleterious variability in human populations
Garcia-Alonso, Luz; Jiménez-Almazán, Jorge; Carbonell-Caballero, Jose; Vela-Boza, Alicia; Santoyo-López, Javier; Antiñolo, Guillermo; Dopazo, Joaquin
2014-01-01
Recent genomic projects have revealed the existence of an unexpectedly large amount of deleterious variability in the human genome. Several hypotheses have been proposed to explain such an apparently high mutational load. However, the mechanisms by which deleterious mutations in some genes cause a pathological effect but are apparently innocuous in other genes remain largely unknown. This study searched for deleterious variants in the 1,000 genomes populations, as well as in a newly sequenced population of 252 healthy Spanish individuals. In addition, variants causative of monogenic diseases and somatic variants from 41 chronic lymphocytic leukaemia patients were analysed. The deleterious variants found were analysed in the context of the interactome to understand the role of network topology in the maintenance of the observed mutational load. Our results suggest that one of the mechanisms whereby the effect of these deleterious variants on the phenotype is suppressed could be related to the configuration of the protein interaction network. Most of the deleterious variants observed in healthy individuals are concentrated in peripheral regions of the interactome, in combinations that preserve their connectivity, and have a marginal effect on interactome integrity. On the contrary, likely pathogenic cancer somatic deleterious variants tend to occur in internal regions of the interactome, often with associated structural consequences. Finally, variants causative of monogenic diseases seem to occupy an intermediate position. Our observations suggest that the real pathological potential of a variant might be more a systems property rather than an intrinsic property of individual proteins. PMID:25261458
The role of the interactome in the maintenance of deleterious variability in human populations.
Garcia-Alonso, Luz; Jiménez-Almazán, Jorge; Carbonell-Caballero, Jose; Vela-Boza, Alicia; Santoyo-López, Javier; Antiñolo, Guillermo; Dopazo, Joaquin
2014-09-26
Recent genomic projects have revealed the existence of an unexpectedly large amount of deleterious variability in the human genome. Several hypotheses have been proposed to explain such an apparently high mutational load. However, the mechanisms by which deleterious mutations in some genes cause a pathological effect but are apparently innocuous in other genes remain largely unknown. This study searched for deleterious variants in the 1,000 genomes populations, as well as in a newly sequenced population of 252 healthy Spanish individuals. In addition, variants causative of monogenic diseases and somatic variants from 41 chronic lymphocytic leukaemia patients were analysed. The deleterious variants found were analysed in the context of the interactome to understand the role of network topology in the maintenance of the observed mutational load. Our results suggest that one of the mechanisms whereby the effect of these deleterious variants on the phenotype is suppressed could be related to the configuration of the protein interaction network. Most of the deleterious variants observed in healthy individuals are concentrated in peripheral regions of the interactome, in combinations that preserve their connectivity, and have a marginal effect on interactome integrity. On the contrary, likely pathogenic cancer somatic deleterious variants tend to occur in internal regions of the interactome, often with associated structural consequences. Finally, variants causative of monogenic diseases seem to occupy an intermediate position. Our observations suggest that the real pathological potential of a variant might be more a systems property rather than an intrinsic property of individual proteins. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.
Dong, Chengliang; Wei, Peng; Jian, Xueqiu; Gibbs, Richard; Boerwinkle, Eric; Wang, Kai; Liu, Xiaoming
2015-01-01
Accurate deleteriousness prediction for nonsynonymous variants is crucial for distinguishing pathogenic mutations from background polymorphisms in whole exome sequencing (WES) studies. Although many deleteriousness prediction methods have been developed, their prediction results are sometimes inconsistent with each other and their relative merits are still unclear in practical applications. To address these issues, we comprehensively evaluated the predictive performance of 18 current deleteriousness-scoring methods, including 11 function prediction scores (PolyPhen-2, SIFT, MutationTaster, Mutation Assessor, FATHMM, LRT, PANTHER, PhD-SNP, SNAP, SNPs&GO and MutPred), 3 conservation scores (GERP++, SiPhy and PhyloP) and 4 ensemble scores (CADD, PON-P, KGGSeq and CONDEL). We found that FATHMM and KGGSeq had the highest discriminative power among independent scores and ensemble scores, respectively. Moreover, to ensure unbiased performance evaluation of these prediction scores, we manually collected three distinct testing datasets, on which no current prediction scores were tuned. In addition, we developed two new ensemble scores that integrate nine independent scores and allele frequency. Our scores achieved the highest discriminative power compared with all the deleteriousness prediction scores tested and showed low false-positive prediction rate for benign yet rare nonsynonymous variants, which demonstrated the value of combining information from multiple orthologous approaches. Finally, to facilitate variant prioritization in WES studies, we have pre-computed our ensemble scores for 87 347 044 possible variants in the whole-exome and made them publicly available through the ANNOVAR software and the dbNSFP database. PMID:25552646
CHEK2 contribution to hereditary breast cancer in non-BRCA families.
Desrichard, Alexis; Bidet, Yannick; Uhrhammer, Nancy; Bignon, Yves-Jean
2011-01-01
Mutations in the BRCA1 and BRCA2 genes are responsible for only a part of hereditary breast cancer (HBC). The origins of "non-BRCA" HBC in families may be attributed in part to rare mutations in genes conferring moderate risk, such as CHEK2, which encodes for an upstream regulator of BRCA1. Previous studies have demonstrated an association between CHEK2 founder mutations and non-BRCA HBC. However, very few data on the entire coding sequence of this gene are available. We investigated the contribution of CHEK2 mutations to non-BRCA HBC by direct sequencing of its whole coding sequence in 507 non-BRCA HBC cases and 513 controls. We observed 16 mutations in cases and 4 in controls, including 9 missense variants of uncertain consequence. Using both in silico tools and an in vitro kinase activity test, the majority of the variants were found likely to be deleterious for protein function. One variant present in both cases and controls was proposed to be neutral. Removing this variant from the pool of potentially deleterious variants gave a mutation frequency of 1.48% for cases and 0.29% for controls (P = 0.0040). The odds ratio of breast cancer in the presence of a deleterious CHEK2 mutation was 5.18. Our work indicates that a variety of deleterious CHEK2 alleles make an appreciable contribution to breast cancer susceptibility, and their identification could help in the clinical management of patients carrying a CHEK2 mutation.
Vorstman, Jacob A S; Olde Loohuis, Loes M; Kahn, René S; Ophoff, Roel A
2018-05-14
The co-occurrence of a Copy Number Variant (CNV) and a functional variant on the other allele may be a relevant genetic mechanism in schizophrenia. We hypothesized that the cumulative burden of such double hits - in particular those composed of a deletion and a coding single nucleotide variation (SNV) - is increased in patients with schizophrenia.We combined CNV data with coding variants data in 795 patients with schizophrenia and 474 controls. To limit false CNV-detection, only CNVs called only by two algorithms we included. CNV-affected genes were subsequently examined for coding SNVs, which we termed "CNV-SNVs". Correcting for total queried sequence, we assessed the CNV-SNV-burden and the combined predicted deleterious effect. We estimated p-values by permutation of the phenotype.We detected 105 CNV-SNVs; 67 in duplicated and 38 in deleted genic sequence. While the difference in CNV-SNVs rates was not significant, the combined deleteriousness inferred by CNV-SNVs in deleted sequence was almost fourfold higher in cases compared to controls (nominal p = 0.009). This effect may be driven by a higher number of CNV-SNVs and/or by a higher degree of predicted deleteriousness of CNV-SNVs. No such effect was observed for duplications.We provide early evidence that deletions co-occurring with a functional variant may be relevant, albeit of modest impact, for the genetic etiology of schizophrenia. Large-scale consortium studies are required to validate our findings. Sequence-based analyses would provide the best resolution for detection of CNVs as well as coding variants genome-wide.
Computational Methods to Work as First-Pass Filter in Deleterious SNP Analysis of Alkaptonuria
Magesh, R.; George Priya Doss, C.
2012-01-01
A major challenge in the analysis of human genetic variation is to distinguish functional from nonfunctional SNPs. Discovering these functional SNPs is one of the main goals of modern genetics and genomics studies. There is a need to effectively and efficiently identify functionally important nsSNPs which may be deleterious or disease causing and to identify their molecular effects. The prediction of phenotype of nsSNPs by computational analysis may provide a good way to explore the function of nsSNPs and its relationship with susceptibility to disease. In this context, we surveyed and compared variation databases along with in silico prediction programs to assess the effects of deleterious functional variants on protein functions. In other respects, we attempted these methods to work as first-pass filter to identify the deleterious substitutions worth pursuing for further experimental research. In this analysis, we used the existing computational methods to explore the mutation-structure-function relationship in HGD gene causing alkaptonuria. PMID:22606059
CHEK2 contribution to hereditary breast cancer in non-BRCA families
2011-01-01
Background Mutations in the BRCA1 and BRCA2 genes are responsible for only a part of hereditary breast cancer (HBC). The origins of "non-BRCA" HBC in families may be attributed in part to rare mutations in genes conferring moderate risk, such as CHEK2, which encodes for an upstream regulator of BRCA1. Previous studies have demonstrated an association between CHEK2 founder mutations and non-BRCA HBC. However, very few data on the entire coding sequence of this gene are available. Methods We investigated the contribution of CHEK2 mutations to non-BRCA HBC by direct sequencing of its whole coding sequence in 507 non-BRCA HBC cases and 513 controls. Results We observed 16 mutations in cases and 4 in controls, including 9 missense variants of uncertain consequence. Using both in silico tools and an in vitro kinase activity test, the majority of the variants were found likely to be deleterious for protein function. One variant present in both cases and controls was proposed to be neutral. Removing this variant from the pool of potentially deleterious variants gave a mutation frequency of 1.48% for cases and 0.29% for controls (P = 0.0040). The odds ratio of breast cancer in the presence of a deleterious CHEK2 mutation was 5.18. Conclusions Our work indicates that a variety of deleterious CHEK2 alleles make an appreciable contribution to breast cancer susceptibility, and their identification could help in the clinical management of patients carrying a CHEK2 mutation. PMID:22114986
Enrichment of deleterious variants of mitochondrial DNA polymerase gene (POLG1) in bipolar disorder.
Kasahara, Takaoki; Ishiwata, Mizuho; Kakiuchi, Chihiro; Fuke, Satoshi; Iwata, Nakao; Ozaki, Norio; Kunugi, Hiroshi; Minabe, Yoshio; Nakamura, Kazuhiko; Iwata, Yasuhide; Fujii, Kumiko; Kanba, Shigenobu; Ujike, Hiroshi; Kusumi, Ichiro; Kataoka, Muneko; Matoba, Nana; Takata, Atsushi; Iwamoto, Kazuya; Yoshikawa, Takeo; Kato, Tadafumi
2017-08-01
Rare missense variants, which likely account for a substantial portion of the genetic 'dark matter' for a common complex disease, are challenging because the impacts of variants on disease development are difficult to substantiate. This study aimed to examine the impacts of amino acid substitution variants in the POLG1 found in bipolar disorder, as an example and proof of concept, in three different modalities of assessment: in silico predictions, in vitro biochemical assays, and clinical evaluation. We then tested whether deleterious variants in POLG1 contributed to the genetics of bipolar disorder. We searched for variants in the POLG1 gene in 796 Japanese patients with bipolar disorder and 767 controls and comprehensively investigated all 23 identified variants in the three modalities of assessment. POLG1 encodes mitochondrial DNA polymerase and is one of the causative genes for a Mendelian-inheritance mitochondrial disease, which is occasionally accompanied by mood disorders. The healthy control data from the Tohoku Medical Megabank Organization were also employed. Although the frequency of carriers of deleterious variants varied from one method to another, every assessment achieved the same conclusion that deleterious POLG1 variants were significantly enriched in the variants identified in patients with bipolar disorder compared to those in controls. Together with mitochondrial dysfunction in bipolar disorder, the present results suggested deleterious POLG1 variants as a credible risk for the multifactorial disease. © 2016 The Authors. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology.
Increased burden of deleterious variants in essential genes in autism spectrum disorder.
Ji, Xiao; Kember, Rachel L; Brown, Christopher D; Bućan, Maja
2016-12-27
Autism spectrum disorder (ASD) is a heterogeneous, highly heritable neurodevelopmental syndrome characterized by impaired social interaction, communication, and repetitive behavior. It is estimated that hundreds of genes contribute to ASD. We asked if genes with a strong effect on survival and fitness contribute to ASD risk. Human orthologs of genes with an essential role in pre- and postnatal development in the mouse [essential genes (EGs)] are enriched for disease genes and under strong purifying selection relative to human orthologs of mouse genes with a known nonlethal phenotype [nonessential genes (NEGs)]. This intolerance to deleterious mutations, commonly observed haploinsufficiency, and the importance of EGs in development suggest a possible cumulative effect of deleterious variants in EGs on complex neurodevelopmental disorders. With a comprehensive catalog of 3,915 mammalian EGs, we provide compelling evidence for a stronger contribution of EGs to ASD risk compared with NEGs. By examining the exonic de novo and inherited variants from 1,781 ASD quartet families, we show a significantly higher burden of damaging mutations in EGs in ASD probands compared with their non-ASD siblings. The analysis of EGs in the developing brain identified clusters of coexpressed EGs implicated in ASD. Finally, we suggest a high-priority list of 29 EGs with potential ASD risk as targets for future functional and behavioral studies. Overall, we show that large-scale studies of gene function in model organisms provide a powerful approach for prioritization of genes and pathogenic variants identified by sequencing studies of human disease.
Increased burden of deleterious variants in essential genes in autism spectrum disorder
Kember, Rachel L.; Brown, Christopher D.; Bućan, Maja
2016-01-01
Autism spectrum disorder (ASD) is a heterogeneous, highly heritable neurodevelopmental syndrome characterized by impaired social interaction, communication, and repetitive behavior. It is estimated that hundreds of genes contribute to ASD. We asked if genes with a strong effect on survival and fitness contribute to ASD risk. Human orthologs of genes with an essential role in pre- and postnatal development in the mouse [essential genes (EGs)] are enriched for disease genes and under strong purifying selection relative to human orthologs of mouse genes with a known nonlethal phenotype [nonessential genes (NEGs)]. This intolerance to deleterious mutations, commonly observed haploinsufficiency, and the importance of EGs in development suggest a possible cumulative effect of deleterious variants in EGs on complex neurodevelopmental disorders. With a comprehensive catalog of 3,915 mammalian EGs, we provide compelling evidence for a stronger contribution of EGs to ASD risk compared with NEGs. By examining the exonic de novo and inherited variants from 1,781 ASD quartet families, we show a significantly higher burden of damaging mutations in EGs in ASD probands compared with their non-ASD siblings. The analysis of EGs in the developing brain identified clusters of coexpressed EGs implicated in ASD. Finally, we suggest a high-priority list of 29 EGs with potential ASD risk as targets for future functional and behavioral studies. Overall, we show that large-scale studies of gene function in model organisms provide a powerful approach for prioritization of genes and pathogenic variants identified by sequencing studies of human disease. PMID:27956632
Raimondi, Daniele; Gazzo, Andrea M; Rooman, Marianne; Lenaerts, Tom; Vranken, Wim F
2016-06-15
There are now many predictors capable of identifying the likely phenotypic effects of single nucleotide variants (SNVs) or short in-frame Insertions or Deletions (INDELs) on the increasing amount of genome sequence data. Most of these predictors focus on SNVs and use a combination of features related to sequence conservation, biophysical, and/or structural properties to link the observed variant to either neutral or disease phenotype. Despite notable successes, the mapping between genetic variants and their phenotypic effects is riddled with levels of complexity that are not yet fully understood and that are often not taken into account in the predictions, despite their promise of significantly improving the prediction of deleterious mutants. We present DEOGEN, a novel variant effect predictor that can handle both missense SNVs and in-frame INDELs. By integrating information from different biological scales and mimicking the complex mixture of effects that lead from the variant to the phenotype, we obtain significant improvements in the variant-effect prediction results. Next to the typical variant-oriented features based on the evolutionary conservation of the mutated positions, we added a collection of protein-oriented features that are based on functional aspects of the gene affected. We cross-validated DEOGEN on 36 825 polymorphisms, 20 821 deleterious SNVs, and 1038 INDELs from SwissProt. The multilevel contextualization of each (variant, protein) pair in DEOGEN provides a 10% improvement of MCC with respect to current state-of-the-art tools. The software and the data presented here is publicly available at http://ibsquare.be/deogen : wvranken@vub.ac.be Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Genetic architecture and balancing selection: the life and death of differentiated variants.
Llaurens, Violaine; Whibley, Annabel; Joron, Mathieu
2017-05-01
Balancing selection describes any form of natural selection, which results in the persistence of multiple variants of a trait at intermediate frequencies within populations. By offering up a snapshot of multiple co-occurring functional variants and their interactions, systems under balancing selection can reveal the evolutionary mechanisms favouring the emergence and persistence of adaptive variation in natural populations. We here focus on the mechanisms by which several functional variants for a given trait can arise, a process typically requiring multiple epistatic mutations. We highlight how balancing selection can favour specific features in the genetic architecture and review the evolutionary and molecular mechanisms shaping this architecture. First, balancing selection affects the number of loci underlying differentiated traits and their respective effects. Control by one or few loci favours the persistence of differentiated functional variants by limiting intergenic recombination, or its impact, and may sometimes lead to the evolution of supergenes. Chromosomal rearrangements, particularly inversions, preventing adaptive combinations from being dissociated are increasingly being noted as features of such systems. Similarly, due to the frequency of heterozygotes maintained by balancing selection, dominance may be a key property of adaptive variants. High heterozygosity and limited recombination also influence associated genetic load, as linked recessive deleterious mutations may be sheltered. The capture of deleterious elements in a locus under balancing selection may reinforce polymorphism by further promoting heterozygotes. Finally, according to recent genomewide scans, balanced polymorphism might be more pervasive than generally thought. We stress the need for both functional and ecological studies to characterize the evolutionary mechanisms operating in these systems. © 2017 John Wiley & Sons Ltd.
Cooper-Knock, Johnathan; Robins, Henry; Niedermoser, Isabell; Wyles, Matthew; Heath, Paul R; Higginbottom, Adrian; Walsh, Theresa; Kazoka, Mbombe; Ince, Paul G; Hautbergue, Guillaume M; McDermott, Christopher J; Kirby, Janine; Shaw, Pamela J
2017-01-01
Amyotrophic lateral sclerosis (ALS) is underpinned by an oligogenic rare variant architecture. Identified genetic variants of ALS include RNA-binding proteins containing prion-like domains (PrLDs). We hypothesized that screening genes encoding additional similar proteins will yield novel genetic causes of ALS. The most common genetic variant of ALS patients is a G4C2-repeat expansion within C9ORF72 . We have shown that G4C2-repeat RNA sequesters RNA-binding proteins. A logical consequence of this is that loss-of-function mutations in G4C2-binding partners might contribute to ALS pathogenesis independently of and/or synergistically with C9ORF72 expansions. Targeted sequencing of genomic DNA encoding either RNA-binding proteins or known ALS genes ( n = 274 genes) was performed in ALS patients to identify rare deleterious genetic variants and explore genotype-phenotype relationships. Genomic DNA was extracted from 103 ALS patients including 42 familial ALS patients and 61 young-onset (average age of onset 41 years) sporadic ALS patients; patients were chosen to maximize the probability of identifying genetic causes of ALS. Thirteen patients carried a G4C2-repeat expansion of C9ORF72 . We identified 42 patients with rare deleterious variants; 6 patients carried more than one variant. Twelve mutations were discovered in known ALS genes which served as a validation of our strategy. Rare deleterious variants in RNA-binding proteins were significantly enriched in ALS patients compared to control frequencies ( p = 5.31E-18). Nineteen patients featured at least one variant in a RNA-binding protein containing a PrLD. The number of variants per patient correlated with rate of disease progression ( t -test, p = 0.033). We identified eighteen patients with a single variant in a G4C2-repeat binding protein. Patients with a G4C2-binding protein variant in combination with a C9ORF72 expansion had a significantly faster disease course ( t -test, p = 0.025). Our data are consistent with an oligogenic model of ALS. We provide evidence for a number of entirely novel genetic variants of ALS caused by mutations in RNA-binding proteins. Moreover we show that these mutations act synergistically with each other and with C9ORF72 expansions to modify the clinical phenotype of ALS. A key finding is that this synergy is present only between functionally interacting variants. This work has significant implications for ALS therapy development.
Expanding the mutational spectrum of LZTR1 in schwannomatosis.
Paganini, Irene; Chang, Vivian Y; Capone, Gabriele L; Vitte, Jeremie; Benelli, Matteo; Barbetti, Lorenzo; Sestini, Roberta; Trevisson, Eva; Hulsebos, Theo Jm; Giovannini, Marco; Nelson, Stanley F; Papi, Laura
2015-07-01
Schwannomatosis is characterized by the development of multiple non-vestibular, non-intradermal schwannomas. Constitutional inactivating variants in two genes, SMARCB1 and, very recently, LZTR1, have been reported. We performed exome sequencing of 13 schwannomatosis patients from 11 families without SMARCB1 deleterious variants. We identified four individuals with heterozygous loss-of-function variants in LZTR1. Sequencing of the germline of 60 additional patients identified 18 additional heterozygous variants in LZTR1. We identified LZTR1 variants in 43% and 30% of familial (three of the seven families) and sporadic patients, respectively. In addition, we tested LZTR1 protein immunostaining in 22 tumors from nine unrelated patients with and without LZTR1 deleterious variants. Tumors from individuals with LZTR1 variants lost the protein expression in at least a subset of tumor cells, consistent with a tumor suppressor mechanism. In conclusion, our study demonstrates that molecular analysis of LZTR1 may contribute to the molecular characterization of schwannomatosis patients, in addition to NF2 mutational analysis and the detection of chromosome 22 losses in tumor tissue. It will be especially useful in differentiating schwannomatosis from mosaic Neurofibromatosis type 2 (NF2). However, the role of LZTR1 in the pathogenesis of schwannomatosis needs further elucidation.
Expanding the mutational spectrum of LZTR1 in schwannomatosis
Paganini, Irene; Chang, Vivian Y; Capone, Gabriele L; Vitte, Jeremie; Benelli, Matteo; Barbetti, Lorenzo; Sestini, Roberta; Trevisson, Eva; Hulsebos, Theo JM; Giovannini, Marco; Nelson, Stanley F; Papi, Laura
2015-01-01
Schwannomatosis is characterized by the development of multiple non-vestibular, non-intradermal schwannomas. Constitutional inactivating variants in two genes, SMARCB1 and, very recently, LZTR1, have been reported. We performed exome sequencing of 13 schwannomatosis patients from 11 families without SMARCB1 deleterious variants. We identified four individuals with heterozygous loss-of-function variants in LZTR1. Sequencing of the germline of 60 additional patients identified 18 additional heterozygous variants in LZTR1. We identified LZTR1 variants in 43% and 30% of familial (three of the seven families) and sporadic patients, respectively. In addition, we tested LZTR1 protein immunostaining in 22 tumors from nine unrelated patients with and without LZTR1 deleterious variants. Tumors from individuals with LZTR1 variants lost the protein expression in at least a subset of tumor cells, consistent with a tumor suppressor mechanism. In conclusion, our study demonstrates that molecular analysis of LZTR1 may contribute to the molecular characterization of schwannomatosis patients, in addition to NF2 mutational analysis and the detection of chromosome 22 losses in tumor tissue. It will be especially useful in differentiating schwannomatosis from mosaic Neurofibromatosis type 2 (NF2). However, the role of LZTR1 in the pathogenesis of schwannomatosis needs further elucidation. PMID:25335493
Hauke, Jan; Heitz, Florian; Reuss, Alexander; Kommoss, Stefan; Marmé, Frederik; Heimbach, André; Prieske, Katharina; Richters, Lisa; Burges, Alexander; Neidhardt, Guido; de Gregorio, Nikolaus; El-Balat, Ahmed; Hilpert, Felix; Meier, Werner; Kimmig, Rainer; Kast, Karin; Sehouli, Jalid; Baumann, Klaus; Jackisch, Christian; Park-Simon, Tjoung-Won; Hanker, Lars; Kröber, Sandra; Pfisterer, Jacobus; Gevensleben, Heidrun; Schnelzer, Andreas; Dietrich, Dimo; Neunhöffer, Tanja; Krockenberger, Mathias; Brucker, Sara Y.; Nürnberg, Peter; Thiele, Holger; Altmüller, Janine; Lamla, Josefin; Elser, Gabriele; du Bois, Andreas; Hahnen, Eric; Schmutzler, Rita
2017-01-01
Background Identification of families at risk for ovarian cancer offers the opportunity to consider prophylactic surgery thus reducing ovarian cancer mortality. So far, identification of potentially affected families in Germany was solely performed via family history and numbers of affected family members with breast or ovarian cancer. However, neither the prevalence of deleterious variants in BRCA1/2 in ovarian cancer in Germany nor the reliability of family history as trigger for genetic counselling has ever been evaluated. Methods Prospective counseling and germline testing of consecutive patients with primary diagnosis or with platinum-sensitive relapse of an invasive epithelial ovarian cancer. Testing included 25 candidate and established risk genes. Among these 25 genes, 16 genes (ATM, BRCA1, BRCA2, CDH1, CHEK2, MLH1, MSH2, MSH6, NBN, PMS2, PTEN, PALB2, RAD51C, RAD51D, STK11, TP53) were defined as established cancer risk genes. A positive family history was defined as at least one relative with breast cancer or ovarian cancer or breast cancer in personal history. Results In total, we analyzed 523 patients: 281 patients with primary diagnosis of ovarian cancer and 242 patients with relapsed disease. Median age at primary diagnosis was 58 years (range 16–93) and 406 patients (77.6%) had a high-grade serous ovarian cancer. In total, 27.9% of the patients showed at least one deleterious variant in all 25 investigated genes and 26.4% in the defined 16 risk genes. Deleterious variants were most prevalent in the BRCA1 (15.5%), BRCA2 (5.5%), RAD51C (2.5%) and PALB2 (1.1%) genes. The prevalence of deleterious variants did not differ significantly between patients at primary diagnosis and relapse. The prevalence of deleterious variants in BRCA1/2 (and in all 16 risk genes) in patients <60 years was 30.2% (33.2%) versus 10.6% (18.9%) in patients ≥60 years. Family history was positive in 43% of all patients. Patients with a positive family history had a prevalence of deleterious variants of 31.6% (36.0%) versus 11.4% (17.6%) and histologic subtype of high grade serous ovarian cancer versus other showed a prevalence of deleterious variants of 23.2% (29.1%) and 10.2% (14.8%), respectively. Testing only for BRCA1/2 would miss in our series more than 5% of the patients with a deleterious variant in established risk genes. Conclusions 26.4% of all patients harbor at least one deleterious variant in established risk genes. The threshold of 10% mutation rate which is accepted for reimbursement by health care providers in Germany was observed in all subgroups analyzed and neither age at primary diagnosis nor histo-type or family history sufficiently enough could identify a subgroup not eligible for genetic counselling and testing. Genetic testing should therefore be offered to every patient with invasive epithelial ovarian cancer and limiting testing to BRCA1/2 seems to be not sufficient. PMID:29053726
Peterson, Thomas A; Nehrt, Nathan L; Park, DoHwan
2012-01-01
Background and objective With recent breakthroughs in high-throughput sequencing, identifying deleterious mutations is one of the key challenges for personalized medicine. At the gene and protein level, it has proven difficult to determine the impact of previously unknown variants. A statistical method has been developed to assess the significance of disease mutation clusters on protein domains by incorporating domain functional annotations to assist in the functional characterization of novel variants. Methods Disease mutations aggregated from multiple databases were mapped to domains, and were classified as either cancer- or non-cancer-related. The statistical method for identifying significantly disease-associated domain positions was applied to both sets of mutations and to randomly generated mutation sets for comparison. To leverage the known function of protein domain regions, the method optionally distributes significant scores to associated functional feature positions. Results Most disease mutations are localized within protein domains and display a tendency to cluster at individual domain positions. The method identified significant disease mutation hotspots in both the cancer and non-cancer datasets. The domain significance scores (DS-scores) for cancer form a bimodal distribution with hotspots in oncogenes forming a second peak at higher DS-scores than non-cancer, and hotspots in tumor suppressors have scores more similar to non-cancers. In addition, on an independent mutation benchmarking set, the DS-score method identified mutations known to alter protein function with very high precision. Conclusion By aggregating mutations with known disease association at the domain level, the method was able to discover domain positions enriched with multiple occurrences of deleterious mutations while incorporating relevant functional annotations. The method can be incorporated into translational bioinformatics tools to characterize rare and novel variants within large-scale sequencing studies. PMID:22319177
The evolving genetic risk for sporadic ALS.
Gibson, Summer B; Downie, Jonathan M; Tsetsou, Spyridoula; Feusier, Julie E; Figueroa, Karla P; Bromberg, Mark B; Jorde, Lynn B; Pulst, Stefan M
2017-07-18
To estimate the genetic risk conferred by known amyotrophic lateral sclerosis (ALS)-associated genes to the pathogenesis of sporadic ALS (SALS) using variant allele frequencies combined with predicted variant pathogenicity. Whole exome sequencing and repeat expansion PCR of C9orf72 and ATXN2 were performed on 87 patients of European ancestry with SALS seen at the University of Utah. DNA variants that change the protein coding sequence of 31 ALS-associated genes were annotated to determine which were rare and deleterious as predicted by MetaSVM. The percentage of patients with SALS with a rare and deleterious variant or repeat expansion in an ALS-associated gene was calculated. An odds ratio analysis was performed comparing the burden of ALS-associated genes in patients with SALS vs 324 normal controls. Nineteen rare nonsynonymous variants in an ALS-associated gene, 2 of which were found in 2 different individuals, were identified in 21 patients with SALS. Further, 5 deleterious C9orf72 and 2 ATXN2 repeat expansions were identified. A total of 17.2% of patients with SALS had a rare and deleterious variant or repeat expansion in an ALS-associated gene. The genetic burden of ALS-associated genes in patients with SALS as predicted by MetaSVM was significantly higher than in normal controls. Previous analyses have identified SALS-predisposing variants only in terms of their rarity in normal control populations. By incorporating variant pathogenicity as well as variant frequency, we demonstrated that the genetic risk contributed by these genes for SALS is substantially lower than previous estimates. © 2017 American Academy of Neurology.
Kelleher, Raymond J; Geigenmüller, Ute; Hovhannisyan, Hayk; Trautman, Edwin; Pinard, Robert; Rathmell, Barbara; Carpenter, Randall; Margulies, David
2012-01-01
Identification of common molecular pathways affected by genetic variation in autism is important for understanding disease pathogenesis and devising effective therapies. Here, we test the hypothesis that rare genetic variation in the metabotropic glutamate-receptor (mGluR) signaling pathway contributes to autism susceptibility. Single-nucleotide variants in genes encoding components of the mGluR signaling pathway were identified by high-throughput multiplex sequencing of pooled samples from 290 non-syndromic autism cases and 300 ethnically matched controls on two independent next-generation platforms. This analysis revealed significant enrichment of rare functional variants in the mGluR pathway in autism cases. Higher burdens of rare, potentially deleterious variants were identified in autism cases for three pathway genes previously implicated in syndromic autism spectrum disorder, TSC1, TSC2, and SHANK3, suggesting that genetic variation in these genes also contributes to risk for non-syndromic autism. In addition, our analysis identified HOMER1, which encodes a postsynaptic density-localized scaffolding protein that interacts with Shank3 to regulate mGluR activity, as a novel autism-risk gene. Rare, potentially deleterious HOMER1 variants identified uniquely in the autism population affected functionally important protein regions or regulatory sequences and co-segregated closely with autism among children of affected families. We also identified rare ASD-associated coding variants predicted to have damaging effects on components of the Ras/MAPK cascade. Collectively, these findings suggest that altered signaling downstream of mGluRs contributes to the pathogenesis of non-syndromic autism.
Hovhannisyan, Hayk; Trautman, Edwin; Pinard, Robert; Rathmell, Barbara; Carpenter, Randall; Margulies, David
2012-01-01
Identification of common molecular pathways affected by genetic variation in autism is important for understanding disease pathogenesis and devising effective therapies. Here, we test the hypothesis that rare genetic variation in the metabotropic glutamate-receptor (mGluR) signaling pathway contributes to autism susceptibility. Single-nucleotide variants in genes encoding components of the mGluR signaling pathway were identified by high-throughput multiplex sequencing of pooled samples from 290 non-syndromic autism cases and 300 ethnically matched controls on two independent next-generation platforms. This analysis revealed significant enrichment of rare functional variants in the mGluR pathway in autism cases. Higher burdens of rare, potentially deleterious variants were identified in autism cases for three pathway genes previously implicated in syndromic autism spectrum disorder, TSC1, TSC2, and SHANK3, suggesting that genetic variation in these genes also contributes to risk for non-syndromic autism. In addition, our analysis identified HOMER1, which encodes a postsynaptic density-localized scaffolding protein that interacts with Shank3 to regulate mGluR activity, as a novel autism-risk gene. Rare, potentially deleterious HOMER1 variants identified uniquely in the autism population affected functionally important protein regions or regulatory sequences and co-segregated closely with autism among children of affected families. We also identified rare ASD-associated coding variants predicted to have damaging effects on components of the Ras/MAPK cascade. Collectively, these findings suggest that altered signaling downstream of mGluRs contributes to the pathogenesis of non-syndromic autism. PMID:22558107
Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants.
Fu, Wenqing; O'Connor, Timothy D; Jun, Goo; Kang, Hyun Min; Abecasis, Goncalo; Leal, Suzanne M; Gabriel, Stacey; Rieder, Mark J; Altshuler, David; Shendure, Jay; Nickerson, Deborah A; Bamshad, Michael J; Akey, Joshua M
2013-01-10
Establishing the age of each mutation segregating in contemporary human populations is important to fully understand our evolutionary history and will help to facilitate the development of new approaches for disease-gene discovery. Large-scale surveys of human genetic variation have reported signatures of recent explosive population growth, notable for an excess of rare genetic variants, suggesting that many mutations arose recently. To more quantitatively assess the distribution of mutation ages, we resequenced 15,336 genes in 6,515 individuals of European American and African American ancestry and inferred the age of 1,146,401 autosomal single nucleotide variants (SNVs). We estimate that approximately 73% of all protein-coding SNVs and approximately 86% of SNVs predicted to be deleterious arose in the past 5,000-10,000 years. The average age of deleterious SNVs varied significantly across molecular pathways, and disease genes contained a significantly higher proportion of recently arisen deleterious SNVs than other genes. Furthermore, European Americans had an excess of deleterious variants in essential and Mendelian disease genes compared to African Americans, consistent with weaker purifying selection due to the Out-of-Africa dispersal. Our results better delimit the historical details of human protein-coding variation, show the profound effect of recent human history on the burden of deleterious SNVs segregating in contemporary populations, and provide important practical information that can be used to prioritize variants in disease-gene discovery.
Jiang, Yong-hui; Yuen, Ryan K.C.; Jin, Xin; Wang, Mingbang; Chen, Nong; Wu, Xueli; Ju, Jia; Mei, Junpu; Shi, Yujian; He, Mingze; Wang, Guangbiao; Liang, Jieqin; Wang, Zhe; Cao, Dandan; Carter, Melissa T.; Chrysler, Christina; Drmic, Irene E.; Howe, Jennifer L.; Lau, Lynette; Marshall, Christian R.; Merico, Daniele; Nalpathamkalam, Thomas; Thiruvahindrapuram, Bhooma; Thompson, Ann; Uddin, Mohammed; Walker, Susan; Luo, Jun; Anagnostou, Evdokia; Zwaigenbaum, Lonnie; Ring, Robert H.; Wang, Jian; Lajonchere, Clara; Wang, Jun; Shih, Andy; Szatmari, Peter; Yang, Huanming; Dawson, Geraldine; Li, Yingrui; Scherer, Stephen W.
2013-01-01
Autism Spectrum Disorder (ASD) demonstrates high heritability and familial clustering, yet the genetic causes remain only partially understood as a result of extensive clinical and genomic heterogeneity. Whole-genome sequencing (WGS) shows promise as a tool for identifying ASD risk genes as well as unreported mutations in known loci, but an assessment of its full utility in an ASD group has not been performed. We used WGS to examine 32 families with ASD to detect de novo or rare inherited genetic variants predicted to be deleterious (loss-of-function and damaging missense mutations). Among ASD probands, we identified deleterious de novo mutations in six of 32 (19%) families and X-linked or autosomal inherited alterations in ten of 32 (31%) families (some had combinations of mutations). The proportion of families identified with such putative mutations was larger than has been previously reported; this yield was in part due to the comprehensive and uniform coverage afforded by WGS. Deleterious variants were found in four unrecognized, nine known, and eight candidate ASD risk genes. Examples include CAPRIN1 and AFF2 (both linked to FMR1, which is involved in fragile X syndrome), VIP (involved in social-cognitive deficits), and other genes such as SCN2A and KCNQ2 (linked to epilepsy), NRXN1, and CHD7, which causes ASD-associated CHARGE syndrome. Taken together, these results suggest that WGS and thorough bioinformatic analyses for de novo and rare inherited mutations will improve the detection of genetic variants likely to be associated with ASD or its accompanying clinical symptoms. PMID:23849776
Elevated Proportions of Deleterious Genetic Variation in Domestic Animals and Plants
Rubin, Carl-Johan; Carneiro, Miguel; Axelsson, Erik; Andersson, Leif
2018-01-01
Abstract A fraction of genetic variants segregating in any population are deleterious, which negatively impacts individual fitness. The domestication of animals and plants is associated with population bottlenecks and artificial selection, which are predicted to increase the proportion of deleterious variants. However, the extent to which this is a general feature of domestic species is unclear. Here, we examine the effects of domestication on the prevalence of deleterious variation using pooled whole-genome resequencing data from five domestic animal species (dog, pig, rabbit, chicken, and silkworm) and two domestic plant species (rice and soybean) compared with their wild ancestors. We find significantly reduced genetic variation and increased proportion of nonsynonymous amino acid changes in all but one of the domestic species. These differences are observable across a range of allele frequencies, both common and rare. We find proportionally more single nucleotide polymorphisms in highly conserved elements in domestic species and a tendency for domestic species to harbor a higher proportion of changes classified as damaging. Our findings most likely reflect an increased incidence of deleterious variants in domestic species, which is most likely attributable to population bottlenecks that lead to a reduction in the efficacy of selection. An exception to this pattern is displayed by European domestic pigs, which do not show traces of a strong population bottleneck and probably continued to exchange genes with wild boar populations after domestication. The results presented here indicate that an elevated proportion of deleterious variants is a common, but not ubiquitous, feature of domestic species. PMID:29325102
Integrated analysis of germline and somatic variants in ovarian cancer.
Kanchi, Krishna L; Johnson, Kimberly J; Lu, Charles; McLellan, Michael D; Leiserson, Mark D M; Wendl, Michael C; Zhang, Qunyuan; Koboldt, Daniel C; Xie, Mingchao; Kandoth, Cyriac; McMichael, Joshua F; Wyczalkowski, Matthew A; Larson, David E; Schmidt, Heather K; Miller, Christopher A; Fulton, Robert S; Spellman, Paul T; Mardis, Elaine R; Druley, Todd E; Graubert, Timothy A; Goodfellow, Paul J; Raphael, Benjamin J; Wilson, Richard K; Ding, Li
2014-01-01
We report the first large-scale exome-wide analysis of the combined germline-somatic landscape in ovarian cancer. Here we analyse germline and somatic alterations in 429 ovarian carcinoma cases and 557 controls. We identify 3,635 high confidence, rare truncation and 22,953 missense variants with predicted functional impact. We find germline truncation variants and large deletions across Fanconi pathway genes in 20% of cases. Enrichment of rare truncations is shown in BRCA1, BRCA2 and PALB2. In addition, we observe germline truncation variants in genes not previously associated with ovarian cancer susceptibility (NF1, MAP3K4, CDKN2B and MLL3). Evidence for loss of heterozygosity was found in 100 and 76% of cases with germline BRCA1 and BRCA2 truncations, respectively. Germline-somatic interaction analysis combined with extensive bioinformatics annotation identifies 222 candidate functional germline truncation and missense variants, including two pathogenic BRCA1 and 1 TP53 deleterious variants. Finally, integrated analyses of germline and somatic variants identify significantly altered pathways, including the Fanconi, MAPK and MLL pathways.
Morphology and genomic hallmarks of breast tumours developed by ATM deleterious variant carriers.
Renault, Anne-Laure; Mebirouk, Noura; Fuhrmann, Laetitia; Bataillon, Guillaume; Cavaciuti, Eve; Le Gal, Dorothée; Girard, Elodie; Popova, Tatiana; La Rosa, Philippe; Beauvallet, Juana; Eon-Marchais, Séverine; Dondon, Marie-Gabrielle; d'Enghien, Catherine Dubois; Laugé, Anthony; Chemlali, Walid; Raynal, Virginie; Labbé, Martine; Bièche, Ivan; Baulande, Sylvain; Bay, Jacques-Olivier; Berthet, Pascaline; Caron, Olivier; Buecher, Bruno; Faivre, Laurence; Fresnay, Marc; Gauthier-Villars, Marion; Gesta, Paul; Janin, Nicolas; Lejeune, Sophie; Maugard, Christine; Moutton, Sébastien; Venat-Bouvet, Laurence; Zattara, Hélène; Fricker, Jean-Pierre; Gladieff, Laurence; Coupier, Isabelle; Chenevix-Trench, Georgia; Hall, Janet; Vincent-Salomon, Anne; Stoppa-Lyonnet, Dominique; Andrieu, Nadine; Lesueur, Fabienne
2018-04-17
The ataxia telangiectasia mutated (ATM) gene is a moderate-risk breast cancer susceptibility gene; germline loss-of-function variants are found in up to 3% of hereditary breast and ovarian cancer (HBOC) families who undergo genetic testing. So far, no clear histopathological and molecular features of breast tumours occurring in ATM deleterious variant carriers have been described, but identification of an ATM-associated tumour signature may help in patient management. To characterise hallmarks of ATM-associated tumours, we performed systematic pathology review of tumours from 21 participants from ataxia-telangiectasia families and 18 participants from HBOC families, as well as copy number profiling on a subset of 23 tumours. Morphology of ATM-associated tumours was compared with that of 599 patients with no BRCA1 and BRCA2 mutations from a hospital-based series, as well as with data from The Cancer Genome Atlas. Absolute copy number and loss of heterozygosity (LOH) profiles were obtained from the OncoScan SNP array. In addition, we performed whole-genome sequencing on four tumours from ATM loss-of-function variant carriers with available frozen material. We found that ATM-associated tumours belong mostly to the luminal B subtype, are tetraploid and show LOH at the ATM locus at 11q22-23. Unlike tumours in which BRCA1 or BRCA2 is inactivated, tumours arising in ATM deleterious variant carriers are not associated with increased large-scale genomic instability as measured by the large-scale state transitions signature. Losses at 13q14.11-q14.3, 17p13.2-p12, 21p11.2-p11.1 and 22q11.23 were observed. Somatic alterations at these loci may therefore represent biomarkers for ATM testing and harbour driver mutations in potentially 'druggable' genes that would allow patients to be directed towards tailored therapeutic strategies. Although ATM is involved in the DNA damage response, ATM-associated tumours are distinct from BRCA1-associated tumours in terms of morphological characteristics and genomic alterations, and they are also distinguishable from sporadic breast tumours, thus opening up the possibility to identify ATM variant carriers outside the ataxia-telangiectasia disorder and direct them towards effective cancer risk management and therapeutic strategies.
Genetic Factors of the Disease Course After Sepsis: Rare Deleterious Variants Are Predictive.
Taudien, Stefan; Lausser, Ludwig; Giamarellos-Bourboulis, Evangelos J; Sponholz, Christoph; Schöneweck, Franziska; Felder, Marius; Schirra, Lyn-Rouven; Schmid, Florian; Gogos, Charalambos; Groth, Susann; Petersen, Britt-Sabina; Franke, Andre; Lieb, Wolfgang; Huse, Klaus; Zipfel, Peter F; Kurzai, Oliver; Moepps, Barbara; Gierschik, Peter; Bauer, Michael; Scherag, André; Kestler, Hans A; Platzer, Matthias
2016-10-01
Sepsis is a life-threatening organ dysfunction caused by dysregulated host response to infection. For its clinical course, host genetic factors are important and rare genomic variants are suspected to contribute. We sequenced the exomes of 59 Greek and 15 German patients with bacterial sepsis divided into two groups with extremely different disease courses. Variant analysis was focusing on rare deleterious single nucleotide variants (SNVs). We identified significant differences in the number of rare deleterious SNVs per patient between the ethnic groups. Classification experiments based on the data of the Greek patients allowed discrimination between the disease courses with estimated sensitivity and specificity>75%. By application of the trained model to the German patients we observed comparable discriminatory properties despite lower population-specific rare SNV load. Furthermore, rare SNVs in genes of cell signaling and innate immunity related pathways were identified as classifiers discriminating between the sepsis courses. Sepsis patients with favorable disease course after sepsis, even in the case of unfavorable preconditions, seem to be affected more often by rare deleterious SNVs in cell signaling and innate immunity related pathways, suggesting a protective role of impairments in these processes against a poor disease course. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Marsden, Clare D; Ortega-Del Vecchyo, Diego; O'Brien, Dennis P; Taylor, Jeremy F; Ramirez, Oscar; Vilà, Carles; Marques-Bonet, Tomas; Schnabel, Robert D; Wayne, Robert K; Lohmueller, Kirk E
2016-01-05
Population bottlenecks, inbreeding, and artificial selection can all, in principle, influence levels of deleterious genetic variation. However, the relative importance of each of these effects on genome-wide patterns of deleterious variation remains controversial. Domestic and wild canids offer a powerful system to address the role of these factors in influencing deleterious variation because their history is dominated by known bottlenecks and intense artificial selection. Here, we assess genome-wide patterns of deleterious variation in 90 whole-genome sequences from breed dogs, village dogs, and gray wolves. We find that the ratio of amino acid changing heterozygosity to silent heterozygosity is higher in dogs than in wolves and, on average, dogs have 2-3% higher genetic load than gray wolves. Multiple lines of evidence indicate this pattern is driven by less efficient natural selection due to bottlenecks associated with domestication and breed formation, rather than recent inbreeding. Further, we find regions of the genome implicated in selective sweeps are enriched for amino acid changing variants and Mendelian disease genes. To our knowledge, these results provide the first quantitative estimates of the increased burden of deleterious variants directly associated with domestication and have important implications for selective breeding programs and the conservation of rare and endangered species. Specifically, they highlight the costs associated with selective breeding and question the practice favoring the breeding of individuals that best fit breed standards. Our results also suggest that maintaining a large population size, rather than just avoiding inbreeding, is a critical factor for preventing the accumulation of deleterious variants.
Marsden, Clare D.; Ortega-Del Vecchyo, Diego; O’Brien, Dennis P.; Taylor, Jeremy F.; Ramirez, Oscar; Vilà, Carles; Marques-Bonet, Tomas; Schnabel, Robert D.; Wayne, Robert K.; Lohmueller, Kirk E.
2016-01-01
Population bottlenecks, inbreeding, and artificial selection can all, in principle, influence levels of deleterious genetic variation. However, the relative importance of each of these effects on genome-wide patterns of deleterious variation remains controversial. Domestic and wild canids offer a powerful system to address the role of these factors in influencing deleterious variation because their history is dominated by known bottlenecks and intense artificial selection. Here, we assess genome-wide patterns of deleterious variation in 90 whole-genome sequences from breed dogs, village dogs, and gray wolves. We find that the ratio of amino acid changing heterozygosity to silent heterozygosity is higher in dogs than in wolves and, on average, dogs have 2–3% higher genetic load than gray wolves. Multiple lines of evidence indicate this pattern is driven by less efficient natural selection due to bottlenecks associated with domestication and breed formation, rather than recent inbreeding. Further, we find regions of the genome implicated in selective sweeps are enriched for amino acid changing variants and Mendelian disease genes. To our knowledge, these results provide the first quantitative estimates of the increased burden of deleterious variants directly associated with domestication and have important implications for selective breeding programs and the conservation of rare and endangered species. Specifically, they highlight the costs associated with selective breeding and question the practice favoring the breeding of individuals that best fit breed standards. Our results also suggest that maintaining a large population size, rather than just avoiding inbreeding, is a critical factor for preventing the accumulation of deleterious variants. PMID:26699508
Buitrago, Lorena; Rendon, Augusto; Liang, Yupu; Simeoni, Ilenia; Negri, Ana; Filizola, Marta; Ouwehand, Willem H.; Coller, Barry S.; Alessi, Marie-Christine; Ballmaier, Matthias; Bariana, Tadbir; Bellissimo, Daniel; Bertoli, Marta; Bray, Paul; Bury, Loredana; Carrell, Robin; Cattaneo, Marco; Collins, Peter; French, Deborah; Favier, Remi; Freson, Kathleen; Furie, Bruce; Germeshausen, Manuela; Ghevaert, Cedric; Gomez, Keith; Goodeve, Anne; Gresele, Paolo; Guerrero, Jose; Hampshire, Dan J.; Hadinnapola, Charaka; Heemskerk, Johan; Henskens, Yvonne; Hill, Marian; Hogg, Nancy; Johnsen, Jill; Kahr, Walter; Kerr, Ron; Kunishima, Shinji; Laffan, Michael; Natwani, Amit; Neerman-Arbez, Marguerite; Nurden, Paquita; Nurden, Alan; Ormiston, Mark; Othman, Maha; Ouwehand, Willem; Perry, David; Vilk, Shoshana Ravel; Reitsma, Pieter; Rondina, Matthew; Simeoni, Ilenia; Smethurst, Peter; Stephens, Jonathan; Stevenson, William; Szkotak, Artur; Turro, Ernest; Van Geet, Christel; Vries, Minka; Ward, June; Waye, John; Westbury, Sarah; Whiteheart, Sidney; Wilcox, David; Zhang, Bi
2015-01-01
Next-generation sequencing is transforming our understanding of human genetic variation but assessing the functional impact of novel variants presents challenges. We analyzed missense variants in the integrin αIIbβ3 receptor subunit genes ITGA2B and ITGB3 identified by whole-exome or -genome sequencing in the ThromboGenomics project, comprising ∼32,000 alleles from 16,108 individuals. We analyzed the results in comparison with 111 missense variants in these genes previously reported as being associated with Glanzmann thrombasthenia (GT), 20 associated with alloimmune thrombocytopenia, and 5 associated with aniso/macrothrombocytopenia. We identified 114 novel missense variants in ITGA2B (affecting ∼11% of the amino acids) and 68 novel missense variants in ITGB3 (affecting ∼9% of the amino acids). Of the variants, 96% had minor allele frequencies (MAF) < 0.1%, indicating their rarity. Based on sequence conservation, MAF, and location on a complete model of αIIbβ3, we selected three novel variants that affect amino acids previously associated with GT for expression in HEK293 cells. αIIb P176H and β3 C547G severely reduced αIIbβ3 expression, whereas αIIb P943A partially reduced αIIbβ3 expression and had no effect on fibrinogen binding. We used receiver operating characteristic curves of combined annotation-dependent depletion, Polyphen 2-HDIV, and sorting intolerant from tolerant to estimate the percentage of novel variants likely to be deleterious. At optimal cut-off values, which had 69–98% sensitivity in detecting GT mutations, between 27% and 71% of the novel αIIb or β3 missense variants were predicted to be deleterious. Our data have implications for understanding the evolutionary pressure on αIIbβ3 and highlight the challenges in predicting the clinical significance of novel missense variants. PMID:25827233
Lee, Melissa; Vecchio-Pagán, Briana; Sharma, Neeraj; Waheed, Abdul; Li, Xiaopeng; Raraigh, Karen S; Robbins, Sarah; Han, Sangwoo T; Franca, Arianna L; Pellicore, Matthew J; Evans, Taylor A; Arcara, Kristin M; Nguyen, Hien; Luan, Shan; Belchis, Deborah; Hertecant, Jozef; Zabner, Joseph; Sly, William S; Cutting, Garry R
2016-05-15
Elevated sweat chloride levels, failure to thrive (FTT), and lung disease are characteristic features of cystic fibrosis (CF, OMIM #219700). Here we describe variants in CA12 encoding carbonic anhydrase XII in two pedigrees exhibiting CF-like phenotypes. Exome sequencing of a white American adult diagnosed with CF due to elevated sweat chloride, recurrent hyponatremia, infantile FTT and lung disease identified deleterious variants in each CA12 gene: c.908-1 G>A in a splice acceptor and a novel frameshift insertion c.859_860insACCT. In an unrelated consanguineous Omani family, two children with elevated sweat chloride, infantile FTT, and recurrent hyponatremia were homozygous for a novel missense variant (p.His121Gln). Deleterious CFTR variants were absent in both pedigrees. CA XII protein was localized apically in human bronchiolar epithelia and basolaterally in the reabsorptive duct of human sweat glands. Respiratory epithelial cell RNA from the adult proband revealed only aberrant CA12 transcripts and in vitro analysis showed greatly reduced CA XII protein. Studies of ion transport across respiratory epithelial cells in vivo and in culture revealed intact CFTR-mediated chloride transport in the adult proband. CA XII protein bearing either p.His121Gln or a previously identified p.Glu143Lys missense variant localized to the basolateral membranes of polarized Madin-Darby canine kidney (MDCK) cells, but enzyme activity was severely diminished when assayed at physiologic concentrations of extracellular chloride. Our findings indicate that loss of CA XII function should be considered in individuals without CFTR mutations who exhibit CF-like features in the sweat gland and lung. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Whitworth, James; Smith, Philip S; Martin, Jose-Ezequiel; West, Hannah; Luchetti, Andrea; Rodger, Faye; Clark, Graeme; Carss, Keren; Stephens, Jonathan; Stirrups, Kathleen; Penkett, Chris; Mapeta, Rutendo; Ashford, Sofie; Megy, Karyn; Shakeel, Hassan; Ahmed, Munaza; Adlard, Julian; Barwell, Julian; Brewer, Carole; Casey, Ruth T; Armstrong, Ruth; Cole, Trevor; Evans, Dafydd Gareth; Fostira, Florentia; Greenhalgh, Lynn; Hanson, Helen; Henderson, Alex; Hoffman, Jonathan; Izatt, Louise; Kumar, Ajith; Kwong, Ava; Lalloo, Fiona; Ong, Kai Ren; Paterson, Joan; Park, Soo-Mi; Chen-Shtoyerman, Rakefet; Searle, Claire; Side, Lucy; Skytte, Anne-Bine; Snape, Katie; Woodward, Emma R; Tischkowitz, Marc D; Maher, Eamonn R
2018-06-12
Multiple primary tumors (MPTs) affect a substantial proportion of cancer survivors and can result from various causes, including inherited predisposition. Currently, germline genetic testing of MPT-affected individuals for variants in cancer-predisposition genes (CPGs) is mostly targeted by tumor type. We ascertained pre-assessed MPT individuals (with at least two primary tumors by age 60 years or at least three by 70 years) from genetics centers and performed whole-genome sequencing (WGS) on 460 individuals from 440 families. Despite previous negative genetic assessment and molecular investigations, pathogenic variants in moderate- and high-risk CPGs were detected in 67/440 (15.2%) probands. WGS detected variants that would not be (or were not) detected by targeted resequencing strategies, including low-frequency structural variants (6/440 [1.4%] probands). In most individuals with a germline variant assessed as pathogenic or likely pathogenic (P/LP), at least one of their tumor types was characteristic of variants in the relevant CPG. However, in 29 probands (42.2% of those with a P/LP variant), the tumor phenotype appeared discordant. The frequency of individuals with truncating or splice-site CPG variants and at least one discordant tumor type was significantly higher than in a control population (χ 2 = 43.642; p ≤ 0.0001). 2/67 (3%) probands with P/LP variants had evidence of multiple inherited neoplasia allele syndrome (MINAS) with deleterious variants in two CPGs. Together with variant detection rates from a previous series of similarly ascertained MPT-affected individuals, the present results suggest that first-line comprehensive CPG analysis in an MPT cohort referred to clinical genetics services would detect a deleterious variant in about a third of individuals. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Paulo, Paula; Maia, Sofia; Pinto, Carla; Pinto, Pedro; Monteiro, Augusta; Peixoto, Ana; Teixeira, Manuel R
2018-04-01
Considering that mutations in known prostate cancer (PrCa) predisposition genes, including those responsible for hereditary breast/ovarian cancer and Lynch syndromes, explain less than 5% of early-onset/familial PrCa, we have sequenced 94 genes associated with cancer predisposition using next generation sequencing (NGS) in a series of 121 PrCa patients. We found monoallelic truncating/functionally deleterious mutations in seven genes, including ATM and CHEK2, which have previously been associated with PrCa predisposition, and five new candidate PrCa associated genes involved in cancer predisposing recessive disorders, namely RAD51C, FANCD2, FANCI, CEP57 and RECQL4. Furthermore, using in silico pathogenicity prediction of missense variants among 18 genes associated with breast/ovarian cancer and/or Lynch syndrome, followed by KASP genotyping in 710 healthy controls, we identified "likely pathogenic" missense variants in ATM, BRIP1, CHEK2 and TP53. In conclusion, this study has identified putative PrCa predisposing germline mutations in 14.9% of early-onset/familial PrCa patients. Further data will be necessary to confirm the genetic heterogeneity of inherited PrCa predisposition hinted in this study.
Mutation spectrum of genes associated with steroid-resistant nephrotic syndrome in Chinese children.
Wang, Ying; Dang, Xiqiang; He, Qingnan; Zhen, Yan; He, Xiaoxie; Yi, Zhuwen; Zhu, Kuichun
2017-08-20
Approximately 20% of children with idiopathic nephrotic syndrome do not respond to steroid therapy. More than 30 genes have been identified as disease-causing genes for the steroid-resistant nephrotic syndrome (SRNS). Few reports were from the Chinese population. The coding regions of genes commonly associated with SRNS were analyzed to characterize the gene mutation spectrum in children with SRNS in central China. The first phase study involved 38 children with five genes (NPHS1, NPHS2, PLCE1, WT1, and TRPC6) by Sanger sequencing. The second phase study involved 33 children with 17 genes by next generation DNA sequencing (NGS. 22 new patients, and 11 patients from first phase study but without positive findings). Overall deleterious or putatively deleterious gene variants were identified in 19 patients (31.7%), including four NPHS1 variants among five patients and three PLCE1 variants among four other patients. Variants in COL4A3, COL4A4, or COL4A5 were found in six patients. Eight novel variants were identified, including two in NPHS1, two in PLCE1, one in NPHS2, LAMB2, COL4A3, and COL4A4, respectively. 55.6% of the children with variants failed to respond to immunosuppressive agent therapy, while the resistance rate in children without variants was 44.4%. Our results show that screening for deleterious variants in some common genes in children clinically suspected with SRNS might be helpful for disease diagnosis as well as prediction of treatment efficacy and prognosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Kuo, Wen-Hong; Lin, Po-Han; Huang, Ai-Chu; Chien, Yin-Hsiu; Liu, Tsang-Pai; Lu, Yen-Shen; Bai, Li-Yuan; Sargeant, Aaron M; Lin, Ching-Hung; Cheng, Ann-Lii; Hsieh, Fon-Jou; Hwu, Wuh-Liang; Chang, King-Jen
2012-02-01
Although evidence suggests an importance of genetic factors in the development of breast cancer in Taiwanese (ethnic Chinese) women, including a high incidence of early-onset and secondary contralateral breast cancer, a major breast cancer predisposition gene, BRCA1, has not been well studied in this population. In fact, the carcinogenic impacts of many genetic variants of BRCA1 are unknown and classified as variants of uncertain significance (VUS). It is therefore important to establish a method to characterize the BRCA1 VUSs and understand their role in Taiwanese breast cancer patients. Accordingly, we developed a multimodel assessment strategy consisting of a prescreening portion and a validated functional assay to study breast cancer patients with early-onset, bilateral or familial breast cancer. We found germ-line BRCA1 mutations in 11.1% of our cohort and identified one novel missense mutation, c.5191C>A. Two genetic variants were initially classified as VUSs (c.1155C>T and c.5191C>A). c.1155C>T is not predicted to be deleterious in the prescreening portion of our assessment strategy. c.5191C>A, on the other hand, causes p.T1691K, which is predicted to have high deleterious probability because of significant structural alteration, a high deleterious score in the predictive programs and, clinically, triple negative characteristics in breast tumors. This mutant is confirmed by transcription activation and yeast growth-inhibition assays. In conclusion, we show as high a prevalence of germ-line BRCA1 mutation in high-risk Taiwanese patients as in Caucasians and demonstrate a useful strategy for studying BRCA1 VUSs.
Schwerd, Tobias; Khaled, Andrea V; Schürmann, Manfred; Chen, Hannah; Händel, Norman; Reis, André; Gillessen-Kaesbach, Gabriele; Uhlig, Holm H; Abou Jamra, Rami
2016-06-01
PTEN hamartoma tumour syndrome (PHTS) is caused by heterozygous variants in PTEN and is characterised by tumour predisposition, macrocephaly, and cognition impairment. Bi-allelic loss of PTEN activity has not been reported so far and animal models suggest that bi-allelic loss of PTEN activity is embryonically lethal. Here, we report the identification of a novel homozygous variant in PTEN, NM_000314.4; c.545T>C; p.Leu182Ser, in two adolescent siblings with severe macrocephaly and mild intellectual disability. The variant is predicted to be damaging and is associated with significantly increased phospho-S6 downstream of PTEN. The absence of tumours in the two homozygous siblings as well as lack of symptoms of PHTS in the heterozygous carriers of the family suggest that this particular variant is functionally hypomorphic rather than deleterious.
Schwerd, Tobias; Khaled, Andrea V; Schürmann, Manfred; Chen, Hannah; Händel, Norman; Reis, André; Gillessen-Kaesbach, Gabriele; Uhlig, Holm H; Abou Jamra, Rami
2016-01-01
PTEN hamartoma tumour syndrome (PHTS) is caused by heterozygous variants in PTEN and is characterised by tumour predisposition, macrocephaly, and cognition impairment. Bi-allelic loss of PTEN activity has not been reported so far and animal models suggest that bi-allelic loss of PTEN activity is embryonically lethal. Here, we report the identification of a novel homozygous variant in PTEN, NM_000314.4; c.545T>C; p.Leu182Ser, in two adolescent siblings with severe macrocephaly and mild intellectual disability. The variant is predicted to be damaging and is associated with significantly increased phospho-S6 downstream of PTEN. The absence of tumours in the two homozygous siblings as well as lack of symptoms of PHTS in the heterozygous carriers of the family suggest that this particular variant is functionally hypomorphic rather than deleterious. PMID:26443266
Localized structural frustration for evaluating the impact of sequence variants
Kumar, Sushant; Clarke, Declan; Gerstein, Mark
2016-01-01
Population-scale sequencing is increasingly uncovering large numbers of rare single-nucleotide variants (SNVs) in coding regions of the genome. The rarity of these variants makes it challenging to evaluate their deleteriousness with conventional phenotype–genotype associations. Protein structures provide a way of addressing this challenge. Previous efforts have focused on globally quantifying the impact of SNVs on protein stability. However, local perturbations may severely impact protein functionality without strongly disrupting global stability (e.g. in relation to catalysis or allostery). Here, we describe a workflow in which localized frustration, quantifying unfavorable local interactions, is employed as a metric to investigate such effects. Using this workflow on the Protein Databank, we find that frustration produces many immediately intuitive results: for instance, disease-related SNVs create stronger changes in localized frustration than non-disease related variants, and rare SNVs tend to disrupt local interactions to a larger extent than common variants. Less obviously, we observe that somatic SNVs associated with oncogenes and tumor suppressor genes (TSGs) induce very different changes in frustration. In particular, those associated with TSGs change the frustration more in the core than the surface (by introducing loss-of-function events), whereas those associated with oncogenes manifest the opposite pattern, creating gain-of-function events. PMID:27915290
Webster, Emily; Cho, Megan T; Alexander, Nora; Desai, Sonal; Naidu, Sakkubai; Bekheirnia, Mir Reza; Lewis, Andrea; Retterer, Kyle; Juusola, Jane; Chung, Wendy K
2016-11-01
Using whole-exome sequencing, we have identified novel de novo heterozygous pleckstrin homology domain-interacting protein ( PHIP ) variants that are predicted to be deleterious, including a frameshift deletion, in two unrelated patients with common clinical features of developmental delay, intellectual disability, anxiety, hypotonia, poor balance, obesity, and dysmorphic features. A nonsense mutation in PHIP has previously been associated with similar clinical features. Patients with microdeletions of 6q14.1, including PHIP , have a similar phenotype of developmental delay, intellectual disability, hypotonia, and obesity, suggesting that the phenotype of our patients is a result of loss-of-function mutations. PHIP produces multiple protein products, such as PHIP1 (also known as DCAF14), PHIP, and NDRP. PHIP1 is one of the multiple substrate receptors of the proteolytic CUL4-DDB1 ubiquitin ligase complex. CUL4B deficiency has been associated with intellectual disability, central obesity, muscle wasting, and dysmorphic features. The overlapping phenotype associated with CUL4B deficiency suggests that PHIP mutations cause disease through disruption of the ubiquitin ligase pathway.
Hardt, Karin; Heick, Sven Boris; Betz, Beate; Goecke, Timm; Yazdanparast, Haniyeh; Küppers, Robin; Servan, Kati; Steinke, Verena; Rahner, Nils; Morak, Monika; Holinski-Feder, Elke; Engel, Christoph; Möslein, Gabriela; Schackert, Hans-Konrad; von Knebel Doeberitz, Magnus; Pox, Christian; Hegemann, Johannes H; Royer-Pokora, Brigitte
2011-06-01
Missense mutations of the DNA mismatch repair gene MLH1 are found in a significant fraction of patients with Lynch syndrome (hereditary nonpolyposis colorectal cancer, HNPCC) and their pathogenicity often remains unclear. We report here all 88 MLH1 missense variants identified in families from the German HNPCC consortium with clinical details of these patients/families. We investigated 23 MLH1 missense variants by two functional in vivo assays in yeast; seven map to the ATPase and 16 to the protein interaction domain. In the yeast-2-hybrid (Y2H) assay three variants in the ATPase and twelve variants in the interaction domain showed no or a reduced interaction with PMS2; seven showed a normal and one a significantly higher interaction. Using the Lys2A (14) reporter system to study the dominant negative mutator effect (DNE), 16 variants showed no or a low mutator effect, suggesting that these are nonfunctional, three were intermediate and four wild type in this assay. The DNE and Y2H results were concordant for all variants in the interaction domain, whereas slightly divergent results were obtained for variants in the ATPase domain. Analysis of the stability of the missense proteins in yeast and human embryonic kidney cells (293T) revealed a very low expression for seven of the variants in yeast and for nine in human cells. In total 15 variants were classified as deleterious, five were classified as variants of unclassified significance (VUS) and three were basically normal in the functional assays, P603R, K618R, Q689R, suggesting that these are neutral.
Lugo-Martinez, Jose; Pejaver, Vikas; Pagel, Kymberleigh A.; Mort, Matthew; Cooper, David N.; Mooney, Sean D.; Radivojac, Predrag
2016-01-01
Elucidating the precise molecular events altered by disease-causing genetic variants represents a major challenge in translational bioinformatics. To this end, many studies have investigated the structural and functional impact of amino acid substitutions. Most of these studies were however limited in scope to either individual molecular functions or were concerned with functional effects (e.g. deleterious vs. neutral) without specifically considering possible molecular alterations. The recent growth of structural, molecular and genetic data presents an opportunity for more comprehensive studies to consider the structural environment of a residue of interest, to hypothesize specific molecular effects of sequence variants and to statistically associate these effects with genetic disease. In this study, we analyzed data sets of disease-causing and putatively neutral human variants mapped to protein 3D structures as part of a systematic study of the loss and gain of various types of functional attribute potentially underlying pathogenic molecular alterations. We first propose a formal model to assess probabilistically function-impacting variants. We then develop an array of structure-based functional residue predictors, evaluate their performance, and use them to quantify the impact of disease-causing amino acid substitutions on catalytic activity, metal binding, macromolecular binding, ligand binding, allosteric regulation and post-translational modifications. We show that our methodology generates actionable biological hypotheses for up to 41% of disease-causing genetic variants mapped to protein structures suggesting that it can be reliably used to guide experimental validation. Our results suggest that a significant fraction of disease-causing human variants mapping to protein structures are function-altering both in the presence and absence of stability disruption. PMID:27564311
Lugo-Martinez, Jose; Pejaver, Vikas; Pagel, Kymberleigh A; Jain, Shantanu; Mort, Matthew; Cooper, David N; Mooney, Sean D; Radivojac, Predrag
2016-08-01
Elucidating the precise molecular events altered by disease-causing genetic variants represents a major challenge in translational bioinformatics. To this end, many studies have investigated the structural and functional impact of amino acid substitutions. Most of these studies were however limited in scope to either individual molecular functions or were concerned with functional effects (e.g. deleterious vs. neutral) without specifically considering possible molecular alterations. The recent growth of structural, molecular and genetic data presents an opportunity for more comprehensive studies to consider the structural environment of a residue of interest, to hypothesize specific molecular effects of sequence variants and to statistically associate these effects with genetic disease. In this study, we analyzed data sets of disease-causing and putatively neutral human variants mapped to protein 3D structures as part of a systematic study of the loss and gain of various types of functional attribute potentially underlying pathogenic molecular alterations. We first propose a formal model to assess probabilistically function-impacting variants. We then develop an array of structure-based functional residue predictors, evaluate their performance, and use them to quantify the impact of disease-causing amino acid substitutions on catalytic activity, metal binding, macromolecular binding, ligand binding, allosteric regulation and post-translational modifications. We show that our methodology generates actionable biological hypotheses for up to 41% of disease-causing genetic variants mapped to protein structures suggesting that it can be reliably used to guide experimental validation. Our results suggest that a significant fraction of disease-causing human variants mapping to protein structures are function-altering both in the presence and absence of stability disruption.
Rare deleterious mutations are associated with disease in bipolar disorder families.
Rao, A R; Yourshaw, M; Christensen, B; Nelson, S F; Kerner, B
2017-07-01
Bipolar disorder (BD) is a common, complex and heritable psychiatric disorder characterized by episodes of severe mood swings. The identification of rare, damaging genomic mutations in families with BD could inform about disease mechanisms and lead to new therapeutic interventions. To determine whether rare, damaging mutations shared identity-by-descent in families with BD could be associated with disease, exome sequencing was performed in multigenerational families of the NIMH BD Family Study followed by in silico functional prediction. Disease association and disease specificity was determined using 5090 exomes from the Sweden-Schizophrenia (SZ) Population-Based Case-Control Exome Sequencing study. We identified 14 rare and likely deleterious mutations in 14 genes that were shared identity-by-descent among affected family members. The variants were associated with BD (P<0.05 after Bonferroni's correction) and disease specificity was supported by the absence of the mutations in patients with SZ. In addition, we found rare, functional mutations in known causal genes for neuropsychiatric disorders including holoprosencephaly and epilepsy. Our results demonstrate that exome sequencing in multigenerational families with BD is effective in identifying rare genomic variants of potential clinical relevance and also disease modifiers related to coexisting medical conditions. Replication of our results and experimental validation are required before disease causation could be assumed.
Sivadas, A; Salleh, M Z; Teh, L K; Scaria, V
2017-10-01
Expanding the scope of pharmacogenomic research by including multiple global populations is integral to building robust evidence for its clinical translation. Deep whole-genome sequencing of diverse ethnic populations provides a unique opportunity to study rare and common pharmacogenomic markers that often vary in frequency across populations. In this study, we aim to build a diverse map of pharmacogenetic variants in South East Asian (SEA) Malay population using deep whole-genome sequences of 100 healthy SEA Malay individuals. We investigated the allelic diversity of potentially deleterious pharmacogenomic variants in SEA Malay population. Our analysis revealed 227 common and 466 rare potentially functional single nucleotide variants (SNVs) in 437 pharmacogenomic genes involved in drug metabolism, transport and target genes, including 74 novel variants. This study has created one of the most comprehensive maps of pharmacogenetic markers in any population from whole genomes and will hugely benefit pharmacogenomic investigations and drug dosage recommendations in SEA Malays.
Uncovering disease mechanisms through network biology in the era of Next Generation Sequencing
NASA Astrophysics Data System (ADS)
Piñero, Janet; Berenstein, Ariel; Gonzalez-Perez, Abel; Chernomoretz, Ariel; Furlong, Laura I.
2016-04-01
Characterizing the behavior of disease genes in the context of biological networks has the potential to shed light on disease mechanisms, and to reveal both new candidate disease genes and therapeutic targets. Previous studies addressing the network properties of disease genes have produced contradictory results. Here we have explored the causes of these discrepancies and assessed the relationship between the network roles of disease genes and their tolerance to deleterious germline variants in human populations leveraging on: the abundance of interactome resources, a comprehensive catalog of disease genes and exome variation data. We found that the most salient network features of disease genes are driven by cancer genes and that genes related to different types of diseases play network roles whose centrality is inversely correlated to their tolerance to likely deleterious germline mutations. This proved to be a multiscale signature, including global, mesoscopic and local network centrality features. Cancer driver genes, the most sensitive to deleterious variants, occupy the most central positions, followed by dominant disease genes and then by recessive disease genes, which are tolerant to variants and isolated within their network modules.
Uncovering disease mechanisms through network biology in the era of Next Generation Sequencing
Piñero, Janet; Berenstein, Ariel; Gonzalez-Perez, Abel; Chernomoretz, Ariel; Furlong, Laura I.
2016-01-01
Characterizing the behavior of disease genes in the context of biological networks has the potential to shed light on disease mechanisms, and to reveal both new candidate disease genes and therapeutic targets. Previous studies addressing the network properties of disease genes have produced contradictory results. Here we have explored the causes of these discrepancies and assessed the relationship between the network roles of disease genes and their tolerance to deleterious germline variants in human populations leveraging on: the abundance of interactome resources, a comprehensive catalog of disease genes and exome variation data. We found that the most salient network features of disease genes are driven by cancer genes and that genes related to different types of diseases play network roles whose centrality is inversely correlated to their tolerance to likely deleterious germline mutations. This proved to be a multiscale signature, including global, mesoscopic and local network centrality features. Cancer driver genes, the most sensitive to deleterious variants, occupy the most central positions, followed by dominant disease genes and then by recessive disease genes, which are tolerant to variants and isolated within their network modules. PMID:27080396
Kitahara, Kei; Kajiura, Akimasa; Sato, Neuza Satomi; Suzuki, Tsutomu
2007-01-01
Ribosomal protein L2 is a highly conserved primary 23S rRNA-binding protein. L2 specifically recognizes the internal bulge sequence in Helix 66 (H66) of 23S rRNA and is localized to the intersubunit space through formation of bridge B7b with 16S rRNA. The L2-binding site in H66 is highly conserved in prokaryotic ribosomes, whereas the corresponding site in eukaryotic ribosomes has evolved into distinct classes of sequences. We performed a systematic genetic selection of randomized rRNA sequences in Escherichia coli, and isolated 20 functional variants of the L2-binding site. The isolated variants consisted of eukaryotic sequences, in addition to prokaryotic sequences. These results suggest that L2/L8e does not recognize a specific base sequence of H66, but rather a characteristic architecture of H66. The growth phenotype of the isolated variants correlated well with their ability of subunit association. Upon continuous cultivation of a deleterious variant, we isolated two spontaneous mutations within domain IV of 23S rRNA that compensated for its weak subunit association, and alleviated its growth defect, implying that functional interactions between intersubunit bridges compensate ribosomal function. PMID:17553838
Pedersen, Casper-Emil T; Lohmueller, Kirk E; Grarup, Niels; Bjerregaard, Peter; Hansen, Torben; Siegismund, Hans R; Moltke, Ida; Albrechtsen, Anders
2017-02-01
The genetic consequences of population bottlenecks on patterns of deleterious genetic variation in human populations are of tremendous interest. Based on exome sequencing of 18 Greenlandic Inuit we show that the Inuit have undergone a severe ∼20,000-year-long bottleneck. This has led to a markedly more extreme distribution of allele frequencies than seen for any other human population tested to date, making the Inuit the perfect population for investigating the effect of a bottleneck on patterns of deleterious variation. When comparing proxies for genetic load that assume an additive effect of deleterious alleles, the Inuit show, at most, a slight increase in load compared to European, East Asian, and African populations. Specifically, we observe <4% increase in the number of derived deleterious alleles in the Inuit. In contrast, proxies for genetic load under a recessive model suggest that the Inuit have a significantly higher load (20% increase or more) compared to other less bottlenecked human populations. Forward simulations under realistic models of demography support our empirical findings, showing up to a 6% increase in the genetic load for the Inuit population across all models of dominance. Further, the Inuit population carries fewer deleterious variants than other human populations, but those that are present tend to be at higher frequency than in other populations. Overall, our results show how recent demographic history has affected patterns of deleterious variants in human populations. Copyright © 2017 by the Genetics Society of America.
regSNPs-splicing: a tool for prioritizing synonymous single-nucleotide substitution.
Zhang, Xinjun; Li, Meng; Lin, Hai; Rao, Xi; Feng, Weixing; Yang, Yuedong; Mort, Matthew; Cooper, David N; Wang, Yue; Wang, Yadong; Wells, Clark; Zhou, Yaoqi; Liu, Yunlong
2017-09-01
While synonymous single-nucleotide variants (sSNVs) have largely been unstudied, since they do not alter protein sequence, mounting evidence suggests that they may affect RNA conformation, splicing, and the stability of nascent-mRNAs to promote various diseases. Accurately prioritizing deleterious sSNVs from a pool of neutral ones can significantly improve our ability of selecting functional genetic variants identified from various genome-sequencing projects, and, therefore, advance our understanding of disease etiology. In this study, we develop a computational algorithm to prioritize sSNVs based on their impact on mRNA splicing and protein function. In addition to genomic features that potentially affect splicing regulation, our proposed algorithm also includes dozens structural features that characterize the functions of alternatively spliced exons on protein function. Our systematical evaluation on thousands of sSNVs suggests that several structural features, including intrinsic disorder protein scores, solvent accessible surface areas, protein secondary structures, and known and predicted protein family domains, show significant differences between disease-causing and neutral sSNVs. Our result suggests that the protein structure features offer an added dimension of information while distinguishing disease-causing and neutral synonymous variants. The inclusion of structural features increases the predictive accuracy for functional sSNV prioritization.
Dewey, Frederick E; Murray, Michael F; Overton, John D; Habegger, Lukas; Leader, Joseph B; Fetterolf, Samantha N; O'Dushlaine, Colm; Van Hout, Cristopher V; Staples, Jeffrey; Gonzaga-Jauregui, Claudia; Metpally, Raghu; Pendergrass, Sarah A; Giovanni, Monica A; Kirchner, H Lester; Balasubramanian, Suganthi; Abul-Husn, Noura S; Hartzel, Dustin N; Lavage, Daniel R; Kost, Korey A; Packer, Jonathan S; Lopez, Alexander E; Penn, John; Mukherjee, Semanti; Gosalia, Nehal; Kanagaraj, Manoj; Li, Alexander H; Mitnaul, Lyndon J; Adams, Lance J; Person, Thomas N; Praveen, Kavita; Marcketta, Anthony; Lebo, Matthew S; Austin-Tse, Christina A; Mason-Suares, Heather M; Bruse, Shannon; Mellis, Scott; Phillips, Robert; Stahl, Neil; Murphy, Andrew; Economides, Aris; Skelding, Kimberly A; Still, Christopher D; Elmore, James R; Borecki, Ingrid B; Yancopoulos, George D; Davis, F Daniel; Faucett, William A; Gottesman, Omri; Ritchie, Marylyn D; Shuldiner, Alan R; Reid, Jeffrey G; Ledbetter, David H; Baras, Aris; Carey, David J
2016-12-23
The DiscovEHR collaboration between the Regeneron Genetics Center and Geisinger Health System couples high-throughput sequencing to an integrated health care system using longitudinal electronic health records (EHRs). We sequenced the exomes of 50,726 adult participants in the DiscovEHR study to identify ~4.2 million rare single-nucleotide variants and insertion/deletion events, of which ~176,000 are predicted to result in a loss of gene function. Linking these data to EHR-derived clinical phenotypes, we find clinical associations supporting therapeutic targets, including genes encoding drug targets for lipid lowering, and identify previously unidentified rare alleles associated with lipid levels and other blood level traits. About 3.5% of individuals harbor deleterious variants in 76 clinically actionable genes. The DiscovEHR data set provides a blueprint for large-scale precision medicine initiatives and genomics-guided therapeutic discovery. Copyright © 2016, American Association for the Advancement of Science.
Marom, Ronit; Jain, Mahim; Burrage, Lindsay C; Song, I-Wen; Graham, Brett H; Brown, Chester W; Stevens, Servi J C; Stegmann, Alexander P A; Gunter, Andrew T; Kaplan, Julie D; Gavrilova, Ralitza H; Shinawi, Marwan; Rosenfeld, Jill A; Bae, Yangjin; Tran, Alyssa A; Chen, Yuqing; Lu, James T; Gibbs, Richard A; Eng, Christine; Yang, Yaping; Rousseau, Justine; de Vries, Bert B A; Campeau, Philippe M; Lee, Brendan
2017-10-01
Pathogenic variants in genes encoding components of the BRG1-associated factor (BAF) chromatin remodeling complex have been associated with intellectual disability syndromes. We identified heterozygous, novel variants in ACTL6A, a gene encoding a component of the BAF complex, in three subjects with varying degrees of intellectual disability. Two subjects have missense variants affecting highly conserved amino acid residues within the actin-like domain. Missense mutations in the homologous region in yeast actin were previously reported to be dominant lethal and were associated with impaired binding of the human ACTL6A to β-actin and BRG1. A third subject has a splicing variant that creates an in-frame deletion. Our findings suggest that the variants identified in our subjects may have a deleterious effect on the function of the protein by disturbing the integrity of the BAF complex. Thus, ACTL6A gene mutation analysis should be considered in patients with intellectual disability, learning disabilities, or developmental language disorder. © 2017 Wiley Periodicals, Inc.
Michot, Pauline; Chahory, Sabine; Marete, Andrew; Grohs, Cécile; Dagios, Dimitri; Donzel, Elise; Aboukadiri, Abdelhak; Deloche, Marie-Christine; Allais-Bonnet, Aurélie; Chambrial, Matthieu; Barbey, Sarah; Genestout, Lucie; Boussaha, Mekki; Danchin-Burge, Coralie; Fritz, Sébastien; Boichard, Didier; Capitan, Aurélien
2016-08-10
Domestication and artificial selection have resulted in strong genetic drift, relaxation of purifying selection and accumulation of deleterious mutations. As a consequence, bovine breeds experience regular outbreaks of recessive genetic defects which might represent only the tip of the iceberg since their detection depends on the observation of affected animals with distinctive symptoms. Thus, recessive mutations resulting in embryonic mortality or in non-specific symptoms are likely to be missed. The increasing availability of whole-genome sequences has opened new research avenues such as reverse genetics for their investigation. Our aim was to characterize the genetic load of 15 European breeds using data from the 1000 bull genomes consortium and prove that widespread harmful mutations remain to be detected. We listed 2489 putative deleterious variants (in 1923 genes) segregating at a minimal frequency of 5 % in at least one of the breeds studied. Gene enrichment analysis showed major enrichment for genes related to nervous, visual and auditory systems, and moderate enrichment for genes related to cardiovascular and musculoskeletal systems. For verification purposes, we investigated the phenotypic consequences of a frameshift variant in the retinitis pigmentosa-1 gene segregating in several breeds and at a high frequency (27 %) in Normande cattle. As described in certain human patients, clinical and histological examination revealed that this mutation causes progressive degeneration of photoreceptors leading to complete blindness in homozygotes. We established that the deleterious allele was even more frequent in the Normande breed before 1975 (>40 %) and has been progressively counter-selected likely because of its associated negative effect on udder morphology. Finally, using identity-by-descent analysis we demonstrated that this mutation resulted from a unique ancestral event that dates back to ~2800 to 4000 years. We provide a list of mutations that likely represent a substantial part of the genetic load of domestication in European cattle. We demonstrate that they accumulated non-randomly and that genes related to cognition and sensory functions are particularly affected. Finally, we describe an ancestral deleterious variant segregating in different breeds causing progressive retinal degeneration and irreversible blindness in adult animals.
Tanaka, Akemi J.; Cho, Megan T.; Willaert, Rebecca; Retterer, Kyle; Zarate, Yuri A.; Bosanko, Katie; Stefans, Vikki; Oishi, Kimihiko; Williamson, Amy; Wilson, Golder N.; Basinger, Alice; Barbaro-Dieber, Tina; Ortega, Lucia; Sorrentino, Susanna; Gabriel, Melissa K.; Anderson, Ilse J.; Sacoto, Maria J. Guillen; Schnur, Rhonda E.; Chung, Wendy K.
2017-01-01
Using whole-exome sequencing, we identified seven unrelated individuals with global developmental delay, hypotonia, dysmorphic facial features, and an increased frequency of short stature, ataxia, and autism with de novo heterozygous frameshift, nonsense, splice, and missense variants in the Early B-cell Transcription Factor Family Member 3 (EBF3) gene. EBF3 is a member of the collier/olfactory-1/early B-cell factor (COE) family of proteins, which are required for central nervous system (CNS) development. COE proteins are highly evolutionarily conserved and regulate neuronal specification, migration, axon guidance, and dendritogenesis during development and are essential for maintaining neuronal identity in adult neurons. Haploinsufficiency of EBF3 may affect brain development and function, resulting in developmental delay, intellectual disability, and behavioral differences observed in individuals with a deleterious variant in EBF3. PMID:29162653
Localized structural frustration for evaluating the impact of sequence variants.
Kumar, Sushant; Clarke, Declan; Gerstein, Mark
2016-12-01
Population-scale sequencing is increasingly uncovering large numbers of rare single-nucleotide variants (SNVs) in coding regions of the genome. The rarity of these variants makes it challenging to evaluate their deleteriousness with conventional phenotype-genotype associations. Protein structures provide a way of addressing this challenge. Previous efforts have focused on globally quantifying the impact of SNVs on protein stability. However, local perturbations may severely impact protein functionality without strongly disrupting global stability (e.g. in relation to catalysis or allostery). Here, we describe a workflow in which localized frustration, quantifying unfavorable local interactions, is employed as a metric to investigate such effects. Using this workflow on the Protein Databank, we find that frustration produces many immediately intuitive results: for instance, disease-related SNVs create stronger changes in localized frustration than non-disease related variants, and rare SNVs tend to disrupt local interactions to a larger extent than common variants. Less obviously, we observe that somatic SNVs associated with oncogenes and tumor suppressor genes (TSGs) induce very different changes in frustration. In particular, those associated with TSGs change the frustration more in the core than the surface (by introducing loss-of-function events), whereas those associated with oncogenes manifest the opposite pattern, creating gain-of-function events. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Sollis, Elliot; Deriziotis, Pelagia; Saitsu, Hirotomo; Miyake, Noriko; Matsumoto, Naomichi; Hoffer, Mariëtte J V; Ruivenkamp, Claudia A L; Alders, Mariëlle; Okamoto, Nobuhiko; Bijlsma, Emilia K; Plomp, Astrid S; Fisher, Simon E
2017-11-01
The closely related paralogues FOXP2 and FOXP1 encode transcription factors with shared functions in the development of many tissues, including the brain. However, while mutations in FOXP2 lead to a speech/language disorder characterized by childhood apraxia of speech (CAS), the clinical profile of FOXP1 variants includes a broader neurodevelopmental phenotype with global developmental delay, intellectual disability, and speech/language impairment. Using clinical whole-exome sequencing, we report an identical de novo missense FOXP1 variant identified in three unrelated patients. The variant, p.R514H, is located in the forkhead-box DNA-binding domain and is equivalent to the well-studied p.R553H FOXP2 variant that cosegregates with CAS in a large UK family. We present here for the first time a direct comparison of the molecular and clinical consequences of the same mutation affecting the equivalent residue in FOXP1 and FOXP2. Detailed functional characterization of the two variants in cell model systems revealed very similar molecular consequences, including aberrant subcellular localization, disruption of transcription factor activity, and deleterious effects on protein interactions. Nonetheless, clinical manifestations were broader and more severe in the three cases carrying the p.R514H FOXP1 variant than in individuals with the p.R553H variant related to CAS, highlighting divergent roles of FOXP2 and FOXP1 in neurodevelopment. © 2017 Wiley Periodicals, Inc.
Mariman, Edwin C M; Bouwman, Freek G; Aller, Erik E J G; van Baak, Marleen A; Wang, Ping
2015-06-01
The hypothalamus is important for regulation of energy intake. Mutations in genes involved in the function of the hypothalamus can lead to early-onset severe obesity. To look further into this, we have followed a strategy that allowed us to identify rare and common gene variants as candidates for the background of extreme obesity from a relatively small cohort. For that we focused on subjects with a well-selected phenotype and on a defined gene set and used a rich source of genetic data with stringent cut-off values. A list of 166 genes functionally related to the hypothalamus was generated. In those genes complete exome sequence data from 30 extreme obese subjects (60 genomes) were screened for novel rare indel, nonsense, and missense variants with a predicted negative impact on protein function. In addition, (moderately) common variants in those genes were analyzed for allelic association using the general population as reference (false discovery rate<0.05). Six novel rare deleterious missense variants were found in the genes for BAIAP3, NBEA, PRRC2A, RYR1, SIM1, and TRH, and a novel indel variant in LEPR. Common variants in the six genes for MBOAT4, NPC1, NPW, NUCB2, PER1, and PRRC2A showed significant allelic association with extreme obesity. Our findings underscore the complexity of the genetic background of extreme obesity involving rare and common variants of genes from defined metabolic and physiologic processes, in particular regulation of the circadian rhythm of food intake and hypothalamic signaling. Copyright © 2015 the American Physiological Society.
Ansar, Muhammad; Jan, Abid; Santos-Cortez, Regie Lyn P; Wang, Xin; Suliman, Muhammad; Acharya, Anushree; Habib, Rabia; Abbe, Izoduwa; Ali, Ghazanfar; Lee, Kwanghyuk; Smith, Joshua D; Nickerson, Deborah A; Shendure, Jay; Bamshad, Michael J; Ahmad, Wasim; Leal, Suzanne M
2016-08-01
Alopecia with mental retardation (APMR) is a very rare disorder. In this study, we report on a consanguineous Pakistani family (AP91) with mild-to-moderate intellectual disability, adolescent alopecia and dentogingival abnormalities. Using homozygosity mapping, linkage analysis and exome sequencing, we identified a novel rare missense variant c.898G>A (p.(Glu300Lys)) in ITGB6, which co-segregates with the phenotype within the family and is predicted to be deleterious. Structural modeling shows that Glu300 lies in the β-propeller domain, and is surrounded by several residues that are important for heterodimerization with α integrin. Previous studies showed that ITGB6 variants can cause amelogenesis imperfecta in humans, but patients from family AP91 who are homozygous for the c.898G>A variant present with neurological and dermatological features, indicating a role for ITGB6 beyond enamel formation. Our study demonstrates that a rare deleterious variant within ITGB6 causes not only dentogingival anomalies but also intellectual disability and alopecia.
Arora, Sanjeevani; Huwe, Peter J.; Sikder, Rahmat; Shah, Manali; Browne, Amanda J.; Lesh, Randy; Nicolas, Emmanuelle; Deshpande, Sanat; Hall, Michael J.; Dunbrack, Roland L.; Golemis, Erica A.
2017-01-01
ABSTRACT The cancer-predisposing Lynch Syndrome (LS) arises from germline mutations in DNA mismatch repair (MMR) genes, predominantly MLH1, MSH2, MSH6, and PMS2. A major challenge for clinical diagnosis of LS is the frequent identification of variants of uncertain significance (VUS) in these genes, as it is often difficult to determine variant pathogenicity, particularly for missense variants. Generic programs such as SIFT and PolyPhen-2, and MMR gene-specific programs such as PON-MMR and MAPP-MMR, are often used to predict deleterious or neutral effects of VUS in MMR genes. We evaluated the performance of multiple predictive programs in the context of functional biologic data for 15 VUS in MLH1, MSH2, and PMS2. Using cell line models, we characterized VUS predicted to range from neutral to pathogenic on mRNA and protein expression, basal cellular viability, viability following treatment with a panel of DNA-damaging agents, and functionality in DNA damage response (DDR) signaling, benchmarking to wild-type MMR proteins. Our results suggest that the MMR gene-specific classifiers do not always align with the experimental phenotypes related to DDR. Our study highlights the importance of complementary experimental and computational assessment to develop future predictors for the assessment of VUS. PMID:28494185
Houlleberghs, Hellen; Dekker, Marleen; Lantermans, Hildo; Kleinendorst, Roos; Dubbink, Hendrikus Jan; Hofstra, Robert M. W.; Verhoef, Senno; te Riele, Hein
2016-01-01
Single-stranded DNA oligonucleotides can achieve targeted base-pair substitution with modest efficiency but high precision. We show that “oligo targeting” can be used effectively to study missense mutations in DNA mismatch repair (MMR) genes. Inherited inactivating mutations in DNA MMR genes are causative for the cancer predisposition Lynch syndrome (LS). Although overtly deleterious mutations in MMR genes can clearly be ascribed as the cause of LS, the functional implications of missense mutations are often unclear. We developed a genetic screen to determine the pathogenicity of these variants of uncertain significance (VUS), focusing on mutator S homolog 2 (MSH2). VUS were introduced into the endogenous Msh2 gene of mouse embryonic stem cells by oligo targeting. Subsequent selection for MMR-deficient cells using the guanine analog 6-thioguanine allowed the detection of MMR-abrogating VUS. The screen was able to distinguish weak and strong pathogenic variants from polymorphisms and was used to investigate 59 Msh2 VUS. Nineteen of the 59 VUS were identified as pathogenic. Functional assays revealed that 14 of the 19 detected variants fully abrogated MMR activity and that five of the detected variants attenuated MMR activity. Implementation of the screen in clinical practice allows proper counseling of mutation carriers and treatment of their tumors. PMID:26951660
Complexin2 modulates working memory-related neural activity in patients with schizophrenia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hass, Johanna; Walton, Esther; Kirsten, Holger
The specific contribution of risk or candidate gene variants to the complex phenotype of schizophrenia is largely unknown. Studying the effects of such variants on brain function can provide insight into disease-associated mechanisms on a neural systems level. Previous studies found common variants in the complexin2 ( CPLX2) gene to be highly associated with cognitive dysfunction in schizophrenia patients. Similarly, cognitive functioning was found to be impaired in Cplx2 gene-deficient mice if they were subjected to maternal deprivation or mild brain trauma during puberty. Here, we aimed to study seven common CPLX2 single-nucleotide polymorphisms (SNPs) and their neurogenetic risk mechanismsmore » by investigating their relationship to a schizophrenia-related functional neuroimaging intermediate phenotype. In this paper, we examined functional MRI and genotype data collected from 104 patients with DSM-IV-diagnosed schizophrenia and 122 healthy controls who participated in the Mind Clinical Imaging Consortium study of schizophrenia. Seven SNPs distributed over the whole CPLX2 gene were tested for association with working memory-elicited neural activity in a frontoparietal neural network. Three CPLX2 SNPs were significantly associated with increased neural activity in the dorsolateral prefrontal cortex and intraparietal sulcus in the schizophrenia sample, but showed no association in healthy controls. Finally, since increased working memory-related neural activity in individuals with or at risk for schizophrenia has been interpreted as ‘neural inefficiency,’ these findings suggest that certain variants of CPLX2 may contribute to impaired brain function in schizophrenia, possibly combined with other deleterious genetic variants, adverse environmental events, or developmental insults.« less
Complexin2 modulates working memory-related neural activity in patients with schizophrenia
Hass, Johanna; Walton, Esther; Kirsten, Holger; ...
2014-10-09
The specific contribution of risk or candidate gene variants to the complex phenotype of schizophrenia is largely unknown. Studying the effects of such variants on brain function can provide insight into disease-associated mechanisms on a neural systems level. Previous studies found common variants in the complexin2 ( CPLX2) gene to be highly associated with cognitive dysfunction in schizophrenia patients. Similarly, cognitive functioning was found to be impaired in Cplx2 gene-deficient mice if they were subjected to maternal deprivation or mild brain trauma during puberty. Here, we aimed to study seven common CPLX2 single-nucleotide polymorphisms (SNPs) and their neurogenetic risk mechanismsmore » by investigating their relationship to a schizophrenia-related functional neuroimaging intermediate phenotype. In this paper, we examined functional MRI and genotype data collected from 104 patients with DSM-IV-diagnosed schizophrenia and 122 healthy controls who participated in the Mind Clinical Imaging Consortium study of schizophrenia. Seven SNPs distributed over the whole CPLX2 gene were tested for association with working memory-elicited neural activity in a frontoparietal neural network. Three CPLX2 SNPs were significantly associated with increased neural activity in the dorsolateral prefrontal cortex and intraparietal sulcus in the schizophrenia sample, but showed no association in healthy controls. Finally, since increased working memory-related neural activity in individuals with or at risk for schizophrenia has been interpreted as ‘neural inefficiency,’ these findings suggest that certain variants of CPLX2 may contribute to impaired brain function in schizophrenia, possibly combined with other deleterious genetic variants, adverse environmental events, or developmental insults.« less
Tanaka, Akemi J; Cho, Megan T; Willaert, Rebecca; Retterer, Kyle; Zarate, Yuri A; Bosanko, Katie; Stefans, Vikki; Oishi, Kimihiko; Williamson, Amy; Wilson, Golder N; Basinger, Alice; Barbaro-Dieber, Tina; Ortega, Lucia; Sorrentino, Susanna; Gabriel, Melissa K; Anderson, Ilse J; Sacoto, Maria J Guillen; Schnur, Rhonda E; Chung, Wendy K
2017-11-01
Using whole-exome sequencing, we identified seven unrelated individuals with global developmental delay, hypotonia, dysmorphic facial features, and an increased frequency of short stature, ataxia, and autism with de novo heterozygous frameshift, nonsense, splice, and missense variants in the Early B-cell Transcription Factor Family Member 3 ( EBF3 ) gene. EBF3 is a member of the collier/olfactory-1/early B-cell factor (COE) family of proteins, which are required for central nervous system (CNS) development. COE proteins are highly evolutionarily conserved and regulate neuronal specification, migration, axon guidance, and dendritogenesis during development and are essential for maintaining neuronal identity in adult neurons. Haploinsufficiency of EBF3 may affect brain development and function, resulting in developmental delay, intellectual disability, and behavioral differences observed in individuals with a deleterious variant in EBF3 . © 2017 Tanaka et al.; Published by Cold Spring Harbor Laboratory Press.
Genotype–phenotype correlations in individuals with pathogenic RERE variants
Jordan, Valerie K.; Fregeau, Brieana; Ge, Xiaoyan; Giordano, Jessica; Wapner, Ronald J.; Balci, Tugce B.; Carter, Melissa T.; Bernat, John A.; Moccia, Amanda N.; Srivastava, Anshika; Martin, Donna M.; Bielas, Stephanie L.; Pappas, John; Svoboda, Melissa D.; Rio, Marlène; Boddaert, Nathalie; Cantagrel, Vincent; Lewis, Andrea M.; Scaglia, Fernando; Kohler, Jennefer N.; Bernstein, Jonathan A.; Dries, Annika M.; Rosenfeld, Jill A.; DeFilippo, Colette; Thorson, Willa; Yang, Yaping; Sherr, Elliott H.; Bi, Weimin; Scott, Daryl A.
2018-01-01
Heterozygous variants in the arginine-glutamic acid dipeptide repeats gene (RERE) have been shown to cause neurodevelopmental disorder with or without anomalies of the brain, eye, or heart (NEDBEH). Here, we report nine individuals with NEDBEH who carry partial deletions or deleterious sequence variants in RERE. These variants were found to be de novo in all cases in which parental samples were available. An analysis of data from individuals with NEDBEH suggests that point mutations affecting the Atrophin-1 domain of RERE are associated with an increased risk of structural eye defects, congenital heart defects, renal anomalies, and sensorineural hearing loss when compared with loss-of-function variants that are likely to lead to haploinsufficiency. A high percentage of RERE pathogenic variants affect a histidine-rich region in the Atrophin-1 domain. We have also identified a recurrent two-amino-acid duplication in this region that is associated with the development of a CHARGE syndrome-like phenotype. We conclude that mutations affecting RERE result in a spectrum of clinical phenotypes. Genotype–phenotype correlations exist and can be used to guide medical decision making. Consideration should also be given to screening for RERE variants in individuals who fulfill diagnostic criteria for CHARGE syndrome but do not carry pathogenic variants in CHD7. PMID:29330883
Genotype-phenotype correlations in individuals with pathogenic RERE variants.
Jordan, Valerie K; Fregeau, Brieana; Ge, Xiaoyan; Giordano, Jessica; Wapner, Ronald J; Balci, Tugce B; Carter, Melissa T; Bernat, John A; Moccia, Amanda N; Srivastava, Anshika; Martin, Donna M; Bielas, Stephanie L; Pappas, John; Svoboda, Melissa D; Rio, Marlène; Boddaert, Nathalie; Cantagrel, Vincent; Lewis, Andrea M; Scaglia, Fernando; Kohler, Jennefer N; Bernstein, Jonathan A; Dries, Annika M; Rosenfeld, Jill A; DeFilippo, Colette; Thorson, Willa; Yang, Yaping; Sherr, Elliott H; Bi, Weimin; Scott, Daryl A
2018-05-01
Heterozygous variants in the arginine-glutamic acid dipeptide repeats gene (RERE) have been shown to cause neurodevelopmental disorder with or without anomalies of the brain, eye, or heart (NEDBEH). Here, we report nine individuals with NEDBEH who carry partial deletions or deleterious sequence variants in RERE. These variants were found to be de novo in all cases in which parental samples were available. An analysis of data from individuals with NEDBEH suggests that point mutations affecting the Atrophin-1 domain of RERE are associated with an increased risk of structural eye defects, congenital heart defects, renal anomalies, and sensorineural hearing loss when compared with loss-of-function variants that are likely to lead to haploinsufficiency. A high percentage of RERE pathogenic variants affect a histidine-rich region in the Atrophin-1 domain. We have also identified a recurrent two-amino-acid duplication in this region that is associated with the development of a CHARGE syndrome-like phenotype. We conclude that mutations affecting RERE result in a spectrum of clinical phenotypes. Genotype-phenotype correlations exist and can be used to guide medical decision making. Consideration should also be given to screening for RERE variants in individuals who fulfill diagnostic criteria for CHARGE syndrome but do not carry pathogenic variants in CHD7. © 2018 Wiley Periodicals, Inc.
Al-Allaf, Faisal A; Athar, Mohammad; Abduljaleel, Zainularifeen; Taher, Mohiuddin M; Khan, Wajahatullah; Ba-Hammam, Faisal A; Abalkhail, Hala; Alashwal, Abdullah
2015-07-01
Familial hypercholesterolemia (FH) is an autosomal dominant inherited disease characterized by elevated plasma low-density lipoprotein cholesterol (LDL-C). It is an autosomal dominant disease, caused by variants in Ldlr, ApoB or Pcsk9, which results in high levels of LDL-cholesterol (LDL-C) leading to early coronary heart disease. Sequencing whole genome for screening variants for FH are not suitable due to high cost. Hence, in this study we performed targeted customized sequencing of FH 12 genes (Ldlr, ApoB, Pcsk9, Abca1, Apoa2, Apoc3, Apon2, Arh, Ldlrap1, Apoc2, ApoE, and Lpl) that have been implicated in the homozygous phenotype of a proband pedigree to identify candidate variants by NGS Ion torrent PGM. Only three genes (Ldlr, ApoB, and Pcsk9) were found to be highly associated with FH based on the variant rate. The results showed that seven deleterious variants in Ldlr, ApoB, and Pcsk9 genes were pathological and were clinically significant based on predictions identified by SIFT and PolyPhen. Targeted customized sequencing is an efficient technique for screening variants among targeted FH genes. Final validation of seven deleterious variants conducted by capillary resulted to only one novel variant in Ldlr gene that was found in exon 14 (c.2026delG, p. Gly676fs). The variant found in Ldlr gene was a novel heterozygous variant derived from a male in the proband. Copyright © 2015 Elsevier B.V. All rights reserved.
Qiu, Jian-Wu; Deng, Mei; Cheng, Ying; Atif, Raza-Muhammad; Lin, Wei-Xia; Guo, Li; Li, Hua; Song, Yuan-Zong
2017-01-01
Sodium taurocholate cotransporting polypeptide (NTCP) is encoded by the gene SLC10A1 and expressed in the basolateral membrane of the hepatocyte, functioning to uptake bile acids from plasma. Although SLC10A1 has been cloned and NTCP function studied intensively for years, clinical description of NTCP deficiency remains rather limited. This study reported the genotypic and phenotypic features of two neonatal patients with NTCP deficiency. They both presented with neonatal indirect hyperbilirubinemia and remarkable hypercholanemia, and harbored the SLC10A1 variants c.800C>T (p.S267F) and c.263T>C (p.I88T). On genetic analysis of the two family trios, the latter missense variant was detected in trans with the former, a reported loss-of-function variant. Having not been reported in any databases, the c.263T>C (p.I88T) variant demonstrated an allele frequency of 0.67% (1/150) in healthy controls. Moreover, this variant involved a relatively conservative amino acid, and was predicted to be pathogenic or deleterious by changing the conformation of the NTCP molecule. In conclusion, the novel variant c.263T>C (p.I88T) in this study enriched the SLC10A1 mutation spectrum; the clinical findings lent support to the primary role of NTCP in hepatic bile acid clearance, and suggested that NTCP deficiency might be a contributing factor for the development of neonatal indirect hyperbilirubinemia. PMID:29290974
Qiu, Jian-Wu; Deng, Mei; Cheng, Ying; Atif, Raza-Muhammad; Lin, Wei-Xia; Guo, Li; Li, Hua; Song, Yuan-Zong
2017-12-05
Sodium taurocholate cotransporting polypeptide (NTCP) is encoded by the gene SLC10A1 and expressed in the basolateral membrane of the hepatocyte, functioning to uptake bile acids from plasma. Although SLC10A1 has been cloned and NTCP function studied intensively for years, clinical description of NTCP deficiency remains rather limited. This study reported the genotypic and phenotypic features of two neonatal patients with NTCP deficiency. They both presented with neonatal indirect hyperbilirubinemia and remarkable hypercholanemia, and harbored the SLC10A1 variants c.800C>T (p.S267F) and c.263T>C (p.I88T). On genetic analysis of the two family trios, the latter missense variant was detected in trans with the former, a reported loss-of-function variant. Having not been reported in any databases, the c.263T>C (p.I88T) variant demonstrated an allele frequency of 0.67% (1/150) in healthy controls. Moreover, this variant involved a relatively conservative amino acid, and was predicted to be pathogenic or deleterious by changing the conformation of the NTCP molecule. In conclusion, the novel variant c.263T>C (p.I88T) in this study enriched the SLC10A1 mutation spectrum; the clinical findings lent support to the primary role of NTCP in hepatic bile acid clearance, and suggested that NTCP deficiency might be a contributing factor for the development of neonatal indirect hyperbilirubinemia.
Colombo, Mara; Lòpez-Perolio, Irene; Meeks, Huong D; Caleca, Laura; Parsons, Michael T; Li, Hongyan; De Vecchi, Giovanna; Tudini, Emma; Foglia, Claudia; Mondini, Patrizia; Manoukian, Siranoush; Behar, Raquel; Garcia, Encarna B Gómez; Meindl, Alfons; Montagna, Marco; Niederacher, Dieter; Schmidt, Ane Y; Varesco, Liliana; Wappenschmidt, Barbara; Bolla, Manjeet K; Dennis, Joe; Michailidou, Kyriaki; Wang, Qin; Aittomäki, Kristiina; Andrulis, Irene L; Anton-Culver, Hoda; Arndt, Volker; Beckmann, Matthias W; Beeghly-Fadel, Alicia; Benitez, Javier; Boeckx, Bram; Bogdanova, Natalia V; Bojesen, Stig E; Bonanni, Bernardo; Brauch, Hiltrud; Brenner, Hermann; Burwinkel, Barbara; Chang-Claude, Jenny; Conroy, Don M; Couch, Fergus J; Cox, Angela; Cross, Simon S; Czene, Kamila; Devilee, Peter; Dörk, Thilo; Eriksson, Mikael; Fasching, Peter A; Figueroa, Jonine; Fletcher, Olivia; Flyger, Henrik; Gabrielson, Marike; García-Closas, Montserrat; Giles, Graham G; González-Neira, Anna; Guénel, Pascal; Haiman, Christopher A; Hall, Per; Hamann, Ute; Hartman, Mikael; Hauke, Jan; Hollestelle, Antoinette; Hopper, John L; Jakubowska, Anna; Jung, Audrey; Kosma, Veli-Matti; Lambrechts, Diether; Le Marchand, Loid; Lindblom, Annika; Lubinski, Jan; Mannermaa, Arto; Margolin, Sara; Miao, Hui; Milne, Roger L; Neuhausen, Susan L; Nevanlinna, Heli; Olson, Janet E; Peterlongo, Paolo; Peto, Julian; Pylkäs, Katri; Sawyer, Elinor J; Schmidt, Marjanka K; Schmutzler, Rita K; Schneeweiss, Andreas; Schoemaker, Minouk J; See, Mee Hoong; Southey, Melissa C; Swerdlow, Anthony; Teo, Soo H; Toland, Amanda E; Tomlinson, Ian; Truong, Thérèse; van Asperen, Christi J; van den Ouweland, Ans M W; van der Kolk, Lizet E; Winqvist, Robert; Yannoukakos, Drakoulis; Zheng, Wei; Dunning, Alison M; Easton, Douglas F; Henderson, Alex; Hogervorst, Frans B L; Izatt, Louise; Offitt, Kenneth; Side, Lucy E; van Rensburg, Elizabeth J; Embrace, Study; Hebon, Study; McGuffog, Lesley; Antoniou, Antonis C; Chenevix-Trench, Georgia; Spurdle, Amanda B; Goldgar, David E; Hoya, Miguel de la; Radice, Paolo
2018-05-01
Although the spliceogenic nature of the BRCA2 c.68-7T > A variant has been demonstrated, its association with cancer risk remains controversial. In this study, we accurately quantified by real-time PCR and digital PCR (dPCR), the BRCA2 isoforms retaining or missing exon 3. In addition, the combined odds ratio for causality of the variant was estimated using genetic and clinical data, and its associated cancer risk was estimated by case-control analysis in 83,636 individuals. Co-occurrence in trans with pathogenic BRCA2 variants was assessed in 5,382 families. Exon 3 exclusion rate was 4.5-fold higher in variant carriers (13%) than controls (3%), indicating an exclusion rate for the c.68-7T > A allele of approximately 20%. The posterior probability of pathogenicity was 7.44 × 10 -115 . There was neither evidence for increased risk of breast cancer (OR 1.03; 95% CI 0.86-1.24) nor for a deleterious effect of the variant when co-occurring with pathogenic variants. Our data provide for the first time robust evidence of the nonpathogenicity of the BRCA2 c.68-7T > A. Genetic and quantitative transcript analyses together inform the threshold for the ratio between functional and altered BRCA2 isoforms compatible with normal cell function. These findings might be exploited to assess the relevance for cancer risk of other BRCA2 spliceogenic variants. © 2018 The Authors. Human Mutation published by Wiley Periodicals, Inc.
PERCH: A Unified Framework for Disease Gene Prioritization.
Feng, Bing-Jian
2017-03-01
To interpret genetic variants discovered from next-generation sequencing, integration of heterogeneous information is vital for success. This article describes a framework named PERCH (Polymorphism Evaluation, Ranking, and Classification for a Heritable trait), available at http://BJFengLab.org/. It can prioritize disease genes by quantitatively unifying a new deleteriousness measure called BayesDel, an improved assessment of the biological relevance of genes to the disease, a modified linkage analysis, a novel rare-variant association test, and a converted variant call quality score. It supports data that contain various combinations of extended pedigrees, trios, and case-controls, and allows for a reduced penetrance, an elevated phenocopy rate, liability classes, and covariates. BayesDel is more accurate than PolyPhen2, SIFT, FATHMM, LRT, Mutation Taster, Mutation Assessor, PhyloP, GERP++, SiPhy, CADD, MetaLR, and MetaSVM. The overall approach is faster and more powerful than the existing quantitative method pVAAST, as shown by the simulations of challenging situations in finding the missing heritability of a complex disease. This framework can also classify variants of unknown significance (variants of uncertain significance) by quantitatively integrating allele frequencies, deleteriousness, association, and co-segregation. PERCH is a versatile tool for gene prioritization in gene discovery research and variant classification in clinical genetic testing. © 2016 The Authors. **Human Mutation published by Wiley Periodicals, Inc.
CCDC141 Mutations in Idiopathic Hypogonadotropic Hypogonadism.
Turan, Ihsan; Hutchins, B Ian; Hacihamdioglu, Bulent; Kotan, L Damla; Gurbuz, Fatih; Ulubay, Ayca; Mengen, Eda; Yuksel, Bilgin; Wray, Susan; Topaloglu, A Kemal
2017-06-01
Gonadotropin-releasing hormone neurons originate outside the central nervous system in the olfactory placode and migrate into the central nervous system, becoming integral components of the hypothalamic-pituitary-gonadal axis. Failure of this migration can lead to idiopathic hypogonadotropic hypogonadism (IHH)/Kallmann syndrome (KS). We have previously shown that CCDC141 knockdown leads to impaired migration of GnRH neurons but not of olfactory receptor neurons. The aim of this study was to further describe the phenotype and prevalence of CCDC141 mutations in IHH/KS. Using autozygosity mapping, candidate gene screening, whole-exome sequencing, and Sanger sequencing, those individuals carrying deleterious CDCD141 variants and their phenotypes were determined in a cohort of 120 IHH/KS families. No interventions were made. Our studies revealed nine affected individuals from four independent families in which IHH/KS is associated with inactivating CCDC141 variants, revealing a prevalence of 3.3%. Affected individuals (with the exception of those from family 1 who concomitantly have FEZF1 mutations) have normal olfactory function and anatomically normal olfactory bulbs. Four affected individuals show evidence of clinical reversibility. In three of the families, there was at least one more potentially deleterious variant in other known puberty genes with evidence of allelic heterogeneity within respective pedigrees. These studies confirm that inactivating CCDC141 variants cause normosmic IHH but not KS. This is consistent with our previous in vitro experiments showing exclusively impaired embryonic migration of GnRH neurons upon CCDC141 knockdown. These studies expand the clinical and genetic spectrum of IHH and also attest to the complexity of phenotype and genotype in IHH. Copyright © 2017 by the Endocrine Society
Directed Evolution of RecA Variants with Enhanced Capacity for Conjugational Recombination
Kim, Taejin; Chitteni-Pattu, Sindhu; Cox, Benjamin L.; Wood, Elizabeth A.; Sandler, Steven J.; Cox, Michael M.
2015-01-01
The recombination activity of Escherichia coli (E. coli) RecA protein reflects an evolutionary balance between the positive and potentially deleterious effects of recombination. We have perturbed that balance, generating RecA variants exhibiting improved recombination functionality via random mutagenesis followed by directed evolution for enhanced function in conjugation. A recA gene segment encoding a 59 residue segment of the protein (Val79-Ala137), encompassing an extensive subunit-subunit interface region, was subjected to degenerate oligonucleotide-mediated mutagenesis. An iterative selection process generated at least 18 recA gene variants capable of producing a higher yield of transconjugants. Three of the variant proteins, RecA I102L, RecA V79L and RecA E86G/C90G were characterized based on their prominence. Relative to wild type RecA, the selected RecA variants exhibited faster rates of ATP hydrolysis, more rapid displacement of SSB, decreased inhibition by the RecX regulator protein, and in general displayed a greater persistence on DNA. The enhancement in conjugational function comes at the price of a measurable RecA-mediated cellular growth deficiency. Persistent DNA binding represents a barrier to other processes of DNA metabolism in vivo. The growth deficiency is alleviated by expression of the functionally robust RecX protein from Neisseria gonorrhoeae. RecA filaments can be a barrier to processes like replication and transcription. RecA regulation by RecX protein is important in maintaining an optimal balance between recombination and other aspects of DNA metabolism. PMID:26047498
Genome-wide Polygenic Burden of Rare Deleterious Variants in Sudden Unexpected Death in Epilepsy.
Leu, Costin; Balestrini, Simona; Maher, Bridget; Hernández-Hernández, Laura; Gormley, Padhraig; Hämäläinen, Eija; Heggeli, Kristin; Schoeler, Natasha; Novy, Jan; Willis, Joseph; Plagnol, Vincent; Ellis, Rachael; Reavey, Eleanor; O'Regan, Mary; Pickrell, William O; Thomas, Rhys H; Chung, Seo-Kyung; Delanty, Norman; McMahon, Jacinta M; Malone, Stephen; Sadleir, Lynette G; Berkovic, Samuel F; Nashef, Lina; Zuberi, Sameer M; Rees, Mark I; Cavalleri, Gianpiero L; Sander, Josemir W; Hughes, Elaine; Helen Cross, J; Scheffer, Ingrid E; Palotie, Aarno; Sisodiya, Sanjay M
2015-09-01
Sudden unexpected death in epilepsy (SUDEP) represents the most severe degree of the spectrum of epilepsy severity and is the commonest cause of epilepsy-related premature mortality. The precise pathophysiology and the genetic architecture of SUDEP remain elusive. Aiming to elucidate the genetic basis of SUDEP, we analysed rare, protein-changing variants from whole-exome sequences of 18 people who died of SUDEP, 87 living people with epilepsy and 1479 non-epilepsy disease controls. Association analysis revealed a significantly increased genome-wide polygenic burden per individual in the SUDEP cohort when compared to epilepsy (P = 5.7 × 10(- 3)) and non-epilepsy disease controls (P = 1.2 × 10(- 3)). The polygenic burden was driven both by the number of variants per individual, and over-representation of variants likely to be deleterious in the SUDEP cohort. As determined by this study, more than a thousand genes contribute to the observed polygenic burden within the framework of this study. Subsequent gene-based association analysis revealed five possible candidate genes significantly associated with SUDEP or epilepsy, but no one single gene emerges as common to the SUDEP cases. Our findings provide further evidence for a genetic susceptibility to SUDEP, and suggest an extensive polygenic contribution to SUDEP causation. Thus, an overall increased burden of deleterious variants in a highly polygenic background might be important in rendering a given individual more susceptible to SUDEP. Our findings suggest that exome sequencing in people with epilepsy might eventually contribute to generating SUDEP risk estimates, promoting stratified medicine in epilepsy, with the eventual aim of reducing an individual patient's risk of SUDEP.
Genome-wide Polygenic Burden of Rare Deleterious Variants in Sudden Unexpected Death in Epilepsy
Leu, Costin; Balestrini, Simona; Maher, Bridget; Hernández-Hernández, Laura; Gormley, Padhraig; Hämäläinen, Eija; Heggeli, Kristin; Schoeler, Natasha; Novy, Jan; Willis, Joseph; Plagnol, Vincent; Ellis, Rachael; Reavey, Eleanor; O'Regan, Mary; Pickrell, William O.; Thomas, Rhys H.; Chung, Seo-Kyung; Delanty, Norman; McMahon, Jacinta M.; Malone, Stephen; Sadleir, Lynette G.; Berkovic, Samuel F.; Nashef, Lina; Zuberi, Sameer M.; Rees, Mark I.; Cavalleri, Gianpiero L.; Sander, Josemir W.; Hughes, Elaine; Helen Cross, J.; Scheffer, Ingrid E.; Palotie, Aarno; Sisodiya, Sanjay M.
2015-01-01
Sudden unexpected death in epilepsy (SUDEP) represents the most severe degree of the spectrum of epilepsy severity and is the commonest cause of epilepsy-related premature mortality. The precise pathophysiology and the genetic architecture of SUDEP remain elusive. Aiming to elucidate the genetic basis of SUDEP, we analysed rare, protein-changing variants from whole-exome sequences of 18 people who died of SUDEP, 87 living people with epilepsy and 1479 non-epilepsy disease controls. Association analysis revealed a significantly increased genome-wide polygenic burden per individual in the SUDEP cohort when compared to epilepsy (P = 5.7 × 10− 3) and non-epilepsy disease controls (P = 1.2 × 10− 3). The polygenic burden was driven both by the number of variants per individual, and over-representation of variants likely to be deleterious in the SUDEP cohort. As determined by this study, more than a thousand genes contribute to the observed polygenic burden within the framework of this study. Subsequent gene-based association analysis revealed five possible candidate genes significantly associated with SUDEP or epilepsy, but no one single gene emerges as common to the SUDEP cases. Our findings provide further evidence for a genetic susceptibility to SUDEP, and suggest an extensive polygenic contribution to SUDEP causation. Thus, an overall increased burden of deleterious variants in a highly polygenic background might be important in rendering a given individual more susceptible to SUDEP. Our findings suggest that exome sequencing in people with epilepsy might eventually contribute to generating SUDEP risk estimates, promoting stratified medicine in epilepsy, with the eventual aim of reducing an individual patient's risk of SUDEP. PMID:26501104
Nance, D; Campbell, R A; Rowley, J W; Downie, J M; Jorde, L B; Kahr, W H; Mereby, S A; Tolley, N D; Zimmerman, G A; Weyrich, A S; Rondina, M T
2016-11-01
Essentials Co-existent damaging variants are likely to cause more severe bleeding and may go undiagnosed. We determined pathogenic variants in a three-generational pedigree with excessive bleeding. Bleeding occurred with concurrent variants in prostaglandin synthase-1 (PTGS-1) and factor VIII. The PTGS-1 variant was associated with functional defects in the arachidonic acid pathway. Background Inherited human variants that concurrently cause disorders of primary hemostasis and coagulation are uncommon. Nevertheless, rare cases of co-existent damaging variants are likely to cause more severe bleeding and may go undiagnosed. Objective We prospectively sought to determine pathogenic variants in a three-generational pedigree with excessive bleeding. Patients/methods Platelet number, size and light transmission aggregometry to multiple agonists were evaluated in pedigree members. Transmission electron microscopy determined platelet morphology and granule content. Thromboxane release studies and light transmission aggregometry in the presence or absence of prostaglandin G 2 assessed specific functional defects in the arachidonic acid pathway. Whole exome sequencing (WES) and targeted nucleotide sequence analysis identified potentially deleterious variants. Results Pedigree members with excessive bleeding had impaired platelet aggregation with arachidonic acid, epinephrine and low-dose ADP, as well as reduced platelet thromboxane B 2 release. Impaired platelet aggregation in response to 2MesADP was rescued with prostaglandin G 2 , a prostaglandin intermediate downstream of prostaglandin synthase-1 (PTGS-1) that aids in the production of thromboxane. WES identified a non-synonymous variant in the signal peptide of PTGS-1 (rs3842787; c.50C>T; p.Pro17Leu) that completely co-segregated with disease phenotype. A variant in the F8 gene causing hemophilia A (rs28935203; c.5096A>T; p.Y1699F) was also identified. Individuals with both variants had more severe bleeding manifestations than characteristic of mild hemophilia A alone. Conclusion We provide the first report of co-existing variants in both F8 and PTGS-1 genes in a three-generation pedigree. The PTGS-1 variant was associated with specific functional defects in the arachidonic acid pathway and more severe hemorrhage. © 2016 International Society on Thrombosis and Haemostasis.
Whole-Exome Sequencing in Familial Parkinson Disease
Farlow, Janice L.; Robak, Laurie A.; Hetrick, Kurt; Bowling, Kevin; Boerwinkle, Eric; Coban-Akdemir, Zeynep H.; Gambin, Tomasz; Gibbs, Richard A.; Gu, Shen; Jain, Preti; Jankovic, Joseph; Jhangiani, Shalini; Kaw, Kaveeta; Lai, Dongbing; Lin, Hai; Ling, Hua; Liu, Yunlong; Lupski, James R.; Muzny, Donna; Porter, Paula; Pugh, Elizabeth; White, Janson; Doheny, Kimberly; Myers, Richard M.; Shulman, Joshua M.; Foroud, Tatiana
2016-01-01
IMPORTANCE Parkinson disease (PD) is a progressive neurodegenerative disease for which susceptibility is linked to genetic and environmental risk factors. OBJECTIVE To identify genetic variants contributing to disease risk in familial PD. DESIGN, SETTING, AND PARTICIPANTS A 2-stage study design that included a discovery cohort of families with PD and a replication cohort of familial probands was used. In the discovery cohort, rare exonic variants that segregated in multiple affected individuals in a family and were predicted to be conserved or damaging were retained. Genes with retained variants were prioritized if expressed in the brain and located within PD-relevant pathways. Genes in which prioritized variants were observed in at least 4 families were selected as candidate genes for replication in the replication cohort. The setting was among individuals with familial PD enrolled from academic movement disorder specialty clinics across the United States. All participants had a family history of PD. MAIN OUTCOMES AND MEASURES Identification of genes containing rare, likely deleterious, genetic variants in individuals with familial PD using a 2-stage exome sequencing study design. RESULTS The 93 individuals from 32 families in the discovery cohort (49.5% [46 of 93] female) had a mean (SD) age at onset of 61.8 (10.0) years. The 49 individuals with familial PD in the replication cohort (32.6% [16 of 49] female) had a mean (SD) age at onset of 50.1 (15.7) years. Discovery cohort recruitment dates were 1999 to 2009, and replication cohort recruitment dates were 2003 to 2014. Data analysis dates were 2011 to 2015. Three genes containing a total of 13 rare and potentially damaging variants were prioritized in the discovery cohort. Two of these genes (TNK2 and TNR) also had rare variants that were predicted to be damaging in the replication cohort. All 9 variants identified in the 2 replicated genes in 12 families across the discovery and replication cohorts were confirmed via Sanger sequencing. CONCLUSIONS AND RELEVANCE TNK2 and TNR harbored rare, likely deleterious, variants in individuals having familial PD, with similar findings in an independent cohort. To our knowledge, these genes have not been previously associated with PD, although they have been linked to critical neuronal functions. Further studies are required to confirm a potential role for these genes in the pathogenesis of PD. PMID:26595808
Ansar, Muhammad; Jan, Abid; Santos-Cortez, Regie Lyn P; Wang, Xin; Suliman, Muhammad; Acharya, Anushree; Habib, Rabia; Abbe, Izoduwa; Ali, Ghazanfar; Lee, Kwanghyuk; Smith, Joshua D; Bamshad, Michael J; Shendure, Jay; Nickerson, Deborah A; Abecasis, Gonçalo R; Anderson, Peter; Annable, Marcus; Beightol, Mallory; Browning, Brian L; Buckingham, Kati J; Chen, Christina; Chin, Jennifer; Chong, Jessica X; Cooper, Gregory M; Davis, Colleen; Felker, Lindsay; Frazar, Christopher; Hanna, David; He, Zongxiao; Jain, Preti; Jarvik, Gail P; Johanson, Eric; Jun, Goo; Kircher, Martin; Kolar, Tom; Leal, Suzanne M; Luksic, Daniel; McMillin, Margaret J; McGee, Sean; Munson, Brenton; O'Roak, Brian J; Paeper, Bryan; Patterson, Karynne; Phillips, Eric; Pijoan, Jessica; Poel, Christa; Robertson, Peggy D; Santos-Cortez, Regie Lyn P; Shaffer, Tristan; Shephard, Cindy; Siegel, Deborah L; Smith, Joshua D; Staples, Jeffrey C; Tabor, Holly K; Tackett, Monica; Wang, Gao T; Yi, Qian; Nickerson, Deborah A; Shendure, Jay; Bamshad, Michael J; Ahmad, Wasim; Leal, Suzanne M
2016-01-01
Alopecia with mental retardation (APMR) is a very rare disorder. In this study, we report on a consanguineous Pakistani family (AP91) with mild-to-moderate intellectual disability, adolescent alopecia and dentogingival abnormalities. Using homozygosity mapping, linkage analysis and exome sequencing, we identified a novel rare missense variant c.898G>A (p.(Glu300Lys)) in ITGB6, which co-segregates with the phenotype within the family and is predicted to be deleterious. Structural modeling shows that Glu300 lies in the β-propeller domain, and is surrounded by several residues that are important for heterodimerization with α integrin. Previous studies showed that ITGB6 variants can cause amelogenesis imperfecta in humans, but patients from family AP91 who are homozygous for the c.898G>A variant present with neurological and dermatological features, indicating a role for ITGB6 beyond enamel formation. Our study demonstrates that a rare deleterious variant within ITGB6 causes not only dentogingival anomalies but also intellectual disability and alopecia. PMID:26695873
Classification of BRCA1 missense variants of unknown clinical significance
Phelan, C; Dapic, V; Tice, B; Favis, R; Kwan, E; Barany, F; Manoukian, S; Radice, P; van der Luijt, R B; van Nesselrooij, B P M; Chenevix-Trench, G; kConFab; Caldes, T; de La Hoya, M; Lindquist, S; Tavtigian, S; Goldgar, D; Borg, A; Narod, S; Monteiro, A
2005-01-01
Background: BRCA1 is a tumour suppressor with pleiotropic actions. Germline mutations in BRCA1 are responsible for a large proportion of breast–ovarian cancer families. Several missense variants have been identified throughout the gene but because of lack of information about their impact on the function of BRCA1, predictive testing is not always informative. Classification of missense variants into deleterious/high risk or neutral/low clinical significance is essential to identify individuals at risk. Objective: To investigate a panel of missense variants. Methods and results: The panel was investigated in a comprehensive framework that included (1) a functional assay based on transcription activation; (2) segregation analysis and a method of using incomplete pedigree data to calculate the odds of causality; (3) a method based on interspecific sequence variation. It was shown that the transcriptional activation assay could be used as a test to characterise mutations in the carboxy-terminus region of BRCA1 encompassing residues 1396–1863. Thirteen missense variants (H1402Y, L1407P, H1421Y, S1512I, M1628T, M1628V, T1685I, G1706A, T1720A, A1752P, G1788V, V1809F, and W1837R) were specifically investigated. Conclusions: While individual classification schemes for BRCA1 alleles still present limitations, a combination of several methods provides a more powerful way of identifying variants that are causally linked to a high risk of breast and ovarian cancer. The framework presented here brings these variants nearer to clinical applicability. PMID:15689452
Whole-Exome Sequencing Identifies Novel Variants for Tooth Agenesis.
Dinckan, N; Du, R; Petty, L E; Coban-Akdemir, Z; Jhangiani, S N; Paine, I; Baugh, E H; Erdem, A P; Kayserili, H; Doddapaneni, H; Hu, J; Muzny, D M; Boerwinkle, E; Gibbs, R A; Lupski, J R; Uyguner, Z O; Below, J E; Letra, A
2018-01-01
Tooth agenesis is a common craniofacial abnormality in humans and represents failure to develop 1 or more permanent teeth. Tooth agenesis is complex, and variations in about a dozen genes have been reported as contributing to the etiology. Here, we combined whole-exome sequencing, array-based genotyping, and linkage analysis to identify putative pathogenic variants in candidate disease genes for tooth agenesis in 10 multiplex Turkish families. Novel homozygous and heterozygous variants in LRP6, DKK1, LAMA3, and COL17A1 genes, as well as known variants in WNT10A, were identified as likely pathogenic in isolated tooth agenesis. Novel variants in KREMEN1 were identified as likely pathogenic in 2 families with suspected syndromic tooth agenesis. Variants in more than 1 gene were identified segregating with tooth agenesis in 2 families, suggesting oligogenic inheritance. Structural modeling of missense variants suggests deleterious effects to the encoded proteins. Functional analysis of an indel variant (c.3607+3_6del) in LRP6 suggested that the predicted resulting mRNA is subject to nonsense-mediated decay. Our results support a major role for WNT pathways genes in the etiology of tooth agenesis while revealing new candidate genes. Moreover, oligogenic cosegregation was suggestive for complex inheritance and potentially complex gene product interactions during development, contributing to improved understanding of the genetic etiology of familial tooth agenesis.
Iqbal, Zafar; Püttmann, Lucia; Musante, Luciana; Razzaq, Attia; Zahoor, Muhammad Yasir; Hu, Hao; Wienker, Thomas F; Garshasbi, Masoud; Fattahi, Zohreh; Gilissen, Christian; Vissers, Lisenka ELM; de Brouwer, Arjan PM; Veltman, Joris A; Pfundt, Rolph; Najmabadi, Hossein; Ropers, Hans-Hilger; Riazuddin, Sheikh; Kahrizi, Kimia; van Bokhoven, Hans
2016-01-01
AIMP1/p43 is a multifunctional non-catalytic component of the multisynthetase complex. The complex consists of nine catalytic and three non-catalytic proteins, which catalyze the ligation of amino acids to their cognate tRNA isoacceptors for use in protein translation. To date, two allelic variants in the AIMP1 gene have been reported as the underlying cause of autosomal recessive primary neurodegenerative disorder. Here, we present two consanguineous families from Pakistan and Iran, presenting with moderate to severe intellectual disability, global developmental delay, and speech impairment without neurodegeneration. By the combination of homozygosity mapping and next generation sequencing, we identified two homozygous missense variants, p.(Gly299Arg) and p.(Val176Gly), in the gene AIMP1 that co-segregated with the phenotype in the respective families. Molecular modeling of the variants revealed deleterious effects on the protein structure that are predicted to result in reduced AIMP1 function. Our findings indicate that the clinical spectrum for AIMP1 defects is broader than witnessed so far. PMID:26173967
Iqbal, Zafar; Püttmann, Lucia; Musante, Luciana; Razzaq, Attia; Zahoor, Muhammad Yasir; Hu, Hao; Wienker, Thomas F; Garshasbi, Masoud; Fattahi, Zohreh; Gilissen, Christian; Vissers, Lisenka E L M; de Brouwer, Arjan P M; Veltman, Joris A; Pfundt, Rolph; Najmabadi, Hossein; Ropers, Hans-Hilger; Riazuddin, Sheikh; Kahrizi, Kimia; van Bokhoven, Hans
2016-03-01
AIMP1/p43 is a multifunctional non-catalytic component of the multisynthetase complex. The complex consists of nine catalytic and three non-catalytic proteins, which catalyze the ligation of amino acids to their cognate tRNA isoacceptors for use in protein translation. To date, two allelic variants in the AIMP1 gene have been reported as the underlying cause of autosomal recessive primary neurodegenerative disorder. Here, we present two consanguineous families from Pakistan and Iran, presenting with moderate to severe intellectual disability, global developmental delay, and speech impairment without neurodegeneration. By the combination of homozygosity mapping and next generation sequencing, we identified two homozygous missense variants, p.(Gly299Arg) and p.(Val176Gly), in the gene AIMP1 that co-segregated with the phenotype in the respective families. Molecular modeling of the variants revealed deleterious effects on the protein structure that are predicted to result in reduced AIMP1 function. Our findings indicate that the clinical spectrum for AIMP1 defects is broader than witnessed so far.
Mutational Landscape of Candidate Genes in Familial Prostate Cancer
Johnson, Anna M.; Zuhlke, Kimberly A.; Plotts, Chris; McDonnell, Shannon K.; Middha, Sumit; Riska, Shaun M.; Thibodeau, Stephen N.; Douglas, Julie A.; Cooney, Kathleen A.
2014-01-01
Background Family history is a major risk factor for prostate cancer (PCa), suggesting a genetic component to the disease. However, traditional linkage and association studies have failed to fully elucidate the underlying genetic basis of familial PCa. Methods Here we use a candidate gene approach to identify potential PCa susceptibility variants in whole exome sequencing data from familial PCa cases. Six hundred ninety-seven candidate genes were identified based on function, location near a known chromosome 17 linkage signal, and/or previous association with prostate or other cancers. Single nucleotide variants (SNVs) in these candidate genes were identified in whole exome sequence data from 33 PCa cases from 11 multiplex PCa families (3 cases/family). Results Overall, 4856 candidate gene SNVs were identified, including 1052 missense and 10 nonsense variants. Twenty missense variants were shared by all 3 family members in each family in which they were observed. Additionally, 15 missense variants were shared by 2 of 3 family members and predicted to be deleterious by 5 different algorithms. Four missense variants, BLM Gln123Arg, PARP2 Arg283Gln, LRCC46 Ala295Thr and KIF2B Pro91Leu, and 1 nonsense variant, CYP3A43 Arg441Ter, showed complete co-segregation with PCa status. Twelve additional variants displayed partial co-segregation with PCa. Conclusions Forty-three nonsense and shared, missense variants were identified in our candidate genes. Further research is needed to determine the contribution of these variants to PCa susceptibility. PMID:25111073
Das, Raima; Ghosh, Sankar Kumar
2017-04-01
DNA repair pathway is a primary defense system that eliminates wide varieties of DNA damage. Any deficiencies in them are likely to cause the chromosomal instability that leads to cell malfunctioning and tumorigenesis. Genetic polymorphisms in DNA repair genes have demonstrated a significant association with cancer risk. Our study attempts to give a glimpse of the overall scenario of the germline polymorphisms in the DNA repair genes by taking into account of the Exome Aggregation Consortium (ExAC) database as well as the Human Gene Mutation Database (HGMD) for evaluating the disease link, particularly in cancer. It has been found that ExAC DNA repair dataset (which consists of 228 DNA repair genes) comprises 30.4% missense, 12.5% dbSNP reported and 3.2% ClinVar significant variants. 27% of all the missense variants has the deleterious SIFT score of 0.00 and 6% variants carrying the most damaging Polyphen-2 score of 1.00, thus affecting the protein structure and function. However, as per HGMD, only a fraction (1.2%) of ExAC DNA repair variants was found to be cancer-related, indicating remaining variants reported in both the databases to be further analyzed. This, in turn, may provide an increased spectrum of the reported cancer linked variants in the DNA repair genes present in ExAC database. Moreover, further in silico functional assay of the identified vital cancer-associated variants, which is essential to get their actual biological significance, may shed some lights in the field of targeted drug development in near future. Copyright © 2017. Published by Elsevier B.V.
Functional analysis of mutations in the ATP loop of the Wilson disease copper transporter, ATP7B.
Luoma, Leiah M; Deeb, Taha M M; Macintyre, Georgina; Cox, Diane W
2010-05-01
Wilson disease (WND) is an autosomal recessive disorder resulting from mutation of ATP7B. Transport of copper by ATP7B from the trans-Golgi of hepatocytes into apical membrane-trafficked vesicles for excretion in the bile is the major means of copper elimination from the body. Although copper is an essential nutrient, homeostasis must be carefully maintained. If homeostasis is disrupted, copper can accumulate within the liver, kidney, cornea, and/or brain. The range of organs affected leads to clinical heterogeneity and difficulty in WND diagnosis. Sequencing of ATP7B is an important adjunct for diagnosis but has led to the discovery of many novel missense variants. Although prediction programs are available, functional characterization is essential for determining the consequence of novel variants. We have tested 12 missense variants localized to the ATP loop of ATP7B and compared three predictive programs (SIFT, PolyPhen, and Align-GVGD). We found p.L1043P, p.G1000R, p.G1101R, p.I1102T, p.V1239G, and p.D1267V deleterious; p.G1176E and p.G1287S intermediate; p.E1173G temperature sensitive; p.T991M and p.I1148T mild; and p.R1228T functioning as wild type. We found that SIFT most often agreed with functional data (92%), compared with PolyPhen (83%) and Align-GVGD (67%). We conclude that variants found to negatively affect function likely contribute to the WND phenotype in patients. (c) 2010 Wiley-Liss, Inc.
Variations in PROKR2, But Not PROK2, Are Associated With Hypopituitarism and Septo-optic Dysplasia
McCabe, Mark J.; Gaston-Massuet, Carles; Gregory, Louise C.; Alatzoglou, Kyriaki S.; Tziaferi, Vaitsa; Sbai, Oualid; Rondard, Philippe; Masumoto, Koh-hei; Nagano, Mamoru; Shigeyoshi, Yasufumi; Pfeifer, Marija; Hulse, Tony; Buchanan, Charles R.; Pitteloud, Nelly; Martinez-Barbera, Juan-Pedro
2013-01-01
Context: Loss-of-function mutations in PROK2 and PROKR2 have been implicated in Kallmann syndrome (KS), characterized by hypogonadotropic hypogonadism and anosmia. Recent data suggest overlapping phenotypes/genotypes between KS and congenital hypopituitarism (CH), including septo-optic dysplasia (SOD). Objective: We screened a cohort of patients with complex forms of CH (n = 422) for mutations in PROK2 and PROKR2. Results: We detected 5 PROKR2 variants in 11 patients with SOD/CH: novel p.G371R and previously reported p.A51T, p.R85L, p.L173R, and p.R268C—the latter 3 being known functionally deleterious variants. Surprisingly, 1 patient with SOD was heterozygous for the p.L173R variant, whereas his phenotypically unaffected mother was homozygous for the variant. We sought to clarify the role of PROKR2 in hypothalamopituitary development through analysis of Prokr2−/− mice. Interestingly, these revealed predominantly normal hypothalamopituitary development and terminal cell differentiation, with the exception of reduced LH; this was inconsistent with patient phenotypes and more analogous to the healthy mother, although she did not have KS, unlike the Prokr2−/− mice. Conclusions: The role of PROKR2 in the etiology of CH, SOD, and KS is uncertain, as demonstrated by no clear phenotype-genotype correlation; loss-of-function variants in heterozygosity or homozygosity can be associated with these disorders. However, we report a phenotypically normal parent, homozygous for p.L173R. Our data suggest that the variants identified herein are unlikely to be implicated in isolation in these disorders; other genetic or environmental modifiers may also impact on the etiology. Given the phenotypic variability, genetic counseling may presently be inappropriate. PMID:23386640
A population-based analysis of germline BAP1 mutations in melanoma.
O'Shea, Sally J; Robles-Espinoza, Carla Daniela; McLellan, Lauren; Harrigan, Jeanine; Jacq, Xavier; Hewinson, James; Iyer, Vivek; Merchant, Will; Elliott, Faye; Harland, Mark; Bishop, D Timothy; Newton-Bishop, Julia A; Adams, David J
2017-02-15
Germline mutation of the BRCA1 associated protein-1 (BAP1) gene has been linked to uveal melanoma, mesothelioma, meningioma, renal cell carcinoma and basal cell carcinoma. Germline variants have also been found in familial cutaneous melanoma pedigrees, but their contribution to sporadic melanoma has not been fully assessed. We sequenced BAP1 in 1,977 melanoma cases and 754 controls and used deubiquitinase assays, a pedigree analysis, and a histopathological review to assess the consequences of the mutations found. Sequencing revealed 30 BAP1 variants in total, of which 27 were rare (ExAc allele frequency <0.002). Of the 27 rare variants, 22 were present in cases (18 missense, one splice acceptor, one frameshift and two near splice regions) and five in controls (all missense). A missense change (S98R) in a case that completely abolished BAP1 deubiquitinase activity was identified. Analysis of cancers in the pedigree of the proband carrying the S98R variant and in two other pedigrees carrying clear loss-of-function alleles showed the presence of BAP1-associated cancers such as renal cell carcinoma, mesothelioma and meningioma, but not uveal melanoma. Two of these three probands carrying BAP1 loss-of-function variants also had melanomas with histopathological features suggestive of a germline BAP1 mutation. The remaining cases with germline mutations, which were predominantly missense mutations, were associated with less typical pedigrees and tumours lacking a characteristic BAP1-associated histopathological appearances, but may still represent less penetrant variants. Germline BAP1 alleles defined as loss-of-function or predicted to be deleterious/damaging are rare in cutaneous melanoma. © The Author 2017. Published by Oxford University Press.
A population-based analysis of germline BAP1 mutations in melanoma
O’Shea, Sally J.; Robles-Espinoza, Carla Daniela; Harrigan, Jeanine; Jacq, Xavier; Hewinson, James; Iyer, Vivek; Merchant, Will; Elliott, Faye; Harland, Mark; Bishop, D. Timothy; Newton-Bishop, Julia A.
2017-01-01
Abstract Germline mutation of the BRCA1 associated protein-1 (BAP1) gene has been linked to uveal melanoma, mesothelioma, meningioma, renal cell carcinoma and basal cell carcinoma. Germline variants have also been found in familial cutaneous melanoma pedigrees, but their contribution to sporadic melanoma has not been fully assessed. We sequenced BAP1 in 1,977 melanoma cases and 754 controls and used deubiquitinase assays, a pedigree analysis, and a histopathological review to assess the consequences of the mutations found. Sequencing revealed 30 BAP1 variants in total, of which 27 were rare (ExAc allele frequency <0.002). Of the 27 rare variants, 22 were present in cases (18 missense, one splice acceptor, one frameshift and two near splice regions) and five in controls (all missense). A missense change (S98R) in a case that completely abolished BAP1 deubiquitinase activity was identified. Analysis of cancers in the pedigree of the proband carrying the S98R variant and in two other pedigrees carrying clear loss-of-function alleles showed the presence of BAP1-associated cancers such as renal cell carcinoma, mesothelioma and meningioma, but not uveal melanoma. Two of these three probands carrying BAP1 loss-of-function variants also had melanomas with histopathological features suggestive of a germline BAP1 mutation. The remaining cases with germline mutations, which were predominantly missense mutations, were associated with less typical pedigrees and tumours lacking a characteristic BAP1-associated histopathological appearances, but may still represent less penetrant variants. Germline BAP1 alleles defined as loss-of-function or predicted to be deleterious/damaging are rare in cutaneous melanoma. PMID:28062663
Multimer Formation Explains Allelic Suppression of PRDM9 Recombination Hotspots.
Baker, Christopher L; Petkova, Pavlina; Walker, Michael; Flachs, Petr; Mihola, Ondrej; Trachtulec, Zdenek; Petkov, Petko M; Paigen, Kenneth
2015-09-01
Genetic recombination during meiosis functions to increase genetic diversity, promotes elimination of deleterious alleles, and helps assure proper segregation of chromatids. Mammalian recombination events are concentrated at specialized sites, termed hotspots, whose locations are determined by PRDM9, a zinc finger DNA-binding histone methyltransferase. Prdm9 is highly polymorphic with most alleles activating their own set of hotspots. In populations exhibiting high frequencies of heterozygosity, questions remain about the influences different alleles have in heterozygous individuals where the two variant forms of PRDM9 typically do not activate equivalent populations of hotspots. We now find that, in addition to activating its own hotspots, the presence of one Prdm9 allele can modify the activity of hotspots activated by the other allele. PRDM9 function is also dosage sensitive; Prdm9+/- heterozygous null mice have reduced numbers and less active hotspots and increased numbers of aberrant germ cells. In mice carrying two Prdm9 alleles, there is allelic competition; the stronger Prdm9 allele can partially or entirely suppress chromatin modification and recombination at hotspots of the weaker allele. In cell cultures, PRDM9 protein variants form functional heteromeric complexes which can bind hotspots sequences. When a heteromeric complex binds at a hotspot of one PRDM9 variant, the other PRDM9 variant, which would otherwise not bind, can still methylate hotspot nucleosomes. We propose that in heterozygous individuals the underlying molecular mechanism of allelic suppression results from formation of PRDM9 heteromers, where the DNA binding activity of one protein variant dominantly directs recombination initiation towards its own hotspots, effectively titrating down recombination by the other protein variant. In natural populations with many heterozygous individuals, allelic competition will influence the recombination landscape.
Multimer Formation Explains Allelic Suppression of PRDM9 Recombination Hotspots
Baker, Christopher L.; Petkova, Pavlina; Walker, Michael; Flachs, Petr; Mihola, Ondrej; Trachtulec, Zdenek; Petkov, Petko M.; Paigen, Kenneth
2015-01-01
Genetic recombination during meiosis functions to increase genetic diversity, promotes elimination of deleterious alleles, and helps assure proper segregation of chromatids. Mammalian recombination events are concentrated at specialized sites, termed hotspots, whose locations are determined by PRDM9, a zinc finger DNA-binding histone methyltransferase. Prdm9 is highly polymorphic with most alleles activating their own set of hotspots. In populations exhibiting high frequencies of heterozygosity, questions remain about the influences different alleles have in heterozygous individuals where the two variant forms of PRDM9 typically do not activate equivalent populations of hotspots. We now find that, in addition to activating its own hotspots, the presence of one Prdm9 allele can modify the activity of hotspots activated by the other allele. PRDM9 function is also dosage sensitive; Prdm9 +/- heterozygous null mice have reduced numbers and less active hotspots and increased numbers of aberrant germ cells. In mice carrying two Prdm9 alleles, there is allelic competition; the stronger Prdm9 allele can partially or entirely suppress chromatin modification and recombination at hotspots of the weaker allele. In cell cultures, PRDM9 protein variants form functional heteromeric complexes which can bind hotspots sequences. When a heteromeric complex binds at a hotspot of one PRDM9 variant, the other PRDM9 variant, which would otherwise not bind, can still methylate hotspot nucleosomes. We propose that in heterozygous individuals the underlying molecular mechanism of allelic suppression results from formation of PRDM9 heteromers, where the DNA binding activity of one protein variant dominantly directs recombination initiation towards its own hotspots, effectively titrating down recombination by the other protein variant. In natural populations with many heterozygous individuals, allelic competition will influence the recombination landscape. PMID:26368021
Landscape of Pleiotropic Proteins Causing Human Disease: Structural and System Biology Insights.
Ittisoponpisan, Sirawit; Alhuzimi, Eman; Sternberg, Michael J E; David, Alessia
2017-03-01
Pleiotropy is the phenomenon by which the same gene can result in multiple phenotypes. Pleiotropic proteins are emerging as important contributors to rare and common disorders. Nevertheless, little is known on the mechanisms underlying pleiotropy and the characteristic of pleiotropic proteins. We analyzed disease-causing proteins reported in UniProt and observed that 12% are pleiotropic (variants in the same protein cause more than one disease). Pleiotropic proteins were enriched in deleterious and rare variants, but not in common variants. Pleiotropic proteins were more likely to be involved in the pathogenesis of neoplasms, neurological, and circulatory diseases and congenital malformations, whereas non-pleiotropic proteins in endocrine and metabolic disorders. Pleiotropic proteins were more essential and had a higher number of interacting partners compared with non-pleiotropic proteins. Significantly more pleiotropic than non-pleiotropic proteins contained at least one intrinsically long disordered region (P < 0.001). Deleterious variants occurring in structurally disordered regions were more commonly found in pleiotropic, rather than non-pleiotropic proteins. In conclusion, pleiotropic proteins are an important contributor to human disease. They represent a biologically different class of proteins compared with non-pleiotropic proteins and a better understanding of their characteristics and genetic variants can greatly aid in the interpretation of genetic studies and drug design. © 2016 WILEY PERIODICALS, INC.
Singh, Preety K; Mistry, Kinnari N; Chiramana, Haritha; Rank, Dharamshi N; Joshi, Chaitanya G
2018-05-20
Non-homologous end joining (NHEJ) pathway has pivotal role in repair of double-strand DNA breaks that may lead to carcinogenesis. XRCC4 is one of the essential proteins of this pathway and single-nucleotide polymorphisms (SNPs) of this gene are reported to be associated with cancer risks. In our study, we first used computational approaches to predict the damaging variants of XRCC4 gene. Tools predicted rs79561451 (S110P) nsSNP as the most deleterious SNP. Along with this SNP, we analysed other two SNPs (rs3734091 and rs6869366) to study their association with breast cancer in population of West India. Variant rs3734091 was found to be significantly associated with breast cancer while rs6869366 variant did not show any association. These SNPs may influence the susceptibility of individuals to breast cancer in this population. Copyright © 2018 Elsevier B.V. All rights reserved.
Identification of candidate genes for familial early-onset essential tremor.
Liu, Xinmin; Hernandez, Nora; Kisselev, Sergey; Floratos, Aris; Sawle, Ashley; Ionita-Laza, Iuliana; Ottman, Ruth; Louis, Elan D; Clark, Lorraine N
2016-07-01
Essential tremor (ET) is one of the most common causes of tremor in humans. Despite its high heritability and prevalence, few susceptibility genes for ET have been identified. To identify ET genes, whole-exome sequencing was performed in 37 early-onset ET families with an autosomal-dominant inheritance pattern. We identified candidate genes for follow-up functional studies in five ET families. In two independent families, we identified variants predicted to affect function in the nitric oxide (NO) synthase 3 gene (NOS3) that cosegregated with disease. NOS3 is highly expressed in the central nervous system (including cerebellum), neurons and endothelial cells, and is one of three enzymes that converts l-arginine to the neurotransmitter NO. In one family, a heterozygous variant, c.46G>A (p.(Gly16Ser)), in NOS3, was identified in three affected ET cases and was absent in an unaffected family member; and in a second family, a heterozygous variant, c.164C>T (p.(Pro55Leu)), was identified in three affected ET cases (dizygotic twins and their mother). Both variants result in amino-acid substitutions of highly conserved amino-acid residues that are predicted to be deleterious and damaging by in silico analysis. In three independent families, variants predicted to affect function were also identified in other genes, including KCNS2 (KV9.2), HAPLN4 (BRAL2) and USP46. These genes are highly expressed in the cerebellum and Purkinje cells, and influence function of the gamma-amino butyric acid (GABA)-ergic system. This is in concordance with recent evidence that the pathophysiological process in ET involves cerebellar dysfunction and possibly cerebellar degeneration with a reduction in Purkinje cells, and a decrease in GABA-ergic tone.
Li, Yong; Sekula, Peggy; Wuttke, Matthias; Wahrheit, Judith; Hausknecht, Birgit; Schultheiss, Ulla T; Gronwald, Wolfram; Schlosser, Pascal; Tucci, Sara; Ekici, Arif B; Spiekerkoetter, Ute; Kronenberg, Florian; Eckardt, Kai-Uwe; Oefner, Peter J; Köttgen, Anna
2018-05-01
Background The kidneys have a central role in the generation, turnover, transport, and excretion of metabolites, and these functions can be altered in CKD. Genetic studies of metabolite concentrations can identify proteins performing these functions. Methods We conducted genome-wide association studies and aggregate rare variant tests of the concentrations of 139 serum metabolites and 41 urine metabolites, as well as their pairwise ratios and fractional excretions in up to 1168 patients with CKD. Results After correction for multiple testing, genome-wide significant associations were detected for 25 serum metabolites, two urine metabolites, and 259 serum and 14 urinary metabolite ratios. These included associations already known from population-based studies. Additional findings included an association for the uremic toxin putrescine and variants upstream of an enzyme catalyzing the oxidative deamination of polyamines ( AOC1 , P -min=2.4×10 -12 ), a relatively high carrier frequency (2%) for rare deleterious missense variants in ACADM that are collectively associated with serum ratios of medium-chain acylcarnitines ( P -burden=6.6×10 -16 ), and associations of a common variant in SLC7A9 with several ratios of lysine to neutral amino acids in urine, including the lysine/glutamine ratio ( P =2.2×10 -23 ). The associations of this SLC7A9 variant with ratios of lysine to specific neutral amino acids were much stronger than the association with lysine concentration alone. This finding is consistent with SLC7A9 functioning as an exchanger of urinary cationic amino acids against specific intracellular neutral amino acids at the apical membrane of proximal tubular cells. Conclusions Metabolomic indices of specific kidney functions in genetic studies may provide insight into human renal physiology. Copyright © 2018 by the American Society of Nephrology.
Searching for missing heritability: Designing rare variant association studies
Zuk, Or; Schaffner, Stephen F.; Samocha, Kaitlin; Do, Ron; Hechter, Eliana; Kathiresan, Sekar; Daly, Mark J.; Neale, Benjamin M.; Sunyaev, Shamil R.; Lander, Eric S.
2014-01-01
Genetic studies have revealed thousands of loci predisposing to hundreds of human diseases and traits, revealing important biological pathways and defining novel therapeutic hypotheses. However, the genes discovered to date typically explain less than half of the apparent heritability. Because efforts have largely focused on common genetic variants, one hypothesis is that much of the missing heritability is due to rare genetic variants. Studies of common variants are typically referred to as genomewide association studies, whereas studies of rare variants are often simply called sequencing studies. Because they are actually closely related, we use the terms common variant association study (CVAS) and rare variant association study (RVAS). In this paper, we outline the similarities and differences between RVAS and CVAS and describe a conceptual framework for the design of RVAS. We apply the framework to address key questions about the sample sizes needed to detect association, the relative merits of testing disruptive alleles vs. missense alleles, frequency thresholds for filtering alleles, the value of predictors of the functional impact of missense alleles, the potential utility of isolated populations, the value of gene-set analysis, and the utility of de novo mutations. The optimal design depends critically on the selection coefficient against deleterious alleles and thus varies across genes. The analysis shows that common variant and rare variant studies require similarly large sample collections. In particular, a well-powered RVAS should involve discovery sets with at least 25,000 cases, together with a substantial replication set. PMID:24443550
Rudkin, Adam K.; Dubowsky, Andrew; Casson, Robert J.; Muecke, James S.; Mancel, Erica; Whiting, Mark; Mills, Richard A.D.; Burdon, Kathryn P.; Craig, Jamie E.
2018-01-01
Purpose Aniridia is a congenital disorder caused by variants in the PAX6 gene. In this study, we assessed the involvement of PAX6 in patients with aniridia from Australasia and Southeast Asia. Methods Twenty-nine individuals with aniridia from 18 families originating from Australia, New Caledonia, Cambodia, Sri Lanka, and Bhutan were included. The PAX6 gene was investigated for sequence variants and analyzed for deletions with multiplex ligation-dependent probe amplification. Results We identified 11 sequence variants and six chromosomal deletions, including one in mosaic. Four deleterious sequence variants were novel: p.(Pro81HisfsTer12), p.(Gln274Ter), p.(Ile29Thr), and p.(Met1?). Ocular complications were associated with a progressive loss of visual function as shown by a visual acuity ≤ 1.00 logMAR reported in 65% of eyes. The prevalence of keratopathy was statistically significantly higher in the Australasian cohort (78.6%) compared with the Southeast Asian cohort (9.1%, p=0.002). Variants resulting in protein truncating codons displayed limited genotype–phenotype correlations compared with other variants. Conclusions PAX6 variants and deletions were identified in 94% of patients with aniridia from Australasia and Southeast Asia. This study is the first report of aniridia and variations in PAX6 in individuals from Cambodia, Sri Lanka, Bhutan, and New Caledonia, and the largest cohort from Australia. PMID:29618921
Inner retinal dystrophy in a patient with biallelic sequence variants in BRAT1.
Oatts, Julius T; Duncan, Jacque L; Hoyt, Creig S; Slavotinek, Anne M; Moore, Anthony T
2017-12-01
Mutations in the BRCA1-associated protein required for the ataxia telangiectasia mutated (ATM) activation-1 (BRAT1) gene cause lethal neonatal rigidity and multifocal seizure syndrome characterized by rigidity and intractable seizures and a milder phenotype with intellectual disability, seizures, nonprogressive cerebellar ataxia or dyspraxia, and cerebellar atrophy. To date, nystagmus, cortical visual impairment, impairment of central vision, optic nerve hypoplasia, and optic atrophy have been described in this condition. This article describes the retinal findings in a patient with biallelic deleterious sequence variants in BRAT1. Case report of a child with biallelic sequence variants in the BRAT1 gene. This patient had developmental delay, microcephaly, nystagmus, and esotropia, and full-field electroretinography (ERG) revealed an inner retinal dystrophy. She was found on exome sequencing to have compound heterozygous sequence variants in the BRAT1 gene: one maternally inherited frameshift variant (c.294dupA, predicting p.Leu99Thrfs*92), which has previously been reported, and one paternally inherited novel missense variant (c.803G>A, p.Arg268His), which is likely to affect protein function. Biallelic sequence variants in BRAT1 have been reported to cause a variety of ocular and systemic manifestations, but to our knowledge, this is the first report of inner retinal dysfunction manifest as selective loss of full-field ERG scotopic and photopic b-wave amplitudes.
Watson, Christopher M.; Crinnion, Laura A.; Gurgel‐Gianetti, Juliana; Harrison, Sally M.; Daly, Catherine; Antanavicuite, Agne; Lascelles, Carolina; Markham, Alexander F.; Pena, Sergio D. J.; Bonthron, David T.
2015-01-01
ABSTRACT Autozygosity mapping is a powerful technique for the identification of rare, autosomal recessive, disease‐causing genes. The ease with which this category of disease gene can be identified has greatly increased through the availability of genome‐wide SNP genotyping microarrays and subsequently of exome sequencing. Although these methods have simplified the generation of experimental data, its analysis, particularly when disparate data types must be integrated, remains time consuming. Moreover, the huge volume of sequence variant data generated from next generation sequencing experiments opens up the possibility of using these data instead of microarray genotype data to identify disease loci. To allow these two types of data to be used in an integrated fashion, we have developed AgileVCFMapper, a program that performs both the mapping of disease loci by SNP genotyping and the analysis of potentially deleterious variants using exome sequence variant data, in a single step. This method does not require microarray SNP genotype data, although analysis with a combination of microarray and exome genotype data enables more precise delineation of disease loci, due to superior marker density and distribution. PMID:26037133
Is There a Role for Genes in Exercise-Induced Atrial Cardiomyopathy?
Fatkin, Diane; Cox, Charles D; Huttner, Inken G; Martinac, Boris
2018-04-09
In endurance athletes, prolonged high intensity exercise participation can have deleterious effects on the myocardium with subsequent structural and electrical remodelling. In a subset of athletes, there is a predilection for atrial involvement and the risk of atrial fibrillation (AF) is increased. The mechanisms underpinning exercise-induced atrial cardiomyopathy have yet to be fully elucidated and the contribution of an individual's genetic makeup is unknown. Some athletes may have rare genetic variants that are sufficient to cause AF irrespective of exercise exposure. In AF-causing variant carriers, the additional haemodynamic stress of exercise on atrial structure and function might accelerate or increase the severity of disease. Variants in genes that lack known links to AF may indirectly promote an arrhythmogenic substrate by affecting threshold levels for exercise-induced myocardial damage and remodelling responses, or by effects on AF-associated co-morbidities, sinus node function, and autonomic nervous system tone. Given the exquisite stress-sensitivity of the atria, mechanosensitive ion channels could plausibly have a key role in mediating exercise effects on atrial structure and function. Knowing an athlete's profile of genetic variants may be useful for AF risk stratification and have implications for clinical management. Pre-participation genetic testing may influence sports choices and facilitate AF prevention. Copyright © 2018 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.
Leon Rodriguez, Daniel A; Acosta-Herrera, Marialbert; Carmona, F David; Dolade, Nuria; Vargas, Sofia; Echeverría, Luis Eduardo; González, Clara Isabel; Martin, Javier
2018-01-01
Tyrosine kinase 2 (TYK2) is a member of the Janus kinases family implicated in the signal transduction of type I interferons and several interleukins. It has been described that genetic mutations within TYK2 lead to multiple deleterious effects in the immune response. In this work, we have analyzed three functional independent variants from the frequency spectrum on the TYK2 gene (common and low-frequency variants) suggested to reduce the function of the gene in mediating cytokine signaling and the susceptibility to infections by Trypanosoma cruzi and/or the development of Chagas cardiomyopathy in the Colombian population. A total of 1,323 individuals from a Colombian endemic region for Chagas disease were enrolled in the study. They were classified as seronegative (n = 445), seropositive asymptomatic (n = 336), and chronic Chagas Cardiomyopathy subjects (n = 542). DNA samples were genotyped using TaqMan probes. Our results showed no statistically significant differences between the allelic frequencies of the three analyzed variants when seropositive and seronegative individuals were compared, therefore these variants were not associated with susceptibility to Chagas disease. Moreover, when Chagas cardiomyopathy patients were compared to asymptomatic patients, no significant associations were found. Previous reports highlighted the association of this gene in immune-related disorders under an autoimmunity context, but not predisposing patients to infectious diseases, which is consistent with our findings. Therefore, according to our results, TYK2 gene variants do not seem to play an important role in Chagas disease susceptibility and/or chronic Chagas cardiomyopathy.
Knowledge Discovery in Variant Databases Using Inductive Logic Programming
Nguyen, Hoan; Luu, Tien-Dao; Poch, Olivier; Thompson, Julie D.
2013-01-01
Understanding the effects of genetic variation on the phenotype of an individual is a major goal of biomedical research, especially for the development of diagnostics and effective therapeutic solutions. In this work, we describe the use of a recent knowledge discovery from database (KDD) approach using inductive logic programming (ILP) to automatically extract knowledge about human monogenic diseases. We extracted background knowledge from MSV3d, a database of all human missense variants mapped to 3D protein structure. In this study, we identified 8,117 mutations in 805 proteins with known three-dimensional structures that were known to be involved in human monogenic disease. Our results help to improve our understanding of the relationships between structural, functional or evolutionary features and deleterious mutations. Our inferred rules can also be applied to predict the impact of any single amino acid replacement on the function of a protein. The interpretable rules are available at http://decrypthon.igbmc.fr/kd4v/. PMID:23589683
Knowledge discovery in variant databases using inductive logic programming.
Nguyen, Hoan; Luu, Tien-Dao; Poch, Olivier; Thompson, Julie D
2013-01-01
Understanding the effects of genetic variation on the phenotype of an individual is a major goal of biomedical research, especially for the development of diagnostics and effective therapeutic solutions. In this work, we describe the use of a recent knowledge discovery from database (KDD) approach using inductive logic programming (ILP) to automatically extract knowledge about human monogenic diseases. We extracted background knowledge from MSV3d, a database of all human missense variants mapped to 3D protein structure. In this study, we identified 8,117 mutations in 805 proteins with known three-dimensional structures that were known to be involved in human monogenic disease. Our results help to improve our understanding of the relationships between structural, functional or evolutionary features and deleterious mutations. Our inferred rules can also be applied to predict the impact of any single amino acid replacement on the function of a protein. The interpretable rules are available at http://decrypthon.igbmc.fr/kd4v/.
Functional Consequences of a Novel Variant of PCSK1
Pickett, Lindsay A.; Yourshaw, Michael; Albornoz, Valeria; Chen, Zijun; Solorzano-Vargas, R. Sergio; Nelson, Stanley F.; Martín, Martín G.; Lindberg, Iris
2013-01-01
Background Common single nucleotide polymorphisms (SNPs) in proprotein convertase subtilisin/kexin type 1 with modest effects on PC1/3 in vitro have been associated with obesity in five genome-wide association studies and with diabetes in one genome-wide association study. We here present a novel SNP and compare its biosynthesis, secretion and catalytic activity to wild-type enzyme and to SNPs that have been linked to obesity. Methodology/Principal Findings A novel PC1/3 variant introducing an Arg to Gln amino acid substitution at residue 80 (within the secondary cleavage site of the prodomain) (rs1799904) was studied. This novel variant was selected for analysis from the 1000 Genomes sequencing project based on its predicted deleterious effect on enzyme function and its comparatively more frequent allele frequency. The actual existence of the R80Q (rs1799904) variant was verified by Sanger sequencing. The effects of this novel variant on the biosynthesis, secretion, and catalytic activity were determined; the previously-described obesity risk SNPs N221D (rs6232), Q665E/S690T (rs6234/rs6235), and the Q665E and S690T SNPs (analyzed separately) were included for comparative purposes. The novel R80Q (rs1799904) variant described in this study resulted in significantly detrimental effects on both the maturation and in vitro catalytic activity of PC1/3. Conclusion/Significance Our findings that this novel R80Q (rs1799904) variant both exhibits adverse effects on PC1/3 activity and is prevalent in the population suggests that further biochemical and genetic analysis to assess its contribution to the risk of metabolic disease within the general population is warranted. PMID:23383060
Functional consequences of a novel variant of PCSK1.
Pickett, Lindsay A; Yourshaw, Michael; Albornoz, Valeria; Chen, Zijun; Solorzano-Vargas, R Sergio; Nelson, Stanley F; Martín, Martín G; Lindberg, Iris
2013-01-01
Common single nucleotide polymorphisms (SNPs) in proprotein convertase subtilisin/kexin type 1 with modest effects on PC1/3 in vitro have been associated with obesity in five genome-wide association studies and with diabetes in one genome-wide association study. We here present a novel SNP and compare its biosynthesis, secretion and catalytic activity to wild-type enzyme and to SNPs that have been linked to obesity. A novel PC1/3 variant introducing an Arg to Gln amino acid substitution at residue 80 (within the secondary cleavage site of the prodomain) (rs1799904) was studied. This novel variant was selected for analysis from the 1000 Genomes sequencing project based on its predicted deleterious effect on enzyme function and its comparatively more frequent allele frequency. The actual existence of the R80Q (rs1799904) variant was verified by Sanger sequencing. The effects of this novel variant on the biosynthesis, secretion, and catalytic activity were determined; the previously-described obesity risk SNPs N221D (rs6232), Q665E/S690T (rs6234/rs6235), and the Q665E and S690T SNPs (analyzed separately) were included for comparative purposes. The novel R80Q (rs1799904) variant described in this study resulted in significantly detrimental effects on both the maturation and in vitro catalytic activity of PC1/3. Our findings that this novel R80Q (rs1799904) variant both exhibits adverse effects on PC1/3 activity and is prevalent in the population suggests that further biochemical and genetic analysis to assess its contribution to the risk of metabolic disease within the general population is warranted.
Cheng, Hanyin; Dharmadhikari, Avinash V; Varland, Sylvia; Ma, Ning; Domingo, Deepti; Kleyner, Robert; Rope, Alan F; Yoon, Margaret; Stray-Pedersen, Asbjørg; Posey, Jennifer E; Crews, Sarah R; Eldomery, Mohammad K; Akdemir, Zeynep Coban; Lewis, Andrea M; Sutton, Vernon R; Rosenfeld, Jill A; Conboy, Erin; Agre, Katherine; Xia, Fan; Walkiewicz, Magdalena; Longoni, Mauro; High, Frances A; van Slegtenhorst, Marjon A; Mancini, Grazia M S; Finnila, Candice R; van Haeringen, Arie; den Hollander, Nicolette; Ruivenkamp, Claudia; Naidu, Sakkubai; Mahida, Sonal; Palmer, Elizabeth E; Murray, Lucinda; Lim, Derek; Jayakar, Parul; Parker, Michael J; Giusto, Stefania; Stracuzzi, Emanuela; Romano, Corrado; Beighley, Jennifer S; Bernier, Raphael A; Küry, Sébastien; Nizon, Mathilde; Corbett, Mark A; Shaw, Marie; Gardner, Alison; Barnett, Christopher; Armstrong, Ruth; Kassahn, Karin S; Van Dijck, Anke; Vandeweyer, Geert; Kleefstra, Tjitske; Schieving, Jolanda; Jongmans, Marjolijn J; de Vries, Bert B A; Pfundt, Rolph; Kerr, Bronwyn; Rojas, Samantha K; Boycott, Kym M; Person, Richard; Willaert, Rebecca; Eichler, Evan E; Kooy, R Frank; Yang, Yaping; Wu, Joseph C; Lupski, James R; Arnesen, Thomas; Cooper, Gregory M; Chung, Wendy K; Gecz, Jozef; Stessman, Holly A F; Meng, Linyan; Lyon, Gholson J
2018-05-03
N-alpha-acetylation is a common co-translational protein modification that is essential for normal cell function in humans. We previously identified the genetic basis of an X-linked infantile lethal Mendelian disorder involving a c.109T>C (p.Ser37Pro) missense variant in NAA10, which encodes the catalytic subunit of the N-terminal acetyltransferase A (NatA) complex. The auxiliary subunit of the NatA complex, NAA15, is the dimeric binding partner for NAA10. Through a genotype-first approach with whole-exome or genome sequencing (WES/WGS) and targeted sequencing analysis, we identified and phenotypically characterized 38 individuals from 33 unrelated families with 25 different de novo or inherited, dominantly acting likely gene disrupting (LGD) variants in NAA15. Clinical features of affected individuals with LGD variants in NAA15 include variable levels of intellectual disability, delayed speech and motor milestones, and autism spectrum disorder. Additionally, mild craniofacial dysmorphology, congenital cardiac anomalies, and seizures are present in some subjects. RNA analysis in cell lines from two individuals showed degradation of the transcripts with LGD variants, probably as a result of nonsense-mediated decay. Functional assays in yeast confirmed a deleterious effect for two of the LGD variants in NAA15. Further supporting a mechanism of haploinsufficiency, individuals with copy-number variant (CNV) deletions involving NAA15 and surrounding genes can present with mild intellectual disability, mild dysmorphic features, motor delays, and decreased growth. We propose that defects in NatA-mediated N-terminal acetylation (NTA) lead to variable levels of neurodevelopmental disorders in humans, supporting the importance of the NatA complex in normal human development. Copyright © 2018 American Society of Human Genetics. All rights reserved.
Germline genetic variants in men with prostate cancer and one or more additional cancers.
Pilié, Patrick G; Johnson, Anna M; Hanson, Kristen L; Dayno, Megan E; Kapron, Ashley L; Stoffel, Elena M; Cooney, Kathleen A
2017-10-15
Prostate cancer has a significant heritable component, and rare deleterious germline variants in certain genes can increase the risk of the disease. The aim of the current study was to describe the prevalence of pathogenic germline variants in cancer-predisposing genes in men with prostate cancer and at least 1 additional primary cancer. Using a multigene panel, the authors sequenced germline DNA from 102 men with prostate cancer and at least 1 additional primary cancer who also met ≥1 of the following criteria: 1) age ≤55 years at the time of diagnosis of the first malignancy; 2) rare tumor type or atypical presentation of a common tumor; and/or 3) ≥3 primary malignancies. Cancer family history and clinicopathologic data were independently reviewed by a clinical genetic counselor to determine whether the patient met established criteria for testing for a hereditary cancer syndrome. Sequencing identified approximately 3500 variants. Nine protein-truncating deleterious mutations were found across 6 genes, including BRCA2, ataxia telangiectasia mutated (ATM), mutL homolog 1 (MLH1), BRCA1 interacting protein C-terminal helicase 1 (BRIP1), partner and localizer of BRCA2 (PALB2), and fibroblast growth factor receptor 3 (FGFR3). Likely pathogenic missense variants were identified in checkpoint kinase 2 (CHEK2) and homeobox protein Hox-B13 (HOXB13). In total, 11 of 102 patients (10.8%) were found to have pathogenic or likely pathogenic mutations in cancer-predisposing genes. The majority of these men (64%) did not meet current clinical criteria for germline testing. Men with prostate cancer and at least 1 additional primary cancer are enriched for harboring a germline deleterious mutation in a cancer-predisposing gene that may impact cancer prognosis and treatment, but the majority do not meet current criteria for clinical genetic testing. Cancer 2017;123:3925-32. © 2017 American Cancer Society. © 2017 American Cancer Society.
Kraus, Cornelia; Hoyer, Juliane; Vasileiou, Georgia; Wunderle, Marius; Lux, Michael P; Fasching, Peter A; Krumbiegel, Mandy; Uebe, Steffen; Reuter, Miriam; Beckmann, Matthias W; Reis, André
2017-01-01
Breast and ovarian cancer (BC/OC) predisposition has been attributed to a number of high- and moderate to low-penetrance susceptibility genes. With the advent of next generation sequencing (NGS) simultaneous testing of these genes has become feasible. In this monocentric study, we report results of panel-based screening of 14 BC/OC susceptibility genes (BRCA1, BRCA2, RAD51C, RAD51D, CHEK2, PALB2, ATM, NBN, CDH1, TP53, MLH1, MSH2, MSH6 and PMS2) in a group of 581 consecutive individuals from a German population with BC and/or OC fulfilling diagnostic criteria for BRCA1 and BRCA2 testing including 179 with a triple-negative tumor. Altogether we identified 106 deleterious mutations in 105 (18%) patients in 10 different genes, including seven different exon deletions. Of these 106 mutations, 16 (15%) were novel and only six were found in BRCA1/2. To further characterize mutations located in or nearby splicing consensus sites we performed RT-PCR analysis which allowed confirmation of pathogenicity in 7 of 9 mutations analyzed. In PALB2, we identified a deleterious variant in six cases. All but one were associated with early onset BC and a positive family history indicating that penetrance for PALB2 mutations is comparable to BRCA2. Overall, extended testing beyond BRCA1/2 identified a deleterious mutation in further 6% of patients. As a downside, 89 variants of uncertain significance were identified highlighting the need for comprehensive variant databases. In conclusion, panel testing yields more accurate information on genetic cancer risk than assessing BRCA1/2 alone and wide-spread testing will help improve penetrance assessment of variants in these risk genes. © 2016 UICC.
Loss of delta catenin function in severe autism
Turner, Tychele N.; Sharma, Kamal; Oh, Edwin C.; Liu, Yangfan P.; Collins, Ryan L.; Sosa, Maria X.; Auer, Dallas R.; Brand, Harrison; Sanders, Stephan J.; Moreno-De-Luca, Daniel; Pihur, Vasyl; Plona, Teri; Pike, Kristen; Soppet, Daniel R.; Smith, Michael W.; Cheung, Sau Wai; Martin, Christa Lese; State, Matthew W.; Talkowski, Michael E.; Cook, Edwin; Huganir, Richard; Katsanis, Nicholas; Chakravarti, Aravinda
2015-01-01
SUMMARY Autism is a multifactorial neurodevelopmental disorder affecting more males than females; consequently, under a multifactorial genetic hypothesis, females are affected only when they cross a higher biological threshold. We hypothesize that deleterious variants at conserved residues are enriched in severely affected patients arising from FEMFs (female-enriched multiplex families) with severe disease, enhancing the detection of key autism genes in modest numbers of cases. We show the utility of this strategy by identifying missense and dosage sequence variants in the gene encoding the adhesive junction-associated delta catenin protein (CTNND2) in FEMFs and demonstrating their loss-of-function effect by functional analyses in zebrafish embryos and cultured hippocampal neurons from wildtype and Ctnnd2 null mouse embryos. Finally, through gene expression and network analyses, we highlight a critical role for CTNND2 in neuronal development and an intimate connection to chromatin biology. Our data contribute to the understanding of the genetic architecture of autism and suggest that genetic analyses of phenotypic extremes, such as FEMFs, are of innate value in multifactorial disorders. PMID:25807484
Camats, Núria; Fernández-Cancio, Mónica; Audí, Laura; Schaller, André; Flück, Christa E
2018-06-11
SF-1/NR5A1 is a transcriptional regulator of adrenal and gonadal development. NR5A1 disease-causing variants cause disorders of sex development (DSD) and adrenal failure, but most affected individuals show a broad DSD/reproductive phenotype only. Most NR5A1 variants show in vitro pathogenic effects, but not when tested in heterozygote state together with wild-type NR5A1 as usually seen in patients. Thus, the genotype-phenotype correlation for NR5A1 variants remains an unsolved question. We analyzed heterozygous 46,XY SF-1/NR5A1 patients by whole exome sequencing and used an algorithm for data analysis based on selected project-specific DSD- and SF-1-related genes. The variants detected were evaluated for their significance in literature, databases and checked in silico using webtools. We identified 19 potentially deleterious variants (one to seven per patient) in 18 genes in four 46,XY DSD subjects carrying heterozygous NR5A1 disease-causing variants. We constructed a scheme of all these hits within the landscape of currently known genes involved in male sex determination and differentiation. Our results suggest that the broad phenotype in these heterozygous NR5A1 46,XY DSD subjects may well be explained by an oligogenic mode of inheritance, in which multiple hits, individually non-deleterious, may contribute to a DSD phenotype unique to each heterozygous SF-1/NR5A1 individual.
Brezovský, Jan
2016-01-01
An important message taken from human genome sequencing projects is that the human population exhibits approximately 99.9% genetic similarity. Variations in the remaining parts of the genome determine our identity, trace our history and reveal our heritage. The precise delineation of phenotypically causal variants plays a key role in providing accurate personalized diagnosis, prognosis, and treatment of inherited diseases. Several computational methods for achieving such delineation have been reported recently. However, their ability to pinpoint potentially deleterious variants is limited by the fact that their mechanisms of prediction do not account for the existence of different categories of variants. Consequently, their output is biased towards the variant categories that are most strongly represented in the variant databases. Moreover, most such methods provide numeric scores but not binary predictions of the deleteriousness of variants or confidence scores that would be more easily understood by users. We have constructed three datasets covering different types of disease-related variants, which were divided across five categories: (i) regulatory, (ii) splicing, (iii) missense, (iv) synonymous, and (v) nonsense variants. These datasets were used to develop category-optimal decision thresholds and to evaluate six tools for variant prioritization: CADD, DANN, FATHMM, FitCons, FunSeq2 and GWAVA. This evaluation revealed some important advantages of the category-based approach. The results obtained with the five best-performing tools were then combined into a consensus score. Additional comparative analyses showed that in the case of missense variations, protein-based predictors perform better than DNA sequence-based predictors. A user-friendly web interface was developed that provides easy access to the five tools’ predictions, and their consensus scores, in a user-understandable format tailored to the specific features of different categories of variations. To enable comprehensive evaluation of variants, the predictions are complemented with annotations from eight databases. The web server is freely available to the community at http://loschmidt.chemi.muni.cz/predictsnp2. PMID:27224906
Bendl, Jaroslav; Musil, Miloš; Štourač, Jan; Zendulka, Jaroslav; Damborský, Jiří; Brezovský, Jan
2016-05-01
An important message taken from human genome sequencing projects is that the human population exhibits approximately 99.9% genetic similarity. Variations in the remaining parts of the genome determine our identity, trace our history and reveal our heritage. The precise delineation of phenotypically causal variants plays a key role in providing accurate personalized diagnosis, prognosis, and treatment of inherited diseases. Several computational methods for achieving such delineation have been reported recently. However, their ability to pinpoint potentially deleterious variants is limited by the fact that their mechanisms of prediction do not account for the existence of different categories of variants. Consequently, their output is biased towards the variant categories that are most strongly represented in the variant databases. Moreover, most such methods provide numeric scores but not binary predictions of the deleteriousness of variants or confidence scores that would be more easily understood by users. We have constructed three datasets covering different types of disease-related variants, which were divided across five categories: (i) regulatory, (ii) splicing, (iii) missense, (iv) synonymous, and (v) nonsense variants. These datasets were used to develop category-optimal decision thresholds and to evaluate six tools for variant prioritization: CADD, DANN, FATHMM, FitCons, FunSeq2 and GWAVA. This evaluation revealed some important advantages of the category-based approach. The results obtained with the five best-performing tools were then combined into a consensus score. Additional comparative analyses showed that in the case of missense variations, protein-based predictors perform better than DNA sequence-based predictors. A user-friendly web interface was developed that provides easy access to the five tools' predictions, and their consensus scores, in a user-understandable format tailored to the specific features of different categories of variations. To enable comprehensive evaluation of variants, the predictions are complemented with annotations from eight databases. The web server is freely available to the community at http://loschmidt.chemi.muni.cz/predictsnp2.
de Moraes, Augusto César Ferreira; Fernández-Alvira, Juan Miguel; Carvalho, Heráclito Barbosa; Meirhaeghe, Aline; Dallongeville, Jean; Kafatos, Anthony; Marcos, Ascensión; Molnar, Dénes; Manios, Yannis; Ruiz, Jonatan R; Labayen, Idoia; Widhalm, Kurt; Breidenassel, Christina; Gonzalez-Gróss, Marcela; Moreno, Luis A
2014-11-01
We hypothesized that physical activity and sedentary behavior could modify the associations between known genetic variants blood pressure-associated genes in European adolescents. Meeting current physical activity recommendations (≥ 60 minutes/day) was able attenuate the deleterious effect of the NOS3 rs3918227 polymorphism on systolic blood pressure in European adolescents. Copyright © 2014 Elsevier Inc. All rights reserved.
MutaBind estimates and interprets the effects of sequence variants on protein-protein interactions.
Li, Minghui; Simonetti, Franco L; Goncearenco, Alexander; Panchenko, Anna R
2016-07-08
Proteins engage in highly selective interactions with their macromolecular partners. Sequence variants that alter protein binding affinity may cause significant perturbations or complete abolishment of function, potentially leading to diseases. There exists a persistent need to develop a mechanistic understanding of impacts of variants on proteins. To address this need we introduce a new computational method MutaBind to evaluate the effects of sequence variants and disease mutations on protein interactions and calculate the quantitative changes in binding affinity. The MutaBind method uses molecular mechanics force fields, statistical potentials and fast side-chain optimization algorithms. The MutaBind server maps mutations on a structural protein complex, calculates the associated changes in binding affinity, determines the deleterious effect of a mutation, estimates the confidence of this prediction and produces a mutant structural model for download. MutaBind can be applied to a large number of problems, including determination of potential driver mutations in cancer and other diseases, elucidation of the effects of sequence variants on protein fitness in evolution and protein design. MutaBind is available at http://www.ncbi.nlm.nih.gov/projects/mutabind/. Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
An Exome Sequencing Study to Assess the Role of Rare Genetic Variation in Pulmonary Fibrosis.
Petrovski, Slavé; Todd, Jamie L; Durheim, Michael T; Wang, Quanli; Chien, Jason W; Kelly, Fran L; Frankel, Courtney; Mebane, Caroline M; Ren, Zhong; Bridgers, Joshua; Urban, Thomas J; Malone, Colin D; Finlen Copeland, Ashley; Brinkley, Christie; Allen, Andrew S; O'Riordan, Thomas; McHutchison, John G; Palmer, Scott M; Goldstein, David B
2017-07-01
Idiopathic pulmonary fibrosis (IPF) is an increasingly recognized, often fatal lung disease of unknown etiology. The aim of this study was to use whole-exome sequencing to improve understanding of the genetic architecture of pulmonary fibrosis. We performed a case-control exome-wide collapsing analysis including 262 unrelated individuals with pulmonary fibrosis clinically classified as IPF according to American Thoracic Society/European Respiratory Society/Japanese Respiratory Society/Latin American Thoracic Association guidelines (81.3%), usual interstitial pneumonia secondary to autoimmune conditions (11.5%), or fibrosing nonspecific interstitial pneumonia (7.2%). The majority (87%) of case subjects reported no family history of pulmonary fibrosis. We searched 18,668 protein-coding genes for an excess of rare deleterious genetic variation using whole-exome sequence data from 262 case subjects with pulmonary fibrosis and 4,141 control subjects drawn from among a set of individuals of European ancestry. Comparing genetic variation across 18,668 protein-coding genes, we found a study-wide significant (P < 4.5 × 10 -7 ) case enrichment of qualifying variants in TERT, RTEL1, and PARN. A model qualifying ultrarare, deleterious, nonsynonymous variants implicated TERT and RTEL1, and a model specifically qualifying loss-of-function variants implicated RTEL1 and PARN. A subanalysis of 186 case subjects with sporadic IPF confirmed TERT, RTEL1, and PARN as study-wide significant contributors to sporadic IPF. Collectively, 11.3% of case subjects with sporadic IPF carried a qualifying variant in one of these three genes compared with the 0.3% carrier rate observed among control subjects (odds ratio, 47.7; 95% confidence interval, 21.5-111.6; P = 5.5 × 10 -22 ). We identified TERT, RTEL1, and PARN-three telomere-related genes previously implicated in familial pulmonary fibrosis-as significant contributors to sporadic IPF. These results support the idea that telomere dysfunction is involved in IPF pathogenesis.
Widespread Site-Dependent Buffering of Human Regulatory Polymorphism
Kutyavin, Tanya; Stamatoyannopoulos, John A.
2012-01-01
The average individual is expected to harbor thousands of variants within non-coding genomic regions involved in gene regulation. However, it is currently not possible to interpret reliably the functional consequences of genetic variation within any given transcription factor recognition sequence. To address this, we comprehensively analyzed heritable genome-wide binding patterns of a major sequence-specific regulator (CTCF) in relation to genetic variability in binding site sequences across a multi-generational pedigree. We localized and quantified CTCF occupancy by ChIP-seq in 12 related and unrelated individuals spanning three generations, followed by comprehensive targeted resequencing of the entire CTCF–binding landscape across all individuals. We identified hundreds of variants with reproducible quantitative effects on CTCF occupancy (both positive and negative). While these effects paralleled protein–DNA recognition energetics when averaged, they were extensively buffered by striking local context dependencies. In the significant majority of cases buffering was complete, resulting in silent variants spanning every position within the DNA recognition interface irrespective of level of binding energy or evolutionary constraint. The prevalence of complex partial or complete buffering effects severely constrained the ability to predict reliably the impact of variation within any given binding site instance. Surprisingly, 40% of variants that increased CTCF occupancy occurred at positions of human–chimp divergence, challenging the expectation that the vast majority of functional regulatory variants should be deleterious. Our results suggest that, even in the presence of “perfect” genetic information afforded by resequencing and parallel studies in multiple related individuals, genomic site-specific prediction of the consequences of individual variation in regulatory DNA will require systematic coupling with empirical functional genomic measurements. PMID:22457641
Gao, Li; Bin, Lianghua; Rafaels, Nicholas M; Huang, Lili; Potee, Joseph; Ruczinski, Ingo; Beaty, Terri H; Paller, Amy S; Schneider, Lynda C; Gallo, Rich; Hanifin, Jon M; Beck, Lisa A; Geha, Raif S; Mathias, Rasika A; Barnes, Kathleen C; Leung, Donald Y M
2015-12-01
A subset of atopic dermatitis is associated with increased susceptibility to eczema herpeticum (ADEH+). We previously reported that common single nucleotide polymorphisms (SNPs) in the IFN-γ (IFNG) and IFN-γ receptor 1 (IFNGR1) genes were associated with the ADEH+ phenotype. We sought to interrogate the role of rare variants in interferon pathway genes for the risk of ADEH+. We performed targeted sequencing of interferon pathway genes (IFNG, IFNGR1, IFNAR1, and IL12RB1) in 228 European American patients with AD selected according to their eczema herpeticum status, and severity was measured by using the Eczema Area and Severity Index. Replication genotyping was performed in independent samples of 219 European American and 333 African American subjects. Functional investigation of loss-of-function variants was conducted by using site-directed mutagenesis. We identified 494 single nucleotide variants encompassing 105 kb of sequence, including 145 common, 349 (70.6%) rare (minor allele frequency <5%), and 86 (17.4%) novel variants, of which 2.8% were coding synonymous, 93.3% were noncoding (64.6% intronic), and 3.8% were missense. We identified 6 rare IFNGR1 missense variants, including 3 damaging variants (Val14Met [V14M], Val61Ile, and Tyr397Cys [Y397C]) conferring a higher risk for ADEH+ (P = .031). Variants V14M and Y397C were confirmed to be deleterious, leading to partial IFNGR1 deficiency. Seven common IFNGR1 SNPs, along with common protective haplotypes (2-7 SNPs), conferred a reduced risk of ADEH+ (P = .015-.002 and P = .0015-.0004, respectively), and both SNP and haplotype associations were replicated in an independent African American sample (P = .004-.0001 and P = .001-.0001, respectively). Our results provide evidence that both genetic variants in the gene encoding IFNGR1 are implicated in susceptibility to the ADEH+ phenotype. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
GAVIN: Gene-Aware Variant INterpretation for medical sequencing.
van der Velde, K Joeri; de Boer, Eddy N; van Diemen, Cleo C; Sikkema-Raddatz, Birgit; Abbott, Kristin M; Knopperts, Alain; Franke, Lude; Sijmons, Rolf H; de Koning, Tom J; Wijmenga, Cisca; Sinke, Richard J; Swertz, Morris A
2017-01-16
We present Gene-Aware Variant INterpretation (GAVIN), a new method that accurately classifies variants for clinical diagnostic purposes. Classifications are based on gene-specific calibrations of allele frequencies from the ExAC database, likely variant impact using SnpEff, and estimated deleteriousness based on CADD scores for >3000 genes. In a benchmark on 18 clinical gene sets, we achieve a sensitivity of 91.4% and a specificity of 76.9%. This accuracy is unmatched by 12 other tools. We provide GAVIN as an online MOLGENIS service to annotate VCF files and as an open source executable for use in bioinformatic pipelines. It can be found at http://molgenis.org/gavin .
Kim, Bernard Y.; Huber, Christian D.; Lohmueller, Kirk E.
2017-01-01
The distribution of fitness effects (DFE) has considerable importance in population genetics. To date, estimates of the DFE come from studies using a small number of individuals. Thus, estimates of the proportion of moderately to strongly deleterious new mutations may be unreliable because such variants are unlikely to be segregating in the data. Additionally, the true functional form of the DFE is unknown, and estimates of the DFE differ significantly between studies. Here we present a flexible and computationally tractable method, called Fit∂a∂i, to estimate the DFE of new mutations using the site frequency spectrum from a large number of individuals. We apply our approach to the frequency spectrum of 1300 Europeans from the Exome Sequencing Project ESP6400 data set, 1298 Danes from the LuCamp data set, and 432 Europeans from the 1000 Genomes Project to estimate the DFE of deleterious nonsynonymous mutations. We infer significantly fewer (0.38–0.84 fold) strongly deleterious mutations with selection coefficient |s| > 0.01 and more (1.24–1.43 fold) weakly deleterious mutations with selection coefficient |s| < 0.001 compared to previous estimates. Furthermore, a DFE that is a mixture distribution of a point mass at neutrality plus a gamma distribution fits better than a gamma distribution in two of the three data sets. Our results suggest that nearly neutral forces play a larger role in human evolution than previously thought. PMID:28249985
Toncheva, D.; Mihailova-Hristova, M.; Vazharova, R.; Staneva, R.; Karachanak, S.; Dimitrov, P.; Simeonov, V.; Ivanov, S.; Balabanski, L.; Serbezov, D.; Malinov, M.; Stefanovic, V.; Čukuranović, R.; Polenakovic, M.; Jankovic-Velickovic, L.; Djordjevic, V.; Jevtovic-Stoimenov, T.; Plaseska-Karanfilska, D.; Galabov, A.; Djonov, V.; Dimova, I.
2014-01-01
Balkan endemic nephropathy (BEN) is a familial chronic tubulointerstitial disease with insidious onset and slow progression leading to terminal renal failure. The results of molecular biological investigations propose that BEN is a multifactorial disease with genetic predisposition to environmental risk agents. Exome sequencing of 22 000 genes with Illumina Nextera Exome Enrichment Kit was performed on 22 DNA samples (11 Bulgarian patients and 11 Serbian patients). Software analysis was performed via NextGene, Provean, and PolyPhen. The frequency of all annotated genetic variants with deleterious/damaging effect was compared with those of European populations. Then we focused on nonannotated variants (with no data available about them and not found in healthy Bulgarian controls). There is no statistically significant difference between annotated variants in BEN patients and European populations. From nonannotated variants with more than 40% frequency in both patients' groups, we nominated 3 genes with possible deleterious/damaging variants—CELA1, HSPG2, and KCNK5. Mutant genes (CELA1, HSPG2, and KCNK5) in BEN patients encode proteins involved in basement membrane/extracellular matrix and vascular tone, tightly connected to process of angiogenesis. We suggest that an abnormal process of angiogenesis plays a key role in the molecular pathogenesis of BEN. PMID:24949484
Germline BRCA1/BRCA2 mutations among high risk breast cancer patients in Jordan.
Abdel-Razeq, Hikmat; Al-Omari, Amal; Zahran, Farah; Arun, Banu
2018-02-06
Breast cancer is the most common malignancy and the leading cause of cancer-related deaths among Jordanian women. With a median age of 50 years at diagnosis, a higher prevalence of hereditary breast cancer may be expected. The objective of this pilot study is to evaluate, for the first time, the contribution of germline mutations in BRCA1/2 to breast cancer among Jordanian patients. Jordanian breast cancer women with a selected high risk profile were invited to participate. Peripheral blood samples were obtained for DNA extraction. A detailed 3-generation family history was also collected. BRCA sequencing was performed at a reference laboratory. Mutations were classified as deleterious, suspected deleterious, variant of uncertain significance or favor polymorphisms. Patients' medical records were reviewed for extraction of clinical and tumor pathology data. One hundred patients were enrolled to the study. Median age was 40 (22-75) years. In total, 20 patients had deleterious and 7 suspected deleterious mutations in BRCA1 or BRCA2 genes. Seven variants of uncertain significance were also detected. After excluding patients tested subsequent to the index case in their families, highest mutation rates were observed among triple negatives (9/16, 56.3%) especially among those with positive family history of breast and/or ovarian cancer (9/13, 69.2%), patients with bilateral or second primary breast cancer (10/15, 66.7%) and those with family history of male breast cancer (2/5, 40.0%). BRCA1/2 mutations are not uncommon among selected Jordanian females with breast cancer. The contribution of these findings to much younger age at diagnosis is debatable. Although small, our selected patient cohort shows an important incidence of deleterious and suspected deleterious BRCA1/2 mutations suggesting that genetic testing should be offered to patients with certain high risk features.
Medical Sequencing at the extremes of Human Body Mass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahituv, Nadav; Kavaslar, Nihan; Schackwitz, Wendy
2006-09-01
Body weight is a quantitative trait with significantheritability in humans. To identify potential genetic contributors tothis phenotype, we resequenced the coding exons and splice junctions of58 genes in 379 obese and 378 lean individuals. Our 96Mb survey included21 genes associated with monogenic forms of obesity in humans or mice, aswell as 37 genes that function in body weight-related pathways. We foundthat the monogenic obesity-associated gene group was enriched for rarenonsynonymous variants unique to the obese (n=46) versus lean (n=26)populations. Computational analysis further predicted a significantlygreater fraction of deleterious variants within the obese cohort.Consistent with the complex inheritance of body weight,more » we did notobserve obvious familial segregation in the majority of the 28 availablekindreds. Taken together, these data suggest that multiple rare alleleswith variable penetrance contribute to obesity in the population andprovide a deep medical sequencing based approach to detectthem.« less
Kim, Daniel Seung; Burt, Amber A; Ranchalis, Jane E; Wilmot, Beth; Smith, Joshua D; Patterson, Karynne E; Coe, Bradley P; Li, Yatong K; Bamshad, Michael J; Nikolas, Molly; Eichler, Evan E; Swanson, James M; Nigg, Joel T; Nickerson, Deborah A; Jarvik, Gail P
2017-06-01
Attention-Deficit Hyperactivity Disorder (ADHD) has high heritability; however, studies of common variation account for <5% of ADHD variance. Using data from affected participants without a family history of ADHD, we sought to identify de novo variants that could account for sporadic ADHD. Considering a total of 128 families, two analyses were conducted in parallel: first, in 11 unaffected parent/affected proband trios (or quads with the addition of an unaffected sibling) we completed exome sequencing. Six de novo missense variants at highly conserved bases were identified and validated from four of the 11 families: the brain-expressed genes TBC1D9, DAGLA, QARS, CSMD2, TRPM2, and WDR83. Separately, in 117 unrelated probands with sporadic ADHD, we sequenced a panel of 26 genes implicated in intellectual disability (ID) and autism spectrum disorder (ASD) to evaluate whether variation in ASD/ID-associated genes were also present in participants with ADHD. Only one putative deleterious variant (Gln600STOP) in CHD1L was identified; this was found in a single proband. Notably, no other nonsense, splice, frameshift, or highly conserved missense variants in the 26 gene panel were identified and validated. These data suggest that de novo variant analysis in families with independently adjudicated sporadic ADHD diagnosis can identify novel genes implicated in ADHD pathogenesis. Moreover, that only one of the 128 cases (0.8%, 11 exome, and 117 MIP sequenced participants) had putative deleterious variants within our data in 26 genes related to ID and ASD suggests significant independence in the genetic pathogenesis of ADHD as compared to ASD and ID phenotypes. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
The genomic landscape shaped by selection on transposable elements across 18 mouse strains.
Nellåker, Christoffer; Keane, Thomas M; Yalcin, Binnaz; Wong, Kim; Agam, Avigail; Belgard, T Grant; Flint, Jonathan; Adams, David J; Frankel, Wayne N; Ponting, Chris P
2012-06-15
Transposable element (TE)-derived sequence dominates the landscape of mammalian genomes and can modulate gene function by dysregulating transcription and translation. Our current knowledge of TEs in laboratory mouse strains is limited primarily to those present in the C57BL/6J reference genome, with most mouse TEs being drawn from three distinct classes, namely short interspersed nuclear elements (SINEs), long interspersed nuclear elements (LINEs) and the endogenous retrovirus (ERV) superfamily. Despite their high prevalence, the different genomic and gene properties controlling whether TEs are preferentially purged from, or are retained by, genetic drift or positive selection in mammalian genomes remain poorly defined. Using whole genome sequencing data from 13 classical laboratory and 4 wild-derived mouse inbred strains, we developed a comprehensive catalogue of 103,798 polymorphic TE variants. We employ this extensive data set to characterize TE variants across the Mus lineage, and to infer neutral and selective processes that have acted over 2 million years. Our results indicate that the majority of TE variants are introduced though the male germline and that only a minority of TE variants exert detectable changes in gene expression. However, among genes with differential expression across the strains there are twice as many TE variants identified as being putative causal variants as expected. Most TE variants that cause gene expression changes appear to be purged rapidly by purifying selection. Our findings demonstrate that past TE insertions have often been highly deleterious, and help to prioritize TE variants according to their likely contribution to gene expression or phenotype variation.
2014-01-01
Introduction The majority of the genetic variance of systemic lupus erythematosus (SLE) remains unexplained by the common disease-common variant hypothesis. Rare variants, which are not detectable by genome-wide association studies because of their low frequencies, are predicted to explain part of this ”missing heritability.” However, recent studies identifying rare variants within known disease-susceptibility loci have failed to show genetic associations because of their extremely low frequencies, leading to the questioning of the contribution of rare variants to disease susceptibility. A common (minor allele frequency = 17.4% in cases) nonsynonymous coding variant rs1143679 (R77H) in ITGAM (CD11b), which forms half of the heterodimeric integrin receptor, complement receptor 3 (CR3), is robustly associated with SLE and has been shown to impair CR3-mediated phagocytosis. Methods We resequenced ITGAM in 73 SLE cases and identified two previously unidentified, case-specific nonsynonymous variants, F941V and G1145S. Both variants were genotyped in 2,107 and 949 additional SLE cases, respectively, to estimate their frequencies in a disease population. An in vitro model was used to assess the impact of F941V and G1145S, together with two nonsynonymous ITGAM polymorphisms, A858V (rs1143683) and M441T (rs11861251), on CR3-mediated phagocytosis. A paired two-tailed t test was used to compare the phagocytic capabilities of each variant with that of wild-type CR3. Results Both rare variants, F941V and G1145S, significantly impair CR3-mediated phagocytosis in an in vitro model (61% reduction, P = 0.006; 26% reduction, P = 0.0232). However, neither of the common variants, M441T and A858V, had an effect on phagocytosis. Neither rare variant was observed again in the genotyping of additional SLE cases, suggesting that there frequencies are extremely low. Conclusions Our results add further evidence to the functional importance of ITGAM in SLE pathogenesis through impaired phagocytosis. Additionally, this study provides a new example of the identification of rare variants in common-allele-associated loci, which, because of their extremely low frequencies, are not statistically associated. However, the demonstration of their functional effects adds support to their contribution to disease risk, and questions the current notion of dismissing the contribution of very rare variants on purely statistical analyses. PMID:24886912
Current perspectives on CHEK2 mutations in breast cancer
Apostolou, Panagiotis; Papasotiriou, Ioannis
2017-01-01
Checkpoint kinase 2 (CHEK2) is a serine/threonine kinase which is activated upon DNA damage and is implicated in pathways that govern DNA repair, cell cycle arrest or apoptosis in response to the initial damage. Loss of kinase function has been correlated with different types of cancer, mainly breast cancer. CHEK2 functionality is affected by different missense or deleterious mutations. CHEK2*1100delC and I157T are most studied in populations all over the world. Although these variants have been identified in patients with breast cancer, their frequency raises doubts about their importance as risk factors. The present article reviews the recent advances in research on CHEK2 mutations, focusing on breast cancer, based on the latest experimental data. PMID:28553140
Current perspectives on CHEK2 mutations in breast cancer.
Apostolou, Panagiotis; Papasotiriou, Ioannis
2017-01-01
Checkpoint kinase 2 (CHEK2) is a serine/threonine kinase which is activated upon DNA damage and is implicated in pathways that govern DNA repair, cell cycle arrest or apoptosis in response to the initial damage. Loss of kinase function has been correlated with different types of cancer, mainly breast cancer. CHEK2 functionality is affected by different missense or deleterious mutations. CHEK2*1100delC and I157T are most studied in populations all over the world. Although these variants have been identified in patients with breast cancer, their frequency raises doubts about their importance as risk factors. The present article reviews the recent advances in research on CHEK2 mutations, focusing on breast cancer, based on the latest experimental data.
Mutations in TRAPPC12 Manifest in Progressive Childhood Encephalopathy and Golgi Dysfunction.
Milev, Miroslav P; Grout, Megan E; Saint-Dic, Djenann; Cheng, Yong-Han Hank; Glass, Ian A; Hale, Christopher J; Hanna, David S; Dorschner, Michael O; Prematilake, Keshika; Shaag, Avraham; Elpeleg, Orly; Sacher, Michael; Doherty, Dan; Edvardson, Simon
2017-08-03
Progressive childhood encephalopathy is an etiologically heterogeneous condition characterized by progressive central nervous system dysfunction in association with a broad range of morbidity and mortality. The causes of encephalopathy can be either non-genetic or genetic. Identifying the genetic causes and dissecting the underlying mechanisms are critical to understanding brain development and improving treatments. Here, we report that variants in TRAPPC12 result in progressive childhood encephalopathy. Three individuals from two unrelated families have either a homozygous deleterious variant (c.145delG [p.Glu49Argfs ∗ 14]) or compound-heterozygous variants (c.360dupC [p.Glu121Argfs ∗ 7] and c.1880C>T [p. Ala627Val]). The clinical phenotypes of the three individuals are strikingly similar: severe disability, microcephaly, hearing loss, spasticity, and characteristic brain imaging findings. Fibroblasts derived from all three individuals showed a fragmented Golgi that could be rescued by expression of wild-type TRAPPC12. Protein transport from the endoplasmic reticulum to and through the Golgi was delayed. TRAPPC12 is a member of the TRAPP protein complex, which functions in membrane trafficking. Variants in several other genes encoding members of the TRAPP complex have been associated with overlapping clinical presentations, indicating shared and distinct functions for each complex member. Detailed understanding of the TRAPP-opathies will illuminate the role of membrane protein transport in human disease. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Koelle, Katia; Rasmussen, David A
2015-01-01
Recent phylogenetic analyses indicate that RNA virus populations carry a significant deleterious mutation load. This mutation load has the potential to shape patterns of adaptive evolution via genetic linkage to beneficial mutations. Here, we examine the effect of deleterious mutations on patterns of influenza A subtype H3N2's antigenic evolution in humans. By first analyzing simple models of influenza that incorporate a mutation load, we show that deleterious mutations, as expected, act to slow the virus's rate of antigenic evolution, while making it more punctuated in nature. These models further predict three distinct molecular pathways by which antigenic cluster transitions occur, and we find phylogenetic patterns consistent with each of these pathways in influenza virus sequences. Simulations of a more complex phylodynamic model further indicate that antigenic mutations act in concert with deleterious mutations to reproduce influenza's spindly hemagglutinin phylogeny, co-circulation of antigenic variants, and high annual attack rates. DOI: http://dx.doi.org/10.7554/eLife.07361.001 PMID:26371556
Whole-exome sequencing for variant discovery in blepharospasm.
Tian, Jun; Vemula, Satya R; Xiao, Jianfeng; Valente, Enza Maria; Defazio, Giovanni; Petrucci, Simona; Gigante, Angelo Fabio; Rudzińska-Bar, Monika; Wszolek, Zbigniew K; Kennelly, Kathleen D; Uitti, Ryan J; van Gerpen, Jay A; Hedera, Peter; Trimble, Elizabeth J; LeDoux, Mark S
2018-05-16
Blepharospasm (BSP) is a type of focal dystonia characterized by involuntary orbicularis oculi spasms that are usually bilateral, synchronous, and symmetrical. Despite strong evidence for genetic contributions to BSP, progress in the field has been constrained by small cohorts, incomplete penetrance, and late age of onset. Although several genetic etiologies for dystonia have been identified through whole-exome sequencing (WES), none of these are characteristically associated with BSP as a singular or predominant manifestation. We performed WES on 31 subjects from 21 independent pedigrees with BSP. The strongest candidate sequence variants derived from in silico analyses were confirmed with bidirectional Sanger sequencing and subjected to cosegregation analysis. Cosegregating deleterious variants (GRCH37/hg19) in CACNA1A (NM_001127222.1: c.7261_7262delinsGT, p.Pro2421Val), REEP4 (NM_025232.3: c.109C>T, p.Arg37Trp), TOR2A (NM_130459.3: c.568C>T, p.Arg190Cys), and ATP2A3 (NM_005173.3: c.1966C>T, p.Arg656Cys) were identified in four independent multigenerational pedigrees. Deleterious variants in HS1BP3 (NM_022460.3: c.94C>A, p.Gly32Cys) and GNA14 (NM_004297.3: c.989_990del, p.Thr330ArgfsTer67) were identified in a father and son with segmental cranio-cervical dystonia first manifest as BSP. Deleterious variants in DNAH17, TRPV4, CAPN11, VPS13C, UNC13B, SPTBN4, MYOD1, and MRPL15 were found in two or more independent pedigrees. To our knowledge, none of these genes have previously been associated with isolated BSP, although other CACNA1A mutations have been associated with both positive and negative motor disorders including ataxia, episodic ataxia, hemiplegic migraine, and dystonia. Our WES datasets provide a platform for future studies of BSP genetics which will demand careful consideration of incomplete penetrance, pleiotropy, population stratification, and oligogenic inheritance patterns. © 2018 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.
Rao, Shitao; Leung, Cherry She Ting; Lam, Macro Hb; Wing, Yun Kwok; Waye, Mary Miu Yee; Tsui, Stephen Kwok Wing
2017-03-01
To date almost 200 genes were found to be associated with major depressive disorder (MDD) or suicide attempts (SA), but very few genes were reported for their molecular mechanisms. This study aimed to find out whether there were common or rare variants in three candidate genes altering the risk for MDD and SA in Chinese. Three candidate genes (HOMER1, SLC6A4 and TEF) were chosen for resequencing analysis and association studies as they were reported to be involved in the etiology of MDD and SA. Following that, bioinformatics analyses were applied on those variants of interest. After resequencing analysis and alignment for the amplicons, a total of 34 common or rare variants were found in the randomly selected 36 Hong Kong Chinese patients with both MDD and SA. Among those, seven variants show potentially deleterious features. Rs60029191 and a rare variant located in regulatory region of the HOMER1 gene may affect the promoter activities through interacting with predicted transcription factors. Two missense mutations existed in the SLC6A4 coding regions were firstly reported in Hong Kong Chinese MDD and SA patients, and both of them could affect the transport efficiency of SLC6A4 to serotonin. Moreover, a common variant rs6354 located in the untranslated region of this gene may affect the expression level or exonic splicing of serotonin transporter. In addition, both of a most studied polymorphism rs738499 and a low-frequency variant in the promoter region of the TEF gene were found to be located in potential transcription factor binding sites, which may let the two variants be able to influence the promoter activities of the gene. This study elucidated the potentially molecular mechanisms of the three candidate genes altering the risk for MDD and SA. These findings implied that not only common variants but rare variants could make contributions to the genetic susceptibility to MDD and SA in Chinese. Copyright © 2016 Elsevier B.V. All rights reserved.
Global and disease-associated genetic variation in the human Fanconi anemia gene family
Rogers, Kai J.; Fu, Wenqing; Akey, Joshua M.; Monnat, Raymond J.
2014-01-01
Fanconi anemia (FA) is a human recessive genetic disease resulting from inactivating mutations in any of 16 FANC (Fanconi) genes. Individuals with FA are at high risk of developmental abnormalities, early bone marrow failure and leukemia. These are followed in the second and subsequent decades by a very high risk of carcinomas of the head and neck and anogenital region, and a small continuing risk of leukemia. In order to characterize base pair-level disease-associated (DA) and population genetic variation in FANC genes and the segregation of this variation in the human population, we identified 2948 unique FANC gene variants including 493 FA DA variants across 57 240 potential base pair variation sites in the 16 FANC genes. We then analyzed the segregation of this variation in the 7578 subjects included in the Exome Sequencing Project (ESP) and the 1000 Genomes Project (1KGP). There was a remarkably high frequency of FA DA variants in ESP/1KGP subjects: at least 1 FA DA variant was identified in 78.5% (5950 of 7578) individuals included in these two studies. Six widely used functional prediction algorithms correctly identified only a third of the known, DA FANC missense variants. We also identified FA DA variants that may be good candidates for different types of mutation-specific therapies. Our results demonstrate the power of direct DNA sequencing to detect, estimate the frequency of and follow the segregation of deleterious genetic variation in human populations. PMID:25104853
Izquierdo-Bouldstridge, Andrea; Bustillos, Alberto; Bonet-Costa, Carles; Aribau-Miralbés, Patricia; García-Gomis, Daniel; Dabad, Marc; Esteve-Codina, Anna; Pascual-Reguant, Laura; Peiró, Sandra; Esteller, Manel; Murtha, Matthew; Millán-Ariño, Lluís
2017-01-01
Abstract Histone H1 has seven variants in human somatic cells and contributes to chromatin compaction and transcriptional regulation. Knock-down (KD) of each H1 variant in breast cancer cells results in altered gene expression and proliferation differently in a variant specific manner with H1.2 and H1.4 KDs being most deleterious. Here we show combined depletion of H1.2 and H1.4 has a strong deleterious effect resulting in a strong interferon (IFN) response, as evidenced by an up-regulation of many IFN-stimulated genes (ISGs) not seen in individual nor in other combinations of H1 variant KDs. Although H1 participates to repress ISG promoters, IFN activation upon H1.2 and H1.4 KD is mainly generated through the activation of the IFN response by cytosolic nucleic acid receptors and IFN synthesis, and without changes in histone modifications at induced ISG promoters. H1.2 and H1.4 co-KD also promotes the appearance of accessibility sites genome wide and, particularly, at satellites and other repeats. The IFN response may be triggered by the expression of noncoding RNA generated from heterochromatic repeats or endogenous retroviruses upon H1 KD. In conclusion, redundant H1-mediated silencing of heterochromatin is important to maintain cell homeostasis and to avoid an unspecific IFN response. PMID:28977426
Whole Exome Sequencing Identifies Rare Protein-Coding Variants in Behçet's Disease.
Ognenovski, Mikhail; Renauer, Paul; Gensterblum, Elizabeth; Kötter, Ina; Xenitidis, Theodoros; Henes, Jörg C; Casali, Bruno; Salvarani, Carlo; Direskeneli, Haner; Kaufman, Kenneth M; Sawalha, Amr H
2016-05-01
Behçet's disease (BD) is a systemic inflammatory disease with an incompletely understood etiology. Despite the identification of multiple common genetic variants associated with BD, rare genetic variants have been less explored. We undertook this study to investigate the role of rare variants in BD by performing whole exome sequencing in BD patients of European descent. Whole exome sequencing was performed in a discovery set comprising 14 German BD patients of European descent. For replication and validation, Sanger sequencing and Sequenom genotyping were performed in the discovery set and in 2 additional independent sets of 49 German BD patients and 129 Italian BD patients of European descent. Genetic association analysis was then performed in BD patients and 503 controls of European descent. Functional effects of associated genetic variants were assessed using bioinformatic approaches. Using whole exome sequencing, we identified 77 rare variants (in 74 genes) with predicted protein-damaging effects in BD. These variants were genotyped in 2 additional patient sets and then analyzed to reveal significant associations with BD at 2 genetic variants detected in all 3 patient sets that remained significant after Bonferroni correction. We detected genetic association between BD and LIMK2 (rs149034313), involved in regulating cytoskeletal reorganization, and between BD and NEIL1 (rs5745908), involved in base excision DNA repair (P = 3.22 × 10(-4) and P = 5.16 × 10(-4) , respectively). The LIMK2 association is a missense variant with predicted protein damage that may influence functional interactions with proteins involved in cytoskeletal regulation by Rho GTPase, inflammation mediated by chemokine and cytokine signaling pathways, T cell activation, and angiogenesis (Bonferroni-corrected P = 5.63 × 10(-14) , P = 7.29 × 10(-6) , P = 1.15 × 10(-5) , and P = 6.40 × 10(-3) , respectively). The genetic association in NEIL1 is a predicted splice donor variant that may introduce a deleterious intron retention and result in a noncoding transcript variant. We used whole exome sequencing in BD for the first time and identified 2 rare putative protein-damaging genetic variants associated with this disease. These genetic variants might influence cytoskeletal regulation and DNA repair mechanisms in BD and might provide further insight into increased leukocyte tissue infiltration and the role of oxidative stress in BD. © 2016, American College of Rheumatology.
Kraeva, Natalia; Sapa, Alexander; Dowling, James J; Riazi, Sheila
2017-07-01
Two potentially fatal syndromes, malignant hyperthermia (MH), an adverse reaction to general anesthesia, and exertional rhabdomyolysis (ER) share some clinical features, including hyperthermia, muscle rigidity, tachycardia, and elevated serum creatine kinase. Some patients with ER have experienced an MH event and/or have been diagnosed as MH susceptible (MHS). In order to assess the relationship between ER and MH further, we conducted a retrospective cohort study summarizing clinical and genetic information on Canadian patients with ER who were diagnosed as MHS. In addition, a systematic literature review was performed to compile further evidence on MH susceptibility and RYR1 and CACNA1S variants associated with rhabdomyolysis. Demographic, clinical, and genetic information was collected on Canadian MHS patients who presented with rhabdomyolysis. In addition, we performed a systematic review of the literature published during 1995-2016 on genetic screening of the RYR1 and CACNA1S genes in patients with ER. Retrospective data on Canadian MHS patients with ER showed that ten out of 17 patients carried RYR1 or CACNA1S variants that were either known MH-causative mutations or potentially pathogenic variants. The systematic review revealed 39 different rare RYR1 variants, including 13 MH-causative/associated mutations and five rare potentially deleterious CACNA1S variants in 78% of patients with ER. Findings from the Canadian patient cohort and the systematic review all signal a potential association between MH susceptibility and ER. The presence of MH-causative mutations and putative deleterious RYR1 variants in ER patients without a history of adverse anesthetic reactions suggests their possible increased risk for MH.
NASA Technical Reports Server (NTRS)
Manning, Robert M.
2004-01-01
The systems engineering description of a wideband communications channel is provided which is based upon the fundamental propagation aspects of the problem. In particular, the well known time variant description of a channel is formulated from the basic multiple scattering processes that occur in a random propagation medium. Such a connection is required if optimal processing methods are to be applied to mitigate the deleterious random fading and multipathing of the channel. An example is given which demonstrates how the effective bandwidth of the channel is diminished due to atmospheric propagation impairments.
Novel and rare functional genomic variants in multiple autoimmune syndrome and Sjögren's syndrome.
Johar, Angad S; Mastronardi, Claudio; Rojas-Villarraga, Adriana; Patel, Hardip R; Chuah, Aaron; Peng, Kaiman; Higgins, Angela; Milburn, Peter; Palmer, Stephanie; Silva-Lara, Maria Fernanda; Velez, Jorge I; Andrews, Dan; Field, Matthew; Huttley, Gavin; Goodnow, Chris; Anaya, Juan-Manuel; Arcos-Burgos, Mauricio
2015-06-02
Multiple autoimmune syndrome (MAS), an extreme phenotype of autoimmune disorders, is a very well suited trait to tackle genomic variants of these conditions. Whole exome sequencing (WES) is a widely used strategy for detection of protein coding and splicing variants associated with inherited diseases. The DNA of eight patients affected by MAS [all of whom presenting with Sjögren's syndrome (SS)], four patients affected by SS alone and 38 unaffected individuals, were subject to WES. Filters to identify novel and rare functional (pathogenic-deleterious) homozygous and/or compound heterozygous variants in these patients and controls were applied. Bioinformatics tools such as the Human gene connectome as well as pathway and network analysis were applied to test overrepresentation of genes harbouring these variants in critical pathways and networks involved in autoimmunity. Eleven novel and rare functional variants were identified in cases but not in controls, harboured in: MACF1, KIAA0754, DUSP12, ICA1, CELA1, LRP1/STAT6, GRIN3B, ANKLE1, TMEM161A, and FKRP. These were subsequently subject to network analysis and their functional relatedness to genes already associated with autoimmunity was evaluated. Notably, the LRP1/STAT6 novel mutation was homozygous in one MAS affected patient and heterozygous in another. LRP1/STAT6 disclosed the strongest plausibility for autoimmunity. LRP1/STAT6 are involved in extracellular and intracellular anti-inflammatory pathways that play key roles in maintaining the homeostasis of the immune system. Further; networks, pathways, and interaction analyses showed that LRP1 is functionally related to the HLA-B and IL10 genes and it has a substantial impact within immunological pathways and/or reaction to bacterial and other foreign proteins (phagocytosis, regulation of phospholipase A2 activity, negative regulation of apoptosis and response to lipopolysaccharides). Further, ICA1 and STAT6 were also closely related to AIRE and IRF5, two very well known autoimmunity genes. Novel and rare exonic mutations that may account for autoimmunity were identified. Among those, the LRP1/STAT6 novel mutation has the strongest case for being categorised as potentially causative of MAS given the presence of intriguing patterns of functional interaction with other major genes shaping autoimmunity.
Predicting Gene Structure Changes Resulting from Genetic Variants via Exon Definition Features.
Majoros, William H; Holt, Carson; Campbell, Michael S; Ware, Doreen; Yandell, Mark; Reddy, Timothy E
2018-04-25
Genetic variation that disrupts gene function by altering gene splicing between individuals can substantially influence traits and disease. In those cases, accurately predicting the effects of genetic variation on splicing can be highly valuable for investigating the mechanisms underlying those traits and diseases. While methods have been developed to generate high quality computational predictions of gene structures in reference genomes, the same methods perform poorly when used to predict the potentially deleterious effects of genetic changes that alter gene splicing between individuals. Underlying that discrepancy in predictive ability are the common assumptions by reference gene finding algorithms that genes are conserved, well-formed, and produce functional proteins. We describe a probabilistic approach for predicting recent changes to gene structure that may or may not conserve function. The model is applicable to both coding and noncoding genes, and can be trained on existing gene annotations without requiring curated examples of aberrant splicing. We apply this model to the problem of predicting altered splicing patterns in the genomes of individual humans, and we demonstrate that performing gene-structure prediction without relying on conserved coding features is feasible. The model predicts an unexpected abundance of variants that create de novo splice sites, an observation supported by both simulations and empirical data from RNA-seq experiments. While these de novo splice variants are commonly misinterpreted by other tools as coding or noncoding variants of little or no effect, we find that in some cases they can have large effects on splicing activity and protein products, and we propose that they may commonly act as cryptic factors in disease. The software is available from geneprediction.org/SGRF. bmajoros@duke.edu. Supplementary information is available at Bioinformatics online.
X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes.
Hu, H; Haas, S A; Chelly, J; Van Esch, H; Raynaud, M; de Brouwer, A P M; Weinert, S; Froyen, G; Frints, S G M; Laumonnier, F; Zemojtel, T; Love, M I; Richard, H; Emde, A-K; Bienek, M; Jensen, C; Hambrock, M; Fischer, U; Langnick, C; Feldkamp, M; Wissink-Lindhout, W; Lebrun, N; Castelnau, L; Rucci, J; Montjean, R; Dorseuil, O; Billuart, P; Stuhlmann, T; Shaw, M; Corbett, M A; Gardner, A; Willis-Owen, S; Tan, C; Friend, K L; Belet, S; van Roozendaal, K E P; Jimenez-Pocquet, M; Moizard, M-P; Ronce, N; Sun, R; O'Keeffe, S; Chenna, R; van Bömmel, A; Göke, J; Hackett, A; Field, M; Christie, L; Boyle, J; Haan, E; Nelson, J; Turner, G; Baynam, G; Gillessen-Kaesbach, G; Müller, U; Steinberger, D; Budny, B; Badura-Stronka, M; Latos-Bieleńska, A; Ousager, L B; Wieacker, P; Rodríguez Criado, G; Bondeson, M-L; Annerén, G; Dufke, A; Cohen, M; Van Maldergem, L; Vincent-Delorme, C; Echenne, B; Simon-Bouy, B; Kleefstra, T; Willemsen, M; Fryns, J-P; Devriendt, K; Ullmann, R; Vingron, M; Wrogemann, K; Wienker, T F; Tzschach, A; van Bokhoven, H; Gecz, J; Jentsch, T J; Chen, W; Ropers, H-H; Kalscheuer, V M
2016-01-01
X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4(-/-) mice or after mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases.
X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes
Hu, H; Haas, S A; Chelly, J; Van Esch, H; Raynaud, M; de Brouwer, A P M; Weinert, S; Froyen, G; Frints, S G M; Laumonnier, F; Zemojtel, T; Love, M I; Richard, H; Emde, A-K; Bienek, M; Jensen, C; Hambrock, M; Fischer, U; Langnick, C; Feldkamp, M; Wissink-Lindhout, W; Lebrun, N; Castelnau, L; Rucci, J; Montjean, R; Dorseuil, O; Billuart, P; Stuhlmann, T; Shaw, M; Corbett, M A; Gardner, A; Willis-Owen, S; Tan, C; Friend, K L; Belet, S; van Roozendaal, K E P; Jimenez-Pocquet, M; Moizard, M-P; Ronce, N; Sun, R; O'Keeffe, S; Chenna, R; van Bömmel, A; Göke, J; Hackett, A; Field, M; Christie, L; Boyle, J; Haan, E; Nelson, J; Turner, G; Baynam, G; Gillessen-Kaesbach, G; Müller, U; Steinberger, D; Budny, B; Badura-Stronka, M; Latos-Bieleńska, A; Ousager, L B; Wieacker, P; Rodríguez Criado, G; Bondeson, M-L; Annerén, G; Dufke, A; Cohen, M; Van Maldergem, L; Vincent-Delorme, C; Echenne, B; Simon-Bouy, B; Kleefstra, T; Willemsen, M; Fryns, J-P; Devriendt, K; Ullmann, R; Vingron, M; Wrogemann, K; Wienker, T F; Tzschach, A; van Bokhoven, H; Gecz, J; Jentsch, T J; Chen, W; Ropers, H-H; Kalscheuer, V M
2016-01-01
X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4−/− mice or after mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases. PMID:25644381
van Leeuwen, Elisabeth M.; Karssen, Lennart C.; Deelen, Joris; Isaacs, Aaron; Medina-Gomez, Carolina; Mbarek, Hamdi; Kanterakis, Alexandros; Trompet, Stella; Postmus, Iris; Verweij, Niek; van Enckevort, David J.; Huffman, Jennifer E.; White, Charles C.; Feitosa, Mary F.; Bartz, Traci M.; Manichaikul, Ani; Joshi, Peter K.; Peloso, Gina M.; Deelen, Patrick; van Dijk, Freerk; Willemsen, Gonneke; de Geus, Eco J.; Milaneschi, Yuri; Penninx, Brenda W.J.H.; Francioli, Laurent C.; Menelaou, Androniki; Pulit, Sara L.; Rivadeneira, Fernando; Hofman, Albert; Oostra, Ben A.; Franco, Oscar H.; Leach, Irene Mateo; Beekman, Marian; de Craen, Anton J.M.; Uh, Hae-Won; Trochet, Holly; Hocking, Lynne J.; Porteous, David J.; Sattar, Naveed; Packard, Chris J.; Buckley, Brendan M.; Brody, Jennifer A.; Bis, Joshua C.; Rotter, Jerome I.; Mychaleckyj, Josyf C.; Campbell, Harry; Duan, Qing; Lange, Leslie A.; Wilson, James F.; Hayward, Caroline; Polasek, Ozren; Vitart, Veronique; Rudan, Igor; Wright, Alan F.; Rich, Stephen S.; Psaty, Bruce M.; Borecki, Ingrid B.; Kearney, Patricia M.; Stott, David J.; Adrienne Cupples, L.; Neerincx, Pieter B.T.; Elbers, Clara C.; Francesco Palamara, Pier; Pe'er, Itsik; Abdellaoui, Abdel; Kloosterman, Wigard P.; van Oven, Mannis; Vermaat, Martijn; Li, Mingkun; Laros, Jeroen F.J.; Stoneking, Mark; de Knijff, Peter; Kayser, Manfred; Veldink, Jan H.; van den Berg, Leonard H.; Byelas, Heorhiy; den Dunnen, Johan T.; Dijkstra, Martijn; Amin, Najaf; Joeri van der Velde, K.; van Setten, Jessica; Kattenberg, Mathijs; van Schaik, Barbera D.C.; Bot, Jan; Nijman, Isaäc J.; Mei, Hailiang; Koval, Vyacheslav; Ye, Kai; Lameijer, Eric-Wubbo; Moed, Matthijs H.; Hehir-Kwa, Jayne Y.; Handsaker, Robert E.; Sunyaev, Shamil R.; Sohail, Mashaal; Hormozdiari, Fereydoun; Marschall, Tobias; Schönhuth, Alexander; Guryev, Victor; Suchiman, H. Eka D.; Wolffenbuttel, Bruce H.; Platteel, Mathieu; Pitts, Steven J.; Potluri, Shobha; Cox, David R.; Li, Qibin; Li, Yingrui; Du, Yuanping; Chen, Ruoyan; Cao, Hongzhi; Li, Ning; Cao, Sujie; Wang, Jun; Bovenberg, Jasper A.; Jukema, J. Wouter; van der Harst, Pim; Sijbrands, Eric J.; Hottenga, Jouke-Jan; Uitterlinden, Andre G.; Swertz, Morris A.; van Ommen, Gert-Jan B.; de Bakker, Paul I.W.; Eline Slagboom, P.; Boomsma, Dorret I.; Wijmenga, Cisca; van Duijn, Cornelia M.
2015-01-01
Variants associated with blood lipid levels may be population-specific. To identify low-frequency variants associated with this phenotype, population-specific reference panels may be used. Here we impute nine large Dutch biobanks (~35,000 samples) with the population-specific reference panel created by the Genome of the Netherlands Project and perform association testing with blood lipid levels. We report the discovery of five novel associations at four loci (P value <6.61 × 10−4), including a rare missense variant in ABCA6 (rs77542162, p.Cys1359Arg, frequency 0.034), which is predicted to be deleterious. The frequency of this ABCA6 variant is 3.65-fold increased in the Dutch and its effect (βLDL-C=0.135, βTC=0.140) is estimated to be very similar to those observed for single variants in well-known lipid genes, such as LDLR. PMID:25751400
Novel genes and mutations in patients affected by recurrent pregnancy loss.
Quintero-Ronderos, Paula; Mercier, Eric; Fukuda, Michiko; González, Ronald; Suárez, Carlos Fernando; Patarroyo, Manuel Alfonso; Vaiman, Daniel; Gris, Jean-Christophe; Laissue, Paul
2017-01-01
Recurrent pregnancy loss is a frequently occurring human infertility-related disease affecting ~1% of women. It has been estimated that the cause remains unexplained in >50% cases which strongly suggests that genetic factors may contribute towards the phenotype. Concerning its molecular aetiology numerous studies have had limited success in identifying the disease's genetic causes. This might have been due to the fact that hundreds of genes are involved in each physiological step necessary for guaranteeing reproductive success in mammals. In such scenario, next generation sequencing provides a potentially interesting tool for research into recurrent pregnancy loss causative mutations. The present study involved whole-exome sequencing and an innovative bioinformatics analysis, for the first time, in 49 unrelated women affected by recurrent pregnancy loss. We identified 27 coding variants (22 genes) potentially related to the phenotype (41% of patients). The affected genes, which were enriched by potentially deleterious sequence variants, belonged to distinct molecular cascades playing key roles in implantation/pregnancy biology. Using a quantum chemical approach method we established that mutations in MMP-10 and FGA proteins led to substantial energetic modifications suggesting an impact on their functions and/or stability. The next generation sequencing and bioinformatics approaches presented here represent an efficient way to find mutations, having potentially moderate/strong functional effects, associated with recurrent pregnancy loss aetiology. We consider that some of these variants (and genes) represent probable future biomarkers for recurrent pregnancy loss.
A Syndromic Neurodevelopmental Disorder Caused by De Novo Variants in EBF3.
Chao, Hsiao-Tuan; Davids, Mariska; Burke, Elizabeth; Pappas, John G; Rosenfeld, Jill A; McCarty, Alexandra J; Davis, Taylor; Wolfe, Lynne; Toro, Camilo; Tifft, Cynthia; Xia, Fan; Stong, Nicholas; Johnson, Travis K; Warr, Coral G; Yamamoto, Shinya; Adams, David R; Markello, Thomas C; Gahl, William A; Bellen, Hugo J; Wangler, Michael F; Malicdan, May Christine V
2017-01-05
Early B cell factor 3 (EBF3) is a member of the highly evolutionarily conserved Collier/Olf/EBF (COE) family of transcription factors. Prior studies on invertebrate and vertebrate animals have shown that EBF3 homologs are essential for survival and that loss-of-function mutations are associated with a range of nervous system developmental defects, including perturbation of neuronal development and migration. Interestingly, aristaless-related homeobox (ARX), a homeobox-containing transcription factor critical for the regulation of nervous system development, transcriptionally represses EBF3 expression. However, human neurodevelopmental disorders related to EBF3 have not been reported. Here, we describe three individuals who are affected by global developmental delay, intellectual disability, and expressive speech disorder and carry de novo variants in EBF3. Associated features seen in these individuals include congenital hypotonia, structural CNS malformations, ataxia, and genitourinary abnormalities. The de novo variants affect a single conserved residue in a zinc finger motif crucial for DNA binding and are deleterious in a fly model. Our findings indicate that mutations in EBF3 cause a genetic neurodevelopmental syndrome and suggest that loss of EBF3 function might mediate a subset of neurologic phenotypes shared by ARX-related disorders, including intellectual disability, abnormal genitalia, and structural CNS malformations. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
2013-01-01
Background SNPs&GO is a method for the prediction of deleterious Single Amino acid Polymorphisms (SAPs) using protein functional annotation. In this work, we present the web server implementation of SNPs&GO (WS-SNPs&GO). The server is based on Support Vector Machines (SVM) and for a given protein, its input comprises: the sequence and/or its three-dimensional structure (when available), a set of target variations and its functional Gene Ontology (GO) terms. The output of the server provides, for each protein variation, the probabilities to be associated to human diseases. Results The server consists of two main components, including updated versions of the sequence-based SNPs&GO (recently scored as one of the best algorithms for predicting deleterious SAPs) and of the structure-based SNPs&GO3d programs. Sequence and structure based algorithms are extensively tested on a large set of annotated variations extracted from the SwissVar database. Selecting a balanced dataset with more than 38,000 SAPs, the sequence-based approach achieves 81% overall accuracy, 0.61 correlation coefficient and an Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve of 0.88. For the subset of ~6,600 variations mapped on protein structures available at the Protein Data Bank (PDB), the structure-based method scores with 84% overall accuracy, 0.68 correlation coefficient, and 0.91 AUC. When tested on a new blind set of variations, the results of the server are 79% and 83% overall accuracy for the sequence-based and structure-based inputs, respectively. Conclusions WS-SNPs&GO is a valuable tool that includes in a unique framework information derived from protein sequence, structure, evolutionary profile, and protein function. WS-SNPs&GO is freely available at http://snps.biofold.org/snps-and-go. PMID:23819482
Kuwaiti population subgroup of nomadic Bedouin ancestry—Whole genome sequence and analysis
John, Sumi Elsa; Thareja, Gaurav; Hebbar, Prashantha; Behbehani, Kazem; Thanaraj, Thangavel Alphonse; Alsmadi, Osama
2014-01-01
Kuwaiti native population comprises three distinct genetic subgroups of Persian, “city-dwelling” Saudi Arabian tribe, and nomadic “tent-dwelling” Bedouin ancestry. Bedouin subgroup is characterized by presence of 17% African ancestry; it owes it origin to nomadic tribes of the deserts of Arabian Peninsula and North Africa. By sequencing whole genome of a Kuwaiti male from this subgroup at 41X coverage, we report 3,752,878 SNPs, 411,839 indels, and 8451 structural variations. Neighbor-joining tree, based on shared variant positions carrying disease-risk alleles between the Bedouin and other continental genomes, places Bedouin genome at the nexus of African, Asian, and European genomes in concordance with geographical location of Kuwait and Peninsula. In congruence with participant's medical history for morbid obesity and bronchial asthma, risk alleles are seen at deleterious SNPs associated with obesity and asthma. Many of the observed deleterious ‘novel’ variants lie in genes associated with autosomal recessive disorders characteristic of the region. PMID:26484159
Global and disease-associated genetic variation in the human Fanconi anemia gene family.
Rogers, Kai J; Fu, Wenqing; Akey, Joshua M; Monnat, Raymond J
2014-12-20
Fanconi anemia (FA) is a human recessive genetic disease resulting from inactivating mutations in any of 16 FANC (Fanconi) genes. Individuals with FA are at high risk of developmental abnormalities, early bone marrow failure and leukemia. These are followed in the second and subsequent decades by a very high risk of carcinomas of the head and neck and anogenital region, and a small continuing risk of leukemia. In order to characterize base pair-level disease-associated (DA) and population genetic variation in FANC genes and the segregation of this variation in the human population, we identified 2948 unique FANC gene variants including 493 FA DA variants across 57,240 potential base pair variation sites in the 16 FANC genes. We then analyzed the segregation of this variation in the 7578 subjects included in the Exome Sequencing Project (ESP) and the 1000 Genomes Project (1KGP). There was a remarkably high frequency of FA DA variants in ESP/1KGP subjects: at least 1 FA DA variant was identified in 78.5% (5950 of 7578) individuals included in these two studies. Six widely used functional prediction algorithms correctly identified only a third of the known, DA FANC missense variants. We also identified FA DA variants that may be good candidates for different types of mutation-specific therapies. Our results demonstrate the power of direct DNA sequencing to detect, estimate the frequency of and follow the segregation of deleterious genetic variation in human populations. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Expanding the genetic heterogeneity of intellectual disability.
Anazi, Shams; Maddirevula, Sateesh; Salpietro, Vincenzo; Asi, Yasmine T; Alsahli, Saud; Alhashem, Amal; Shamseldin, Hanan E; AlZahrani, Fatema; Patel, Nisha; Ibrahim, Niema; Abdulwahab, Firdous M; Hashem, Mais; Alhashmi, Nadia; Al Murshedi, Fathiya; Al Kindy, Adila; Alshaer, Ahmad; Rumayyan, Ahmed; Al Tala, Saeed; Kurdi, Wesam; Alsaman, Abdulaziz; Alasmari, Ali; Banu, Selina; Sultan, Tipu; Saleh, Mohammed M; Alkuraya, Hisham; Salih, Mustafa A; Aldhalaan, Hesham; Ben-Omran, Tawfeg; Al Musafri, Fatima; Ali, Rehab; Suleiman, Jehan; Tabarki, Brahim; El-Hattab, Ayman W; Bupp, Caleb; Alfadhel, Majid; Al Tassan, Nada; Monies, Dorota; Arold, Stefan T; Abouelhoda, Mohamed; Lashley, Tammaryn; Houlden, Henry; Faqeih, Eissa; Alkuraya, Fowzan S
2017-11-01
Intellectual disability (ID) is a common morbid condition with a wide range of etiologies. The list of monogenic forms of ID has increased rapidly in recent years thanks to the implementation of genomic sequencing techniques. In this study, we describe the phenotypic and genetic findings of 68 families (105 patients) all with novel ID-related variants. In addition to established ID genes, including ones for which we describe unusual mutational mechanism, some of these variants represent the first confirmatory disease-gene links following previous reports (TRAK1, GTF3C3, SPTBN4 and NKX6-2), some of which were based on single families. Furthermore, we describe novel variants in 14 genes that we propose as novel candidates (ANKHD1, ASTN2, ATP13A1, FMO4, MADD, MFSD11, NCKAP1, NFASC, PCDHGA10, PPP1R21, SLC12A2, SLK, STK32C and ZFAT). We highlight MADD and PCDHGA10 as particularly compelling candidates in which we identified biallelic likely deleterious variants in two independent ID families each. We also highlight NCKAP1 as another compelling candidate in a large family with autosomal dominant mild intellectual disability that fully segregates with a heterozygous truncating variant. The candidacy of NCKAP1 is further supported by its biological function, and our demonstration of relevant expression in human brain. Our study expands the locus and allelic heterogeneity of ID and demonstrates the power of positional mapping to reveal unusual mutational mechanisms.
Gao, Li; Rafaels, Nicholas M; Huang, Lili; Potee, Joseph; Ruczinski, Ingo; Beaty, Terri H.; Paller, Amy S.; Schneider, Lynda C.; Gallo, Rich; Hanifin, Jon M.; Beck, Lisa A.; Geha, Raif S.; Mathias, Rasika A.; Leung, Donald Y. M.
2015-01-01
Background A subset of atopic dermatitis (AD) is associated with increased susceptibility to eczema herpeticum (ADEH+). We previously reported that common single nucleotide polymorphisms (SNPs) in interferon-gamma (IFNG) and receptor 1 (IFNGR1) were associated with ADEH+ phenotype. Objective To interrogate the role of rare variants in IFN-pathway genes for risk of ADEH+. Methods We performed targeted sequencing of interferon-pathway genes (IFNG, IFNGR1, IFNAR1 and IL12RB1) in 228 European American (EA) AD patients selected according to their EH status and severity measured by Eczema Area and Severity Index (EASI). Replication genotyping was performed in independent samples of 219 EA and 333 African Americans (AA). Functional investigation of ‘loss-of-function’ variants was conducted using site-directed mutagenesis. Results We identified 494 single nucleotide variants (SNVs) encompassing 105kb of sequence, including 145 common, 349 (70.6%) rare (minor allele frequency (MAF) <5%) and 86 (17.4%) novel variants, of which 2.8% were coding-synonymous, 93.3% were non-coding (64.6% intronic), and 3.8% were missense. We identified six rare IFNGR1 missense including three damaging variants (Val14Met (V14M), Val61Ile and Tyr397Cys (Y397C)) conferring a higher risk for ADEH+ (P=0.031). Variants V14M and Y397C were confirmed to be deleterious leading to partial IFNGR1 deficiency. Seven common IFNGR1 SNPs, along with common protective haplotypes (2 to 7-SNPs) conferred a reduced risk of ADEH+ (P=0.015-0.002, P=0.0015-0.0004, respectively), and both SNP and haplotype associations were replicated in an independent AA sample (P=0.004-0.0001 and P=0.001-0.0001, respectively). Conclusion Our results provide evidence that both genetic variants in the gene encoding IFNGR1 are implicated in susceptibility to the ADEH+ phenotype. CAPSULE SUMMARY We provided the first evidence that rare functional IFNGR1 mutations contribute to a defective systemic IFN-γ immune response that accounts for the propensity of AD patients to disseminated viral skin infections. PMID:26343451
Chung, Jonathan H.; Cai, Jinlu; Suskin, Barrie G.; Zhang, Zhengdong; Coleman, Karlene
2015-01-01
The 22q11.2 deletion syndrome (22q11DS) affects 1:4000 live births and presents with highly variable phenotype expressivity. In this study, we developed an analytical approach utilizing whole genome sequencing and integrative analysis to discover genetic modifiers. Our pipeline combined available tools in order to prioritize rare, predicted deleterious, coding and non-coding single nucleotide variants (SNVs) and insertion/deletions (INDELs) from whole genome sequencing (WGS). We sequenced two unrelated probands with 22q11DS, with contrasting clinical findings, and their unaffected parents. Proband P1 had cognitive impairment, psychotic episodes, anxiety, and tetralogy of Fallot (TOF); while proband P2 had juvenile rheumatoid arthritis but no other major clinical findings. In P1, we identified common variants in COMT and PRODH on 22q11.2 as well as rare potentially deleterious DNA variants in other behavioral/neurocognitive genes. We also identified a de novo SNV in ADNP2 (NM_014913.3:c.2243G>C), encoding a neuroprotective protein that may be involved in behavioral disorders. In P2, we identified a novel non-synonymous SNV in ZFPM2 (NM_012082.3:c.1576C>T), a known causative gene for TOF, which may act as a protective variant downstream of TBX1, haploinsufficiency of which is responsible for congenital heart disease in individuals with 22q11DS. PMID:25981510
Rare variants of the 3’-5’ DNA exonuclease TREX1 in early onset small vessel stroke
McGlasson, Sarah; Rannikmäe, Kristiina; Bevan, Steven; Logan, Clare; Bicknell, Louise S.; Jury, Alexa; Jackson, Andrew P.
2017-01-01
Background: Monoallelic and biallelic mutations in the exonuclease TREX1 cause monogenic small vessel diseases (SVD). Given recent evidence for genetic and pathophysiological overlap between monogenic and polygenic forms of SVD, evaluation of TREX1 in small vessel stroke is warranted. Methods: We sequenced the TREX1 gene in an exploratory cohort of patients with lacunar stroke (Edinburgh Stroke Study, n=290 lacunar stroke cases). We subsequently performed a fully blinded case-control study of early onset MRI-confirmed small vessel stroke within the UK Young Lacunar Stroke Resource (990 cases, 939 controls). Results: No patients with canonical disease-causing mutations of TREX1 were identified in cases or controls. Analysis of an exploratory cohort identified a potential association between rare variants of TREX1 and patients with lacunar stroke. However, subsequent controlled and blinded evaluation of TREX1 in a larger and MRI-confirmed patient cohort, the UK Young Lacunar Stroke Resource, identified heterozygous rare variants in 2.1% of cases and 2.3% of controls. No association was observed with stroke risk (odds ratio = 0.90; 95% confidence interval, 0.49-1.65 p=0.74). Similarly no association was seen with rare TREX1 variants with predicted deleterious effects on enzyme function (odds ratio = 1.05; 95% confidence interval, 0.43-2.61 p=0.91). Conclusions: No patients with early-onset lacunar stroke had genetic evidence of a TREX1-associated monogenic microangiopathy. These results show no evidence of association between rare variants of TREX1 and early onset lacunar stroke. This includes rare variants that significantly affect protein and enzyme function. Routine sequencing of the TREX1 gene in patients with early onset lacunar stroke is therefore unlikely to be of diagnostic utility, in the absence of syndromic features or family history. PMID:29387804
Sanjak, Jaleal S.; Long, Anthony D.; Thornton, Kevin R.
2017-01-01
The genetic component of complex disease risk in humans remains largely unexplained. A corollary is that the allelic spectrum of genetic variants contributing to complex disease risk is unknown. Theoretical models that relate population genetic processes to the maintenance of genetic variation for quantitative traits may suggest profitable avenues for future experimental design. Here we use forward simulation to model a genomic region evolving under a balance between recurrent deleterious mutation and Gaussian stabilizing selection. We consider multiple genetic and demographic models, and several different methods for identifying genomic regions harboring variants associated with complex disease risk. We demonstrate that the model of gene action, relating genotype to phenotype, has a qualitative effect on several relevant aspects of the population genetic architecture of a complex trait. In particular, the genetic model impacts genetic variance component partitioning across the allele frequency spectrum and the power of statistical tests. Models with partial recessivity closely match the minor allele frequency distribution of significant hits from empirical genome-wide association studies without requiring homozygous effect sizes to be small. We highlight a particular gene-based model of incomplete recessivity that is appealing from first principles. Under that model, deleterious mutations in a genomic region partially fail to complement one another. This model of gene-based recessivity predicts the empirically observed inconsistency between twin and SNP based estimated of dominance heritability. Furthermore, this model predicts considerable levels of unexplained variance associated with intralocus epistasis. Our results suggest a need for improved statistical tools for region based genetic association and heritability estimation. PMID:28103232
Lee, Yujung; Kim, Changshin; Park, YoungJoon; Pyun, Jung-A; Kwack, KyuBum
2016-12-01
Premature ovarian failure (POF) is characterized by heterogeneous genetic causes such as chromosomal abnormalities and variants in causal genes. Recently, development of techniques made next generation sequencing (NGS) possible to detect genome wide variants including chromosomal abnormalities. Among 37 Korean POF patients, XY karyotype with distal part deletions of Y chromosome, Yp11.32-31 and Yp12 end part, was observed in two patients through NGS. Six deleterious variants in POF genes were also detected which might explain the pathogenesis of POF with abnormalities in the sex chromosomes. Additionally, the two POF patients had no mutation in SRY but three non-synonymous variants were detected in genes regarding sex reversal. These findings suggest candidate causes of POF and sex reversal and show the propriety of NGS to approach the heterogeneous pathogenesis of POF. Copyright © 2016 Elsevier Inc. All rights reserved.
A novel PTCH1 mutation underlies non-syndromic cleft lip and/or palate in a Han Chinese family.
Zhao, Huaxiang; Zhong, Wenjie; Leng, Chuntao; Zhang, Jieni; Zhang, Mengqi; Huang, Wenbin; Zhang, Yunfan; Li, Weiran; Jia, Peizeng; Lin, Jiuxiang; Maimaitili, Gulibaha; Chen, Feng
2018-06-16
Cleft lip and/or palate (CL/P) is the most common craniofacial congenital disease, and it has a complex aetiology. This study aimed to identify the causative gene mutation of a Han Chinese family with CL/P. Whole exome sequencing was conducted on the proband and her mother, who exhibited the same phenotype. A Mendelian dominant inheritance model, allele frequency, mutation regions, functional prediction and literature review were used to screen and filter the variants. The candidate was validated by Sanger sequencing. Conservation analysis and homology modelling were conducted. A heterozygous missense mutation c.1175C>T in the PTCH1 gene predicting p.Ala392Val was identified. This variant has not been reported and was predicted to be deleterious. Sanger sequencing verified the variant and the dominant inheritance model in the family. The missense alteration affects an amino acid that is evolutionarily conserved in the first extracellular loop of the PTCH1 protein. The local structure of the mutant protein was significantly altered according to homology modelling. Our findings suggest that c.1175C>T in PTCH1 (NM_000264) may be the causative mutation of this pedigree. Our results add to the evidence that PTCH1 variants play a role in the pathogenesis of orofacial clefts. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Performance of in silico tools for the evaluation of p16INK4a (CDKN2A) variants in CAGI.
Carraro, Marco; Minervini, Giovanni; Giollo, Manuel; Bromberg, Yana; Capriotti, Emidio; Casadio, Rita; Dunbrack, Roland; Elefanti, Lisa; Fariselli, Pietro; Ferrari, Carlo; Gough, Julian; Katsonis, Panagiotis; Leonardi, Emanuela; Lichtarge, Olivier; Menin, Chiara; Martelli, Pier Luigi; Niroula, Abhishek; Pal, Lipika R; Repo, Susanna; Scaini, Maria Chiara; Vihinen, Mauno; Wei, Qiong; Xu, Qifang; Yang, Yuedong; Yin, Yizhou; Zaucha, Jan; Zhao, Huiying; Zhou, Yaoqi; Brenner, Steven E; Moult, John; Tosatto, Silvio C E
2017-09-01
Correct phenotypic interpretation of variants of unknown significance for cancer-associated genes is a diagnostic challenge as genetic screenings gain in popularity in the next-generation sequencing era. The Critical Assessment of Genome Interpretation (CAGI) experiment aims to test and define the state of the art of genotype-phenotype interpretation. Here, we present the assessment of the CAGI p16INK4a challenge. Participants were asked to predict the effect on cellular proliferation of 10 variants for the p16INK4a tumor suppressor, a cyclin-dependent kinase inhibitor encoded by the CDKN2A gene. Twenty-two pathogenicity predictors were assessed with a variety of accuracy measures for reliability in a medical context. Different assessment measures were combined in an overall ranking to provide more robust results. The R scripts used for assessment are publicly available from a GitHub repository for future use in similar assessment exercises. Despite a limited test-set size, our findings show a variety of results, with some methods performing significantly better. Methods combining different strategies frequently outperform simpler approaches. The best predictor, Yang&Zhou lab, uses a machine learning method combining an empirical energy function measuring protein stability with an evolutionary conservation term. The p16INK4a challenge highlights how subtle structural effects can neutralize otherwise deleterious variants. © 2017 Wiley Periodicals, Inc.
Dyson, Gregory; Levin, Nancy K.; Chaudhry, Sophia; Rosati, Rita; Kalpage, Hasini; Simon, Michael S.; Tainsky, Michael A.
2017-01-01
While up to 25% of ovarian cancer (OVCA) cases are thought to be due to inherited factors, the majority of genetic risk remains unexplained. To address this gap, we sought to identify previously undescribed OVCA risk variants through the whole exome sequencing (WES) and candidate gene analysis of 48 women with ovarian cancer and selected for high risk of genetic inheritance, yet negative for any known pathogenic variants in either BRCA1 or BRCA2. In silico SNP analysis was employed to identify suspect variants followed by validation using Sanger DNA sequencing. We identified five pathogenic variants in our sample, four of which are in two genes featured on current multi-gene panels; (RAD51D, ATM). In addition, we found a pathogenic FANCM variant (R1931*) which has been recently implicated in familial breast cancer risk. Numerous rare and predicted to be damaging variants of unknown significance were detected in genes on current commercial testing panels, most prominently in ATM (n = 6) and PALB2 (n = 5). The BRCA2 variant p.K3326*, resulting in a 93 amino acid truncation, was overrepresented in our sample (odds ratio = 4.95, p = 0.01) and coexisted in the germline of these women with other deleterious variants, suggesting a possible role as a modifier of genetic penetrance. Furthermore, we detected loss of function variants in non-panel genes involved in OVCA relevant pathways; DNA repair and cell cycle control, including CHEK1, TP53I3, REC8, HMMR, RAD52, RAD1, POLK, POLQ, and MCM4. In summary, our study implicates novel risk loci as well as highlights the clinical utility for retesting BRCA1/2 negative OVCA patients by genomic sequencing and analysis of genes in relevant pathways. PMID:28591191
Aanen, Duur K.; Spelbrink, Johannes N.; Beekman, Madeleine
2014-01-01
The peculiar biology of mitochondrial DNA (mtDNA) potentially has detrimental consequences for organismal health and lifespan. Typically, eukaryotic cells contain multiple mitochondria, each with multiple mtDNA genomes. The high copy number of mtDNA implies that selection on mtDNA functionality is relaxed. Furthermore, because mtDNA replication is not strictly regulated, within-cell selection may favour mtDNA variants with a replication advantage, but a deleterious effect on cell fitness. The opportunities for selfish mtDNA mutations to spread are restricted by various organism-level adaptations, such as uniparental transmission, germline mtDNA bottlenecks, germline selection and, during somatic growth, regular alternation between fusion and fission of mitochondria. These mechanisms are all hypothesized to maintain functional mtDNA. However, the strength of selection for maintenance of functional mtDNA progressively declines with age, resulting in age-related diseases. Furthermore, organismal adaptations that most probably evolved to restrict the opportunities for selfish mtDNA create secondary problems. Owing to predominantly maternal mtDNA transmission, recombination among mtDNA from different individuals is highly restricted or absent, reducing the scope for repair. Moreover, maternal inheritance precludes selection against mtDNA variants with male-specific effects. We finish by discussing the consequences of life-history differences among taxa with respect to mtDNA evolution and make a case for the use of microorganisms to experimentally manipulate levels of selection. PMID:24864309
Voskarides, Konstantinos; Stefanou, Charalambos; Pieri, Myrtani; Demosthenous, Panayiota; Felekkis, Kyriakos; Arsali, Maria; Athanasiou, Yiannis; Xydakis, Dimitris; Stylianou, Kostas; Daphnis, Eugenios; Goulielmos, Giorgos; Loizou, Petros; Savige, Judith; Höhne, Martin; Völker, Linus A.; Benzing, Thomas; Maxwell, Patrick H.; Gale, Daniel P.; Gorski, Mathias; Böger, Carsten; Kollerits, Barbara; Kronenberg, Florian; Paulweber, Bernhard; Zavros, Michalis; Pierides, Alkis; Deltas, Constantinos
2017-01-01
Background Recent data emphasize that thin basement membrane nephropathy (TBMN) should not be viewed as a form of benign familial hematuria since chronic renal failure (CRF) and even end-stage renal disease (ESRD), is a possible development for a subset of patients on long-term follow-up, through the onset of focal and segmental glomerulosclerosis (FSGS). We hypothesize that genetic modifiers may explain this variability of symptoms. Methods We looked in silico for potentially deleterious functional SNPs, using very strict criteria, in all the genes significantly expressed in the slit diaphragm (SD). Two variants were genotyped in a cohort of well-studied adult TBMN patients from 19 Greek-Cypriot families, with a homogeneous genetic background. Patients were categorized as “Severe” or “Mild”, based on the presence or not of proteinuria, CRF and ESRD. A larger pooled cohort (HEMATURIA) of 524 patients, including IgA nephropathy patients, was used for verification. Additionally, three large general population cohorts [Framingham Heart Study (FHS), KORAF4 and SAPHIR] were used to investigate if the NEPH3-V353M variant has any renal effect in the general population. Results and conclusions Genotyping for two high-scored variants in 103 TBMN adult patients with founder mutations who were classified as mildly or severely affected, pointed to an association with variant NEPH3-V353M (filtrin). This promising result prompted testing in the larger pooled cohort (HEMATURIA), indicating an association of the 353M variant with disease severity under the dominant model (p = 3.0x10-3, OR = 6.64 adjusting for gender/age; allelic association: p = 4.2x10-3 adjusting for patients’ kinships). Subsequently, genotyping 6,531 subjects of the Framingham Heart Study (FHS) revealed an association of the homozygous 353M/M genotype with microalbuminuria (p = 1.0x10-3). Two further general population cohorts, KORAF4 and SAPHIR confirmed the association, and a meta-analysis of all three cohorts (11,258 individuals) was highly significant (p = 1.3x10-5, OR = 7.46). Functional studies showed that Neph3 homodimerization and Neph3-Nephrin heterodimerization are disturbed by variant 353M. Additionally, 353M was associated with differential activation of the unfolded protein response pathway, when overexpressed in stressed cultured undifferentiated podocyte cells, thus attesting to its functional significance. Genetics and functional studies support a “rare variant-strong effect” role for NEPH3-V353M, by exerting a negative modifier effect on primary glomerular hematuria. Additionally, genetics studies provide evidence for a role in predisposing homozygous subjects of the general population to micro-albuminuria. PMID:28334007
Molecular characterization of both alleles in an unusual Tay-Sachs disease BI variant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coulter-Mackie, M.B.
1994-06-01
In a recent report, the authors described an exon 6 mutation in a Tay-Sachs B1 variant patient, first reported by Gordon et al. (1988), who displayed a typical B1 variant biochemical phenotype - i.e., (a) significant levels of hexosaminidase A (Hex A) activity in an assay with a neutral synthetic substrate, 4-methylumbelliferyl-[beta]-N-acetylglucosamide, and (b) <2% of control Hex A in a test on the sulfated substrate, 4-methylumbelliferyl-[beta]-N-acetylglucosamide-6-sulfate. The patient was found to carry a double mutation (G[sub 574][yields]C [val[sub 192][yields]leu] and G[sub 598][yields]A [val[sub 200][yields]met]) inherited from her mother. Only the 574 mutation produced a deleterious effect on Hex Amore » activity in transfected COS0-1 cells, producing a B1 variant biochemical phenotype. The paternal allele apparently caused decreased abundance of mRNA, since no candidate paternal mutations were found in cloned reverse transcription-PCR (RT-PCR) products in the reported study. The biochemical phenotype of the original patient and the properties of the cDNA carrying the G[sub 574] [yields] C mutation in transient expression studies were compatible with a B1 variant mutation. The possibility remained that there might be some contribution from the paternal allele to the patient's phenotype. However, the paternal allele produces relatively low yields of a largely mis-spliced mRNA whose product would not be functional. Therefore, the G[sub 574] [yields] C (val[yields]leu) mutation in the maternal allele is clearly confirmed as a B1 variant mutation with all the ramifications for the substrate binding site and/or catalytic center that this implies.« less
Kim, Jihoon; Shimizu, Chisato; Kingsmore, Stephen F; Veeraraghavan, Narayanan; Levy, Eric; Ribeiro Dos Santos, Andre M; Yang, Hai; Flatley, Jay; Hoang, Long Truong; Hibberd, Martin L; Tremoulet, Adriana H; Harismendy, Olivier; Ohno-Machado, Lucila; Burns, Jane C
2017-01-01
Kawasaki disease (KD) is the most common acquired pediatric heart disease. We analyzed Whole Genome Sequences (WGS) from a 6-member African American family in which KD affected two of four children. We sought rare, potentially causative genotypes by sequentially applying the following WGS filters: sequence quality scores, inheritance model (recessive homozygous and compound heterozygous), predicted deleteriousness, allele frequency, genes in KD-associated pathways or with significant associations in published KD genome-wide association studies (GWAS), and with differential expression in KD blood transcriptomes. Biologically plausible genotypes were identified in twelve variants in six genes in the two affected children. The affected siblings were compound heterozygous for the rare variants p.Leu194Pro and p.Arg247Lys in Toll-like receptor 6 (TLR6), which affect TLR6 signaling. The affected children were also homozygous for three common, linked (r2 = 1) intronic single nucleotide variants (SNVs) in TLR6 (rs56245262, rs56083757 and rs7669329), that have previously shown association with KD in cohorts of European descent. Using transcriptome data from pre-treatment whole blood of KD subjects (n = 146), expression quantitative trait loci (eQTL) analyses were performed. Subjects homozygous for the intronic risk allele (A allele of TLR6 rs56245262) had differential expression of Interleukin-6 (IL-6) as a function of genotype (p = 0.0007) and a higher erythrocyte sedimentation rate at diagnosis. TLR6 plays an important role in pathogen-associated molecular pattern recognition, and sequence variations may affect binding affinities that in turn influence KD susceptibility. This integrative genomic approach illustrates how the analysis of WGS in multiplex families with a complex genetic disease allows examination of both the common disease-common variant and common disease-rare variant hypotheses.
Ungar, Rachel A; Giri, Neelam; Pao, Maryland; Khincha, Payal P; Zhou, Weiyin; Alter, Blanche P; Savage, Sharon A
2018-06-01
Dyskeratosis congenita (DC) is an inherited bone marrow failure syndrome caused by germline mutations in telomere biology genes. Patients have extremely short telomeres for their age and a complex phenotype including oral leukoplakia, abnormal skin pigmentation, and dysplastic nails in addition to bone marrow failure, pulmonary fibrosis, stenosis of the esophagus, lacrimal ducts and urethra, developmental anomalies, and high risk of cancer. We evaluated a patient with features of DC, mood dysregulation, diabetes, and lack of pubertal development. Family history was not available but genome-wide genotyping was consistent with consanguinity. Whole exome sequencing identified 82 variants of interest in 80 genes based on the following criteria: homozygous, <0.1% minor allele frequency in public and in-house databases, nonsynonymous, and predicted deleterious by multiple in silico prediction programs. Six genes were identified likely contributory to the clinical presentation. The cause of DC is likely due to homozygous splice site variants in regulator of telomere elongation helicase 1, a known DC and telomere biology gene. A homozygous, missense variant in tryptophan hydroxylase 1 may be clinically important as this gene encodes the rate limiting step in serotonin biosynthesis, a biologic pathway connected with mood disorders. Four additional genes (SCN4A, LRP4, GDAP1L1, and SPTBN5) had rare, missense homozygous variants that we speculate may contribute to portions of the clinical phenotype. This case illustrates the value of conducting detailed clinical and genomic evaluations on rare patients in order to identify new areas of research into the functional consequences of rare variants and their contribution to human disease. © 2018 Wiley Periodicals, Inc.
Contactin 4 as an Autism Susceptibility Locus
Cottrell, Catherine E.; Bir, Natalie; Varga, Elizabeth; Alvarez, Carlos E.; Bouyain, Samuel; Zernzach, Randall; LambThrush, Devon; Evans, Johnna; Trimarchi, Michael; Butter, Eric M.; Cunningham, David; Gastier-Foster, Julie M.; McBride, Kim; Herman, Gail E.
2011-01-01
Scientific Abstract Structural and sequence variation have been described in several members of the contactin (CNTN) and contactin associated protein (CNTNAP) gene families in association with neurodevelopmental disorders, including autism. Using array comparative genome hybridization (CGH), we identified a maternally inherited ~535 kb deletion at 3p26.3 encompassing the 5′ end of the contactin 4 gene (CNTN4) in a patient with autism. Based on this finding and previous reports implicating genomic rearrangements of CNTN4 in autism spectrum disorders (ASDs) and 3p− microdeletion syndrome, we undertook sequencing of the coding regions of the gene in a local ASD cohort in comparison with a set of controls. Unique missense variants were identified in 4/75 unrelated individuals with an ASD, as well as in 1/107 controls. All of the amino acid substitutions were nonsynonomous, occurred at evolutionarily conserved positions, and were, thus, felt likely to be deleterious. However, these data did not reach statistical significance, nor did the variants segregate with disease within all of the ASD families. Finally, there was no detectable difference in binding of two of the variants to the interacting protein PTPRG in vitro. Thusadditional, larger studies will be necessary to determine whether CNTN4 functions as an autism susceptibility locus in combination with other genetic and/or environmental factors. PMID:21308999
Riera, Marina; Navarro, Rafael; Ruiz-Nogales, Sheila; Méndez, Pilar; Burés-Jelstrup, Anniken; Corcóstegui, Borja; Pomares, Esther
2017-01-01
Inherited retinal dystrophies (IRD) comprise a wide group of clinically and genetically complex diseases that progressively affect the retina. Over recent years, the development of next-generation sequencing (NGS) methods has transformed our ability to diagnose heterogeneous diseases. In this work, we have evaluated the implementation of whole exome sequencing (WES) for the molecular diagnosis of IRD. Using Ion ProtonTM system, we simultaneously analyzed 212 genes that are responsible for more than 25 syndromic and non-syndromic IRD. This approach was used to evaluate 59 unrelated families, with the pathogenic variant(s) successfully identified in 71.18% of cases. Interestingly, the mutation detection rate varied substantially depending on the IRD subtype. Overall, we found 63 different mutations (21 novel) in 29 distinct genes, and performed in vivo functional studies to determine the deleterious impact of variants identified in MERTK, CDH23, and RPGRIP1. In addition, we provide evidences that support CDHR1 as a gene responsible for autosomal recessive retinitis pigmentosa with early macular affectation, and present data regarding the disease mechanism of this gene. Altogether, these results demonstrate that targeted WES of all IRD genes is a reliable, hypothesis-free approach, and a cost- and time-effective strategy for the routine genetic diagnosis of retinal dystrophies. PMID:28181551
Koch, Evan; Novembre, John
2017-01-01
When mutations have small effects on fitness, population size plays an important role in determining the amount and nature of deleterious genetic variation. The extent to which recent population size changes have impacted deleterious variation in humans has been a question of considerable interest and debate. An emerging consensus is that the Out-of-Africa bottleneck and subsequent growth events have been too short to cause meaningful differences in genetic load between populations; though changes in the number and average frequencies of deleterious variants have taken place. To provide more support for this view and to offer additional insight into the divergent evolution of deleterious variation across populations, we numerically solve time-inhomogeneous diffusion equations and study the temporal dynamics of the frequency spectra in models of population size change for modern humans. We observe how the response to demographic change differs by the strength of selection, and we then assess whether similar patterns are observed in exome sequence data from 33,370 and 5203 individuals of non-Finnish European and West African ancestry, respectively. Our theoretical results highlight how even simple summaries of the frequency spectrum can have complex responses to demographic change. These results support the finding that some apparent discrepancies between previous results have been driven by the behaviors of the precise summaries of deleterious variation. Further, our empirical results make clear the difficulty of inferring slight differences in frequency spectra using recent next-generation sequence data. PMID:28159863
Whole exome sequencing in recurrent early pregnancy loss.
Qiao, Ying; Wen, Jiadi; Tang, Flamingo; Martell, Sally; Shomer, Naomi; Leung, Peter C K; Stephenson, Mary D; Rajcan-Separovic, Evica
2016-05-01
Exome sequencing can identify genetic causes of idiopathic recurrent pregnancy loss (RPL). We identified compound heterozygous deleterious mutations affecting DYNC2H1 and ALOX15 in two out of four families with RPL. Both genes have a role in early development. Bioinformatics analysis of all genes with rare and putatively pathogenic mutations in miscarriages and couples showed enrichment in pathways relevant to pregnancy loss, including the complement and coagulation cascades pathways. Next generation sequencing (NGS) is increasingly being used to identify known and novel gene mutations in children with developmental delay and in fetuses with ultrasound-detected anomalies. In contrast, NGS is rarely used to study pregnancy loss. Chromosome microarray analysis detects putatively causative DNA copy number variants (CNVs) in ∼2% of miscarriages and CNVs of unknown significance (predominantly parental in origin) in up to 40% of miscarriages. Therefore, a large number of miscarriages still have an unknown cause. Whole exome sequencing (WES) was performed using Illumina HiSeq 2000 platform on seven euploid miscarriages from four families with RPL. Golden Helix SVS v8.1.5 was used for data assessment and inheritance analysis for deleterious DNA variants predicted to severely disrupt protein-coding genes by introducing a frameshift, loss of the stop codon, gain of the stop codon, changes in splicing or the initial codon. Webgestalt (http://bioinfo.vanderbilt.edu/webgestalt/) was used for pathway and disease association enrichment analysis of a gene pool containing putatively pathogenic variants in miscarriages and couples in comparison to control gene pools. Compound heterozygous mutations in DYNC2H1 and ALOX15 were identified in miscarriages from two families with RPL. DYNC2H1 is involved in cilia biogenesis and has been associated with fetal lethality in humans. ALOX15 is expressed in placenta and its dysregulation has been associated with inflammation, placental, dysfunction, abnormal oxidative stress response and angiogenesis. The pool of putatively pathogenic single nucleotide variants (SNVs) and small insertions and deletions (indels) detected in the miscarriages showed enrichment in 'complement and coagulation cascades pathway', and 'ciliary motility disorders'. We conclude that CNVs, individual SNVs and pool of deleterious gene mutations identified by exome sequencing could contribute to RPL. The size of our sample cohort is small. The functional effect of candidate mutations should be evaluated to determine whether the mutations are causative. This is the first study to assess whether SNVs may contribute to the pathogenesis of miscarriage. Furthermore, our findings suggest that collective effect of mutations in relevant biological pathways could be implicated in RPL. The study was funded by Canadian Institutes of Health Research (grant MOP 106467) and Michael Smith Foundation of Health Research Career Scholar salary award to ERS. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Whole exome sequencing in recurrent early pregnancy loss
Qiao, Ying; Wen, Jiadi; Tang, Flamingo; Martell, Sally; Shomer, Naomi; Leung, Peter C.K.; Stephenson, Mary D.; Rajcan-Separovic, Evica
2016-01-01
STUDY HYPOTHESIS Exome sequencing can identify genetic causes of idiopathic recurrent pregnancy loss (RPL). STUDY FINDING We identified compound heterozygous deleterious mutations affecting DYNC2H1 and ALOX15 in two out of four families with RPL. Both genes have a role in early development. Bioinformatics analysis of all genes with rare and putatively pathogenic mutations in miscarriages and couples showed enrichment in pathways relevant to pregnancy loss, including the complement and coagulation cascades pathways. WHAT IS KNOWN ALREADY Next generation sequencing (NGS) is increasingly being used to identify known and novel gene mutations in children with developmental delay and in fetuses with ultrasound-detected anomalies. In contrast, NGS is rarely used to study pregnancy loss. Chromosome microarray analysis detects putatively causative DNA copy number variants (CNVs) in ∼2% of miscarriages and CNVs of unknown significance (predominantly parental in origin) in up to 40% of miscarriages. Therefore, a large number of miscarriages still have an unknown cause. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Whole exome sequencing (WES) was performed using Illumina HiSeq 2000 platform on seven euploid miscarriages from four families with RPL. Golden Helix SVS v8.1.5 was used for data assessment and inheritance analysis for deleterious DNA variants predicted to severely disrupt protein-coding genes by introducing a frameshift, loss of the stop codon, gain of the stop codon, changes in splicing or the initial codon. Webgestalt (http://bioinfo.vanderbilt.edu/webgestalt/) was used for pathway and disease association enrichment analysis of a gene pool containing putatively pathogenic variants in miscarriages and couples in comparison to control gene pools. MAIN RESULTS AND THE ROLE OF CHANCE Compound heterozygous mutations in DYNC2H1 and ALOX15 were identified in miscarriages from two families with RPL. DYNC2H1 is involved in cilia biogenesis and has been associated with fetal lethality in humans. ALOX15 is expressed in placenta and its dysregulation has been associated with inflammation, placental, dysfunction, abnormal oxidative stress response and angiogenesis. The pool of putatively pathogenic single nucleotide variants (SNVs) and small insertions and deletions (indels) detected in the miscarriages showed enrichment in ‘complement and coagulation cascades pathway’, and ‘ciliary motility disorders’. We conclude that CNVs, individual SNVs and pool of deleterious gene mutations identified by exome sequencing could contribute to RPL. LIMITATIONS, REASONS FOR CAUTION The size of our sample cohort is small. The functional effect of candidate mutations should be evaluated to determine whether the mutations are causative. WIDER IMPLICATIONS OF THE FINDINGS This is the first study to assess whether SNVs may contribute to the pathogenesis of miscarriage. Furthermore, our findings suggest that collective effect of mutations in relevant biological pathways could be implicated in RPL. STUDY FUNDING AND COMPETING INTEREST(S) The study was funded by Canadian Institutes of Health Research (grant MOP 106467) and Michael Smith Foundation of Health Research Career Scholar salary award to ERS. PMID:26826164
Florez, Jose C; Jablonski, Kathleen A; McAteer, Jarred B; Franks, Paul W; Mason, Clinton C; Mather, Kieren; Horton, Edward; Goldberg, Ronald; Dabelea, Dana; Kahn, Steven E; Arakaki, Richard F; Shuldiner, Alan R; Knowler, William C
2012-01-01
Common genetic variants have been recently associated with fasting glucose and insulin levels in white populations. Whether these associations replicate in pre-diabetes is not known. We extended these findings to the Diabetes Prevention Program, a clinical trial in which participants at high risk for diabetes were randomized to placebo, lifestyle modification or metformin for diabetes prevention. We genotyped previously reported polymorphisms (or their proxies) in/near G6PC2, MTNR1B, GCK, DGKB, GCKR, ADCY5, MADD, CRY2, ADRA2A, FADS1, PROX1, SLC2A2, GLIS3, C2CD4B, IGF1, and IRS1 in 3,548 Diabetes Prevention Program participants. We analyzed variants for association with baseline glycemic traits, incident diabetes and their interaction with response to metformin or lifestyle intervention. We replicated associations with fasting glucose at MTNR1B (P<0.001), G6PC2 (P = 0.002) and GCKR (P = 0.001). We noted impaired β-cell function in carriers of glucose-raising alleles at MTNR1B (P<0.001), and an increase in the insulinogenic index for the glucose-raising allele at G6PC2 (P<0.001). The association of MTNR1B with fasting glucose and impaired β-cell function persisted at 1 year despite adjustment for the baseline trait, indicating a sustained deleterious effect at this locus. We also replicated the association of MADD with fasting proinsulin levels (P<0.001). We detected no significant impact of these variants on diabetes incidence or interaction with preventive interventions. The association of several polymorphisms with quantitative glycemic traits is replicated in a cohort of high-risk persons. These variants do not have a detectable impact on diabetes incidence or response to metformin or lifestyle modification in the Diabetes Prevention Program.
Parsons, Michael T.; Whiley, Phillip J.; Beesley, Jonathan; Drost, Mark; de Wind, Niels; Thompson, Bryony A.; Marquart, Louise; Hopper, John L.; Jenkins, Mark A.; Brown, Melissa A.; Tucker, Kathy; Warwick, Linda; Buchanan, Daniel D.; Spurdle, Amanda B.
2014-01-01
Variants that disrupt the translation initiation sequences in cancer predisposition genes are generally assumed to be deleterious. However few studies have validated these assumptions with functional and clinical data. Two cancer syndrome gene variants likely to affect native translation initiation were identified by clinical genetic testing: MLH1:c.1A>G p.(Met1?) and BRCA2:c.67+3A>G. In vitro GFP-reporter assays were conducted to assess the consequences of translation initiation disruption on alternative downstream initiation codon usage. Analysis of MLH1:c.1A>G p.(Met1?) showed that translation was mostly initiated at an in-frame position 103 nucleotides downstream, but also at two ATG sequences downstream. The protein product encoded by the in-frame transcript initiating from position c.103 showed loss of in vitro mismatch repair activity comparable to known pathogenic mutations. BRCA2:c.67+3A>G was shown by mRNA analysis to result in an aberrantly spliced transcript deleting exon 2 and the consensus ATG site. In the absence of exon 2, translation initiated mostly at an out-of-frame ATG 323 nucleotides downstream, and to a lesser extent at an in-frame ATG 370 nucleotides downstream. Initiation from any of the downstream alternative sites tested in both genes would lead to loss of protein function, but further clinical data is required to confirm if these variants are associated with a high cancer risk. Importantly, our results highlight the need for caution in interpreting the functional and clinical consequences of variation that leads to disruption of the initiation codon, since translation may not necessarily occur from the first downstream alternative start site, or from a single alternative start site. PMID:24302565
Li, Yanwei; Kang, Xing; Yang, Ge; Dai, Penggao; Chen, Chao; Wang, Huijuan
2016-09-01
CYP2W1 is an orphan member of the cytochrome P450 superfamily. Recently, CYP2W1 has gained great research interest because of its unknown enzymatic function and tumor-specific expression property. This study aims to investigate the genetic polymorphisms of the CYP2W1 gene in Chinese populations and explore the functions of the detected variants. All of the nine exons and exon-intron junction regions of the CYP2W1 gene were sequenced in 150 Chinese subjects, including 50 Han Chinese, 50 Tibetans, and 50 Uighurs. A total of 26 genetic variants were identified in this study, and 19 polymorphisms were detected in each population. Frequency comparison between populations showed that nine variants exhibited significantly different allelic distributions. A total of 12 different haplotypes were inferred from 150 samples by using the genotype data of nine exonic variants found in this study. CYP2W1*1A, *1B, *2, *4, and *6 were detected as the main alleles/haplotypes. Moreover, one, three, and two ethnically specific haplotypes were observed in the Han, Tibetan, and Uighur samples, respectively. Then, the effects of four detected missense mutations (Ala181Thr, Gly376Ser, Val432Ile, and Pro488Leu) on the CYP2W1 protein function were predicted using three in silico tools: Polymorphism Phenotyping v2, Sorts Intolerant from Tolerant, and MutationTaster. The results showed that Gly376Ser and Pro488Leu may have deleterious effects. In summary, this study showed that the genetic pattern of CYP2W1 is interethnically different among the three Chinese populations, and this finding can extend our understanding of population genetics of CYP2W1 in the Chinese population. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
The impact of rare variation on gene expression across tissues.
Li, Xin; Kim, Yungil; Tsang, Emily K; Davis, Joe R; Damani, Farhan N; Chiang, Colby; Hess, Gaelen T; Zappala, Zachary; Strober, Benjamin J; Scott, Alexandra J; Li, Amy; Ganna, Andrea; Bassik, Michael C; Merker, Jason D; Hall, Ira M; Battle, Alexis; Montgomery, Stephen B
2017-10-11
Rare genetic variants are abundant in humans and are expected to contribute to individual disease risk. While genetic association studies have successfully identified common genetic variants associated with susceptibility, these studies are not practical for identifying rare variants. Efforts to distinguish pathogenic variants from benign rare variants have leveraged the genetic code to identify deleterious protein-coding alleles, but no analogous code exists for non-coding variants. Therefore, ascertaining which rare variants have phenotypic effects remains a major challenge. Rare non-coding variants have been associated with extreme gene expression in studies using single tissues, but their effects across tissues are unknown. Here we identify gene expression outliers, or individuals showing extreme expression levels for a particular gene, across 44 human tissues by using combined analyses of whole genomes and multi-tissue RNA-sequencing data from the Genotype-Tissue Expression (GTEx) project v6p release. We find that 58% of underexpression and 28% of overexpression outliers have nearby conserved rare variants compared to 8% of non-outliers. Additionally, we developed RIVER (RNA-informed variant effect on regulation), a Bayesian statistical model that incorporates expression data to predict a regulatory effect for rare variants with higher accuracy than models using genomic annotations alone. Overall, we demonstrate that rare variants contribute to large gene expression changes across tissues and provide an integrative method for interpretation of rare variants in individual genomes.
Smogavec, Mateja; Cleall, Alison; Hoyer, Juliane; Lederer, Damien; Nassogne, Marie-Cécile; Palmer, Elizabeth E; Deprez, Marie; Benoit, Valérie; Maystadt, Isabelle; Noakes, Charlotte; Leal, Alejandro; Shaw, Marie; Gecz, Jozef; Raymond, Lucy; Reis, André; Shears, Deborah; Brockmann, Knut; Zweier, Christiane
2016-12-01
Heterozygous copy number variants (CNVs) or sequence variants in the contactin-associated protein 2 gene CNTNAP2 have been discussed as risk factors for a wide spectrum of neurodevelopmental and neuropsychiatric disorders. Bi-allelic aberrations in this gene are causative for an autosomal-recessive disorder with epilepsy, severe intellectual disability (ID) and cortical dysplasia (CDFES). As the number of reported individuals is still limited, we aimed at a further characterisation of the full mutational and clinical spectrum. Targeted sequencing, chromosomal microarray analysis or multigene panel sequencing was performed in individuals with severe ID and epilepsy. We identified homozygous mutations, compound heterozygous CNVs or CNVs and mutations in CNTNAP2 in eight individuals from six unrelated families. All aberrations were inherited from healthy, heterozygous parents and are predicted to be deleterious for protein function. Epilepsy occurred in all affected individuals with onset in the first 3.5 years of life. Further common aspects were ID (severe in 6/8), regression of speech development (5/8) and behavioural anomalies (7/8). Interestingly, cognitive impairment in one of two affected brothers was, in comparison, relatively mild with good speech and simple writing abilities. Cortical dysplasia that was previously reported in CDFES was not present in MRIs of six individuals and only suspected in one. By identifying novel homozygous or compound heterozygous, deleterious CNVs and mutations in eight individuals from six unrelated families with moderate-to-severe ID, early onset epilepsy and behavioural anomalies, we considerably broaden the mutational and clinical spectrum associated with bi-allelic aberrations in CNTNAP2. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Schoolmeester, J Kenneth; Moyer, Ann M; Goodenberger, McKinsey L; Keeney, Gary L; Carter, Jodi M; Bakkum-Gamez, Jamie N
2017-12-01
Germline BRCA mutations account for a significant proportion of genetic/familial risk of breast and ovarian cancer (GBOC) susceptibility, but a broader spectrum of GBOC susceptibility genes has emerged in recent years. Genotype-to-phenotype correlations are known for some established forms of GBOC; however, whether such correlations exist for less common GBOC variants is unclear. We reviewed our institution's experience with non-BRCA GBOC, looking specifically for trends in pathologic and clinical features. Eighteen women with deleterious germline mutations in RAD51C (5 patients), BARD1 (1 patient), BRIP1 (2 patients), PALB2 (3 patients), MUTYH (2 patients), or CHEK2 (5 patients) were identified between January 2011 and December 2016. Thirteen (72%) of 18 patients developed carcinoma of the breast, fallopian tube, or ovary, with 1 patient developing 2 separate primary neoplasms. Twelve (86%) of 14 tumors occurred in the breast. One (7%) arose in the fallopian tube and another (7%) arose in the ovary. Evidence of genotype-phenotype correlation was not identified. However, some data suggest that the type of alteration in select genes may influence tumor behavior and patient outcome. In our PALB2 mutation cohort, 2 patients with frameshift mutations led to early onset and rapid progression to stage IV breast cancer in contrast to stage IA breast cancer in 1 patient with a nonsense mutation. Despite no apparent genotype-phenotype trends, our data indicate that some loss-of-function variants in PALB2 may lead to differences in tumor behavior and patient outcome. Copyright © 2017 Elsevier Inc. All rights reserved.
Asgari, Samira; McLaren, Paul J; Peake, Jane; Wong, Melanie; Wong, Richard; Bartha, Istvan; Francis, Joshua R; Abarca, Katia; Gelderman, Kyra A; Agyeman, Philipp; Aebi, Christoph; Berger, Christoph; Fellay, Jacques; Schlapbach, Luregn J
2016-01-01
One out of three pediatric sepsis deaths in high income countries occur in previously healthy children. Primary immunodeficiencies (PIDs) have been postulated to underlie fulminant sepsis, but this concept remains to be confirmed in clinical practice. Pseudomonas aeruginosa ( P. aeruginosa ) is a common bacterium mostly associated with health care-related infections in immunocompromised individuals. However, in rare cases, it can cause sepsis in previously healthy children. We used exome sequencing and bioinformatic analysis to systematically search for genetic factors underpinning severe P. aeruginosa infection in the pediatric population. We collected blood samples from 11 previously healthy children, with no family history of immunodeficiency, who presented with severe sepsis due to community-acquired P. aeruginosa bacteremia. Genomic DNA was extracted from blood or tissue samples obtained intravitam or postmortem. We obtained high-coverage exome sequencing data and searched for rare loss-of-function variants. After rigorous filtrations, 12 potentially causal variants were identified. Two out of eight (25%) fatal cases were found to carry novel pathogenic variants in PID genes, including BTK and DNMT3B . This study demonstrates that exome sequencing allows to identify rare, deleterious human genetic variants responsible for fulminant sepsis in apparently healthy children. Diagnosing PIDs in such patients is of high relevance to survivors and affected families. We propose that unusually severe and fatal sepsis cases in previously healthy children should be considered for exome/genome sequencing to search for underlying PIDs.
Asgari, Samira; McLaren, Paul J.; Peake, Jane; Wong, Melanie; Wong, Richard; Bartha, Istvan; Francis, Joshua R.; Abarca, Katia; Gelderman, Kyra A.; Agyeman, Philipp; Aebi, Christoph; Berger, Christoph; Fellay, Jacques; Schlapbach, Luregn J.; Posfay-Barbe, Klara
2016-01-01
One out of three pediatric sepsis deaths in high income countries occur in previously healthy children. Primary immunodeficiencies (PIDs) have been postulated to underlie fulminant sepsis, but this concept remains to be confirmed in clinical practice. Pseudomonas aeruginosa (P. aeruginosa) is a common bacterium mostly associated with health care-related infections in immunocompromised individuals. However, in rare cases, it can cause sepsis in previously healthy children. We used exome sequencing and bioinformatic analysis to systematically search for genetic factors underpinning severe P. aeruginosa infection in the pediatric population. We collected blood samples from 11 previously healthy children, with no family history of immunodeficiency, who presented with severe sepsis due to community-acquired P. aeruginosa bacteremia. Genomic DNA was extracted from blood or tissue samples obtained intravitam or postmortem. We obtained high-coverage exome sequencing data and searched for rare loss-of-function variants. After rigorous filtrations, 12 potentially causal variants were identified. Two out of eight (25%) fatal cases were found to carry novel pathogenic variants in PID genes, including BTK and DNMT3B. This study demonstrates that exome sequencing allows to identify rare, deleterious human genetic variants responsible for fulminant sepsis in apparently healthy children. Diagnosing PIDs in such patients is of high relevance to survivors and affected families. We propose that unusually severe and fatal sepsis cases in previously healthy children should be considered for exome/genome sequencing to search for underlying PIDs. PMID:27703454
Ward, Robyn L.; Dobbins, Timothy; Lindor, Noralane M.; Rapkins, Robert W.; Hitchins, Megan P.
2013-01-01
Purpose: Constitutional MLH1 epimutations manifest as promoter methylation and silencing of the affected allele in normal tissues, predisposing to Lynch syndrome–associated cancers. This study investigated their frequency and inheritance. Methods: A total of 416 individuals with a colorectal cancer showing loss of MLH1 expression and without deleterious germline mutations in MLH1 were ascertained from the Colon Cancer Family Registry (C-CFR). Constitutive DNA samples were screened for MLH1 methylation in all 416 subjects and for promoter sequence changes in 357 individuals. Results: Constitutional MLH1 epimutations were identified in 16 subjects. Of these, seven (1.7%) had mono- or hemi-allelic methylation and eight had low-level methylation (2%). In one subject the epimutation was linked to the c.-27C>A promoter variant. Testing of 37 relatives from nine probands revealed paternal transmission of low-level methylation segregating with a c.+27G>A variant in one case. Five additional probands had a promoter variant without an MLH1 epimutation, with three showing diminished promoter activity in functional assays. Conclusion: Although rare, sequence changes in the regulatory region of MLH1 and aberrant methylation may alone or together predispose to the development of cancer. Screening for these changes is warranted in individuals who have a negative germline sequence screen of MLH1 and loss of MLH1 expression in their tumor. PMID:22878509
ATM, radiation, and the risk of second primary breast cancer.
Bernstein, Jonine L; Concannon, Patrick
2017-10-01
It was first suggested more than 40 years ago that heterozygous carriers for the human autosomal recessive disorder Ataxia-Telangiectasia (A-T) might also be at increased risk for cancer. Subsequent studies have identified the responsible gene, Ataxia-Telangiectasia Mutated (ATM), characterized genetic variation at this locus in A-T and a variety of different cancers, and described the functions of the ATM protein with regard to cellular DNA damage responses. However, an overall model of how ATM contributes to cancer risk, and in particular, the role of DNA damage in this process, remains lacking. This review considers these questions in the context of contralateral breast cancer (CBC). Heterozygous carriers of loss of function mutations in ATM that are A-T causing, are at increased risk of breast cancer. However, examination of a range of genetic variants, both rare and common, across multiple cancers, suggests that ATM may have additional effects on cancer risk that are allele-dependent. In the case of CBC, selected common alleles at ATM are associated with a reduced incidence of CBC, while other rare and predicted deleterious variants may act jointly with radiation exposure to increase risk. Further studies that characterize germline and somatic ATM mutations in breast cancer and relate the detected genetic changes to functional outcomes, particularly with regard to radiation responses, are needed to gain a complete picture of the complex relationship between ATM, radiation and breast cancer.
Kwon, Tae-Jun; Oh, Se-Kyung; Park, Hong-Joon; Sato, Osamu; Venselaar, Hanka; Choi, Soo Young; Kim, SungHee; Lee, Kyu-Yup; Bok, Jinwoong; Lee, Sang-Heun; Vriend, Gert; Ikebe, Mitsuo; Kim, Un-Kyung; Choi, Jae Young
2014-07-01
Mutations in five unconventional myosin genes have been associated with genetic hearing loss (HL). These genes encode the motor proteins myosin IA, IIIA, VI, VIIA and XVA. To date, most mutations in myosin genes have been found in the Caucasian population. In addition, only a few functional studies have been performed on the previously reported myosin mutations. We performed screening and functional studies for mutations in the MYO1A and MYO6 genes in Korean cases of autosomal dominant non-syndromic HL. We identified four novel heterozygous mutations in MYO6. Three mutations (p.R825X, p.R991X and Q918fsX941) produce a premature truncation of the myosin VI protein. Another mutation, p.R205Q, was associated with diminished actin-activated ATPase activity and actin gliding velocity of myosin VI in an in vitro analysis. This finding is consistent with the results of protein modelling studies and corroborates the pathogenicity of this mutation in the MYO6 gene. One missense variant, p.R544W, was found in the MYO1A gene, and in silico analysis suggested that this variant has deleterious effects on protein function. This finding is consistent with the results of protein modelling studies and corroborates the pathogenic effect of this mutation in the MYO6 gene.
Kwon, Tae-Jun; Oh, Se-Kyung; Park, Hong-Joon; Sato, Osamu; Venselaar, Hanka; Choi, Soo Young; Kim, SungHee; Lee, Kyu-Yup; Bok, Jinwoong; Lee, Sang-Heun; Vriend, Gert; Ikebe, Mitsuo; Kim, Un-Kyung; Choi, Jae Young
2014-01-01
Mutations in five unconventional myosin genes have been associated with genetic hearing loss (HL). These genes encode the motor proteins myosin IA, IIIA, VI, VIIA and XVA. To date, most mutations in myosin genes have been found in the Caucasian population. In addition, only a few functional studies have been performed on the previously reported myosin mutations. We performed screening and functional studies for mutations in the MYO1A and MYO6 genes in Korean cases of autosomal dominant non-syndromic HL. We identified four novel heterozygous mutations in MYO6. Three mutations (p.R825X, p.R991X and Q918fsX941) produce a premature truncation of the myosin VI protein. Another mutation, p.R205Q, was associated with diminished actin-activated ATPase activity and actin gliding velocity of myosin VI in an in vitro analysis. This finding is consistent with the results of protein modelling studies and corroborates the pathogenicity of this mutation in the MYO6 gene. One missense variant, p.R544W, was found in the MYO1A gene, and in silico analysis suggested that this variant has deleterious effects on protein function. This finding is consistent with the results of protein modelling studies and corroborates the pathogenic effect of this mutation in the MYO6 gene. PMID:25080041
A germline FANCA alteration that is associated with increased sensitivity to DNA damaging agents
Wilkes, David C.; Sailer, Verena; Xue, Hui; Cheng, Hongwei; Collins, Colin C.; Gleave, Martin; Wang, Yuzhuo; Demichelis, Francesca; Beltran, Himisha; Rubin, Mark A.; Rickman, David S.
2017-01-01
Defects in genes involved in DNA damage repair (DDR) pathway are emerging as novel biomarkers and targets for new prostate cancer drug therapies. A previous report revealed an association between an exceptional response to cisplatin treatment and a somatic loss of heterozygosity (LOH) of FANCA in a patient with metastatic prostate cancer who also harbored a germline FANCA variant (S1088F). Although germline FANCA mutations are the most frequent alterations in patients with Fanconi anemia, germline alterations are less common in prostate cancer. We hypothesized that the germline S1088F FANCA variant in combination with FANCA LOH was deleterious for FANCA function and contributed to the patient's exceptional response to cisplatin. We show that although it properly localizes to the nucleus, the S1088F FANCA mutant protein disrupts the FANC protein complex resulting in increased sensitivity to DNA damaging agents. Because molecular stratification is emerging as a strategy for treating men with metastatic, castrate-resistant prostate cancer harboring specific DDR gene defects, our findings suggest that more biomarker studies are needed to better define clinically relevant germline and somatic alterations. PMID:28864460
Kernohan, Kristin D; Dyment, David A; Pupavac, Mihaela; Cramer, Zvi; McBride, Arran; Bernard, Genevieve; Straub, Isabella; Tetreault, Martine; Hartley, Taila; Huang, Lijia; Sell, Erick; Majewski, Jacek; Rosenblatt, David S; Shoubridge, Eric; Mhanni, Aziz; Myers, Tara; Proud, Virginia; Vergano, Samanta; Spangler, Brooke; Farrow, Emily; Kussman, Jennifer; Safina, Nicole; Saunders, Carol; Boycott, Kym M; Thiffault, Isabelle
2017-05-01
Deleterious variants in the same gene present in two or more families with overlapping clinical features provide convincing evidence of a disease-gene association; this can be a challenge in the study of ultrarare diseases. To facilitate the identification of additional families, several groups have created "matching" platforms. We describe four individuals from three unrelated families "matched" by GeneMatcher and MatchMakerExchange. Individuals had microcephaly, developmental delay, epilepsy, and recessive mutations in TRIT1. A single homozygous mutation in TRIT1 associated with similar features had previously been reported in one family. The identification of these individuals provides additional evidence to support TRIT1 as the disease-causing gene and interprets the variants as "pathogenic." TRIT1 functions to modify mitochondrial tRNAs and is necessary for protein translation. We show that dysfunctional TRIT1 results in decreased levels of select mitochondrial proteins. Our findings confirm the TRIT1 disease association and advance the phenotypic and molecular understanding of this disorder. © 2017 Wiley Periodicals, Inc.
GPR101 Mutations are not a Frequent Cause of Congenital Isolated Growth Hormone Deficiency.
Castinetti, F; Daly, A F; Stratakis, C A; Caberg, J-H; Castermans, E; Trivellin, G; Rostomyan, L; Saveanu, A; Jullien, N; Reynaud, R; Barlier, A; Bours, V; Brue, T; Beckers, A
2016-06-01
Patients with Xq26.3 microduplication present with X-linked acrogigantism (X-LAG) syndrome, an early-childhood form of gigantism due to marked growth hormone (GH) hypersecretion from mixed GH-PRL adenomas and hyperplasia. The microduplication includes GPR101, which is upregulated in patients' tumor tissue. The GPR101 gene codes for an orphan G protein coupled receptor that is normally highly expressed in the hypothalamus. Our aim was to determine whether GPR101 loss of function mutations or deletions could be involved in patients with congenital isolated GH deficiency (GHD). Taking advantage of the cohort of patients from the GENHYPOPIT network, we studied 41 patients with unexplained isolated GHD. All patients had Sanger sequencing of the GPR101 gene and array comparative genome hybridization (aCGH) to look for deletions. Functional studies (cell culture with GH secretion measurements, cAMP response) were performed. One novel GPR101 variant, c.589 G>T (p.V197L), was seen in the heterozygous state in a patient with isolated GHD. In silico analysis suggested that this variant could be deleterious. Functional studies did not show any significant difference in comparison with wild type for GH secretion and cAMP response. No truncating, frameshift, or small insertion-deletion (indel) GPR101 mutations were seen in the 41 patients. No deletion or other copy number variation at chromosome Xq26.3 was found on aCGH. We found a novel GPR101 variant of unknown significance, in a patient with isolated GH deficiency. Our study did not identify GPR101 abnormalities as a frequent cause of GH deficiency. © Georg Thieme Verlag KG Stuttgart · New York.
Distance from sub-Saharan Africa predicts mutational load in diverse human genomes.
Henn, Brenna M; Botigué, Laura R; Peischl, Stephan; Dupanloup, Isabelle; Lipatov, Mikhail; Maples, Brian K; Martin, Alicia R; Musharoff, Shaila; Cann, Howard; Snyder, Michael P; Excoffier, Laurent; Kidd, Jeffrey M; Bustamante, Carlos D
2016-01-26
The Out-of-Africa (OOA) dispersal ∼ 50,000 y ago is characterized by a series of founder events as modern humans expanded into multiple continents. Population genetics theory predicts an increase of mutational load in populations undergoing serial founder effects during range expansions. To test this hypothesis, we have sequenced full genomes and high-coverage exomes from seven geographically divergent human populations from Namibia, Congo, Algeria, Pakistan, Cambodia, Siberia, and Mexico. We find that individual genomes vary modestly in the overall number of predicted deleterious alleles. We show via spatially explicit simulations that the observed distribution of deleterious allele frequencies is consistent with the OOA dispersal, particularly under a model where deleterious mutations are recessive. We conclude that there is a strong signal of purifying selection at conserved genomic positions within Africa, but that many predicted deleterious mutations have evolved as if they were neutral during the expansion out of Africa. Under a model where selection is inversely related to dominance, we show that OOA populations are likely to have a higher mutation load due to increased allele frequencies of nearly neutral variants that are recessive or partially recessive.
Hall, Michael J.; Reid, Julia E.; Burbidge, Lynn A.; Pruss, Dmitry; Deffenbaugh, Amie M.; Frye, Cynthia; Wenstrup, Richard J.; Ward, Brian E.; Scholl, Thomas A.; Noll, Walter W.
2009-01-01
Background In women at increased risk for breast and ovarian cancer, the identification of a BRCA1/2 mutation has important implications for screening and prevention counseling. Uncertainty regarding the role of BRCA1/2 testing in high-risk women from diverse ancestral backgrounds exists due to variability in prevalence estimates of deleterious (disease-associated) mutations in non-White populations. We examined the prevalence of BRCA1/2 mutations in an ethnically diverse group of women referred for genetic testing. Methods We conducted a cross-sectional analysis to assess the prevalence of BRCA1/2 mutations in a group of non-Ashkenazi Jewish women undergoing genetic testing. Results From 1996-2006, 46,276 women meeting study criteria underwent DNA full-sequence analysis of the BRCA1 and BRCA2 genes. Deleterious mutations were identified in 12.5% of subjects, and recurrent deleterious mutations (prevalence > 2%) were identified in all ancestral groups. Women of non-European descent were younger (45.9 yrs, SD11.6) than European (50.0 yrs, SD11.9)(p<0.001). Women of African (15.6%)[OR 1.3(1.1-1.5)] and Latin American (14.8%)[OR 1.2(1.1-1.4)] ancestries had a significantly higher prevalence of deleterious BRCA1/2 mutations compared to women of Western European ancestry (12.1%), primarily due to an increased prevalence of BRCA1 mutations in these two groups. Non-European ethnicity was strongly associated with having a variant of uncertain significance; however, re-classification decreased variant reporting (12.8%→5.9%), with women of African ancestry experiencing the largest decline (58%). Conclusions Mutation prevalence is high among women referred for clinical BRCA1/2 testing, and risk is similar across diverse ethnicities. BRCA1/2 testing is integral to cancer risk assessment in all high-risk women. PMID:19241424
RNA Recombination Enhances Adaptability and Is Required for Virus Spread and Virulence.
Xiao, Yinghong; Rouzine, Igor M; Bianco, Simone; Acevedo, Ashley; Goldstein, Elizabeth Faul; Farkov, Mikhail; Brodsky, Leonid; Andino, Raul
2016-04-13
Mutation and recombination are central processes driving microbial evolution. A high mutation rate fuels adaptation but also generates deleterious mutations. Recombination between two different genomes may resolve this paradox, alleviating effects of clonal interference and purging deleterious mutations. Here we demonstrate that recombination significantly accelerates adaptation and evolution during acute virus infection. We identified a poliovirus recombination determinant within the virus polymerase, mutation of which reduces recombination rates without altering replication fidelity. By generating a panel of variants with distinct mutation rates and recombination ability, we demonstrate that recombination is essential to enrich the population in beneficial mutations and purge it from deleterious mutations. The concerted activities of mutation and recombination are key to virus spread and virulence in infected animals. These findings inform a mathematical model to demonstrate that poliovirus adapts most rapidly at an optimal mutation rate determined by the trade-off between selection and accumulation of detrimental mutations. Copyright © 2016 Elsevier Inc. All rights reserved.
Pettigrew, Christopher; Wayte, Nicola; Lovelock, Paul K; Tavtigian, Sean V; Chenevix-Trench, Georgia; Spurdle, Amanda B; Brown, Melissa A
2005-01-01
Introduction Aberrant pre-mRNA splicing can be more detrimental to the function of a gene than changes in the length or nature of the encoded amino acid sequence. Although predicting the effects of changes in consensus 5' and 3' splice sites near intron:exon boundaries is relatively straightforward, predicting the possible effects of changes in exonic splicing enhancers (ESEs) remains a challenge. Methods As an initial step toward determining which ESEs predicted by the web-based tool ESEfinder in the breast cancer susceptibility gene BRCA1 are likely to be functional, we have determined their evolutionary conservation and compared their location with known BRCA1 sequence variants. Results Using the default settings of ESEfinder, we initially detected 669 potential ESEs in the coding region of the BRCA1 gene. Increasing the threshold score reduced the total number to 464, while taking into consideration the proximity to splice donor and acceptor sites reduced the number to 211. Approximately 11% of these ESEs (23/211) either are identical at the nucleotide level in human, primates, mouse, cow, dog and opossum Brca1 (conserved) or are detectable by ESEfinder in the same position in the Brca1 sequence (shared). The frequency of conserved and shared predicted ESEs between human and mouse is higher in BRCA1 exons (2.8 per 100 nucleotides) than in introns (0.6 per 100 nucleotides). Of conserved or shared putative ESEs, 61% (14/23) were predicted to be affected by sequence variants reported in the Breast Cancer Information Core database. Applying the filters described above increased the colocalization of predicted ESEs with missense changes, in-frame deletions and unclassified variants predicted to be deleterious to protein function, whereas they decreased the colocalization with known polymorphisms or unclassified variants predicted to be neutral. Conclusion In this report we show that evolutionary conservation analysis may be used to improve the specificity of an ESE prediction tool. This is the first report on the prediction of the frequency and distribution of ESEs in the BRCA1 gene, and it is the first reported attempt to predict which ESEs are most likely to be functional and therefore which sequence variants in ESEs are most likely to be pathogenic. PMID:16280041
Fraser, R S; Lumsden, J S; Lillie, B N
2018-05-10
Infectious diseases are a significant issue in animal production systems, including both the dairy and beef cattle industries. Understanding and defining the genetics of infectious disease susceptibility in cattle is an important step in the mitigation of their impact. Collagenous lectins are soluble pattern recognition receptors that form an important part of the innate immune system, which serves as the first line of host defense against pathogens. Polymorphisms in the collagenous lectin genes have been shown in previous studies to contribute to infectious disease susceptibility, and in cattle, mutations in two collagenous lectin genes (MBL1 and MBL2) are associated with mastitis. To further characterize the contribution of variation in the bovine collagenous lectins to infectious disease susceptibility, we used a pooled NGS approach to identify short nucleotide variants (SNVs) in the collagenous lectins (and regulatory DNA) of cattle with (n = 80) and without (n = 40) infectious disease. Allele frequency analysis identified 74 variants that were significantly (p < 5 × 10 -6 ) associated with infectious disease, the majority of which were clustered in a 29-kb segment upstream of the collectin locus on chromosome 28. In silico analysis of the functional effects of all the variants predicted 11 SNVs with a deleterious effect on protein structure and/or function, 148 SNVs that occurred within potential transcription factor binding sites, and 31 SNVs occurring within potential miRNA binding elements. This study provides a detailed look at the genetic variation of the bovine collagenous lectins and identifies potential genetic markers for infectious disease susceptibility.
Identifying the Deleterious Effect of Rare LHX4 Allelic Variants, a Challenging Issue
Rochette, Claire; Jullien, Nicolas; Saveanu, Alexandru; Caldagues, Emmanuelle; Bergada, Ignacio; Braslavsky, Debora; Pfeifer, Marija; Reynaud, Rachel; Herman, Jean-Paul; Barlier, Anne; Brue, Thierry; Enjalbert, Alain; Castinetti, Frederic
2015-01-01
LHX4 is a LIM homeodomain transcription factor involved in the early steps of pituitary ontogenesis. To date, 8 heterozygous LHX4 mutations have been reported as responsible of combined pituitary hormone deficiency (CPHD) in Humans. We identified 4 new LHX4 heterozygous allelic variants in patients with congenital hypopituitarism: W204X, delK242, N271S and Q346R. Our objective was to determine the role of LHX4 variants in patients’ phenotypes. Heterologous HEK293T cells were transfected with plasmids encoding for wild-type or mutant LHX4. Protein expression was analysed by Western Blot, and DNA binding by electro-mobility shift assay experiments. Target promoters of LHX4 were cotransfected with wild type or mutant LHX4 to test the transactivating abilities of each variant. Our results show that the W204X mutation was associated with early GH and TSH deficiencies and later onset ACTH deficiency. It led to a truncated protein unable to bind to alpha-Gsu promoter binding consensus sequence. W204X was not able to activate target promoters in vitro. Cotransfection experiments did not favour a dominant negative effect. In contrast, all other mutants were able to bind the promoters and led to an activation similar as that observed with wild type LHX4, suggesting that they were likely polymorphisms. To conclude, our study underlines the need for functional in vitro studies to ascertain the role of rare allelic variants of LHX4 in disease phenotypes. It supports the causative role of the W204X mutation in CPHD and adds up childhood onset ACTH deficiency to the clinical spectrum of the various phenotypes related to LHX4 mutations. PMID:25955177
Wesdorp, Mieke; de Koning Gans, Pia A M; Schraders, Margit; Oostrik, Jaap; Huynen, Martijn A; Venselaar, Hanka; Beynon, Andy J; van Gaalen, Judith; Piai, Vitória; Voermans, Nicol; van Rossum, Michelle M; Hartel, Bas P; Lelieveld, Stefan H; Wiel, Laurens; Verbist, Berit; Rotteveel, Liselotte J; van Dooren, Marieke F; Lichtner, Peter; Kunst, Henricus P M; Feenstra, Ilse; Admiraal, Ronald J C; Yntema, Helger G; Hoefsloot, Lies H; Pennings, Ronald J E; Kremer, Hannie
2018-05-12
Unraveling the causes and pathomechanisms of progressive disorders is essential for the development of therapeutic strategies. Here, we identified heterozygous pathogenic missense variants of LMX1A in two families of Dutch origin with progressive nonsyndromic hearing impairment (HI), using whole exome sequencing. One variant, c.721G > C (p.Val241Leu), occurred de novo and is predicted to affect the homeodomain of LMX1A, which is essential for DNA binding. The second variant, c.290G > C (p.Cys97Ser), predicted to affect a zinc-binding residue of the second LIM domain that is involved in protein-protein interactions. Bi-allelic deleterious variants of Lmx1a are associated with a complex phenotype in mice, including deafness and vestibular defects, due to arrest of inner ear development. Although Lmx1a mouse mutants demonstrate neurological, skeletal, pigmentation and reproductive system abnormalities, no syndromic features were present in the participating subjects of either family. LMX1A has previously been suggested as a candidate gene for intellectual disability, but our data do not support this, as affected subjects displayed normal cognition. Large variability was observed in the age of onset (a)symmetry, severity and progression rate of HI. About half of the affected individuals displayed vestibular dysfunction and experienced symptoms thereof. The late-onset progressive phenotype and the absence of cochleovestibular malformations on computed tomography scans indicate that heterozygous defects of LMX1A do not result in severe developmental abnormalities in humans. We propose that a single LMX1A wild-type copy is sufficient for normal development but insufficient for maintenance of cochleovestibular function. Alternatively, minor cochleovestibular developmental abnormalities could eventually lead to the progressive phenotype seen in the families.
Whole-exome sequencing supports genetic heterogeneity in childhood apraxia of speech.
Worthey, Elizabeth A; Raca, Gordana; Laffin, Jennifer J; Wilk, Brandon M; Harris, Jeremy M; Jakielski, Kathy J; Dimmock, David P; Strand, Edythe A; Shriberg, Lawrence D
2013-10-02
Childhood apraxia of speech (CAS) is a rare, severe, persistent pediatric motor speech disorder with associated deficits in sensorimotor, cognitive, language, learning and affective processes. Among other neurogenetic origins, CAS is the disorder segregating with a mutation in FOXP2 in a widely studied, multigenerational London family. We report the first whole-exome sequencing (WES) findings from a cohort of 10 unrelated participants, ages 3 to 19 years, with well-characterized CAS. As part of a larger study of children and youth with motor speech sound disorders, 32 participants were classified as positive for CAS on the basis of a behavioral classification marker using auditory-perceptual and acoustic methods that quantify the competence, precision and stability of a speaker's speech, prosody and voice. WES of 10 randomly selected participants was completed using the Illumina Genome Analyzer IIx Sequencing System. Image analysis, base calling, demultiplexing, read mapping, and variant calling were performed using Illumina software. Software developed in-house was used for variant annotation, prioritization and interpretation to identify those variants likely to be deleterious to neurodevelopmental substrates of speech-language development. Among potentially deleterious variants, clinically reportable findings of interest occurred on a total of five chromosomes (Chr3, Chr6, Chr7, Chr9 and Chr17), which included six genes either strongly associated with CAS (FOXP1 and CNTNAP2) or associated with disorders with phenotypes overlapping CAS (ATP13A4, CNTNAP1, KIAA0319 and SETX). A total of 8 (80%) of the 10 participants had clinically reportable variants in one or two of the six genes, with variants in ATP13A4, KIAA0319 and CNTNAP2 being the most prevalent. Similar to the results reported in emerging WES studies of other complex neurodevelopmental disorders, our findings from this first WES study of CAS are interpreted as support for heterogeneous genetic origins of this pediatric motor speech disorder with multiple genes, pathways and complex interactions. We also submit that our findings illustrate the potential use of WES for both gene identification and case-by-case clinical diagnostics in pediatric motor speech disorders.
Cushing’s Syndrome: All variants, detection, and treatment
Sharma, Susmeeta T.; Nieman, Lynnette K.
2010-01-01
Synopsis Cushing’s syndrome is caused by prolonged exposure to excess glucocorticoids. Diagnosis of Cushing’s syndrome involves a step-wise approach and establishing the cause can be challenging in some cases. Hypertension is present in about 80% of patients with Cushing’s syndrome and can lead to significant morbidity and mortality. Several pathogenic mechanisms have been proposed for glucocorticoid-induced hypertension including a functional mineralocorticoid excess state, up-regulation of the renin angiotensin system and deleterious effects of cortisol on the vasculature. Surgical excision of the cause of excess glucocorticoids remains the optimal treatment for Cushing’s syndrome. Anti-glucocorticoid and antihypertensive agents and steroidogenesis inhibitors can be used as adjunctive treatment modalities in preparation for surgery, and in cases where surgery is contraindicated or has not led to cure. PMID:21565673
Pathogenic Anti-Müllerian Hormone Variants in Polycystic Ovary Syndrome.
Gorsic, Lidija K; Kosova, Gulum; Werstein, Brian; Sisk, Ryan; Legro, Richard S; Hayes, M Geoffrey; Teixeira, Jose M; Dunaif, Andrea; Urbanek, Margrit
2017-08-01
Polycystic ovary syndrome (PCOS), a common endocrine condition, is the leading cause of anovulatory infertility. Given that common disease-susceptibility variants account for only a small percentage of the estimated PCOS heritability, we tested the hypothesis that rare variants contribute to this deficit in heritability. Unbiased whole-genome sequencing (WGS) of 80 patients with PCOS and 24 reproductively normal control subjects identified potentially deleterious variants in AMH, the gene encoding anti-Müllerian hormone (AMH). Targeted sequencing of AMH of 643 patients with PCOS and 153 control patients was used to replicate WGS findings. Dual luciferase reporter assays measured the impact of the variants on downstream AMH signaling. We found 24 rare (minor allele frequency < 0.01) AMH variants in patients with PCOS and control subjects; 18 variants were specific to women with PCOS. Seventeen of 18 (94%) PCOS-specific variants had significantly reduced AMH signaling, whereas none of 6 variants observed in control subjects showed significant defects in signaling. Thus, we identified rare AMH coding variants that reduced AMH-mediated signaling in a subset of patients with PCOS. To our knowledge, this study is the first to identify rare genetic variants associated with a common PCOS phenotype. Our findings suggest decreased AMH signaling as a mechanism for the pathogenesis of PCOS. AMH decreases androgen biosynthesis by inhibiting CYP17 activity; a potential mechanism of action for AMH variants in PCOS, therefore, is to increase androgen biosynthesis due to decreased AMH-mediated inhibition of CYP17 activity. Copyright © 2017 Endocrine Society
Rossi, Massimiliano; Chatron, Nicolas; Labalme, Audrey; Ville, Dorothée; Carneiro, Maryline; Edery, Patrick; des Portes, Vincent; Lemke, Johannes R; Sanlaville, Damien; Lesca, Gaetan
2017-02-01
We report on two consanguineous sibs affected with severe intellectual disability and autistic features due to a homozygous missense variant of GRIN1. Massive parallel sequencing was performed using a gene panel including 450 genes related to intellectual disability and autism spectrum disorders. We found a homozygous missense variation of GRIN1 (c.679G>C; p.(Asp227His)) in the two affected sibs, which was inherited from both unaffected heterozygous parents. Heterozygous variants of GRIN1, encoding the GluN1 subunit of the NMDA receptor, have been reported in patients with neurodevelopmental disorders including epileptic encephalopathy, severe intellectual disability, and movement disorders. The p.(Asp227His) variant is located in the same aminoterminal protein domain as the recently published p.(Arg217Trp), which was found at the homozygous state in two patients with a similar phenotype of severe intellectual disability and autistic features but without epilepsy. In silico predictions were consistent with a deleterious effect. The present findings further expand the clinical spectrum of GRIN1 variants and support the existence of hypomorphic variants causing severe neurodevelopmental impairment with autosomal recessive inheritance.
A Non-Degenerate Code of Deleterious Variants in Mendelian Loci Contributes to Complex Disease Risk
Blair, David R.; Lyttle, Christopher S.; Mortensen, Jonathan M.; Bearden, Charles F.; Jensen, Anders Boeck; Khiabanian, Hossein; Melamed, Rachel; Rabadan, Raul; Bernstam, Elmer V.; Brunak, Søren; Jensen, Lars Juhl; Nicolae, Dan; Shah, Nigam H.; Grossman, Robert L.; Cox, Nancy J.; White, Kevin P.; Rzhetsky, Andrey
2013-01-01
Summary Whereas countless highly penetrant variants have been associated with Mendelian disorders, the genetic etiologies underlying complex diseases remain largely unresolved. Here, we examine the extent to which Mendelian variation contributes to complex disease risk by mining the medical records of over 110 million patients. We detect thousands of associations between Mendelian and complex diseases, revealing a non-degenerate, phenotypic code that links each complex disorder to a unique collection of Mendelian loci. Using genome-wide association results, we demonstrate that common variants associated with complex diseases are enriched in the genes indicated by this “Mendelian code.” Finally, we detect hundreds of comorbidity associations among Mendelian disorders, and we use probabilistic genetic modeling to demonstrate that Mendelian variants likely contribute non-additively to the risk for a subset of complex diseases. Overall, this study illustrates a complementary approach for mapping complex disease loci and provides unique predictions concerning the etiologies of specific diseases. PMID:24074861
Germ-line and somatic EPHA2 coding variants in lens aging and cataract.
Bennett, Thomas M; M'Hamdi, Oussama; Hejtmancik, J Fielding; Shiels, Alan
2017-01-01
Rare germ-line mutations in the coding regions of the human EPHA2 gene (EPHA2) have been associated with inherited forms of pediatric cataract, whereas, frequent, non-coding, single nucleotide variants (SNVs) have been associated with age-related cataract. Here we sought to determine if germ-line EPHA2 coding SNVs were associated with age-related cataract in a case-control DNA panel (> 50 years) and if somatic EPHA2 coding SNVs were associated with lens aging and/or cataract in a post-mortem lens DNA panel (> 48 years). Micro-fluidic PCR amplification followed by targeted amplicon (exon) next-generation (deep) sequencing of EPHA2 (17-exons) afforded high read-depth coverage (1000x) for > 82% of reads in the cataract case-control panel (161 cases, 64 controls) and > 70% of reads in the post-mortem lens panel (35 clear lens pairs, 22 cataract lens pairs). Novel and reference (known) missense SNVs in EPHA2 that were predicted in silico to be functionally damaging were found in both cases and controls from the age-related cataract panel at variant allele frequencies (VAFs) consistent with germ-line transmission (VAF > 20%). Similarly, both novel and reference missense SNVs in EPHA2 were found in the post-mortem lens panel at VAFs consistent with a somatic origin (VAF > 3%). The majority of SNVs found in the cataract case-control panel and post-mortem lens panel were transitions and many occurred at di-pyrimidine sites that are susceptible to ultraviolet (UV) radiation induced mutation. These data suggest that novel germ-line (blood) and somatic (lens) coding SNVs in EPHA2 that are predicted to be functionally deleterious occur in adults over 50 years of age. However, both types of EPHA2 coding variants were present at comparable levels in individuals with or without age-related cataract making simple genotype-phenotype correlations inconclusive.
Germ-line and somatic EPHA2 coding variants in lens aging and cataract
Bennett, Thomas M.; M’Hamdi, Oussama; Hejtmancik, J. Fielding
2017-01-01
Rare germ-line mutations in the coding regions of the human EPHA2 gene (EPHA2) have been associated with inherited forms of pediatric cataract, whereas, frequent, non-coding, single nucleotide variants (SNVs) have been associated with age-related cataract. Here we sought to determine if germ-line EPHA2 coding SNVs were associated with age-related cataract in a case-control DNA panel (> 50 years) and if somatic EPHA2 coding SNVs were associated with lens aging and/or cataract in a post-mortem lens DNA panel (> 48 years). Micro-fluidic PCR amplification followed by targeted amplicon (exon) next-generation (deep) sequencing of EPHA2 (17-exons) afforded high read-depth coverage (1000x) for > 82% of reads in the cataract case-control panel (161 cases, 64 controls) and > 70% of reads in the post-mortem lens panel (35 clear lens pairs, 22 cataract lens pairs). Novel and reference (known) missense SNVs in EPHA2 that were predicted in silico to be functionally damaging were found in both cases and controls from the age-related cataract panel at variant allele frequencies (VAFs) consistent with germ-line transmission (VAF > 20%). Similarly, both novel and reference missense SNVs in EPHA2 were found in the post-mortem lens panel at VAFs consistent with a somatic origin (VAF > 3%). The majority of SNVs found in the cataract case-control panel and post-mortem lens panel were transitions and many occurred at di-pyrimidine sites that are susceptible to ultraviolet (UV) radiation induced mutation. These data suggest that novel germ-line (blood) and somatic (lens) coding SNVs in EPHA2 that are predicted to be functionally deleterious occur in adults over 50 years of age. However, both types of EPHA2 coding variants were present at comparable levels in individuals with or without age-related cataract making simple genotype-phenotype correlations inconclusive. PMID:29267365
Lyu, S; Arends, D; Nassar, M K; Brockmann, G A
2017-06-01
In our previous research, QTL analysis in an F 2 cross between the inbred New Hampshire (NHI) and White Leghorn (WL77) lines revealed a growth QTL in the distal part of chromosome 4. To physically reduce the chromosomal interval and the number of potential candidate genes, we performed fine mapping using individuals of generations F 10 , F 11 and F 12 in an advanced intercross line that had been established from the initial F 2 mapping population. Using nine single nucleotide polymorphism (SNP) markers within the QTL region for an association analysis with several growth traits from hatch to 20 weeks and body composition traits at 20 weeks, we could reduce the confidence interval from 26.9 to 3.4 Mb. Within the fine mapped region, markers rs14490774, rs314961352 and rs318175270 were in full linkage disequilibrium (D' = 1.0) and showed the strongest effect on growth and muscle mass (LOD ≥ 4.00). This reduced region contains 30 genes, compared to 292 genes in the original region. Chicken 60 K and 600 K SNP chips combined with DNA sequencing of the parental lines were used to call mutations in the reduced region. In the narrowed-down region, 489 sequence variants were detected between NHI and WL77. The most deleterious variants are a missense variant in ADGRA3 (SIFT = 0.02) and a frameshift deletion in the functional unknown gene ENSGALG00000014401 in NHI chicken. In addition, five synonymous variants were discovered in genes PPARGC1A, ADGRA3, PACRGL, SLIT2 and FAM184B. In our study, the confidence interval and the number of potential genes could be reduced 8- and 10- fold respectively. Further research will focus on functional effects of mutant genes. © 2017 Stichting International Foundation for Animal Genetics.
Balan, Shabeesh; Bharathan, Sumitha Prameela; Vellichiramal, Neetha Nanoth; Sathyan, Sanish; Joseph, Vijai; Radhakrishnan, Kurupath; Banerjee, Moinak
2014-01-01
Epilepsy constitutes a heterogeneous group of disorders that is characterized by recurrent unprovoked seizures due to widely different etiologies. Multidrug resistance remains a major issue in clinical epileptology, where one third of patients with epilepsy continue to have seizures. Role of efflux transporters in multidrug resistant epilepsy has been attributed to drug-resistant epilepsy although, with discrepant observation in genetic studies. These discrepancies could be attributed to variety of factors such as variable definition of the anti-epileptic drug (AED)-resistance, variable epilepsy phenotypes and ethnicities among the studies. In the present study we inquired the role of multidrug transporters ABCB1 and ABCG2 variants in determining AED-resistance and susceptibility to epilepsy in three well-characterized cohorts comprising of mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) (prototype for AED-resistant epilepsy); juvenile myoclonic epilepsy (JME) (prototype for AED-responsive epilepsy); and healthy non-epileptic controls, in 738 subjects of Malayalam speaking south Indian ancestry. ABCB1 and ABCG2 variants were not found to be associated with drug resistance when AED-resistant and AED-responsive cohorts were compared. However, a significant association was observed between ABCB1 (C3435T) rs1045642 and risk of having epilepsy (MTLE-HS and JME pooled cohort; genotypic p-value = 0.0002; allelic p-value = 0.004). This association was seen persistent with MTLE-HS (genotypic p-value = 0.0008; allelic p-value = 0.004) and also with JME (genotypic p-value = 0.01; allelic p-value = 0.05) cohort individually. In-silico functional prediction indicated that ABCB1 rs1045642 has a deleterious impact on protein coding function and in splicing regulation. We conclude that the ABCB1 and ABCG2 variants do not confer to AED-resistance in the study population. However, ABCB1 rs1045642 increases vulnerability to epilepsy with greater tendency for MTLE-HS in south Indian ancestry from Kerala.
Creemers, John W.M.; Choquet, Hélène; Stijnen, Pieter; Vatin, Vincent; Pigeyre, Marie; Beckers, Sigri; Meulemans, Sandra; Than, Manuel E.; Yengo, Loïc; Tauber, Maithé; Balkau, Beverley; Elliott, Paul; Jarvelin, Marjo-Riitta; Van Hul, Wim; Van Gaal, Luc; Horber, Fritz; Pattou, François; Froguel, Philippe; Meyre, David
2012-01-01
Null mutations in the PCSK1 gene, encoding the proprotein convertase 1/3 (PC1/3), cause recessive monogenic early onset obesity. Frequent coding variants that modestly impair PC1/3 function mildly increase the risk for common obesity. The aim of this study was to determine the contribution of rare functional PCSK1 mutations to obesity. PCSK1 exons were sequenced in 845 nonconsanguineous extremely obese Europeans. Eight novel nonsynonymous PCSK1 mutations were identified, all heterozygous. Seven mutations had a deleterious effect on either the maturation or the enzymatic activity of PC1/3 in cell lines. Of interest, five of these novel mutations, one of the previously described frequent variants (N221D), and the mutation found in an obese mouse model (N222D), affect residues at or near the structural calcium binding site Ca-1. The prevalence of the newly identified mutations was assessed in 6,233 obese and 6,274 lean European adults and children, which showed that carriers of any of these mutations causing partial PCSK1 deficiency had an 8.7-fold higher risk to be obese than wild-type carriers. These results provide the first evidence of an increased risk of obesity in heterozygous carriers of mutations in the PCSK1 gene. Furthermore, mutations causing partial PCSK1 deficiency are present in 0.83% of extreme obesity phenotypes. PMID:22210313
Creemers, John W M; Choquet, Hélène; Stijnen, Pieter; Vatin, Vincent; Pigeyre, Marie; Beckers, Sigri; Meulemans, Sandra; Than, Manuel E; Yengo, Loïc; Tauber, Maithé; Balkau, Beverley; Elliott, Paul; Jarvelin, Marjo-Riitta; Van Hul, Wim; Van Gaal, Luc; Horber, Fritz; Pattou, François; Froguel, Philippe; Meyre, David
2012-02-01
Null mutations in the PCSK1 gene, encoding the proprotein convertase 1/3 (PC1/3), cause recessive monogenic early onset obesity. Frequent coding variants that modestly impair PC1/3 function mildly increase the risk for common obesity. The aim of this study was to determine the contribution of rare functional PCSK1 mutations to obesity. PCSK1 exons were sequenced in 845 nonconsanguineous extremely obese Europeans. Eight novel nonsynonymous PCSK1 mutations were identified, all heterozygous. Seven mutations had a deleterious effect on either the maturation or the enzymatic activity of PC1/3 in cell lines. Of interest, five of these novel mutations, one of the previously described frequent variants (N221D), and the mutation found in an obese mouse model (N222D), affect residues at or near the structural calcium binding site Ca-1. The prevalence of the newly identified mutations was assessed in 6,233 obese and 6,274 lean European adults and children, which showed that carriers of any of these mutations causing partial PCSK1 deficiency had an 8.7-fold higher risk to be obese than wild-type carriers. These results provide the first evidence of an increased risk of obesity in heterozygous carriers of mutations in the PCSK1 gene. Furthermore, mutations causing partial PCSK1 deficiency are present in 0.83% of extreme obesity phenotypes.
A germline FANCA alteration that is associated with increased sensitivity to DNA damaging agents.
Wilkes, David C; Sailer, Verena; Xue, Hui; Cheng, Hongwei; Collins, Colin C; Gleave, Martin; Wang, Yuzhuo; Demichelis, Francesca; Beltran, Himisha; Rubin, Mark A; Rickman, David S
2017-09-01
Defects in genes involved in DNA damage repair (DDR) pathway are emerging as novel biomarkers and targets for new prostate cancer drug therapies. A previous report revealed an association between an exceptional response to cisplatin treatment and a somatic loss of heterozygosity (LOH) of FANCA in a patient with metastatic prostate cancer who also harbored a germline FANCA variant (S1088F). Although germline FANCA mutations are the most frequent alterations in patients with Fanconi anemia, germline alterations are less common in prostate cancer. We hypothesized that the germline S1088F FANCA variant in combination with FANCA LOH was deleterious for FANCA function and contributed to the patient's exceptional response to cisplatin. We show that although it properly localizes to the nucleus, the S1088F FANCA mutant protein disrupts the FANC protein complex resulting in increased sensitivity to DNA damaging agents. Because molecular stratification is emerging as a strategy for treating men with metastatic, castrate-resistant prostate cancer harboring specific DDR gene defects, our findings suggest that more biomarker studies are needed to better define clinically relevant germline and somatic alterations. © 2017 Wilkes et al.; Published by Cold Spring Harbor Laboratory Press.
Kubiak, Anna; Czetwertyńska, Małgorzata; Świerniak, Michał; Gierlikowski, Wojciech; Kolanowska, Monika; Bakuła-Zalewska, Elwira; Jhiang, Sissy M.; Jażdżewski, Krystian; Wójcicka, Anna
2018-01-01
Aberrant expression of the sodium-iodide symporter (NIS) and the resistance to post-operative radioactive iodide treatment is a crucial cause of higher mortality of some thyroid cancer patients. In this study, we analyzed the impact of miR-146a on the expression and function of NIS and on the overall survival of thyroid cancer patients. The study included 2441 patients (2163 women; 278 men); including 359 cases with follicular variant of papillary thyroid carcinoma (fvPTC). miR:NIS interactions were analyzed in cell lines using in vivo binding and inhibition assays and radioactive iodine uptake assays. Tumor/blood DNA was used for rs2910164 genotyping. Overall survival was assessed retrospectively. In the results, we showed that miR-146a-3p directly binds to and inhibits NIS. Inhibition of miR-146a-3p restores the expression and function of NIS, increasing radioactive iodine uptake. Rs2910164 functional variant within miR-146a-3p is associated with increased overall mortality among fvPTC female patients. The deaths per 1000 person-years were 29.7 in CC carriers vs. 5.08 in GG/GC-carriers (HR = 6.21, p = 0.006). Higher mortality of CC vs. GG/GC carriers was also observed in patients with lower clinical stage (HR = 22.72, p < 0.001), smaller tumor size (pT1/pT2) (HR = 25.05, p < 0.001), lack of extrathyroidal invasion (HR = 9.03, p = 0.02), lack of nodular invasion (HR = 7.84, p = 0.002), lack of metastases (HR = 6.5, p = 0.005) and older (age at diagnosis >50 years) (HR = 7.8, p = 0.002). MiR-146a-3p underwent somatic mutations in 16.1% of analyzed specimens, mainly towards the deleterious C allele. In this report we propose a novel molecular marker of the clinical outcome of fvPTC patients. Rs2910164 increases the overall mortality with inhibition of NIS and disruption of radioiodine uptake as a possible mechanism. PMID:29495389
Etain, Bruno; Dumaine, Anne; Bellivier, Frank; Pagan, Cécile; Francelle, Laetitia; Goubran-Botros, Hany; Moreno, Sarah; Deshommes, Jasmine; Moustafa, Khaled; Le Dudal, Katia; Mathieu, Flavie; Henry, Chantal; Kahn, Jean-Pierre; Launay, Jean-Marie; Mühleisen, Thomas W; Cichon, Sven; Bourgeron, Thomas; Leboyer, Marion; Jamain, Stéphane
2012-09-15
Patients affected by bipolar disorder (BD) frequently report abnormalities in sleep/wake cycles. In addition, they showed abnormal oscillating melatonin secretion, a key regulator of circadian rhythms and sleep patterns. The acetylserotonin O-methyltransferase (ASMT) is a key enzyme of the melatonin biosynthesis and has recently been associated with psychiatric disorders such as autism spectrum disorders and depression. In this paper, we analysed rare and common variants of ASMT in patients with BD and unaffected control subjects and performed functional analysis of these variants by assaying the ASMT activity in their B-lymphoblastoid cell lines. We sequenced the coding and the regulatory regions of the gene in a discovery sample of 345 patients with BD and 220 controls. We performed an association study on this discovery sample using common variants located in the promoter region and showed that rs4446909 was significantly associated with BD (P= 0.01) and associated with a lower mRNA level (P< 10(-4)) and a lower enzymatic activity (P< 0.05) of ASMT. A replication study and a meta-analysis using 480 independent patients with BD and 672 controls confirmed the significant association between rs4446909 and BD (P= 0.002). These results correlate with the general lower ASMT enzymatic activity observed in patients with BD (P= 0.001) compared with controls. Finally, several deleterious ASMT mutations identified in patients were associated with low ASMT activity (P= 0.01). In this study, we determined how rare and common variations in ASMT might play a role in BD vulnerability and suggest a general role of melatonin as susceptibility factor for BD.
Exome sequencing in Thai patients with familial obesity.
Kaewsutthi, S; Santiprabhob, J; Phonrat, B; Tungtrongchitr, A; Lertrit, P; Tungtrongchitr, R
2016-07-14
Obesity is a major worldwide health issue, with increasing prevalence in adults and children from developed and developing countries. Obesity causes several chronic diseases, including cardiovascular and respiratory diseases, osteoarthritis, hypertension, stroke, type II diabetes, obstructive sleep apnea, and several types of cancer. Previous genome-wide association studies have identified several genes associated with obesity, including LEP, LEPR, POMC, PCSK1, FTO, MC3R, MC4R, GNPDA2, TMEM18, QPCTL/GIPR, BDNF, ETV5, MAP2K5/SKOR1, SEC16B, SIM1, and TNKS/MSRA. However, most of these variants are found in the intronic or intergenic regions, making it difficult to elucidate the underlying mechanisms. Therefore, in this study, we performed a whole exome sequencing of the protein-coding regions in the total genome (exome) of two obese and one normal subject belonging to the same Thai family to identify the genes responsible for obesity. We identified 709 functional variants that were differentially expressed between obese and normal subjects; of these, 65 were predicted to be deleterious to protein structure or function. The minor allele frequency of 14 of these genes (ALOX5AP, COL9A2, DEFB126, GDPD4, HCRTR1, MLL3, OPLAH, OR4C45, PRIM2, RXFP2, TIGD6, TRPM8, USP49, and ZNF596) was low, indicating causal variants that could be associated with complex traits or diseases. Genotyping revealed HCRTR1, COL9A2, and TRPM8 to be associated with the regulation of feeding behavior and energy expenditure. These genes constituted a network of pathways, including lipid metabolism, signaling transduction, immune, membrane transport, and gene regulation pathways, and seemed to play important roles in obesity.
Lucchetti, Laura; Prontera, Paolo; Mencarelli, Amedea; Sallicandro, Ester; Mencarelli, Annalisa; Cofini, Marta; Leonardi, Alberto; Stangoni, Gabriela; Penta, Laura; Esposito, Susanna
2018-01-01
Heterozygous mutations in the SHOX gene or in the upstream and downstream enhancer elements are associated with 2–22% of cases of idiopathic short stature (OMIM #300582) and with 60% of cases of Leri–Weill dyschondrosteosis (OMIM #127300) with which female subjects are generally more severely affected. Approximately 80–90% of SHOX pathogenic variants are deletions or duplications, and the remaining 10–20% are point mutations that primarily give rise to missense variants. The clinical interpretation of novel variants, particularly missense variants, can be challenging and can remain of uncertain significance. Here, we describe a novel missense variant (c.1044 G>T, p.Arg118Met) in a Moroccan boy with a disproportionately short stature and without any radiological traits or bone deformities and in his mother, who had a disproportionately short stature and a Madelung deformity. This variant has not been reported to date in the updated SHOX allelic variant or Human Gene Mutation Databases nor is it listed as a polymorphism in the ExAC browser, dbSNP, or 1000G. This mutation was predicted to be deleterious by three different bioinformatics tools since it modifies an amino acid in a highly conserved DNA-binding domain of the SHOX protein. Based on this evidence, the patient was treated with recombinant human growth hormone. PMID:29692759
Two novel rare variants of APOA5 gene found in subjects with severe hypertriglyceridemia.
Pisciotta, Livia; Fresa, Raffaele; Bellocchio, Antonella; Guido, Virgilia; Priore Oliva, Claudio; Calandra, Sebastiano; Bertolini, Stefano
2011-11-20
Common variants of APOA5 gene affect plasma triglyceride (TG) in the population and a number of rare variants APOA5 have been reported in individuals with hypertriglyceridemia (HTG). APOA5 was analysed in 98 HTG individuals (plasma TG >9 mmol/L) in whom no mutations in LPL and APOC2 had been found. Two patients were found to be heterozygous for two novel APOA5 variants. The first variant (p.L253P) was identified in an obese male who consumed a diet rich in fat and simple sugars. He was also a carrier in trans of the common TG-raising p.S19W SNP (5*3 haplotype). The second variant (c.295-297 del GAG, p.E99 del) was found in a lean male with no life style or metabolic factors known to affect plasma TG. He was a carrier in trans of the TG-raising 5*2 haplotype and was homozygous for the rare c.1337T allele of a SNP of GCKR gene. No mutations in other genes affecting plasma TG (LMF1 and GPIHBP1) were found in these patients. These APOA5 variants, resulted to be deleterious in silico, were not found in 350 control subjects. These novel APOA5 variants predispose to HTG in combination with other genetic or nutritional factors. Copyright © 2011 Elsevier B.V. All rights reserved.
Loss-of-Function PCSK9 Mutations Are Not Associated With Alzheimer Disease.
Paquette, Martine; Saavedra, Yascara Grisel Luna; Poirier, Judes; Théroux, Louise; Dea, Doris; Baass, Alexis; Dufour, Robert
2018-03-01
Hypercholesterolemia is a major risk factor for the late-onset form of Alzheimer disease (AD). Loss-of-function (LOF) mutations of PCSK9 and PCSK9 inhibitors lower low-density lipoprotein cholesterol (LDL-C) and have been associated with a reduced risk of cardiovascular disease. The aim of this study was to examine the effect of PCSK9 LOF variants on risk and age of onset of AD. A total of 878 participants (410 controls and 468 AD cases) from the Quebec Founder Population were included in the study. Fifty-four (6.2%) participants carried the R46L mutation, whereas 226 (26.2%) participants carried the InsLEU mutation. There was no protective or no deleterious effect of carrying PCSK9 LOF mutations on AD prevalence nor on age of onset, even when stratified by apolipoprotein E epsilon 4 genotype or by gender. Our data indicate that carrying PCSK9 LOF mutations has a neutral effect on neurocognitive health and the prevalence of AD.
Hall, Michael J; Reid, Julia E; Burbidge, Lynn A; Pruss, Dmitry; Deffenbaugh, Amie M; Frye, Cynthia; Wenstrup, Richard J; Ward, Brian E; Scholl, Thomas A; Noll, Walter W
2009-05-15
In women at increased risk for breast and ovarian cancer, the identification of a mutation in breast cancer gene 1 (BRCA1) and BRCA2 has important implications for screening and prevention counseling. Uncertainty regarding the role of BRCA1 and BRCA2 testing in high-risk women from diverse ancestral backgrounds exists because of variability in prevalence estimates of deleterious (disease-associated) mutations in non-white populations. In this study, the authors examined the prevalence of BRCA1 and BRCA2 mutations in an ethnically diverse group of women who were referred for genetic testing. In this cross-sectional analysis, the prevalence of BRCA1 and BRCA2 mutations was assessed in a group of non-Ashkenazi Jewish women who underwent genetic testing. From 1996 to 2006, 46,276 women who met study criteria underwent DNA full-sequence analysis of the BRCA1 and BRCA2 genes. Deleterious mutations were identified in 12.5% of women, and recurrent deleterious mutations (prevalence >2%) were identified in all ancestral groups. Women of non-European descent were younger (mean age, 45.9 years; standard deviation [SD], 11.6 years) than European women (mean age, 50 years; SD, 11.9 years; P < .001). Women of African (15.6%; odds ratio [OR], 1.3 [95% confidence interval (95% CI), 1.1-1.5]) and Latin American (14.8%; OR, 1.2 [95% CI, 1.1-1.4]) ancestries had a significantly higher prevalence of deleterious BRCA1 and BRCA2 mutations compared with women of Western European ancestry (12.1%), primarily because of an increased prevalence of BRCA1 mutations in those 2 groups. Non-European ethnicity was associated strongly with having a variant of uncertain significance; however, reclassification decreased variant reporting (from 12.8%-->5.9%), and women of African ancestry experienced the largest decline (58%). Mutation prevalence was found to be high among women who were referred for clinical BRCA1 and BRCA2 testing, and the risk was similar across diverse ethnicities. BRCA1 and BRCA2 testing is integral to cancer risk assessment in all high-risk women.
Tempered mlo broad-spectrum resistance to barley powdery mildew in an Ethiopian landrace
Ge, Xintian; Deng, Weiwei; Lee, Zheng Zhou; Lopez-Ruiz, Francisco J.; Schweizer, Patrick; Ellwood, Simon R.
2016-01-01
Recessive mutations in the Mlo gene confer broad spectrum resistance in barley (Hordeum vulgare) to powdery mildew (Blumeria graminis f. sp. hordei), a widespread and damaging disease. However, all alleles discovered to date also display deleterious pleiotropic effects, including the naturally occurring mlo-11 mutant which is widely deployed in Europe. Recessive resistance was discovered in Eth295, an Ethiopian landrace, which was developmentally controlled and quantitative without spontaneous cell wall appositions or extensive necrosis and loss of photosynthetic tissue. This resistance is determined by two copies of the mlo-11 repeat units, that occur upstream to the wild-type Mlo gene, compared to 11–12 in commonly grown cultivars and was designated mlo-11 (cnv2). mlo-11 repeat unit copy number-dependent DNA methylation corresponded with cytological and macroscopic phenotypic differences between copy number variants. Sequence data indicated mlo-11 (cnv2) formed via recombination between progenitor mlo-11 repeat units and the 3′ end of an adjacent stowaway MITE containing region. mlo-11 (cnv2) is the only example of a moderated mlo variant discovered to date and may have arisen by natural selection against the deleterious effects of the progenitor mlo-11 repeat unit configuration. PMID:27404990
Contribution of the TTC21B gene to glomerular and cystic kidney diseases.
Bullich, Gemma; Vargas, Iván; Trujillano, Daniel; Mendizábal, Santiago; Piñero-Fernández, Juan Alberto; Fraga, Gloria; García-Solano, José; Ballarín, José; Estivill, Xavier; Torra, Roser; Ars, Elisabet
2017-01-01
The TTC21B gene was initially described as causative of nephronophthisis (NPHP). Recently, the homozygous TTC21B p.P209L mutation has been identified in families with focal segmental glomerulosclerosis (FSGS) and tubulointerstitial lesions. Heterozygous TTC21B variants have been proposed as genetic modifiers in ciliopathies. We aimed to study the causative and modifying role of the TTC21B gene in glomerular and cystic kidney diseases. Mutation analysis of the TTC21B gene was performed by massive parallel sequencing. We studied the causative role of the TTC21B gene in 17 patients with primary diagnosis of FSGS or NPHP and its modifying role in 184 patients with inherited glomerular or cystic kidney diseases. Disease-causing TTC21B mutations were identified in three families presenting nephrotic proteinuria with FSGS and tubulointerstitial lesions in which some family members presented hypertension and myopia. Two families carried the homozygous p.P209L and the third was compound heterozygous for the p.P209L and a novel p.H426D mutation. Rare heterozygous TTC21B variants predicted to be pathogenic were found in five patients. These TTC21B variants were significantly more frequent in renal patients compared with controls (P = 0.0349). Two patients with a heterozygous deleterious TTC21B variant in addition to the disease-causing mutation presented a more severe phenotype than expected. Our results confirm the causal role of the homozygous p.P209L TTC21B mutation in two new families with FSGS and tubulointerstitial disease. We identified a novel TTC21B mutation demonstrating that p.P209L is not the unique causative mutation of this nephropathy. Thus, TTC21B mutation analysis should be considered for the genetic diagnosis of families with FSGS and tubulointerstitial lesions. Finally, we provide evidence that heterozygous deleterious TTC21B variants may act as genetic modifiers of the severity of glomerular and cystic kidney diseases. © The Author 2016. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Sujitha, S. P.; Kumar, D. Thirumal; Doss, C. George Priya; Aavula, K.; Ramesh, R.; Lakshmanan, S.; Gunasekaran, S.; Anilkumar, G.
2016-01-01
This paper depicts the first report from an Indian population on the association between the variant Arg399Gln of XRCC1 locus in the DNA repair system and schizophrenia, the debilitating disease that affects 1% of the world population. Genotypic analysis of a total of 523 subjects (260 patients and 263 controls) revealed an overwhelming presence of Gln399Gln in the case subjects against the controls (P < 0.0068), indicating significant level of association of this nsSNP with schizophrenia; the Gln399 allele frequency was also perceptibly more in cases than in controls (p < 0.003; OR = 1.448). The results of the genotypic studies were further validated using pathogenicity and stability prediction analysis employing computational tools [I-Mutant Suite, iStable, PolyPhen2, SNAP, and PROVEAN], with a view toassess the magnitude of deleteriousness of the mutation. The pathogenicity analysis reveals that the nsSNP could be deleterious inasmuch as it could affect the functionality of the gene, and interfere with protein function. Molecular dynamics simulation of 60ns was performed using GROMACS to analyse structural change due to a mutation (Arg399Gln) that was never examined before. RMSD, RMSF, hydrogen bonds, radius of gyration and SASA analysis showedthe existence of asignificant difference between the native and the mutant protein. The present study gives astrong indication that the XRCC1 locus deserves serious attention, as it could be a potential candidatecontributing to the etio-pathogenesis of the disease. PMID:26824244
Sujitha, S P; Kumar, D Thirumal; Doss, C George Priya; Aavula, K; Ramesh, R; Lakshmanan, S; Gunasekaran, S; Anilkumar, G
2016-01-01
This paper depicts the first report from an Indian population on the association between the variant Arg399Gln of XRCC1 locus in the DNA repair system and schizophrenia, the debilitating disease that affects 1% of the world population. Genotypic analysis of a total of 523 subjects (260 patients and 263 controls) revealed an overwhelming presence of Gln399Gln in the case subjects against the controls (P < 0.0068), indicating significant level of association of this nsSNP with schizophrenia; the Gln399 allele frequency was also perceptibly more in cases than in controls (p < 0.003; OR = 1.448). The results of the genotypic studies were further validated using pathogenicity and stability prediction analysis employing computational tools [I-Mutant Suite, iStable, PolyPhen2, SNAP, and PROVEAN], with a view toassess the magnitude of deleteriousness of the mutation. The pathogenicity analysis reveals that the nsSNP could be deleterious inasmuch as it could affect the functionality of the gene, and interfere with protein function. Molecular dynamics simulation of 60ns was performed using GROMACS to analyse structural change due to a mutation (Arg399Gln) that was never examined before. RMSD, RMSF, hydrogen bonds, radius of gyration and SASA analysis showedthe existence of asignificant difference between the native and the mutant protein. The present study gives astrong indication that the XRCC1 locus deserves serious attention, as it could be a potential candidatecontributing to the etio-pathogenesis of the disease.
Novel phenotype associated with a mutation in the KCNA1(Kv1.1) gene
D'Adamo, Maria C.; Gallenmüller, Constanze; Servettini, Ilenio; Hartl, Elisabeth; Tucker, Stephen J.; Arning, Larissa; Biskup, Saskia; Grottesi, Alessandro; Guglielmi, Luca; Imbrici, Paola; Bernasconi, Pia; Di Giovanni, Giuseppe; Franciolini, Fabio; Catacuzzeno, Luigi; Pessia, Mauro; Klopstock, Thomas
2015-01-01
Episodic ataxia type 1 (EA1) is an autosomal dominant K+ channelopathy which manifests with short attacks of cerebellar ataxia and dysarthria, and may also show interictal myokymia. Episodes can be triggered by emotional or physical stress, startle response, sudden postural change or fever. Here we describe a 31-year-old man displaying markedly atypical symptoms, including long-lasting attacks of jerking muscle contractions associated with hyperthermia, severe migraine, and a relatively short-sleep phenotype. A single nucleotide change in KCNA1 (c.555C>G) was identified that changes a highly conserved residue (p.C185W) in the first transmembrane segment of the voltage-gated K+ channel Kv1.1. The patient is heterozygous and the mutation was inherited from his asymptomatic mother. Next generation sequencing revealed no variations in the CACNA1A, CACNB4, KCNC3, KCNJ10, PRRT2 or SCN8A genes of either the patient or mother, except for a benign variant in SLC1A3. Functional analysis of the p.C185W mutation in KCNA1 demonstrated a deleterious dominant-negative phenotype where the remaining current displayed slower activation kinetics, subtle changes in voltage-dependence and faster recovery from slow inactivation. Structural modeling also predicts the C185W mutation to be functionally deleterious. This description of novel clinical features, associated with a Kv1.1 mutation highlights a possibly unrecognized relationship between K+ channel dysfunction, hyperthermia and migraine in EA1, and suggests that thorough assessments for these symptoms should be carefully considered for all patients affected by EA1. PMID:25642194
Identification of a missense variant in LNPEP that confers psoriasis risk.
Cheng, Hui; Li, Yang; Zuo, Xian-Bo; Tang, Hua-Yang; Tang, Xian-Fa; Gao, Jin-Ping; Sheng, Yu-Jun; Yin, Xian-Yong; Zhou, Fu-Sheng; Zhang, Chi; Chen, Gang; Zhu, Jun; Pan, Qian; Liang, Bo; Zheng, Xiao-Dong; Li, Pan; Ding, Yan-Tao; Cheng, Fang; Luo, Jing; Chang, Rui-Xue; Pan, Gong-Bu; Fan, Xing; Wang, Zai-Xing; Zhang, An-Ping; Liu, Jian-Jun; Yang, Sen; Sun, Liang-Dan; Zhang, Xue-Jun
2014-02-01
Psoriasis is a chronic inflammatory disease with a complex genetic architecture. To further advance gene discovery, we extended our genome-wide association study data set of 1,139 cases and 2,234 controls and replicated two independent cohorts of 7,200 cases and 10,491 controls. We identified the missense variant rs2303138 (p.Ala763Thr) within the LNPEP gene associated with psoriasis (Pcombined=1.83 × 10(-13), odds ratio=1.16) and validated four previously reported genes: IL28RA, NFKBIA, TRAF3IP2, and CARD14 (9.74 × 10(-11)P9.37 × 10(-5)), which confirmed the involvement of the nuclear factor-κB signaling pathway in psoriasis pathogenesis. LNPEP, also named insulin-responsive aminopeptidase, was identified as an angiotensin IV receptor. Protein function prediction suggested that this missense variant of LNPEP was most likely deleterious. Expression analysis showed that LNPEP was significantly downregulated in psoriatic lesions compared with the control skin (P=1.44 × 10(-6)) and uninvolved patient skin (P=2.95 × 10(-4)). Pathway analysis indicated that LNPEP was involved in the renin-angiotensin system, which also has a key role in cardiovascular disease and diabetes. These results provided genetic evidence that psoriasis might share common mechanisms with hypertension and diabetes, which was consistent with clinical observations. Our study identified a genetic susceptibility factor and provided genetic evidence of insight into psoriasis pathogenesis with the involvement of the renin-angiotensin system pathway.
Masingue, Marion; Perrot, Jimmy; Carlier, Robert-Yves; Piguet-Lacroix, Guenaelle; Latour, Philippe; Stojkovic, Tanya
2018-05-01
Charcot-Marie-Tooth disease (CMT) refers to a group of clinically and genetically heterogeneous inherited neuropathies. Ganglioside-induced differentiation-associated protein 1 GDAP1-related CMT has been reported in an autosomal dominant or recessive form in patients presenting either axonal or demyelinating neuropathy. We report two Sri Lankan sisters born to consanguineous parents and presenting with a severe axonal sensorimotor neuropathy. The early onset of the disease, the distal and proximal weakness and atrophy leading to major disability, along with areflexia, and, most notably, vocal cord and diaphragm paralysis were highly evocative of a GDAP1-related CMT. However, sequencing of the coding regions of the gene was normal. Whole-exome sequencing (WES) was performed and revealed that the largest region of homozygosity was around GDAP1 with several variants, mostly in non-coding regions. In view of the high clinical suspicion of GDAP1 gene involvement, we examined the variants in this gene and this, along with functional studies, allowed us to identify an alternative splicing site revealing a cryptic in-frame stop codon in intron 4 responsible for a severe loss of wild-type GDAP1. This work is the first to describe a deleterious mutation in GDAP1 gene outside of coding sequences or intronic junctions and emphasizes the importance of interpreting molecular analysis, and in particular WES results, in light of the clinical and electrophysiological phenotype.
Variants in the interleukin-1 alpha and beta genes, and the risk for periodontal disease in dogs.
Albuquerque, C; Morinha, F; Magalhães, J; Requicha, J; Dias, I; Guedes-Pinto, H; Bastos, E; Viegas, C
2015-12-01
Elevated levels of interleukin-1 (IL-1) have been shown to amplify the inflammatory response against periodontopathogenic bacteria.In humans,polymorphisms in the IL1A and IL1B genes are the most well-studied genetic polymorphisms associated with periodontal disease (PD). In contrast to human, there is a lack of knowledge on the genetic basis of canine PD. A case-control study was conducted in which a molecular analysis of dog IL1A and IL1B genes was performed. Of the eight genetic variants identified, seven in IL1A gene and one in IL1B gene, IL1A/1_g.388A>C and IL1A /1_g.521T>A showed statistically significant differences between groups (adjusted OR (95% CI): 0.15 (0.03-0.76),P=0.022; 5.76 (1.03-32.1),P=0.046, respectively). It suggests that in the studied population the IL1A/1_g.388C allele is associated with a decreased PD risk, whereas the IL1A/1_g.521A allele can confer an increased risk. Additionally, the IL1A/2_g.515G>T variation resulted in a change of amino acid, i.e. glycine to valine. In silico analysis suggests that this change can alter protein structure and function, predicting it to be deleterious or damaging. This work suggests that IL1 genetic variants may be important in PD susceptibility in canines.
Böhmer, Anne C.; Bowes, John; Nikolić, Miloš; Ishorst, Nina; Wyatt, Niki; Hammond, Nigel L.; Gölz, Lina; Thieme, Frederic; Barth, Sandra; Schuenke, Hannah; Klamt, Johanna; Spielmann, Malte; Aldhorae, Khalid; Rojas-Martinez, Augusto; Nöthen, Markus M.; Rada-Iglesias, Alvaro; Dixon, Michael J.; Knapp, Michael; Mangold, Elisabeth
2017-01-01
Abstract Nonsyndromic cleft lip with or without cleft palate (nsCL/P) is among the most common human birth defects with multifactorial etiology. Here, we present results from a genome-wide imputation study of nsCL/P in which, after adding replication cohort data, four novel risk loci for nsCL/P are identified (at chromosomal regions 2p21, 14q22, 15q24 and 19p13). On a systematic level, we show that the association signals within this high-density dataset are enriched in functionally-relevant genomic regions that are active in both human neural crest cells (hNCC) and mouse embryonic craniofacial tissue. This enrichment is also detectable in hNCC regions primed for later activity. Using GCTA analyses, we suggest that 30% of the estimated variance in risk for nsCL/P in the European population can be attributed to common variants, with 25.5% contributed to by the 24 risk loci known to date. For each of these, we identify credible SNPs using a Bayesian refinement approach, with two loci harbouring only one probable causal variant. Finally, we demonstrate that there is no polygenic component of nsCL/P detectable that is shared with nonsyndromic cleft palate only (nsCPO). Our data suggest that, while common variants are strongly contributing to risk for nsCL/P, they do not seem to be involved in nsCPO which might be more often caused by rare deleterious variants. Our study generates novel insights into both nsCL/P and nsCPO etiology and provides a systematic framework for research into craniofacial development and malformation. PMID:28087736
Edskes, Herman K; Mukhamedova, Maryam; Edskes, Bouke K; Wickner, Reed B
2018-05-16
[URE3] is an amyloid-based prion of Ure2p, a regulator of nitrogen catabolism. While most variants of the [URE3] prion are toxic, mild variants that only slightly slow growth are more widely studied. The existence of several anti-prion systems suggests that some components may be protecting cells from potential detrimental effects of mild [URE3] variants. Our extensive Hermes transposon mutagenesis showed that disruption of YLR352W dramatically slows growth of [URE3-1] strains. Ylr352wp is an F-box protein, directing selection of substrates for ubiquitination by a cullin-containing E- 3 ligase. For efficient ubiquitylation, cullin-dependent E 3 ubiquitin ligases must be NEDDylated, modified by a ubiquitin-related peptide called NEDD8 (Rub1p in yeast). Indeed, we find that disruption of NEDDylation-related genes, RUB1, ULA1, UBA3 and UBC12 is also counterselected in our screen. We find that like ylr352w Δ [URE3] strains, ylr352w Δ ure2 Δ strains do not grow on non-fermentable carbon sources. Overexpression of Hap4p, a transcription factor stimulating expression of mitochondrial proteins, or mutation of GLN1 , encoding glutamine synthetase, allow growth of ylr352w Δ [URE3] strains on glycerol media. Supplying proline as a nitrogen source shuts off the nitrogen catabolite repression (NCR) function of Ure2p, but does not slow growth of ylr352w Δ strains, suggesting a distinct function of Ure2p in carbon catabolism. Also, gln1 mutations impair NCR, but actually relieve the growth defect of ylr352w Δ [URE3] and ylr352w Δ ure2 Δ strains, again showing that loss of NCR is not producing the growth defect and suggesting Ure2p has another function. YLR352W largely protects cells from the deleterious effects of otherwise mild [URE3] variants, or of a ure2 mutation (the latter a rarer event), and we name it LUG1 (lets [URE3]/ ure2 grow). Copyright © 2018, Genetics.
Khan, Waqasuddin; Saripella, Ganapathi Varma-; Ludwig, Thomas; Cuppens, Tania; Thibord, Florian; Génin, Emmanuelle; Deleuze, Jean-Francois; Trégouët, David-Alexandre
2018-05-03
Predicted deleteriousness of coding variants is a frequently used criterion to filter out variants detected in next-generation sequencing projects and to select candidates impacting on the risk of human diseases. Most available dedicated tools implement a base-to-base annotation approach that could be biased in presence of several variants in the same genetic codon. We here proposed the MACARON program that, from a standard VCF file, identifies, re-annotates and predicts the amino acid change resulting from multiple single nucleotide variants (SNVs) within the same genetic codon. Applied to the whole exome dataset of 573 individuals, MACARON identifies 114 situations where multiple SNVs within a genetic codon induce an amino acid change that is different from those predicted by standard single SNV annotation tool. Such events are not uncommon and deserve to be studied in sequencing projects with inconclusive findings. MACARON is written in python with codes available on the GENMED website (www.genmed.fr). david-alexandre.tregouet@inserm.fr. Supplementary data are available at Bioinformatics online.
Cooper, Anneli; Ilboudo, Hamidou; Alibu, V Pius; Ravel, Sophie; Enyaru, John; Weir, William; Noyes, Harry; Capewell, Paul; Camara, Mamadou; Milet, Jacqueline; Jamonneau, Vincent; Camara, Oumou; Matovu, Enock; Bucheton, Bruno; MacLeod, Annette
2017-01-01
Reduced susceptibility to infectious disease can increase the frequency of otherwise deleterious alleles. In populations of African ancestry, two apolipoprotein-L1 (APOL1) variants with a recessive kidney disease risk, named G1 and G2, occur at high frequency. APOL1 is a trypanolytic protein that confers innate resistance to most African trypanosomes, but not Trypanosoma brucei rhodesiense or T.b. gambiense, which cause human African trypanosomiasis. In this case-control study, we test the prevailing hypothesis that these APOL1 variants reduce trypanosomiasis susceptibility, resulting in their positive selection in sub-Saharan Africa. We demonstrate a five-fold dominant protective association for G2 against T.b. rhodesiense infection. Furthermore, we report unpredicted strong opposing associations with T.b. gambiense disease outcome. G2 associates with faster progression of T.b. gambiense trypanosomiasis, while G1 associates with asymptomatic carriage and undetectable parasitemia. These results implicate both forms of human African trypanosomiasis in the selection and persistence of otherwise detrimental APOL1 kidney disease variants. DOI: http://dx.doi.org/10.7554/eLife.25461.001 PMID:28537557
Bustamante, M Leonor; Herrera, Luisa; Gaspar, Pablo A; Nieto, Rodrigo; Maturana, Alejandro; Villar, María José; Salinas, Valeria; Silva, Hernán
2017-10-01
Schizophrenia (SZ) is a disorder with a high heritability and a complex architecture. Several dozen genetic variants have been identified as risk factors through genome-wide association studies including large population-based samples. However, the bulk of the risk cannot be accounted for by the genes associated to date. Rare mutations have been historically seen as relevant only for some infrequent, Mendelian forms of psychosis. Recent findings, however, show that the subset of patients that present a mutation with major effect is larger than expected. We discuss some of the molecular findings of these studies. SZ is clinically and genetically heterogeneous. To identify the genetic variation underlying the disorder, research should be focused on features that are more likely a product of genetic heterogeneity. Based on the phenotypical correlations with rare variants, cognition emerges as a relevant domain to study. Cognitive disturbances could be useful in selecting cases that have a higher probability of carrying deleterious mutations, as well as on the correct ascertainment of sporadic cases for the identification of de novo variants. © 2017 Wiley Periodicals, Inc.
Sequencing ASMT identifies rare mutations in Chinese Han patients with autism.
Wang, Lifang; Li, Jun; Ruan, Yanyan; Lu, Tianlan; Liu, Chenxing; Jia, Meixiang; Yue, Weihua; Liu, Jing; Bourgeron, Thomas; Zhang, Dai
2013-01-01
Melatonin is involved in the regulation of circadian and seasonal rhythms and immune function. Prior research reported low melatonin levels in autism spectrum disorders (ASD). ASMT located in pseudo-autosomal region 1 encodes the last enzyme of the melatonin biosynthesis pathway. A previous study reported an association between ASD and single nucleotide polymorphisms (SNPs) rs4446909 and rs5989681 located in the promoter of ASMT. Furthermore, rare deleterious mutations were identified in a subset of patients. To investigate the association between ASMT and autism, we sequenced all ASMT exons and its neighboring region in 398 Chinese Han individuals with autism and 437 healthy controls. Although our study did not detect significant differences of genotypic distribution and allele frequencies of the common SNPs in ASMT between patients with autism and healthy controls, we identified new rare coding mutations of ASMT. Among these rare variants, 4 were exclusively detected in patients with autism including a stop mutation (p.R115W, p.V166I, p.V179G, and p.W257X). These four coding variants were observed in 6 of 398 (1.51%) patients with autism and none in 437 controls (Chi-Square test, Continuity Correction p = 0.032, two-sided). Functional prediction of impact of amino acid showed that p.R115W might affect protein function. These results indicate that ASMT might be a susceptibility gene for autism. Further studies in larger samples are needed to better understand the degree of variation in this gene as well as to understand the biochemical and clinical impacts of ASMT/melatonin deficiency.
Interaction between cardiac myosin-binding protein C and formin Fhod3.
Matsuyama, Sho; Kage, Yohko; Fujimoto, Noriko; Ushijima, Tomoki; Tsuruda, Toshihiro; Kitamura, Kazuo; Shiose, Akira; Asada, Yujiro; Sumimoto, Hideki; Takeya, Ryu
2018-05-08
Mutations in cardiac myosin-binding protein C (cMyBP-C) are a major cause of familial hypertrophic cardiomyopathy. Although cMyBP-C has been considered to regulate the cardiac function via cross-bridge arrangement at the C-zone of the myosin-containing A-band, the mechanism by which cMyBP-C functions remains unclear. We identified formin Fhod3, an actin organizer essential for the formation and maintenance of cardiac sarcomeres, as a cMyBP-C-binding protein. The cardiac-specific N-terminal Ig-like domain of cMyBP-C directly interacts with the cardiac-specific N-terminal region of Fhod3. The interaction seems to direct the localization of Fhod3 to the C-zone, since a noncardiac Fhod3 variant lacking the cMyBP-C-binding region failed to localize to the C-zone. Conversely, the cardiac variant of Fhod3 failed to localize to the C-zone in the cMyBP-C-null mice, which display a phenotype of hypertrophic cardiomyopathy. The cardiomyopathic phenotype of cMyBP-C-null mice was further exacerbated by Fhod3 overexpression with a defect of sarcomere integrity, whereas that was partially ameliorated by a reduction in the Fhod3 protein levels, suggesting that Fhod3 has a deleterious effect on cardiac function under cMyBP-C-null conditions where Fhod3 is aberrantly mislocalized. Together, these findings suggest the possibility that Fhod3 contributes to the pathogenesis of cMyBP-C-related cardiomyopathy and that Fhod3 is critically involved in cMyBP-C-mediated regulation of cardiac function via direct interaction.
Wallace, Douglas C
2013-07-19
Two major inconsistencies exist in the current neo-Darwinian evolutionary theory that random chromosomal mutations acted on by natural selection generate new species. First, natural selection does not require the evolution of ever increasing complexity, yet this is the hallmark of biology. Second, human chromosomal DNA sequence variation is predominantly either neutral or deleterious and is insufficient to provide the variation required for speciation or for predilection to common diseases. Complexity is explained by the continuous flow of energy through the biosphere that drives the accumulation of nucleic acids and information. Information then encodes complex forms. In animals, energy flow is primarily mediated by mitochondria whose maternally inherited mitochondrial DNA (mtDNA) codes for key genes for energy metabolism. In mammals, the mtDNA has a very high mutation rate, but the deleterious mutations are removed by an ovarian selection system. Hence, new mutations that subtly alter energy metabolism are continuously introduced into the species, permitting adaptation to regional differences in energy environments. Therefore, the most phenotypically significant gene variants arise in the mtDNA, are regional, and permit animals to occupy peripheral energy environments where rarer nuclear DNA (nDNA) variants can accumulate, leading to speciation. The neutralist-selectionist debate is then a consequence of mammals having two different evolutionary strategies: a fast mtDNA strategy for intra-specific radiation and a slow nDNA strategy for speciation. Furthermore, the missing genetic variation for common human diseases is primarily mtDNA variation plus regional nDNA variants, both of which have been missed by large, inter-population association studies.
Wen, Wei Xiong; Allen, Jamie; Lai, Kah Nyin; Mariapun, Shivaani; Hasan, Siti Norhidayu; Ng, Pei Sze; Lee, Daphne Shin-Chi; Lee, Sheau Yee; Yoon, Sook-Yee; Lim, Joanna; Lau, Shao Yan; Decker, Brennan; Pooley, Karen; Dorling, Leila; Luccarini, Craig; Baynes, Caroline; Conroy, Don M; Harrington, Patricia; Simard, Jacques; Yip, Cheng Har; Mohd Taib, Nur Aishah; Ho, Weang Kee; Antoniou, Antonis C; Dunning, Alison M; Easton, Douglas F
2018-01-01
Background Genetic testing for BRCA1 and BRCA2 is offered typically to selected women based on age of onset and family history of cancer. However, current internationally accepted genetic testing referral guidelines are built mostly on data from cancer genetics clinics in women of European descent. To evaluate the appropriateness of such guidelines in Asians, we have determined the prevalence of germ line variants in an unselected cohort of Asian patients with breast cancer and healthy controls. Methods Germ line DNA from a hospital-based study of 2575 unselected patients with breast cancer and 2809 healthy controls were subjected to amplicon-based targeted sequencing of exonic and proximal splice site junction regions of BRCA1 and BRCA2 using the Fluidigm Access Array system, with sequencing conducted on a Illumina HiSeq2500 platform. Variant calling was performed with GATK UnifiedGenotyper and were validated by Sanger sequencing. Results Fifty-five (2.1%) BRCA1 and 66 (2.6%) BRCA2 deleterious mutations were identified among patients with breast cancer and five (0.18%) BRCA1 and six (0.21%) BRCA2 mutations among controls. One thousand one hundred and eighty-six (46%) patients and 97 (80%) carriers fulfilled the National Comprehensive Cancer Network guidelines for genetic testing. Conclusion Five per cent of unselected Asian patients with breast cancer carry deleterious variants in BRCA1 or BRCA2. While current referral guidelines identified the majority of carriers, one in two patients would be referred for genetic services. Given that such services are largely unavailable in majority of low-resource settings in Asia, our study highlights the need for more efficient guidelines to identify at-risk individuals in Asia. PMID:28993434
Nagasundaram, N; Priya Doss, C George
2011-01-01
Distinguishing the deleterious from the massive number of non-functional nsSNPs that occur within a single genome is a considerable challenge in mutation research. In this approach, we have used the existing in silico methods to explore the mutation-structure-function relationship in the XPAgene. We used the Sorting Intolerant From Tolerant (SIFT), Polymorphism Phenotyping (PolyPhen), I-Mutant 2.0, and the Protein Analysis THrough Evolutionary Relationships methods to predict the effects of deleterious nsSNPs on protein function and evaluated the impact of mutation on protein stability by Molecular Dynamics simulations. By comparing the scores of all the four in silico methods, nsSNP with an ID rs104894131 at position C108F was predicted to be highly deleterious. We extended our Molecular dynamics approach to gain insight into the impact of this non-synonymous polymorphism on structural changes that may affect the activity of the XPAgene. Based on the in silico methods score, potential energy, root-mean-square deviation, and root-mean-square fluctuation, we predict that deleterious nsSNP at position C108F would play a significant role in causing disease by the XPA gene. Our approach would present the application of in silicotools in understanding the functional variation from the perspective of structure, evolution, and phenotype.
Li, Lin; Zhou, Xueya; Wang, Xi; Wang, Jing; Zhang, Wei; Wang, Binbin; Cao, Yunxia; Kee, Kehkooi
2016-09-01
Does a heterozygous mutation in AMHR2, identified in whole-exome sequencings (WES) of patients with primary ovarian insufficiency (POI), cause a defect in anti-Müllerian hormone (AMH) signaling? The I209N mutation at the adenosine triphosphate binding domain of AMHR2 exerts dominant negative defects in the AMH signaling pathway. Previous studies have demonstrated the associations of several sequence variants in AMH or AMHR2 with POI, but no functional assay has been performed to verify whether there was any defect on AMH signaling. Ninety-six unrelated female Chinese Han patients were diagnosed with idiopathic POI and subjected to WES. In silico analysis was done for the sequence variants followed by molecular assays to examine the functional effects of the sequence variants in human granulosa cells. In silico analysis, immunostaining, Western analysis, genome-wide expression analysis, quantitatively polymerase chain reaction were applied to the characterization of the sequence variants. We identified one novel heterozygous missense variant, p.Ala17Glu (A17E), in AMHR2. Subsequently, A17E and two independently reported missense variants, p.Ile209Asn (I209N) and p.Leu354Phe (L354F), were evaluated for effects on the AMH signaling pathway. In silico analysis predicted that all three variants may be deleterious. However, only one variant, I209N, showed severe defects in transducing the AMH signal as well as impaired SMAD1/5/8 phosphorylation. Furthermore, using genome-wide gene expression analysis, we identified genes whose expression was affected by the mutation, these included genes previously reported to participate in AMH signaling as well as newly identified genes. They are EMILIN2, FAM155A, GATA2, HES5, ID1, ID2, RLTPR, SMAD7, CBL, MALAT1 and SMARCA2. None. Although the in vitro assays demonstrated the causative effect of I209N on AMH signaling, further studies need to validate its long-term effects on folliculogenesis and POI. These results will aid both researchers and clinicians in understanding the molecular pathology of AMH signaling and POI to develop diagnostic assays or therapeutics approaches. Research funding is provided by the Ministry of Science and Technology of China [2012CB944704; 2012CB966702], and the National Natural Science Foundation of China [Grant number: 31171429]. The authors declare no conflict of interest. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Deleterious Mutations, Apparent Stabilizing Selection and the Maintenance of Quantitative Variation
Kondrashov, A. S.; Turelli, M.
1992-01-01
Apparent stabilizing selection on a quantitative trait that is not causally connected to fitness can result from the pleiotropic effects of unconditionally deleterious mutations, because as N. Barton noted, ``... individuals with extreme values of the trait will tend to carry more deleterious alleles ....'' We use a simple model to investigate the dependence of this apparent selection on the genomic deleterious mutation rate, U; the equilibrium distribution of K, the number of deleterious mutations per genome; and the parameters describing directional selection against deleterious mutations. Unlike previous analyses, we allow for epistatic selection against deleterious alleles. For various selection functions and realistic parameter values, the distribution of K, the distribution of breeding values for a pleiotropically affected trait, and the apparent stabilizing selection function are all nearly Gaussian. The additive genetic variance for the quantitative trait is kQa(2), where k is the average number of deleterious mutations per genome, Q is the proportion of deleterious mutations that affect the trait, and a(2) is the variance of pleiotropic effects for individual mutations that do affect the trait. In contrast, when the trait is measured in units of its additive standard deviation, the apparent fitness function is essentially independent of Q and a(2); and β, the intensity of selection, measured as the ratio of additive genetic variance to the ``variance'' of the fitness curve, is very close to s = U/k, the selection coefficient against individual deleterious mutations at equilibrium. Therefore, this model predicts appreciable apparent stabilizing selection if s exceeds about 0.03, which is consistent with various data. However, the model also predicts that β must equal V(m)/V(G), the ratio of new additive variance for the trait introduced each generation by mutation to the standing additive variance. Most, although not all, estimates of this ratio imply apparent stabilizing selection weaker than generally observed. A qualitative argument suggests that even when direct selection is responsible for most of the selection observed on a character, it may be essentially irrelevant to the maintenance of variation for the character by mutation-selection balance. Simple experiments can indicate the fraction of observed stabilizing selection attributable to the pleiotropic effects of deleterious mutations. PMID:1427047
An integrative computational approach for prioritization of genomic variants
Dubchak, Inna; Balasubramanian, Sandhya; Wang, Sheng; ...
2014-12-15
An essential step in the discovery of molecular mechanisms contributing to disease phenotypes and efficient experimental planning is the development of weighted hypotheses that estimate the functional effects of sequence variants discovered by high-throughput genomics. With the increasing specialization of the bioinformatics resources, creating analytical workflows that seamlessly integrate data and bioinformatics tools developed by multiple groups becomes inevitable. Here we present a case study of a use of the distributed analytical environment integrating four complementary specialized resources, namely the Lynx platform, VISTA RViewer, the Developmental Brain Disorders Database (DBDB), and the RaptorX server, for the identification of high-confidence candidatemore » genes contributing to pathogenesis of spina bifida. The analysis resulted in prediction and validation of deleterious mutations in the SLC19A placental transporter in mothers of the affected children that causes narrowing of the outlet channel and therefore leads to the reduced folate permeation rate. The described approach also enabled correct identification of several genes, previously shown to contribute to pathogenesis of spina bifida, and suggestion of additional genes for experimental validations. This study demonstrates that the seamless integration of bioinformatics resources enables fast and efficient prioritization and characterization of genomic factors and molecular networks contributing to the phenotypes of interest.« less
Lindo, John; Rogers, Mary; Mallott, Elizabeth K; Petzelt, Barbara; Mitchell, Joycelynn; Archer, David; Cybulski, Jerome S; Malhi, Ripan S; DeGiorgio, Michael
2018-05-03
The effects of European colonization on the genomes of Native Americans may have produced excesses of potentially deleterious features, mainly due to the severe reductions in population size and corresponding losses of genetic diversity. This assumption, however, neither considers actual genomic patterns that existed before colonization nor does it adequately capture the effects of admixture. In this study, we analyze the whole-exome sequences of modern and ancient individuals from a Northwest Coast First Nation, with a demographic history similar to other indigenous populations from the Americas. We show that in approximately ten generations from initial European contact, the modern individuals exhibit reduced levels of novel and low-frequency variants, a lower proportion of potentially deleterious alleles, and decreased heterozygosity when compared to their ancestors. This pattern can be explained by a dramatic population decline, resulting in the loss of potentially damaging low-frequency variants, and subsequent admixture. We also find evidence that the indigenous population was on a steady decline in effective population size for several thousand years before contact, which emphasizes regional demography over the common conception of a uniform expansion after entry into the Americas. This study examines the genomic consequences of colonialism on an indigenous group and describes the continuing role of gene flow among modern populations. Copyright © 2018 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Popp, Bernt; Støve, Svein I; Endele, Sabine; Myklebust, Line M; Hoyer, Juliane; Sticht, Heinrich; Azzarello-Burri, Silvia; Rauch, Anita; Arnesen, Thomas; Reis, André
2015-01-01
Recent studies revealed the power of whole-exome sequencing to identify mutations in sporadic cases with non-syndromic intellectual disability. We now identified de novo missense variants in NAA10 in two unrelated individuals, a boy and a girl, with severe global developmental delay but without any major dysmorphism by trio whole-exome sequencing. Both de novo variants were predicted to be deleterious, and we excluded other variants in this gene. This X-linked gene encodes N-alpha-acetyltransferase 10, the catalytic subunit of the NatA complex involved in multiple cellular processes. A single hypomorphic missense variant p.(Ser37Pro) was previously associated with Ogden syndrome in eight affected males from two different families. This rare disorder is characterized by a highly recognizable phenotype, global developmental delay and results in death during infancy. In an attempt to explain the discrepant phenotype, we used in vitro N-terminal acetylation assays which suggested that the severity of the phenotype correlates with the remaining catalytic activity. The variant in the Ogden syndrome patients exhibited a lower activity than the one seen in the boy with intellectual disability, while the variant in the girl was the most severe exhibiting only residual activity in the acetylation assays used. We propose that N-terminal acetyltransferase deficiency is clinically heterogeneous with the overall catalytic activity determining the phenotypic severity. PMID:25099252
Tindale, Lauren C; Leach, Stephen; Spinelli, John J; Brooks-Wilson, Angela R
2017-03-28
Several studies have found that long-lived individuals do not appear to carry lower numbers of common disease-associated variants than ordinary people; it has been hypothesized that they may instead carry protective variants. An intriguing type of protective variant is buffering variants that protect against variants that have deleterious effects. We genotyped 18 variants in 15 genes related to longevity or healthy aging that had been previously reported as having a gene-gene interaction or buffering effect. We compared a group of 446 healthy oldest-old 'Super-Seniors' (individuals 85 or older who have never been diagnosed with cancer, cardiovascular disease, dementia, diabetes or major pulmonary disease) to 421 random population-based midlife controls. Cases and controls were of European ancestry. Association tests of individual SNPs showed that Super-Seniors were less likely than controls to carry an APOEε4 allele or a haptoglobin HP2 allele. Interactions between APOE/FOXO3, APOE/CRYL1, and LPA/CRYL1 did not remain significant after multiple testing correction. In a network analysis of the candidate genes, lipid and cholesterol metabolism was a common theme. APOE, HP, and CRYL1 have all been associated with Alzheimer's Disease, the pathology of which involves lipid and cholesterol pathways. Age-related changes in lipid and cholesterol maintenance, particularly in the brain, may be central to healthy aging and longevity.
A benchmark study of scoring methods for non-coding mutations.
Drubay, Damien; Gautheret, Daniel; Michiels, Stefan
2018-05-15
Detailed knowledge of coding sequences has led to different candidate models for pathogenic variant prioritization. Several deleteriousness scores have been proposed for the non-coding part of the genome, but no large-scale comparison has been realized to date to assess their performance. We compared the leading scoring tools (CADD, FATHMM-MKL, Funseq2 and GWAVA) and some recent competitors (DANN, SNP and SOM scores) for their ability to discriminate assumed pathogenic variants from assumed benign variants (using the ClinVar, COSMIC and 1000 genomes project databases). Using the ClinVar benchmark, CADD was the best tool for detecting the pathogenic variants that are mainly located in protein coding gene regions. Using the COSMIC benchmark, FATHMM-MKL, GWAVA and SOMliver outperformed the other tools for pathogenic variants that are typically located in lincRNAs, pseudogenes and other parts of the non-coding genome. However, all tools had low precision, which could potentially be improved by future non-coding genome feature discoveries. These results may have been influenced by the presence of potential benign variants in the COSMIC database. The development of a gold standard as consistent as ClinVar for these regions will be necessary to confirm our tool ranking. The Snakemake, C++ and R codes are freely available from https://github.com/Oncostat/BenchmarkNCVTools and supported on Linux. damien.drubay@gustaveroussy.fr or stefan.michiels@gustaveroussy.fr. Supplementary data are available at Bioinformatics online.
Carr, Ian M; Morgan, Joanne; Watson, Christopher; Melnik, Svitlana; Diggle, Christine P; Logan, Clare V; Harrison, Sally M; Taylor, Graham R; Pena, Sergio D J; Markham, Alexander F; Alkuraya, Fowzan S; Black, Graeme C M; Ali, Manir; Bonthron, David T
2013-07-01
Massively parallel ("next generation") DNA sequencing (NGS) has quickly become the method of choice for seeking pathogenic mutations in rare uncharacterized monogenic diseases. Typically, before DNA sequencing, protein-coding regions are enriched from patient genomic DNA, representing either the entire genome ("exome sequencing") or selected mapped candidate loci. Sequence variants, identified as differences between the patient's and the human genome reference sequences, are then filtered according to various quality parameters. Changes are screened against datasets of known polymorphisms, such as dbSNP and the 1000 Genomes Project, in the effort to narrow the list of candidate causative variants. An increasing number of commercial services now offer to both generate and align NGS data to a reference genome. This potentially allows small groups with limited computing infrastructure and informatics skills to utilize this technology. However, the capability to effectively filter and assess sequence variants is still an important bottleneck in the identification of deleterious sequence variants in both research and diagnostic settings. We have developed an approach to this problem comprising a user-friendly suite of programs that can interactively analyze, filter and screen data from enrichment-capture NGS data. These programs ("Agile Suite") are particularly suitable for small-scale gene discovery or for diagnostic analysis. © 2013 WILEY PERIODICALS, INC.
Balan, Shabeesh; Bharathan, Sumitha Prameela; Vellichiramal, Neetha Nanoth; Sathyan, Sanish; Joseph, Vijai; Radhakrishnan, Kurupath; Banerjee, Moinak
2014-01-01
Epilepsy constitutes a heterogeneous group of disorders that is characterized by recurrent unprovoked seizures due to widely different etiologies. Multidrug resistance remains a major issue in clinical epileptology, where one third of patients with epilepsy continue to have seizures. Role of efflux transporters in multidrug resistant epilepsy has been attributed to drug-resistant epilepsy although, with discrepant observation in genetic studies. These discrepancies could be attributed to variety of factors such as variable definition of the anti-epileptic drug (AED)-resistance, variable epilepsy phenotypes and ethnicities among the studies. In the present study we inquired the role of multidrug transporters ABCB1 and ABCG2 variants in determining AED-resistance and susceptibility to epilepsy in three well-characterized cohorts comprising of mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) (prototype for AED-resistant epilepsy); juvenile myoclonic epilepsy (JME) (prototype for AED-responsive epilepsy); and healthy non-epileptic controls, in 738 subjects of Malayalam speaking south Indian ancestry. ABCB1 and ABCG2 variants were not found to be associated with drug resistance when AED-resistant and AED-responsive cohorts were compared. However, a significant association was observed between ABCB1 (C3435T) rs1045642 and risk of having epilepsy (MTLE-HS and JME pooled cohort; genotypic p-value = 0.0002; allelic p-value = 0.004). This association was seen persistent with MTLE-HS (genotypic p-value = 0.0008; allelic p-value = 0.004) and also with JME (genotypic p-value = 0.01; allelic p-value = 0.05) cohort individually. In-silico functional prediction indicated that ABCB1 rs1045642 has a deleterious impact on protein coding function and in splicing regulation. We conclude that the ABCB1 and ABCG2 variants do not confer to AED-resistance in the study population. However, ABCB1 rs1045642 increases vulnerability to epilepsy with greater tendency for MTLE-HS in south Indian ancestry from Kerala. PMID:24586633
Woon, Marites T; Long, Pamela A; Reilly, Louise; Evans, Jared M; Keefe, Alexis M; Lea, Martin R; Beglinger, Carl J; Balijepalli, Ravi C; Lee, Youngsook; Olson, Timothy M; Kamp, Timothy J
2018-02-03
Genetic causes of dilated cardiomyopathy (DCM) are incompletely understood. LRRC10 (leucine-rich repeat-containing 10) is a cardiac-specific protein of unknown function. Heterozygous mutations in LRRC10 have been suggested to cause DCM, and deletion of Lrrc10 in mice results in DCM. Whole-exome sequencing was carried out on a patient who presented at 6 weeks of age with DCM and her unaffected parents, filtering for rare, deleterious, recessive, and de novo variants. Whole-exome sequencing followed by trio-based filtering identified a homozygous recessive variant in LRRC10 , I195T. Coexpression of I195T LRRC10 with the L-type Ca 2+ channel (Ca v 1.2, β 2CN2 , and α 2 δ subunits) in HEK293 cells resulted in a significant ≈0.5-fold decrease in I Ca,L at 0 mV, in contrast to the ≈1.4-fold increase in I Ca,L by coexpression of LRRC10 (n=9-12, P <0.05). Coexpression of LRRC10 or I195T LRRC10 did not alter the surface membrane expression of Ca v 1.2. LRRC10 coexpression with Ca v 1.2 in the absence of auxiliary β 2CN2 and α 2 δ subunits revealed coassociation of Ca v 1.2 and LRRC10 and a hyperpolarizing shift in the voltage dependence of activation (n=6-9, P <0.05). Ventricular myocytes from Lrrc10 -/- mice had significantly smaller I Ca,L , and coimmunoprecipitation experiments confirmed association between LRRC10 and the Ca v 1.2 subunit in mouse hearts. Examination of a patient with DCM revealed homozygosity for a previously unreported LRRC10 variant: I195T. Wild-type and I195T LRRC10 function as cardiac-specific subunits of L-type Ca 2+ channels and exert dramatically different effects on channel gating, providing a potential link to DCM. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
NagaSundaram, N; Priya Doss, C George
2011-01-01
Background: Distinguishing the deleterious from the massive number of non-functional nsSNPs that occur within a single genome is a considerable challenge in mutation research. In this approach, we have used the existing in silico methods to explore the mutation-structure-function relationship in the XPAgene. Materials and Methods: We used the Sorting Intolerant From Tolerant (SIFT), Polymorphism Phenotyping (PolyPhen), I-Mutant 2.0, and the Protein Analysis THrough Evolutionary Relationships methods to predict the effects of deleterious nsSNPs on protein function and evaluated the impact of mutation on protein stability by Molecular Dynamics simulations. Results: By comparing the scores of all the four in silico methods, nsSNP with an ID rs104894131 at position C108F was predicted to be highly deleterious. We extended our Molecular dynamics approach to gain insight into the impact of this non-synonymous polymorphism on structural changes that may affect the activity of the XPAgene. Conclusion: Based on the in silico methods score, potential energy, root-mean-square deviation, and root-mean-square fluctuation, we predict that deleterious nsSNP at position C108F would play a significant role in causing disease by the XPA gene. Our approach would present the application of in silicotools in understanding the functional variation from the perspective of structure, evolution, and phenotype. PMID:22190868
Endothelial nitric oxide synthase polymorphism and prognosis in systolic heart failure patients.
Azzam, Naiel; Zafrir, Barak; Fares, Fuad; Smith, Yoav; Salman, Nabeeh; Nevzorov, Roman; Amir, Offer
2015-05-01
The endothelial nitric oxide synthase (eNOS) gene single nucleotide polymorphism G894T is associated with thrombotic vascular diseases. However, its functional significance is controversial and data are scarce concerning its influence in heart failure (HF). We studied 215 patients with chronic systolic HF. DNA was analyzed for eNOS gene G894T polymorphism using PCR and DNA sequencing. Evaluation of clinical characteristics and analysis of factors associated with 2-year mortality were performed for the homozygous G-allele G894T variant (GG), relative to the TT and GT variants. The genotype distributions of eNOS G894T alleles were: GG 135 patients (63%) and TT/GT 80 (37%). Two-year mortality was significantly higher in the GG variant (48%) than the combined TT/GT group (32%). The usage of nitrates was associated with increased 2-year mortality (HR 2.0, 95% CI 1.28-3.17; p = 0.003), which was most significant in the GG group treated with nitrates (73.5%) in comparison to the TT/GT group not treated with nitrates (34%); HR 2.75, 95% CI 1.57-4.79, P < 0.001. Homozygosity for the G allele of the eNOS G894T polymorphism was associated with worse survival in systolic HF patients, especially in those treated with nitrates. ENOS polymorphism may result in different mechanistic interactions in HF than in thrombotic vascular diseases, suggesting that overexpression of NO may be associated with deleterious effects in systolic HF. Copyright © 2015 Elsevier Inc. All rights reserved.
Exome-wide Association Study Identifies GREB1L Mutations in Congenital Kidney Malformations.
Sanna-Cherchi, Simone; Khan, Kamal; Westland, Rik; Krithivasan, Priya; Fievet, Lorraine; Rasouly, Hila Milo; Ionita-Laza, Iuliana; Capone, Valentina P; Fasel, David A; Kiryluk, Krzysztof; Kamalakaran, Sitharthan; Bodria, Monica; Otto, Edgar A; Sampson, Matthew G; Gillies, Christopher E; Vega-Warner, Virginia; Vukojevic, Katarina; Pediaditakis, Igor; Makar, Gabriel S; Mitrotti, Adele; Verbitsky, Miguel; Martino, Jeremiah; Liu, Qingxue; Na, Young-Ji; Goj, Vinicio; Ardissino, Gianluigi; Gigante, Maddalena; Gesualdo, Loreto; Janezcko, Magdalena; Zaniew, Marcin; Mendelsohn, Cathy Lee; Shril, Shirlee; Hildebrandt, Friedhelm; van Wijk, Joanna A E; Arapovic, Adela; Saraga, Marijan; Allegri, Landino; Izzi, Claudia; Scolari, Francesco; Tasic, Velibor; Ghiggeri, Gian Marco; Latos-Bielenska, Anna; Materna-Kiryluk, Anna; Mane, Shrikant; Goldstein, David B; Lifton, Richard P; Katsanis, Nicholas; Davis, Erica E; Gharavi, Ali G
2017-11-02
Renal agenesis and hypodysplasia (RHD) are major causes of pediatric chronic kidney disease and are highly genetically heterogeneous. We conducted whole-exome sequencing in 202 case subjects with RHD and identified diagnostic mutations in genes known to be associated with RHD in 7/202 case subjects. In an additional affected individual with RHD and a congenital heart defect, we found a homozygous loss-of-function (LOF) variant in SLIT3, recapitulating phenotypes reported with Slit3 inactivation in the mouse. To identify genes associated with RHD, we performed an exome-wide association study with 195 unresolved case subjects and 6,905 control subjects. The top signal resided in GREB1L, a gene implicated previously in Hoxb1 and Shha signaling in zebrafish. The significance of the association, which was p = 2.0 × 10 -5 for novel LOF, increased to p = 4.1 × 10 -6 for LOF and deleterious missense variants combined, and augmented further after accounting for segregation and de novo inheritance of rare variants (joint p = 2.3 × 10 -7 ). Finally, CRISPR/Cas9 disruption or knockdown of greb1l in zebrafish caused specific pronephric defects, which were rescued by wild-type human GREB1L mRNA, but not mRNA containing alleles identified in case subjects. Together, our study provides insight into the genetic landscape of kidney malformations in humans, presents multiple candidates, and identifies SLIT3 and GREB1L as genes implicated in the pathogenesis of RHD. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Analysis of the gene coding for the BRCA2-interacting protein PALB2 in hereditary prostate cancer.
Tischkowitz, Marc; Sabbaghian, Nelly; Ray, Anna M; Lange, Ethan M; Foulkes, William D; Cooney, Kathleen A
2008-05-01
The genetic basis of susceptibility to prostate cancer (PRCA) remains elusive. Mutations in BRCA2 have been associated with increased prostate cancer risk and account for around 2% of young onset (<56 years) prostate cancer cases. PALB2 is a recently identified breast cancer susceptibility gene whose protein is closely associated with BRCA2 and is essential for BRCA2 anchorage to nuclear structures. This functional relationship made PALB2 a candidate PRCA susceptibility gene. We sequenced PALB2 in probands from 95 PRCA families, 77 of which had two or more cases of early onset PRCA (age at diagnosis <55 years), and the remaining 18 had one case of early onset PRCA and five or more total cases of PRCA. Two previously unreported variants, K18R and V925L were identified, neither of which is in a known PALB2 functional domain and both of which are unlikely to be pathogenic. No truncating mutations were identified. These results indicate that deleterious PALB2 mutations are unlikely to play a significant role in hereditary prostate cancer.
The pseudo-symmetric optimization of the National Compact Stellarator Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isaev, M.Y.; Mikhailov, M.I.; Monticello, D.A.
1999-08-01
A new experiment, the National Compact Stellarator Experiment (NCSX) [Monticello {ital et al.} {open_quotes}Physics Consideration for the Design of NCSX,{close_quotes} {ital Proceedings of 25th EPS Conference on Controlled Fusion and Plasma Physics, Prague, 1998} (European Physical Society, Petit-Lancy), paper 1.187], hopes to overcome the deleterious ripple transport usually associated with stellarators by creating a quasi-axisymmetric configuration. A quasi-axisymmetric configuration is one in which the Fourier spectrum of the magnetic field strength in so-called Boozer coordinates is dominated by the toroidal angle averaged (n=0) components. In this article the concept of pseudosymmetry is used to improve ripple transport in a four-periodmore » variant of NCSX. By definition, pseudosymmetric magnetic configurations have no locally trapped particles. To obtain a pseudosymmetric configuration, different target functions are considered. It is found that a target function equal to the area of ripple of the magnetic field magnitude along the field line is very effective in reducing the neoclassical transport coefficient. {copyright} {ital 1999 American Institute of Physics.}« less
Nishino, Jo; Kochi, Yuta; Shigemizu, Daichi; Kato, Mamoru; Ikari, Katsunori; Ochi, Hidenori; Noma, Hisashi; Matsui, Kota; Morizono, Takashi; Boroevich, Keith A.; Tsunoda, Tatsuhiko; Matsui, Shigeyuki
2018-01-01
Genome-wide association studies (GWAS) suggest that the genetic architecture of complex diseases consists of unexpectedly numerous variants with small effect sizes. However, the polygenic architectures of many diseases have not been well characterized due to lack of simple and fast methods for unbiased estimation of the underlying proportion of disease-associated variants and their effect-size distribution. Applying empirical Bayes estimation of semi-parametric hierarchical mixture models to GWAS summary statistics, we confirmed that schizophrenia was extremely polygenic [~40% of independent genome-wide SNPs are risk variants, most within odds ratio (OR = 1.03)], whereas rheumatoid arthritis was less polygenic (~4 to 8% risk variants, significant portion reaching OR = 1.05 to 1.1). For rheumatoid arthritis, stratified estimations revealed that expression quantitative loci in blood explained large genetic variance, and low- and high-frequency derived alleles were prone to be risk and protective, respectively, suggesting a predominance of deleterious-risk and advantageous-protective mutations. Despite genetic correlation, effect-size distributions for schizophrenia and bipolar disorder differed across allele frequency. These analyses distinguished disease polygenic architectures and provided clues for etiological differences in complex diseases. PMID:29740473
Lim, Regine M; Silver, Ari J; Silver, Maxwell J; Borroto, Carlos; Spurrier, Brett; Petrossian, Tanya C; Larson, Jessica L; Silver, Lee M
2016-02-01
Carrier screening for mutations contributing to cystic fibrosis (CF) is typically accomplished with panels composed of variants that are clinically validated primarily in patients of European descent. This approach has created a static genetic and phenotypic profile for CF. An opportunity now exists to reevaluate the disease profile of CFTR at a global population level. CFTR allele and genotype frequencies were obtained from a nonpatient cohort with more than 60,000 unrelated personal genomes collected by the Exome Aggregation Consortium. Likely disease-contributing mutations were identified with the use of public database annotations and computational tools. We identified 131 previously described and likely pathogenic variants and another 210 untested variants with a high probability of causing protein damage. None of the current genetic screening panels or existing CFTR mutation databases covered a majority of deleterious variants in any geographical population outside of Europe. Both clinical annotation and mutation coverage by commercially available targeted screening panels for CF are strongly biased toward detection of reproductive risk in persons of European descent. South and East Asian populations are severely underrepresented, in part because of a definition of disease that preferences the phenotype associated with European-typical CFTR alleles.
Snijders Blok, Lot; Madsen, Erik; Juusola, Jane; Gilissen, Christian; Baralle, Diana; Reijnders, Margot R F; Venselaar, Hanka; Helsmoortel, Céline; Cho, Megan T; Hoischen, Alexander; Vissers, Lisenka E L M; Koemans, Tom S; Wissink-Lindhout, Willemijn; Eichler, Evan E; Romano, Corrado; Van Esch, Hilde; Stumpel, Connie; Vreeburg, Maaike; Smeets, Eric; Oberndorff, Karin; van Bon, Bregje W M; Shaw, Marie; Gecz, Jozef; Haan, Eric; Bienek, Melanie; Jensen, Corinna; Loeys, Bart L; Van Dijck, Anke; Innes, A Micheil; Racher, Hilary; Vermeer, Sascha; Di Donato, Nataliya; Rump, Andreas; Tatton-Brown, Katrina; Parker, Michael J; Henderson, Alex; Lynch, Sally A; Fryer, Alan; Ross, Alison; Vasudevan, Pradeep; Kini, Usha; Newbury-Ecob, Ruth; Chandler, Kate; Male, Alison; Dijkstra, Sybe; Schieving, Jolanda; Giltay, Jacques; van Gassen, Koen L I; Schuurs-Hoeijmakers, Janneke; Tan, Perciliz L; Pediaditakis, Igor; Haas, Stefan A; Retterer, Kyle; Reed, Patrick; Monaghan, Kristin G; Haverfield, Eden; Natowicz, Marvin; Myers, Angela; Kruer, Michael C; Stein, Quinn; Strauss, Kevin A; Brigatti, Karlla W; Keating, Katherine; Burton, Barbara K; Kim, Katherine H; Charrow, Joel; Norman, Jennifer; Foster-Barber, Audrey; Kline, Antonie D; Kimball, Amy; Zackai, Elaine; Harr, Margaret; Fox, Joyce; McLaughlin, Julie; Lindstrom, Kristin; Haude, Katrina M; van Roozendaal, Kees; Brunner, Han; Chung, Wendy K; Kooy, R Frank; Pfundt, Rolph; Kalscheuer, Vera; Mehta, Sarju G; Katsanis, Nicholas; Kleefstra, Tjitske
2015-08-06
Intellectual disability (ID) affects approximately 1%-3% of humans with a gender bias toward males. Previous studies have identified mutations in more than 100 genes on the X chromosome in males with ID, but there is less evidence for de novo mutations on the X chromosome causing ID in females. In this study we present 35 unique deleterious de novo mutations in DDX3X identified by whole exome sequencing in 38 females with ID and various other features including hypotonia, movement disorders, behavior problems, corpus callosum hypoplasia, and epilepsy. Based on our findings, mutations in DDX3X are one of the more common causes of ID, accounting for 1%-3% of unexplained ID in females. Although no de novo DDX3X mutations were identified in males, we present three families with segregating missense mutations in DDX3X, suggestive of an X-linked recessive inheritance pattern. In these families, all males with the DDX3X variant had ID, whereas carrier females were unaffected. To explore the pathogenic mechanisms accounting for the differences in disease transmission and phenotype between affected females and affected males with DDX3X missense variants, we used canonical Wnt defects in zebrafish as a surrogate measure of DDX3X function in vivo. We demonstrate a consistent loss-of-function effect of all tested de novo mutations on the Wnt pathway, and we further show a differential effect by gender. The differential activity possibly reflects a dose-dependent effect of DDX3X expression in the context of functional mosaic females versus one-copy males, which reflects the complex biological nature of DDX3X mutations. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Salleh, Mohd Zaki; Teh, Lay Kek; Lee, Lian Shien; Ismet, Rose Iszati; Patowary, Ashok; Joshi, Kandarp; Pasha, Ayesha; Ahmed, Azni Zain; Janor, Roziah Mohd; Hamzah, Ahmad Sazali; Adam, Aishah; Yusoff, Khalid; Hoh, Boon Peng; Hatta, Fazleen Haslinda Mohd; Ismail, Mohamad Izwan; Scaria, Vinod; Sivasubbu, Sridhar
2013-01-01
With a higher throughput and lower cost in sequencing, second generation sequencing technology has immense potential for translation into clinical practice and in the realization of pharmacogenomics based patient care. The systematic analysis of whole genome sequences to assess patient to patient variability in pharmacokinetics and pharmacodynamics responses towards drugs would be the next step in future medicine in line with the vision of personalizing medicine. Genomic DNA obtained from a 55 years old, self-declared healthy, anonymous male of Malay descent was sequenced. The subject's mother died of lung cancer and the father had a history of schizophrenia and deceased at the age of 65 years old. A systematic, intuitive computational workflow/pipeline integrating custom algorithm in tandem with large datasets of variant annotations and gene functions for genetic variations with pharmacogenomics impact was developed. A comprehensive pathway map of drug transport, metabolism and action was used as a template to map non-synonymous variations with potential functional consequences. Over 3 million known variations and 100,898 novel variations in the Malay genome were identified. Further in-depth pharmacogenetics analysis revealed a total of 607 unique variants in 563 proteins, with the eventual identification of 4 drug transport genes, 2 drug metabolizing enzyme genes and 33 target genes harboring deleterious SNVs involved in pharmacological pathways, which could have a potential role in clinical settings. The current study successfully unravels the potential of personal genome sequencing in understanding the functionally relevant variations with potential influence on drug transport, metabolism and differential therapeutic outcomes. These will be essential for realizing personalized medicine through the use of comprehensive computational pipeline for systematic data mining and analysis.
In Silico Analysis of Single Nucleotide Polymorphism (SNPs) in Human β-Globin Gene
Alanazi, Mohammed; Abduljaleel, Zainularifeen; Khan, Wajahatullah; Warsy, Arjumand S.; Elrobh, Mohamed; Khan, Zahid; Amri, Abdullah Al; Bazzi, Mohammad D.
2011-01-01
Single amino acid substitutions in the globin chain are the most common forms of genetic variations that produce hemoglobinopathies- the most widespread inherited disorders worldwide. Several hemoglobinopathies result from homozygosity or compound heterozygosity to beta-globin (HBB) gene mutations, such as that producing sickle cell hemoglobin (HbS), HbC, HbD and HbE. Several of these mutations are deleterious and result in moderate to severe hemolytic anemia, with associated complications, requiring lifelong care and management. Even though many hemoglobinopathies result from single amino acid changes producing similar structural abnormalities, there are functional differences in the generated variants. Using in silico methods, we examined the genetic variations that can alter the expression and function of the HBB gene. Using a sequence homology-based Sorting Intolerant from Tolerant (SIFT) server we have searched for the SNPs, which showed that 200 (80%) non-synonymous polymorphism were found to be deleterious. The structure-based method via PolyPhen server indicated that 135 (40%) non-synonymous polymorphism may modify protein function and structure. The Pupa Suite software showed that the SNPs will have a phenotypic consequence on the structure and function of the altered protein. Structure analysis was performed on the key mutations that occur in the native protein coded by the HBB gene that causes hemoglobinopathies such as: HbC (E→K), HbD (E→Q), HbE (E→K) and HbS (E→V). Atomic Non-Local Environment Assessment (ANOLEA), Yet Another Scientific Artificial Reality Application (YASARA), CHARMM-GUI webserver for macromolecular dynamics and mechanics, and Normal Mode Analysis, Deformation and Refinement (NOMAD-Ref) of Gromacs server were used to perform molecular dynamics simulations and energy minimization calculations on β-Chain residue of the HBB gene before and after mutation. Furthermore, in the native and altered protein models, amino acid residues were determined and secondary structures were observed for solvent accessibility to confirm the protein stability. The functional study in this investigation may be a good model for additional future studies. PMID:22028795
The Prospective Function of Curcumin Against the Negative Effects of Microgravity
NASA Astrophysics Data System (ADS)
Lewis, A.; Johnson, P.; Jejelowo, O. A.; Sodipe, A.; Shishodia, S.
2010-04-01
Microgravity has several deleterious effects on cells. These cells may exhibit an up-regulation or down-regulation of their gene expression. We are investigating the effects of the phytochemical curcumin on microgravity-induced deleterious effects.
Koboldt, Daniel C.; Kanchi, Krishna L.; Gui, Bin; Larson, David E.; Fulton, Robert S.; Isaacs, William B.; Kraja, Aldi; Borecki, Ingrid B.; Jia, Li; Wilson, Richard K.; Mardis, Elaine R.; Kibel, Adam S.
2016-01-01
Background Common variants have been associated with prostate cancer risk. Unfortunately, few are reproducibly linked to aggressive disease, the phenotype of greatest clinical relevance. One possible explanation is that rare genetic variants underlie a significant proportion of the risk for aggressive disease. Method To identify such variants, we performed a two staged approach using whole exome sequencing followed by targeted sequencing of 800 genes in 652 aggressive prostate cancer patients and 752 disease-free controls in both African and European Americans. In each population, we tested rare variants for association using two gene-based aggregation tests. We established a study-wide significance threshold of 3.125 × 10−5 to correct for multiple testing. Results TET2 in African-Americans was associated with aggressive disease with 24.4% of cases harboring a rare deleterious variant compared to 9.6% of controls (FET p = 1.84×10−5, OR=3.0; SKAT-O p= 2.74×10−5). We report 8 additional genes with suggestive evidence of association, including the DNA repair genes PARP2 and MSH6. Finally, we observed an excess of rare truncation variants in 5 genes including the DNA repair genes MSH6, BRCA1 and BRCA2. This adds to the growing body of evidence that DNA repair pathway defects may influence susceptibility to aggressive prostate cancer. Conclusion Our findings suggest that rare variants influence risk of clinically relevant prostate cancer and, if validated, could serve to identify men for screening, prophylaxis and treatment. Impact This study provides evidence that rare variants in TET2 may help identify African-American men at increased risk for clinically relevant prostate cancer. PMID:27486019
Monroe, Glen R; Kappen, Isabelle FPM; Stokman, Marijn F; Terhal, Paulien A; van den Boogaard, Marie-José H; Savelberg, Sanne MC; van der Veken, Lars T; van Es, Robert JJ; Lens, Susanne M; Hengeveld, Rutger C; Creton, Marijn A; Janssen, Nard G; Mink van der Molen, Aebele B; Ebbeling, Michelle B; Giles, Rachel H; Knoers, Nine V; van Haaften, Gijs
2016-01-01
The oral-facial-digital (OFD) syndromes comprise a group of related disorders with a combination of oral, facial and digital anomalies. Variants in several ciliary genes have been associated with subtypes of OFD syndrome, yet in most OFD patients the underlying cause remains unknown. We investigated the molecular basis of disease in two brothers with OFD type II, Mohr syndrome, by performing single-nucleotide polymorphism (SNP)-array analysis on the brothers and their healthy parents to identify homozygous regions and candidate genes. Subsequently, we performed whole-exome sequencing (WES) on the family. Using WES, we identified compound heterozygous variants c.[464G>C][1226G>A] in NIMA (Never in Mitosis Gene A)-Related Kinase 1 (NEK1). The novel variant c.464G>C disturbs normal splicing in an essential region of the kinase domain. The nonsense variant c.1226G>A, p.(Trp409*), results in nonsense-associated alternative splicing, removing the first coiled-coil domain of NEK1. Candidate variants were confirmed with Sanger sequencing and alternative splicing assessed with cDNA analysis. Immunocytochemistry was used to assess cilia number and length. Patient-derived fibroblasts showed severely reduced ciliation compared with control fibroblasts (18.0 vs 48.9%, P<0.0001), but showed no significant difference in cilia length. In conclusion, we identified compound heterozygous deleterious variants in NEK1 in two brothers with Mohr syndrome. Ciliation in patient fibroblasts is drastically reduced, consistent with a ciliary defect pathogenesis. Our results establish NEK1 variants involved in the etiology of a subset of patients with OFD syndrome type II and support the consideration of including (routine) NEK1 analysis in patients suspected of OFD. PMID:27530628
Monroe, Glen R; Kappen, Isabelle Fpm; Stokman, Marijn F; Terhal, Paulien A; van den Boogaard, Marie-José H; Savelberg, Sanne Mc; van der Veken, Lars T; van Es, Robert Jj; Lens, Susanne M; Hengeveld, Rutger C; Creton, Marijn A; Janssen, Nard G; Mink van der Molen, Aebele B; Ebbeling, Michelle B; Giles, Rachel H; Knoers, Nine V; van Haaften, Gijs
2016-12-01
The oral-facial-digital (OFD) syndromes comprise a group of related disorders with a combination of oral, facial and digital anomalies. Variants in several ciliary genes have been associated with subtypes of OFD syndrome, yet in most OFD patients the underlying cause remains unknown. We investigated the molecular basis of disease in two brothers with OFD type II, Mohr syndrome, by performing single-nucleotide polymorphism (SNP)-array analysis on the brothers and their healthy parents to identify homozygous regions and candidate genes. Subsequently, we performed whole-exome sequencing (WES) on the family. Using WES, we identified compound heterozygous variants c.[464G>C];[1226G>A] in NIMA (Never in Mitosis Gene A)-Related Kinase 1 (NEK1). The novel variant c.464G>C disturbs normal splicing in an essential region of the kinase domain. The nonsense variant c.1226G>A, p.(Trp409*), results in nonsense-associated alternative splicing, removing the first coiled-coil domain of NEK1. Candidate variants were confirmed with Sanger sequencing and alternative splicing assessed with cDNA analysis. Immunocytochemistry was used to assess cilia number and length. Patient-derived fibroblasts showed severely reduced ciliation compared with control fibroblasts (18.0 vs 48.9%, P<0.0001), but showed no significant difference in cilia length. In conclusion, we identified compound heterozygous deleterious variants in NEK1 in two brothers with Mohr syndrome. Ciliation in patient fibroblasts is drastically reduced, consistent with a ciliary defect pathogenesis. Our results establish NEK1 variants involved in the etiology of a subset of patients with OFD syndrome type II and support the consideration of including (routine) NEK1 analysis in patients suspected of OFD.
De novo FBXO11 mutations are associated with intellectual disability and behavioural anomalies.
Fritzen, Daniel; Kuechler, Alma; Grimmel, Mona; Becker, Jessica; Peters, Sophia; Sturm, Marc; Hundertmark, Hela; Schmidt, Axel; Kreiß, Martina; Strom, Tim M; Wieczorek, Dagmar; Haack, Tobias B; Beck-Wödl, Stefanie; Cremer, Kirsten; Engels, Hartmut
2018-05-01
Intellectual disability (ID) has an estimated prevalence of 1.5-2%. In most affected individuals, its genetic basis remains unclear. Whole exome sequencing (WES) studies have identified a multitude of novel causative gene defects and have shown that a large proportion of sporadic ID cases results from de novo mutations. Here, we present two unrelated individuals with similar clinical features and deleterious de novo variants in FBXO11 detected by WES. Individual 1, a 14-year-old boy, has mild ID as well as mild microcephaly, corrected cleft lip and alveolus, hyperkinetic disorder, mild brain atrophy and minor facial dysmorphism. WES detected a heterozygous de novo 1 bp insertion in the splice donor site of exon 3. Individual 2, a 3-year-old boy, showed ID and pre- and postnatal growth retardation, postnatal mild microcephaly, hyperkinetic and restless behaviour, as well as mild dysmorphism. WES detected a heterozygous de novo frameshift mutation. While ten individuals with ID and de novo variants in FBXO11 have been reported as part of larger studies, only one of the reports has some additional clinical data. Interestingly, the latter individual carries the identical mutation as our individual 2 and also displays ID, intrauterine growth retardation, microcephaly, behavioural anomalies, and dysmorphisms. Thus, we confirm deleterious de novo mutations in FBXO11 as a cause of ID and start the delineation of the associated clinical picture which may also comprise postnatal microcephaly or borderline small head size and behavioural anomalies.
Solano, Angela Rosaria; Cardoso, Florencia Cecilia; Romano, Vanesa; Perazzo, Florencia; Bas, Carlos; Recondo, Gonzalo; Santillan, Francisco Bernardo; Gonzalez, Eduardo; Abalo, Eduardo; Viniegra, María; Michel, José Davalos; Nuñez, Lina María; Noblia, Cristina Maria; Mc Lean, Ignacio; Canton, Enrique Diaz; Chacon, Reinaldo Daniel; Cortese, Gustavo; Varela, Eduardo Beccar; Greco, Martín; Barrientos, María Laura; Avila, Silvia Adela; Vuotto, Hector Daniel; Lorusso, Antonio; Podesta, Ernesto Jorge; Mando, Oscar Gaspar
2017-09-01
BRCA1/2 mutations in Latin America are scarcely documented and in serious need of knowledge about the spectrum of BRCA pathogenic variants, information which may alter clinical practice and subsequently improve patient outcome. In addition, the search for data on testing policies in different regions constitutes a fundamental strength for the present study, which analyzes BRCA1/2 gene sequences and large rearrangements in 940 probands with familial and/or personal history of breast/ovary cancer (BOC). In non-mutated DNA samples, Multiplex Ligation-dependent Probe Amplification assays (MLPA) were used for the analysis of large rearrangements. Our studies detected 179 deleterious mutations out of 940 (19.04%) probands, including 5 large rearrangements and 22 novel mutations. The recurrent mutations accounted for 15.08% of the total and only 2.87% of the probands analyzed, very different from a Hispanic panel previously described. a) this first comprehensive description of the spectrum in BRCA1/2 sheds light on the low frequency of recurrent mutations; b) this information is key in clinical practice to select adequate sequencing studies in our population, subsequently improve patient outcome and prevent damage associated to false normal reports resulting from the use of invalid population panels; c) panels of mutations from other populations should be cautiously validated before imported, even those of apparently similar origin, a concept to be considered beyond significance in Argentina.
A Selective Sweep on a Deleterious Mutation in CPT1A in Arctic Populations
Clemente, Florian J.; Cardona, Alexia; Inchley, Charlotte E.; Peter, Benjamin M.; Jacobs, Guy; Pagani, Luca; Lawson, Daniel J.; Antão, Tiago; Vicente, Mário; Mitt, Mario; DeGiorgio, Michael; Faltyskova, Zuzana; Xue, Yali; Ayub, Qasim; Szpak, Michal; Mägi, Reedik; Eriksson, Anders; Manica, Andrea; Raghavan, Maanasa; Rasmussen, Morten; Rasmussen, Simon; Willerslev, Eske; Vidal-Puig, Antonio; Tyler-Smith, Chris; Villems, Richard; Nielsen, Rasmus; Metspalu, Mait; Malyarchuk, Boris; Derenko, Miroslava; Kivisild, Toomas
2014-01-01
Arctic populations live in an environment characterized by extreme cold and the absence of plant foods for much of the year and are likely to have undergone genetic adaptations to these environmental conditions in the time they have been living there. Genome-wide selection scans based on genotype data from native Siberians have previously highlighted a 3 Mb chromosome 11 region containing 79 protein-coding genes as the strongest candidates for positive selection in Northeast Siberians. However, it was not possible to determine which of the genes might be driving the selection signal. Here, using whole-genome high-coverage sequence data, we identified the most likely causative variant as a nonsynonymous G>A transition (rs80356779; c.1436C>T [p.Pro479Leu] on the reverse strand) in CPT1A, a key regulator of mitochondrial long-chain fatty-acid oxidation. Remarkably, the derived allele is associated with hypoketotic hypoglycemia and high infant mortality yet occurs at high frequency in Canadian and Greenland Inuits and was also found at 68% frequency in our Northeast Siberian sample. We provide evidence of one of the strongest selective sweeps reported in humans; this sweep has driven this variant to high frequency in circum-Arctic populations within the last 6–23 ka despite associated deleterious consequences, possibly as a result of the selective advantage it originally provided to either a high-fat diet or a cold environment. PMID:25449608
Solano, Angela Rosaria; Cardoso, Florencia Cecilia; Romano, Vanesa; Perazzo, Florencia; Bas, Carlos; Recondo, Gonzalo; Santillan, Francisco Bernardo; Gonzalez, Eduardo; Abalo, Eduardo; Viniegra, María; Michel, José Davalos; Nuñez, Lina María; Noblia, Cristina Maria; Mc Lean, Ignacio; Canton, Enrique Diaz; Chacon, Reinaldo Daniel; Cortese, Gustavo; Varela, Eduardo Beccar; Greco, Martín; Barrientos, María Laura; Avila, Silvia Adela; Vuotto, Hector Daniel; Lorusso, Antonio; Podesta, Ernesto Jorge; Mando, Oscar Gaspar
2017-01-01
BRCA1/2 mutations in Latin America are scarcely documented and in serious need of knowledge about the spectrum of BRCA pathogenic variants, information which may alter clinical practice and subsequently improve patient outcome. In addition, the search for data on testing policies in different regions constitutes a fundamental strength for the present study, which analyzes BRCA1/2 gene sequences and large rearrangements in 940 probands with familial and/or personal history of breast/ovary cancer (BOC). In non-mutated DNA samples, Multiplex Ligation-dependent Probe Amplification assays (MLPA) were used for the analysis of large rearrangements. Our studies detected 179 deleterious mutations out of 940 (19.04%) probands, including 5 large rearrangements and 22 novel mutations. The recurrent mutations accounted for 15.08% of the total and only 2.87% of the probands analyzed, very different from a Hispanic panel previously described. In conclusion: a) this first comprehensive description of the spectrum in BRCA1/2 sheds light on the low frequency of recurrent mutations; b) this information is key in clinical practice to select adequate sequencing studies in our population, subsequently improve patient outcome and prevent damage associated to false normal reports resulting from the use of invalid population panels; c) panels of mutations from other populations should be cautiously validated before imported, even those of apparently similar origin, a concept to be considered beyond significance in Argentina. PMID:28947987
Genetic Profiles of Korean Patients With Glucose-6-Phosphate Dehydrogenase Deficiency
Lee, Jaewoong; Choi, Hayoung; Kim, Jiyeon; Kwon, Ahlm; Jang, Woori; Chae, Hyojin; Kim, Myungshin; Kim, Yonggoo; Lee, Jae Wook; Chung, Nack-Gyun
2017-01-01
Background We describe the genetic profiles of Korean patients with glucose-6-phosphate dehydrogenase (G6PD) deficiencies and the effects of G6PD mutations on protein stability and enzyme activity on the basis of in silico analysis. Methods In parallel with a genetic analysis, the pathogenicity of G6PD mutations detected in Korean patients was predicted in silico. The simulated effects of G6PD mutations were compared to the WHO classes based on G6PD enzyme activity. Four previously reported mutations and three newly diagnosed patients with missense mutations were estimated. Results One novel mutation (p.Cys385Gly, labeled G6PD Kangnam) and two known mutations [p.Ile220Met (G6PD São Paulo) and p.Glu416Lys (G6PD Tokyo)] were identified in this study. G6PD mutations identified in Koreans were also found in Brazil (G6PD São Paulo), Poland (G6PD Seoul), United States of America (G6PD Riley), Mexico (G6PD Guadalajara), and Japan (G6PD Tokyo). Several mutations occurred at the same nucleotide, but resulted in different amino acid residue changes in different ethnic populations (p.Ile380 variant, G6PD Calvo Mackenna; p.Cys385 variants, Tomah, Madrid, Lynwood; p.Arg387 variant, Beverly Hills; p.Pro396 variant, Bari; and p.Pro396Ala in India). On the basis of the in silico analysis, Class I or II mutations were predicted to be highly deleterious, and the effects of one Class IV mutation were equivocal. Conclusions The genetic profiles of Korean individuals with G6PD mutations indicated that the same mutations may have arisen by independent mutational events, and were not derived from shared ancestral mutations. The in silico analysis provided insight into the role of G6PD mutations in enzyme function and stability. PMID:28028996
Giacopuzzi, Edoardo; Gennarelli, Massimo; Minelli, Alessandra; Gardella, Rita; Valsecchi, Paolo; Traversa, Michele; Bonvicini, Cristian; Vita, Antonio; Sacchetti, Emilio; Magri, Chiara
2017-01-01
Inbreeding is a known risk factor for recessive Mendelian diseases and previous studies have suggested that it could also play a role in complex disorders, such as psychiatric diseases. Recent inbreeding results in the presence of long runs of homozygosity (ROHs) along the genome, which are also defined as autozygosity regions. Genetic variants in these regions have two alleles that are identical by descent, thus increasing the odds of bearing rare recessive deleterious mutations due to a homozygous state. A recent study showed a suggestive enrichment of long ROHs in schizophrenic patients, suggesting that recent inbreeding could play a role in the disease. To better understand the impact of autozygosity on schizophrenia risk, we selected, from a cohort of 180 Italian patients, seven subjects with extremely high numbers of large ROHs that were likely due to recent inbreeding and characterized the mutational landscape within their ROHs using Whole Exome Sequencing and, gene set enrichment analysis. We identified a significant overlap (17%; empirical p-value = 0.0171) between genes inside ROHs affected by low frequency functional homozygous variants (107 genes) and the group of most promising candidate genes mutated in schizophrenia. Moreover, in four patients, we identified novel and extremely rare damaging mutations in the genes involved in neurodevelopment (MEGF8) and in GABA/glutamatergic synaptic transmission (GAD1, FMN1, ANO2). These results provide insights into the contribution of rare recessive mutations and inbreeding as risk factors for schizophrenia. ROHs that are likely due to recent inbreeding harbor a combination of predisposing low-frequency variants and extremely rare variants that have a high impact on pivotal biological pathways implicated in the disease. In addition, this study confirms that focusing on patients with high levels of homozygosity could be a useful prioritization strategy for discovering new high-impact mutations in genetically complex disorders.
Genetic Profiles of Korean Patients With Glucose-6-Phosphate Dehydrogenase Deficiency.
Lee, Jaewoong; Park, Joonhong; Choi, Hayoung; Kim, Jiyeon; Kwon, Ahlm; Jang, Woori; Chae, Hyojin; Kim, Myungshin; Kim, Yonggoo; Lee, Jae Wook; Chung, Nack Gyun; Cho, Bin
2017-03-01
We describe the genetic profiles of Korean patients with glucose-6-phosphate dehydrogenase (G6PD) deficiencies and the effects of G6PD mutations on protein stability and enzyme activity on the basis of in silico analysis. In parallel with a genetic analysis, the pathogenicity of G6PD mutations detected in Korean patients was predicted in silico. The simulated effects of G6PD mutations were compared to the WHO classes based on G6PD enzyme activity. Four previously reported mutations and three newly diagnosed patients with missense mutations were estimated. One novel mutation (p.Cys385Gly, labeled G6PD Kangnam) and two known mutations [p.Ile220Met (G6PD São Paulo) and p.Glu416Lys (G6PD Tokyo)] were identified in this study. G6PD mutations identified in Koreans were also found in Brazil (G6PD São Paulo), Poland (G6PD Seoul), United States of America (G6PD Riley), Mexico (G6PD Guadalajara), and Japan (G6PD Tokyo). Several mutations occurred at the same nucleotide, but resulted in different amino acid residue changes in different ethnic populations (p.Ile380 variant, G6PD Calvo Mackenna; p.Cys385 variants, Tomah, Madrid, Lynwood; p.Arg387 variant, Beverly Hills; p.Pro396 variant, Bari; and p.Pro396Ala in India). On the basis of the in silico analysis, Class I or II mutations were predicted to be highly deleterious, and the effects of one Class IV mutation were equivocal. The genetic profiles of Korean individuals with G6PD mutations indicated that the same mutations may have arisen by independent mutational events, and were not derived from shared ancestral mutations. The in silico analysis provided insight into the role of G6PD mutations in enzyme function and stability.
Känsäkoski, Johanna; Raivio, Taneli; Juul, Anders; Tommiska, Johanna
2015-12-01
Idiopathic central precocious puberty (ICPP) results from the premature reactivation of the hypothalamic-pituitary-gonadal axis leading to development of secondary sexual characteristics prior to 8 y in girls or 9 y in boys. Since the initial discovery of mutations in the maternally imprinted MKRN3 gene in 2013, several case reports have described mutations in this gene in ICPP patients from different populations, highlighting the importance of MKRN3 as a regulator of pubertal onset. We screened 29 Danish girls with ICPP for mutations in MKRN3. Expression of MKRN3 in human hypothalamic complementary DNA (cDNA) was investigated by PCR. One paternally inherited rare variant, c.1034G>A (p.Arg345His), was identified in one girl with ICPP and in her brother with early puberty. The variant is predicted to be deleterious by three different in silico prediction programs. Expression of MKRN3 was confirmed in adult human hypothalamus. Our results are in line with previous studies in which paternally inherited MKRN3 mutations have been found both in males and in females with ICPP or early puberty. Our report further expands the set of MKRN3 mutations identified in ICPP patients across diverse populations, thus supporting the major regulatory function of MKRN3 in pubertal onset.
Watkin, Levi B.; Jessen, Birthe; Wiszniewski, Wojciech; Vece, Timothy; Jan, Max; Sha, Youbao; Thamsen, Maike; Santos-Cortez, Regie L. P.; Lee, Kwanghyuk; Gambin, Tomasz; Forbes, Lisa; Law, Christopher S.; Stray-Petersen, Asbjørg; Cheng, Mickie H.; Mace, Emily M.; Anderson, Mark S.; Liu, Dongfang; Tang, Ling Fung; Nicholas, Sarah K.; Nahmod, Karen; Makedonas, George; Canter, Debra; Kwok, Pui-Yan; Hicks, John; Jones, Kirk D.; Penney, Samantha; Jhangiani, Shalini N.; Rosenblum, Michael D.; Dell, Sharon D.; Waterfield, Michael R.; Papa, Feroz R.; Muzny, Donna M.; Zaitlen, Noah; Leal, Suzanne M.; Gonzaga-Jauregui, Claudia; Boerwinkle, Eric; Eissa, N. Tony; Gibbs, Richard A.; Lupski, James R.; Orange, Jordan S.; Shum, Anthony K.
2015-01-01
Advances in genomics have allowed unbiased genetic studies of human disease with unexpected insights into the molecular mechanisms of cellular immunity and autoimmunity1. We performed whole exome sequencing (WES) and targeted sequencing in patients with an apparent Mendelian syndrome of autoimmune disease characterized by high-titer autoantibodies, inflammatory arthritis and interstitial lung disease (ILD). In five families, we identified four unique deleterious variants in the Coatomer subunit alpha (COPA) gene all located within the same functional domain. We hypothesized that mutant COPA leads to a defect in intracellular transport mediated by coat protein complex I (COPI)2–4. We show that COPA variants impair binding of proteins targeted for retrograde Golgi to ER transport and demonstrate that expression of mutant COPA leads to ER stress and the upregulation of Th17 priming cytokines. Consistent with this pattern of cytokine expression, patients demonstrated a significant skewing of CD4+ T cells toward a T helper 17 (Th17) phenotype, an effector T cell population implicated in autoimmunity5,6. Our findings uncover an unexpected molecular link between a vesicular transport protein and a syndrome of autoimmunity manifested by lung and joint disease. These findings provide a unique opportunity to understand how alterations in cellular homeostasis caused by a defect in the intracellular trafficking pathway leads to the generation of human autoimmune disease. PMID:25894502
Deleterious variants in TRAK1 disrupt mitochondrial movement and cause fatal encephalopathy.
Barel, Ortal; Malicdan, May Christine V; Ben-Zeev, Bruria; Kandel, Judith; Pri-Chen, Hadass; Stephen, Joshi; Castro, Inês G; Metz, Jeremy; Atawa, Osama; Moshkovitz, Sharon; Ganelin, Esther; Barshack, Iris; Polak-Charcon, Sylvie; Nass, Dvora; Marek-Yagel, Dina; Amariglio, Ninette; Shalva, Nechama; Vilboux, Thierry; Ferreira, Carlos; Pode-Shakked, Ben; Heimer, Gali; Hoffmann, Chen; Yardeni, Tal; Nissenkorn, Andreea; Avivi, Camila; Eyal, Eran; Kol, Nitzan; Glick Saar, Efrat; Wallace, Douglas C; Gahl, William A; Rechavi, Gideon; Schrader, Michael; Eckmann, David M; Anikster, Yair
2017-03-01
Cellular distribution and dynamics of mitochondria are regulated by several motor proteins and a microtubule network. In neurons, mitochondrial trafficking is crucial because of high energy needs and calcium ion buffering along axons to synapses during neurotransmission. The trafficking kinesin proteins (TRAKs) are well characterized for their role in lysosomal and mitochondrial trafficking in cells, especially neurons. Using whole exome sequencing, we identified homozygous truncating variants in TRAK1 (NM_001042646:c.287-2A > C), in six lethal encephalopathic patients from three unrelated families. The pathogenic variant results in aberrant splicing and significantly reduced gene expression at the RNA and protein levels. In comparison with normal cells, TRAK1-deficient fibroblasts showed irregular mitochondrial distribution, altered mitochondrial motility, reduced mitochondrial membrane potential, and diminished mitochondrial respiration. This study confirms the role of TRAK1 in mitochondrial dynamics and constitutes the first report of this gene in association with a severe neurodevelopmental disorder. © Published by Oxford University Press on behalf of the Guarantors of Brain 2017. This work is written by US Government employees and is in the public domain in the US.
Identification of rare paired box 3 variant in strabismus by whole exome sequencing
Gong, Hui-Min; Wang, Jing; Xu, Jing; Zhou, Zhan-Yu; Li, Jing-Wen; Chen, Shu-Fang
2017-01-01
AIM To identify the potentially pathogenic gene variants that contributes to the etiology of strabismus. METHODS A Chinese pedigree with strabismus was collected and the exomes of two affected individuals were sequenced using the next-generation sequencing technology. The resulting variants from exome sequencing were filtered by subsequent bioinformatics methods and the candidate mutation was verified as heterozygous in the affected proposita and her mother by sanger sequencing. RESULTS Whole exome sequencing and filtering identified a nonsynonymous mutation c.434G-T transition in paired box 3 (PAX3) in the two affected individuals, which were predicted to be deleterious by more than 4 bioinformatics programs. This altered amino acid residue was located in the conserved PAX domain of PAX3. This gene encodes a member of the PAX family of transcription factors, which play critical roles during fetal development. Mutations in PAX3 were associated with Waardenburg syndrome with strabismus. CONCLUSION Our results report that the c.434G-T mutation (p.R145L) in PAX3 may contribute to strabismus, expanding our understanding of the causally relevant genes for this disorder. PMID:28861346
BRCA1 and BRCA2 mutation analysis of early-onset and familial breast cancer cases in Mexico.
Ruiz-Flores, Pablo; Sinilnikova, Olga M; Badzioch, Michael; Calderon-Garcidueñas, A L; Chopin, Sandrine; Fabrice, Odefrey; González-Guerrero, J F; Szabo, Csilla; Lenoir, Gilbert; Goldgar, David E; Barrera-Saldaña, Hugo A
2002-12-01
The entire coding regions of BRCA1 and BRCA2 were screened for mutations by heteroduplex analysis in 51 Mexican breast cancer patients. One BRCA1 and one BRCA2 truncating mutation each was identified in the group of 32 (6%) early-onset breast cancer patients (< or =35 years). Besides these two likely deleterious mutations, eight rare variants of unknown significance, mostly in the BRCA2 gene, were detected in six of 32 (19%) early-onset breast cancer cases and in three of 17 (18%) site-specific breast cancer families, one containing a male breast cancer case. No mutations or rare sequence variants have been identified in two additional families including each an early-onset breast cancer case and an ovarian cancer patient. The two truncating mutations (BRCA1 3857delT; BRCA2 2663-2664insA) and six of the rare variants have never been reported before and may be of country-specific origin. The majority of the alterations appeared to be distinct, with only one of them being observed in more than one family. Copyright 2002 Wiley-Liss, Inc.
Identification of rare paired box 3 variant in strabismus by whole exome sequencing.
Gong, Hui-Min; Wang, Jing; Xu, Jing; Zhou, Zhan-Yu; Li, Jing-Wen; Chen, Shu-Fang
2017-01-01
To identify the potentially pathogenic gene variants that contributes to the etiology of strabismus. A Chinese pedigree with strabismus was collected and the exomes of two affected individuals were sequenced using the next-generation sequencing technology. The resulting variants from exome sequencing were filtered by subsequent bioinformatics methods and the candidate mutation was verified as heterozygous in the affected proposita and her mother by sanger sequencing. Whole exome sequencing and filtering identified a nonsynonymous mutation c.434G-T transition in paired box 3 (PAX3) in the two affected individuals, which were predicted to be deleterious by more than 4 bioinformatics programs. This altered amino acid residue was located in the conserved PAX domain of PAX3. This gene encodes a member of the PAX family of transcription factors, which play critical roles during fetal development. Mutations in PAX3 were associated with Waardenburg syndrome with strabismus. Our results report that the c.434G-T mutation (p.R145L) in PAX3 may contribute to strabismus, expanding our understanding of the causally relevant genes for this disorder.
Wen, Wei Xiong; Allen, Jamie; Lai, Kah Nyin; Mariapun, Shivaani; Hasan, Siti Norhidayu; Ng, Pei Sze; Lee, Daphne Shin-Chi; Lee, Sheau Yee; Yoon, Sook-Yee; Lim, Joanna; Lau, Shao Yan; Decker, Brennan; Pooley, Karen; Dorling, Leila; Luccarini, Craig; Baynes, Caroline; Conroy, Don M; Harrington, Patricia; Simard, Jacques; Yip, Cheng Har; Mohd Taib, Nur Aishah; Ho, Weang Kee; Antoniou, Antonis C; Dunning, Alison M; Easton, Douglas F; Teo, Soo Hwang
2018-02-01
Genetic testing for BRCA1 and BRCA2 is offered typically to selected women based on age of onset and family history of cancer. However, current internationally accepted genetic testing referral guidelines are built mostly on data from cancer genetics clinics in women of European descent. To evaluate the appropriateness of such guidelines in Asians, we have determined the prevalence of germ line variants in an unselected cohort of Asian patients with breast cancer and healthy controls. Germ line DNA from a hospital-based study of 2575 unselected patients with breast cancer and 2809 healthy controls were subjected to amplicon-based targeted sequencing of exonic and proximal splice site junction regions of BRCA1 and BRCA2 using the Fluidigm Access Array system, with sequencing conducted on a Illumina HiSeq2500 platform. Variant calling was performed with GATK UnifiedGenotyper and were validated by Sanger sequencing. Fifty-five (2.1%) BRCA1 and 66 (2.6%) BRCA2 deleterious mutations were identified among patients with breast cancer and five (0.18%) BRCA1 and six (0.21%) BRCA2 mutations among controls. One thousand one hundred and eighty-six (46%) patients and 97 (80%) carriers fulfilled the National Comprehensive Cancer Network guidelines for genetic testing. Five per cent of unselected Asian patients with breast cancer carry deleterious variants in BRCA1 or BRCA2 . While current referral guidelines identified the majority of carriers, one in two patients would be referred for genetic services. Given that such services are largely unavailable in majority of low-resource settings in Asia, our study highlights the need for more efficient guidelines to identify at-risk individuals in Asia. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Lage, Melissa D.; Pittman, Adrianne M. C.; Roncador, Alessandro; Cellini, Barbara; Tucker, Chandra L.
2014-01-01
Primary Hyperoxaluria Type 1 (PH1) is a rare autosomal recessive kidney stone disease caused by deficiency of the peroxisomal enzyme alanine: glyoxylate aminotransferase (AGT), which is involved in glyoxylate detoxification. Over 75 different missense mutations in AGT have been found associated with PH1. While some of the mutations have been found to affect enzyme activity, stability, and/or localization, approximately half of these mutations are completely uncharacterized. In this study, we sought to systematically characterize AGT missense mutations associated with PH1. To facilitate analysis, we used two high-throughput yeast-based assays: one that assesses AGT specific activity, and one that assesses protein stability. Approximately 30% of PH1-associated missense mutations are found in conjunction with a minor allele polymorphic variant, which can interact to elicit complex effects on protein stability and trafficking. To better understand this allele interaction, we functionally characterized each of 34 mutants on both the major (wild-type) and minor allele backgrounds, identifying mutations that synergize with the minor allele. We classify these mutants into four distinct categories depending on activity/stability results in the different alleles. Twelve mutants were found to display reduced activity in combination with the minor allele, compared with the major allele background. When mapped on the AGT dimer structure, these mutants reveal localized regions of the protein that appear particularly sensitive to interactions with the minor allele variant. While the majority of the deleterious effects on activity in the minor allele can be attributed to synergistic interaction affecting protein stability, we identify one mutation, E274D, that appears to specifically affect activity when in combination with the minor allele. PMID:24718375
Foster, John L.; Molina, Rene P.; Luo, Tianci; Arora, Vivek K.; Huang, Yaoxing; Ho, David D.; Garcia, J. Victor
2001-01-01
We have characterized the functional integrity of seven primary Nef isolates: five from a long-term nonprogressing human immunodeficiency virus (HIV)-infected individual and one each from two patients with AIDS. One of the seven Nefs was defective for CD4 downregulation, two others were defective for PAK-2 activation, and one Nef was defective for PAK-2 activation and major histocompatibility complex (MHC) class I downregulation. Five of the Nefs were tested and found to be functional for the enhancement of virus particle infectivity. The structural basis for each of the functional defects has been analyzed by constructing a consensus nef, followed by mutational analysis of the variant amino acid residues. Mutations A29V and F193I were deleterious to CD4 downregulation and PAK-2 activation, respectively, while S189R rendered Nef defective for both MHC class I downregulation and PAK-2 activation. A search of the literature identified HIVs from five patients with Nefs predominantly mutated at F193 and from one patient with Nefs predominantly mutated at A29. A29 is highly conserved in all HIV subtypes except for subtype E. F193 is conserved in subtype B (and possibly in the closely related subtype D), but none of the other HIV group M subtypes. Our results suggest that functional distinctions may exist between HIV subtypes. PMID:11160665
Experiments on the role of deleterious mutations as stepping stones in adaptive evolution
Covert, Arthur W.; Lenski, Richard E.; Wilke, Claus O.; Ofria, Charles
2013-01-01
Many evolutionary studies assume that deleterious mutations necessarily impede adaptive evolution. However, a later mutation that is conditionally beneficial may interact with a deleterious predecessor before it is eliminated, thereby providing access to adaptations that might otherwise be inaccessible. It is unknown whether such sign-epistatic recoveries are inconsequential events or an important factor in evolution, owing to the difficulty of monitoring the effects and fates of all mutations during experiments with biological organisms. Here, we used digital organisms to compare the extent of adaptive evolution in populations when deleterious mutations were disallowed with control populations in which such mutations were allowed. Significantly higher fitness levels were achieved over the long term in the control populations because some of the deleterious mutations served as stepping stones across otherwise impassable fitness valleys. As a consequence, initially deleterious mutations facilitated the evolution of complex, beneficial functions. We also examined the effects of disallowing neutral mutations, of varying the mutation rate, and of sexual recombination. Populations evolving without neutral mutations were able to leverage deleterious and compensatory mutation pairs to overcome, at least partially, the absence of neutral mutations. Substantially raising or lowering the mutation rate reduced or eliminated the long-term benefit of deleterious mutations, but introducing recombination did not. Our work demonstrates that deleterious mutations can play an important role in adaptive evolution under at least some conditions. PMID:23918358
Experiments on the role of deleterious mutations as stepping stones in adaptive evolution.
Covert, Arthur W; Lenski, Richard E; Wilke, Claus O; Ofria, Charles
2013-08-20
Many evolutionary studies assume that deleterious mutations necessarily impede adaptive evolution. However, a later mutation that is conditionally beneficial may interact with a deleterious predecessor before it is eliminated, thereby providing access to adaptations that might otherwise be inaccessible. It is unknown whether such sign-epistatic recoveries are inconsequential events or an important factor in evolution, owing to the difficulty of monitoring the effects and fates of all mutations during experiments with biological organisms. Here, we used digital organisms to compare the extent of adaptive evolution in populations when deleterious mutations were disallowed with control populations in which such mutations were allowed. Significantly higher fitness levels were achieved over the long term in the control populations because some of the deleterious mutations served as stepping stones across otherwise impassable fitness valleys. As a consequence, initially deleterious mutations facilitated the evolution of complex, beneficial functions. We also examined the effects of disallowing neutral mutations, of varying the mutation rate, and of sexual recombination. Populations evolving without neutral mutations were able to leverage deleterious and compensatory mutation pairs to overcome, at least partially, the absence of neutral mutations. Substantially raising or lowering the mutation rate reduced or eliminated the long-term benefit of deleterious mutations, but introducing recombination did not. Our work demonstrates that deleterious mutations can play an important role in adaptive evolution under at least some conditions.
Novel mutations in LRP6 highlight the role of WNT signaling in tooth agenesis
Ludwig, Kerstin U.; Sullivan, Robert; van Rooij, Iris A.L.M.; Thonissen, Michelle; Swinnen, Steven; Phan, Milien; Conte, Federica; Ishorst, Nina; Gilissen, Christian; RoaFuentes, Laury; van de Vorst, Maartje; Henkes, Arjen; Steehouwer, Marloes; van Beusekom, Ellen; Bloemen, Marjon; Vankeirsbilck, Bruno; Bergé, Stefaan; Hens, Greet; Schoenaers, Joseph; Poorten, Vincent Vander; Roosenboom, Jasmien; Verdonck, An; Devriendt, Koen; Roeleveldt, Nel; Jhangiani, Shalini N.; Vissers, Lisenka E.L.M.; Lupski, James R.; de Ligt, Joep; Von den Hoff, Johannes W.; Pfundt, Rolph; Brunner, Han G.; Zhou, Huiqing; Dixon, Jill; Mangold, Elisabeth; van Bokhoven, Hans; Dixon, Michael J.; Kleefstra, Tjitske
2016-01-01
Purpose Here we aimed to identify a novel genetic cause of tooth agenesis (TA) and/or orofacial clefting (OFC) by combining whole exome sequencing (WES) and targeted re-sequencing in a large cohort of TA and OFC patients. Methods WES was performed in two unrelated patients, one with severe TA and OFC and another with severe TA only. After identifying deleterious mutations in a gene encoding the low density lipoprotein receptor-related protein 6 (LRP6), all its exons were re-sequenced with molecular inversion probes, in 67 patients with TA, 1,072 patients with OFC and in 706 controls. Results We identified a frameshift (c.4594delG, p.Cys1532fs) and a canonical splice site mutation (c.3398-2A>C, p.?) in LRP6 respectively in the patient with TA and OFC, and in the patient with severe TA only. The targeted re-sequencing showed significant enrichment of unique LRP6 variants in TA patients, but not in nonsyndromic OFC. From the 5 variants in patients with TA, 2 affect the canonical splice site and 3 were missense variants; all variants segregated with the dominant phenotype and in 1 case the missense mutation occurred de novo. Conclusion Mutations in LRP6 cause tooth agenesis in man. PMID:26963285
Interpreting short tandem repeat variations in humans using mutational constraint
Gymrek, Melissa; Willems, Thomas; Reich, David; Erlich, Yaniv
2017-01-01
Identifying regions of the genome that are depleted of mutations can reveal potentially deleterious variants. Short tandem repeats (STRs), also known as microsatellites, are among the largest contributors of de novo mutations in humans. However, per-locus studies of STR mutations have been limited to highly ascertained panels of several dozen loci. Here, we harnessed bioinformatics tools and a novel analytical framework to estimate mutation parameters for each STR in the human genome by correlating STR genotypes with local sequence heterozygosity. We applied our method to obtain robust estimates of the impact of local sequence features on mutation parameters and used this to create a framework for measuring constraint at STRs by comparing observed vs. expected mutation rates. Constraint scores identified known pathogenic variants with early onset effects. Our metric will provide a valuable tool for prioritizing pathogenic STRs in medical genetics studies. PMID:28892063
Similarity of Deleterious Effects of Divorce on Chinese and American Children.
ERIC Educational Resources Information Center
Zhou, Zheng; Bray, Melissa A.; Kehle, Thomas J.; Xin, Tao
2001-01-01
Reviews and contrasts the effects of divorce on Chinese children's adjustment to American children of divorce. Results indicate that the deleterious effects of divorce on children's academic and social functioning appear to be similar to that experienced by American children. (Contains 23 references.) (GCP)
Vasques, Gabriela A; Funari, Mariana F A; Ferreira, Frederico M; Aza-Carmona, Miriam; Sentchordi-Montané, Lucia; Barraza-García, Jimena; Lerario, Antonio M; Yamamoto, Guilherme L; Naslavsky, Michel S; Duarte, Yeda A O; Bertola, Debora R; Heath, Karen E; Jorge, Alexander A L
2018-02-01
Genetic evaluation has been recognized as an important tool to elucidate the causes of growth disorders. To investigate the cause of short stature and to determine the phenotype of patients with IHH mutations, including the response to recombinant human growth hormone (rhGH) therapy. We studied 17 families with autosomal-dominant short stature by using whole exome sequencing and screened IHH defects in 290 patients with growth disorders. Molecular analyses were performed to evaluate the potential impact of N-terminal IHH variants. We identified 10 pathogenic or possibly pathogenic variants in IHH, an important regulator of endochondral ossification. Molecular analyses revealed a smaller potential energy of mutated IHH molecules. The allele frequency of rare, predicted to be deleterious IHH variants found in short-stature samples (1.6%) was higher than that observed in two control cohorts (0.017% and 0.08%; P < 0.001). Identified IHH variants segregate with short stature in a dominant inheritance pattern. Affected individuals typically manifest mild disproportional short stature with a frequent finding of shortening of the middle phalanx of the fifth finger. None of them have classic features of brachydactyly type A1, which was previously associated with IHH mutations. Five patients heterozygous for IHH variants had a good response to rhGH therapy. The mean change in height standard deviation score in 1 year was 0.6. Our study demonstrated the association of pathogenic variants in IHH with short stature with nonspecific skeletal abnormalities and established a frequent cause of growth disorder, with a preliminary good response to rhGH. Copyright © 2017 Endocrine Society
Subaran, Ryan L.; Odgerel, Zagaa; Swaminathan, Rajeswari; Glatt, Charles E.; Weissman, Myrna M.
2018-01-01
There are no known genetic variants with large effects on susceptibility to major depressive disorder (MDD). Although one proposed study approach is to increase sensitivity by increasing sample sizes, another is to focus on families with multiple affected individuals to identify genes with rare or novel variants with strong effects. Choosing the family-based approach, we performed whole-exome analysis on affected individuals (n = 12) across five MDD families, each with at least five affected individuals, early onset, and prepubertal diagnoses. We identified 67 genes where novel deleterious variants were shared among affected relatives. Gene ontology analysis shows that of these 67 genes, 18 encode transcriptional regulators, eight of which are expressed in the human brain, including four KRAB-A box-containing Zn2+ finger repressors. One of these, ZNF34, has been reported as being associated with bipolar disorder and as differentially expressed in bipolar disorder patients compared to healthy controls. We found a novel variant—encoding a non-conservative P17R substitution in the conserved repressor domain of ZNF34 protein—segregating completely with MDD in all available individuals in the family in which it was discovered. Further analysis showed a common ZNF34 coding indel segregating with MDD in a separate family, possibly indicating the presence of an unobserved, linked, rare variant in that particular family. Our results indicate that genes encoding transcription factors expressed in the brain might be an important group of MDD candidate genes and that rare variants in ZNF34 might contribute to susceptibility to MDD and perhaps other affective disorders. PMID:26823146
Cystinuria Associated with Different SLC7A9 Gene Variants in the Cat
Raj, Karthik; Osborne, Carl; Giger, Urs
2016-01-01
Cystinuria is a classical inborn error of metabolism characterized by a selective proximal renal tubular defect affecting cystine, ornithine, lysine, and arginine (COLA) reabsorption, which can lead to uroliths and urinary obstruction. In humans, dogs and mice, cystinuria is caused by variants in one of two genes, SLC3A1 and SLC7A9, which encode the rBAT and bo,+AT subunits of the bo,+ basic amino acid transporter system, respectively. In this study, exons and flanking regions of the SLC3A1 and SLC7A9 genes were sequenced from genomic DNA of cats (Felis catus) with COLAuria and cystine calculi. Relative to the Felis catus-6.2 reference genome sequence, DNA sequences from these affected cats revealed 3 unique homozygous SLC7A9 missense variants: one in exon 5 (p.Asp236Asn) from a non-purpose-bred medium-haired cat, one in exon 7 (p.Val294Glu) in a Maine Coon and a Sphinx cat, and one in exon 10 (p.Thr392Met) from a non-purpose-bred long-haired cat. A genotyping assay subsequently identified another cystinuric domestic medium-haired cat that was homozygous for the variant originally identified in the purebred cats. These missense variants result in deleterious amino acid substitutions of highly conserved residues in the bo,+AT protein. A limited population survey supported that the variants found were likely causative. The remaining 2 sequenced domestic short-haired cats had a heterozygous variant at a splice donor site in intron 10 and a homozygous single nucleotide variant at a branchpoint in intron 11 of SLC7A9, respectively. This study identifies the first SLC7A9 variants causing feline cystinuria and reveals that, as in humans and dogs, this disease is genetically heterogeneous in cats. PMID:27404572
Mercati, O; Huguet, G; Danckaert, A; André-Leroux, G; Maruani, A; Bellinzoni, M; Rolland, T; Gouder, L; Mathieu, A; Buratti, J; Amsellem, F; Benabou, M; Van-Gils, J; Beggiato, A; Konyukh, M; Bourgeois, J-P; Gazzellone, M J; Yuen, R K C; Walker, S; Delépine, M; Boland, A; Régnault, B; Francois, M; Van Den Abbeele, T; Mosca-Boidron, A L; Faivre, L; Shimoda, Y; Watanabe, K; Bonneau, D; Rastam, M; Leboyer, M; Scherer, S W; Gillberg, C; Delorme, R; Cloëz-Tayarani, I; Bourgeron, T
2017-04-01
Contactin genes CNTN5 and CNTN6 code for neuronal cell adhesion molecules that promote neurite outgrowth in sensory-motor neuronal pathways. Mutations of CNTN5 and CNTN6 have previously been reported in individuals with autism spectrum disorders (ASDs), but very little is known on their prevalence and clinical impact. In this study, we identified CNTN5 and CNTN6 deleterious variants in individuals with ASD. Among the carriers, a girl with ASD and attention-deficit/hyperactivity disorder was carrying five copies of CNTN5. For CNTN6, both deletions (6/1534 ASD vs 1/8936 controls; P=0.00006) and private coding sequence variants (18/501 ASD vs 535/33480 controls; P=0.0005) were enriched in individuals with ASD. Among the rare CNTN6 variants, two deletions were transmitted by fathers diagnosed with ASD, one stop mutation CNTN6 W923X was transmitted by a mother to her two sons with ASD and one variant CNTN6 P770L was found de novo in a boy with ASD. Clinical investigations of the patients carrying CNTN5 or CNTN6 variants showed that they were hypersensitive to sounds (a condition called hyperacusis) and displayed changes in wave latency within the auditory pathway. These results reinforce the hypothesis of abnormal neuronal connectivity in the pathophysiology of ASD and shed new light on the genes that increase risk for abnormal sensory perception in ASD.
Novel pedigree analysis implicates DNA repair and chromatin remodeling in multiple myeloma risk
Curtin, Karen; Rajamanickam, Venkatesh; Jayabalan, David; Atanackovic, Djordje; Rajkumar, S. Vincent; Kumar, Shaji; Slager, Susan; Galia, Perrine; Demangel, Delphine; Salama, Mohamed; Joseph, Vijai; Lipkin, Steven M.; Dumontet, Charles; Vachon, Celine M.
2018-01-01
The high-risk pedigree (HRP) design is an established strategy to discover rare, highly-penetrant, Mendelian-like causal variants. Its success, however, in complex traits has been modest, largely due to challenges of genetic heterogeneity and complex inheritance models. We describe a HRP strategy that addresses intra-familial heterogeneity, and identifies inherited segments important for mapping regulatory risk. We apply this new Shared Genomic Segment (SGS) method in 11 extended, Utah, multiple myeloma (MM) HRPs, and subsequent exome sequencing in SGS regions of interest in 1063 MM / MGUS (monoclonal gammopathy of undetermined significance–a precursor to MM) cases and 964 controls from a jointly-called collaborative resource, including cases from the initial 11 HRPs. One genome-wide significant 1.8 Mb shared segment was found at 6q16. Exome sequencing in this region revealed predicted deleterious variants in USP45 (p.Gln691* and p.Gln621Glu), a gene known to influence DNA repair through endonuclease regulation. Additionally, a 1.2 Mb segment at 1p36.11 is inherited in two Utah HRPs, with coding variants identified in ARID1A (p.Ser90Gly and p.Met890Val), a key gene in the SWI/SNF chromatin remodeling complex. Our results provide compelling statistical and genetic evidence for segregating risk variants for MM. In addition, we demonstrate a novel strategy to use large HRPs for risk-variant discovery more generally in complex traits. PMID:29389935
Novel pedigree analysis implicates DNA repair and chromatin remodeling in multiple myeloma risk.
Waller, Rosalie G; Darlington, Todd M; Wei, Xiaomu; Madsen, Michael J; Thomas, Alun; Curtin, Karen; Coon, Hilary; Rajamanickam, Venkatesh; Musinsky, Justin; Jayabalan, David; Atanackovic, Djordje; Rajkumar, S Vincent; Kumar, Shaji; Slager, Susan; Middha, Mridu; Galia, Perrine; Demangel, Delphine; Salama, Mohamed; Joseph, Vijai; McKay, James; Offit, Kenneth; Klein, Robert J; Lipkin, Steven M; Dumontet, Charles; Vachon, Celine M; Camp, Nicola J
2018-02-01
The high-risk pedigree (HRP) design is an established strategy to discover rare, highly-penetrant, Mendelian-like causal variants. Its success, however, in complex traits has been modest, largely due to challenges of genetic heterogeneity and complex inheritance models. We describe a HRP strategy that addresses intra-familial heterogeneity, and identifies inherited segments important for mapping regulatory risk. We apply this new Shared Genomic Segment (SGS) method in 11 extended, Utah, multiple myeloma (MM) HRPs, and subsequent exome sequencing in SGS regions of interest in 1063 MM / MGUS (monoclonal gammopathy of undetermined significance-a precursor to MM) cases and 964 controls from a jointly-called collaborative resource, including cases from the initial 11 HRPs. One genome-wide significant 1.8 Mb shared segment was found at 6q16. Exome sequencing in this region revealed predicted deleterious variants in USP45 (p.Gln691* and p.Gln621Glu), a gene known to influence DNA repair through endonuclease regulation. Additionally, a 1.2 Mb segment at 1p36.11 is inherited in two Utah HRPs, with coding variants identified in ARID1A (p.Ser90Gly and p.Met890Val), a key gene in the SWI/SNF chromatin remodeling complex. Our results provide compelling statistical and genetic evidence for segregating risk variants for MM. In addition, we demonstrate a novel strategy to use large HRPs for risk-variant discovery more generally in complex traits.
Wójcicka, Anna; Czetwertyńska, Małgorzata; Świerniak, Michał; Długosińska, Joanna; Maciąg, Monika; Czajka, Agnieszka; Dymecka, Kinga; Kubiak, Anna; Kot, Adam; Płoski, Rafał; de la Chapelle, Albert; Jażdżewski, Krystian
2014-06-01
The risk of developing papillary thyroid carcinoma (PTC), the most frequent form of thyroid malignancy, is elevated up to 8.6-fold in first-degree relatives of PTC patients. The familial risk could be explained by high-penetrance mutations in yet unidentified genes, or polygenic action of low-penetrance alleles. Since the DNA-damaging exposure to ionizing radiation is a known risk factor for thyroid cancer, polymorphisms in DNA repair genes are likely to affect this risk. In a search for low-penetrance susceptibility alleles we employed Sequenom technology to genotype deleterious polymorphisms in ATM, CHEK2, and BRCA1 in 1,781 PTC patients and 2,081 healthy controls. As a result of the study, we identified CHEK2 rs17879961 (OR = 2.2, P = 2.37e-10) and BRCA1 rs16941 (odds ratio [OR] = 1.16, P = 0.005) as risk alleles for PTC. The ATM rs1801516 variant modifies the risk associated with the BRCA1 variant by 0.78 (P = 0.02). Both the ATM and BRCA1 variants modify the impact of male gender on clinical variables: T status (P = 0.007), N status (P = 0.05), and stage (P = 0.035). Our findings implicate an important role of variants in the ATM- CHEK2- BRCA1 axis in modification of the genetic predisposition to PTC and its clinical manifestations. Copyright © 2014 Wiley Periodicals, Inc.
Quinsey, Noelene S; Fitton, Hazel L; Coughlin, Paul; Whisstock, James C; Dafforn, Timothy R; Carrell, Robin W; Bottomley, Stephen P; Pike, Robert N
2003-09-02
The shutter region of serpins consists of a number of highly conserved residues that are critical for both stability and function. Several variants of antithrombin with substitutions in this region are unstable and predispose the carrier to thrombosis. Although most mutations in the shutter region investigated to date are deleterious with respect to serpin stability and function, the substitution of Phe51 by Leu in alpha(1)-antitrypsin results in enhanced stability. Here, we have investigated the effects of introducing an analogous mutation into antithrombin (Phe 77 to Leu). The mutation did not affect the kinetics of interaction with proteases. Strikingly, however, the thermostability of the protein was markedly decreased, with the serpin displaying a 13 degrees C decrease in melting temperature as compared to wild-type recombinant antithrombin. Further studies revealed that in contrast to wild-type antithrombin, the mutant adopted the latent (inactive) conformation upon mild heating. Previous studies on shutter region mutations that destabilize antithrombin revealed that such variants possess enhanced affinity for both heparin pentasaccharide and full-length heparin. The N135A/F77L mutant had unchanged affinity for heparin pentasaccharide, but the affinity for full-length heparin was increased. We suggest that the Phe77Leu mutation causes conformational changes around the top of the D-helix in antithrombin, in particular, to the arginine 132 and 133 residues that may mediate additional antithrombin/heparin interactions. This paper also demonstrates that there are major differences between the shutter regions of antithrombin and alpha(1)-antitrypsin since a stabilizing mutation in antitrypsin has the converse effect in antithrombin.
Lee, Inn-Chi; Yang, Jiann-Jou; Li, Shuan-Yow
2017-09-01
Pediatric epilepsy caused by a KCNQ2 gene mutation usually manifests as benign familial neonatal seizures (BFNS) during the 1 st week of life. However, the exact mechanism, phenotype, and genotype of the KCNQ2 mutation are unclear. We studied the KCNQ2 genotype from 75 nonconsanguineous patients with childhood epilepsy without an identified cause (age range: from 2 days to 18 years) and from 55 healthy adult controls without epilepsy. KCNQ2 mutation variants were transfected into HEK293 cells to investigate what functional changes they induced. Four (5%) of the patients had the E515D KCNQ2 mutation, which the computer-based PolyPhen algorithm predicted to be deleterious. Their seizure outcomes were favorable, but three had an intellectual disability. Two patients with E515D presented with continuous spikes and waves during slow-wave sleep (CSWS), and the other two presented with BFNS. We also analyzed 10 affected family members with the same KCNQ2 mutation: all had epilepsy (8 had BFNS and 2 had CSWS). A functional analysis showed that the recordings of the E515D currents were significantly different (p<0.05), which suggested that channels with KCNQ2 E515D variants are less sensitive to voltage and require stronger depolarization to reach opening probabilities than those with the wild type or N780T (a benign polymorphism). KCNQ2 mutations can cause various phenotypes in children: they lead to BFNS and CSWS. We hypothesize that patients with the KCNQ2 E515D mutation are susceptible to seizures. Copyright © 2016. Published by Elsevier B.V.
Alsmadi, Osama; Hebbar, Prashantha; Antony, Dinu; Behbehani, Kazem; Thanaraj, Thangavel Alphonse
2014-01-01
Population of the State of Kuwait is composed of three genetic subgroups of inferred Persian, Saudi Arabian tribe and Bedouin ancestry. The Saudi Arabian tribe subgroup traces its origin to the Najd region of Saudi Arabia. By sequencing two whole genomes and thirteen exomes from this subgroup at high coverage (>40X), we identify 4,950,724 Single Nucleotide Polymorphisms (SNPs), 515,802 indels and 39,762 structural variations. Of the identified variants, 10,098 (8.3%) exomic SNPs, 139,923 (2.9%) non-exomic SNPs, 5,256 (54.3%) exomic indels, and 374,959 (74.08%) non-exomic indels are ‘novel’. Up to 8,070 (79.9%) of the reported novel biallelic exomic SNPs are seen in low frequency (minor allele frequency <5%). We observe 5,462 known and 1,004 novel potentially deleterious nonsynonymous SNPs. Allele frequencies of common SNPs from the 15 exomes is significantly correlated with those from genotype data of a larger cohort of 48 individuals (Pearson correlation coefficient, 0.91; p <2.2×10−16). A set of 2,485 SNPs show significantly different allele frequencies when compared to populations from other continents. Two notable variants having risk alleles in high frequencies in this subgroup are: a nonsynonymous deleterious SNP (rs2108622 [19:g.15990431C>T] from CYP4F2 gene [MIM:*604426]) associated with warfarin dosage levels [MIM:#122700] required to elicit normal anticoagulant response; and a 3′ UTR SNP (rs6151429 [22:g.51063477T>C]) from ARSA gene [MIM:*607574]) associated with Metachromatic Leukodystrophy [MIM:#250100]. Hemoglobin Riyadh variant (identified for the first time in a Saudi Arabian woman) is observed in the exome data. The mitochondrial haplogroup profiles of the 15 individuals are consistent with the haplogroup diversity seen in Saudi Arabian natives, who are believed to have received substantial gene flow from Africa and eastern provenance. We present the first genome resource imperative for designing future genetic studies in Saudi Arabian tribe subgroup. The full-length genome sequences and the identified variants are available at ftp://dgr.dasmaninstitute.org and http://dgr.dasmaninstitute.org/DGR/gb.html. PMID:24896259
C-Terminal Fluorescent Labeling Impairs Functionality of DNA Mismatch Repair Proteins
Brieger, Angela; Plotz, Guido; Hinrichsen, Inga; Passmann, Sandra; Adam, Ronja; Zeuzem, Stefan
2012-01-01
The human DNA mismatch repair (MMR) process is crucial to maintain the integrity of the genome and requires many different proteins which interact perfectly and coordinated. Germline mutations in MMR genes are responsible for the development of the hereditary form of colorectal cancer called Lynch syndrome. Various mutations mainly in two MMR proteins, MLH1 and MSH2, have been identified so far, whereas 55% are detected within MLH1, the essential component of the heterodimer MutLα (MLH1 and PMS2). Most of those MLH1 variants are pathogenic but the relevance of missense mutations often remains unclear. Many different recombinant systems are applied to filter out disease-associated proteins whereby fluorescent tagged proteins are frequently used. However, dye labeling might have deleterious effects on MutLα's functionality. Therefore, we analyzed the consequences of N- and C-terminal fluorescent labeling on expression level, cellular localization and MMR activity of MutLα. Besides significant influence of GFP- or Red-fusion on protein expression we detected incorrect shuttling of single expressed C-terminal GFP-tagged PMS2 into the nucleus and found that C-terminal dye labeling impaired MMR function of MutLα. In contrast, N-terminal tagged MutLαs retained correct functionality and can be recommended both for the analysis of cellular localization and MMR efficiency. PMID:22348133
Mutations in the pancreatic secretory enzymes CPA1 and CPB1 are associated with pancreatic cancer.
Tamura, Koji; Yu, Jun; Hata, Tatsuo; Suenaga, Masaya; Shindo, Koji; Abe, Toshiya; MacGregor-Das, Anne; Borges, Michael; Wolfgang, Christopher L; Weiss, Matthew J; He, Jin; Canto, Marcia Irene; Petersen, Gloria M; Gallinger, Steven; Syngal, Sapna; Brand, Randall E; Rustgi, Anil; Olson, Sara H; Stoffel, Elena; Cote, Michele L; Zogopoulos, George; Potash, James B; Goes, Fernando S; McCombie, Richard W; Zandi, Peter P; Pirooznia, Mehdi; Kramer, Melissa; Parla, Jennifer; Eshleman, James R; Roberts, Nicholas J; Hruban, Ralph H; Klein, Alison Patricia; Goggins, Michael
2018-05-01
To evaluate whether germline variants in genes encoding pancreatic secretory enzymes contribute to pancreatic cancer susceptibility, we sequenced the coding regions of CPB1 and other genes encoding pancreatic secretory enzymes and known pancreatitis susceptibility genes ( PRSS1 , CPA1 , CTRC , and SPINK1 ) in a hospital series of pancreatic cancer cases and controls. Variants in CPB1 , CPA1 (encoding carboxypeptidase B1 and A1), and CTRC were evaluated in a second set of cases with familial pancreatic cancer and controls. More deleterious CPB1 variants, defined as having impaired protein secretion and induction of endoplasmic reticulum (ER) stress in transfected HEK 293T cells, were found in the hospital series of pancreatic cancer cases (5/986, 0.5%) than in controls (0/1,045, P = 0.027). Among familial pancreatic cancer cases, ER stress-inducing CPB1 variants were found in 4 of 593 (0.67%) vs. 0 of 967 additional controls ( P = 0.020), with a combined prevalence in pancreatic cancer cases of 9/1,579 vs. 0/2,012 controls ( P < 0.01). More ER stress-inducing CPA1 variants were also found in the combined set of hospital and familial cases with pancreatic cancer than in controls [7/1,546 vs. 1/2,012; P = 0.025; odds ratio, 9.36 (95% CI, 1.15-76.02)]. Overall, 16 (1%) of 1,579 pancreatic cancer cases had an ER stress-inducing CPA1 or CPB1 variant, compared with 1 of 2,068 controls ( P < 0.00001). No other candidate genes had statistically significant differences in variant prevalence between cases and controls. Our study indicates ER stress-inducing variants in CPB1 and CPA1 are associated with pancreatic cancer susceptibility and implicate ER stress in pancreatic acinar cells in pancreatic cancer development.
Kim, Haeyoung; Cho, Dae-Yeon; Choi, Doo Ho; Oh, Mijin; Shin, Inkyung; Park, Won; Huh, Seung Jae; Nam, Seok Jin; Lee, Jeong Eon; Kim, Seok Won
2017-01-01
This study was performed to evaluate the frequency of mutations in CHEK2, PALB2, MRE11, and RAD50 among Korean patients at high risk for hereditary breast cancer. A total of 235 Korean patients with hereditary breast cancer who tested negative for BRCA1/2 mutation were enrolled to this study. Entire coding regions of CHEK2, PALB2, MRE11, and RAD50 were analyzed using massively parallel sequencing (MPS). Sequence variants detected by MPS were confirmed by Sanger sequencing. Six patients (2.5 %) were found to have pathogenic variants in CHEK2 (n = 1), PALB2 (n = 2), MRE11 (n = 1), and RAD50 (n = 2). Among the pathogenic variants, PALB2 c.2257C>T was previously reported in other studies, while CHEK2 c.1245dupC, PALB2 c.1048C>T, MRE11 c.1773_1774delAA, RAD50 c.1276C>T, and RAD50 c.3811_3813delGAA were newly identified in this study. A total of 15 missense variants were found in the four genes among 26 patients; 7 patients had a variant in CHEK2, 11 in PALB2, 2 in MRE11, and 6 in RAD50. When in silico analyses were performed to the 15 missense variants, six variants (CHEK2 c.686A>G, PALB2 c.1492G>T, PALB2 c.3054G>C, MRE11 c.140C>T, RAD50 c.1456C>T, and RAD50 c.3790C>T) were predicted to be deleterious. Pathogenic variants in CHEK2, PALB2, MRE11, and RAD50 were detected in a small proportion of Korean patients with features of hereditary breast cancer.
Caro-Llopis, Alfonso; Rosello, Monica; Orellana, Carmen; Oltra, Silvestre; Monfort, Sandra; Mayo, Sonia; Martinez, Francisco
2016-12-01
Mutations in the X-linked gene MED12 cause at least three different, but closely related, entities of syndromic intellectual disability. Recently, a new syndrome caused by MED13L deleterious variants has been described, which shows similar clinical manifestations including intellectual disability, hypotonia, and other congenital anomalies. Genotyping of 1,256 genes related with neurodevelopment was performed by next-generation sequencing in three unrelated patients and their healthy parents. Clinically relevant findings were confirmed by conventional sequencing. Each patient showed one de novo variant not previously reported in the literature or databases. Two different missense variants were found in the MED12 or MED13L genes and one nonsense mutation was found in the MED13L gene. The phenotypic consequences of these mutations are closely related and/or have been previously reported in one or other gene. Additionally, MED12 and MED13L code for two closely related partners of the mediator kinase module. Consequently, we propose the concept of a common MED12/MED13L clinical spectrum, encompassing Opitz-Kaveggia syndrome, Lujan-Fryns syndrome, Ohdo syndrome, MED13L haploinsufficiency syndrome, and others.
Exploring digenic inheritance in arrhythmogenic cardiomyopathy.
König, Eva; Volpato, Claudia Béu; Motta, Benedetta Maria; Blankenburg, Hagen; Picard, Anne; Pramstaller, Peter; Casella, Michela; Rauhe, Werner; Pompilio, Giulio; Meraviglia, Viviana; Domingues, Francisco S; Sommariva, Elena; Rossini, Alessandra
2017-12-08
Arrhythmogenic cardiomyopathy (ACM) is an inherited genetic disorder, characterized by the substitution of heart muscle with fibro-fatty tissue and severe ventricular arrhythmias, often leading to heart failure and sudden cardiac death. ACM is considered a monogenic disorder, but the low penetrance of mutations identified in patients suggests the involvement of additional genetic or environmental factors. We used whole exome sequencing to investigate digenic inheritance in two ACM families where previous diagnostic tests have revealed a PKP2 mutation in all affected and some healthy individuals. In family members with PKP2 mutations we determined all genes that harbor variants in affected but not in healthy carriers or vice versa. We computationally prioritized the most likely candidates, focusing on known ACM genes and genes related to PKP2 through protein interactions, functional relationships, or shared biological processes. We identified four candidate genes in family 1, namely DAG1, DAB2IP, CTBP2 and TCF25, and eleven candidate genes in family 2. The most promising gene in the second family is TTN, a gene previously associated with ACM, in which the affected individual harbors two rare deleterious-predicted missense variants, one of which is located in the protein's only serine kinase domain. In this study we report genes that might act as digenic players in ACM pathogenesis, on the basis of co-segregation with PKP2 mutations. Validation in larger cohorts is still required to prove the utility of this model.
Heimer, G; Marek-Yagel, D; Eyal, E; Barel, O; Oz Levi, D; Hoffmann, C; Ruzzo, E K; Ganelin-Cohen, E; Lancet, D; Pras, E; Rechavi, G; Nissenkorn, A; Anikster, Y; Goldstein, D B; Ben Zeev, B
2015-10-01
Two unrelated patients, presenting with significant global developmental delay, severe progressive microcephaly, seizures, spasticity and thin corpus callosum (CC) underwent trio whole-exome sequencing. No candidate variant was found in any known genes related to the phenotype. However, crossing the data of the patients illustrated that they both manifested pathogenic variants in the SLC1A4 gene which codes the ASCT1 transporter of serine and other neutral amino acids. The Ashkenazi patient is homozygous for a deleterious missense c.766G>A, p.(E256K) mutation whereas the Ashkenazi-Iraqi patient is compound heterozygous for this mutation and a nonsense c.945delTT, p.(Leu315Hisfs*42) mutation. Structural prediction demonstrates truncation of significant portion of the protein by the nonsense mutation and speculates functional disruption by the missense mutation. Both mutations are extremely rare in general population databases, however, the missense mutation was found in heterozygous mode in 1:100 Jewish Ashkenazi controls suggesting a higher carrier rate among Ashkenazi Jews. We conclude that SLC1A4 is the disease causing gene of a novel neurologic disorder manifesting with significant intellectual disability, severe postnatal microcephaly, spasticity and thin CC. The role of SLC1A4 in the serine transport from astrocytes to neurons suggests a possible pathomechanism for this disease and implies a potential therapeutic approach. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Maselli, Ricardo A; Arredondo, Juan; Vázquez, Jessica; Chong, Jessica X; Bamshad, Michael J; Nickerson, Deborah A; Lara, Marian; Ng, Fiona; Lo, Victoria L; Pytel, Peter; McDonald, Craig M
2017-08-01
Defects in genes encoding the isoforms of the laminin alpha subunit have been linked to various phenotypic manifestations, including brain malformations, muscular dystrophy, ocular defects, cardiomyopathy, and skin abnormalities. We report here a severe defect of neuromuscular transmission in a consanguineous patient with a homozygous variant in the laminin alpha-5 subunit gene (LAMA5). The variant c.8046C>T (p.Arg2659Trp) is rare and has a predicted deleterious effect. The affected individual, who also carries a rare homozygous sequence variant in LAMA1, had muscle weakness, myopia, and facial tics. Magnetic resonance imaging of brain showed mild volume loss and periventricular T2 prolongation. Repetitive nerve stimulation revealed 50% decrement of compound muscle action potential amplitudes and 250% facilitation immediately after exercise, Endplate studies identified a profound reduction of the endplate potential quantal content and endplates with normal postsynaptic folding that were denuded or partially occupied by small nerve terminals. Expression studies revealed that p.Arg2659Trp caused decreased binding of laminin alpha-5 to SV2A and impaired laminin-521 cell-adhesion and cell projection support in primary neuronal cultures. In summary, this report describing severe neuromuscular transmission failure in a patient with a LAMA5 mutation expands the list of phenotypes associated with defects in genes encoding alpha-laminins. © 2017 Wiley Periodicals, Inc.
Zhou, Sirui; Xiong, Lan; Xie, Pingxing; Ambalavanan, Amirthagowri; Bourassa, Cynthia V.; Dionne-Laporte, Alexandre; Spiegelman, Dan; Turcotte Gauthier, Maude; Henrion, Edouard; Diallo, Ousmane; Dion, Patrick A.; Rouleau, Guy A.
2015-01-01
Background Nunavik Inuit (northern Quebec, Canada) reside along the arctic coastline where for generations their daily energy intake has mainly been derived from animal fat. Given this particular diet it has been hypothesized that natural selection would lead to population specific allele frequency differences and unique variants in genes related to fatty acid metabolism. A group of genes, namely CPT1A, CPT1B, CPT1C, CPT2, CRAT and CROT, encode for three carnitine acyltransferases that are important for the oxidation of fatty acids, a critical step in their metabolism. Methods Exome sequencing and SNP array genotyping were used to examine the genetic variations in the six genes encoding for the carnitine acyltransferases in 113 Nunavik Inuit individuals. Results Altogether ten missense variants were found in genes CPT1A, CPT1B, CPT1C, CPT2 and CRAT, including three novel variants and one Inuit specific variant CPT1A p.P479L (rs80356779). The latter has the highest frequency (0.955) compared to other Inuit populations. We found that by comparison to Asians or Europeans, the Nunavik Inuit have an increased mutation burden in CPT1A, CPT2 and CRAT; there is also a high level of population differentiation based on carnitine acyltransferase gene variations between Nunavik Inuit and Asians. Conclusion The increased number and frequency of deleterious variants in these fatty acid metabolism genes in Nunavik Inuit may be the result of genetic adaptation to their diet and/or the extremely cold climate. In addition, the identification of these variants may help to understand some of the specific health risks of Nunavik Inuit. PMID:26010953
Zhou, Sirui; Xiong, Lan; Xie, Pingxing; Ambalavanan, Amirthagowri; Bourassa, Cynthia V; Dionne-Laporte, Alexandre; Spiegelman, Dan; Turcotte Gauthier, Maude; Henrion, Edouard; Diallo, Ousmane; Dion, Patrick A; Rouleau, Guy A
2015-01-01
Nunavik Inuit (northern Quebec, Canada) reside along the arctic coastline where for generations their daily energy intake has mainly been derived from animal fat. Given this particular diet it has been hypothesized that natural selection would lead to population specific allele frequency differences and unique variants in genes related to fatty acid metabolism. A group of genes, namely CPT1A, CPT1B, CPT1C, CPT2, CRAT and CROT, encode for three carnitine acyltransferases that are important for the oxidation of fatty acids, a critical step in their metabolism. Exome sequencing and SNP array genotyping were used to examine the genetic variations in the six genes encoding for the carnitine acyltransferases in 113 Nunavik Inuit individuals. Altogether ten missense variants were found in genes CPT1A, CPT1B, CPT1C, CPT2 and CRAT, including three novel variants and one Inuit specific variant CPT1A p.P479L (rs80356779). The latter has the highest frequency (0.955) compared to other Inuit populations. We found that by comparison to Asians or Europeans, the Nunavik Inuit have an increased mutation burden in CPT1A, CPT2 and CRAT; there is also a high level of population differentiation based on carnitine acyltransferase gene variations between Nunavik Inuit and Asians. The increased number and frequency of deleterious variants in these fatty acid metabolism genes in Nunavik Inuit may be the result of genetic adaptation to their diet and/or the extremely cold climate. In addition, the identification of these variants may help to understand some of the specific health risks of Nunavik Inuit.
Hintzsche, Jennifer; Kim, Jihye; Yadav, Vinod; Amato, Carol; Robinson, Steven E; Seelenfreund, Eric; Shellman, Yiqun; Wisell, Joshua; Applegate, Allison; McCarter, Martin; Box, Neil; Tentler, John; De, Subhajyoti
2016-01-01
Objective Currently, there is a disconnect between finding a patient’s relevant molecular profile and predicting actionable therapeutics. Here we develop and implement the Integrating Molecular Profiles with Actionable Therapeutics (IMPACT) analysis pipeline, linking variants detected from whole-exome sequencing (WES) to actionable therapeutics. Methods and materials The IMPACT pipeline contains 4 analytical modules: detecting somatic variants, calling copy number alterations, predicting drugs against deleterious variants, and analyzing tumor heterogeneity. We tested the IMPACT pipeline on whole-exome sequencing data in The Cancer Genome Atlas (TCGA) lung adenocarcinoma samples with known EGFR mutations. We also used IMPACT to analyze melanoma patient tumor samples before treatment, after BRAF-inhibitor treatment, and after BRAF- and MEK-inhibitor treatment. Results IMPACT Food and Drug Administration (FDA) correctly identified known EGFR mutations in the TCGA lung adenocarcinoma samples. IMPACT linked these EGFR mutations to the appropriate FDA-approved EGFR inhibitors. For the melanoma patient samples, we identified NRAS p.Q61K as an acquired resistance mutation to BRAF-inhibitor treatment. We also identified CDKN2A deletion as a novel acquired resistance mutation to BRAFi/MEKi inhibition. The IMPACT analysis pipeline predicts these somatic variants to actionable therapeutics. We observed the clonal dynamic in the tumor samples after various treatments. We showed that IMPACT not only helped in successful prioritization of clinically relevant variants but also linked these variations to possible targeted therapies. Conclusion IMPACT provides a new bioinformatics strategy to delineate candidate somatic variants and actionable therapies. This approach can be applied to other patient tumor samples to discover effective drug targets for personalized medicine. IMPACT is publicly available at http://tanlab.ucdenver.edu/IMPACT. PMID:27026619
Utility of Post-Mortem Genetic Testing in Cases of Sudden Arrhythmic Death Syndrome.
Lahrouchi, Najim; Raju, Hariharan; Lodder, Elisabeth M; Papatheodorou, Efstathios; Ware, James S; Papadakis, Michael; Tadros, Rafik; Cole, Della; Skinner, Jonathan R; Crawford, Jackie; Love, Donald R; Pua, Chee J; Soh, Bee Y; Bhalshankar, Jaydutt D; Govind, Risha; Tfelt-Hansen, Jacob; Winkel, Bo G; van der Werf, Christian; Wijeyeratne, Yanushi D; Mellor, Greg; Till, Jan; Cohen, Marta C; Tome-Esteban, Maria; Sharma, Sanjay; Wilde, Arthur A M; Cook, Stuart A; Bezzina, Connie R; Sheppard, Mary N; Behr, Elijah R
2017-05-02
Sudden arrhythmic death syndrome (SADS) describes a sudden death with negative autopsy and toxicological analysis. Cardiac genetic disease is a likely etiology. This study investigated the clinical utility and combined yield of post-mortem genetic testing (molecular autopsy) in cases of SADS and comprehensive clinical evaluation of surviving relatives. We evaluated 302 expertly validated SADS cases with suitable DNA (median age: 24 years; 65% males) who underwent next-generation sequencing using an extended panel of 77 primary electrical disorder and cardiomyopathy genes. Pathogenic and likely pathogenic variants were classified using American College of Medical Genetics (ACMG) consensus guidelines. The yield of combined molecular autopsy and clinical evaluation in 82 surviving families was evaluated. A gene-level rare variant association analysis was conducted in SADS cases versus controls. A clinically actionable pathogenic or likely pathogenic variant was identified in 40 of 302 cases (13%). The main etiologies established were catecholaminergic polymorphic ventricular tachycardia and long QT syndrome (17 [6%] and 11 [4%], respectively). Gene-based rare variants association analysis showed enrichment of rare predicted deleterious variants in RYR2 (p = 5 × 10 -5 ). Combining molecular autopsy with clinical evaluation in surviving families increased diagnostic yield from 26% to 39%. Molecular autopsy for electrical disorder and cardiomyopathy genes, using ACMG guidelines for variant classification, identified a modest but realistic yield in SADS. Our data highlighted the predominant role of catecholaminergic polymorphic ventricular tachycardia and long QT syndrome, especially the RYR2 gene, as well as the minimal yield from other genes. Furthermore, we showed the enhanced utility of combined clinical and genetic evaluation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Hintzsche, Jennifer; Kim, Jihye; Yadav, Vinod; Amato, Carol; Robinson, Steven E; Seelenfreund, Eric; Shellman, Yiqun; Wisell, Joshua; Applegate, Allison; McCarter, Martin; Box, Neil; Tentler, John; De, Subhajyoti; Robinson, William A; Tan, Aik Choon
2016-07-01
Currently, there is a disconnect between finding a patient's relevant molecular profile and predicting actionable therapeutics. Here we develop and implement the Integrating Molecular Profiles with Actionable Therapeutics (IMPACT) analysis pipeline, linking variants detected from whole-exome sequencing (WES) to actionable therapeutics. The IMPACT pipeline contains 4 analytical modules: detecting somatic variants, calling copy number alterations, predicting drugs against deleterious variants, and analyzing tumor heterogeneity. We tested the IMPACT pipeline on whole-exome sequencing data in The Cancer Genome Atlas (TCGA) lung adenocarcinoma samples with known EGFR mutations. We also used IMPACT to analyze melanoma patient tumor samples before treatment, after BRAF-inhibitor treatment, and after BRAF- and MEK-inhibitor treatment. IMPACT Food and Drug Administration (FDA) correctly identified known EGFR mutations in the TCGA lung adenocarcinoma samples. IMPACT linked these EGFR mutations to the appropriate FDA-approved EGFR inhibitors. For the melanoma patient samples, we identified NRAS p.Q61K as an acquired resistance mutation to BRAF-inhibitor treatment. We also identified CDKN2A deletion as a novel acquired resistance mutation to BRAFi/MEKi inhibition. The IMPACT analysis pipeline predicts these somatic variants to actionable therapeutics. We observed the clonal dynamic in the tumor samples after various treatments. We showed that IMPACT not only helped in successful prioritization of clinically relevant variants but also linked these variations to possible targeted therapies. IMPACT provides a new bioinformatics strategy to delineate candidate somatic variants and actionable therapies. This approach can be applied to other patient tumor samples to discover effective drug targets for personalized medicine.IMPACT is publicly available at http://tanlab.ucdenver.edu/IMPACT. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Rafiullah, Rafiullah; Aslamkhan, Muhammad; Paramasivam, Nagarajan; Thiel, Christian; Mustafa, Ghulam; Wiemann, Stefan; Schlesner, Matthias; Wade, Rebecca C; Rappold, Gudrun A; Berkel, Simone
2016-02-01
Intellectual disability (ID) is a neurodevelopmental disorder affecting 1%-3% of the population worldwide. It is characterised by high phenotypic and genetic heterogeneity and in most cases the underlying cause of the disorder is unknown. In our study we investigated a large consanguineous family from Baluchistan, Pakistan, comprising seven affected individuals with a severe form of autosomal recessive ID (ARID) and epilepsy, to elucidate a putative genetic cause. Whole exome sequencing (WES) of a trio, including a child with ID and epilepsy and its healthy parents that were part of this large family, revealed a homozygous missense variant p.R53Q in the lectin mannose-binding 2-like (LMAN2L) gene. This homozygous variant was co-segregating in the family with the phenotype of severe ID and infantile epilepsy; unaffected family members were heterozygous variant carriers. The variant was predicted to be pathogenic by five different in silico programmes and further three-dimensional structure modelling of the protein suggests that variant p.R53Q may impair protein-protein interaction. LMAN2L (OMIM: 609552) encodes for the lectin, mannose-binding 2-like protein which is a cargo receptor in the endoplasmic reticulum important for glycoprotein transport. Genome-wide association studies have identified an association of LMAN2L to different neuropsychiatric disorders. This is the first report linking LMAN2L to a phenotype of severe ARID and seizures, indicating that the deleterious homozygous p.R53Q variant very likely causes the disorder. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Solano, Angela Rosaria; Aceto, Gitana Maria; Delettieres, Dreanina; Veschi, Serena; Neuman, Maria Isabel; Alonso, Eduardo; Chialina, Sergio; Chacón, Reinaldo Daniel; Renato, Mariani-Costantini; Podestá, Ernesto Jorge
2012-01-01
The spectrum of BRCA1/2 genetic variation in breast-ovarian cancer patients has been scarcely investigated outside Europe and North America, with few reports for South America, where Amerindian founder effects and recent multiracial immigration are predicted to result in high genetic diversity. We describe here the results of BRCA1/BRCA2 germline analysis in an Argentinean series of breast/ovarian cancer patients selected for young age at diagnosis or breast/ovarian cancer family history. The study series (134 patients) included 37 cases diagnosed within 40 years of age and no family history (any ethnicity, fully-sequenced), and 97 cases with at least 2 affected relatives (any age), of which 57 were non-Ashkenazi (fully-sequenced) and 40 Ashkenazi (tested only for the founder mutations c.66_67delAG and c.5263insC in BRCA1 and c.5946delT in BRCA2). We found 24 deleterious mutations (BRCA1:16; BRCA2: 8) in 38/134 (28.3%) patients, of which 6/37 (16.2%) within the young age group, 15/57 (26.3%) within the non-Ahkenazi positive for family history; and 17/40 (42.5%) within the Ashkenazi. Seven pathogenetic mutations were novel, five in BRCA1: c.1502_1505delAATT, c.2626_2627delAA c.2686delA, c.2728 C > T, c.3758_3759delCT, two in BRCA2: c.7105insA, c.793 + 1delG. We also detected 72 variants of which 54 previously reported and 17 novel, 33 detected in an individual patient. Four missense variants of unknown clinical significance, identified in 5 patients, are predicted to affect protein function. While global and European variants contributed near 45% of the detected BRCA1/2 variation, the significant fraction of new variants (25/96, 26%) suggests the presence of a South American genetic component. This study, the first conducted in Argentinean patients, highlights a significant impact of novel BRCA1/2 mutations and genetic variants, which may be regarded as putatively South American, and confirms the important role of founder BRCA1 and BRCA2 mutations in Argentinean Ashkenazi Jews.
Tang, Haiming; Thomas, Paul D
2016-07-15
PANTHER-PSEP is a new software tool for predicting non-synonymous genetic variants that may play a causal role in human disease. Several previous variant pathogenicity prediction methods have been proposed that quantify evolutionary conservation among homologous proteins from different organisms. PANTHER-PSEP employs a related but distinct metric based on 'evolutionary preservation': homologous proteins are used to reconstruct the likely sequences of ancestral proteins at nodes in a phylogenetic tree, and the history of each amino acid can be traced back in time from its current state to estimate how long that state has been preserved in its ancestors. Here, we describe the PSEP tool, and assess its performance on standard benchmarks for distinguishing disease-associated from neutral variation in humans. On these benchmarks, PSEP outperforms not only previous tools that utilize evolutionary conservation, but also several highly used tools that include multiple other sources of information as well. For predicting pathogenic human variants, the trace back of course starts with a human 'reference' protein sequence, but the PSEP tool can also be applied to predicting deleterious or pathogenic variants in reference proteins from any of the ∼100 other species in the PANTHER database. PANTHER-PSEP is freely available on the web at http://pantherdb.org/tools/csnpScoreForm.jsp Users can also download the command-line based tool at ftp://ftp.pantherdb.org/cSNP_analysis/PSEP/ CONTACT: pdthomas@usc.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Li, Edward B; Truong, Dawn; Hallett, Shawn A; Mukherjee, Kusumika; Schutte, Brian C; Liao, Eric C
2017-09-01
Large-scale sequencing efforts have captured a rapidly growing catalogue of genetic variations. However, the accurate establishment of gene variant pathogenicity remains a central challenge in translating personal genomics information to clinical decisions. Interferon Regulatory Factor 6 (IRF6) gene variants are significant genetic contributors to orofacial clefts. Although approximately three hundred IRF6 gene variants have been documented, their effects on protein functions remain difficult to interpret. Here, we demonstrate the protein functions of human IRF6 missense gene variants could be rapidly assessed in detail by their abilities to rescue the irf6 -/- phenotype in zebrafish through variant mRNA microinjections at the one-cell stage. The results revealed many missense variants previously predicted by traditional statistical and computational tools to be loss-of-function and pathogenic retained partial or full protein function and rescued the zebrafish irf6 -/- periderm rupture phenotype. Through mRNA dosage titration and analysis of the Exome Aggregation Consortium (ExAC) database, IRF6 missense variants were grouped by their abilities to rescue at various dosages into three functional categories: wild type function, reduced function, and complete loss-of-function. This sensitive and specific biological assay was able to address the nuanced functional significances of IRF6 missense gene variants and overcome many limitations faced by current statistical and computational tools in assigning variant protein function and pathogenicity. Furthermore, it unlocked the possibility for characterizing yet undiscovered human IRF6 missense gene variants from orofacial cleft patients, and illustrated a generalizable functional genomics paradigm in personalized medicine.
Population Structure Shapes Copy Number Variation in Malaria Parasites.
Cheeseman, Ian H; Miller, Becky; Tan, John C; Tan, Asako; Nair, Shalini; Nkhoma, Standwell C; De Donato, Marcos; Rodulfo, Hectorina; Dondorp, Arjen; Branch, Oralee H; Mesia, Lastenia Ruiz; Newton, Paul; Mayxay, Mayfong; Amambua-Ngwa, Alfred; Conway, David J; Nosten, François; Ferdig, Michael T; Anderson, Tim J C
2016-03-01
If copy number variants (CNVs) are predominantly deleterious, we would expect them to be more efficiently purged from populations with a large effective population size (Ne) than from populations with a small Ne. Malaria parasites (Plasmodium falciparum) provide an excellent organism to examine this prediction, because this protozoan shows a broad spectrum of population structures within a single species, with large, stable, outbred populations in Africa, small unstable inbred populations in South America and with intermediate population characteristics in South East Asia. We characterized 122 single-clone parasites, without prior laboratory culture, from malaria-infected patients in seven countries in Africa, South East Asia and South America using a high-density single-nucleotide polymorphism/CNV microarray. We scored 134 high-confidence CNVs across the parasite exome, including 33 deletions and 102 amplifications, which ranged in size from <500 bp to 59 kb, as well as 10,107 flanking, biallelic single-nucleotide polymorphisms. Overall, CNVs were rare, small, and skewed toward low frequency variants, consistent with the deleterious model. Relative to African and South East Asian populations, CNVs were significantly more common in South America, showed significantly less skew in allele frequencies, and were significantly larger. On this background of low frequency CNV, we also identified several high-frequency CNVs under putative positive selection using an FST outlier analysis. These included known adaptive CNVs containing rh2b and pfmdr1, and several other CNVs (e.g., DNA helicase and three conserved proteins) that require further investigation. Our data are consistent with a significant impact of genetic structure on CNV burden in an important human pathogen. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Asakura, Yumi; Muroya, Koji; Hanakawa, Junko; Sato, Takeshi; Aida, Noriko; Narumi, Satoshi; Hasegawa, Tomonobu; Adachi, Masanori
2015-01-01
Abstract Recent reports have indicated the role of the prokineticin receptor 2 gene (PROKR2) in the etiology of congenital hypopituitarism, including septo-optic dysplasia and Kallmann syndrome. In the present study, using next-generation targeted sequencing, we identified a novel heterozygous PROKR2 variant (c.742C>T; p.R248W) in a female patient who had combined pituitary hormone deficiency (CPHD), morning glory syndrome and a severely malformed pituitary gland. No other mutation was present in 27 genes related to hypogonadotropic hypogonadism, pituitary hormone deficiency and optic nerve malformation. The substituted amino acid was located on the third intracellular loop of the PROKR2 protein, which is a G protein-coupled receptor. Computational analyses with two programs (SIFT and PolyPhen-2) showed that the substitution was deleterious to PROKR2 function. The p.R248W mutation was transmitted from the patient’s mother, who had a slightly delayed menarche. Collectively, we provide further genetic evidence linking heterozygous PROKR2 mutations and the development of CPHD. PMID:25678757
Asakura, Yumi; Muroya, Koji; Hanakawa, Junko; Sato, Takeshi; Aida, Noriko; Narumi, Satoshi; Hasegawa, Tomonobu; Adachi, Masanori
2015-01-01
Recent reports have indicated the role of the prokineticin receptor 2 gene (PROKR2) in the etiology of congenital hypopituitarism, including septo-optic dysplasia and Kallmann syndrome. In the present study, using next-generation targeted sequencing, we identified a novel heterozygous PROKR2 variant (c.742C>T; p.R248W) in a female patient who had combined pituitary hormone deficiency (CPHD), morning glory syndrome and a severely malformed pituitary gland. No other mutation was present in 27 genes related to hypogonadotropic hypogonadism, pituitary hormone deficiency and optic nerve malformation. The substituted amino acid was located on the third intracellular loop of the PROKR2 protein, which is a G protein-coupled receptor. Computational analyses with two programs (SIFT and PolyPhen-2) showed that the substitution was deleterious to PROKR2 function. The p.R248W mutation was transmitted from the patient's mother, who had a slightly delayed menarche. Collectively, we provide further genetic evidence linking heterozygous PROKR2 mutations and the development of CPHD.
Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture
Zheng, Hou-Feng; Forgetta, Vincenzo; Hsu, Yi-Hsiang; Estrada, Karol; Rosello-Diez, Alberto; Leo, Paul J; Dahia, Chitra L; Park-Min, Kyung Hyun; Tobias, Jonathan H; Kooperberg, Charles; Kleinman, Aaron; Styrkarsdottir, Unnur; Liu, Ching-Ti; Uggla, Charlotta; Evans, Daniel S; Nielson, Carrie M; Walter, Klaudia; Pettersson-Kymmer, Ulrika; McCarthy, Shane; Eriksson, Joel; Kwan, Tony; Jhamai, Mila; Trajanoska, Katerina; Memari, Yasin; Min, Josine; Huang, Jie; Danecek, Petr; Wilmot, Beth; Li, Rui; Chou, Wen-Chi; Mokry, Lauren E; Moayyeri, Alireza; Claussnitzer, Melina; Cheng, Chia-Ho; Cheung, Warren; Medina-Gómez, Carolina; Ge, Bing; Chen, Shu-Huang; Choi, Kwangbom; Oei, Ling; Fraser, James; Kraaij, Robert; Hibbs, Matthew A; Gregson, Celia L; Paquette, Denis; Hofman, Albert; Wibom, Carl; Tranah, Gregory J; Marshall, Mhairi; Gardiner, Brooke B; Cremin, Katie; Auer, Paul; Hsu, Li; Ring, Sue; Tung, Joyce Y; Thorleifsson, Gudmar; Enneman, Anke W; van Schoor, Natasja M; de Groot, Lisette C.P.G.M.; van der Velde, Nathalie; Melin, Beatrice; Kemp, John P; Christiansen, Claus; Sayers, Adrian; Zhou, Yanhua; Calderari, Sophie; van Rooij, Jeroen; Carlson, Chris; Peters, Ulrike; Berlivet, Soizik; Dostie, Josée; Uitterlinden, Andre G; Williams, Stephen R.; Farber, Charles; Grinberg, Daniel; LaCroix, Andrea Z; Haessler, Jeff; Chasman, Daniel I; Giulianini, Franco; Rose, Lynda M; Ridker, Paul M; Eisman, John A; Nguyen, Tuan V; Center, Jacqueline R; Nogues, Xavier; Garcia-Giralt, Natalia; Launer, Lenore L; Gudnason, Vilmunder; Mellström, Dan; Vandenput, Liesbeth; Karlsson, Magnus K; Ljunggren, Östen; Svensson, Olle; Hallmans, Göran; Rousseau, François; Giroux, Sylvie; Bussière, Johanne; Arp, Pascal P; Koromani, Fjorda; Prince, Richard L; Lewis, Joshua R; Langdahl, Bente L; Hermann, A Pernille; Jensen, Jens-Erik B; Kaptoge, Stephen; Khaw, Kay-Tee; Reeve, Jonathan; Formosa, Melissa M; Xuereb-Anastasi, Angela; Åkesson, Kristina; McGuigan, Fiona E; Garg, Gaurav; Olmos, Jose M; Zarrabeitia, Maria T; Riancho, Jose A; Ralston, Stuart H; Alonso, Nerea; Jiang, Xi; Goltzman, David; Pastinen, Tomi; Grundberg, Elin; Gauguier, Dominique; Orwoll, Eric S; Karasik, David; Davey-Smith, George; Smith, Albert V; Siggeirsdottir, Kristin; Harris, Tamara B; Zillikens, M Carola; van Meurs, Joyce BJ; Thorsteinsdottir, Unnur; Maurano, Matthew T; Timpson, Nicholas J; Soranzo, Nicole; Durbin, Richard; Wilson, Scott G; Ntzani, Evangelia E; Brown, Matthew A; Stefansson, Kari; Hinds, David A; Spector, Tim; Cupples, L Adrienne; Ohlsson, Claes; Greenwood, Celia MT; Jackson, Rebecca D; Rowe, David W; Loomis, Cynthia A; Evans, David M; Ackert-Bicknell, Cheryl L; Joyner, Alexandra L; Duncan, Emma L; Kiel, Douglas P; Rivadeneira, Fernando; Richards, J Brent
2016-01-01
SUMMARY The extent to which low-frequency (minor allele frequency [MAF] between 1–5%) and rare (MAF ≤ 1%) variants contribute to complex traits and disease in the general population is largely unknown. Bone mineral density (BMD) is highly heritable, is a major predictor of osteoporotic fractures and has been previously associated with common genetic variants1–8, and rare, population-specific, coding variants9. Here we identify novel non-coding genetic variants with large effects on BMD (ntotal = 53,236) and fracture (ntotal = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n=2,882 from UK10K), whole-exome sequencing (n= 3,549), deep imputation of genotyped samples using a combined UK10K/1000Genomes reference panel (n=26,534), and de-novo replication genotyping (n= 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size 4-fold larger than the mean of previously reported common variants for lumbar spine BMD8 (rs11692564[T], MAF = 1.7%, replication effect size = +0.20 standard deviations [SD], Pmeta = 2×10−14), which was also associated with a decreased risk of fracture (OR = 0.85; P = 2×10−11; ncases = 98,742 and ncontrols = 409,511). Using an En1Cre/flox mouse model, we observed that conditional loss of En1 results in low bone mass, likely as a consequence of high bone turn-over. We also identified a novel low-frequency non-coding variant with large effects on BMD near WNT16 (rs148771817[T], MAF = 1.1%, replication effect size = +0.39 SD, Pmeta = 1×10−11). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population. PMID:26367794
Novel roles of complement in renal diseases and their therapeutic consequences.
Wada, Takehiko; Nangaku, Masaomi
2013-09-01
The complement system functions as a part of the innate immune system. Inappropriate activation of the complement pathways has a deleterious effect on kidneys. Recent advances in complement research have provided new insights into the pathogenesis of glomerular and tubulointerstitial injury associated with complement activation. A new disease entity termed 'C3 glomerulopathy' has recently been proposed and is characterized by isolated C3 deposition in glomeruli without positive staining for immunoglobulins. Genetic and functional studies have demonstrated that several different mutations and disease variants, as well as the generation of autoantibodies, are potentially associated with its pathogenesis. The data from comprehensive analyses suggest that complement dysregulation can also be associated with hemolytic uremic syndrome and more common glomerular diseases, such as IgA nephropathy and diabetic kidney disease. In addition, animal studies utilizing genetically modified mice have begun to elucidate the molecular pathomechanisms associated with the complement system. From a diagnostic point of view, a noninvasive, MRI-based method for detecting C3 has recently been developed to serve as a novel tool for diagnosing complement-mediated kidney diseases. While novel therapeutic tools related to complement regulation are emerging, studies evaluating the precise roles of the complement system in kidney diseases will still be useful for developing new therapeutic approaches.
High-protein-low-carbohydrate diet: deleterious metabolic and cardiovascular effects depend on age.
Bedarida, Tatiana; Baron, Stephanie; Vessieres, Emilie; Vibert, Francoise; Ayer, Audrey; Marchiol-Fournigault, Carmen; Henrion, Daniel; Paul, Jean-Louis; Noble, Florence; Golmard, Jean-Louis; Beaudeux, Jean-Louis; Cottart, Charles-Henry; Nivet-Antoine, Valerie
2014-09-01
High-protein-low-carbohydrate (HP-LC) diets have become widespread. Yet their deleterious consequences, especially on glucose metabolism and arteries, have already been underlined. Our previous study (2) has already shown glucose intolerance with major arterial dysfunction in very old mice subjected to an HP-LC diet. The hypothesis of this work was that this diet had an age-dependent deleterious metabolic and cardiovascular outcome. Two groups of mice, young and adult (3 and 6 mo old), were subjected for 12 wk to a standard or to an HP-LC diet. Glucose and lipid metabolism was studied. The cardiovascular system was explored from the functional stage with Doppler-echography to the molecular stage (arterial reactivity, mRNA, immunohistochemistry). Young mice did not exhibit any significant metabolic modification, whereas adult mice presented marked glucose intolerance associated with an increase in resistin and triglyceride levels. These metabolic disturbances were responsible for cardiovascular damages only in adult mice, with decreased aortic distensibility and left ventricle dysfunction. These seemed to be the consequence of arterial dysfunctions. Mesenteric arteries were the worst affected with a major oxidative stress, whereas aorta function seemed to be maintained with an appreciable role of cyclooxygenase-2 to preserve endothelial function. This study highlights for the first time the age-dependent deleterious effects of an HP-LC diet on metabolism, with glucose intolerance and lipid disorders and vascular (especially microvessels) and cardiac functions. This work shows that HP-LC lead to equivalent cardiovascular alterations, as observed in very old age, and underlines the danger of such diet. Copyright © 2014 the American Physiological Society.
Mitochondrial pathogenic mutations are population-specific.
Breen, Michael S; Kondrashov, Fyodor A
2010-12-31
Surveying deleterious variation in human populations is crucial for our understanding, diagnosis and potential treatment of human genetic pathologies. A number of recent genome-wide analyses focused on the prevalence of segregating deleterious alleles in the nuclear genome. However, such studies have not been conducted for the mitochondrial genome. We present a systematic survey of polymorphisms in the human mitochondrial genome, including those predicted to be deleterious and those that correspond to known pathogenic mutations. Analyzing 4458 completely sequenced mitochondrial genomes we characterize the genetic diversity of different types of single nucleotide polymorphisms (SNPs) in African (L haplotypes) and non-African (M and N haplotypes) populations. We find that the overall level of polymorphism is higher in the mitochondrial compared to the nuclear genome, although the mitochondrial genome appears to be under stronger selection as indicated by proportionally fewer nonsynonymous than synonymous substitutions. The African mitochondrial genomes show higher heterozygosity, a greater number of polymorphic sites and higher frequencies of polymorphisms for synonymous, benign and damaging polymorphism than non-African genomes. However, African genomes carry significantly fewer SNPs that have been previously characterized as pathogenic compared to non-African genomes. Finding SNPs classified as pathogenic to be the only category of polymorphisms that are more abundant in non-African genomes is best explained by a systematic ascertainment bias that favours the discovery of pathogenic polymorphisms segregating in non-African populations. This further suggests that, contrary to the common disease-common variant hypothesis, pathogenic mutations are largely population-specific and different SNPs may be associated with the same disease in different populations. Therefore, to obtain a comprehensive picture of the deleterious variability in the human population, as well as to improve the diagnostics of individuals carrying African mitochondrial haplotypes, it is necessary to survey different populations independently. This article was reviewed by Dr Mikhail Gelfand, Dr Vasily Ramensky (nominated by Dr Eugene Koonin) and Dr David Rand (nominated by Dr Laurence Hurst).
Mack, Maura; Kowalski, Elizabeth; Grahn, Robert; Bras, Dineli; Penedo, Maria Cecilia T.; Bellone, Rebecca
2017-01-01
A unique eye color, called tiger-eye, segregates in the Puerto Rican Paso Fino (PRPF) horse breed and is characterized by a bright yellow, amber, or orange iris. Pedigree analysis identified a simple autosomal recessive mode of inheritance for this trait. A genome-wide association study (GWAS) with 24 individuals identified a locus on ECA 1 reaching genome-wide significance (Pcorrected = 1.32 × 10−5). This ECA1 locus harbors the candidate gene, Solute Carrier Family 24 (Sodium/Potassium/Calcium Exchanger), Member 5 (SLC24A5), with known roles in pigmentation in humans, mice, and zebrafish. Humans with compound heterozygous mutations in SLC24A5 have oculocutaneous albinism (OCA) type 6 (OCA6), which is characterized by dilute skin, hair, and eye pigmentation, as well as ocular anomalies. Twenty tiger-eye horses were homozygous for a nonsynonymous mutation in exon 2 (p.Phe91Tyr) of SLC24A5 (called here Tiger-eye 1), which is predicted to be deleterious to protein function. Additionally, eight of the remaining 12 tiger-eye horses heterozygous for the p.Phe91Tyr variant were also heterozygous for a 628 bp deletion encompassing all of exon 7 of SLC24A5 (c.875-340_1081+82del), which we will call here the Tiger-eye 2 allele. None of the 122 brown-eyed horses were homozygous for either tiger-eye-associated allele or were compound heterozygotes. Further, neither variant was detected in 196 horses from four related breeds not known to have the tiger-eye phenotype. Here, we propose that two mutations in SLC24A5 affect iris pigmentation in tiger-eye PRPF horses. Further, unlike OCA6 in humans, the Tiger-eye 1 mutation in its homozygous state or as a compound heterozygote (Tiger-eye 1/Tiger-eye 2) does not appear to cause ocular anomalies or a change in coat color in the PRPF horse. PMID:28655738
Mercatanti, Alberto; Lodovichi, Samuele; Cervelli, Tiziana; Galli, Alvaro
2017-12-01
Evaluation of the functional impact of cancer-associated missense variants is more difficult than for protein-truncating mutations and consequently standard guidelines for the interpretation of sequence variants have been recently proposed. A number of algorithms and software products were developed to predict the impact of cancer-associated missense mutations on protein structure and function. Importantly, direct assessment of the variants using high-throughput functional assays using simple genetic systems can help in speeding up the functional evaluation of newly identified cancer-associated variants. We developed the web tool CRIMEtoYHU (CTY) to help geneticists in the evaluation of the functional impact of cancer-associated missense variants. Humans and the yeast Saccharomyces cerevisiae share thousands of protein-coding genes although they have diverged for a billion years. Therefore, yeast humanization can be helpful in deciphering the functional consequences of human genetic variants found in cancer and give information on the pathogenicity of missense variants. To humanize specific positions within yeast genes, human and yeast genes have to share functional homology. If a mutation in a specific residue is associated with a particular phenotype in humans, a similar substitution in the yeast counterpart may reveal its effect at the organism level. CTY simultaneously finds yeast homologous genes, identifies the corresponding variants and determines the transferability of human variants to yeast counterparts by assigning a reliability score (RS) that may be predictive for the validity of a functional assay. CTY analyzes newly identified mutations or retrieves mutations reported in the COSMIC database, provides information about the functional conservation between yeast and human and shows the mutation distribution in human genes. CTY analyzes also newly found mutations and aborts when no yeast homologue is found. Then, on the basis of the protein domain localization and functional conservation between yeast and human, the selected variants are ranked by the RS. The RS is assigned by an algorithm that computes functional data, type of mutation, chemistry of amino acid substitution and the degree of mutation transferability between human and yeast protein. Mutations giving a positive RS are highly transferable to yeast and, therefore, yeast functional assays will be more predictable. To validate the web application, we have analyzed 8078 cancer-associated variants located in 31 genes that have a yeast homologue. More than 50% of variants are transferable to yeast. Incidentally, 88% of all transferable mutations have a reliability score >0. Moreover, we analyzed by CTY 72 functionally validated missense variants located in yeast genes at positions corresponding to the human cancer-associated variants. All these variants gave a positive RS. To further validate CTY, we analyzed 3949 protein variants (with positive RS) by the predictive algorithm PROVEAN. This analysis shows that yeast-based functional assays will be more predictable for the variants with positive RS. We believe that CTY could be an important resource for the cancer research community by providing information concerning the functional impact of specific mutations, as well as for the design of functional assays useful for decision support in precision medicine. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
GenProBiS: web server for mapping of sequence variants to protein binding sites.
Konc, Janez; Skrlj, Blaz; Erzen, Nika; Kunej, Tanja; Janezic, Dusanka
2017-07-03
Discovery of potentially deleterious sequence variants is important and has wide implications for research and generation of new hypotheses in human and veterinary medicine, and drug discovery. The GenProBiS web server maps sequence variants to protein structures from the Protein Data Bank (PDB), and further to protein-protein, protein-nucleic acid, protein-compound, and protein-metal ion binding sites. The concept of a protein-compound binding site is understood in the broadest sense, which includes glycosylation and other post-translational modification sites. Binding sites were defined by local structural comparisons of whole protein structures using the Protein Binding Sites (ProBiS) algorithm and transposition of ligands from the similar binding sites found to the query protein using the ProBiS-ligands approach with new improvements introduced in GenProBiS. Binding site surfaces were generated as three-dimensional grids encompassing the space occupied by predicted ligands. The server allows intuitive visual exploration of comprehensively mapped variants, such as human somatic mis-sense mutations related to cancer and non-synonymous single nucleotide polymorphisms from 21 species, within the predicted binding sites regions for about 80 000 PDB protein structures using fast WebGL graphics. The GenProBiS web server is open and free to all users at http://genprobis.insilab.org. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Guidugli, Lucia; Shimelis, Hermela; Masica, David L; Pankratz, Vernon S; Lipton, Gary B; Singh, Namit; Hu, Chunling; Monteiro, Alvaro N A; Lindor, Noralane M; Goldgar, David E; Karchin, Rachel; Iversen, Edwin S; Couch, Fergus J
2018-01-17
Many variants of uncertain significance (VUS) have been identified in BRCA2 through clinical genetic testing. VUS pose a significant clinical challenge because the contribution of these variants to cancer risk has not been determined. We conducted a comprehensive assessment of VUS in the BRCA2 C-terminal DNA binding domain (DBD) by using a validated functional assay of BRCA2 homologous recombination (HR) DNA-repair activity and defined a classifier of variant pathogenicity. Among 139 variants evaluated, 54 had ≥99% probability of pathogenicity, and 73 had ≥95% probability of neutrality. Functional assay results were compared with predictions of variant pathogenicity from the Align-GVGD protein-sequence-based prediction algorithm, which has been used for variant classification. Relative to the HR assay, Align-GVGD significantly (p < 0.05) over-predicted pathogenic variants. We subsequently combined functional and Align-GVGD prediction results in a Bayesian hierarchical model (VarCall) to estimate the overall probability of pathogenicity for each VUS. In addition, to predict the effects of all other BRCA2 DBD variants and to prioritize variants for functional studies, we used the endoPhenotype-Optimized Sequence Ensemble (ePOSE) algorithm to train classifiers for BRCA2 variants by using data from the HR functional assay. Together, the results show that systematic functional assays in combination with in silico predictors of pathogenicity provide robust tools for clinical annotation of BRCA2 VUS. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Late-Onset Alzheimer's Disease Polygenic Risk Profile Score Predicts Hippocampal Function.
Xiao, Ena; Chen, Qiang; Goldman, Aaron L; Tan, Hao Yang; Healy, Kaitlin; Zoltick, Brad; Das, Saumitra; Kolachana, Bhaskar; Callicott, Joseph H; Dickinson, Dwight; Berman, Karen F; Weinberger, Daniel R; Mattay, Venkata S
2017-11-01
We explored the cumulative effect of several late-onset Alzheimer's disease (LOAD) risk loci using a polygenic risk profile score (RPS) approach on measures of hippocampal function, cognition, and brain morphometry. In a sample of 231 healthy control subjects (19-55 years of age), we used an RPS to study the effect of several LOAD risk loci reported in a recent meta-analysis on hippocampal function (determined by its engagement with blood oxygen level-dependent functional magnetic resonance imaging during episodic memory) and several cognitive metrics. We also studied effects on brain morphometry in an overlapping sample of 280 subjects. There was almost no significant association of LOAD-RPS with cognitive or morphometric measures. However, there was a significant negative relationship between LOAD-RPS and hippocampal function (familywise error [small volume correction-hippocampal region of interest] p < .05). There were also similar associations for risk score based on APOE haplotype, and for a combined LOAD-RPS + APOE haplotype risk profile score (p < .05 familywise error [small volume correction-hippocampal region of interest]). Of the 29 individual single nucleotide polymorphisms used in calculating LOAD-RPS, variants in CLU, PICALM, BCL3, PVRL2, and RELB showed strong effects (p < .05 familywise error [small volume correction-hippocampal region of interest]) on hippocampal function, though none survived further correction for the number of single nucleotide polymorphisms tested. There is a cumulative deleterious effect of LOAD risk genes on hippocampal function even in healthy volunteers. The effect of LOAD-RPS on hippocampal function in the relative absence of any effect on cognitive and morphometric measures is consistent with the reported temporal characteristics of LOAD biomarkers with the earlier manifestation of synaptic dysfunction before morphometric and cognitive changes. Copyright © 2017 Society of Biological Psychiatry. All rights reserved.
Park, Sunghun; Cheng, Ning Hui; Pittman, Jon K.; Yoo, Kil Sun; Park, Jungeun; Smith, Roberta H.; Hirschi, Kendal D.
2005-01-01
Here we demonstrate that fruit from tomato (Lycopersicon esculentum) plants expressing Arabidopsis (Arabidopsis thaliana) H+/cation exchangers (CAX) have more calcium (Ca2+) and prolonged shelf life when compared to controls. Previously, using the prototypical CAX1, it has been demonstrated that, in yeast (Saccharomyces cerevisiae) cells, CAX transporters are activated when the N-terminal autoinhibitory region is deleted, to give an N-terminally truncated CAX (sCAX), or altered through specific manipulations. To continue to understand the diversity of CAX function, we used yeast assays to characterize the putative transport properties of CAX4 and N-terminal variants of CAX4. CAX4 variants can suppress the Ca2+ hypersensitive yeast phenotypes and also appear to be more specific Ca2+ transporters than sCAX1. We then compared the phenotypes of sCAX1- and CAX4-expressing tomato lines. The sCAX1-expressing tomato lines demonstrate increased vacuolar H+/Ca2+ transport, when measured in root tissue, elevated fruit Ca2+ level, and prolonged shelf life but have severe alterations in plant development and morphology, including increased incidence of blossom-end rot. The CAX4-expressing plants demonstrate more modest increases in Ca2+ levels and shelf life but no deleterious effects on plant growth. These findings suggest that CAX expression may fortify plants with Ca2+ and may serve as an alternative to the application of CaCl2 used to extend the shelf life of numerous agriculturally important commodities. However, judicious regulation of CAX transport is required to assure optimal plant growth. PMID:16244156
Hesse, Andrew N; Bevilacqua, Jennifer; Shankar, Kritika; Reddi, Honey V
2018-05-16
Epilepsy is a diverse neurological condition with extreme genetic and phenotypic heterogeneity. The introduction of next-generation sequencing into the clinical laboratory has made it possible to investigate hundreds of associated genes simultaneously for a patient, even in the absence of a clearly defined syndrome. This has resulted in the detection of rare and novel mutations at a rate well beyond our ability to characterize their effects. This retrospective study reviews genotype data in the context of available phenotypic information on 305 patients spanning the epileptic spectrum to identify established and novel patterns of correlation. Our epilepsy panel comprising 377 genes was used to sequence 305 patients referred for genetic testing. Qualifying variants were annotated with phenotypic data obtained from either the test requisition form or supporting clinical documentation. Observed phenotypes were compared with established phenotypes in OMIM, published literature and the ILAEs 2010 report on genetic testing to assess congruity with known gene aberrations. We identified a number of novel and recognized genetic variants consistent with established epileptic phenotypes. Forty-one pathogenic or predicted deleterious variants were detected in 39 patients with accompanying clinical documentation. Twenty-five of these variants across 15 genes were novel. Furthermore, evaluation of phenotype data for 194 patients with variants of unknown significance in genes with autosomal dominant and X-linked disease inheritance elucidated potentially disease-causing variants that were not currently characterized in the literature. Assessment of key genotype-phenotype correlations from our cohort provide insight into variant classification, as well as the importance of including ILAE recommended genes as part of minimum panel content for comprehensive epilepsy tests. Many of the reported VUSs are likely genuine pathogenic variants driving the observed phenotypes, but not enough evidence is available for assertive classifications. Similar studies will provide more utility via mounting independent genotype-phenotype data from unrelated patients. The possible outcome would be a better molecular diagnostic product, with fewer indeterminate reports containing only VUSs. Copyright © 2018. Published by Elsevier B.V.
Variant Interpretation: Functional Assays to the Rescue.
Starita, Lea M; Ahituv, Nadav; Dunham, Maitreya J; Kitzman, Jacob O; Roth, Frederick P; Seelig, Georg; Shendure, Jay; Fowler, Douglas M
2017-09-07
Classical genetic approaches for interpreting variants, such as case-control or co-segregation studies, require finding many individuals with each variant. Because the overwhelming majority of variants are present in only a few living humans, this strategy has clear limits. Fully realizing the clinical potential of genetics requires that we accurately infer pathogenicity even for rare or private variation. Many computational approaches to predicting variant effects have been developed, but they can identify only a small fraction of pathogenic variants with the high confidence that is required in the clinic. Experimentally measuring a variant's functional consequences can provide clearer guidance, but individual assays performed only after the discovery of the variant are both time and resource intensive. Here, we discuss how multiplex assays of variant effect (MAVEs) can be used to measure the functional consequences of all possible variants in disease-relevant loci for a variety of molecular and cellular phenotypes. The resulting large-scale functional data can be combined with machine learning and clinical knowledge for the development of "lookup tables" of accurate pathogenicity predictions. A coordinated effort to produce, analyze, and disseminate large-scale functional data generated by multiplex assays could be essential to addressing the variant-interpretation crisis. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Social Stigma and Sexual Minorities’ Romantic Relationship Functioning: A Meta-Analytic Review
Doyle, David Matthew; Molix, Lisa
2015-01-01
To bolster knowledge of determinants of relationship functioning among sexual minorities, the current meta-analysis aimed to quantitatively review evidence for the association between social stigma and relationship functioning as well as examine potential moderators. Thirty-five studies were identified, including 130 effect sizes (39 independent; N = 10,745). Across studies, evidence was found for a small but significant inverse association between social stigma and relationship functioning. Furthermore, this association was moderated by stigma type (with more deleterious associations for internalized relative to perceived stigma) and dimension of relationship functioning (with more deleterious associations for affective relative to cognitive and negative relative to positive). Evidence for demographic moderators (region, sex, race, age) was generally mixed although important limitations related to unique characteristics of study samples are discussed. We conclude by highlighting the importance of social stigma for relationship functioning and point toward directions for future research and policy action. PMID:26199218
Functional Assessment of Genetic Variants with Outcomes Adapted to Clinical Decision-Making
Thouvenot, Pierre; Ben Yamin, Barbara; Fourrière, Lou; Lescure, Aurianne; Boudier, Thomas; Del Nery, Elaine; Chauchereau, Anne; Goldgar, David E.; Stoppa-Lyonnet, Dominique; Nicolas, Alain; Millot, Gaël A.
2016-01-01
Understanding the medical effect of an ever-growing number of human variants detected is a long term challenge in genetic counseling. Functional assays, based on in vitro or in vivo evaluations of the variant effects, provide essential information, but they require robust statistical validation, as well as adapted outputs, to be implemented in the clinical decision-making process. Here, we assessed 25 pathogenic and 15 neutral missense variants of the BRCA1 breast/ovarian cancer susceptibility gene in four BRCA1 functional assays. Next, we developed a novel approach that refines the variant ranking in these functional assays. Lastly, we developed a computational system that provides a probabilistic classification of variants, adapted to clinical interpretation. Using this system, the best functional assay exhibits a variant classification accuracy estimated at 93%. Additional theoretical simulations highlight the benefit of this ready-to-use system in the classification of variants after functional assessment, which should facilitate the consideration of functional evidences in the decision-making process after genetic testing. Finally, we demonstrate the versatility of the system with the classification of siRNAs tested for human cell growth inhibition in high throughput screening. PMID:27272900
[Fine mapping of complex disease susceptibility loci].
Song, Qingfeng; Zhang, Hongxing; Ma, Yilong; Zhou, Gangqiao
2014-01-01
Genome-wide association studies (GWAS) using single nucleotide polymorphism (SNP) markers have identified more than 3800 susceptibility loci for more than 660 diseases or traits. However, the most significantly associated variants or causative variants in these loci and their biological functions have remained to be clarified. These causative variants can help to elucidate the pathogenesis and discover new biomarkers of complex diseases. One of the main goals in the post-GWAS era is to identify the causative variants and susceptibility genes, and clarify their functional aspects by fine mapping. For common variants, imputation or re-sequencing based strategies were implemented to increase the number of analyzed variants and help to identify the most significantly associated variants. In addition, functional element, expression quantitative trait locus (eQTL) and haplotype analyses were performed to identify functional common variants and susceptibility genes. For rare variants, fine mapping was carried out by re-sequencing, rare haplotype analysis, family-based analysis, burden test, etc.This review summarizes the strategies and problems for fine mapping.
Early-Onset Alzheimer Disease and Candidate Risk Genes Involved in Endolysosomal Transport.
Kunkle, Brian W; Vardarajan, Badri N; Naj, Adam C; Whitehead, Patrice L; Rolati, Sophie; Slifer, Susan; Carney, Regina M; Cuccaro, Michael L; Vance, Jeffery M; Gilbert, John R; Wang, Li-San; Farrer, Lindsay A; Reitz, Christiane; Haines, Jonathan L; Beecham, Gary W; Martin, Eden R; Schellenberg, Gerard D; Mayeux, Richard P; Pericak-Vance, Margaret A
2017-09-01
Mutations in APP, PSEN1, and PSEN2 lead to early-onset Alzheimer disease (EOAD) but account for only approximately 11% of EOAD overall, leaving most of the genetic risk for the most severe form of Alzheimer disease unexplained. This extreme phenotype likely harbors highly penetrant risk variants, making it primed for discovery of novel risk genes and pathways for AD. To search for rare variants contributing to the risk for EOAD. In this case-control study, whole-exome sequencing (WES) was performed in 51 non-Hispanic white (NHW) patients with EOAD (age at onset <65 years) and 19 Caribbean Hispanic families previously screened as negative for established APP, PSEN1, and PSEN2 causal variants. Participants were recruited from John P. Hussman Institute for Human Genomics, Case Western Reserve University, and Columbia University. Rare, deleterious, nonsynonymous, or loss-of-function variants were filtered to identify variants in known and suspected AD genes, variants in multiple unrelated NHW patients, variants present in 19 Hispanic EOAD WES families, and genes with variants in multiple unrelated NHW patients. These variants/genes were tested for association in an independent cohort of 1524 patients with EOAD, 7046 patients with late-onset AD (LOAD), and 7001 cognitively intact controls (age at examination, >65 years) from the Alzheimer's Disease Genetics Consortium. The study was conducted from January 21, 2013, to October 13, 2016. Alzheimer disease diagnosed according to standard National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer Disease and Related Disorders Association criteria. Association between Alzheimer disease and genetic variants and genes was measured using logistic regression and sequence kernel association test-optimal gene tests, respectively. Of the 1524 NHW patients with EOAD, 765 (50.2%) were women and mean (SD) age was 60.0 (4.9) years; of the 7046 NHW patients with LOAD, 4171 (59.2%) were women and mean (SD) age was 77.4 (8.6) years; and of the 7001 NHW controls, 4215 (60.2%) were women and mean (SD) age was 77.4 (8.6) years. The gene PSD2, for which multiple unrelated NHW cases had rare missense variants, was significantly associated with EOAD (P = 2.05 × 10-6; Bonferroni-corrected P value [BP] = 1.3 × 10-3) and LOAD (P = 6.22 × 10-6; BP = 4.1 × 10-3). A missense variant in TCIRG1, present in a NHW patient and segregating in 3 cases of a Hispanic family, was more frequent in EOAD cases (odds ratio [OR], 2.13; 95% CI, 0.99-4.55; P = .06; BP = 0.413), and significantly associated with LOAD (OR, 2.23; 95% CI, 1.37-3.62; P = 7.2 × 10-4; BP = 5.0 × 10-3). A missense variant in the LOAD risk gene RIN3 showed suggestive evidence of association with EOAD after Bonferroni correction (OR, 4.56; 95% CI, 1.26-16.48; P = .02, BP = 0.091). In addition, a missense variant in RUFY1 identified in 2 NHW EOAD cases showed suggestive evidence of an association with EOAD as well (OR, 18.63; 95% CI, 1.62-213.45; P = .003; BP = 0.129). The genes PSD2, TCIRG1, RIN3, and RUFY1 all may be involved in endolysosomal transport-a process known to be important to development of AD. Furthermore, this study identified shared risk genes between EOAD and LOAD similar to previously reported genes, such as SORL1, PSEN2, and TREM2.
Exercise Promotes Healthy Aging of Skeletal Muscle
Cartee, Gregory D.; Hepple, Russell T.; Bamman, Marcas M.; Zierath, Juleen R.
2016-01-01
Primary aging is the progressive and inevitable process of bodily deterioration during adulthood. In skeletal muscle, primary aging causes defective mitochondrial energetics, and reduced muscle mass. Secondary aging refers to additional deleterious structural and functional age-related changes caused by diseases and lifestyle factors. Secondary aging can exacerbate deficits in mitochondrial function and muscle mass, concomitant with the development of skeletal muscle insulin resistance. Exercise opposes deleterious effects of secondary aging by preventing the decline in mitochondrial respiration, mitigating aging-related loss of muscle mass and enhancing insulin sensitivity. This review focuses on mechanisms by which exercise promotes “healthy aging” by inducing modifications in skeletal muscle. PMID:27304505
Variants of Transient Receptor Potential Melastatin Member 4 in Childhood Atrioventricular Block.
Syam, Ninda; Chatel, Stéphanie; Ozhathil, Lijo Cherian; Sottas, Valentin; Rougier, Jean-Sébastien; Baruteau, Alban; Baron, Estelle; Amarouch, Mohamed-Yassine; Daumy, Xavier; Probst, Vincent; Schott, Jean-Jacques; Abriel, Hugues
2016-05-20
Transient receptor potential melastatin member 4 (TRPM4) is a nonselective cation channel. TRPM4 mutations have been linked to cardiac conduction disease and Brugada syndrome. The mechanisms underlying TRPM4-dependent conduction slowing are not fully understood. The aim of this study was to characterize TRPM4 genetic variants found in patients with congenital or childhood atrioventricular block. Ninety-one patients with congenital or childhood atrioventricular block were screened for candidate genes. Five rare TRPM4 genetic variants were identified and investigated. The variants were expressed heterologously in HEK293 cells. Two of the variants, A432T and A432T/G582S, showed decreased expression of the protein at the cell membrane; inversely, the G582S variant showed increased expression. Further functional characterization of these variants using whole-cell patch-clamp configuration showed a loss of function and a gain of function, respectively. We hypothesized that the observed decrease in expression was caused by a folding and trafficking defect. This was supported by the observation that incubation of these variants at lower temperature partially rescued their expression and function. Previous studies have suggested that altered SUMOylation of TRPM4 may cause a gain of function; however, we did not find any evidence that supports SUMOylation as being directly involved for the gain-of-function variant. This study underpins the role of TRPM4 in the cardiac conduction system. The loss-of-function variants A432T/G582S found in 2 unrelated patients with atrioventricular block are most likely caused by misfolding-dependent altered trafficking. The ability to rescue this variant with lower temperature may provide a novel use of pharmacological chaperones in treatment strategies. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
An Upper Limit on the Functional Fraction of the Human Genome.
Graur, Dan
2017-07-01
For the human population to maintain a constant size from generation to generation, an increase in fertility must compensate for the reduction in the mean fitness of the population caused, among others, by deleterious mutations. The required increase in fertility due to this mutational load depends on the number of sites in the genome that are functional, the mutation rate, and the fraction of deleterious mutations among all mutations in functional regions. These dependencies and the fact that there exists a maximum tolerable replacement level fertility can be used to put an upper limit on the fraction of the human genome that can be functional. Mutational load considerations lead to the conclusion that the functional fraction within the human genome cannot exceed 25%, and is probably considerably lower. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Iqbal, Zafar; Willemsen, Marjolein H.; Papon, Marie-Amélie; Musante, Luciana; Benevento, Marco; Hu, Hao; Venselaar, Hanka; Wissink-Lindhout, Willemijn M.; Vulto-van Silfhout, Anneke T.; Vissers, Lisenka E.L.M.; de Brouwer, Arjan P.M.; Marouillat, Sylviane; Wienker, Thomas F.; Ropers, Hans Hilger; Kahrizi, Kimia; Nadif Kasri, Nael; Najmabadi, Hossein; Laumonnier, Frédéric; Kleefstra, Tjitske; van Bokhoven, Hans
2015-01-01
We report on Dutch and Iranian families with affected individuals who present with moderate to severe intellectual disability and additional phenotypes including progressive tremor, speech impairment, and behavioral problems in certain individuals. A combination of exome sequencing and homozygosity mapping revealed homozygous mutations c.484G>A (p.Gly162Arg) and c.1898C>G (p.Pro633Arg) in SLC6A17. SLC6A17 is predominantly expressed in the brain, encodes a synaptic vesicular transporter of neutral amino acids and glutamate, and plays an important role in the regulation of glutamatergic synapses. Prediction programs and 3D modeling suggest that the identified mutations are deleterious to protein function. To directly test the functional consequences, we investigated the neuronal subcellular localization of overexpressed wild-type and mutant variants in mouse primary hippocampal neuronal cells. Wild-type protein was present in soma, axons, dendrites, and dendritic spines. p.Pro633Arg altered SLC6A17 was found in soma and proximal dendrites but did not reach spines. p.Gly162Arg altered SLC6A17 showed a normal subcellular distribution but was associated with an abnormal neuronal morphology mainly characterized by the loss of dendritic spines. In summary, our genetic findings implicate homozygous SLC6A17 mutations in autosomal-recessive intellectual disability, and their pathogenic role is strengthened by genetic evidence and in silico and in vitro functional analyses. PMID:25704603
Recurrent loss of sex is associated with accumulation of deleterious mutations in Oenothera.
Hollister, Jesse D; Greiner, Stephan; Wang, Wei; Wang, Jun; Zhang, Yong; Wong, Gane Ka-Shu; Wright, Stephen I; Johnson, Marc T J
2015-04-01
Sexual reproduction is nearly universal among eukaryotes. Theory predicts that the rarity of asexual eukaryotic species is in part caused by accumulation of deleterious mutations and heightened extinction risk associated with suppressed recombination and segregation in asexual species. We tested this prediction with a large data set of 62 transcriptomes from 29 species in the plant genus Oenothera, spanning ten independent transitions between sexual and a functionally asexual genetic system called permanent translocation heterozygosity. Illumina short-read sequencing and de novo transcript assembly yielded an average of 16.4 Mb of sequence per individual. Here, we show that functionally asexual species accumulate more deleterious mutations than sexual species using both population genomic and phylogenetic analysis. At an individual level, asexual species exhibited 1.8 × higher heterozygosity than sexual species. Within species, we detected a higher proportion of nonsynonymous polymorphism relative to synonymous variation within asexual compared with sexual species, indicating reduced efficacy of purifying selection. Asexual species also exhibited a greater proportion of transcripts with premature stop codons. The increased proportion of nonsynonymous mutations was also positively correlated with divergence time between sexual and asexual species, consistent with Muller's ratchet. Between species, we detected repeated increases in the ratio of nonsynonymous to synonymous divergence in asexual species compared with sexually reproducing sister taxa, indicating increased accumulation of deleterious mutations. These results confirm that an important advantage of sex is that it facilitates selection against deleterious alleles, which might help to explain the dearth of extant asexual species. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Smith, Andrew J P; Deloukas, Panos; Munroe, Patricia B
2018-04-13
Over the last decade, genome-wide association studies (GWAS) have propelled the discovery of thousands of loci associated with complex diseases. The focus is now turning towards the function of these association signals, determining the causal variant(s) amongst those in strong linkage disequilibrium, and identifying their underlying mechanisms, such as long-range gene regulation. Genome-editing techniques utilising zinc-finger nucleases (ZFN), transcription activator-like effector nucleases (TALENs) and clustered regularly-interspaced short palindromic repeats with Cas9 nuclease (CRISPR-Cas9), are becoming the tools of choice to establish functionality for these variants, due to the ability to assess effects of single variants in vivo. This review will discuss examples of how these technologies have begun to aid functional analysis of GWAS loci for complex traits such as cardiovascular disease, type 2 diabetes, cancer, obesity and autoimmune disease. We focus on analysis of variants occurring within non-coding genomic regions, as these comprise the majority of GWAS variants, providing the greatest challenges to determining functionality, and compare editing strategies that provide different levels of evidence for variant functionality. The review describes molecular insights into some of these potentially causal variants, and how these may relate to the pathology of the trait, and look towards future directions for these technologies in post-GWAS analysis, such as base-editing.
Wang, N; Ding, H; Liu, C; Li, X; Wei, L; Yu, J; Liu, M; Ying, M; Gao, W; Jiang, H; Wang, Y
2015-10-01
Certain predisposition factors such as BRCA1/2 and CHEK2 mutations cause familial breast cancers that occur early. In China, breast cancers are diagnosed at relatively younger age, and higher percentage of patients are diagnosed before 40 years, than that in Caucasians. However, the prevalence for BRCA1/2 mutations and reported CHEK2 germline mutations is much lower or absent in Chinese population, arguing for the need to study other novel risk alleles among Chinese breast cancer patients. In this study, we searched for CHEK2 mutations in young, high-risk breast cancer patients in China and detected a missense variant Y390C (1169A > G) in 12 of 150 patients (8.0%) and 2 in 250 healthy controls (0.8%, P = 0.0002). Four of the Y390C carriers have family history of breast and/or ovarian cancer. In patients without family history, Y390C carriers tend to develop breast cancer early, before 35 years of age. The codon change at Y390, a highly conserved residue located in CHEK2's kinase domain, appeared to significantly impair CHEK2 activity. Functional analysis suggested that the CHEK2 Y390C mutation is deleterious as judged by the mutant protein's inability to inactivate CDC25A or to activate p53 after DNA damage. Cells expressing the CHEK2 Y390C variant showed impaired p21 and Puma expression after DNA damage, and the deregulated cell cycle checkpoint and apoptotic response may help conserve mutations and therefore contribute to tumorigeneisis. Taken together, our results not only identified a novel CHEK2 allele that is associated with cancer families and confers increased breast cancer risk, but also showed that this allele significantly impairs CHEK2 function during DNA damage response. Our results provide further insight on how the function of such an important cancer gene may be impaired by existing mutations to facilitate tumorigenesis. It also offers a new subject for breast cancer monitoring, prevention and management.
Reduced Renal Methylarginine Metabolism Protects against Progressive Kidney Damage
Caplin, Ben; Boruc, Olga; Bruce-Cobbold, Claire; Cutillas, Pedro; Dormann, Dirk; Faull, Peter; Grossman, Rebecca C.; Khadayate, Sanjay; Mas, Valeria R.; Nitsch, Dorothea D.; Wang, Zhen; Norman, Jill T.; Wilcox, Christopher S.; Wheeler, David C.; Leiper, James
2015-01-01
Nitric oxide (NO) production is diminished in many patients with cardiovascular and renal disease. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthesis, and elevated plasma levels of ADMA are associated with poor outcomes. Dimethylarginine dimethylaminohydrolase-1 (DDAH1) is a methylarginine-metabolizing enzyme that reduces ADMA levels. We reported previously that a DDAH1 gene variant associated with increased renal DDAH1 mRNA transcription and lower plasma ADMA levels, but counterintuitively, a steeper rate of renal function decline. Here, we test the hypothesis that reduced renal-specific ADMA metabolism protects against progressive renal damage. Renal DDAH1 is expressed predominately within the proximal tubule. A novel proximal tubule–specific Ddah1 knockout (Ddah1PT−/−) mouse demonstrated tubular cell accumulation of ADMA and lower NO concentrations, but unaltered plasma ADMA concentrations. Ddah1PT−/− mice were protected from reduced kidney tissue mass, collagen deposition, and profibrotic cytokine expression in two independent renal injury models: folate nephropathy and unilateral ureteric obstruction. Furthermore, a study of two independent kidney transplant cohorts revealed higher levels of human renal allograft methylarginine-metabolizing enzyme gene expression associated with steeper function decline. We also report an association among DDAH1 expression, NO activity, and uromodulin expression supported by data from both animal and human studies, raising the possibility that kidney DDAH1 expression exacerbates renal injury through uromodulin-related mechanisms. Together, these data demonstrate that reduced renal tubular ADMA metabolism protects against progressive kidney function decline. Thus, circulating ADMA may be an imprecise marker of renal methylarginine metabolism, and therapeutic ADMA reduction may even be deleterious to kidney function. PMID:25855779
Biochemical Analysis of Two Single Mutants that Give Rise to a Polymorphic G6PD A-Double Mutant
Ramírez-Nava, Edson Jiovany; González-Valdez, Abigail; Vanoye-Carlo, America; Hernández-Ochoa, Beatriz; Sierra-Palacios, Edgar; Hernández-Pineda, Jessica; Rodríguez-Bustamante, Eduardo; Arreguin-Espinosa, Roberto; Oria-Hernández, Jesús; Reyes-Vivas, Horacio; Marcial-Quino, Jaime
2017-01-01
Glucose-6-phosphate dehydrogenase (G6PD) is a key regulatory enzyme that plays a crucial role in the regulation of cellular energy and redox balance. Mutations in the gene encoding G6PD cause the most common enzymopathy that drives hereditary nonspherocytic hemolytic anemia. To gain insights into the effects of mutations in G6PD enzyme efficiency, we have investigated the biochemical, kinetic, and structural changes of three clinical G6PD variants, the single mutations G6PD A+ (Asn126AspD) and G6PD Nefza (Leu323Pro), and the double mutant G6PD A− (Asn126Asp + Leu323Pro). The mutants showed lower residual activity (≤50% of WT G6PD) and displayed important kinetic changes. Although all Class III mutants were located in different regions of the three-dimensional structure of the enzyme and were not close to the active site, these mutants had a deleterious effect over catalytic activity and structural stability. The results indicated that the G6PD Nefza mutation was mainly responsible for the functional and structural alterations observed in the double mutant G6PD A−. Moreover, our study suggests that the G6PD Nefza and G6PD A− mutations affect enzyme functions in a similar fashion to those reported for Class I mutations. PMID:29072585
A novel CDKL5 mutation in a Japanese patient with atypical Rett syndrome.
Christianto, Antonius; Katayama, Syouichi; Kameshita, Isamu; Inazu, Tetsuya
2016-08-01
Rett syndrome (RTT) is a severe X-linked dominant inheritance disorder with a wide spectrum of clinical manifestations. Mutations in Methyl CpG binding protein 2 (MECP2), Cyclin dependent kinase-like 5 (CDKL5) and Forkhead box G1 (FOXG1) have been associated with classic and/or variant RTT. This study was conducted to identify the responsible gene(s) in atypical RTT patient, and to examine the effect of the mutation on protein function. DNA sequence analysis showed a novel heterozygous mutation in CDKL5 identified as c.530A>G which resulted in an amino acid substitution at position 177, from tyrosine to cysteine. Genotyping analysis indicated that the mutation was not merely a single nucleotide polymorphism (SNP). We also revealed that patient's blood lymphocytes had random X-chromosome inactivation (XCI) pattern. Further examination by bioinformatics analysis demonstrated the mutation caused damage or deleterious in its protein. In addition, we demonstrated in vitro kinase assay of mutant protein showed impairment of its activity. Taken together, the results suggested the mutant CDKL5 was responsible for the disease. Copyright © 2016 Elsevier B.V. All rights reserved.
Bellampalli, Ravishankara; Phani, Nagaraja M; Bhat, Kamalakshi G; Prasad, Krishna; Bhaskaranand, Nalini; Guruprasad, Kanive P; Rai, Padmalatha S; Satyamoorthy, Kapaettu
2015-05-01
Acute lymphoblastic leukemia (ALL) arises due to several genetic alterations in progenitor cells, and methotrexate is frequently used as part of the treatment regimen. Although there is evidence for an effect of 5,10-methylenetetrahydrofolate reductase gene (MTHFR) C677T and A1298C variations on drug response in ALL, its risk association for ALL is still unresolved. In a case-control study of 203 patients with ALL and 246 controls and meta-analysis in the Indian population, we showed an insignificant association of MTHFR C677T and A1298C genotypes with childhood and adult ALL. Comprehensive in silico characterization of non-synonymous single nucleotide polymorphisms (nsSNPs) and SNPs of the 3' untranslated region (UTR) revealed nine nsSNPs as deleterious, and three SNPs in the 3'UTR could possibly alter the binding of miRNAs. The study revealed that several overlooked SNPs may contribute to the risk of ALL susceptibility and further studies of these SNPs with functional characterization in a large sample size are required to understand the significant role of MTHFR in ALL development.
Filtering genetic variants and placing informative priors based on putative biological function.
Friedrichs, Stefanie; Malzahn, Dörthe; Pugh, Elizabeth W; Almeida, Marcio; Liu, Xiao Qing; Bailey, Julia N
2016-02-03
High-density genetic marker data, especially sequence data, imply an immense multiple testing burden. This can be ameliorated by filtering genetic variants, exploiting or accounting for correlations between variants, jointly testing variants, and by incorporating informative priors. Priors can be based on biological knowledge or predicted variant function, or even be used to integrate gene expression or other omics data. Based on Genetic Analysis Workshop (GAW) 19 data, this article discusses diversity and usefulness of functional variant scores provided, for example, by PolyPhen2, SIFT, or RegulomeDB annotations. Incorporating functional scores into variant filters or weights and adjusting the significance level for correlations between variants yielded significant associations with blood pressure traits in a large family study of Mexican Americans (GAW19 data set). Marker rs218966 in gene PHF14 and rs9836027 in MAP4 significantly associated with hypertension; additionally, rare variants in SNUPN significantly associated with systolic blood pressure. Variant weights strongly influenced the power of kernel methods and burden tests. Apart from variant weights in test statistics, prior weights may also be used when combining test statistics or to informatively weight p values while controlling false discovery rate (FDR). Indeed, power improved when gene expression data for FDR-controlled informative weighting of association test p values of genes was used. Finally, approaches exploiting variant correlations included identity-by-descent mapping and the optimal strategy for joint testing rare and common variants, which was observed to depend on linkage disequilibrium structure.
Zheng, Hong-Xiang; Li, Lei; Jiang, Xiao-Yan; Yan, Shi; Qin, Zhendong; Wang, Xiaofeng; Jin, Li
2017-10-01
Considerable attention has been focused on the effect of deleterious mutations caused by the recent relaxation of selective constraints on human health, including the prevalence of obesity, which might represent an adaptive response of energy-conserving metabolism under the conditions of modern society. Mitochondrial DNA (mtDNA) encoding 13 core subunits of oxidative phosphorylation plays an important role in metabolism. Therefore, we hypothesized that a relaxation of selection constraints on mtDNA and an increase in the proportion of deleterious mutations have played a role in obesity prevalence. In this study, we collected and sequenced the mtDNA genomes of 722 Uyghurs, a typical population with a high prevalence of obesity. We identified the variants that occurred in the Uyghur population for each sample and found that the number of nonsynonymous mutations carried by Uyghur individuals declined with elevation of their BMI (P = 0.015). We further calculated the nonsynonymous and synonymous ratio (N/S) of the high-BMI and low-BMI haplogroups, and the results showed that a significantly higher N/S occurred in the whole mtDNA genomes of the low-BMI haplogroups (0.64) than in that of the high-BMI haplogroups (0.35, P = 0.030) and ancestor haplotypes (0.41, P = 0.032); these findings indicated that low-BMI individuals showed a recent relaxation of selective constraints. In addition, we investigated six clinical characteristics and found that fasting plasma glucose might be correlated with the N/S and selective pressures. We hypothesized that a higher proportion of deleterious mutations led to mild mitochondrial dysfunction, which helps to drive glucose consumption and thereby prevents obesity. Our results provide new insights into the relationship between obesity predisposition and mitochondrial genome evolution.
BRCA1 and BRCA2 mutations in ethnic Lebanese Arab women with high hereditary risk breast cancer.
El Saghir, Nagi S; Zgheib, Nathalie K; Assi, Hussein A; Khoury, Katia E; Bidet, Yannick; Jaber, Sara M; Charara, Raghid N; Farhat, Rania A; Kreidieh, Firas Y; Decousus, Stephanie; Romero, Pierre; Nemer, Georges M; Salem, Ziad; Shamseddine, Ali; Tfayli, Arafat; Abbas, Jaber; Jamali, Faek; Seoud, Muhieddine; Armstrong, Deborah K; Bignon, Yves-Jean; Uhrhammer, Nancy
2015-04-01
Breast cancer is the most common malignancy among women in Lebanon and in Arab countries, with 50% of cases presenting before the age of 50 years. Between 2009 and 2012, 250 Lebanese women with breast cancer who were considered to be at high risk of carrying BRCA1 or BRCA2 mutations because of presentation at young age and/or positive family history (FH) of breast or ovarian cancer were recruited. Clinical data were analyzed statistically. Coding exons and intron-exon boundaries of BRCA1 and BRCA2 were sequenced from peripheral blood DNA. All patients were tested for BRCA1 rearrangements using multiplex ligation-dependent probe amplification (MLPA). BRCA2 MLPA was done in selected cases. Overall, 14 of 250 patients (5.6%) carried a deleterious BRCA mutation (7 BRCA1, 7 BRCA2) and 31 (12.4%) carried a variant of uncertain significance. Eight of 74 patients (10.8%) aged ≤40 years with positive FH and only 1 of 74 patients (1.4%) aged ≤40 years without FH had a mutated BRCA. Four of 75 patients (5.3%) aged 41-50 years with FH had a deleterious mutation. Only 1 of 27 patients aged >50 years at diagnosis had a BRCA mutation. All seven patients with BRCA1 mutations had grade 3 infiltrating ductal carcinoma and triple-negative breast cancer. Nine BRCA1 and 17 BRCA2 common haplotypes were observed. Prevalence of deleterious BRCA mutations is lower than expected and does not support the hypothesis that BRCA mutations alone cause the observed high percentage of breast cancer in young women of Lebanese and Arab descent. Studies to search for other genetic mutations are recommended. ©AlphaMed Press.
Manickam, Madhumathi; Ravanan, Palaniyandi; Singh, Pratibha; Talwar, Priti
2014-01-01
Gaucher's disease (GD) is an autosomal recessive disorder caused by the deficiency of glucocerebrosidase, a lysosomal enzyme that catalyses the hydrolysis of the glycolipid glucocerebroside to ceramide and glucose. Polymorphisms in GBA gene have been associated with the development of Gaucher disease. We hypothesize that prediction of SNPs using multiple state of the art software tools will help in increasing the confidence in identification of SNPs involved in GD. Enzyme replacement therapy is the only option for GD. Our goal is to use several state of art SNP algorithms to predict/address harmful SNPs using comparative studies. In this study seven different algorithms (SIFT, MutPred, nsSNP Analyzer, PANTHER, PMUT, PROVEAN, and SNPs&GO) were used to predict the harmful polymorphisms. Among the seven programs, SIFT found 47 nsSNPs as deleterious, MutPred found 46 nsSNPs as harmful. nsSNP Analyzer program found 43 out of 47 nsSNPs are disease causing SNPs whereas PANTHER found 32 out of 47 as highly deleterious, 22 out of 47 are classified as pathological mutations by PMUT, 44 out of 47 were predicted to be deleterious by PROVEAN server, all 47 shows the disease related mutations by SNPs&GO. Twenty two nsSNPs were commonly predicted by all the seven different algorithms. The common 22 targeted mutations are F251L, C342G, W312C, P415R, R463C, D127V, A309V, G46E, G202E, P391L, Y363C, Y205C, W378C, I402T, S366R, F397S, Y418C, P401L, G195E, W184R, R48W, and T43R.
Hill, W.D.; Davies, G.; Liewald, D.C.; Payton, A.; McNeil, C.J.; Whalley, L.J.; Horan, M.; Ollier, W.; Starr, J.M.; Pendleton, N.; Hansel, N.K.; Montgomery, G.W.; Medland, S.E.; Martin, N.G.; Wright, M.J.; Bates, T.C.; Deary, I.J.
2016-01-01
Two themes are emerging regarding the molecular genetic aetiology of intelligence. The first is that intelligence is influenced by many variants and those that are tagged by common single nucleotide polymorphisms account for around 30% of the phenotypic variation. The second, in line with other polygenic traits such as height and schizophrenia, is that these variants are not randomly distributed across the genome but cluster in genes that work together. Less clear is whether the very low range of cognitive ability (intellectual disability) is simply one end of the normal distribution describing individual differences in cognitive ability across a population. Here, we examined 40 genes with a known association with non-syndromic autosomal recessive intellectual disability (NS-ARID) to determine if they are enriched for common variants associated with the normal range of intelligence differences. The current study used the 3511 individuals of the Cognitive Ageing Genetics in England and Scotland (CAGES) consortium. In addition, a text mining analysis was used to identify gene sets biologically related to the NS-ARID set. Gene-based tests indicated that genes implicated in NS-ARID were not significantly enriched for quantitative trait loci (QTL) associated with intelligence. These findings suggest that genes in which mutations can have a large and deleterious effect on intelligence are not associated with variation across the range of intelligence differences. PMID:26912939
Insalaco, Antonella; Prencipe, Giusi; Buonuomo, Paola Sabrina; Ceccherini, Isabella; Bracaglia, Claudia; Pardeo, Manuela; Nicolai, Rebecca; De Benedetti, Fabrizio
2014-01-01
Cryopyrin-associated periodic syndromes (CAPS) comprise a spectrum of distinct, rare, autosomal dominant autoinflammatory disorders of increasing severity caused by NLRP3 gene mutations. We describe a 13-year-old female who presented, in the initial phase of the disease, recurrent episodes of high fever, pericarditis, arthralgia, arthritis of the knees, abdominal pain and marked increase in inflammatory markers. In the subsequent months she developed recurrent episodes of chest pain, skin rash and swelling of the subcutaneous tissue, without fever, and with spontaneous resolution. Molecular analysis of the CIAS1 gene revealed the presence of the Q703K variant and also a c.1105C>A mutation in the heterozygous state, that predicts a L369M amino acid substitution. The latter variant has never been reported. The L369M mutation was predicted to significantly affect protein structure (scoring as 'dangerous' and 'deleterious') by the Variant Effect Predictor tool. Therapy with anakinra was started with rapid disappearance of clinical symptoms and normalization of CRP levels in 24 hours. The rapid response to IL-1 inhibition suggests that the disease of this patient is driven by IL-1 and supports the conclusion that this novel mutation is pathogenic and may be associated with a new CAPS phenotype. The role played by the concomitant presence of the mutation Q703K remains to be clarified.
Hill, W D; Davies, G; Liewald, D C; Payton, A; McNeil, C J; Whalley, L J; Horan, M; Ollier, W; Starr, J M; Pendleton, N; Hansel, N K; Montgomery, G W; Medland, S E; Martin, N G; Wright, M J; Bates, T C; Deary, I J
2016-01-01
Two themes are emerging regarding the molecular genetic aetiology of intelligence. The first is that intelligence is influenced by many variants and those that are tagged by common single nucleotide polymorphisms account for around 30% of the phenotypic variation. The second, in line with other polygenic traits such as height and schizophrenia, is that these variants are not randomly distributed across the genome but cluster in genes that work together. Less clear is whether the very low range of cognitive ability (intellectual disability) is simply one end of the normal distribution describing individual differences in cognitive ability across a population. Here, we examined 40 genes with a known association with non-syndromic autosomal recessive intellectual disability (NS-ARID) to determine if they are enriched for common variants associated with the normal range of intelligence differences. The current study used the 3511 individuals of the Cognitive Ageing Genetics in England and Scotland (CAGES) consortium. In addition, a text mining analysis was used to identify gene sets biologically related to the NS-ARID set. Gene-based tests indicated that genes implicated in NS-ARID were not significantly enriched for quantitative trait loci (QTL) associated with intelligence. These findings suggest that genes in which mutations can have a large and deleterious effect on intelligence are not associated with variation across the range of intelligence differences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kober, Daniel L.; Alexander-Brett, Jennifer M.; Karch, Celeste M.
Genetic variations in the myeloid immune receptor TREM2 are linked to several neurodegenerative diseases. To determine how TREM2 variants contribute to these diseases, we performed structural and functional studies of wild-type and variant proteins. Our 3.1 Å TREM2 crystal structure revealed that mutations found in Nasu-Hakola disease are buried whereas Alzheimer’s disease risk variants are found on the surface, suggesting that these mutations have distinct effects on TREM2 function. Biophysical and cellular methods indicate that Nasu-Hakola mutations impact protein stability and decrease folded TREM2 surface expression, whereas Alzheimer’s risk variants impact binding to a TREM2 ligand. Additionally, the Alzheimer’s riskmore » variants appear to epitope map a functional surface on TREM2 that is unique within the larger TREM family. These findings provide a guide to structural and functional differences among genetic variants of TREM2, indicating that therapies targeting the TREM2 pathway should be tailored to these genetic and functional differences with patient-specific medicine approaches for neurodegenerative disorders.« less
Social Stigma and Sexual Minorities' Romantic Relationship Functioning: A Meta-Analytic Review.
Doyle, David Matthew; Molix, Lisa
2015-10-01
To bolster knowledge of determinants of relationship functioning among sexual minorities, the current meta-analysis aimed to quantitatively review evidence for the association between social stigma and relationship functioning as well as examine potential moderators. Thirty-five studies were identified, including 130 effect sizes (39 independent; N = 10,745). Across studies, evidence was found for a small but significant inverse association between social stigma and relationship functioning. Furthermore, this association was moderated by stigma type (with more deleterious associations for internalized relative to perceived stigma) and dimension of relationship functioning (with more deleterious associations for affective relative to cognitive and negative relative to positive). Evidence for demographic moderators (region, sex, race, age) was generally mixed although important limitations related to unique characteristics of study samples are discussed. We conclude by highlighting the importance of social stigma for relationship functioning and point toward directions for future research and policy action. © 2015 by the Society for Personality and Social Psychology, Inc.
Exercise Promotes Healthy Aging of Skeletal Muscle.
Cartee, Gregory D; Hepple, Russell T; Bamman, Marcas M; Zierath, Juleen R
2016-06-14
Primary aging is the progressive and inevitable process of bodily deterioration during adulthood. In skeletal muscle, primary aging causes defective mitochondrial energetics and reduced muscle mass. Secondary aging refers to additional deleterious structural and functional age-related changes caused by diseases and lifestyle factors. Secondary aging can exacerbate deficits in mitochondrial function and muscle mass, concomitant with the development of skeletal muscle insulin resistance. Exercise opposes deleterious effects of secondary aging by preventing the decline in mitochondrial respiration, mitigating aging-related loss of muscle mass and enhancing insulin sensitivity. This review focuses on mechanisms by which exercise promotes "healthy aging" by inducing modifications in skeletal muscle. Copyright © 2016 Elsevier Inc. All rights reserved.
Lim, Joseph B; Barker, Kimberly A; Eller, Kristen A; Jiang, Linda; Molina, Veronica; Saifee, Jessica F; Sikes, Hadley D
2015-01-01
As a single polypeptide, cytochrome P450 BM3 fuses oxidase and reductase domains and couples each domain's function to perform catalysis with exceptional activity upon binding of substrate for hydroxylation. Mutations introduced into the enzyme to change its substrate specificity often decrease coupling efficiency between the two domains, resulting in unproductive consumption of cofactors and formation of water and/or reactive species. This phenomenon can correlate with leakage, in which P450 BM3 uses electrons from NADPH to reduce oxygen to water and/or reactive species even without bound substrate. The physical basis for leakage is not yet well understood in this particular member of the cytochrome P450 family. To clarify the relationship between leakage and coupling, we used simulations to illustrate how different combinations of kinetic parameters related to substrate-free consumption of NADPH and substrate hydroxylation can lead to either minimal effects on coupling or a dramatic decrease in coupling as a result of leakage. We explored leakage in P450 BM3 by introducing leakage-enhancing mutations and combining these mutations to assess whether doing so increases leakage further. The variants in this study provide evidence that while a transition to high spin may be vital for coupled hydroxylation, it is not required for enhanced leakage; substrate binding and the consequent shift in spin state are not necessary as a redox switch for catalytic oxidation of NADPH. Additionally, the variants in this study suggest a tradeoff between leakage and stability and thus evolvability, as the mutations we investigated were far more deleterious than other mutations that have been used to change substrate specificity. PMID:26311413
Mutations in DSTYK and dominant urinary tract malformations.
Sanna-Cherchi, Simone; Sampogna, Rosemary V; Papeta, Natalia; Burgess, Katelyn E; Nees, Shannon N; Perry, Brittany J; Choi, Murim; Bodria, Monica; Liu, Yan; Weng, Patricia L; Lozanovski, Vladimir J; Verbitsky, Miguel; Lugani, Francesca; Sterken, Roel; Paragas, Neal; Caridi, Gianluca; Carrea, Alba; Dagnino, Monica; Materna-Kiryluk, Anna; Santamaria, Giuseppe; Murtas, Corrado; Ristoska-Bojkovska, Nadica; Izzi, Claudia; Kacak, Nilgun; Bianco, Beatrice; Giberti, Stefania; Gigante, Maddalena; Piaggio, Giorgio; Gesualdo, Loreto; Vukic, Durdica Kosuljandic; Vukojevic, Katarina; Saraga-Babic, Mirna; Saraga, Marijan; Gucev, Zoran; Allegri, Landino; Latos-Bielenska, Anna; Casu, Domenica; State, Matthew; Scolari, Francesco; Ravazzolo, Roberto; Kiryluk, Krzysztof; Al-Awqati, Qais; D'Agati, Vivette D; Drummond, Iain A; Tasic, Velibor; Lifton, Richard P; Ghiggeri, Gian Marco; Gharavi, Ali G
2013-08-15
Congenital abnormalities of the kidney and the urinary tract are the most common cause of pediatric kidney failure. These disorders are highly heterogeneous, and the etiologic factors are poorly understood. We performed genomewide linkage analysis and whole-exome sequencing in a family with an autosomal dominant form of congenital abnormalities of the kidney or urinary tract (seven affected family members). We also performed a sequence analysis in 311 unrelated patients, as well as histologic and functional studies. Linkage analysis identified five regions of the genome that were shared among all affected family members. Exome sequencing identified a single, rare, deleterious variant within these linkage intervals, a heterozygous splice-site mutation in the dual serine-threonine and tyrosine protein kinase gene (DSTYK). This variant, which resulted in aberrant splicing of messenger RNA, was present in all affected family members. Additional, independent DSTYK mutations, including nonsense and splice-site mutations, were detected in 7 of 311 unrelated patients. DSTYK is highly expressed in the maturing epithelia of all major organs, localizing to cell membranes. Knockdown in zebrafish resulted in developmental defects in multiple organs, which suggested loss of fibroblast growth factor (FGF) signaling. Consistent with this finding is the observation that DSTYK colocalizes with FGF receptors in the ureteric bud and metanephric mesenchyme. DSTYK knockdown in human embryonic kidney cells inhibited FGF-stimulated phosphorylation of extracellular-signal-regulated kinase (ERK), the principal signal downstream of receptor tyrosine kinases. We detected independent DSTYK mutations in 2.3% of patients with congenital abnormalities of the kidney or urinary tract, a finding that suggests that DSTYK is a major determinant of human urinary tract development, downstream of FGF signaling. (Funded by the National Institutes of Health and others.).
Mutations in DSTYK and Dominant Urinary Tract Malformations
Sanna-Cherchi, Simone; Nees, Shannon N.; Perry, Brittany J.; Choi, Murim; Bodria, Monica; Liu, Yan; Weng, Patricia L.; Lozanovski, Vladimir J.; Verbitsky, Miguel; Lugani, Francesca; Sterken, Roel; Paragas, Neal; Caridi, Gianluca; Carrea, Alba; Dagnino, Monica; Materna-Kiryluk, Anna; Santamaria, Giuseppe; Murtas, Corrado; Ristoska-Bojkovska, Nadica; Izzi, Claudia; Kacak, Nilgun; Bianco, Beatrice; Giberti, Stefania; Gigante, Maddalena; Piaggio, Giorgio; Gesualdo, Loreto; Vukic, Durdica Kosuljandic; Vukojevic, Katarina; Saraga-Babic, Mirna; Saraga, Marijan; Gucev, Zoran; Allegri, Landino; Latos-Bielenska, Anna; Casu, Domenica; State, Matthew; Scolari, Francesco; Ravazzolo, Roberto; Kiryluk, Krzysztof; Al-Awqati, Qais; D'Agati, Vivette D.; Drummond, Iain A.; Tasic, Velibor; Lifton, Richard P.; Ghiggeri, Gian Marco; Gharavi, Ali G.
2013-01-01
BACKGROUND Congenital abnormalities of the kidney and the urinary tract are the most common cause of pediatric kidney failure. These disorders are highly heterogeneous, and the etiologic factors are poorly understood. METHODS We performed genomewide linkage analysis and whole-exome sequencing in a family with an autosomal dominant form of congenital abnormalities of the kidney or urinary tract (seven affected family members). We also performed a sequence analysis in 311 unrelated patients, as well as histologic and functional studies. RESULTS Linkage analysis identified five regions of the genome that were shared among all affected family members. Exome sequencing identified a single, rare, deleterious variant within these linkage intervals, a heterozygous splice-site mutation in the dual serine–threonine and tyrosine protein kinase gene (DSTYK). This variant, which resulted in aberrant splicing of messenger RNA, was present in all affected family members. Additional, independent DSTYK mutations, including nonsense and splice-site mutations, were detected in 7 of 311 unrelated patients. DSTYK is highly expressed in the maturing epithelia of all major organs, localizing to cell membranes. Knockdown in zebrafish resulted in developmental defects in multiple organs, which suggested loss of fibroblast growth factor (FGF) signaling. Consistent with this finding is the observation that DSTYK colocalizes with FGF receptors in the ureteric bud and metanephric mesenchyme. DSTYK knockdown in human embryonic kidney cells inhibited FGF-stimulated phosphorylation of extracellular-signal-regulated kinase (ERK), the principal signal downstream of receptor tyrosine kinases. CONCLUSIONS We detected independent DSTYK mutations in 2.3% of patients with congenital abnormalities of the kidney or urinary tract, a finding that suggests that DSTYK is a major determinant of human urinary tract development, downstream of FGF signaling. (Funded by the National Institutes of Health and others.) PMID:23862974
Minichromosome maintenance complex component 8 mutations cause primary ovarian insufficiency.
Dou, Xiaoyun; Guo, Ting; Li, Guangyu; Zhou, LiGuang; Qin, Yingying; Chen, Zi-Jiang
2016-11-01
To investigate whether mutations in the minichromosome maintenance complex component 8 (MCM8) gene were present in 192 patients with sporadic primary ovarian insufficiency (POI). Retrospective case-control cohort study. University-based reproductive medicine center. A total of 192 patients with sporadic POI and 312 control women with regular menstruation (192 age-matched women and 120 women >45 years old). Sanger sequencing was performed in patients with sporadic POI, and potentially pathogenic variants were confirmed in matched controls. DNA damage was induced by mitomycinC (MMC) treatment, and DNA repair capacity was evaluated by histone H2AX phosphorylation level. Sanger sequencing for MCM8 was performed in 192 patients with sporadic POI, and functional experiments were performed to explore the deleterious effects of mutations identified. Two novel missense variants in MCM8, c. A950T (p. H317L), and c. A1802G (p. H601R), were identified in two patients with POI but absent in 312 controls (the upper 90% confidence limit for the proportion 2/192 is 2.24%). The HeLa cells overexpressing mutant p. H317L and p. H601R showed higher sensitivity to MMC compared with wild type. Furthermore, mutant p. H317L showed decreased repair capacity after MMC treatment with much more histone H2AX phosphorylation remaining after 2 hours of recovery. Our result suggests novel mutations p. H317L and p. H601R in the MCM8 gene are potentially causative for POI by dysfunctional DNA repair. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Emdin, Connor A; Khera, Amit V; Chaffin, Mark; Klarin, Derek; Natarajan, Pradeep; Aragam, Krishna; Haas, Mary; Bick, Alexander; Zekavat, Seyedeh M; Nomura, Akihiro; Ardissino, Diego; Wilson, James G; Schunkert, Heribert; McPherson, Ruth; Watkins, Hugh; Elosua, Roberto; Bown, Matthew J; Samani, Nilesh J; Baber, Usman; Erdmann, Jeanette; Gupta, Namrata; Danesh, John; Chasman, Daniel; Ridker, Paul; Denny, Joshua; Bastarache, Lisa; Lichtman, Judith H; D'Onofrio, Gail; Mattera, Jennifer; Spertus, John A; Sheu, Wayne H-H; Taylor, Kent D; Psaty, Bruce M; Rich, Stephen S; Post, Wendy; Rotter, Jerome I; Chen, Yii-Der Ida; Krumholz, Harlan; Saleheen, Danish; Gabriel, Stacey; Kathiresan, Sekar
2018-04-24
Less than 3% of protein-coding genetic variants are predicted to result in loss of protein function through the introduction of a stop codon, frameshift, or the disruption of an essential splice site; however, such predicted loss-of-function (pLOF) variants provide insight into effector transcript and direction of biological effect. In >400,000 UK Biobank participants, we conduct association analyses of 3759 pLOF variants with six metabolic traits, six cardiometabolic diseases, and twelve additional diseases. We identified 18 new low-frequency or rare (allele frequency < 5%) pLOF variant-phenotype associations. pLOF variants in the gene GPR151 protect against obesity and type 2 diabetes, in the gene IL33 against asthma and allergic disease, and in the gene IFIH1 against hypothyroidism. In the gene PDE3B, pLOF variants associate with elevated height, improved body fat distribution and protection from coronary artery disease. Our findings prioritize genes for which pharmacologic mimics of pLOF variants may lower risk for disease.
Deleterious ABCA7 mutations and transcript rescue mechanisms in early onset Alzheimer's disease.
De Roeck, Arne; Van den Bossche, Tobi; van der Zee, Julie; Verheijen, Jan; De Coster, Wouter; Van Dongen, Jasper; Dillen, Lubina; Baradaran-Heravi, Yalda; Heeman, Bavo; Sanchez-Valle, Raquel; Lladó, Albert; Nacmias, Benedetta; Sorbi, Sandro; Gelpi, Ellen; Grau-Rivera, Oriol; Gómez-Tortosa, Estrella; Pastor, Pau; Ortega-Cubero, Sara; Pastor, Maria A; Graff, Caroline; Thonberg, Håkan; Benussi, Luisa; Ghidoni, Roberta; Binetti, Giuliano; de Mendonça, Alexandre; Martins, Madalena; Borroni, Barbara; Padovani, Alessandro; Almeida, Maria Rosário; Santana, Isabel; Diehl-Schmid, Janine; Alexopoulos, Panagiotis; Clarimon, Jordi; Lleó, Alberto; Fortea, Juan; Tsolaki, Magda; Koutroumani, Maria; Matěj, Radoslav; Rohan, Zdenek; De Deyn, Peter; Engelborghs, Sebastiaan; Cras, Patrick; Van Broeckhoven, Christine; Sleegers, Kristel
2017-09-01
Premature termination codon (PTC) mutations in the ATP-Binding Cassette, Sub-Family A, Member 7 gene (ABCA7) have recently been identified as intermediate-to-high penetrant risk factor for late-onset Alzheimer's disease (LOAD). High variability, however, is observed in downstream ABCA7 mRNA and protein expression, disease penetrance, and onset age, indicative of unknown modifying factors. Here, we investigated the prevalence and disease penetrance of ABCA7 PTC mutations in a large early onset AD (EOAD)-control cohort, and examined the effect on transcript level with comprehensive third-generation long-read sequencing. We characterized the ABCA7 coding sequence with next-generation sequencing in 928 EOAD patients and 980 matched control individuals. With MetaSKAT rare variant association analysis, we observed a fivefold enrichment (p = 0.0004) of PTC mutations in EOAD patients (3%) versus controls (0.6%). Ten novel PTC mutations were only observed in patients, and PTC mutation carriers in general had an increased familial AD load. In addition, we observed nominal risk reducing trends for three common coding variants. Seven PTC mutations were further analyzed using targeted long-read cDNA sequencing on an Oxford Nanopore MinION platform. PTC-containing transcripts for each investigated PTC mutation were observed at varying proportion (5-41% of the total read count), implying incomplete nonsense-mediated mRNA decay (NMD). Furthermore, we distinguished and phased several previously unknown alternative splicing events (up to 30% of transcripts). In conjunction with PTC mutations, several of these novel ABCA7 isoforms have the potential to rescue deleterious PTC effects. In conclusion, ABCA7 PTC mutations play a substantial role in EOAD, warranting genetic screening of ABCA7 in genetically unexplained patients. Long-read cDNA sequencing revealed both varying degrees of NMD and transcript-modifying events, which may influence ABCA7 dosage, disease severity, and may create opportunities for therapeutic interventions in AD.
Pinto, Pedro; Paulo, Paula; Santos, Catarina; Rocha, Patrícia; Pinto, Carla; Veiga, Isabel; Pinheiro, Manuela; Peixoto, Ana; Teixeira, Manuel R
2016-09-01
Molecular diagnosis of hereditary breast and ovarian cancer (HBOC) by standard methodologies has been limited to the BRCA1 and BRCA2 genes. With the recent development of new sequencing methodologies, the speed and efficiency of DNA testing have dramatically improved. The aim of this work was to validate the use of next-generation sequencing (NGS) for the detection of BRCA1/BRCA2 point mutations in a diagnostic setting and to study the role of other genes associated with HBOC in Portuguese families. A cohort of 94 high-risk families was included in the study, and they were initially screened for the two common founder mutations with variant-specific methods. Fourteen index patients were shown to carry the Portuguese founder mutation BRCA2 c.156_157insAlu, and the remaining 80 were analyzed in parallel by Sanger sequencing for the BRCA1/BRCA2 genes and by NGS for a panel of 17 genes that have been described as involved in predisposition to breast and/or ovarian cancer. A total of 506 variants in the BRCA1/BRCA2 genes were detected by both methodologies, with a 100 % concordance between them. This strategy allowed the detection of a total of 39 deleterious mutations in the 94 index patients, namely 10 in BRCA1 (25.6 %), 21 in BRCA2 (53.8 %), four in PALB2 (10.3 %), two in ATM (5.1 %), one in CHEK2 (2.6 %), and one in TP53 (2.6 %), with 20.5 % of the deleterious mutations being found in genes other than BRCA1/BRCA2. These results demonstrate the efficiency of NGS for the detection of BRCA1/BRCA2 point mutations and highlight the genetic heterogeneity of HBOC.
Pagan, Cecile; Botros, Hany Goubran; Poirier, Karine; Dumaine, Anne; Jamain, Stéphane; Moreno, Sarah; de Brouwer, Arjan; Van Esch, Hilde; Delorme, Richard; Launay, Jean-Marie; Tzschach, Andreas; Kalscheuer, Vera; Lacombe, Didier; Briault, Sylvain; Laumonnier, Frédéric; Raynaud, Martine; van Bon, Bregje W; Willemsen, Marjolein H; Leboyer, Marion; Chelly, Jamel; Bourgeron, Thomas
2011-01-20
Intellectual disability (ID) is frequently associated with sleep disorders. Treatment with melatonin demonstrated efficacy, suggesting that, at least in a subgroup of patients, the endogenous melatonin level may not be sufficient to adequately set the sleep-wake cycles. Mutations in ASMT gene, coding the last enzyme of the melatonin pathway have been reported as a risk factor for autism spectrum disorders (ASD), which are often comorbid with ID. Thus the aim of the study was to ascertain the genetic variability of ASMT in a large cohort of patients with ID and controls. Here, we sequenced all exons of ASMT in a sample of 361 patients with ID and 440 controls. We then measured the ASMT activity in B lymphoblastoid cell lines (BLCL) of patients with ID carrying an ASMT variant and compared it to controls. We could identify eleven variations modifying the protein sequence of ASMT (ID only: N13H, N17K, V171M, E288D; controls only: E61Q, D210G, K219R, P243L, C273S, R291Q; ID and controls: L298F) and two deleterious splice site mutations (IVS5+2T>C and IVS7+1G>T) only observed in patients with ID. We then ascertained ASMT activity in B lymphoblastoid cell lines from patients carrying the mutations and showed significantly lower enzyme activity in patients carrying mutations compared to controls (p = 0.004). We could identify patients with deleterious ASMT mutations as well as decreased ASMT activity. However, this study does not support ASMT as a causative gene for ID since we observed no significant enrichment in the frequency of ASMT variants in ID compared to controls. Nevertheless, given the impact of sleep difficulties in patients with ID, melatonin supplementation might be of great benefit for a subgroup of patients with low melatonin synthesis.
Santos, Regie Lyn P.; El-Shanti, Hatem; Sikandar, Shaheen; Lee, Kwanghyuk; Bhatti, Attya; Yan, Kai; Chahrour, Maria H.; McArthur, Nathan; Pham, Thanh L.; Mahasneh, Amjad Abdullah; Ahmad, Wasim
2010-01-01
To date, 37 genes have been identified for nonsyndromic hearing impairment (NSHI). Identifying the functional sequence variants within these genes and knowing their population-specific frequencies is of public health value, in particular for genetic screening for NSHI. To determine putatively functional sequence variants in the transmembrane inner ear (TMIE) gene in Pakistani and Jordanian families with autosomal recessive (AR) NSHI, four Jordanian and 168 Pakistani families with ARNSHI that is not due to GJB2 (CX26) were submitted to a genome scan. Two-point and multipoint parametric linkage analyses were performed, and families with logarithmic odds (LOD) scores of 1.0 or greater within the TMIE region underwent further DNA sequencing. The evolutionary conservation and location in predicted protein domains of amino acid residues where sequence variants occurred were studied to elucidate the possible effects of these sequence variants on function. Of seven families that were screened for TMIE, putatively functional sequence variants were found to segregate with hearing impairment in four families but were not seen in not less than 110 ethnically matched control chromosomes. The previously reported c.241C>T (p.R81C) variant was observed in two Pakistani families. Two novel variants, c.92A>G (p.E31G) and the splice site mutation c.212–2A>C, were identified in one Pakistani and one Jordanian family, respectively. The c.92A>G (p.E31G) variant occurred at a residue that is conserved in the mouse and is predicted to be extracellular. Conservation and potential functionality of previously published mutations were also examined. The prevalence of functional TMIE variants in Pakistani families is 1.7% [95% confidence interval (CI) 0.3–4.8]. Further studies on the spectrum, prevalence rates, and functional effect of sequence variants in the TMIE gene in other populations should demonstrate the true importance of this gene as a cause of hearing impairment. PMID:16389551
Hitomi, Yuki; Tokunaga, Katsushi
2017-01-01
Human genome variation may cause differences in traits and disease risks. Disease-causal/susceptible genes and variants for both common and rare diseases can be detected by comprehensive whole-genome analyses, such as whole-genome sequencing (WGS), using next-generation sequencing (NGS) technology and genome-wide association studies (GWAS). Here, in addition to the application of an NGS as a whole-genome analysis method, we summarize approaches for the identification of functional disease-causal/susceptible variants from abundant genetic variants in the human genome and methods for evaluating their functional effects in human diseases, using an NGS and in silico and in vitro functional analyses. We also discuss the clinical applications of the functional disease causal/susceptible variants to personalized medicine.
Löffler, Dennis; Behrendt, Susanne; Creemers, John W M; Klammt, Jürgen; Aust, Gabriela; Stanik, Juraj; Kiess, Wieland; Kovacs, Peter; Körner, Antje
2017-03-01
Variants in Proprotein Convertase Subtilisin/Kexin Type 1 ( PCSK1 ) may be causative for obesity as suggested by monogenic cases and association studies. Here we assessed the functional relevance in experimental studies and the clinical relevance through detailed metabolic phenotyping of newly identified and known PCSK1 variants in children. In 52 obese children selected for elevated proinsulin levels and/or impaired glucose tolerance, we found eight known variants and two novel heterozygous variants (c.1095 + 1G > A and p.S24C) by sequencing the PCSK1 gene. Patients with the new variants presented with extreme obesity, impaired glucose tolerance, and PCOS. Functionally, c.1095 + 1G > A caused skipping of exon8 translation and a complete loss of enzymatic activity. The protein was retained within the endoplasmic reticulum (ER) causing ER stress. The p.S24C variant had no functional effect on protein size, cell trafficking, or enzymatic activity. The known variants rs6230, rs35753085, and rs725522 in the 5' end did not affect PCSK1 promoter activity. In clinical association studies in 1673 lean and obese children, we confirmed associations of rs6232 and rs6234 with BMI-SDS and of rs725522 with glucose stimulated insulin secretion and Matsuda index. We did not find the new variants in any other subjects. We identified and functionally characterized two rare novel PCSK1 variants of which c.1095 + 1G > A caused complete loss of protein function. In addition to confirming rs6232 and rs6234 in PCSK1 as polygenic risk variants for childhood obesity, we describe an association of rs725522 with insulin metabolism. Our results support the contribution of PCSK1 variants to obesity predisposition in children.
ZHU, MING; CHEN, HUI-MEI; WANG, YA-PING
2013-01-01
The MLH1 and MSH2 genes in DNA mismatch repair are important in the pathogenesis of gastrointestinal cancer. Recent studies of normal and alternative splicing suggest that the deleterious effects of missense mutations may in fact be splicing-related when they are located in exonic splicing enhancers (ESEs) or exonic splicing silencers (ESSs). In this study, we used ESE-finder and FAS-ESS software to analyze the potential ESE/ESS motifs of the 114 missense mutations detected in the two genes in East Asian gastrointestinal cancer patients. In addition, we used the SIFT tool to functionally analyze these mutations. The amount of the ESE losses (68) was 51.1% higher than the ESE gains (45) of all the mutations. However, the amount of the ESS gains (27) was 107.7% higher than the ESS losses (13). In total, 56 (49.1%) mutations possessed a potential exonic splicing regulator (ESR) error. Eighty-one mutations (71.1%) were predicted to be deleterious with a lower tolerance index as detected by the Sorting Intolerant from Tolerant (SIFT) tool. Among these, 38 (33.3%) mutations were predicted to be functionally deleterious and possess one potential ESR error, while 18 (15.8%) mutations were predicted to be functionally deleterious and exhibit two potential ESR errors. These may be more likely to affect exon splicing. Our results indicated that there is a strong correlation between missense mutations in MLH1 and MSH2 genes detected in East Asian gastrointestinal cancer patients and ESR motifs. In order to correctly understand the molecular nature of mutations, splicing patterns should be compared between wild-type and mutant samples. PMID:23760103
Ghaedi, Hamid; Bastami, Milad; Jahani, Mohammad Mehdi; Alipoor, Behnam; Tabasinezhad, Maryam; Ghaderi, Omar; Nariman-Saleh-Fam, Ziba; Mirfakhraie, Reza; Movafagh, Abolfazl; Omrani, Mir Davood; Masotti, Andrea
2016-06-01
The present work is aimed at finding variants associated with Type 1 and Type 2 diabetes mellitus (DM) that reside in functionally validated miRNAs binding sites and that can have a functional role in determining diabetes and related pathologies. Using bioinformatics analyses we obtained a database of validated polymorphic miRNA binding sites which has been intersected with genes related to DM or to variants associated and/or in linkage disequilibrium (LD) with it and is reported in genome-wide association studies (GWAS). The workflow we followed allowed us to find variants associated with DM that also reside in functional miRNA binding sites. These data have been demonstrated to have a functional role by impairing the functions of genes implicated in biological processes linked to DM. In conclusion, our work emphasized the importance of SNPs located in miRNA binding sites. The results discussed in this work may constitute the basis of further works aimed at finding functional candidates and variants affecting protein structure and function, transcription factor binding sites, and non-coding epigenetic variants, contributing to widen the knowledge about the pathogenesis of this important disease.
Screening of whole genome sequences identified high-impact variants for stallion fertility.
Schrimpf, Rahel; Gottschalk, Maren; Metzger, Julia; Martinsson, Gunilla; Sieme, Harald; Distl, Ottmar
2016-04-14
Stallion fertility is an economically important trait due to the increase of artificial insemination in horses. The availability of whole genome sequence data facilitates identification of rare high-impact variants contributing to stallion fertility. The aim of our study was to genotype rare high-impact variants retrieved from next-generation sequencing (NGS)-data of 11 horses in order to unravel harmful genetic variants in large samples of stallions. Gene ontology (GO) terms and search results from public databases were used to obtain a comprehensive list of human und mice genes predicted to participate in the regulation of male reproduction. The corresponding equine orthologous genes were searched in whole genome sequence data of seven stallions and four mares and filtered for high-impact genetic variants using SnpEFF, SIFT and Polyphen 2 software. All genetic variants with the missing homozygous mutant genotype were genotyped on 337 fertile stallions of 19 breeds using KASP genotyping assays or PCR-RFLP. Mixed linear model analysis was employed for an association analysis with de-regressed estimated breeding values of the paternal component of the pregnancy rate per estrus (EBV-PAT). We screened next generation sequenced data of whole genomes from 11 horses for equine genetic variants in 1194 human and mice genes involved in male fertility and linked through common gene ontology (GO) with male reproductive processes. Variants were filtered for high-impact on protein structure and validated through SIFT and Polyphen 2. Only those genetic variants were followed up when the homozygote mutant genotype was missing in the detection sample comprising 11 horses. After this filtering process, 17 single nucleotide polymorphism (SNPs) were left. These SNPs were genotyped in 337 fertile stallions of 19 breeds using KASP genotyping assays or PCR-RFLP. An association analysis in 216 Hanoverian stallions revealed a significant association of the splice-site disruption variant g.37455302G>A in NOTCH1 with the de-regressed estimated breeding values of the paternal component of the pregnancy rate per estrus (EBV-PAT). For 9 high-impact variants within the genes CFTR, OVGP1, FBXO43, TSSK6, PKD1, FOXP1, TCP11, SPATA31E1 and NOTCH1 (g.37453246G>C) absence of the homozygous mutant genotype in the validation sample of all 337 fertile stallions was obvious. Therefore, these variants were considered as potentially deleterious factors for stallion fertility. In conclusion, this study revealed 17 genetic variants with a predicted high damaging effect on protein structure and missing homozygous mutant genotype. The g.37455302G>A NOTCH1 variant was identified as a significant stallion fertility locus in Hanoverian stallions and further 9 candidate fertility loci with missing homozygous mutant genotypes were validated in a panel including 19 horse breeds. To our knowledge this is the first study in horses using next generation sequencing data to uncover strong candidate factors for stallion fertility.
Rand, D M; Kann, L M
1996-07-01
Recent studies of mitochondrial DNA (mtDNA) variation in mammals and Drosophila have shown an excess of amino acid variation within species (replacement polymorphism) relative to the number of silent and replacement differences fixed between species. To examine further this pattern of nonneutral mtDNA evolution, we present sequence data for the ND3 and ND5 genes from 59 lines of Drosophila melanogaster and 29 lines of D. simulans. Of interest are the frequency spectra of silent and replacement polymorphisms, and potential variation among genes and taxa in the departures from neutral expectations. The Drosophila ND3 and ND5 data show no significant excess of replacement polymorphism using the McDonald-Kreitman test. These data are in contrast to significant departures from neutrality for the ND3 gene in mammals and other genes in Drosophila mtDNA (cytochrome b and ATPase 6). Pooled across genes, however, both Drosophila and human mtDNA show very significant excesses of amino acid polymorphism. Silent polymorphisms at ND5 show a significantly higher variance in frequency than replacement polymorphisms, and the latter show a significant skew toward low frequencies (Tajima's D = -1.954). These patterns are interpreted in light of the nearly neutral theory where mildly deleterious amino acid haplotypes are observed as ephemeral variants within species but do not contribute to divergence. The patterns of polymorphism and divergence at charge-altering amino acid sites are presented for the Drosophila ND5 gene to examine the evolution of functionally distinct mutations. Excess charge-altering polymorphism is observed at the carboxyl terminal and excess charge-altering divergence is detected at the amino terminal. While the mildly deleterious model fits as a net effect in the evolution of nonrecombining mitochondrial genomes, these data suggest that opposing evolutionary pressures may act on different regions of mitochondrial genes and genomes.
Efficient algorithms for probing the RNA mutation landscape.
Waldispühl, Jérôme; Devadas, Srinivas; Berger, Bonnie; Clote, Peter
2008-08-08
The diversity and importance of the role played by RNAs in the regulation and development of the cell are now well-known and well-documented. This broad range of functions is achieved through specific structures that have been (presumably) optimized through evolution. State-of-the-art methods, such as McCaskill's algorithm, use a statistical mechanics framework based on the computation of the partition function over the canonical ensemble of all possible secondary structures on a given sequence. Although secondary structure predictions from thermodynamics-based algorithms are not as accurate as methods employing comparative genomics, the former methods are the only available tools to investigate novel RNAs, such as the many RNAs of unknown function recently reported by the ENCODE consortium. In this paper, we generalize the McCaskill partition function algorithm to sum over the grand canonical ensemble of all secondary structures of all mutants of the given sequence. Specifically, our new program, RNAmutants, simultaneously computes for each integer k the minimum free energy structure MFE(k) and the partition function Z(k) over all secondary structures of all k-point mutants, even allowing the user to specify certain positions required not to mutate and certain positions required to base-pair or remain unpaired. This technically important extension allows us to study the resilience of an RNA molecule to pointwise mutations. By computing the mutation profile of a sequence, a novel graphical representation of the mutational tendency of nucleotide positions, we analyze the deleterious nature of mutating specific nucleotide positions or groups of positions. We have successfully applied RNAmutants to investigate deleterious mutations (mutations that radically modify the secondary structure) in the Hepatitis C virus cis-acting replication element and to evaluate the evolutionary pressure applied on different regions of the HIV trans-activation response element. In particular, we show qualitative agreement between published Hepatitis C and HIV experimental mutagenesis studies and our analysis of deleterious mutations using RNAmutants. Our work also predicts other deleterious mutations, which could be verified experimentally. Finally, we provide evidence that the 3' UTR of the GB RNA virus C has been optimized to preserve evolutionarily conserved stem regions from a deleterious effect of pointwise mutations. We hope that there will be long-term potential applications of RNAmutants in de novo RNA design and drug design against RNA viruses. This work also suggests potential applications for large-scale exploration of the RNA sequence-structure network. Binary distributions are available at http://RNAmutants.csail.mit.edu/.
Functional linear models for association analysis of quantitative traits.
Fan, Ruzong; Wang, Yifan; Mills, James L; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao
2013-11-01
Functional linear models are developed in this paper for testing associations between quantitative traits and genetic variants, which can be rare variants or common variants or the combination of the two. By treating multiple genetic variants of an individual in a human population as a realization of a stochastic process, the genome of an individual in a chromosome region is a continuum of sequence data rather than discrete observations. The genome of an individual is viewed as a stochastic function that contains both linkage and linkage disequilibrium (LD) information of the genetic markers. By using techniques of functional data analysis, both fixed and mixed effect functional linear models are built to test the association between quantitative traits and genetic variants adjusting for covariates. After extensive simulation analysis, it is shown that the F-distributed tests of the proposed fixed effect functional linear models have higher power than that of sequence kernel association test (SKAT) and its optimal unified test (SKAT-O) for three scenarios in most cases: (1) the causal variants are all rare, (2) the causal variants are both rare and common, and (3) the causal variants are common. The superior performance of the fixed effect functional linear models is most likely due to its optimal utilization of both genetic linkage and LD information of multiple genetic variants in a genome and similarity among different individuals, while SKAT and SKAT-O only model the similarities and pairwise LD but do not model linkage and higher order LD information sufficiently. In addition, the proposed fixed effect models generate accurate type I error rates in simulation studies. We also show that the functional kernel score tests of the proposed mixed effect functional linear models are preferable in candidate gene analysis and small sample problems. The methods are applied to analyze three biochemical traits in data from the Trinity Students Study. © 2013 WILEY PERIODICALS, INC.
m6ASNP: a tool for annotating genetic variants by m6A function.
Jiang, Shuai; Xie, Yubin; He, Zhihao; Zhang, Ya; Zhao, Yuli; Chen, Li; Zheng, Yueyuan; Miao, Yanyan; Zuo, Zhixiang; Ren, Jian
2018-05-01
Large-scale genome sequencing projects have identified many genetic variants for diverse diseases. A major goal of these projects is to characterize these genetic variants to provide insight into their function and roles in diseases. N6-methyladenosine (m6A) is one of the most abundant RNA modifications in eukaryotes. Recent studies have revealed that aberrant m6A modifications are involved in many diseases. In this study, we present a user-friendly web server called "m6ASNP" that is dedicated to the identification of genetic variants that target m6A modification sites. A random forest model was implemented in m6ASNP to predict whether the methylation status of an m6A site is altered by the variants that surround the site. In m6ASNP, genetic variants in a standard variant call format (VCF) are accepted as the input data, and the output includes an interactive table that contains the genetic variants annotated by m6A function. In addition, statistical diagrams and a genome browser are provided to visualize the characteristics and to annotate the genetic variants. We believe that m6ASNP is a very convenient tool that can be used to boost further functional studies investigating genetic variants. The web server "m6ASNP" is implemented in JAVA and PHP and is freely available at [60].
Petersen, Annabeth Høgh; Aagaard, Mads Malik; Nielsen, Henriette Roed; Steffensen, Karina Dahl; Waldstrøm, Marianne; Bojesen, Anders
2016-08-01
Accurate estimation of cancer risk in HBOC families often requires BRCA1/2 testing, but this may be impossible in deceased family members. Previous, testing archival formalin-fixed, paraffin-embedded (FFPE) tissue for germline BRCA1/2 variants was unsuccessful, except for the Jewish founder mutations. A high-throughput method to systematically test for variants in all coding regions of BRCA1/2 in archival FFPE samples of non-tumor tissue is described, using HaloPlex target enrichment and next-generation sequencing. In a validation study, correct identification of variants or wild-type was possible in 25 out of 30 (83%) FFPE samples (age range 1-14 years), with a known variant status in BRCA1/2. No false positive was found. Unsuccessful identification was due to highly degraded DNA or presence of large intragenic deletions. In clinical use, a total of 201 FFPE samples (aged 0-43 years) were processed. Thirty-six samples were rejected because of highly degraded DNA or failed library preparation. Fifteen samples were investigated to search for a known variant. In the remaining 150 samples (aged 0-38 years), three variants known to affect function and one variant likely to affect function in BRCA1, six variants known to affect function and one variant likely to affect function in BRCA2, as well as four variants of unknown significance (VUS) in BRCA1 and three VUS in BRCA2 were discovered. It is now possible to test for germline BRCA1/2 variants in deceased persons, using archival FFPE samples from non-tumor tissue. Accurate genetic counseling is achievable in families where variant testing would otherwise be impossible.
Petersen, Annabeth Høgh; Aagaard, Mads Malik; Nielsen, Henriette Roed; Steffensen, Karina Dahl; Waldstrøm, Marianne; Bojesen, Anders
2016-01-01
Accurate estimation of cancer risk in HBOC families often requires BRCA1/2 testing, but this may be impossible in deceased family members. Previous, testing archival formalin-fixed, paraffin-embedded (FFPE) tissue for germline BRCA1/2 variants was unsuccessful, except for the Jewish founder mutations. A high-throughput method to systematically test for variants in all coding regions of BRCA1/2 in archival FFPE samples of non-tumor tissue is described, using HaloPlex target enrichment and next-generation sequencing. In a validation study, correct identification of variants or wild-type was possible in 25 out of 30 (83%) FFPE samples (age range 1–14 years), with a known variant status in BRCA1/2. No false positive was found. Unsuccessful identification was due to highly degraded DNA or presence of large intragenic deletions. In clinical use, a total of 201 FFPE samples (aged 0–43 years) were processed. Thirty-six samples were rejected because of highly degraded DNA or failed library preparation. Fifteen samples were investigated to search for a known variant. In the remaining 150 samples (aged 0–38 years), three variants known to affect function and one variant likely to affect function in BRCA1, six variants known to affect function and one variant likely to affect function in BRCA2, as well as four variants of unknown significance (VUS) in BRCA1 and three VUS in BRCA2 were discovered. It is now possible to test for germline BRCA1/2 variants in deceased persons, using archival FFPE samples from non-tumor tissue. Accurate genetic counseling is achievable in families where variant testing would otherwise be impossible. PMID:26733283
Cossins, Judith; Liu, Wei Wei; Belaya, Katsiaryna; Maxwell, Susan; Oldridge, Michael; Lester, Tracy; Robb, Stephanie; Beeson, David
2012-09-01
Congenital myasthenic syndromes (CMS) are a group of inherited diseases that affect synaptic transmission at the neuromuscular junction and result in fatiguable muscle weakness. A subgroup of CMS patients have a recessively inherited limb-girdle pattern of weakness caused by mutations in DOK7. DOK7 encodes DOK7, an adaptor protein that is expressed in the skeletal muscle and heart and that is essential for the development and maintenance of the neuromuscular junction. We have screened the DOK7 gene for mutations by polymerase chain reaction amplification and bi-directional sequencing of exonic and promoter regions and performed acetylcholine receptor (AChR) clustering assays and used exon trapping to determine the pathogenicity of detected variants. Approximately 18% of genetically diagnosed CMSs in the UK have mutations in DOK7, with mutations in this gene identified in more than 60 kinships to date. Thirty-four different pathogenic mutations were identified as well as 27 variants likely to be non-pathogenic. An exon 7 frameshift duplication c.1124_1127dupTGCC is commonly found in at least one allele. We analyse the effect of the common frameshift c.1124_1127dupTGCC and show that 10/11 suspected missense mutations have a deleterious effect on AChR clustering. We identify for the first time homozygous or compound heterozygous mutations that are localized 5' to exon 7. In addition, three silent variants in the N-terminal half of DOK7 are predicted to alter the splicing of the DOK7 RNA transcript. The DOK7 gene is highly polymorphic, and within these many variants, we define a spectrum of mutations that can underlie DOK7 CMS that will inform in managing this disorder.
Harms, Frederike Leonie; Girisha, Katta M; Hardigan, Andrew A; Kortüm, Fanny; Shukla, Anju; Alawi, Malik; Dalal, Ashwin; Brady, Lauren; Tarnopolsky, Mark; Bird, Lynne M; Ceulemans, Sophia; Bebin, Martina; Bowling, Kevin M; Hiatt, Susan M; Lose, Edward J; Primiano, Michelle; Chung, Wendy K; Juusola, Jane; Akdemir, Zeynep C; Bainbridge, Matthew; Charng, Wu-Lin; Drummond-Borg, Margaret; Eldomery, Mohammad K; El-Hattab, Ayman W; Saleh, Mohammed A M; Bézieau, Stéphane; Cogné, Benjamin; Isidor, Bertrand; Küry, Sébastien; Lupski, James R; Myers, Richard M; Cooper, Gregory M; Kutsche, Kerstin
2017-01-05
From a GeneMatcher-enabled international collaboration, we identified ten individuals affected by intellectual disability, speech delay, ataxia, and facial dysmorphism and carrying a deleterious EBF3 variant detected by whole-exome sequencing. One 9-bp duplication and one splice-site, five missense, and two nonsense variants in EBF3 were found; the mutations occurred de novo in eight individuals, and the missense variant c.625C>T (p.Arg209Trp) was inherited by two affected siblings from their healthy mother, who is mosaic. EBF3 belongs to the early B cell factor family (also known as Olf, COE, or O/E) and is a transcription factor involved in neuronal differentiation and maturation. Structural assessment predicted that the five amino acid substitutions have damaging effects on DNA binding of EBF3. Transient expression of EBF3 mutant proteins in HEK293T cells revealed mislocalization of all but one mutant in the cytoplasm, as well as nuclear localization. By transactivation assays, all EBF3 mutants showed significantly reduced or no ability to activate transcription of the reporter gene CDKN1A, and in situ subcellular fractionation experiments demonstrated that EBF3 mutant proteins were less tightly associated with chromatin. Finally, in RNA-seq and ChIP-seq experiments, EBF3 acted as a transcriptional regulator, and mutant EBF3 had reduced genome-wide DNA binding and gene-regulatory activity. Our findings demonstrate that variants disrupting EBF3-mediated transcriptional regulation cause intellectual disability and developmental delay and are present in ∼0.1% of individuals with unexplained neurodevelopmental disorders. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Genetic abnormalities in bicuspid aortic valve root phenotype: preliminary results.
Girdauskas, Evaldas; Geist, Lisa; Disha, Kushtrim; Kazakbaev, Iliaz; Groß, Tatiana; Schulz, Solveig; Ungelenk, Martin; Kuntze, Thomas; Reichenspurner, Hermann; Kurth, Ingo
2017-07-01
Genetic defects associated with bicuspid aortopathy have been infrequently analysed. Our goal was to examine the prevalence of rare genetic variants in patients with a bicuspid aortic valve (BAV) with a root phenotype using next-generation sequencing technology. We investigated a total of 124 patients with BAV with a root dilatation phenotype who underwent aortic valve ± proximal aortic surgery at a single institution (BAV database, n = 812) during a 20-year period (1995-2015). Cross-sectional follow-up revealed 63 (51%) patients who were still alive and willing to participate. Systematic follow-up visits were scheduled from March to December 2015 and included aortic imaging as well as peripheral blood sampling for genetic testing. Next-generation sequencing libraries were prepared using a custom-made HaloPlex HS gene panel and included 20 candidate genes known to be associated with aortopathy and BAV. The primary end-point was the prevalence of genetic defects in our study cohort. A total of 63 patients (mean age 46 ± 10 years, 92% men) with BAV root phenotype and mean post-aortic valve replacement follow-up of 10.3 ± 4.9 years were included. Our genetic analysis yielded a wide spectrum of rare, potentially or likely pathogenic variants in 19 (30%) patients, with NOTCH1 variants being the most common ( n = 6). Moreover, deleterious variants were revealed in AXIN1 ( n = 3), NOS3 ( n = 3), ELN ( n = 2), FBN1 ( n = 2) , FN1 ( n = 2) and rarely in other candidate genes. Our preliminary study demonstrates a high prevalence and a wide spectrum of rare genetic variants in patients with the BAV root phenotype, indicative of the potentially congenital origin of associated aortopathy in this specific BAV cohort. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Yu, Hui; Zhang, Victor Wei; Stray-Pedersen, Asbjørg; Hanson, Imelda Celine; Forbes, Lisa R; de la Morena, M Teresa; Chinn, Ivan K; Gorman, Elizabeth; Mendelsohn, Nancy J; Pozos, Tamara; Wiszniewski, Wojciech; Nicholas, Sarah K; Yates, Anne B; Moore, Lindsey E; Berge, Knut Erik; Sorte, Hanne; Bayer, Diana K; ALZahrani, Daifulah; Geha, Raif S; Feng, Yanming; Wang, Guoli; Orange, Jordan S; Lupski, James R; Wang, Jing; Wong, Lee-Jun
2016-10-01
Primary immunodeficiency diseases (PIDDs) are inherited disorders of the immune system. The most severe form, severe combined immunodeficiency (SCID), presents with profound deficiencies of T cells, B cells, or both at birth. If not treated promptly, affected patients usually do not live beyond infancy because of infections. Genetic heterogeneity of SCID frequently delays the diagnosis; a specific diagnosis is crucial for life-saving treatment and optimal management. We developed a next-generation sequencing (NGS)-based multigene-targeted panel for SCID and other severe PIDDs requiring rapid therapeutic actions in a clinical laboratory setting. The target gene capture/NGS assay provides an average read depth of approximately 1000×. The deep coverage facilitates simultaneous detection of single nucleotide variants and exonic copy number variants in one comprehensive assessment. Exons with insufficient coverage (<20× read depth) or high sequence homology (pseudogenes) are complemented by amplicon-based sequencing with specific primers to ensure 100% coverage of all targeted regions. Analysis of 20 patient samples with low T-cell receptor excision circle numbers on newborn screening or a positive family history or clinical suspicion of SCID or other severe PIDD identified deleterious mutations in 14 of them. Identified pathogenic variants included both single nucleotide variants and exonic copy number variants, such as hemizygous nonsense, frameshift, and missense changes in IL2RG; compound heterozygous changes in ATM, RAG1, and CIITA; homozygous changes in DCLRE1C and IL7R; and a heterozygous nonsense mutation in CHD7. High-throughput deep sequencing analysis with complete clinical validation greatly increases the diagnostic yield of severe primary immunodeficiency. Establishing a molecular diagnosis enables early immune reconstitution through prompt therapeutic intervention and guides management for improved long-term quality of life. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Lovelock, Paul K; Spurdle, Amanda B; Mok, Myth T S; Farrugia, Daniel J; Lakhani, Sunil R; Healey, Sue; Arnold, Stephen; Buchanan, Daniel; Couch, Fergus J; Henderson, Beric R; Goldgar, David E; Tavtigian, Sean V; Chenevix-Trench, Georgia; Brown, Melissa A
2007-01-01
Many of the DNA sequence variants identified in the breast cancer susceptibility gene BRCA1 remain unclassified in terms of their potential pathogenicity. Both multifactorial likelihood analysis and functional approaches have been proposed as a means to elucidate likely clinical significance of such variants, but analysis of the comparative value of these methods for classifying all sequence variants has been limited. We have compared the results from multifactorial likelihood analysis with those from several functional analyses for the four BRCA1 sequence variants A1708E, G1738R, R1699Q, and A1708V. Our results show that multifactorial likelihood analysis, which incorporates sequence conservation, co-inheritance, segregation, and tumour immunohistochemical analysis, may improve classification of variants. For A1708E, previously shown to be functionally compromised, analysis of oestrogen receptor, cytokeratin 5/6, and cytokeratin 14 tumour expression data significantly strengthened the prediction of pathogenicity, giving a posterior probability of pathogenicity of 99%. For G1738R, shown to be functionally defective in this study, immunohistochemistry analysis confirmed previous findings of inconsistent 'BRCA1-like' phenotypes for the two tumours studied, and the posterior probability for this variant was 96%. The posterior probabilities of R1699Q and A1708V were 54% and 69%, respectively, only moderately suggestive of increased risk. Interestingly, results from functional analyses suggest that both of these variants have only partial functional activity. R1699Q was defective in foci formation in response to DNA damage and displayed intermediate transcriptional transactivation activity but showed no evidence for centrosome amplification. In contrast, A1708V displayed an intermediate transcriptional transactivation activity and a normal foci formation response in response to DNA damage but induced centrosome amplification. These data highlight the need for a range of functional studies to be performed in order to identify variants with partially compromised function. The results also raise the possibility that A1708V and R1699Q may be associated with a low or moderate risk of cancer. While data pooling strategies may provide more information for multifactorial analysis to improve the interpretation of the clinical significance of these variants, it is likely that the development of current multifactorial likelihood approaches and the consideration of alternative statistical approaches will be needed to determine whether these individually rare variants do confer a low or moderate risk of breast cancer.
Screening and Evaluation of Deleterious SNPs in APOE Gene of Alzheimer's Disease.
Masoodi, Tariq Ahmad; Al Shammari, Sulaiman A; Al-Muammar, May N; Alhamdan, Adel A
2012-01-01
Introduction. Apolipoprotein E (APOE) is an important risk factor for Alzheimer's disease (AD) and is present in 30-50% of patients who develop late-onset AD. Several single-nucleotide polymorphisms (SNPs) are present in APOE gene which act as the biomarkers for exploring the genetic basis of this disease. The objective of this study is to identify deleterious nsSNPs associated with APOE gene. Methods. The SNPs were retrieved from dbSNP. Using I-Mutant, protein stability change was calculated. The potentially functional nonsynonymous (ns) SNPs and their effect on protein was predicted by PolyPhen and SIFT, respectively. FASTSNP was used for functional analysis and estimation of risk score. The functional impact on the APOE protein was evaluated by using Swiss PDB viewer and NOMAD-Ref server. Results. Six nsSNPs were found to be least stable by I-Mutant 2.0 with DDG value of >-1.0. Four nsSNPs showed a highly deleterious tolerance index score of 0.00. Nine nsSNPs were found to be probably damaging with position-specific independent counts (PSICs) score of ≥2.0. Seven nsSNPs were found to be highly polymorphic with a risk score of 3-4. The total energies and root-mean-square deviation (RMSD) values were higher for three mutant-type structures compared to the native modeled structure. Conclusion. We concluded that three nsSNPs, namely, rs11542041, rs11542040, and rs11542034, to be potentially functional polymorphic.
Iqbal, Zafar; Willemsen, Marjolein H; Papon, Marie-Amélie; Musante, Luciana; Benevento, Marco; Hu, Hao; Venselaar, Hanka; Wissink-Lindhout, Willemijn M; Vulto-van Silfhout, Anneke T; Vissers, Lisenka E L M; de Brouwer, Arjan P M; Marouillat, Sylviane; Wienker, Thomas F; Ropers, Hans Hilger; Kahrizi, Kimia; Nadif Kasri, Nael; Najmabadi, Hossein; Laumonnier, Frédéric; Kleefstra, Tjitske; van Bokhoven, Hans
2015-03-05
We report on Dutch and Iranian families with affected individuals who present with moderate to severe intellectual disability and additional phenotypes including progressive tremor, speech impairment, and behavioral problems in certain individuals. A combination of exome sequencing and homozygosity mapping revealed homozygous mutations c.484G>A (p.Gly162Arg) and c.1898C>G (p.Pro633Arg) in SLC6A17. SLC6A17 is predominantly expressed in the brain, encodes a synaptic vesicular transporter of neutral amino acids and glutamate, and plays an important role in the regulation of glutamatergic synapses. Prediction programs and 3D modeling suggest that the identified mutations are deleterious to protein function. To directly test the functional consequences, we investigated the neuronal subcellular localization of overexpressed wild-type and mutant variants in mouse primary hippocampal neuronal cells. Wild-type protein was present in soma, axons, dendrites, and dendritic spines. p.Pro633Arg altered SLC6A17 was found in soma and proximal dendrites but did not reach spines. p.Gly162Arg altered SLC6A17 showed a normal subcellular distribution but was associated with an abnormal neuronal morphology mainly characterized by the loss of dendritic spines. In summary, our genetic findings implicate homozygous SLC6A17 mutations in autosomal-recessive intellectual disability, and their pathogenic role is strengthened by genetic evidence and in silico and in vitro functional analyses. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations.
Kuscu, Cem; Parlak, Mahmut; Tufan, Turan; Yang, Jiekun; Szlachta, Karol; Wei, Xiaolong; Mammadov, Rashad; Adli, Mazhar
2017-07-01
CRISPR-Cas9-induced DNA damage may have deleterious effects at high-copy-number genomic regions. Here, we use CRISPR base editors to knock out genes by changing single nucleotides to create stop codons. We show that the CRISPR-STOP method is an efficient and less deleterious alternative to wild-type Cas9 for gene-knockout studies. Early stop codons can be introduced in ∼17,000 human genes. CRISPR-STOP-mediated targeted screening demonstrates comparable efficiency to WT Cas9, which indicates the suitability of our approach for genome-wide functional screenings.
Musunuru, Kiran; Bernstein, Daniel; Cole, F Sessions; Khokha, Mustafa K; Lee, Frank S; Lin, Shin; McDonald, Thomas V; Moskowitz, Ivan P; Quertermous, Thomas; Sankaran, Vijay G; Schwartz, David A; Silverman, Edwin K; Zhou, Xiaobo; Hasan, Ahmed A K; Luo, Xiao-Zhong James
2018-04-01
The National Institutes of Health have made substantial investments in genomic studies and technologies to identify DNA sequence variants associated with human disease phenotypes. The National Heart, Lung, and Blood Institute has been at the forefront of these commitments to ascertain genetic variation associated with heart, lung, blood, and sleep diseases and related clinical traits. Genome-wide association studies, exome- and genome-sequencing studies, and exome-genotyping studies of the National Heart, Lung, and Blood Institute-funded epidemiological and clinical case-control studies are identifying large numbers of genetic variants associated with heart, lung, blood, and sleep phenotypes. However, investigators face challenges in identification of genomic variants that are functionally disruptive among the myriad of computationally implicated variants. Studies to define mechanisms of genetic disruption encoded by computationally identified genomic variants require reproducible, adaptable, and inexpensive methods to screen candidate variant and gene function. High-throughput strategies will permit a tiered variant discovery and genetic mechanism approach that begins with rapid functional screening of a large number of computationally implicated variants and genes for discovery of those that merit mechanistic investigation. As such, improved variant-to-gene and gene-to-function screens-and adequate support for such studies-are critical to accelerating the translation of genomic findings. In this White Paper, we outline the variety of novel technologies, assays, and model systems that are making such screens faster, cheaper, and more accurate, referencing published work and ongoing work supported by the National Heart, Lung, and Blood Institute's R21/R33 Functional Assays to Screen Genomic Hits program. We discuss priorities that can accelerate the impressive but incomplete progress represented by big data genomic research. © 2018 American Heart Association, Inc.
Zeil, Catharina; Widmann, Michael; Fademrecht, Silvia; Vogel, Constantin; Pleiss, Jürgen
2016-05-01
The Lactamase Engineering Database (www.LacED.uni-stuttgart.de) was developed to facilitate the classification and analysis of TEM β-lactamases. The current version contains 474 TEM variants. Two hundred fifty-nine variants form a large scale-free network of highly connected point mutants. The network was divided into three subnetworks which were enriched by single phenotypes: one network with predominantly 2be and two networks with 2br phenotypes. Fifteen positions were found to be highly variable, contributing to the majority of the observed variants. Since it is expected that a considerable fraction of the theoretical sequence space is functional, the currently sequenced 474 variants represent only the tip of the iceberg of functional TEM β-lactamase variants which form a huge natural reservoir of highly interconnected variants. Almost 50% of the variants are part of a quartet. Thus, two single mutations that result in functional enzymes can be combined into a functional protein. Most of these quartets consist of the same phenotype, or the mutations are additive with respect to the phenotype. By predicting quartets from triplets, 3,916 unknown variants were constructed. Eighty-seven variants complement multiple quartets and therefore have a high probability of being functional. The construction of a TEM β-lactamase network and subsequent analyses by clustering and quartet prediction are valuable tools to gain new insights into the viable sequence space of TEM β-lactamases and to predict their phenotype. The highly connected sequence space of TEM β-lactamases is ideally suited to network analysis and demonstrates the strengths of network analysis over tree reconstruction methods. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Overlap between Parkinson disease and Alzheimer disease in ABCA7 functional variants
Nuytemans, Karen; Maldonado, Lizmarie; Ali, Aleena; John-Williams, Krista; Beecham, Gary W.; Martin, Eden; Scott, William K.
2016-01-01
Objective: Given their reported function in phagocytosis and clearance of protein aggregates in Alzheimer disease (AD), we hypothesized that variants in ATP-binding cassette transporter A7 (ABCA7) might be involved in Parkinson disease (PD). Methods: ABCA7 variants were identified using whole-exome sequencing (WES) on 396 unrelated patients with PD and 222 healthy controls. In addition, we used the publicly available WES data from the Parkinson's Progression Markers Initiative (444 patients and 153 healthy controls) as a second, independent data set. Results: We observed a higher frequency of loss-of-function (LOF) variants and rare putative highly functional variants (Combined Annotation Dependent Depletion [CADD] >20) in clinically diagnosed patients with PD than in healthy controls in both data sets. Overall, we identified LOF variants in 11 patients and 1 healthy control (odds ratio [OR] 4.94, Fisher exact p = 0.07). Four of these variants have been previously implicated in AD risk (p.E709AfsX86, p.W1214X, p.L1403RfsX7, and rs113809142). In addition, rare variants with CADD >20 were observed in 19 patients vs 3 healthy controls (OR 2.85, Fisher exact p = 0.06). Conclusion: The presence of ABCA7 LOF variants in clinically defined PD suggests that they might be risk factors for neurodegeneration in general, especially those variants hallmarked by protein aggregation. More studies will be needed to evaluate the overall impact of this transporter in neurodegenerative disease. PMID:27066581
Rees, Matthew G; Ng, David; Ruppert, Sarah; Turner, Clesson; Beer, Nicola L; Swift, Amy J; Morken, Mario A; Below, Jennifer E; Blech, Ilana; Mullikin, James C; McCarthy, Mark I; Biesecker, Leslie G; Gloyn, Anna L; Collins, Francis S
2012-01-01
Defining the genetic contribution of rare variants to common diseases is a major basic and clinical science challenge that could offer new insights into disease etiology and provide potential for directed gene- and pathway-based prevention and treatment. Common and rare nonsynonymous variants in the GCKR gene are associated with alterations in metabolic traits, most notably serum triglyceride levels. GCKR encodes glucokinase regulatory protein (GKRP), a predominantly nuclear protein that inhibits hepatic glucokinase (GCK) and plays a critical role in glucose homeostasis. The mode of action of rare GCKR variants remains unexplored. We identified 19 nonsynonymous GCKR variants among 800 individuals from the ClinSeq medical sequencing project. Excluding the previously described common missense variant p.Pro446Leu, all variants were rare in the cohort. Accordingly, we functionally characterized all variants to evaluate their potential phenotypic effects. Defects were observed for the majority of the rare variants after assessment of cellular localization, ability to interact with GCK, and kinetic activity of the encoded proteins. Comparing the individuals with functional rare variants to those without such variants showed associations with lipid phenotypes. Our findings suggest that, while nonsynonymous GCKR variants, excluding p.Pro446Leu, are rare in individuals of mixed European descent, the majority do affect protein function. In sum, this study utilizes computational, cell biological, and biochemical methods to present a model for interpreting the clinical significance of rare genetic variants in common disease.
Reduced Renal Methylarginine Metabolism Protects against Progressive Kidney Damage.
Tomlinson, James A P; Caplin, Ben; Boruc, Olga; Bruce-Cobbold, Claire; Cutillas, Pedro; Dormann, Dirk; Faull, Peter; Grossman, Rebecca C; Khadayate, Sanjay; Mas, Valeria R; Nitsch, Dorothea D; Wang, Zhen; Norman, Jill T; Wilcox, Christopher S; Wheeler, David C; Leiper, James
2015-12-01
Nitric oxide (NO) production is diminished in many patients with cardiovascular and renal disease. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthesis, and elevated plasma levels of ADMA are associated with poor outcomes. Dimethylarginine dimethylaminohydrolase-1 (DDAH1) is a methylarginine-metabolizing enzyme that reduces ADMA levels. We reported previously that a DDAH1 gene variant associated with increased renal DDAH1 mRNA transcription and lower plasma ADMA levels, but counterintuitively, a steeper rate of renal function decline. Here, we test the hypothesis that reduced renal-specific ADMA metabolism protects against progressive renal damage. Renal DDAH1 is expressed predominately within the proximal tubule. A novel proximal tubule-specific Ddah1 knockout (Ddah1(PT-/-)) mouse demonstrated tubular cell accumulation of ADMA and lower NO concentrations, but unaltered plasma ADMA concentrations. Ddah1(PT-/-) mice were protected from reduced kidney tissue mass, collagen deposition, and profibrotic cytokine expression in two independent renal injury models: folate nephropathy and unilateral ureteric obstruction. Furthermore, a study of two independent kidney transplant cohorts revealed higher levels of human renal allograft methylarginine-metabolizing enzyme gene expression associated with steeper function decline. We also report an association among DDAH1 expression, NO activity, and uromodulin expression supported by data from both animal and human studies, raising the possibility that kidney DDAH1 expression exacerbates renal injury through uromodulin-related mechanisms. Together, these data demonstrate that reduced renal tubular ADMA metabolism protects against progressive kidney function decline. Thus, circulating ADMA may be an imprecise marker of renal methylarginine metabolism, and therapeutic ADMA reduction may even be deleterious to kidney function. Copyright © 2015 by the American Society of Nephrology.
Variation in Cilia Protein Genes and Progression of Lung Disease in Cystic Fibrosis.
Blue, Elizabeth; Louie, Tin L; Chong, Jessica X; Hebbring, Scott J; Barnes, Kathleen C; Rafaels, Nicholas M; Knowles, Michael R; Gibson, Ronald L; Bamshad, Michael J; Emond, Mary J
2018-04-01
Cystic fibrosis, like primary ciliary dyskinesia, is an autosomal recessive disorder characterized by abnormal mucociliary clearance and obstructive lung disease. We hypothesized that genes underlying the development or function of cilia may modify lung disease severity in persons with cystic fibrosis. To test this hypothesis, we compared variants in 93 candidate genes in both upper and lower tertiles of lung function in a large cohort of children and adults with cystic fibrosis with those of a population control dataset. Variants within candidate genes were tested for association using the SKAT-O test, comparing cystic fibrosis cases defined by poor (n = 127) or preserved (n = 127) lung function with population controls (n = 3,269 or 3,148, respectively). Associated variants were then tested for association with related phenotypes in independent datasets. Variants in DNAH14 and DNAAF3 were associated with poor lung function in cystic fibrosis, whereas variants in DNAH14 and DNAH6 were associated with preserved lung function in cystic fibrosis. Associations between DNAH14 and lung function were replicated in disease-related phenotypes characterized by obstructive lung disease in adults. Genetic variants within DNAH6, DNAH14, and DNAAF3 are associated with variation in lung function among persons with cystic fibrosis.
Stabilizing Selection, Purifying Selection, and Mutational Bias in Finite Populations
Charlesworth, Brian
2013-01-01
Genomic traits such as codon usage and the lengths of noncoding sequences may be subject to stabilizing selection rather than purifying selection. Mutations affecting these traits are often biased in one direction. To investigate the potential role of stabilizing selection on genomic traits, the effects of mutational bias on the equilibrium value of a trait under stabilizing selection in a finite population were investigated, using two different mutational models. Numerical results were generated using a matrix method for calculating the probability distribution of variant frequencies at sites affecting the trait, as well as by Monte Carlo simulations. Analytical approximations were also derived, which provided useful insights into the numerical results. A novel conclusion is that the scaled intensity of selection acting on individual variants is nearly independent of the effective population size over a wide range of parameter space and is strongly determined by the logarithm of the mutational bias parameter. This is true even when there is a very small departure of the mean from the optimum, as is usually the case. This implies that studies of the frequency spectra of DNA sequence variants may be unable to distinguish between stabilizing and purifying selection. A similar investigation of purifying selection against deleterious mutations was also carried out. Contrary to previous suggestions, the scaled intensity of purifying selection with synergistic fitness effects is sensitive to population size, which is inconsistent with the general lack of sensitivity of codon usage to effective population size. PMID:23709636
Khan, Sheeza; Bano, Zehra; Singh, Laishram R; Hassan, Md Imtaiyaz; Islam, Asimul; Ahmad, Faizan
2013-01-01
Human kidney cells are under constant urea stress due to its urine concentrating mechanism. It is believed that the deleterious effect of urea is counteracted by methylamine osmolytes (glycine betaine and glycerophosphocholine) present in kidney cells. A question arises: Do the stabilizing osmolytes, non-methylamines (myo-inositol, sorbitol and taurine) present in the kidney cells also counteract the deleterious effects of urea? To answer this question, we have measured structure, thermodynamic stability (ΔG D (o)) and functional activity parameters (K m and k cat) of different model proteins in the presence of various concentrations of urea and each non-methylamine osmolyte alone and in combination. We observed that (i) for each protein myo-inositol provides perfect counteraction at 1∶2 ([myo-inositol]:[urea]) ratio, (ii) any concentration of sorbitol fails to refold urea denatured proteins if it is six times less than that of urea, and (iii) taurine regulates perfect counteraction in a protein specific manner; 1.5∶2.0, 1.2∶2.0 and 1.0∶2.0 ([taurine]:[urea]) ratios for RNase-A, lysozyme and α-lactalbumin, respectively.
Khan, Sheeza; Bano, Zehra; Singh, Laishram R.; Hassan, Md. Imtaiyaz; Islam, Asimul; Ahmad, Faizan
2013-01-01
Human kidney cells are under constant urea stress due to its urine concentrating mechanism. It is believed that the deleterious effect of urea is counteracted by methylamine osmolytes (glycine betaine and glycerophosphocholine) present in kidney cells. A question arises: Do the stabilizing osmolytes, non-methylamines (myo-inositol, sorbitol and taurine) present in the kidney cells also counteract the deleterious effects of urea? To answer this question, we have measured structure, thermodynamic stability (ΔG D o) and functional activity parameters (K m and k cat) of different model proteins in the presence of various concentrations of urea and each non-methylamine osmolyte alone and in combination. We observed that (i) for each protein myo-inositol provides perfect counteraction at 1∶2 ([myo-inositol]:[urea]) ratio, (ii) any concentration of sorbitol fails to refold urea denatured proteins if it is six times less than that of urea, and (iii) taurine regulates perfect counteraction in a protein specific manner; 1.5∶2.0, 1.2∶2.0 and 1.0∶2.0 ([taurine]:[urea]) ratios for RNase-A, lysozyme and α-lactalbumin, respectively. PMID:24039776
Mutations in the Gardos channel (KCNN4) are associated with hereditary xerocytosis.
Glogowska, Edyta; Lezon-Geyda, Kimberly; Maksimova, Yelena; Schulz, Vincent P; Gallagher, Patrick G
2015-09-10
Hereditary xerocytosis (HX; MIM 194380) is an autosomal-dominant hemolytic anemia characterized by primary erythrocyte dehydration. In many patients, heterozygous mutations associated with delayed channel inactivation have been identified in PIEZO1. This report describes patients from 2 well-phenotyped HX kindreds, including from one of the first HX kindreds described, who lack predicted heterozygous PIEZO1-linked variants. Whole-exome sequencing identified novel, heterozygous mutations affecting the Gardos channel, encoded by the KCNN4 gene, in both kindreds. Segregation analyses confirmed transmission of the Gardos channel mutations with disease phenotype in affected individuals. The KCNN4 variants were different mutations in the same residue, which is highly conserved across species and within members of the small-intermediate family of calcium-activated potassium channel proteins. Both mutations were predicted to be deleterious by mutation effect algorithms. In sickle erythrocytes, the Gardos channel is activated under deoxy conditions, leading to cellular dehydration due to salt and water loss. The identification of KCNN4 mutations in HX patients supports recent studies that indicate it plays a critical role in normal erythrocyte deformation in the microcirculation and participates in maintenance of erythrocyte volume homeostasis. © 2015 by The American Society of Hematology.
Mutations in the Gardos channel (KCNN4) are associated with hereditary xerocytosis
Glogowska, Edyta; Lezon-Geyda, Kimberly; Maksimova, Yelena; Schulz, Vincent P.
2015-01-01
Hereditary xerocytosis (HX; MIM 194380) is an autosomal-dominant hemolytic anemia characterized by primary erythrocyte dehydration. In many patients, heterozygous mutations associated with delayed channel inactivation have been identified in PIEZO1. This report describes patients from 2 well-phenotyped HX kindreds, including from one of the first HX kindreds described, who lack predicted heterozygous PIEZO1-linked variants. Whole-exome sequencing identified novel, heterozygous mutations affecting the Gardos channel, encoded by the KCNN4 gene, in both kindreds. Segregation analyses confirmed transmission of the Gardos channel mutations with disease phenotype in affected individuals. The KCNN4 variants were different mutations in the same residue, which is highly conserved across species and within members of the small-intermediate family of calcium-activated potassium channel proteins. Both mutations were predicted to be deleterious by mutation effect algorithms. In sickle erythrocytes, the Gardos channel is activated under deoxy conditions, leading to cellular dehydration due to salt and water loss. The identification of KCNN4 mutations in HX patients supports recent studies that indicate it plays a critical role in normal erythrocyte deformation in the microcirculation and participates in maintenance of erythrocyte volume homeostasis. PMID:26198474
Parker, Nicole R; Hudson, Amanda L; Khong, Peter; Parkinson, Jonathon F; Dwight, Trisha; Ikin, Rowan J; Zhu, Ying; Cheng, Zhangkai Jason; Vafaee, Fatemeh; Chen, Jason; Wheeler, Helen R; Howell, Viive M
2016-03-04
Heterogeneity is a hallmark of glioblastoma with intratumoral heterogeneity contributing to variability in responses and resistance to standard treatments. Promoter methylation status of the DNA repair enzyme O(6)-methylguanine DNA methyltransferase (MGMT) is the most important clinical biomarker in glioblastoma, predicting for therapeutic response. However, it does not always correlate with response. This may be due to intratumoral heterogeneity, with a single biopsy unlikely to represent the entire lesion. Aberrations in other DNA repair mechanisms may also contribute. This study investigated intratumoral heterogeneity in multiple glioblastoma tumors with a particular focus on the DNA repair pathways. Transcriptional intratumoral heterogeneity was identified in 40% of cases with variability in MGMT methylation status found in 14% of cases. As well as identifying intratumoral heterogeneity at the transcriptional and epigenetic levels, targeted next generation sequencing identified between 1 and 37 unique sequence variants per specimen. In-silico tools were then able to identify deleterious variants in both the base excision repair and the mismatch repair pathways that may contribute to therapeutic response. As these pathways have roles in temozolomide response, these findings may confound patient management and highlight the importance of assessing multiple tumor biopsies.
Fonseca, Dora Janeth; Patiño, Liliana Catherine; Suárez, Yohjana Carolina; de Jesús Rodríguez, Asid; Mateus, Heidi Eliana; Jiménez, Karen Marcela; Ortega-Recalde, Oscar; Díaz-Yamal, Ivonne; Laissue, Paul
2015-07-01
To identify new molecular actors involved in nonsyndromic premature ovarian failure (POF) etiology. This is a retrospective case-control cohort study. University research group and IVF medical center. Twelve women affected by nonsyndromic POF. The control group included 176 women whose menopause had occurred after age 50 and had no antecedents regarding gynecological disease. A further 345 women from the same ethnic origin (general population group) were also recruited to assess allele frequency for potentially deleterious sequence variants. Next generation sequencing (NGS), Sanger sequencing, and bioinformatics analysis. The complete coding regions of 70 candidate genes were massively sequenced, via NGS, in POF patients. Bioinformatics and genetics were used to confirm NGS results and to identify potential sequence variants related to the disease pathogenesis. We have identified mutations in two novel genes, ADAMTS19 and BMPR2, that are potentially related to POF origin. LHCGR mutations, which might have contributed to the phenotype, were also detected. We thus recommend NGS as a powerful tool for identifying new molecular actors in POF and for future diagnostic/prognostic purposes. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Deleterious impact of hyperglycemia on cystic fibrosis airway ion transport and epithelial repair.
Bilodeau, Claudia; Bardou, Olivier; Maillé, Émilie; Berthiaume, Yves; Brochiero, Emmanuelle
2016-01-01
Cystic fibrosis (CF)-related diabetes (CFRD) is associated with faster pulmonary function decline. Thus, we evaluated the impact of hyperglycemia on airway epithelial repair and transepithelial ion transport, which are critical in maintaining lung integrity and function. Non-CF and CF airway epithelial cells were exposed to low (LG) or high (HG) glucose before ion current and wound repair rate measurements. CFTR and K+ currents decreased after HG treatments. HG also reduced the wound healing rates of non-CF and CF cell monolayers. Although CFTR correction with VRT-325 accelerated the healing rates of CF cells monolayers under LG conditions, this improvement was significantly abrogated under HG conditions. Our data highlights a deleterious impact of hyperglycemia on ion transport and epithelial repair functions, which could contribute to the deterioration in lung function in CFRD patients. HG may also interfere with the beneficial effects of CFTR rescue on airway epithelial repair. Copyright © 2015 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
Prchalova, Darina; Havlovicova, Marketa; Sterbova, Katalin; Stranecky, Viktor; Hancarova, Miroslava; Sedlacek, Zdenek
2017-06-02
Whole exome sequencing is a powerful tool for the analysis of genetically heterogeneous conditions. The prioritization of variants identified often focuses on nonsense, frameshift and canonical splice site mutations, and highly deleterious missense variants, although other defects can also play a role. The definition of the phenotype range and course of rare genetic conditions requires long-term clinical follow-up of patients. We report an adult female patient with severe intellectual disability, severe speech delay, epilepsy, autistic features, aggressiveness, sleep problems, broad-based clumsy gait and constipation. Whole exome sequencing identified a de novo mutation in the SYNGAP1 gene. The variant was located in the broader splice donor region of intron 10 and replaced G by A at position +5 of the splice site. The variant was predicted in silico and shown experimentally to abolish the regular splice site and to activate a cryptic donor site within exon 10, causing frameshift and premature termination. The overall clinical picture of the patient corresponded well with the characteristic SYNGAP1-associated phenotype observed in previously reported patients. However, our patient was 31 years old which contrasted with most other published SYNGAP1 cases who were much younger. Our patient had a significant growth delay and microcephaly. Both features normalised later, although the head circumference stayed only slightly above the lower limit of the norm. The patient had a delayed puberty. Her cognitive and language performance remained at the level of a one-year-old child even in adulthood and showed a slow decline. Myopathic facial features and facial dysmorphism became more pronounced with age. Although the gait of the patient was unsteady in childhood, more severe gait problems developed in her teens. While the seizures remained well-controlled, her aggressive behaviour worsened with age and required extensive medication. The finding in our patient underscores the notion that the interpretation of variants identified using whole exome sequencing should focus not only on variants in the canonical splice dinucleotides GT and AG, but also on broader splice regions. The long-term clinical follow-up of our patient contributes to the knowledge of the developmental trajectory in individuals with SYNGAP1 gene defects.
Mistranslation can enhance fitness through purging of deleterious mutations
Bratulic, Sinisa; Toll-Riera, Macarena; Wagner, Andreas
2017-01-01
Phenotypic mutations are amino acid changes caused by mistranslation. How phenotypic mutations affect the adaptive evolution of new protein functions is unknown. Here we evolve the antibiotic resistance protein TEM-1 towards resistance on the antibiotic cefotaxime in an Escherichia coli strain with a high mistranslation rate. TEM-1 populations evolved in such strains endow host cells with a general growth advantage, not only on cefotaxime but also on several other antibiotics that ancestral TEM-1 had been unable to deactivate. High-throughput sequencing of TEM-1 populations shows that this advantage is associated with a lower incidence of weakly deleterious genotypic mutations. Our observations show that mistranslation is not just a source of noise that delays adaptive evolution. It could even facilitate adaptive evolution by exacerbating the effects of deleterious mutations and leading to their more efficient purging. The ubiquity of mistranslation and its effects render mistranslation an important factor in adaptive protein evolution. PMID:28524864
Lovelock, Paul K; Spurdle, Amanda B; Mok, Myth TS; Farrugia, Daniel J; Lakhani, Sunil R; Healey, Sue; Arnold, Stephen; Buchanan, Daniel; Investigators, kConFab; Couch, Fergus J; Henderson, Beric R; Goldgar, David E; Tavtigian, Sean V; Chenevix-Trench, Georgia; Brown, Melissa A
2007-01-01
Introduction Many of the DNA sequence variants identified in the breast cancer susceptibility gene BRCA1 remain unclassified in terms of their potential pathogenicity. Both multifactorial likelihood analysis and functional approaches have been proposed as a means to elucidate likely clinical significance of such variants, but analysis of the comparative value of these methods for classifying all sequence variants has been limited. Methods We have compared the results from multifactorial likelihood analysis with those from several functional analyses for the four BRCA1 sequence variants A1708E, G1738R, R1699Q, and A1708V. Results Our results show that multifactorial likelihood analysis, which incorporates sequence conservation, co-inheritance, segregation, and tumour immunohistochemical analysis, may improve classification of variants. For A1708E, previously shown to be functionally compromised, analysis of oestrogen receptor, cytokeratin 5/6, and cytokeratin 14 tumour expression data significantly strengthened the prediction of pathogenicity, giving a posterior probability of pathogenicity of 99%. For G1738R, shown to be functionally defective in this study, immunohistochemistry analysis confirmed previous findings of inconsistent 'BRCA1-like' phenotypes for the two tumours studied, and the posterior probability for this variant was 96%. The posterior probabilities of R1699Q and A1708V were 54% and 69%, respectively, only moderately suggestive of increased risk. Interestingly, results from functional analyses suggest that both of these variants have only partial functional activity. R1699Q was defective in foci formation in response to DNA damage and displayed intermediate transcriptional transactivation activity but showed no evidence for centrosome amplification. In contrast, A1708V displayed an intermediate transcriptional transactivation activity and a normal foci formation response in response to DNA damage but induced centrosome amplification. Conclusion These data highlight the need for a range of functional studies to be performed in order to identify variants with partially compromised function. The results also raise the possibility that A1708V and R1699Q may be associated with a low or moderate risk of cancer. While data pooling strategies may provide more information for multifactorial analysis to improve the interpretation of the clinical significance of these variants, it is likely that the development of current multifactorial likelihood approaches and the consideration of alternative statistical approaches will be needed to determine whether these individually rare variants do confer a low or moderate risk of breast cancer. PMID:18036263
Polfus, Linda M; Boerwinkle, Eric; Gibbs, Richard A; Metcalf, Ginger; Muzny, Donna; Veeraraghavan, Narayanan; Grove, Megan; Shete, Sanjay; Wallace, Stephanie; Milewicz, Dianna; Hanchard, Neil; Lupski, James R; Hashmi, Syed Shahrukh; Gupta-Malhotra, Monesha
2016-11-01
To comprehensively evaluate a European-American child with severe hypertension, whole-exome sequencing (WES) was performed on the child and parents, which identified causal variation of the proband's early-onset disease. The proband's hypertension was resistant to treatment, requiring a multiple drug regimen including amiloride, spironolactone, and hydrochlorothiazide. We suspected a monogenic form of hypertension because of the persistent hypokalemia with low plasma levels of renin and aldosterone. To address this, we focused on rare functional variants and indels, and performed gene-based tests incorporating linkage scores and allele frequency and filtered on deleterious functional mutations. Drawing upon clinical presentation, 27 genes were selected evidenced to cause monogenic hypertension and matched to the gene-based results. This resulted in the identification of a stop-gain mutation in an epithelial sodium channel (ENaC), SCNN1B , an established Liddle syndrome gene, shared by the child and her father. Interestingly, the father also harbored a missense mutation (p.Trp552Arg) in the α-subunit of the ENaC trimer, SCNN1A , possibly pointing to pseudohypoaldosteronism type I. This case is unique in that we present the early-onset disease and treatment response caused by a canonical stop-gain mutation (p.Arg566*) as well as ENaC digenic hits in the father, emphasizing the utility of WES informing precision medicine.
Recombinant human Tat-Hsp70-2: A tool for neuroprotection.
Cappelletti, Pamela; Binda, Elisa; Tunesi, Marta; Albani, Diego; Giordano, Carmen; Molla, Gianluca; Pollegioni, Loredano
2017-10-01
Human Hsp70-2 is a chaperone expressed mainly in the nervous system. Up to now, no study has reported on the recombinant expression of this important human chaperone. Herein, we describe the successful purification and characterization of recombinant human Hsp70-2 in Escherichia coli in both the full-length and the chimeric protein containing the protein transduction domain corresponding to the trans-activator of transcription (Tat) from HIV. Under optimized conditions, the Tat-Hsp70-2 was expressed in a soluble form and purified by two chromatographic steps (in a 3.6 mg/L fermentation broth yield): recombinant Tat-Hsp70-2 was folded and showed ATPase activity. In contrast, the full-length recombinant protein was only expressed in the form of inclusion bodies and thus was purified following a refolding procedure. The refolded Hsp70-2 protein was inactive and the protein conformation slightly altered as compared to the corresponding Tat-fused variant. The Tat-Hsp70-2 protein (100 nM), when added to human neuroblastoma SH-SY5Y cells subjected to hydrogen peroxide or 6-hydroxydopamine stress, partially protected from the deleterious effect of these treatments. This work describes an approach for the functional expression of human Tat-Hsp70-2 that provides sufficient material for detailed structure-function studies and for testing its ability to protect neuroblastoma cells from oxidative stress. Copyright © 2016 Elsevier Inc. All rights reserved.
Pan, Wei; Song, Im-Sook; Shin, Ho-Jung; Kim, Min-Hye; Choi, Yeong-Lim; Lim, Su-Jeong; Kim, Woo-Young; Lee, Sang-Seop; Shin, Jae-Gook
2011-06-01
Genetic variants of Na(+)-taurocholate co-transporting polypeptide (NTCP; SLC10A1) and ileal apical sodium-dependent bile acid transporter (ASBT; SLC10A2), which greatly contribute to bile acid homeostasis, were extensively explored in the Korean population and functional variants of NTCP were compared among Asian populations. From direct DNA sequencing, six SNPs were identified in the SLC10A1 gene and 14 SNPs in the SLC10A2 gene. Three of seven coding variants were non-synonymous SNPs: two variants from SLC10A1 (A64T, S267F) and one from SLC10A2 (A171S). No linkage was analysed in the SLC10A1 gene because of low frequencies of genetic variants, and the SLC10A2 gene was composed of two separated linkage disequilibrium blocks contrary to the white population. The stably transfected NTCP-A64T variant showed significantly decreased uptakes of taurocholate and rosuvastatin compared with wild-type NTCP. The decreased taurocholate uptake and increased rosuvastatin uptake were shown in the NTCP-S267F variant. The allele frequencies of these functional variants were 1.0% and 3.1%, respectively, in a Korean population. However, NTCP-A64T was not found in Chinese and Vietnamese subjects. The frequency distribution of NTCP-S267F in Koreans was significantly lower than those in Chinese and Vietnamese populations. Our data suggest that NTCP-A64T and -S267F variants cause substrate-dependent functional change in vitro, and show ethnic difference in their allelic frequencies among Asian populations although the clinical relevance of these variants is remained to be evaluated.
Variants of glycerol dehydrogenase having D-lactate dehydrogenase activity and uses thereof
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qingzhao; Shanmugam, Keelnatham T.; Ingram, Lonnie O'Neal
The present invention provides methods of designing and generating glycerol dehydrogenase (GlyDH) variants that have altered function as compared to a parent polypeptide. The present invention further provides nucleic acids encoding GlyDH polypeptide variants having altered function as compared to the parent polypeptide. Host cells comprising polynucleotides encoding GlyDH variants and methods of producing lactic acids are also provided in various aspects of the invention.
Lee, Jae Min; Hull, J. Joe; Kawai, Takeshi; Tsuneizumi, Kazuhide; Kurihara, Masaaki; Tanokura, Masaru; Nagata, Koji; Nagasawa, Hiromichi; Matsumoto, Shogo
2012-01-01
To facilitate further evaluation of pheromone biosynthesis activating neuropeptide receptor (PBANR) functionality and regulation, we generated cultured insect cell lines constitutively expressing green fluorescent protein chimeras of the recently identified Bombyx mori PBANR (BommoPBANR) and Pseudaletia separata PBANR (PsesePBANR) variants. Fluorescent chimeras included the BommoPBANR-A, -B, and -C variants and the PsesePBANR-B and -C variants. Cell lines expressing non-chimeric BommoPBANR-B and -C variants were also generated. Functional evaluation of these transformed cell lines using confocal laser microscopy revealed that a Rhodamine Red-labeled PBAN derivative (RR-C10PBANR2K) specifically co-localized with all of the respective PBANR variants at the plasma membrane. Near complete internalization of the fluorescent RR-C10PBANR2K ligand 30 min after binding was observed in all cell lines except those expressing the BommoPBANR-A variant, in which the ligand/receptor complex remained at the plasma membrane. Fluorescent Ca2+ imaging further showed that the BommoPBANR-A cell line exhibited drastically different Ca2+ mobilization kinetics at a number of RR-C10PBANR2K concentrations including 10 μM. These observations demonstrate a clear functional difference between the BommoPBANR-A variant and the BommoPBANR-B and -C variants in terms of receptor regulation and activation of downstream effector molecules. We also found that, contrary to previous reports, ligand-induced internalization of BommoPBANR-B and BommoPBANR-C in cell lines stably expressing these variants occurred in the absence of extracellular Ca2+. PMID:22654874
Functional characterization of rare FOXP2 variants in neurodevelopmental disorder.
Estruch, Sara B; Graham, Sarah A; Chinnappa, Swathi M; Deriziotis, Pelagia; Fisher, Simon E
2016-01-01
Heterozygous disruption of FOXP2 causes a rare form of speech and language impairment. Screens of the FOXP2 sequence in individuals with speech/language-related disorders have identified several rare protein-altering variants, but their phenotypic relevance is often unclear. FOXP2 encodes a transcription factor with a forkhead box DNA-binding domain, but little is known about the functions of protein regions outside this domain. We performed detailed functional analyses of seven rare FOXP2 variants found in affected cases, including three which have not been previously characterized, testing intracellular localization, transcriptional regulation, dimerization, and interaction with other proteins. To shed further light on molecular functions of FOXP2, we characterized the interaction between this transcription factor and co-repressor proteins of the C-terminal binding protein (CTBP) family. Finally, we analysed the functional significance of the polyglutamine tracts in FOXP2, since tract length variations have been reported in cases of neurodevelopmental disorder. We confirmed etiological roles of multiple FOXP2 variants. Of three variants that have been suggested to cause speech/language disorder, but never before been characterized, only one showed functional effects. For the other two, we found no effects on protein function in any assays, suggesting that they are incidental to the phenotype. We identified a CTBP-binding region within the N-terminal portion of FOXP2. This region includes two amino acid substitutions that occurred on the human lineage following the split from chimpanzees. However, we did not observe any effects of these amino acid changes on CTBP binding or other core aspects of FOXP2 function. Finally, we found that FOXP2 variants with reduced polyglutamine tracts did not exhibit altered behaviour in cellular assays, indicating that such tracts are non-essential for core aspects of FOXP2 function, and that tract variation is unlikely to be a highly penetrant cause of speech/language disorder. Our findings highlight the importance of functional characterization of novel rare variants in FOXP2 in assessing the contribution of such variants to speech/language disorder and provide further insights into the molecular function of the FOXP2 protein.
A genetic replacement system for selection-based engineering of essential proteins
2012-01-01
Background Essential genes represent the core of biological functions required for viability. Molecular understanding of essentiality as well as design of synthetic cellular systems includes the engineering of essential proteins. An impediment to this effort is the lack of growth-based selection systems suitable for directed evolution approaches. Results We established a simple strategy for genetic replacement of an essential gene by a (library of) variant(s) during a transformation. The system was validated using three different essential genes and plasmid combinations and it reproducibly shows transformation efficiencies on the order of 107 transformants per microgram of DNA without any identifiable false positives. This allowed for reliable recovery of functional variants out of at least a 105-fold excess of non-functional variants. This outperformed selection in conventional bleach-out strains by at least two orders of magnitude, where recombination between functional and non-functional variants interfered with reliable recovery even in recA negative strains. Conclusions We propose that this selection system is extremely suitable for evaluating large libraries of engineered essential proteins resulting in the reliable isolation of functional variants in a clean strain background which can readily be used for in vivo applications as well as expression and purification for use in in vitro studies. PMID:22898007
Mostafa, Mohamed; Vali, Reza; Chan, Jeffrey; Omarkhail, Yusuaf; Shammas, Amer
2016-10-01
Potentially false-positive findings on radioiodine scans in children with differentiated thyroid carcinoma can mimic functioning thyroid tissue and functioning thyroid carcinomatous tissue. Such false-positive findings comprise variants and pitfalls that can vary slightly in children as compared with adults. To determine the patterns and frequency of these potential false-positive findings on radioiodine scans in children with differentiated thyroid carcinoma. We reviewed a total of 223 radioiodine scans from 53 pediatric patients (mean age 13.3 years, 37 girls) with differentiated thyroid carcinoma. Focal or regional activity that likely did not represent functioning thyroid tissue or functioning thyroid carcinomatous tissue were categorized as variants or pitfalls. The final diagnosis was confirmed by reviewing the concurrent and follow-up clinical data, correlative ultrasonography, CT scanning, serum thyroglobulin and antithyroglobulin antibody levels. We calculated the frequency of these variants and pitfalls from diagnostic and post-therapy radioiodine scans. The most common variant on the radioiodine scans was the thymic activity (24/223, 10.8%) followed by the cardiac activity (8/223, 3.6%). Salivary contamination and star artifact, caused by prominent thyroid remnant, were the most important observed pitfalls. Variants and pitfalls that mimic functioning thyroid tissue or functioning thyroid carcinomatous tissue on radioiodine scan in children with differentiated thyroid carcinoma are not infrequent, but they decrease in frequency on successive radioiodine scans. Potential false-positive findings can be minimized with proper knowledge of the common variants and pitfalls in children and correlation with clinical, laboratory and imaging data.
Gemenetzi, M; Lotery, A J
2013-11-01
To investigate phenotypic variability in terms of best-corrected visual acuity (BCVA) in patients with Stargardt disease (STGD) and confirmed ABCA4 mutations. Entire coding region analysis of the ABCA4 gene by direct sequencing of seven patients with clinical findings of STGD seen in the Retina Clinics of Southampton Eye Unit between 2002 and 2011.Phenotypic variables recorded were BCVA, fluorescein angiographic appearance, electrophysiology, and visual fields. All patients had heterozygous amino acid-changing variants (missense mutations) in the ABCA4 gene. A splice sequence change was found in a 30-year-old patient with severly affected vision. Two novel sequence changes were identified: a missense mutation in a mildly affected 44-year-old patient and a frameshift mutation in a severly affected 34-year-old patient. The identified ABCA4 mutations were compatible with the resulting phenotypes in terms of BCVA. Higher BCVAs were recorded in patients with missense mutations. Sequence changes, predicted to have more deleterious effect on protein function, resulted in a more severe phenotype. This case series of STGD patients demonstrates novel genotype/phenotype correlations, which may be useful to counselling of patients. This information may prove useful in selection of candidates for clinical trials in ABCA4 disease.
Gala, Manish; Abecasis, Goncalo; Bezieau, Stephane; Brenner, Hermann; Butterbach, Katja; Caan, Bette J.; Carlson, Christopher S.; Casey, Graham; Chang-Claude, Jenny; Conti, David V.; Curtis, Keith R.; Duggan, David; Gallinger, Steven; Haile, Robert W.; Harrison, Tabitha A.; Hayes, Richard B.; Hoffmeister, Michael; Hopper, John L.; Hudson, Thomas J.; Jenkins, Mark A.; Küry, Sébastien; Le Marchand, Loic; Leal, Suzanne M.; Newcomb, Polly A.; Nickerson, Deborah A.; Potter, John D.; Schoen, Robert E.; Schumacher, Fredrick R.; Seminara, Daniela; Slattery, Martha L.; Hsu, Li; Chan, Andrew T.; White, Emily; Berndt, Sonja I.; Peters, Ulrike
2016-01-01
Genome-wide association studies (GWAS) have identified many common single nucleotide polymorphisms (SNPs) associated with colorectal cancer risk. These SNPs may tag correlated variants with biological importance. Fine-mapping around GWAS loci can facilitate detection of functional candidates and additional independent risk variants. We analyzed 11,900 cases and 14,311 controls in the Genetics and Epidemiology of Colorectal Cancer Consortium and the Colon Cancer Family Registry. To fine-map genomic regions containing all known common risk variants, we imputed high-density genetic data from the 1000 Genomes Project. We tested single-variant associations with colorectal tumor risk for all variants spanning genomic regions 250-kb upstream or downstream of 31 GWAS-identified SNPs (index SNPs). We queried the University of California, Santa Cruz Genome Browser to examine evidence for biological function. Index SNPs did not show the strongest association signals with colorectal tumor risk in their respective genomic regions. Bioinformatics analysis of SNPs showing smaller P-values in each region revealed 21 functional candidates in 12 loci (5q31.1, 8q24, 11q13.4, 11q23, 12p13.32, 12q24.21, 14q22.2, 15q13, 18q21, 19q13.1, 20p12.3, and 20q13.33). We did not observe evidence of additional independent association signals in GWAS-identified regions. Our results support the utility of integrating data from comprehensive fine-mapping with expanding publicly available genomic databases to help clarify GWAS associations and identify functional candidates that warrant more onerous laboratory follow-up. Such efforts may aid the eventual discovery of disease-causing variant(s). PMID:27379672
Singh, Naorem Santa; Kachhap, Sangita; Singh, Richa; Mishra, Rahul Chandra; Singh, Balvinder; Raychaudhuri, Saumya
2014-12-01
HapR is a quorum-sensing master regulatory protein in Vibrio cholerae. Though many facts are known regarding its structural and functional aspects, much still can be learnt from natural variants of this wild-type protein. While unraveling the underlying cause of functional inertness of a natural variant (HapRV2), the significance of a conserved glycine residue at position 39 in a glycine-rich linker in DNA-binding domain comes into light. This work aims at investigating how the length of glycine-rich linker (R(33)GIGRGG(39)) bridging helices α1 and α2 modulates the functionality of HapR. In pursuit of our interest, glycine residues were inserted after terminal glycine (G39) of the linker in a sequential manner. To evaluate functionality, all the glycine linker variants were subjected to a battery of performance tests under various conditions. Combined in vitro and in vivo results clearly demonstrated a gradual functional impairment of HapR linker variants coupled with increasing length of glycine-rich linker and finally, linker variant harboring four glycine residues resulted in a functionally compromised protein with significant loss of communication with cognate DNAs. Molecular dynamics studies of modeled HapR linker variants in complex with cognate promoter region show that residues namely Ser50, Thr53 and Asn56 are involved in varying degree of interactions with different nucleotides of HapR-DNA complex. The diminished functionality between variants and DNA appears to result from reduced or no interactions between Phe55 and nucleotides of cognate DNA as observed during simulations.
McGonigal, Rhona; Cunningham, Madeleine E; Yao, Denggao; Barrie, Jennifer A; Sankaranarayanan, Sethu; Fewou, Simon N; Furukawa, Koichi; Yednock, Ted A; Willison, Hugh J
2016-03-02
Guillain-Barré syndrome (GBS) is an autoimmune disease that results in acute paralysis through inflammatory attack on peripheral nerves, and currently has limited, non-specific treatment options. The pathogenesis of the acute motor axonal neuropathy (AMAN) variant is mediated by complement-fixing anti-ganglioside antibodies that directly bind and injure the axon at sites of vulnerability such as nodes of Ranvier and nerve terminals. Consequently, the complement cascade is an attractive target to reduce disease severity. Recently, C5 complement component inhibitors that block the formation of the membrane attack complex and subsequent downstream injury have been shown to be efficacious in an in vivo anti-GQ1b antibody-mediated mouse model of the GBS variant Miller Fisher syndrome (MFS). However, since gangliosides are widely expressed in neurons and glial cells, injury in this model was not targeted exclusively to the axon and there are currently no pure mouse models for AMAN. Additionally, C5 inhibition does not prevent the production of early complement fragments such as C3a and C3b that can be deleterious via their known role in immune cell and macrophage recruitment to sites of neuronal damage. In this study, we first developed a new in vivo transgenic mouse model of AMAN using mice that express complex gangliosides exclusively in neurons, thereby enabling specific targeting of axons with anti-ganglioside antibodies. Secondly, we have evaluated the efficacy of a novel anti-C1q antibody (M1) that blocks initiation of the classical complement cascade, in both the newly developed anti-GM1 antibody-mediated AMAN model and our established MFS model in vivo. Anti-C1q monoclonal antibody treatment attenuated complement cascade activation and deposition, reduced immune cell recruitment and axonal injury, in both mouse models of GBS, along with improvement in respiratory function. These results demonstrate that neutralising C1q function attenuates injury with a consequent neuroprotective effect in acute GBS models and promises to be a useful new target for human therapy.
Fieten, Hille; Gill, Yadvinder; Martin, Alan J.; Concilli, Mafalda; Dirksen, Karen; van Steenbeek, Frank G.; Spee, Bart; van den Ingh, Ted S. G. A. M.; Martens, Ellen C. C. P.; Festa, Paola; Chesi, Giancarlo; van de Sluis, Bart; Houwen, Roderick H. J. H.; Watson, Adrian L.; Aulchenko, Yurii S.; Hodgkinson, Victoria L.; Zhu, Sha; Petris, Michael J.; Polishchuk, Roman S.; Leegwater, Peter A. J.; Rothuizen, Jan
2016-01-01
ABSTRACT The deleterious effects of a disrupted copper metabolism are illustrated by hereditary diseases caused by mutations in the genes coding for the copper transporters ATP7A and ATP7B. Menkes disease, involving ATP7A, is a fatal neurodegenerative disorder of copper deficiency. Mutations in ATP7B lead to Wilson disease, which is characterized by a predominantly hepatic copper accumulation. The low incidence and the phenotypic variability of human copper toxicosis hamper identification of causal genes or modifier genes involved in the disease pathogenesis. The Labrador retriever was recently characterized as a new canine model for copper toxicosis. Purebred dogs have reduced genetic variability, which facilitates identification of genes involved in complex heritable traits that might influence phenotype in both humans and dogs. We performed a genome-wide association study in 235 Labrador retrievers and identified two chromosome regions containing ATP7A and ATP7B that were associated with variation in hepatic copper levels. DNA sequence analysis identified missense mutations in each gene. The amino acid substitution ATP7B:p.Arg1453Gln was associated with copper accumulation, whereas the amino acid substitution ATP7A:p.Thr327Ile partly protected against copper accumulation. Confocal microscopy indicated that aberrant copper metabolism upon expression of the ATP7B variant occurred because of mis-localization of the protein in the endoplasmic reticulum. Dermal fibroblasts derived from ATP7A:p.Thr327Ile dogs showed copper accumulation and delayed excretion. We identified the Labrador retriever as the first natural, non-rodent model for ATP7B-associated copper toxicosis. Attenuation of copper accumulation by the ATP7A mutation sheds an interesting light on the interplay of copper transporters in body copper homeostasis and warrants a thorough investigation of ATP7A as a modifier gene in copper-metabolism disorders. The identification of two new functional variants in ATP7A and ATP7B contributes to the biological understanding of protein function, with relevance for future development of therapy. PMID:26747866
Cappola, Thomas P; Matkovich, Scot J; Wang, Wei; van Booven, Derek; Li, Mingyao; Wang, Xuexia; Qu, Liming; Sweitzer, Nancy K; Fang, James C; Reilly, Muredach P; Hakonarson, Hakon; Nerbonne, Jeanne M; Dorn, Gerald W
2011-02-08
Common heart failure has a strong undefined heritable component. Two recent independent cardiovascular SNP array studies identified a common SNP at 1p36 in intron 2 of the HSPB7 gene as being associated with heart failure. HSPB7 resequencing identified other risk alleles but no functional gene variants. Here, we further show no effect of the HSPB7 SNP on cardiac HSPB7 mRNA levels or splicing, suggesting that the SNP marks the position of a functional variant in another gene. Accordingly, we used massively parallel platforms to resequence all coding exons of the adjacent CLCNKA gene, which encodes the K(a) renal chloride channel (ClC-K(a)). Of 51 exonic CLCNKA variants identified, one SNP (rs10927887, encoding Arg83Gly) was common, in linkage disequilibrium with the heart failure risk SNP in HSPB7, and associated with heart failure in two independent Caucasian referral populations (n = 2,606 and 1,168; combined P = 2.25 × 10(-6)). Individual genotyping of rs10927887 in the two study populations and a third independent heart failure cohort (combined n = 5,489) revealed an additive allele effect on heart failure risk that is independent of age, sex, and prior hypertension (odds ratio = 1.27 per allele copy; P = 8.3 × 10(-7)). Functional characterization of recombinant wild-type Arg83 and variant Gly83 ClC-K(a) chloride channel currents revealed ≈ 50% loss-of-function of the variant channel. These findings identify a common, functionally significant genetic risk factor for Caucasian heart failure. The variant CLCNKA risk allele, telegraphed by linked variants in the adjacent HSPB7 gene, uncovers a previously overlooked genetic mechanism affecting the cardio-renal axis.
Experimental evidence supports a sex-specific selective sieve in mitochondrial genome evolution.
Innocenti, Paolo; Morrow, Edward H; Dowling, Damian K
2011-05-13
Mitochondria are maternally transmitted; hence, their genome can only make a direct and adaptive response to selection through females, whereas males represent an evolutionary dead end. In theory, this creates a sex-specific selective sieve, enabling deleterious mutations to accumulate in mitochondrial genomes if they exert male-specific effects. We tested this hypothesis, expressing five mitochondrial variants alongside a standard nuclear genome in Drosophila melanogaster, and found striking sexual asymmetry in patterns of nuclear gene expression. Mitochondrial polymorphism had few effects on nuclear gene expression in females but major effects in males, modifying nearly 10% of transcripts. These were mostly male-biased in expression, with enrichment hotspots in the testes and accessory glands. Our results suggest an evolutionary mechanism that results in mitochondrial genomes harboring male-specific mutation loads.
Najmi, Laeya Abdoli; Aukrust, Ingvild; Flannick, Jason; Molnes, Janne; Burtt, Noel; Molven, Anders; Groop, Leif; Altshuler, David; Johansson, Stefan; Njølstad, Pål Rasmus
2017-01-01
Variants in HNF1A encoding hepatocyte nuclear factor 1α (HNF-1A) are associated with maturity-onset diabetes of the young form 3 (MODY 3) and type 2 diabetes. We investigated whether functional classification of HNF1A rare coding variants can inform models of diabetes risk prediction in the general population by analyzing the effect of 27 HNF1A variants identified in well-phenotyped populations (n = 4,115). Bioinformatics tools classified 11 variants as likely pathogenic and showed no association with diabetes risk (combined minor allele frequency [MAF] 0.22%; odds ratio [OR] 2.02; 95% CI 0.73–5.60; P = 0.18). However, a different set of 11 variants that reduced HNF-1A transcriptional activity to <60% of normal (wild-type) activity was strongly associated with diabetes in the general population (combined MAF 0.22%; OR 5.04; 95% CI 1.99–12.80; P = 0.0007). Our functional investigations indicate that 0.44% of the population carry HNF1A variants that result in a substantially increased risk for developing diabetes. These results suggest that functional characterization of variants within MODY genes may overcome the limitations of bioinformatics tools for the purposes of presymptomatic diabetes risk prediction in the general population. PMID:27899486
Lee, Yuh Chwen G.
2015-01-01
The piwi-interacting RNAs (piRNA) are small RNAs that target selfish transposable elements (TEs) in many animal genomes. Until now, piRNAs’ role in TE population dynamics has only been discussed in the context of their suppression of TE transposition, which alone is not sufficient to account for the skewed frequency spectrum and stable containment of TEs. On the other hand, euchromatic TEs can be epigenetically silenced via piRNA-dependent heterochromatin formation and, similar to the widely known “Position-effect variegation”, heterochromatin induced by TEs can “spread” into nearby genes. We hypothesized that the piRNA-mediated spread of heterochromatin from TEs into adjacent genes has deleterious functional effects and leads to selection against individual TEs. Unlike previously identified deleterious effects of TEs due to the physical disruption of DNA, the functional effect we investigated here is mediated through the epigenetic influences of TEs. We found that the repressive chromatin mark, H3K9me, is elevated in sequences adjacent to euchromatic TEs at multiple developmental stages in Drosophila melanogaster. Furthermore, the heterochromatic states of genes depend not only on the number of and distance from adjacent TEs, but also on the likelihood that their nearest TEs are targeted by piRNAs. These variations in chromatin status probably have functional consequences, causing genes near TEs to have lower expression. Importantly, we found stronger selection against TEs that lead to higher H3K9me enrichment of adjacent genes, demonstrating the pervasive evolutionary consequences of TE-induced epigenetic silencing. Because of the intrinsic biological mechanism of piRNA amplification, spread of TE heterochromatin could result in the theoretically required synergistic deleterious effects of TE insertions for stable containment of TE copy number. The indirect deleterious impact of piRNA-mediated epigenetic silencing of TEs is a previously unexplored, yet important, element for the evolutionary dynamics of TEs. PMID:26042931
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xi, T; Jones, I M; Mohrenweiser, H W
2003-11-03
Over 520 different amino acid substitution variants have been previously identified in the systematic screening of 91 human DNA repair genes for sequence variation. Two algorithms were employed to predict the impact of these amino acid substitutions on protein activity. Sorting Intolerant From Tolerant (SIFT) classified 226 of 508 variants (44%) as ''Intolerant''. Polymorphism Phenotyping (PolyPhen) classed 165 of 489 amino acid substitutions (34%) as ''Probably or Possibly Damaging''. Another 9-15% of the variants were classed as ''Potentially Intolerant or Damaging''. The results from the two algorithms are highly associated, with concordance in predicted impact observed for {approx}62% of themore » variants. Twenty one to thirty one percent of the variant proteins are predicted to exhibit reduced activity by both algorithms. These variants occur at slightly lower individual allele frequency than do the variants classified as ''Tolerant'' or ''Benign''. Both algorithms correctly predicted the impact of 26 functionally characterized amino acid substitutions in the APE1 protein on biochemical activity, with one exception. It is concluded that a substantial fraction of the missense variants observed in the general human population are functionally relevant. These variants are expected to be the molecular genetic and biochemical basis for the associations of reduced DNA repair capacity phenotypes with elevated cancer risk.« less
Distress among women receiving uninformative BRCA1/2 results: 12-month outcomes.
O'Neill, Suzanne C; Rini, Christine; Goldsmith, Rachel E; Valdimarsdottir, Heiddis; Cohen, Lawrence H; Schwartz, Marc D
2009-10-01
Few data are available regarding the long-term psychological impact of uninformative BRCA1/2 test results. This study examines change in distress from pretesting to 12-months post-disclosure, with medical, family history, and psychological variables, such as pretesting perceived risk of carrying a deleterious mutation prior to testing and primary and secondary appraisals, as predictors. Two hundred and nine women with uninformative BRCA1/2 test results completed questionnaires at pretesting and 1-, 6-, and 12-month post-disclosure, including measures of anxiety and depression, cancer-specific and genetic testing distress. We used a mixed models approach to predict change in post-disclosure distress. Distress declined from pretesting to 1-month post-disclosure, but remained stable thereafter. Primary appraisals predicted all types of distress at 1-month post-disclosure. Primary and secondary appraisals predicted genetic testing distress at 1-month as well as change over time. Receiving a variant of uncertain clinical significance and entering testing with a high expectation for carrying a deleterious mutation predicted genetic testing distress that persisted through the year after testing. As a whole, women receiving uninformative BRCA1/2 test results are a resilient group. For some women, distress experienced in the month after testing does not dissipate. Variables, such as heightened pretesting perceived risk and cognitive appraisals, predict greater likelihood for sustained distress in this group and could be amenable to intervention.
Next-generation sequencing in familial breast cancer patients from Lebanon.
Jalkh, Nadine; Chouery, Eliane; Haidar, Zahraa; Khater, Christina; Atallah, David; Ali, Hamad; Marafie, Makia J; Al-Mulla, Mohamed R; Al-Mulla, Fahd; Megarbane, Andre
2017-02-15
Familial breast cancer (BC) represents 5 to 10% of all BC cases. Mutations in two high susceptibility BRCA1 and BRCA2 genes explain 16-40% of familial BC, while other high, moderate and low susceptibility genes explain up to 20% more of BC families. The Lebanese reported prevalence of BRCA1 and BRCA2 deleterious mutations (5.6% and 12.5%) were lower than those reported in the literature. In the presented study, 45 Lebanese patients with a reported family history of BC were tested using Whole Exome Sequencing (WES) technique followed by Sanger sequencing validation. Nineteen pathogenic mutations were identified in this study. These 19 mutations were found in 13 different genes such as: ABCC12, APC, ATM, BRCA1, BRCA2, CDH1, ERCC6, MSH2, POLH, PRF1, SLX4, STK11 and TP53. In this first application of WES on BC in Lebanon, we detected six BRCA1 and BRCA2 deleterious mutations in seven patients, with a total prevalence of 15.5%, a figure that is lower than those reported in the Western literature. The p.C44F mutation in the BRCA1 gene appeared twice in this study, suggesting a founder effect. Importantly, the overall mutation prevalence was equal to 40%, justifying the urgent need to deploy WES for the identification of genetic variants responsible for familial BC in the Lebanese population.
Zubedat, Salman; Aga-Mizrachi, Shlomit; Cymerblit-Sabba, Adi; Ritter, Ami; Nachmani, Maayan; Avital, Avi
2015-01-01
Either pre- or post-natal environmental factors seem to play a key role in brain and behavioral development and to exert long-term effects. Increasing evidence suggests that exposure to prenatal stress (PS) leads to motor and learning deficits and elevated anxiety, while enriched environment (EE) shows protective effects. The dopaminergic system is also sensitive to environmental life circumstances and affects attention functioning, which serves as the preliminary gate to cognitive processes. However, the effects of methylphenidate (MPH) on the dopaminergic system and attentional functioning, in the context of these life experiences, remain unclear. Therefore, we aimed to examine the effects of EE or PS on distinct types of attention, along with possible effects of MPH exposure. We found that PS impaired selective attention as well as partial sustained attention, while EE had beneficial effects. Both EE and MPH ameliorated the deleterious effects of PS on attention functioning. Considering the possible psychostimulant effect of MPH, we examined both anxiety-like behavior as well as motor learning. We found that PS had a clear anxiogenic effect, whereas EE had an anxiolytic effect. Nevertheless, the treatment with both MPH and/or EE recovered the deleterious effects of PS. In the motor-learning task, the PS group showed superior performance while MPH led to impaired motor learning. Performance decrements were prevented in both the PS + MPH and EE + MPH groups. This study provides evidence that peripubertal exposure to EE (by providing enhanced sensory, motor, and social opportunities) or MPH treatments might be an optional therapeutic intervention in preventing the PS long-term adverse consequences.
Whole-genome sequence-based analysis of thyroid function.
Taylor, Peter N; Porcu, Eleonora; Chew, Shelby; Campbell, Purdey J; Traglia, Michela; Brown, Suzanne J; Mullin, Benjamin H; Shihab, Hashem A; Min, Josine; Walter, Klaudia; Memari, Yasin; Huang, Jie; Barnes, Michael R; Beilby, John P; Charoen, Pimphen; Danecek, Petr; Dudbridge, Frank; Forgetta, Vincenzo; Greenwood, Celia; Grundberg, Elin; Johnson, Andrew D; Hui, Jennie; Lim, Ee M; McCarthy, Shane; Muddyman, Dawn; Panicker, Vijay; Perry, John R B; Bell, Jordana T; Yuan, Wei; Relton, Caroline; Gaunt, Tom; Schlessinger, David; Abecasis, Goncalo; Cucca, Francesco; Surdulescu, Gabriela L; Woltersdorf, Wolfram; Zeggini, Eleftheria; Zheng, Hou-Feng; Toniolo, Daniela; Dayan, Colin M; Naitza, Silvia; Walsh, John P; Spector, Tim; Davey Smith, George; Durbin, Richard; Richards, J Brent; Sanna, Serena; Soranzo, Nicole; Timpson, Nicholas J; Wilson, Scott G
2015-03-06
Normal thyroid function is essential for health, but its genetic architecture remains poorly understood. Here, for the heritable thyroid traits thyrotropin (TSH) and free thyroxine (FT4), we analyse whole-genome sequence data from the UK10K project (N=2,287). Using additional whole-genome sequence and deeply imputed data sets, we report meta-analysis results for common variants (MAF≥1%) associated with TSH and FT4 (N=16,335). For TSH, we identify a novel variant in SYN2 (MAF=23.5%, P=6.15 × 10(-9)) and a new independent variant in PDE8B (MAF=10.4%, P=5.94 × 10(-14)). For FT4, we report a low-frequency variant near B4GALT6/SLC25A52 (MAF=3.2%, P=1.27 × 10(-9)) tagging a rare TTR variant (MAF=0.4%, P=2.14 × 10(-11)). All common variants explain ≥20% of the variance in TSH and FT4. Analysis of rare variants (MAF<1%) using sequence kernel association testing reveals a novel association with FT4 in NRG1. Our results demonstrate that increased coverage in whole-genome sequence association studies identifies novel variants associated with thyroid function.
Hurba, Olha; Mancikova, Andrea; Krylov, Vladimir; Pavlikova, Marketa; Pavelka, Karel; Stibůrková, Blanka
2014-01-01
Using European descent Czech populations, we performed a study of SLC2A9 and SLC22A12 genes previously identified as being associated with serum uric acid concentrations and gout. This is the first study of the impact of non-synonymous allelic variants on the function of GLUT9 except for patients suffering from renal hypouricemia type 2. The cohort consisted of 250 individuals (150 controls, 54 nonspecific hyperuricemics and 46 primary gout and/or hyperuricemia subjects). We analyzed 13 exons of SLC2A9 (GLUT9 variant 1 and GLUT9 variant 2) and 10 exons of SLC22A12 by PCR amplification and sequenced directly. Allelic variants were prepared and their urate uptake and subcellular localization were studied by Xenopus oocytes expression system. The functional studies were analyzed using the non-parametric Wilcoxon and Kruskall-Wallis tests; the association study used the Fisher exact test and linear regression approach. We identified a total of 52 sequence variants (12 unpublished). Eight non-synonymous allelic variants were found only in SLC2A9: rs6820230, rs2276961, rs144196049, rs112404957, rs73225891, rs16890979, rs3733591 and rs2280205. None of these variants showed any significant difference in the expression of GLUT9 and in urate transport. In the association study, eight variants showed a possible association with hyperuricemia. However, seven of these were in introns and the one exon located variant, rs7932775, did not show a statistically significant association with serum uric acid concentration. Our results did not confirm any effect of SLC22A12 and SLC2A9 variants on serum uric acid concentration. Our complex approach using association analysis together with functional and immunohistochemical characterization of non-synonymous allelic variants did not show any influence on expression, subcellular localization and urate uptake of GLUT9.
An extended set of yeast-based functional assays accurately identifies human disease mutations
Sun, Song; Yang, Fan; Tan, Guihong; Costanzo, Michael; Oughtred, Rose; Hirschman, Jodi; Theesfeld, Chandra L.; Bansal, Pritpal; Sahni, Nidhi; Yi, Song; Yu, Analyn; Tyagi, Tanya; Tie, Cathy; Hill, David E.; Vidal, Marc; Andrews, Brenda J.; Boone, Charles; Dolinski, Kara; Roth, Frederick P.
2016-01-01
We can now routinely identify coding variants within individual human genomes. A pressing challenge is to determine which variants disrupt the function of disease-associated genes. Both experimental and computational methods exist to predict pathogenicity of human genetic variation. However, a systematic performance comparison between them has been lacking. Therefore, we developed and exploited a panel of 26 yeast-based functional complementation assays to measure the impact of 179 variants (101 disease- and 78 non-disease-associated variants) from 22 human disease genes. Using the resulting reference standard, we show that experimental functional assays in a 1-billion-year diverged model organism can identify pathogenic alleles with significantly higher precision and specificity than current computational methods. PMID:26975778
Marques, Patrícia Isabel; Fonseca, Filipa; Carvalho, Ana Sofia; Puente, Diana A; Damião, Isabel; Almeida, Vasco; Barros, Nuno; Barros, Alberto; Carvalho, Filipa; Azkargorta, Mikel; Elortza, Felix; Osório, Hugo; Matthiesen, Rune; Quesada, Victor; Seixas, Susana
2016-12-01
Are kallikreins (KLKs), the whey-acidic-protein four-disulfide core domain (WFDCs) and their neighbors, semenogelins (SEMGs), known to play a role in the cascade of semen coagulation and liquefaction, associated with male infertility? Several KLK and SEMG variants are overrepresented among hyperviscosity, asthenozoospermia and oligozoospermia, supporting an effect of abnormal semen liquefaction on the loss of semen quality and in lowering male reproductive fitness. In the cascade of semen coagulation and liquefaction the spermatozoa coated by EPPIN (a protease inhibitor of the WFDC family) are entrapped in a cross-linked matrix established by SEMGs. After ejaculation, the SEMG matrix is hydrolyzed by KLK3/2 in a fine-tuned process regulated by other KLKs that allows the spermatozoa to increase motility. This study includes a cohort of 238 infertility-related cases and 91 controls with normal spermiogram analysis. The remaining 126 controls are healthy males with unknown semen parameters. Sample collection was carried out from June 2011 to January 2015 and variant screening from May 2013 to August 2015. We performed a screening by massive parallel sequencing in a pooled sample (N = 222) covering approximately 93 kb of KLK (19q13.3-13.4) and WFDC (20q13) clusters, followed by the genotyping of most promising variants in the full cohort. Overall, 160 common and 296 low-frequency variants passed the quality control filtering. Statistical tests disclosed an association with hyperviscosity of a KLK7 regulatory variant (P = 0.0035), and unveiled a higher burden of deleterious mutations in KLKs than expected by chance (P = 0.0106). KLK variants found to be overrepresented in cases included two substitutions likely affecting the substrate binding pocket, two nonsynonymous variants overlapping in the three-dimensional structure and two mutations mapping in consecutive N-terminal residues. Other variants identified in SEMGs possibly contributing to hyperviscosity and asthenozoospermia consisted of three replacements predicted to modify targets of proteolysis (P = 0.0442 for SEMG1 p.Gly400Asp) and a copy number variation associated with a reduced risk of oligozoospermia (P = 0.0293). Not applicable. The sampling of a few hundred individuals has limited power to detected associations with low-frequency variants and only a small set of variants was prioritized for genotyping. Other susceptibility variants for male infertility may remain unidentified. We provide important evidence for an effect of KLKs and SEMGs variability on semen quality and for modifications in the process of semen liquefaction as a possible cause for male infertility. This work was funded through the Portuguese Foundation for Science and Technology (FCT) and FEDER through COMPETE and QREN. The authors have no conflict of interest to declare. © The Author 2016. Published by Oxford University Press on behalf of the European Society of HumanReproduction and Embryology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Diverse Functional Properties of Wilson Disease ATP7B Variants
Huster, Dominik; Kühne, Angelika; Bhattacharjee, Ashima; Raines, Lily; Jantsch, Vanessa; Noe, Johannes; Schirrmeister, Wiebke; Sommerer, Ines; Sabri, Osama; Berr, Frieder; Mössner, Joachim; Stieger, Bruno; Caca, Karel; Lutsenko, Svetlana
2012-01-01
BACKGROUND & AIMS Wilson disease is a severe disorder of copper metabolism caused by mutations in ATP7B, which encodes a copper-transporting adenosine triphosphatase. The disease presents with a variable phenotype that complicates the diagnostic process and treatment. Little is known about the mechanisms that contribute to the different phenotypes of the disease. METHODS We analyzed 28 variants of ATP7B from patients with Wilson disease that affected different functional domains; the gene products were expressed using the baculovirus expression system in Sf9 cells. Protein function was analyzed by measuring catalytic activity and copper (64Cu) transport into vesicles. We studied intracellular localization of variants of ATP7B that had measurable transport activities and were tagged with green fluorescent protein in mammalian cells using confocal laser scanning microscopy. RESULTS Properties of ATP7B variants with pathogenic amino-acid substitution varied greatly even if substitutions were in the same functional domain. Some variants had complete loss of catalytic and transport activity, whereas others lost transport activity but retained phosphor-intermediate formation or had partial losses of activity. In mammalian cells, transport-competent variants differed in stability and subcellular localization. CONCLUSIONS Variants in ATP7B associated with Wilson disease disrupt the protein’s transport activity, result in its mislocalization, and reduce its stability. Single assays are insufficient to accurately predict the effects of ATP7B variants the function of its product and development of Wilson disease. These findings will contribute to our understanding of genotype–phenotype correlation and mechanisms of disease pathogenesis. PMID:22240481
Platelet function is modified by common sequence variation in megakaryocyte super enhancers
Petersen, Romina; Lambourne, John J.; Javierre, Biola M.; Grassi, Luigi; Kreuzhuber, Roman; Ruklisa, Dace; Rosa, Isabel M.; Tomé, Ana R.; Elding, Heather; van Geffen, Johanna P.; Jiang, Tao; Farrow, Samantha; Cairns, Jonathan; Al-Subaie, Abeer M.; Ashford, Sofie; Attwood, Antony; Batista, Joana; Bouman, Heleen; Burden, Frances; Choudry, Fizzah A.; Clarke, Laura; Flicek, Paul; Garner, Stephen F.; Haimel, Matthias; Kempster, Carly; Ladopoulos, Vasileios; Lenaerts, An-Sofie; Materek, Paulina M.; McKinney, Harriet; Meacham, Stuart; Mead, Daniel; Nagy, Magdolna; Penkett, Christopher J.; Rendon, Augusto; Seyres, Denis; Sun, Benjamin; Tuna, Salih; van der Weide, Marie-Elise; Wingett, Steven W.; Martens, Joost H.; Stegle, Oliver; Richardson, Sylvia; Vallier, Ludovic; Roberts, David J.; Freson, Kathleen; Wernisch, Lorenz; Stunnenberg, Hendrik G.; Danesh, John; Fraser, Peter; Soranzo, Nicole; Butterworth, Adam S.; Heemskerk, Johan W.; Turro, Ernest; Spivakov, Mikhail; Ouwehand, Willem H.; Astle, William J.; Downes, Kate; Kostadima, Myrto; Frontini, Mattia
2017-01-01
Linking non-coding genetic variants associated with the risk of diseases or disease-relevant traits to target genes is a crucial step to realize GWAS potential in the introduction of precision medicine. Here we set out to determine the mechanisms underpinning variant association with platelet quantitative traits using cell type-matched epigenomic data and promoter long-range interactions. We identify potential regulatory functions for 423 of 565 (75%) non-coding variants associated with platelet traits and we demonstrate, through ex vivo and proof of principle genome editing validation, that variants in super enhancers play an important role in controlling archetypical platelet functions. PMID:28703137
DesRoches, Caro-Lyne; Patel, Jaina; Wang, Peixiang; Minassian, Berge; Salomons, Gajja S; Marshall, Christian R; Mercimek-Mahmutoglu, Saadet
2015-07-10
Creatine transporter deficiency (CRTR-D) is an X-linked inherited disorder of creatine transport. All males and about 50% of females have intellectual disability or cognitive dysfunction. Creatine deficiency on brain proton magnetic resonance spectroscopy and elevated urinary creatine to creatinine ratio are important biomarkers. Mutations in the SLC6A8 gene occur de novo in 30% of males. Despite reports of high prevalence of CRTR-D in males with intellectual disability, there are no true prevalence studies in the general population. To determine carrier frequency of CRTR-D in the general population we studied the variants in the SLC6A8 gene reported in the Exome Variant Server database and performed functional characterization of missense variants. We also analyzed synonymous and intronic variants for their predicted pathogenicity using in silico analysis tools. Nine missense variants were functionally analyzed using transient transfection by site-directed mutagenesis with In-Fusion HD Cloning in HeLa cells. Creatine uptake was measured by liquid chromatography tandem mass spectrometry for creatine measurement. The c.1654G>T (p.Val552Leu) variant showed low residual creatine uptake activity of 35% of wild type transfected HeLa cells and was classified as pathogenic. Three variants (c.808G>A; p.Val270Met, c.942C>G; p.Phe314Leu and c.952G>A; p.Ala318Thr) were predicted to be pathogenic based on in silico analysis, but proved to be non-pathogenic by our functional analysis. The estimated carrier frequency of CRTR-D was 0.024% in females in the general population. We recommend functional studies for all novel missense variants by transient transfection followed by creatine uptake measurement by liquid chromatography tandem mass spectrometry as fast and cost effective method for the functional analysis of missense variants in the SLC6A8 gene. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
Cole, Shelley A; Voruganti, V Saroja; Cai, Guowen; Haack, Karin; Kent, Jack W; Blangero, John; Comuzzie, Anthony G; McPherson, John D; Gibbs, Richard A
2010-01-01
Background: Melanocortin-4-receptor (MC4R) haploinsufficiency is the most common form of monogenic obesity; however, the frequency of MC4R variants and their functional effects in general populations remain uncertain. Objective: The aim was to identify and characterize the effects of MC4R variants in Hispanic children. Design: MC4R was resequenced in 376 parents, and the identified single nucleotide polymorphisms (SNPs) were genotyped in 613 parents and 1016 children from the Viva la Familia cohort. Measured genotype analysis (MGA) tested associations between SNPs and phenotypes. Bayesian quantitative trait nucleotide (BQTN) analysis was used to infer the most likely functional polymorphisms influencing obesity-related traits. Results: Seven rare SNPs in coding and 18 SNPs in flanking regions of MC4R were identified. MGA showed suggestive associations between MC4R variants and body size, adiposity, glucose, insulin, leptin, ghrelin, energy expenditure, physical activity, and food intake. BQTN analysis identified SNP 1704 in a predicted micro-RNA target sequence in the downstream flanking region of MC4R as a strong, probable functional variant influencing total, sedentary, and moderate activities with posterior probabilities of 1.0. SNP 2132 was identified as a variant with a high probability (1.0) of exerting a functional effect on total energy expenditure and sleeping metabolic rate. SNP rs34114122 was selected as having likely functional effects on the appetite hormone ghrelin, with a posterior probability of 0.81. Conclusion: This comprehensive investigation provides strong evidence that MC4R genetic variants are likely to play a functional role in the regulation of weight, not only through energy intake but through energy expenditure. PMID:19889825
Rong, Rong; Tao, Ya-Xiong; Cheung, Bernard M Y; Xu, Aimin; Cheung, Grace C N; Lam, Karen S L
2006-08-01
Mutations in the melanocortin-4 receptor gene (MC4R) are the most common monogenic form of human obesity. However, the contribution of MC4R mutations to obesity in Chinese has not been investigated. We studied the frequency of MC4R mutations in an obese southern Chinese population and the functional consequences of the novel variants identified. We screened for MC4R mutations in 227 obese [body mass index (BMI) 35.29 +/- 5.75 kg/m2] and 100 lean (BMI 21.57 +/- 0.29 kg/m2) southern Chinese subjects using PCR-direct sequencing. In vitro functional studies, including cell surface expression, ligand binding, and cyclic adenosine monophosphate (cAMP) accumulation, were performed to examine the functional properties of three novel missense mutations. Apart from two previously reported polymorphisms, V103I and -176 A > C, three novel missense heterozygous variants (Y35C, C40R and M218T) were identified. The polymorphisms -176 A > C and Y35C were detected in both obese and normal subjects with similar frequency. C40R was identified only in an obese subject. Pedigree analysis revealed M218T carriers in both lean and obese subjects. The prevalence of V103I carriers in normal-weight controls was significantly higher than that in obese subjects (5.3%vs. 1.3%, P < 0.05). In vitro functional studies showed that all three novel missense variants have normal functions. Two known polymorphisms and three novel variants of the MC4R were identified. No overt functional defects were observed for the three novel MC4R variants, suggesting that they might not be the cause of obesity in variant carriers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myhre, Marit Renee; Olsen, Gunn-Hege; Gosert, Rainer
High-level replication of polyomavirus BK (BKV) in kidney transplant recipients is associated with the emergence of BKV variants with rearranged (rr) non-coding control region (NCCR) increasing viral early gene expression and cytopathology. Cloning and sequencing revealed the presence of a BKV quasispecies which included non-functional variants when assayed in a recombinant virus assay. Here we report that the rr-NCCR of BKV variants RH-3 and RH-12, both bearing a NCCR deletion including the 5' end of the agnoprotein coding sequence, mediated early and late viral reporter gene expression in kidney cells. However, in a recombinant virus they failed to produce infectiousmore » progeny despite large T-antigen and VP1 expression and the formation of nuclear virus-like particles. Infectious progeny was generated when the agnogene was reconstructed in cis or agnoprotein provided in trans from a co-existing BKV rr-NCCR variant. We conclude that complementation can rescue non-functional BKV variants in vitro and possibly in vivo.« less
A glycogene mutation map for discovery of diseases of glycosylation
Hansen, Lars; Lind-Thomsen, Allan; Joshi, Hiren J; Pedersen, Nis Borbye; Have, Christian Theil; Kong, Yun; Wang, Shengjun; Sparso, Thomas; Grarup, Niels; Vester-Christensen, Malene Bech; Schjoldager, Katrine; Freeze, Hudson H; Hansen, Torben; Pedersen, Oluf; Henrissat, Bernard; Mandel, Ulla; Clausen, Henrik; Wandall, Hans H; Bennett, Eric P
2015-01-01
Glycosylation of proteins and lipids involves over 200 known glycosyltransferases (GTs), and deleterious defects in many of the genes encoding these enzymes cause disorders collectively classified as congenital disorders of glycosylation (CDGs). Most known CDGs are caused by defects in glycogenes that affect glycosylation globally. Many GTs are members of homologous isoenzyme families and deficiencies in individual isoenzymes may not affect glycosylation globally. In line with this, there appears to be an underrepresentation of disease-causing glycogenes among these larger isoenzyme homologous families. However, genome-wide association studies have identified such isoenzyme genes as candidates for different diseases, but validation is not straightforward without biomarkers. Large-scale whole-exome sequencing (WES) provides access to mutations in, for example, GT genes in populations, which can be used to predict and/or analyze functional deleterious mutations. Here, we constructed a draft of a functional mutational map of glycogenes, GlyMAP, from WES of a rather homogenous population of 2000 Danes. We cataloged all missense mutations and used prediction algorithms, manual inspection and in case of carbohydrate-active enzymes family GT27 experimental analysis of mutations to map deleterious mutations. GlyMAP (http://glymap.glycomics.ku.dk) provides a first global view of the genetic stability of the glycogenome and should serve as a tool for discovery of novel CDGs. PMID:25267602
Cirera, S; Clop, A; Jacobsen, M J; Guerin, M; Lesnik, P; Jørgensen, C B; Fredholm, M; Karlskov-Mortensen, P
2018-04-01
Taste receptors (TASRs) and appetite and reward (AR) mechanisms influence eating behaviour, which in turn affects food intake and risk of obesity. In a previous study, we used next generation sequencing to identify potentially functional mutations in TASR and AR genes and found indications for genetic associations between identified variants and growth and fat deposition in a subgroup of animals (n = 38) from the UNIK resource pig population. This population was created for studying obesity and obesity-related diseases. In the present study we validated results from our previous study by investigating genetic associations between 24 selected single nucleotide variants in TASR and AR gene variants and 35 phenotypes describing obesity and metabolism in the entire UNIK population (n = 564). Fifteen variants showed significant association with specific obesity-related phenotypes after Bonferroni correction. Six of the 15 genes, namely SIM1, FOS, TAS2R4, TAS2R9, MCHR2 and LEPR, showed good correlation between known biological function and associated phenotype. We verified a genetic association between potentially functional variants in TASR/AR genes and growth/obesity and conclude that the combination of identification of potentially functional variants by next generation sequencing followed by targeted genotyping and association studies is a powerful and cost-effective approach for increasing the power of genetic association studies. © 2018 Stichting International Foundation for Animal Genetics.
DBATE: database of alternative transcripts expression.
Bianchi, Valerio; Colantoni, Alessio; Calderone, Alberto; Ausiello, Gabriele; Ferrè, Fabrizio; Helmer-Citterich, Manuela
2013-01-01
The use of high-throughput RNA sequencing technology (RNA-seq) allows whole transcriptome analysis, providing an unbiased and unabridged view of alternative transcript expression. Coupling splicing variant-specific expression with its functional inference is still an open and difficult issue for which we created the DataBase of Alternative Transcripts Expression (DBATE), a web-based repository storing expression values and functional annotation of alternative splicing variants. We processed 13 large RNA-seq panels from human healthy tissues and in disease conditions, reporting expression levels and functional annotations gathered and integrated from different sources for each splicing variant, using a variant-specific annotation transfer pipeline. The possibility to perform complex queries by cross-referencing different functional annotations permits the retrieval of desired subsets of splicing variant expression values that can be visualized in several ways, from simple to more informative. DBATE is intended as a novel tool to help appreciate how, and possibly why, the transcriptome expression is shaped. DATABASE URL: http://bioinformatica.uniroma2.it/DBATE/.
Anagnostopoulos, Theodore; Pertesi, Maroulio; Konstantopoulou, Irene; Armaou, Sofia; Kamakari, Smaragda; Nasioulas, George; Athanasiou, Athanassios; Dobrovic, Alex; Young, Mary-Anne; Goldgar, David; Fountzilas, George; Yannoukakos, Drakoulis
2008-07-01
We have performed screening in 287 breast/ovarian cancer families in Greece which has revealed that approximately 12% (8/65) of all index patients-carriers of a deleterious mutation in BRCA1 and BRCA2 genes, contain the base substitution G to A at position 5331 of BRCA1 gene. This generates the amino acid change G1738R for which based on a combination of genetic, in silico and histopathological analysis there are strong suggestions that it is a causative mutation. In this paper, we present further evidence suggesting the pathogenicity of this variant. Forty breast/ovarian cancer patients were reported in 11 Greek families: the above eight living in Greece, two living in Australia and one in USA, all containing G1738R. Twenty of these patients were screened and were all found to be carriers of the same base substitution. In addition, we have detected the same base change in five breast/ovarian cancer patients after screening 475 unselected patient samples with no apparent family history. The mean age of onset for all the above patients was 39.4 and 53.6 years for breast and ovarian cancer cases, respectively. A multi-factorial likelihood model for classification of unclassified variants in BRCA1 and BRCA2 developed previously was applied on G1738R and the odds of it being a deleterious mutation was estimated to be 11470:1. In order to explain the prevalence of this mutation mainly in the Greek population, its genealogical history was examined. DNA samples were collected from 11 carrier families living in Greece, Australia and USA. Screening of eight intragenic SNPs, three intragenic and seven extragenic microsatellite markers and comparison with control individuals, suggested a common origin for the mutation while the time to its most recent common ancestor was estimated to be 11 generations (about 275 years assuming a generational interval of 25 years) with a 1-lod support interval of 4-24 generations (100-600 years). Considering the large degree of genetic heterogeneity in the Greek population, the identification of a frequent founder mutation greatly facilitates genetic screening.
Fortuno, Cristina; James, Paul A; Young, Erin L; Feng, Bing; Olivier, Magali; Pesaran, Tina; Tavtigian, Sean V; Spurdle, Amanda B
2018-05-18
Clinical interpretation of germline missense variants represents a major challenge, including those in the TP53 Li-Fraumeni syndrome gene. Bioinformatic prediction is a key part of variant classification strategies. We aimed to optimize the performance of the Align-GVGD tool used for p53 missense variant prediction, and compare its performance to other bioinformatic tools (SIFT, PolyPhen-2) and ensemble methods (REVEL, BayesDel). Reference sets of assumed pathogenic and assumed benign variants were defined using functional and/or clinical data. Area under the curve and Matthews correlation coefficient (MCC) values were used as objective functions to select an optimized protein multi-sequence alignment with best performance for Align-GVGD. MCC comparison of tools using binary categories showed optimized Align-GVGD (C15 cut-off) combined with BayesDel (0.16 cut-off), or with REVEL (0.5 cut-off), to have the best overall performance. Further, a semi-quantitative approach using multiple tiers of bioinformatic prediction, validated using an independent set of non-functional and functional variants, supported use of Align-GVGD and BayesDel prediction for different strength of evidence levels in ACMG/AMP rules. We provide rationale for bioinformatic tool selection for TP53 variant classification, and have also computed relevant bioinformatic predictions for every possible p53 missense variant to facilitate their use by the scientific and medical community. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Cannon, Maren E.; Duan, Qing; Wu, Ying; Zeynalzadeh, Monica; Xu, Zheng; Kangas, Antti J.; Soininen, Pasi; Ala-Korpela, Mika; Civelek, Mete; Lusis, Aldons J.; Kuusisto, Johanna; Collins, Francis S.; Boehnke, Michael; Tang, Hua; Laakso, Markku; Li, Yun; Mohlke, Karen L.
2017-01-01
Recent genome-wide association studies (GWAS) have identified variants associated with high-density lipoprotein cholesterol (HDL-C) located in or near the ANGPTL8 gene. Given the extensive sharing of GWAS loci across populations, we hypothesized that at least one shared variant at this locus affects HDL-C. The HDL-C–associated variants are coincident with expression quantitative trait loci for ANGPTL8 and DOCK6 in subcutaneous adipose tissue; however, only ANGPTL8 expression levels are associated with HDL-C levels. We identified a 400-bp promoter region of ANGPTL8 and enhancer regions within 5 kb that contribute to regulating expression in liver and adipose. To identify variants functionally responsible for the HDL-C association, we performed fine-mapping analyses and selected 13 candidate variants that overlap putative regulatory regions to test for allelic differences in regulatory function. Of these variants, rs12463177-G increased transcriptional activity (1.5-fold, P = 0.004) and showed differential protein binding. Six additional variants (rs17699089, rs200788077, rs56322906, rs3760782, rs737337, and rs3745683) showed evidence of allelic differences in transcriptional activity and/or protein binding. Taken together, these data suggest a regulatory mechanism at the ANGPTL8 HDL-C GWAS locus involving tissue-selective expression and at least one functional variant. PMID:28754724
Ma, Meng; Ru, Ying; Chuang, Ling-Shiang; Hsu, Nai-Yun; Shi, Li-Song; Hakenberg, Jörg; Cheng, Wei-Yi; Uzilov, Andrew; Ding, Wei; Glicksberg, Benjamin S; Chen, Rong
2015-01-01
The invention of high throughput sequencing technologies has led to the discoveries of hundreds of thousands of genetic variants associated with thousands of human diseases. Many of these genetic variants are located outside the protein coding regions, and as such, it is challenging to interpret the function of these genetic variants by traditional genetic approaches. Recent genome-wide functional genomics studies, such as FANTOM5 and ENCODE have uncovered a large number of regulatory elements across hundreds of different tissues or cell lines in the human genome. These findings provide an opportunity to study the interaction between regulatory elements and disease-associated genetic variants. Identifying these diseased-related regulatory elements will shed light on understanding the mechanisms of how these variants regulate gene expression and ultimately result in disease formation and progression. In this study, we curated and categorized 27,558 Mendelian disease variants, 20,964 complex disease variants, 5,809 cancer predisposing germline variants, and 43,364 recurrent cancer somatic mutations. Compared against nine different types of regulatory regions from FANTOM5 and ENCODE projects, we found that different types of disease variants show distinctive propensity for particular regulatory elements. Mendelian disease variants and recurrent cancer somatic mutations are 22-fold and 10- fold significantly enriched in promoter regions respectively (q<0.001), compared with allele-frequency-matched genomic background. Separate from these two categories, cancer predisposing germline variants are 27-fold enriched in histone modification regions (q<0.001), 10-fold enriched in chromatin physical interaction regions (q<0.001), and 6-fold enriched in transcription promoters (q<0.001). Furthermore, Mendelian disease variants and recurrent cancer somatic mutations share very similar distribution across types of functional effects. We further found that regulatory regions are located within over 50% coding exon regions. Transcription promoters, methylation regions, and transcription insulators have the highest density of disease variants, with 472, 239, and 72 disease variants per one million base pairs, respectively. Disease-associated variants in different disease categories are preferentially located in particular regulatory elements. These results will be useful for an overall understanding about the differences among the pathogenic mechanisms of various disease-associated variants.
2015-01-01
Background The invention of high throughput sequencing technologies has led to the discoveries of hundreds of thousands of genetic variants associated with thousands of human diseases. Many of these genetic variants are located outside the protein coding regions, and as such, it is challenging to interpret the function of these genetic variants by traditional genetic approaches. Recent genome-wide functional genomics studies, such as FANTOM5 and ENCODE have uncovered a large number of regulatory elements across hundreds of different tissues or cell lines in the human genome. These findings provide an opportunity to study the interaction between regulatory elements and disease-associated genetic variants. Identifying these diseased-related regulatory elements will shed light on understanding the mechanisms of how these variants regulate gene expression and ultimately result in disease formation and progression. Results In this study, we curated and categorized 27,558 Mendelian disease variants, 20,964 complex disease variants, 5,809 cancer predisposing germline variants, and 43,364 recurrent cancer somatic mutations. Compared against nine different types of regulatory regions from FANTOM5 and ENCODE projects, we found that different types of disease variants show distinctive propensity for particular regulatory elements. Mendelian disease variants and recurrent cancer somatic mutations are 22-fold and 10- fold significantly enriched in promoter regions respectively (q<0.001), compared with allele-frequency-matched genomic background. Separate from these two categories, cancer predisposing germline variants are 27-fold enriched in histone modification regions (q<0.001), 10-fold enriched in chromatin physical interaction regions (q<0.001), and 6-fold enriched in transcription promoters (q<0.001). Furthermore, Mendelian disease variants and recurrent cancer somatic mutations share very similar distribution across types of functional effects. We further found that regulatory regions are located within over 50% coding exon regions. Transcription promoters, methylation regions, and transcription insulators have the highest density of disease variants, with 472, 239, and 72 disease variants per one million base pairs, respectively. Conclusions Disease-associated variants in different disease categories are preferentially located in particular regulatory elements. These results will be useful for an overall understanding about the differences among the pathogenic mechanisms of various disease-associated variants. PMID:26110593
Population Genomics of Infectious and Integrated Wolbachia pipientis Genomes in Drosophila ananassae
Choi, Jae Young; Bubnell, Jaclyn E.; Aquadro, Charles F.
2015-01-01
Coevolution between Drosophila and its endosymbiont Wolbachia pipientis has many intriguing aspects. For example, Drosophila ananassae hosts two forms of W. pipientis genomes: One being the infectious bacterial genome and the other integrated into the host nuclear genome. Here, we characterize the infectious and integrated genomes of W. pipientis infecting D. ananassae (wAna), by genome sequencing 15 strains of D. ananassae that have either the infectious or integrated wAna genomes. Results indicate evolutionarily stable maternal transmission for the infectious wAna genome suggesting a relatively long-term coevolution with its host. In contrast, the integrated wAna genome showed pseudogene-like characteristics accumulating many variants that are predicted to have deleterious effects if present in an infectious bacterial genome. Phylogenomic analysis of sequence variation together with genotyping by polymerase chain reaction of large structural variations indicated several wAna variants among the eight infectious wAna genomes. In contrast, only a single wAna variant was found among the seven integrated wAna genomes examined in lines from Africa, south Asia, and south Pacific islands suggesting that the integration occurred once from a single infectious wAna genome and then spread geographically. Further analysis revealed that for all D. ananassae we examined with the integrated wAna genomes, the majority of the integrated wAna genomic regions is represented in at least two copies suggesting a double integration or single integration followed by an integrated genome duplication. The possible evolutionary mechanism underlying the widespread geographical presence of the duplicate integration of the wAna genome is an intriguing question remaining to be answered. PMID:26254486
Clinical and molecular characterization of KCNT1-related severe early-onset epilepsy
Nair, Umesh; Malhotra, Sony; Meyer, Esther; Trump, Natalie; Gazina, Elena V.; Papandreou, Apostolos; Ngoh, Adeline; Ackermann, Sally; Ambegaonkar, Gautam; Appleton, Richard; Desurkar, Archana; Eltze, Christin; Kneen, Rachel; Kumar, Ajith V.; Lascelles, Karine; Montgomery, Tara; Ramesh, Venkateswaran; Samanta, Rajib; Scott, Richard H.; Tan, Jeen; Whitehouse, William; Poduri, Annapurna; Scheffer, Ingrid E.; Chong, W.K. “Kling”; Cross, J. Helen; Topf, Maya; Petrou, Steven
2018-01-01
Objective To characterize the phenotypic spectrum, molecular genetic findings, and functional consequences of pathogenic variants in early-onset KCNT1 epilepsy. Methods We identified a cohort of 31 patients with epilepsy of infancy with migrating focal seizures (EIMFS) and screened for variants in KCNT1 using direct Sanger sequencing, a multiple-gene next-generation sequencing panel, and whole-exome sequencing. Additional patients with non-EIMFS early-onset epilepsy in whom we identified KCNT1 variants on local diagnostic multiple gene panel testing were also included. When possible, we performed homology modeling to predict the putative effects of variants on protein structure and function. We undertook electrophysiologic assessment of mutant KCNT1 channels in a xenopus oocyte model system. Results We identified pathogenic variants in KCNT1 in 12 patients, 4 of which are novel. Most variants occurred de novo. Ten patients had a clinical diagnosis of EIMFS, and the other 2 presented with early-onset severe nocturnal frontal lobe seizures. Three patients had a trial of quinidine with good clinical response in 1 patient. Computational modeling analysis implicates abnormal pore function (F346L) and impaired tetramer formation (F502V) as putative disease mechanisms. All evaluated KCNT1 variants resulted in marked gain of function with significantly increased channel amplitude and variable blockade by quinidine. Conclusions Gain-of-function KCNT1 pathogenic variants cause a spectrum of severe focal epilepsies with onset in early infancy. Currently, genotype-phenotype correlations are unclear, although clinical outcome is poor for the majority of cases. Further elucidation of disease mechanisms may facilitate the development of targeted treatments, much needed for this pharmacoresistant genetic epilepsy. PMID:29196579
Huang, Dandan; Yi, Xianfu; Zhang, Shijie; Zheng, Zhanye; Wang, Panwen; Xuan, Chenghao; Sham, Pak Chung; Wang, Junwen; Li, Mulin Jun
2018-05-16
Genome-wide association studies have generated over thousands of susceptibility loci for many human complex traits, and yet for most of these associations the true causal variants remain unknown. Tissue/cell type-specific prediction and prioritization of non-coding regulatory variants will facilitate the identification of causal variants and underlying pathogenic mechanisms for particular complex diseases and traits. By leveraging recent large-scale functional genomics/epigenomics data, we develop an intuitive web server, GWAS4D (http://mulinlab.tmu.edu.cn/gwas4d or http://mulinlab.org/gwas4d), that systematically evaluates GWAS signals and identifies context-specific regulatory variants. The updated web server includes six major features: (i) updates the regulatory variant prioritization method with our new algorithm; (ii) incorporates 127 tissue/cell type-specific epigenomes data; (iii) integrates motifs of 1480 transcriptional regulators from 13 public resources; (iv) uniformly processes Hi-C data and generates significant interactions at 5 kb resolution across 60 tissues/cell types; (v) adds comprehensive non-coding variant functional annotations; (vi) equips a highly interactive visualization function for SNP-target interaction. Using a GWAS fine-mapped set for 161 coronary artery disease risk loci, we demonstrate that GWAS4D is able to efficiently prioritize disease-causal regulatory variants.
Host cells and methods for producing 1-deoxyxylulose 5-phosphate (DXP) and/or a DXP derived compound
Kirby, James; Fortman, Jeffrey L.; Nishimoto, Minobu; Keasling, Jay D.
2017-05-02
The present invention provides for a genetically modified host cell capable of producing 1-deoxyxylulose 5-phosphate or 1-deoxy-D-xylulose 5-phosphate (DXP) (12), and optionally one or more DXP derived compounds, comprising: (a) a mutant RibB, or functional variant thereof, capable of catalyzing xylulose 5-phoshpate and/or ribulose 5-phospate to DXP, or (b) a YajO, or functional variant thereof, and a XylB, or functional variant thereof.
Host cells and methods for producing 1-deoxyxylulose 5-phosphate (DXP) and/or a DXP derived compound
Kirby, James; Fortman, Jeffrey L.; Nishimoto, Minobu; Keasling, Jay D.
2016-07-05
The present invention provides for a genetically modified host cell capable of producing 1-deoxyxylulose 5-phosphate or 1-deoxy-D-xylulose 5-phosphate (DXP) (12), and optionally one or more DXP derived compounds, comprising: (a) a mutant RibB, or functional variant thereof, capable of catalyzing xylulose 5-phosphate and/or ribulose 5-phosphate to DXP, or (b) a YajO, or functional variant thereof, and a XylB, or functional variant thereof.
Romanelli Tavares, Vanessa L; Gordon, Christopher T; Zechi-Ceide, Roseli M; Kokitsu-Nakata, Nancy Mizue; Voisin, Norine; Tan, Tiong Y; Heggie, Andrew A; Vendramini-Pittoli, Siulan; Propst, Evan J; Papsin, Blake C; Torres, Tatiana T; Buermans, Henk; Capelo, Luciane Portas; den Dunnen, Johan T; Guion-Almeida, Maria L; Lyonnet, Stanislas; Amiel, Jeanne; Passos-Bueno, Maria Rita
2015-04-01
Auriculocondylar syndrome is a rare craniofacial disorder comprising core features of micrognathia, condyle dysplasia and question mark ear. Causative variants have been identified in PLCB4, GNAI3 and EDN1, which are predicted to function within the EDN1-EDNRA pathway during early pharyngeal arch patterning. To date, two GNAI3 variants in three families have been reported. Here we report three novel GNAI3 variants, one segregating with affected members in a family previously linked to 1p21.1-q23.3 and two de novo variants in simplex cases. Two variants occur in known functional motifs, the G1 and G4 boxes, and the third variant is one amino acid outside of the G1 box. Structural modeling shows that all five altered GNAI3 residues identified to date cluster in a region involved in GDP/GTP binding. We hypothesize that all GNAI3 variants lead to dominant negative effects.
A study of the role of the FOXP2 and CNTNAP2 genes in persistent developmental stuttering.
Han, Tae-Un; Park, John; Domingues, Carlos F; Moretti-Ferreira, Danilo; Paris, Emily; Sainz, Eduardo; Gutierrez, Joanne; Drayna, Dennis
2014-09-01
A number of speech disorders including stuttering have been shown to have important genetic contributions, as indicated by high heritability estimates from twin and other studies. We studied the potential contribution to stuttering from variants in the FOXP2 gene, which have previously been associated with developmental verbal dyspraxia, and from variants in the CNTNAP2 gene, which have been associated with specific language impairment (SLI). DNA sequence analysis of these two genes in a group of 602 unrelated cases, all with familial persistent developmental stuttering, revealed no excess of potentially deleterious coding sequence variants in the cases compared to a matched group of 487 well characterized neurologically normal controls. This was compared to the distribution of variants in the GNPTAB, GNPTG, and NAGPA genes which have previously been associated with persistent stuttering. Using an expanded subject data set, we again found that NAGPA showed significantly different mutation frequencies in North Americans of European descent (p=0.0091) and a significant difference existed in the mutation frequency of GNPTAB in Brazilians (p=0.00050). No significant differences in mutation frequency in the FOXP2 and CNTNAP2 genes were observed between cases and controls. To examine the pattern of expression of these five genes in the human brain, real time quantitative reverse transcription PCR was performed on RNA purified from 27 different human brain regions. The expression patterns of FOXP2 and CNTNAP2 were generally different from those of GNPTAB, GNPTG and NAPGA in terms of relatively lower expression in the cerebellum. This study provides an improved estimate of the contribution of mutations in GNPTAB, GNPTG and NAGPA to persistent stuttering, and suggests that variants in FOXP2 and CNTNAP2 are not involved in the genesis of familial persistent stuttering. This, together with the different brain expression patterns of GNPTAB, GNPTG, and NAGPA compared to that of FOXP2 and CNTNAP2, suggests that the genetic neuropathological origins of stuttering differ from those of verbal dyspraxia and SLI. Published by Elsevier Inc.
Habegger, Lukas; Balasubramanian, Suganthi; Chen, David Z; Khurana, Ekta; Sboner, Andrea; Harmanci, Arif; Rozowsky, Joel; Clarke, Declan; Snyder, Michael; Gerstein, Mark
2012-09-01
The functional annotation of variants obtained through sequencing projects is generally assumed to be a simple intersection of genomic coordinates with genomic features. However, complexities arise for several reasons, including the differential effects of a variant on alternatively spliced transcripts, as well as the difficulty in assessing the impact of small insertions/deletions and large structural variants. Taking these factors into consideration, we developed the Variant Annotation Tool (VAT) to functionally annotate variants from multiple personal genomes at the transcript level as well as obtain summary statistics across genes and individuals. VAT also allows visualization of the effects of different variants, integrates allele frequencies and genotype data from the underlying individuals and facilitates comparative analysis between different groups of individuals. VAT can either be run through a command-line interface or as a web application. Finally, in order to enable on-demand access and to minimize unnecessary transfers of large data files, VAT can be run as a virtual machine in a cloud-computing environment. VAT is implemented in C and PHP. The VAT web service, Amazon Machine Image, source code and detailed documentation are available at vat.gersteinlab.org.
Bhatia, Shipra; Gordon, Christopher T.; Foster, Robert G.; Melin, Lucie; Abadie, Véronique; Baujat, Geneviève; Vazquez, Marie-Paule; Amiel, Jeanne; Lyonnet, Stanislas; van Heyningen, Veronica; Kleinjan, Dirk A.
2015-01-01
Disruption of gene regulation by sequence variation in non-coding regions of the genome is now recognised as a significant cause of human disease and disease susceptibility. Sequence variants in cis-regulatory elements (CREs), the primary determinants of spatio-temporal gene regulation, can alter transcription factor binding sites. While technological advances have led to easy identification of disease-associated CRE variants, robust methods for discerning functional CRE variants from background variation are lacking. Here we describe an efficient dual-colour reporter transgenesis approach in zebrafish, simultaneously allowing detailed in vivo comparison of spatio-temporal differences in regulatory activity between putative CRE variants and assessment of altered transcription factor binding potential of the variant. We validate the method on known disease-associated elements regulating SHH, PAX6 and IRF6 and subsequently characterise novel, ultra-long-range SOX9 enhancers implicated in the craniofacial abnormality Pierre Robin Sequence. The method provides a highly cost-effective, fast and robust approach for simultaneously unravelling in a single assay whether, where and when in embryonic development a disease-associated CRE-variant is affecting its regulatory function. PMID:26030420
Kievit, Anneke; Tessadori, Federico; Douben, Hannie; Jordens, Ingrid; Maurice, Madelon; Hoogeboom, Jeannette; Hennekam, Raoul; Nampoothiri, Sheela; Kayserili, Hülya; Castori, Marco; Whiteford, Margo; Motter, Connie; Melver, Catherine; Cunningham, Michael; Hing, Anne; Kokitsu-Nakata, Nancy M; Vendramini-Pittoli, Siulan; Richieri-Costa, Antonio; Baas, Annette F; Breugem, Corstiaan C; Duran, Karen; Massink, Maarten; Derksen, Patrick W B; van IJcken, Wilfred F J; van Unen, Leontine; Santos-Simarro, Fernando; Lapunzina, Pablo; Gil-da Silva Lopes, Vera L; Lustosa-Mendes, Elaine; Krall, Max; Slavotinek, Anne; Martinez-Glez, Victor; Bakkers, Jeroen; van Gassen, Koen L I; de Klein, Annelies; van den Boogaard, Marie-José H; van Haaften, Gijs
2018-02-01
Blepharocheilodontic syndrome (BCDS) consists of lagophthalmia, ectropion of the lower eyelids, distichiasis, euryblepharon, cleft lip/palate and dental anomalies and has autosomal dominant inheritance with variable expression. We identified heterozygous variants in two genes of the cadherin-catenin complex, CDH1, encoding E-cadherin, and CTNND1, encoding p120 catenin delta1 in 15 of 17 BCDS index patients, as was recently described in a different publication. CDH1 plays an essential role in epithelial cell adherence; CTNND1 binds to CDH1 and controls the stability of the complex. Functional experiments in zebrafish and human cells showed that the CDH1 variants impair the cell adhesion function of the cadherin-catenin complex in a dominant-negative manner. Variants in CDH1 have been linked to familial hereditary diffuse gastric cancer and invasive lobular breast cancer; however, no cases of gastric or breast cancer have been reported in our BCDS cases. Functional experiments reported here indicated the BCDS variants comprise a distinct class of CDH1 variants. Altogether, we identified the genetic cause of BCDS enabling DNA diagnostics and counseling, in addition we describe a novel class of dominant negative CDH1 variants.
Functional genetic variants in the vesicular monoamine transporter 1 modulate emotion processing.
Lohoff, F W; Hodge, R; Narasimhan, S; Nall, A; Ferraro, T N; Mickey, B J; Heitzeg, M M; Langenecker, S A; Zubieta, J-K; Bogdan, R; Nikolova, Y S; Drabant, E; Hariri, A R; Bevilacqua, L; Goldman, D; Doyle, G A
2014-01-01
Emotional behavior is in part heritable and often disrupted in psychopathology. Identification of specific genetic variants that drive this heritability may provide important new insight into molecular and neurobiological mechanisms involved in emotionality. Our results demonstrate that the presynaptic vesicular monoamine transporter 1 (VMAT1) Thr136Ile (rs1390938) polymorphism is functional in vitro, with the Ile allele leading to increased monoamine transport into presynaptic vesicles. Moreover, we show that the Thr136Ile variant predicts differential responses in emotional brain circuits consistent with its effects in vitro. Lastly, deep sequencing of bipolar disorder (BPD) patients and controls identified several rare novel VMAT1 variants. The variant Phe84Ser was only present in individuals with BPD and leads to marked increase monoamine transport in vitro. Taken together, our data show that VMAT1 polymorphisms influence monoamine signaling, the functional response of emotional brain circuits and risk for psychopathology.
van Hooft, Pim; Greyling, Ben J; Getz, Wayne M; van Helden, Paul D; Zwaan, Bas J; Bastos, Armanda D S
2014-01-01
Although generally rare, deleterious alleles can become common through genetic drift, hitchhiking or reductions in selective constraints. Here we present a possible new mechanism that explains the attainment of high frequencies of deleterious alleles in the African buffalo (Syncerus caffer) population of Kruger National Park, through positive selection of these alleles that is ultimately driven by a sex-ratio suppressor. We have previously shown that one in four Kruger buffalo has a Y-chromosome profile that, despite being associated with low body condition, appears to impart a relative reproductive advantage, and which is stably maintained through a sex-ratio suppressor. Apparently, this sex-ratio suppressor prevents fertility reduction that generally accompanies sex-ratio distortion. We hypothesize that this body-condition-associated reproductive advantage increases the fitness of alleles that negatively affect male body condition, causing genome-wide positive selection of these alleles. To investigate this we genotyped 459 buffalo using 17 autosomal microsatellites. By correlating heterozygosity with body condition (heterozygosity-fitness correlations), we found that most microsatellites were associated with one of two gene types: one with elevated frequencies of deleterious alleles that have a negative effect on body condition, irrespective of sex; the other with elevated frequencies of sexually antagonistic alleles that are negative for male body condition but positive for female body condition. Positive selection and a direct association with a Y-chromosomal sex-ratio suppressor are indicated, respectively, by allele clines and by relatively high numbers of homozygous deleterious alleles among sex-ratio suppressor carriers. This study, which employs novel statistical techniques to analyse heterozygosity-fitness correlations, is the first to demonstrate the abundance of sexually-antagonistic genes in a natural mammal population. It also has important implications for our understanding not only of the evolutionary and ecological dynamics of sex-ratio distorters and suppressors, but also of the functioning of deleterious and sexually-antagonistic alleles, and their impact on population viability.
Korean Variant Archive (KOVA): a reference database of genetic variations in the Korean population.
Lee, Sangmoon; Seo, Jihae; Park, Jinman; Nam, Jae-Yong; Choi, Ahyoung; Ignatius, Jason S; Bjornson, Robert D; Chae, Jong-Hee; Jang, In-Jin; Lee, Sanghyuk; Park, Woong-Yang; Baek, Daehyun; Choi, Murim
2017-06-27
Despite efforts to interrogate human genome variation through large-scale databases, systematic preference toward populations of Caucasian descendants has resulted in unintended reduction of power in studying non-Caucasians. Here we report a compilation of coding variants from 1,055 healthy Korean individuals (KOVA; Korean Variant Archive). The samples were sequenced to a mean depth of 75x, yielding 101 singleton variants per individual. Population genetics analysis demonstrates that the Korean population is a distinct ethnic group comparable to other discrete ethnic groups in Africa and Europe, providing a rationale for such independent genomic datasets. Indeed, KOVA conferred 22.8% increased variant filtering power in addition to Exome Aggregation Consortium (ExAC) when used on Korean exomes. Functional assessment of nonsynonymous variant supported the presence of purifying selection in Koreans. Analysis of copy number variants detected 5.2 deletions and 10.3 amplifications per individual with an increased fraction of novel variants among smaller and rarer copy number variable segments. We also report a list of germline variants that are associated with increased tumor susceptibility. This catalog can function as a critical addition to the pre-existing variant databases in pursuing genetic studies of Korean individuals.
Parvez, Faruque; Chen, Yu; Yunus, Mahbub; Olopade, Christopher; Segers, Stephanie; Slavkovich, Vesna; Argos, Maria; Hasan, Rabiul; Ahmed, Alauddin; Islam, Tariqul; Akter, Mahmud M.; Graziano, Joseph H.
2013-01-01
Rationale: Exposure to arsenic through drinking water has been linked to respiratory symptoms, obstructive lung diseases, and mortality from respiratory diseases. Limited evidence for the deleterious effects on lung function exists among individuals exposed to a high dose of arsenic. Objectives: To determine the deleterious effects on lung function that exist among individuals exposed to a high dose of arsenic. Methods: In 950 individuals who presented with any respiratory symptom among a population-based cohort of 20,033 adults, we evaluated the association between arsenic exposure, measured by well water and urinary arsenic concentrations measured at baseline, and post-bronchodilator–administered pulmonary function assessed during follow-up. Measurements and Main Results: For every one SD increase in baseline water arsenic exposure, we observed a lower level of FEV1 (−46.5 ml; P < 0.0005) and FVC (−53.1 ml; P < 0.01) in regression models adjusted for age, sex, body mass index, smoking, socioeconomic status, betel nut use, and arsenical skin lesions status. Similar inverse relationships were observed between baseline urinary arsenic and FEV1 (−48.3 ml; P < 0.005) and FVC (−55.2 ml; P < 0.01) in adjusted models. Our analyses also demonstrated a dose-related decrease in lung function with increasing levels of baseline water and urinary arsenic. This association remained significant in never-smokers and individuals without skin lesions, and was stronger in male smokers. Among male smokers and individuals with skin lesions, every one SD increase in water arsenic was related to a significant reduction of FEV1 (−74.4 ml, P < 0.01; and −116.1 ml, P < 0.05) and FVC (−72.8 ml, P = 0.02; and −146.9 ml, P = 0.004), respectively. Conclusions: This large population-based study confirms that arsenic exposure is associated with impaired lung function and the deleterious effect is evident at low- to moderate-dose range. PMID:23848239
Hurba, Olha; Mancikova, Andrea; Krylov, Vladimir; Pavlikova, Marketa; Pavelka, Karel; Stibůrková, Blanka
2014-01-01
Objective Using European descent Czech populations, we performed a study of SLC2A9 and SLC22A12 genes previously identified as being associated with serum uric acid concentrations and gout. This is the first study of the impact of non-synonymous allelic variants on the function of GLUT9 except for patients suffering from renal hypouricemia type 2. Methods The cohort consisted of 250 individuals (150 controls, 54 nonspecific hyperuricemics and 46 primary gout and/or hyperuricemia subjects). We analyzed 13 exons of SLC2A9 (GLUT9 variant 1 and GLUT9 variant 2) and 10 exons of SLC22A12 by PCR amplification and sequenced directly. Allelic variants were prepared and their urate uptake and subcellular localization were studied by Xenopus oocytes expression system. The functional studies were analyzed using the non-parametric Wilcoxon and Kruskall-Wallis tests; the association study used the Fisher exact test and linear regression approach. Results We identified a total of 52 sequence variants (12 unpublished). Eight non-synonymous allelic variants were found only in SLC2A9: rs6820230, rs2276961, rs144196049, rs112404957, rs73225891, rs16890979, rs3733591 and rs2280205. None of these variants showed any significant difference in the expression of GLUT9 and in urate transport. In the association study, eight variants showed a possible association with hyperuricemia. However, seven of these were in introns and the one exon located variant, rs7932775, did not show a statistically significant association with serum uric acid concentration. Conclusion Our results did not confirm any effect of SLC22A12 and SLC2A9 variants on serum uric acid concentration. Our complex approach using association analysis together with functional and immunohistochemical characterization of non-synonymous allelic variants did not show any influence on expression, subcellular localization and urate uptake of GLUT9. PMID:25268603
USDA-ARS?s Scientific Manuscript database
Melanocortin-4-receptor (MC4R) haploinsufficiency is the most common form of monogenic obesity; however, the frequency of MC4R variants and their functional effects in general populations remain uncertain. The aim of this study was to identify and characterize the effects of MC4R variants in Hispani...
Rodrigo, Rexan; Allen, Angela; Manampreri, Aresha; Perera, Luxman; Fisher, Christopher A; Allen, Stephen; Weatherall, David J; Premawardhena, Anuja
2018-07-01
Iron deficiency complicates the use of red cell indices to screen for carriers of haemoglobin variants in many populations. In a cross sectional survey of 7526 secondary school students from 25 districts of Sri Lanka, 1963 (26.0%) students had low red cell indices. Iron deficiency, identified by low serum ferritin, was the major identifiable cause occurring in 550/1806 (30.5%) students. Low red cell indices occurred in iron-replete students with alpha-thalassaemia including those with single alpha-globin gene deletions. Anaemia and low red cell indices were also common in beta-thalassaemia trait. An unexpected finding was that low red cell indices occurred in 713 iron-replete students with a normal haemoglobin genotype. It is common practice to prescribe iron supplements to individuals with low red cell indices. Since low red cell indices were a feature of all forms of α thalassaemia and also of iron deficiency, in areas where both conditions are common, such as Sri Lanka, it is imperative to differentiate between the two, to allow targeted administration of iron supplements and avoid the possible deleterious effects of increased iron availability in iron replete individuals with low red cell indices due to other causes such as α thalassaemia. Copyright © 2018 Elsevier Inc. All rights reserved.
Evidence for Hitchhiking of Deleterious Mutations within the Human Genome
Chun, Sung; Fay, Justin C.
2011-01-01
Deleterious mutations present a significant obstacle to adaptive evolution. Deleterious mutations can inhibit the spread of linked adaptive mutations through a population; conversely, adaptive substitutions can increase the frequency of linked deleterious mutations and even result in their fixation. To assess the impact of adaptive mutations on linked deleterious mutations, we examined the distribution of deleterious and neutral amino acid polymorphism in the human genome. Within genomic regions that show evidence of recent hitchhiking, we find fewer neutral but a similar number of deleterious SNPs compared to other genomic regions. The higher ratio of deleterious to neutral SNPs is consistent with simulated hitchhiking events and implies that positive selection eliminates some deleterious alleles and increases the frequency of others. The distribution of disease-associated alleles is also altered in hitchhiking regions. Disease alleles within hitchhiking regions have been associated with auto-immune disorders, metabolic diseases, cancers, and mental disorders. Our results suggest that positive selection has had a significant impact on deleterious polymorphism and may be partly responsible for the high frequency of certain human disease alleles. PMID:21901107
Szabó, András; Ludwig, Maren; Hegyi, Eszter; Szépeová, Renata; Witt, Heiko; Sahin-Tóth, Miklós
2015-07-10
Human chymotrypsin C (CTRC) protects against pancreatitis by degrading trypsinogen and thereby curtailing harmful intra-pancreatic trypsinogen activation. Loss-of-function mutations in CTRC increase the risk for chronic pancreatitis. Here we describe functional analysis of eight previously uncharacterized natural CTRC variants tested for potential defects in secretion, proteolytic stability, and catalytic activity. We found that all variants were secreted from transfected cells normally, and none suffered proteolytic degradation by trypsin. Five variants had normal enzymatic activity, whereas variant p.R29Q was catalytically inactive due to loss of activation by trypsin and variant p.S239C exhibited impaired activity possibly caused by disulfide mispairing. Surprisingly, variant p.G214R had increased activity on a small chromogenic peptide substrate but was markedly defective in cleaving bovine β-casein or the natural CTRC substrates human cationic trypsinogen and procarboxypeptidase A1. Mutation p.G214R is analogous to the evolutionary mutation in human mesotrypsin, which rendered this trypsin isoform resistant to proteinaceous inhibitors and conferred its ability to cleave these inhibitors. Similarly to the mesotrypsin phenotype, CTRC variant p.G214R was inhibited poorly by eglin C, ecotin, or a CTRC-specific variant of SGPI-2, and it readily cleaved the reactive-site peptide bonds in eglin C and ecotin. We conclude that CTRC variants p.R29Q, p.G214R, and p.S239C are risk factors for chronic pancreatitis. Furthermore, the mesotrypsin-like CTRC variant highlights how the same natural mutation in homologous pancreatic serine proteases can evolve a new physiological role or lead to pathology, determined by the biological context of protease function. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Steinberg, Karyn Meltz; Ramachandran, Dhanya; Patel, Viren C; Shetty, Amol C; Cutler, David J; Zwick, Michael E
2012-09-28
Autism spectrum disorder (ASD) is highly heritable, but the genetic risk factors for it remain largely unknown. Although structural variants with large effect sizes may explain up to 15% ASD, genome-wide association studies have failed to uncover common single nucleotide variants with large effects on phenotype. The focus within ASD genetics is now shifting to the examination of rare sequence variants of modest effect, which is most often achieved via exome selection and sequencing. This strategy has indeed identified some rare candidate variants; however, the approach does not capture the full spectrum of genetic variation that might contribute to the phenotype. We surveyed two loci with known rare variants that contribute to ASD, the X-linked neuroligin genes by performing massively parallel Illumina sequencing of the coding and noncoding regions from these genes in males from families with multiplex autism. We annotated all variant sites and functionally tested a subset to identify other rare mutations contributing to ASD susceptibility. We found seven rare variants at evolutionary conserved sites in our study population. Functional analyses of the three 3' UTR variants did not show statistically significant effects on the expression of NLGN3 and NLGN4X. In addition, we identified two NLGN3 intronic variants located within conserved transcription factor binding sites that could potentially affect gene regulation. These data demonstrate the power of massively parallel, targeted sequencing studies of affected individuals for identifying rare, potentially disease-contributing variation. However, they also point out the challenges and limitations of current methods of direct functional testing of rare variants and the difficulties of identifying alleles with modest effects.
2012-01-01
Background Autism spectrum disorder (ASD) is highly heritable, but the genetic risk factors for it remain largely unknown. Although structural variants with large effect sizes may explain up to 15% ASD, genome-wide association studies have failed to uncover common single nucleotide variants with large effects on phenotype. The focus within ASD genetics is now shifting to the examination of rare sequence variants of modest effect, which is most often achieved via exome selection and sequencing. This strategy has indeed identified some rare candidate variants; however, the approach does not capture the full spectrum of genetic variation that might contribute to the phenotype. Methods We surveyed two loci with known rare variants that contribute to ASD, the X-linked neuroligin genes by performing massively parallel Illumina sequencing of the coding and noncoding regions from these genes in males from families with multiplex autism. We annotated all variant sites and functionally tested a subset to identify other rare mutations contributing to ASD susceptibility. Results We found seven rare variants at evolutionary conserved sites in our study population. Functional analyses of the three 3’ UTR variants did not show statistically significant effects on the expression of NLGN3 and NLGN4X. In addition, we identified two NLGN3 intronic variants located within conserved transcription factor binding sites that could potentially affect gene regulation. Conclusions These data demonstrate the power of massively parallel, targeted sequencing studies of affected individuals for identifying rare, potentially disease-contributing variation. However, they also point out the challenges and limitations of current methods of direct functional testing of rare variants and the difficulties of identifying alleles with modest effects. PMID:23020841
Wu, Jiaxin; Wu, Mengmeng; Li, Lianshuo; Liu, Zhuo; Zeng, Wanwen; Jiang, Rui
2016-01-01
The recent advancement of the next generation sequencing technology has enabled the fast and low-cost detection of all genetic variants spreading across the entire human genome, making the application of whole-genome sequencing a tendency in the study of disease-causing genetic variants. Nevertheless, there still lacks a repository that collects predictions of functionally damaging effects of human genetic variants, though it has been well recognized that such predictions play a central role in the analysis of whole-genome sequencing data. To fill this gap, we developed a database named dbWGFP (a database and web server of human whole-genome single nucleotide variants and their functional predictions) that contains functional predictions and annotations of nearly 8.58 billion possible human whole-genome single nucleotide variants. Specifically, this database integrates 48 functional predictions calculated by 17 popular computational methods and 44 valuable annotations obtained from various data sources. Standalone software, user-friendly query services and free downloads of this database are available at http://bioinfo.au.tsinghua.edu.cn/dbwgfp. dbWGFP provides a valuable resource for the analysis of whole-genome sequencing, exome sequencing and SNP array data, thereby complementing existing data sources and computational resources in deciphering genetic bases of human inherited diseases. © The Author(s) 2016. Published by Oxford University Press.
Verhagen, Caroline V.M.; Vossen, David M.; Borgmann, Kerstin; Hageman, Floor; Grénman, Reidar; Verwijs-Janssen, Manon; Mout, Lisanne; Kluin, Roel J.C.; Nieuwland, Marja; Severson, Tesa M.; Velds, Arno; Kerkhoven, Ron; O’Connor, Mark J.; van der Heijden, Martijn; van Velthuysen, Marie-Louise; Verheij, Marcel; Wreesmann, Volkert B.; Wessels, Lodewyk F.A.; van den Brekel, Michiel W.M.; Vens, Conchita
2018-01-01
Mutations in Fanconi Anemia or Homologous Recombination (FA/HR) genes can cause DNA repair defects and could therefore impact cancer treatment response and patient outcome. Their functional impact and clinical relevance in head and neck squamous cell carcinoma (HNSCC) is unknown. We therefore questioned whether functional FA/HR defects occurred in HNSCC and whether they are associated with FA/HR variants. We assayed a panel of 29 patient-derived HNSCC cell lines and found that a considerable fraction is hypersensitive to the crosslinker Mitomycin C and PARP inhibitors, a functional measure of FA/HR defects. DNA sequencing showed that these hypersensitivities are associated with the presence of bi-allelic rare germline and somatic FA/HR gene variants. We next questioned whether such variants are associated with prognosis and treatment response in HNSCC patients. DNA sequencing of 77 advanced stage HNSCC tumors revealed a 19% incidence of such variants. Importantly, these variants were associated with a poor prognosis (p = 0.027; HR = 2.6, 1.1–6.0) but favorable response to high cumulative cisplatin dose. We show how an integrated in vitro functional repair and genomic analysis can improve the prognostic value of genetic biomarkers. We conclude that repair defects are marked and frequent in HNSCC and are associated with clinical outcome. PMID:29719599
Verhagen, Caroline V M; Vossen, David M; Borgmann, Kerstin; Hageman, Floor; Grénman, Reidar; Verwijs-Janssen, Manon; Mout, Lisanne; Kluin, Roel J C; Nieuwland, Marja; Severson, Tesa M; Velds, Arno; Kerkhoven, Ron; O'Connor, Mark J; van der Heijden, Martijn; van Velthuysen, Marie-Louise; Verheij, Marcel; Wreesmann, Volkert B; Wessels, Lodewyk F A; van den Brekel, Michiel W M; Vens, Conchita
2018-04-06
Mutations in Fanconi Anemia or Homologous Recombination (FA/HR) genes can cause DNA repair defects and could therefore impact cancer treatment response and patient outcome. Their functional impact and clinical relevance in head and neck squamous cell carcinoma (HNSCC) is unknown. We therefore questioned whether functional FA/HR defects occurred in HNSCC and whether they are associated with FA/HR variants. We assayed a panel of 29 patient-derived HNSCC cell lines and found that a considerable fraction is hypersensitive to the crosslinker Mitomycin C and PARP inhibitors, a functional measure of FA/HR defects. DNA sequencing showed that these hypersensitivities are associated with the presence of bi-allelic rare germline and somatic FA/HR gene variants. We next questioned whether such variants are associated with prognosis and treatment response in HNSCC patients. DNA sequencing of 77 advanced stage HNSCC tumors revealed a 19% incidence of such variants. Importantly, these variants were associated with a poor prognosis ( p = 0.027; HR = 2.6, 1.1-6.0) but favorable response to high cumulative cisplatin dose. We show how an integrated in vitro functional repair and genomic analysis can improve the prognostic value of genetic biomarkers. We conclude that repair defects are marked and frequent in HNSCC and are associated with clinical outcome.
Doucette, Lance; Merner, Nancy D; Cooke, Sandra; Ives, Elizabeth; Galutira, Dante; Walsh, Vanessa; Walsh, Tom; MacLaren, Linda; Cater, Tracey; Fernandez, Bridget; Green, Jane S; Wilcox, Edward R; Shotland, Lawrence I; Shotland, Larry; Li, Xiaoyan Cindy; Li, X C; Lee, Ming; King, Mary-Claire; Young, Terry-Lynn
2009-05-01
We studied a consanguineous family (Family A) from the island of Newfoundland with an autosomal recessive form of prelingual, profound, nonsyndromic sensorineural hearing loss. A genome-wide scan mapped the deafness trait to 10q21-22 (max LOD score of 4.0; D10S196) and fine mapping revealed a 16 Mb ancestral haplotype in deaf relatives. The PCDH15 gene was mapped within the critical region and was an interesting candidate because truncating mutations cause Usher syndrome type IF (USH1F) and two missense mutations have been previously associated with isolated deafness (DFNB23). Sequencing of the PCDH15 gene revealed 33 sequencing variants. Three of these variants were homozygous exclusively in deaf siblings but only one of them was not seen in ethnically matched controls. This novel c.1583 T>A transversion predicts an amino-acid substitution of a valine with an aspartic acid at codon 528 (V528D). Like the two DFNB23 mutations, the V528D mutation in Family A occurs in a highly conserved extracellular cadherin (EC) domain of PCDH15 and is predicted to be more deleterious than the previously identified DFNB23 missense mutations (R134G and G262D). Physical assessment, vestibular and visual function testing in deaf adults ruled out syndromic deafness because of Usher syndrome. This study validates the DFNB23 designation and supports the hypothesis that missense mutations in conserved motifs of PCDH15 cause nonsyndromic hearing loss. This emerging genotype-phenotype correlation in USH1F is similar to that in several other USH1 genes and cautions against a prognosis of a dual sensory loss in deaf children found to be homozygous for hypomorphic mutations at the USH1F locus.
Plog, Stephanie; Klymiuk, Nikolai; Binder, Stefanie; Van Hook, Matthew J.; Thoreson, Wallace B.; Gruber, Achim D.; Mundhenk, Lars
2015-01-01
The human CLCA4 (chloride channel regulator, calcium-activated) modulates the intestinal phenotype of cystic fibrosis (CF) patients via an as yet unknown pathway. With the generation of new porcine CF models, species-specific differences between human modifiers of CF and their porcine orthologs are considered critical for the translation of experimental data. Specifically, the porcine ortholog to the human CF modulator gene CLCA4 has recently been shown to be duplicated into two separate genes, CLCA4a and CLCA4b. Here, we characterize the duplication product, CLCA4b, in terms of its genomic structure, tissue and cellular expression patterns as well as its in vitro electrophysiological properties. The CLCA4b gene is a pig-specific duplication product of the CLCA4 ancestor and its protein is exclusively expressed in small and large intestinal crypt epithelial cells, a niche specifically occupied by no other porcine CLCA family member. Surprisingly, a unique deleterious mutation of the CLCA4b gene is spread among modern and ancient breeds in the pig population, but this mutation did not result in an apparent phenotype in homozygously affected animals. Electrophysiologically, neither the products of the wild type nor of the mutated CLCA4b genes were able to evoke a calcium-activated anion conductance, a consensus feature of other CLCA proteins. The apparently pig-specific duplication of the CLCA4 gene with unique expression of the CLCA4b protein variant in intestinal crypt epithelial cells where the porcine CFTR is also present raises the question of whether it may modulate the porcine CF phenotype. Moreover, the naturally occurring null variant of CLCA4b will be valuable for the understanding of CLCA protein function and their relevance in modulating the CF phenotype. PMID:26474299
Catabolite-mediated mutations in alternate toluene degradative pathways in Pseudomonas putida.
Leddy, M B; Phipps, D W; Ridgway, H F
1995-01-01
Pseudomonas putida 54g grew on mineral salts with toluene and exhibited catechol-2,3-dioxygenase (C23O) activity, indicating a meta pathway. After 10 to 15 days on toluene, nondegrading (Tol-) variants approached nearly 10% of total CFU. Auxotrophs were not detected among variants, suggesting selective loss of catabolic function(s). Variant formation was substrate dependent, since Tol- cells were observed on neither ethylbenzene, glucose, nor peptone-based media nor when toluene catabolism was suppressed by glucose. Unlike wild-type cells, variants did not grow on gasoline, toluene, benzene, ethylbenzene, benzoate, or catechol, suggesting loss of meta pathway function. Catabolic and C23O activities were restored to variants via transfer of a 78-mDa TOL-like plasmid from a wild-type Tol+ donor. Tests for reversion of variants to Tol+ were uniformly negative, suggesting possible delection or excision of catabolic genes. Deletions were confirmed in some variants by failure to hybridize with a DNA probe specific for the xylE gene encoding C23O. Cells grown on benzoate remained Tol+ but were C23O- and contained a plasmid of reduced size or were plasmid free, suggesting an alternate chromosomal catabolic pathway, also defective in variants. Cells exposed to benzyl alcohol, the initial oxidation product of toluene, accumulated > 13% variants in 5 days, even when cell division was repressed by nitrogen deprivation to abrogate selection processes. No variants formed in identical ethylbenzene-exposed controls. The results suggest that benzyl alcohol mediates irreversible defects in both a plasmid-associated meta pathway and an alternate chromosomal pathway. PMID:7642499
The Impact of Population Demography and Selection on the Genetic Architecture of Complex Traits
Lohmueller, Kirk E.
2014-01-01
Population genetic studies have found evidence for dramatic population growth in recent human history. It is unclear how this recent population growth, combined with the effects of negative natural selection, has affected patterns of deleterious variation, as well as the number, frequency, and effect sizes of mutations that contribute risk to complex traits. Because researchers are performing exome sequencing studies aimed at uncovering the role of low-frequency variants in the risk of complex traits, this topic is of critical importance. Here I use simulations under population genetic models where a proportion of the heritability of the trait is accounted for by mutations in a subset of the exome. I show that recent population growth increases the proportion of nonsynonymous variants segregating in the population, but does not affect the genetic load relative to a population that did not expand. Under a model where a mutation's effect on a trait is correlated with its effect on fitness, rare variants explain a greater portion of the additive genetic variance of the trait in a population that has recently expanded than in a population that did not recently expand. Further, when using a single-marker test, for a given false-positive rate and sample size, recent population growth decreases the expected number of significant associations with the trait relative to the number detected in a population that did not expand. However, in a model where there is no correlation between a mutation's effect on fitness and the effect on the trait, common variants account for much of the additive genetic variance, regardless of demography. Moreover, here demography does not affect the number of significant associations detected. These findings suggest recent population history may be an important factor influencing the power of association tests and in accounting for the missing heritability of certain complex traits. PMID:24875776
Tong, J H S; Hawi, Z; Dark, C; Cummins, T D R; Johnson, B P; Newman, D P; Lau, R; Vance, A; Heussler, H S; Matthews, N; Bellgrove, M A; Pang, K C
2016-11-01
Attention deficit hyperactivity disorder (ADHD) is a highly heritable psychiatric condition with negative lifetime outcomes. Uncovering its genetic architecture should yield important insights into the neurobiology of ADHD and assist development of novel treatment strategies. Twenty years of candidate gene investigations and more recently genome-wide association studies have identified an array of potential association signals. In this context, separating the likely true from false associations ('the wheat' from 'the chaff') will be crucial for uncovering the functional biology of ADHD. Here, we defined a set of 2070 DNA variants that showed evidence of association with ADHD (or were in linkage disequilibrium). More than 97% of these variants were noncoding, and were prioritised for further exploration using two tools-genome-wide annotation of variants (GWAVA) and Combined Annotation-Dependent Depletion (CADD)-that were recently developed to rank variants based upon their likely pathogenicity. Capitalising on recent efforts such as the Encyclopaedia of DNA Elements and US National Institutes of Health Roadmap Epigenomics Projects to improve understanding of the noncoding genome, we subsequently identified 65 variants to which we assigned functional annotations, based upon their likely impact on alternative splicing, transcription factor binding and translational regulation. We propose that these 65 variants, which possess not only a high likelihood of pathogenicity but also readily testable functional hypotheses, represent a tractable shortlist for future experimental validation in ADHD. Taken together, this study brings into sharp focus the likely relevance of noncoding variants for the genetic risk associated with ADHD, and more broadly suggests a bioinformatics approach that should be relevant to other psychiatric disorders.
Hinzpeter, Alexandre; Reboul, Marie-Pierre; Callebaut, Isabelle; Zordan, Cécile; Costes, Bruno; Guichoux, Julie; Iron, Albert; Lacombe, Didier; Martin, Natacha; Arveiler, Benoit; Fanen, Pascale; Fergelot, Patricia; Girodon, Emmanuelle
2017-05-01
In vitro functional tests aimed to investigate CFTR dysfunction appear critical to help elucidate the functional impact of new variants of uncertain clinical significance and solve inconclusive cases, especially in early deceased newborns.
Solubilization of a membrane protein by combinatorial supercharging.
Hajduczki, Agnes; Majumdar, Sudipta; Fricke, Marie; Brown, Isola A M; Weiss, Gregory A
2011-04-15
Hydrophobic and aggregation-prone, membrane proteins often prove too insoluble for conventional in vitro biochemical studies. To engineer soluble variants of human caveolin-1, a phage-displayed library of caveolin variants targeted the hydrophobic intramembrane domain with substitutions to charged residues. Anti-selections for insolubility removed hydrophobic variants, and positive selections for binding to the known caveolin ligand HIV gp41 isolated functional, folded variants. Assays with several caveolin binding partners demonstrated the successful folding and functionality by a solubilized, full-length caveolin variant selected from the library. This caveolin variant allowed assay of the direct interaction between caveolin and cavin. Clustered along one face of a putative helix, the solubilizing mutations suggest a structural model for the intramembrane domain of caveolin. The approach provides a potentially general method for solubilization and engineering of membrane-associated proteins by phage display.
Calvert, Melissa L.; Tester, David J.; Kryshtal, Dmytro; Hwang, Hyun Seok; Johnson, Christopher N.; Chazin, Walter J.; Loporcaro, Christina G.; Shah, Maully; Papez, Andrew L.; Lau, Yung R.; Kanter, Ronald; Knollmann, Bjorn C.; Ackerman, Michael J.
2016-01-01
Background Calmodulin (CaM) is encoded by three genes, CALM1, CALM2, and CALM3, all of which harbor pathogenic variants linked to long QT syndrome (LQTS) with early and severe expressivity. These LQTS-causative variants reduce CaM affinity to Ca2+ and alter the properties of the cardiac L-type calcium channel (CaV1.2). CaM also modulates NaV1.5 and the ryanodine receptor, RyR2. All of these interactions may play a role in disease pathogenesis. Here, we determine the spectrum and prevalence of pathogenic CaM variants in a cohort of genetically elusive LQTS, and functionally characterize the novel variants. Methods and Results Thirty-nine genetically elusive LQTS cases underwent whole exome sequencing to identify CaM variants. Non-synonymous CaM variants were overrepresented significantly in this heretofore LQTS cohort (15.4%) compared to exome aggregation consortium (0.04%; p<0.0001). When the clinical sequelae of these 6 CaM-positive cases was compared to the 33 CaM-negative cases, CaM-positive cases had a more severe phenotype with an average age of onset of 8 months, an average QTc of 679 ms, and a high prevalence of cardiac arrest. Functional characterization of one novel variant, E141G-CaM, revealed an 11-fold reduction in Ca2+ binding affinity and a functionally-dominant loss of inactivation in CaV1.2, mild accentuation in NaV1.5 late current, but no effect on intracellular RyR2-mediated calcium release. Conclusions Overall, 15% of our genetically elusive LQTS cohort harbored non-synonymous variants in CaM. Genetic testing of CALM1-3 should be pursued for individuals with LQTS, especially those with early childhood cardiac arrest, extreme QT prolongation, and a negative family history. PMID:26969752
Platzer, Konrad; Yuan, Hongjie; Schütz, Hannah; Winschel, Alexander; Chen, Wenjuan; Hu, Chun; Kusumoto, Hirofumi; Heyne, Henrike O; Helbig, Katherine L; Tang, Sha; Willing, Marcia C; Tinkle, Brad T; Adams, Darius J; Depienne, Christel; Keren, Boris; Mignot, Cyril; Frengen, Eirik; Strømme, Petter; Biskup, Saskia; Döcker, Dennis; Strom, Tim M; Mefford, Heather C; Myers, Candace T; Muir, Alison M; LaCroix, Amy; Sadleir, Lynette; Scheffer, Ingrid E; Brilstra, Eva; van Haelst, Mieke M; van der Smagt, Jasper J; Bok, Levinus A; Møller, Rikke S; Jensen, Uffe B; Millichap, John J; Berg, Anne T; Goldberg, Ethan M; De Bie, Isabelle; Fox, Stephanie; Major, Philippe; Jones, Julie R; Zackai, Elaine H; Jamra, Rami Abou; Rolfs, Arndt; Leventer, Richard J; Lawson, John A; Roscioli, Tony; Jansen, Floor E; Ranza, Emmanuelle; Korff, Christian M; Lehesjoki, Anna-Elina; Courage, Carolina; Linnankivi, Tarja; Smith, Douglas R; Stanley, Christine; Mintz, Mark; McKnight, Dianalee; Decker, Amy; Tan, Wen-Hann; Tarnopolsky, Mark A; Brady, Lauren I; Wolff, Markus; Dondit, Lutz; Pedro, Helio F; Parisotto, Sarah E; Jones, Kelly L; Patel, Anup D; Franz, David N; Vanzo, Rena; Marco, Elysa; Ranells, Judith D; Di Donato, Nataliya; Dobyns, William B; Laube, Bodo; Traynelis, Stephen F; Lemke, Johannes R
2017-01-01
Background We aimed for a comprehensive delineation of genetic, functional and phenotypic aspects of GRIN2B encephalopathy and explored potential prospects of personalised medicine. Methods Data of 48 individuals with de novo GRIN2B variants were collected from several diagnostic and research cohorts, as well as from 43 patients from the literature. Functional consequences and response to memantine treatment were investigated in vitro and eventually translated into patient care. Results Overall, de novo variants in 86 patients were classified as pathogenic/likely pathogenic. Patients presented with neurodevelopmental disorders and a spectrum of hypotonia, movement disorder, cortical visual impairment, cerebral volume loss and epilepsy. Six patients presented with a consistent malformation of cortical development (MCD) intermediate between tubulinopathies and polymicrogyria. Missense variants cluster in transmembrane segments and ligand-binding sites. Functional consequences of variants were diverse, revealing various potential gain-of-function and loss-of-function mechanisms and a retained sensitivity to the use-dependent blocker memantine. However, an objectifiable beneficial treatment response in the respective patients still remains to be demonstrated. Conclusions In addition to previously known features of intellectual disability, epilepsy and autism, we found evidence that GRIN2B encephalopathy is also frequently associated with movement disorder, cortical visual impairment and MCD revealing novel phenotypic consequences of channelopathies. PMID:28377535
Relations of mitochondrial genetic variants to measures of vascular function.
Fetterman, Jessica L; Liu, Chunyu; Mitchell, Gary F; Vasan, Ramachandran S; Benjamin, Emelia J; Vita, Joseph A; Hamburg, Naomi M; Levy, Daniel
2018-05-01
Mitochondrial genetic variation with resultant alterations in oxidative phosphorylation may influence vascular function and contribute to cardiovascular disease susceptibility. We assessed relations of peptide-encoding variants in the mitochondrial genome with measures of vascular function in Framingham Heart Study participants. Of 258 variants assessed, 40 were predicted to have functional consequences by bioinformatics programs. A maternal pattern of heritability was estimated to contribute to the variability of aortic stiffness. A putative association with a microvascular function measure was identified that requires replication. The methods we have developed can be applied to assess the relations of mitochondrial genetic variation to other phenotypes. Copyright © 2017 Elsevier B.V. and Mitochondria Research Society. All rights reserved.
Novel origins of copy number variation in the dog genome
2012-01-01
Background Copy number variants (CNVs) account for substantial variation between genomes and are a major source of normal and pathogenic phenotypic differences. The dog is an ideal model to investigate mutational mechanisms that generate CNVs as its genome lacks a functional ortholog of the PRDM9 gene implicated in recombination and CNV formation in humans. Here we comprehensively assay CNVs using high-density array comparative genomic hybridization in 50 dogs from 17 dog breeds and 3 gray wolves. Results We use a stringent new method to identify a total of 430 high-confidence CNV loci, which range in size from 9 kb to 1.6 Mb and span 26.4 Mb, or 1.08%, of the assayed dog genome, overlapping 413 annotated genes. Of CNVs observed in each breed, 98% are also observed in multiple breeds. CNVs predicted to disrupt gene function are significantly less common than expected by chance. We identify a significant overrepresentation of peaks of GC content, previously shown to be enriched in dog recombination hotspots, in the vicinity of CNV breakpoints. Conclusions A number of the CNVs identified by this study are candidates for generating breed-specific phenotypes. Purifying selection seems to be a major factor shaping structural variation in the dog genome, suggesting that many CNVs are deleterious. Localized peaks of GC content appear to be novel sites of CNV formation in the dog genome by non-allelic homologous recombination, potentially activated by the loss of PRDM9. These sequence features may have driven genome instability and chromosomal rearrangements throughout canid evolution. PMID:22916802
Wortmann, Saskia B; Ziętkiewicz, Szymon; Kousi, Maria; Szklarczyk, Radek; Haack, Tobias B; Gersting, Søren W; Muntau, Ania C; Rakovic, Aleksandar; Renkema, G Herma; Rodenburg, Richard J; Strom, Tim M; Meitinger, Thomas; Rubio-Gozalbo, M Estela; Chrusciel, Elzbieta; Distelmaier, Felix; Golzio, Christelle; Jansen, Joop H; van Karnebeek, Clara; Lillquist, Yolanda; Lücke, Thomas; Õunap, Katrin; Zordania, Riina; Yaplito-Lee, Joy; van Bokhoven, Hans; Spelbrink, Johannes N; Vaz, Frédéric M; Pras-Raves, Mia; Ploski, Rafal; Pronicka, Ewa; Klein, Christine; Willemsen, Michel A A P; de Brouwer, Arjan P M; Prokisch, Holger; Katsanis, Nicholas; Wevers, Ron A
2015-02-05
We studied a group of individuals with elevated urinary excretion of 3-methylglutaconic acid, neutropenia that can develop into leukemia, a neurological phenotype ranging from nonprogressive intellectual disability to a prenatal encephalopathy with progressive brain atrophy, movement disorder, cataracts, and early death. Exome sequencing of two unrelated individuals and subsequent Sanger sequencing of 16 individuals with an overlapping phenotype identified a total of 14 rare, predicted deleterious alleles in CLPB in 14 individuals from 9 unrelated families. CLPB encodes caseinolytic peptidase B homolog ClpB, a member of the AAA+ protein family. To evaluate the relevance of CLPB in the pathogenesis of this syndrome, we developed a zebrafish model and an in vitro assay to measure ATPase activity. Suppression of clpb in zebrafish embryos induced a central nervous system phenotype that was consistent with cerebellar and cerebral atrophy that could be rescued by wild-type, but not mutant, human CLPB mRNA. Consistent with these data, the loss-of-function effect of one of the identified variants (c.1222A>G [p.Arg408Gly]) was supported further by in vitro evidence with the mutant peptides abolishing ATPase function. Additionally, we show that CLPB interacts biochemically with ATP2A2, known to be involved in apoptotic processes in severe congenital neutropenia (SCN) 3 (Kostmann disease [caused by HAX1 mutations]). Taken together, mutations in CLPB define a syndrome with intellectual disability, congenital neutropenia, progressive brain atrophy, movement disorder, cataracts, and 3-methylglutaconic aciduria. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Morales, Eva; Julvez, Jordi; Torrent, Maties; de Cid, Rafael; Guxens, Mònica; Bustamante, Mariona; Künzli, Nino; Sunyer, Jordi
2009-06-01
The authors investigated the association of early-life exposure to indoor air pollution with neuropsychological development in preschoolers and assessed whether this association differs by glutathione-S-transferase gene (GSTP1) polymorphisms. A prospective, population-based birth cohort was set up in Menorca, Spain, in 1997-1999 (n = 482). Children were assessed for cognitive functioning (McCarthy Scales of Children's Abilities) and attention-hyperactivity behaviors (Diagnostic and Statistical Manual of Mental Disorders, 4th Edition) at age 4 years. During the first 3 months of life, information about gas appliances at home and indoor nitrogen dioxide concentration was collected at each participant's home (n = 398, 83%). Genotyping was conducted for the GSTP1 coding variant Ile105Val. Use of gas appliances was inversely associated with cognitive outcomes (beta coefficient for general cognition = -5.10, 95% confidence interval (CI): -9.92, -0.28; odds ratio for inattention symptoms = 3.59, 95% CI: 1.14, 11.33), independent of social class and other confounders. Nitrogen dioxide concentrations were associated with cognitive function (a decrease of 0.27 point per 1 ppb, 95% CI: -0.48, -0.07) and inattention symptoms (odds ratio = 1.06, 95% CI: 1.01, 1.12). The deleterious effect of indoor pollution from gas appliances on neuropsychological outcomes was stronger in children with the GSTP1 Val-105 allele. Early-life exposure to air pollution from indoor gas appliances may be negatively associated with neuropsychological development through the first 4 years of life, particularly among genetically susceptible children.
Lan, Tian; Yan, Xia; Li, Zhuo; Xu, Xin; Mao, Qi; Ma, Weijie; Hong, Zhenfei; Chen, Xi; Yuan, Yufeng
2017-06-01
Hepatocellular carcinoma is third leading cause of cancer-related death globally. Long non-coding RNA plasmacytoma variant translocation 1 has been reported to be dysregulated and plays a crucial role in various cancers. In this study, we investigated the interactions between plasmacytoma variant translocation 1 and miR-186-5p in the progression of hepatocellular carcinoma and explored the functional significance of plasmacytoma variant translocation 1. It was determined that plasmacytoma variant translocation 1 was significantly higher, while miR-186-5p was statistically lower in the hepatocellular carcinoma tissues than that in the adjacent normal tissues. Using gain-of-function and loss-of-function methods, our results revealed that plasmacytoma variant translocation 1 affected hepatocellular carcinoma cells proliferation, invasion, and migration. It was found that there was direct interaction between miR-186-5p and the binding site of plasmacytoma variant translocation 1 by performing dual-luciferase assay and RNA immunoprecipitation assay. Furthermore, it was identified that plasmacytoma variant translocation 1 regulated the expression of the miR-186-5p target gene, yes-associated protein 1. Taken together, plasmacytoma variant translocation 1 served as an endogenous sponge for miR-186-5p to reduce its inhibiting effect on yes-associated protein 1 and thus promoted the tumorigenesis of hepatocellular carcinoma.
The functional spectrum of low-frequency coding variation.
Marth, Gabor T; Yu, Fuli; Indap, Amit R; Garimella, Kiran; Gravel, Simon; Leong, Wen Fung; Tyler-Smith, Chris; Bainbridge, Matthew; Blackwell, Tom; Zheng-Bradley, Xiangqun; Chen, Yuan; Challis, Danny; Clarke, Laura; Ball, Edward V; Cibulskis, Kristian; Cooper, David N; Fulton, Bob; Hartl, Chris; Koboldt, Dan; Muzny, Donna; Smith, Richard; Sougnez, Carrie; Stewart, Chip; Ward, Alistair; Yu, Jin; Xue, Yali; Altshuler, David; Bustamante, Carlos D; Clark, Andrew G; Daly, Mark; DePristo, Mark; Flicek, Paul; Gabriel, Stacey; Mardis, Elaine; Palotie, Aarno; Gibbs, Richard
2011-09-14
Rare coding variants constitute an important class of human genetic variation, but are underrepresented in current databases that are based on small population samples. Recent studies show that variants altering amino acid sequence and protein function are enriched at low variant allele frequency, 2 to 5%, but because of insufficient sample size it is not clear if the same trend holds for rare variants below 1% allele frequency. The 1000 Genomes Exon Pilot Project has collected deep-coverage exon-capture data in roughly 1,000 human genes, for nearly 700 samples. Although medical whole-exome projects are currently afoot, this is still the deepest reported sampling of a large number of human genes with next-generation technologies. According to the goals of the 1000 Genomes Project, we created effective informatics pipelines to process and analyze the data, and discovered 12,758 exonic SNPs, 70% of them novel, and 74% below 1% allele frequency in the seven population samples we examined. Our analysis confirms that coding variants below 1% allele frequency show increased population-specificity and are enriched for functional variants. This study represents a large step toward detecting and interpreting low frequency coding variation, clearly lays out technical steps for effective analysis of DNA capture data, and articulates functional and population properties of this important class of genetic variation.
Mulkey, Sarah B; Ben-Zeev, Bruria; Nicolai, Joost; Carroll, John L; Grønborg, Sabine; Jiang, Yong-Hui; Joshi, Nishtha; Kelly, Megan; Koolen, David A; Mikati, Mohamad A; Park, Kristen; Pearl, Phillip L; Scheffer, Ingrid E; Spillmann, Rebecca C; Taglialatela, Maurizio; Vieker, Silvia; Weckhuysen, Sarah; Cooper, Edward C; Cilio, Maria Roberta
2017-03-01
To analyze whether KCNQ2 R201C and R201H variants, which show atypical gain-of-function electrophysiologic properties in vitro, have a distinct clinical presentation and outcome. Ten children with heterozygous, de novo KCNQ2 R201C or R201H variants were identified worldwide, using an institutional review board (IRB)-approved KCNQ2 patient registry and database. We reviewed medical records and, where possible, interviewed parents and treating physicians using a structured, detailed phenotype inventory focusing on the neonatal presentation and subsequent course. Nine patients had encephalopathy from birth and presented with prominent startle-like myoclonus, which could be triggered by sound or touch. In seven patients, electroencephalography (EEG) was performed in the neonatal period and showed a burst-suppression pattern. However, myoclonus did not have an EEG correlate. In many patients the paroxysmal movements were misdiagnosed as seizures. Seven patients developed epileptic spasms in infancy. In all patients, EEG showed a slow background and multifocal epileptiform discharges later in life. Other prominent features included respiratory dysfunction (perinatal respiratory failure and/or chronic hypoventilation), hypomyelination, reduced brain volume, and profound developmental delay. One patient had a later onset, and sequencing indicated that a low abundance (~20%) R201C variant had arisen by postzygotic mosaicism. Heterozygous KCNQ2 R201C and R201H gain-of-function variants present with profound neonatal encephalopathy in the absence of neonatal seizures. Neonates present with nonepileptic myoclonus that is often misdiagnosed and treated as seizures. Prognosis is poor. This clinical presentation is distinct from the phenotype associated with loss-of-function variants, supporting the value of in vitro functional screening. These findings suggest that gain-of-function and loss-of-function variants need different targeted therapeutic approaches. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
A novel ALS-associated variant in UBQLN4 regulates motor axon morphogenesis.
Edens, Brittany M; Yan, Jianhua; Miller, Nimrod; Deng, Han-Xiang; Siddique, Teepu; Ma, Yongchao C
2017-05-02
The etiological underpinnings of amyotrophic lateral sclerosis (ALS) are complex and incompletely understood, although contributions to pathogenesis by regulators of proteolytic pathways have become increasingly apparent. Here, we present a novel variant in UBQLN4 that is associated with ALS and show that its expression compromises motor axon morphogenesis in mouse motor neurons and in zebrafish. We further demonstrate that the ALS-associated UBQLN4 variant impairs proteasomal function, and identify the Wnt signaling pathway effector beta-catenin as a UBQLN4 substrate. Inhibition of beta-catenin function rescues the UBQLN4 variant-induced motor axon phenotypes. These findings provide a strong link between the regulation of axonal morphogenesis and a new ALS-associated gene variant mediated by protein degradation pathways.
Kang, Ho-Jin; Song, Im-Sook; Shin, Ho Jung; Kim, Woo-Young; Lee, Choong-Hee; Shim, Joo-Cheol; Zhou, Hong-Hao; Lee, Sang Seop; Shin, Jae-Gook
2007-04-01
Genetic variants of three human organic cation transporter genes (hOCTs) were extensively explored in a Korean population. The functional changes of hOCT2 variants were evaluated in vitro, and those genetic polymorphisms of hOCTs were compared among different ethnic populations. From direct DNA sequencing, 7 of 13 coding variants were nonsynonymous single-nucleotide polymorphisms (SNPs), including four variants from hOCT1 (F160L, P283L, P341L, and M408V) and three from hOCT2 (T199I, T201M, and A270S), whereas 6 were synonymous SNPs. The linkage disequilibrium analysis presented for three independent LD blocks for each hOCT gene showed no significant linkage among all three hOCT genes. The transporter activities of MDCK cells that overexpress the hOCT2-T199I, -T201M, and -A270S variants showed significantly decreased uptake of [(3)H]methyl-4-phenylpyridinium acetate (MPP(+)) or [(14)C]tetraethylammonium compared with those cells that overexpress wild-type hOCT2, and the estimated kinetic parameters of these variants for [(3)H]MPP(+) uptake in oocytes showed a 2- to 5-fold increase in K(m) values and a 10- to 20-fold decrease in V(max) values. The allele frequencies of the five functional variants hOCT1-P283L, -P341L, and hOCT2-T199I, -T201M, and -A270S were 1.3, 17, 0.7, 0.7, and 11%, respectively, in a Korean population; the frequency distributions of these variants were not significantly different from those of Chinese and Vietnamese populations. These findings suggest that genetic variants of hOCTs are not linked among three genes in a Korean population, and several of the hOCT genetic variants cause decreased transport activity in vitro compared with the wild type, although the clinical relevance of these variants remains to be evaluated.
Habegger, Lukas; Balasubramanian, Suganthi; Chen, David Z.; Khurana, Ekta; Sboner, Andrea; Harmanci, Arif; Rozowsky, Joel; Clarke, Declan; Snyder, Michael; Gerstein, Mark
2012-01-01
Summary: The functional annotation of variants obtained through sequencing projects is generally assumed to be a simple intersection of genomic coordinates with genomic features. However, complexities arise for several reasons, including the differential effects of a variant on alternatively spliced transcripts, as well as the difficulty in assessing the impact of small insertions/deletions and large structural variants. Taking these factors into consideration, we developed the Variant Annotation Tool (VAT) to functionally annotate variants from multiple personal genomes at the transcript level as well as obtain summary statistics across genes and individuals. VAT also allows visualization of the effects of different variants, integrates allele frequencies and genotype data from the underlying individuals and facilitates comparative analysis between different groups of individuals. VAT can either be run through a command-line interface or as a web application. Finally, in order to enable on-demand access and to minimize unnecessary transfers of large data files, VAT can be run as a virtual machine in a cloud-computing environment. Availability and Implementation: VAT is implemented in C and PHP. The VAT web service, Amazon Machine Image, source code and detailed documentation are available at vat.gersteinlab.org. Contact: lukas.habegger@yale.edu or mark.gerstein@yale.edu Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:22743228
Torrell, Helena; Salas, Antonio; Abasolo, Nerea; Morén, Constanza; Garrabou, Glòria; Valero, Joaquín; Alonso, Yolanda; Vilella, Elisabet; Costas, Javier; Martorell, Lourdes
2014-10-01
It has been reported that certain genetic factors involved in schizophrenia could be located in the mitochondrial DNA (mtDNA). Therefore, we hypothesized that mtDNA mutations and/or variants would be present in schizophrenia patients and may be related to schizophrenia characteristics and mitochondrial function. This study was performed in three steps: (1) identification of pathogenic mutations and variants in 14 schizophrenia patients with an apparent maternal inheritance of the disease by sequencing the entire mtDNA; (2) case-control association study of 23 variants identified in step 1 (16 missense, 3 rRNA, and 4 tRNA variants) in 495 patients and 615 controls, and (3) analyses of the associated variants according to the clinical, psychopathological, and neuropsychological characteristics and according to the oxidative and enzymatic activities of the mitochondrial respiratory chain. We did not identify pathogenic mtDNA mutations in the 14 sequenced patients. Two known variants were nominally associated with schizophrenia and were further studied. The MT-RNR2 1811A > G variant likely does not play a major role in schizophrenia, as it was not associated with clinical, psychopathological, or neuropsychological variables, and the MT-ATP6 9110T > C p.Ile195Thr variant did not result in differences in the oxidative and enzymatic functions of the mitochondrial respiratory chain. The patients with apparent maternal inheritance of schizophrenia did not exhibit any mutations in their mtDNA. The variants nominally associated with schizophrenia in the present study were not related either to phenotypic characteristics or to mitochondrial function. We did not find evidence pointing to a role for mtDNA sequence variation in schizophrenia. © 2014 Wiley Periodicals, Inc.
Ferri, Lorenzo; Malesci, Duccio; Fioravanti, Antonella; Bagordo, Gaia; Filippini, Armando; Ficcadenti, Anna; Manna, Raffaele; Antuzzi, Daniela; Verrecchia, Elena; Donati, Ilaria; Mignani, Renzo; Cavicchi, Catia; Guerrini, Renzo; Morrone, Amelia
2018-06-01
Allelic heterogeneity is an important feature of the GLA gene for which almost 900 known genetic variants have been discovered so far. Pathogenetic GLA variants cause alpha-galactosidase A (α-Gal A) enzyme deficiency leading to the X-linked lysosomal storage disorder Fabry disease (FD). Benign GLA intronic and exonic variants (e.g. pseudodeficient p.Asp313Tyr) have also been described. Some GLA missense variants, previously deemed to be pathogenetic (e.g. p.Glu66Gln and p.Arg118Cys), they have been reclassified as benign after re-evaluation by functional and population studies. Hence, the functional role of novel GLA variants should be investigated to assess their clinical relevance. We identified six GLA variants in 4 males and 2 females who exhibited symptoms of FD: c.159C>G p.(Asn53Lys), c.400T>C p.(Tyr134His), c.680G>C (p.Arg227Pro), c.815A>T p.(Asn272Ile), c.907A>T p.(Ile303Phe) and c.1163_1165delTCC (p.Leu388del). We evaluated their impact on the α-Gal A protein by bioinformatic analysis and homology modelling, by analysis of the GLA mRNA, and by site-directed mutagenesis and in vitro expression studies. We also measured their responsiveness to the pharmacological chaperone DGJ. The six detected GLA variants cause deficient α-Gal A activity and impairment or loss of the protein wild-type structure. We found p.Asn53Lys and p.Ile303Phe variants to be susceptible to DGJ. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Predicting the Functional Impact of KCNQ1 Variants of Unknown Significance.
Li, Bian; Mendenhall, Jeffrey L; Kroncke, Brett M; Taylor, Keenan C; Huang, Hui; Smith, Derek K; Vanoye, Carlos G; Blume, Jeffrey D; George, Alfred L; Sanders, Charles R; Meiler, Jens
2017-10-01
An emerging standard-of-care for long-QT syndrome uses clinical genetic testing to identify genetic variants of the KCNQ1 potassium channel. However, interpreting results from genetic testing is confounded by the presence of variants of unknown significance for which there is inadequate evidence of pathogenicity. In this study, we curated from the literature a high-quality set of 107 functionally characterized KCNQ1 variants. Based on this data set, we completed a detailed quantitative analysis on the sequence conservation patterns of subdomains of KCNQ1 and the distribution of pathogenic variants therein. We found that conserved subdomains generally are critical for channel function and are enriched with dysfunctional variants. Using this experimentally validated data set, we trained a neural network, designated Q1VarPred, specifically for predicting the functional impact of KCNQ1 variants of unknown significance. The estimated predictive performance of Q1VarPred in terms of Matthew's correlation coefficient and area under the receiver operating characteristic curve were 0.581 and 0.884, respectively, superior to the performance of 8 previous methods tested in parallel. Q1VarPred is publicly available as a web server at http://meilerlab.org/q1varpred. Although a plethora of tools are available for making pathogenicity predictions over a genome-wide scale, previous tools fail to perform in a robust manner when applied to KCNQ1. The contrasting and favorable results for Q1VarPred suggest a promising approach, where a machine-learning algorithm is tailored to a specific protein target and trained with a functionally validated data set to calibrate informatics tools. © 2017 American Heart Association, Inc.
Buggert, Marcus; Norström, Melissa M; Salemi, Marco; Hecht, Frederick M; Karlsson, Annika C
2014-01-01
Viral escape from HIV-1-specific CD8+ T cells has been demonstrated in numerous studies previously. However, the qualitative features driving the emergence of mutations within epitopes are still unclear. In this study, we aimed to distinguish whether specific functional characteristics of HLA-B*5701-restricted CD8+ T cells influence the emergence of mutations in high-risk progressors (HRPs) versus low-risk progressors (LRPs). Single genome sequencing was performed to detect viral mutations (variants) within seven HLA-B*5701-restricted epitopes in Gag (n = 4) and Nef (n = 3) in six untreated HLA-B*5701 subjects followed from early infection up to seven years. Several well-characterized effector markers (IFN-γ, IL-2, MIP-1β, TNF, CD107a and perforin) were identified by flow cytometry following autologous (initial and emerging variant/s) epitope stimulations. This study demonstrates that specific functional attributes may facilitate the outgrowth of mutations within HLA-B*5701-restricted epitopes. A significantly lower fraction of IL-2 producing cells and a decrease in functional avidity and polyfunctional sensitivity were evident in emerging epitope variants compared to the initial autologous epitopes. Interestingly, the HRPs mainly drove these differences, while the LRPs maintained a directed and maintained functional response against emerging epitope variants. In addition, LRPs induced improved cell cycle progression and perforin up-regulation after autologous and emerging epitope variant stimulations in contrast to HRPs. The maintained quantitative and qualitative features of the CD8+ T cell responses in LRPs toward emerging epitope variants provide insights into why HLA-B*5701 subjects have different risks of HIV-1 disease progression. PMID:24740510
Kelvin Lee, Kai Wei; Hoong Yam, Joey Kuok; Mukherjee, Manisha; Periasamy, Saravanan; Steinberg, Peter D; Kjelleberg, Staffan; Rice, Scott A
2016-01-01
Diversity has a key role in the dynamics and resilience of communities and both interspecific (species) and intraspecific (genotypic) diversity can have important effects on community structure and function. However, a critical and unresolved question for understanding the ecology of a community is to what extent these two levels of diversity are functionally substitutable? Here we show, for a mixed-species biofilm community composed of Pseudomonas aeruginosa, P. protegens and Klebsiella pneumoniae, that increased interspecific diversity reduces and functionally substitutes for intraspecific diversity in mediating tolerance to stress. Biofilm populations generated high percentages of genotypic variants, which were largely absent in biofilm communities. Biofilms with either high intra- or interspecific diversity were more tolerant to SDS stress than biofilms with no or low diversity. Unexpectedly, genotypic variants decreased the tolerance of biofilm communities when experimentally introduced into the communities. For example, substituting P. protegens wild type with its genotypic variant within biofilm communities decreased SDS tolerance by twofold, apparently due to perturbation of interspecific interactions. A decrease in variant frequency was also observed when biofilm populations were exposed to cell-free effluents from another species, suggesting that extracellular factors have a role in selection against the appearance of intraspecific variants. This work demonstrates the functional substitution of inter- and intraspecific diversity for an emergent property of biofilms. It also provides a potential explanation for a long-standing paradox in microbiology, in which morphotypic variants are common in laboratory grown biofilm populations, but are rare in diverse, environmental biofilm communities. PMID:26405829
Keel, B N; Nonneman, D J; Rohrer, G A
2017-08-01
Genetic variants detected from sequence have been used to successfully identify causal variants and map complex traits in several organisms. High and moderate impact variants, those expected to alter or disrupt the protein coded by a gene and those that regulate protein production, likely have a more significant effect on phenotypic variation than do other types of genetic variants. Hence, a comprehensive list of these functional variants would be of considerable interest in swine genomic studies, particularly those targeting fertility and production traits. Whole-genome sequence was obtained from 72 of the founders of an intensely phenotyped experimental swine herd at the U.S. Meat Animal Research Center (USMARC). These animals included all 24 of the founding boars (12 Duroc and 12 Landrace) and 48 Yorkshire-Landrace composite sows. Sequence reads were mapped to the Sscrofa10.2 genome build, resulting in a mean of 6.1 fold (×) coverage per genome. A total of 22 342 915 high confidence SNPs were identified from the sequenced genomes. These included 21 million previously reported SNPs and 79% of the 62 163 SNPs on the PorcineSNP60 BeadChip assay. Variation was detected in the coding sequence or untranslated regions (UTRs) of 87.8% of the genes in the porcine genome: loss-of-function variants were predicted in 504 genes, 10 202 genes contained nonsynonymous variants, 10 773 had variation in UTRs and 13 010 genes contained synonymous variants. Approximately 139 000 SNPs were classified as loss-of-function, nonsynonymous or regulatory, which suggests that over 99% of the variation detected in our pigs could potentially be ignored, allowing us to focus on a much smaller number of functional SNPs during future analyses. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Han, Ying; Hazelett, Dennis J.; Wiklund, Fredrik; Schumacher, Fredrick R.; Stram, Daniel O.; Berndt, Sonja I.; Wang, Zhaoming; Rand, Kristin A.; Hoover, Robert N.; Machiela, Mitchell J.; Yeager, Merideth; Burdette, Laurie; Chung, Charles C.; Hutchinson, Amy; Yu, Kai; Xu, Jianfeng; Travis, Ruth C.; Key, Timothy J.; Siddiq, Afshan; Canzian, Federico; Takahashi, Atsushi; Kubo, Michiaki; Stanford, Janet L.; Kolb, Suzanne; Gapstur, Susan M.; Diver, W. Ryan; Stevens, Victoria L.; Strom, Sara S.; Pettaway, Curtis A.; Al Olama, Ali Amin; Kote-Jarai, Zsofia; Eeles, Rosalind A.; Yeboah, Edward D.; Tettey, Yao; Biritwum, Richard B.; Adjei, Andrew A.; Tay, Evelyn; Truelove, Ann; Niwa, Shelley; Chokkalingam, Anand P.; Isaacs, William B.; Chen, Constance; Lindstrom, Sara; Le Marchand, Loic; Giovannucci, Edward L.; Pomerantz, Mark; Long, Henry; Li, Fugen; Ma, Jing; Stampfer, Meir; John, Esther M.; Ingles, Sue A.; Kittles, Rick A.; Murphy, Adam B.; Blot, William J.; Signorello, Lisa B.; Zheng, Wei; Albanes, Demetrius; Virtamo, Jarmo; Weinstein, Stephanie; Nemesure, Barbara; Carpten, John; Leske, M. Cristina; Wu, Suh-Yuh; Hennis, Anselm J. M.; Rybicki, Benjamin A.; Neslund-Dudas, Christine; Hsing, Ann W.; Chu, Lisa; Goodman, Phyllis J.; Klein, Eric A.; Zheng, S. Lilly; Witte, John S.; Casey, Graham; Riboli, Elio; Li, Qiyuan; Freedman, Matthew L.; Hunter, David J.; Gronberg, Henrik; Cook, Michael B.; Nakagawa, Hidewaki; Kraft, Peter; Chanock, Stephen J.; Easton, Douglas F.; Henderson, Brian E.; Coetzee, Gerhard A.; Conti, David V.; Haiman, Christopher A.
2015-01-01
Interpretation of biological mechanisms underlying genetic risk associations for prostate cancer is complicated by the relatively large number of risk variants (n = 100) and the thousands of surrogate SNPs in linkage disequilibrium. Here, we combined three distinct approaches: multiethnic fine-mapping, putative functional annotation (based upon epigenetic data and genome-encoded features), and expression quantitative trait loci (eQTL) analyses, in an attempt to reduce this complexity. We examined 67 risk regions using genotyping and imputation-based fine-mapping in populations of European (cases/controls: 8600/6946), African (cases/controls: 5327/5136), Japanese (cases/controls: 2563/4391) and Latino (cases/controls: 1034/1046) ancestry. Markers at 55 regions passed a region-specific significance threshold (P-value cutoff range: 3.9 × 10−4–5.6 × 10−3) and in 30 regions we identified markers that were more significantly associated with risk than the previously reported variants in the multiethnic sample. Novel secondary signals (P < 5.0 × 10−6) were also detected in two regions (rs13062436/3q21 and rs17181170/3p12). Among 666 variants in the 55 regions with P-values within one order of magnitude of the most-associated marker, 193 variants (29%) in 48 regions overlapped with epigenetic or other putative functional marks. In 11 of the 55 regions, cis-eQTLs were detected with nearby genes. For 12 of the 55 regions (22%), the most significant region-specific, prostate-cancer associated variant represented the strongest candidate functional variant based on our annotations; the number of regions increased to 20 (36%) and 27 (49%) when examining the 2 and 3 most significantly associated variants in each region, respectively. These results have prioritized subsets of candidate variants for downstream functional evaluation. PMID:26162851
Han, Ying; Hazelett, Dennis J; Wiklund, Fredrik; Schumacher, Fredrick R; Stram, Daniel O; Berndt, Sonja I; Wang, Zhaoming; Rand, Kristin A; Hoover, Robert N; Machiela, Mitchell J; Yeager, Merideth; Burdette, Laurie; Chung, Charles C; Hutchinson, Amy; Yu, Kai; Xu, Jianfeng; Travis, Ruth C; Key, Timothy J; Siddiq, Afshan; Canzian, Federico; Takahashi, Atsushi; Kubo, Michiaki; Stanford, Janet L; Kolb, Suzanne; Gapstur, Susan M; Diver, W Ryan; Stevens, Victoria L; Strom, Sara S; Pettaway, Curtis A; Al Olama, Ali Amin; Kote-Jarai, Zsofia; Eeles, Rosalind A; Yeboah, Edward D; Tettey, Yao; Biritwum, Richard B; Adjei, Andrew A; Tay, Evelyn; Truelove, Ann; Niwa, Shelley; Chokkalingam, Anand P; Isaacs, William B; Chen, Constance; Lindstrom, Sara; Le Marchand, Loic; Giovannucci, Edward L; Pomerantz, Mark; Long, Henry; Li, Fugen; Ma, Jing; Stampfer, Meir; John, Esther M; Ingles, Sue A; Kittles, Rick A; Murphy, Adam B; Blot, William J; Signorello, Lisa B; Zheng, Wei; Albanes, Demetrius; Virtamo, Jarmo; Weinstein, Stephanie; Nemesure, Barbara; Carpten, John; Leske, M Cristina; Wu, Suh-Yuh; Hennis, Anselm J M; Rybicki, Benjamin A; Neslund-Dudas, Christine; Hsing, Ann W; Chu, Lisa; Goodman, Phyllis J; Klein, Eric A; Zheng, S Lilly; Witte, John S; Casey, Graham; Riboli, Elio; Li, Qiyuan; Freedman, Matthew L; Hunter, David J; Gronberg, Henrik; Cook, Michael B; Nakagawa, Hidewaki; Kraft, Peter; Chanock, Stephen J; Easton, Douglas F; Henderson, Brian E; Coetzee, Gerhard A; Conti, David V; Haiman, Christopher A
2015-10-01
Interpretation of biological mechanisms underlying genetic risk associations for prostate cancer is complicated by the relatively large number of risk variants (n = 100) and the thousands of surrogate SNPs in linkage disequilibrium. Here, we combined three distinct approaches: multiethnic fine-mapping, putative functional annotation (based upon epigenetic data and genome-encoded features), and expression quantitative trait loci (eQTL) analyses, in an attempt to reduce this complexity. We examined 67 risk regions using genotyping and imputation-based fine-mapping in populations of European (cases/controls: 8600/6946), African (cases/controls: 5327/5136), Japanese (cases/controls: 2563/4391) and Latino (cases/controls: 1034/1046) ancestry. Markers at 55 regions passed a region-specific significance threshold (P-value cutoff range: 3.9 × 10(-4)-5.6 × 10(-3)) and in 30 regions we identified markers that were more significantly associated with risk than the previously reported variants in the multiethnic sample. Novel secondary signals (P < 5.0 × 10(-6)) were also detected in two regions (rs13062436/3q21 and rs17181170/3p12). Among 666 variants in the 55 regions with P-values within one order of magnitude of the most-associated marker, 193 variants (29%) in 48 regions overlapped with epigenetic or other putative functional marks. In 11 of the 55 regions, cis-eQTLs were detected with nearby genes. For 12 of the 55 regions (22%), the most significant region-specific, prostate-cancer associated variant represented the strongest candidate functional variant based on our annotations; the number of regions increased to 20 (36%) and 27 (49%) when examining the 2 and 3 most significantly associated variants in each region, respectively. These results have prioritized subsets of candidate variants for downstream functional evaluation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Tachmazidou, Ioanna; Dedoussis, George; Southam, Lorraine; Farmaki, Aliki-Eleni; Ritchie, Graham R. S.; Xifara, Dionysia K.; Matchan, Angela; Hatzikotoulas, Konstantinos; Rayner, Nigel W.; Chen, Yuan; Pollin, Toni I.; O’Connell, Jeffrey R.; Yerges-Armstrong, Laura M.; Kiagiadaki, Chrysoula; Panoutsopoulou, Kalliope; Schwartzentruber, Jeremy; Moutsianas, Loukas; Tsafantakis, Emmanouil; Tyler-Smith, Chris; McVean, Gil; Xue, Yali; Zeggini, Eleftheria
2013-01-01
Isolated populations can empower the identification of rare variation associated with complex traits through next generation association studies, but the generalizability of such findings remains unknown. Here we genotype 1,267 individuals from a Greek population isolate on the Illumina HumanExome Beadchip, in search of functional coding variants associated with lipids traits. We find genome-wide significant evidence for association between R19X, a functional variant in APOC3, with increased high-density lipoprotein and decreased triglycerides levels. Approximately 3.8% of individuals are heterozygous for this cardioprotective variant, which was previously thought to be private to the Amish founder population. R19X is rare (<0.05% frequency) in outbred European populations. The increased frequency of R19X enables discovery of this lipid traits signal at genome-wide significance in a small sample size. This work exemplifies the value of isolated populations in successfully detecting transferable rare variant associations of high medical relevance. PMID:24343240
Tachmazidou, Ioanna; Dedoussis, George; Southam, Lorraine; Farmaki, Aliki-Eleni; Ritchie, Graham R S; Xifara, Dionysia K; Matchan, Angela; Hatzikotoulas, Konstantinos; Rayner, Nigel W; Chen, Yuan; Pollin, Toni I; O'Connell, Jeffrey R; Yerges-Armstrong, Laura M; Kiagiadaki, Chrysoula; Panoutsopoulou, Kalliope; Schwartzentruber, Jeremy; Moutsianas, Loukas; Tsafantakis, Emmanouil; Tyler-Smith, Chris; McVean, Gil; Xue, Yali; Zeggini, Eleftheria
2013-01-01
Isolated populations can empower the identification of rare variation associated with complex traits through next generation association studies, but the generalizability of such findings remains unknown. Here we genotype 1,267 individuals from a Greek population isolate on the Illumina HumanExome Beadchip, in search of functional coding variants associated with lipids traits. We find genome-wide significant evidence for association between R19X, a functional variant in APOC3, with increased high-density lipoprotein and decreased triglycerides levels. Approximately 3.8% of individuals are heterozygous for this cardioprotective variant, which was previously thought to be private to the Amish founder population. R19X is rare (<0.05% frequency) in outbred European populations. The increased frequency of R19X enables discovery of this lipid traits signal at genome-wide significance in a small sample size. This work exemplifies the value of isolated populations in successfully detecting transferable rare variant associations of high medical relevance.
Cho, Namjin; Hwang, Byungjin; Yoon, Jung-ki; Park, Sangun; Lee, Joongoo; Seo, Han Na; Lee, Jeewon; Huh, Sunghoon; Chung, Jinsoo; Bang, Duhee
2015-09-21
Interpreting epistatic interactions is crucial for understanding evolutionary dynamics of complex genetic systems and unveiling structure and function of genetic pathways. Although high resolution mapping of en masse variant libraries renders molecular biologists to address genotype-phenotype relationships, long-read sequencing technology remains indispensable to assess functional relationship between mutations that lie far apart. Here, we introduce JigsawSeq for multiplexed sequence identification of pooled gene variant libraries by combining a codon-based molecular barcoding strategy and de novo assembly of short-read data. We first validate JigsawSeq on small sub-pools and observed high precision and recall at various experimental settings. With extensive simulations, we then apply JigsawSeq to large-scale gene variant libraries to show that our method can be reliably scaled using next-generation sequencing. JigsawSeq may serve as a rapid screening tool for functional genomics and offer the opportunity to explore evolutionary trajectories of protein variants.
Expansion of phenotype and genotypic data in CRB2-related syndrome.
Lamont, Ryan E; Tan, Wen-Hann; Innes, A Micheil; Parboosingh, Jillian S; Schneidman-Duhovny, Dina; Rajkovic, Aleksandar; Pappas, John; Altschwager, Pablo; DeWard, Stephanie; Fulton, Anne; Gray, Kathryn J; Krall, Max; Mehta, Lakshmi; Rodan, Lance H; Saller, Devereux N; Steele, Deanna; Stein, Deborah; Yatsenko, Svetlana A; Bernier, François P; Slavotinek, Anne M
2016-10-01
Sequence variants in CRB2 cause a syndrome with greatly elevated maternal serum alpha-fetoprotein and amniotic fluid alpha-fetoprotein levels, cerebral ventriculomegaly and renal findings similar to Finnish congenital nephrosis. All reported patients have been homozygotes or compound heterozygotes for sequence variants in the Crumbs, Drosophila, Homolog of, 2 (CRB2) genes. Variants affecting CRB2 function have also been identified in four families with steroid resistant nephrotic syndrome, but without any other known systemic findings. We ascertained five, previously unreported individuals with biallelic variants in CRB2 that were predicted to affect function. We compiled the clinical features of reported cases and reviewed available literature for cases with features suggestive of CRB2-related syndrome in order to better understand the phenotypic and genotypic manifestations. Phenotypic analyses showed that ventriculomegaly was a common clinical manifestation (9/11 confirmed cases), in contrast to the original reports, in which patients were ascertained due to renal disease. Two children had minor eye findings and one was diagnosed with a B-cell lymphoma. Further genetic analysis identified one family with two affected siblings who were both heterozygous for a variant in NPHS2 predicted to affect function and separate families with sequence variants in NPHS4 and BBS7 in addition to the CRB2 variants. Our report expands the clinical phenotype of CRB2-related syndrome and establishes ventriculomegaly and hydrocephalus as frequent manifestations. We found additional sequence variants in genes involved in kidney development and ciliopathies in patients with CRB2-related syndrome, suggesting that these variants may modify the phenotype.
Natural Selection on Genes Related to Cardiovascular Health in High-Altitude Adapted Andeans.
Crawford, Jacob E; Amaru, Ricardo; Song, Jihyun; Julian, Colleen G; Racimo, Fernando; Cheng, Jade Yu; Guo, Xiuqing; Yao, Jie; Ambale-Venkatesh, Bharath; Lima, João A; Rotter, Jerome I; Stehlik, Josef; Moore, Lorna G; Prchal, Josef T; Nielsen, Rasmus
2017-11-02
The increase in red blood cell mass (polycythemia) due to the reduced oxygen availability (hypoxia) of residence at high altitude or other conditions is generally thought to be beneficial in terms of increasing tissue oxygen supply. However, the extreme polycythemia and accompanying increased mortality due to heart failure in chronic mountain sickness most likely reduces fitness. Tibetan highlanders have adapted to high altitude, possibly in part via the selection of genetic variants associated with reduced polycythemic response to hypoxia. In contrast, high-altitude-adapted Quechua- and Aymara-speaking inhabitants of the Andean Altiplano are not protected from high-altitude polycythemia in the same way, yet they exhibit other adaptive features for which the genetic underpinnings remain obscure. Here, we used whole-genome sequencing to scan high-altitude Andeans for signals of selection. The genes showing the strongest evidence of selection-including BRINP3, NOS2, and TBX5-are associated with cardiovascular development and function but are not in the response-to-hypoxia pathway. Using association mapping, we demonstrated that the haplotypes under selection are associated with phenotypic variations related to cardiovascular health. We hypothesize that selection in response to hypoxia in Andeans could have vascular effects and could serve to mitigate the deleterious effects of polycythemia rather than reduce polycythemia itself. Copyright © 2017. Published by Elsevier Inc.
Baruffini, Enrico; Dallabona, Cristina; Invernizzi, Federica; Yarham, John W; Melchionda, Laura; Blakely, Emma L; Lamantea, Eleonora; Donnini, Claudia; Santra, Saikat; Vijayaraghavan, Suresh; Roper, Helen P; Burlina, Alberto; Kopajtich, Robert; Walther, Anett; Strom, Tim M; Haack, Tobias B; Prokisch, Holger; Taylor, Robert W; Ferrero, Ileana; Zeviani, Massimo; Ghezzi, Daniele
2013-11-01
We report three families presenting with hypertrophic cardiomyopathy, lactic acidosis, and multiple defects of mitochondrial respiratory chain (MRC) activities. By direct sequencing of the candidate gene MTO1, encoding the mitochondrial-tRNA modifier 1, or whole exome sequencing analysis, we identified novel missense mutations. All MTO1 mutations were predicted to be deleterious on MTO1 function. Their pathogenic role was experimentally validated in a recombinant yeast model, by assessing oxidative growth, respiratory activity, mitochondrial protein synthesis, and complex IV activity. In one case, we also demonstrated that expression of wt MTO1 could rescue the respiratory defect in mutant fibroblasts. The severity of the yeast respiratory phenotypes partly correlated with the different clinical presentations observed in MTO1 mutant patients, although the clinical outcome was highly variable in patients with the same mutation and seemed also to depend on timely start of pharmacological treatment, centered on the control of lactic acidosis by dichloroacetate. Our results indicate that MTO1 mutations are commonly associated with a presentation of hypertrophic cardiomyopathy, lactic acidosis, and MRC deficiency, and that ad hoc recombinant yeast models represent a useful system to test the pathogenic potential of uncommon variants, and provide insight into their effects on the expression of a biochemical phenotype. © 2013 The Authors. *Human Mutation published by Wiley Periodicals, Inc.
Smith, Jennifer L; Tester, David J; Hall, Allison R; Burgess, Don E; Hsu, Chun-Chun; Claude Elayi, Samy; Anderson, Corey L; January, Craig T; Luo, Jonathan Z; Hartzel, Dustin N; Mirshahi, Uyenlinh L; Murray, Michael F; Mirshahi, Tooraj; Ackerman, Michael J; Delisle, Brian P
2018-05-01
Heterologous functional validation studies of putative long-QT syndrome subtype 2-associated variants clarify their pathological potential and identify disease mechanism(s) for most variants studied. The purpose of this study is to clarify the pathological potential for rare nonsynonymous KCNH2 variants seemingly associated with sudden infant death syndrome. Genetic testing of 292 sudden infant death syndrome cases identified 9 KCNH2 variants: E90K, R181Q, A190T, G294V, R791W, P967L, R1005W, R1047L, and Q1068R. Previous studies show R181Q-, P967L-, and R1047L-Kv11.1 channels function similar to wild-type Kv11.1 channels, whereas Q1068R-Kv11.1 channels accelerate inactivation gating. We studied the biochemical and biophysical properties for E90K-, G294V-, R791W-, and R1005W-Kv11.1 channels expressed in human embryonic kidney 293 cells; examined the electronic health records of patients who were genotype positive for the sudden infant death syndrome-linked KCNH2 variants; and simulated their functional impact using computational models of the human ventricular action potential. Western blot and voltage-clamping analyses of cells expressing E90K-, G294V-, R791W-, and R1005W-Kv11.1 channels demonstrated these variants express and generate peak Kv11.1 current levels similar to cells expressing wild-type-Kv11.1 channels, but R791W- and R1005W-Kv11.1 channels accelerated deactivation and activation gating, respectively. Electronic health records of patients with the sudden infant death syndrome-linked KCNH2 variants showed that the patients had median heart rate-corrected QT intervals <480 ms and none had been diagnosed with long-QT syndrome or experienced cardiac arrest. Simulating the impact of dysfunctional gating variants predicted that they have little impact on ventricular action potential duration. We conclude that these rare Kv11.1 missense variants are not long-QT syndrome subtype 2-causative variants and therefore do not represent the pathogenic substrate for sudden infant death syndrome in the variant-positive infants. © 2018 American Heart Association, Inc.
Fais, Antonella; Casu, Mariano; Ruggerone, Paolo; Ceccarelli, Matteo; Porcu, Simona; Era, Benedetta; Anedda, Roberto; Sollaino, Maria Carla; Galanello, Renzo; Corda, Marcella
2011-01-01
WE REPORT THE FIRST CASE OF COSEGREGATION OF TWO HAEMOGLOBINS (HBS): HbG-Philadelphia [α68(E17)Asn → Lys] and HbDuarte [β62(E6)Ala → Pro]. The proband is a young patient heterozygous also for β°-thalassaemia. We detected exclusively two haemoglobin variants: HbDuarte and HbG-Philadelphia/Duarte. Functional study of the new double variant HbG-Philadelphia/Duarte exhibited an increase in oxygen affinity, with a slight decrease of cooperativity and Bohr effect. This functional behaviour is attributed to β62Ala → Pro instead of α68Asn → Lys substitution. Indeed, HbG-Philadelphia isolated in our laboratory from blood cells donor carrier for this variant is not affected by any functional modification, whereas purified Hb Duarte showed functional properties very similar to the double variant. NMR and MD simulation studies confirmed that the presence of Pro instead of Ala at the β62 position produces displacement of the E helix and modifications of the tertiary structure. The substitution α68(E17)Asn → Lys does not cause significant structural and dynamical modifications of the protein. A possible structure-based rational of substitution effects is suggested.
Dayem Ullah, Abu Z; Oscanoa, Jorge; Wang, Jun; Nagano, Ai; Lemoine, Nicholas R; Chelala, Claude
2018-05-11
Broader functional annotation of genetic variation is a valuable means for prioritising phenotypically-important variants in further disease studies and large-scale genotyping projects. We developed SNPnexus to meet this need by assessing the potential significance of known and novel SNPs on the major transcriptome, proteome, regulatory and structural variation models. Since its previous release in 2012, we have made significant improvements to the annotation categories and updated the query and data viewing systems. The most notable changes include broader functional annotation of noncoding variants and expanding annotations to the most recent human genome assembly GRCh38/hg38. SNPnexus has now integrated rich resources from ENCODE and Roadmap Epigenomics Consortium to map and annotate the noncoding variants onto different classes of regulatory regions and noncoding RNAs as well as providing their predicted functional impact from eight popular non-coding variant scoring algorithms and computational methods. A novel functionality offered now is the support for neo-epitope predictions from leading tools to facilitate its use in immunotherapeutic applications. These updates to SNPnexus are in preparation for its future expansion towards a fully comprehensive computational workflow for disease-associated variant prioritization from sequencing data, placing its users at the forefront of translational research. SNPnexus is freely available at http://www.snp-nexus.org.
Mahmood, Khalid; Jung, Chol-Hee; Philip, Gayle; Georgeson, Peter; Chung, Jessica; Pope, Bernard J; Park, Daniel J
2017-05-16
Genetic variant effect prediction algorithms are used extensively in clinical genomics and research to determine the likely consequences of amino acid substitutions on protein function. It is vital that we better understand their accuracies and limitations because published performance metrics are confounded by serious problems of circularity and error propagation. Here, we derive three independent, functionally determined human mutation datasets, UniFun, BRCA1-DMS and TP53-TA, and employ them, alongside previously described datasets, to assess the pre-eminent variant effect prediction tools. Apparent accuracies of variant effect prediction tools were influenced significantly by the benchmarking dataset. Benchmarking with the assay-determined datasets UniFun and BRCA1-DMS yielded areas under the receiver operating characteristic curves in the modest ranges of 0.52 to 0.63 and 0.54 to 0.75, respectively, considerably lower than observed for other, potentially more conflicted datasets. These results raise concerns about how such algorithms should be employed, particularly in a clinical setting. Contemporary variant effect prediction tools are unlikely to be as accurate at the general prediction of functional impacts on proteins as reported prior. Use of functional assay-based datasets that avoid prior dependencies promises to be valuable for the ongoing development and accurate benchmarking of such tools.
2012-01-01
Introduction In recent genome-wide association studies for psoriatic arthritis (PsA) and psoriasis vulgaris, common coding variants in the TRAF3IP2 gene were identified to contribute to susceptibility to both disease entities. The risk allele of p.Asp10Asn (rs33980500) proved to be most significantly associated and to encode a mutant protein with an almost completely disrupted binding property to TRAF6, supporting its impact as a main disease-causing variant and modulator of IL-17 signaling. Methods To identify further variants, exons 2-4 encoding both known TNF-receptor-associated factor (TRAF) binding domains were sequenced in 871 PsA patients. Seven missense variants and one three-base-pair insertion were identified in 0.06% to 1.02% of alleles. Five of these variants were also present in 931 control individuals at comparable frequency. Constructs containing full-length wild-type or mutant TRAF3IP2 were generated and used to analyze functionally all variants for TRAF6-binding in a mammalian two-hybrid assay. Results None of the newly found alleles, though, encoded proteins with different binding properties to TRAF6, or to the cytoplasmic tail of the IL-17-receptor α-chain, suggesting that they do not contribute to susceptibility. Conclusions Thus, the TRAF3IP2-variant p.Asp10Asn is the only susceptibility allele with functional impact on TRAF6 binding, at least in the German population. PMID:22513239
Panganiban, Ronald A; Sun, Maoyun; Dahlin, Amber; Park, Hae-Ryung; Kan, Mengyuan; Himes, Blanca E; Mitchel, Jennifer A; Iribarren, Carlos; Jorgenson, Eric; Randell, Scott H; Israel, Elliot; Tantisira, Kelan; Shore, Stephanie; Park, Jin-Ah; Weiss, Scott T; Wu, Ann Chen; Lu, Quan
2018-01-09
Genetic variants in the chromosomal region 17q21 are consistently associated with asthma. However, mechanistic studies have not yet linked any of the associated variants to a function that could influence asthma, and as a result, the identity of the asthma gene(s) remains elusive. We sought to identify and characterize functional variants in the 17q21 locus. We used the Exome Aggregation Consortium browser to identify coding (amino acid-changing) variants in the 17q21 locus. We obtained asthma association measures for these variants in both the Genetic Epidemiology Research in Adult Health and Aging (GERA) cohort (16,274 cases and 38,269 matched controls) and the EVE Consortium study (5,303 asthma cases and 12,560 individuals). Gene expression and protein localization were determined by quantitative RT-PCR and fluorescence immunostaining, respectively. Molecular and cellular studies were performed to determine the functional effects of coding variants. Two coding variants (rs2305480 and rs11078928) of the gasdermin B (GSDMB) gene in the 17q21 locus were associated with lower asthma risk in both GERA (odds ratio, 0.92; P = 1.01 × 10 -6 ) and EVE (odds ratio, 0.85; joint P EVE = 1.31 × 10 -13 ). In GERA, rs11078928 had a minor allele frequency (MAF) of 0.45 in unaffected (nonasthmatic) controls and 0.43 in asthma cases. For European Americans in EVE, the MAF of rs2305480 was 0.45 for controls and 0.39 for cases; for all EVE subjects, the MAF was 0.32 for controls and 0.27 for cases. GSDMB is highly expressed in differentiated airway epithelial cells, including the ciliated cells. We found that, when the GSDMB protein is cleaved by inflammatory caspase-1 to release its N-terminal fragment, potent pyroptotic cell death is induced. The splice variant rs11078928 deletes the entire exon 6, which encodes 13 amino acids in the critical N-terminus, and abolishes the pyroptotic activity of the GSDMB protein. Our study identified a functional asthma variant in the GSDMB gene of the 17q21 locus and implicates GSDMB-mediated epithelial cell pyroptosis in pathogenesis. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Torres, A K; Escartín, N; Monzó, C; Guzmán, C; Ferrer, I; González-Muñoz, C; Peña, P; Monzó, V; Marcaida, G; Rodríguez-López, R
To describe the populational distribution of the UGT1A1*28 variant (genetic variant code rs8175347) located in the promotor of the UGT gene and correlate its genotypes with the results of the fasting test, as well as its relationship with the biochemical disorder of Gilbert's syndrome (GS) in a Valencian population. We studied the prevalence of the genotypes (TA) 6/6 (TA) 6/7 and (TA) 7/7 of the deleterious variant rs8175347 in 144 patients with hyperbilirubinemia, 38 of whom had previously undergone the fasting test to diagnose GS, and in 150 control patients. By analysing the genomic region of the TATA box of the UGT1A1 gene promotor using Sanger sequencing, we established the correlation between the rs8175347 genotypes and the fasting test results and with the patients' biochemical disorders. The rate of heterozygosity of allele (TA) 7 in the control population was 32% and increased to 87.59% among the patients with suspected GS. The rate of genotype TA 7/7 was 81.94% among the patients with hyperbilirubinemia, compared with 11.33% in the control patients. The fasting test showed a 15.79% rate of false negatives and a 5.26% rate of false positives. The high frequency of allele (TA) 7 among the Valencian control population, almost double the 5% reported for European control patients, confirms the high rate of GS reported in the Spanish population, without observing significant differences between the geographical ends of the country. The efficacy and reliability of the fasting test for the diagnosis of GS is questionable. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.
ERIC Educational Resources Information Center
Green, C. R.; Mihic, A. M.; Nikkel, S. M.; Stade, B. C.; Rasmussen, C.; Munoz, D. P.; Reynolds, J. N.
2009-01-01
Background: Chronic prenatal alcohol exposure causes a spectrum of deleterious effects in offspring, collectively termed fetal alcohol spectrum disorders (FASD), and deficits in executive function are prevalent in FASD. The goal of this research was to test the hypothesis that children with FASD exhibit performance deficits in tasks that assess…
Multiple lupus-associated ITGAM variants alter Mac-1 functions on neutrophils.
Zhou, Yebin; Wu, Jianming; Kucik, Dennis F; White, Nathan B; Redden, David T; Szalai, Alexander J; Bullard, Daniel C; Edberg, Jeffrey C
2013-11-01
Multiple studies have demonstrated that single-nucleotide polymorphisms (SNPs) in the ITGAM locus (including the nonsynonymous SNPs rs1143679, rs1143678, and rs1143683) are associated with systemic lupus erythematosus (SLE). ITGAM encodes the protein CD11b, a subunit of the β2 integrin Mac-1. The purpose of this study was to determine the effects of ITGAM genetic variation on the biologic functions of neutrophil Mac-1. Neutrophils from ITGAM-genotyped and -sequenced healthy donors were isolated for functional studies. The phagocytic capacity of neutrophil ITGAM variants was probed with complement-coated erythrocytes, serum-treated zymosan, heat-treated zymosan, and IgG-coated erythrocytes. The adhesion capacity of ITGAM variants, in adhering to either purified intercellular adhesion molecule 1 or tumor necrosis factor α-stimulated endothelial cells, was assessed in a flow chamber. Expression levels of total CD11b and activation of CD11b were assessed by flow cytometry. Mac-1-mediated neutrophil phagocytosis, determined in cultures with 2 different complement-coated particles, was significantly reduced in individuals with nonsynonymous variant alleles of ITGAM. This reduction in phagocytosis was related to variation at either rs1143679 (in the β-propeller region) or rs1143678/rs1143683 (highly linked SNPs in the cytoplasmic/calf-1 regions). Phagocytosis mediated by Fcγ receptors was also significantly reduced in donors with variant ITGAM alleles. Similarly, firm adhesion of neutrophils was significantly reduced in individuals with variant ITGAM alleles. These functional alterations were not attributable to differences in total receptor expression or activation. The nonsynonymous ITGAM variants rs1143679 and rs1143678/rs113683 contribute to altered Mac-1 function on neutrophils. These results underscore the need to consider multiple nonsynonymous SNPs when assessing the functional consequences of ITGAM variation on immune cell processes and the risk of SLE. Copyright © 2013 by the American College of Rheumatology.
Chen, Ming-Huei; Yanek, Lisa R; Backman, Joshua D; Eicher, John D; Huffman, Jennifer E; Ben-Shlomo, Yoav; Beswick, Andrew D; Yerges-Armstrong, Laura M; Shuldiner, Alan R; O'Connell, Jeffrey R; Mathias, Rasika A; Becker, Diane M; Becker, Lewis C; Lewis, Joshua P; Johnson, Andrew D; Faraday, Nauder
2017-11-29
Previous genome-wide association studies (GWAS) have identified several variants associated with platelet function phenotypes; however, the proportion of variance explained by the identified variants is mostly small. Rare coding variants, particularly those with high potential for impact on protein structure/function, may have substantial impact on phenotype but are difficult to detect by GWAS. The main purpose of this study was to identify low frequency or rare variants associated with platelet function using genotype data from the Illumina HumanExome Bead Chip. Three family-based cohorts of European ancestry, including ~4,000 total subjects, comprised the discovery cohort and two independent cohorts, one of European and one of African American ancestry, were used for replication. Optical aggregometry in platelet-rich plasma was performed in all the discovery cohorts in response to adenosine diphosphate (ADP), epinephrine, and collagen. Meta-analyses were performed using both gene-based and single nucleotide variant association methods. The gene-based meta-analysis identified a significant association (P = 7.13 × 10 -7 ) between rare genetic variants in ANKRD26 and ADP-induced platelet aggregation. One of the ANKRD26 SNVs - rs191015656, encoding a threonine to isoleucine substitution predicted to alter protein structure/function, was replicated in Europeans. Aggregation increases of ~20-50% were observed in heterozygotes in all cohorts. Novel genetic signals in ABCG1 and HCP5 were also associated with platelet aggregation to ADP in meta-analyses, although only results for HCP5 could be replicated. The SNV in HCP5 intersects epigenetic signatures in CD41+ megakaryocytes suggesting a new functional role in platelet biology for HCP5. This is the first study to use gene-based association methods from SNV array genotypes to identify rare variants related to platelet function. The molecular mechanisms and pathophysiological relevance for the identified genetic associations requires further study.
Arendt, Cassandra S.; Ri, Keirei; Yates, Phillip A.; Ullman, Buddy
2007-01-01
We describe an efficient method for generating highly functional membrane proteins with variant amino acids at defined positions that couples a modified site-saturation strategy with functional genetic selection. We applied this method to the production of a cysteine-less variant of the Crithidia fasciculata inosine-guanosine permease CfNT2, in order to facilitate biochemical studies using thiol-specific modifying reagents. Of ten endogenous cysteine residues in CfNT2, two cannot be replaced with serine or alanine without loss of function. High-quality single- and double-mutant libraries were produced by combining a previously reported site-saturation mutagenesis scheme based on the Quikchange method with a novel gel purification step that effectively eliminated template DNA from the products. Following selection for functional complementation in S. cerevisiae cells auxotrophic for purines, several highly functional non-cysteine substitutions were efficiently identified at each desired position, allowing the construction of cysteine-less variants of CfNT2 that retained wild-type affinity for inosine. This combination of an improved site-saturation mutagenesis technique and positive genetic selection provides a simple and efficient means to identify functional and perhaps unexpected amino acid variants at a desired position. PMID:17481563
GENETIC VARIANTS, IMMUNE FUNCTION AND RISK OF PRE-ECLAMPSIA AMONG AMERICAN INDIANS
Best, Lyle G.; Nadeau, Melanie; Davis, Kylie; Lamb, Felicia; Bercier, Shellee; Anderson, Cindy M.
2011-01-01
Objective To determine the prevalence in an American Indian population of genetic variants with putative effects on immune function and determine if they are associated with pre-eclampsia. Methods In a study of 66 cases and 130 matched controls, six single nucleotide polymorphisms (SNP) with either previously demonstrated or postulated modulating effects on the immune system were genotyped. Allele frequencies and various genetic models were evaluated by conditional logistic regression in both univariate and multiply adjusted models. Results Although most genetic variants lacked evidence of association with pre-eclampsia, the minor allele of the CRP related, rs1205 SNP in a dominant model with adjustment for age at delivery, nulliparity and body mass index, exhibited an odds ratio of 0.259 (95% CI of 0.08 – 0.81, p=0.020) in relation to severe pre-eclampsia (48 cases). The allelic prevalence of this variant was 46.1% in this population. Conclusion Of the six SNPs related to immune function in this study, a functional variant in the 3'UTR of the CRP gene was shown to be associated with severe pre-eclampsia in an American Indian population. PMID:22004660
Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer's disease
NASA Astrophysics Data System (ADS)
2014-01-01
Genome-wide association studies (GWAS) have identified several risk variants for late-onset Alzheimer's disease (LOAD). These common variants have replicable but small effects on LOAD risk and generally do not have obvious functional effects. Low-frequency coding variants, not detected by GWAS, are predicted to include functional variants with larger effects on risk. To identify low-frequency coding variants with large effects on LOAD risk, we carried out whole-exome sequencing (WES) in 14 large LOAD families and follow-up analyses of the candidate variants in several large LOAD case-control data sets. A rare variant in PLD3 (phospholipase D3; Val232Met) segregated with disease status in two independent families and doubled risk for Alzheimer's disease in seven independent case-control series with a total of more than 11,000 cases and controls of European descent. Gene-based burden analyses in 4,387 cases and controls of European descent and 302 African American cases and controls, with complete sequence data for PLD3, reveal that several variants in this gene increase risk for Alzheimer's disease in both populations. PLD3 is highly expressed in brain regions that are vulnerable to Alzheimer's disease pathology, including hippocampus and cortex, and is expressed at significantly lower levels in neurons from Alzheimer's disease brains compared to control brains. Overexpression of PLD3 leads to a significant decrease in intracellular amyloid-β precursor protein (APP) and extracellular Aβ42 and Aβ40 (the 42- and 40-residue isoforms of the amyloid-β peptide), and knockdown of PLD3 leads to a significant increase in extracellular Aβ42 and Aβ40. Together, our genetic and functional data indicate that carriers of PLD3 coding variants have a twofold increased risk for LOAD and that PLD3 influences APP processing. This study provides an example of how densely affected families may help to identify rare variants with large effects on risk for disease or other complex traits.
Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer's disease.
Cruchaga, Carlos; Karch, Celeste M; Jin, Sheng Chih; Benitez, Bruno A; Cai, Yefei; Guerreiro, Rita; Harari, Oscar; Norton, Joanne; Budde, John; Bertelsen, Sarah; Jeng, Amanda T; Cooper, Breanna; Skorupa, Tara; Carrell, David; Levitch, Denise; Hsu, Simon; Choi, Jiyoon; Ryten, Mina; Sassi, Celeste; Bras, Jose; Gibbs, Raphael J; Hernandez, Dena G; Lupton, Michelle K; Powell, John; Forabosco, Paola; Ridge, Perry G; Corcoran, Christopher D; Tschanz, JoAnn T; Norton, Maria C; Munger, Ronald G; Schmutz, Cameron; Leary, Maegan; Demirci, F Yesim; Bamne, Mikhil N; Wang, Xingbin; Lopez, Oscar L; Ganguli, Mary; Medway, Christopher; Turton, James; Lord, Jenny; Braae, Anne; Barber, Imelda; Brown, Kristelle; Pastor, Pau; Lorenzo-Betancor, Oswaldo; Brkanac, Zoran; Scott, Erick; Topol, Eric; Morgan, Kevin; Rogaeva, Ekaterina; Singleton, Andy; Hardy, John; Kamboh, M Ilyas; George-Hyslop, Peter St; Cairns, Nigel; Morris, John C; Kauwe, John S K; Goate, Alison M
2014-01-23
Genome-wide association studies (GWAS) have identified several risk variants for late-onset Alzheimer's disease (LOAD). These common variants have replicable but small effects on LOAD risk and generally do not have obvious functional effects. Low-frequency coding variants, not detected by GWAS, are predicted to include functional variants with larger effects on risk. To identify low-frequency coding variants with large effects on LOAD risk, we carried out whole-exome sequencing (WES) in 14 large LOAD families and follow-up analyses of the candidate variants in several large LOAD case-control data sets. A rare variant in PLD3 (phospholipase D3; Val232Met) segregated with disease status in two independent families and doubled risk for Alzheimer's disease in seven independent case-control series with a total of more than 11,000 cases and controls of European descent. Gene-based burden analyses in 4,387 cases and controls of European descent and 302 African American cases and controls, with complete sequence data for PLD3, reveal that several variants in this gene increase risk for Alzheimer's disease in both populations. PLD3 is highly expressed in brain regions that are vulnerable to Alzheimer's disease pathology, including hippocampus and cortex, and is expressed at significantly lower levels in neurons from Alzheimer's disease brains compared to control brains. Overexpression of PLD3 leads to a significant decrease in intracellular amyloid-β precursor protein (APP) and extracellular Aβ42 and Aβ40 (the 42- and 40-residue isoforms of the amyloid-β peptide), and knockdown of PLD3 leads to a significant increase in extracellular Aβ42 and Aβ40. Together, our genetic and functional data indicate that carriers of PLD3 coding variants have a twofold increased risk for LOAD and that PLD3 influences APP processing. This study provides an example of how densely affected families may help to identify rare variants with large effects on risk for disease or other complex traits.
USDA-ARS?s Scientific Manuscript database
This study was conducted as an initial assessment of a newly available genotyping assay containing about 34,000 common SNP included on previous SNP chips, and 199,000 sequence variants predicted to affect gene function. Objectives were to identify functional variants associated with birth weight in...
Wang, Shaolin; Yang, Zhongli; Ma, Jennie Z.; Payne, Thomas J.; Li, Ming D
2013-01-01
Through linkage analysis, candidate gene approach, and genome-wide association studies (GWAS), many genetic susceptibility factors for substance dependence have been discovered, such as the alcohol dehydrogenase gene (ALDH2) for alcohol dependence (AD) and nicotinic acetylcholine receptor (nAChR) subunit variants on chromosomes 8 and 15 for nicotine dependence (ND). However, these confirmed genetic factors contribute only a small portion of the heritability responsible for each addiction. Among many potential factors, rare variants in those identified and unidentified susceptibility genes are supposed to contribute greatly to the missing heritability. Several studies focusing on rare variants have been conducted by taking advantage of next-generation sequencing technologies, which revealed that some rare variants of nAChR subunits are associated with ND in both genetic and functional studies. However, these studies investigated variants for only a small number of genes and need to be expanded to broad regions/genes in a larger population. This review presents an update on recently developed methods for rare-variant identification and association analysis and on studies focused on rare-variant discovery and function related to addictions. PMID:23990377
Redetzke, Rebecca A.; Gerdes, A. Martin
2012-01-01
Thyroid hormones (THs) play a pivotal role in cardiac homeostasis. TH imbalances alter cardiac performance and ultimately cause cardiac dysfunction. Although short-term hyperthyroidism typically leads to heightened left ventricular (LV) contractility and improved hemodynamic parameters, chronic hyperthyroidism is associated with deleterious cardiac consequences including increased risk of arrhythmia, impaired cardiac reserve and exercise capacity, myocardial remodeling, and occasionally heart failure. To evaluate the long-term consequences of chronic hyperthyroidism on LV remodeling and function, we examined LV isolated myocyte function, chamber function, and whole tissue remodeling in a hamster model. Three-month-old F1b hamsters were randomized to control or 10 months TH treatment (0.1% grade I desiccated TH). LV chamber remodeling and function was assessed by echocardiography at 1, 2, 4, 6, 8, and 10 months of treatment. After 10 months, terminal cardiac function was assessed by echocardiography and LV hemodynamics. Hyperthyroid hamsters exhibited significant cardiac hypertrophy and deleterious cardiac remodeling characterized by myocyte lengthening, chamber dilatation, decreased relative wall thickness, increased wall stress, and increased LV interstitial fibrotic deposition. Importantly, hyperthyroid hamsters demonstrated significant LV systolic and diastolic dysfunction. Despite the aforementioned remodeling and global cardiac decline, individual isolated cardiac myocytes from chronically hyperthyroid hamsters had enhanced function when compared with myocytes from untreated age-matched controls. Thus, it appears that long-term hyperthyroidism may impair global LV function, at least in part by increasing interstitial ventricular fibrosis, in spite of normal or enhanced intrinsic cardiomyocyte function. PMID:23056390
Nguyen, G N; George, L A; Siner, J I; Davidson, R J; Zander, C B; Zheng, X L; Arruda, V R; Camire, R M; Sabatino, D E
2017-01-01
Essentials Factor (F) VIII is an inefficiently expressed protein. Furin deletion FVIII variants were purified and characterized using in vitro and in vivo assays. These minimally modified novel FVIII variants have enhanced function. These variants provide a strategy for increasing FVIII expression in hemophilia A gene therapy. Background The major challenge for developing gene-based therapies for hemophilia A is that human factor VIII (hFVIII) has intrinsic properties that result in inefficient biosynthesis. During intracellular processing, hFVIII is predominantly cleaved at a paired basic amino acid cleaving enzyme (PACE) or furin cleavage site to yield a heterodimer that is the major form of secreted protein. Previous studies with B-domain-deleted (BDD) canine FVIII and hFVIII-R1645H, both differing from hFVIII by a single amino acid at this site, suggested that these proteins are secreted mainly in a single polypeptide chain (SC) form and exhibit enhanced function. Objective We hypothesized that deletion(s) of the furin site modulates FVIII biology and may enhance its function. Methods A series of recombinant hFVIII-furin deletion variants were introduced into hFVIII-BDD [Δ1645, 1645-46(Δ2), 1645-47(Δ3), 1645-48(Δ4), or Δ1648] and characterized. Results In vitro, recombinant purified Δ3 and Δ4 were primarily SC and, interestingly, had 2-fold higher procoagulant activity compared with FVIII-BDD. In vivo, the variants also have improved hemostatic function. After adeno-associated viral (AAV) vector delivery, the expression of these variants is 2-4-fold higher than hFVIII-BDD. Protein challenges of each variant in mice tolerant to hFVIII-BDD showed no anti-FVIII immune response. Conclusions These data suggest that the furin deletion hFVIII variants are superior to hFVIII-BDD without increased immunogenicity. In the setting of gene-based therapeutics, these novel variants provide a unique strategy to increase FVIII expression, thus lowering the vector dose, a critical factor for hemophilia A gene therapy. © 2016 The Authors. Journal of Thrombosis and Haemostasis published by Wiley Periodicals, Inc. on behalf of International Society on Thrombosis and Haemostasis.
He, Zihuai; Xu, Bin; Lee, Seunggeun; Ionita-Laza, Iuliana
2017-09-07
Substantial progress has been made in the functional annotation of genetic variation in the human genome. Integrative analysis that incorporates such functional annotations into sequencing studies can aid the discovery of disease-associated genetic variants, especially those with unknown function and located outside protein-coding regions. Direct incorporation of one functional annotation as weight in existing dispersion and burden tests can suffer substantial loss of power when the functional annotation is not predictive of the risk status of a variant. Here, we have developed unified tests that can utilize multiple functional annotations simultaneously for integrative association analysis with efficient computational techniques. We show that the proposed tests significantly improve power when variant risk status can be predicted by functional annotations. Importantly, when functional annotations are not predictive of risk status, the proposed tests incur only minimal loss of power in relation to existing dispersion and burden tests, and under certain circumstances they can even have improved power by learning a weight that better approximates the underlying disease model in a data-adaptive manner. The tests can be constructed with summary statistics of existing dispersion and burden tests for sequencing data, therefore allowing meta-analysis of multiple studies without sharing individual-level data. We applied the proposed tests to a meta-analysis of noncoding rare variants in Metabochip data on 12,281 individuals from eight studies for lipid traits. By incorporating the Eigen functional score, we detected significant associations between noncoding rare variants in SLC22A3 and low-density lipoprotein and total cholesterol, associations that are missed by standard dispersion and burden tests. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Identification of syncytial mutations in a clinical isolate of herpes simplex virus 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muggeridge, Martin I.; Grantham, Michael L.; Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA 71130
2004-10-25
Small polykaryocytes resulting from cell fusion are found in herpes simplex virus (HSV) lesions in patients, but their significance for viral spread and pathogenesis is unclear. Although syncytial variants causing extensive fusion in tissue culture can be readily isolated from laboratory strains, they are rarely found in clinical isolates, suggesting that extensive cell fusion may be deleterious in vivo. Syncytial mutations have previously been identified for several laboratory strains, but not for clinical isolates of HSV type 2. To address this deficiency, we studied a recent syncytial clinical isolate, finding it to be a mixture of two syncytial and onemore » nonsyncytial strain. The two syncytial strains have novel mutations in glycoprotein B, and in vitro cell fusion assays confirmed that they are responsible for syncytium formation. This panel of clinical strains may be ideal for examining the effect of increased cell fusion on pathogenesis.« less