Science.gov

Sample records for delimit parapatric species

  1. Molecular Identification of Birds: Performance of Distance-Based DNA Barcoding in Three Genes to Delimit Parapatric Species

    PubMed Central

    Aliabadian, Mansour; Kaboli, Mohammad; Nijman, Vincent; Vences, Miguel

    2009-01-01

    Background DNA barcoding based on the mitochondrial cytochrome oxidase subunit I gene (cox1 or COI) has been successful in species identification across a wide array of taxa but in some cases failed to delimit the species boundaries of closely allied allopatric species or of hybridising sister species. Methodology/Principal Findings In this study we extend the sample size of prior studies in birds for cox1 (2776 sequences, 756 species) and target especially species that are known to occur parapatrically, and/or are known to hybridise, on a Holarctic scale. In order to obtain a larger set of taxa (altogether 2719 species), we include also DNA sequences of two other mitochondrial genes: cytochrome b (cob) (4614 sequences, 2087 species) and 16S (708 sequences, 498 species). Our results confirm the existence of a wide gap between intra- and interspecies divergences for both cox1 and cob, and indicate that distance-based DNA barcoding provides sufficient information to identify and delineate bird species in 98% of all possible pairwise comparisons. This DNA barcoding gap was not statistically influenced by the number of individuals sequenced per species. However, most of the hybridising parapatric species pairs have average divergences intermediate between intraspecific and interspecific distances for both cox1 and cob. Conclusions/Significance DNA barcoding, if used as a tool for species discovery, would thus fail to identify hybridising parapatric species pairs. However, most of them can probably still assigned to known species by character-based approaches, although development of complementary nuclear markers will be necessary to account for mitochondrial introgression in hybridising species. PMID:19127298

  2. The Species Delimitation Uncertainty Principle

    PubMed Central

    Adams, Byron J.

    2001-01-01

    If, as Einstein said, "it is the theory which decides what we can observe," then "the species problem" could be solved by simply improving our theoretical definition of what a species is. However, because delimiting species entails predicting the historical fate of evolutionary lineages, species appear to behave according to the Heisenberg Uncertainty Principle, which states that the most philosophically satisfying definitions of species are the least operational, and as species concepts are modified to become more operational they tend to lose their philosophical integrity. Can species be delimited operationally without losing their philosophical rigor? To mitigate the contingent properties of species that tend to make them difficult for us to delimit, I advocate a set of operations that takes into account the prospective nature of delimiting species. Given the fundamental role of species in studies of evolution and biodiversity, I also suggest that species delimitation proceed within the context of explicit hypothesis testing, like other scientific endeavors. The real challenge is not so much the inherent fallibility of predicting the future but rather adequately sampling and interpreting the evidence available to us in the present. PMID:19265874

  3. Species Delimitation and Global Biosecurity

    PubMed Central

    Boykin, Laura M.; Armstrong, Karen F.; Kubatko, Laura; De Barro, Paul

    2012-01-01

    Species delimitation directly impacts on global biosecurity. It is a critical element in the decisions made by national governments in regard to the flow of trade and to the biosecurity measures imposed to protect countries from the threat of invasive species. Here we outline a novel approach to species delimitation, “tip to root”, for two highly invasive insect pests, Bemisia tabaci (sweetpotato whitefly) and Lymantria dispar (Asian gypsy moth). Both species are of concern to biosecurity, but illustrate the extremes of phylogenetic resolution that present the most complex delimitation issues for biosecurity; B. tabaci having extremely high intra-specific genetic variability and L. dispar composed of relatively indistinct subspecies. This study tests a series of analytical options to determine their applicability as tools to provide more rigorous species delimitation measures and consequently more defensible species assignments and identification of unknowns for biosecurity. Data from established DNA barcode datasets (COI), which are becoming increasingly considered for adoption in biosecurity, were used here as an example. The analytical approaches included the commonly used Kimura two-parameter (K2P) inter-species distance plus four more stringent measures of taxon distinctiveness, (1) Rosenberg’s reciprocal monophyly, (P(AB)),1 (2) Rodrigo’s (P(randomly distinct)),2 (3) genealogical sorting index, (gsi),3 and (4) General mixed Yule-coalescent (GMYC).4,5 For both insect datasets, a comparative analysis of the methods revealed that the K2P distance method does not capture the same level of species distinctiveness revealed by the other three measures; in B. tabaci there are more distinct groups than previously identified using the K2P distances and for L. dipsar far less variation is apparent within the predefined subspecies. A consensus for the results from P(AB), P(randomly distinct) and gsi offers greater statistical confidence as to where genetic limits

  4. How to fail at species delimitation.

    PubMed

    Carstens, Bryan C; Pelletier, Tara A; Reid, Noah M; Satler, Jordan D

    2013-09-01

    Species delimitation is the act of identifying species-level biological diversity. In recent years, the field has witnessed a dramatic increase in the number of methods available for delimiting species. However, most recent investigations only utilize a handful (i.e. 2-3) of the available methods, often for unstated reasons. Because the parameter space that is potentially relevant to species delimitation far exceeds the parameterization of any existing method, a given method necessarily makes a number of simplifying assumptions, any one of which could be violated in a particular system. We suggest that researchers should apply a wide range of species delimitation analyses to their data and place their trust in delimitations that are congruent across methods. Incongruence across the results from different methods is evidence of either a difference in the power to detect cryptic lineages across one or more of the approaches used to delimit species and could indicate that assumptions of one or more of the methods have been violated. In either case, the inferences drawn from species delimitation studies should be conservative, for in most contexts it is better to fail to delimit species than it is to falsely delimit entities that do not represent actual evolutionary lineages.

  5. Use of RAD sequencing for delimiting species

    PubMed Central

    Pante, E; Abdelkrim, J; Viricel, A; Gey, D; France, S C; Boisselier, M C; Samadi, S

    2015-01-01

    RAD-tag sequencing is a promising method for conducting genome-wide evolutionary studies. However, to date, only a handful of studies empirically tested its applicability above the species level. In this communication, we use RAD tags to contribute to the delimitation of species within a diverse genus of deep-sea octocorals, Chrysogorgia, for which few classical genetic markers have proved informative. Previous studies have hypothesized that single mitochondrial haplotypes can be used to delimit Chrysogorgia species. On the basis of two lanes of Illumina sequencing, we inferred phylogenetic relationships among 12 putative species that were delimited using mitochondrial data, comparing two RAD analysis pipelines (Stacks and PyRAD). The number of homologous RAD loci decreased dramatically with increasing divergence, as >70% of loci are lost when comparing specimens separated by two mutations on the 700-nt long mitochondrial phylogeny. Species delimitation hypotheses based on the mitochondrial mtMutS gene are largely supported, as six out of nine putative species represented by more than one colony were recovered as discrete, well-supported clades. Significant genetic structure (correlating with geography) was detected within one putative species, suggesting that individuals characterized by the same mtMutS haplotype may belong to distinct species. Conversely, three mtMutS haplotypes formed one well-supported clade within which no population structure was detected, also suggesting that intraspecific variation exists at mtMutS in Chrysogorgia. Despite an impressive decrease in the number of homologous loci across clades, RAD data helped us to fine-tune our interpretations of classical mitochondrial markers used in octocoral species delimitation, and discover previously undetected diversity. PMID:25407078

  6. Use of RAD sequencing for delimiting species.

    PubMed

    Pante, E; Abdelkrim, J; Viricel, A; Gey, D; France, S C; Boisselier, M C; Samadi, S

    2015-05-01

    RAD-tag sequencing is a promising method for conducting genome-wide evolutionary studies. However, to date, only a handful of studies empirically tested its applicability above the species level. In this communication, we use RAD tags to contribute to the delimitation of species within a diverse genus of deep-sea octocorals, Chrysogorgia, for which few classical genetic markers have proved informative. Previous studies have hypothesized that single mitochondrial haplotypes can be used to delimit Chrysogorgia species. On the basis of two lanes of Illumina sequencing, we inferred phylogenetic relationships among 12 putative species that were delimited using mitochondrial data, comparing two RAD analysis pipelines (Stacks and PyRAD). The number of homologous RAD loci decreased dramatically with increasing divergence, as >70% of loci are lost when comparing specimens separated by two mutations on the 700-nt long mitochondrial phylogeny. Species delimitation hypotheses based on the mitochondrial mtMutS gene are largely supported, as six out of nine putative species represented by more than one colony were recovered as discrete, well-supported clades. Significant genetic structure (correlating with geography) was detected within one putative species, suggesting that individuals characterized by the same mtMutS haplotype may belong to distinct species. Conversely, three mtMutS haplotypes formed one well-supported clade within which no population structure was detected, also suggesting that intraspecific variation exists at mtMutS in Chrysogorgia. Despite an impressive decrease in the number of homologous loci across clades, RAD data helped us to fine-tune our interpretations of classical mitochondrial markers used in octocoral species delimitation, and discover previously undetected diversity.

  7. Bayesian species delimitation in West African forest geckos (Hemidactylus fasciatus)

    PubMed Central

    Leaché, Adam D.; Fujita, Matthew K.

    2010-01-01

    Genealogical data are an important source of evidence for delimiting species, yet few statistical methods are available for calculating the probabilities associated with different species delimitations. Bayesian species delimitation uses reversible-jump Markov chain Monte Carlo (rjMCMC) in conjunction with a user-specified guide tree to estimate the posterior distribution for species delimitation models containing different numbers of species. We apply Bayesian species delimitation to investigate the speciation history of forest geckos (Hemidactylus fasciatus) from tropical West Africa using five nuclear loci (and mtDNA) for 51 specimens representing 10 populations. We find that species diversity in H. fasciatus is currently underestimated, and describe three new species to reflect the most conservative estimate for the number of species in this complex. We examine the impact of the guide tree, and the prior distributions on ancestral population sizes (θ) and root age (τ0), on the posterior probabilities for species delimitation. Mis-specification of the guide tree or the prior distribution for θ can result in strong support for models containing more species. We describe a new statistic for summarizing the posterior distribution of species delimitation models, called speciation probabilities, which summarize the posterior support for each speciation event on the starting guide tree. PMID:20519219

  8. Unguided species delimitation using DNA sequence data from multiple Loci.

    PubMed

    Yang, Ziheng; Rannala, Bruce

    2014-12-01

    A method was developed for simultaneous Bayesian inference of species delimitation and species phylogeny using the multispecies coalescent model. The method eliminates the need for a user-specified guide tree in species delimitation and incorporates phylogenetic uncertainty in a Bayesian framework. The nearest-neighbor interchange algorithm was adapted to propose changes to the species tree, with the gene trees for multiple loci altered in the proposal to avoid conflicts with the newly proposed species tree. We also modify our previous scheme for specifying priors for species delimitation models to construct joint priors for models of species delimitation and species phylogeny. As in our earlier method, the modified algorithm integrates over gene trees, taking account of the uncertainty of gene tree topology and branch lengths given the sequence data. We conducted a simulation study to examine the statistical properties of the method using six populations (two sequences each) and a true number of three species, with values of divergence times and ancestral population sizes that are realistic for recently diverged species. The results suggest that the method tends to be conservative with high posterior probabilities being a confident indicator of species status. Simulation results also indicate that the power of the method to delimit species increases with an increase of the divergence times in the species tree, and with an increased number of gene loci. Reanalyses of two data sets of cavefish and coast horned lizards suggest considerable phylogenetic uncertainty even though the data are informative about species delimitation. We discuss the impact of the prior on models of species delimitation and species phylogeny and of the prior on population size parameters (θ) on Bayesian species delimitation. PMID:25274273

  9. Unguided Species Delimitation Using DNA Sequence Data from Multiple Loci

    PubMed Central

    Yang, Ziheng; Rannala, Bruce

    2014-01-01

    A method was developed for simultaneous Bayesian inference of species delimitation and species phylogeny using the multispecies coalescent model. The method eliminates the need for a user-specified guide tree in species delimitation and incorporates phylogenetic uncertainty in a Bayesian framework. The nearest-neighbor interchange algorithm was adapted to propose changes to the species tree, with the gene trees for multiple loci altered in the proposal to avoid conflicts with the newly proposed species tree. We also modify our previous scheme for specifying priors for species delimitation models to construct joint priors for models of species delimitation and species phylogeny. As in our earlier method, the modified algorithm integrates over gene trees, taking account of the uncertainty of gene tree topology and branch lengths given the sequence data. We conducted a simulation study to examine the statistical properties of the method using six populations (two sequences each) and a true number of three species, with values of divergence times and ancestral population sizes that are realistic for recently diverged species. The results suggest that the method tends to be conservative with high posterior probabilities being a confident indicator of species status. Simulation results also indicate that the power of the method to delimit species increases with an increase of the divergence times in the species tree, and with an increased number of gene loci. Reanalyses of two data sets of cavefish and coast horned lizards suggest considerable phylogenetic uncertainty even though the data are informative about species delimitation. We discuss the impact of the prior on models of species delimitation and species phylogeny and of the prior on population size parameters (θ) on Bayesian species delimitation. PMID:25274273

  10. Species Delimitation using Genome-Wide SNP Data

    PubMed Central

    Leaché, Adam D.; Fujita, Matthew K.; Minin, Vladimir N.; Bouckaert, Remco R.

    2014-01-01

    The multispecies coalescent has provided important progress for evolutionary inferences, including increasing the statistical rigor and objectivity of comparisons among competing species delimitation models. However, Bayesian species delimitation methods typically require brute force integration over gene trees via Markov chain Monte Carlo (MCMC), which introduces a large computation burden and precludes their application to genomic-scale data. Here we combine a recently introduced dynamic programming algorithm for estimating species trees that bypasses MCMC integration over gene trees with sophisticated methods for estimating marginal likelihoods, needed for Bayesian model selection, to provide a rigorous and computationally tractable technique for genome-wide species delimitation. We provide a critical yet simple correction that brings the likelihoods of different species trees, and more importantly their corresponding marginal likelihoods, to the same common denominator, which enables direct and accurate comparisons of competing species delimitation models using Bayes factors. We test this approach, which we call Bayes factor delimitation (*with genomic data; BFD*), using common species delimitation scenarios with computer simulations. Varying the numbers of loci and the number of samples suggest that the approach can distinguish the true model even with few loci and limited samples per species. Misspecification of the prior for population size θ has little impact on support for the true model. We apply the approach to West African forest geckos (Hemidactylus fasciatus complex) using genome-wide SNP data. This new Bayesian method for species delimitation builds on a growing trend for objective species delimitation methods with explicit model assumptions that are easily tested. [Bayes factor; model testing; phylogeography; RADseq; simulation; speciation.] PMID:24627183

  11. Species delimitation: A case study in a problematic ant taxon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Species delimitation has been invigorated as a discipline in systematics by an influx of new character sets, analytical methods, and conceptual advances. We use genetic data from 68 markers, combined with distributional, bioclimatic, and coloration information, to distinguish evolutionarily indepe...

  12. Genetic Pool Information Reflects Highly Suitable Areas: The Case of Two Parapatric Endangered Species of Tuco-tucos (Rodentia: Ctenomiydae)

    PubMed Central

    Galiano, Daniel; Bernardo-Silva, Jorge; de Freitas, Thales R. O.

    2014-01-01

    Conservation of small mammals requires knowledge of the genetically and ecologically meaningful spatial scales at which species respond to habitat modifications. Conservation strategies can be improved through the use of ecological niche models and genetic data to classify areas of high environmental suitability. In this study, we applied a Maxent model integrated with genetic information (nucleotide diversity, haplotype diversity and Fu's Fs neutrality tests) to evaluate potential genetic pool populations with highly suitable areas for two parapatric endangered species of tuco-tucos (Ctenomys minutus and C. lami). Our results demonstrated that both species were largely influenced by vegetation and soil variables at a landscape scale and inhabit a highly specific niche. Ctenomys minutus was also influenced by the variable altitude; the species was associated with low altitudes (sea level). Our model of genetic data associated with environmental suitability indicate that the genetic pool data were associated with highly suitable areas for C. minutus. This pattern was not evident for C. lami, but this outcome could be a consequence of the restricted range of the species. The preservation of species requires not only detailed knowledge of their natural history and genetic structure but also information on the availability of suitable areas where species can survive, and such knowledge can aid significantly in conservation planning. This finding reinforces the use of these two techniques for planning conservation actions. PMID:24819251

  13. Genetic pool information reflects highly suitable areas: the case of two parapatric endangered species of Tuco-tucos (Rodentia: Ctenomiydae).

    PubMed

    Galiano, Daniel; Bernardo-Silva, Jorge; Freitas, Thales R O de

    2014-01-01

    Conservation of small mammals requires knowledge of the genetically and ecologically meaningful spatial scales at which species respond to habitat modifications. Conservation strategies can be improved through the use of ecological niche models and genetic data to classify areas of high environmental suitability. In this study, we applied a Maxent model integrated with genetic information (nucleotide diversity, haplotype diversity and Fu's Fs neutrality tests) to evaluate potential genetic pool populations with highly suitable areas for two parapatric endangered species of tuco-tucos (Ctenomys minutus and C. lami). Our results demonstrated that both species were largely influenced by vegetation and soil variables at a landscape scale and inhabit a highly specific niche. Ctenomys minutus was also influenced by the variable altitude; the species was associated with low altitudes (sea level). Our model of genetic data associated with environmental suitability indicate that the genetic pool data were associated with highly suitable areas for C. minutus. This pattern was not evident for C. lami, but this outcome could be a consequence of the restricted range of the species. The preservation of species requires not only detailed knowledge of their natural history and genetic structure but also information on the availability of suitable areas where species can survive, and such knowledge can aid significantly in conservation planning. This finding reinforces the use of these two techniques for planning conservation actions.

  14. DNA metabarcoding diet analysis for species with parapatric vs sympatric distribution: a case study on subterranean rodents.

    PubMed

    Lopes, C M; De Barba, M; Boyer, F; Mercier, C; da Silva Filho, P J S; Heidtmann, L M; Galiano, D; Kubiak, B B; Langone, P; Garcias, F M; Gielly, L; Coissac, E; de Freitas, T R O; Taberlet, P

    2015-05-01

    Closely related sympatric species commonly develop different ecological strategies to avoid competition. Ctenomys minutus and C. flamarioni are subterranean rodents parapatrically distributed in the southern Brazilian coastal plain, showing a narrow sympatric zone. To gain understanding on food preferences and possible competition for food resources, we evaluated their diet composition performing DNA metabarcoding analyzes of 67 C. minutus and 100 C. flamarioni scat samples, collected along the species geographical ranges. Thirteen plant families, mainly represented by Poaceae, Araliaceae, Asteraceae and Fabaceae, were identified in the diet of C. minutus. For C. flamarioni, 10 families were recovered, with a predominance of Poaceae, Araliaceae and Asteraceae. A significant correlation between diet composition and geographical distance was detected in C. minutus, whereas the diet of C. flamarioni was quite homogeneous throughout its geographical distribution. No significant differences were observed between males and females of each species. However, differences in diet composition between species were evident according to multivariate analysis. Our results suggest some level of diet partitioning between C. flamarioni and C. minutus in the sympatric region. While the first species is more specialized on few plant items, the second showed a more varied and heterogeneous diet pattern among individuals. These differences might have been developed to avoid competition in the region of co-occurrence. Resource availability in the environment also seems to influence food choices. Our data indicate that C. minutus and C. flamarioni are generalist species, but that some preference for Poaceae, Asteraceae and Araliaceae families can be suggested for both rodents.

  15. DNA metabarcoding diet analysis for species with parapatric vs sympatric distribution: a case study on subterranean rodents

    PubMed Central

    Lopes, C M; De Barba, M; Boyer, F; Mercier, C; da Silva Filho, P J S; Heidtmann, L M; Galiano, D; Kubiak, B B; Langone, P; Garcias, F M; Gielly, L; Coissac, E; de Freitas, T R O; Taberlet, P

    2015-01-01

    Closely related sympatric species commonly develop different ecological strategies to avoid competition. Ctenomys minutus and C. flamarioni are subterranean rodents parapatrically distributed in the southern Brazilian coastal plain, showing a narrow sympatric zone. To gain understanding on food preferences and possible competition for food resources, we evaluated their diet composition performing DNA metabarcoding analyzes of 67 C. minutus and 100 C. flamarioni scat samples, collected along the species geographical ranges. Thirteen plant families, mainly represented by Poaceae, Araliaceae, Asteraceae and Fabaceae, were identified in the diet of C. minutus. For C. flamarioni, 10 families were recovered, with a predominance of Poaceae, Araliaceae and Asteraceae. A significant correlation between diet composition and geographical distance was detected in C. minutus, whereas the diet of C. flamarioni was quite homogeneous throughout its geographical distribution. No significant differences were observed between males and females of each species. However, differences in diet composition between species were evident according to multivariate analysis. Our results suggest some level of diet partitioning between C. flamarioni and C. minutus in the sympatric region. While the first species is more specialized on few plant items, the second showed a more varied and heterogeneous diet pattern among individuals. These differences might have been developed to avoid competition in the region of co-occurrence. Resource availability in the environment also seems to influence food choices. Our data indicate that C. minutus and C. flamarioni are generalist species, but that some preference for Poaceae, Asteraceae and Araliaceae families can be suggested for both rodents. PMID:25649502

  16. Delimiting species boundaries and the conservation genetics of the endangered maritime ringlet butterfly (Coenonympha nipisiquit McDunnough).

    PubMed

    Sei, Makiri; Porter, Adam H

    2007-08-01

    Species delimitation is a difficult problem that has implications across organismal biology, yet no single method has proved wholly satisfactory. We tested the utility of combining species-delimitation methods based on phylogeny and gene flow statistics using two parapatric members of the Coenonympha tullia group as an example: the endangered maritime ringlet butterfly (Coenonympha nipisiquit McDunnough) and the common inornate ringlet butterfly (Coenonympha inornata Edwards). We reconstructed the phylogeny of the nearctic C. tullia-group taxa from mitochondrial DNA (mtDNA) sequences (cytochrome oxidase I and mitochondrial control region) to explore the ancestry of the C. nipisiquit lineage within the group. We investigated the extent of gene flow between the two taxa with F-statistics using 587 nuclear amplified fragment length polymorphism markers, accounting for the effect of potential scoring 'collisions' where a marker may represent more than one DNA fragment. Combining species-delimitation methods was especially effective because it uncovered both historical and recent evolutionary patterns. Phylogenetic analysis of mtDNA revealed the early divergence of C. nipisiquit from other C. tullia-group taxa, including the morphologically similar C. inornata. F-statistics and gene-by-gene introgression profiles demonstrated clear isolation between the two taxa and revealed strong population structure within C. nipisiquit. C. nipisiquit is the first taxon in the nearctic C. tullia group showing strong evidence of genetic isolation. The methods we used are relatively inexpensive and can be widely used to delimit taxonomic boundaries near the species level, both generally and in particular for taxa that may be targets of conservation efforts.

  17. GENETIC FACTORS ASSOCIATED WITH MATING SYSTEM CAUSE A PARTIAL REPRODUCTIVE BARRIER BETWEEN TWO PARAPATRIC SPECIES OF LEAVENWORTHIA (BRASSICACEAE)1

    PubMed Central

    Koelling, Vanessa A.; Mauricio, Rodney

    2010-01-01

    Reproductive barriers play a major role in the origin and maintenance of biodiversity by restricting gene flow between species. Although both pre- and postzygotic barriers often isolate species, prezygotic barriers are thought to contribute more to reproductive isolation. We investigated possible reproductive barriers between Leavenworthia alabamica and L. crassa, parapatric species with high morphological and ecological similarity and the ability to hybridize. Using greenhouse and field experiments, we tested for habitat isolation and genetic incompatibilities. From controlled crosses, we identified unilateral incompatibility (a partial prezygotic barrier associated with the self-incompatibility system), but no evidence of other genetic incompatibilities. We found a small reduction in pollen viability of F1 hybrids and early germination of F1, F2, and BC hybrids relative to L. alabamica and L. crassa in a common garden experiment, but the effect on fitness was not tested. Field studies of hybrid pollen viability and germination are needed to determine if they contribute to reproductive isolation. In a reciprocal transplant, we found no evidence of habitat isolation or reduced hybrid survival (from seedling to adult stage) or reproduction. These data suggest unilateral incompatibility partially reproductively isolates L. alabamica and L. crassa, but no other reproductive barriers could be detected. PMID:20526457

  18. Rarity and Incomplete Sampling in DNA-Based Species Delimitation.

    PubMed

    Ahrens, Dirk; Fujisawa, Tomochika; Krammer, Hans-Joachim; Eberle, Jonas; Fabrizi, Silvia; Vogler, Alfried P

    2016-05-01

    DNA-based species delimitation may be compromised by limited sampling effort and species rarity, including "singleton" representatives of species, which hampers estimates of intra- versus interspecies evolutionary processes. In a case study of southern African chafers (beetles in the family Scarabaeidae), many species and subclades were poorly represented and 48.5% of species were singletons. Using cox1 sequences from >500 specimens and ∼100 species, the Generalized Mixed Yule Coalescent (GMYC) analysis as well as various other approaches for DNA-based species delimitation (Automatic Barcode Gap Discovery (ABGD), Poisson tree processes (PTP), Species Identifier, Statistical Parsimony), frequently produced poor results if analyzing a narrow target group only, but the performance improved when several subclades were combined. Hence, low sampling may be compensated for by "clade addition" of lineages outside of the focal group. Similar findings were obtained in reanalysis of published data sets of taxonomically poorly known species assemblages of insects from Madagascar. The low performance of undersampled trees is not due to high proportions of singletons per se, as shown in simulations (with 13%, 40% and 52% singletons). However, the GMYC method was highly sensitive to variable effective population size ([Formula: see text]), which was exacerbated by variable species abundances in the simulations. Hence, low sampling success and rarity of species affect the power of the GMYC method only if they reflect great differences in [Formula: see text] among species. Potential negative effects of skewed species abundances and prevalence of singletons are ultimately an issue about the variation in [Formula: see text] and the degree to which this is correlated with the census population size and sampling success. Clade addition beyond a limited study group can overcome poor sampling for the GMYC method in particular under variable [Formula: see text] This effect was less

  19. Phylogenetic species delimitation for crayfishes of the genus Pacifastacus.

    PubMed

    Larson, Eric R; Castelin, Magalie; Williams, Bronwyn W; Olden, Julian D; Abbott, Cathryn L

    2016-01-01

    Molecular genetic approaches are playing an increasing role in conservation science by identifying biodiversity that may not be evident by morphology-based taxonomy and systematics. So-called cryptic species are particularly prevalent in freshwater environments, where isolation of dispersal-limited species, such as crayfishes, within dendritic river networks often gives rise to high intra- and inter-specific genetic divergence. We apply here a multi-gene molecular approach to investigate relationships among extant species of the crayfish genus Pacifastacus, representing the first comprehensive phylogenetic study of this taxonomic group. Importantly, Pacifastacus includes both the widely invasive signal crayfish Pacifastacus leniusculus, as well as several species of conservation concern like the Shasta crayfish Pacifastacus fortis. Our analysis used 83 individuals sampled across the four extant Pacifastacus species (omitting the extinct Pacifastacus nigrescens), representing the known taxonomic diversity and geographic distributions within this genus as comprehensively as possible. We reconstructed phylogenetic trees from mitochondrial (16S, COI) and nuclear genes (GAPDH), both separately and using a combined or concatenated dataset, and performed several species delimitation analyses (PTP, ABGD, GMYC) on the COI phylogeny to propose Primary Species Hypotheses (PSHs) within the genus. All phylogenies recovered the genus Pacifastacus as monophyletic, within which we identified a range of six to 21 PSHs; more abundant PSHs delimitations from GMYC and ABGD were always nested within PSHs delimited by the more conservative PTP method. Pacifastacus leniusculus included the majority of PSHs and was not monophyletic relative to the other Pacifastacus species considered. Several of these highly distinct P. leniusculus PSHs likely require urgent conservation attention. Our results identify research needs and conservation priorities for Pacifastacus crayfishes in western

  20. Phylogenetic species delimitation for crayfishes of the genus Pacifastacus

    PubMed Central

    Castelin, Magalie; Williams, Bronwyn W.; Olden, Julian D.; Abbott, Cathryn L.

    2016-01-01

    Molecular genetic approaches are playing an increasing role in conservation science by identifying biodiversity that may not be evident by morphology-based taxonomy and systematics. So-called cryptic species are particularly prevalent in freshwater environments, where isolation of dispersal-limited species, such as crayfishes, within dendritic river networks often gives rise to high intra- and inter-specific genetic divergence. We apply here a multi-gene molecular approach to investigate relationships among extant species of the crayfish genus Pacifastacus, representing the first comprehensive phylogenetic study of this taxonomic group. Importantly, Pacifastacus includes both the widely invasive signal crayfish Pacifastacus leniusculus, as well as several species of conservation concern like the Shasta crayfish Pacifastacus fortis. Our analysis used 83 individuals sampled across the four extant Pacifastacus species (omitting the extinct Pacifastacus nigrescens), representing the known taxonomic diversity and geographic distributions within this genus as comprehensively as possible. We reconstructed phylogenetic trees from mitochondrial (16S, COI) and nuclear genes (GAPDH), both separately and using a combined or concatenated dataset, and performed several species delimitation analyses (PTP, ABGD, GMYC) on the COI phylogeny to propose Primary Species Hypotheses (PSHs) within the genus. All phylogenies recovered the genus Pacifastacus as monophyletic, within which we identified a range of six to 21 PSHs; more abundant PSHs delimitations from GMYC and ABGD were always nested within PSHs delimited by the more conservative PTP method. Pacifastacus leniusculus included the majority of PSHs and was not monophyletic relative to the other Pacifastacus species considered. Several of these highly distinct P. leniusculus PSHs likely require urgent conservation attention. Our results identify research needs and conservation priorities for Pacifastacus crayfishes in western

  1. Insights into the genus Diaporthe: phylogenetic species delimitation in the D. eres species complex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Diaporthe comprises pathogenic, endophytic and saprobic species with both temperate and tropical distributions. Cryptic diversification, phenotypic plasticity and extensive host associations have long complicated accurate identifications of species in this genus. The delimitation of the ge...

  2. Species detection and individual assignment in species delimitation: can integrative data increase efficacy?

    PubMed

    Edwards, Danielle L; Knowles, L Lacey

    2014-02-22

    Statistical species delimitation usually relies on singular data, primarily genetic, for detecting putative species and individual assignment to putative species. Given the variety of speciation mechanisms, singular data may not adequately represent the genetic, morphological and ecological diversity relevant to species delimitation. We describe a methodological framework combining multivariate and clustering techniques that uses genetic, morphological and ecological data to detect and assign individuals to putative species. Our approach recovers a similar number of species recognized using traditional, qualitative taxonomic approaches that are not detected when using purely genetic methods. Furthermore, our approach detects groupings that traditional, qualitative taxonomic approaches do not. This empirical test suggests that our approach to detecting and assigning individuals to putative species could be useful in species delimitation despite varying levels of differentiation across genetic, phenotypic and ecological axes. This work highlights a critical, and often overlooked, aspect of the process of statistical species delimitation-species detection and individual assignment. Irrespective of the species delimitation approach used, all downstream processing relies on how individuals are initially assigned, and the practices and statistical issues surrounding individual assignment warrant careful consideration.

  3. Contrasting patterns of gene flow between sister plant species in the understorey of African moist forests - the case of sympatric and parapatric Marantaceae species.

    PubMed

    Ley, A C; Hardy, O J

    2014-08-01

    Gene flow within and between species is a fundamental process shaping the evolutionary history of taxa. However, the extent of hybridization and reinforcement is little documented in the tropics. Here we explore the pattern of gene flow between three sister species from the herbaceous genus Marantochloa (Marantaceae), sympatrically distributed in the understorey of the African rainforest, using data from the chloroplast and nuclear genomes (DNA sequences and AFLP). We found highly contrasting patterns: while there was no evidence of gene flow between M. congensis and M. monophylla, species identity between M. monophylla and M. incertifolia was maintained despite considerable gene flow. We hypothesize that M. incertifolia originated from an ancient hybridization event between M. congensis and M. monophylla, considering the current absence of hybridization between the two assumed parent species, the rare presence of shared haplotypes between all three species and the high percentage of haplotypes shared by M. incertifolia with each of the two parent species. This example is contrasted with two parapatrically distributed species from the same family in the genus Haumania forming a hybrid zone restricted to the area of overlap. This work illustrates the diversity of speciation/introgression patterns that can potentially occur in the flora of tropical Africa. PMID:24792083

  4. Contrasting patterns of gene flow between sister plant species in the understorey of African moist forests - the case of sympatric and parapatric Marantaceae species.

    PubMed

    Ley, A C; Hardy, O J

    2014-08-01

    Gene flow within and between species is a fundamental process shaping the evolutionary history of taxa. However, the extent of hybridization and reinforcement is little documented in the tropics. Here we explore the pattern of gene flow between three sister species from the herbaceous genus Marantochloa (Marantaceae), sympatrically distributed in the understorey of the African rainforest, using data from the chloroplast and nuclear genomes (DNA sequences and AFLP). We found highly contrasting patterns: while there was no evidence of gene flow between M. congensis and M. monophylla, species identity between M. monophylla and M. incertifolia was maintained despite considerable gene flow. We hypothesize that M. incertifolia originated from an ancient hybridization event between M. congensis and M. monophylla, considering the current absence of hybridization between the two assumed parent species, the rare presence of shared haplotypes between all three species and the high percentage of haplotypes shared by M. incertifolia with each of the two parent species. This example is contrasted with two parapatrically distributed species from the same family in the genus Haumania forming a hybrid zone restricted to the area of overlap. This work illustrates the diversity of speciation/introgression patterns that can potentially occur in the flora of tropical Africa.

  5. A new approach to species delimitation in Septoria

    PubMed Central

    Verkley, G.J.M.; Quaedvlieg, W.; Shin, H.-D.; Crous, P.W.

    2013-01-01

    Septoria is a large genus of asexual morphs of Ascomycota causing leaf spot diseases of many cultivated and wild plants. Host specificity has long been a decisive criterium in species delimitation in Septoria, mainly because of the paucity of useful morphological characters and the high level of variation therein. This study aimed at improving the species delimitation of Septoria by adopting a polyphasic approach, including multilocus DNA sequencing and morphological analyses on the natural substrate and in culture. To this end 365 cultures preserved in CBS, Utrecht, The Netherlands, among which many new isolates obtained from fresh field specimens were sequenced. Herbarium material including many types was also studied. Full descriptions of the morphology in planta and in vitro are provided for 57 species. DNA sequences were generated for seven loci, viz. nuclear ITS and (partial) LSU ribosomal RNA genes, RPB2, actin, calmodulin, Btub, and EF. The robust phylogeny inferred showed that the septoria-like fungi are distributed over three main clades, establishing the genera Septoria s. str., Sphaerulina, and Caryophylloseptoria gen. nov. Nine new combinations and one species, Sphaerulina tirolensis sp. nov. were proposed. It is demonstrated that some species have wider host ranges than expected, including hosts from more than one family. Septoria protearum, previously only associated with Proteaceae was found to be also associated with host plants from six additional families of phanerogams and cryptogams. To our knowledge this is the first study to provide DNA-based evidence that multiple family-associations occur for a single species in Septoria. The distribution of host families over the phylogenetic tree showed a highly dispersed pattern for 10 host plant families, providing new insight into the evolution of these fungi. It is concluded that trans-family host jumping is a major force driving the evolution of Septoria and Sphaerulina. Taxonomic novelties: New

  6. Species Delimitation in Taxonomically Difficult Fungi: The Case of Hymenogaster

    PubMed Central

    Stielow, Benjamin; Bratek, Zoltan; Orczán, Akos Kund I.; Rudnoy, Szabolcs; Hensel, Gunnar; Hoffmann, Peter; Klenk, Hans-Peter; Göker, Markus

    2011-01-01

    Background False truffles are ecologically important as mycorrhizal partners of trees and evolutionarily highly interesting as the result of a shift from epigeous mushroom-like to underground fruiting bodies. Since its first description by Vittadini in 1831, inappropriate species concepts in the highly diverse false truffle genus Hymenogaster has led to continued confusion, caused by a large variety of prevailing taxonomical opinions. Methodology In this study, we reconsidered the species delimitations in Hymenogaster based on a comprehensive collection of Central European taxa comprising more than 140 fruiting bodies from 20 years of field work. The ITS rDNA sequence dataset was subjected to phylogenetic analysis as well as clustering optimization using OPTSIL software. Conclusions Among distinct species concepts from the literature used to create reference partitions for clustering optimization, the broadest concept resulted in the highest agreement with the ITS data. Our results indicate a highly variable morphology of H. citrinus and H. griseus, most likely linked to environmental influences on the phenology (maturity, habitat, soil type and growing season). In particular, taxa described in the 19th century frequently appear as conspecific. Conversely, H. niveus appears as species complex comprising seven cryptic species with almost identical macro- and micromorphology. H. intermedius and H. huthii are described as novel species, each of which with a distinct morphology intermediate between two species complexes. A revised taxonomy for one of the most taxonomically difficult genera of Basidiomycetes is proposed, including an updated identification key. The (semi-)automated selection among species concepts used here is of importance for the revision of taxonomically problematic organism groups in general. PMID:21311589

  7. The unholy trinity: taxonomy, species delimitation and DNA barcoding.

    PubMed

    DeSalle, Rob; Egan, Mary G; Siddall, Mark

    2005-10-29

    Recent excitement over the development of an initiative to generate DNA sequences for all named species on the planet has in our opinion generated two major areas of contention as to how this 'DNA barcoding' initiative should proceed. It is critical that these two issues are clarified and resolved, before the use of DNA as a tool for taxonomy and species delimitation can be universalized. The first issue concerns how DNA data are to be used in the context of this initiative; this is the DNA barcode reader problem (or barcoder problem). Currently, many of the published studies under this initiative have used tree building methods and more precisely distance approaches to the construction of the trees that are used to place certain DNA sequences into a taxonomic context. The second problem involves the reaction of the taxonomic community to the directives of the 'DNA barcoding' initiative. This issue is extremely important in that the classical taxonomic approach and the DNA approach will need to be reconciled in order for the 'DNA barcoding' initiative to proceed with any kind of community acceptance. In fact, we feel that DNA barcoding is a misnomer. Our preference is for the title of the London meetings--Barcoding Life. In this paper we discuss these two concerns generated around the DNA barcoding initiative and attempt to present a phylogenetic systematic framework for an improved barcoder as well as a taxonomic framework for interweaving classical taxonomy with the goals of 'DNA barcoding'.

  8. Phylogeny and species delimitations in European Dicranum (Dicranaceae, Bryophyta) inferred from nuclear and plastid DNA.

    PubMed

    Lang, Annick S; Bocksberger, Gaëlle; Stech, Michael

    2015-11-01

    DNA sequences have been widely used for taxonomy, inferring phylogenetic relationships and identifying species boundaries. Several specific methods to define species delimitations based on molecular phylogenies have appeared recently, with the generalized mixed Yule coalescent (GMYC) method being most popular. However, only few studies on land plants have been published so far and GMYC analyses of bryophytes are missing. Dicranum is a large genus of mosses whose (morpho-)species are partly ill-defined and frequently confused. To infer molecular species delimitations, we reconstructed phylogenetic trees based on five chloroplast markers and nuclear ribosomal ITS sequences from 27 out of 30 species occurring in Europe. We applied the species delimitation methods GMYC and Poisson tree processes (PTP) in order to compare their discriminatory power with species boundaries inferred from the molecular phylogenetic reconstructions and with the morphological species concept. Phylogenetic circumscriptions were congruent with the morphological concept for 19 species, while eight species were molecularly not well delimited, mostly forming closely related species pairs. The automated species delimitation methods achieved similar results but tended to overestimate the number of potential species and exposed several incongruences between the morphological concept and inference from molecular phylogenetic reconstructions. It is concluded that GMYC and PTP methods potentially provide a useful and objective way of delimiting bryophyte species, but studies on further bryophyte data sets are necessary to infer whether incongruences might ensue from evolutionary processes and to test the suitability of these approaches. PMID:26149758

  9. Phylogeny and species delimitations in European Dicranum (Dicranaceae, Bryophyta) inferred from nuclear and plastid DNA.

    PubMed

    Lang, Annick S; Bocksberger, Gaëlle; Stech, Michael

    2015-11-01

    DNA sequences have been widely used for taxonomy, inferring phylogenetic relationships and identifying species boundaries. Several specific methods to define species delimitations based on molecular phylogenies have appeared recently, with the generalized mixed Yule coalescent (GMYC) method being most popular. However, only few studies on land plants have been published so far and GMYC analyses of bryophytes are missing. Dicranum is a large genus of mosses whose (morpho-)species are partly ill-defined and frequently confused. To infer molecular species delimitations, we reconstructed phylogenetic trees based on five chloroplast markers and nuclear ribosomal ITS sequences from 27 out of 30 species occurring in Europe. We applied the species delimitation methods GMYC and Poisson tree processes (PTP) in order to compare their discriminatory power with species boundaries inferred from the molecular phylogenetic reconstructions and with the morphological species concept. Phylogenetic circumscriptions were congruent with the morphological concept for 19 species, while eight species were molecularly not well delimited, mostly forming closely related species pairs. The automated species delimitation methods achieved similar results but tended to overestimate the number of potential species and exposed several incongruences between the morphological concept and inference from molecular phylogenetic reconstructions. It is concluded that GMYC and PTP methods potentially provide a useful and objective way of delimiting bryophyte species, but studies on further bryophyte data sets are necessary to infer whether incongruences might ensue from evolutionary processes and to test the suitability of these approaches.

  10. The unholy trinity: taxonomy, species delimitation and DNA barcoding

    PubMed Central

    DeSalle, Rob; Egan, Mary G; Siddall, Mark

    2005-01-01

    Recent excitement over the development of an initiative to generate DNA sequences for all named species on the planet has in our opinion generated two major areas of contention as to how this ‘DNA barcoding’ initiative should proceed. It is critical that these two issues are clarified and resolved, before the use of DNA as a tool for taxonomy and species delimitation can be universalized. The first issue concerns how DNA data are to be used in the context of this initiative; this is the DNA barcode reader problem (or barcoder problem). Currently, many of the published studies under this initiative have used tree building methods and more precisely distance approaches to the construction of the trees that are used to place certain DNA sequences into a taxonomic context. The second problem involves the reaction of the taxonomic community to the directives of the ‘DNA barcoding’ initiative. This issue is extremely important in that the classical taxonomic approach and the DNA approach will need to be reconciled in order for the ‘DNA barcoding’ initiative to proceed with any kind of community acceptance. In fact, we feel that DNA barcoding is a misnomer. Our preference is for the title of the London meetings—Barcoding Life. In this paper we discuss these two concerns generated around the DNA barcoding initiative and attempt to present a phylogenetic systematic framework for an improved barcoder as well as a taxonomic framework for interweaving classical taxonomy with the goals of ‘DNA barcoding’. PMID:16214748

  11. DNA Barcoding and Species Boundary Delimitation of Selected Species of Chinese Acridoidea (Orthoptera: Caelifera)

    PubMed Central

    Huang, Jianhua; Zhang, Aibing; Mao, Shaoli; Huang, Yuan

    2013-01-01

    We tested the performance of DNA barcoding in Acridoidea and attempted to solve species boundary delimitation problems in selected groups using COI barcodes. Three analysis methods were applied to reconstruct the phylogeny. K2P distances were used to assess the overlap range between intraspecific variation and interspecific divergence. “Best match (BM)”, “best close match (BCM)”, “all species barcodes (ASB)” and “back-propagation neural networks (BP-based method)” were utilized to test the success rate of species identification. Phylogenetic species concept and network analysis were employed to delimitate the species boundary in eight selected species groups. The results demonstrated that the COI barcode region performed better in phylogenetic reconstruction at genus and species levels than at higher-levels, but showed a little improvement in resolving the higher-level relationships when the third base data or both first and third base data were excluded. Most overlaps and incorrect identifications may be due to imperfect taxonomy, indicating the critical role of taxonomic revision in DNA barcoding study. Species boundary delimitation confirmed the presence of oversplitting in six species groups and suggested that each group should be treated as a single species. PMID:24376533

  12. RAD sequencing enables unprecedented phylogenetic resolution and objective species delimitation in recalcitrant divergent taxa.

    PubMed

    Herrera, Santiago; Shank, Timothy M

    2016-07-01

    Species delimitations is problematic in many cases due to the difficulty of evaluating predictions from species hypotheses. In many cases delimitations rely on subjective interpretations of morphological and/or DNA data. Species with inadequate genetic resources needed to answer questions regarding evolutionary relatedness and genetic uniqueness are particularly problematic. In this study, we demonstrate the utility of restriction site associated DNA sequencing (RAD-seq) to objectively resolve unambiguous phylogenetic relationships in a recalcitrant group of deep-sea corals with divergences >80 million years. We infer robust species boundaries in the genus Paragorgia by testing alternative delimitation hypotheses using a Bayes Factors delimitation method. We present substantial evidence rejecting the current morphological species delimitation model for the genus and infer the presence of cryptic species associated with environmental variables. We argue that the suitability limits of RAD-seq for phylogenetic inferences cannot be assessed in terms of absolute time, but are contingent on taxon-specific factors. We show that classical taxonomy can greatly benefit from integrative approaches that provide objective tests to species delimitation hypotheses. Our results lead the way for addressing further questions in marine biogeography, community ecology, population dynamics, conservation, and evolution. PMID:26993764

  13. Species delimitation and phylogeny of a New Zealand plant species radiation

    PubMed Central

    Meudt, Heidi M; Lockhart, Peter J; Bryant, David

    2009-01-01

    Background Delimiting species boundaries and reconstructing the evolutionary relationships of late Tertiary and Quaternary species radiations is difficult. One recent approach emphasizes the use of genome-wide molecular markers, such as amplified fragment length polymorphisms (AFLPs) and single nucleotide polymorphisms (SNPs), to identify distinct metapopulation lineages as taxonomic species. Here we investigate the properties of AFLP data, and the usefulness of tree-based and non-tree-based clustering methods to delimit species and reconstruct evolutionary relationships among high-elevation Ourisia species (Plantaginaceae) in the New Zealand archipelago. Results New Zealand Ourisia are shown to comprise a geologically recent species radiation based on molecular dating analyses of ITS sequences (0.4–1.3 MY). Supernetwork analyses indicate that separate tree-based clustering analyses of four independent AFLP primer combinations and 193 individuals of Ourisia produced similar trees. When combined and analysed using tree building methods, 15 distinct metapopulations could be identified. These clusters corresponded very closely to species and subspecies identified on the basis of diagnostic morphological characters. In contrast, Structure and PCO-MC analyses of the same data identified a maximum of 12 and 8 metapopulations, respectively. All approaches resolved a large-leaved group and a small-leaved group, as well as a lineage of three alpine species within the small-leaved group. We were unable to further resolve relationships within these groups as corrected and uncorrected distances derived from AFLP profiles had limited tree-like properties. Conclusion Ourisia radiated into a range of alpine and subalpine habitats in New Zealand during the Pleistocene, resulting in 13 morphologically and ecologically distinct species, including one reinstated from subspecies rank. Analyses of AFLP identified distinct metapopulations consistent with morphological characters

  14. Revisiting species delimitation within the genus Oxystele using DNA barcoding approach

    PubMed Central

    Van Der Bank, Herman; Herbert, Dai; Greenfield, Richard; Yessoufou, Kowiyou

    2013-01-01

    Abstract The genus Oxystele, a member of the highly diverse marine gastropod superfamily Trochoidea, is endemic to southern Africa. Members of the genus include some of the most abundant molluscs on southern African shores and are important components of littoral biodiversity in rocky intertidal habitats. Species delimitation within the genus is still controversial, especially regarding the complex O. impervia / O. variegata. Here, we assessed species boundaries within the genus using DNA barcoding and phylogenetic tree reconstruction. We analysed 56 specimens using the mitochondrial gene COI. Our analysis delimits five molecular operational taxonomic units (MOTUs), and distinguishes O. impervia from O. variegata. However, we reveal important discrepancies between MOTUs and morphology-based species identification and discuss alternative hypotheses that can account for this. Finally, we indicate the need for future study that includes additional genes, and the combination of both morphology and genetic techniques (e.g. AFLP or microsatellites) to get deeper insight into species delimitation within the genus. PMID:24453566

  15. True lemurs…true species - species delimitation using multiple data sources in the brown lemur complex

    PubMed Central

    2013-01-01

    Background Species are the fundamental units in evolutionary biology. However, defining them as evolutionary independent lineages requires integration of several independent sources of information in order to develop robust hypotheses for taxonomic classification. Here, we exemplarily propose an integrative framework for species delimitation in the “brown lemur complex” (BLC) of Madagascar, which consists of seven allopatric populations of the genus Eulemur (Primates: Lemuridae), which were sampled extensively across northern, eastern and western Madagascar to collect fecal samples for DNA extraction as well as recordings of vocalizations. Our data base was extended by including museum specimens with reliable identification and locality information for skull shape and pelage color analysis. Results Between-group analyses of principal components revealed significant heterogeneity in skull shape, pelage color variation and loud calls across all seven populations. Furthermore, post-hoc statistical tests between pairs of populations revealed considerable discordance among different data sets for different dyads. Despite a high degree of incomplete lineage sorting among nuclear loci, significant exclusive ancestry was found for all populations, except for E. cinereiceps, based on one mitochondrial and three nuclear genetic loci. Conclusions Using several independent lines of evidence, our results confirm the species status of the members of the BLC under the general lineage concept of species. More generally, the present analyses demonstrate the importance and value of integrating different kinds of data in delimiting recently evolved radiations. PMID:24159931

  16. Delimiting species using multilocus data: diagnosing cryptic diversity in the southern cavefish, Typhlichthys subterraneus (Teleostei: Amblyopsidae).

    PubMed

    Niemiller, Matthew L; Near, Thomas J; Fitzpatrick, Benjamin M

    2012-03-01

    A major challenge facing biodiversity conservation and management is that a significant portion of species diversity remains undiscovered or undescribed. This is particularly evident in subterranean animals in which species delimitation based on morphology is difficult because differentiation is often obscured by phenotypic convergence. Multilocus genetic data constitute a valuable source of information for species delimitation in such organisms, but until recently, few methods were available to objectively test species delimitation hypotheses using genetic data. Here, we use recently developed methods for discovering and testing species boundaries and relationships using a multilocus dataset in a widely distributed subterranean teleost fish, Typhlichthys subterraneus, endemic to Eastern North America. We provide evidence that species diversity in T. subterraneus is currently underestimated and that the picture of a single, widely distributed species is not supported. Rather, several morphologically cryptic lineages comprise the diversity in this clade, including support for the recognition of T. eigenmanni. The high number of cryptic species in Typhlichthys highlights the utility of multilocus genetic data in delimiting species, particularly in lineages that exhibit slight morphological disparity, such as subterranean organisms. However, results depend on sampling of individuals and loci; this issue needs further study. PMID:22380444

  17. Comparative molecular species delimitation in the charismatic Nawab butterflies (Nymphalidae, Charaxinae, Polyura).

    PubMed

    Toussaint, Emmanuel F A; Morinière, Jérôme; Müller, Chris J; Kunte, Krushnamegh; Turlin, Bernard; Hausmann, Axel; Balke, Michael

    2015-10-01

    The charismatic tropical Polyura Nawab butterflies are distributed across twelve biodiversity hotspots in the Indomalayan/Australasian archipelago. In this study, we tested an array of species delimitation methods and compared the results to existing morphology-based taxonomy. We sequenced two mitochondrial and two nuclear gene fragments to reconstruct phylogenetic relationships within Polyura using both Bayesian inference and maximum likelihood. Based on this phylogenetic framework, we used the recently introduced bGMYC, BPP and PTP methods to investigate species boundaries. Based on our results, we describe two new species Polyura paulettae Toussaint sp. n. and Polyura smilesi Toussaint sp. n., propose one synonym, and five populations are raised to species status. Most of the newly recognized species are single-island endemics likely resulting from the recent highly complex geological history of the Indomalayan-Australasian archipelago. Surprisingly, we also find two newly recognized species in the Indomalayan region where additional biotic or abiotic factors have fostered speciation. Species delimitation methods were largely congruent and succeeded to cross-validate most extant morphological species. PTP and BPP seem to yield more consistent and robust estimations of species boundaries with respect to morphological characters while bGMYC delivered contrasting results depending on the different gene trees considered. Our findings demonstrate the efficiency of comparative approaches using molecular species delimitation methods on empirical data. They also pave the way for the investigation of less well-known groups to unveil patterns of species richness and catalogue Earth's concealed, therefore unappreciated diversity.

  18. Rigorous approaches to species delimitation have significant implications for African crocodilian systematics and conservation.

    PubMed

    Shirley, Matthew H; Vliet, Kent A; Carr, Amanda N; Austin, James D

    2014-02-01

    Accurate species delimitation is a central assumption of biology that, in groups such as the Crocodylia, is often hindered by highly conserved morphology and frequent introgression. In Africa, crocodilian systematics has been hampered by complex regional biogeography and confounded taxonomic history. We used rigorous molecular and morphological species delimitation methods to test the hypothesis that the slender-snouted crocodile (Mecistops cataphractus) is composed of multiple species corresponding to the Congolian and Guinean biogeographic zones. Speciation probability was assessed by using 11 mitochondrial and nuclear genes, and cranial morphology for over 100 specimens, representing the full geographical extent of the species distribution. Molecular Bayesian and phylogenetic species delimitation showed unanimous support for two Mecistops species isolated to the Upper Guinean and Congo (including Lower Guinean) biomes that were supported by 13 cranial characters capable of unambiguously diagnosing each species. Fossil-calibrated phylogenetic reconstruction estimated that the species split ± 6.5-7.5 Ma, which is congruent with intraspecies divergence within the sympatric crocodile genus Osteolaemus and the formation of the Cameroon Volcanic Line. Our results underscore the necessity of comprehensive phylogeographic analyses within currently recognized taxa to detect cryptic species within the Crocodylia. We recommend that the community of crocodilian researchers reconsider the conceptualization of crocodilian species especially in the light of the conservation ramifications for this economically and ecologically important group.

  19. Rigorous approaches to species delimitation have significant implications for African crocodilian systematics and conservation

    PubMed Central

    Shirley, Matthew H.; Vliet, Kent A.; Carr, Amanda N.; Austin, James D.

    2014-01-01

    Accurate species delimitation is a central assumption of biology that, in groups such as the Crocodylia, is often hindered by highly conserved morphology and frequent introgression. In Africa, crocodilian systematics has been hampered by complex regional biogeography and confounded taxonomic history. We used rigorous molecular and morphological species delimitation methods to test the hypothesis that the slender-snouted crocodile (Mecistops cataphractus) is composed of multiple species corresponding to the Congolian and Guinean biogeographic zones. Speciation probability was assessed by using 11 mitochondrial and nuclear genes, and cranial morphology for over 100 specimens, representing the full geographical extent of the species distribution. Molecular Bayesian and phylogenetic species delimitation showed unanimous support for two Mecistops species isolated to the Upper Guinean and Congo (including Lower Guinean) biomes that were supported by 13 cranial characters capable of unambiguously diagnosing each species. Fossil-calibrated phylogenetic reconstruction estimated that the species split ± 6.5–7.5 Ma, which is congruent with intraspecies divergence within the sympatric crocodile genus Osteolaemus and the formation of the Cameroon Volcanic Line. Our results underscore the necessity of comprehensive phylogeographic analyses within currently recognized taxa to detect cryptic species within the Crocodylia. We recommend that the community of crocodilian researchers reconsider the conceptualization of crocodilian species especially in the light of the conservation ramifications for this economically and ecologically important group. PMID:24335982

  20. Coalescent species delimitation in milksnakes (genus Lampropeltis) and impacts on phylogenetic comparative analyses.

    PubMed

    Ruane, Sara; Bryson, Robert W; Pyron, R Alexander; Burbrink, Frank T

    2014-03-01

    Both gene-tree discordance and unrecognized diversity are sources of error for accurate estimation of species trees, and can affect downstream diversification analyses by obscuring the correct number of nodes, their density, and the lengths of the branches subtending them. Although the theoretical impact of gene-tree discordance on evolutionary analyses has been examined previously, the effect of unsampled and cryptic diversity has not. Here, we examine how delimitation of previously unrecognized diversity in the milksnake (Lampropeltis triangulum) and use of a species-tree approach affects both estimation of the Lampropeltis phylogeny and comparative analyses with respect to the timing of diversification. Coalescent species delimitation indicates that L. triangulum is not monophyletic and that there are multiple species of milksnake, which increases the known species diversity in the genus Lampropeltis by 40%. Both genealogical and temporal discordance occurs between gene trees and the species tree, with evidence that mitochondrial DNA (mtDNA) introgression is a main factor. This discordance is further manifested in the preferred models of diversification, where the concatenated gene tree strongly supports an early burst of speciation during the Miocene, in contrast to species-tree estimates where diversification follows a birth-death model and speciation occurs mostly in the Pliocene and Pleistocene. This study highlights the crucial interaction among coalescent-based phylogeography and species delimitation, systematics, and species diversification analyses.

  1. Multilocus species delimitation in the Crotalus triseriatus species group (Serpentes: Viperidae: Crotalinae), with the description of two new species.

    PubMed

    Bryson, Robert W; Linkem, Charles W; Dorcas, Michael E; Lathrop, Amy; Jones, Jason M; Alvarado-Díaz, Javier; Grünwald, Christoph I; Murphy, Robert W

    2014-07-01

    Members of the Crotalus triseriatus species group of montane rattlesnakes are widely distributed across the highlands of Mexico and southwestern USA. Although five species are currently recognized within the group, species limits remain to be tested. Genetic studies suggest that species may be paraphyletic and that at least one cryptic species may be present. We generate 3,346 base pairs of DNA sequence data from seven nuclear loci to test competing models of species delimitation in the C. triseriatus group using Bayes factor delimitation. We also examine museum specimens from the Trans-Mexican Volcanic Belt for evidence of cryptic species. We find strong support for a nine-species model and genetic and morphological evidence for recognizing two new species within the group, which we formally describe here. Our results suggest that the current taxonomy of the C. triseriatus species group does not reflect evolutionary history. We suggest several conservative taxonomic changes to the group, but future studies are needed to better clarify relationships among species and examine genetic patterns and structure within wide-ranging lineages.

  2. Species delimitation in northern European water scavenger beetles of the genus Hydrobius (Coleoptera, Hydrophilidae).

    PubMed

    Fossen, Erlend I; Ekrem, Torbjørn; Nilsson, Anders N; Bergsten, Johannes

    2016-01-01

    The chiefly Holarctic Hydrobius species complex (Coleoptera, Hydrophilidae) currently consists of Hydrobius arcticus Kuwert, 1890, and three morphological variants of Hydrobius fuscipes (Linnaeus, 1758): var. fuscipes, var. rottenbergii and var. subrotundus in northern Europe. Here molecular and morphological data are used to test the species boundaries in this species complex. Three gene segments (COI, H3 and ITS2) were sequenced and analyzed with Bayesian methods to infer phylogenetic relationships. The Generalized Mixed Yule Coalescent (GMYC) model and two versions of the Bayesian species delimitation method BPP, with or without an a priori defined guide tree (v2.2 & v3.0), were used to evaluate species limits. External and male genital characters of primarily Fennoscandian specimens were measured and statistically analyzed to test for significant differences in quantitative morphological characters. The four morphotypes formed separate genetic clusters on gene trees and were delimited as separate species by GMYC and by both versions of BPP, despite specimens of Hydrobius fuscipes var. fuscipes and Hydrobius fuscipes var. subrotundus being sympatric. Hydrobius arcticus and Hydrobius fuscipes var. rottenbergii could only be separated genetically with ITS2, and were delimited statistically with GMYC on ITS2 and with BPP on the combined data. In addition, six or seven potentially cryptic species of the Hydrobius fuscipes complex from regions outside northern Europe were delimited genetically. Although some overlap was found, the mean values of six male genital characters were significantly different between the morphotypes (p < 0.001). Morphological characters previously presumed to be diagnostic were less reliable to separate Hydrobius fuscipes var. fuscipes from Hydrobius fuscipes var. subrotundus, but characters in the literature for Hydrobius arcticus and Hydrobius fuscipes var. rottenbergii were diagnostic. Overall, morphological and molecular evidence

  3. Species delimitation of Chinese hop-hornbeams based on molecular and morphological evidence.

    PubMed

    Lu, Zhiqiang; Zhang, Dan; Liu, Siyu; Yang, Xiaoyue; Liu, Xue; Liu, Jianquan

    2016-07-01

    Species delimitation through which infers species boundaries is emerging as a major work in modern systematics. Hop-hornbeam species in Ostrya (Betulaceae) are well known for their hard and heavy woods. Five species were described in China and their interspecific delimitations remain unclear. In this study, we firstly explored their distributions in all recorded field sites distributed in China. We then selected 110 samples from 22 natural populations of five species from this genus and one type specimen of O. yunnanensis, for molecular barcoding analyses. We sequenced four chloroplast (cp) DNA fragments (trnH-psbA, trnL-trnF, rps16, and trnG) and the nuclear internal transcribed spacer (ITS) region for all samples. Sequence variations of Ostrya from four cpDNA fragments identified three groups that showed no correspondence to any morphological delimitation because of the incomplete lineage sorting and/or possible interspecific introgression in the history. However, phylogenetic analyses of ITS sequence variations discerned four species, O. japonica, O. rehderiana, O. trichocarpa, and O. multinervis while O. yunnanensis nested within O. multinervis. Morphological clustering also discerned four species and showed the complete consistency with molecular evidence. Moreover, our phylogenetic analyses-based ITS sequence variations suggested that O. trichocarpa comprised an isolated lineage different from the other Eurasian ones. Based on these results, hop-hornbeams in China should be treated as four separate species. Our results further highlight the importance of ITS sequence variations in delimitating and discerning the closely related species in plants. PMID:27547308

  4. Species Delimitation and Phylogeography of Aphonopelma hentzi (Araneae, Mygalomorphae, Theraphosidae): Cryptic Diversity in North American Tarantulas

    PubMed Central

    Hamilton, Chris A.; Formanowicz, Daniel R.; Bond, Jason E.

    2011-01-01

    Background The primary objective of this study is to reconstruct the phylogeny of the hentzi species group and sister species in the North American tarantula genus, Aphonopelma, using a set of mitochondrial DNA markers that include the animal “barcoding gene”. An mtDNA genealogy is used to consider questions regarding species boundary delimitation and to evaluate timing of divergence to infer historical biogeographic events that played a role in shaping the present-day diversity and distribution. We aimed to identify potential refugial locations, directionality of range expansion, and test whether A. hentzi post-glacial expansion fit a predicted time frame. Methods and Findings A Bayesian phylogenetic approach was used to analyze a 2051 base pair (bp) mtDNA data matrix comprising aligned fragments of the gene regions CO1 (1165 bp) and ND1-16S (886 bp). Multiple species delimitation techniques (DNA tree-based methods, a “barcode gap” using percent of pairwise sequence divergence (uncorrected p-distances), and the GMYC method) consistently recognized a number of divergent and genealogically exclusive groups. Conclusions The use of numerous species delimitation methods, in concert, provide an effective approach to dissecting species boundaries in this spider group; as well they seem to provide strong evidence for a number of nominal, previously undiscovered, and cryptic species. Our data also indicate that Pleistocene habitat fragmentation and subsequent range expansion events may have shaped contemporary phylogeographic patterns of Aphonopelma diversity in the southwestern United States, particularly for the A. hentzi species group. These findings indicate that future species delimitation approaches need to be analyzed in context of a number of factors, such as the sampling distribution, loci used, biogeographic history, breadth of morphological variation, ecological factors, and behavioral data, to make truly integrative decisions about what constitutes an

  5. Species discovery and validation in a cryptic radiation of endangered primates: coalescent-based species delimitation in Madagascar's mouse lemurs.

    PubMed

    Hotaling, Scott; Foley, Mary E; Lawrence, Nicolette M; Bocanegra, Jose; Blanco, Marina B; Rasoloarison, Rodin; Kappeler, Peter M; Barrett, Meredith A; Yoder, Anne D; Weisrock, David W

    2016-05-01

    Implementation of the coalescent model in a Bayesian framework is an emerging strength in genetically based species delimitation studies. By providing an objective measure of species diagnosis, these methods represent a quantitative enhancement to the analysis of multilocus data, and complement more traditional methods based on phenotypic and ecological characteristics. Recognized as two species 20 years ago, mouse lemurs (genus Microcebus) now comprise more than 20 species, largely diagnosed from mtDNA sequence data. With each new species description, enthusiasm has been tempered with scientific scepticism. Here, we present a statistically justified and unbiased Bayesian approach towards mouse lemur species delimitation. We perform validation tests using multilocus sequence data and two methodologies: (i) reverse-jump Markov chain Monte Carlo sampling to assess the likelihood of different models defined a priori by a guide tree, and (ii) a Bayes factor delimitation test that compares different species-tree models without a guide tree. We assess the sensitivity of these methods using randomized individual assignments, which has been used in bpp studies, but not with Bayes factor delimitation tests. Our results validate previously diagnosed taxa, as well as new species hypotheses, resulting in support for three new mouse lemur species. As the challenge of multiple researchers using differing criteria to describe diversity is not unique to Microcebus, the methods used here have significant potential for clarifying diversity in other taxonomic groups. We echo previous studies in advocating that multiple lines of evidence, including use of the coalescent model, should be trusted to delimit new species.

  6. Species discovery and validation in a cryptic radiation of endangered primates: coalescent-based species delimitation in Madagascar's mouse lemurs.

    PubMed

    Hotaling, Scott; Foley, Mary E; Lawrence, Nicolette M; Bocanegra, Jose; Blanco, Marina B; Rasoloarison, Rodin; Kappeler, Peter M; Barrett, Meredith A; Yoder, Anne D; Weisrock, David W

    2016-05-01

    Implementation of the coalescent model in a Bayesian framework is an emerging strength in genetically based species delimitation studies. By providing an objective measure of species diagnosis, these methods represent a quantitative enhancement to the analysis of multilocus data, and complement more traditional methods based on phenotypic and ecological characteristics. Recognized as two species 20 years ago, mouse lemurs (genus Microcebus) now comprise more than 20 species, largely diagnosed from mtDNA sequence data. With each new species description, enthusiasm has been tempered with scientific scepticism. Here, we present a statistically justified and unbiased Bayesian approach towards mouse lemur species delimitation. We perform validation tests using multilocus sequence data and two methodologies: (i) reverse-jump Markov chain Monte Carlo sampling to assess the likelihood of different models defined a priori by a guide tree, and (ii) a Bayes factor delimitation test that compares different species-tree models without a guide tree. We assess the sensitivity of these methods using randomized individual assignments, which has been used in bpp studies, but not with Bayes factor delimitation tests. Our results validate previously diagnosed taxa, as well as new species hypotheses, resulting in support for three new mouse lemur species. As the challenge of multiple researchers using differing criteria to describe diversity is not unique to Microcebus, the methods used here have significant potential for clarifying diversity in other taxonomic groups. We echo previous studies in advocating that multiple lines of evidence, including use of the coalescent model, should be trusted to delimit new species. PMID:26946180

  7. High-stakes species delimitation in eyeless cave spiders (Cicurina, Dictynidae, Araneae) from central Texas.

    PubMed

    Hedin, Marshal

    2015-01-01

    A remarkable radiation of completely eyeless, cave-obligate spider species (Cicurina) has been described from limestone caves of Texas. This radiation includes over 50 described species, with a large number of hypothesized single-cave endemics, and four species listed as US Federally Endangered. Because of this conservation importance, species delimitation in the group is 'high-stakes'- it is imperative that species hypotheses are data rich, objective, and robust. This study focuses on a complex of four cave-dwelling Cicurina distributed on the northwestern edge of Austin, Texas. Several of the existing species hypotheses in this complex are weak, based on morphological comparisons of small samples of adult female specimens; one species description (for C. wartoni) is based on a single adult specimen. Species limits in this group were newly assessed using morphological, mitochondrial and nuclear DNA sequence data evidence, analysed using a variety of approaches. All data support a clear lineage separation between C. buwata versus the C. travisae complex (including C. travisae, C. wartoni and C. reddelli). Observed congruence across multiple analyses indicate that the C. travisae complex represents a single species, and the formal species synonymy presented here has important conservation implications. The integrative framework utilized in this study serves as a potential model for other Texas cave Cicurina, including US Federally Endangered species. More generally, this study illustrates how and why taxon-focused conservation efforts must prioritize modern species delimitation research (if the existing taxonomy is weak), before devoting precious downstream resources to conservation efforts. The study also highlights the issue of taxonomic type II error that diversity biologists increasingly face as species delimitation moves into the genomics era. PMID:25492722

  8. High-stakes species delimitation in eyeless cave spiders (Cicurina, Dictynidae, Araneae) from central Texas.

    PubMed

    Hedin, Marshal

    2015-01-01

    A remarkable radiation of completely eyeless, cave-obligate spider species (Cicurina) has been described from limestone caves of Texas. This radiation includes over 50 described species, with a large number of hypothesized single-cave endemics, and four species listed as US Federally Endangered. Because of this conservation importance, species delimitation in the group is 'high-stakes'- it is imperative that species hypotheses are data rich, objective, and robust. This study focuses on a complex of four cave-dwelling Cicurina distributed on the northwestern edge of Austin, Texas. Several of the existing species hypotheses in this complex are weak, based on morphological comparisons of small samples of adult female specimens; one species description (for C. wartoni) is based on a single adult specimen. Species limits in this group were newly assessed using morphological, mitochondrial and nuclear DNA sequence data evidence, analysed using a variety of approaches. All data support a clear lineage separation between C. buwata versus the C. travisae complex (including C. travisae, C. wartoni and C. reddelli). Observed congruence across multiple analyses indicate that the C. travisae complex represents a single species, and the formal species synonymy presented here has important conservation implications. The integrative framework utilized in this study serves as a potential model for other Texas cave Cicurina, including US Federally Endangered species. More generally, this study illustrates how and why taxon-focused conservation efforts must prioritize modern species delimitation research (if the existing taxonomy is weak), before devoting precious downstream resources to conservation efforts. The study also highlights the issue of taxonomic type II error that diversity biologists increasingly face as species delimitation moves into the genomics era.

  9. Species delimitation and phylogeny in the genus Nasutitermes (Termitidae: Nasutitermitinae) in French Guiana.

    PubMed

    Roy, Virginie; Constantino, Reginaldo; Chassany, Vincent; Giusti-Miller, Stephanie; Diouf, Michel; Mora, Philippe; Harry, Myriam

    2014-02-01

    Species delimitation and identification can be arduous for taxa whose morphologic characters are easily confused, which can hamper global biodiversity assessments and pest species management. Exploratory methods of species delimitation that use DNA sequence as their primary information source to establish group membership and estimate putative species boundaries are useful approaches, complementary to traditional taxonomy. Termites of the genus Nasutitermes make interesting models for the application of such methods. They are dominant in Neotropical primary forests but also represent major agricultural and structural pests. Despite the prevalence, pivotal ecological role and economical impact of this group, the taxonomy of Nasutitermes species mainly depends on unreliable characters of soldier external morphology. Here, we generated robust species hypotheses for 79 Nasutitermes colonies sampled throughout French Guiana without any a priori knowledge of species affiliation. Sequence analysis of the mitochondrial cytochrome oxidase II gene was coupled with exploratory species-delimitation tools, using the automatic barcode gap discovery method (ABGD) and a generalized mixed Yule-coalescent model (GMYC) to propose primary species hypotheses (PSHs). PSHs were revaluated using phylogenetic analyses of two more loci (mitochondrial 16S rDNA and nuclear internal transcribed spacer 2) leading to 16 retained secondary species hypotheses (RSSH). Seven RSSHs, represented by 44/79 of the sampled colonies, were morphologically affiliated to species recognized as pests in the Neotropics, where they represent a real invasive pest potential in the context of growing ecosystem anthropization. Multigenic phylogenies based on combined alignments (1426-1784 bp) were also reconstructed to identify ancestral ecological niches and major-pest lineages, revealing that Guyanese pest species do not form monophyletic groups. PMID:24372711

  10. Species delimitation and phylogeny in the genus Nasutitermes (Termitidae: Nasutitermitinae) in French Guiana.

    PubMed

    Roy, Virginie; Constantino, Reginaldo; Chassany, Vincent; Giusti-Miller, Stephanie; Diouf, Michel; Mora, Philippe; Harry, Myriam

    2014-02-01

    Species delimitation and identification can be arduous for taxa whose morphologic characters are easily confused, which can hamper global biodiversity assessments and pest species management. Exploratory methods of species delimitation that use DNA sequence as their primary information source to establish group membership and estimate putative species boundaries are useful approaches, complementary to traditional taxonomy. Termites of the genus Nasutitermes make interesting models for the application of such methods. They are dominant in Neotropical primary forests but also represent major agricultural and structural pests. Despite the prevalence, pivotal ecological role and economical impact of this group, the taxonomy of Nasutitermes species mainly depends on unreliable characters of soldier external morphology. Here, we generated robust species hypotheses for 79 Nasutitermes colonies sampled throughout French Guiana without any a priori knowledge of species affiliation. Sequence analysis of the mitochondrial cytochrome oxidase II gene was coupled with exploratory species-delimitation tools, using the automatic barcode gap discovery method (ABGD) and a generalized mixed Yule-coalescent model (GMYC) to propose primary species hypotheses (PSHs). PSHs were revaluated using phylogenetic analyses of two more loci (mitochondrial 16S rDNA and nuclear internal transcribed spacer 2) leading to 16 retained secondary species hypotheses (RSSH). Seven RSSHs, represented by 44/79 of the sampled colonies, were morphologically affiliated to species recognized as pests in the Neotropics, where they represent a real invasive pest potential in the context of growing ecosystem anthropization. Multigenic phylogenies based on combined alignments (1426-1784 bp) were also reconstructed to identify ancestral ecological niches and major-pest lineages, revealing that Guyanese pest species do not form monophyletic groups.

  11. A Rapid and Scalable Method for Multilocus Species Delimitation Using Bayesian Model Comparison and Rooted Triplets

    PubMed Central

    Fujisawa, Tomochika; Aswad, Amr; Barraclough, Timothy G.

    2016-01-01

    Multilocus sequence data provide far greater power to resolve species limits than the single locus data typically used for broad surveys of clades. However, current statistical methods based on a multispecies coalescent framework are computationally demanding, because of the number of possible delimitations that must be compared and time-consuming likelihood calculations. New methods are therefore needed to open up the power of multilocus approaches to larger systematic surveys. Here, we present a rapid and scalable method that introduces 2 new innovations. First, the method reduces the complexity of likelihood calculations by decomposing the tree into rooted triplets. The distribution of topologies for a triplet across multiple loci has a uniform trinomial distribution when the 3 individuals belong to the same species, but a skewed distribution if they belong to separate species with a form that is specified by the multispecies coalescent. A Bayesian model comparison framework was developed and the best delimitation found by comparing the product of posterior probabilities of all triplets. The second innovation is a new dynamic programming algorithm for finding the optimum delimitation from all those compatible with a guide tree by successively analyzing subtrees defined by each node. This algorithm removes the need for heuristic searches used by current methods, and guarantees that the best solution is found and potentially could be used in other systematic applications. We assessed the performance of the method with simulated, published, and newly generated data. Analyses of simulated data demonstrate that the combined method has favorable statistical properties and scalability with increasing sample sizes. Analyses of empirical data from both eukaryotes and prokaryotes demonstrate its potential for delimiting species in real cases. PMID:27055648

  12. The bladed Bangiales (Rhodophyta) of the South Eastern Pacific: Molecular species delimitation reveals extensive diversity.

    PubMed

    Guillemin, Marie-Laure; Contreras-Porcia, Loretto; Ramírez, María Eliana; Macaya, Erasmo C; Contador, Cristian Bulboa; Woods, Helen; Wyatt, Christopher; Brodie, Juliet

    2016-01-01

    A molecular taxonomic study of the bladed Bangiales of the South Eastern Pacific (coast of Chile) was undertaken based on sequence data of the mitochondrial COI and chloroplast rbcL for 193 specimens collected from Arica (18°S) in the north to South Patagonia (53°S) in the south. The results revealed for the first time that four genera, Porphyra, Pyropia, Fuscifolium and Wildemania were present in the region. Species delimitation was determined based on a combination of a General Mixed Yule Coalescence model (GMYC) and Automatic Barcode Gap Discovery (ABGD) coupled with detection of monophyly in tree reconstruction. The overall incongruence between the species delimitation methods within each gene was 29%. The GMYC method led to over-splitting groups, whereas the ABGD method had a tendency to lump groups. Taking a conservative approach to the number of putative species, at least 18 were recognized and, with the exception of the recently described Pyropia orbicularis, all were new to the Chilean flora. Porphyra and Pyropia were the most diverse genera with eight 'species' each, whereas only a 'single' species each was found for Fuscifolium and Wildemania. There was also evidence of recently diverging groups: Wildemania sp. was distinct but very closely related to W. amplissima from the Northern Hemisphere and raises questions in relation to such disjunct distributions. Pyropia orbicularis was very closely related to two other species, making species delimitation very difficult but provides evidence of an incipient speciation. The difference between the 'species' discovered and those previously reported for the region is discussed in relation to the difficulty of distinguishing species based on morphological identification. PMID:26484942

  13. Species delimitation and recognition in the Pediomelum megalanthum complex (Fabaceae) via multivariate morphometrics

    PubMed Central

    Egan, Ashley N.

    2015-01-01

    Abstract Pediomelum is a genus endemic to North America comprising about 26 species, including the megalanthum complex, which consists of Pediomelum megalanthum and its varieties retrorsum and megalanthum, Pediomelum mephiticum, and the recently described Pediomelum verdiense and Pediomelum pauperitense. Historically, species of the megalanthum complex have been variably recognized at the species or variety levels, dependent upon the relative importance of morphological characters as diagnostic of species. Ten quantitative morphological characters regarded as diagnostic at the species level were analyzed using multivariate morphometrics across these taxa in order to examine the discriminatory power of these characters to delineate species and to aid in species delimitation. The analyses support the recognition of Pediomelum megalanthum, Pediomelum mephiticum, and Pediomelum verdiense at the species level, Pediomelum retrorsum as a variety under Pediomelum megalanthum, and suggest the sinking of Pediomelum pauperitense into Pediomelum verdiense. The findings of the present study help quantify the power of certain characters at delimiting taxa and provide a basis for taxonomic revision of the Pediomelum megalanthum complex. PMID:25698894

  14. Species delimitation in northern European water scavenger beetles of the genus Hydrobius (Coleoptera, Hydrophilidae)

    PubMed Central

    Fossen, Erlend I.; Ekrem, Torbjørn; Nilsson, Anders N.; Bergsten, Johannes

    2016-01-01

    Abstract The chiefly Holarctic Hydrobius species complex (Coleoptera, Hydrophilidae) currently consists of Hydrobius arcticus Kuwert, 1890, and three morphological variants of Hydrobius fuscipes (Linnaeus, 1758): var. fuscipes, var. rottenbergii and var. subrotundus in northern Europe. Here molecular and morphological data are used to test the species boundaries in this species complex. Three gene segments (COI, H3 and ITS2) were sequenced and analyzed with Bayesian methods to infer phylogenetic relationships. The Generalized Mixed Yule Coalescent (GMYC) model and two versions of the Bayesian species delimitation method BPP, with or without an a priori defined guide tree (v2.2 & v3.0), were used to evaluate species limits. External and male genital characters of primarily Fennoscandian specimens were measured and statistically analyzed to test for significant differences in quantitative morphological characters. The four morphotypes formed separate genetic clusters on gene trees and were delimited as separate species by GMYC and by both versions of BPP, despite specimens of Hydrobius fuscipes var. fuscipes and Hydrobius fuscipes var. subrotundus being sympatric. Hydrobius arcticus and Hydrobius fuscipes var. rottenbergii could only be separated genetically with ITS2, and were delimited statistically with GMYC on ITS2 and with BPP on the combined data. In addition, six or seven potentially cryptic species of the Hydrobius fuscipes complex from regions outside northern Europe were delimited genetically. Although some overlap was found, the mean values of six male genital characters were significantly different between the morphotypes (p < 0.001). Morphological characters previously presumed to be diagnostic were less reliable to separate Hydrobius fuscipes var. fuscipes from Hydrobius fuscipes var. subrotundus, but characters in the literature for Hydrobius arcticus and Hydrobius fuscipes var. rottenbergii were diagnostic. Overall, morphological and molecular

  15. Species delimitation in northern European water scavenger beetles of the genus Hydrobius (Coleoptera, Hydrophilidae).

    PubMed

    Fossen, Erlend I; Ekrem, Torbjørn; Nilsson, Anders N; Bergsten, Johannes

    2016-01-01

    The chiefly Holarctic Hydrobius species complex (Coleoptera, Hydrophilidae) currently consists of Hydrobius arcticus Kuwert, 1890, and three morphological variants of Hydrobius fuscipes (Linnaeus, 1758): var. fuscipes, var. rottenbergii and var. subrotundus in northern Europe. Here molecular and morphological data are used to test the species boundaries in this species complex. Three gene segments (COI, H3 and ITS2) were sequenced and analyzed with Bayesian methods to infer phylogenetic relationships. The Generalized Mixed Yule Coalescent (GMYC) model and two versions of the Bayesian species delimitation method BPP, with or without an a priori defined guide tree (v2.2 & v3.0), were used to evaluate species limits. External and male genital characters of primarily Fennoscandian specimens were measured and statistically analyzed to test for significant differences in quantitative morphological characters. The four morphotypes formed separate genetic clusters on gene trees and were delimited as separate species by GMYC and by both versions of BPP, despite specimens of Hydrobius fuscipes var. fuscipes and Hydrobius fuscipes var. subrotundus being sympatric. Hydrobius arcticus and Hydrobius fuscipes var. rottenbergii could only be separated genetically with ITS2, and were delimited statistically with GMYC on ITS2 and with BPP on the combined data. In addition, six or seven potentially cryptic species of the Hydrobius fuscipes complex from regions outside northern Europe were delimited genetically. Although some overlap was found, the mean values of six male genital characters were significantly different between the morphotypes (p < 0.001). Morphological characters previously presumed to be diagnostic were less reliable to separate Hydrobius fuscipes var. fuscipes from Hydrobius fuscipes var. subrotundus, but characters in the literature for Hydrobius arcticus and Hydrobius fuscipes var. rottenbergii were diagnostic. Overall, morphological and molecular evidence

  16. Molecular species delimitation methods and population genetics data reveal extensive lineage diversity and cryptic species in Aglaopheniidae (Hydrozoa).

    PubMed

    Postaire, Bautisse; Magalon, Hélène; Bourmaud, Chloé A-F; Bruggemann, J Henrich

    2016-12-01

    A comprehensive inventory of global biodiversity would be greatly improved by automating methods for species delimitation. The Automatic Barcode Gap Discovery method, the Poisson tree processes algorithm and the Generalized mixed Yule-coalescent model have been proposed as means of increasing the rate of biodiversity description using single locus data. We applied these methods to explore the diversity within the Aglaopheniidae, a hydrozoan family with many species widely distributed across tropical and temperate oceans. Our analyses revealed widespread cryptic diversity in this family, almost half of the morpho-species presenting several independent evolutionary lineages, as well as support for cases of synonymy. For two common species of this family, Lytocarpia brevirostris and Macrorhynchia phoenicea, we compared the outputs to clustering analyses based on microsatellite data and to nuclear gene phylogenies. For L. brevirostris, microsatellite data were congruent with results of the species delimitation methods, revealing the existence of two cryptic species with Indo-Pacific distribution. For M. phoenicea, all analyses confirmed the presence of two cryptic species within the South-Western Indian Ocean. Our study suggests that the diversity of Aglaopheniidae might be much higher than assumed, likely related to low dispersal capacities. Sequence-based species delimitation methods seem highly valuable to reveal cryptic diversity in hydrozoans; their application in an integrative framework will be very useful in describing the phyletic diversity of these organisms. PMID:27566414

  17. Exploring Species Level Taxonomy and Species Delimitation Methods in the Facultatively Self-Fertilizing Land Snail Genus Rumina (Gastropoda: Pulmonata)

    PubMed Central

    Prévot, Vanya; Jordaens, Kurt; Sonet, Gontran; Backeljau, Thierry

    2013-01-01

    Delimiting species in facultatively selfing taxa is a challenging problem of which the terrestrial pulmonate snail genus Rumina is a good example. These snails have a mixed breeding system and show a high degree of shell and color variation. Three nominal species (R. decollata, R. saharica and R. paivae) and two color morphs within R. decollata (dark and light) are currently recognized. The present study aims at evaluating to what extent these entities reflect evolutionary diverging taxonomic units, rather than fixed polymorphisms due to sustained selfing. Therefore, a phylogenetic analysis of nuclear (ITS1, ITS2) and mitochondrial DNA (COI, CytB, 12S rDNA, 16S rDNA) sequences was performed. Putative species in Rumina, inferred from the mitochondrial DNA phylogeny, were compared with those proposed on the basis of the COI gene by (1) DNA barcoding gap analysis, (2) Automatic Barcode Gap Discovery, (3) the species delimitation plug-in of the Geneious software, (4) the Genealogical Sorting Index, and (5) the General Mixed Yule Coalescent model. It is shown that these methods produce a variety of different species hypotheses and as such one may wonder to what extent species delimitation methods are really useful. With respect to Rumina, the data suggest at least seven species, one corresponding to R. saharica and six that are currently grouped under the name R. decollata. The species-level status of R. paivae is rejected. PMID:23577154

  18. Integrating a Numerical Taxonomic Method and Molecular Phylogeny for Species Delimitation of Melampsora Species (Melampsoraceae, Pucciniales) on Willows in China.

    PubMed

    Zhao, Peng; Wang, Qing-Hong; Tian, Cheng-Ming; Kakishima, Makoto

    2015-01-01

    The species in genus Melampsora are the causal agents of leaf rust diseases on willows in natural habitats and plantations. However, the classification and recognition of species diversity are challenging because morphological characteristics are scant and morphological variation in Melampsora on willows has not been thoroughly evaluated. Thus, the taxonomy of Melampsora species on willows remains confused, especially in China where 31 species were reported based on either European or Japanese taxonomic systems. To clarify the species boundaries of Melampsora species on willows in China, we tested two approaches for species delimitation inferred from morphological and molecular variations. Morphological species boundaries were determined based on numerical taxonomic analyses of morphological characteristics in the uredinial and telial stages by cluster analysis and one-way analysis of variance. Phylogenetic species boundaries were delineated based on the generalized mixed Yule-coalescent (GMYC) model analysis of the sequences of the internal transcribed spacer (ITS1 and ITS2) regions including the 5.8S and D1/D2 regions of the large nuclear subunit of the ribosomal RNA gene. Numerical taxonomic analyses of 14 morphological characteristics recognized in the uredinial-telial stages revealed 22 morphological species, whereas the GMYC results recovered 29 phylogenetic species. In total, 17 morphological species were in concordance with the phylogenetic species and 5 morphological species were in concordance with 12 phylogenetic species. Both the morphological and molecular data supported 14 morphological characteristics, including 5 newly recognized characteristics and 9 traditionally emphasized characteristics, as effective for the differentiation of Melampsora species on willows in China. Based on the concordance and discordance of the two species delimitation approaches, we concluded that integrative taxonomy by using both morphological and molecular variations was

  19. Integrating a Numerical Taxonomic Method and Molecular Phylogeny for Species Delimitation of Melampsora Species (Melampsoraceae, Pucciniales) on Willows in China

    PubMed Central

    Zhao, Peng; Wang, Qing-Hong; Tian, Cheng-Ming; Kakishima, Makoto

    2015-01-01

    The species in genus Melampsora are the causal agents of leaf rust diseases on willows in natural habitats and plantations. However, the classification and recognition of species diversity are challenging because morphological characteristics are scant and morphological variation in Melampsora on willows has not been thoroughly evaluated. Thus, the taxonomy of Melampsora species on willows remains confused, especially in China where 31 species were reported based on either European or Japanese taxonomic systems. To clarify the species boundaries of Melampsora species on willows in China, we tested two approaches for species delimitation inferred from morphological and molecular variations. Morphological species boundaries were determined based on numerical taxonomic analyses of morphological characteristics in the uredinial and telial stages by cluster analysis and one-way analysis of variance. Phylogenetic species boundaries were delineated based on the generalized mixed Yule-coalescent (GMYC) model analysis of the sequences of the internal transcribed spacer (ITS1 and ITS2) regions including the 5.8S and D1/D2 regions of the large nuclear subunit of the ribosomal RNA gene. Numerical taxonomic analyses of 14 morphological characteristics recognized in the uredinial-telial stages revealed 22 morphological species, whereas the GMYC results recovered 29 phylogenetic species. In total, 17 morphological species were in concordance with the phylogenetic species and 5 morphological species were in concordance with 12 phylogenetic species. Both the morphological and molecular data supported 14 morphological characteristics, including 5 newly recognized characteristics and 9 traditionally emphasized characteristics, as effective for the differentiation of Melampsora species on willows in China. Based on the concordance and discordance of the two species delimitation approaches, we concluded that integrative taxonomy by using both morphological and molecular variations was

  20. Integrating a Numerical Taxonomic Method and Molecular Phylogeny for Species Delimitation of Melampsora Species (Melampsoraceae, Pucciniales) on Willows in China.

    PubMed

    Zhao, Peng; Wang, Qing-Hong; Tian, Cheng-Ming; Kakishima, Makoto

    2015-01-01

    The species in genus Melampsora are the causal agents of leaf rust diseases on willows in natural habitats and plantations. However, the classification and recognition of species diversity are challenging because morphological characteristics are scant and morphological variation in Melampsora on willows has not been thoroughly evaluated. Thus, the taxonomy of Melampsora species on willows remains confused, especially in China where 31 species were reported based on either European or Japanese taxonomic systems. To clarify the species boundaries of Melampsora species on willows in China, we tested two approaches for species delimitation inferred from morphological and molecular variations. Morphological species boundaries were determined based on numerical taxonomic analyses of morphological characteristics in the uredinial and telial stages by cluster analysis and one-way analysis of variance. Phylogenetic species boundaries were delineated based on the generalized mixed Yule-coalescent (GMYC) model analysis of the sequences of the internal transcribed spacer (ITS1 and ITS2) regions including the 5.8S and D1/D2 regions of the large nuclear subunit of the ribosomal RNA gene. Numerical taxonomic analyses of 14 morphological characteristics recognized in the uredinial-telial stages revealed 22 morphological species, whereas the GMYC results recovered 29 phylogenetic species. In total, 17 morphological species were in concordance with the phylogenetic species and 5 morphological species were in concordance with 12 phylogenetic species. Both the morphological and molecular data supported 14 morphological characteristics, including 5 newly recognized characteristics and 9 traditionally emphasized characteristics, as effective for the differentiation of Melampsora species on willows in China. Based on the concordance and discordance of the two species delimitation approaches, we concluded that integrative taxonomy by using both morphological and molecular variations was

  1. Species delimitation in the reef coral genera Echinophyllia and Oxypora (Scleractinia, Lobophylliidae) with a description of two new species.

    PubMed

    Arrigoni, Roberto; Berumen, Michael L; Chen, Chaolun Allen; Terraneo, Tullia I; Baird, Andrew H; Payri, Claude; Benzoni, Francesca

    2016-12-01

    Scleractinian corals are affected by environment-induced phenotypic plasticity and intraspecific morphological variation caused by genotype. In an effort to identify new strategies for resolving this taxonomic issue, we applied a molecular approach for species evaluation to two closely related genera, Echinophyllia and Oxypora, for which few molecular data are available. A robust multi-locus phylogeny using DNA sequence data across four loci of both mitochondrial (COI, ATP6-NAD4) and nuclear (histone H3, ITS region) origin from 109 coral colonies was coupled with three independent putative species delimitation methods based on barcoding threshold (ABGD) and coalescence theory (PTP, GMYC). Observed overall congruence across multiple genetic analyses distinguished two traditional species (E. echinoporoides and O. convoluta), a species complex composed of E. aspera, E. orpheensis, E. tarae, and O. glabra, whereas O. lacera and E. echinata were indistinguishable with the sequenced loci. The combination of molecular species delimitation approaches and skeletal character observations allowed the description of two new reef coral species, E. bulbosa sp. n. from the Red Sea and E. gallii sp. n. from the Maldives and Mayotte. This work demonstrated the efficiency of multi-locus phylogenetic analyses and recently developed molecular species delimitation approaches as valuable tools to disentangle taxonomic issues caused by morphological ambiguities and to re-assess the diversity of scleractinian corals. PMID:27593164

  2. Species delimitation in the coral genus Goniopora (Scleractinia, Poritidae) from the Saudi Arabian Red Sea.

    PubMed

    Terraneo, Tullia I; Benzoni, Francesca; Arrigoni, Roberto; Berumen, Michael L

    2016-09-01

    Variable skeletal morphology, genotype induced plasticity, and homoplasy of skeletal structures have presented major challenges for scleractinian coral taxonomy and systematics since the 18th century. Although the recent integration of genetic and micromorphological data is helping to clarify the taxonomic confusion within the order, phylogenetic relationships and species delimitation within most coral genera are still far from settled. In the present study, the species boundaries in the scleractinian coral genus Goniopora were investigated using 199 colonies from the Saudi Arabian Red Sea and sequencing of four molecular markers: the mitochondrial intergenic spacer between CytB and NAD2, the nuclear ribosomal ITS region, and two single-copy nuclear genes (ATPsβ and CalM). DNA sequence data were analyzed using a variety of methods and exploratory species-delimitation tools. The results were broadly congruent in identifying five distinct molecular lineages within the sequenced Goniopora samples: G. somaliensis/G. savignyi, G. djiboutiensis/G. lobata, G. stokesi, G. albiconus/G. tenuidens, and G. minor/G. gracilis. Although the traditional macromorphological characters used to identify these nine morphospecies were not able to discriminate the obtained molecular clades, informative micromorphological and microstructural features (such as the micro-ornamentation and the arrangement of the columella) were recovered among the five lineages. Moreover, unique in vivo morphologies were associated with the genetic-delimited lineages, further supporting the molecular findings. This study represents the first attempt to identify species boundaries within Goniopora using a combined morpho-molecular approach. The obtained data establish a basis for future taxonomic revision of the genus, which should include colonies across its entire geographical distribution in the Indo-Pacific.

  3. Effects of phylogenetic reconstruction method on the robustness of species delimitation using single-locus data

    PubMed Central

    Tang, Cuong Q; Humphreys, Aelys M; Fontaneto, Diego; Barraclough, Timothy G; Paradis, Emmanuel

    2014-01-01

    Coalescent-based species delimitation methods combine population genetic and phylogenetic theory to provide an objective means for delineating evolutionarily significant units of diversity. The generalised mixed Yule coalescent (GMYC) and the Poisson tree process (PTP) are methods that use ultrametric (GMYC or PTP) or non-ultrametric (PTP) gene trees as input, intended for use mostly with single-locus data such as DNA barcodes. Here, we assess how robust the GMYC and PTP are to different phylogenetic reconstruction and branch smoothing methods. We reconstruct over 400 ultrametric trees using up to 30 different combinations of phylogenetic and smoothing methods and perform over 2000 separate species delimitation analyses across 16 empirical data sets. We then assess how variable diversity estimates are, in terms of richness and identity, with respect to species delimitation, phylogenetic and smoothing methods. The PTP method generally generates diversity estimates that are more robust to different phylogenetic methods. The GMYC is more sensitive, but provides consistent estimates for BEAST trees. The lower consistency of GMYC estimates is likely a result of differences among gene trees introduced by the smoothing step. Unresolved nodes (real anomalies or methodological artefacts) affect both GMYC and PTP estimates, but have a greater effect on GMYC estimates. Branch smoothing is a difficult step and perhaps an underappreciated source of bias that may be widespread among studies of diversity and diversification. Nevertheless, careful choice of phylogenetic method does produce equivalent PTP and GMYC diversity estimates. We recommend simultaneous use of the PTP model with any model-based gene tree (e.g. RAxML) and GMYC approaches with BEAST trees for obtaining species hypotheses. PMID:25821577

  4. Species delimitation in the coral genus Goniopora (Scleractinia, Poritidae) from the Saudi Arabian Red Sea.

    PubMed

    Terraneo, Tullia I; Benzoni, Francesca; Arrigoni, Roberto; Berumen, Michael L

    2016-09-01

    Variable skeletal morphology, genotype induced plasticity, and homoplasy of skeletal structures have presented major challenges for scleractinian coral taxonomy and systematics since the 18th century. Although the recent integration of genetic and micromorphological data is helping to clarify the taxonomic confusion within the order, phylogenetic relationships and species delimitation within most coral genera are still far from settled. In the present study, the species boundaries in the scleractinian coral genus Goniopora were investigated using 199 colonies from the Saudi Arabian Red Sea and sequencing of four molecular markers: the mitochondrial intergenic spacer between CytB and NAD2, the nuclear ribosomal ITS region, and two single-copy nuclear genes (ATPsβ and CalM). DNA sequence data were analyzed using a variety of methods and exploratory species-delimitation tools. The results were broadly congruent in identifying five distinct molecular lineages within the sequenced Goniopora samples: G. somaliensis/G. savignyi, G. djiboutiensis/G. lobata, G. stokesi, G. albiconus/G. tenuidens, and G. minor/G. gracilis. Although the traditional macromorphological characters used to identify these nine morphospecies were not able to discriminate the obtained molecular clades, informative micromorphological and microstructural features (such as the micro-ornamentation and the arrangement of the columella) were recovered among the five lineages. Moreover, unique in vivo morphologies were associated with the genetic-delimited lineages, further supporting the molecular findings. This study represents the first attempt to identify species boundaries within Goniopora using a combined morpho-molecular approach. The obtained data establish a basis for future taxonomic revision of the genus, which should include colonies across its entire geographical distribution in the Indo-Pacific. PMID:27321092

  5. Assessing species boundaries using multilocus species delimitation in a morphologically conserved group of neotropical freshwater fishes, the Poecilia sphenops species complex (Poeciliidae).

    PubMed

    Bagley, Justin C; Alda, Fernando; Breitman, M Florencia; Bermingham, Eldredge; van den Berghe, Eric P; Johnson, Jerald B

    2015-01-01

    Accurately delimiting species is fundamentally important for understanding species diversity and distributions and devising effective strategies to conserve biodiversity. However, species delimitation is problematic in many taxa, including 'non-adaptive radiations' containing morphologically cryptic lineages. Fortunately, coalescent-based species delimitation methods hold promise for objectively estimating species limits in such radiations, using multilocus genetic data. Using coalescent-based approaches, we delimit species and infer evolutionary relationships in a morphologically conserved group of Central American freshwater fishes, the Poecilia sphenops species complex. Phylogenetic analyses of multiple genetic markers (sequences of two mitochondrial DNA genes and five nuclear loci) from 10/15 species and genetic lineages recognized in the group support the P. sphenops species complex as monophyletic with respect to outgroups, with eight mitochondrial 'major-lineages' diverged by ≥2% pairwise genetic distances. From general mixed Yule-coalescent models, we discovered (conservatively) 10 species within our concatenated mitochondrial DNA dataset, 9 of which were strongly supported by subsequent multilocus Bayesian species delimitation and species tree analyses. Results suggested species-level diversity is underestimated or overestimated by at least ~15% in different lineages in the complex. Nonparametric statistics and coalescent simulations indicate genealogical discordance among our gene tree results has mainly derived from interspecific hybridization in the nuclear genome. However, mitochondrial DNA show little evidence for introgression, and our species delimitation results appear robust to effects of this process. Overall, our findings support the utility of combining multiple lines of genetic evidence and broad phylogeographical sampling to discover and validate species using coalescent-based methods. Our study also highlights the importance of testing for

  6. Assessing Species Boundaries Using Multilocus Species Delimitation in a Morphologically Conserved Group of Neotropical Freshwater Fishes, the Poecilia sphenops Species Complex (Poeciliidae)

    PubMed Central

    Bagley, Justin C.; Alda, Fernando; Breitman, M. Florencia; Bermingham, Eldredge; van den Berghe, Eric P.; Johnson, Jerald B.

    2015-01-01

    Accurately delimiting species is fundamentally important for understanding species diversity and distributions and devising effective strategies to conserve biodiversity. However, species delimitation is problematic in many taxa, including ‘non-adaptive radiations’ containing morphologically cryptic lineages. Fortunately, coalescent-based species delimitation methods hold promise for objectively estimating species limits in such radiations, using multilocus genetic data. Using coalescent-based approaches, we delimit species and infer evolutionary relationships in a morphologically conserved group of Central American freshwater fishes, the Poecilia sphenops species complex. Phylogenetic analyses of multiple genetic markers (sequences of two mitochondrial DNA genes and five nuclear loci) from 10/15 species and genetic lineages recognized in the group support the P. sphenops species complex as monophyletic with respect to outgroups, with eight mitochondrial ‘major-lineages’ diverged by ≥2% pairwise genetic distances. From general mixed Yule-coalescent models, we discovered (conservatively) 10 species within our concatenated mitochondrial DNA dataset, 9 of which were strongly supported by subsequent multilocus Bayesian species delimitation and species tree analyses. Results suggested species-level diversity is underestimated or overestimated by at least ~15% in different lineages in the complex. Nonparametric statistics and coalescent simulations indicate genealogical discordance among our gene tree results has mainly derived from interspecific hybridization in the nuclear genome. However, mitochondrial DNA show little evidence for introgression, and our species delimitation results appear robust to effects of this process. Overall, our findings support the utility of combining multiple lines of genetic evidence and broad phylogeographical sampling to discover and validate species using coalescent-based methods. Our study also highlights the importance of

  7. The taxonomy of the Tarentola mauritanica species complex (Gekkota: Phyllodactylidae): Bayesian species delimitation supports six candidate species.

    PubMed

    Rato, Catarina; Harris, David James; Carranza, Salvador; Machado, Luís; Perera, Ana

    2016-01-01

    The lack of morphological diagnosable characters typical of cryptic species, poses a particular problem to taxonomists. This is especially true when taxa are closely related, sharing considerable amounts of ancestral polymorphism. Phylogenetic studies on the Moorish gecko species-complex, Tarentola mauritanica, uncovered extremely high levels of mtDNA diversity with six identified clades, including one from the Canary Islands identified as T. angustimentalis. Because of the conserved morphology of this species and its paraphyletic status with respect to T. angustimentalis, it was suggested that T. mauritanica is a cryptic species complex. Nevertheless, none of the nuclear loci used were reciprocally monophyletic regarding the mitochondrial lineages due to retention of ancestral polymorphism. In this study, we added three new intron markers to the already available dataset and used additional tools, namely phylogenetic gene trees, species tree and species limits within a Bayesian coalescent framework to confirm the support of the main lineages. Bayesian clustering analysis supports all six mtDNA lineages as independent groups, despite showing signs of ancestral polymorphism or possibly gene flow between the Maghreb/South Iberia and Central Morocco clades. The species tree recovered two major groups; one clustering taxa from Europe and Northern Maghreb and another one encompassing the lineages from Central/Southern Morocco, Central Morocco and Canary Islands, indicating that the ancestor of T. angustimentalis came from the Central/Southern Morocco region. Finally, Bayesian coalescent species delimitation analysis supports all six mitochondrial clades as "unconfirmed candidate species", pending morphological data to define them. PMID:26391222

  8. The taxonomy of the Tarentola mauritanica species complex (Gekkota: Phyllodactylidae): Bayesian species delimitation supports six candidate species.

    PubMed

    Rato, Catarina; Harris, David James; Carranza, Salvador; Machado, Luís; Perera, Ana

    2016-01-01

    The lack of morphological diagnosable characters typical of cryptic species, poses a particular problem to taxonomists. This is especially true when taxa are closely related, sharing considerable amounts of ancestral polymorphism. Phylogenetic studies on the Moorish gecko species-complex, Tarentola mauritanica, uncovered extremely high levels of mtDNA diversity with six identified clades, including one from the Canary Islands identified as T. angustimentalis. Because of the conserved morphology of this species and its paraphyletic status with respect to T. angustimentalis, it was suggested that T. mauritanica is a cryptic species complex. Nevertheless, none of the nuclear loci used were reciprocally monophyletic regarding the mitochondrial lineages due to retention of ancestral polymorphism. In this study, we added three new intron markers to the already available dataset and used additional tools, namely phylogenetic gene trees, species tree and species limits within a Bayesian coalescent framework to confirm the support of the main lineages. Bayesian clustering analysis supports all six mtDNA lineages as independent groups, despite showing signs of ancestral polymorphism or possibly gene flow between the Maghreb/South Iberia and Central Morocco clades. The species tree recovered two major groups; one clustering taxa from Europe and Northern Maghreb and another one encompassing the lineages from Central/Southern Morocco, Central Morocco and Canary Islands, indicating that the ancestor of T. angustimentalis came from the Central/Southern Morocco region. Finally, Bayesian coalescent species delimitation analysis supports all six mitochondrial clades as "unconfirmed candidate species", pending morphological data to define them.

  9. Phylogenetic molecular species delimitations unravel potential new species in the pest genus Spodoptera Guenée, 1852 (Lepidoptera, Noctuidae).

    PubMed

    Dumas, Pascaline; Barbut, Jérôme; Le Ru, Bruno; Silvain, Jean-François; Clamens, Anne-Laure; d'Alençon, Emmanuelle; Kergoat, Gael J

    2015-01-01

    Nowadays molecular species delimitation methods promote the identification of species boundaries within complex taxonomic groups by adopting innovative species concepts and theories (e.g. branching patterns, coalescence). As some of them can efficiently deal with large single-locus datasets, they could speed up the process of species discovery compared to more time consuming molecular methods, and benefit from the existence of large public datasets; these methods can also particularly favour scientific research and actions dealing with threatened or economically important taxa. In this study we aim to investigate and clarify the status of economically important moths species belonging to the genus Spodoptera (Lepidoptera, Noctuidae), a complex group in which previous phylogenetic analyses and integrative approaches already suggested the possible occurrence of cryptic species and taxonomic ambiguities. In this work, the effectiveness of innovative (and faster) species delimitation approaches to infer putative species boundaries has been successfully tested in Spodoptera, by processing the most comprehensive dataset (in terms of number of species and specimens) ever achieved; results are congruent and reliable, irrespective of the set of parameters and phylogenetic models applied. Our analyses confirm the existence of three potential new species clusters (for S. exigua (Hübner, 1808), S. frugiperda (J.E. Smith, 1797) and S. mauritia (Boisduval, 1833)) and support the synonymy of S. marima (Schaus, 1904) with S. ornithogalli (Guenée, 1852). They also highlight the ambiguity of the status of S. cosmiodes (Walker, 1858) and S. descoinsi Lalanne-Cassou & Silvain, 1994. This case study highlights the interest of molecular species delimitation methods as valuable tools for species discovery and to emphasize taxonomic ambiguities. PMID:25853412

  10. Phylogenetic Molecular Species Delimitations Unravel Potential New Species in the Pest Genus Spodoptera Guenée, 1852 (Lepidoptera, Noctuidae)

    PubMed Central

    Dumas, Pascaline; Barbut, Jérôme; Le Ru, Bruno; Silvain, Jean-François; Clamens, Anne-Laure; d’Alençon, Emmanuelle; Kergoat, Gael J.

    2015-01-01

    Nowadays molecular species delimitation methods promote the identification of species boundaries within complex taxonomic groups by adopting innovative species concepts and theories (e.g. branching patterns, coalescence). As some of them can efficiently deal with large single-locus datasets, they could speed up the process of species discovery compared to more time consuming molecular methods, and benefit from the existence of large public datasets; these methods can also particularly favour scientific research and actions dealing with threatened or economically important taxa. In this study we aim to investigate and clarify the status of economically important moths species belonging to the genus Spodoptera (Lepidoptera, Noctuidae), a complex group in which previous phylogenetic analyses and integrative approaches already suggested the possible occurrence of cryptic species and taxonomic ambiguities. In this work, the effectiveness of innovative (and faster) species delimitation approaches to infer putative species boundaries has been successfully tested in Spodoptera, by processing the most comprehensive dataset (in terms of number of species and specimens) ever achieved; results are congruent and reliable, irrespective of the set of parameters and phylogenetic models applied. Our analyses confirm the existence of three potential new species clusters (for S. exigua (Hübner, 1808), S. frugiperda (J.E. Smith, 1797) and S. mauritia (Boisduval, 1833)) and support the synonymy of S. marima (Schaus, 1904) with S. ornithogalli (Guenée, 1852). They also highlight the ambiguity of the status of S. cosmiodes (Walker, 1858) and S. descoinsi Lalanne-Cassou & Silvain, 1994. This case study highlights the interest of molecular species delimitation methods as valuable tools for species discovery and to emphasize taxonomic ambiguities. PMID:25853412

  11. Re-identification of Aspergillus fumigatus sensu lato based on a new concept of species delimitation.

    PubMed

    Hong, Seung-Beom; Kim, Dae-Ho; Park, In-Cheol; Choi, Young-Joon; Shin, Hyeon-Dong; Samson, Robert

    2010-10-01

    The species concept of Aspergillus fumigatus sensu stricto has recently been defined by polyphasic taxonomy. Based on the new concept of species delimitations, 146 worldwide strains of Aspergillus fumigatus sensu lato were re-identified. Of those 146 strains, 140 (95.8%) could be identified as A. fumigatus sensu stricto, 3 (2.1%) as A. lentulus, and the remaining 3 strains as A. viridinutans complex, Neosartorya udagawae, and N. cf. nishimurae. Of 98 clinical strains, only 1 from dolphin nostril was identified as A. lentulus and not A. fumigatus sensu stricto. Random amplification of polymorphic DNA-polymerase chain reaction (RAPD-PCR) with primers PELF and URP1F produced nearly the same band patterns among 136 strains of A. fumigatus sensu stricto while discriminated the species from its related species. We also discussed about identification of several atypical A. fumigatus strains from clinical environments.

  12. Species Delimitation and Morphological Divergence in the Scorpion Centruroides vittatus (Say, 1821): Insights from Phylogeography

    PubMed Central

    Yamashita, Tsunemi; Rhoads, Douglas D.

    2013-01-01

    Scorpion systematics and taxonomy have recently shown a need for revision, partially due to insights from molecular techniques. Scorpion taxonomy has been difficult with morphological characters as disagreement exists among researchers with character choice for adequate species delimitation in taxonomic studies. Within the family Buthidae, species identification and delimitation is particularly difficult due to the morphological similarity among species and extensive intraspecific morphological diversity. The genus Centruroides in the western hemisphere is a prime example of the difficulty in untangling the taxonomic complexity within buthid scorpions. In this paper, we present phylogeographic, Ecological Niche Modeling, and morphometric analyses to further understand how population diversification may have produced morphological diversity in Centruroides vittatus (Say, 1821). We show that C. vittatus populations in the Big Bend and Trans-Pecos region of Texas, USA are phylogeographically distinct and may predate the Last Glacial Maximum (LGM). In addition, we suggest the extended isolation of Big Bend region populations may have created the C. vittatus variant once known as C. pantheriensis. PMID:23861878

  13. Integrating coalescent and phylogenetic approaches to delimit species in the lichen photobiont Trebouxia.

    PubMed

    Sadowska-Deś, Anna D; Dal Grande, Francesco; Lumbsch, H Thorsten; Beck, Andreas; Otte, Jürgen; Hur, Jae-Seoun; Kim, Jung A; Schmitt, Imke

    2014-07-01

    The accurate assessment of species boundaries in symbiotic systems is a prerequisite for the study of speciation, co-evolution and selectivity. Many studies have shown the high genetic diversity of green algae from the genus Trebouxia, the most common photobiont of lichen-forming fungi. However, the phylogenetic relationships, and the amount of cryptic diversity of these algae are still poorly understood, and an adequate species concept for trebouxiophycean algae is still missing. In this study we used a multifaceted approach based on coalescence (GMYC, STEM) and phylogenetic relationships to assess species boundaries in the trebouxioid photobionts of the lichen-forming fungus Lasallia pustulata. We further investigated whether putative species of Trebouxia found in L. pustulata are shared with other lichen-forming fungi. We found that L. pustulata is associated with at least five species of Trebouxia and most of them are shared with other lichen-forming fungi, showing different patterns of species-to-species and species-to-community interactions. We also show that one of the putative Trebouxia species is found exclusively in association with L. pustulata and is restricted to thalli from localities with Mediterranean microclimate. We suggest that the species delimitation method presented in this study is a promising tool to address species boundaries within the heterogeneous genus Trebouxia.

  14. Parametric and non-parametric species delimitation methods result in the recognition of two new Neotropical woody bamboo species.

    PubMed

    Ruiz-Sanchez, Eduardo

    2015-12-01

    The Neotropical woody bamboo genus Otatea is one of five genera in the subtribe Guaduinae. Of the eight described Otatea species, seven are endemic to Mexico and one is also distributed in Central and South America. Otatea acuminata has the widest geographical distribution of the eight species, and two of its recently collected populations do not match the known species morphologically. Parametric and non-parametric methods were used to delimit the species in Otatea using five chloroplast markers, one nuclear marker, and morphological characters. The parametric coalescent method and the non-parametric analysis supported the recognition of two distinct evolutionary lineages. Molecular clock estimates were used to estimate divergence times in Otatea. The results for divergence time in Otatea estimated the origin of the speciation events from the Late Miocene to Late Pleistocene. The species delimitation analyses (parametric and non-parametric) identified that the two populations of O. acuminata from Chiapas and Hidalgo are from two separate evolutionary lineages and these new species have morphological characters that separate them from O. acuminata s.s. The geological activity of the Trans-Mexican Volcanic Belt and the Isthmus of Tehuantepec may have isolated populations and limited the gene flow between Otatea species, driving speciation. Based on the results found here, I describe Otatea rzedowskiorum and Otatea victoriae as two new species, morphologically different from O. acuminata.

  15. Phylogenetic Relationships and Species Delimitation in Pinus Section Trifoliae Inferrred from Plastid DNA

    PubMed Central

    Hernández-León, Sergio; Gernandt, David S.; Pérez de la Rosa, Jorge A.; Jardón-Barbolla, Lev

    2013-01-01

    Recent diversification followed by secondary contact and hybridization may explain complex patterns of intra- and interspecific morphological and genetic variation in the North American hard pines (Pinus section Trifoliae), a group of approximately 49 tree species distributed in North and Central America and the Caribbean islands. We concatenated five plastid DNA markers for an average of 3.9 individuals per putative species and assessed the suitability of the five regions as DNA bar codes for species identification, species delimitation, and phylogenetic reconstruction. The ycf1 gene accounted for the greatest proportion of the alignment (46.9%), the greatest proportion of variable sites (74.9%), and the most unique sequences (75 haplotypes). Phylogenetic analysis recovered clades corresponding to subsections Australes, Contortae, and Ponderosae. Sequences for 23 of the 49 species were monophyletic and sequences for another 9 species were paraphyletic. Morphologically similar species within subsections usually grouped together, but there were exceptions consistent with incomplete lineage sorting or introgression. Bayesian relaxed molecular clock analyses indicated that all three subsections diversified relatively recently during the Miocene. The general mixed Yule-coalescent method gave a mixed model estimate of only 22 or 23 evolutionary entities for the plastid sequences, which corresponds to less than half the 49 species recognized based on morphological species assignments. Including more unique haplotypes per species may result in higher estimates, but low mutation rates, recent diversification, and large effective population sizes may limit the effectiveness of this method to detect evolutionary entities. PMID:23936218

  16. Defining evolutionary boundaries across parapatric ecomorphs of Black Salamanders (Aneides flavipunctatus) with conservation implications.

    PubMed

    Reilly, Sean B; Marks, Sharyn B; Jennings, W Bryan

    2012-12-01

    The accurate delimitation of evolutionary population units represents an important component in phylogeographic and conservation genetic studies. Here, we used a combined population assignment and historical demographic approach to study a complex of ecomorphologically distinctive populations of Black Salamanders (Aneides flavipunctatus) that are parapatrically distributed and meet at a three-way contact zone in north-western California. We used mitochondrial tree-based and multilocus clustering methods to evaluate a priori two- (Northern and Southern) and three (Northern, Coast and Inland) population hypotheses derived from previous studies. Mitochondrial results were consistent with the two- and three-population hypotheses, while the nDNA clustering results supported only the two-population hypothesis. Historical demographic analyses and mtDNA gene divergence estimates revealed that the Northern and Southern populations split during the Pliocene (2-5 Ma). Subdivision of the Southern population into Coast and Inland populations was estimated to be late Pleistocene (0.24 Ma), although our mtDNA results suggested a Pliocene divergence. Effective gene flow estimates (2N(e)m) suggest that either the two- or three-population hypotheses remain valid. However, our results unexpectedly revealed that the Northern population might instead represent two parapatric populations that separated nearly 4 Ma. These results are surprising because the Pliocene divergence between these ecomorphologically conservative forms is similar or older than for the ecomorphologically divergent Coast and Inland sister populations. We conclude that Black Salamanders in north-western California belong to at least three or four populations or species, and these all meet criteria for being Evolutionary Significant Units or 'ESUs' and therefore warrant conservation consideration.

  17. Marginal Likelihood Estimate Comparisons to Obtain Optimal Species Delimitations in Silene sect. Cryptoneurae (Caryophyllaceae)

    PubMed Central

    Aydin, Zeynep; Marcussen, Thomas; Ertekin, Alaattin Selcuk; Oxelman, Bengt

    2014-01-01

    Coalescent-based inference of phylogenetic relationships among species takes into account gene tree incongruence due to incomplete lineage sorting, but for such methods to make sense species have to be correctly delimited. Because alternative assignments of individuals to species result in different parametric models, model selection methods can be applied to optimise model of species classification. In a Bayesian framework, Bayes factors (BF), based on marginal likelihood estimates, can be used to test a range of possible classifications for the group under study. Here, we explore BF and the Akaike Information Criterion (AIC) to discriminate between different species classifications in the flowering plant lineage Silene sect. Cryptoneurae (Caryophyllaceae). We estimated marginal likelihoods for different species classification models via the Path Sampling (PS), Stepping Stone sampling (SS), and Harmonic Mean Estimator (HME) methods implemented in BEAST. To select among alternative species classification models a posterior simulation-based analog of the AIC through Markov chain Monte Carlo analysis (AICM) was also performed. The results are compared to outcomes from the software BP&P. Our results agree with another recent study that marginal likelihood estimates from PS and SS methods are useful for comparing different species classifications, and strongly support the recognition of the newly described species S. ertekinii. PMID:25216034

  18. Phylogenetic placement, species delimitation, and cyanobiont identity of endangered aquatic Peltigera species (lichen-forming Ascomycota, Lecanoromycetes).

    PubMed

    Miadlikowska, Jolanta; Richardson, David; Magain, Nicolas; Ball, Bernard; Anderson, Frances; Cameron, Robert; Lendemer, James; Truong, Camille; Lutzoni, François

    2014-07-11

    • Premise of this study: Aquatic cyanolichens from the genus Peltigera section Hydrothyriae are subject to anthropogenic threats and, therefore, are considered endangered. In this study we addressed the phylogenetic placement of section Hydrothyriae within Peltigera. We delimited species within the section and identified their symbiotic cyanobacteria.• Methods: Species delimitation and population structure were explored using monophyly as a grouping criterion (RAxML) and Structurama based on three protein-coding genes in combination with two nuclear ribosomal loci. The 16S and rbcLX sequences for the cyanobionts were analyzed in the broad phylogenetic context of free-living and symbiotic cyanobacteria.• Key results: We confirm with high confidence the placement of section Hydrothyriae within the monophyletic genus Peltigera; however, its phylogenetic position within the genus remains unsettled. We recovered three distinct monophyletic groups corresponding to three species: P. hydrothyria, P. gowardii s.s., and P. aquatica Miadl. & Lendemer, the latter being formally introduced here. Each species was associated with an exclusive set of Nostoc haplotypes.• Conclusions: The ITS region alone provides sufficient genetic information to distinguish the three morphologically cryptic species within section Hydrothyriae. Section Hydrothyriae seems to be associated with a monophyletic lineage of Nostoc, that has not been found in symbiotic association with other members of Peltigera. Capsosira lowei should be transferred to the genus Nostoc. Potential threats to P. aquatica should be re-examined based on the recognition of two aquatic species in western North America.

  19. Species delimitation in the Grayling genus Pseudochazara (Lepidoptera, Nymphalidae, Satyrinae) supported by DNA barcodes.

    PubMed

    Verovnik, Rudi; Wiemers, Martin

    2016-01-01

    The Palaearctic Grayling genus Pseudochazara encompasses a number of petrophilous butterfly species, most of which are local endemics especially in their centre of radiation in SW Asia and the Balkans. Due to a lack of consistent morphological characters, coupled with habitat induced variability, their taxonomy is poorly understood and species delimitation is hampered. We employed a DNA barcoding approach to address the question of separate species status for several European taxa and provide first insight into the phylogeny of the genus. Unexpectedly we found conflicting patterns with deep divergences between presumably conspecific taxa and lack of divergence among well-defined species. We propose separate species status for Pseudochazara tisiphone, Pseudochazara amalthea, Pseudochazara amymone, and Pseudochazara kermana all of which have separate well supported clades, with the majority of them becoming local endemics. Lack of resolution in the 'Mamurra' species group with well-defined species (in terms of wing pattern and coloration) such as Pseudochazara geyeri, Pseudochazara daghestana and Pseudochazara alpina should be further explored using nuclear molecular markers with higher genetic resolution.

  20. Species delimitation in the Grayling genus Pseudochazara (Lepidoptera, Nymphalidae, Satyrinae) supported by DNA barcodes.

    PubMed

    Verovnik, Rudi; Wiemers, Martin

    2016-01-01

    The Palaearctic Grayling genus Pseudochazara encompasses a number of petrophilous butterfly species, most of which are local endemics especially in their centre of radiation in SW Asia and the Balkans. Due to a lack of consistent morphological characters, coupled with habitat induced variability, their taxonomy is poorly understood and species delimitation is hampered. We employed a DNA barcoding approach to address the question of separate species status for several European taxa and provide first insight into the phylogeny of the genus. Unexpectedly we found conflicting patterns with deep divergences between presumably conspecific taxa and lack of divergence among well-defined species. We propose separate species status for Pseudochazara tisiphone, Pseudochazara amalthea, Pseudochazara amymone, and Pseudochazara kermana all of which have separate well supported clades, with the majority of them becoming local endemics. Lack of resolution in the 'Mamurra' species group with well-defined species (in terms of wing pattern and coloration) such as Pseudochazara geyeri, Pseudochazara daghestana and Pseudochazara alpina should be further explored using nuclear molecular markers with higher genetic resolution. PMID:27408604

  1. Species delimitation in the Grayling genus Pseudochazara (Lepidoptera, Nymphalidae, Satyrinae) supported by DNA barcodes

    PubMed Central

    Verovnik, Rudi; Wiemers, Martin

    2016-01-01

    Abstract The Palaearctic Grayling genus Pseudochazara encompasses a number of petrophilous butterfly species, most of which are local endemics especially in their centre of radiation in SW Asia and the Balkans. Due to a lack of consistent morphological characters, coupled with habitat induced variability, their taxonomy is poorly understood and species delimitation is hampered. We employed a DNA barcoding approach to address the question of separate species status for several European taxa and provide first insight into the phylogeny of the genus. Unexpectedly we found conflicting patterns with deep divergences between presumably conspecific taxa and lack of divergence among well-defined species. We propose separate species status for Pseudochazara tisiphone, Pseudochazara amalthea, Pseudochazara amymone, and Pseudochazara kermana all of which have separate well supported clades, with the majority of them becoming local endemics. Lack of resolution in the ‘Mamurra’ species group with well-defined species (in terms of wing pattern and coloration) such as Pseudochazara geyeri, Pseudochazara daghestana and Pseudochazara alpina should be further explored using nuclear molecular markers with higher genetic resolution. PMID:27408604

  2. Species Delimitation in the Genus Moschus (Ruminantia: Moschidae) and Its High-Plateau Origin

    PubMed Central

    Hu, Chaochao; Sun, Zhonglou; Zhu, Xiaoxue; Meng, Tao; Meng, Xiuxiang; Zhang, Baowei

    2015-01-01

    The authenticity of controversial species is a significant challenge for systematic biologists. Moschidae is a small family of musk deer in the Artiodactyla, composing only one genus, Moschus. Historically, the number of species in the Moschidae family has been debated. Presently, most musk deer species were restricted in the Tibetan Plateau and surrounding/adjacent areas, which implied that the evolution of Moschus might have been punctuated by the uplift of the Tibetan Plateau. In this study, we aimed to determine the evolutionary history and delimit the species in Moschus by exploring the complete mitochondrial genome (mtDNA) and other mitochondrial gene. Our study demonstrated that six species, M. leucogaster, M. fuscus, M. moschiferus, M. berezovskii, M. chrysogaster and M. anhuiensis, were authentic species in the genus Moschus. Phylogenetic analysis and molecular dating showed that the ancestor of the present Moschidae originates from Tibetan Plateau which suggested that the evolution of Moschus was prompted by the most intense orogenic movement of the Tibetan Plateau during the Pliocene age, and alternating glacial-interglacial geological eras. PMID:26280166

  3. Species delimitation in the Central African herbs Haumania (Marantaceae) using georeferenced nuclear and chloroplastic DNA sequences.

    PubMed

    Ley, A C; Hardy, O J

    2010-11-01

    Species delimitation is a fundamental biological concept which is frequently discussed and altered to integrate new insights. These revealed that speciation is not a one step phenomenon but an ongoing process and morphological characters alone are not sufficient anymore to properly describe the results of this process. Here we want to assess the degree of speciation in two closely related lianescent taxa from the tropical African genus Haumania which display distinct vegetative traits despite a high similarity in reproductive traits and a partial overlap in distribution area which might facilitate gene flow. To this end, we combined phylogenetic and phylogeographic analyses using nuclear (nr) and chloroplast (cp) DNA sequences in comparison to morphological species descriptions. The nuclear dataset unambiguously supports the morphological species concept in Haumania. However, the main chloroplastic haplotypes are shared between species and, although a geographic analysis of cpDNA diversity confirms that individuals from the same taxon are more related than individuals from distinct taxa, cp-haplotypes display correlated geographic distributions between species. Hybridization is the most plausible reason for this pattern. A scenario involving speciation in geographic isolation followed by range expansion is outlined. The study highlights the gain of information on the speciation process in Haumania by adding georeferenced molecular data to the morphological characteristics. It also shows that nr and cp sequence data might provide different but complementary information, questioning the reliability of the unique use of chloroplast data for species recognition by DNA barcoding. PMID:20813193

  4. Species delimitation in the Central African herbs Haumania (Marantaceae) using georeferenced nuclear and chloroplastic DNA sequences.

    PubMed

    Ley, A C; Hardy, O J

    2010-11-01

    Species delimitation is a fundamental biological concept which is frequently discussed and altered to integrate new insights. These revealed that speciation is not a one step phenomenon but an ongoing process and morphological characters alone are not sufficient anymore to properly describe the results of this process. Here we want to assess the degree of speciation in two closely related lianescent taxa from the tropical African genus Haumania which display distinct vegetative traits despite a high similarity in reproductive traits and a partial overlap in distribution area which might facilitate gene flow. To this end, we combined phylogenetic and phylogeographic analyses using nuclear (nr) and chloroplast (cp) DNA sequences in comparison to morphological species descriptions. The nuclear dataset unambiguously supports the morphological species concept in Haumania. However, the main chloroplastic haplotypes are shared between species and, although a geographic analysis of cpDNA diversity confirms that individuals from the same taxon are more related than individuals from distinct taxa, cp-haplotypes display correlated geographic distributions between species. Hybridization is the most plausible reason for this pattern. A scenario involving speciation in geographic isolation followed by range expansion is outlined. The study highlights the gain of information on the speciation process in Haumania by adding georeferenced molecular data to the morphological characteristics. It also shows that nr and cp sequence data might provide different but complementary information, questioning the reliability of the unique use of chloroplast data for species recognition by DNA barcoding.

  5. Delimiting species in the Phacus longicauda complex (Euglenida) through morphological and molecular analyses.

    PubMed

    Łukomska-Kowalczyk, Maja; Karnkowska, Anna; Milanowski, Rafał; Łach, Łukasz; Zakryś, Bożena

    2015-12-01

    Although Phacus longicauda is the type species of the genus Phacus and one of the most common species among autotrophic euglenids, its correct identification is nearly impossible. Over 30 morphologically similar taxa appear in the literature, but there are no good diagnostic features to distinguish them. Using environmental sampling and whole genome amplification, we delimited species within the Phacus longicauda complex. Morphological and molecular characters were analyzed for 36 strains isolated from environmental samples (mainly from Poland). DNA was obtained from a small number of cells (20-30) isolated with a micropipette from every sample (i.e., without setting up laboratory cultures), and phylogenetic analyses were based on variation in nSSU rDNA. Apart from Phacus longicauda, three other species (Phacus circumflexus, Phacus helikoides, and Phacus tortus) were distinguished. Phacus cordata comb. nov. Zakryś et M. Łukomska and Phacus rotunda comb. nov. Zakryś et M. Łukomska had their taxonomic ranks changed and two species new to science, Phacus cristatus sp. nov. Zakryś et M. Łukomska and Phacus crassus sp. nov. Zakryś et M. Łukomska, were described. For all verified species, diagnostic descriptions were amended and epitypes designated. PMID:26987009

  6. DNA taxonomy in morphologically plastic taxa: algorithmic species delimitation in the Boodlea complex (Chlorophyta: Cladophorales).

    PubMed

    Leliaert, Frederik; Verbruggen, Heroen; Wysor, Brian; De Clerck, Olivier

    2009-10-01

    DNA-based taxonomy provides a convenient and reliable tool for species delimitation, especially in organisms in which morphological discrimination is difficult or impossible, such as many algal taxa. A group with a long history of confusing species circumscriptions is the morphologically plastic Boodlea complex, comprising the marine green algal genera Boodlea, Cladophoropsis, Phyllodictyon and Struveopsis. In this study, we elucidate species boundaries in the Boodlea complex by analysing nrDNA internal transcribed spacer sequences from 175 specimens collected from a wide geographical range. Algorithmic methods of sequence-based species delineation were applied, including statistical parsimony network analysis, and a maximum likelihood approach that uses a mixed Yule-coalescent model and detects species boundaries based on differences in branching rates at the level of species and populations. Sequence analyses resulted in the recognition of 13 phylogenetic species, although we failed to detect sharp species boundaries, possibly as a result of incomplete reproductive isolation. We found considerable conflict between traditional and phylogenetic species definitions. Identical morphological forms were distributed in different clades (cryptic diversity), and at the same time most of the phylogenetic species contained a mixture of different morphologies (indicating intraspecific morphological variation). Sampling outside the morphological range of the Boodlea complex revealed that the enigmatic, sponge-associated Cladophoropsis (Spongocladia) vaucheriiformis, also falls within the Boodlea complex. Given the observed evolutionary complexity and nomenclatural problems associated with establishing a Linnaean taxonomy for this group, we propose to discard provisionally the misleading morphospecies and genus names, and refer to clade numbers within a single genus, Boodlea.

  7. Friends or Relatives? Phylogenetics and Species Delimitation in the Controversial European Orchid Genus Ophrys

    PubMed Central

    Devey, Dion S.; Bateman, Richard M.; Fay, Michael F.; Hawkins, Julie A.

    2008-01-01

    Background and Aims Highly variable, yet possibly convergent, morphology and lack of sequence variation have severely hindered production of a robust phylogenetic framework for the genus Ophrys. The aim of this study is to produce this framework as a basis for more rigorous species delimitation and conservation recommendations. Methods Nuclear and plastid DNA sequencing and amplified fragment length polymorphism (AFLP) were performed on 85 accessions of Ophrys, spanning the full range of species aggregates currently recognized. Data were analysed using a combination of parsimony and Bayesian tree-building techniques and by principal co-ordinates analysis. Key Results Complementary phylogenetic analyses and ordinations using nuclear, plastid and AFLP datasets identify ten genetically distinct groups (six robust) within the genus that may in turn be grouped into three sections (treated as subgenera by some authors). Additionally, genetic evidence is provided for a close relationship between the O. tenthredinifera, O. bombyliflora and O. speculum groups. The combination of these analytical techniques provides new insights into Ophrys systematics, notably recognition of the novel O. umbilicata group. Conclusions Heterogeneous copies of the nuclear ITS region show that some putative Ophrys species arose through hybridization rather than divergent speciation. The supposedly highly specific pseudocopulatory pollination syndrome of Ophrys is demonstrably ‘leaky’, suggesting that the genus has been substantially over-divided at the species level. PMID:18184645

  8. Quantifying ecological, morphological, and genetic variation to delimit species in the coast horned lizard species complex (Phrynosoma)

    USGS Publications Warehouse

    Leache, A.D.; Koo, M.S.; Spencer, C.L.; Papenfuss, T.J.; Fisher, R.N.; McGuire, J.A.

    2009-01-01

    Lineage separation and divergence form a temporally extended process whereby populations may diverge genetically, morphologically, or ecologically, and these contingent properties of species provide the operational criteria necessary for species delimitation.We inferred the historical process of lineage formation in the coast horned lizard (Phrynosoma coronatum) species complex by evaluating a diversity of operational species criteria, including divergence in mtDNA (98 specimens; 2,781 bp) and nuclear loci (RAG-1, 1,054 bp; BDNF 529 bp), ecological niches (11 bioclimatic variables; 285 unique localities), and cranial horn shapes (493 specimens; 16 landmarks). A phylogenetic analysis of mtDNA recovers 5 phylogeographic groups arranged latitudinally along the Baja California Peninsula and in California. The 2 southern phylogeographic groups exhibit concordance between genetic, morphological, and ecological divergence; however, differentiation is weak or absent at more recent levels defined by phylogeographic breaks in California. Interpreting these operational species criteria together suggests that there are 3 ecologically divergent and morphologically diagnosable species within the P. coronatum complex. Our 3-species taxonomic hypothesis invokes a deep coalescence event when fitting the mtDNA genealogy into the species tree, which is not unexpected for populations that have diverged recently. Although the hypothesis that the 3 phylogeographic groups distributed across California each represent distinctive species is not supported by all of the operational species criteria evaluated in this study, the conservation status of the imperiled populations represented by these genealogical units remains critical.

  9. Multilocus Phylogeography and Species Delimitation in the Cumberland Plateau Salamander, Plethodon kentucki: Incongruence among Data Sets and Methods

    PubMed Central

    Kuchta, Shawn R.; Brown, Ashley D.; Converse, Paul E.; Highton, Richard

    2016-01-01

    Species are a fundamental unit of biodiversity, yet can be challenging to delimit objectively. This is particularly true of species complexes characterized by high levels of population genetic structure, hybridization between genetic groups, isolation by distance, and limited phenotypic variation. Previous work on the Cumberland Plateau Salamander, Plethodon kentucki, suggested that it might constitute a species complex despite occupying a relatively small geographic range. To examine this hypothesis, we sampled 135 individuals from 43 populations, and used four mitochondrial loci and five nuclear loci (5693 base pairs) to quantify phylogeographic structure and probe for cryptic species diversity. Rates of evolution for each locus were inferred using the multidistribute package, and time calibrated gene trees and species trees were inferred using BEAST 2 and *BEAST 2, respectively. Because the parameter space relevant for species delimitation is large and complex, and all methods make simplifying assumptions that may lead them to fail, we conducted an array of analyses. Our assumption was that strongly supported species would be congruent across methods. Putative species were first delimited using a Bayesian implementation of the GMYC model (bGMYC), Geneland, and Brownie. We then validated these species using the genealogical sorting index and BPP. We found substantial phylogeographic diversity using mtDNA, including four divergent clades and an inferred common ancestor at 14.9 myr (95% HPD: 10.8–19.7 myr). By contrast, this diversity was not corroborated by nuclear sequence data, which exhibited low levels of variation and weak phylogeographic structure. Species trees estimated a far younger root than did the mtDNA data, closer to 1.0 myr old. Mutually exclusive putative species were identified by the different approaches. Possible causes of data set discordance, and the problem of species delimitation in complexes with high levels of population structure and

  10. Multilocus Phylogeography and Species Delimitation in the Cumberland Plateau Salamander, Plethodon kentucki: Incongruence among Data Sets and Methods.

    PubMed

    Kuchta, Shawn R; Brown, Ashley D; Converse, Paul E; Highton, Richard

    2016-01-01

    Species are a fundamental unit of biodiversity, yet can be challenging to delimit objectively. This is particularly true of species complexes characterized by high levels of population genetic structure, hybridization between genetic groups, isolation by distance, and limited phenotypic variation. Previous work on the Cumberland Plateau Salamander, Plethodon kentucki, suggested that it might constitute a species complex despite occupying a relatively small geographic range. To examine this hypothesis, we sampled 135 individuals from 43 populations, and used four mitochondrial loci and five nuclear loci (5693 base pairs) to quantify phylogeographic structure and probe for cryptic species diversity. Rates of evolution for each locus were inferred using the multidistribute package, and time calibrated gene trees and species trees were inferred using BEAST 2 and *BEAST 2, respectively. Because the parameter space relevant for species delimitation is large and complex, and all methods make simplifying assumptions that may lead them to fail, we conducted an array of analyses. Our assumption was that strongly supported species would be congruent across methods. Putative species were first delimited using a Bayesian implementation of the GMYC model (bGMYC), Geneland, and Brownie. We then validated these species using the genealogical sorting index and BPP. We found substantial phylogeographic diversity using mtDNA, including four divergent clades and an inferred common ancestor at 14.9 myr (95% HPD: 10.8-19.7 myr). By contrast, this diversity was not corroborated by nuclear sequence data, which exhibited low levels of variation and weak phylogeographic structure. Species trees estimated a far younger root than did the mtDNA data, closer to 1.0 myr old. Mutually exclusive putative species were identified by the different approaches. Possible causes of data set discordance, and the problem of species delimitation in complexes with high levels of population structure and

  11. Multilocus Phylogeography and Species Delimitation in the Cumberland Plateau Salamander, Plethodon kentucki: Incongruence among Data Sets and Methods.

    PubMed

    Kuchta, Shawn R; Brown, Ashley D; Converse, Paul E; Highton, Richard

    2016-01-01

    Species are a fundamental unit of biodiversity, yet can be challenging to delimit objectively. This is particularly true of species complexes characterized by high levels of population genetic structure, hybridization between genetic groups, isolation by distance, and limited phenotypic variation. Previous work on the Cumberland Plateau Salamander, Plethodon kentucki, suggested that it might constitute a species complex despite occupying a relatively small geographic range. To examine this hypothesis, we sampled 135 individuals from 43 populations, and used four mitochondrial loci and five nuclear loci (5693 base pairs) to quantify phylogeographic structure and probe for cryptic species diversity. Rates of evolution for each locus were inferred using the multidistribute package, and time calibrated gene trees and species trees were inferred using BEAST 2 and *BEAST 2, respectively. Because the parameter space relevant for species delimitation is large and complex, and all methods make simplifying assumptions that may lead them to fail, we conducted an array of analyses. Our assumption was that strongly supported species would be congruent across methods. Putative species were first delimited using a Bayesian implementation of the GMYC model (bGMYC), Geneland, and Brownie. We then validated these species using the genealogical sorting index and BPP. We found substantial phylogeographic diversity using mtDNA, including four divergent clades and an inferred common ancestor at 14.9 myr (95% HPD: 10.8-19.7 myr). By contrast, this diversity was not corroborated by nuclear sequence data, which exhibited low levels of variation and weak phylogeographic structure. Species trees estimated a far younger root than did the mtDNA data, closer to 1.0 myr old. Mutually exclusive putative species were identified by the different approaches. Possible causes of data set discordance, and the problem of species delimitation in complexes with high levels of population structure and

  12. Does a Barcoding Gap Exist in Prokaryotes? Evidences from Species Delimitation in Cyanobacteria

    PubMed Central

    Eckert, Ester M.; Fontaneto, Diego; Coci, Manuela; Callieri, Cristiana

    2014-01-01

    The amount of information that is available on 16S rRNA sequences for prokaryotes thanks to high-throughput sequencing could allow a better understanding of diversity. Nevertheless, the application of predetermined threshold in genetic distances to identify units of diversity (Operative Taxonomic Units, OTUs) may provide biased results. Here we tests for the existence of a barcoding gap in several groups of Cyanobacteria, defining units of diversity according to clear differences between within-species and among-species genetic distances in 16S rRNA. The application of a tool developed for animal DNA taxonomy, the Automatic Barcode Gap Detector (ABGD), revealed that a barcoding gap could actually be found in almost half of the datasets that we tested. The identification of units of diversity through this method provided results that were not compatible with those obtained with the identification of OTUs with threshold of similarity in genetic distances of 97% or 99%. The main message of our results is a call for caution in the estimate of diversity from 16S sequences only, given that different subjective choices in the method to delimit units could provide different results. PMID:25561355

  13. Simultaneous delimitation of species and quantification of interspecific hybridization in Amazonian peacock cichlids (genus cichla) using multi-locus data

    PubMed Central

    2012-01-01

    Background Introgression likely plays a significant role in evolution, but understanding the extent and consequences of this process requires a clear identification of species boundaries in each focal group. The delimitation of species, however, is a contentious endeavor. This is true not only because of the inadequacy of current tools to identify species lineages, but also because of the inherent ambiguity between natural populations and species paradigms. The result has been a debate about the supremacy of various species concepts and criteria. Here, we utilized multiple separate sources of molecular data, mtDNA, nuclear sequences, and microsatellites, to delimit species under a polytypic species concept (PTSC) and estimate the frequency and genomic extent of introgression in a Neotropical genus of cichlid fishes (Cichla). We compared our inferences of species boundaries and introgression under this paradigm to those when species are identified under a diagnostic species concept (DSC). Results We find that, based on extensive molecular data and an inclusive species concept, 8 separate biological entities should be recognized rather than the 15 described species of Cichla. Under the PTSC, fewer individuals are expected to exhibit hybrid ancestry than under the DSC (~2% vs. ~12%), but a similar number of the species exhibit introgression from at least one other species (75% vs. 60%). Under either species concept, the phylogenetic breadth of introgression in this group is notable, with both sister species and species from different major mtDNA clades exhibiting introgression. Conclusions Introgression was observed to be a widespread phenomenon for delimited species in this group. While several instances of introgressive hybridization were observed in anthropogenically altered habitats, most were found in undisturbed natural habitats, suggesting that introgression is a natural but ephemeral part of the evolution of many tropical species. Nevertheless, even transient

  14. Molecular Species Delimitation in the Racomitrium canescens Complex (Grimmiaceae) and Implications for DNA Barcoding of Species Complexes in Mosses

    PubMed Central

    Stech, Michael; Veldman, Sarina; Larraín, Juan; Muñoz, Jesús; Quandt, Dietmar; Hassel, Kristian; Kruijer, Hans

    2013-01-01

    In bryophytes a morphological species concept is still most commonly employed, but delimitation of closely related species based on morphological characters is often difficult. Here we test morphological species circumscriptions in a species complex of the moss genus Racomitrium, the R. canescens complex, based on variable DNA sequence markers from the plastid (rps4-trnT-trnL region) and nuclear (nrITS) genomes. The extensive morphological variability within the complex has led to different opinions about the number of species and intraspecific taxa to be distinguished. Molecular phylogenetic reconstructions allowed to clearly distinguish all eight currently recognised species of the complex plus a ninth species that was inferred to belong to the complex in earlier molecular analyses. The taxonomic significance of intraspecific sequence variation is discussed. The present molecular data do not support the division of the R. canescens complex into two groups of species (subsections or sections). Most morphological characters, albeit being in part difficult to apply, are reliable for species identification in the R. canescens complex. However, misidentification of collections that were morphologically intermediate between species questioned the suitability of leaf shape as diagnostic character. Four partitions of the molecular markers (rps4-trnT, trnT-trnL, ITS1, ITS2) that could potentially be used for molecular species identification (DNA barcoding) performed almost equally well concerning amplification and sequencing success. Of these, ITS1 provided the highest species discrimination capacity and should be considered as a DNA barcoding marker for mosses, especially in complexes of closely related species. Molecular species identification should be complemented by redefining morphological characters, to develop a set of easy-to-use molecular and non-molecular identification tools for improving biodiversity assessments and ecological research including mosses. PMID

  15. Molecular species delimitation in the Racomitrium canescens complex (Grimmiaceae) and implications for DNA barcoding of species complexes in mosses.

    PubMed

    Stech, Michael; Veldman, Sarina; Larraín, Juan; Muñoz, Jesús; Quandt, Dietmar; Hassel, Kristian; Kruijer, Hans

    2013-01-01

    In bryophytes a morphological species concept is still most commonly employed, but delimitation of closely related species based on morphological characters is often difficult. Here we test morphological species circumscriptions in a species complex of the moss genus Racomitrium, the R. canescens complex, based on variable DNA sequence markers from the plastid (rps4-trnT-trnL region) and nuclear (nrITS) genomes. The extensive morphological variability within the complex has led to different opinions about the number of species and intraspecific taxa to be distinguished. Molecular phylogenetic reconstructions allowed to clearly distinguish all eight currently recognised species of the complex plus a ninth species that was inferred to belong to the complex in earlier molecular analyses. The taxonomic significance of intraspecific sequence variation is discussed. The present molecular data do not support the division of the R. canescens complex into two groups of species (subsections or sections). Most morphological characters, albeit being in part difficult to apply, are reliable for species identification in the R. canescens complex. However, misidentification of collections that were morphologically intermediate between species questioned the suitability of leaf shape as diagnostic character. Four partitions of the molecular markers (rps4-trnT, trnT-trnL, ITS1, ITS2) that could potentially be used for molecular species identification (DNA barcoding) performed almost equally well concerning amplification and sequencing success. Of these, ITS1 provided the highest species discrimination capacity and should be considered as a DNA barcoding marker for mosses, especially in complexes of closely related species. Molecular species identification should be complemented by redefining morphological characters, to develop a set of easy-to-use molecular and non-molecular identification tools for improving biodiversity assessments and ecological research including mosses.

  16. Concordant species delimitation from multiple independent evidence: A case study with the Pachytriton brevipes complex (Caudata: Salamandridae).

    PubMed

    Wu, Yunke; Murphy, Robert W

    2015-11-01

    Mitochondrial DNA (mtDNA) sequence data are widely used to delimit species. However, owing to its strict maternal inheritance in most species, mtDNA tracks female dispersion and dispersal only. The accuracy of mtDNA-derived species delimitation is often not explicitly tested using other independent evidence, such as nuclear DNA (nDNA) data, morphological data, or ecological data. Because species are independent evolutionary lineages that can form testable hypotheses, we present a multi-evidence case study on species delimitation that combines statistical approaches with spatially explicit ecological analysis. Montane salamanders of the Pachytriton brevipes complex (Salamandridae) from southeastern China exhibit conservative morphology and variable color patterning that impede species diagnosis. Recent studies proposed splitting P. brevipes into four species based on deep mtDNA divergence but also found discordance between mtDNA and nDNA trees. In this study, we test evolutionary independence of these hypothesized species lineages using two coalescent-based Bayesian methods (Bayes factor and BP&P). Despite significant conflict between mtDNA gene tree and the species phylogeny, the results reinforce the inference of at least four species in the complex as opposed to the one species recognized for over 130 years. Correlative ecological niche modeling and statistical analysis of environmental data indicate that suitable habitats for each species are isolated by incompatible intervening lowland regions, so the likelihood of gene flow among species is very low, which means species lineages should maintain their evolutionary independence. We demonstrate that concordance among independent evidence confirms species status, which forms the basis for accurate assessment of regional biodiversity. PMID:26119130

  17. Concordant species delimitation from multiple independent evidence: A case study with the Pachytriton brevipes complex (Caudata: Salamandridae).

    PubMed

    Wu, Yunke; Murphy, Robert W

    2015-11-01

    Mitochondrial DNA (mtDNA) sequence data are widely used to delimit species. However, owing to its strict maternal inheritance in most species, mtDNA tracks female dispersion and dispersal only. The accuracy of mtDNA-derived species delimitation is often not explicitly tested using other independent evidence, such as nuclear DNA (nDNA) data, morphological data, or ecological data. Because species are independent evolutionary lineages that can form testable hypotheses, we present a multi-evidence case study on species delimitation that combines statistical approaches with spatially explicit ecological analysis. Montane salamanders of the Pachytriton brevipes complex (Salamandridae) from southeastern China exhibit conservative morphology and variable color patterning that impede species diagnosis. Recent studies proposed splitting P. brevipes into four species based on deep mtDNA divergence but also found discordance between mtDNA and nDNA trees. In this study, we test evolutionary independence of these hypothesized species lineages using two coalescent-based Bayesian methods (Bayes factor and BP&P). Despite significant conflict between mtDNA gene tree and the species phylogeny, the results reinforce the inference of at least four species in the complex as opposed to the one species recognized for over 130 years. Correlative ecological niche modeling and statistical analysis of environmental data indicate that suitable habitats for each species are isolated by incompatible intervening lowland regions, so the likelihood of gene flow among species is very low, which means species lineages should maintain their evolutionary independence. We demonstrate that concordance among independent evidence confirms species status, which forms the basis for accurate assessment of regional biodiversity.

  18. Out of the deep: cryptic speciation in a Neotropical gecko (Squamata, Phyllodactylidae) revealed by species delimitation methods.

    PubMed

    Domingos, Fabricius M C B; Bosque, Renan J; Cassimiro, José; Colli, Guarino R; Rodrigues, Miguel T; Santos, Marcella G; Beheregaray, Luciano B

    2014-11-01

    Levels of biodiversity in the Neotropics are largely underestimated despite centuries of research interest in this region. This is particularly true for the Cerrado, the largest Neotropical savanna and a formally recognized biodiversity hotspot. Molecular species delimitation methods have become essential tools to uncover cryptic species and can be notably robust when coupled with morphological information. We present the first evaluation of the monophyly and cryptic speciation of a widespread Cerrado endemic lizard, Gymnodactylus amarali, using phylogenetic and species-trees methods, as well as a coalescent-based Bayesian species delimitation method. We tested whether lineages resulting from the analyses of molecular data are morphologically diagnosed by traditional meristic scale characters. We recovered eight deeply divergent molecular clades within G. amarali, and two additional ones from seasonally dry tropical forest enclaves between the Cerrado and the Caatinga biomes. Analysis of morphological data statistically corroborated the molecular delimitation for all groups, in a pioneering example of the use of support vector machines to investigate morphological differences in animals. The eight G. amarali clades appear monophyletic and endemic to the Cerrado. They display several different properties used by biologists to delineate species and are therefore considered here as candidates for formal taxonomic description. We also present a preliminary account of the biogeographic history of these lineages in the Cerrado, evidence for speciation of sister lineages in the Cerrado-Caatinga contact, and highlight the need for further morphological and genetic studies to assess cryptic diversity in this biodiversity hotspot. PMID:25109652

  19. Comparison of five methods for delimitating species in Ophion Fabricius, a diverse genus of parasitoid wasps (Hymenoptera, Ichneumonidae).

    PubMed

    Schwarzfeld, Marla D; Sperling, Felix A H

    2015-12-01

    DNA taxonomy has been proposed as a method to quickly assess diversity and species limits in highly diverse, understudied taxa. Here we use five methods for species delimitation and two genetic markers (COI and ITS2) to assess species diversity within the parasitoid genus, Ophion. We searched for compensatory base changes (CBC's) in ITS2, and determined that they are too rare to be of practical use in delimiting species in this genus. The other four methods used both COI and ITS2, and included distance-based (threshold analysis and ABGD) and tree-based (GMYC and PTP) models. We compared the results of these analyses to each other under various parameters and tested their performance with respect to 11 Nearctic species/morphospecies and 15 described Palearctic species. We also computed barcode accumulation curves of COI sequences to assess the completeness of sampling. The species count was highly variable depending on the method and parameters used, ranging from 47 to 168 species, with more conservative estimates of 89-121 species. Despite this range, many of the Nearctic test species were fairly robust with respect to method. We concluded that while there was often good congruence between methods, GMYC and PTP were less reliant on arbitrary parameters than the other two methods and more easily applied to genetic markers other than COI. However, PTP was less successful at delimiting test species than was GMYC. All methods, as well as the barcode accumulation curves, indicate that several Palearctic species remain undescribed and that we have scarcely begun to appreciate the Nearctic diversity within this genus.

  20. A multilocus species delimitation reveals a striking number of species of coralline algae forming Maerl in the OSPAR maritime area.

    PubMed

    Pardo, Cristina; Lopez, Lua; Peña, Viviana; Hernández-Kantún, Jazmin; Le Gall, Line; Bárbara, Ignacio; Barreiro, Rodolfo

    2014-01-01

    Maerl beds are sensitive biogenic habitats built by an accumulation of loose-lying, non-geniculate coralline algae. While these habitats are considered hot-spots of marine biodiversity, the number and distribution of maerl-forming species is uncertain because homoplasy and plasticity of morphological characters are common. As a result, species discrimination based on morphological features is notoriously challenging, making these coralline algae the ideal candidates for a DNA barcoding study. Here, mitochondrial (COI-5P DNA barcode fragment) and plastidial (psbA gene) sequence data were used in a two-step approach to delimit species in 224 collections of maerl sampled from Svalbard (78°96'N) to the Canary Islands (28°64'N) that represented 10 morphospecies from four genera and two families. First, the COI-5P dataset was analyzed with two methods based on distinct criteria (ABGD and GMYC) to delineate 16 primary species hypotheses (PSHs) arranged into four major lineages. Second, chloroplast (psbA) sequence data served to consolidate these PSHs into 13 secondary species hypotheses (SSHs) that showed biologically plausible ranges. Using several lines of evidence (e.g. morphological characters, known species distributions, sequences from type and topotype material), six SSHs were assigned to available species names that included the geographically widespread Phymatolithon calcareum, Lithothamnion corallioides, and L. glaciale; possible identities of other SSHs are discussed. Concordance between SSHs and morphospecies was minimal, highlighting the convenience of DNA barcoding for an accurate identification of maerl specimens. Our survey indicated that a majority of maerl forming species have small distribution ranges and revealed a gradual replacement of species with latitude.

  1. A Multilocus Species Delimitation Reveals a Striking Number of Species of Coralline Algae Forming Maerl in the OSPAR Maritime Area

    PubMed Central

    Pardo, Cristina; Lopez, Lua; Peña, Viviana; Hernández-Kantún, Jazmin; Le Gall, Line; Bárbara, Ignacio; Barreiro, Rodolfo

    2014-01-01

    Maerl beds are sensitive biogenic habitats built by an accumulation of loose-lying, non-geniculate coralline algae. While these habitats are considered hot-spots of marine biodiversity, the number and distribution of maerl-forming species is uncertain because homoplasy and plasticity of morphological characters are common. As a result, species discrimination based on morphological features is notoriously challenging, making these coralline algae the ideal candidates for a DNA barcoding study. Here, mitochondrial (COI-5P DNA barcode fragment) and plastidial (psbA gene) sequence data were used in a two-step approach to delimit species in 224 collections of maerl sampled from Svalbard (78°96’N) to the Canary Islands (28°64’N) that represented 10 morphospecies from four genera and two families. First, the COI-5P dataset was analyzed with two methods based on distinct criteria (ABGD and GMYC) to delineate 16 primary species hypotheses (PSHs) arranged into four major lineages. Second, chloroplast (psbA) sequence data served to consolidate these PSHs into 13 secondary species hypotheses (SSHs) that showed biologically plausible ranges. Using several lines of evidence (e.g. morphological characters, known species distributions, sequences from type and topotype material), six SSHs were assigned to available species names that included the geographically widespread Phymatolithon calcareum, Lithothamnion corallioides, and L. glaciale; possible identities of other SSHs are discussed. Concordance between SSHs and morphospecies was minimal, highlighting the convenience of DNA barcoding for an accurate identification of maerl specimens. Our survey indicated that a majority of maerl forming species have small distribution ranges and revealed a gradual replacement of species with latitude. PMID:25111057

  2. Species delimitation in plants using the Qinghai–Tibet Plateau endemic Orinus (Poaceae: Tridentinae) as an example

    PubMed Central

    Su, Xu; Wu, Guili; Li, Lili; Liu, Jianquan

    2015-01-01

    Background and Aims Accurate identification of species is essential for the majority of biological studies. However, defining species objectively and consistently remains a challenge, especially for plants distributed in remote regions where there is often a lack of sufficient previous specimens. In this study, multiple approaches and lines of evidence were used to determine species boundaries for plants occurring in the Qinghai–Tibet Plateau, using the genus Orinus (Poaceae) as a model system for an integrative approach to delimiting species. Methods A total of 786 individuals from 102 populations of six previously recognized species were collected for niche, morphological and genetic analyses. Three plastid DNA regions (matK, rbcL and trnH-psbA) and one nuclear DNA region [internal transcribed space (ITS)] were sequenced. Key Results Whereas six species had been previously recognized, statistical analyses based on character variation, molecular data and niche differentiation identified only two well-delimited clusters, together with a third possibly originating from relatively recent hybridization between, or historical introgression from, the other two. Conclusions Based on a principle of integrative species delimitation to reconcile different sources of data, the results provide compelling evidence that the six previously recognized species of the genus Orinus that were examined should be reduced to two, with new circumscriptions, and a third, identified in this study, should be described as a new species. This empirical study highlights the value of applying genetic differentiation, morphometric statistics and ecological niche modelling in an integrative approach to re-circumscribing species boundaries. The results produce relatively objective, operational and unbiased taxonomic classifications of plants occurring in remote regions. PMID:25987712

  3. The Mycetophila ruficollis Meigen (Diptera, Mycetophilidae) group in Europe: elucidating species delimitation with COI and ITS2 sequence data

    PubMed Central

    Jürgenstein, Siiri; Kurina, Olavi; Põldmaa, Kadri

    2015-01-01

    Abstract European species of the Mycetophila ruficollis group are compared on the basis of morphology and sequences of mitochondrial cytochrome oxidase subunit one (COI) and the ITS2 region of nuclear ribosomal DNA. The study represents the first evaluation of morphology-based species delimitation of closely related fungus gnat species by applying molecular information. Detailed descriptions and illustrations of the male terminalia are presented along with a key for the identification of all nine European species of the group. Phylogenetic analyses of molecular data generally supported the morphological species discrimination. The barcoding region of COI superseded ITS2 rDNA in resolving species. In the COI barcoding region interspecific differences ranged from 2.9 to 10.6% and the intraspecific distance from 0.08 to 0.8%. Only COI data distinguished between the similar and closely related Mycetophila ichneumonea and Mycetophila uninotata of which the latter was observed to include cryptic species. The host range of some species is suggested to be narrower than previously considered and to depend on the forest type. Presented evidence indicates the importance of analysing sequence data of morphologically very similar mycetophages reared from identified host fungi for elucidating species delimitation as well as their geographic and host ranges. New country records, viz. Estonia for Mycetophila evanida, Georgia for Mycetophila ichneumonea, Mycetophila idonea and Mycetophila ruficollis, and Norway for Mycetophila strobli, widen the known distribution ranges of these species. PMID:26167119

  4. Biogeographical history and coalescent species delimitation of Pacific island skinks (Squamata: Scincidae: Emoia cyanura species group)

    USGS Publications Warehouse

    Klein, Elaine; Harris, Rebecca; Fisher, Robert N.; Reeder, Tod

    2016-01-01

    In contrast to the expectations of a stepping-stone model, E. cyanura and E. impar each exhibit the genetic signature of a rapid radiation during the mid to late Pleistocene, with evidence for newly identified lineages, mainly on western islands. Of these recovered lineages, we propose three to be elevated to species status. These findings expand our understanding of endemic Pacific biota, which are subject to conservation threats from human impacts and climate change.

  5. Diagnostic survey of Malagasy Nesomyrmex species-groups and revision of hafahafa group species via morphology based cluster delimitation protocol

    PubMed Central

    Csősz, Sándor; Fisher, Brian L.

    2015-01-01

    Abstract Madagascar and its surrounding islands are among the world’s greatest biodiversity hotspots, harboring predominantly endemic and threatened communities meriting special attention from biodiversity scientists. Building on the considerable efforts in recent years to inventory the Malagasy ant fauna, the myrmicine genus Nesomyrmex is reviewed and (1) subdivided into four major groups based on salient morphological features corroborated by numeric morphology: angulatus-, hafahafa-, madecassus- and sikorai-groups, and (2) the hafahafa species-group endemic to Madagascar is revised. Diversity within hafahafa species-group was assessed via hypothesis-free nest-centroid-clustering combined with gap statistic to assess the number of clusters and to determine the most probable boundaries between them. This combination of methods provides a highly automatized, objective species delineation protocol based on continuous morphometric data. Delimitations of clusters recognized by these exploratory analyses were tested via confirmatory Linear Discriminant Analysis. These results suggest the existence of four morphologically distinct species, Nesomyrmex capricornis sp. n., Nesomyrmex hafahafa sp. n., Nesomyrmex medusus sp. n. and Nesomyrmex spinosus sp. n.; all are described and an identification key for their worker castes using morphometric data is provided. Two members of the newly outlined hafahafa species-group, Nesomyrmex hafahafa sp. n., Nesomyrmex medusus sp. n., are distributed along the southeastern coast Madagascar and occupy rather large ranges, but two other species, Nesomyrmex capricornis sp. n. and Nesomyrmex spinosus sp. n., are only known to occur in small and isolated forest, highlighting the importance of small forest patches for conserving arthropod diversity. PMID:26487823

  6. Delimiting Species-Poor Data Sets using Single Molecular Markers: A Study of Barcode Gaps, Haplowebs and GMYC.

    PubMed

    Dellicour, Simon; Flot, Jean-François

    2015-11-01

    Most single-locus molecular approaches to species delimitation available to date have been designed and tested on data sets comprising at least tens of species, whereas the opposite case (species-poor data sets for which the hypothesis that all individuals are conspecific cannot by rejected beforehand) has rarely been the focus of such attempts. Here we compare the performance of barcode gap detection, haplowebs and generalized mixed Yule-coalescent (GMYC) models to delineate chimpanzees and bonobos using nuclear sequence markers, then apply these single-locus species delimitation methods to data sets of one, three, or six species simulated under a wide range of population sizes, speciation rates, mutation rates and sampling efforts. Our results show that barcode gap detection and GMYC models are unable to delineate species properly in data sets composed of one or two species, two situations in which haplowebs outperform them. For data sets composed of three or six species, bGMYC and haplowebs outperform the single-threshold and multiple-threshold versions of GMYC, whereas a clear barcode gap is only observed when population sizes and speciation rates are both small. The latter conditions represent a "sweet spot" for molecular taxonomy where all the single-locus approaches tested work well; however, the performance of these methods decreases strongly when population sizes and speciation rates are high, suggesting that multilocus approaches may be necessary to tackle such cases.

  7. Integrative Taxonomy and Species Delimitation in Harvestmen: A Revision of the Western North American Genus Sclerobunus (Opiliones: Laniatores: Travunioidea)

    PubMed Central

    Derkarabetian, Shahan; Hedin, Marshal

    2014-01-01

    Alpha taxonomy, and specifically the delimitation of species, is becoming increasingly objective and integrative. The use of coalescent-based methods applied to genetic data is providing new tools for the discovery and delimitation of species. Here, we use an integrative approach via a combination of discovery-based multivariate morphological analyses to detect potential new species. These potential species are then used as a priori species in hypothesis-driven validation analyses with genetic data. This research focuses on the harvestmen genus Sclerobunus found throughout the mountainous regions of western North America. Based on our analyses, we conduct a revision of Sclerobunus resulting in synonymy of Cyptobunus with Sclerobunus including transfer of S. cavicolens comb. nov. and elevation of both subspecies of S. ungulatus: S. ungulatus comb. nov. and S. madhousensis comb. nov., stat. nov. The three subspecies of S. robustus are elevated, S. robustus, S. glorietus stat. nov., and S. idahoensis stat. nov. Additionally, five new species of Sclerobunus are described from New Mexico and Colorado, including S. jemez sp. nov., S. klomax sp. nov., S. skywalkeri sp. nov., S. speoventus sp. nov., and S. steinmanni sp. nov. Several of the newly described species are single-cave endemics, and our findings suggest that further exploration of western North American cave habitats will likely yield additional new species. PMID:25144370

  8. Comparison of four species-delimitation methods applied to a DNA barcode data set of insect larvae for use in routine bioassessment for use in routine bioassessment

    EPA Science Inventory

    Species delimitation (grouping individuals into distinct taxonomic groups) is an essential part of evolutionary, conservation, and molecular ecology. Deoxyribonucleic acid (DNA) barcodes, short fragments of the cytochrome c oxidase subunit I (COI) gene, are being used in environm...

  9. The Centipede Genus Scolopendra in Mainland Southeast Asia: Molecular Phylogenetics, Geometric Morphometrics and External Morphology as Tools for Species Delimitation.

    PubMed

    Siriwut, Warut; Edgecombe, Gregory D; Sutcharit, Chirasak; Panha, Somsak

    2015-01-01

    Seven Scolopendra species from the Southeast Asian mainland delimited based on standard external morphological characters represent monophyletic groups in phylogenetic trees inferred from concatenated sequences of three gene fragments (cytochrome c oxidase subunit 1, 16S rRNA and 28S rRNA) using Maximum likelihood and Bayesian inference. Geometric morphometric description of shape variation in the cephalic plate, forcipular coxosternite, and tergite of the ultimate leg-bearing segment provides additional criteria for distinguishing species. Colouration patterns in some Scolopendra species show a high degree of fit to phylogenetic trees at the population level. The most densely sampled species, Scolopendra dehaani Brandt, 1840, has three subclades with allopatric distributions in mainland SE Asia. The molecular phylogeny of S. pinguis Pocock, 1891, indicated ontogenetic colour variation among its populations. The taxonomic validation of S. dawydoffi Kronmüller, 2012, S. japonica Koch, 1878, and S. dehaani Brandt, 1840, each a former subspecies of S. subspinipes Leach, 1814 sensu Lewis, 2010, as full species was supported by molecular information and additional morphological data. Species delimitation in these taxonomically challenging animals is facilitated by an integrative approach that draws on both morphology and molecular phylogeny.

  10. The Centipede Genus Scolopendra in Mainland Southeast Asia: Molecular Phylogenetics, Geometric Morphometrics and External Morphology as Tools for Species Delimitation.

    PubMed

    Siriwut, Warut; Edgecombe, Gregory D; Sutcharit, Chirasak; Panha, Somsak

    2015-01-01

    Seven Scolopendra species from the Southeast Asian mainland delimited based on standard external morphological characters represent monophyletic groups in phylogenetic trees inferred from concatenated sequences of three gene fragments (cytochrome c oxidase subunit 1, 16S rRNA and 28S rRNA) using Maximum likelihood and Bayesian inference. Geometric morphometric description of shape variation in the cephalic plate, forcipular coxosternite, and tergite of the ultimate leg-bearing segment provides additional criteria for distinguishing species. Colouration patterns in some Scolopendra species show a high degree of fit to phylogenetic trees at the population level. The most densely sampled species, Scolopendra dehaani Brandt, 1840, has three subclades with allopatric distributions in mainland SE Asia. The molecular phylogeny of S. pinguis Pocock, 1891, indicated ontogenetic colour variation among its populations. The taxonomic validation of S. dawydoffi Kronmüller, 2012, S. japonica Koch, 1878, and S. dehaani Brandt, 1840, each a former subspecies of S. subspinipes Leach, 1814 sensu Lewis, 2010, as full species was supported by molecular information and additional morphological data. Species delimitation in these taxonomically challenging animals is facilitated by an integrative approach that draws on both morphology and molecular phylogeny. PMID:26270342

  11. The Centipede Genus Scolopendra in Mainland Southeast Asia: Molecular Phylogenetics, Geometric Morphometrics and External Morphology as Tools for Species Delimitation

    PubMed Central

    Siriwut, Warut; Edgecombe, Gregory D.; Sutcharit, Chirasak; Panha, Somsak

    2015-01-01

    Seven Scolopendra species from the Southeast Asian mainland delimited based on standard external morphological characters represent monophyletic groups in phylogenetic trees inferred from concatenated sequences of three gene fragments (cytochrome c oxidase subunit 1, 16S rRNA and 28S rRNA) using Maximum likelihood and Bayesian inference. Geometric morphometric description of shape variation in the cephalic plate, forcipular coxosternite, and tergite of the ultimate leg-bearing segment provides additional criteria for distinguishing species. Colouration patterns in some Scolopendra species show a high degree of fit to phylogenetic trees at the population level. The most densely sampled species, Scolopendra dehaani Brandt, 1840, has three subclades with allopatric distributions in mainland SE Asia. The molecular phylogeny of S. pinguis Pocock, 1891, indicated ontogenetic colour variation among its populations. The taxonomic validation of S. dawydoffi Kronmüller, 2012, S. japonica Koch, 1878, and S. dehaani Brandt, 1840, each a former subspecies of S. subspinipes Leach, 1814 sensu Lewis, 2010, as full species was supported by molecular information and additional morphological data. Species delimitation in these taxonomically challenging animals is facilitated by an integrative approach that draws on both morphology and molecular phylogeny. PMID:26270342

  12. Bayesian species delimitation reveals generalist and specialist parasitic wasps on Galerucella beetles (Chrysomelidae): sorting by herbivore or plant host

    PubMed Central

    2013-01-01

    Background To understand the ecological and evolutionary consequences of species interactions in food webs necessitates that interactions are properly identified. Genetic analyses suggest that many supposedly generalist parasitoid species should rather be defined as multiple species with a more narrow diet, reducing the probability that such species may mediate indirect interactions such as apparent competition among hosts. Recent studies showed that the parasitoid Asecodes lucens mediate apparent competition between two hosts, Galerucella tenella and G. calmariensis, affecting both interaction strengths and evolutionary feedbacks. The same parasitoid was also recorded from other species in the genus Galerucella, suggesting that similar indirect effects may also occur for other species pairs. Methods To explore the possibility of such interactions, we sequenced mitochondrial and nuclear genetic markers to resolve the phylogeny of both host and parasitoid and to test the number of parasitoid species involved. We thus collected 139 Galerucella larvae from 8 host plant species and sequenced 31 adult beetle and 108 parasitoid individuals. Results The analysis of the Galerucella data, that also included sequences from previous studies, verified the five species previously documented as reciprocally monophyletic, but the Bayesian species delimitation for A. lucens suggested 3–4 cryptic taxa with a more specialised host use than previously suggested. The gene data analyzed under the multispecies coalescent model allowed us to reconstruct the species tree phylogeny for both host and parasitoid and we found a fully congruent coevolutionary pattern suggesting that parasitoid speciation followed upon host speciation. Conclusion Using multilocus sequence data in a Bayesian species delimitation analysis we propose that hymenopteran parasitoids of the genus Asecodes that infest Galerucella larvae constitute at least three species with narrow diet breath. The evolution of

  13. Molecular phylogenetics and species delimitation of leaf-toed geckos (Phyllodactylidae: Phyllodactylus) throughout the Mexican tropical dry forest.

    PubMed

    Blair, Christopher; Méndez de la Cruz, Fausto R; Law, Christopher; Murphy, Robert W

    2015-03-01

    Methods and approaches for accurate species delimitation continue to be a highly controversial subject in the systematics community. Inaccurate assessment of species' limits precludes accurate inference of historical evolutionary processes. Recent evidence suggests that multilocus coalescent methods show promise in delimiting species in cryptic clades. We combine multilocus sequence data with coalescence-based phylogenetics in a hypothesis-testing framework to assess species limits and elucidate the timing of diversification in leaf-toed geckos (Phyllodactylus) of Mexico's dry forests. Tropical deciduous forests (TDF) of the Neotropics are among the planet's most diverse ecosystems. However, in comparison to moist tropical forests, little is known about the mode and tempo of biotic evolution throughout this threatened biome. We find increased speciation and substantial, cryptic molecular diversity originating following the formation of Mexican TDF 30-20million years ago due to orogenesis of the Sierra Madre Occidental and Mexican Volcanic Belt. Phylogenetic results suggest that the Mexican Volcanic Belt, the Rio Fuerte, and Isthmus of Tehuantepec may be important biogeographic barriers. Single- and multilocus coalescent analyses suggest that nearly every sampling locality may be a distinct species. These results suggest unprecedented levels of diversity, a complex evolutionary history, and that the formation and expansion of TDF vegetation in the Miocene may have influenced subsequent cladogenesis of leaf-toed geckos throughout western Mexico.

  14. Changing Names with Changed Address: Integrated Taxonomy and Species Delimitation in the Holarctic Colymbetes paykulli Group (Coleoptera: Dytiscidae).

    PubMed

    Drotz, Marcus K; Brodin, Tomas; Nilsson, Anders N

    2015-01-01

    Species delimitation of geographically isolated forms is a long-standing problem in less studied insect groups. Often taxonomic decisions are based directly on morphologic variation, and lack a discussion regarding sample size and the efficiency of migration barriers or dispersal/migration capacity of the studied species. These problems are here exemplified in a water beetle complex from the Bering Sea region that separates North America from Eurasia. Only a few sampled specimens occur from this particular area and they are mostly found in museum and private collections. Here we utilize the theory of integrated taxonomy to discuss the speciation of the Holarctic Colymbetes paykulli water beetle complex, which historically has included up to five species of which today only two are recognized. Three delimitation methods are used; landmark based morphometry of body shape, variation in reticulation patterns of the pronotum exo-skeleton and sequence variation of the partial mitochondrial gene Cyt b. Our conclusion is that the Palearctic and Nearctic populations of C. paykulli are given the status of separate species, based on the fact that all methods showed significant separation between populations. As a consequence the name of the Palearctic species is C. paykulli Erichson and the Nearctic species should be known as C. longulus LeConte. There is no clear support for delineation between Palearctic and Nearctic populations of C. dahuricus based on mtDNA. However, significant difference in size and reticulation patterns from the two regions is shown. The combined conclusion is that the C. dahuricus complex needs a more thorough investigation to fully disentangle its taxonomic status. Therefore it is here still regarded as a Holarctic species. This study highlights the importance to study several diagnosable characters that has the potential to discriminate evolutionary lineage during speciation. PMID:26619278

  15. Changing Names with Changed Address: Integrated Taxonomy and Species Delimitation in the Holarctic Colymbetes paykulli Group (Coleoptera: Dytiscidae)

    PubMed Central

    Drotz, Marcus K.; Brodin, Tomas; Nilsson, Anders N.

    2015-01-01

    Species delimitation of geographically isolated forms is a long-standing problem in less studied insect groups. Often taxonomic decisions are based directly on morphologic variation, and lack a discussion regarding sample size and the efficiency of migration barriers or dispersal/migration capacity of the studied species. These problems are here exemplified in a water beetle complex from the Bering Sea region that separates North America from Eurasia. Only a few sampled specimens occur from this particular area and they are mostly found in museum and private collections. Here we utilize the theory of integrated taxonomy to discuss the speciation of the Holarctic Colymbetes paykulli water beetle complex, which historically has included up to five species of which today only two are recognized. Three delimitation methods are used; landmark based morphometry of body shape, variation in reticulation patterns of the pronotum exo-skeleton and sequence variation of the partial mitochondrial gene Cyt b. Our conclusion is that the Palearctic and Nearctic populations of C. paykulli are given the status of separate species, based on the fact that all methods showed significant separation between populations. As a consequence the name of the Palearctic species is C. paykulli Erichson and the Nearctic species should be known as C. longulus LeConte. There is no clear support for delineation between Palearctic and Nearctic populations of C. dahuricus based on mtDNA. However, significant difference in size and reticulation patterns from the two regions is shown. The combined conclusion is that the C. dahuricus complex needs a more thorough investigation to fully disentangle its taxonomic status. Therefore it is here still regarded as a Holarctic species. This study highlights the importance to study several diagnosable characters that has the potential to discriminate evolutionary lineage during speciation. PMID:26619278

  16. Complex patterns of speciation in cosmopolitan "rock posy" lichens--discovering and delimiting cryptic fungal species in the lichen-forming Rhizoplaca melanophthalma species-complex (Lecanoraceae, Ascomycota).

    PubMed

    Leavitt, Steven D; Fankhauser, Johnathon D; Leavitt, Dean H; Porter, Lyndon D; Johnson, Leigh A; St Clair, Larry L

    2011-06-01

    A growing body of evidence indicates that in some cases morphology-based species circumscription of lichenized fungi misrepresents the number of existing species. The cosmopolitan "rock posy" lichen (Rhizoplaca melanophthalma) species-complex includes a number of morphologically distinct species that are both geographically and ecologically widespread, providing a model system to evaluate speciation in lichen-forming ascomycetes. In this study, we assembled multiple lines of evidence from nuclear DNA sequence data, morphology, and biochemistry for species delimitation in the R. melanophthalma species-complex. We identify a total of ten candidate species in this study, four of which were previously recognized as distinct taxa and six previously unrecognized lineages found within what has been thus far considered a single species. Candidate species are supported using inferences from multiple empirical operational criteria. Multiple instances of sympatry support the view that these lineages merit recognition as distinct taxa. Generally, we found little corroboration between morphological and chemical characters, and previously unidentified lineages were morphologically polymorphic. However, secondary metabolite data supported one cryptic saxicolous lineage, characterized by orsellinic-derived gyrophoric and lecanoric acids, which we consider to be taxonomically significant. Our study of the R. melanophthalma species-complex indicates that the genus Rhizoplaca, as presently circumscribed, is more diverse in western North American than originally perceived, and we present our analyses as a working example of species delimitation in morphologically cryptic and recently diverged lichenized fungi. PMID:21443956

  17. Integrative species delimitation in photosynthetic sea slugs reveals twenty candidate species in three nominal taxa studied for drug discovery, plastid symbiosis or biological control.

    PubMed

    Krug, Patrick J; Vendetti, Jann E; Rodriguez, Albert K; Retana, Jennifer N; Hirano, Yayoi M; Trowbridge, Cynthia D

    2013-12-01

    DNA barcoding can highlight taxa in which conventional taxonomy underestimates species richness, identifying mitochondrial lineages that may correspond to unrecognized species. However, key assumptions of barcoding remain untested for many groups of soft-bodied marine invertebrates with poorly resolved taxonomy. Here, we applied an integrative approach for species delimitation to herbivorous sea slugs in clade Sacoglossa, in which unrecognized diversity may complicate studies of drug discovery, plastid endosymbiosis, and biological control. Using the mitochondrial barcoding COI gene and the nuclear histone 3 gene, we tested the hypothesis that three widely distributed "species" each comprised a complex of independently evolving lineages. Morphological and reproductive characters were then used to evaluate whether each lineage was distinguishable as a candidate species. The "circumtropical" Elysia ornata comprised a Caribbean species and four Indo-Pacific candidate species that are potential sources of kahalalides, anti-cancer compounds. The "monotypic" and highly photosynthetic Plakobranchus ocellatus, used for over 60 years to study chloroplast symbiosis, comprised 10 candidate species. Finally, six candidate species were distinguished in the Elysia tomentosa complex, including potential biological control agents for invasive green algae (Caulerpa spp.). We show that a candidate species approach developed for vertebrates effectively categorizes cryptic diversity in marine invertebrates, and that integrating threshold COI distances with non-molecular character data can delimit species even when common assumptions of DNA barcoding are violated.

  18. Complex patterns of speciation in cosmopolitan "rock posy" lichens--discovering and delimiting cryptic fungal species in the lichen-forming Rhizoplaca melanophthalma species-complex (Lecanoraceae, Ascomycota).

    PubMed

    Leavitt, Steven D; Fankhauser, Johnathon D; Leavitt, Dean H; Porter, Lyndon D; Johnson, Leigh A; St Clair, Larry L

    2011-06-01

    A growing body of evidence indicates that in some cases morphology-based species circumscription of lichenized fungi misrepresents the number of existing species. The cosmopolitan "rock posy" lichen (Rhizoplaca melanophthalma) species-complex includes a number of morphologically distinct species that are both geographically and ecologically widespread, providing a model system to evaluate speciation in lichen-forming ascomycetes. In this study, we assembled multiple lines of evidence from nuclear DNA sequence data, morphology, and biochemistry for species delimitation in the R. melanophthalma species-complex. We identify a total of ten candidate species in this study, four of which were previously recognized as distinct taxa and six previously unrecognized lineages found within what has been thus far considered a single species. Candidate species are supported using inferences from multiple empirical operational criteria. Multiple instances of sympatry support the view that these lineages merit recognition as distinct taxa. Generally, we found little corroboration between morphological and chemical characters, and previously unidentified lineages were morphologically polymorphic. However, secondary metabolite data supported one cryptic saxicolous lineage, characterized by orsellinic-derived gyrophoric and lecanoric acids, which we consider to be taxonomically significant. Our study of the R. melanophthalma species-complex indicates that the genus Rhizoplaca, as presently circumscribed, is more diverse in western North American than originally perceived, and we present our analyses as a working example of species delimitation in morphologically cryptic and recently diverged lichenized fungi.

  19. Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: a revised method and evaluation on simulated data sets.

    PubMed

    Fujisawa, Tomochika; Barraclough, Timothy G

    2013-09-01

    DNA barcoding-type studies assemble single-locus data from large samples of individuals and species, and have provided new kinds of data for evolutionary surveys of diversity. An important goal of many such studies is to delimit evolutionarily significant species units, especially in biodiversity surveys from environmental DNA samples. The Generalized Mixed Yule Coalescent (GMYC) method is a likelihood method for delimiting species by fitting within- and between-species branching models to reconstructed gene trees. Although the method has been widely used, it has not previously been described in detail or evaluated fully against simulations of alternative scenarios of true patterns of population variation and divergence between species. Here, we present important reformulations to the GMYC method as originally specified, and demonstrate its robustness to a range of departures from its simplifying assumptions. The main factor affecting the accuracy of delimitation is the mean population size of species relative to divergence times between them. Other departures from the model assumptions, such as varying population sizes among species, alternative scenarios for speciation and extinction, and population growth or subdivision within species, have relatively smaller effects. Our simulations demonstrate that support measures derived from the likelihood function provide a robust indication of when the model performs well and when it leads to inaccurate delimitations. Finally, the so-called single-threshold version of the method outperforms the multiple-threshold version of the method on simulated data: we argue that this might represent a fundamental limit due to the nature of evidence used to delimit species in this approach. Together with other studies comparing its performance relative to other methods, our findings support the robustness of GMYC as a tool for delimiting species when only single-locus information is available.

  20. Integrative species delimitation in photosynthetic sea slugs reveals twenty candidate species in three nominal taxa studied for drug discovery, plastid symbiosis or biological control

    PubMed Central

    Krug, Patrick J.; Vendetti, Jann E.; Rodriguez, Albert K.; Retana, Jennifer N.; Hirano, Yayoi M.; Trowbridge, Cynthia D.

    2013-01-01

    DNA barcoding can highlight taxa in which conventional taxonomy underestimates species richness, identifying mitochondrial lineages that may correspond to unrecognized species. However, key assumptions of barcoding remain untested for many groups of soft-bodied marine invertebrates with poorly resolved taxonomy. Here, we applied an integrative approach for species delimitation to herbivorous sea slugs in clade Sacoglossa, in which unrecognized diversity may complicate studies of drug discovery, plastid endosymbiosis, and biological control. Using the mitochondrial barcoding COI gene and the nuclear histone 3 gene, we tested the hypothesis that three widely distributed “species” each comprised a complex of independently evolving lineages. Morphological and reproductive characters were then used to evaluate whether each lineage was distinguishable as a candidate species. The “circumtropical” Elysia ornata comprised a Caribbean species and four Indo-Pacific candidate species that are potential sources of kahalalides, anti-cancer compounds. The “monotypic” and highly photosynthetic Plakobranchus ocellatus, used for over 60 years to study chloroplast symbiosis, comprised 10 candidate species. Finally, six candidate species were distinguished in the Elysia tomentosa complex, including potential biological control agents for invasive green algae (Caulerpa spp.). We show that a candidate species approach developed for vertebrates effectively categorizes cryptic diversity in marine invertebrates, and that integrating threshold COI distances with non-molecular character data can delimit species even when common assumptions of DNA barcoding are violated. PMID:23876292

  1. Evaluating the resolution power of new microsatellites for species identification and stock delimitation in the Cape hakes Merluccius paradoxus and Merluccius capensis (Teleostei: Merlucciidae).

    PubMed

    Hoareau, T B; Klopper, A W; Dos Santos, S M R; Oosthuizen, C J; Bloomer, P

    2015-05-01

    The utility of 15 new and 17 previously published microsatellite markers was evaluated for species identification and stock delimitation in the deep-water hake Merluccius paradoxus and the shallow-water hake Merluccius capensis. A total of 14 microsatellites were polymorphic in M. paradoxus and 10 in M. capensis. Two markers could individually discriminate the species using Bayesian clustering methods and a statistical power analysis showed that the set of markers for each species is likely to detect subtle genetic differentiation (FST < 0·006) that will be valuable to delimit and characterize genetic stocks. PMID:25943151

  2. Integrative taxonomy of New Caledonian beetles: species delimitation and definition of the Uloma isoceroides species group (Coleoptera, Tenebrionidae, Ulomini), with the description of four new species

    PubMed Central

    Soldati, Laurent; Kergoat, Gael J.; Clamens, Anne-Laure; Jourdan, Hervé; Jabbour-Zahab, Roula; Condamine, Fabien L.

    2014-01-01

    Abstract New Caledonia is an important biodiversity hotspot with much undocumented biodiversity, especially in many insect groups. Here we used an integrative approach to explore species diversity in the tenebrionid genus Uloma (Coleoptera, Tenebrionidae, Ulomini), which encompasses about 150 species, of which 22 are known from New Caledonia. To do so, we focused on a morphologically homogeneous group by comparing museum specimens with material collected during several recent field trips. We also conducted molecular phylogenetic analyses based on a concatenated matrix of four mitochondrial and three nuclear genes for 46 specimens. The morphological study allowed us to discover and describe four new species that belong to the group of interest, the Uloma isoceroides group. Molecular analyses confirmed the species boundaries of several of the previously described species and established the validity of the four new species. The phylogenetic analyses also provided additional information on the evolutionary history of the group, highlighting that a species that was thought to be unrelated to the group was in fact a member of the same evolutionary lineage. Molecular species delimitation confirmed the status of the sampled species of the group and also suggested some hidden (cryptic) biodiversity for at least two species of the group. Altogether this integrative taxonomic approach has allowed us to better define the boundaries of the Uloma isoceroides species group, which comprises at least 10 species: Uloma isoceroides (Fauvel, 1904), Uloma opacipennis (Fauvel, 1904), Uloma caledonica Kaszab, 1982, Uloma paniei Kaszab, 1982, Uloma monteithi Kaszab, 1986, Uloma robusta Kaszab, 1986, Uloma clamensae sp. n., Uloma condaminei sp. n., Uloma jourdani sp. n., and Uloma kergoati sp. n. We advocate more studies on other New Caledonian groups, as we expect that much undocumented biodiversity can be unveiled through the use of similar approaches. PMID:25009426

  3. Species Delimitation of the Cycas segmentifida Complex (Cycadaceae) Resolved by Phylogenetic and Distance Analyses of Molecular Data

    PubMed Central

    Feng, Xiuyan; Liu, Jian; Gong, Xun

    2016-01-01

    The Cycas segmentifida complex consists of eight species whose distributions overlap in a narrow region in Southwest China. These eight taxa are also morphologically similar and are difficult to be distinguished. Consequently, their taxonomic status has been a matter of discussion in recent years. To study this species complex, we sequenced four plastid intergenic spacers (cpDNA), three nuclear genes and genotyped 12 microsatellites for the eight taxa from 19 different localities. DNA sequences were analyzed using Maximum Likelihood (ML) method and Bayesian Inference (BI), and microsatellites were analyzed using the Neighbor-joining (NJ) and structure inference methods. Results of cpDNA, nuclear gene GTP and microsatellites all rejected the hypotheses that this complex consisted of eight taxa or one distinct lineage (species) but two previously described species were adopted: Cycas guizhouensis K. M. Lan et R. F. Zou and Cycas segmentifida D. Y. Wang et C. Y. Deng. Cycas longlinensis H. T. Chang et Y. C. Zhong was included in C. guizhouensis and the other five taxa were included in C. segmentifida. Our species delimitation inferred from molecular data largely corresponds to morphological differentiation. However, the other two nuclear genes were unable to resolve species boundaries for this complex independently. This study offered evidences from different genomes for dealing with the species boundaries and taxonomical treatment of the C. segmentifida complex in an integrated perspective. PMID:26913044

  4. Species as the basic units in evolution and biodiversity: How to define and delimit larger foraminiferal species in respect to paleogeography and biostratigraphy.

    NASA Astrophysics Data System (ADS)

    Hohenegger, J.

    2012-04-01

    Many concepts have been developed for the base of taxonomy, the biological species. Still there is confusion in these concepts between the 'substance' of a species, e.g. which factors makes a species (definition) and how to detect or recognize a species (delimitation). Concepts like morphospecies and chronospecies (= palaeospecies) that are mainly used for fossil specimens, and all methods based on molecular genetic methods belong to the group of concepts for delimitating species. The species can be defined as a pool of contemporarily interconnected genotypes. This pool can be homogeneous or be divided into geographically separated sub-pools. Interconnectivity within such pools is given by the potential to transfer complete genomes or exchange genome parts through asexual or sexual reproduction. A change in genotype frequencies over successive generations is caused by preferred or restricted genome transfer due to evolutionary factors. After establishment of new adaptive zones, evolutionary factors leads to species differentiation. Depending on number, duration of the onset and the further role of the new adaptive zones (stable or continuously changing), various methods of speciation - grouped into split off and split up speciation - can be established. True speciation is characterized by a complete loss of the potential to transfer genomes between the new species without the possibility to fuse (hybridise) when their adaptive zones come in contact or overlap. In case of a broad geographical distribution, the area might be differentiated into several adaptive zones, where transferability between subgroups is restricted or even lost. Temporarily disconnected adaptive zones can again become combined, reinstalling transferability between sub-pools of genotypes. Genotypically and morphologically different subgroups preserving transferability are thus not species; taxonomically, these structurally distinct subgroups can be treated as subspecies. Due to this uncertainty

  5. Species delimitation, phylogeny and evolutionary demography of co-distributed, montane frogs in the southern Brazilian Atlantic Forest.

    PubMed

    Firkowski, Carina R; Bornschein, Marcos R; Ribeiro, Luiz F; Pie, Marcio R

    2016-07-01

    The Brazilian Atlantic Forest (BAF) is recognized as one of the world's biodiversity hotspots, with even more species per unit of area than the Amazon, however the mechanisms that led to such astonishing diversity are yet to be fully understood. In this study, we investigate the diversification of two co-distributed frog genera associated with montane areas of southern BAF: Melanophryniscus (Bufonidae) and Brachycephalus (Brachycephalidae). Species delimitation methods using mitochondrial and nuclear loci supported the existence of a remarkable number of highly endemic species in each genus, most of which occupy only one or a few adjacent mountaintops. Their timing of diversification was highly congruent, supporting recent speciation events within the past 600 thousand years. Extended Bayesian skyline plots indicate that most populations have remained relatively stable in size across the evolutionary past, with recent growth after 0.15My, suggesting that the drastic changes found in previous studies on lowland frog species were not shared by these montane taxa. These results are consistent with the existence of a montane refugium in southern BAF, allowing species persistence through the climatic shifts experienced along the BAF during the Quaternary. PMID:27129900

  6. Molecular systematics of pinniped hookworms (Nematoda: Uncinaria): species delimitation, host associations and host-induced morphometric variation.

    PubMed

    Nadler, Steven A; Lyons, Eugene T; Pagan, Christopher; Hyman, Derek; Lewis, Edwin E; Beckmen, Kimberlee; Bell, Cameron M; Castinel, Aurelie; Delong, Robert L; Duignan, Padraig J; Farinpour, Cher; Huntington, Kathy Burek; Kuiken, Thijs; Morgades, Diana; Naem, Soraya; Norman, Richard; Parker, Corwin; Ramos, Paul; Spraker, Terry R; Berón-Vera, Bárbara

    2013-12-01

    host species representing the more recent host-parasite association. Intraspecific host-induced size differences are inconsistent with the exclusive use of morphometrics to delimit and diagnose species of Uncinaria from pinnipeds. PMID:24162075

  7. Morphology delimits more species than molecular genetic clusters of invasive Pilosella

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Premise of the study: Reliable identifications of invasive species are essential for effective management. Several species of Pilosella (syn. Hieracium, Asteraceae) hawkweeds invade North America, where unreliable identification hinders their control. Here we ask (i) do morphological traits dependab...

  8. Islands in the desert: Species delimitation and evolutionary history of Pseudotetracha tiger beetles (Coleoptera: Cicindelidae: Megacephalini) from Australian salt lakes.

    PubMed

    López-López, Alejandro; Hudson, Peter; Galián, José

    2016-08-01

    The Australian salt lakes are a natural archipelago-like laboratory for investigating evolutionary and population processes. Their environmental conditions have not undergone relevant changes since the aridification of Australia 10-5 million years ago. The genus Pseudotetracha, a group of nocturnal tiger beetles found on these remote salt lakes, includes 20 described species. Recent studies based on molecular markers and cytogenetics hinted at the existence of cryptic species within this group. Here we use various species delimitation algorithms to detect a high number of cryptic and undescribed taxa, and challenge the validity of the taxonomic characters traditionally used for discerning species in this group. Our analyses show that the divergence dates of the clades, between 10 and 5 million years ago, correspond to the period in which Australia was undergoing an aridification process that probably isolated the ancestral Pseudotetracha populations to individual lakes or palaeodrainage basins. This implies an important role of the isolation, produced by the aridification of Australia, in the speciation and divergence of Pseudotetracha, which underwent a remarkable radiation as the populations became geographically restricted. PMID:27223998

  9. Islands in the desert: Species delimitation and evolutionary history of Pseudotetracha tiger beetles (Coleoptera: Cicindelidae: Megacephalini) from Australian salt lakes.

    PubMed

    López-López, Alejandro; Hudson, Peter; Galián, José

    2016-08-01

    The Australian salt lakes are a natural archipelago-like laboratory for investigating evolutionary and population processes. Their environmental conditions have not undergone relevant changes since the aridification of Australia 10-5 million years ago. The genus Pseudotetracha, a group of nocturnal tiger beetles found on these remote salt lakes, includes 20 described species. Recent studies based on molecular markers and cytogenetics hinted at the existence of cryptic species within this group. Here we use various species delimitation algorithms to detect a high number of cryptic and undescribed taxa, and challenge the validity of the taxonomic characters traditionally used for discerning species in this group. Our analyses show that the divergence dates of the clades, between 10 and 5 million years ago, correspond to the period in which Australia was undergoing an aridification process that probably isolated the ancestral Pseudotetracha populations to individual lakes or palaeodrainage basins. This implies an important role of the isolation, produced by the aridification of Australia, in the speciation and divergence of Pseudotetracha, which underwent a remarkable radiation as the populations became geographically restricted.

  10. Species Delimitation in the Continental Forms of the Genus Epicrates (Serpentes, Boidae) Integrating Phylogenetics and Environmental Niche Models

    PubMed Central

    Rivera, Paula C.; Di Cola, Valeria; Martínez, Juan J.; Gardenal, Cristina N.; Chiaraviglio, Margarita

    2011-01-01

    Until recently, the genus Epicrates (Boidae) presented only one continental species, Epicrates cenchria, distributed in Central and South America, but after a taxonomic revision using morphologic characters five species were recognized: E. cenchria, E. crassus, E. maurus, E. assisi, and E. alvarezi. We analyzed two independent data sets, environmental niche models and phylogeny based on molecular information, to explore species delimitation in the continental species of this genus. Our results indicated that the environmental requirements of the species are different; therefore there are not evidences of ecological interchangeability among them. There is a clear correlation between species distributions and the major biogeographic regions of Central and South America. Their overall distribution reveals that allopatry or parapatry is the general pattern. These evidences suggest that habitat isolation prevents or limits gene exchange among them. The phylogenetic reconstruction showed that the continental Epicrates are monophyletic, being E. alvarezi the sister species for the remaining two clades: E. crassus - E. assisi, and E. maurus - E. cenchria. The clade grouping the continental Epicrates is the sister taxon of the genus Eunectes and not of the Caribbean Epicrates clade, indicating that the genus is paraphyletic. There is a non-consistent pattern in niche evolution among continental Epicrates. On the contrary, a high variation and abrupt shifts in environmental variables are shown when ancestral character states were reconstructed on the sequence-based tree. The degree of genetic and ecological divergence among continental Epicrates and the phylogenetic analyses support the elevation to full species of E. cenchria, E. crassus, E. maurus, E. assisi, and E. alvarezi. PMID:21912634

  11. Species delimitation in the continental forms of the genus Epicrates (Serpentes, Boidae) integrating phylogenetics and environmental niche models.

    PubMed

    Rivera, Paula C; Di Cola, Valeria; Martínez, Juan J; Gardenal, Cristina N; Chiaraviglio, Margarita

    2011-01-01

    Until recently, the genus Epicrates (Boidae) presented only one continental species, Epicrates cenchria, distributed in Central and South America, but after a taxonomic revision using morphologic characters five species were recognized: E. cenchria, E. crassus, E. maurus, E. assisi, and E. alvarezi. We analyzed two independent data sets, environmental niche models and phylogeny based on molecular information, to explore species delimitation in the continental species of this genus. Our results indicated that the environmental requirements of the species are different; therefore there are not evidences of ecological interchangeability among them. There is a clear correlation between species distributions and the major biogeographic regions of Central and South America. Their overall distribution reveals that allopatry or parapatry is the general pattern. These evidences suggest that habitat isolation prevents or limits gene exchange among them. The phylogenetic reconstruction showed that the continental Epicrates are monophyletic, being E. alvarezi the sister species for the remaining two clades: E. crassus-E. assisi, and E. maurus-E. cenchria. The clade grouping the continental Epicrates is the sister taxon of the genus Eunectes and not of the Caribbean Epicrates clade, indicating that the genus is paraphyletic. There is a non-consistent pattern in niche evolution among continental Epicrates. On the contrary, a high variation and abrupt shifts in environmental variables are shown when ancestral character states were reconstructed on the sequence-based tree. The degree of genetic and ecological divergence among continental Epicrates and the phylogenetic analyses support the elevation to full species of E. cenchria, E. crassus, E. maurus, E. assisi, and E. alvarezi.

  12. Molecular divergence and species delimitation of the cultivated oyster mushrooms: integration of IGS1 and ITS.

    PubMed

    Avin, Farhat Ahmadi; Bhassu, Subha; Tan, Yee Shin; Shahbazi, Pedram; Vikineswary, Sabaratnam

    2014-01-01

    Identification of edible mushrooms particularly Pleurotus genus has been restricted due to various obstacles. The present study attempted to use the combination of two variable regions of IGS1 and ITS for classifying the economically cultivated Pleurotus species. Integration of the two regions proved a high ability that not only could clearly distinguish the species but also served sufficient intraspecies variation. Phylogenetic tree (IGS1+ITS) showed seven distinct clades, each clade belonging to a separate species group. Moreover, the species differentiation was tested by AMOVA and the results were reconfirmed by presenting appropriate amounts of divergence (91.82% among and 8.18% within the species). In spite of achieving a proper classification of species by combination of IGS1 and ITS sequences, the phylogenetic tree showed the misclassification of the species of P. nebrodensis and P. eryngii var. ferulae with other strains of P. eryngii. However, the constructed median joining (MJ) network could not only differentiate between these species but also offer a profound perception of the species' evolutionary process. Eventually, due to the sufficient variation among and within species, distinct sequences, simple amplification, and location between ideal conserved ribosomal genes, the integration of IGS1 and ITS sequences is recommended as a desirable DNA barcode. PMID:24587752

  13. Molecular Divergence and Species Delimitation of the Cultivated Oyster Mushrooms: Integration of IGS1 and ITS

    PubMed Central

    Bhassu, Subha; Tan, Yee Shin; Vikineswary, Sabaratnam

    2014-01-01

    Identification of edible mushrooms particularly Pleurotus genus has been restricted due to various obstacles. The present study attempted to use the combination of two variable regions of IGS1 and ITS for classifying the economically cultivated Pleurotus species. Integration of the two regions proved a high ability that not only could clearly distinguish the species but also served sufficient intraspecies variation. Phylogenetic tree (IGS1 + ITS) showed seven distinct clades, each clade belonging to a separate species group. Moreover, the species differentiation was tested by AMOVA and the results were reconfirmed by presenting appropriate amounts of divergence (91.82% among and 8.18% within the species). In spite of achieving a proper classification of species by combination of IGS1 and ITS sequences, the phylogenetic tree showed the misclassification of the species of P. nebrodensis and P. eryngii var. ferulae with other strains of P. eryngii. However, the constructed median joining (MJ) network could not only differentiate between these species but also offer a profound perception of the species' evolutionary process. Eventually, due to the sufficient variation among and within species, distinct sequences, simple amplification, and location between ideal conserved ribosomal genes, the integration of IGS1 and ITS sequences is recommended as a desirable DNA barcode. PMID:24587752

  14. Exploring the utility of DNA barcoding in species delimitation of Polypedilum (Tripodura) non-biting midges (Diptera: Chironomidae).

    PubMed

    Song, Chao; Wang, Qian; Zhang, Ruilei; Sun, Bingjiao; Wang, Xinhua

    2016-01-01

    In this study, we tested the utility of the mitochondrial gene cytochrome c oxidase subunit 1 (CO1) as the barcode region to deal with taxonomical problems of Polypedilum (Tripodura) non-biting midges (Diptera: Chironomidae). The 114 DNA barcodes representing 27 morphospecies are divided into 33 well separated clusters based on both Neighbor Joining and Maximum Likelihood methods. DNA barcodes revealed an 82% success rate in matching with morphospecies. The selected DNA barcode data support 37-64 operational taxonomic units (OTUs) based on the methods of Automatic Barcode Gap Discovery (ABGD) and Poisson Tree Process (PTP). Furthermore, a priori species based on consistent phenotypic variations were attested by molecular analysis, and a taxonomical misidentification of barcode sequences from GenBank was found. We could not observe a distinct barcode gap but an overlap ranged from 9-12%. Our results supported DNA barcoding as an ideal method to detect cryptic species, delimit sibling species, and associate different life stages in non-biting midges. PMID:27394207

  15. Molecular Species Delimitation and Morphology of Aquatic and Sub-Aquatic Bugs (Heteroptera) in Cameroon.

    PubMed

    Meyin A Ebong, Solange; Petit, Elsa; Le Gall, Philippe; Chen, Ping-Ping; Nieser, Nico; Guilbert, Eric; Njiokou, Flobert; Marsollier, Laurent; Guégan, Jean-François; Pluot-Sigwalt, Dominique; Eyangoh, Sara; Harry, Myriam

    2016-01-01

    Aquatic and semi-aquatic bugs (Heteroptera) represent a remarkable diversity and a resurging interest has been given to documenting at the species level these insects inhabiting Cameroon in Central Africa due to their potential implication in the transmission of the bacterium Mycobacterium ulcerans, the causal agent of Buruli ulcer, an emerging human disease. A survey was carried out over two years in Cameroon. Morphological analyses were done in two steps. A first step consisted in separating the specimens based on broadly shared characters into morphotypes. The specimens were then separated into two independent batches containing each the same representation of each morphotype. One batch (309 specimens) was used by taxonomy experts on aquatic bugs for species level identification and/or to reconcile nymph with their corresponding adult species. The second batch (188 specimens) was used to define species based on the COI DNA sequences (standard sequence used for "DNA barcoding") and using the Automatic Barcode Gap Discovery (ABGD) method. The first morphological analysis step separated the specimens into 63 different morphotypes (49 adults and 14 nymphs), which were then found to belong to 54 morphological species in the infra-orders Gerromorpha and Nepomorpha based on the species-level morphological identification, and 41-45 putative molecular species according to the gap value retained in the ABGD. Integrating morphology and "DNA barcoding" reconciled all the specimens into 62 aquatic bug species in Cameroon. Generally, we obtained a good congruence between species a priori identified based on morphology from adult morphotypes and molecular putative species. Moreover, molecular identification has allowed the association of 86% of nymphs with adults. This work illustrates the importance of integrative taxonomy.

  16. Molecular Species Delimitation and Morphology of Aquatic and Sub-Aquatic Bugs (Heteroptera) in Cameroon

    PubMed Central

    Le Gall, Philippe; Chen, Ping-Ping; Nieser, Nico; Guilbert, Eric; Njiokou, Flobert; Marsollier, Laurent; Guégan, Jean-François; Pluot-Sigwalt, Dominique; Eyangoh, Sara; Harry, Myriam

    2016-01-01

    Aquatic and semi-aquatic bugs (Heteroptera) represent a remarkable diversity and a resurging interest has been given to documenting at the species level these insects inhabiting Cameroon in Central Africa due to their potential implication in the transmission of the bacterium Mycobacterium ulcerans, the causal agent of Buruli ulcer, an emerging human disease. A survey was carried out over two years in Cameroon. Morphological analyses were done in two steps. A first step consisted in separating the specimens based on broadly shared characters into morphotypes. The specimens were then separated into two independent batches containing each the same representation of each morphotype. One batch (309 specimens) was used by taxonomy experts on aquatic bugs for species level identification and/or to reconcile nymph with their corresponding adult species. The second batch (188 specimens) was used to define species based on the COI DNA sequences (standard sequence used for “DNA barcoding”) and using the Automatic Barcode Gap Discovery (ABGD) method. The first morphological analysis step separated the specimens into 63 different morphotypes (49 adults and 14 nymphs), which were then found to belong to 54 morphological species in the infra-orders Gerromorpha and Nepomorpha based on the species-level morphological identification, and 41–45 putative molecular species according to the gap value retained in the ABGD. Integrating morphology and “DNA barcoding” reconciled all the specimens into 62 aquatic bug species in Cameroon. Generally, we obtained a good congruence between species a priori identified based on morphology from adult morphotypes and molecular putative species. Moreover, molecular identification has allowed the association of 86% of nymphs with adults. This work illustrates the importance of integrative taxonomy. PMID:27149077

  17. Taxonomic revision and species delimitation of coccoid green algae currently assigned to the genus Dictyochloropsis (Trebouxiophyceae, Chlorophyta).

    PubMed

    Škaloud, Pavel; Friedl, Thomas; Hallmann, Christine; Beck, Andreas; Dal Grande, Francesco

    2016-08-01

    Coccoid green algae traditionally classified in Dictyochloropsis have a complex, reticulate chloroplast, when mature, without a pyrenoid. They occupy remarkably diverse ecological niches as free-living organisms or in association with lichen-forming fungi and were recently shown to form two distinct lineages within Trebouxiophyceae. We used a polyphasic approach to revise the taxonomy of the genus. Based on phylogenetic analysis of the 18S rRNA gene, and detailed morphological investigation using comparative conventional light and confocal microscopy, we have assigned these lineages to two genera, Dictyochloropsis and Symbiochloris gen. nov. We have reconsidered the diagnostic generic features as follows: Dictyochloropsis comprises only free-living algae with a reticulate chloroplast, forming lobes in a parallel arrangement at some ontogenetic stages, and which reproduce only by means of autospores. This agrees with Geitler's original diagnosis of Dictyochloropsis, but not with the later emendation by Tschermak-Woess. Consequently, the species of Dictyochloropsis sensu Tschermak-Woess are assigned to Symbiochloris, with new combinations proposed. Symbiochloris encompasses free-living and/or lichenized algae with lobed chloroplasts and that reproduce by forming zoospores characterized by two subapical isokont flagella that emerge symmetrically near the flattened apex. In addition, using coalescent-based approaches, morphological characters and secondary structure of ITS transcripts, we inferred species boundaries and taxonomic relationships within the newly proposed genera. Two species of Dictyochloropsis and nine species of Symbiochloris are delimited, including the newly described species D. asterochloroides, S. handae, S. tropica, and S. tschermakiae. Our results further support the non-monophyly of autosporine taxa within Trebouxiophyceae.

  18. A test of color-based taxonomy in nudibranchs: Molecular phylogeny and species delimitation of the Felimida clenchi (Mollusca: Chromodorididae) species complex.

    PubMed

    Padula, Vinicius; Bahia, Juliana; Stöger, Isabella; Camacho-García, Yolanda; Malaquias, Manuel António E; Cervera, Juan Lucas; Schrödl, Michael

    2016-10-01

    Traditionally, species identification in nudibranch gastropods relies heavily on body color pattern. The Felimida clenchi species complex, a group of brightly colored Atlantic and Mediterranean species in the family Chromodorididae, has a history of exceptional controversy and discussion among taxonomists. The most widely accepted hypothesis is that the complex includes four species (Felimida clenchi, F. neona, F. binza and F. britoi), each with a characteristic body color pattern. In this study, we investigated the taxonomic value of coloration in the Felimida clenchi complex, using molecular phylogenetics, species-delimitation analyses (ABGD, GMYC, PTP), haplotype-network methods, and the anatomy of the reproductive system. None of our analyses recovered the traditional separation into four species. Our results indicated the existence of three species, a result inconsistent with previous taxonomic hypotheses. We distinguished an undescribed species of Felimida and redefined the concepts of F. clenchi and F. binza, both highly polychromatic species. For the first time, molecular data support the existence of extreme color polymorphism in chromatic nudibranch species, with direct implications for the taxonomy of the group and its diversity. The polychromatism observed in the F. clenchi complex apparently correlates with the regional occurrence of similar color patterns in congeneric species, suggesting different mimicry circles. This may represent a parallel in the marine environment to the mechanisms that play a major role in the diversification of color in terrestrial and fresh-water chromatic groups, such as heliconian butterflies.

  19. A test of color-based taxonomy in nudibranchs: Molecular phylogeny and species delimitation of the Felimida clenchi (Mollusca: Chromodorididae) species complex.

    PubMed

    Padula, Vinicius; Bahia, Juliana; Stöger, Isabella; Camacho-García, Yolanda; Malaquias, Manuel António E; Cervera, Juan Lucas; Schrödl, Michael

    2016-10-01

    Traditionally, species identification in nudibranch gastropods relies heavily on body color pattern. The Felimida clenchi species complex, a group of brightly colored Atlantic and Mediterranean species in the family Chromodorididae, has a history of exceptional controversy and discussion among taxonomists. The most widely accepted hypothesis is that the complex includes four species (Felimida clenchi, F. neona, F. binza and F. britoi), each with a characteristic body color pattern. In this study, we investigated the taxonomic value of coloration in the Felimida clenchi complex, using molecular phylogenetics, species-delimitation analyses (ABGD, GMYC, PTP), haplotype-network methods, and the anatomy of the reproductive system. None of our analyses recovered the traditional separation into four species. Our results indicated the existence of three species, a result inconsistent with previous taxonomic hypotheses. We distinguished an undescribed species of Felimida and redefined the concepts of F. clenchi and F. binza, both highly polychromatic species. For the first time, molecular data support the existence of extreme color polymorphism in chromatic nudibranch species, with direct implications for the taxonomy of the group and its diversity. The polychromatism observed in the F. clenchi complex apparently correlates with the regional occurrence of similar color patterns in congeneric species, suggesting different mimicry circles. This may represent a parallel in the marine environment to the mechanisms that play a major role in the diversification of color in terrestrial and fresh-water chromatic groups, such as heliconian butterflies. PMID:27444708

  20. Species delimitation and cryptic diversity in the moss genus Scleropodium (Brachytheciaceae).

    PubMed

    Carter, Benjamin E

    2012-06-01

    Cryptic lineage diversification is an important component of global biodiversity, but it presents challenges to our ability to catalog and understand that diversity. Because of their relative morphological simplicity and broad geographic distributions, bryophytes are an ideal study group for investigating this phenomenon. This study generated molecular data from 109 ingroup individuals to test morphological species circumscriptions and examine patterns of cryptic lineage diversification within the small north temperate moss genus Scleropodium (Brachytheciaceae). Maximum Parsimony and Bayesian phylogenetic analyses and statistical parsimony network analyses of ITS and chloroplast rps4, psbA2 and trnG regions indicate that the genus comprises six distinct molecular groups. Five of these molecular groups correspond to previously recognized species: S. californicum (Lesq.) Kindb., S. cespitans (Müll.) Koch, S. julaceum Lawton, S. obtusifolium (Mitt.) Kindb. in Macoun and S. touretii Brid. (Koch). However, the sixth group does not correspond to any existing species. Maximum parsimony and Bayesian posterior probability support for the monophyly of species varied widely and depended on both the dataset (ITS, chloroplast, combined) and the analysis method (Parsimony/Bayesian). Low phylogenetic resolution of species is attributable to the lack of informative DNA sequence vaiation and incongruent placements of three accessions in the chloroplast and ITS gene trees, both suggesting recent divergence within the genus. Re-examination of the herbarium vouchers for the sixth molecular group reveals that they form a group nested within the morphological circumscription of S. obtusifolium. One subtle morphological character (relative frequency of a costa spine) was identified that has utility in discriminating these two genetically distinct but morphologically very similar species. PMID:22421213

  1. Species delimitations in plants: lessons learned from potato taxonomy by a practicing taxonomist

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solanum section Petota has been the subject of intensive taxonomic work since the description of the cultivated potato in 1753. In total, there are 494 epithets for wild taxa and 626 epithets for cultivated taxa. Different taxonomists applied various taxonomic philosophies and species concepts to th...

  2. Antitropical distributions and species delimitation in a group of ophiocomid brittle stars (Echinodermata: Ophiuroidea: Ophiocomidae).

    PubMed

    Naughton, K M; O'Hara, T D; Appleton, B; Cisternas, P A

    2014-09-01

    In this paper we examine the phylogeny and biogeography of the temperate genera of the Ophiocomidae (Echinodermata: Ophiuroidea) which have an interesting asymmetrical anti-tropical distribution, with two genera (Ophiocomina and Ophiopteris) previously considered to have a separate species in both the North and South hemispheres, and the third (Clarkcoma) diversifying in the southern Australian/New Zealand region. Our phylogeny, generated from one mitochondrial and two nuclear markers, revealed that Ophiopteris is sister to a mixed Ophiocomina/Clarkcoma clade. Ophiocomina was polyphyletic, with O. nigra and an undescribed species from the South Atlantic Ocean sister to a clade including Clarkcoma species and O. australis. The phylogeny also revealed a number of recently diverged lineages occurring within Clarkcoma, some of which are considered to be cryptic species due to the similarity in morphology combined with the apparent absence of interbreeding in a sympatric distribution, while the status of others is less certain. The phylogeny provides support for two transequatorial events in the group under study. A molecular clock analysis places both events in the middle to late Miocene. The analysis excludes a tectonic vicariance hypothesis for the antitropical distribution associated with the breakup of Pangaea and also excludes the hypothesis of more recent gene flow associated with Plio/Pleistocene glacial cycling.

  3. Coalescent-based species delimitation approach uncovers high cryptic diversity in the cosmopolitan lichen-forming fungal genus Protoparmelia (Lecanorales, Ascomycota).

    PubMed

    Singh, Garima; Dal Grande, Francesco; Divakar, Pradeep K; Otte, Jürgen; Leavitt, Steven D; Szczepanska, Katarzyna; Crespo, Ana; Rico, Víctor J; Aptroot, André; Cáceres, Marcela Eugenia da Silva; Lumbsch, H Thorsten; Schmitt, Imke

    2015-01-01

    Species recognition in lichen-forming fungi has been a challenge because of unsettled species concepts, few taxonomically relevant traits, and limitations of traditionally used morphological and chemical characters for identifying closely related species. Here we analyze species diversity in the cosmopolitan genus Protoparmelia s.l. The ~25 described species in this group occur across diverse habitats from the boreal-arctic/alpine to the tropics, but their relationship to each other remains unexplored. In this study, we inferred the phylogeny of 18 species currently assigned to this genus based on 160 specimens and six markers: mtSSU, nuLSU, ITS, RPB1, MCM7, and TSR1. We assessed the circumscription of species-level lineages in Protoparmelia s. str. using two coalescent-based species delimitation methods--BP&P and spedeSTEM. Our results suggest the presence of a tropical and an extra-tropical lineage, and eleven previously unrecognized distinct species-level lineages in Protoparmelia s. str. Several cryptic lineages were discovered as compared to phenotype-based species delimitation. Many of the putative species are supported by geographic evidence. PMID:25932996

  4. Coalescent-Based Species Delimitation Approach Uncovers High Cryptic Diversity in the Cosmopolitan Lichen-Forming Fungal Genus Protoparmelia (Lecanorales, Ascomycota)

    PubMed Central

    Singh, Garima; Dal Grande, Francesco; Divakar, Pradeep K.; Otte, Jürgen; Leavitt, Steven D.; Szczepanska, Katarzyna; Crespo, Ana; Rico, Víctor J.; Aptroot, André; Cáceres, Marcela Eugenia da Silva; Lumbsch, H. Thorsten; Schmitt, Imke

    2015-01-01

    Species recognition in lichen-forming fungi has been a challenge because of unsettled species concepts, few taxonomically relevant traits, and limitations of traditionally used morphological and chemical characters for identifying closely related species. Here we analyze species diversity in the cosmopolitan genus Protoparmelia s.l. The ~25 described species in this group occur across diverse habitats from the boreal -arctic/alpine to the tropics, but their relationship to each other remains unexplored. In this study, we inferred the phylogeny of 18 species currently assigned to this genus based on 160 specimens and six markers: mtSSU, nuLSU, ITS, RPB1, MCM7, and TSR1. We assessed the circumscription of species-level lineages in Protoparmelia s. str. using two coalescent-based species delimitation methods – BP&P and spedeSTEM. Our results suggest the presence of a tropical and an extra-tropical lineage, and eleven previously unrecognized distinct species-level lineages in Protoparmelia s. str. Several cryptic lineages were discovered as compared to phenotype-based species delimitation. Many of the putative species are supported by geographic evidence. PMID:25932996

  5. Lineage diversification of fringe-toed lizards (Phrynosomatidae: Uma notata complex) in the Colorado Desert: Delimiting species in the presence of gene flow

    USGS Publications Warehouse

    Gottscho, Andrew D.; Wood, Dustin A.; Vandergast, Amy; Lemos Espinal, Julio A.; Gatesy, John; Reeder, Tod

    2017-01-01

    Multi-locus nuclear DNA data were used to delimit species of fringe-toed lizards of theUma notata complex, which are specialized for living in wind-blown sand habitats in the deserts of southwestern North America, and to infer whether Quaternary glacial cycles or Tertiary geological events were important in shaping the historical biogeography of this group. We analyzed ten nuclear loci collected using Sanger sequencing and genome-wide sequence and single-nucleotide polymorphism (SNP) data collected using restriction-associated DNA (RAD) sequencing. A combination of species discovery methods (concatenated phylogenies, parametric and non-parametric clustering algorithms) and species validation approaches (coalescent-based species tree/isolation-with-migration models) were used to delimit species, infer phylogenetic relationships, and to estimate effective population sizes, migration rates, and speciation times. Uma notata, U. inornata, U. cowlesi, and an undescribed species from Mohawk Dunes, Arizona (U. sp.) were supported as distinct in the concatenated analyses and by clustering algorithms, and all operational taxonomic units were decisively supported as distinct species by ranking hierarchical nested speciation models with Bayes factors based on coalescent-based species tree methods. However, significant unidirectional gene flow (2NM >1) from U. cowlesi and U. notata into U. rufopunctata was detected under the isolation-with-migration model. Therefore, we conservatively delimit four species-level lineages within this complex (U. inornata, U. notata, U. cowlesi, and U. sp.), treating U. rufopunctata as a hybrid population (U. notata x cowlesi). Both concatenated and coalescent-based estimates of speciation times support the hypotheses that speciation within the complex occurred during the late Pleistocene, and that the geological evolution of the Colorado River delta during this period was an important process shaping the observed phylogeographic patterns.

  6. Cambarus (Jugicambarus) adustus, a new species of crayfish from northeastern Kentucky delimited from the Cambarus (J.) aff. dubius species complex.

    PubMed

    Thoma, Roger F; Fetzner, James W Jr; Stocker, G Whitney; Loughman, Zachary J

    2016-01-01

    A new species of burrowing crayfish, Cambarus (Jugicambarus) adustus, is described from Lewis County in northeastern Kentucky, USA. The new species is most similar morphologically to C. dubius. Cambarus adustus coloration differs from C. dubius by lacking red, orange and blue hues, and instead is brown over the entire body surface. Morphological differences between C. dubius and C. adustus exist in the form I male gonopod, with C. adustus possessing a caudal knob, while C. dubius does not. In addition, the lateral carapace of C. adustus is distinctly tuberculate, whereas in C. dubius the carapace lacks extensive tuberculation. Cambarus (J.) adustus appears to have an extremely small geographic range (~19.5 km2), and as such we suggest its consideration for both state and federal levels of protection. PMID:27615965

  7. Single-locus species delimitation: a test of the mixed Yule-coalescent model, with an empirical application to Philippine round-leaf bats.

    PubMed

    Esselstyn, Jacob A; Evans, Ben J; Sedlock, Jodi L; Anwarali Khan, Faisal Ali; Heaney, Lawrence R

    2012-09-22

    Prospects for a comprehensive inventory of global biodiversity would be greatly improved by automating methods of species delimitation. The general mixed Yule-coalescent (GMYC) was recently proposed as a potential means of increasing the rate of biodiversity exploration. We tested this method with simulated data and applied it to a group of poorly known bats (Hipposideros) from the Philippines. We then used echolocation call characteristics to evaluate the plausibility of species boundaries suggested by GMYC. In our simulations, GMYC performed relatively well (errors in estimated species diversity less than 25%) when the product of the haploid effective population size (N(e)) and speciation rate (SR; per lineage per million years) was less than or equal to 10(5), while interspecific variation in N(e) was twofold or less. However, at higher but also biologically relevant values of N(e) × SR and when N(e) varied tenfold among species, performance was very poor. GMYC analyses of mitochondrial DNA sequences from Philippine Hipposideros suggest actual diversity may be approximately twice the current estimate, and available echolocation call data are mostly consistent with GMYC delimitations. In conclusion, we consider the GMYC model useful under some conditions, but additional information on N(e), SR and/or corroboration from independent character data are needed to allow meaningful interpretation of results.

  8. Single-locus species delimitation: a test of the mixed Yule–coalescent model, with an empirical application to Philippine round-leaf bats

    PubMed Central

    Esselstyn, Jacob A.; Evans, Ben J.; Sedlock, Jodi L.; Anwarali Khan, Faisal Ali; Heaney, Lawrence R.

    2012-01-01

    Prospects for a comprehensive inventory of global biodiversity would be greatly improved by automating methods of species delimitation. The general mixed Yule–coalescent (GMYC) was recently proposed as a potential means of increasing the rate of biodiversity exploration. We tested this method with simulated data and applied it to a group of poorly known bats (Hipposideros) from the Philippines. We then used echolocation call characteristics to evaluate the plausibility of species boundaries suggested by GMYC. In our simulations, GMYC performed relatively well (errors in estimated species diversity less than 25%) when the product of the haploid effective population size (Ne) and speciation rate (SR; per lineage per million years) was less than or equal to 105, while interspecific variation in Ne was twofold or less. However, at higher but also biologically relevant values of Ne × SR and when Ne varied tenfold among species, performance was very poor. GMYC analyses of mitochondrial DNA sequences from Philippine Hipposideros suggest actual diversity may be approximately twice the current estimate, and available echolocation call data are mostly consistent with GMYC delimitations. In conclusion, we consider the GMYC model useful under some conditions, but additional information on Ne, SR and/or corroboration from independent character data are needed to allow meaningful interpretation of results. PMID:22764163

  9. Sharing the space: distribution, habitat segregation and delimitation of a new sympatric area of subterranean rodents.

    PubMed

    Kubiak, Bruno Busnello; Galiano, Daniel; de Freitas, Thales Renato Ochotorena

    2015-01-01

    Subterranean rodents of the genus Ctenomys usually present an allopatric or parapatric distribution. Currently, two cases of sympatry have been recognized for the genus in the coastal dunes of southern Argentina and southern Brazil. In this context, they are ideal models to test hypotheses about the factors that delimit the patterns of space use and to understand interspecific interactions in small mammals. We investigated the vegetation structure, plant biomass and soil hardness selected by two species of subterranean rodents (Ctenomys flamarioni and C. minutus) when distributed in sympatry and allopatry from nine different areas along the line of coastal dunes in southern Brazil. In addition, our work presents a new record of a third area of sympatry for the genus Ctenomys. Ctenomys flamarioni and C. minutus show habitat segregation in the area where they occur in sympatry. These species show segregation in their selection of microhabitats, differing in relation to soil hardness, plant biomass, and plant cover. Ctenomys flamarioni showed a distinction in habitat selection when occurring in allopatry and sympatry, whereas C. minutus selected the same habitat characteristics under both conditions. A possible explanation to the observed pattern is that these species have acquired different adaptations over time which allows them the ability to exploit different resources and thus avoid competitive interactions all together.

  10. Sharing the Space: Distribution, Habitat Segregation and Delimitation of a New Sympatric Area of Subterranean Rodents

    PubMed Central

    Kubiak, Bruno Busnello; Galiano, Daniel; de Freitas, Thales Renato Ochotorena

    2015-01-01

    Subterranean rodents of the genus Ctenomys usually present an allopatric or parapatric distribution. Currently, two cases of sympatry have been recognized for the genus in the coastal dunes of southern Argentina and southern Brazil. In this context, they are ideal models to test hypotheses about the factors that delimit the patterns of space use and to understand interspecific interactions in small mammals. We investigated the vegetation structure, plant biomass and soil hardness selected by two species of subterranean rodents (Ctenomys flamarioni and C. minutus) when distributed in sympatry and allopatry from nine different areas along the line of coastal dunes in southern Brazil. In addition, our work presents a new record of a third area of sympatry for the genus Ctenomys. Ctenomys flamarioni and C. minutus show habitat segregation in the area where they occur in sympatry. These species show segregation in their selection of microhabitats, differing in relation to soil hardness, plant biomass, and plant cover. Ctenomys flamarioni showed a distinction in habitat selection when occurring in allopatry and sympatry, whereas C. minutus selected the same habitat characteristics under both conditions. A possible explanation to the observed pattern is that these species have acquired different adaptations over time which allows them the ability to exploit different resources and thus avoid competitive interactions all together. PMID:25856399

  11. Species delimitation in taxonomically difficult lichen-forming fungi: an example from morphologically and chemically diverse Xanthoparmelia (Parmeliaceae) in North America.

    PubMed

    Leavitt, Steven D; Johnson, Leigh A; Goward, Trevor; St Clair, Larry L

    2011-09-01

    Mounting evidence suggests many morphology-based species circumscriptions in lichenized ascomycetes misrepresent fungal diversity. The lichenized ascomycete genus Xanthoparmelia includes over 800 described species displaying a considerable range of morphological and chemical variation. Species circumscriptions in this genus have traditionally been based on thallus morphology, medullary chemistry, and the presence or absence of sexual or asexual reproductive structures. Notwithstanding concerted effort on the part of taxonomists to arrive at a natural classification, modern taxonomic concepts for the most part remain unclear. Here we assess the evolution of characters traditionally regarded as taxonomically important by reconstructing a phylogenetic hypothesis based on sequence data from four nuclear ribosomal markers as well as fragments from two protein-coding nuclear loci. A total of 414 individuals were tested, representing 19 currently accepted species. Most sampled species, as currently circumscribed, were recovered as polyphyletic, suggesting that major diagnostic characters have evolved in a homoplasious manner. The vagrant growth form, distinct medullary chemistries, and production of vegetative diaspores appear to have evolved independently multiple times. Application of a population assignment test resulted in the recognition of 21 species-level genetic clusters, each of which was supported by a comparison of genetic distances as well as a Bayesian species delimitation method calculating probabilities associated with speciation events. Inferred clusters are largely incongruent with traditionally circumscribed species due to the prevalence of cryptic diversity and, in some cases, high levels of intraspecific morphological and chemical variation. These results call for a major taxonomic revision of Xanthoparmelia species in western North America.

  12. The snake family Psammophiidae (Reptilia: Serpentes): phylogenetics and species delimitation in the African sand snakes (Psammophis Boie, 1825) and allied genera.

    PubMed

    Kelly, Christopher M R; Barker, Nigel P; Villet, Martin H; Broadley, Donald G; Branch, William R

    2008-06-01

    This study constitutes the first evolutionary investigation of the snake family Psammophiidae--the most widespread, most clearly defined, yet perhaps the taxonomically most problematic of Africa's family-level snake lineages. Little is known of psammophiid evolutionary relationships, and the type genus Psammophis is one of the largest and taxonomically most complex of the African snake genera. Our aims were to reconstruct psammophiid phylogenetic relationships and to improve characterisation of species boundaries in problematic Psammophis species complexes. We used approximately 2500 bases of DNA sequence from the mitochondrial and nuclear genomes, and 114 terminals covering all psammophiid genera and incorporating approximately 75% of recognised species and subspecies. Phylogenetic reconstructions were conducted primarily in a Bayesian framework and we used the Wiens/Penkrot protocol to aid species delimitation. Rhamphiophis is diphyletic, with Rhamphiophis acutus emerging sister to Psammophylax. Consequently we transfer the three subspecies of Rhamphiophis acutus to the genus Psammophylax. The monotypic genus Dipsina is sister to Psammophis. The two species of Dromophis occupy divergent positions deeply nested within Psammophis, and we therefore relegate Dromophis to the synonymy of Psammophis. Our results allow division of the taxonomically problematic Psammophis 'sibilans' species complex into two monophyletic entities, provisionally named the 'phillipsii' and 'subtaeniatus' complexes. Within these two clades we found support for the status of many existing species, but not for a distinction between P.p. phillipsii and P. mossambicus. Additionally, P. cf. phillipsii occidentalis deserves species status as the sister taxon of P. brevirostris.

  13. Divergent Macroparasite Infections in Parapatric Swiss Lake-Stream Pairs of Threespine Stickleback (Gasterosteus aculeatus)

    PubMed Central

    Karvonen, Anssi; Lucek, Kay; Marques, David A.; Seehausen, Ole

    2015-01-01

    Spatial heterogeneity in diversity and intensity of parasitism is a typical feature of most host-parasite interactions, but understanding of the evolutionary implications of such variation is limited. One possible outcome of infection heterogeneities is parasite-mediated divergent selection between host populations, ecotypes or species which may facilitate the process of ecological speciation. However, very few studies have described infections in population-pairs along the speciation continuum from low to moderate or high degree of genetic differentiation that would address the possibility of parasite-mediated divergent selection in the early stages of the speciation process. Here we provide an example of divergent parasitism in freshwater fish ecotypes by examining macroparasite infections in threespine stickleback (Gasterosteus aculeatus) of four Swiss lake systems each harbouring parapatric lake-stream ecotype pairs. We demonstrate significant differences in infections within and between the pairs that are driven particularly by the parasite taxa transmitted to fish from benthic invertebrates. The magnitude of the differences tended to correlate positively with the extent of neutral genetic differentiation between the parapatric lake and stream populations of stickleback, whereas no such correlation was found among allopatric populations from similar or contrasting habitats. This suggests that genetic differentiation is unrelated to the magnitude of parasite infection contrasts when gene flow is constrained by geographical barriers while in the absence of physical barriers, genetic differentiation and the magnitude of differences in infections tend to be positively correlated. PMID:26086778

  14. Species delimitation, genetic diversity and population historical dynamics of Cycas diannanensis (Cycadaceae) occurring sympatrically in the Red River region of China

    PubMed Central

    Liu, Jian; Zhou, Wei; Gong, Xun

    2015-01-01

    Delimitating species boundaries could be of critical importance when evaluating the species' evolving process and providing guidelines for conservation genetics. Here, species delimitation was carried out on three endemic and endangered Cycas species with resembling morphology and overlapped distribution range along the Red River (Yuanjiang) in China: Cycas diananensis Z. T. Guan et G. D. Tao, Cycas parvula S. L. Yang and Cycas multiovula D. Y. Wang. A total of 137 individuals from 15 populations were genotyped by using three chloroplastic (psbA-trnH, atpI-atpH, and trnL-rps4) and two single copy nuclear (RPB1 and SmHP) DNA sequences. Basing on the carefully morphological comparison and cladistic haplotype aggregation (CHA) analysis, we propose all the populations as one species, with the rest two incorporated into C. diannanensis. Genetic diversity and structure analysis of the conflated C. diannanensis revealed this species possessed a relative lower genetic diversity than estimates of other Cycas species. The higher genetic diversity among populations and relative lower genetic diversity within populations, as well as obvious genetic differentiation among populations inferred from chloroplastic DNA (cpDNA) suggested a recent genetic loss within this protected species. Additionally, a clear genetic structure of C. diannanensis corresponding with geography was detected based on cpDNA, dividing its population ranges into “Yuanjiang-Nanhun” basin and “Ejia-Jiepai” basin groups. Demographical history analyses based on combined cpDNA and one nuclear DNA (nDNA) SmHP both showed the population size of C. diannanensis began to decrease in Quaternary glaciation with no subsequent expansion, while another nDNA RPB1 revealed a more recent sudden expansion after long-term population size contraction, suggesting its probable bottleneck events in history. Our findings offer grounded views for clarifying species boundaries of C. diannanensis when determining the

  15. Species delimitation, genetic diversity and population historical dynamics of Cycas diannanensis (Cycadaceae) occurring sympatrically in the Red River region of China.

    PubMed

    Liu, Jian; Zhou, Wei; Gong, Xun

    2015-01-01

    Delimitating species boundaries could be of critical importance when evaluating the species' evolving process and providing guidelines for conservation genetics. Here, species delimitation was carried out on three endemic and endangered Cycas species with resembling morphology and overlapped distribution range along the Red River (Yuanjiang) in China: Cycas diananensis Z. T. Guan et G. D. Tao, Cycas parvula S. L. Yang and Cycas multiovula D. Y. Wang. A total of 137 individuals from 15 populations were genotyped by using three chloroplastic (psbA-trnH, atpI-atpH, and trnL-rps4) and two single copy nuclear (RPB1 and SmHP) DNA sequences. Basing on the carefully morphological comparison and cladistic haplotype aggregation (CHA) analysis, we propose all the populations as one species, with the rest two incorporated into C. diannanensis. Genetic diversity and structure analysis of the conflated C. diannanensis revealed this species possessed a relative lower genetic diversity than estimates of other Cycas species. The higher genetic diversity among populations and relative lower genetic diversity within populations, as well as obvious genetic differentiation among populations inferred from chloroplastic DNA (cpDNA) suggested a recent genetic loss within this protected species. Additionally, a clear genetic structure of C. diannanensis corresponding with geography was detected based on cpDNA, dividing its population ranges into "Yuanjiang-Nanhun" basin and "Ejia-Jiepai" basin groups. Demographical history analyses based on combined cpDNA and one nuclear DNA (nDNA) SmHP both showed the population size of C. diannanensis began to decrease in Quaternary glaciation with no subsequent expansion, while another nDNA RPB1 revealed a more recent sudden expansion after long-term population size contraction, suggesting its probable bottleneck events in history. Our findings offer grounded views for clarifying species boundaries of C. diannanensis when determining the conservation

  16. Cryptic Species or Inadequate Taxonomy? Implementation of 2D Geometric Morphometrics Based on Integumental Organs as Landmarks for Delimitation and Description of Copepod Taxa.

    PubMed

    Karanovic, Tomislav; Djurakic, Marko; Eberhard, Stefan M

    2016-03-01

    Discovery of cryptic species using molecular tools has become common in many animal groups but it is rarely accompanied by morphological revision, creating ongoing problems in taxonomy and conservation. In copepods, cryptic species have been discovered in most groups where fast-evolving molecular markers were employed. In this study at Yeelirrie in Western Australia we investigate a subterranean species complex belonging to the harpacticoid genus Schizopera Sars, 1905, using both the barcoding mitochondrial COI gene and landmark-based two-dimensional geometric morphometrics. Integumental organs (sensilla and pores) are used as landmarks for the first time in any crustacean group. Complete congruence between DNA-based species delimitation and relative position of integumental organs in two independent morphological structures suggests the existence of three distinct evolutionary units. We describe two of them as new species, employing a condensed taxonomic format appropriate for cryptic species. We argue that many supposedly cryptic species might not be cryptic if researchers focus on analyzing morphological structures with multivariate tools that explicitly take into account geometry of the phenotype. A perceived supremacy of molecular methods in detecting cryptic species is in our view a consequence of disparity of investment and unexploited recent advancements in morphometrics among taxonomists. Our study shows that morphometric data alone could be used to find diagnostic morphological traits and gives hope to anyone studying small animals with a hard integument or shell, especially opening the door to assessing fossil diversity and rich museum collections. We expect that simultaneous use of molecular tools with geometry-oriented morphometrics may yield faster formal description of species. Decrypted species in this study are a good example for urgency of formal descriptions, as they display short-range endemism in small groundwater calcrete aquifers in a

  17. Species delimitation using morphology, morphometrics, and molecules: definition of the Ophionscutellaris Thomson species group, with descriptions of six new species (Hymenoptera, Ichneumonidae).

    PubMed

    Schwarzfeld, Marla D; Sperling, Felix A H

    2014-01-01

    The diverse genus Ophion is almost entirely undescribed in the Nearctic region. In this paper we define the Ophionscutellaris species group. This species group is well-supported by analysis of DNA (ITS2, COI, and 28S D2-D3) and morphology. It includes the Palearctic species Ophionscutellaris and the Nearctic species Ophionidoneus. An integrative analysis of DNA, geometric wing morphometrics, classical morphometrics and qualitative morphology indicates that this species group contains a minimum of seven species in North America, although the full diversity of the group has likely not been sampled. Ophionclave Schwarzfeld, sp. n., Ophionaureus Schwarzfeld, sp. n., Ophionbrevipunctatus Schwarzfeld, sp. n., Ophiondombroskii Schwarzfeld, sp. n., Ophionkeala Schwarzfeld, sp. n. and Ophionimportunus Schwarzfeld, sp. n. are described, and a key to the known Nearctic species of the Ophionscutellaris group is provided. PMID:25589855

  18. Species delimitation using morphology, morphometrics, and molecules: definition of the Ophion scutellaris Thomson species group, with descriptions of six new species (Hymenoptera, Ichneumonidae)

    PubMed Central

    Schwarzfeld, Marla D.; Sperling, Felix A. H.

    2014-01-01

    Abstract The diverse genus Ophion is almost entirely undescribed in the Nearctic region. In this paper we define the Ophion scutellaris species group. This species group is well-supported by analysis of DNA (ITS2, COI, and 28S D2-D3) and morphology. It includes the Palearctic species Ophion scutellaris and the Nearctic species Ophion idoneus. An integrative analysis of DNA, geometric wing morphometrics, classical morphometrics and qualitative morphology indicates that this species group contains a minimum of seven species in North America, although the full diversity of the group has likely not been sampled. Ophion clave Schwarzfeld, sp. n., Ophion aureus Schwarzfeld, sp. n., Ophion brevipunctatus Schwarzfeld, sp. n., Ophion dombroskii Schwarzfeld, sp. n., Ophion keala Schwarzfeld, sp. n. and Ophion importunus Schwarzfeld, sp. n. are described, and a key to the known Nearctic species of the Ophion scutellaris group is provided. PMID:25589855

  19. Developing diagnostic SNP panels for the identification of true fruit flies (Diptera: Tephritidae) within the limits of COI-based species delimitation

    PubMed Central

    2013-01-01

    Background Rapid and reliable identification of quarantine pests is essential for plant inspection services to prevent introduction of invasive species. For insects, this may be a serious problem when dealing with morphologically similar cryptic species complexes and early developmental stages that lack distinctive characters useful for taxonomic identification. DNA based barcoding could solve many of these problems. The standard barcode fragment, an approx. 650 base pairs long sequence of the 5′end of the mitochondrial cytochrome oxidase I (COI), enables differentiation of a very wide range of arthropods. However, problems remain in some taxa, such as Tephritidae, where recent genetic differentiation among some of the described species hinders accurate molecular discrimination. Results In order to explore the full species discrimination potential of COI, we sequenced the barcoding region of the COI gene of a range of economically important Tephritid species and complemented these data with all GenBank and BOLD entries for the systematic group available as of January 2012. We explored the limits of species delimitation of this barcode fragment among 193 putative Tephritid species and established operational taxonomic units (OTUs), between which discrimination is reliably possible. Furthermore, to enable future development of rapid diagnostic assays based on this sequence information, we characterized all single nucleotide polymorphisms (SNPs) and established “near-minimal” sets of SNPs that differentiate among all included OTUs with at least three and four SNPs, respectively. Conclusions We found that although several species cannot be differentiated based on the genetic diversity observed in COI and hence form composite OTUs, 85% of all OTUs correspond to described species. Because our SNP panels are developed based on all currently available sequence information and rely on a minimal pairwise difference of three SNPs, they are highly reliable and hence

  20. Contrasting evolutionary patterns of 28S and ITS rRNA genes reveal high intragenomic variation in Cephalenchus (Nematoda): Implications for species delimitation.

    PubMed

    Pereira, Tiago José; Baldwin, James Gordon

    2016-05-01

    Concerted evolution is often assumed to be the evolutionary force driving multi-family genes, including those from ribosomal DNA (rDNA) repeat, to complete homogenization within a species, although cases of non-concerted evolution have been also documented. In this study, sequence variation of 28S and ITS ribosomal RNA (rRNA) genes in the genus Cephalenchus is assessed at three different levels, intragenomic, intraspecific, and interspecific. The findings suggest that not all Cephalenchus species undergo concerted evolution. High levels of intraspecific polymorphism, mostly due to intragenomic variation, are found in Cephalenchus sp1 (BRA-01). Secondary structure analyses of both rRNA genes and across different species show a similar substitution pattern, including mostly compensatory (CBC) and semi-compensatory (SBC) base changes, thus suggesting the functionality of these rRNA copies despite the variation found in some species. This view is also supported by low sequence variation in the 5.8S gene in relation to the flanking ITS-1 and ITS-2 as well as by the existence of conserved motifs in the former gene. It is suggested that potential cross-fertilization in some Cephalenchus species, based on inspection of female reproductive system, might contribute to both intragenomic and intraspecific polymorphism of their rRNA genes. These results reinforce the potential implications of intragenomic and intraspecific genetic diversity on species delimitation, especially in biodiversity studies based solely on metagenetic approaches. Knowledge of sequence variation will be crucial for accurate species diversity estimation using molecular methods.

  1. Using Different Methods to Access the Difficult Task of Delimiting Species in a Complex Neotropical Hyperdiverse Group

    PubMed Central

    Costa-Silva, Guilherme J.; Rodriguez, Mónica S.; Roxo, Fábio F.; Foresti, Fausto; Oliveira, Claudio

    2015-01-01

    The genus Rineloricaria is a Neotropical freshwater fish group with a long and problematic taxonomic history, attributed to the large number of species and the pronounced similarity among them. In the present work, taxonomic information and different molecular approaches were used to identify species boundaries and characterize independent evolutionary units. We analyzed 228 samples assembled in 53 distinct morphospecies. A general mixed yule-coalescent (GMYC) analysis indicated the existence of 70 entities, while BOLD system analyses showed the existence of 56 distinct BINs. When we used a new proposed integrative taxonomy approach, mixing the results obtained by each analysis, we identified 73 OTUs. We suggest that Rineloricaria probably has some complexity in the known species and several species not formally described yet. Our data suggested that other hyperdiverse fish groups with wide distributions can be further split into many new evolutionary taxonomic units. PMID:26332320

  2. Using Different Methods to Access the Difficult Task of Delimiting Species in a Complex Neotropical Hyperdiverse Group.

    PubMed

    Costa-Silva, Guilherme J; Rodriguez, Mónica S; Roxo, Fábio F; Foresti, Fausto; Oliveira, Claudio

    2015-01-01

    The genus Rineloricaria is a Neotropical freshwater fish group with a long and problematic taxonomic history, attributed to the large number of species and the pronounced similarity among them. In the present work, taxonomic information and different molecular approaches were used to identify species boundaries and characterize independent evolutionary units. We analyzed 228 samples assembled in 53 distinct morphospecies. A general mixed yule-coalescent (GMYC) analysis indicated the existence of 70 entities, while BOLD system analyses showed the existence of 56 distinct BINs. When we used a new proposed integrative taxonomy approach, mixing the results obtained by each analysis, we identified 73 OTUs. We suggest that Rineloricaria probably has some complexity in the known species and several species not formally described yet. Our data suggested that other hyperdiverse fish groups with wide distributions can be further split into many new evolutionary taxonomic units. PMID:26332320

  3. Delimiting Species Boundaries within a Paraphyletic Species Complex: Insights from Morphological, Genetic, and Molecular Data on Paramecium sonneborni (Paramecium aurelia species complex, Ciliophora, Protozoa).

    PubMed

    Przyboś, Ewa; Tarcz, Sebastian; Rautian, Maria; Sawka, Natalia

    2015-09-01

    The demarcation of boundaries between protist species is often problematic because of the absence of a uniform species definition, the abundance of cryptic diversity, and the occurrence of convergent morphology. The ciliates belonging to the Paramecium aurelia complex, consisting of 15 species, are a good model for such systematic and evolutionary studies. One member of the complex is P. sonneborni, previously known only from one stand in Texas (USA), but recently found in two new sampling sites in Cyprus (creeks running to Salt Lake and Oroklini Lake near Larnaca). The studied Paramecium sonneborni strains (from the USA and Cyprus) reveal low viability in the F1 and F2 generations of interstrain hybrids and may be an example of ongoing allopatric speciation. Despite its molecular distinctiveness, we postulate that P. sonneborni should remain in the P. aurelia complex, making it a paraphyletic taxon. Morphological studies have revealed that some features of the nuclear apparatus of P. sonneborni correspond to the P. aurelia spp. complex, while others are similar to P. jenningsi and P. schewiakoffi. The observed discordance indicates rapid splitting of the P. aurelia-P. jenningsi-P. schewiakoffi group, in which genetic, morphological, and molecular boundaries between species are not congruent.

  4. Delimiting Species Boundaries within a Paraphyletic Species Complex: Insights from Morphological, Genetic, and Molecular Data on Paramecium sonneborni (Paramecium aurelia species complex, Ciliophora, Protozoa).

    PubMed

    Przyboś, Ewa; Tarcz, Sebastian; Rautian, Maria; Sawka, Natalia

    2015-09-01

    The demarcation of boundaries between protist species is often problematic because of the absence of a uniform species definition, the abundance of cryptic diversity, and the occurrence of convergent morphology. The ciliates belonging to the Paramecium aurelia complex, consisting of 15 species, are a good model for such systematic and evolutionary studies. One member of the complex is P. sonneborni, previously known only from one stand in Texas (USA), but recently found in two new sampling sites in Cyprus (creeks running to Salt Lake and Oroklini Lake near Larnaca). The studied Paramecium sonneborni strains (from the USA and Cyprus) reveal low viability in the F1 and F2 generations of interstrain hybrids and may be an example of ongoing allopatric speciation. Despite its molecular distinctiveness, we postulate that P. sonneborni should remain in the P. aurelia complex, making it a paraphyletic taxon. Morphological studies have revealed that some features of the nuclear apparatus of P. sonneborni correspond to the P. aurelia spp. complex, while others are similar to P. jenningsi and P. schewiakoffi. The observed discordance indicates rapid splitting of the P. aurelia-P. jenningsi-P. schewiakoffi group, in which genetic, morphological, and molecular boundaries between species are not congruent. PMID:26277215

  5. An evaluation of sampling effects on multiple DNA barcoding methods leads to an integrative approach for delimiting species: a case study of the North American tarantula genus Aphonopelma (Araneae, Mygalomorphae, Theraphosidae).

    PubMed

    Hamilton, Chris A; Hendrixson, Brent E; Brewer, Michael S; Bond, Jason E

    2014-02-01

    The North American tarantula genus Aphonopelma provides one of the greatest challenges to species delimitation and downstream identification in spiders because traditional morphological characters appear ineffective for evaluating limits of intra- and interspecific variation in the group. We evaluated the efficacy of numerous molecular-based approaches to species delimitation within Aphonopelma based upon the most extensive sampling of theraphosids to date, while also investigating the sensitivity of randomized taxon sampling on the reproducibility of species boundaries. Mitochondrial DNA (cytochrome c oxidase subunit I) sequences were sampled from 682 specimens spanning the genetic, taxonomic, and geographic breadth of the genus within the United States. The effects of random taxon sampling compared traditional Neighbor-Joining with three modern quantitative species delimitation approaches (ABGD, P ID(Liberal), and GMYC). Our findings reveal remarkable consistency and congruence across various approaches and sampling regimes, while highlighting highly divergent outcomes in GMYC. Our investigation allowed us to integrate methodologies into an efficient, consistent, and more effective general methodological workflow for estimating species boundaries within the mygalomorph spider genus Aphonopelma. Taken alone, these approaches are not particularly useful - especially in the absence of prior knowledge of the focal taxa. Only through the incorporation of multiple lines of evidence, employed in a hypothesis-testing framework, can the identification and delimitation of confident species boundaries be determined. A key point in studying closely related species, and perhaps one of the most important aspects of DNA barcoding, is to combine a sampling strategy that broadly identifies the extent of genetic diversity across the distributions of the species of interest and incorporates previous knowledge into the "species equation" (morphology, molecules, and natural history

  6. Incipient speciation with gene flow on a continental island: Species delimitation of the Hainan Hwamei (Leucodioptron canorum owstoni, Passeriformes, Aves).

    PubMed

    Wang, Ning; Liang, Bin; Wang, Jichao; Yeh, Chia-Fen; Liu, Yang; Liu, Yanlin; Liang, Wei; Yao, Cheng-Te; Li, Shou-Hsien

    2016-09-01

    Because of their isolation, continental islands (e.g., Madagascar) are often thought of as ideal systems to study allopatric speciation. However, many such islands have been connected intermittently to their neighboring continent during recent periods of glaciation, which may cause frequent contact between the diverging populations on the island and continent. As a result, the speciation processes on continental islands may not meet the prerequisites for strictly allopatric speciation. We used multiple lines of evidence to re-evaluate the taxonomic status of the Hainan Hwamei (Leucodioptron canorum owstoni), which is endemic to Hainan, the largest continental island in the South China Sea. Our analysis of mitochondrial DNA and twelve nuclear loci suggests that the Hainan Hwamei can be regarded as an independent species (L. owstoni); the morphological traits of the Hainan Hwamei also showed significant divergence from those of their mainland sister taxon, the Chinese Hwamei (L. canorum). We also inferred the divergence history of the Hainan and Chinese Hwamei to see whether their divergence was consistent with a strictly allopatric model. Our results suggest that the two Hwameis split only 0.2 million years ago with limited asymmetrical post-divergence gene flow. This implies that the Hainan Hwamei is an incipient species and that speciation occurred through ecologically divergent selection and/or assortative mating rather than a strictly allopatric process. PMID:27233437

  7. Incipient speciation with gene flow on a continental island: Species delimitation of the Hainan Hwamei (Leucodioptron canorum owstoni, Passeriformes, Aves).

    PubMed

    Wang, Ning; Liang, Bin; Wang, Jichao; Yeh, Chia-Fen; Liu, Yang; Liu, Yanlin; Liang, Wei; Yao, Cheng-Te; Li, Shou-Hsien

    2016-09-01

    Because of their isolation, continental islands (e.g., Madagascar) are often thought of as ideal systems to study allopatric speciation. However, many such islands have been connected intermittently to their neighboring continent during recent periods of glaciation, which may cause frequent contact between the diverging populations on the island and continent. As a result, the speciation processes on continental islands may not meet the prerequisites for strictly allopatric speciation. We used multiple lines of evidence to re-evaluate the taxonomic status of the Hainan Hwamei (Leucodioptron canorum owstoni), which is endemic to Hainan, the largest continental island in the South China Sea. Our analysis of mitochondrial DNA and twelve nuclear loci suggests that the Hainan Hwamei can be regarded as an independent species (L. owstoni); the morphological traits of the Hainan Hwamei also showed significant divergence from those of their mainland sister taxon, the Chinese Hwamei (L. canorum). We also inferred the divergence history of the Hainan and Chinese Hwamei to see whether their divergence was consistent with a strictly allopatric model. Our results suggest that the two Hwameis split only 0.2 million years ago with limited asymmetrical post-divergence gene flow. This implies that the Hainan Hwamei is an incipient species and that speciation occurred through ecologically divergent selection and/or assortative mating rather than a strictly allopatric process.

  8. Incomplete premating and postmating reproductive barriers between two parapatric populations of a social spider mite.

    PubMed

    Sato, Yukie; Breeuwer, Johannes A J; Egas, Martijn; Sabelis, Maurice W

    2015-03-01

    Closely related species with overlapping distributions often show premating reproductive barriers to avoid hybridization. Stigmaeopsis miscanthi (Saito) is a social spider mite infesting Chinese silver grass, and the species consists of two parapatric groups with frequent contacts within the contact zone. They differ in male-male aggressiveness, male morphology, female diapause traits, and life history parameters. There is incomplete but strong post-mating reproductive isolation between the two groups, and their DNA sequences are slightly different, suggesting that they diverged recently. In this study, we investigated premating reproductive barriers. We found that females from different groups frequently shared nest webs, indicating no barriers in the phase of nest establishment. However, inside nests, males from either group showed less courtship behaviour to females of the other group and they copulated less frequently with them when compared to females of the same group. However, the premating reproductive barrier was incomplete and asymmetric. Females of one group frequently resisted courtship by males from the other group, but females of the other group did not. We conclude that some gene flow may occur in the contact zone between the two groups.

  9. Species distribution models contribute to determine the effect of climate and interspecific interactions in moving hybrid zones.

    PubMed

    Engler, J O; Rödder, D; Elle, O; Hochkirch, A; Secondi, J

    2013-11-01

    Climate is a major factor delimiting species' distributions. However, biotic interactions may also be prominent in shaping geographical ranges, especially for parapatric species forming hybrid zones. Determining the relative effect of each factor and their interaction of the contact zone location has been difficult due to the lack of broad scale environmental data. Recent developments in species distribution modelling (SDM) now allow disentangling the relative contributions of climate and species' interactions in hybrid zones and their responses to future climate change. We investigated the moving hybrid zone between the breeding ranges of two parapatric passerines in Europe. We conducted SDMs representing the climatic conditions during the breeding season. Our results show a large mismatch between the realized and potential distributions of the two species, suggesting that interspecific interactions, not climate, account for the present location of the contact zone. The SDM scenarios show that the southerly distributed species, Hippolais polyglotta, might lose large parts of its southern distribution under climate change, but a similar gain of novel habitat along the hybrid zone seems unlikely, because interactions with the other species (H. icterina) constrain its range expansion. Thus, whenever biotic interactions limit range expansion, species may become 'trapped' if range loss due to climate change is faster than the movement of the contact zone. An increasing number of moving hybrid zones are being reported, but the proximate causes of movement often remain unclear. In a global context of climate change, we call for more interest in their interactions with climate change.

  10. Checklist of the species of Neoechinorhynchus (Acanthocephala: Neoechinorhynchidae) in fishes and turtles in Middle-America, and their delimitation based on sequences of the 28S rDNA.

    PubMed

    Pinacho-Pinacho, Carlos Daniel; Sereno-Uribe, Ana L; De León, Gerardo Pérez-Ponce; García-Varela, Martín

    2015-07-09

    Among the acanthocephalans, Neoechinorhynchus is one of the most speciose genera, with 116 described species distributed worldwide. The adults of Neoechinorhynchus are found in the intestine of freshwater and brackish water fish, as well as in freshwater turtles. In this study, a checklist of the congeneric species of Neoechinorhynchus occurring in Middle-American fish and turtles is presented. The checklist contains the records established in all published accounts, as well as novel data from survey work conducted in the region comprising Neotropical areas of Mexico, as well as some localities in Central America. The species delimitation criteria used to discriminate among species is based on molecular data. In the last years, a large database derived from sequences of the D2 + D3 domains of the large subunit of rDNA (28S) was generated for 262 specimens corresponding to nine species of Neoechinorhynchus. This molecular marker has shown to be useful in establishing species limits within Neoechinorhynchus and in resolving phylogenetic relationships at species level. Based on our results, the domains D2 + D3 of the 28S rDNA could be considered as potential DNA barcodes to complement mitochondrial DNA to discriminate among acanthocephalan species.

  11. Checklist of the species of Neoechinorhynchus (Acanthocephala: Neoechinorhynchidae) in fishes and turtles in Middle-America, and their delimitation based on sequences of the 28S rDNA.

    PubMed

    Pinacho-Pinacho, Carlos Daniel; Sereno-Uribe, Ana L; De León, Gerardo Pérez-Ponce; García-Varela, Martín

    2015-01-01

    Among the acanthocephalans, Neoechinorhynchus is one of the most speciose genera, with 116 described species distributed worldwide. The adults of Neoechinorhynchus are found in the intestine of freshwater and brackish water fish, as well as in freshwater turtles. In this study, a checklist of the congeneric species of Neoechinorhynchus occurring in Middle-American fish and turtles is presented. The checklist contains the records established in all published accounts, as well as novel data from survey work conducted in the region comprising Neotropical areas of Mexico, as well as some localities in Central America. The species delimitation criteria used to discriminate among species is based on molecular data. In the last years, a large database derived from sequences of the D2 + D3 domains of the large subunit of rDNA (28S) was generated for 262 specimens corresponding to nine species of Neoechinorhynchus. This molecular marker has shown to be useful in establishing species limits within Neoechinorhynchus and in resolving phylogenetic relationships at species level. Based on our results, the domains D2 + D3 of the 28S rDNA could be considered as potential DNA barcodes to complement mitochondrial DNA to discriminate among acanthocephalan species. PMID:26250025

  12. Complex patterns of speciation in cosmopolitan "rock posy" lichens - an integrative approach to discovering and delimiting fungal species in the lichen-forming rhizoplaca melanophthalma speciescomplex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A growing body of evidence indicates that morphology-based species circumspection of lichenized ascomycetes greatly misrepresents the number of existing species. Recently it has been demonstrated that population-level processes operating within diverging populations can facilitate the identification...

  13. Systematic study of basidiomycetous yeasts - evaluation of the ITS regions of rDNA to delimit species of the genus Rhodosporidium.

    PubMed

    Hamamoto, Makiko; Nagahama, Takahiko; Tamura, Miki

    2002-08-01

    Nucleotide sequences of internal transcribed spacer (ITS) regions were determined to establish the guidelines for species identification in the genus Rhodosporidium. Forty-two strains of nine species of the genus Rhodosporidium were used for ITS (ITS1 and ITS2) analysis. Intraspecific length polymorphisms and sequence variations were observed within R. azoricum, R. diobovatum, R. paludigenum, R. sphaerocarpum and R. toruloides, while no variation was observed within R. babjevae and R. kratochvilovae. Based on comparison of the levels of intraspecific and interspecific sequence similarity, strains with identical sequences were considered to represent a single species and strains with 92% or lower similarity of ITS sequences were considered to be distinct species in the genus Rhodosporidium.

  14. Tracking the progression of speciation: variable patterns of introgression across the genome provide insights on the species delimitation between progenitor-derivative spruces (Picea mariana × P. rubens).

    PubMed

    de Lafontaine, Guillaume; Prunier, Julien; Gérardi, Sébastien; Bousquet, Jean

    2015-10-01

    The genic species concept implies that while most of the genome can be exchanged somewhat freely between species through introgression, some genomic regions remain impermeable to interspecific gene flow. Hence, interspecific differences can be maintained despite ongoing gene exchange within contact zones. This study assessed the heterogeneous patterns of introgression at gene loci across the hybrid zone of an incipient progenitor-derivative species pair, Picea mariana (black spruce) and Picea rubens (red spruce). The spruce taxa likely diverged in geographic isolation during the Pleistocene and came into secondary contact during late Holocene. A total of 300 SNPs distributed across the 12 linkage groups (LG) of black spruce were genotyped for 385 individual trees from 33 populations distributed across the allopatric zone of each species and within the zone of sympatry. An integrative framework combining three population genomic approaches was used to scan the genomes, revealing heterogeneous patterns of introgression. A total of 23 SNPs scattered over 10 LG were considered impermeable to introgression and putatively under diverging selection. These loci revealed the existence of impermeable genomic regions forming the species boundary and are thus indicative of ongoing speciation between these two genetic lineages. Another 238 SNPs reflected selectively neutral diffusion across the porous species barrier. Finally, 39 highly permeable SNPs suggested ancestral polymorphism along with balancing selection. The heterogeneous patterns of introgression across the genome indicated that the speciation process between black spruce and red spruce is young and incomplete, albeit some interspecific differences are maintained, allowing ongoing species divergence even in sympatry. The approach developed in this study can be used to track the progression of ongoing speciation processes.

  15. Tracking the progression of speciation: variable patterns of introgression across the genome provide insights on the species delimitation between progenitor-derivative spruces (Picea mariana × P. rubens).

    PubMed

    de Lafontaine, Guillaume; Prunier, Julien; Gérardi, Sébastien; Bousquet, Jean

    2015-10-01

    The genic species concept implies that while most of the genome can be exchanged somewhat freely between species through introgression, some genomic regions remain impermeable to interspecific gene flow. Hence, interspecific differences can be maintained despite ongoing gene exchange within contact zones. This study assessed the heterogeneous patterns of introgression at gene loci across the hybrid zone of an incipient progenitor-derivative species pair, Picea mariana (black spruce) and Picea rubens (red spruce). The spruce taxa likely diverged in geographic isolation during the Pleistocene and came into secondary contact during late Holocene. A total of 300 SNPs distributed across the 12 linkage groups (LG) of black spruce were genotyped for 385 individual trees from 33 populations distributed across the allopatric zone of each species and within the zone of sympatry. An integrative framework combining three population genomic approaches was used to scan the genomes, revealing heterogeneous patterns of introgression. A total of 23 SNPs scattered over 10 LG were considered impermeable to introgression and putatively under diverging selection. These loci revealed the existence of impermeable genomic regions forming the species boundary and are thus indicative of ongoing speciation between these two genetic lineages. Another 238 SNPs reflected selectively neutral diffusion across the porous species barrier. Finally, 39 highly permeable SNPs suggested ancestral polymorphism along with balancing selection. The heterogeneous patterns of introgression across the genome indicated that the speciation process between black spruce and red spruce is young and incomplete, albeit some interspecific differences are maintained, allowing ongoing species divergence even in sympatry. The approach developed in this study can be used to track the progression of ongoing speciation processes. PMID:26346701

  16. Delimiting species by reproductive isolation: the genetic structure of epigean and hypogean Trichomycterus spp. (Teleostei, Siluriformes) in the restricted area of Torotoro (Upper Amazon, Bolivia).

    PubMed

    Renno, Jean-François; Gazel, Claude; Miranda, Guido; Pouilly, Marc; Berrebi, Patrick

    2007-11-01

    Genetic variability of Trichomycterus from the region of Torotoro (Bolivia, Upper Amazon), distributed in the same watershed where the habitat is structured by waterfalls, canyons and a cave, was studied by allozyme (twelve putative loci) and RFLP-mtDNA (DLoop and cytochrome b) analyses. Alloenzymatic variation studied by Correspondence Analysis and Maximum Likelihood Analysis revealed a four-group structure, which was largely congruent with the distribution of the 14 mtDNA haplotypes. Two of these four clusters (I and II) were differentiated by two diagnostic loci (IDH and G3PDH), two semi-diagnostic loci (PGM and 6PGDH) and consequently a very high F(st )value (estimator theta = 0.77). Therefore, clusters I and II are reproductively isolated. The distribution limit of these two (sibling) species does not correspond to those of the morphological species of Trichomycterus identified in this region: the epigean T. cf. barbouri and the hypogean T. chaberti. However, hypogean fish exhibited two mtDNA haplotypes, a private one and another shared with the epigean Trichomycterus from upstream reaches. PMID:17957496

  17. Delimiting species by reproductive isolation: the genetic structure of epigean and hypogean Trichomycterus spp. (Teleostei, Siluriformes) in the restricted area of Torotoro (Upper Amazon, Bolivia).

    PubMed

    Renno, Jean-François; Gazel, Claude; Miranda, Guido; Pouilly, Marc; Berrebi, Patrick

    2007-11-01

    Genetic variability of Trichomycterus from the region of Torotoro (Bolivia, Upper Amazon), distributed in the same watershed where the habitat is structured by waterfalls, canyons and a cave, was studied by allozyme (twelve putative loci) and RFLP-mtDNA (DLoop and cytochrome b) analyses. Alloenzymatic variation studied by Correspondence Analysis and Maximum Likelihood Analysis revealed a four-group structure, which was largely congruent with the distribution of the 14 mtDNA haplotypes. Two of these four clusters (I and II) were differentiated by two diagnostic loci (IDH and G3PDH), two semi-diagnostic loci (PGM and 6PGDH) and consequently a very high F(st )value (estimator theta = 0.77). Therefore, clusters I and II are reproductively isolated. The distribution limit of these two (sibling) species does not correspond to those of the morphological species of Trichomycterus identified in this region: the epigean T. cf. barbouri and the hypogean T. chaberti. However, hypogean fish exhibited two mtDNA haplotypes, a private one and another shared with the epigean Trichomycterus from upstream reaches.

  18. Exploiting comparative mapping among Brassica species to accelerate the physical delimitation of a genic male-sterile locus (BnRf) in Brassica napus.

    PubMed

    Xie, Yanzhou; Dong, Faming; Hong, Dengfeng; Wan, Lili; Liu, Pingwu; Yang, Guangsheng

    2012-07-01

    The recessive genic male sterility (RGMS) line 9012AB has been used as an important pollination control system for rapeseed hybrid production in China. Here, we report our study on physical mapping of one male-sterile locus (BnRf) in 9012AB by exploiting the comparative genomics among Brassica species. The genetic maps around BnRf from previous reports were integrated and enriched with markers from the Brassica A7 chromosome. Subsequent collinearity analysis of these markers contributed to the identification of a novel ancestral karyotype block F that possibly encompasses BnRf. Fourteen insertion/deletion markers were further developed from this conserved block and genotyped in three large backcross populations, leading to the construction of high-resolution local genetic maps where the BnRf locus was restricted to a less than 0.1-cM region. Moreover, it was observed that the target region in Brassica napus shares a high collinearity relationship with a region from the Brassica rapa A7 chromosome. A BnRf-cosegregated marker (AT3G23870) was then used to screen a B. napus bacterial artificial chromosome (BAC) library. From the resulting 16 positive BAC clones, one (JBnB089D05) was identified to most possibly contain the BnRf (c) allele. With the assistance of the genome sequence from the Brassica rapa homolog, the 13.8-kb DNA fragment covering both closest flanking markers from the BAC clone was isolated. Gene annotation based on the comparison of microcollinear regions among Brassica napus, B. rapa and Arabidopsis showed that five potential open reading frames reside in this fragment. These results provide a foundation for the characterization of the BnRf locus and allow a better understanding of the chromosome evolution around BnRf.

  19. Exploiting comparative mapping among Brassica species to accelerate the physical delimitation of a genic male-sterile locus (BnRf) in Brassica napus.

    PubMed

    Xie, Yanzhou; Dong, Faming; Hong, Dengfeng; Wan, Lili; Liu, Pingwu; Yang, Guangsheng

    2012-07-01

    The recessive genic male sterility (RGMS) line 9012AB has been used as an important pollination control system for rapeseed hybrid production in China. Here, we report our study on physical mapping of one male-sterile locus (BnRf) in 9012AB by exploiting the comparative genomics among Brassica species. The genetic maps around BnRf from previous reports were integrated and enriched with markers from the Brassica A7 chromosome. Subsequent collinearity analysis of these markers contributed to the identification of a novel ancestral karyotype block F that possibly encompasses BnRf. Fourteen insertion/deletion markers were further developed from this conserved block and genotyped in three large backcross populations, leading to the construction of high-resolution local genetic maps where the BnRf locus was restricted to a less than 0.1-cM region. Moreover, it was observed that the target region in Brassica napus shares a high collinearity relationship with a region from the Brassica rapa A7 chromosome. A BnRf-cosegregated marker (AT3G23870) was then used to screen a B. napus bacterial artificial chromosome (BAC) library. From the resulting 16 positive BAC clones, one (JBnB089D05) was identified to most possibly contain the BnRf (c) allele. With the assistance of the genome sequence from the Brassica rapa homolog, the 13.8-kb DNA fragment covering both closest flanking markers from the BAC clone was isolated. Gene annotation based on the comparison of microcollinear regions among Brassica napus, B. rapa and Arabidopsis showed that five potential open reading frames reside in this fragment. These results provide a foundation for the characterization of the BnRf locus and allow a better understanding of the chromosome evolution around BnRf. PMID:22382487

  20. Differences in rheotactic responses contribute to divergent habitat use between parapatric lake and stream threespine stickleback.

    PubMed

    Jiang, Yuexin; Torrance, Louisa; Peichel, Catherine L; Bolnick, Daniel I

    2015-09-01

    Migration among populations is widely thought to undermine adaptive divergence, assuming gene flow arises from random movement of individuals. If individuals instead differ in dispersal behavior, phenotype-dependent dispersal can reduce the effective rate of gene flow or even facilitate divergence. For example, parapatric populations of lake and stream stickleback tend to actively avoid dispersing into the adjoining habitat. However, the behavioral basis of this nonrandom dispersal was previously unknown. Here, we show that lake and stream stickleback exhibit divergent rheotactic responses (behavioral response to currents). During the breeding season, wild-caught inlet stream stickleback were better than lake fish at maintaining position in currents, faced upstream more, and spent more time in low-current areas. As a result, stream fish expended significantly less energy in currents than did lake fish. These divergent rheotactic responses likely contribute to divergent habitat use by lake and stream stickleback. Although rheotactic differences were absent in nonbreeding fish, divergent behavior of breeding-season fish may suffice for assortative mating by breeding location. The resulting reproductive isolation between lake and stream fish may explain the fine-scale evolutionary differentiation in parapatric stickleback populations.

  1. Parapatric Speciation in the Evolution of Early Intervention for Infants and Toddlers with Disabilities and Their Families

    ERIC Educational Resources Information Center

    Dunst, Carl J.

    2012-01-01

    The term parapatric speciation, borrowed from biogeography, is used as a metaphor for describing and illustrating a little acknowledged change in the field of early intervention that occurred at the time of the passage of the Education of the Handicapped Act Part H early intervention legislation. The term refers to the formation of a new species…

  2. Delimiting Areas of Endemism through Kernel Interpolation

    PubMed Central

    Oliveira, Ubirajara; Brescovit, Antonio D.; Santos, Adalberto J.

    2015-01-01

    We propose a new approach for identification of areas of endemism, the Geographical Interpolation of Endemism (GIE), based on kernel spatial interpolation. This method differs from others in being independent of grid cells. This new approach is based on estimating the overlap between the distribution of species through a kernel interpolation of centroids of species distribution and areas of influence defined from the distance between the centroid and the farthest point of occurrence of each species. We used this method to delimit areas of endemism of spiders from Brazil. To assess the effectiveness of GIE, we analyzed the same data using Parsimony Analysis of Endemism and NDM and compared the areas identified through each method. The analyses using GIE identified 101 areas of endemism of spiders in Brazil GIE demonstrated to be effective in identifying areas of endemism in multiple scales, with fuzzy edges and supported by more synendemic species than in the other methods. The areas of endemism identified with GIE were generally congruent with those identified for other taxonomic groups, suggesting that common processes can be responsible for the origin and maintenance of these biogeographic units. PMID:25611971

  3. Conditions for stable parapatric coexistence between Boophilus decoloratus and B. microplus ticks: a simulation study using the competitive Lotka-Volterra model.

    PubMed

    Zeman, Petr; Lynen, Godelieve

    2010-12-01

    The autochthonous tick Boophilus decoloratus, and the invasive species Bo. microplus, the tick most threatening the livestock industry in Africa, show complex interactions in their interspecific rivalry. This study was conducted to specify the conditions under which the two competitors can co-exist in equilibrium, and to provide insight into their climate-dependant parapatric distribution in Tanzania. A model of the Lotka-Volterra type was used, taking into account population dispersal and interactions of various kinds. If the model allowed for immunity-mediated competition on cattle, reproductive interference, and an external mortality factor, it explained fairly well the field observation that the borderline between these ticks loosely follows the 22-23°C isotherm and the 58 mm isohyet (i.e. ~700 mm of annual rainfall total). Simulations fully compatible with the pattern of real co-existing populations of Bo. decoloratus and Bo. microplus, characterized by a pronounced population density trough and mutual exclusion of the two ticks on cattle in an intermediary zone between their distributional ranges, were, however, achieved only if the model also implemented a hypothetical factor responsible for some mortality upon encounter of one tick with the other, interpretable as an interaction through a shared pathogen(s). This study also demonstrated the importance of non-cattle hosts, enabling the autochthon to avoid competition with Bo. microplus, for the behaviour of the modelled system. The simulations indicate that a substantial reduction of wildlife habitats and consequently of Bo. decoloratus refugia, may accelerate the replacement of Bo. decoloratus with Bo. microplus much faster than climatic changes might do.

  4. Applying n-dimensional hypervolumes for species delimitation: unexpected molecular, morphological, and ecological diversity in the Leaf-Toed Gecko Phyllodactylus reissii Peters, 1862 (Squamata: Phyllodactylidae) from northern Peru.

    PubMed

    Koch, Claudia; Flecks, Morris; Venegas, Pablo J; Bialke, Patrick; Valverde, Sebastian; Rödder, Dennis

    2016-01-01

    An integrative taxonomic approach based on morphology, molecular analyses, and climatic niche modeling was used to uncover cryptic diversity in the phyllodactylid gecko species Phyllodactylus reissii. At least three distinct species could be identified among the examined specimens from southern Ecuador and northern Peru. Phyllodactylus magister, described by Noble (1924) from arid Andean valleys of the Chinchipe and Marañón rivers in the Peruvian Department of Cajamarca and synonymized with P. reissii by Dixon & Huey (1970) is elevated from synonymy and a detailed redescription is provided. A new species of the genus Phyllodactylus from the Andean dry forest of the southern Marañón valley is identified and described herein. Phyllodactylus pachamama sp. nov. is differentiated from other South American congeners on the basis of mtDNA sequence divergence, morphological characters, and differences in the realized climatic niche. At least in Peru, P. reissii seems to primarily inhabit the northern coastal region west of the Andes, while the inter-Andean area along the Río Marañón and its tributaries seems to be inhabited mostly by other species of the genus, which are endemic to this area. The Andean valleys are underestimated in terms of biodiversity and lack thorough investigation and conservation actions. PMID:27615910

  5. Applying n-dimensional hypervolumes for species delimitation: unexpected molecular, morphological, and ecological diversity in the Leaf-Toed Gecko Phyllodactylus reissii Peters, 1862 (Squamata: Phyllodactylidae) from northern Peru.

    PubMed

    Koch, Claudia; Flecks, Morris; Venegas, Pablo J; Bialke, Patrick; Valverde, Sebastian; Rödder, Dennis

    2016-09-02

    An integrative taxonomic approach based on morphology, molecular analyses, and climatic niche modeling was used to uncover cryptic diversity in the phyllodactylid gecko species Phyllodactylus reissii. At least three distinct species could be identified among the examined specimens from southern Ecuador and northern Peru. Phyllodactylus magister, described by Noble (1924) from arid Andean valleys of the Chinchipe and Marañón rivers in the Peruvian Department of Cajamarca and synonymized with P. reissii by Dixon & Huey (1970) is elevated from synonymy and a detailed redescription is provided. A new species of the genus Phyllodactylus from the Andean dry forest of the southern Marañón valley is identified and described herein. Phyllodactylus pachamama sp. nov. is differentiated from other South American congeners on the basis of mtDNA sequence divergence, morphological characters, and differences in the realized climatic niche. At least in Peru, P. reissii seems to primarily inhabit the northern coastal region west of the Andes, while the inter-Andean area along the Río Marañón and its tributaries seems to be inhabited mostly by other species of the genus, which are endemic to this area. The Andean valleys are underestimated in terms of biodiversity and lack thorough investigation and conservation actions.

  6. Delimitation of volcanic edifices for landscape characterization and planning

    NASA Astrophysics Data System (ADS)

    Melis, Maria Teresa; Mundula, Filippo; Dessì, Francesco; Danila Patta, Elisabetta; Funedda, Antonio; Cioni, Raffaello

    2014-05-01

    The European Landscape Convention, recently adopted in Italy, indicates specific landforms to be selected as special protected sites. Active and inactive volcanic edifices, defined as the products of evolution of aggradational (lava effusion, pyroclastic deposition, magma intrusion) and degradational processes (erosion, deformation, gravitative phenomena), are one of the specific landforms to be protected. In order to protect these sites, management and planning measures are to be defined and shared with the local communities. In the framework of the Regional Landscape Management Plan of Sardinia (Italy), a detailed study aimed at identifying and delimiting Cenozoic volcanic edifices was performed. The large geological and morphological variability of the volcanic edifices of Sardinia in terms of type, dimension, age, integrity (a measure of the wholeness and intactnes of the volcanic edifice), geology and paleomorphology of the substrate, does not allow the definition of an automatic procedure for extracting the boundaries to delimit the volcanic edifices. In addition, quantitative geomorphological studies in the field of volcanology are confined to specific volcano types, and landscape literature does not suggest any universal criteria for delimiting volcanic edifices, except for the use of the concave breaks in slope at their base (Euillades et al., Computers and Geosciences, 2013). As this simple criterion can be unequivocally applied only in the ideal case of symmetric cones or domes built up on a planar surface, we developed a multidisciplinary methodology based on the integrated analysis of geological, geomorphological and morphometrical data of each edifice. The process of selection and delimitation of the volcanic edifices is the result of the following steps: i) a literature based delimitation of the volcanic edifice; ii) a preliminary delimitation through photo-interpretation and the use of geological criteria; and iii) a final refinement based on the

  7. Korean Syntax: Case Markers, Delimiters, Complementation, and Relativization. Working Papers in Linguistics, Volume 4, Number 6.

    ERIC Educational Resources Information Center

    Yang, In-Seok

    This generative grammar of Korean analyzes the syntactic aspects of case markers, delimiters, complementation, and relativization. C. J. Fillmore's case grammar is adopted as the overall framework. Case markers and delimiters are seen to interact in two ways: one is obligatory deletion of the nominative and accusative markers before any delimiter,…

  8. Delimitation of the lung region with distributed ultrasound transducers

    NASA Astrophysics Data System (ADS)

    Cardona Cárdenas, Diego Armando; Furuie, Sérgio Shiguemi

    2016-04-01

    One technique used to infer and monitor patient's respiratory conditions is the electrical impedance tomography (EIT). This provides images with information about lung function. The EIT image contrast is dependent on the variation of electrical impedance, therefore, this image does not provide anatomical details in border regions of several organs. To contribute to a clinical solution, we propose a new method to delimit regions of interest such as the pulmonary region and to improve the reconstruction quality of the EIT. Using a Matlab Toolbox k-wave, the ultrasound propagation phenomenon in homogeneous medium without patient (Reference) and with thoracic models were simulated, separately via a set of several ultrasound transducers distributed around the chest. After pulse emission by a transducer (TR), all received signals were compared considering the two sets of signals. If the energy relation between parts of the signals does not exceed an empirical threshold (30% in this study), a partial mask is generated between the transmitter and the receptor. This process was repeated until all 128 transducers are considered as TR-emitters. The 128 transducers (150kHz) are uniformly distributed. The evaluation was made by visually comparing the resulting images with the respective simulated object. A simple approach was presented to delimit high contrast organs with ultrasound transducers distributed around the patient. This approach allows other lower contrast objects to become invisible by varying the threshold limit. The investigation, based on numerical simulations of ultrasonic propagation, has shown promising results in the delimitation of the pulmonary region.

  9. Phylogenetic Reconstruction, Morphological Diversification and Generic Delimitation of Disepalum (Annonaceae)

    PubMed Central

    Li, Pui-Sze; Thomas, Daniel C.; Saunders, Richard M. K.

    2015-01-01

    Taxonomic delimitation of Disepalum (Annonaceae) is contentious, with some researchers favoring a narrow circumscription following segregation of the genus Enicosanthellum. We reconstruct the phylogeny of Disepalum and related taxa based on four chloroplast and two nuclear DNA regions as a framework for clarifying taxonomic delimitation and assessing evolutionary transitions in key morphological characters. Maximum parsimony, maximum likelihood and Bayesian methods resulted in a consistent, well-resolved and strongly supported topology. Disepalum s.l. is monophyletic and strongly supported, with Disepalum s.str. and Enicosanthellum retrieved as sister groups. Although this topology is consistent with both taxonomic delimitations, the distribution of morphological synapomorphies provides greater support for the inclusion of Enicosanthellum within Disepalum s.l. We propose a novel infrageneric classification with two subgenera. Subgen. Disepalum (= Disepalum s.str.) is supported by numerous synapomorphies, including the reduction of the calyx to two sepals and connation of petals. Subgen. Enicosanthellum lacks obvious morphological synapomorphies, but possesses several diagnostic characters (symplesiomorphies), including a trimerous calyx and free petals in two whorls. We evaluate changes in petal morphology in relation to hypotheses of the genetic control of floral development and suggest that the compression of two petal whorls into one and the associated fusion of contiguous petals may be associated with the loss of the pollination chamber, which in turn may be associated with a shift in primary pollinator. We also suggest that the formation of pollen octads may be selectively advantageous when pollinator visits are infrequent, although this would only be applicable if multiple ovules could be fertilized by each octad; since the flowers are apocarpous, this would require an extragynoecial compitum to enable intercarpellary growth of pollen tubes. We furthermore

  10. Phylogenetic Reconstruction, Morphological Diversification and Generic Delimitation of Disepalum (Annonaceae).

    PubMed

    Li, Pui-Sze; Thomas, Daniel C; Saunders, Richard M K

    2015-01-01

    Taxonomic delimitation of Disepalum (Annonaceae) is contentious, with some researchers favoring a narrow circumscription following segregation of the genus Enicosanthellum. We reconstruct the phylogeny of Disepalum and related taxa based on four chloroplast and two nuclear DNA regions as a framework for clarifying taxonomic delimitation and assessing evolutionary transitions in key morphological characters. Maximum parsimony, maximum likelihood and Bayesian methods resulted in a consistent, well-resolved and strongly supported topology. Disepalum s.l. is monophyletic and strongly supported, with Disepalum s.str. and Enicosanthellum retrieved as sister groups. Although this topology is consistent with both taxonomic delimitations, the distribution of morphological synapomorphies provides greater support for the inclusion of Enicosanthellum within Disepalum s.l. We propose a novel infrageneric classification with two subgenera. Subgen. Disepalum (= Disepalum s.str.) is supported by numerous synapomorphies, including the reduction of the calyx to two sepals and connation of petals. Subgen. Enicosanthellum lacks obvious morphological synapomorphies, but possesses several diagnostic characters (symplesiomorphies), including a trimerous calyx and free petals in two whorls. We evaluate changes in petal morphology in relation to hypotheses of the genetic control of floral development and suggest that the compression of two petal whorls into one and the associated fusion of contiguous petals may be associated with the loss of the pollination chamber, which in turn may be associated with a shift in primary pollinator. We also suggest that the formation of pollen octads may be selectively advantageous when pollinator visits are infrequent, although this would only be applicable if multiple ovules could be fertilized by each octad; since the flowers are apocarpous, this would require an extragynoecial compitum to enable intercarpellary growth of pollen tubes. We furthermore

  11. Phylogenetic Reconstruction, Morphological Diversification and Generic Delimitation of Disepalum (Annonaceae).

    PubMed

    Li, Pui-Sze; Thomas, Daniel C; Saunders, Richard M K

    2015-01-01

    Taxonomic delimitation of Disepalum (Annonaceae) is contentious, with some researchers favoring a narrow circumscription following segregation of the genus Enicosanthellum. We reconstruct the phylogeny of Disepalum and related taxa based on four chloroplast and two nuclear DNA regions as a framework for clarifying taxonomic delimitation and assessing evolutionary transitions in key morphological characters. Maximum parsimony, maximum likelihood and Bayesian methods resulted in a consistent, well-resolved and strongly supported topology. Disepalum s.l. is monophyletic and strongly supported, with Disepalum s.str. and Enicosanthellum retrieved as sister groups. Although this topology is consistent with both taxonomic delimitations, the distribution of morphological synapomorphies provides greater support for the inclusion of Enicosanthellum within Disepalum s.l. We propose a novel infrageneric classification with two subgenera. Subgen. Disepalum (= Disepalum s.str.) is supported by numerous synapomorphies, including the reduction of the calyx to two sepals and connation of petals. Subgen. Enicosanthellum lacks obvious morphological synapomorphies, but possesses several diagnostic characters (symplesiomorphies), including a trimerous calyx and free petals in two whorls. We evaluate changes in petal morphology in relation to hypotheses of the genetic control of floral development and suggest that the compression of two petal whorls into one and the associated fusion of contiguous petals may be associated with the loss of the pollination chamber, which in turn may be associated with a shift in primary pollinator. We also suggest that the formation of pollen octads may be selectively advantageous when pollinator visits are infrequent, although this would only be applicable if multiple ovules could be fertilized by each octad; since the flowers are apocarpous, this would require an extragynoecial compitum to enable intercarpellary growth of pollen tubes. We furthermore

  12. On the difficulty to delimit disease risk hot spots

    NASA Astrophysics Data System (ADS)

    Charras-Garrido, M.; Azizi, L.; Forbes, F.; Doyle, S.; Peyrard, N.; Abrial, D.

    2013-06-01

    Representing the health state of a region is a helpful tool to highlight spatial heterogeneity and localize high risk areas. For ease of interpretation and to determine where to apply control procedures, we need to clearly identify and delineate homogeneous regions in terms of disease risk, and in particular disease risk hot spots. However, even if practical purposes require the delineation of different risk classes, such a classification does not correspond to a reality and is thus difficult to estimate. Working with grouped data, a first natural choice is to apply disease mapping models. We apply a usual disease mapping model, producing continuous estimations of the risks that requires a post-processing classification step to obtain clearly delimited risk zones. We also apply a risk partition model that build a classification of the risk levels in a one step procedure. Working with point data, we will focus on the scan statistic clustering method. We illustrate our article with a real example concerning the bovin spongiform encephalopathy (BSE) an animal disease whose zones at risk are well known by the epidemiologists. We show that in this difficult case of a rare disease and a very heterogeneous population, the different methods provide risk zones that are globally coherent. But, related to the dichotomy between the need and the reality, the exact delimitation of the risk zones, as well as the corresponding estimated risks are quite different.

  13. Fuzzy Boundaries: Color and Gene Flow Patterns among Parapatric Lineages of the Western Shovel-Nosed Snake and Taxonomic Implication

    PubMed Central

    Wood, Dustin A.; Fisher, Robert N.; Vandergast, Amy G.

    2014-01-01

    Accurate delineation of lineage diversity is increasingly important, as species distributions are becoming more reduced and threatened. During the last century, the subspecies category was often used to denote phenotypic variation within a species range and to provide a framework for understanding lineage differentiation, often considered incipient speciation. While this category has largely fallen into disuse, previously recognized subspecies often serve as important units for conservation policy and management when other information is lacking. In this study, we evaluated phenotypic subspecies hypotheses within shovel-nosed snakes on the basis of genetic data and considered how evolutionary processes such as gene flow influenced possible incongruence between phenotypic and genetic patterns. We used both traditional phylogenetic and Bayesian clustering analyses to infer range-wide genetic structure and spatially explicit analyses to detect possible boundary locations of lineage contact. Multilocus analyses supported three historically isolated groups with low to moderate levels of contemporary gene exchange. Genetic data did not support phenotypic subspecies as exclusive groups, and we detected patterns of discordance in areas where three subspecies are presumed to be in contact. Based on genetic and phenotypic evidence, we suggested that species-level diversity is underestimated in this group and we proposed that two species be recognized, Chionactis occipitalis and C. annulata. In addition, we recommend retention of two subspecific designations within C. annulata (C. a. annulata and C. a. klauberi) that reflect regional shifts in both genetic and phenotypic variation within the species. Our results highlight the difficultly in validating taxonomic boundaries within lineages that are evolving under a time-dependent, continuous process. PMID:24848638

  14. Fuzzy boundaries: color and gene flow patterns among parapatric lineages of the western shovel-nosed snake and taxonomic implication

    USGS Publications Warehouse

    Wood, Dustin A.; Fisher, Robert N.; Vandergast, Amy G.

    2014-01-01

    Accurate delineation of lineage diversity is increasingly important, as species distributions are becoming more reduced and threatened. During the last century, the subspecies category was often used to denote phenotypic variation within a species range and to provide a framework for understanding lineage differentiation, often considered incipient speciation. While this category has largely fallen into disuse, previously recognized subspecies often serve as important units for conservation policy and management when other information is lacking. In this study, we evaluated phenotypic subspecies hypotheses within shovel-nosed snakes on the basis of genetic data and considered how evolutionary processes such as gene flow influenced possible incongruence between phenotypic and genetic patterns. We used both traditional phylogenetic and Bayesian clustering analyses to infer range-wide genetic structure and spatially explicit analyses to detect possible boundary locations of lineage contact. Multilocus analyses supported three historically isolated groups with low to moderate levels of contemporary gene exchange. Genetic data did not support phenotypic subspecies as exclusive groups, and we detected patterns of discordance in areas where three subspecies are presumed to be in contact. Based on genetic and phenotypic evidence, we suggested that species-level diversity is underestimated in this group and we proposed that two species be recognized, Chionactis occipitalis and C. annulata. In addition, we recommend retention of two subspecific designations within C. annulata (C. a. annulata and C. a. klauberi) that reflect regional shifts in both genetic and phenotypic variation within the species. Our results highlight the difficultly in validating taxonomic boundaries within lineages that are evolving under a time-dependent, continuous process.

  15. Do DNA barcoding delimitation methods affect our view of stream biodiversity?

    EPA Science Inventory

    How we delimit molecular operational taxonomic units (MOTUs) is an important aspect in the use of DNA barcoding for bioassessment. Four delimitation methods were examined to gain an understanding of their relative strengths at organizing data from 5300 specimens collected during ...

  16. Automatic Match between Delimitation Line and Real Terrain Based on Least-Cost Path Analysis

    NASA Astrophysics Data System (ADS)

    Feng, C. Q.; Jiang, N.; Zhang, X. N.; Ma, J.

    2013-11-01

    Nowadays, during the international negotiation on separating dispute areas, manual adjusting is lonely applied to the match between delimitation line and real terrain, which not only consumes much time and great labor force, but also cannot ensure high precision. Concerning that, the paper mainly explores automatic match between them and study its general solution based on Least -Cost Path Analysis. First, under the guidelines of delimitation laws, the cost layer is acquired through special disposals of delimitation line and terrain features line. Second, a new delimitation line gets constructed with the help of Least-Cost Path Analysis. Third, the whole automatic match model is built via Module Builder in order to share and reuse it. Finally, the result of automatic match is analyzed from many different aspects, including delimitation laws, two-sided benefits and so on. Consequently, a conclusion is made that the method of automatic match is feasible and effective.

  17. Isolation-by-distance and outbreeding depression are sufficient to drive parapatric speciation in the absence of environmental influences.

    PubMed

    Hoelzer, Guy A; Drewes, Rich; Meier, Jeffrey; Doursat, René

    2008-07-25

    A commonly held view in evolutionary biology is that speciation (the emergence of genetically distinct and reproductively incompatible subpopulations) is driven by external environmental constraints, such as localized barriers to dispersal or habitat-based variation in selection pressures. We have developed a spatially explicit model of a biological population to study the emergence of spatial and temporal patterns of genetic diversity in the absence of predetermined subpopulation boundaries. We propose a 2-D cellular automata model showing that an initially homogeneous population might spontaneously subdivide into reproductively incompatible species through sheer isolation-by-distance when the viability of offspring decreases as the genomes of parental gametes become increasingly different. This simple implementation of the Dobzhansky-Muller model provides the basis for assessing the process and completion of speciation, which is deemed to occur when there is complete postzygotic isolation between two subpopulations. The model shows an inherent tendency toward spatial self-organization, as has been the case with other spatially explicit models of evolution. A well-mixed version of the model exhibits a relatively stable and unimodal distribution of genetic differences as has been shown with previous models. A much more interesting pattern of temporal waves, however, emerges when the dispersal of individuals is limited to short distances. Each wave represents a subset of comparisons between members of emergent subpopulations diverging from one another, and a subset of these divergences proceeds to the point of speciation. The long-term persistence of diverging subpopulations is the essence of speciation in biological populations, so the rhythmic diversity waves that we have observed suggest an inherent disposition for a population experiencing isolation-by-distance to generate new species.

  18. Molecular Phylogeny of Tribe Theeae (Theaceae s.s.) and Its Implications for Generic Delimitation

    PubMed Central

    Zhang, Wei; Kan, Sheng-long; Zhao, Hong; Li, Zhen-yu; Wang, Xiao-quan

    2014-01-01

    Tribe Theeae, which includes some economically important and widely grown plants, such as beverage tea and a number of woody ornamentals, is the largest member of the Theaceae family. Using five genomic regions (chloroplast: atpI-H, matK, psbA5'R-ALS-11F, rbcL; nuclear: LEAFY) and 30 species representing four of the five genera in this tribe (Apterosperma, Camellia, Polyspora, and Pyrenaria s.l.), we investigated the phylogeny of Theeae and assessed the delimitation of genera in the tribe. Our results showed that Polyspora was monophyletic and the sister of the three other genera of Theeae investigated, Camellia was paraphyletic and Pyrenaria was polyphyletic. The inconsistent phylogenetic placement of some species of Theeae between the nuclear and chloroplast trees suggested widespread hybridization between Camellia and Pyrenaria, Polyspora and Parapyrenaria. These results indicate that hybridization, rather than morphological homoplasy, has confused the current classification of Theeae. In addition, the phylogenetic placement and possible allies of Laplacea are also discussed. PMID:24848365

  19. Delimitation of some neotropical laccate Ganoderma (Ganodermataceae): molecular phylogeny and morphology.

    PubMed

    De Lima Júnior, Nelson Correia; Baptista Gibertone, Tatiana; Malosso, Elaine

    2014-09-01

    Ganoderma includes species of great economic and ecological importance, but taxonomists judge the current nomenclatural situation as chaotic and poorly studied in the neotropics. From this perspective, phylogenetic analyses inferred from ribosomal DNA sequences have aided the clarification of the genus status. In this study, 14 specimens of Ganoderma and two of Tomophagus collected in Brazil were used for DNA extraction, amplification and sequencing of the ITS and LSU regions (rDNA). The phylogenetic delimitation of six neotropical taxa (G. chalceum, G. multiplicatum, G. orbiforme, G. parvulum, G. aff. oerstedtii and Tomophagus colossus) was determined based on these Brazilian specimens and found to be distinct from the laccate Ganoderma from Asia, Europe, North America and from some specimens from Argentina. Phylogenetic reconstructions confirmed that the laccate Ganoderna is distinct from Tomophagus, although they belong to the same group. The use of taxonomic synonyms Ganoderma subamboinense for G. multiplicatumnz, G. boninense for G. orbiforme and G. chalceum for G. cupreum was not confirmed. However, Ganoderma parvulum was confirmed as the correct name for specimens called G. stipitatu. Furthermore, the name G. hucidumn should be used only for European species. The use of valid published names is proposed according to the specimen geographical distribution, their morphological characteristics and rDNA analysis. 1208. Epub 2014 September 01.

  20. Revised species definitions and nomenclature of the rose colored Cithaerias butterflies (Lepidoptera, Nymphalidae, Satyrinae).

    PubMed

    Penz, Carla M; Alexander, Laura G; Devries, Philip J

    2014-10-20

    This study provides updated species definitions for five rose-colored Cithaerias butterflies, starting with a historical overview of their taxonomy. Given their mostly transparent wings, genitalia morphology yielded the most reliable characters for species definition and identification. Genitalic divergence is more pronounced when multiple species occur in sympatry than between parapatric taxa. Cithaerias aurorina is granted full species status, C. cliftoni is reinstated as a full species, and one new combination is proposed, i.e. C. aurora tambopata. Two new synonyms are proposed, Callitaera phantoma and Callitaera aura = Cithaerias aurora. 

  1. How do societies and "corporate" groups delimit themselves? A puzzle common to social and medical anthropology.

    PubMed

    Zempléni, A

    1990-06-01

    Classic anthropological theories define the first but neglect the second condition of social life. When they assume that the universal effect of the incest taboo is the opening of the consanguinial groups to the others, to exchange, they do not explain the closure of their sphere of reciprocity, i.e., the delimitation of the society. Hence the question: How, by which means, are stateless societies delimited or do they delimit themselves? Among the Senoufo of Ivory Coast (Nafara), one of the main acts of male initiation ceremonies--to the Poro, which is the very basis of the Senoufo's ethnic identity--is a ritual intercourse between the neophytes and their symbolic mother who has just given birth to them. This rite materializes the initiatic axiom: Senoufo men reproduce themselves by incest. In this case, the prescription of ritual incest is a means by which the society "closes" the field of reciprocity "opened" by the prohibition of actual incest. The return of the forbidden--at the heart of the institution which reproduces its identity--is the basic principle of the ritual delimitation of this society. Despite appearances, the delimitation of the so-called "corporate groups"--for example, an African lineage--is neither more "natural" nor more jural than that of the society which contains them. The limits of these groups are traced and retraced notably in the course of traditional "therapies" and by means of etiological entities which share several common, distinctive properties. (1) They cannot operate outside of the group delimited by them. (2) They are polyvalent and their effects are permutable from one group-member to another. (3) They act periodically: they have to dismantle the group periodically from the inside in order to be able to delimit it constantly from the outside. This phenomenon of spatio-temporal inversion (inside-outside; periodic-continuous), observable in any process of ritual delimitation, deserves our attention insofar as its closer analysis

  2. Delimitation of cohesive ends site (cos) of Streptomyces temperate bacteriophage R4.

    PubMed

    Mitsui, H; Takahashi, H

    1992-08-14

    The cohesive ends site (cos) of actinophage R4 was delimitated by assaying the in vivo packaging activity of cosmid derivatives in Streptomyces lividans. A region of 66 bp from -30 to +36 from the center of cohesive ends was required for the basal level of packaging activity. Two additional regions outside the basal sequences from -39 to -31 and from +37 to +97 were necessary for the high level of activity, defined as the accessory sequences. Direct- or inverted-repeat sequences were found within the delimitated region, which might be involved in the recognition by the terminase of actinophage R4.

  3. Tree-based delimitation of morphologically ambiguous taxa: a study of the lizard malaria parasites on the Caribbean island of Hispaniola.

    PubMed

    Falk, Bryan G; Mahler, D Luke; Perkins, Susan L

    2011-08-01

    Malaria parasites in the genus Plasmodium have been classified primarily on the basis of differences in morphology. These single-celled organisms often lack distinguishing morphological features, and this can encumber both species delimitation and identification. Six saurian malaria parasites have been described from the Caribbean island of Hispaniola. All six infect lizards in the genus Anolis, but only two of these parasites can be distinguished using morphology. The remaining four species overlap in morphology and geography, and cannot be consistently identified using traditional methods. We compared a morphological approach with a molecular phylogenetic approach for assessing the taxonomy of these parasites. We surveyed for blood parasites from 677 Anolis lizards, representing 26 Anolis spp. from a total of 52 sites across Hispaniola. Fifty-five of these lizards were infected with Plasmodium spp., representing several new host records, but only 24 of these infections could be matched to previously described species using traditional morphological criteria. We then estimated the phylogeny of these parasites using both mitochondrial (cytb and coxI) and nuclear (EF2) genes, and included carefully selected GenBank sequences to confirm identities for certain species. Our molecular results unambiguously corroborated our morphology-based species identifications for only the two species previously judged to be morphologically distinctive. The remaining infections fell into two well-supported and reciprocally monophyletic clades, which contained the morphological variation previously reported for all four of the morphologically ambiguous species. One of these clades was identified as Plasmodium floridense and the other as Plasmodium fairchildi hispaniolae. We elevate the latter to Plasmodium hispaniolae comb. nov. because it is polyphyletic with the mainland species Plasmodium fairchildifairchildi and we contribute additional morphological and molecular characters for

  4. DNA barcodes, species delimitation, and bioassessment: issues of diversity, analysis, and standardization

    EPA Science Inventory

    DNA barcoding has the capability to uncover cryptic diversity otherwise undetectable using morphology alone. For aquatic bioassessment, this opportunity to discover hidden biodiversity presents new data for incorporation into environmental monitoring programs. Unfortunately, the ...

  5. Region-growing segmentation to automatically delimit synthetic drumlins in 'real' DEMs

    NASA Astrophysics Data System (ADS)

    Eisank, Clemens; Smith, Mike; Hillier, John

    2013-04-01

    Mapping or 'delimiting' landforms is one of geomorphology's primary tools. Computer-based techniques, such as terrain segmentation, may potentially provide terrain units that are close to the size and shape of landforms. Whether terrain units represent landforms heavily depends on the segmentation algorithm, its settings and the type of underlying land-surface parameters (LSPs). We assess a widely used region-growing technique, i.e. the multiresolution segmentation (MRS) algorithm as implemented in object-based image analysis software, for delimiting drumlins. Supervised testing was based on five synthetic DEMs that included the same set of perfectly known drumlins at different locations. This, for the first time, removes subjectivity from the reference data. Five LSPs were tested, and four variants were computed for each using two pre- and post-processing options. The automated method (1) employs MRS to partition the input LSP into 200 ever coarser terrain unit patterns, (2) identifies the spatially best matching terrain unit for each reference drumlin, and (3) computes four accuracy metrics for quantifying the aerial match between delimited and reference drumlins. MRS performed best on LSPs that are regional, derived from a decluttered DEM and then normalized. Median scale parameters (SPs) for segments best delineating drumlins were relatively stable for the same LSP, but varied significantly between LSPs. Larger drumlins were generally delimited at higher SPs. MRS indicated high robustness against variations in the location and distribution of drumlins.

  6. Integrative Taxonomy Recognizes Evolutionary Units Despite Widespread Mitonuclear Discordance: Evidence from a Rotifer Cryptic Species Complex.

    PubMed

    Papakostas, Spiros; Michaloudi, Evangelia; Proios, Konstantinos; Brehm, Michaela; Verhage, Laurens; Rota, Jadranka; Peña, Carlos; Stamou, Georgia; Pritchard, Victoria L; Fontaneto, Diego; Declerck, Steven A J

    2016-05-01

    Mitonuclear discordance across taxa is increasingly recognized as posing a major challenge to species delimitation based on DNA sequence data. Integrative taxonomy has been proposed as a promising framework to help address this problem. However, we still lack compelling empirical evidence scrutinizing the efficacy of integrative taxonomy in relation to, for instance, complex introgression scenarios involving many species. Here, we report remarkably widespread mitonuclear discordance between about 15 mitochondrial and 4 nuclear Brachionus calyciflorus groups identified using different species delimitation approaches. Using coalescent-, Bayesian admixture-, and allele sharing-based methods with DNA sequence or microsatellite data, we provide strong evidence in support of hybridization as a driver of the observed discordance. We then describe our combined molecular, morphological, and ecological approaches to resolving phylogenetic conflict and inferring species boundaries. Species delimitations based on the ITS1 and 28S nuclear DNA markers proved a more reliable predictor of morphological variation than delimitations using the mitochondrial COI gene. A short-term competition experiment further revealed systematic differences in the competitive ability between two of the nuclear-delimited species under six different growth conditions, independent of COI delimitations; hybrids were also observed. In light of these findings, we discuss the failure of the COI marker to estimate morphological stasis and morphological plasticity in the B. calyciflorus complex. By using B. calyciflorus as a representative case, we demonstrate the potential of integrative taxonomy to guide species delimitation in the presence of mitonuclear phylogenetic conflicts.

  7. Parsing polyphyletic Pueraria: Delimiting distinct evolutionary lineages through phylogeny.

    PubMed

    Egan, Ashley N; Vatanparast, Mohammad; Cagle, William

    2016-11-01

    Several taxonomic and phylogenetic studies have hypothesized polyphyly within Pueraria DC., a genus comprising 19 species (24 with varieties) including the highly invasive Pueraria montana var. lobata (Kudzu) introduced to the U.S.A. about 150years ago. Previous efforts to investigate monophyly of the genus have been hampered by limited taxon sampling or a lack of comprehensive evolutionary context that would enable definitive taxonomic associations. This work presents a comprehensive phylogenetic investigation of Pueraria within the context of tribe Phaseoleae (Leguminosae). Polyphyly was found to be more extensive than previously thought, with five distinct lineages spread across the tribe and spanning over 25mya of divergence strongly supported by two chloroplast and one nuclear marker, AS2, presented here as a phylogenetic marker for the first time. Our phylogenies support taxonomic revisions to rectify polyphyly within Pueraria, including the resurrection of Neustanthus, moving one species to Teyleria, and the creation of two new genera, Haymondia and Toxicopueraria (taxonomic revisions published elsewhere). PMID:27495827

  8. Parapatric distribution of the lizards Plestiodon (formerly Eumeces) latiscutatus and P. japonicus (Reptilia: Scincidae) around the Izu Peninsula, Central Japan, and its biogeographic implications.

    PubMed

    Okamoto, Taku; Motokawa, Junko; Toda, Mamoru; Hikida, Tsutomu

    2006-05-01

    The scincid lizard Plestiodon latiscutatus is found in the Izu Islands and Izu Peninsula of central Japan, whereas P. japonicus, a close relative, is found over the entire main island group of Japan, except the Izu Peninsula. The precise area of occupancy of these species was surveyed around the Izu Peninsula. Species identification was made through comparison of mitochondrial DNA partial sequences of specimens from the Izu Peninsula with those from the other regions, since morphological differences between these species have not yet been characterized. This study determined that these species are deeply diverged from each other in mitochondrial DNA sequence, and that the ranges of these species overlap only in a narrow zone. The results imply that gene flow between these species, if any, is restricted to a low level, without physical barriers. The boundary between the geographic ranges of these species was established as occurring along the lower Fuji River, Mt. Fuji, and the Sakawa River. This region is concordant with that of the old sea that is assumed to have separated the Izu Peninsula from other parts of the Japanese main island group until the middle Pleistocene. This pattern suggests that P. latiscutatus and P. japonicus were differentiated allopatrically before the connection of land areas of the Izu Peninsula and Honshu, the main island of Japan, and come into secondary contact through this connection. Thus, the species boundary is likely to have been maintained in situ, without physical barriers, since the secondary contact in the middle Pleistocene. PMID:16766860

  9. Chromosomal Speciation Revisited: Modes of Diversification in Australian Morabine Grasshoppers (Vandiemenella, viatica Species Group)

    PubMed Central

    Kawakami, Takeshi; Butlin, Roger K.; Cooper, Steven J. B.

    2011-01-01

    Chromosomal rearrangements can alter the rate and patterns of gene flow within or between species through a reduction in the fitness of chromosomal hybrids or by reducing recombination rates in rearranged areas of the genome. This concept, together with the observation that many species have structural variation in chromosomes, has led to the theory that the rearrangements may play a direct role in promoting speciation. Australian morabine grasshoppers (genus Vandiemenella, viatica species group) are an excellent model for studying the role of chromosomal rearrangement in speciation because they show extensive chromosomal variation, parapatric distribution patterns, and narrow hybrid zones at their boundaries. This species group stimulated development of one of the classic chromosomal speciation models, the stasipatric speciation model proposed by White in 1968. Our population genetic and phylogeographic analyses revealed extensive non-monophyly of chromosomal races along with historical and on-going gene introgression between them. These findings suggest that geographical isolation leading to the fixation of chromosomal variants in different geographic regions, followed by secondary contact, resulted in the present day parapatric distributions of chromosomal races. The significance of chromosomal rearrangements in the diversification of the viatica species group can be explored by comparing patterns of genetic differentiation between rearranged and co-linear parts of the genome. PMID:26467499

  10. Darwin's species category realism.

    PubMed

    Stamos, D N

    1999-01-01

    Ever since Charles Darwin's On the Origin of Species was published, the received view has been that Darwin literally thought of species as not extra-mentally real. In 1969 Michael Ghiselin upset the received view by interpreting Darwin to mean that species taxa are indeed real but not the species category. In 1985 John Beatty took Ghiselin's thesis a step further by providing a strategy theory to explain why Darwin would say one thing (his repeated nominalistic definition of species) and do another (hold that species taxa are real). In the present paper I attempt to take this line of interpretation to a new level. Guided by the principle of charity, I provide and analyze a considerable amount of evidence from Darwin's mature writings (both private and published) to show that (contra Ghiselin and Beatty) Darwin did not simply accept the species delimitations of his fellow naturalists but actually employed, repeatedly and consistently, a species concept in a thoroughly modern sense, albeit with an implicit definition, a concept uniquely his own and fully in accord with his theory of evolution by natural selection. This implicit concept and definition is carefully reconstructed in the present paper. A new strategy theory is then provided to account for why Darwin would define species (both taxa and category) nominalistically on the one hand but delimit species realistically on the other.

  11. Delimiting family in syntheses of research on childhood chronic conditions and family life.

    PubMed

    Knafl, Kathleen; Leeman, Jennifer; Havill, Nancy; Crandell, Jamie; Sandelowski, Margarete

    2015-03-01

    Synthesis of family research presents unique challenges to investigators who must delimit what will be included as a family study in the proposed review. In this paper, the authors discuss the conceptual and pragmatic challenges of conducting systematic reviews of the literature on the intersection between family life and childhood chronic conditions. A proposed framework for delimiting the family domain of interest is presented. The framework addresses both topical salience and level of relevance and provides direction to future researchers, with the goal of supporting the overall quality of family research synthesis efforts. For users of synthesis studies, knowledge of how investigators conceptualize the boundaries of family research is important contextual information for understanding the limits and applicability of the results.

  12. Delimitation of air space and outer space - Is such a boundary needed now?

    NASA Technical Reports Server (NTRS)

    Hosenball, S. N.

    1983-01-01

    A discussion is presented of the question of establishing a boundary between air space and outer space. Four theories and approaches for establishing a delimitation between air space and outer space are examined. Spatial approaches include demarcation based on the division of the atmosphere into layers, demarcation based on aerodynamic characteristics of flight instrumentalities (von Karman Line), demarcation according to the lowest perigee of an orbiting satellite, and demarcation based upon the earth's gravitational effects. The functionalist approach is based on the delimitation or definition of the air space/outer space regime by the purpose and activities for which an object is designed in air space or outer space. The arbitrarist approach is supported by those who wish to draw an arbitrary line between air space and outer space. It is proposed that a pragmatist approach will be more useful than the other three approaches. The pragmatist approach advocates not establishing a boundary between air space and outer space at the present time or in the immediate future. It is argued that there are at present no serious problems that can be resolved by the definition/delimitation of air space and outer space.

  13. Managing aquatic species of conservation concern in the face of climate change and invasive species.

    PubMed

    Rahel, Frank J; Bierwagen, Britta; Taniguchi, Yoshinori

    2008-06-01

    The difficult task of managing species of conservation concern is likely to become even more challenging due to the interaction of climate change and invasive species. In addition to direct effects on habitat quality, climate change will foster the expansion of invasive species into new areas and magnify the effects of invasive species already present by altering competitive dominance, increasing predation rates, and enhancing the virulence of diseases. In some cases parapatric species may expand into new habitats and have detrimental effects that are similar to those of invading non-native species. The traditional strategy of isolating imperiled species in reserves may not be adequate if habitat conditions change beyond historic ranges or in ways that favor invasive species. The consequences of climate change will require a more active management paradigm that includes implementing habitat improvements that reduce the effects of climate change and creating migration barriers that prevent an influx of invasive species. Other management actions that should be considered include providing dispersal corridors that allow species to track environmental changes, translocating species to newly suitable habitats where migration is not possible, and developing action plans for the early detection and eradication of new invasive species.

  14. Managing aquatic species of conservation concern in the face of climate change and invasive species.

    PubMed

    Rahel, Frank J; Bierwagen, Britta; Taniguchi, Yoshinori

    2008-06-01

    The difficult task of managing species of conservation concern is likely to become even more challenging due to the interaction of climate change and invasive species. In addition to direct effects on habitat quality, climate change will foster the expansion of invasive species into new areas and magnify the effects of invasive species already present by altering competitive dominance, increasing predation rates, and enhancing the virulence of diseases. In some cases parapatric species may expand into new habitats and have detrimental effects that are similar to those of invading non-native species. The traditional strategy of isolating imperiled species in reserves may not be adequate if habitat conditions change beyond historic ranges or in ways that favor invasive species. The consequences of climate change will require a more active management paradigm that includes implementing habitat improvements that reduce the effects of climate change and creating migration barriers that prevent an influx of invasive species. Other management actions that should be considered include providing dispersal corridors that allow species to track environmental changes, translocating species to newly suitable habitats where migration is not possible, and developing action plans for the early detection and eradication of new invasive species. PMID:18577084

  15. Assessment of multiresolution segmentation for delimiting drumlins in digital elevation models.

    PubMed

    Eisank, Clemens; Smith, Mike; Hillier, John

    2014-06-01

    Mapping or "delimiting" landforms is one of geomorphology's primary tools. Computer-based techniques such as land-surface segmentation allow the emulation of the process of manual landform delineation. Land-surface segmentation exhaustively subdivides a digital elevation model (DEM) into morphometrically-homogeneous irregularly-shaped regions, called terrain segments. Terrain segments can be created from various land-surface parameters (LSP) at multiple scales, and may therefore potentially correspond to the spatial extents of landforms such as drumlins. However, this depends on the segmentation algorithm, the parameterization, and the LSPs. In the present study we assess the widely used multiresolution segmentation (MRS) algorithm for its potential in providing terrain segments which delimit drumlins. Supervised testing was based on five 5-m DEMs that represented a set of 173 synthetic drumlins at random but representative positions in the same landscape. Five LSPs were tested, and four variants were computed for each LSP to assess the impact of median filtering of DEMs, and logarithmic transformation of LSPs. The testing scheme (1) employs MRS to partition each LSP exhaustively into 200 coarser scales of terrain segments by increasing the scale parameter (SP), (2) identifies the spatially best matching terrain segment for each reference drumlin, and (3) computes four segmentation accuracy metrics for quantifying the overall spatial match between drumlin segments and reference drumlins. Results of 100 tests showed that MRS tends to perform best on LSPs that are regionally derived from filtered DEMs, and then log-transformed. MRS delineated 97% of the detected drumlins at SP values between 1 and 50. Drumlin delimitation rates with values up to 50% are in line with the success of manual interpretations. Synthetic DEMs are well-suited for assessing landform quantification methods such as MRS, since subjectivity in the reference data is avoided which increases the

  16. Assessment of multiresolution segmentation for delimiting drumlins in digital elevation models

    NASA Astrophysics Data System (ADS)

    Eisank, Clemens; Smith, Mike; Hillier, John

    2014-06-01

    Mapping or "delimiting" landforms is one of geomorphology's primary tools. Computer-based techniques such as land-surface segmentation allow the emulation of the process of manual landform delineation. Land-surface segmentation exhaustively subdivides a digital elevation model (DEM) into morphometrically-homogeneous irregularly-shaped regions, called terrain segments. Terrain segments can be created from various land-surface parameters (LSP) at multiple scales, and may therefore potentially correspond to the spatial extents of landforms such as drumlins. However, this depends on the segmentation algorithm, the parameterization, and the LSPs. In the present study we assess the widely used multiresolution segmentation (MRS) algorithm for its potential in providing terrain segments which delimit drumlins. Supervised testing was based on five 5-m DEMs that represented a set of 173 synthetic drumlins at random but representative positions in the same landscape. Five LSPs were tested, and four variants were computed for each LSP to assess the impact of median filtering of DEMs, and logarithmic transformation of LSPs. The testing scheme (1) employs MRS to partition each LSP exhaustively into 200 coarser scales of terrain segments by increasing the scale parameter (SP), (2) identifies the spatially best matching terrain segment for each reference drumlin, and (3) computes four segmentation accuracy metrics for quantifying the overall spatial match between drumlin segments and reference drumlins. Results of 100 tests showed that MRS tends to perform best on LSPs that are regionally derived from filtered DEMs, and then log-transformed. MRS delineated 97% of the detected drumlins at SP values between 1 and 50. Drumlin delimitation rates with values up to 50% are in line with the success of manual interpretations. Synthetic DEMs are well-suited for assessing landform quantification methods such as MRS, since subjectivity in the reference data is avoided which increases the

  17. Assessment of multiresolution segmentation for delimiting drumlins in digital elevation models.

    PubMed

    Eisank, Clemens; Smith, Mike; Hillier, John

    2014-06-01

    Mapping or "delimiting" landforms is one of geomorphology's primary tools. Computer-based techniques such as land-surface segmentation allow the emulation of the process of manual landform delineation. Land-surface segmentation exhaustively subdivides a digital elevation model (DEM) into morphometrically-homogeneous irregularly-shaped regions, called terrain segments. Terrain segments can be created from various land-surface parameters (LSP) at multiple scales, and may therefore potentially correspond to the spatial extents of landforms such as drumlins. However, this depends on the segmentation algorithm, the parameterization, and the LSPs. In the present study we assess the widely used multiresolution segmentation (MRS) algorithm for its potential in providing terrain segments which delimit drumlins. Supervised testing was based on five 5-m DEMs that represented a set of 173 synthetic drumlins at random but representative positions in the same landscape. Five LSPs were tested, and four variants were computed for each LSP to assess the impact of median filtering of DEMs, and logarithmic transformation of LSPs. The testing scheme (1) employs MRS to partition each LSP exhaustively into 200 coarser scales of terrain segments by increasing the scale parameter (SP), (2) identifies the spatially best matching terrain segment for each reference drumlin, and (3) computes four segmentation accuracy metrics for quantifying the overall spatial match between drumlin segments and reference drumlins. Results of 100 tests showed that MRS tends to perform best on LSPs that are regionally derived from filtered DEMs, and then log-transformed. MRS delineated 97% of the detected drumlins at SP values between 1 and 50. Drumlin delimitation rates with values up to 50% are in line with the success of manual interpretations. Synthetic DEMs are well-suited for assessing landform quantification methods such as MRS, since subjectivity in the reference data is avoided which increases the

  18. Polarization radiation in the planetary atmosphere delimited by a heterogeneous diffusely reflecting surface

    NASA Technical Reports Server (NTRS)

    Strelkov, S. A.; Sushkevich, T. A.

    1983-01-01

    Spatial frequency characteristics (SFC) and the scattering functions were studied in the two cases of a uniform horizontal layer with absolutely black bottom, and an isolated layer. The mathematical model for these examples describes the horizontal heterogeneities in a light field with regard to radiation polarization in a three dimensional planar atmosphere, delimited by a heterogeneous surface with diffuse reflection. The perturbation method was used to obtain vector transfer equations which correspond to the linear and nonlinear systems of polarization radiation transfer. The boundary value tasks for the vector transfer equation that is a parametric set and one dimensional are satisfied by the SFC of the nonlinear system, and are expressed through the SFC of linear approximation. As a consequence of the developed theory, formulas were obtained for analytical calculation of albedo in solving the task of dissemination of polarization radiation in the planetary atmosphere with uniform Lambert bottom.

  19. Plate tectonics and offshore boundary delimitation: Tunisia-Libya case at the International Court of Justice

    NASA Astrophysics Data System (ADS)

    Stanley, Daniel Jean

    1982-03-01

    The first major offshore boundary dispute where plate tectonics constituted a significant argument was recently brought before the International Court of Justice by Libya and Tunisia concerning the delimitation of their continental shelves. Libya placed emphasis on this concept to determine natural prolongation of its land territory under the sea. Tunisia contested use of the entire African continental landmass as a reference unit and views geography, geomorphology and bathymetry as relevant as geology. The Court pronounced that “It is the outcome, not the evolution in the long-distant past, which is of importance.” Moreover, it is the present-day configuration of coasts and seabed that are the main factors, not geology.

  20. Plate tectonics and offshore boundary delimitation: Tunisia-Libya case at the International Court of Justice

    SciTech Connect

    Stanley, D.J.

    1983-03-01

    Advances in the technology for exploiting resources of the oceans, particularly recovery of hydrocarbons and minerals in deep water, is benefiting a growing number of nations. At the same time, however, economic and political pressures have induced concern and there is now a much increased emphasis on jurisdiction to divide the offshore areas between the 132 coastal nations. Negotiations affect research operations at sea and, in consequence, marine scientists have been made aware of offshore problems as highlighted by the Law of the Sea Treaty (UNCLOS III) and complications arising from the legal versus scientific definitions of continental shelves and margins. The first major offshore boundary case of international scope where plate tectonics has constituted a significant argument is the one recently brought before the International Court of Justice by Libya and Tunisia concerning the delimitation of their continental shelves. Of the two parties, Libya placed the greatest emphasis on this concept as a means to determine natural prolongation of its land territory into and under the sea. Tunisia contested Libya's use of the whole of the African continental landmass as a reference unit; in Tunisia's view, considerations of geography, geomorphology, and bathymetry are at least as relevant as are those of geology. In its landmark judgment (February 1982) - which almost certainly will have far-reaching consequences in future such boundary delimitation cases - the court pronounced that It is the outcome, not the evolution in the long-distant past, which is of importance, and that it is the present-day configuration of the coasts and sea bed which are the main factors to be considered, not geology.

  1. Assessment of multiresolution segmentation for delimiting drumlins in digital elevation models

    PubMed Central

    Eisank, Clemens; Smith, Mike; Hillier, John

    2014-01-01

    Mapping or “delimiting” landforms is one of geomorphology's primary tools. Computer-based techniques such as land-surface segmentation allow the emulation of the process of manual landform delineation. Land-surface segmentation exhaustively subdivides a digital elevation model (DEM) into morphometrically-homogeneous irregularly-shaped regions, called terrain segments. Terrain segments can be created from various land-surface parameters (LSP) at multiple scales, and may therefore potentially correspond to the spatial extents of landforms such as drumlins. However, this depends on the segmentation algorithm, the parameterization, and the LSPs. In the present study we assess the widely used multiresolution segmentation (MRS) algorithm for its potential in providing terrain segments which delimit drumlins. Supervised testing was based on five 5-m DEMs that represented a set of 173 synthetic drumlins at random but representative positions in the same landscape. Five LSPs were tested, and four variants were computed for each LSP to assess the impact of median filtering of DEMs, and logarithmic transformation of LSPs. The testing scheme (1) employs MRS to partition each LSP exhaustively into 200 coarser scales of terrain segments by increasing the scale parameter (SP), (2) identifies the spatially best matching terrain segment for each reference drumlin, and (3) computes four segmentation accuracy metrics for quantifying the overall spatial match between drumlin segments and reference drumlins. Results of 100 tests showed that MRS tends to perform best on LSPs that are regionally derived from filtered DEMs, and then log-transformed. MRS delineated 97% of the detected drumlins at SP values between 1 and 50. Drumlin delimitation rates with values up to 50% are in line with the success of manual interpretations. Synthetic DEMs are well-suited for assessing landform quantification methods such as MRS, since subjectivity in the reference data is avoided which increases the

  2. Delimiting the Problem of Generalizability of Research Results: An Example from a Trend Study of a Citizenship Education Project.

    ERIC Educational Resources Information Center

    Napier, John D.; Grant, Evelyn T.

    1984-01-01

    How social studies researchers can use National Assessment of Educational Progress Public Use Data File tapes to delimit the problem of generalizability of research results is described. An example using data from a trend study of a citizenship education project is used to demonstrate the procedure. (Author/RM)

  3. Evidence for Mito-Nuclear and Sex-Linked Reproductive Barriers between the Hybrid Italian Sparrow and Its Parent Species

    PubMed Central

    Sætre, Glenn-Peter; Bailey, Richard I.

    2014-01-01

    Studies of reproductive isolation between homoploid hybrid species and their parent species have rarely been carried out. Here we investigate reproductive barriers between a recently recognized hybrid bird species, the Italian sparrow Passer italiae and its parent species, the house sparrow P. domesticus and Spanish sparrow P. hispaniolensis. Reproductive barriers can be difficult to study in hybrid species due to lack of geographical contact between taxa. However, the Italian sparrow lives parapatrically with the house sparrow and both sympatrically and parapatrically with the Spanish sparrow. Through whole-transcriptome sequencing of six individuals of each of the two parent species we identified a set of putatively parent species-diagnostic single nucleotide polymorphism (SNP) markers. After filtering for coverage, genotyping success (>97%) and multiple SNPs per gene, we retained 86 species-informative, genic, nuclear and mitochondrial SNP markers from 84 genes for analysis of 612 male individuals. We show that a disproportionately large number of sex-linked genes, as well as the mitochondria and nuclear genes with mitochondrial function, exhibit sharp clines at the boundaries between the hybrid and the parent species, suggesting a role for mito-nuclear and sex-linked incompatibilities in forming reproductive barriers. We suggest that genomic conflict via interactions between mitochondria and sex-linked genes with mitochondrial function (“mother's curse”) at one boundary and centromeric drive at the other may best explain our findings. Hybrid speciation in the Italian sparrow may therefore be influenced by mechanisms similar to those involved in non-hybrid speciation, but with the formation of two geographically separated species boundaries instead of one. Spanish sparrow alleles at some loci have spread north to form reproductive barriers with house sparrows, while house sparrow alleles at different loci, including some on the same chromosome, have spread

  4. Species limits in the Andean toad genus Osornophryne (Bufonidae).

    PubMed

    Páez-Moscoso, Diego J; Guayasamin, Juan M

    2012-12-01

    As Darwin observed, the differentiation among varieties, subspecies, and species seems, often times, arbitrary. Nowadays, however, novel tools provide the possibility of testing hypotheses of species. Using the Andean toad genus Osornophryne, we address the following questions: (1) How many species are within the genus? (2) Are morphological and molecular traits congruent when delimiting species? (3) Which morphological traits are the most divergent among species? We use recently developed methods for testing species boundaries and relationships using a multilocus data set consisting of two mitochondrial genes (12S, 16S; 1647bp aligned matrix), one exon (RAG-1; 923 aligned matrix), and one intron (RPL3Int5; 1410bp aligned matrix). As another line of evidence for species delimitation, we integrated analyses of 12 morphometric variables and 10 discrete traits commonly used in amphibian systematics. The molecular and morphological approaches support the validity of most of the described species in Osornophryne. We find, however, contradictory lines of evidence regarding the status of O. angel. Within O. guacamayo, we found a genetically divergent population that, we argue, represents a new species. We consider that O. bufoniformis represents a species complex that deserves further study. We highlight the importance of incorporating morphological data when delimiting species, especially for lineages that have a recent origin and have not achieved reciprocal monophyly in molecular phylogenies. Finally, the most divergent morphological traits among Osornophryne species are associated with locomotion (finger, toes and limbs) and feeding (head), suggesting an association between morphology and the ecological habits of the species.

  5. Application of LANDSAT data to delimitation of avalanche hazards in Montane Colorado

    NASA Technical Reports Server (NTRS)

    Knepper, D. H., Jr. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. Many avalanche hazard zones can be identified on LANDSAT imagery, but not consistently over a large region. Therefore, regional avalanche hazard mapping, using LANDSAT imagery, must draw on additional sources of information. A method was devised that depicts three levels of avalanche hazards according to three corresponding levels of certainty that active avalanches occur. The lowest level, potential avalanche hazards, was defined by delineating slopes steep enough to support avalanches at elevations where snowfall was likely to be sufficient to produce a thick snowpack. The intermediate level of avalanche hazard was interpreted as avalanche hazard zones. These zones have direct and indirect indicators of active avalanche activity and were interpreted from LANDSAT imagery. The highest level of known or active avalanche hazards was compiled from existing maps. Some landslides in Colorado were identified and, to a degree, delimited on LANDSAT imagery, but the conditions of their identification were highly variable. Because of local topographic, geologic, structural, and vegetational variations, there was no unique landslide spectral appearance.

  6. Utility of Surface Pollen Assemblages to Delimit Eastern Eurasian Steppe Types

    PubMed Central

    Qin, Feng; Wang, Yu-Fei; Ferguson, David K.; Chen, Wen-Li; Li, Ya-Meng; Cai, Zhe; Wang, Qing; Ma, Hong-Zhen; Li, Cheng-Sen

    2015-01-01

    Modern pollen records have been used to successfully distinguish between specific prairie types in North America. Whether the pollen records can be used to detect the occurrence of Eurasian steppe, or even to further delimit various steppe types was until now unclear. Here we characterized modern pollen assemblages of meadow steppe, typical steppe and desert steppe from eastern Eurasia along an ecological humidity gradient. The multivariate ordination of the pollen data indicated that Eurasian steppe types could be clearly differentiated. The different steppe types could be distinguished primarily by xerophilous elements in the pollen assemblages. Redundancy analysis indicated that the relative abundances of Ephedra, Tamarix, Nitraria and Zygophyllaceae were positively correlated with aridity. The relative abundances of Ephedra increased from meadow steppe to typical steppe and desert steppe. Tamarix and Zygophyllaceae were found in both typical steppe and desert steppe, but not in meadow steppe. Nitraria was only found in desert steppe. The relative abundances of xerophilous elements were greater in desert steppe than in typical steppe. These findings indicate that Eurasian steppe types can be differentiated based on recent pollen rain. PMID:25763576

  7. The application of species criteria in avian taxonomy and its implications for the debate over species concepts.

    PubMed

    Sangster, George

    2014-02-01

    The debate over species concepts has produced a huge body of literature on how species can, may or should be delimited. By contrast, very few studies have documented how species taxa are delimited in practice. The aims of the present study were to (i) quantify the use of species criteria in taxonomy, (ii) discuss its implications for the debate over species concepts and (iii) assess recent claims about the impact of different species concepts on taxonomic stability and the 'nature' of species. The application of six species criteria was examined in taxonomic studies of birds published between 1950 and 2009. Three types of taxonomic studies were included: descriptions of new species (N = 329), proposals to change the taxonomic rank of species and subspecies (N = 808) and the taxonomic recommendations of the American Ornithologists' Union Committee on Classification and Nomenclature (N = 176). In all three datasets, diagnosability was the most frequently applied criterion, followed by reproductive isolation and degree of difference. This result is inconsistent with the popular notion that the Biological Species Concept is the dominant species concept in avian taxonomy. Since the 1950s, avian species-level taxonomy has become increasingly pluralistic and eclectic. This suggests that taxonomists consider different criteria as complementary rather than as rival approaches to species delimitation. Application of diagnosability more frequently led to the elevation of subspecies to species rank than application of reproductive isolation, although the difference was small. Hypotheses based on diagnosability and reproductive isolation were equally likely to be accepted in a mainstream checklist. These findings contradict recent claims that application of the Phylogenetic Species Concept causes instability and that broader application of the Biological Species Concept can stabilise taxonomy. The criteria diagnosability and monophyly, which are commonly associated

  8. Integrative taxonomy and preliminary assessment of species limits in the Liolaemus walkeri complex (Squamata, Liolaemidae) with descriptions of three new species from Peru.

    PubMed

    Aguilar, César; Wood, Perry L; Cusi, Juan C; Guzmán, Alfredo; Huari, Frank; Lundberg, Mikael; Mortensen, Emma; Ramírez, César; Robles, Daniel; Suárez, Juana; Ticona, Andres; Vargas, Víctor J; Venegas, Pablo J; Sites, Jack W

    2013-12-18

    Species delimitation studies based on integrative taxonomic approaches have received considerable attention in the last few years, and have provided the strongest hypotheses of species boundaries. We used three lines of evidence (molecular, morphological, and niche envelopes) to test for species boundaries in Peruvian populations of the Liolaemus walkeri complex. Our results show that different lines of evidence and analyses are congruent in different combinations, for unambiguous delimitation of three lineages that were "hidden" within known species, and now deserve species status. Our phylogenetic analysis shows that L. walkeri, L. tacnae and the three new species are strongly separated from other species assigned to the alticolor-bibronii group. Few conventional morphological characters distinguish the new species from closely related taxa and this highlights the need to integrate other sources of data to erect strong hypothesis of species limits. A taxonomic key for known Peruvian species of the subgenus Lioalemus is provided. PMID:24453545

  9. Integrative taxonomy and preliminary assessment of species limits in the Liolaemus walkeri complex (Squamata, Liolaemidae) with descriptions of three new species from Peru.

    PubMed

    Aguilar, César; Wood, Perry L; Cusi, Juan C; Guzmán, Alfredo; Huari, Frank; Lundberg, Mikael; Mortensen, Emma; Ramírez, César; Robles, Daniel; Suárez, Juana; Ticona, Andres; Vargas, Víctor J; Venegas, Pablo J; Sites, Jack W

    2013-12-18

    Species delimitation studies based on integrative taxonomic approaches have received considerable attention in the last few years, and have provided the strongest hypotheses of species boundaries. We used three lines of evidence (molecular, morphological, and niche envelopes) to test for species boundaries in Peruvian populations of the Liolaemus walkeri complex. Our results show that different lines of evidence and analyses are congruent in different combinations, for unambiguous delimitation of three lineages that were "hidden" within known species, and now deserve species status. Our phylogenetic analysis shows that L. walkeri, L. tacnae and the three new species are strongly separated from other species assigned to the alticolor-bibronii group. Few conventional morphological characters distinguish the new species from closely related taxa and this highlights the need to integrate other sources of data to erect strong hypothesis of species limits. A taxonomic key for known Peruvian species of the subgenus Lioalemus is provided.

  10. Integrative taxonomy and preliminary assessment of species limits in the Liolaemus walkeri complex (Squamata, Liolaemidae) with descriptions of three new species from Peru

    PubMed Central

    Aguilar, César; Wood Jr, Perry L.; Cusi, Juan C.; Guzmán, Alfredo; Huari, Frank; Lundberg, Mikael; Mortensen, Emma; Ramírez, César; Robles, Daniel; Suárez, Juana; Ticona, Andres; Vargas, Víctor J.; Venegas, Pablo J.; Sites Jr, Jack W.

    2013-01-01

    Abstract Species delimitation studies based on integrative taxonomic approaches have received considerable attention in the last few years, and have provided the strongest hypotheses of species boundaries. We used three lines of evidence (molecular, morphological, and niche envelopes) to test for species boundaries in Peruvian populations of the Liolaemus walkeri complex. Our results show that different lines of evidence and analyses are congruent in different combinations, for unambiguous delimitation of three lineages that were “hidden” within known species, and now deserve species status. Our phylogenetic analysis shows that L. walkeri, L. tacnae and the three new species are strongly separated from other species assigned to the alticolor-bibronii group. Few conventional morphological characters distinguish the new species from closely related taxa and this highlights the need to integrate other sources of data to erect strong hypothesis of species limits. A taxonomic key for known Peruvian species of the subgenus Lioalemus is provided. PMID:24453545

  11. Phylogenetic relationships and generic delimitation of Eurasian Aster (Asteraceae: Astereae) inferred from ITS, ETS and trnL-F sequence data

    PubMed Central

    Li, Wei-Ping; Yang, Fu-Sheng; Jivkova, Todorka; Yin, Gen-Shen

    2012-01-01

    Background and Aims The classification and phylogeny of Eurasian (EA) Aster (Asterinae, Astereae, Asteraceae) remain poorly resolved. Some taxonomists adopt a broad definition of EA Aster, whereas others favour a narrow generic concept. The present study aims to delimit EA Aster sensu stricto (s.s.), elucidate the phylogenetic relationships of EA Aster s.s. and segregate genera. Methods The internal and external transcribed spacers of nuclear ribosomal DNA and the plastid DNA trnL-F region were used to reconstruct the phylogeny of EA Aster through maximum parsimony and Bayesian analyses. Key Results The analyses strongly support an Aster clade including the genera Sheareria, Rhynchospermum, Kalimeris (excluding Kalimeris longipetiolata), Heteropappus, Miyamayomena, Turczaninowia, Rhinactinidia, eastern Asian Doellingeria, Asterothamnus and Arctogeron. Many well-recognized species of Chinese Aster s.s. lie outside of the Aster clade. Conclusions The results reveal that EA Aster s.s. is both paraphyletic and polyphyletic. Sheareria, Rhynchospermum, Kalimeris (excluding K. longipetiolata), Heteropappus, Miyamayomena, Turczaninowia, Rhinactinidia, eastern Asian Doellingeria, Asterothamnus and Arctogeron should be included in Aster, whereas many species of Chinese Aster s.s. should be excluded. The recircumscribed Aster should be divided into two subgenera and nine sections. Kalimeris longipetiolata, Aster batangensis, A. ser. Albescentes, A. series Hersileoides, a two-species group composed of A. senecioides and A. fuscescens, and a six-species group including A. asteroides, should be elevated to generic level. With the Aster clade, they belong to the Australasian lineages. The generic status of Callistephus should be maintained. Whether Galatella (including Crinitina) and Tripolium should remain as genera or be merged into a single genus remains to be determined. In addition, the taxonomic status of A. auriculatus and the A. pycnophyllus–A. panduratus clade remains

  12. A refined concept of the Critoniopsis bogotana species group in Colombia with two new species (Vernonieae, Asteraceae)

    PubMed Central

    Robinson, Harold; Keeley, Sterling C.

    2015-01-01

    Abstract Critoniopsis bogotana is more precisely delimited, and two related Colombian species are described as new. The form of trichomes on the abaxial surfaces of the leaves is found to be of major importance. A short key to the Critoniopsis bogotana group is provided. PMID:25931974

  13. These lit areas are undeveloped: Delimiting China's urban extents from thresholded nighttime light imagery

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Delahunty, Tina; Zhao, Naizhuo; Cao, Guofeng

    2016-08-01

    Nighttime light imagery is a powerful tool to study urbanization because it can provide a uniform metric, lit area, to delimit urban extents. However, lit area is much larger than actual urban area, so thresholds of digital number (DN) values are usually needed to reduce the lit area. The threshold varies greatly among different regions, but at present it is still not very clear what factors impact the changes of the threshold. In this study, urban extent by province for China is mapped using official statistical data and four intercalibrated and geometrically corrected nighttime light images between 2004 and 2010. Lit area in the imagery for most provinces is at least 94% greater than the official amount of urban area. Regression analyses show a significant correlation between optimal thresholds and GDP per capita, and larger thresholds more commonly indicate higher economic level. Size and environmental condition may explain a province's threshold that is disproportionate to GDP. Findings indicate one threshold DN is not appropriate for multiple (adjacent) province urban extent mapping, and optimal thresholds for one year may be notably different than the next. Province-level derived thresholds are not appropriate for other geographic levels. Brightness of nighttime lights is an advantage over imagery that relies on daylight reflection, and decreases in brightness indicate faster growth in the horizontal direction than the vertical. A province's optimal threshold does not always maintain an increase with population and economic growth. In the economically developed eastern provinces, urban population densities decreased (and this is seen in the brightness data), while urban population increased.

  14. A new species of Indo-Pacific Modulidae (Mollusca: Caenogastropoda).

    PubMed

    Lozouet, Pierre; Krygelmans, Anouchka

    2016-01-01

    Modulidae is a littoral cerithioid family exclusively encountered in tropical and subtropical regions. It contains 12 to 15 living species (some species are not clearly delimited). Only one species is known to occur in the vast Indo-Pacific region (Bouchet 2015) and two species in the eastern Atlantic. By comparison, the tropical American regions are relatively rich with at least eleven living species (two or three species in the eastern Pacific and nine or more in the western Atlantic), and an equivalent number or more of fossil species (Landau et al. 2014). PMID:27394632

  15. A new species of Indo-Pacific Modulidae (Mollusca: Caenogastropoda).

    PubMed

    Lozouet, Pierre; Krygelmans, Anouchka

    2016-01-01

    Modulidae is a littoral cerithioid family exclusively encountered in tropical and subtropical regions. It contains 12 to 15 living species (some species are not clearly delimited). Only one species is known to occur in the vast Indo-Pacific region (Bouchet 2015) and two species in the eastern Atlantic. By comparison, the tropical American regions are relatively rich with at least eleven living species (two or three species in the eastern Pacific and nine or more in the western Atlantic), and an equivalent number or more of fossil species (Landau et al. 2014).

  16. Integrating molecular and morphological approaches for characterizing parasite cryptic species: implications for parasitology.

    PubMed

    Nadler, Steven A; DE León, Gerardo Pérez-Ponce

    2011-11-01

    Herein we review theoretical and methodological considerations important for finding and delimiting cryptic species of parasites (species that are difficult to recognize using traditional systematic methods). Applications of molecular data in empirical investigations of cryptic species are discussed from an historical perspective, and we evaluate advantages and disadvantages of approaches that have been used to date. Developments concerning the theory and practice of species delimitation are emphasized because theory is critical to interpretation of data. The advantages and disadvantages of different molecular methodologies, including the number and kind of loci, are discussed relative to tree-based approaches for detecting and delimiting cryptic species. We conclude by discussing some implications that cryptic species have for research programmes in parasitology, emphasizing that careful attention to the theory and operational practices involved in finding, delimiting, and describing new species (including cryptic species) is essential, not only for fully characterizing parasite biodiversity and broader aspects of comparative biology such as systematics, evolution, ecology and biogeography, but to applied research efforts that strive to improve development and understanding of epidemiology, diagnostics, control and potential eradication of parasitic diseases.

  17. Combining non-invasive techniques for delimitation and monitoring of chlorinated solvents in groundwater

    NASA Astrophysics Data System (ADS)

    Sparrenbom, Charlotte; Åkesson, Sofia; Hagerberg, David; Dahlin, Torleif; Holmstrand, Henry; Johansson, Sara

    2016-04-01

    groundwater sampling provide reference data within the project and for calibrating interpretations. In our studies, we show the results from DCIP measurements from two different areasin sothern Sweden with chlorinated solvent contamination. From one of the areas, a pilot test on stimulation reductive dechlorination has been carried out and the treated area reveals sharp anomalies in the DCIP response. Time lapse measurements show changes within the stimulated area and this could be used to follow remediation changes and i.e. groundwater quality changes. Tests with DCIP time lapse are also carried out in the second area together with multiple CSIA analyses of groundwater samples and ongoing is the planning for the gas samples. Evaluation of the possible uses, benefits and limitations of the technique for monitoring changes and delimit polluted areas to be able to monitor and follow groundwater quality changes is ongoing.

  18. Using Phylogenetic and Coalescent Methods to Understand the Species Diversity in the Cladia aggregata Complex (Ascomycota, Lecanorales)

    PubMed Central

    Parnmen, Sittiporn; Rangsiruji, Achariya; Mongkolsuk, Pachara; Boonpragob, Kansri; Nutakki, Aparna; Lumbsch, H. Thorsten

    2012-01-01

    The Cladia aggregata complex is one of the phenotypically most variable groups in lichenized fungi, making species determination difficult and resulting in different classifications accepting between one to eight species. Multi-locus DNA sequence data provide an avenue to test species delimitation scenarios using genealogical and coalescent methods, employing gene and species trees. Here we tested species delimitation in the complex using molecular data of four loci (nuITS and IGS rDNA, protein-coding GAPDH and Mcm-7), including 474 newly generated sequences. Using a combination of ML and Bayesian gene tree topologies, species tree inferences, coalescent-based species delimitation, and examination of phenotypic variation we assessed the circumscription of lineages. We propose that results from our analyses support a 12 species delimitation scenario, suggesting that there is a high level of species diversity in the complex. Morphological and chemical characters often do not characterize lineages but show some degree of plasticity within at least some of the clades. However, clades can often be characterized by a combination of several phenotypical characters. In contrast to the amount of homoplasy in the morphological characters, the data set exhibits some geographical patterns with putative species having distribution patterns, such as austral, Australasian or being endemic to Australia, New Zealand or Tasmania. PMID:23272229

  19. Assessment of the diversity and species specificity of the mutualistic association between Epicephala moths and Glochidion trees.

    PubMed

    Kawakita, Atsushi; Kato, Makoto

    2006-10-01

    The obligate mutualisms between flowering plants and their seed-parasitic pollinators constitute fascinating examples of interspecific mutualisms, which are often characterized by high levels of species diversity and reciprocal species specificity. The diversification in these mutualisms has been thought to occur through simultaneous speciation of the partners, mediated by tight reciprocal adaptation; however, recent studies cast doubt over this general view. In this study, we examine the diversity and species specificity of Epicephala moths (Gracillariidae) that pollinate Glochidion trees (Phyllanthaceae), using analysis of mitochondrial and nuclear gene sequences. Phylogenetic analysis of Epicephala moths associated with five Glochidion species in Japan and Taiwan reveal six genetically isolated species that are also distinguishable by male genital morphology: (i) two species specific to single host species (G. acuminatum and G. zeylanicum, respectively); (ii) two species that coexist on G. lanceolatum; and (iii) two species that share two, closely-related parapatric hosts (G. obovatum and G. rubrum). Statistical analysis shows that the two species associated with G. lanceolatum are not sister species, indicating the colonization of novel Glochidion host in at least one lineage. Behavioural observations suggest that all six species possess the actively-pollinating habit, thus none of the studied species has become a nonmutualistic 'cheater' that exploits the benefit resulting from pollination by other species. Our results parallel recent findings in ecologically similar associations, namely the fig-fig wasp and yucca-yucca moth mutualisms, and contribute to a more general understanding of the factors that determine ecological and evolutionary outcomes in these mutualisms.

  20. CpDNA-based species identification and phylogeography: application to African tropical tree species.

    PubMed

    Duminil, J; Heuertz, M; Doucet, J-L; Bourland, N; Cruaud, C; Gavory, F; Doumenge, C; Navascués, M; Hardy, O J

    2010-12-01

    Despite the importance of the African tropical rainforests as a hotspot of biodiversity, their history and the processes that have structured their biodiversity are understood poorly. With respect to past demographic processes, new insights can be gained through characterizing the distribution of genetic diversity. However, few studies of this type have been conducted in Central Africa, where the identification of species in the field can be difficult. We examine here the distribution of chloroplast DNA (cpDNA) diversity in Lower Guinea in two tree species that are difficult to distinguish, Erythrophleum ivorense and Erythrophleum suaveolens (Fabaceae). By using a blind-sampling approach and comparing molecular and morphological markers, we first identified retrospectively all sampled individuals and determined the limits of the distribution of each species. We then performed a phylogeographic study using the same genetic data set. The two species displayed essentially parapatric distributions that were correlated well with the rainfall gradient, which indicated different ecological requirements. In addition, a phylogeographic structure was found for E. suaveolens and, for both species, substantially higher levels of diversity and allelic endemism were observed in the south (Gabon) than in the north (Cameroon) of the Lower Guinea region. This finding indicated different histories of population demographics for the two species, which might reflect different responses to Quaternary climate changes. We suggest that a recent period of forest perturbation, which might have been caused by humans, favoured the spread of these two species and that their poor recruitment at present results from natural succession in their forest formations. PMID:21091558

  1. Nomenclatural issues in the Psammodromus hispanicus (Squamata: Lacertidae) species group.

    PubMed

    Crochet, Pierre-André

    2015-01-01

    The Psammodromus hispanicus species group has been recently shown to include three lineages that differ in morphology (San-Jose et al. 2012), have largely parapatric range but exhibit little evidence of historical gene flow (Fitze et al. 2011), leading to the recognition of these three lineages as distinct species (Fitze et al. 2012). The eastern species can be unambiguously associated with the nomen Lacerta edwarsiana Dugès 1829, as the detailed information in Dugès (1829) leaves no doubt that he describes as Lacerta edwarsiana the local member of the P. hispanicus complex, and the type locality is the "bas Languedoc", an area of France equivalent to the lowland parts of the current Languedoc region where the only member of the complex is the eastern lineage. The types of Psammodromus edwarsianus have not been traced as far as I am aware, but given the lack of uncertainty regarding allocation of this nomen to the eastern lineage of the P. hispanicus complex this has no nomenclatural consequence. Two nomenclatural issues remain in this species group however: the aim of this note is to solve them.

  2. Using Remote Sensing Technology on the Delimitation of the Conservation Area for the Jianan Irrigation System Cultural Landsccape

    NASA Astrophysics Data System (ADS)

    Wang, C. H.

    2015-08-01

    In recent years the cultural landscape has become an important issue for cultural heritages throughout the world. It represents the "combined works of nature and of man" designated in Article 1 of the World Heritage Convention. When a landscape has a cultural heritage value, important features should be marked and mapped through the delimitation of a conservation area, which may be essential for further conservation work. However, a cultural landscape's spatial area is usually wider than the ordinary architectural type of cultural heritage, since various elements and impact factors, forming the cultural landscape's character, lie within a wide geographic area. It is argued that the conservation of a cultural landscape may be influenced by the delimitation of the conservation area, the corresponding land management measures, the limits and encouragements. The Jianan Irrigation System, an historical cultural landscape in southern Taiwan, was registered as a living cultural heritage site in 2009. However, the system's conservation should not be limited to just only the reservoir or canals, but expanded to irrigated areas where farmland may be the most relevant. Through the analysis process, only approximately 42,000 hectares was defined as a conservation area, but closely related to agricultural plantations and irrigated by the system. This is only half of the 1977 irrigated area due to urban sprawl and continuous industrial expansion.

  3. The role of integrative taxonomy in the conservation management of cryptic species: the taxonomic status of endangered earless dragons (Agamidae: Tympanocryptis) in the grasslands of Queensland, Australia.

    PubMed

    Melville, Jane; Smith, Katie; Hobson, Rod; Hunjan, Sumitha; Shoo, Luke

    2014-01-01

    Molecular phylogenetics is increasingly highlighting the prevalence of cryptic species, where morphologically similar organisms have long independent evolutionary histories. When such cryptic species are known to be declining in numbers and are at risk of extinction due to a range of threatening processes, the disjunction between molecular systematics research and conservation policy becomes a significant problem. We investigate the taxonomic status of Tympanocryptis populations in Queensland, which have previously been assigned to T. tetraporophora, using three species delimitation approaches. The taxonomic uncertainties in this species-group are of particular importance in the Darling Downs Earless Dragon (T. cf. tetraporophora), which is ranked as an endangered 'species' of high priority for conservation by the Queensland Department of Environment and Heritage Protection. We undertook a morphological study, integrated with a comprehensive genetic study and species delimitation analyses, to investigate the species status of populations in the region. Phylogenetic analyses of two gene regions (mtDNA: ND2; nuclear: RAG1) revealed high levels of genetic divergence between populations, indicating isolation over long evolutionary time frames, and strongly supporting two independent evolutionary lineages in southeastern Queensland, from the Darling Downs, and a third in the Gulf Region of northern Queensland. Of the three species delimitation protocols used, we found integrative taxonomy the most applicable to this cryptic species complex. Our study demonstrates the utility of integrative taxonomy as a species delimitation approach in cryptic complexes of species with conservation significance, where limited numbers of specimens are available.

  4. Electrophoretic karyotypes of some related Mucor species.

    PubMed

    Nagy, A; Palagyi, Z; Vastag, M; Ferenczy, L; Vágvölgyi, C

    2000-07-01

    Contour clamped homogeneous electric field (CHEF) gel electrophoresis was used to obtain electrophoretic karyotypes from nine Mucor strains representing five different species (M. bainieri, M. circinelloides, M. mucedo, M. plumbeus and M. racemosus). The chromosomal banding patterns revealed high variability among the isolates. The sizes of the DNA in the Mucor chromosomes were estimated to be between 2.5 and 8.7 Mb. The total genome sizes were calculated to be between 30.0 and 44.7 Mb. The applicability of these electrophoretic karyotypes for the investigation of genome structure, for strain identification and for species delimitation is considered.

  5. Use of electromagnetic induction surveys to delimit zones of contrasting tree development in an irrigated olive orchard in Southern Spain.

    NASA Astrophysics Data System (ADS)

    Pedrera, Aura; Vanderlinden, Karl; Jesús Espejo-Pérez, Antonio; Gómez, José Alfonso; Giráldez, Juan Vicente

    2014-05-01

    Olives are historically closely linked to Mediterranean culture and have nowadays important societal and economical implications. Improving yield and preventing infestation by soil-borne pathogens are crucial issues in maintaining olive cropping competitive. In order to assess both issues properly at the farm or field scale, accurate knowledge of the spatial distribution of soil physical properties and associated water dynamics is required. Conventional soil surveying is generally prohibitive at commercial farms, but electromagnetic induction (EMI) sensors, measuring soil apparent electrical conductivity (ECa) provide a suitable alternative. ECa depends strongly on soil texture and water content and has been used exhaustively in precision agriculture to delimit management zones. The aim of this study was to delimit areas with unsatisfactory tree development in an olive orchard using EMI, and to identify the underlying relationships between ECa and the soil properties driving the spatial tree development pattern. An experimental catchment in S. Spain dedicated to irrigated olive cropping was surveyed for ECa under dry and wet soil conditions (0.06 vs. 0.22 g/g, respectively), using a Dualem 21-S EMI sensor. In addition, ECa and gravimetric soil water content (SWC) was measured at 45 locations throughout the catchment during each survey. At each of these locations, soil profile samples were collected to determine textural class including coarse particles content, organic matter (OM), and bulk density. Measurements for dry soil conditions with the perpendicular coil configuration with a separation of 2.1 m (P2.1) were chosen to make a first assessment of the orchard-growth variability. According to the shape of the histogram, the P2.1 ECa values were classified to delimit three areas in the field for which canopy coverage was estimated. Combining the 4 ECa signals for the wet and dry surveys, a principal component (PC) analysis showed that 91% of the total variance

  6. The Role of Integrative Taxonomy in the Conservation Management of Cryptic Species: The Taxonomic Status of Endangered Earless Dragons (Agamidae: Tympanocryptis) in the Grasslands of Queensland, Australia

    PubMed Central

    Melville, Jane; Smith, Katie; Hobson, Rod; Hunjan, Sumitha; Shoo, Luke

    2014-01-01

    Molecular phylogenetics is increasingly highlighting the prevalence of cryptic species, where morphologically similar organisms have long independent evolutionary histories. When such cryptic species are known to be declining in numbers and are at risk of extinction due to a range of threatening processes, the disjunction between molecular systematics research and conservation policy becomes a significant problem. We investigate the taxonomic status of Tympanocryptis populations in Queensland, which have previously been assigned to T. tetraporophora, using three species delimitation approaches. The taxonomic uncertainties in this species-group are of particular importance in the Darling Downs Earless Dragon (T. cf. tetraporophora), which is ranked as an endangered ‘species’ of high priority for conservation by the Queensland Department of Environment and Heritage Protection. We undertook a morphological study, integrated with a comprehensive genetic study and species delimitation analyses, to investigate the species status of populations in the region. Phylogenetic analyses of two gene regions (mtDNA: ND2; nuclear: RAG1) revealed high levels of genetic divergence between populations, indicating isolation over long evolutionary time frames, and strongly supporting two independent evolutionary lineages in southeastern Queensland, from the Darling Downs, and a third in the Gulf Region of northern Queensland. Of the three species delimitation protocols used, we found integrative taxonomy the most applicable to this cryptic species complex. Our study demonstrates the utility of integrative taxonomy as a species delimitation approach in cryptic complexes of species with conservation significance, where limited numbers of specimens are available. PMID:25076129

  7. Delimiting oceanographic provinces to determine drivers of mesoscale patterns in benthic megafauna: A case study in the Barents Sea

    NASA Astrophysics Data System (ADS)

    Lacharité, Myriam; Jørgensen, Lis Lindal; Metaxas, Anna; Lien, Vidar S.; Skjoldal, Hein Rune

    2016-08-01

    Communities of benthic megafauna in the deep waters of continental shelves (> 100 m) are important components of marine ecosystems. In high-latitude ecosystems, this fauna is increasingly impacted by human activities and climate variability. In this study, we provide baseline knowledge on the oceanographic conditions affecting its distribution in the Barents Sea in the vicinity of the Polar Front - an oceanic front occurring at the transition zone between the Atlantic and Arctic water masses. We used fields of temperature and currents from an ocean circulation model (Regional Ocean Modelling System - ROMS) to derive variables divided into 3 groups relevant to bottom fauna (temperature, water column structure and bottom currents) expressing either mean conditions or temporal variability over 10 years (2001-2010). Benthic megafauna was surveyed in summer 2011 at 139 sites. To analyze the relationship between spatial variability in the composition of benthic megafauna (i.e., β-diversity) and oceanographic conditions, we: (1) used generalized dissimilarity modelling (GDM) and (2) delimited oceanographic provinces (i.e., regions of similar conditions) for each group of variables using principal component analysis (PCA) followed by cluster analysis. Turnover in benthic megafauna was explained by 7 oceanographic variables (temperature: 4, water column structure: 2, bottom currents: 1), depth and geographic distance (56.7% of total deviance explained). Concurrently, patterns in oceanographic provinces among the 3 groups of variables coincided with results from the GDM, where provinces derived from temperature were sharply delimited relative to the other groups. We concluded that the spatial structure of the environment is important in the relationship between spatial variability of benthic megafauna and oceanographic conditions in shelf deep waters. Ocean models are powerful tools to study this relationship, but the way in which their inherent uncertainty affects the

  8. Delimiting shades of gray: phylogeography of the Northern Fulmar, Fulmarus glacialis

    PubMed Central

    Kerr, Kevin C R; Dove, Carla J

    2013-01-01

    The Northern Fulmar (Fulmarus glacialis) is a common tube-nosed seabird with a disjunct Holarctic range. Taxonomic divisions within the Northern Fulmar have historically been muddled by geographical variation notably including highly polymorphic plumage. Recent molecular analyses (i.e., DNA barcoding) have suggested that genetic divergence between Atlantic and Pacific populations could be on par with those typically observed between species. We employ a multigene phylogenetic analysis to better explore the level of genetic divergence between these populations and to test an old hypothesis on the origin of the modern distribution of color morphs across their range. Additionally, we test whether mutations in the melanocortin-1 receptor gene (MC1R) are associated with dark plumage in the Northern Fulmar. We confirmed that mitochondrial lineages in the Atlantic and Pacific populations are highly divergent, but nuclear markers revealed incomplete lineage sorting. Genetic divergence between these populations is consistent with that observed between many species of Procellariiformes and we recommend elevating these two forms to separate species. We also find that MC1R variation is not associated with color morph but rather is better explained by geographical divergence. PMID:23919139

  9. An Integrative Approach for Understanding Diversity in the Punctelia rudecta Species Complex (Parmeliaceae, Ascomycota)

    PubMed Central

    Alors, David; Lumbsch, H. Thorsten; Divakar, Pradeep K.; Leavitt, Steven D.; Crespo, Ana

    2016-01-01

    High levels of cryptic diversity have been documented in lichenized fungi, especially in Parmeliaceae, and integrating various lines of evidence, including coalescent-based species delimitation approaches, help establish more robust species circumscriptions. In this study, we used an integrative taxonomic approach to delimit species in the lichen-forming fungal genus Punctelia (Parmeliaceae), with a particular focus on the cosmopolitan species P. rudecta. Nuclear, mitochondrial ribosomal DNA and protein-coding DNA sequences were analyzed in phylogenetic and coalescence-based frameworks. Additionally, morphological, ecological and geographical features of the sampled specimens were evaluated. Five major strongly supported monophyletic clades were recognized in the genus Punctelia, and each clade could be characterized by distinct patterns in medullary chemistry. Punctelia rudecta as currently circumscribed was shown to be polyphyletic. A variety of empirical species delimitation methods provide evidence for a minimum of four geographically isolated species within the nominal taxon Punctelia rudecta, including a newly described saxicolous species, P. guanchica, and three corticolous species. In order to facilitate reliable sample identification for biodiversity, conservation, and air quality bio-monitoring research, these three species have been epitypified, in addition to the description of a new species. PMID:26863231

  10. A phylogeographic evaluation of the Amolops mantzorum species group: cryptic species and plateau uplift.

    PubMed

    Lu, Bin; Bi, Ke; Fu, Jinzhong

    2014-04-01

    Phylogeographic analysis brings organism phylogeny, regional geological/climatic history, and population demography together, and provides insights into species history and speciation. Using DNA sequence data from a mitochondrial marker (cytochrome b) and a nuclear marker (cmyc intron 2), we examined phylogeography of the Amolops mantzorum species group. We first constructed Bayesian and maximum-likelihood gene trees and medium-joint networks for the recovered haplotypes, and estimated divergence time for each major lineage. Species boundaries were then delineated using the general mixed Yule-coalescent model (GMYC) and a Bayesian species-delimitation method (BP&P). Potential gene flow between putative species was also estimated using the isolation-with-migration model. Furthermore, species-distribution modeling was used to probe linkage between climatic changes and speciation. Lastly, extended Bayesian skyline plotting was employed to reveal historical demography for each putative species. Our analyses clearly delimit nine species in the group, including four well-recognized species and five putative species, of which three are often listed as synonyms of A. mantzorum. The nominal species A. mantzorum may in fact include two cryptic species. Divergence-time estimates align the speciation events with the recent intense uplift of the Tibetan Plateau in the last 3.6 million years. The species-distribution modeling also reveals different habitat preferences among species that are potentially linked to climatic changes associated with the uplift. Furthermore, three species sustained continuous population growth through the last glaciation, while others expanded only after the last glaciation. The eastern escarpment of Tibet is a biodiversity hotspot; its rich species diversity, unique topography, and well-established geological history provide an excellent system for evolutionary studies.

  11. The Species Problem in Myxomycetes Revisited.

    PubMed

    Walker, Laura M; Stephenson, Steven L

    2016-08-01

    Species identification in the myxomycetes (plasmodial slime molds or myxogastrids) poses particular challenges to researchers as a result of their morphological plasticity and frequent alteration between sexual and asexual life strategies. Traditionally, myxomycete morphology has been used as the primary method of species delimitation. However, with the increasing availability of genetic information, traditional myxomycete taxonomy is being increasingly challenged, and new hypotheses continue to emerge. Due to conflicts that sometimes occur between traditional and more modern species concepts that are based largely on molecular data, there is a pressing need to revisit the discussion surrounding the species concept used for myxomycetes. Biological diversity is being increasingly studied with molecular methods and data accumulates at ever-faster rates, making resolution of this matter urgent. In this review, currently used and potentially useful species concepts (biological, morphological, phylogenetic and ecological) are reviewed, and an integrated approach to resolve the myxomycete species problem is discussed. PMID:27351595

  12. New species in the Sitalcina sura species group (Opiliones, Laniatores, Phalangodidae), with evidence for a biogeographic link between California desert canyons and Arizona sky islands.

    PubMed

    DiDomenico, Angela; Hedin, Marshal

    2016-01-01

    The western United States is home to numerous narrowly endemic harvestman taxa (Arachnida, Opiliones), including members of the genus Sitalcina Banks, 1911. Sitalcina is comprised of three species groups, including the monospecific Sitalcina californica and Sitalcina lobata groups, and the Sitalcina sura group with eight described species. All species in the Sitalcina sura group have very small geographic distributions, with group members distributed like disjunct "beads on a string" from Monterey south to southern California and southeast to the sky-island mountain ranges of southern Arizona. Here, molecular phylogenetic and species delimitation analyses were conducted for all described species in the Sitalcina sura group, plus several newly discovered populations. Species trees were reconstructed using multispecies coalescent methods implemented in *BEAST, and species delimitation was accomplished using Bayes Factor Delimitation (BFD). Based on quantitative species delimitation results supported by consideration of morphological characters, two new species (Sitalcina oasiensis sp. n., Sitalcina ubicki sp. n.) are described. We also provide a description of the previously unknown male of Sitalcina borregoensis Briggs, 1968. Molecular phylogenetic evidence strongly supports distinctive desert versus coastal clades, with desert canyon taxa from southern California more closely related to Arizona taxa than to geographically proximate California coastal taxa. We hypothesize that southern ancestry and plate tectonics have played a role in the diversification history of this animal lineage, similar to sclerophyllous plant taxa of the Madro-Tertiary Geoflora. Molecular clock analyses for the Sitalcina sura group are generally consistent with these hypotheses. We also propose that additional Sitalcina species await discovery in the desert canyons of southern California and northern Baja, and the mountains of northwestern mainland Mexico. PMID:27199607

  13. New species in the Sitalcina sura species group (Opiliones, Laniatores, Phalangodidae), with evidence for a biogeographic link between California desert canyons and Arizona sky islands

    PubMed Central

    DiDomenico, Angela; Hedin, Marshal

    2016-01-01

    Abstract The western United States is home to numerous narrowly endemic harvestman taxa (Arachnida, Opiliones), including members of the genus Sitalcina Banks, 1911. Sitalcina is comprised of three species groups, including the monospecific Sitalcina californica and Sitalcina lobata groups, and the Sitalcina sura group with eight described species. All species in the Sitalcina sura group have very small geographic distributions, with group members distributed like disjunct “beads on a string” from Monterey south to southern California and southeast to the sky-island mountain ranges of southern Arizona. Here, molecular phylogenetic and species delimitation analyses were conducted for all described species in the Sitalcina sura group, plus several newly discovered populations. Species trees were reconstructed using multispecies coalescent methods implemented in *BEAST, and species delimitation was accomplished using Bayes Factor Delimitation (BFD). Based on quantitative species delimitation results supported by consideration of morphological characters, two new species (Sitalcina oasiensis sp. n., Sitalcina ubicki sp. n.) are described. We also provide a description of the previously unknown male of Sitalcina borregoensis Briggs, 1968. Molecular phylogenetic evidence strongly supports distinctive desert versus coastal clades, with desert canyon taxa from southern California more closely related to Arizona taxa than to geographically proximate California coastal taxa. We hypothesize that southern ancestry and plate tectonics have played a role in the diversification history of this animal lineage, similar to sclerophyllous plant taxa of the Madro-Tertiary Geoflora. Molecular clock analyses for the Sitalcina sura group are generally consistent with these hypotheses. We also propose that additional Sitalcina species await discovery in the desert canyons of southern California and northern Baja, and the mountains of northwestern mainland Mexico. PMID:27199607

  14. New species in the Sitalcina sura species group (Opiliones, Laniatores, Phalangodidae), with evidence for a biogeographic link between California desert canyons and Arizona sky islands.

    PubMed

    DiDomenico, Angela; Hedin, Marshal

    2016-01-01

    The western United States is home to numerous narrowly endemic harvestman taxa (Arachnida, Opiliones), including members of the genus Sitalcina Banks, 1911. Sitalcina is comprised of three species groups, including the monospecific Sitalcina californica and Sitalcina lobata groups, and the Sitalcina sura group with eight described species. All species in the Sitalcina sura group have very small geographic distributions, with group members distributed like disjunct "beads on a string" from Monterey south to southern California and southeast to the sky-island mountain ranges of southern Arizona. Here, molecular phylogenetic and species delimitation analyses were conducted for all described species in the Sitalcina sura group, plus several newly discovered populations. Species trees were reconstructed using multispecies coalescent methods implemented in *BEAST, and species delimitation was accomplished using Bayes Factor Delimitation (BFD). Based on quantitative species delimitation results supported by consideration of morphological characters, two new species (Sitalcina oasiensis sp. n., Sitalcina ubicki sp. n.) are described. We also provide a description of the previously unknown male of Sitalcina borregoensis Briggs, 1968. Molecular phylogenetic evidence strongly supports distinctive desert versus coastal clades, with desert canyon taxa from southern California more closely related to Arizona taxa than to geographically proximate California coastal taxa. We hypothesize that southern ancestry and plate tectonics have played a role in the diversification history of this animal lineage, similar to sclerophyllous plant taxa of the Madro-Tertiary Geoflora. Molecular clock analyses for the Sitalcina sura group are generally consistent with these hypotheses. We also propose that additional Sitalcina species await discovery in the desert canyons of southern California and northern Baja, and the mountains of northwestern mainland Mexico.

  15. Species Detection and Identification in Sexual Organisms Using Population Genetic Theory and DNA Sequences

    PubMed Central

    Birky, C. William

    2013-01-01

    Phylogenetic trees of DNA sequences of a group of specimens may include clades of two kinds: those produced by stochastic processes (random genetic drift) within a species, and clades that represent different species. The ratio of the mean pairwise sequence difference between a pair of clades (K) to the mean pairwise sequence difference within a clade (θ) can be used to determine whether the clades are samples from different species (K/θ≥4) or the same species (K/θ<4) with probability ≥0.95. Previously I applied this criterion to delimit species of asexual organisms. Here I use data from the literature to show how it can also be applied to delimit sexual species using four groups of sexual organisms as examples: ravens, spotted leopards, sea butterflies, and liverworts. Mitochondrial or chloroplast genes are used because these segregate earlier during speciation than most nuclear genes and hence detect earlier stages of speciation. In several cases the K/θ ratio was greater than 4, confirming the original authors' intuition that the clades were sufficiently different to be assigned to different species. But the K/θ ratio split each of two liverwort species into two evolutionary species, and showed that support for the distinction between the common and Chihuahuan raven species is weak. I also discuss some possible sources of error in using the K/θ ratio; the most significant one would be cases where males migrate between different populations but females do not, making the use of maternally inherited organelle genes problematic. The K/θ ratio must be used with some caution, like all other methods for species delimitation. Nevertheless, it is a simple theory-based quantitative method for using DNA sequences to make rigorous decisions about species delimitation in sexual as well as asexual eukaryotes. PMID:23308113

  16. Species detection and identification in sexual organisms using population genetic theory and DNA sequences.

    PubMed

    Birky, C William

    2013-01-01

    Phylogenetic trees of DNA sequences of a group of specimens may include clades of two kinds: those produced by stochastic processes (random genetic drift) within a species, and clades that represent different species. The ratio of the mean pairwise sequence difference between a pair of clades (K) to the mean pairwise sequence difference within a clade (θ) can be used to determine whether the clades are samples from different species (K/θ ≥ 4) or the same species (K/θ<4) with probability ≥ 0.95. Previously I applied this criterion to delimit species of asexual organisms. Here I use data from the literature to show how it can also be applied to delimit sexual species using four groups of sexual organisms as examples: ravens, spotted leopards, sea butterflies, and liverworts. Mitochondrial or chloroplast genes are used because these segregate earlier during speciation than most nuclear genes and hence detect earlier stages of speciation. In several cases the K/θ ratio was greater than 4, confirming the original authors' intuition that the clades were sufficiently different to be assigned to different species. But the K/θ ratio split each of two liverwort species into two evolutionary species, and showed that support for the distinction between the common and Chihuahuan raven species is weak. I also discuss some possible sources of error in using the K/θ ratio; the most significant one would be cases where males migrate between different populations but females do not, making the use of maternally inherited organelle genes problematic. The K/θ ratio must be used with some caution, like all other methods for species delimitation. Nevertheless, it is a simple theory-based quantitative method for using DNA sequences to make rigorous decisions about species delimitation in sexual as well as asexual eukaryotes.

  17. Integrating fuzzy logic and statistics to improve the reliable delimitation of biogeographic regions and transition zones.

    PubMed

    Olivero, Jesús; Márquez, Ana L; Real, Raimundo

    2013-01-01

    This study uses the amphibian species of the Mediterranean basin to develop a consistent procedure based on fuzzy sets with which biogeographic regions and biotic transition zones can be objectively detected and reliably mapped. Biogeographical regionalizations are abstractions of the geographical organization of life on Earth that provide frameworks for cataloguing species and ecosystems, for answering basic questions in biogeography, evolutionary biology, and systematics, and for assessing priorities for conservation. On the other hand, limits between regions may form sharply defined boundaries along some parts of their borders, whereas elsewhere they may consist of broad transition zones. The fuzzy set approach provides a heuristic way to analyse the complexity of the biota within an area; significantly different regions are detected whose mutual limits are sometimes fuzzy, sometimes clearly crisp. Most of the regionalizations described in the literature for the Mediterranean biogeographical area present a certain degree of convergence when they are compared within the context of fuzzy interpretation, as many of the differences found between regionalizations are located in transition zones, according to our case study. Compared with other classification procedures based on fuzzy sets, the novelty of our method is that both fuzzy logic and statistics are used together in a synergy in order to avoid arbitrary decisions in the definition of biogeographic regions and transition zones. PMID:22744774

  18. Integrating fuzzy logic and statistics to improve the reliable delimitation of biogeographic regions and transition zones.

    PubMed

    Olivero, Jesús; Márquez, Ana L; Real, Raimundo

    2013-01-01

    This study uses the amphibian species of the Mediterranean basin to develop a consistent procedure based on fuzzy sets with which biogeographic regions and biotic transition zones can be objectively detected and reliably mapped. Biogeographical regionalizations are abstractions of the geographical organization of life on Earth that provide frameworks for cataloguing species and ecosystems, for answering basic questions in biogeography, evolutionary biology, and systematics, and for assessing priorities for conservation. On the other hand, limits between regions may form sharply defined boundaries along some parts of their borders, whereas elsewhere they may consist of broad transition zones. The fuzzy set approach provides a heuristic way to analyse the complexity of the biota within an area; significantly different regions are detected whose mutual limits are sometimes fuzzy, sometimes clearly crisp. Most of the regionalizations described in the literature for the Mediterranean biogeographical area present a certain degree of convergence when they are compared within the context of fuzzy interpretation, as many of the differences found between regionalizations are located in transition zones, according to our case study. Compared with other classification procedures based on fuzzy sets, the novelty of our method is that both fuzzy logic and statistics are used together in a synergy in order to avoid arbitrary decisions in the definition of biogeographic regions and transition zones.

  19. Multiple cryptic species in the blue-spotted maskray (Myliobatoidei: Dasyatidae: Neotrygon spp.): An update.

    PubMed

    Borsa, Philippe; Shen, Kang-Ning; Arlyza, Irma S; Hoareau, Thierry B

    2016-01-01

    Previous investigations have uncovered divergent mitochondrial clades within the blue-spotted maskray, previously Neotrygon kuhlii (Müller and Henle). The hypothesis that the blue-spotted maskray may consist of a complex of multiple cryptic species has been proposed, and four species have been recently described or resurrected. To test the multiple cryptic species hypothesis, we investigated the phylogenetic relationships and coalescence patterns of mitochondrial sequences in a sample of 127 new individuals from the Indian Ocean and the Coral Triangle region, sequenced at both the CO1 and cytochrome b loci. The maximum-likelihood (ML) tree of concatenated CO1+cytochrome b gene sequences, rooted by the New Caledonian maskray N. trigonoides, yielded 9 strongly supported, main clades. Puillandre's ABGD algorithm detected gaps in nucleotide distance consistent with the ML phylogeny. The general mixed Yule-coalescent algorithm partitioned the dataset into putative species generally consistent with the ML phylogeny. Nuclear markers generally confirmed that distinct mitochondrial clades correspond to genetically isolated lineages. The nine main lineages identified by ML analysis were geographically distributed in a parapatric fashion, indicating reproductive isolation. The hypothesis of multiple cryptic species is thus validated. PMID:27543138

  20. Multiple cryptic species in the blue-spotted maskray (Myliobatoidei: Dasyatidae: Neotrygon spp.): An update.

    PubMed

    Borsa, Philippe; Shen, Kang-Ning; Arlyza, Irma S; Hoareau, Thierry B

    2016-01-01

    Previous investigations have uncovered divergent mitochondrial clades within the blue-spotted maskray, previously Neotrygon kuhlii (Müller and Henle). The hypothesis that the blue-spotted maskray may consist of a complex of multiple cryptic species has been proposed, and four species have been recently described or resurrected. To test the multiple cryptic species hypothesis, we investigated the phylogenetic relationships and coalescence patterns of mitochondrial sequences in a sample of 127 new individuals from the Indian Ocean and the Coral Triangle region, sequenced at both the CO1 and cytochrome b loci. The maximum-likelihood (ML) tree of concatenated CO1+cytochrome b gene sequences, rooted by the New Caledonian maskray N. trigonoides, yielded 9 strongly supported, main clades. Puillandre's ABGD algorithm detected gaps in nucleotide distance consistent with the ML phylogeny. The general mixed Yule-coalescent algorithm partitioned the dataset into putative species generally consistent with the ML phylogeny. Nuclear markers generally confirmed that distinct mitochondrial clades correspond to genetically isolated lineages. The nine main lineages identified by ML analysis were geographically distributed in a parapatric fashion, indicating reproductive isolation. The hypothesis of multiple cryptic species is thus validated.

  1. Development of agroclimatic zoning model to delimit the potential growing areas for macaw palm (Acrocomia aculeata)

    NASA Astrophysics Data System (ADS)

    Falasca, Silvia; Ulberich, Ana; Pitta-Alvarez, Sandra

    2016-07-01

    The growing biodiesel production requires the use of new technologies and alternative feedstocks to maintain the growing demand of this biofuel. The macaw (Acrocomia aculeata) is a palm native to Argentina whose fruits present high oil content. Due to its tolerance to prolonged drought, it is a promising crop for biodiesel and biokerosene production. The aim of this work was to design an agroclimatic zoning model to define the potential growing areas from macaw in Argentina. To define the agroclimatic suitability to produce oil, it was necessary to identify the requirements, limits, and biometeorological tolerance for this palm. In order to define the agroclimatic fitness of this crop in Argentina, the meteorological data corresponding to the period 1981-2010 were employed. The agroclimatic indices were integrated in a Geographic Information System. The maps were superimposed and the overlapping regions delineated the agroclimatic zoning. The agroclimatic zonation classified zones with homogeneous characteristics responding to bioclimatic requirements of this species, resulting in optimal, very suitable, suitable, and nonsuitable areas for macaw cultivation. The authors designed an agroclimatic zoning model based on bibliography. This model can be used in any part of the world, employing the same agroclimatic indices presented in this work.

  2. Microsatellite markers for the New Zealand endemic Myosotis pygmaea species group (Boraginaceae) amplify across species1

    PubMed Central

    Prebble, Jessica M.; Tate, Jennifer A.; Meudt, Heidi M.; Symonds, V. Vaughan

    2015-01-01

    Premise of the study: Microsatellite loci were developed as polymorphic markers for the New Zealand endemic Myosotis pygmaea species group (Boraginaceae) for use in species delimitation and population and conservation genetic studies. Methods and Results: Illumina MiSeq sequencing was performed on genomic DNA from seedlings of M. drucei. From trimmed paired-end sequences >400 bp, 484 microsatellite loci were identified. Twelve of 48 microsatellite loci tested were found to be polymorphic and consistently scorable when screened on 53 individuals from four populations representing the geographic range of M. drucei. They also amplify in all other species in the M. pygmaea species group, i.e., M. antarctica, M. brevis, M. glauca, and M. pygmaea, as well as 18 other Myosotis species. Conclusions: These 12 polymorphic microsatellite markers establish an important resource for research and conservation of the M. pygmaea species group and potentially other Southern Hemisphere Myosotis. PMID:26082880

  3. Delimitation and functional characterization of the bidirectional THOX-DUOXA promoter regions in thyrocytes.

    PubMed

    Christophe-Hobertus, Christiane; Christophe, Daniel

    2010-04-12

    The THOX and DUOXA genes encode components of the oxidative machinery involved in thyroid hormone biosynthesis. Both of these genes are duplicated in mammalian genomes and are positioned in a head-to-head configuration, THOX1 facing DUOXA1 and THOX2 facing DUOXA2, respectively. The intergenic regions in both couples of genes exhibit dissimilar compositions, being highly GC-rich in the case of THOX1-DUOXA1 but not in the other case. In this study we localized precisely the transcription starts of all four genes using the RLM-RACE technique. It revealed that the distance between THOX1 and DUOXA1 transcription units is of about 70bp only, whereas THOX2 and DUOXA2 transcription starts are separated by 170bp. Analysis of these putative promoter regions revealed the presence of several potential binding sites for transcription factor Sp1 within the THOX1-DUOXA1 intergenic space, and of a TATA box and an Inr element in front of DUOXA2 and THOX2 genes, respectively. The putative promoter regions were inserted into a specifically designed vector harbouring two distinct reporter genes facing each other and their activity was investigated in transient transfection experiments in rat thyroid PCCl3 cells. Both regions exhibited bidirectional promoter activity in the assay. Gel shift experiments using extracts obtained from PCCl3 cells demonstrated the existence of at least one functional Sp1 binding site within the THOX1-DUOXA1 promoter. When Sp1 binding was abolished by mutation of the DNA sequence, a clear reduction in promoter activity in both THOX1 and DUOXA1 directions was observed in the functional assay. As these promoter sequences are well conserved in mammalian genomes, it appears very likely that the results we obtained here in the rat may be extended to the other species.

  4. Delimitation of Sauropus (Phyllanthaceae) Based on Plastid matK and Nuclear Ribosomal ITS DNA Sequence Data

    PubMed Central

    Pruesapan, Kanchana; Telford, Ian R. H.; Bruhl, Jeremy J.; Draisma, Stefano G. A.; Van Welzen, Peter C.

    2008-01-01

    Background and Aims A recent molecular phylogenetic study showed that Sauropus is deeply embedded within Phyllanthus together with its allies, Breynia and Glochidion. As relationships within Sauropus are still problematic and the relationship with Breynia has long been doubted, more molecular data are needed to test/corroborate such a broad definition of Phyllanthus. This study aims to clarify the status and delimitation of Sauropus and establish its position within Phyllanthaceae. Methods Plastid matK and nuclear ribosomal ITS DNA sequence data for Sauropus and its allies were used to construct phylogenetic trees using maximum parsimony and Bayesian methods. Key Results Within Phyllanthus, Sauropus can be split into the mainly south-east Asian Sauropus sensu stricto (s.s.) plus Breynia and the mainly Australian Sauropus (formerly Synostemon). Sauropus s.s. plus Breynia comprise two distinct clades; one is the combination of Sauropus sections Glochidioidei, Sauropus and Schizanthi and the other is the combination of Sauropus sections Cryptogynium and Hemisauropus and the monophyletic genus Breynia. Conclusions Molecular data indicate that Synostemon should be reinstated at the same level as Sauropus s.s. and that Sauropus s.s. should be united with Breynia under the latter, older name. The molecular data corroborate only two of the five infrageneric groups of Sauropus recognized on the basis of morphological data. PMID:18854375

  5. Species limits in polymorphic mimetic Eniclases net-winged beetles from New Guinean mountains (Coleoptera, Lycidae).

    PubMed

    Bocek, Matej; Bocak, Ladislav

    2016-01-01

    Species delimitation was compared in a group of closely related lineages of aposematically colored Eniclases (Coleoptera, Lycidae) using morphology, genetic distances, and Bayesian implementation of the Poisson Tree Processes model. A high diversity of net-winged beetles was found in previously unsampled regions of New Guinea and ten new species are described: Eniclases bicolor sp. n., Eniclases bokondinensis sp. n., Eniclases brancuccii sp. n., Eniclases elelimensis sp. n., Eniclases infuscatus sp. n., Eniclases niger sp. n., Eniclases pseudoapertus sp. n., Eniclases pseudoluteolus sp. n., Eniclases tikapurensis sp. n., and Eniclases variabilis sp. n. Different levels of genetic and morphological diversification were identified in various sister-species pairs. As a result, both morphological and molecular analyses are used to delimit species. Sister-species with uncorrected pairwise genetic divergence as low as 0.45% were morphologically distinct not only in color pattern, but also in the relative size of eyes. Conversely, differences in color pattern regardless of their magnitude did not necessarily indicate genetic distance and intraspecific mimicry polymorphism was common. Additionally, genetic divergence without morphological differentiation was detected in one sister-species pair. Low dispersal propensity, diverse mimicry patterns, and mimetic polymorphism resulted in complex diversification of Eniclases and uncertain species delimitation in recently diversified lineages.

  6. Species limits in polymorphic mimetic Eniclases net-winged beetles from New Guinean mountains (Coleoptera, Lycidae)

    PubMed Central

    Bocek, Matej; Bocak, Ladislav

    2016-01-01

    Abstract Species delimitation was compared in a group of closely related lineages of aposematically colored Eniclases (Coleoptera, Lycidae) using morphology, genetic distances, and Bayesian implementation of the Poisson Tree Processes model. A high diversity of net-winged beetles was found in previously unsampled regions of New Guinea and ten new species are described: Eniclases bicolor sp. n., Eniclases bokondinensis sp. n., Eniclases brancuccii sp. n., Eniclases elelimensis sp. n., Eniclases infuscatus sp. n., Eniclases niger sp. n., Eniclases pseudoapertus sp. n., Eniclases pseudoluteolus sp. n., Eniclases tikapurensis sp. n., and Eniclases variabilis sp. n. Different levels of genetic and morphological diversification were identified in various sister-species pairs. As a result, both morphological and molecular analyses are used to delimit species. Sister-species with uncorrected pairwise genetic divergence as low as 0.45% were morphologically distinct not only in color pattern, but also in the relative size of eyes. Conversely, differences in color pattern regardless of their magnitude did not necessarily indicate genetic distance and intraspecific mimicry polymorphism was common. Additionally, genetic divergence without morphological differentiation was detected in one sister-species pair. Low dispersal propensity, diverse mimicry patterns, and mimetic polymorphism resulted in complex diversification of Eniclases and uncertain species delimitation in recently diversified lineages. PMID:27408550

  7. Multilocus phylogeny and Bayesian estimates of species boundaries reveal hidden evolutionary relationships and cryptic diversity in Southeast Asian monitor lizards.

    PubMed

    Welton, L J; Siler, C D; Oaks, J R; Diesmos, A C; Brown, R M

    2013-07-01

    Recent conceptual, technological and methodological advances in phylogenetics have enabled increasingly robust statistical species delimitation in studies of biodiversity. As the variety of evidence purporting species diversity has increased, so too have the kinds of tools and inferential power of methods for delimiting species. Here, we showcase an organismal system for a data-rich, comparative molecular approach to evaluating strategies of species delimitation among monitor lizards of the genus Varanus. The water monitors (Varanus salvator Complex), a widespread group distributed throughout Southeast Asia and southern India, have been the subject of numerous taxonomic treatments, which have drawn recent attention due to the possibility of undocumented species diversity. To date, studies of this group have relied on purportedly diagnostic morphological characters, with no attention given to the genetic underpinnings of species diversity. Using a 5-gene data set, we estimated phylogeny and used multilocus genetic networks, analysis of population structure and a Bayesian coalescent approach to infer species boundaries. Our results contradict previous systematic hypotheses, reveal surprising relationships between island and mainland lineages and uncover novel, cryptic evolutionary lineages (i.e. new putative species). Our study contributes to a growing body of literature suggesting that, used in concert with other sources of data (e.g. morphology, ecology, biogeography), multilocus genetic data can be highly informative to systematists and biodiversity specialists when attempting to estimate species diversity and identify conservation priorities. We recommend holding in abeyance taxonomic decisions until multiple, converging lines of evidence are available to best inform taxonomists, evolutionary biologists and conservationists.

  8. Apoptotic microtubules delimit an active caspase free area in the cellular cortex during the execution phase of apoptosis

    PubMed Central

    Oropesa-Ávila, M; Fernández-Vega, A; de la Mata, M; Maraver, J G; Cordero, M D; Cotán, D; de Miguel, M; Calero, C P; Paz, M V; Pavón, A D; Sánchez, M A; Zaderenko, A P; Ybot-González, P; Sánchez-Alcázar, J A

    2013-01-01

    Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath plasma membrane, which has an important role in preserving cell morphology and plasma membrane permeability. The aim of this study was to examine the role of AMN in maintaining plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptosis in H460 cells that AMN delimits an active caspase free area beneath plasma membrane that permits the preservation of cellular cortex and transmembrane proteins. AMN depolymerization in apoptotic cells by a short exposure to colchicine allowed active caspases to reach the cellular cortex and cleave many key proteins involved in plasma membrane structural support, cell adhesion and ionic homeostasis. Cleavage of cellular cortex and plasma membrane proteins, such as α-spectrin, paxilin, focal adhesion kinase (FAK), E-cadherin and integrin subunit β4 was associated with cell collapse and cell detachment. Otherwise, cleavage-mediated inactivation of calcium ATPase pump (PMCA-4) and Na+/Ca2+ exchanger (NCX) involved in cell calcium extrusion resulted in calcium overload. Furthermore, cleavage of Na+/K+ pump subunit β was associated with altered sodium homeostasis. Cleavage of cell cortex and plasma membrane proteins in apoptotic cells after AMN depolymerization increased plasma permeability, ionic imbalance and bioenergetic collapse, leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the concomitant addition of colchicine that induces AMN depolymerization and the pan-caspase inhibitor z-VAD avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Furthermore, the presence of AMN was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that AMN is essential

  9. Growing Degree Vegetation Production Index (GDVPI): A Novel and Data-Driven Approach to Delimit Season Cycles

    NASA Astrophysics Data System (ADS)

    Graham, W. D.; Spruce, J.; Ross, K. W.; Gasser, J.; Grulke, N.

    2014-12-01

    Growing Degree Vegetation Production Index (GDVPI) is a parametric approach to delimiting vegetation seasonal growth and decline cycles using incremental growing degree days (GDD), and NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) 8-day composite cumulative integral data. We obtain a specific location's daily minimum and maximum temperatures from the nearest National Oceanic and Atmospheric Administration (NOAA) weather stations posted on the National Climate Data Center (NCDC) Climate Data Online (CDO) archive and compute GDD. The date range for this study is January 1, 2000 through December 31, 2012. We employ a novel process, a repeating logistic product (RLP), to compensate for short-term weather variability and data drops from the recording stations and fit a curve to the median daily GDD values, adjusting for asymmetry, amplitude, and phase shift that minimize the sum of squared errors when comparing the observed and predicted GDD. The resulting curve, here referred to as the surrogate GDD, is the time-temperature phasing parameter used to convert Cartesian NDVI values into polar coordinate pairs, multiplying the NDVI values as the radial by the cosine and sine of the surrogate GDD as the angular. Depending on the vegetation type and the original NDVI curve, the polar NDVI curve may be nearly circular, kidney-shaped, or pear-shaped in the case of conifers, deciduous, or agriculture, respectively. We examine the points of tangency about the polar coordinate NDVI curve, identifying values of 1, 0, -1, or infinity, as each of these represent natural inflection points. Lines connecting the origin to each tangent point illustrate and quantify the parametrically segmentation of the growing season based on the GDD and NDVI ostensible dependency. Furthermore, the area contained by each segment represents the apparent vegetation production. A particular benefit is that the inflection points are determined

  10. Generic delimitation between Fragariocoptes and Sierraphytoptus (Acari: Eriophyoidea: Phytoptidae) and a supplementary description of Fragariocoptes gansuensis with remarks on searching for mummified eriophyoid mites in herbaria under UV light.

    PubMed

    Chetverikov, Philipp E

    2016-01-01

    Generic concepts of Fragariocoptes Roivainen, 1951 and Sierraphytoptus Keifer, 1939 are discussed and the correct delimitation between these two genera is given. A supplementary description of Fragariocoptes gansuensis Wei, Chen & Luo, 2005 is included based on fresh specimens from Astrakhan, Russia and dried mummies found in old herbaria collected in 1919 from southern European Russia of the cinquefoil, Potentilla bifurca L. (Rosaceae) with pathological stem proliferation. The male of this species is described for the first time. The cuticle of eriophyoid mummies emitted a faint glow under UV light wavelength equal to 365 nm of a common UV Light-Emitting diode (LED) lamp showing that this characteristic could be useful for quickly detecting eriophyoids in old herbaria which would otherwise be almost indistinguishable against the background under the regular white light source of a stereomicroscope. This was only possible for plant material stored in appropriate conditions enabling the autofluorescent signal of the dried mite cuticle to remain strong enough for observation. PMID:27395551

  11. A Good Compromise: Rapid and Robust Species Proxies for Inventorying Biodiversity Hotspots Using the Terebridae (Gastropoda: Conoidea)

    PubMed Central

    Modica, Maria Vittoria; Puillandre, Nicolas; Castelin, Magalie; Zhang, Yu; Holford, Mandë

    2014-01-01

    Devising a reproducible approach for species delimitation of hyperdiverse groups is an ongoing challenge in evolutionary biology. Speciation processes combine modes of passive and adaptive trait divergence requiring an integrative taxonomy approach to accurately generate robust species hypotheses. However, in light of the rapid decline of diversity on Earth, complete integrative approaches may not be practical in certain species-rich environments. As an alternative, we applied a two-step strategy combining ABGD (Automated Barcode Gap Discovery) and Klee diagrams, to balance speed and accuracy in producing primary species hypotheses (PSHs). Specifically, an ABGD/Klee approach was used for species delimitation in the Terebridae, a neurotoxin-producing marine snail family included in the Conoidea. Delimitation of species boundaries is problematic in the Conoidea, as traditional taxonomic approaches are hampered by the high levels of variation, convergence and morphological plasticity of shell characters. We used ABGD to analyze gaps in the distribution of pairwise distances of 454 COI sequences attributed to 87 morphospecies and obtained 98 to 125 Primary Species Hypotheses (PSHs). The PSH partitions were subsequently visualized as a Klee diagram color map, allowing easy detection of the incongruences that were further evaluated individually with two other species delimitation models, General Mixed Yule Coalescent (GMYC) and Poisson Tree Processes (PTP). GMYC and PTP results confirmed the presence of 17 putative cryptic terebrid species in our dataset. The consensus of GMYC, PTP, and ABGD/Klee findings suggest the combination of ABGD and Klee diagrams is an effective approach for rapidly proposing primary species proxies in hyperdiverse groups and a reliable first step for macroscopic biodiversity assessment. PMID:25003611

  12. Integrative taxonomy of Metrichia Ross (Trichoptera: Hydroptilidae: Ochrotrichiinae) microcaddisflies from Brazil: descriptions of twenty new species.

    PubMed

    Santos, Allan P M; Takiya, Daniela M; Nessimian, Jorge L

    2016-01-01

    Metrichia is assigned to the Ochrotrichiinae, a group of almost exclusively Neotropical microcaddisflies. Metrichia comprises over 100 described species and, despite its diversity, only one species has been described from Brazil so far. In this paper, we provide descriptions for 20 new species from 8 Brazilian states: M. acuminata sp. nov., M. azul sp. nov., M. bonita sp. nov., M. bracui sp. nov., M. caraca sp. nov., M. circuliforme sp. nov., M. curta sp. nov., M. farofa sp. nov., M. forceps sp. nov., M. formosinha sp. nov., M. goiana sp. nov., M. itabaiana sp. nov., M. longissima sp. nov., M. peluda sp. nov., M. rafaeli sp. nov., M. simples sp. nov., M. talhada sp. nov., M. tere sp. nov., M. ubajara sp. nov., and M. vulgaris sp. nov. DNA barcode sequences (577 bp of the mitochondrial gene COI) were generated for 13 of the new species and two previously known species of Metrichia resulting in 64 sequences. In addition, COI sequences were obtained for other genera of Ochrotrichiinae (Angrisanoia, Nothotrichia, Ochrotrichia, Ragatrichia, and Rhyacopsyche). DNA sequences and morphological data were integrated to evaluate species delimitations. K2P pairwise distances were calculated to generate a neighbor-joining tree. COI sequences also were submitted to ABGD and GMYC methods to assess 'potential species' delimitation. Analyses showed a conspicuous barcoding gap among Metrichia sequences (highest intraspecific divergence: 4.8%; lowest interspecific divergence: 12.6%). Molecular analyses also allowed the association of larvae and adults of Metrichia bonita sp. nov. from Mato Grosso do Sul, representing the first record of microcaddisfly larvae occurring in calcareous tufa (or travertine). ABGD results agreed with the morphological delimitation of Metrichia species, while GMYC estimated a slightly higher number of species, suggesting the division of two morphological species, each one into two potential species. Because this could be due to unbalanced sampling and the

  13. Torrenticola trimaculata sp. nov. (Parasitengona: Torrenticolidae), a three-spotted water mite from eastern North America: taxonomic history, species delimitation, and survey of external morphology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Torrenticola trimaculata Fisher sp. nov. is described from eastern North America as the first in a series of descriptions on Torrenticolidae. As such, the study includes expanded discussions of methods, early taxonomic history, and numerous images surveying external morphology using a diversity of i...

  14. Why do cryptic species tend not to co-occur? A case study on two cryptic pairs of butterflies.

    PubMed

    Vodă, Raluca; Dapporto, Leonardo; Dincă, Vlad; Vila, Roger

    2015-01-01

    As cryptic diversity is being discovered, mostly thanks to advances in molecular techniques, it is becoming evident that many of these taxa display parapatric distributions in mainland and that they rarely coexist on islands. Genetic landscapes, haplotype networks and ecological niche modeling analyses were performed for two pairs of non-sister cryptic butterfly species, Aricia agestis-A. cramera and Polyommatus icarus-P. celina (Lycaenidae), to specifically assess non-coexistence on western Mediterranean islands, and to test potential causes producing such chequered distribution patterns. We show that the morphologically and ecologically equivalent pairs of species do not coexist on any of the studied islands, although nearly all islands are colonized by one of them. According to our models, the cryptic pairs displayed marked climatic preferences and 'precipitation during the driest quarter' was recovered as the most important climatic determinant. However, neither dispersal capacity, nor climatic or ecological factors fully explain the observed distributions across particular sea straits, and the existence of species interactions resulting in mutual exclusion is suggested as a necessary hypothesis. Given that the studied species are habitat generalists, feeding on virtually unlimited resources, we propose that reproductive interference, together with climatic preferences, sustain density-dependent mechanisms like "founder takes all" and impede coexistence on islands. Chequered distributions among cryptic taxa, both sister and non-sister, are common in butterflies, suggesting that the phenomenon revealed here could be important in determining biodiversity patterns. PMID:25692577

  15. Why Do Cryptic Species Tend Not to Co-Occur? A Case Study on Two Cryptic Pairs of Butterflies

    PubMed Central

    Vodă, Raluca; Dapporto, Leonardo; Dincă, Vlad; Vila, Roger

    2015-01-01

    As cryptic diversity is being discovered, mostly thanks to advances in molecular techniques, it is becoming evident that many of these taxa display parapatric distributions in mainland and that they rarely coexist on islands. Genetic landscapes, haplotype networks and ecological niche modeling analyses were performed for two pairs of non-sister cryptic butterfly species, Aricia agestis-A. cramera and Polyommatus icarus—P. celina (Lycaenidae), to specifically assess non-coexistence on western Mediterranean islands, and to test potential causes producing such chequered distribution patterns. We show that the morphologically and ecologically equivalent pairs of species do not coexist on any of the studied islands, although nearly all islands are colonized by one of them. According to our models, the cryptic pairs displayed marked climatic preferences and ‘precipitation during the driest quarter’ was recovered as the most important climatic determinant. However, neither dispersal capacity, nor climatic or ecological factors fully explain the observed distributions across particular sea straits, and the existence of species interactions resulting in mutual exclusion is suggested as a necessary hypothesis. Given that the studied species are habitat generalists, feeding on virtually unlimited resources, we propose that reproductive interference, together with climatic preferences, sustain density-dependent mechanisms like “founder takes all” and impede coexistence on islands. Chequered distributions among cryptic taxa, both sister and non-sister, are common in butterflies, suggesting that the phenomenon revealed here could be important in determining biodiversity patterns. PMID:25692577

  16. Why do cryptic species tend not to co-occur? A case study on two cryptic pairs of butterflies.

    PubMed

    Vodă, Raluca; Dapporto, Leonardo; Dincă, Vlad; Vila, Roger

    2015-01-01

    As cryptic diversity is being discovered, mostly thanks to advances in molecular techniques, it is becoming evident that many of these taxa display parapatric distributions in mainland and that they rarely coexist on islands. Genetic landscapes, haplotype networks and ecological niche modeling analyses were performed for two pairs of non-sister cryptic butterfly species, Aricia agestis-A. cramera and Polyommatus icarus-P. celina (Lycaenidae), to specifically assess non-coexistence on western Mediterranean islands, and to test potential causes producing such chequered distribution patterns. We show that the morphologically and ecologically equivalent pairs of species do not coexist on any of the studied islands, although nearly all islands are colonized by one of them. According to our models, the cryptic pairs displayed marked climatic preferences and 'precipitation during the driest quarter' was recovered as the most important climatic determinant. However, neither dispersal capacity, nor climatic or ecological factors fully explain the observed distributions across particular sea straits, and the existence of species interactions resulting in mutual exclusion is suggested as a necessary hypothesis. Given that the studied species are habitat generalists, feeding on virtually unlimited resources, we propose that reproductive interference, together with climatic preferences, sustain density-dependent mechanisms like "founder takes all" and impede coexistence on islands. Chequered distributions among cryptic taxa, both sister and non-sister, are common in butterflies, suggesting that the phenomenon revealed here could be important in determining biodiversity patterns.

  17. Taxonomy of the Colocasiomyia gigantea species group (Diptera, Drosophilidae), with descriptions of four new species from Yunnan, China

    PubMed Central

    Li, Nan-Nan; Toda, Masanori J.; Fu, Zhao; Chen, Ji-Min; Li, Su-Hua; Gao, Jian-Jun

    2014-01-01

    Abstract Species of the genus Colocasiomyia de Meijere feed/breed on inflorescences/infructescences of the plants from the families Araceae, Arecaceae and Magnoliaceae. Although most of them utilize plants from the subfamily Aroideae of Araceae, three species of the recently established C. gigantea species group make use of plants of the subfamily Monsteroideae. We describe four new species of the gigantea group found from Yunnan, China: Colocasiomyia longifilamentata Li & Gao, sp. n., C. longivalva Li & Gao, sp. n., C. hailini Li & Gao, sp. n., and C. yini Li & Gao, sp. n. The species delimitation is proved in virtue of not only morphology but also DNA barcodes, i.e., sequences of the partial mitochondrial COI (cytochrome c oxidase subunit I) gene. Some nucleotide sites with fixed status in the alignment of the COI sequences (658 sites in length) are used as “pure” molecular diagnostic characters to delineate species in the gigantea group. PMID:24843281

  18. New diagnosis for species of Plutomurus Yosii (Collembola, Tomoceridae), with descriptions of two new species from Georgian caves.

    PubMed

    Barjadze, Shalva; Baquero, Enrique; Soto-Adames, Felipe N; Giordano, Rosanna; Jordana, Rafael

    2016-01-01

    Two new species of the genus Plutomurus, P. revazi sp. nov. from Prometheus and Satsurblia caves and P. eristoi sp. nov. from Satevzia Cave are described, illustrated and differentiated from other morphologically closely related species. A high variability in the number of teeth in the claw, unguiculus and mucro of P. revazi sp. nov. demonstrate that these characters are not useful for species diagnosis. However, dorsal chaetotaxy was shown to be stable character for this purpose. Analysis of DNA sequences for the COI and 28S genes is congruent with species-level groups delimited by chaetotaxy, and provide additional support for chaetotaxy as the most reliable morphological character system to distinguish species in Plutomurus. A key to species of the genus Plutomurus found in Georgia is provided, which for the first time includes characters of the macrochaetotaxy. PMID:27395573

  19. Integrative taxonomy of Metrichia Ross (Trichoptera: Hydroptilidae: Ochrotrichiinae) microcaddisflies from Brazil: descriptions of twenty new species

    PubMed Central

    Takiya, Daniela M.; Nessimian, Jorge L.

    2016-01-01

    Metrichia is assigned to the Ochrotrichiinae, a group of almost exclusively Neotropical microcaddisflies. Metrichia comprises over 100 described species and, despite its diversity, only one species has been described from Brazil so far. In this paper, we provide descriptions for 20 new species from 8 Brazilian states: M. acuminata sp. nov., M. azul sp. nov., M. bonita sp. nov., M. bracui sp. nov., M. caraca sp. nov., M. circuliforme sp. nov., M. curta sp. nov., M. farofa sp. nov., M. forceps sp. nov., M. formosinha sp. nov., M. goiana sp. nov., M. itabaiana sp. nov., M. longissima sp. nov., M. peluda sp. nov., M. rafaeli sp. nov., M. simples sp. nov., M. talhada sp. nov., M. tere sp. nov., M. ubajara sp. nov., and M. vulgaris sp. nov. DNA barcode sequences (577 bp of the mitochondrial gene COI) were generated for 13 of the new species and two previously known species of Metrichia resulting in 64 sequences. In addition, COI sequences were obtained for other genera of Ochrotrichiinae (Angrisanoia, Nothotrichia, Ochrotrichia, Ragatrichia, and Rhyacopsyche). DNA sequences and morphological data were integrated to evaluate species delimitations. K2P pairwise distances were calculated to generate a neighbor-joining tree. COI sequences also were submitted to ABGD and GMYC methods to assess ‘potential species’ delimitation. Analyses showed a conspicuous barcoding gap among Metrichia sequences (highest intraspecific divergence: 4.8%; lowest interspecific divergence: 12.6%). Molecular analyses also allowed the association of larvae and adults of Metrichia bonita sp. nov. from Mato Grosso do Sul, representing the first record of microcaddisfly larvae occurring in calcareous tufa (or travertine). ABGD results agreed with the morphological delimitation of Metrichia species, while GMYC estimated a slightly higher number of species, suggesting the division of two morphological species, each one into two potential species. Because this could be due to unbalanced sampling and

  20. The Scirtothrips dorsalis Species Complex: Endemism and Invasion in a Global Pest.

    PubMed

    Dickey, Aaron M; Kumar, Vivek; Hoddle, Mark S; Funderburk, Joe E; Morgan, J Kent; Jara-Cavieres, Antonella; Shatters, Robert G; Osborne, Lance S; McKenzie, Cindy L

    2015-01-01

    Invasive arthropods pose unique management challenges in various environments, the first of which is correct identification. This apparently mundane task is particularly difficult if multiple species are morphologically indistinguishable but accurate identification can be determined with DNA barcoding provided an adequate reference set is available. Scirtothrips dorsalis is a highly polyphagous plant pest with a rapidly expanding global distribution and this species, as currently recognized, may be comprised of cryptic species. Here we report the development of a comprehensive DNA barcode library for S. dorsalis and seven nuclear markers via next-generation sequencing for identification use within the complex. We also report the delimitation of nine cryptic species and two morphologically distinguishable species comprising the S. dorsalis species complex using histogram analysis of DNA barcodes, Bayesian phylogenetics, and the multi-species coalescent. One member of the complex, here designated the South Asia 1 cryptic species, is highly invasive, polyphagous, and likely the species implicated in tospovirus transmission. Two other species, South Asia 2, and East Asia 1 are also highly polyphagous and appear to be at an earlier stage of global invasion. The remaining members of the complex are regionally endemic, varying in their pest status and degree of polyphagy. In addition to patterns of invasion and endemism, our results provide a framework both for identifying members of the complex based on their DNA barcode, and for future species delimiting efforts.

  1. The Scirtothrips dorsalis Species Complex: Endemism and Invasion in a Global Pest.

    PubMed

    Dickey, Aaron M; Kumar, Vivek; Hoddle, Mark S; Funderburk, Joe E; Morgan, J Kent; Jara-Cavieres, Antonella; Shatters, Robert G; Osborne, Lance S; McKenzie, Cindy L

    2015-01-01

    Invasive arthropods pose unique management challenges in various environments, the first of which is correct identification. This apparently mundane task is particularly difficult if multiple species are morphologically indistinguishable but accurate identification can be determined with DNA barcoding provided an adequate reference set is available. Scirtothrips dorsalis is a highly polyphagous plant pest with a rapidly expanding global distribution and this species, as currently recognized, may be comprised of cryptic species. Here we report the development of a comprehensive DNA barcode library for S. dorsalis and seven nuclear markers via next-generation sequencing for identification use within the complex. We also report the delimitation of nine cryptic species and two morphologically distinguishable species comprising the S. dorsalis species complex using histogram analysis of DNA barcodes, Bayesian phylogenetics, and the multi-species coalescent. One member of the complex, here designated the South Asia 1 cryptic species, is highly invasive, polyphagous, and likely the species implicated in tospovirus transmission. Two other species, South Asia 2, and East Asia 1 are also highly polyphagous and appear to be at an earlier stage of global invasion. The remaining members of the complex are regionally endemic, varying in their pest status and degree of polyphagy. In addition to patterns of invasion and endemism, our results provide a framework both for identifying members of the complex based on their DNA barcode, and for future species delimiting efforts. PMID:25893251

  2. The Scirtothrips dorsalis Species Complex: Endemism and Invasion in a Global Pest

    PubMed Central

    Dickey, Aaron M.; Kumar, Vivek; Hoddle, Mark S.; Funderburk, Joe E.; Morgan, J. Kent; Jara-Cavieres, Antonella; Shatters, Robert G. Jr.; Osborne, Lance S.; McKenzie, Cindy L.

    2015-01-01

    Invasive arthropods pose unique management challenges in various environments, the first of which is correct identification. This apparently mundane task is particularly difficult if multiple species are morphologically indistinguishable but accurate identification can be determined with DNA barcoding provided an adequate reference set is available. Scirtothrips dorsalis is a highly polyphagous plant pest with a rapidly expanding global distribution and this species, as currently recognized, may be comprised of cryptic species. Here we report the development of a comprehensive DNA barcode library for S. dorsalis and seven nuclear markers via next-generation sequencing for identification use within the complex. We also report the delimitation of nine cryptic species and two morphologically distinguishable species comprising the S. dorsalis species complex using histogram analysis of DNA barcodes, Bayesian phylogenetics, and the multi-species coalescent. One member of the complex, here designated the South Asia 1 cryptic species, is highly invasive, polyphagous, and likely the species implicated in tospovirus transmission. Two other species, South Asia 2, and East Asia 1 are also highly polyphagous and appear to be at an earlier stage of global invasion. The remaining members of the complex are regionally endemic, varying in their pest status and degree of polyphagy. In addition to patterns of invasion and endemism, our results provide a framework both for identifying members of the complex based on their DNA barcode, and for future species delimiting efforts. PMID:25893251

  3. A new delimitation of the Afro-Eurasian plant genus Althenia to include its Australasian relative, Lepilaena (Potamogetonaceae) - Evidence from DNA and morphological data.

    PubMed

    Ito, Yu; Tanaka, Norio; García-Murillo, Pablo; Muasya, A Muthama

    2016-05-01

    Althenia (Potamogetonaceae) is an aquatic plant genus disjunctly distributed in the southern- (South Africa's Cape Floristic Region: CFR) and northern- (Mediterranean Eurasia) hemispheres. This genus and its Australasian relative, Lepilaena, share similar floral characters yet have been treated as different genera or sections of Althenia sensu lato (s.l.) due to the isolated geographic distribution as well as the differences in sex expression, stamen construction, and stigma morphology. The diagnostic characters, however, need reevaluation over the boundaries between the entities. Here we tested the taxonomic delimitation between the entities, assessed synapomorphies for evolutionary lineages, and inferred biogeographic history in a phylogenetic framework. Our results indicated that Lepilaena was resolved as non-monophyletic in both plastid DNA and nuclear PhyC trees and Althenia was nested within it. As Althenia has nomenclatural priority, we propose a new delimitation to recognize Althenia s.l., which can be diagnosed by the female flowers with 3-segmented perianths and male flowers with perianths. The previously used diagnostic characters are either autapomorphies or synapomorphies for small lineages within Althenia s.l., and evolutionary transitions to sessile female flowers and narrow leaves characterize larger clades. Biogeographic analyses suggested a Miocene origin of Althenia s.l. in Australasia and indicated at least one inter- and one intra-specific inter-continental dispersal events among Australasia, Mediterranean Eurasia, and CFR need to be hypothesized to explain the current distribution patterns.

  4. Hyper-Cryptic Marine Meiofauna: Species Complexes in Nemertodermatida

    PubMed Central

    Meyer-Wachsmuth, Inga; Curini Galletti, Marco; Jondelius, Ulf

    2014-01-01

    Nemertodermatida are microscopically small, benthic marine worms. Specimens of two nominal species, Sterreria psammicola and Nemertinoides elongatus from 33 locations worldwide were sequenced for three molecular markers. Species delimitation and validation was done using gene trees, haplotype networks and multilocus Bayesian analysis. We found 20 supported species of which nine: Nemertinoides glandulosum n.sp., N. wolfgangi n.sp., Sterreria boucheti n.sp., S. lundini n.sp., S. martindalei n.sp., S. monolithes n.sp., S. papuensis n.sp., S. variabilis n.sp. and S. ylvae n.sp., are described including nucleotide-based diagnoses. The distribution patterns indicate transoceanic dispersal in some of the species. Sympatric species were found in many cases. The high level of cryptic diversity in this meiofauna group implies that marine diversity may be higher than previously estimated. PMID:25225981

  5. Pollen competition among two species of Senecio (Asteraceae) that form a hybrid zone on Mt. Etna, Sicily.

    PubMed

    Chapman, Mark A; Forbes, David G; Abbott, Richard J

    2005-04-01

    Hybridization between interfertile, sympatric or parapatric, plant species can be reduced significantly by conspecific pollen advantage (CPA), whereby conspecific pollen has an advantage over heterospecific pollen in terms of ovule fertilization. We examined CPA in two interfertile species of Senecio, S. aethnensis, and S. chrysanthemifolius (Asteraceae), which form a hybrid zone on Mt. Etna, Sicily. Individuals of both species were pollinated with pollen mixtures containing 0, 25, 50, 75, or 100% heterospecific pollen, and offspring were genotyped to determine if they were products of conspecific or heterospecific pollen fertilizing the ovules. The mean proportion of hybrid offspring produced on S. aethnensis plants was not significantly different to that expected based on the proportion of heterospecific pollen applied to the flower head. However, S. chrysanthemifolius mother plants showed moderate CPA, with the proportion of hybrid offspring significantly less than expected. Seed set or seed germination was not reduced, hence the CPA found for S. chrysanthemifolius acts before ovule fertilization. The consequences of asymmetry in CPA on the reproductive isolation of S. aethnensis are briefly discussed, along with other mechanisms that may play a role in the maintenance of the hybrid zone on Mt. Etna.

  6. Cryptic Diversity in Metropolis: Confirmation of a New Leopard Frog Species (Anura: Ranidae) from New York City and Surrounding Atlantic Coast Regions

    PubMed Central

    Feinberg, Jeremy A.; Newman, Catherine E.; Watkins-Colwell, Gregory J.; Schlesinger, Matthew D.; Zarate, Brian; Curry, Brian R.; Shaffer, H. Bradley; Burger, Joanna

    2014-01-01

    We describe a new cryptic species of leopard frog from the New York City metropolitan area and surrounding coastal regions. This species is morphologically similar to two largely parapatric eastern congeners, Rana sphenocephala and R. pipiens. We primarily use bioacoustic and molecular data to characterize the new species, but also examine other lines of evidence. This discovery is unexpected in one of the largest and most densely populated urban parts of the world. It also demonstrates that new vertebrate species can still be found periodically even in well-studied locales rarely associated with undocumented biodiversity. The new species typically occurs in expansive open-canopied wetlands interspersed with upland patches, but centuries of loss and impact to these habitats give some cause for conservation concern. Other concerns include regional extirpations, fragmented extant populations, and a restricted overall geographic distribution. We assign a type locality within New York City and report a narrow and largely coastal lowland distribution from central Connecticut to northern New Jersey (based on genetic data) and south to North Carolina (based on call data). PMID:25354068

  7. Cryptic diversity in metropolis: confirmation of a new leopard frog species (Anura: Ranidae) from New York City and surrounding Atlantic coast regions.

    PubMed

    Feinberg, Jeremy A; Newman, Catherine E; Watkins-Colwell, Gregory J; Schlesinger, Matthew D; Zarate, Brian; Curry, Brian R; Shaffer, H Bradley; Burger, Joanna

    2014-01-01

    We describe a new cryptic species of leopard frog from the New York City metropolitan area and surrounding coastal regions. This species is morphologically similar to two largely parapatric eastern congeners, Rana sphenocephala and R. pipiens. We primarily use bioacoustic and molecular data to characterize the new species, but also examine other lines of evidence. This discovery is unexpected in one of the largest and most densely populated urban parts of the world. It also demonstrates that new vertebrate species can still be found periodically even in well-studied locales rarely associated with undocumented biodiversity. The new species typically occurs in expansive open-canopied wetlands interspersed with upland patches, but centuries of loss and impact to these habitats give some cause for conservation concern. Other concerns include regional extirpations, fragmented extant populations, and a restricted overall geographic distribution. We assign a type locality within New York City and report a narrow and largely coastal lowland distribution from central Connecticut to northern New Jersey (based on genetic data) and south to North Carolina (based on call data).

  8. The Integrative Taxonomic Approach Reveals Host Specific Species in an Encyrtid Parasitoid Species Complex

    PubMed Central

    Chesters, Douglas; Wang, Ying; Yu, Fang; Bai, Ming; Zhang, Tong-Xin; Hu, Hao-Yuan; Zhu, Chao-Dong; Li, Cheng-De; Zhang, Yan-Zhou

    2012-01-01

    Integrated taxonomy uses evidence from a number of different character types to delimit species and other natural groupings. While this approach has been advocated recently, and should be of particular utility in the case of diminutive insect parasitoids, there are relatively few examples of its application in these taxa. Here, we use an integrated framework to delimit independent lineages in Encyrtus sasakii (Hymenoptera: Chalcidoidea: Encyrtidae), a parasitoid morphospecies previously considered a host generalist. Sequence variation at the DNA barcode (cytochrome c oxidase I, COI) and nuclear 28S rDNA loci were compared to morphometric recordings and mating compatibility tests, among samples of this species complex collected from its four scale insect hosts, covering a broad geographic range of northern and central China. Our results reveal that Encyrtus sasakii comprises three lineages that, while sharing a similar morphology, are highly divergent at the molecular level. At the barcode locus, the median K2P molecular distance between individuals from three primary populations was found to be 11.3%, well outside the divergence usually observed between Chalcidoidea conspecifics (0.5%). Corroborative evidence that the genetic lineages represent independent species was found from mating tests, where compatibility was observed only within populations, and morphometric analysis, which found that despite apparent morphological homogeneity, populations clustered according to forewing shape. The independent lineages defined by the integrated analysis correspond to the three scale insect hosts, suggesting the presence of host specific cryptic species. The finding of hidden host specificity in this species complex demonstrates the critical role that DNA barcoding will increasingly play in revealing hidden biodiversity in taxa that present difficulties for traditional taxonomic approaches. PMID:22666375

  9. Molecular and Morphological Inference of Three Cryptic Species within the Merodon aureus Species Group (Diptera: Syrphidae)

    PubMed Central

    Ačanski, Jelena; Vujić, Ante; Ståhls, Gunilla; Radenković, Snežana; Milić, Dubravka; Obreht Vidaković, Dragana; Đan, Mihajla

    2016-01-01

    The Merodon aureus species group (Diptera: Syrphidae: Eristalinae) comprises a number of different sub-groups and species complexes. In this study we focus on resolving the taxonomic status of the entity previously identified as M. cinereus B, here identified as M. atratus species complex. We used an integrative approach based on morphological descriptions, combined with supporting characters that were obtained from molecular analyses of the mitochondrial cytochrome c oxidase I gene as well as from geometric morphometry of wing and surstylus shapes and environmental niche comparisons. All applied data and methods distinguished and supported three morphologically cryptic species: M. atratus stat. nov., M. virgatus sp. nov. and M. balkanicus sp. nov., which constitute the M. atratus species complex. We present an identification key for the sub-groups and species complexes of the M. aureus species group occurring in Europe, describe the taxa and discuss the utility of the applied methods for species delimitation. The estimated divergence times for the species splits of these taxa coincide with the Pleistocene Günz-Mindel interglaciation and the Great interglaciation (between the Ris and Mindel glacial periods). PMID:27532618

  10. Molecular and Morphological Inference of Three Cryptic Species within the Merodon aureus Species Group (Diptera: Syrphidae).

    PubMed

    Šašić, Ljiljana; Ačanski, Jelena; Vujić, Ante; Ståhls, Gunilla; Radenković, Snežana; Milić, Dubravka; Obreht Vidaković, Dragana; Đan, Mihajla

    2016-01-01

    The Merodon aureus species group (Diptera: Syrphidae: Eristalinae) comprises a number of different sub-groups and species complexes. In this study we focus on resolving the taxonomic status of the entity previously identified as M. cinereus B, here identified as M. atratus species complex. We used an integrative approach based on morphological descriptions, combined with supporting characters that were obtained from molecular analyses of the mitochondrial cytochrome c oxidase I gene as well as from geometric morphometry of wing and surstylus shapes and environmental niche comparisons. All applied data and methods distinguished and supported three morphologically cryptic species: M. atratus stat. nov., M. virgatus sp. nov. and M. balkanicus sp. nov., which constitute the M. atratus species complex. We present an identification key for the sub-groups and species complexes of the M. aureus species group occurring in Europe, describe the taxa and discuss the utility of the applied methods for species delimitation. The estimated divergence times for the species splits of these taxa coincide with the Pleistocene Günz-Mindel interglaciation and the Great interglaciation (between the Ris and Mindel glacial periods). PMID:27532618

  11. Using Morphological, Molecular and Climatic Data to Delimitate Yews along the Hindu Kush-Himalaya and Adjacent Regions

    PubMed Central

    Poudel, Ram C.; Möller, Michael; Gao, Lian-Ming; Ahrends, Antje; Baral, Sushim R.; Liu, Jie; Thomas, Philip; Li, De-Zhu

    2012-01-01

    Background Despite the availability of several studies to clarify taxonomic problems on the highly threatened yews of the Hindu Kush-Himalaya (HKH) and adjacent regions, the total number of species and their exact distribution ranges remains controversial. We explored the use of comprehensive sets of morphological, molecular and climatic data to clarify taxonomy and distributions of yews in this region. Methodology/Principal Findings A total of 743 samples from 46 populations of wild yew and 47 representative herbarium specimens were analyzed. Principle component analyses on 27 morphological characters and 15 bioclimatic variables plus altitude and maximum parsimony analysis on molecular ITS and trnL-F sequences indicated the existence of three distinct species occurring in different ecological (climatic) and altitudinal gradients along the HKH and adjacent regions Taxus contorta from eastern Afghanistan to the eastern end of Central Nepal, T. wallichiana from the western end of Central Nepal to Northwest China, and the first report of the South China low to mid-elevation species T. mairei in Nepal, Bhutan, Northeast India, Myanmar and South Vietnam. Conclusion/Significance The detailed sampling and combination of different data sets allowed us to identify three clearly delineated species and their precise distribution ranges in the HKH and adjacent regions, which showed no overlap or no distinct hybrid zone. This might be due to differences in the ecological (climatic) requirements of the species. The analyses further provided the selection of diagnostic morphological characters for the identification of yews occurring in the HKH and adjacent regions. Our work demonstrates that extensive sampling combined with the analysis of diverse data sets can reliably address the taxonomy of morphologically challenging plant taxa. PMID:23056501

  12. Description of Danio absconditus, new species, and redescription of Danio feegradei (Teleostei: Cyprinidae), from the Rakhine Yoma hotspot in south-western Myanmar.

    PubMed

    Kullander, Sven O; Britz, Ralf

    2015-04-21

    Danio feegradei Hora is redescribed based on recently collected specimens from small coastal streams on the western slope of the Rakhine Yoma, ranging from the Thade River drainage southward to slightly north of Kyeintali. Danio absconditus, new species, is described from the Kyeintali Chaung and small coastal streams near Gwa, south of the range of D. feegradei. Both species are distinguished from other Danio by the presence of a dark, elongate or round spot at the base of the caudal fin and a cleithral marking composed of a small black spot margined by a much smaller orange spot. Danio feegradei is characterized by the colour pattern, with series of white spots along the otherwise dark side; D. absconditus by about 7--11 dark vertical bars on the abdominal side. Within Danio, the presence of a complete lateral line, cleithral spot, and 14 circumpeduncular scales is shared with D. dangila and similar species, but these character states may be plesiomorphic as suggested by the shared presence of cleithral spot and complete lateral line in Devario and Betadevario. In other Danio the cleithral spot is absent, the lateral line is short or absent, and the circumpeduncular scale count is lower (10-12). Twenty teleost species are reported from streams on the western slope of the Rakhine Yoma, all probably endemic. The parapatric distribution of D. absconditus and D. feegradei is unique within the genus, and may be partly explained by changes in eustatic sea levels.

  13. First instalment in resolution of the Banksia spinulosa complex (Proteaceae): B. neoanglica, a new species supported by phenetic analysis, ecology and geography

    PubMed Central

    Stimpson, Margaret L.; Weston, Peter H.; Telford, Ian R.H.; Bruhl, Jeremy J.

    2012-01-01

    Abstract Taxa in the Banksia spinulosa Sm. complex (Proteaceae) have populations with sympatric, parapatric and allopatric distributions and unclear or disputed boundaries. Our hypothesis is that under biological, phenetic and diagnosable species concepts that each of the currently named taxa within the Banksia spinulosa complex is a separate species. Based on specimens collected as part of this study, and data recorded from specimens in six Australian herbaria, complemented by phenetic analysis (semi–strong multidimensional scaling and UPGMA clustering) and a detailed morphological study, we investigated both morphological variation and geographic distribution in the Banksia spinulosa complex. All specimens used for this study are held at the N.C.W. Beadle Herbarium or the National Herbarium of New South Wales. In total 23 morphological characters (11 quantitative, five binary, and seven multistate characters) were analysed phenetically for 89 specimens. Ordination and cluster analysis resulted in individuals grouping strongly allowing recognition of distinct groups consistent with their recognition as separate species. Additional morphological analysis was completed on all specimens using leaf, floral, fruit and stem morphology, providing clear cut diagnosable groups and strong support for the recognition of Banksia spinulosa var. cunninghamii and Banksia spinulosa var. neoanglica as species. PMID:23170073

  14. Natural hybridization in heliconiine butterflies: the species boundary as a continuum

    PubMed Central

    Mallet, James; Beltrán, Margarita; Neukirchen, Walter; Linares, Mauricio

    2007-01-01

    Background To understand speciation and the maintenance of taxa as separate entities, we need information about natural hybridization and gene flow among species. Results Interspecific hybrids occur regularly in Heliconius and Eueides (Lepidoptera: Nymphalidae) in the wild: 26–29% of the species of Heliconiina are involved, depending on species concept employed. Hybridization is, however, rare on a per-individual basis. For one well-studied case of species hybridizing in parapatric contact (Heliconius erato and H. himera), phenotypically detectable hybrids form around 10% of the population, but for species in sympatry hybrids usually form less than 0.05% of individuals. There is a roughly exponential decline with genetic distance in the numbers of natural hybrids in collections, both between and within species, suggesting a simple "exponential failure law" of compatibility as found in some prokaryotes. Conclusion Hybridization between species of Heliconius appears to be a natural phenomenon; there is no evidence that it has been enhanced by recent human habitat disturbance. In some well-studied cases, backcrossing occurs in the field and fertile backcrosses have been verified in insectaries, which indicates that introgression is likely, and recent molecular work shows that alleles at some but not all loci are exchanged between pairs of sympatric, hybridizing species. Molecular clock dating suggests that gene exchange may continue for more than 3 million years after speciation. In addition, one species, H. heurippa, appears to have formed as a result of hybrid speciation. Introgression may often contribute to adaptive evolution as well as sometimes to speciation itself, via hybrid speciation. Geographic races and species that coexist in sympatry therefore form part of a continuum in terms of hybridization rates or probability of gene flow. This finding concurs with the view that processes leading to speciation are continuous, rather than sudden, and that they are

  15. The taxonomy of the European species of Hebeloma section Denudata subsections Hiemalia, Echinospora subsect. nov. and Clepsydroida subsect. nov. and five new species.

    PubMed

    Eberhardt, Ursula; Beker, Henry J; Vesterholt, Jan; Schütz, Nicole

    2016-01-01

    Hebeloma section Denudata includes the majority of the taxa commonly referred to as the Hebeloma crustuliniforme complex. In a recent paper we described in detail H. subsection Denudata and fifteen European species recognised within this subsection, using morphological and molecular methods. In this paper we continue this work and describe in detail three additional subsections and several new species. Within H. subsection Hiemalia we recognise just one species, Hebeloma hiemale. Here we propose an epitype in order to unambiguously define this taxon. Nine species occurring in Europe are assigned to H. subsect. Clepsydroida, namely Hebeloma ammophilum, H. cavipes, H. fragilipes, H. ingratum, H. laetitiae, H. limbatum sp. nov., H. matritense sp. nov., H. pseudofragilipes sp. nov., and H. vaccinum. Finally, we introduce H. subsection Echinospora with three species: Hebeloma echinosporum sp. nov., H. populinum, and H. rostratum sp. nov. We provide descriptions of all three of these species in order to clarify the taxonomy of this section. We provide a key to H. sect. Denudata and the discussed subsections. For the majority of the taxa there is good overall consistency between morphological and phylogenetic delimitation and, where the information exists, thanks to Aanen and Kuyper's work, biological delimitation.

  16. Discordance between morphological and molecular species boundaries among Caribbean species of the reef sponge Callyspongia

    PubMed Central

    DeBiasse, Melissa B; Hellberg, Michael E

    2015-01-01

    Sponges are among the most species-rich and ecologically important taxa on coral reefs, yet documenting their diversity is difficult due to the simplicity and plasticity of their morphological characters. Genetic attempts to identify species are hampered by the slow rate of mitochondrial sequence evolution characteristic of sponges and some other basal metazoans. Here we determine species boundaries of the Caribbean coral reef sponge genus Callyspongia using a multilocus, model-based approach. Based on sequence data from one mitochondrial (COI), one ribosomal (28S), and two single-copy nuclear protein-coding genes, we found evolutionarily distinct lineages were not concordant with current species designations in Callyspongia. While C. fallax,C. tenerrima, and C. plicifera were reciprocally monophyletic, four taxa with different morphologies (C. armigera,C. longissima,C. eschrichtii, and C. vaginalis) formed a monophyletic group and genetic distances among these taxa overlapped distances within them. A model-based method of species delimitation supported collapsing these four into a single evolutionary lineage. Variation in spicule size among these four taxa was partitioned geographically, not by current species designations, indicating that in Callyspongia, these key taxonomic characters are poor indicators of genetic differentiation. Taken together, our results suggest a complex relationship between morphology and species boundaries in sponges. PMID:25691989

  17. Species diversity of the genus Osmundea (Ceramiales, Rhodophyta) in the Macaronesian region.

    PubMed

    Machín-Sánchez, María; Rousseau, Florence; Le Gall, Line; Cassano, Valéria; Neto, Ana I; Sentíes, Abel; T Fujii, Mutue; Gil-Rodríguez, María Candelaria

    2016-08-01

    Species diversity within the genus Osmundea in the Macaronesian region was explored by conducting a comprehensive sampling in the Azores, the Canary, and the Madeira archipelagos. Toward identification, all specimens were first observed alive to verify the absence of corps en cerise, a diagnostic character for the genus and morphometric data were measured (thallus length and width, first-order branches length and width, branchlets length and width, cortical cell length and width in surface view, cortical cell length and width in transverse section). Specimens were sequenced for COI-5P (39 specimens) and three species delimitation methods (Generalized Mixed Yule Coalescent, Automatic Barcode Gap Discovery method, and Poisson Tree Processes) were used to assess the threshold between infra- and interspecific relationships. Subsequently, one or several sequences of plastid-encoded large subunit of RuBisCO (21 specimens) per delimited species were generated to assess the phylogenetic relationships among Macaronesian Osmundea. Moreover, for each delineated species, vegetative and reproductive anatomy was thoroughly documented and, when possible, specimens were either assigned to existing taxa or described as novel species. This integrative approach has provided data for (i) the presence of O. oederi, O. pinnatifida, and O. truncata in Macaronesia; (ii) the proposal of two novel species, O. prudhommevanreinei sp. nov. and O. silvae sp. nov.; and (iii) evidence of an additional species referred as "Osmundea sp.1," which is a sister taxon of O. hybrida.

  18. Species diversity of the genus Osmundea (Ceramiales, Rhodophyta) in the Macaronesian region.

    PubMed

    Machín-Sánchez, María; Rousseau, Florence; Le Gall, Line; Cassano, Valéria; Neto, Ana I; Sentíes, Abel; T Fujii, Mutue; Gil-Rodríguez, María Candelaria

    2016-08-01

    Species diversity within the genus Osmundea in the Macaronesian region was explored by conducting a comprehensive sampling in the Azores, the Canary, and the Madeira archipelagos. Toward identification, all specimens were first observed alive to verify the absence of corps en cerise, a diagnostic character for the genus and morphometric data were measured (thallus length and width, first-order branches length and width, branchlets length and width, cortical cell length and width in surface view, cortical cell length and width in transverse section). Specimens were sequenced for COI-5P (39 specimens) and three species delimitation methods (Generalized Mixed Yule Coalescent, Automatic Barcode Gap Discovery method, and Poisson Tree Processes) were used to assess the threshold between infra- and interspecific relationships. Subsequently, one or several sequences of plastid-encoded large subunit of RuBisCO (21 specimens) per delimited species were generated to assess the phylogenetic relationships among Macaronesian Osmundea. Moreover, for each delineated species, vegetative and reproductive anatomy was thoroughly documented and, when possible, specimens were either assigned to existing taxa or described as novel species. This integrative approach has provided data for (i) the presence of O. oederi, O. pinnatifida, and O. truncata in Macaronesia; (ii) the proposal of two novel species, O. prudhommevanreinei sp. nov. and O. silvae sp. nov.; and (iii) evidence of an additional species referred as "Osmundea sp.1," which is a sister taxon of O. hybrida. PMID:27221970

  19. Digenean parasites of Cariama cristata (Aves, Gruiformes) from Formosa Province, Argentina, with the description of a new species of the genus Strigea.

    PubMed

    Lunaschi, Lía Inés; Drago, Fabiana Beatriz

    2012-03-01

    A new strigeid digenean, Strigea inflecta sp. nov., is described from the small intestine of the Red-legged Seriema, Cariama cristata (L.) (Gruiformes, Cariamidae) from Formosa Province, Argentina. This species is characterized by having a body plump, a cup-shaped forebody with a large opening, a sacciform hindbody, without a neck region and strongly curved dorsally, a poorly delimited copulatory bursa, wider than longer, a shallow and asymmetrical genital atrium, and a genital cone well delimited from body parenchyma, strongly muscular, inclined towards the surface ventral of the body. Another digenean species collected from Red-legged Seriema, Brachylaima yupanquii Freitas, Kohn et Ibáñez, 1967 (Brachylaimidae) is described with the addition of new morphological characters and morphometrical data. This species is reported for the first time in Argentina and C. cristata represents a new host record.

  20. Reassessment of Species Diversity of the Subfamily Denticollinae (Coleoptera: Elateridae) through DNA Barcoding

    PubMed Central

    Lee, Seunghwan; Park, In Gyun; Park, Haechul

    2016-01-01

    The subfamily Denticollinae is a taxonomically diverse group in the family Elateridae. Denticollinae includes many morphologically similar species and crop pests, as well as many undescribed species at each local fauna. To construct a rapid and reliable identification system for this subfamily, the effectiveness of molecular species identification was assessed based on 421 cytochrome c oxidase subunit I (COI) sequences of 84 morphologically identified species. Among the 84 morphospecies, molecular species identification of 60 species (71.4%) was consistent with their morphological identifications. Six cryptic and/or pseudocryptic species with large genetic divergence (>5%) were confirmed by their sympatric or allopatric distributions. However, 18 species, including a subspecies, had ambiguous genetic distances and shared overlapping intra- and interspecific genetic distances (range: 2.12%–3.67%) suggesting incomplete lineage sorting, introgression of mitochondrial genome, or affection by endosymbionts, such as Wolbachia infection, between species and simple genetic variation within species. In this study, we propose a conservative threshold of 3.6% for convenient molecular operational taxonomic unit (MOTU) identification in the subfamily Denticollinae based on the results of pairwise genetic distances analyses using neighbor-joining, mothur, Automatic Barcode Gap Discovery analysis, and tree-based species delimitation by Poisson Tree Processes analysis. Using the 3.6% threshold, we identified 87 MOTUs and found 8 MOTUs in the interval between 2.5% to 3.5%. Evaluation of MOTUs identified in this range requires integrative species delimitation, including review of morphological and ecological differences as well as sensitive genetic markers. From this study, we confirmed that COI sequence is useful for reassessing species diversity for polymorphic and polytypic species occurring in sympatric and allopatric distributions, and for a single species having an

  1. Reassessment of Species Diversity of the Subfamily Denticollinae (Coleoptera: Elateridae) through DNA Barcoding.

    PubMed

    Han, Taeman; Lee, Wonhoon; Lee, Seunghwan; Park, In Gyun; Park, Haechul

    2016-01-01

    The subfamily Denticollinae is a taxonomically diverse group in the family Elateridae. Denticollinae includes many morphologically similar species and crop pests, as well as many undescribed species at each local fauna. To construct a rapid and reliable identification system for this subfamily, the effectiveness of molecular species identification was assessed based on 421 cytochrome c oxidase subunit I (COI) sequences of 84 morphologically identified species. Among the 84 morphospecies, molecular species identification of 60 species (71.4%) was consistent with their morphological identifications. Six cryptic and/or pseudocryptic species with large genetic divergence (>5%) were confirmed by their sympatric or allopatric distributions. However, 18 species, including a subspecies, had ambiguous genetic distances and shared overlapping intra- and interspecific genetic distances (range: 2.12%-3.67%) suggesting incomplete lineage sorting, introgression of mitochondrial genome, or affection by endosymbionts, such as Wolbachia infection, between species and simple genetic variation within species. In this study, we propose a conservative threshold of 3.6% for convenient molecular operational taxonomic unit (MOTU) identification in the subfamily Denticollinae based on the results of pairwise genetic distances analyses using neighbor-joining, mothur, Automatic Barcode Gap Discovery analysis, and tree-based species delimitation by Poisson Tree Processes analysis. Using the 3.6% threshold, we identified 87 MOTUs and found 8 MOTUs in the interval between 2.5% to 3.5%. Evaluation of MOTUs identified in this range requires integrative species delimitation, including review of morphological and ecological differences as well as sensitive genetic markers. From this study, we confirmed that COI sequence is useful for reassessing species diversity for polymorphic and polytypic species occurring in sympatric and allopatric distributions, and for a single species having an extensively

  2. High genetic diversity and geographic subdivision of three lance nematode species (Hoplolaimus spp.) in the United States

    PubMed Central

    Holguin, Claudia M; Baeza, Juan A; Mueller, John D; Agudelo, Paula

    2015-01-01

    Lance nematodes (Hoplolaimus spp.) feed on the roots of a wide range of plants, some of which are agronomic crops. Morphometric values of amphimictic lance nematode species overlap considerably, and useful morphological characters for their discrimination require high magnification and significant diagnostic time. Given their morphological similarity, these Hoplolaimus species provide an interesting model to investigate hidden diversity in crop agroecosystems. In this scenario, H. galeatus may have been over-reported and the related species that are morphologically similar could be more widespread in the United States that has been recognized thus far. The main objectives of this study were to delimit Hoplolaimus galeatus and morphologically similar species using morphology, phylogeny, and a barcoding approach, and to estimate the genetic diversity and population structure of the species found. Molecular analyses were performed using sequences of the cytochrome c oxidase subunit 1 (Cox1) and the internal transcribed spacer (ITS1) on 23 populations. Four morphospecies were identified: H. galeatus, H. magnistylus, H. concaudajuvencus, and H. stephanus, along with a currently undescribed species. Pronounced genetic structure correlated with geographic origin was found for all species, except for H. galeatus. Hoplolaimus galeatus also exhibited low genetic diversity and the shortest genetic distances among populations. In contrast, H. stephanus, the species with the fewest reports from agricultural soils, was the most common and diverse species found. Results of this project may lead to better delimitation of lance nematode species in the United States by contributing to the understanding the diversity within this group. PMID:26306177

  3. BOREAS TGB-3 Plant Species Composition Data over the NSA Fen

    NASA Technical Reports Server (NTRS)

    Bubier, Jill L.; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-3) team collected several data sets that contributed to understanding the measured trace gas fluxes over sites in the Northern Study Area (NSA). This data set contains information about the composition of plant species that were within the collars used to measure Net Ecosystem Exchange of CO2 (NEE). The species composition was identified to understand the differences in NEE among the various plant communities in the NSA fen. The data were collected in July of 1994 and 1996. The data are contained in comma-delimited, ASCII files.

  4. Natural Constraints to Species Diversification.

    PubMed

    Lewitus, Eric; Morlon, Hélène

    2016-08-01

    Identifying modes of species diversification is fundamental to our understanding of how biodiversity changes over evolutionary time. Diversification modes are captured in species phylogenies, but characterizing the landscape of diversification has been limited by the analytical tools available for directly comparing phylogenetic trees of groups of organisms. Here, we use a novel, non-parametric approach and 214 family-level phylogenies of vertebrates representing over 500 million years of evolution to identify major diversification modes, to characterize phylogenetic space, and to evaluate the bounds and central tendencies of species diversification. We identify five principal patterns of diversification to which all vertebrate families hold. These patterns, mapped onto multidimensional space, constitute a phylogenetic space with distinct properties. Firstly, phylogenetic space occupies only a portion of all possible tree space, showing family-level phylogenies to be constrained to a limited range of diversification patterns. Secondly, the geometry of phylogenetic space is delimited by quantifiable trade-offs in tree size and the heterogeneity and stem-to-tip distribution of branching events. These trade-offs are indicative of the instability of certain diversification patterns and effectively bound speciation rates (for successful clades) within upper and lower limits. Finally, both the constrained range and geometry of phylogenetic space are established by the differential effects of macroevolutionary processes on patterns of diversification. Given these properties, we show that the average path through phylogenetic space over evolutionary time traverses several diversification stages, each of which is defined by a different principal pattern of diversification and directed by a different macroevolutionary process. The identification of universal patterns and natural constraints to diversification provides a foundation for understanding the deep-time evolution of

  5. Natural Constraints to Species Diversification

    PubMed Central

    Lewitus, Eric; Morlon, Hélène

    2016-01-01

    Identifying modes of species diversification is fundamental to our understanding of how biodiversity changes over evolutionary time. Diversification modes are captured in species phylogenies, but characterizing the landscape of diversification has been limited by the analytical tools available for directly comparing phylogenetic trees of groups of organisms. Here, we use a novel, non-parametric approach and 214 family-level phylogenies of vertebrates representing over 500 million years of evolution to identify major diversification modes, to characterize phylogenetic space, and to evaluate the bounds and central tendencies of species diversification. We identify five principal patterns of diversification to which all vertebrate families hold. These patterns, mapped onto multidimensional space, constitute a phylogenetic space with distinct properties. Firstly, phylogenetic space occupies only a portion of all possible tree space, showing family-level phylogenies to be constrained to a limited range of diversification patterns. Secondly, the geometry of phylogenetic space is delimited by quantifiable trade-offs in tree size and the heterogeneity and stem-to-tip distribution of branching events. These trade-offs are indicative of the instability of certain diversification patterns and effectively bound speciation rates (for successful clades) within upper and lower limits. Finally, both the constrained range and geometry of phylogenetic space are established by the differential effects of macroevolutionary processes on patterns of diversification. Given these properties, we show that the average path through phylogenetic space over evolutionary time traverses several diversification stages, each of which is defined by a different principal pattern of diversification and directed by a different macroevolutionary process. The identification of universal patterns and natural constraints to diversification provides a foundation for understanding the deep-time evolution of

  6. Natural Constraints to Species Diversification.

    PubMed

    Lewitus, Eric; Morlon, Hélène

    2016-08-01

    Identifying modes of species diversification is fundamental to our understanding of how biodiversity changes over evolutionary time. Diversification modes are captured in species phylogenies, but characterizing the landscape of diversification has been limited by the analytical tools available for directly comparing phylogenetic trees of groups of organisms. Here, we use a novel, non-parametric approach and 214 family-level phylogenies of vertebrates representing over 500 million years of evolution to identify major diversification modes, to characterize phylogenetic space, and to evaluate the bounds and central tendencies of species diversification. We identify five principal patterns of diversification to which all vertebrate families hold. These patterns, mapped onto multidimensional space, constitute a phylogenetic space with distinct properties. Firstly, phylogenetic space occupies only a portion of all possible tree space, showing family-level phylogenies to be constrained to a limited range of diversification patterns. Secondly, the geometry of phylogenetic space is delimited by quantifiable trade-offs in tree size and the heterogeneity and stem-to-tip distribution of branching events. These trade-offs are indicative of the instability of certain diversification patterns and effectively bound speciation rates (for successful clades) within upper and lower limits. Finally, both the constrained range and geometry of phylogenetic space are established by the differential effects of macroevolutionary processes on patterns of diversification. Given these properties, we show that the average path through phylogenetic space over evolutionary time traverses several diversification stages, each of which is defined by a different principal pattern of diversification and directed by a different macroevolutionary process. The identification of universal patterns and natural constraints to diversification provides a foundation for understanding the deep-time evolution of

  7. One Species, Three Pleistocene Evolutionary Histories: Phylogeography of the Italian Crested Newt, Triturus carnifex

    PubMed Central

    Canestrelli, Daniele; Salvi, Daniele; Maura, Michela; Bologna, Marco A.; Nascetti, Giuseppe

    2012-01-01

    Phylogeographic patterns of temperate species from the Mediterranean peninsulas have been investigated intensively. Nevertheless, as more phylogeographies become available, either unique patterns or new lines of concordance continue to emerge, providing new insights on the evolution of regional biotas. Here, we investigated the phylogeography and evolutionary history of the Italian crested newt, Triturus carnifex, through phylogenetic, molecular dating and population structure analyses of two mitochondrial gene fragments (ND2 and ND4; overall 1273 bp). We found three main mtDNA lineages having parapatric distribution and estimated divergence times between Late Pliocene and Early Pleistocene. One lineage (S) was widespread south of the northern Apennine chain and was further geographically structured into five sublineages, likely of Middle Pleistocene origin. The second lineage (C) was widespread throughout the Padano–Venetian plain and did not show a clear phylogeographic structure. The third lineage (N) was observed in only two populations located on western Croatia/Slovenia. Results of analysis of molecular variance suggested that partitioning populations according to the geographic distribution of these lineages and sublineages explains 76% of the observed genetic variation. The phylogeographic structure observed within T. carnifex and divergence time estimates among its lineages, suggest that responses to Pleistocene environmental changes in this single species have been as diverse as those found previously among several codistributed temperate species combined. Consistent with the landscape heterogeneity, physiographic features, and palaeogeographical evolution of its distribution range, these responses encompass multiple refugia along the Apennine chain, lowland refugia in large peri-coastal plains, and a ‘cryptic’ northern refugium. PMID:22848590

  8. The species concept as an emergent property of population biology.

    PubMed

    Hart, Michael W

    2011-03-01

    Resurgent interest in the genetics of population divergence and speciation coincides with recent critical evaluation of species concepts and proposals for species delimitation. An important result of these parallel trends is a slight but important conceptual shift in focus away from species diagnoses based on prior species concepts or definitions, and toward analyses of the processes acting on lineages of metapopulations that eventually lead to differences recognizable as species taxa. An advantage of this approach is that it identifies quantitative metapopulation differences in continuous variables, rather than discrete entities that do or do not conform to a prior species concept, and species taxa are recognized as an emergent property of population-level processes. The tension between species concepts and diagnosis versus emergent recognition of species taxa is at least as old as Darwin, and is unlikely to be resolved soon in favor of either view, because the products of both approaches (discrete utilitarian taxon names for species, process-based understanding of the origins of differentiated metapopulations) continue to have important applications.

  9. A taxonomic review of Aramides cajaneus (Aves, Gruiformes, Rallidae) with notes on morphological variation in other species of the genus

    PubMed Central

    Marcondes, Rafael Sobral; Silveira, Luís Fábio

    2015-01-01

    Abstract The taxonomy of the polytypic and wide-ranging Gray-necked Wood-rail, Aramides cajaneus is reviewed, based on external morphology and voice. Throughout its distribution, there is extensive plumage variation, much of it taxonomically uninformative. However, through three informative plumage characters, as well as morphometric and vocal variation, three phylogenetic species were identified within what is today known as Aramides cajaneus, all of which already had available names: Aramides albiventris Lawrence, 1868, from southern Mexico to northeastern Costa Rica, Aramides cajaneus (Statius Müller, 1776) (sensu stricto), from southwestern Costa Rica to Argentina, and Aramides avicenniae Stotz, 1992, from a small section of the coast of southeastern Brazil. Aramides albiventris presents extensive plumage variation, but with no geographic structure. The song of Aramides cajaneus and Aramides avicenniae is strikingly and completely different from the song of Aramides albiventris. A previously unnoticed parapatric pattern of distribution of Aramides cajaneus and its congener Aramides saracura in southeastern Brazil is described, and we clarify that the name Aramides plumbeicollis, included in the synonymy of Aramides albiventris, was first made available in 1892, rather than in 1888 as is widely referred. In addition, plumage variation in Aramides ypecaha, Aramides wolfi, and Aramides mangle is discussed. PMID:25987874

  10. A Barrier-Only Boundary Element Delimits the Formation of Facultative Heterochromatin in Drosophila melanogaster and Vertebrates ▿

    PubMed Central

    Lin, Nianwei; Li, Xingguo; Cui, Kairong; Chepelev, Iouri; Tie, Feng; Liu, Bo; Li, Guangyao; Harte, Peter; Zhao, Keji; Huang, Suming; Zhou, Lei

    2011-01-01

    Formation of facultative heterochromatin at specific genomic loci is fundamentally important in defining cellular properties such as differentiation potential and responsiveness to developmental, physiological, and environmental stimuli. By the nature of their formation, heterochromatin and repressive histone marks propagate until the chain reaction is broken. While certain active promoters can block propagation of heterochromatin, there are also specialized DNA elements, referred to as chromatin barriers, that serve to demarcate the boundary of facultative heterochromatin formation. In this study, we identified a chromatin barrier that specifically limits the formation of repressive chromatin to a distal enhancer region so that repressive histone modifications cannot reach the promoter and promoter-proximal enhancer regions of reaper. Unlike all of the known boundary elements identified for Drosophila melanogaster, this IRER (irradiation-responsive enhancer region) left barrier (ILB) does not exhibit enhancer-blocking activity. Not only has the ILB been conserved in different Drosophila species, it can also function as an effective chromatin barrier in vertebrate cells. This suggests that the mechanism by which it functions to spatially restrict the formation of repressive chromatin marked by trimethylated H3K27 has also been conserved widely during evolution. PMID:21518956

  11. Delimitation of areas under the real pressure from agricultural activities due to nitrate water pollution in Poland

    NASA Astrophysics Data System (ADS)

    Wozniak, E.; Nasilowska, S.; Jarocinska, A.; Igras, J.; Stolarska, M.; Bernoussi, A. S.; Karaczun, Z.

    2012-04-01

    The aim of the performed research was to determine catchments under the nitrogen pressure in Poland in period of 2007-2010. National Water Management Authority in Poland uses the elaborated methodology to fulfil requirements of Nitrate Directive and Water Framework Directive. Multicriteria GIS analysis was conducted on the base on various types of environmental data, maps and remote sensing products. Final model of real agricultural pressure was made using two components: (i) potential pressure connected with agriculture (ii) the vulnerability of the area. The agricultural pressure was calculated using the amount of nitrogen in fertilizers and the amount of nitrogen produced by animal breeding. The animal pressure was based on the information about the number of bred animals of each species for communes in Poland. The spatial distribution of vegetation pressure was calculated using kriging for the whole country base on the information about 5000 points with the amount of nitrogen dose in fertilizers. The vulnerability model was elaborated only for arable lands. It was based on the probability of the precipitation penetration to the ground water and runoff to surface waters. Catchment, Hydrogeological, Soil, Relief or Land Cover maps allowed taking into account constant environmental conditions. Additionally information about precipitation for each day of analysis and evapotranspiration for every 16-day period (calculated from satellite images) were used to present influence of meteorological condition on vulnerability of the terrain. The risk model is the sum of the vulnerability model and the agricultural pressure model. In order to check the accuracy of the elaborated model, the authors compared the results with the eutrophication measurements. The model accuracy is from 85,3% to 91,3%.

  12. Zircon ages delimit the provenance of a sand extrudite from the Botucatu Formation in the Paraná volcanic province, Iraí, Brazil.

    PubMed

    Pinto, Viter M; Hartmann, Léo A; Santos, João O S; McNaughton, Neal J

    2015-09-01

    Ion microprobe age determinations of 102 detrital zircon crystals from a sand extrudite, Cretaceous Paraná volcanic province, set limits on the origin of the numerous sand layers present in this major flood basalt province. The zircon U-Pb ages reflect four main orogenic cycles: Mesoproterozoic (1155-962 Ma), latest Proterozoic-early Cambrian (808-500 Ma) and two Palaeozoic (Ordovician- 480 to 450 Ma, and Permian to Lower Triassic- 296 to 250 Ma). Two additional small concentrations are present in the Neoarchean (2.8 to 2.6 Ga) and Paleoproterozoic (2.0 to 1.7 Ga). Zircon age peaks closely match the several pulses of igneous activity in the Precambrian Brazilian Shield and active orogeny in Argentina. A main delimitation of the origin of the sand is the absence of zircon ages from the underlying Cretaceous basalts, thus supporting an injectite origin of the sand as an extrudite that emanated from the paleoerg that constitutes the Botucatu Formation. PMID:26312429

  13. Limitations of Climatic Data for Inferring Species Boundaries: Insights from Speckled Rattlesnakes

    PubMed Central

    Flores-Villela, Oscar; Fujita, Matthew K.

    2015-01-01

    Phenotypes, DNA, and measures of ecological differences are widely used in species delimitation. Although rarely defined in such studies, ecological divergence is almost always approximated using multivariate climatic data associated with sets of specimens (i.e., the “climatic niche”); the justification for this approach is that species-specific climatic envelopes act as surrogates for physiological tolerances. Using identical statistical procedures, we evaluated the usefulness and validity of the climate-as-proxy assumption by comparing performance of genetic (nDNA SNPs and mitochondrial DNA), phenotypic, and climatic data for objective species delimitation in the speckled rattlesnake (Crotalus mitchellii) complex. Ordination and clustering patterns were largely congruent among intrinsic (heritable) traits (nDNA, mtDNA, phenotype), and discordance is explained by biological processes (e.g., ontogeny, hybridization). In contrast, climatic data did not produce biologically meaningful clusters that were congruent with any intrinsic dataset, but rather corresponded to regional differences in atmospheric circulation and climate, indicating an absence of inherent taxonomic signal in these data. Surrogating climate for physiological tolerances adds artificial weight to evidence of species boundaries, as these data are irrelevant for that purpose. Based on the evidence from congruent clustering of intrinsic datasets, we recommend that three subspecies of C. mitchellii be recognized as species: C. angelensis, C. mitchellii, and C. Pyrrhus. PMID:26107178

  14. Genetic and ecological data reveal species boundaries between viviparous and oviparous lizard lineages.

    PubMed

    Cornetti, L; Ficetola, G F; Hoban, S; Vernesi, C

    2015-12-01

    Identification of cryptic species is an essential aim for conservation biologists to avoid premature extinctions of 'unrecognized' species. Integrating different types of data can undoubtedly aid in resolving the issue of species delimitation. We studied here two lineages of the common lizard Zootoca vivipara that display different reproductive mode (the viviparous Z. v. vivipara and the oviparous Z. v. carniolica) and that overlap their distributional ranges in the European Alps. With the purpose of delimiting species' boundaries, we analyzed their ecological, genetic and natural history features. More than 300 samples were collected and analyzed at cytochrome b and 11 microsatellites loci for investigating genetic variation, population structure, individual relatedness and evolutionary histories of the two lineages. Additionally, we compared their ecological niches using eight ecological variables. Genetic data showed contrasting patterns of genetic structure between the two lineages, different demographic dynamics and no hybridization events. Also strong ecological differences (such as temperature) emerged between the two lineages, and niche overlap was limited. Taken together, these results indicate that Z. v. vivipara and Z. v. carniolica should be recognized as two separate species, and particular conservation consideration should be given to the oviparous lineage that tends to live in areas threatened by increasing impact of human activities. However, recent and rapid climate warming might determine an increasing risk for the persistence of the viviparous lineage, being adapted to cold environments.

  15. SSR markers: a tool for species identification in Psidium (Myrtaceae).

    PubMed

    Tuler, A C; Carrijo, T T; Nóia, L R; Ferreira, A; Peixoto, A L; da Silva Ferreira, M F

    2015-11-01

    Molecular DNA markers are used for detection of polymorphisms in individuals. As they are independent of developmental stage of the plant and environmental influences, they can be useful tools in taxonomy. The alleles of simple sequence repeat (SSR) markers (or microsatellites) are traditionally used to identify taxonomic units. This application demands the laborious and costly delimitation of exclusive alleles in order to avoid homoplasy. Here, we propose a method for identification of species based on the amplification profile of groups of SSR markers obtained by a transferability study. The approach considers that the SSR are conserved among related species. In this context, using Psidium as a model, 141 SSR markers developed for Psidium guajava were transferred to 13 indigenous species of Psidium from the Atlantic Rainforest. Transferability of the markers was high and 28 SSR were conserved in all species. Four SSR groups were defined and they can help in the identification of all 13 Psidium species studied. A group of 31 SSR was genotyped, with one to six alleles each. The H0 varied from 0.0 to 0.46, and PIC from 0.0 to 0.74. Cluster analysis revealed shared alleles among species. The high percentage of SSR transferability found in Psidium evidences the narrow phylogenetic relationship existing among these species since transferability occurs by the preservation of the microsatellites and anchoring regions. The proposed method was useful for distinguishing the species of Psidium, being useful in taxonomic studies.

  16. SSR markers: a tool for species identification in Psidium (Myrtaceae).

    PubMed

    Tuler, A C; Carrijo, T T; Nóia, L R; Ferreira, A; Peixoto, A L; da Silva Ferreira, M F

    2015-11-01

    Molecular DNA markers are used for detection of polymorphisms in individuals. As they are independent of developmental stage of the plant and environmental influences, they can be useful tools in taxonomy. The alleles of simple sequence repeat (SSR) markers (or microsatellites) are traditionally used to identify taxonomic units. This application demands the laborious and costly delimitation of exclusive alleles in order to avoid homoplasy. Here, we propose a method for identification of species based on the amplification profile of groups of SSR markers obtained by a transferability study. The approach considers that the SSR are conserved among related species. In this context, using Psidium as a model, 141 SSR markers developed for Psidium guajava were transferred to 13 indigenous species of Psidium from the Atlantic Rainforest. Transferability of the markers was high and 28 SSR were conserved in all species. Four SSR groups were defined and they can help in the identification of all 13 Psidium species studied. A group of 31 SSR was genotyped, with one to six alleles each. The H0 varied from 0.0 to 0.46, and PIC from 0.0 to 0.74. Cluster analysis revealed shared alleles among species. The high percentage of SSR transferability found in Psidium evidences the narrow phylogenetic relationship existing among these species since transferability occurs by the preservation of the microsatellites and anchoring regions. The proposed method was useful for distinguishing the species of Psidium, being useful in taxonomic studies. PMID:26476530

  17. Fine-scale cospeciation between Brachycaudus and Buchnera aphidicola: bacterial genome helps define species and evolutionary relationships in aphids.

    PubMed

    Jousselin, Emmanuelle; Desdevises, Yves; Coeur d'acier, Armelle

    2009-01-01

    Aphids harbour an obligatory symbiont, Buchnera aphidicola, providing essential amino acids not supplied by their diet. These bacteria are transmitted vertically and phylogenic analyses suggest that they have 'cospeciated' with their hosts. We investigated this cospeciation phenomenon at a fine taxonomic level, within the aphid genus Brachycaudus. We used DNA-based methods of species delimitation in both organisms, to avoid biases in the definition of aphid and Buchnera species and to infer association patterns without the presumption of a specific interaction. Our results call into question certain 'taxonomic' species of Brachycaudus and suggest that B. aphidicola has diversified into independently evolving entities, each specific to a 'phylogenetic' Brachycaudus species. We also found that Buchnera and their hosts simultaneously diversified, in parallel. These results validate the use of Buchnera DNA data for inferring the evolutionary history of their host. The Buchnera genome evolves rapidly, making it the perfect tool for resolving ambiguities in aphid taxonomy. This study also highlights the usefulness of species delimitation methods in cospeciation studies involving species difficult to conceptualize--as is the case for bacteria--and in cases in which the taxonomy of the interacting organisms has not been determined independently and species definition depends on host association.

  18. Membrane-delimited coupling between sigma receptors and K+ channels in rat neurohypophysial terminals requires neither G-protein nor ATP

    PubMed Central

    Lupardus, Patrick J; Wilke, Russell A; Aydar, Ebru; Palmer, Chris P; Chen, Yuenmu; Ruoho, Arnold E; Jackson, Meyer B

    2000-01-01

    Receptor-mediated modulation of ion channels generally involves G-proteins, phosphorylation, or both in combination. The sigma receptor, which modulates voltage-gated K+ channels, is a novel protein with no homology to other receptors known to modulate ion channels. In the present study patch clamp and photolabelling techniques were used to investigate the mechanism by which sigma receptors modulate K+ channels in peptidergic nerve terminals. The sigma receptor photoprobe iodoazidococaine labelled a protein with the same molecular mass (26 kDa) as the sigma receptor protein identified by cloning. The sigma receptor ligands pentazocine and SKF10047 modulated K+ channels, despite intra-terminal perfusion with GTP-free solutions, a G-protein inhibitor (GDPβS), a G-protein activator (GTPγS) or a non-hydrolysable ATP analogue (AMPPcP). Channels in excised outside-out patches were modulated by ligand, indicating that soluble cytoplasmic factors are not required. In contrast, channels within cell-attached patches were not modulated by ligand outside a patch, indicating that receptors and channels must be in close proximity for functional interactions. Channels expressed in oocytes without receptors were unresponsive to sigma receptor agonists, ruling out inhibition through a direct drug interaction with channels. These experiments indicate that sigma receptor-mediated signal transduction is membrane delimited, and requires neither G-protein activation nor protein phosphorylation. This novel transduction mechanism is mediated by membrane proteins in close proximity, possibly through direct interactions between the receptor and channel. This would allow for more rapid signal transduction than other ion channel modulation mechanisms, which in the present case of neurohypophysial nerve terminals would lead to the enhancement of neuropeptide release. PMID:10922005

  19. Sequence capture using RAD probes clarifies phylogenetic relationships and species boundaries in Primula sect. Auricula.

    PubMed

    Boucher, F C; Casazza, G; Szövényi, P; Conti, E

    2016-11-01

    Species-rich evolutionary radiations are a common feature of mountain floras worldwide. However, the frequent lack of phylogenetic resolution in species-rich alpine plant groups hampers progress towards clarifying the causes of diversification in mountains. In this study, we use the largest plant group endemic to the European Alpine system, Primula sect. Auricula, as a model system. We employ a newly developed next-generation-sequencing protocol, involving sequence capture with RAD probes, and map reads to the reference genome of Primula veris to obtain DNA matrices with thousands of SNPs. We use these data-rich matrices to infer phylogenetic relationships in Primula sect. Auricula and examine species delimitations in two taxonomically difficult subgroups: the clades formed by the close relatives of P. auricula and P. pedemontana, respectively. Our molecular dataset enables us to resolve most phylogenetic relationships in the group with strong support, and in particular to infer four well-supported clades within sect. Auricula. Our results support existing species delimitations for P. auricula, P. lutea, and P. subpyrenaica, while they suggest that the group formed by P. pedemontana and close relatives might need taxonomic revision. Finally, we discuss preliminary implications of these findings on the biogeographic history of Primula sect. Auricula.

  20. Systematics and natural history of Southeast Asian Rock Geckos (genus Cnemaspis Strauch, 1887) with descriptions of eight new species from Malaysia, Thailand, and Indonesia.

    PubMed

    Grismer, L Lee; Wood, Perry L; Anuar, Shahrul; Riyanto, Awal; Ahmad, Norhayati; Muin, Mohd A; Sumontha, Montri; Grismer, Jesse L; Onn, Chan Kin; Quah, Evan S H; Pauwels, Olivier S A

    2014-10-31

    A well-supported and well-resolved phylogeny based on a concatenated data set from one mitochondrial and two nuclear genes, six morphological characters, and nine color pattern characters for 44 of the 50 species of the Southeast Asian Rock Geckos (genus Cnemaspis Strauch, 1887) is consistent with the previous taxonomy of Cnemaspis based solely on morphology and color pattern. Cnemaspis is partitioned into four major clades that collectively contain six species groups. The monophyly of all clades and species groups is strongly supported and they are parapatrically distributed across well-established, biogeographical regions ranging from southern Vietnam westward through southern Indochina, southward through the Thai-Malay Peninsula, then eastward to Borneo. Eight new species (Cnemaspis omari sp. nov. from the Thai-Malaysian border; C. temiah sp. nov. from Cameron Highlands, Pahang, Malaysia; C. stongensis sp. nov. from Gunung Stong, Kelantan, Malaysia; C. hangus sp. nov. from Bukit Hangus, Pahang, Malaysia; C. sundagekko sp. nov. from Pulau Siantan, Indonesia; C. peninsularis sp. nov. from southern Peninsular Malaysia and Singapore, and C. mumpuniae sp. nov. and C. sundainsula sp. nov. from Pulau Natuna Besar, Indonesia) are described based on morphology and color pattern and all but C. sundagekko sp. nov. are included in the phylogenetic analyses. Cnemaspis kendallii is polyphyletic and a composite of six species. An updated taxonomy consistent with the phylogeny is proposed for all 50 species and is based on 25 morphological and 53 color pattern characters scored across 594 specimens. Cladogenetic events and biogeographical relationships within Cnemaspis were likely influenced by this group's low vagility and the cyclical patterns of geographical and environmental changes in Sundaland over the last 25 million years and especially within the last 2.5 million years. The phylogeny indicates that nocturnality, diurnality, substrate preferences, and the presence of

  1. Evaluating mating compatibility within fruit fly cryptic species complexes and the potential role of sex pheromones in pre-mating isolation.

    PubMed

    Juárez, M Laura; Devescovi, Francisco; Břízová, Radka; Bachmann, Guillermo; Segura, Diego F; Kalinová, Blanka; Fernández, Patricia; Ruiz, M Josefina; Yang, Jianquan; Teal, Peter E A; Cáceres, Carlos; Vreysen, Marc J B; Hendrichs, Jorge; Vera, M Teresa

    2015-01-01

    The study of sexual behavior and the identification of the signals involved in mate recognition between con-specifics are key components that can shed some light, as part of an integrative taxonomic approach, in delimitating species within species complexes. In the Tephritidae family several species complexes have received particular attention as they include important agricultural pests such as the Ceratitis fasciventris (Bezzi), Ceratitis anonae (Graham) and Ceratitis rosa Karsch (FAR) complex, the Bactrocera dorsalis (Hendel) complex and the Anastrepha fraterculus (Wiedemann) complex. Here the value and usefulness of a methodology that uses walk-in field cages with host trees to assess, under semi-natural conditions, mating compatibility within these complexes is reviewed, and the same methodology to study the role of chemical communication in pre-mating isolation among Anastrepha fraterculus populations is used. Results showed that under the same experimental conditions it was possible to distinguish an entire range of different outcomes: from full mating compatibility among some populations to complete assortative mating among others. The effectiveness of the methodology in contributing to defining species limits was shown in two species complexes: Anastrepha fraterculus and Bactrocera dorsalis, and in the case of the latter the synonymization of several established species was published. We conclude that walk-in field cages constitute a powerful tool to measure mating compatibility, which is also useful to determine the role of chemical signals in species recognition. Overall, this experimental approach provides a good source of information about reproductive boundaries to delimit species. However, it needs to be applied as part of an integrative taxonomic approach that simultaneously assesses cytogenetic, molecular, physiological and morphological traits in order to reach more robust species delimitations.

  2. Evaluating mating compatibility within fruit fly cryptic species complexes and the potential role of sex pheromones in pre-mating isolation

    PubMed Central

    Juárez, M. Laura; Devescovi, Francisco; Břízová, Radka; Bachmann, Guillermo; Segura, Diego F.; Kalinová, Blanka; Fernández, Patricia; Ruiz, M. Josefina; Yang, Jianquan; Teal, Peter E.A.; Cáceres, Carlos; Vreysen, Marc J.B.; Hendrichs, Jorge; Vera, M. Teresa

    2015-01-01

    Abstract The study of sexual behavior and the identification of the signals involved in mate recognition between con-specifics are key components that can shed some light, as part of an integrative taxonomic approach, in delimitating species within species complexes. In the Tephritidae family several species complexes have received particular attention as they include important agricultural pests such as the Ceratitis fasciventris (Bezzi), Ceratitis anonae (Graham) and Ceratitis rosa Karsch (FAR) complex, the Bactrocera dorsalis (Hendel) complex and the Anastrepha fraterculus (Wiedemann) complex. Here the value and usefulness of a methodology that uses walk-in field cages with host trees to assess, under semi-natural conditions, mating compatibility within these complexes is reviewed, and the same methodology to study the role of chemical communication in pre-mating isolation among Anastrepha fraterculus populations is used. Results showed that under the same experimental conditions it was possible to distinguish an entire range of different outcomes: from full mating compatibility among some populations to complete assortative mating among others. The effectiveness of the methodology in contributing to defining species limits was shown in two species complexes: Anastrepha fraterculus and Bactrocera dorsalis, and in the case of the latter the synonymization of several established species was published. We conclude that walk-in field cages constitute a powerful tool to measure mating compatibility, which is also useful to determine the role of chemical signals in species recognition. Overall, this experimental approach provides a good source of information about reproductive boundaries to delimit species. However, it needs to be applied as part of an integrative taxonomic approach that simultaneously assesses cytogenetic, molecular, physiological and morphological traits in order to reach more robust species delimitations. PMID:26798257

  3. Evaluating mating compatibility within fruit fly cryptic species complexes and the potential role of sex pheromones in pre-mating isolation.

    PubMed

    Juárez, M Laura; Devescovi, Francisco; Břízová, Radka; Bachmann, Guillermo; Segura, Diego F; Kalinová, Blanka; Fernández, Patricia; Ruiz, M Josefina; Yang, Jianquan; Teal, Peter E A; Cáceres, Carlos; Vreysen, Marc J B; Hendrichs, Jorge; Vera, M Teresa

    2015-01-01

    The study of sexual behavior and the identification of the signals involved in mate recognition between con-specifics are key components that can shed some light, as part of an integrative taxonomic approach, in delimitating species within species complexes. In the Tephritidae family several species complexes have received particular attention as they include important agricultural pests such as the Ceratitis fasciventris (Bezzi), Ceratitis anonae (Graham) and Ceratitis rosa Karsch (FAR) complex, the Bactrocera dorsalis (Hendel) complex and the Anastrepha fraterculus (Wiedemann) complex. Here the value and usefulness of a methodology that uses walk-in field cages with host trees to assess, under semi-natural conditions, mating compatibility within these complexes is reviewed, and the same methodology to study the role of chemical communication in pre-mating isolation among Anastrepha fraterculus populations is used. Results showed that under the same experimental conditions it was possible to distinguish an entire range of different outcomes: from full mating compatibility among some populations to complete assortative mating among others. The effectiveness of the methodology in contributing to defining species limits was shown in two species complexes: Anastrepha fraterculus and Bactrocera dorsalis, and in the case of the latter the synonymization of several established species was published. We conclude that walk-in field cages constitute a powerful tool to measure mating compatibility, which is also useful to determine the role of chemical signals in species recognition. Overall, this experimental approach provides a good source of information about reproductive boundaries to delimit species. However, it needs to be applied as part of an integrative taxonomic approach that simultaneously assesses cytogenetic, molecular, physiological and morphological traits in order to reach more robust species delimitations. PMID:26798257

  4. Flood regime as a driver of the distribution of mangrove and salt marsh species in a subtropical estuary

    NASA Astrophysics Data System (ADS)

    Spier, Daphne; Gerum, Humberto L. N.; Noernberg, Maurício A.; Lana, Paulo C.

    2016-09-01

    Tidal patterns of the subtropical Paranaguá Estuarine Complex, in southern Brazil, are strongly affected by episodic cold fronts and by the coastal geometry and bottom topography, resulting in high temporal variability and marked gradients in flood regime. We delimit tolerance ranges of submersion and exposure for representative plant and animal species from local mangroves and salt marshes, through a quantitative analysis of flooding patterns in three estuarine sectors. Our results are consistent with flood regime being the leading factor on how species are distributed over the intertidal flats of the PEC. Subleading factors might be related to salinity, sediment composition and nutrient flow.

  5. So what is a species anyway? A primatological perspective

    PubMed Central

    Zinner, Dietmar; Roos, Christian

    2014-01-01

    Since Darwin's time, the question “what a species” has provoked fierce disputes and a tremendous number of publications, from short opinion papers to thick volumes.1 The debates covered fundamental philosophical questions, such as: Do species exist at all independently of a human observer or are they just a construct of the human mind to categorize nature's organismic diversity and serve as a semantic tool in human communication about biodiversity?2–4 or: Are species natural kinds (classes) or individuals that are “born” by speciation, change in course of time, and finally “die” when they go extinct or diverge into new species?5–8 Also included was the problem of species as taxa (taxonomic) versus species as products of the speciation process (evolutionary).9 More pragmatic issues arose, such as: How can we reliably delineate and delimitate species?10, 11 The great interest in what a species is reflects the importance of “species” as fundamental units in most fields of biology, especially evolutionary biology, ecology, and conservation.2, 12–14 PMID:24591137

  6. Delimiting Knowledge Transfer from Training

    ERIC Educational Resources Information Center

    Butler, Allan; Le Grice, Phil; Reed, Matt

    2006-01-01

    Purpose: The purpose of this paper is to deepen the understanding of how and to whom knowledge is transferred from training to practice. Design/methodology/approach: Through recognising the interrelationship between knowledge, social network structure, and relational trust, social network methodology is applied to examine the importance of…

  7. Unexpected cryptic species diversity in the widespread coral Seriatopora hystrix masks spatial-genetic patterns of connectivity.

    PubMed

    Warner, Patricia A; van Oppen, Madeleine J H; Willis, Bette L

    2015-06-01

    Mounting evidence of cryptic species in a wide range of taxa highlights the need for careful analyses of population genetic data sets to unravel within-species diversity from potential interspecies relationships. Here, we use microsatellite loci and hierarchical clustering analysis to investigate cryptic diversity in sympatric and allopatric (separated by 450 km) populations of the widespread coral Seriatopora hystrix on the Great Barrier Reef. Structure analyses delimited unique genetic clusters that were confirmed by phylogenetic and extensive population-level analyses. Each of four sympatric yet distinct genetic clusters detected within S. hystrix demonstrated greater genetic cohesion across regional scales than between genetic clusters within regions (<10 km). Moreover, the magnitude of genetic differentiation between different clusters (>0.620 G"ST ) was similar to the difference between S. hystrix clusters and the congener S. caliendrum (mean G"ST 0.720). Multiple lines of evidence, including differences in habitat specificity, mitochondrial identity, Symbiodinium associations and morphology, corroborate the nuclear genetic evidence that these distinct clusters constitute different species. Hierarchical clustering analysis combined with more traditional population genetic methods provides a powerful approach for delimiting species and should be regularly applied to ensure that ecological and evolutionary patterns interpreted for single species are not confounded by the presence of cryptic species.

  8. Species or Genotypes? Reassessment of Four Recently Described Species of the Ceratocystis Wilt Pathogen, Ceratocystis fimbriata, on Mangifera indica.

    PubMed

    Oliveira, Leonardo S S; Harrington, Thomas C; Ferreira, Maria A; Damacena, Michelle B; Al-Sadi, Abdullah M; Al-Mahmooli, Issa H S; Alfenas, Acelino C

    2015-09-01

    Ceratocystis wilt is among the most important diseases on mango (Mangifera indica) in Brazil, Oman, and Pakistan. The causal agent was originally identified in Brazil as Ceratocystis fimbriata, which is considered by some as a complex of many cryptic species, and four new species on mango trees were distinguished from C. fimbriata based on variation in internal transcribed spacer sequences. In the present study, phylogenetic analyses using DNA sequences of mating type genes, TEF-1α, and β-tubulin failed to identify lineages corresponding to the four new species names. Further, mating experiments found that the mango isolates representing the new species were interfertile with each other and a tester strain from sweet potato (Ipomoea batatas), on which the name C. fimbriata is based, and there was little morphological variation among the mango isolates. Microsatellite markers found substantial differentiation among mango isolates at the regional and population levels, but certain microsatellite genotypes were commonly found in multiple populations, suggesting that these genotypes had been disseminated in infected nursery stock. The most common microsatellite genotypes corresponded to the four recently named species (C. manginecans, C. acaciivora, C. mangicola, and C. mangivora), which are considered synonyms of C. fimbriata. This study points to the potential problems of naming new species based on introduced genotypes of a pathogen, the value of an understanding of natural variation within and among populations, and the importance of phenotype in delimiting species. PMID:25822187

  9. Species or Genotypes? Reassessment of Four Recently Described Species of the Ceratocystis Wilt Pathogen, Ceratocystis fimbriata, on Mangifera indica.

    PubMed

    Oliveira, Leonardo S S; Harrington, Thomas C; Ferreira, Maria A; Damacena, Michelle B; Al-Sadi, Abdullah M; Al-Mahmooli, Issa H S; Alfenas, Acelino C

    2015-09-01

    Ceratocystis wilt is among the most important diseases on mango (Mangifera indica) in Brazil, Oman, and Pakistan. The causal agent was originally identified in Brazil as Ceratocystis fimbriata, which is considered by some as a complex of many cryptic species, and four new species on mango trees were distinguished from C. fimbriata based on variation in internal transcribed spacer sequences. In the present study, phylogenetic analyses using DNA sequences of mating type genes, TEF-1α, and β-tubulin failed to identify lineages corresponding to the four new species names. Further, mating experiments found that the mango isolates representing the new species were interfertile with each other and a tester strain from sweet potato (Ipomoea batatas), on which the name C. fimbriata is based, and there was little morphological variation among the mango isolates. Microsatellite markers found substantial differentiation among mango isolates at the regional and population levels, but certain microsatellite genotypes were commonly found in multiple populations, suggesting that these genotypes had been disseminated in infected nursery stock. The most common microsatellite genotypes corresponded to the four recently named species (C. manginecans, C. acaciivora, C. mangicola, and C. mangivora), which are considered synonyms of C. fimbriata. This study points to the potential problems of naming new species based on introduced genotypes of a pathogen, the value of an understanding of natural variation within and among populations, and the importance of phenotype in delimiting species.

  10. Species-Level Para- and Polyphyly in DNA Barcode Gene Trees: Strong Operational Bias in European Lepidoptera

    PubMed Central

    Mutanen, Marko; Kivelä, Sami M.; Vos, Rutger A.; Doorenweerd, Camiel; Ratnasingham, Sujeevan; Hausmann, Axel; Huemer, Peter; Dincă, Vlad; van Nieukerken, Erik J.; Lopez-Vaamonde, Carlos; Vila, Roger; Aarvik, Leif; Decaëns, Thibaud; Efetov, Konstantin A.; Hebert, Paul D. N.; Johnsen, Arild; Karsholt, Ole; Pentinsaari, Mikko; Rougerie, Rodolphe; Segerer, Andreas; Tarmann, Gerhard; Zahiri, Reza; Godfray, H. Charles J.

    2016-01-01

    The proliferation of DNA data is revolutionizing all fields of systematic research. DNA barcode sequences, now available for millions of specimens and several hundred thousand species, are increasingly used in algorithmic species delimitations. This is complicated by occasional incongruences between species and gene genealogies, as indicated by situations where conspecific individuals do not form a monophyletic cluster in a gene tree. In two previous reviews, non-monophyly has been reported as being common in mitochondrial DNA gene trees. We developed a novel web service “Monophylizer” to detect non-monophyly in phylogenetic trees and used it to ascertain the incidence of species non-monophyly in COI (a.k.a. cox1) barcode sequence data from 4977 species and 41,583 specimens of European Lepidoptera, the largest data set of DNA barcodes analyzed from this regard. Particular attention was paid to accurate species identification to ensure data integrity. We investigated the effects of tree-building method, sampling effort, and other methodological issues, all of which can influence estimates of non-monophyly. We found a 12% incidence of non-monophyly, a value significantly lower than that observed in previous studies. Neighbor joining (NJ) and maximum likelihood (ML) methods yielded almost equal numbers of non-monophyletic species, but 24.1% of these cases of non-monophyly were only found by one of these methods. Non-monophyletic species tend to show either low genetic distances to their nearest neighbors or exceptionally high levels of intraspecific variability. Cases of polyphyly in COI trees arising as a result of deep intraspecific divergence are negligible, as the detected cases reflected misidentifications or methodological errors. Taking into consideration variation in sampling effort, we estimate that the true incidence of non-monophyly is ∼23%, but with operational factors still being included. Within the operational factors, we separately assessed the

  11. Taxonomist’s Nightmare … Evolutionist’s Delight †: An Integrative Approach Resolves Species Limits in Jumping Bristletails Despite Widespread Hybridization and Parthenogenesis

    PubMed Central

    Dejaco, Thomas; Gassner, Melitta; Arthofer, Wolfgang; Schlick-Steiner, Birgit C.; Steiner, Florian M.

    2016-01-01

    Accurate species delimitation is fundamental to biology. Traditionally, species were delimited based on morphological characters, sometimes leading to taxonomic uncertainty in morphologically conserved taxa. Recently, multiple taxonomically challenging cases have benefited from integrative taxonomy—an approach that highlights congruence among different disciplines and invokes evolutionary explanations for incongruence, acknowledging that different methods can mirror different stages of the speciation continuum. Here, we used a cohesive protocol for integrative taxonomy to revise species limits in 20 nominal species and 4 morphospecies of an ancestrally wingless insect group, the jumping bristletail genus Machilis from the European Eastern Alps. Even though morphologically conserved, several small-scale endemic species have been described from the Eastern Alps based on variation in hypodermal pigmentation patterns—a highly questionable character. As valuable as these endemics are for conservation, they have never been verified by alternative methods. Using traditional morphometrics, mitochondrial DNA, ribosomal DNA, and amplified fragment-length polymorphism markers, we identify six nominal species as taxonomic junior synonyms (Machilis alpicola Janetschek, 1953 syn. n. under M. vagans Wygodzinsky, 1941; M. ladensis Janetschek, 1950 syn. n., M. robusta Wygodzinsky, 1941 syn. n., and M. vicina Wygodzinsky, 1941 syn. n. under M. inermis Wygodzinsky, 1941; M. aleamaculata Wygodzinsky, 1941 syn. n. under M. montana Wygodzinsky, 1941; M. pulchra Janetschek, 1950 syn. n. under M. helleri Verhoeff, 1910) and describe two new species (Machilis cryptoglacialis sp. n. and Machilis albida sp. n.), one uncovered from morphological crypsis and one never sampled before. Building on numerous cases of incongruence among data sources, we further shed light on complex evolutionary histories including hybrid speciation, historical and recent hybridization, and ongoing speciation

  12. Speciation in the Deep Sea: Multi-Locus Analysis of Divergence and Gene Flow between Two Hybridizing Species of Hydrothermal Vent Mussels

    PubMed Central

    Faure, Baptiste; Jollivet, Didier; Tanguy, Arnaud; Bonhomme, François; Bierne, Nicolas

    2009-01-01

    Background Reconstructing the history of divergence and gene flow between closely-related organisms has long been a difficult task of evolutionary genetics. Recently, new approaches based on the coalescence theory have been developed to test the existence of gene flow during the process of divergence. The deep sea is a motivating place to apply these new approaches. Differentiation by adaptation can be driven by the heterogeneity of the hydrothermal environment while populations should not have been strongly perturbed by climatic oscillations, the main cause of geographic isolation at the surface. Methodology/Principal Finding Samples of DNA sequences were obtained for seven nuclear loci and a mitochondrial locus in order to conduct a multi-locus analysis of divergence and gene flow between two closely related and hybridizing species of hydrothermal vent mussels, Bathymodiolus azoricus and B. puteoserpentis. The analysis revealed that (i) the two species have started to diverge approximately 0.760 million years ago, (ii) the B. azoricus population size was 2 to 5 time greater than the B. puteoserpentis and the ancestral population and (iii) gene flow between the two species occurred over the complete species range and was mainly asymmetric, at least for the chromosomal regions studied. Conclusions/Significance A long history of gene flow has been detected between the two Bathymodiolus species. However, it proved very difficult to conclusively distinguish secondary introgression from ongoing parapatric differentiation. As powerful as coalescence approaches could be, we are left by the fact that natural populations often deviates from standard assumptions of the underlying model. A more direct observation of the history of recombination at one of the seven loci studied suggests an initial period of allopatric differentiation during which recombination was blocked between lineages. Even in the deep sea, geographic isolation may well be a crucial promoter of speciation

  13. Integrative taxonomy reveals a new species of Callisto (Lepidoptera, Gracillariidae) in the Alps

    PubMed Central

    Kirichenko, Natalia; Huemer, Peter; Deutsch, Helmut; Triberti, Paolo; Rougerie, Rodolphe; Lopez-Vaamonde, Carlos

    2015-01-01

    Abstract Europe has one of the best-known Lepidopteran faunas in the world, yet many species are still being discovered, especially in groups of small moths. Here we describe a new gracillariid species from the south-eastern Alps, Callisto basistrigella Huemer, Deutsch & Triberti, sp. n. It shows differences from its sister species Callisto coffeella in morphology, the barcode region of the cytochrome c oxidase I gene and the nuclear gene histone H3. Both Callisto basistrigella and Callisto coffeella can co-occur in sympatry without evidence of admixture. Two Callisto basistrigella specimens show evidence of introgression. We highlight the importance of an integrative approach to delimit species, combining morphological and ecological data with mitochondrial and nuclear sequence data. Furthermore, in connection with this study, Ornix blandella Müller-Rutz, 1920, syn. n. is synonymized with Callisto coffeella (Zetterstedt, 1839). PMID:25632257

  14. Occurrence of a sibling species complex within neotropical lymnaeids, snail intermediate hosts of fascioliasis.

    PubMed

    Durand, P; Pointier, J P; Escoubeyrou, K; Arenas, J A; Yong, M; Amarista, M; Bargues, M D; Mas-Coma, S; Renaud, F

    2002-09-01

    The delimitation of cryptic species within the genus Lymnaea, which are the main vectors of fascioliasis, remains a topic of controversy. An analysis of genetic variability based on 12 enzyme loci revealed different fixed alleles at 9 loci between two sympatric samples of Lymnaea viatrix at the type locality in Lima, Peru. The absence of heterozygotes within this locality indicates the presence of isolated populations or cryptic species within L. viatrix. Significant genetic differences were also found between these two L. viatrix samples from Lima and other populations of L. viatrix in South America and in addition to species such as L. truncatula, L. cubensis and L. columella. Moreover, the lack of variability within each Lymnaea samples studied indicates the existence of a high selfing rate in each species.

  15. The Bay of Bengal and the Statement of Understanding Concerning the Establishment of the Outer Edge of the Continental Margin: Regional Implications for Delimiting the Juridical Continental Shelf

    NASA Astrophysics Data System (ADS)

    Mridha, M.; Varma, H.; Macnab, R.

    2005-12-01

    The Bay of Bengal is the site of massive depositions of sediment from the Ganga-Brahmaputra river systems, which discharge an estimated 2300 million tons of material into the Indian Ocean every year. The accumulated material comprises an enormous fan that extends some 4000 km from the Mouths of the Ganges, a delta system which encompasses the entire coast of Bangladesh and a segment of the coast of India. The major tectonic elements of the Bay of Bengal and surrounding areas are: the passive eastern continental margin of India; the 85E Ridge; the Ninetyeast Ridge; the intervening basin buried beneath deep sediment; and the Sunda Arc system with the associated back-arc Andaman Basin. Except for the Nikitin Seamounts which rise above the seabed just south of the Equator, the 85E Ridge is totally covered by thick sediment. The Ninetyeast Ridge, on the other hand, protrudes above the seabed as far north as 10N, where it plunges beneath the thickening sediment and separates the deposits into the Bengal Fan and the smaller Nicobar Fan. The 85E and Ninetyeast Ridges present the most significant relief in the crystalline basement underlying the Bay of Bengal, and should therefore figure substantially in any analysis of sediment thickness pursuant to the delimitation of the outer continental shelf. In this region, the sediment thickness provision of Article 76 has been modified by a Statement of Understanding in Annex II of the Final Act of the Third UN Conference on the Law of the Sea. To avoid a perceived inequity that might arise from the application of the standard one percent sediment thickness formula of Article 76, the Statement introduced a new formula: a qualified State in this region, even if it has a narrow physiographic continental shelf, may establish the outer edge of its continental margin by a line where the thickness of sedimentary rock is not less than one km. This presentation will describe the development of a joint formula line for the States that

  16. A revision of the genus Conicofrontia Hampson (Lepidoptera, Noctuidae, Apameini, Sesamiina), with description of a new species: new insights from morphological, ecological and molecular data.

    PubMed

    Le Ru, Bruno; Capdevielle-Dulac, Claire; Conlong, Desmond; Pallangyo, Beatrice; Van Den Berg, Johnnie; Ong'amo, George; Kergoat, Gael J

    2015-02-26

    The aim of this study was to review the species of Conicofrontia Hampson, a small genus of noctuid stem borers (Noctuidae, Apameini) that is distributed in East and Southeastern Africa. We review the morphology of species in this group and provide new diagnoses and ecological data for five species. The following taxonomic changes are proposed: Hygrostola dallolmoi (Berio, 1973) (= Conicofrontia dallolmoi Berio, 1973) comb. n. and Conicofrontia bipartita (Hampson, 1910) (= Phragmatiphila bipartita Hampson, 1910) comb. n., stat. rev. One new species is also described: C. lilomwa, sp. n. from Tanzania. Wing patterns as well as male and female genitalia of the five species are described and illustrated. Finally we carried out molecular phylogenetic and molecular species delimitation analyses on a multi-marker dataset of 31 specimens and 15 species, including the five mentioned species. The results of molecular analyses provide a clear support for the proposed taxonomical changes.

  17. Applying DNA barcodes for identification of economically important species in Brassicaceae.

    PubMed

    Sun, X Q; Qu, Y Q; Yao, H; Zhang, Y M; Yan, Q Q; Hang, Y Y

    2015-01-01

    Brassicaceae is a large plant family of special interest; it includes many economically important crops, herbs, and ornamentals, as well as model organisms. The taxonomy of the Brassicaceae has long been controversial because of the poorly delimited generic boundaries and artificially circumscribed tribes. Despite great effort to delimitate species and reconstruct the phylogeny of Brassicaceae, little research has been carried out to investigate the applicability and effectiveness of different DNA regions as barcodes - a recent aid for taxonomic identification - to identify economically important species in Brassicaceae. In this study, we evaluated the feasibility of five intensively recommended regions [rbcL, matK, trnH-psbA, internal transcribed spacer (ITS), ITS2] as candidate DNA barcodes to discriminate economic species of Brassicaceae in China and try to establish a new digital identification method for economic plants of Brassicaceae. All sequences of 58 samples from 27 economic species (Brassicaceae) in China were assessed in the success rates of PCR amplifications, intra- and inter-specific divergence, DNA barcoding gaps, and efficiency of identification. Compared with other markers, ITS showed superiority in species discrimination with an accurate identification of 67.2% at the species level. Consequently, as one of the most popular phylogenetic markers, our study indicated that ITS was a powerful but not perfect barcode for Brassicaceae identification. We further discuss the discrimination power of different loci due to inheritance pattern, polyploidization and hybridization in species-specific evolution. Further screening of other nuclear genes related to species isolation as plant barcode candidates is also proposed. PMID:26634467

  18. Molecular Evidence for Cryptic Speciation in the Cyclophorus fulguratus (Pfeiffer, 1854) Species Complex (Caenogastropoda: Cyclophoridae) with Description of New Species

    PubMed Central

    Nantarat, Nattawadee; Wade, Christopher M.; Jeratthitikul, Ekgachai; Sutcharit, Chirasak; Panha, Somsak

    2014-01-01

    A high degree of intraspecific variation, both genetic and in shell morphology, of the operculate land snail Cyclophorus fulguratus (Pfeiffer, 1854) suggests that its classification as a single species warrants reconsideration. We sequenced two nuclear (18S and 28S) and two mitochondrial (16S and COI) genes of 46 C. fulguratus specimens and used them to estimate the phylogeny and to determine the validity of species boundaries. Molecular phylogenetic analyses revealed the presence of three lineages corresponding to three geographically disjunctive populations of C. fulguratus in Thailand. Likelihood tests of topologies significantly supported the non-monophyly of the C. fulguratus–complex and Bayesian species delimitation analysis significantly supported the potential representation as distinct species of these three lineages. Discriminant function analysis based on geometric-morphometrics of shell shape allowed for significant distinction of these three candidate species, although they revealed a considerable degree of overlap of shell shape reflecting their crypsis morphologically. The diagnostic characters are provided by color pattern, pattern of protoconch and pattern of jaw. In conclusion, the results support that the C. fulguratus s.l., as currently recognized, consists of three distinct species in Thailand: C. fulguratus s.s., C. rangunensis and C. abditus sp.nov., which are described herein. PMID:25299674

  19. Discord between morphological and phylogenetic species boundaries: incomplete lineage sorting and recombination results in fuzzy species boundaries in an asexual fungal pathogen

    PubMed Central

    2014-01-01

    Background Traditional morphological and biological species concepts are difficult to apply to closely related, asexual taxa because of the lack of an active sexual phase and paucity of morphological characters. Phylogenetic species concepts such as genealogical concordance phylogenetic species recognition (GCPSR) have been extensively used; however, methods that incorporate gene tree uncertainty into species recognition may more accurately and objectively delineate species. Using a worldwide sample of Alternaria alternata sensu lato, causal agent of citrus brown spot, the evolutionary histories of four nuclear loci including an endo-polygalacturonase gene, two anonymous loci, and one microsatellite flanking region were estimated using the coalescent. Species boundaries were estimated using several approaches including those that incorporate uncertainty in gene genealogies when lineage sorting and non-reciprocal monophyly of gene trees is common. Results Coalescent analyses revealed three phylogenetic lineages strongly influenced by incomplete lineage sorting and recombination. Divergence of the citrus 2 lineage from the citrus 1 and citrus 3 lineages was supported at most loci. A consensus of species tree estimation methods supported two species of Alternaria causing citrus brown spot worldwide. Based on substitution rates at the endo-polygalacturonase locus, divergence of the citrus 2 and the 1 and 3 lineages was estimated to have occurred at least 5, 400 years before present, predating the human-mediated movement of citrus and associated pathogens out of SE Asia. Conclusions The number of Alternaria species identified as causing brown spot of citrus worldwide using morphological criteria has been overestimated. Little support was found for most of these morphospecies using quantitative species recognition approaches. Correct species delimitation of plant-pathogenic fungi is critical for understanding the evolution of pathogenicity, introductions of pathogens to

  20. Cryptic species of Archinome (Annelida: Amphinomida) from vents and seeps

    PubMed Central

    Borda, Elizabeth; Kudenov, Jerry D.; Chevaldonné, Pierre; Blake, James A.; Desbruyères, Daniel; Fabri, Marie-Claire; Hourdez, Stéphane; Pleijel, Fredrik; Shank, Timothy M.; Wilson, Nerida G.; Schulze, Anja; Rouse, Greg W.

    2013-01-01

    Since its description from the Galapagos Rift in the mid-1980s, Archinome rosacea has been recorded at hydrothermal vents in the Pacific, Atlantic and Indian Oceans. Only recently was a second species described from the Pacific Antarctic Ridge. We inferred the identities and evolutionary relationships of Archinome representatives sampled from across the hydrothermal vent range of the genus, which is now extended to cold methane seeps. Species delimitation using mitochondrial cytochrome c oxidase subunit I (COI) recovered up to six lineages, whereas concatenated datasets (COI, 16S, 28S and ITS1) supported only four or five of these as clades. Morphological approaches alone were inconclusive to verify the identities of species owing to the lack of discrete diagnostic characters. We recognize five Archinome species, with three that are new to science. The new species, designated based on molecular evidence alone, include: Archinome levinae n. sp., which occurs at both vents and seeps in the east Pacific, Archinome tethyana n. sp., which inhabits Atlantic vents and Archinome jasoni n. sp., also present in the Atlantic, and whose distribution extends to the Indian and southwest Pacific Oceans. Biogeographic connections between vents and seeps are highlighted, as are potential evolutionary links among populations from vent fields located in the east Pacific and Atlantic Oceans, and Atlantic and Indian Oceans; the latter presented for the first time. PMID:24026823

  1. Cryptic species of Archinome (Annelida: Amphinomida) from vents and seeps.

    PubMed

    Borda, Elizabeth; Kudenov, Jerry D; Chevaldonné, Pierre; Blake, James A; Desbruyères, Daniel; Fabri, Marie-Claire; Hourdez, Stéphane; Pleijel, Fredrik; Shank, Timothy M; Wilson, Nerida G; Schulze, Anja; Rouse, Greg W

    2013-11-01

    Since its description from the Galapagos Rift in the mid-1980s, Archinome rosacea has been recorded at hydrothermal vents in the Pacific, Atlantic and Indian Oceans. Only recently was a second species described from the Pacific Antarctic Ridge. We inferred the identities and evolutionary relationships of Archinome representatives sampled from across the hydrothermal vent range of the genus, which is now extended to cold methane seeps. Species delimitation using mitochondrial cytochrome c oxidase subunit I (COI) recovered up to six lineages, whereas concatenated datasets (COI, 16S, 28S and ITS1) supported only four or five of these as clades. Morphological approaches alone were inconclusive to verify the identities of species owing to the lack of discrete diagnostic characters. We recognize five Archinome species, with three that are new to science. The new species, designated based on molecular evidence alone, include: Archinome levinae n. sp., which occurs at both vents and seeps in the east Pacific, Archinome tethyana n. sp., which inhabits Atlantic vents and Archinome jasoni n. sp., also present in the Atlantic, and whose distribution extends to the Indian and southwest Pacific Oceans. Biogeographic connections between vents and seeps are highlighted, as are potential evolutionary links among populations from vent fields located in the east Pacific and Atlantic Oceans, and Atlantic and Indian Oceans; the latter presented for the first time.

  2. Integrative Taxonomic Approach for Describing a New Cryptic Species of Bush Frog (Raorchestes: Anura: Rhacophoridae) from the Western Ghats, India

    PubMed Central

    Roshmi, Rekha Sarma; Ramya, Badrinath; Sudhira, H. S.; Ravikanth, G.; Aravind, Neelavara Anantharam

    2016-01-01

    A new cryptic species of bush frog Raorchestes honnametti sp. nov. is described from the south-eastern part of the Western Ghats, India. This newly described species belongs to the Charius clade and is morphologically similar to other clade members—R. charius and R. griet. Therefore, an integrative taxonomic approach based on molecular and bioacoustic analysis along with morphology was used to delimit the new species. Raorchestes honnametti sp. nov., is currently known only from Biligiri Rangaswamy Temple Tiger Reserve, a part of Biligiri Rangaswamy horst mountain range (a mountain formed due movement of two faults) formed during the Late Quaternary period (1.8–2.58 Ma). Discovery of cryptic species from a highly speciose and well-studied genus Raorchestes hints at the possible existence of several more cryptic species in this genus. We discuss the possible reasons for crypsis and emphasize the need for continued systematic surveys of amphibians across the Western Ghats. PMID:26934213

  3. Integrative Taxonomic Approach for Describing a New Cryptic Species of Bush Frog (Raorchestes: Anura: Rhacophoridae) from the Western Ghats, India.

    PubMed

    Priti, H; Roshmi, Rekha Sarma; Ramya, Badrinath; Sudhira, H S; Ravikanth, G; Aravind, Neelavara Anantharam; Gururaja, Kotambylu Vasudeva

    2016-01-01

    A new cryptic species of bush frog Raorchestes honnametti sp. nov. is described from the south-eastern part of the Western Ghats, India. This newly described species belongs to the Charius clade and is morphologically similar to other clade members--R. charius and R. griet. Therefore, an integrative taxonomic approach based on molecular and bioacoustic analysis along with morphology was used to delimit the new species. Raorchestes honnametti sp. nov., is currently known only from Biligiri Rangaswamy Temple Tiger Reserve, a part of Biligiri Rangaswamy horst mountain range (a mountain formed due movement of two faults) formed during the Late Quaternary period (1.8-2.58 Ma). Discovery of cryptic species from a highly speciose and well-studied genus Raorchestes hints at the possible existence of several more cryptic species in this genus. We discuss the possible reasons for crypsis and emphasize the need for continued systematic surveys of amphibians across the Western Ghats.

  4. Integrative Taxonomic Approach for Describing a New Cryptic Species of Bush Frog (Raorchestes: Anura: Rhacophoridae) from the Western Ghats, India.

    PubMed

    Priti, H; Roshmi, Rekha Sarma; Ramya, Badrinath; Sudhira, H S; Ravikanth, G; Aravind, Neelavara Anantharam; Gururaja, Kotambylu Vasudeva

    2016-01-01

    A new cryptic species of bush frog Raorchestes honnametti sp. nov. is described from the south-eastern part of the Western Ghats, India. This newly described species belongs to the Charius clade and is morphologically similar to other clade members--R. charius and R. griet. Therefore, an integrative taxonomic approach based on molecular and bioacoustic analysis along with morphology was used to delimit the new species. Raorchestes honnametti sp. nov., is currently known only from Biligiri Rangaswamy Temple Tiger Reserve, a part of Biligiri Rangaswamy horst mountain range (a mountain formed due movement of two faults) formed during the Late Quaternary period (1.8-2.58 Ma). Discovery of cryptic species from a highly speciose and well-studied genus Raorchestes hints at the possible existence of several more cryptic species in this genus. We discuss the possible reasons for crypsis and emphasize the need for continued systematic surveys of amphibians across the Western Ghats. PMID:26934213

  5. Tropical species of Cladobotryum and Hypomyces producing red pigments

    PubMed Central

    Põldmaa, Kadri

    2011-01-01

    Twelve species of Hypomyces/Cladobotryum producing red pigments are reported growing in various tropical areas of the world. Ten of these are described as new, including teleomorphs for two previously known anamorphic species. In two species the teleomorph has been found in nature and in three others it was obtained in culture; only anamorphs are known for the rest. None of the studied tropical collections belongs to the common temperate species H. rosellus and H. odoratus to which the tropical teleomorphic collections had previously been assigned. Instead, taxa encountered in the tropics are genetically and morphologically distinct from the nine species of Hypomyces/Cladobotryum producing red pigments known from temperate regions. Besides observed host preferences, anamorphs of several species can spread fast on soft ephemeral agaricoid basidiomata but the slower developing teleomorphs are mostly found on polyporoid basidiomata or bark. While a majority of previous records from the tropics involve collections from Central America, this paper also reports the diversity of these fungi in the Paleotropics. Africa appears to hold a variety of taxa as five of the new species include material collected in scattered localities of this mostly unexplored continent. In examining distribution patterns, most of the taxa do not appear to be pantropical. Some species are known only from the Western Hemisphere, while others have a geographic range from southeastern Asia to Africa or Australia. The use of various morphological characters of anamorphs and teleomorphs as well as culture characteristics in species delimitation is evaluated. For detecting genetic segregation, partial sequences of the two largest subunits of the ribosomal polymerase perform the best in terms of providing informative sites and the number of well-supported groups recognised in the phylogenies. These are followed by the sequence data of the translation-elongation factor 1-alpha, while the ribosomal DNA

  6. An exploration of species boundaries in turret-building tarantulas of the Mojave Desert (Araneae, Mygalomorphae, Theraphosidae, Aphonopelma).

    PubMed

    Hendrixson, Brent E; DeRussy, Bernadette M; Hamilton, Chris A; Bond, Jason E

    2013-01-01

    Tarantulas in the North American genus Aphonopelma are poorly known due to their challenging patterns of morphological variation and questionable taxonomy; few specimens can be confidently identified using existing keys or comparisons to original descriptions. In an effort to identify new strategies for resolving what has been characterized as a "taxonomic and nomenclatural nightmare", we employed five different approaches for delimiting species in a group of closely related tarantulas from the Mojave Desert in the southwestern United States. These methods included the application of single techniques (morphology, DNA barcoding, shared genealogical exclusivity among independent loci, and generalized mixed Yule coalescent) and an integrative approach that incorporates genealogical and ecological information. Results demonstrate that the taxonomy of these spiders as presently defined underestimates actual species-level diversity and the group is in need of revision. The number of species delimited by each approach, however, was variable and we argue that it is this discordance that emphasizes the importance of incorporating multiple lines of evidence into an integrative taxonomic framework that can be used for constructing robust taxonomic hypotheses for Aphonopelma species.

  7. Links between Genetic Groups, Indole Alkaloid Profiles and Ecology within the Grass-Parasitic Claviceps purpurea Species Complex

    PubMed Central

    Negård, Mariell; Uhlig, Silvio; Kauserud, Håvard; Andersen, Tom; Høiland, Klaus; Vrålstad, Trude

    2015-01-01

    The grass parasitic fungus Claviceps purpurea sensu lato produces sclerotia with toxic indole alkaloids. It constitutes several genetic groups with divergent habitat preferences that recently were delimited into separate proposed species. We aimed to 1) analyze genetic variation of C. purpurea sensu lato in Norway, 2) characterize the associated indole alkaloid profiles, and 3) explore relationships between genetics, alkaloid chemistry and ecology. Approximately 600 sclerotia from 14 different grass species were subjected to various analyses including DNA sequencing and HPLC-MS. Molecular results, supported by chemical and ecological data, revealed one new genetic group (G4) in addition to two of the three known; G1 (C. purpurea sensu stricto) and G2 (C. humidiphila). G3 (C. spartinae) was not found. G4, which was apparently con-specific with the recently described C. arundinis sp. nov, was predominantly found in very wet habitats on Molinia caerulea and infrequently in saline habitats on Leymus arenarius. Its indole-diterpene profile resembled G2, while its ergot alkaloid profile differed from G2 in high amounts of ergosedmam. In contrast to G1, indole-diterpenes were consistently present in G2 and G4. Our study supports and complements the newly proposed species delimitation of the C. purpurea complex, but challenges some species characteristics including host spectrum, habitat preferences and sclerotial floating ability. PMID:25928134

  8. Links between Genetic Groups, Indole Alkaloid Profiles and Ecology within the Grass-Parasitic Claviceps purpurea Species Complex.

    PubMed

    Negård, Mariell; Uhlig, Silvio; Kauserud, Håvard; Andersen, Tom; Høiland, Klaus; Vrålstad, Trude

    2015-05-01

    The grass parasitic fungus Claviceps purpurea sensu lato produces sclerotia with toxic indole alkaloids. It constitutes several genetic groups with divergent habitat preferences that recently were delimited into separate proposed species. We aimed to 1) analyze genetic variation of C. purpurea sensu lato in Norway, 2) characterize the associated indole alkaloid profiles, and 3) explore relationships between genetics, alkaloid chemistry and ecology. Approximately 600 sclerotia from 14 different grass species were subjected to various analyses including DNA sequencing and HPLC-MS. Molecular results, supported by chemical and ecological data, revealed one new genetic group (G4) in addition to two of the three known; G1 (C. purpurea sensu stricto) and G2 (C. humidiphila). G3 (C. spartinae) was not found. G4, which was apparently con-specific with the recently described C. arundinis sp. nov, was predominantly found in very wet habitats on Molinia caerulea and infrequently in saline habitats on Leymus arenarius. Its indole-diterpene profile resembled G2, while its ergot alkaloid profile differed from G2 in high amounts of ergosedmam. In contrast to G1, indole-diterpenes were consistently present in G2 and G4. Our study supports and complements the newly proposed species delimitation of the C. purpurea complex, but challenges some species characteristics including host spectrum, habitat preferences and sclerotial floating ability. PMID:25928134

  9. COLOMBOS v3.0: leveraging gene expression compendia for cross-species analyses

    PubMed Central

    Moretto, Marco; Sonego, Paolo; Dierckxsens, Nicolas; Brilli, Matteo; Bianco, Luca; Ledezma-Tejeida, Daniela; Gama-Castro, Socorro; Galardini, Marco; Romualdi, Chiara; Laukens, Kris; Collado-Vides, Julio; Meysman, Pieter; Engelen, Kristof

    2016-01-01

    COLOMBOS is a database that integrates publicly available transcriptomics data for several prokaryotic model organisms. Compared to the previous version it has more than doubled in size, both in terms of species and data available. The manually curated condition annotation has been overhauled as well, giving more complete information about samples’ experimental conditions and their differences. Functionality-wise cross-species analyses now enable users to analyse expression data for all species simultaneously, and identify candidate genes with evolutionary conserved expression behaviour. All the expression-based query tools have undergone a substantial improvement, overcoming the limit of enforced co-expression data retrieval and instead enabling the return of more complex patterns of expression behaviour. COLOMBOS is freely available through a web application at http://colombos.net/. The complete database is also accessible via REST API or downloadable as tab-delimited text files. PMID:26586805

  10. Revision of Caloapenesia (Hymenoptera, Bethylidae), with description of sixteen new species.

    PubMed

    Gobbi, Fernanda T; Azevedo, Celso O

    2014-09-10

    Caloapenesia Terayama is characterized by having the costal cell very long, the stigma of forewing absent, and the paramere deeply divided into two arms. Three species of this genus were known from Oriental Region. Sixteen new species from Indonesia, Thailand and Vietnam: C. ana sp. nov., C. arbeni sp. nov., C. diba sp. nov., C. edas sp. nov., C. heira sp. nov., C. inyara sp. nov., C. jailuna sp. nov., C. lani sp. nov., C. launeci sp. nov., C. leptata sp. nov., C. mugra sp. nov., C. nadaili sp. nov., C. paruwa sp. nov., C. rikawa sp. nov., C. sabeli sp. nov. and C. supra sp. nov. are described and illustrated. A character list for delimiting species and comments about generic male characters as a key to males are given. 

  11. Revision of the scolopendrid centipede Digitipes Attems, 1930, from India (Chilopoda: Scolopendromorpha): reconciling molecular and morphological estimates of species diversity.

    PubMed

    Joshi, Jahnavi; Edgecombe, Gregory D

    2013-01-01

    Recent work on molecular phylogenetics of Scolopendridae from the Western Ghats, Peninsular India, has suggested the presence of six cryptic species of the otostigmine Digitipes Attems, 1930, together with three species described in previous taxonomic work by Jangi and Dass (1984). Digitipes is the correct generic attribution for a monophyletic group of Indian species, these being united with three species from tropical Africa (including the type) that share a distomedial process on the ultimate leg femur of males that is otherwise unknown in Otostigminae. Second maxillary characters previously used in the diagnosis of Digitipes are dismissed because Indian species do not possess the putatively diagnostic character states. Two new species from the Western Ghats that correspond to groupings identified based on monophyly, sequence divergence and coalescent analysis using molecular data are diagnosed based on distinct morphological characters. They are D. jangii and D. periyarensis n. spp. Three species named by Jangi and Dass (Digitipes barnabasi, D. coonoorensis and D. indicus) are revised based on new collections; D. indicus is a junior subjective synonym of Arthrorhabdus jonesii Verhoeff, 1938, the combination becoming Digitipesjonesii (Verhoeff, 1938) n. comb. The presence of Arthrorhabdus in India is accordingly refuted. Three putative species delimited by molecular and ecological data remain cryptic from the perspective of diagnostic morphological characters and are presently retained in D. barnabasi, D. jangii and D. jonesii. A molecularly-delimited species that resolved as sister group to a well-supported clade of Indian Digitipes is identified as Otostigmus ruficeps Pocock, 1890, originally described from a single specimen and revised herein. One Indian species originally assigned to Digitipes, D. gravelyi, deviates from confidently-assigned Digitipes with respect to several characters and is reassigned to Otostigmus, as O. gravelyi (Jangi and Dass, 1984) n

  12. Revisiting the age, evolutionary history and species level diversity of the genus Hydra (Cnidaria: Hydrozoa).

    PubMed

    Schwentner, Martin; Bosch, Thomas C G

    2015-10-01

    The genus Hydra has long served as a model system in comparative immunology, developmental and evolutionary biology. Despite its relevance for fundamental research, Hydra's evolutionary origins and species level diversity are not well understood. Detailed previous studies using molecular techniques identified several clades within Hydra, but how these are related to described species remained largely an open question. In the present study, we compiled all published sequence data for three mitochondrial and nuclear genes (COI, 16S and ITS), complemented these with some new sequence data and delimited main genetic lineages (=hypothetical species) objectively by employing two DNA barcoding approaches. Conclusions on the species status of these main lineages were based on inferences of reproductive isolation. Relevant divergence times within Hydra were estimated based on relaxed molecular clock analyses with four genes (COI, 16S, EF1α and 28S) and four cnidarians fossil calibration points All in all, 28 main lineages could be delimited, many more than anticipated from earlier studies. Because allopatric distributions were common, inferences of reproductive isolation often remained ambiguous but reproductive isolation was rarely refuted. Our results support three major conclusions which are central for Hydra research: (1) species level diversity was underestimated by molecular studies; (2) species affiliations of several crucial 'workhorses' of Hydra evolutionary research were wrong and (3) crown group Hydra originated ∼200mya. Our results demonstrate that the taxonomy of Hydra requires a thorough revision and that evolutionary studies need to take this into account when interspecific comparisons are made. Hydra originated on Pangea. Three of four extant groups evolved ∼70mya ago, possibly on the northern landmass of Laurasia. Consequently, Hydra's cosmopolitan distribution is the result of transcontinental and transoceanic dispersal.

  13. Carving out turf in a biodiversity hotspot: multiple, previously unrecognized shrew species co-occur on Java Island, Indonesia.

    PubMed

    Esselstyn, Jacob A; Maharadatunkamsi; Achmadi, Anang S; Siler, Cameron D; Evans, Ben J

    2013-10-01

    In theory, competition among species in a shared habitat results in niche separation. In the case of small recondite mammals such as shrews, little is known about their autecologies, leaving open questions regarding the degree to which closely related species co-occur and how or whether ecological niches are partitioned. The extent to which species are able to coexist may depend on the degree to which they exploit different features of their habitat, which may in turn influence our ability to recognize them as species. We explored these issues in a biodiversity hotspot, by surveying shrew (genus Crocidura) diversity on the Indonesian island of Java. We sequenced portions of nine unlinked genes in 100-117 specimens of Javan shrews and incorporated homologous data from most known Crocidura species from other parts of island South-East Asia. Current taxonomy recognizes four Crocidura species on Java, including two endemics. However, our phylogenetic, population genetic and species delimitation analyses identify five species on the island, and all are endemic to Java. While the individual ranges of these species may not overlap in their entirety, we found up to four species living syntopically and all five species co-occurring on one mountain. Differences in species' body size, use of above ground-level habitats by one species and habitat partitioning along ecological gradients may have facilitated species diversification and coexistence.

  14. Formal nomenclature and description of cryptic species of the Encyrtus sasakii complex (Hymenoptera: Encyrtidae)

    PubMed Central

    Wang, Ying; Zhou, Qing-Song; Qiao, Hui-Jie; Zhang, Ai-Bing; Yu, Fang; Wang, Xu-Bo; Zhu, Chao-Dong; Zhang, Yan-Zhou

    2016-01-01

    With the recent development of molecular approaches to species delimitation, a growing number of cryptic species have been discovered in what had previously been thought to be single morpho-species. Molecular methods, such as DNA barcoding, have greatly enhanced our knowledge of taxonomy, but taxonomy remains incomplete and needs a formal species nomenclature and description to facilitate its use in other scientific fields. A previous study using DNA barcoding, geometric morphometrics and mating tests revealed at least two cryptic species in the Encyrtus sasakii complex. (Hymenoptera: Encyrtidae). To describe these two new species formally (Encyrtus eulecaniumiae sp. nov. and Encyrtus rhodococcusiae sp. nov.), a detailed morphometric study of Encyrtus spp. was performed in addition to the molecular analysis and evaluation of biological data. Morphometric analyses, a multivariate ratio analysis (MRA) and a geometric morphometric analysis (GMA) revealed a great number of differences between the species, but reliable characteristics were not observed for diagnosing the cryptic species. We thus diagnosed these three Encyrtus species on the basis of the characteristics that resulted from genetic markers (mitochondrial cytochrome c oxidase subunit I and nuclear 28S rRNA) and biological data. A formal nomenclature and description of cryptic species was provided on the basis of an integrated taxonomy. PMID:27698441

  15. Description of two new species of Rissoella Gray, 1847 (Mollusca, Gastropoda, Heterobranchia) from Venezuela, with a key to the Caribbean species known for the genus.

    PubMed

    Caballer, Manuel; Ortea, Jesus; Narciso, Samuel

    2011-01-01

    Two new species of the genus Rissoella Gray, 1847 are described from Venezuela, one from the National Park Morrocoy, Rissoella morrocoyensissp. n. and the other from the Wildlife Refuge Isla de Aves, Rissoella venezolanicolasp. n.Rissoella morrocoyensissp. n. has a deep umbilicus (partly closed), preumbilical cord, black head, hypobranchial gland marked by a pale yellow boomerang-shaped ribbon and it lives on the leaves of the seagrass Thalassia testudinum Banks & König, 1805. Rissoella venezolanicolasp. n. has an angled preumbilical cord which extends to the columella delimiting a trapezoid, a hypobranchial gland marked by a yellow quaver-shaped ribbon and protoconch with fuchsia highlights. It lives on the brown alga Dictyota spp. The records of Rissoella in the Caribbean are revised and illustrations, a comparative table and a key to the Caribbean species known for the genus are provided. PMID:21976997

  16. Description of two new species of Rissoella Gray, 1847 (Mollusca, Gastropoda, Heterobranchia) from Venezuela, with a key to the Caribbean species known for the genus

    PubMed Central

    Caballer, Manuel; Ortea, Jesus; Narciso, Samuel

    2011-01-01

    Abstract Two new species of the genus Rissoella Gray, 1847 are described from Venezuela, one from the National Park Morrocoy, Rissoella morrocoyensis sp. n. and the other from the Wildlife Refuge Isla de Aves, Rissoella venezolanicola sp. n. Rissoella morrocoyensis sp. n. has a deep umbilicus (partly closed), preumbilical cord, black head, hypobranchial gland marked by a pale yellow boomerang-shaped ribbon and it lives on the leaves of the seagrass Thalassia testudinum Banks & König, 1805. Rissoella venezolanicola sp. n. has an angled preumbilical cord which extends to the columella delimiting a trapezoid, a hypobranchial gland marked by a yellow quaver-shaped ribbon and protoconch with fuchsia highlights. It lives on the brown alga Dictyota spp. The records of Rissoella in the Caribbean are revised and illustrations, a comparative table and a key to the Caribbean species known for the genus are provided. PMID:21976997

  17. Broken barriers: human-induced changes to gene flow and introgression in animals: an examination of the ways in which humans increase genetic exchange among populations and species and the consequences for biodiversity.

    PubMed

    Crispo, Erika; Moore, Jean-Sébastien; Lee-Yaw, Julie A; Gray, Suzanne M; Haller, Benjamin C

    2011-07-01

    We identify two processes by which humans increase genetic exchange among groups of individuals: by affecting the distribution of groups and dispersal patterns across a landscape, and by affecting interbreeding among sympatric or parapatric groups. Each of these processes might then have two different effects on biodiversity: changes in the number of taxa through merging or splitting of groups, and the extinction/extirpation of taxa through effects on fitness. We review the various ways in which humans are affecting genetic exchange, and highlight the difficulties in predicting the impacts on biodiversity. Gene flow and hybridization are crucially important evolutionary forces influencing biodiversity. Humans alter natural patterns of genetic exchange in myriad ways, and these anthropogenic effects are likely to influence the genetic integrity of populations and species. We argue that taking a gene-centric view towards conservation will help resolve issues pertaining to conservation and management. Editor's suggested further reading in BioEssays A systemic view of biodiversity and its conservation: Processes, interrelationships, and human culture Abstract.

  18. A new species of Neotropical freshwater stingray (Chondrichthyes: Potamotrygonidae) from the Rio Negro, Amazonas, Brazil: the smallest species of Potamotrygon.

    PubMed

    Carvalho, Marcelo R De; Rosa, Ricardo S; Araújo, Maria Lúcia G De

    2016-05-04

    A new species of Potamotrygon is described from the Rio Negro drainage, Amazonas, Brazil. In spite of being cited or pictured several times in the scientific and aquarium fish literature since the 19th Century, it had been misidentified and still lacked a scientific name. Potamotrygon wallacei, n. sp., is diagnosed by the following characters: dorsal surface of disc light brown, with black irregularly-shaped vermiculate markings forming an amphora- or Ω-shaped figure on mid-disc, delimiting light brown reniform areas at disc center, and with subcircular light brown ocellate markings on disc margins; small body size (smallest known Potamotrygon species; largest examined specimen measured 310 mm DW); dorsal spines on tail usually rather low, without broad bases, in one to rarely three irregular rows, but extending posteriorly only to tail mid-length and not to caudal stings, with altogether relatively few spines; denticles on posterior mid-disc and tail base Y-shaped, with a central, anterior, bulbous cusp and usually two posterior pairs of smaller, rounded cusps; and single (anterior) angular cartilage. The new species is similar to P. orbignyi and other "reticulated" species in having a single (anterior) angular cartilage and in the color pattern of the tail, but is easily distinguished based on its size, dorsal tail spine arrangement, and specific details of color pattern.

  19. A new species of Neotropical freshwater stingray (Chondrichthyes: Potamotrygonidae) from the Rio Negro, Amazonas, Brazil: the smallest species of Potamotrygon.

    PubMed

    Carvalho, Marcelo R De; Rosa, Ricardo S; Araújo, Maria Lúcia G De

    2016-01-01

    A new species of Potamotrygon is described from the Rio Negro drainage, Amazonas, Brazil. In spite of being cited or pictured several times in the scientific and aquarium fish literature since the 19th Century, it had been misidentified and still lacked a scientific name. Potamotrygon wallacei, n. sp., is diagnosed by the following characters: dorsal surface of disc light brown, with black irregularly-shaped vermiculate markings forming an amphora- or Ω-shaped figure on mid-disc, delimiting light brown reniform areas at disc center, and with subcircular light brown ocellate markings on disc margins; small body size (smallest known Potamotrygon species; largest examined specimen measured 310 mm DW); dorsal spines on tail usually rather low, without broad bases, in one to rarely three irregular rows, but extending posteriorly only to tail mid-length and not to caudal stings, with altogether relatively few spines; denticles on posterior mid-disc and tail base Y-shaped, with a central, anterior, bulbous cusp and usually two posterior pairs of smaller, rounded cusps; and single (anterior) angular cartilage. The new species is similar to P. orbignyi and other "reticulated" species in having a single (anterior) angular cartilage and in the color pattern of the tail, but is easily distinguished based on its size, dorsal tail spine arrangement, and specific details of color pattern. PMID:27394840

  20. The second species of Phanoperla (Plecoptera: Perlidae) from China, P. hainana sp. nov., from Hainan Island.

    PubMed

    Li, Weihai; Qin, Xuefeng

    2016-01-01

    The genus Phanoperla Banks was originally established as a subgenus of Neoperla and its genus delimitation was not fully clear until the revisionary work by Zwick (1982). It currently contains 49 known species from the Oriental region (Banks 1938, 1939, Cao & Bae 2009, Cao et al. 2007, DeWalt et al. 2016, Jewett 1975, Kawai 1968, Stark 1983, 1987, Stark & Sheldon 2009, Sivec & Stark 2010, 2011, Stark & Sivec 2007, Sivec et al. 1988, Zwick 1982, Zwick 1986, Zwick & Sivec 1985). Although species of Phanoperla are not rare in many areas of Southeast Asia bordering China, especially Vietnam and India (Cao & Bae 2009, Mason & Stark 2015), P. pallipennis Banks, 1938 is the only known species of the genus known from China. In this paper, we describe a new species of Phanoperla from Hainan Island of the southernmost province of China. The northern portion of the island has a humid subtropical climate, whereas the remainder of the island has tropical monsoon climate. PMID:27615968

  1. Signal complexity and modular organization of the courtship behaviours of two sibling species of wolf spiders (Araneae: Lycosidae).

    PubMed

    Chiarle, Alberto; Isaia, Marco

    2013-07-01

    In this study, we compare the courtship behaviours of Pardosa proxima and P. vlijmi, two species of wolf spiders up to now regarded as "ethospecies", by means of motion analysis methodologies. In particular, we investigate the features of the signals, aiming at understanding the evolution of the courtship and its role in species delimitation and speciation processes. In our model, we highlight a modular structure of the behaviours and the presence of recurring units and phases. According to other similar cases concerning animal communication, we observed one highly variable and one stereotyped phase for both species. The stereotyped phase is here regarded as a signal related to species identity or an honest signal linked directly to the quality of the signaler. On the contrary, the variable phase aims to facilitate signal detection and assessment by the female reducing choice costs or errors. Variable phases include cues arisen from Fisherian runaway selection, female sensory exploitation and remaining of past selections.

  2. Temnothorax crasecundus sp. n. – a cryptic Eurocaucasian ant species (Hymenoptera, Formicidae) discovered by Nest Centroid Clustering

    PubMed Central

    Seifert, Bernhard; Csösz, Sandor

    2015-01-01

    Abstract The paper integrates two independent studies of numeric morphology-based alpha-taxonomy of the cryptic ant species Temnothorax crassispinus (Karavajev, 1926) and Temnothorax crasecundus sp. n. conducted by different investigators, using different equipment, considering different character combinations and evaluating different samples. Samples investigated included 603 individual workers from 203 nests – thereof 104 nest samples measured by Seifert and 99 by Csösz. The material originated from Europe, Asia Minor and Caucasia. There was a very strong interspecific overlap in any of the 29 shape characters recorded and subjective expert determination failed in many cases. Primary classification hypotheses were formed by the exploratory data analysis Nest Centroid (NC) clustering and corrected to final species hypotheses by an iterative linear discriminant analysis algorithm. The evaluation of Seifert’s and Csösz’s data sets arrived at fully congruent conclusions. NC-Ward and NC-K-means clustering disagreed from the final species hypothesis in only 1.9 and 1.9% of the samples in Seifert’s data set and by 1.1 and 2.1% in Csösz’s data set which is a strong argument for heterospecificity. The type series of Temnothorax crassispinus and Temnothorax crasecundus sp. n. were allocated to different clusters with p = 0.9851 and p = 0.9912 respectively. The type series of the junior synonym Temnothorax slavonicus (Seifert, 1995) was allocated to the Temnothorax crassispinus cluster with p = 0.9927. Temnothorax crasecundus sp. n. and Temnothorax crassispinus are parapatric species with a long contact zone stretching from the Peloponnisos peninsula across Bulgaria northeast to the southern Ukraine. There is no indication for occurrence of interspecifically mixed nests or intraspecific polymorphism. However, a significant reduction of interspecific morphological distance at sites with syntopic occurrence of both species indicates local hybridization. The

  3. The use of color infrared aerial photography in determining salt marsh vegetation and delimiting man-made structures of Lynnhaven Bay, Virginia. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Holman, R. E., III

    1974-01-01

    Color infrared aerial photography was found to be superior to color aerial photography in an ecological study of Lynnhaven Bay, Virginia. The research was divided into three phases: (1) Determination of the feasibility of correlating color infrared aerial photography with saline wetland species composition and zonation patterns, (2) determination of the accuracy of the aerial interpretation and problems related to the aerial method used; and (3) comparison of developed with undeveloped areas along Lynnhaven Bay's shoreline. Wetland species composition and plant community zonation bands were compared with aerial infrared photography and resulted in a high degree of correlation. Problems existed with changing physical conditions; time of day, aircraft angle and sun angle, making it necessary to use several different characteristics in wetland species identification. The main characteristics used were known zonation patterns, textural signatures and color tones. Lynnhaven Bay's shoreline was 61.5 percent developed.

  4. Nitrogen species

    NASA Technical Reports Server (NTRS)

    Harries, J. E.; Brasseur, G.; Coffey, M. T.; Fischer, H.; Gille, J.; Jones, R.; Louisnard, N.; Mccormick, M. P.; Noxon, J.; Owens, A. J.

    1985-01-01

    Total odd nitrogen, NO(y), may be defined as the sum of all active nitrogen species that interchange photochemically with one another on a time scale of the order of weeks or less. As noted, NO + NO2 reactions dominate the processes controlling the ozone balance in the contemporary stratosphere. The observational data from non-satellite platforms are reviewed. The growth in available satellite data in the past four years is considered. Some of the most important scientific issues are discussed, taking into account new results from atmospheric models (mainly 2-D). The model results are compared with the observational data.

  5. Revision of the Nearctic species of Callomyia Meigen (Diptera: Platypezidae) and phylogeny of the genus.

    PubMed

    Cumming, Heather J; Wheeler, Terry A

    2016-01-01

    The Nearctic fauna of the genus Callomyia Meigen is revised and a phylogeny of the world species, based on morphological characters, is presented. Although morphological data are used primarily to delimit species, molecular sequence data (DNA barcodes) are used where possible, to help determine species boundaries and associate sexes. Species descriptions, diagnoses, and distribution maps are presented, along with illustrations of habitus, male terminalia, and additional important diagnostic characters. A key to the Nearctic species is provided. Ten species are recorded from the Nearctic Region including three new species: C. argentea Cumming sp. nov., C. arnaudi Cumming sp. nov., C. bertae Kessel, C. browni Cumming sp. nov., C. calla Kessel, C. corvina Kessel, C. gilloglyorum Kessel, C. proxima Johnson, C. velutina Johnson, and C. venusta Snow. The female of C. velutina is described, and three new synonyms are proposed: C. cleta Kessel is a junior synonym of C. calla syn. nov.; C. clara Kessel is a junior synonym of C. corvina syn. nov.; and C. liardia Kessel & Buegler is a junior synonym of C. proxima syn. nov. Phylogenetic relationships within the genus are reconstructed. The genus is monophyletic based primarily on the setulose R1 wing vein, female antennal size and three larval characters. The Nearctic species do not form a monophyletic group with respect to the Old World species. PMID:27395101

  6. Genetic Diversity of Neotropical Myotis (Chiroptera: Vespertilionidae) with an Emphasis on South American Species

    PubMed Central

    Larsen, Roxanne J.; Genoways, Hugh H.; Khan, Faisal Ali Anwarali; Larsen, Peter A.; Wilson, Don E.; Baker, Robert J.

    2012-01-01

    Background Cryptic morphological variation in the Chiropteran genus Myotis limits the understanding of species boundaries and species richness within the genus. Several authors have suggested that it is likely there are unrecognized species-level lineages of Myotis in the Neotropics. This study provides an assessment of the diversity in New World Myotis by analyzing cytochrome-b gene variation from an expansive sample ranging throughout North, Central, and South America. We provide baseline genetic data for researchers investigating phylogeographic and phylogenetic patterns of Myotis in these regions, with an emphasis on South America. Methodology and Principal Findings Cytochrome-b sequences were generated and phylogenetically analyzed from 215 specimens, providing DNA sequence data for the most species of New World Myotis to date. Based on genetic data in our sample, and on comparisons with available DNA sequence data from GenBank, we estimate the number of species-level genetic lineages in South America alone to be at least 18, rather than the 15 species currently recognized. Conclusions Our findings provide evidence that the perception of lower species richness in South American Myotis is largely due to a combination of cryptic morphological variation and insufficient sampling coverage in genetic-based systematic studies. A more accurate assessment of the level of diversity and species richness in New World Myotis is not only helpful for delimiting species boundaries, but also for understanding evolutionary processes within this globally distributed bat genus. PMID:23056352

  7. Semi-automatic delimitation of volcanic edifice boundaries: Validation and application to the cinder cones of the Tancitaro-Nueva Italia region (Michoacán-Guanajuato Volcanic Field, Mexico)

    NASA Astrophysics Data System (ADS)

    Di Traglia, Federico; Morelli, Stefano; Casagli, Nicola; Garduño Monroy, Victor Hugo

    2014-08-01

    The shape and size of monogenetic volcanoes are the result of complex evolutions involving the interaction of eruptive activity, structural setting and degradational processes. Morphological studies of cinder cones aim to evaluate volcanic hazard on the Earth and to decipher the origins of various structures on extraterrestrial planets. Efforts have been dedicated so far to the characterization of the cinder cone morphology in a systematic and comparable manner. However, manual delimitation is time-consuming and influenced by the user subjectivity but, on the other hand, automatic boundary delimitation of volcanic terrains can be affected by irregular topography. In this work, the semi-automatic delimitation of volcanic edifice boundaries proposed by Grosse et al. (2009) for stratovolcanoes was tested for the first time over monogenetic cinder cones. The method, based on the integration of the DEM-derived slope and curvature maps, is applied here to the Tancitaro-Nueva Italia region of the Michoacán-Guanajuato Volcanic Field (Mexico), where 309 Plio-Quaternary cinder cones are located. The semiautomatic extraction allowed identification of 137 of the 309 cinder cones of the Tancitaro-Nueva Italia region, recognized by means of the manual extraction. This value corresponds to the 44.3% of the total number of cinder cones. Analysis on vent alignments allowed us to identify NE-SW vent alignments and cone elongations, consistent with a NE-SW σmax and a NW-SE σmin. Constructing a vent intensity map, based on computing the number of vents within a radius r centred on each vent of the data set and choosing r = 5 km, four vent intensity maxima were derived: one is positioned in the NW with respect to the Volcano Tancitaro, one in the NE, one to the S and another vent cluster located at the SE boundary of the studied area. The spacing of centroid of each cluster (24 km) can be related to the thickness of the crust (9-10 km) overlying the magma reservoir.

  8. Generic delimitations, biogeography and evolution in the tribe Coleeae (Bignoniaceae), endemic to Madagascar and the smaller islands of the western Indian Ocean.

    PubMed

    Callmander, Martin W; Phillipson, Peter B; Plunkett, Gregory M; Edwards, Molly B; Buerki, Sven

    2016-03-01

    This study presents the most complete generic phylogenetic framework to date for the tribe Coleeae (Bignoniaceae), which is endemic to Madagascar and the other smaller islands in the western part of the Indian Ocean. The study is based on plastid and nuclear DNA regions and includes 47 species representing the five currently recognized genera (including all the species occurring in the western Indian Ocean region). Bayesian and maximum likelihood analyses supported (i) the monophyly of the tribe, (ii) the monophyly of Phylloctenium, Phyllarthron and Rhodocolea and (iii) the paraphyly of Colea due to the inclusion of species of Ophiocolea. The latter genus was also recovered paraphyletic due to the inclusion of two species of Colea (C. decora and C. labatii). The taxonomic implications of the mutual paraphyly of these two genera are discussed in light of morphological evidence, and it is concluded that the two genera should be merged, and the necessary new nomenclatural combinations are provided. The phylogenetic framework shows Phylloctenium, which is endemic to Madagascar and restricted to dry ecosystems, as basal and sister to the rest of the tribe, suggesting Madagascar to be the centre of origin of this clade. The remaining genera are diversified mostly in humid ecosystems, with evidence of multiple dispersals to the neighboring islands, including at least two to the Comoros, one to Mauritius and one to the Seychelles. Finally, we hypothesize that the ecological success of this tribe might have been triggered by a shift of fruit-dispersal mode from wind to lemur.

  9. Generic delimitations, biogeography and evolution in the tribe Coleeae (Bignoniaceae), endemic to Madagascar and the smaller islands of the western Indian Ocean.

    PubMed

    Callmander, Martin W; Phillipson, Peter B; Plunkett, Gregory M; Edwards, Molly B; Buerki, Sven

    2016-03-01

    This study presents the most complete generic phylogenetic framework to date for the tribe Coleeae (Bignoniaceae), which is endemic to Madagascar and the other smaller islands in the western part of the Indian Ocean. The study is based on plastid and nuclear DNA regions and includes 47 species representing the five currently recognized genera (including all the species occurring in the western Indian Ocean region). Bayesian and maximum likelihood analyses supported (i) the monophyly of the tribe, (ii) the monophyly of Phylloctenium, Phyllarthron and Rhodocolea and (iii) the paraphyly of Colea due to the inclusion of species of Ophiocolea. The latter genus was also recovered paraphyletic due to the inclusion of two species of Colea (C. decora and C. labatii). The taxonomic implications of the mutual paraphyly of these two genera are discussed in light of morphological evidence, and it is concluded that the two genera should be merged, and the necessary new nomenclatural combinations are provided. The phylogenetic framework shows Phylloctenium, which is endemic to Madagascar and restricted to dry ecosystems, as basal and sister to the rest of the tribe, suggesting Madagascar to be the centre of origin of this clade. The remaining genera are diversified mostly in humid ecosystems, with evidence of multiple dispersals to the neighboring islands, including at least two to the Comoros, one to Mauritius and one to the Seychelles. Finally, we hypothesize that the ecological success of this tribe might have been triggered by a shift of fruit-dispersal mode from wind to lemur. PMID:26712485

  10. STREPTOMYCES SPECIES COMPRISING THE BLUE-SPORE SERIES

    PubMed Central

    Trejo, W. H.; Bennett, R. E.

    1963-01-01

    Trejo, W. H. (Squibb Institute for Medical Research, New Brunswick, N.J.) and R. E. Bennett. Streptomyces species comprising the blue-spore series. J. Bacteriol. 85:676–690. 1963.—The objective of this study was to define and delimit the streptomycetes of the blue-spored (Viridochromogenes) series. The series, as defined in this study, includes 11 blue and blue-green species. The green-spored species were excluded on the basis of morphology as well as color. It was proposed that NRRL B-1511 be designated as the neotype strain of Streptomyces viridochromogenes (Krainsky) Waksman and Henrici, and that IMRU 3761 be designated as the neotype for Streptomyces cyaneus (Krassilnikov) Waksman. Evidence was presented to show that physiological criteria cannot be used to differentiate these organisms below the series level. The major characteristics of the Viridochromogenes series are blue to blue-green spores borne in spirals, and chromogenicity (melanin-positive). Reverse color and spore morphology provide a basis for separation below the series level. Images PMID:14042949

  11. Rediscovery of Pedilanthus coalcomanensis (Euphorbiaceae), a threatened endemic Mexican species.

    PubMed

    Lomelí-Sención, José Aquileo; Sahagún-Godínez, Eduardo

    2002-09-01

    Pedilanthus coalcomanensis was described from specimens collected by George B. Hinton in 1941 but was not collected again until 1999, when we found it in a tropical deciduous forest near Tehuantepec, in Chinicuila, Michoacán, Mexico. After analyzing Hinton's original collection notes, we concluded that this is the type locality. Based on the reduced geographic distribution presently known for this species (11 km(2)), the level of disturbance of its habitat, and the use of the method for the assessment of extinction risk in Mexican wild species (MER), we propose that P. coalcomanensis be covered by the appropriate Mexican legislation as a threatened species and be included in the Red List of Threatened Plants of the International Union for the Conservation of Nature. Our results help justify and delimit a local biosphere reserve in northwestern Michoacán, an area that is considered a center of endemism and that has largely been deforested. Our findings have implications for research on other historical specimens collected by Hinton in this region.

  12. Molecular phylogenetics of Amorpha (Fabaceae): an evaluation of monophyly, species relationships, and polyploid origins.

    PubMed

    Straub, Shannon C K; Doyle, Jeff J

    2014-07-01

    Amorpha L. (false indigos and lead plants) is a North American legume genus of 16 species of shrubs, which is most diverse in the southeastern United States and distinctive due to the reduction of the corolla to a single petal. Most species have limited distributions, but the tetraploid A. fruticosa species complex is widely distributed and its range overlaps those of all of the other species. Morphological variation in the genus is characterized by gradation of characters among species and it has been the subject of repeated taxonomic study due to the difficulty in delimiting species, especially among A. fruticosa and allies. This study presents the first phylogenetic and network analyses for evaluation of relationships amongst Amorpha species based on three non-coding plastome regions (trnD-trnT, trnH-psbA, petN-psbM) and two low-copy nuclear genes (CNGC5, minD). Plastid DNA analyses supported a monophyletic Amorpha with Parryella filifolia and Errazurizia rotundata as successive sister lineages; however, nuclear gene analyses supported the nesting of these two species and thus a paraphyletic Amorpha. Relationships among species of Amorpha were best resolved in the plastid DNA phylogeny and in most cases were concordant with expectations based on morphology. Relationships based on the nuclear gene phylogenies were less clear due to lack of informative variation (CNGC5) or conflict in the data set (minD). The origins of A. fruticosa were unclear, but the plastid phylogeny revealed that this species shares the same or similar plastid haplotype as other species in a geographic region. Putative recombination of diploid species' alleles was evident in the minD-like network. Phenotypic plasticity in combination with gene flow into this species from different diploids, or even tetraploids, across its range may account for the incredible morphological diversity of the A. fruticosa species complex. Putative progenitors for two other suspected allotetraploid species, A

  13. A Molecular Phylogeny of the Lichen Genus Lecidella Focusing on Species from Mainland China

    PubMed Central

    Zhao, Xin; Zhang, Lu Lu; Zhao, Zun Tian; Wang, Wei Cheng; Leavitt, Steven D.; Lumbsch, Helge Thorsten

    2015-01-01

    The phylogeny of Lecidella species is studied, based on a 7-locus data set using ML and Bayesian analyses. Phylogenetic relationships among 43 individuals representing 11 Lecidella species, mainly from mainland China, were included in the analyses and phenotypical characters studied and mapped onto the phylogeny. The Lecidella species fall into three major clades, which are proposed here as three informal groups–Lecidella stigmatea group, L. elaeochroma group and L. enteroleucella group, each of them strongly supported. Our phylogenetic analyses support traditional species delimitation based on morphological and chemical traits in most but not all cases. Individuals considered as belonging to the same species based on phenotypic characters were found to be paraphyletic, indicating that cryptic species might be hidden under these names (e.g. L. carpathica and L. effugiens). Potentially undescribed species were found within the phenotypically circumscribed species L. elaeochroma and L. stigmatea. Additional sampling across a broader taxonomic and geographic scale will be crucial to fully resolving the taxonomy in this cosmopolitan genus. PMID:26414323

  14. Speciation on the Rocks: Integrated Systematics of the Heteronotia spelea Species Complex (Gekkota; Reptilia) from Western and Central Australia

    PubMed Central

    Pepper, Mitzy; Doughty, Paul; Fujita, Matthew K.; Moritz, Craig; Keogh, J. Scott

    2013-01-01

    The isolated uplands of the Australian arid zone are known to provide mesic refuges in an otherwise xeric landscape, and divergent lineages of largely arid zone taxa have persisted in these regions following the onset of Miocene aridification. Geckos of the genus Heteronotia are one such group, and have been the subject of many genetic studies, including H. spelea, a strongly banded form that occurs in the uplands of the Pilbara and Central Ranges regions of the Australian arid zone. Here we assess the systematics of these geckos based on detailed examination of morphological and genetic variation. The H. spelea species complex is a monophyletic lineage to the exclusion of the H. binoei and H. planiceps species complexes. Within the H. spelea complex, our previous studies based on mtDNA and nine nDNA loci found populations from the Central Ranges to be genetically divergent from Pilbara populations. Here we supplement our published molecular data with additional data gathered from central Australian samples. In the spirit of integrative species delimitation, we combine multi-locus, coalescent-based lineage delimitation with extensive morphological analyses to test species boundaries, and we describe the central populations as a new species, H. fasciolatus sp. nov. In addition, within the Pilbara there is strong genetic evidence for three lineages corresponding to northeastern (type), southern, and a large-bodied melanic population isolated in the northwest. Due to its genetic distinctiveness and extreme morphological divergence from all other Heteronotia, we describe the melanic form as a new species, H. atra sp. nov. The northeastern and southern Pilbara populations are morphologically indistinguishable with the exception of a morpho-type in the southeast that has a banding pattern resembling H. planiceps from the northern monsoonal tropics. Pending more extensive analyses, we therefore treat Pilbara H. spelea as a single species with phylogenetic structure and

  15. Two new mountainous species of Lactuca (Cichorieae, Asteraceae) from Iran, one presenting a new, possibly myrmecochorous achene variant.

    PubMed

    Kilian, Norbert; Djavadi, Seyyedeh Bahereh; Eskandari, Majid

    2012-01-01

    It is shown that the concept of the Iranian endemic Lactuca polyclada in the sense of both its original author Boissier and its current use actually admixes two entirely different species, as was first noted by Beauverd a hundred years ago but has been neglected by later workers. One is a putative relative of Lactuca rosularis, the other was recognised by Beauverd as a member of the genus Cicerbita. The name Lactuca polyclada Boiss. is lectotypified here, maintaining its use as established by Beauverd for the Cicerbita species. Both species are morphologically delimited and mature achenes of Cicerbita polyclada are illustrated for the first time. The putative relative of Lactuca rosularis, a rare local endemic of the summit area of Kuh e-Dena, which has remained without a valid name by now, is described as a new species, Lactuca denaensis N. Kilian & Djavadi, and illustrated. A third member of the Lactuca rosularis group, Lactuca hazaranensis Djavadi & N. Kilian, discovered among a recent collection and apparently being a rare chasmophyte of the Hazaran mountain massif in the province of Kerman, Iran, is described as a species new to science, illustrated and delimited from the other two species. This new species has peculiar achenes representing a hitherto unknown variant: the body of the beaked achenes is divided into two segments by a transversal constriction in the distal third. The proximal segment contains the embryo, the distal segment is solid with a lipid-containing yellow tissue. The easily detachable pappus and the equally easily detachable beak potentially obstruct dispersal by wind. Since detachment of the beak also exposes the lipid-containing tissue of the distal segment, its potential as an elaiosome and myrmecochory as a possible mode of dispersal are discussed. PMID:22577334

  16. Two new mountainous species of Lactuca (Cichorieae, Asteraceae) from Iran, one presenting a new, possibly myrmecochorous achene variant

    PubMed Central

    Kilian, Norbert; Djavadi, Seyyedeh Bahereh; Eskandari, Majid

    2012-01-01

    Abstract It is shown that the concept of the Iranian endemic Lactuca polyclada in the sense of both its original author Boissier and its current use actually admixes two entirely different species, as was first noted by Beauverd a hundred years ago but has been neglected by later workers. One is a putative relative of Lactuca rosularis, the other was recognised by Beauverd as a member of the genus Cicerbita. The name Lactuca polyclada Boiss. is lectotypified here, maintaining its use as established by Beauverd for the Cicerbita species. Both species are morphologically delimited and mature achenes of Cicerbita polyclada are illustrated for the first time. The putative relative of Lactuca rosularis, a rare local endemic of the summit area of Kuh e-Dena, which has remained without a valid name by now, is described as a new species, Lactuca denaensis N. Kilian & Djavadi, and illustrated. A third member of the Lactuca rosularis group, Lactuca hazaranensis Djavadi & N. Kilian, discovered among a recent collection and apparently being a rare chasmophyte of the Hazaran mountain massif in the province of Kerman, Iran, is described as a species new to science, illustrated and delimited from the other two species. This new species has peculiar achenes representing a hitherto unknown variant: the body of the beaked achenes is divided into two segments by a transversal constriction in the distal third. The proximal segment contains the embryo, the distal segment is solid with a lipid-containing yellow tissue. The easily detachable pappus and the equally easily detachable beak potentially obstruct dispersal by wind. Since detachment of the beak also exposes the lipid-containing tissue of the distal segment, its potential as an elaiosome and myrmecochory as a possible mode of dispersal are discussed. PMID:22577334

  17. Delimiting Evolutionarily Significant Units of the Fish, Piaractus brachypomus (Characiformes: Serrasalmidae), from the Orinoco and Amazon River Basins with Insight on Routes of Historical Connectivity.

    PubMed

    Escobar, Maria Doris; Andrade-López, Juana; Farias, Izeni P; Hrbek, Tomas

    2015-01-01

    The freshwater fish Piaractus brachypomus is an economically important for human consumption both in commercial fisheries and aquaculture in all South American countries where it occurs. In recent years the species has decreased in abundance due to heavy fishing pressure. The species occurs in the Amazon and Orinoco basins, but lack of meristic differences between fishes from the 2 basins, and extensive migration associated with reproduction, have resulted in P. brachypomus being considered a single panmictic species. Analysis of 7 nuclear microsatellites, mitochondrial DNA sequences (D-loop and COI), and body shape variables demonstrated that each river basin is populated by a distinct evolutionarily significant unit (ESU); the 2 groups had an average COI divergence of 3.5% and differed in body depth and relative head length. Historical connection between the 2 basins most probably occurred via the Rupununi portal rather than via the Casiquiare canal. The 2 ESUs will require independent fishery management, and translocation of fisheries stocks between basins should be avoided to prevent loss of local adaptations or extinction associated with outbreeding depression. Introductions of fishes from the Orinoco basin into the Putumayo River basin, an Amazon basin drainage, and evidence of hybridization between the 2 ESUs have already been detected.

  18. Delimiting Evolutionarily Significant Units of the Fish, Piaractus brachypomus (Characiformes: Serrasalmidae), from the Orinoco and Amazon River Basins with Insight on Routes of Historical Connectivity.

    PubMed

    Escobar, Maria Doris; Andrade-López, Juana; Farias, Izeni P; Hrbek, Tomas

    2015-01-01

    The freshwater fish Piaractus brachypomus is an economically important for human consumption both in commercial fisheries and aquaculture in all South American countries where it occurs. In recent years the species has decreased in abundance due to heavy fishing pressure. The species occurs in the Amazon and Orinoco basins, but lack of meristic differences between fishes from the 2 basins, and extensive migration associated with reproduction, have resulted in P. brachypomus being considered a single panmictic species. Analysis of 7 nuclear microsatellites, mitochondrial DNA sequences (D-loop and COI), and body shape variables demonstrated that each river basin is populated by a distinct evolutionarily significant unit (ESU); the 2 groups had an average COI divergence of 3.5% and differed in body depth and relative head length. Historical connection between the 2 basins most probably occurred via the Rupununi portal rather than via the Casiquiare canal. The 2 ESUs will require independent fishery management, and translocation of fisheries stocks between basins should be avoided to prevent loss of local adaptations or extinction associated with outbreeding depression. Introductions of fishes from the Orinoco basin into the Putumayo River basin, an Amazon basin drainage, and evidence of hybridization between the 2 ESUs have already been detected. PMID:26245778

  19. Taxonomy of the Phyllotis osilae species group in Argentina; the status of the "Rata de los nogales" (Phyllotis nogalaris Thomas, 1921; Rodentia: Cricetidae).

    PubMed

    Jayat, J Pablo; Ortiz, Pablo E; D'elía, Guillermo

    2016-01-01

    The taxonomic status of populations of the genus Phyllotis from northwestern Argentina (NWA) has undergone recent changes, with the addition of two species (P. alisosiensis and P. anitae) to the traditionally recognized forms (P. caprinus, P. xanthopygus, and P. osilae). Three of these species (P. anitae, P. osilae, and P. alisosiensis) were included within the Phyllotis osilae species group. Most authors recognized three subspecies of P. osilae for NWA: P. osilae osilae, P. o. nogalaris, and P. o. tucumanus. Morphological, morphometric, and molecular studies based on recently collected specimens suggest that current classification does not reflect the diversity of this group in NWA, revealing the need of some taxonomic reallocations and new distributional delimitations. Here we propose that P. nogalaris must be recognized as a valid species and the restriction of P. osilae to southern Peru and central Bolivia. Following our results, we expect an outstanding improvement in the taxonomic knowledge of the Phyllotis osilae species group in the coming years.

  20. A new species of bunchgrass lizard (Squamata: Phrynosomatidae) from the southern sky islands of the Sierra Madre Occidental, Mexico.

    PubMed

    Grummer, Jared A; Bryson, Robert W

    2014-01-01

    A new species of bunchgrass lizard in the Sceloporus scalaris group is described from the southern portion of the Sierra Madre Occidental in Mexico. The new species, Sceloporus aurantius sp. nov., was previously confused with S. brownorum but differs from this and all but one species within the S. scalaris group by a lack of blue belly patches in males. It shares with S. chaneyi an absence of blue belly patches, but differs from this species in size, number of dorsal scales, number of scales around midbody, and presence of an un-patterned morph. The new species further differs from S. chaneyi, and all other species in the S. scalaris species group, by unique phylogenetic position revealed through species delimitation based on multi-locus nuclear DNA. Principal component analyses of 24 traditional morphological characters used to describe previous S. scalaris group taxa indicate that these characters may be of limited use to delineate species in this species group. However, male lateral and ventral coloration may still be an important character for diagnosing species. PMID:24869877

  1. A new species of bunchgrass lizard (Squamata: Phrynosomatidae) from the southern sky islands of the Sierra Madre Occidental, Mexico.

    PubMed

    Grummer, Jared A; Bryson, Robert W

    2014-04-22

    A new species of bunchgrass lizard in the Sceloporus scalaris group is described from the southern portion of the Sierra Madre Occidental in Mexico. The new species, Sceloporus aurantius sp. nov., was previously confused with S. brownorum but differs from this and all but one species within the S. scalaris group by a lack of blue belly patches in males. It shares with S. chaneyi an absence of blue belly patches, but differs from this species in size, number of dorsal scales, number of scales around midbody, and presence of an un-patterned morph. The new species further differs from S. chaneyi, and all other species in the S. scalaris species group, by unique phylogenetic position revealed through species delimitation based on multi-locus nuclear DNA. Principal component analyses of 24 traditional morphological characters used to describe previous S. scalaris group taxa indicate that these characters may be of limited use to delineate species in this species group. However, male lateral and ventral coloration may still be an important character for diagnosing species.

  2. Untangling a species complex of arid zone grasses (Triodia) reveals patterns congruent with co-occurring animals.

    PubMed

    Anderson, Benjamin M; Barrett, Matthew D; Krauss, Siegfried L; Thiele, Kevin

    2016-08-01

    The vast Australian arid zone formed over the last 15million years, and gradual aridification as well as more extreme Pliocene and Pleistocene climate shifts have impacted the evolution of its biota. Understanding the evolutionary history of groups of organisms or regional biotas such as the Australian arid biota requires clear delimitation of the units of biodiversity (taxa). Here we integrate evidence from nuclear (ETS and ITS) and chloroplast (rps16-trnK spacer) regions and morphology to clarify taxonomic boundaries in a species complex of Australian hummock grasses (Triodia) to better understand the evolution of Australian arid zone plants and to evaluate congruence in distribution patterns with co-occurring organisms. We find evidence for multiple new taxa in the T. basedowii species complex, but also incongruence between data sets and indications of hybridization that complicate delimitation. We find that the T. basedowii complex has high lineage diversity and endemism in the biologically important Pilbara region of Western Australia, consistent with the region acting as a refugium. Taxa show strong geographic structure in the Pilbara, congruent with recent work on co-occurring animals and suggesting common evolutionary drivers across the biota. Our findings confirm recognition of the Pilbara as an important centre of biodiversity in the Australian arid zone, and provide a basis for future taxonomic revision of the T. basedowii complex and more detailed study of its evolutionary history and that of arid Australia. PMID:27179699

  3. Taxonomic revision of the Malagasy Nesomyrmex madecassus species-group using a quantitative morphometric approach.

    PubMed

    Csősz, Sándor; Fisher, Brian L

    2016-01-01

    Here we reveal the diversity of the next fragment of the Malagasy elements of the ant genus Nesomyrmex using a combination of advanced exploratory analyses on quantitative morphological data. The diversity of the Nesomyrmex madecassus species-group was assessed via hypothesis-free nest centroid clustering combined with recursive partitioning to estimate the number of clusters and determine the most probable boundaries between them. This combination of methods provides a highly automated species delineation protocol based on continuous morphometric data, and thereby it obviates the need of subjective interpretation of morphological patterns. Delimitations of clusters recognized by these exploratory analyses were tested via confirmatory Linear Discriminant Analysis (LDA). Our results suggest the existence of four morphologically distinct species, Nesomyrmex flavus sp. n., Nesomyrmex gibber, Nesomyrmex madecassus and Nesomyrmex nitidus sp. n.; all are described here and an identification key for their worker castes using morphometric data is given. Two members of the newly outlined madecasus species-group, Nesomyrmex flavus sp. n. and Nesomyrmex nitidus sp. n., represent true cryptic species. Geographic maps depicting species distributions and elevational information for the sites where populations of particular species were collected are also provided. PMID:27551199

  4. DNA Barcodes for Species Identification in the Hyperdiverse Ant Genus Pheidole (Formicidae: Myrmicinae)

    PubMed Central

    Ng'endo, R.N.; Osiemo, Z.B.; Brandl, R.

    2013-01-01

    DNA sequencing is increasingly being used to assist in species identification in order to overcome taxonomic impediment. However, few studies attempt to compare the results of these molecular studies with a more traditional species delineation approach based on morphological characters. Mitochondrial DNA Cytochrome oxidase subunit 1 (CO1) gene was sequenced, measuring 636 base pairs, from 47 ants of the genus Pheidole (Formicidae: Myrmicinae) collected in the Brazilian Atlantic Forest to test whether the morphology-based assignment of individuals into species is supported by DNA-based species delimitation. Twenty morphospecies were identified, whereas the barcoding analysis identified 19 Molecular Operational Taxonomic Units (MOTUs). Fifteen out of the 19 DNA-based clusters allocated, using sequence divergence thresholds of 2% and 3%, matched with morphospecies. Both thresholds yielded the same number of MOTUs. Only one MOTU was successfully identified to species level using the CO1 sequences of Pheidole species already in the Genbank. The average pairwise sequence divergence for all 47 sequences was 19%, ranging between 0–25%. In some cases, however, morphology and molecular based methods differed in their assignment of individuals to morphospecies or MOTUs. The occurrence of distinct mitochondrial lineages within morphological species highlights groups for further detailed genetic and morphological studies, and therefore a pluralistic approach using several methods to understand the taxonomy of difficult lineages is advocated. PMID:23902257

  5. The probability of monophyly of a sample of gene lineages on a species tree

    PubMed Central

    Mehta, Rohan S.; Bryant, David; Rosenberg, Noah A.

    2016-01-01

    Monophyletic groups—groups that consist of all of the descendants of a most recent common ancestor—arise naturally as a consequence of descent processes that result in meaningful distinctions between organisms. Aspects of monophyly are therefore central to fields that examine and use genealogical descent. In particular, studies in conservation genetics, phylogeography, population genetics, species delimitation, and systematics can all make use of mathematical predictions under evolutionary models about features of monophyly. One important calculation, the probability that a set of gene lineages is monophyletic under a two-species neutral coalescent model, has been used in many studies. Here, we extend this calculation for a species tree model that contains arbitrarily many species. We study the effects of species tree topology and branch lengths on the monophyly probability. These analyses reveal new behavior, including the maintenance of nontrivial monophyly probabilities for gene lineage samples that span multiple species and even for lineages that do not derive from a monophyletic species group. We illustrate the mathematical results using an example application to data from maize and teosinte. PMID:27432988

  6. Taxonomic revision of the Malagasy Nesomyrmex madecassus species-group using a quantitative morphometric approach

    PubMed Central

    Csősz, Sándor; Fisher, Brian L.

    2016-01-01

    Abstract Here we reveal the diversity of the next fragment of the Malagasy elements of the ant genus Nesomyrmex using a combination of advanced exploratory analyses on quantitative morphological data. The diversity of the Nesomyrmex madecassus species-group was assessed via hypothesis-free nest centroid clustering combined with recursive partitioning to estimate the number of clusters and determine the most probable boundaries between them. This combination of methods provides a highly automated species delineation protocol based on continuous morphometric data, and thereby it obviates the need of subjective interpretation of morphological patterns. Delimitations of clusters recognized by these exploratory analyses were tested via confirmatory Linear Discriminant Analysis (LDA). Our results suggest the existence of four morphologically distinct species, Nesomyrmex flavus sp. n., Nesomyrmex gibber, Nesomyrmex madecassus and Nesomyrmex nitidus sp. n.; all are described here and an identification key for their worker castes using morphometric data is given. Two members of the newly outlined madecasus species-group, Nesomyrmex flavus sp. n. and Nesomyrmex nitidus sp. n., represent true cryptic species. Geographic maps depicting species distributions and elevational information for the sites where populations of particular species were collected are also provided. PMID:27551199

  7. The probability of monophyly of a sample of gene lineages on a species tree.

    PubMed

    Mehta, Rohan S; Bryant, David; Rosenberg, Noah A

    2016-07-19

    Monophyletic groups-groups that consist of all of the descendants of a most recent common ancestor-arise naturally as a consequence of descent processes that result in meaningful distinctions between organisms. Aspects of monophyly are therefore central to fields that examine and use genealogical descent. In particular, studies in conservation genetics, phylogeography, population genetics, species delimitation, and systematics can all make use of mathematical predictions under evolutionary models about features of monophyly. One important calculation, the probability that a set of gene lineages is monophyletic under a two-species neutral coalescent model, has been used in many studies. Here, we extend this calculation for a species tree model that contains arbitrarily many species. We study the effects of species tree topology and branch lengths on the monophyly probability. These analyses reveal new behavior, including the maintenance of nontrivial monophyly probabilities for gene lineage samples that span multiple species and even for lineages that do not derive from a monophyletic species group. We illustrate the mathematical results using an example application to data from maize and teosinte. PMID:27432988

  8. Host-plant species conservatism and ecology of a parasitoid fig wasp genus (Chalcidoidea; Sycoryctinae; Arachonia).

    PubMed

    McLeish, Michael J; Beukman, Gary; van Noort, Simon; Wossler, Theresa C

    2012-01-01

    Parasitoid diversity in terrestrial ecosystems is enormous. However, ecological processes underpinning their evolutionary diversification in association with other trophic groups are still unclear. Specialisation and interdependencies among chalcid wasps that reproduce on Ficus presents an opportunity to investigate the ecology of a multi-trophic system that includes parasitoids. Here we estimate the host-plant species specificity of a parasitoid fig wasp genus that attacks the galls of non-pollinating pteromalid and pollinating agaonid fig wasps. We discuss the interactions between parasitoids and the Ficus species present in a forest patch of Uganda in context with populations in Southern Africa. Haplotype networks are inferred to examine intraspecific mitochondrial DNA divergences and phylogenetic approaches used to infer putative species relationships. Taxonomic appraisal and putative species delimitation by molecular and morphological techniques are compared. Results demonstrate that a parasitoid fig wasp population is able to reproduce on at least four Ficus species present in a patch. This suggests that parasitoid fig wasps have relatively broad host-Ficus species ranges compared to fig wasps that oviposit internally. Parasitoid fig wasps did not recruit on all available host plants present in the forest census area and suggests an important ecological consequence in mitigating fitness trade-offs between pollinator and Ficus reproduction. The extent to which parasitoid fig wasps exert influence on the pollination mutualism must consider the fitness consequences imposed by the ability to interact with phenotypes of multiple Ficus and fig wasps species, but not equally across space and time.

  9. Host-Plant Species Conservatism and Ecology of a Parasitoid Fig Wasp Genus (Chalcidoidea; Sycoryctinae; Arachonia)

    PubMed Central

    McLeish, Michael J.; Beukman, Gary; van Noort, Simon; Wossler, Theresa C.

    2012-01-01

    Parasitoid diversity in terrestrial ecosystems is enormous. However, ecological processes underpinning their evolutionary diversification in association with other trophic groups are still unclear. Specialisation and interdependencies among chalcid wasps that reproduce on Ficus presents an opportunity to investigate the ecology of a multi-trophic system that includes parasitoids. Here we estimate the host-plant species specificity of a parasitoid fig wasp genus that attacks the galls of non-pollinating pteromalid and pollinating agaonid fig wasps. We discuss the interactions between parasitoids and the Ficus species present in a forest patch of Uganda in context with populations in Southern Africa. Haplotype networks are inferred to examine intraspecific mitochondrial DNA divergences and phylogenetic approaches used to infer putative species relationships. Taxonomic appraisal and putative species delimitation by molecular and morphological techniques are compared. Results demonstrate that a parasitoid fig wasp population is able to reproduce on at least four Ficus species present in a patch. This suggests that parasitoid fig wasps have relatively broad host-Ficus species ranges compared to fig wasps that oviposit internally. Parasitoid fig wasps did not recruit on all available host plants present in the forest census area and suggests an important ecological consequence in mitigating fitness trade-offs between pollinator and Ficus reproduction. The extent to which parasitoid fig wasps exert influence on the pollination mutualism must consider the fitness consequences imposed by the ability to interact with phenotypes of multiple Ficus and fig wasps species, but not equally across space and time. PMID:22970309

  10. Delimiting the Origin of a B Chromosome by FISH Mapping, Chromosome Painting and DNA Sequence Analysis in Astyanax paranae (Teleostei, Characiformes)

    PubMed Central

    Silva, Duílio M. Z. de A.; Pansonato-Alves, José Carlos; Utsunomia, Ricardo; Araya-Jaime, Cristian; Ruiz-Ruano, Francisco J.; Daniel, Sandro Natal; Hashimoto, Diogo Teruo; Oliveira, Cláudio; Camacho, Juan Pedro M.; Porto-Foresti, Fábio; Foresti, Fausto

    2014-01-01

    Supernumerary (B) chromosomes have been shown to contain a wide variety of repetitive sequences. For this reason, fluorescent in situ hybridisation (FISH) is a useful tool for ascertaining the origin of these genomic elements, especially when combined with painting from microdissected B chromosomes. In order to investigate the origin of B chromosomes in the fish species Astyanax paranae, these two approaches were used along with PCR amplification of specific DNA sequences obtained from the B chromosomes and its comparison with those residing in the A chromosomes. Remarkably, chromosome painting with the one-arm metacentric B chromosome probe showed hybridization signals on entire B chromosome, while FISH mapping revealed the presence of H1 histone and 18S rDNA genes symmetrically placed in both arms of the B chromosome. These results support the hypothesis that the B chromosome of A. paranae is an isochromosome. Additionally, the chromosome pairs Nos. 2 or 23 are considered the possible B chromosome ancestors since both contain syntenic H1 and 18S rRNA sequences. The analysis of DNA sequence fragments of the histone and rRNA genes obtained from the microdissected B chromosomes showed high similarity with those obtained from 0B individuals, which supports the intraspecific origin of B chromosomes in A. paranae. Finally, the population hereby analysed showed a female-biased B chromosome presence suggesting that B chromosomes in this species could influence sex determinism. PMID:24736529

  11. Who's getting around? Assessing species diversity and phylogeography in the widely distributed lichen-forming fungal genus Montanelia (Parmeliaceae, Ascomycota).

    PubMed

    Leavitt, Steven D; Divakar, Pradeep K; Ohmura, Yoshihito; Wang, Li-Song; Esslinger, Theodore L; Lumbsch, H Thorsten

    2015-09-01

    Brown parmelioid lichens comprise a number of distinct genera in one of the most species-rich families of lichen-forming fungi, Parmeliaceae (Ascomycota). In spite of their superficial similarity, a number of studies of brown parmelioids have provided important insight into diversification in lichen-forming fungi with cosmopolitan distributions. In this study we assess species diversity, biogeography and diversification of the genus Montanelia, which includes alpine to temperate saxicolous species. We sampled each of the five known species, four of which are known from broad, intercontinental distributions. In order to identify potential biogeographical patterns, each broadly distributed species was represented by individuals collected across their intercontinental distributions. Molecular sequence data were generated for six loci, including three nuclear protein-coding markers (MCM7, RPB1, and RPB2), two nuclear ribosomal markers (ITS and nrLSU), and a fragment of the mitochondrial small subunit. We used three sequence-based species delimitations methods to validate traditional, phenotype-based species and circumscribe previously unrecognized species-level lineages in Montanelia. Relationships among putative lineages and divergence times were estimated within a coalescent-based multi-locus species tree framework. Based on the results of the species delimitation analyses, we propose that the genus Montanelia is likely comprised of six to nine species-level lineages, including previously unrecognized species-level diversity in the nominal taxa M. panniformis and M. tominii. In contrast, molecular sequence data suggest that M. predisjuncta may be conspecific with the widespread taxon M. disjuncta in spite of distinct morphological differences. The rate-based age estimation of the most recent common ancestor of Montanelia (ca. 23.1Ma) was similar to previous estimates based on the fossil record. Furthermore, our data suggest that diversification in Montanelia occurred

  12. DNA-Based Taxonomy in Ecologically Versatile Microalgae: A Re-Evaluation of the Species Concept within the Coccoid Green Algal Genus Coccomyxa (Trebouxiophyceae, Chlorophyta).

    PubMed

    Malavasi, Veronica; Škaloud, Pavel; Rindi, Fabio; Tempesta, Sabrina; Paoletti, Michela; Pasqualetti, Marcella

    2016-01-01

    Coccomyxa is a genus of unicellular green algae of the class Trebouxiophyceae, well known for its cosmopolitan distribution and great ecological amplitude. The taxonomy of this genus has long been problematic, due to reliance on badly-defined and environmentally variable morphological characters. In this study, based on the discovery of a new species from an extreme habitat, we reassess species circumscription in Coccomyxa, a unicellular genus of the class Trebouxiophyceae, using a combination of ecological and DNA sequence data (analyzed with three different methods of algorithmic species delineation). Our results are compared with those of a recent integrative study of Darienko and colleagues that reassessed the taxonomy of Coccomyxa, recognizing 7 species in the genus. Expanding the dataset from 43 to 61 sequences (SSU + ITS rDNA) resulted in a different delimitation, supporting the recognition of a higher number of species (24 to 27 depending on the analysis used, with the 27-species scenario receiving the strongest support). Among these, C. melkonianii sp. nov. is described from material isolated from a river highly polluted by heavy metals (Rio Irvi, Sardinia, Italy). Analyses performed on ecological characters detected a significant phylogenetic signal in six different characters. We conclude that the 27-species scenario is presently the most realistic for Coccomyxa and we suggest that well-supported lineages distinguishable by ecological preferences should be recognized as different species in this genus. We also recommend that for microbial lineages in which the overall diversity is unknown and taxon sampling is sparse, as is often the case for green microalgae, the results of analyses for algorithmic DNA-based species delimitation should be interpreted with extreme caution.

  13. DNA-Based Taxonomy in Ecologically Versatile Microalgae: A Re-Evaluation of the Species Concept within the Coccoid Green Algal Genus Coccomyxa (Trebouxiophyceae, Chlorophyta)

    PubMed Central

    Rindi, Fabio; Tempesta, Sabrina; Paoletti, Michela; Pasqualetti, Marcella

    2016-01-01

    Coccomyxa is a genus of unicellular green algae of the class Trebouxiophyceae, well known for its cosmopolitan distribution and great ecological amplitude. The taxonomy of this genus has long been problematic, due to reliance on badly-defined and environmentally variable morphological characters. In this study, based on the discovery of a new species from an extreme habitat, we reassess species circumscription in Coccomyxa, a unicellular genus of the class Trebouxiophyceae, using a combination of ecological and DNA sequence data (analyzed with three different methods of algorithmic species delineation). Our results are compared with those of a recent integrative study of Darienko and colleagues that reassessed the taxonomy of Coccomyxa, recognizing 7 species in the genus. Expanding the dataset from 43 to 61 sequences (SSU + ITS rDNA) resulted in a different delimitation, supporting the recognition of a higher number of species (24 to 27 depending on the analysis used, with the 27-species scenario receiving the strongest support). Among these, C. melkonianii sp. nov. is described from material isolated from a river highly polluted by heavy metals (Rio Irvi, Sardinia, Italy). Analyses performed on ecological characters detected a significant phylogenetic signal in six different characters. We conclude that the 27-species scenario is presently the most realistic for Coccomyxa and we suggest that well-supported lineages distinguishable by ecological preferences should be recognized as different species in this genus. We also recommend that for microbial lineages in which the overall diversity is unknown and taxon sampling is sparse, as is often the case for green microalgae, the results of analyses for algorithmic DNA-based species delimitation should be interpreted with extreme caution. PMID:27028195

  14. Molecular evidence for ten species and Oligo-Miocene vicariance within a nominal Australian gecko species (Crenadactylus ocellatus, Diplodactylidae)

    PubMed Central

    2010-01-01

    diversity. Highly divergent allopatric lineages are restricted to putative refugia across arid and semi-arid Australia, and provide important evidence towards understanding the history and spread of the Australian arid zone, suggesting at a minimum that semi-arid conditions were present by the early Miocene, and that severe aridity was widespread by the mid to late Miocene. In addition to documenting a remarkable instance of underestimation of vertebrate species diversity in a developed country, these results suggest that increasing integration of molecular dating techniques into cryptic species delimitation will reveal further instances where taxonomic conservatism has led to profound underestimation of not only species numbers, but also highly significant phylogenetic diversity and evolutionary history. PMID:21156080

  15. Assessing natural introgression in 2 biomedical model species, the rhesus macaque (Macaca mulatta) and the long-tailed macaque (Macaca fascicularis).

    PubMed

    Bonhomme, Maxime; Cuartero, Sergi; Blancher, Antoine; Crouau-Roy, Brigitte

    2009-01-01

    Rhesus macaque (Macaca mulatta) and long-tailed macaque (Macaca fascicularis) are the 2 most commonly used primate model species in biomedical sciences. Although morphological studies have revealed a weak hybridization at the interspecific contact zone, in the north of Indochina, a molecular study has suggested an ancient introgression from rhesus to long-tailed macaque into the Indo-Chinese peninsula. However, the gene flow between these 2 taxa has never been quantified using genetic data and theoretical models. In this study, we have examined genetic variation within and between the parapatric Chinese rhesus macaque and Indo-Chinese long-tailed macaque populations, using 13 autosomal, 5 sex-linked microsatellite loci and mitochondrial DNA sequence data. From these data, we assessed genetic structure and estimated gene flow using a Bayesian clustering approach and the "Isolation with Migration" model. Our results reveal a weak interspecific genetic differentiation at both autosomal and sex-linked loci, suggesting large population sizes and/or gene flow between populations. According to the Bayesian clustering, Chinese rhesus macaque is a highly homogeneous gene pool that contributes strongly to the current Indo-Chinese long-tailed macaque genetic makeup, whether or not current admixture is assumed. Coalescent simulations, which integrated the characteristics of the loci, pointed out 1) a higher effective population size in rhesus macaque, 2) no mitochondrial gene flow, and 3) unilateral and male-mediated nuclear gene flow of approximately 10 migrants per generation from rhesus to long-tailed macaque. These patterns of genetic structure and gene flow suggest extensive ancient introgression from Chinese rhesus macaque into the Indo-Chinese long-tailed macaque population.

  16. Comparative sensitivity to methyl eugenol of four putative Bactrocera dorsalis complex sibling species – further evidence that they belong to one and the same species B. dorsalis

    PubMed Central

    Hee, Alvin K.W.; Ooi, Yue-Shin; Wee, Suk-Ling; Tan, Keng-Hong

    2015-01-01

    Abstract Males of certain species belonging to the Bactrocera dorsalis complex are strongly attracted to, and readily feed on methyl eugenol (ME), a plant secondary compound that is found in over 480 plant species worldwide. Amongst those species is one of the world’s most severe fruit pests the Oriental fruit fly, Bactrocera dorsalis s.s., and the former taxonomic species Bactrocera invadens, Bactrocera papayae and Bactrocera philippinensis. The latter species have been recently synonymised with Bactrocera dorsalis based on their very similar morphology, mating compatibility, molecular genetics and identical sex pheromones following consumption of ME. Previous studies have shown that male fruit fly responsiveness to lures is a unique phenomenon that is dose species-specific, besides showing a close correlation to sexual maturity attainment. This led us to use ME sensitivity as a behavioural parameter to test if Bactrocera dorsalis and the three former taxonomic species had similar sensitivity towards odours of ME. Using Probit analysis, we estimated the median dose of ME required to elicit species’ positive response in 50% of each population tested (ED50). ED50 values were compared between Bactrocera dorsalis and the former species. Our results showed no significant differences between Bactrocera dorsalis s.s., and the former Bactrocera invadens, Bactrocera papayae and Bactrocera philippinensis in their response to ME. We consider that the Bactrocera males’ sensitivity to ME may be a useful behavioural parameter for species delimitation and, in addition to other integrative taxonomic tools used, provides further supportive evidence that the four taxa belong to one and the same biological species, Bactrocera dorsalis. PMID:26798265

  17. DNA barcoding species inventory of Microgastrinae wasps (Hymenoptera, Braconidae) from a Mexican tropical dry forest.

    PubMed

    Fernández-Flores, S; Fernández-Triana, J L; Martínez, J J; Zaldívar-Riverón, A

    2013-11-01

    The cosmopolitan Microgastrinae is probably the most diverse braconid subfamily of parasitoid wasps, yet its species diversity is far from being known. As part of a global initiative for DNA barcoding Microgastrinae species, here we show the results of a study that assessed the species richness of this subfamily in a Mexican tropical dry forest located in the Chamela region, near the Pacific coast of Jalisco. Barcoding sequences of a total of 551 microgastrine specimens were generated, corresponding to 238 haplotypes. Performance of two species delineation approaches, a 2% corrected pairwise distance criterion and the general mixed Yule-coalescent (GMYC) method, yielded 100 and 112 putative species, respectively, which belong to 13 genera. The species delimited by the above two approaches were mostly congruent with our morphospecies identification. Ten molecular operational taxonomic units (MOTUs) were split into twenty-two species by the GMYC approach. We found morphological differences between the GMYC species corresponding to three of these MOTUs. Thus, a total of 103 microgastrine species were confirmed for the region of study. Thirty-three species were only represented by males, and therefore, their generic assignment is only tentatively proposed. Fornicia, Dolichogenoidea, Distatrix, Glyptapanteles and Pholetesor represent new generic records for the Mexican territory. A new record for the country is also provided for the Diolcogaster-basimacula species group. Based on a comparison of nearly 20 000 barcoding sequences released for Microgastrinae from 75 countries, only five microgastrine species from Chamela were found to occur in other countries, four in Costa Rica and one in Canada and the United States.

  18. Host Plant Associations and Parasitism of South Ecuadorian Eois Species (Lepidoptera: Geometridae) Feeding on Peperomia (Piperaceae).

    PubMed

    Seifert, Carlo L; Bodner, Florian; Brehm, Gunnar; Fiedler, Konrad

    2015-01-01

    The very species-rich tropical moth genus Eois Hübner (Lepidoptera: Geometridae) is a promising model group for studying host plant specialization and adaptive radiation. While most Eois species are assumed to be specialized herbivores on Piper L. species, records on other plant taxa such as Peperomia Ruiz & Pavón (Piperaceae) are still relatively scarce. Moreover, little is known about life history traits of most species, and only a few caterpillars have been described so far. We collected caterpillars associated with Peperomia (Piperaceae) host plants from June 2012 to January 2013 in three elevational bands of montane and elfin rainforests on the eastern slopes of the Andes in southern Ecuador. Caterpillars were systematically searched and reared to the adult stage. We were able to delimitate ten species of Eois on Peperomia by comparison of larval and adult morphology and by using 658 bp fragments of the mitochondrial COI gene (barcode sequences). Three of these species, Eois albosignata (Dognin), Eois bolana (Dognin), and Eois chasca (Dognin), are validly described whereas the other seven taxa represent interim morphospecies, recognized unequivocally by their DNA barcodes, and their larval and adult morphology. We provide information about their host plants, degree of parasitism, and describe the larval stages in their last instar. Additionally, caterpillars and moths are illustrated in color plates. This is the first comparative study dealing with Eois moths whose caterpillars feed on Peperomia hosts. PMID:26286230

  19. New species of Elaphomyces (Elaphomycetaceae, Eurotiales, Ascomycota) from tropical rainforests of Cameroon and Guyana.

    PubMed

    Castellano, Michael A; Dentinger, Bryn T M; Séné, Olivier; Elliott, Todd F; Truong, Camille; Henkel, Terry W

    2016-06-01

    The sequestrate false truffles Elaphomyces favosus, E. iuppitercellus, and E. labyrinthinus spp. nov. are described as new to science from the Dja Biosphere Reserve, Cameroon. Elaphomyces adamizans sp. nov. is described as new from the Pakaraima Mountains of Guyana. The Cameroonian species are the first Elaphomyces taxa to be formally described from Africa, occurring in lowland Guineo-Congolian tropical rainforests dominated by the ectomycorrhizal (ECM) canopy tree Gilbertiodendron dewevrei (Fabaceae subfam. Caesalpinioideae). The Guyanese species is the third to be discovered in lowland tropical South America, occurring in forests dominated by the ECM trees Pakaraimaea dipterocarpacea (Dipterocarpaceae) and Dicymbe jenmanii (Fabaceae subfam. Caesalpinioideae). Macromorphological, micromorphological, habitat, and DNA sequence data are provided for each new species. Molecular and morphological data place these fungi in Elaphomycetaceae (Eurotiales, Ascomycota). Unique morphological features are congruent with molecular delimitation of each of the new species based on a phylogenetic analysis of the rDNA ITS and 28S loci across the Elaphomycetaceae. The phylogenetic analysis also suggests that a common ancestor is shared between some Elaphomyces species from Africa and South America, and that species of the stalked, volvate genus Pseudotulostoma may be nested in Elaphomyces.

  20. Host Plant Associations and Parasitism of South Ecuadorian Eois Species (Lepidoptera: Geometridae) Feeding on Peperomia (Piperaceae)

    PubMed Central

    Seifert, Carlo L.; Bodner, Florian; Brehm, Gunnar; Fiedler, Konrad

    2015-01-01

    The very species-rich tropical moth genus Eois Hübner (Lepidoptera: Geometridae) is a promising model group for studying host plant specialization and adaptive radiation. While most Eois species are assumed to be specialized herbivores on Piper L. species, records on other plant taxa such as Peperomia Ruiz & Pavón (Piperaceae) are still relatively scarce. Moreover, little is known about life history traits of most species, and only a few caterpillars have been described so far. We collected caterpillars associated with Peperomia (Piperaceae) host plants from June 2012 to January 2013 in three elevational bands of montane and elfin rainforests on the eastern slopes of the Andes in southern Ecuador. Caterpillars were systematically searched and reared to the adult stage. We were able to delimitate ten species of Eois on Peperomia by comparison of larval and adult morphology and by using 658 bp fragments of the mitochondrial COI gene (barcode sequences). Three of these species, Eois albosignata (Dognin), Eois bolana (Dognin), and Eois chasca (Dognin), are validly described whereas the other seven taxa represent interim morphospecies, recognized unequivocally by their DNA barcodes, and their larval and adult morphology. We provide information about their host plants, degree of parasitism, and describe the larval stages in their last instar. Additionally, caterpillars and moths are illustrated in color plates. This is the first comparative study dealing with Eois moths whose caterpillars feed on Peperomia hosts. PMID:26286230

  1. Host Plant Associations and Parasitism of South Ecuadorian Eois Species (Lepidoptera: Geometridae) Feeding on Peperomia (Piperaceae).

    PubMed

    Seifert, Carlo L; Bodner, Florian; Brehm, Gunnar; Fiedler, Konrad

    2015-01-01

    The very species-rich tropical moth genus Eois Hübner (Lepidoptera: Geometridae) is a promising model group for studying host plant specialization and adaptive radiation. While most Eois species are assumed to be specialized herbivores on Piper L. species, records on other plant taxa such as Peperomia Ruiz & Pavón (Piperaceae) are still relatively scarce. Moreover, little is known about life history traits of most species, and only a few caterpillars have been described so far. We collected caterpillars associated with Peperomia (Piperaceae) host plants from June 2012 to January 2013 in three elevational bands of montane and elfin rainforests on the eastern slopes of the Andes in southern Ecuador. Caterpillars were systematically searched and reared to the adult stage. We were able to delimitate ten species of Eois on Peperomia by comparison of larval and adult morphology and by using 658 bp fragments of the mitochondrial COI gene (barcode sequences). Three of these species, Eois albosignata (Dognin), Eois bolana (Dognin), and Eois chasca (Dognin), are validly described whereas the other seven taxa represent interim morphospecies, recognized unequivocally by their DNA barcodes, and their larval and adult morphology. We provide information about their host plants, degree of parasitism, and describe the larval stages in their last instar. Additionally, caterpillars and moths are illustrated in color plates. This is the first comparative study dealing with Eois moths whose caterpillars feed on Peperomia hosts.

  2. New species of Elaphomyces (Elaphomycetaceae, Eurotiales, Ascomycota) from tropical rainforests of Cameroon and Guyana.

    PubMed

    Castellano, Michael A; Dentinger, Bryn T M; Séné, Olivier; Elliott, Todd F; Truong, Camille; Henkel, Terry W

    2016-06-01

    The sequestrate false truffles Elaphomyces favosus, E. iuppitercellus, and E. labyrinthinus spp. nov. are described as new to science from the Dja Biosphere Reserve, Cameroon. Elaphomyces adamizans sp. nov. is described as new from the Pakaraima Mountains of Guyana. The Cameroonian species are the first Elaphomyces taxa to be formally described from Africa, occurring in lowland Guineo-Congolian tropical rainforests dominated by the ectomycorrhizal (ECM) canopy tree Gilbertiodendron dewevrei (Fabaceae subfam. Caesalpinioideae). The Guyanese species is the third to be discovered in lowland tropical South America, occurring in forests dominated by the ECM trees Pakaraimaea dipterocarpacea (Dipterocarpaceae) and Dicymbe jenmanii (Fabaceae subfam. Caesalpinioideae). Macromorphological, micromorphological, habitat, and DNA sequence data are provided for each new species. Molecular and morphological data place these fungi in Elaphomycetaceae (Eurotiales, Ascomycota). Unique morphological features are congruent with molecular delimitation of each of the new species based on a phylogenetic analysis of the rDNA ITS and 28S loci across the Elaphomycetaceae. The phylogenetic analysis also suggests that a common ancestor is shared between some Elaphomyces species from Africa and South America, and that species of the stalked, volvate genus Pseudotulostoma may be nested in Elaphomyces. PMID:27433441

  3. Evolving entities: towards a unified framework for understanding diversity at the species and higher levels

    PubMed Central

    Barraclough, Timothy G.

    2010-01-01

    Current approaches to studying the evolution of biodiversity differ in their treatment of species and higher level diversity patterns. Species are regarded as the fundamental evolutionarily significant units of biodiversity, both in theory and in practice, and extensive theory explains how they originate and evolve. However, most species are still delimited using qualitative methods that only relate indirectly to the underlying theory. In contrast, higher level patterns of diversity have been subjected to rigorous quantitative study (using phylogenetics), but theory that adequately explains the observed patterns has been lacking. Most evolutionary analyses of higher level diversity patterns have considered non-equilibrium explanations based on rates of diversification (i.e. exponentially growing clades), rather than equilibrium explanations normally used at the species level and below (i.e. constant population sizes). This paper argues that species level and higher level patterns of diversity can be considered within a common framework, based on equilibrium explanations. It shows how forces normally considered in the context of speciation, namely divergent selection and geographical isolation, can generate evolutionarily significant units of diversity above the level of reproductively isolated species. Prospects for the framework to answer some unresolved questions about higher level diversity patterns are discussed. PMID:20439282

  4. A new species of the genus Pachytriton (Caudata: Salamandridae) from Hunan and Guangxi, southeastern China.

    PubMed

    Yuan, Zhi-Yong; Zhang, Bao-Lin; Che, Jing

    2016-01-01

    Despite recent descriptions of multiple new species of the genus Pachytriton (Salamandridae), species richness in this China-endemic newts genus likely remains underestimated. In this study, we describe a new species of Pachytriton from northeastern Guangxi and southern Hunan, southeastern China. Both molecular analyses and morphological characters reveal that the new species can be distinguished from its congeners. The mitochondrial gene tree identified the new lineage highly divergent (uncorrected p-distance > 5.8 % by mitochondrial gene) from currently recognized species and placed it as the sister species of P. xanthospilos and P. changi. Furthermore, a nuclear gene haplotype network revealed a unique haplotype in the new populations. Statistical species delimitation using Bayes factor strongly supported the evolutionary independence of the new species from the closely-related P. xanthospilos. Morphologically, the new species is characterized by a uniformly dark brown dorsum without bright orange dots or black spots; irregular orange blotches on the venter; tips of fingers and toes orange on the dorsal side; moderately developed webs on the side of digits; absence of costal grooves between the axilla and groin; and widely open vomerine tooth series. PMID:27394299

  5. Species Diversity of Ramphogordius sanguineus/Lineus ruber-Like Nemerteans (Nemertea: Heteronemertea) and Geographic Distribution of R. sanguineus.

    PubMed

    Kang, Xing-Xing; Fernández-Álvarez, Fernando Ángel; Alfaya, José E F; Machordom, Annie; Strand, Malin; Sundberg, Per; Sun, Shi-Chun

    2015-12-01

    Heteronemerteans, such as Lineus ruber, L. viridis, Ramphogordius sanguineus, R. lacteus, Riseriellus occultus, and Micrura varicolor, share many similar external characters. Although several internal characters useful for distinguishing these nemertean species have been documented, their identification is based mostly on coloration, the shape of the head, and how they contract, which may not be always reliable. We sequenced the mitochondrial COI gene for 160 specimens recently collected from 27 locations around the world (provisionally identified as the above species, according to external characters and contraction patterns, with most of them as R. sanguineus). Based on these specimens, together with sequences of 16 specimens from GenBank, we conducted a DNA-based species delimitation/identification by means of statistical parsimony and phylogenetic analyses. Our results show that the analyzed specimens may contain nine species, which can be separated by large genetic gaps; heteronemerteans with an external appearance similar to R. sanguineus/Lineus ruber/L. viridis have high species diversity in European waters from where eight species can be discriminated. Our 42 individuals from Vancouver Island (Canada) are revealed to be R. sanguineus, which supports an earlier argument that nemerteans reported as L. ruber or L. viridis from the Pacific Northwest may refer to this species. We report R. sanguineus from Chile, southern China, and the species is also distributed on the Atlantic coast of South America (Argentina). In addition, present analyses reveal the occurrence of L. viridis in Qingdao, which is the first record of the species from Chinese waters.

  6. A new species of the genus Pachytriton (Caudata: Salamandridae) from Hunan and Guangxi, southeastern China.

    PubMed

    Yuan, Zhi-Yong; Zhang, Bao-Lin; Che, Jing

    2016-03-02

    Despite recent descriptions of multiple new species of the genus Pachytriton (Salamandridae), species richness in this China-endemic newts genus likely remains underestimated. In this study, we describe a new species of Pachytriton from northeastern Guangxi and southern Hunan, southeastern China. Both molecular analyses and morphological characters reveal that the new species can be distinguished from its congeners. The mitochondrial gene tree identified the new lineage highly divergent (uncorrected p-distance > 5.8 % by mitochondrial gene) from currently recognized species and placed it as the sister species of P. xanthospilos and P. changi. Furthermore, a nuclear gene haplotype network revealed a unique haplotype in the new populations. Statistical species delimitation using Bayes factor strongly supported the evolutionary independence of the new species from the closely-related P. xanthospilos. Morphologically, the new species is characterized by a uniformly dark brown dorsum without bright orange dots or black spots; irregular orange blotches on the venter; tips of fingers and toes orange on the dorsal side; moderately developed webs on the side of digits; absence of costal grooves between the axilla and groin; and widely open vomerine tooth series.

  7. Complete mitochondrial genome of the versicoloured emerald hummingbird Amazilia versicolor, a polymorphic species.

    PubMed

    Prosdocimi, Francisco; Souto, Helena Magarinos; Ruschi, Piero Angeli; Furtado, Carolina; Jennings, W Bryan

    2016-09-01

    The genome of the versicoloured emerald hummingbird (Amazilia versicolor) was partially sequenced in one-sixth of an Illumina HiSeq lane. The mitochondrial genome was assembled using MIRA and MITObim software, yielding a circular molecule of 16,861 bp in length and deposited in GenBank under the accession number KF624601. The mitogenome contained 13 protein-coding genes, 22 transfer tRNAs, 2 ribosomal RNAs and 1 non-coding control region. The molecule was assembled using 21,927 sequencing reads of 100 bp each, resulting in ∼130 × coverage of uniformly distributed reads along the genome. This is the forth mitochondrial genome described for this highly diverse family of birds and may benefit further phylogenetic, phylogeographic, population genetic and species delimitation studies of hummingbirds.

  8. Complete mitochondrial genome of the versicoloured emerald hummingbird Amazilia versicolor, a polymorphic species.

    PubMed

    Prosdocimi, Francisco; Souto, Helena Magarinos; Ruschi, Piero Angeli; Furtado, Carolina; Jennings, W Bryan

    2016-09-01

    The genome of the versicoloured emerald hummingbird (Amazilia versicolor) was partially sequenced in one-sixth of an Illumina HiSeq lane. The mitochondrial genome was assembled using MIRA and MITObim software, yielding a circular molecule of 16,861 bp in length and deposited in GenBank under the accession number KF624601. The mitogenome contained 13 protein-coding genes, 22 transfer tRNAs, 2 ribosomal RNAs and 1 non-coding control region. The molecule was assembled using 21,927 sequencing reads of 100 bp each, resulting in ∼130 × coverage of uniformly distributed reads along the genome. This is the forth mitochondrial genome described for this highly diverse family of birds and may benefit further phylogenetic, phylogeographic, population genetic and species delimitation studies of hummingbirds. PMID:25758043

  9. Vernonieae (Asteraceae) of southern Africa: A generic disposition of the species and a study of their pollen

    PubMed Central

    Robinson, Harold; Skvarla, John J.; Funk, Vicki A.

    2016-01-01

    Abstract Current and previously included members of the Tribe Vernonieae (Asteraceae) of southern Africa are listed in their presently recognized genera with complete synonymies and keys to genera and species. The genus Vernonia, as presently delimited, does not occur in Africa. Genera of the Vernonieae presently recognized from southern Africa are Baccharoides, Bothriocline, Cyanthillium, Distephanus, Erlangea, Ethulia, Gymnanthemum, Hilliardiella, Oocephala, Orbivestus, Parapolydora, Polydora, Vernonella, Vernoniastrum, plus two genera that are named as new: Namibithamnus and Pseudopegolettia. Twelve new combinations are provided and two species, Vernonia potamiphila and Vernonia collinii Klatt., hom. illeg., remain unplaced because of a lack of material. Pollen types are illustrated including previously recognized types: non-lophate, sublophate, tricolporate lophate, and non-colpate triporate lophate. A type previously unknown in the Asteraceae is described here and in a separate paper for Oocephala and Polydora; a non-colpate pantoporate lophate type with pores not strictly equatorial. PMID:27081344

  10. OryzaGenome: Genome Diversity Database of Wild Oryza Species.

    PubMed

    Ohyanagi, Hajime; Ebata, Toshinobu; Huang, Xuehui; Gong, Hao; Fujita, Masahiro; Mochizuki, Takako; Toyoda, Atsushi; Fujiyama, Asao; Kaminuma, Eli; Nakamura, Yasukazu; Feng, Qi; Wang, Zi-Xuan; Han, Bin; Kurata, Nori

    2016-01-01

    The species in the genus Oryza, encompassing nine genome types and 23 species, are a rich genetic resource and may have applications in deeper genomic analyses aiming to understand the evolution of plant genomes. With the advancement of next-generation sequencing (NGS) technology, a flood of Oryza species reference genomes and genomic variation information has become available in recent years. This genomic information, combined with the comprehensive phenotypic information that we are accumulating in our Oryzabase, can serve as an excellent genotype-phenotype association resource for analyzing rice functional and structural evolution, and the associated diversity of the Oryza genus. Here we integrate our previous and future phenotypic/habitat information and newly determined genotype information into a united repository, named OryzaGenome, providing the variant information with hyperlinks to Oryzabase. The current version of OryzaGenome includes genotype information of 446 O. rufipogon accessions derived by imputation and of 17 accessions derived by imputation-free deep sequencing. Two variant viewers are implemented: SNP Viewer as a conventional genome browser interface and Variant Table as a text-based browser for precise inspection of each variant one by one. Portable VCF (variant call format) file or tab-delimited file download is also available. Following these SNP (single nucleotide polymorphism) data, reference pseudomolecules/scaffolds/contigs and genome-wide variation information for almost all of the closely and distantly related wild Oryza species from the NIG Wild Rice Collection will be available in future releases. All of the resources can be accessed through http://viewer.shigen.info/oryzagenome/. PMID:26578696

  11. Niche Divergence versus Neutral Processes: Combined Environmental and Genetic Analyses Identify Contrasting Patterns of Differentiation in Recently Diverged Pine Species

    PubMed Central

    Moreno-Letelier, Alejandra; Ortíz-Medrano, Alejandra; Piñero, Daniel

    2013-01-01

    Background and Aims Solving relationships of recently diverged taxa, poses a challenge due to shared polymorphism and weak reproductive barriers. Multiple lines of evidence are needed to identify independently evolving lineages. This is especially true of long-lived species with large effective population sizes, and slow rates of lineage sorting. North American pines are an interesting group to test this multiple approach. Our aim is to combine cytoplasmic genetic markers with environmental information to clarify species boundaries and relationships of the species complex of Pinus flexilis, Pinus ayacahuite, and Pinus strobiformis. Methods Mitochondrial and chloroplast sequences were combined with previously obtained microsatellite data and contrasted with environmental information to reconstruct phylogenetic relationships of the species complex. Ecological niche models were compared to test if ecological divergence is significant among species. Key Results and Conclusion Separately, both genetic and ecological evidence support a clear differentiation of all three species but with different topology, but also reveal an ancestral contact zone between P. strobiformis and P. ayacahuite. The marked ecological differentiation of P. flexilis suggests that ecological speciation has occurred in this lineage, but this is not reflected in neutral markers. The inclusion of environmental traits in phylogenetic reconstruction improved the resolution of internal branches. We suggest that combining environmental and genetic information would be useful for species delimitation and phylogenetic studies in other recently diverged species complexes. PMID:24205167

  12. Comparative genetics of hybrid incompatibility: sterility in two Solanum species crosses.

    PubMed

    Moyle, Leonie C; Nakazato, Takuya

    2008-07-01

    The genetic basis of hybrid sterility can provide insight into the genetic and evolutionary origins of species barriers. We examine the genetics of hybrid incompatibility between two diploid plant species in the plant clade Solanum sect. Lycopersicon. Using a set of near-isogenic lines (NILs) representing the wild species Solanum pennellii (formerly Lycopersicon pennellii) in the genetic background of the cultivated tomato S. lycopersicum (formerly L. esculentum), we found that hybrid pollen and seed infertility are each based on a modest number of loci, male (pollen) and other (seed) incompatibility factors are roughly comparable in number, and seed-infertility QTL act additively or recessively. These findings are remarkably consistent with our previous analysis in a different species pair, S. lycopersicum x S. habrochaites. Data from both studies contrast strongly with data from Drosophila. Finally, QTL for pollen and seed sterility from the two Solanum studies were chromosomally colocalized, indicating a shared evolutionary history for these QTL, a nonrandom genomic distribution of loci causing sterility, and/or a proclivity of certain genes to be involved in hybrid sterility. We show that comparative mapping data can delimit the probable timing of evolution of detected QTL and discern which sterility loci likely evolved earliest among species.

  13. Morphological and molecular marker contributions to disentangling the cryptic Hermeuptychia hermes species complex (Nymphalidae: Satyrinae: Euptychiina).

    PubMed

    Seraphim, N; Marín, M A; Freitas, A V L; Silva-Brandão, K L

    2014-01-01

    The genus Hermeuptychia is common and widespread through the Americas, from Argentina to the southern United States of America. All eight recognized species within Hermeuptychia are small and brown, with very similar interspecific external morphologies and intraspecifically variable ocelli patterns that render taxonomic identification based on morphology difficult. In our study, we surveyed variability within Hermeuptychia, and evaluated species boundaries based on molecular data (sequences of the 'barcode' mitochondrial DNA COI gene) and morphology (mainly male genitalia), using a phylogenetic approach. We found eight DNA-based and 12 morphological groups in our sampling. Species names were assigned based mainly on comparisons with male genitalia morphology descriptions corresponding to name-bearing type specimens. Morphological and DNA variability were highly congruent, with the exception of group H, the Hermeuptychia cucullina complex. Also, the barcode region showed a clear threshold for intra- and interspecific mean distances around 2%. Based on these results, we circumscribe the species boundaries in the genus Hermeuptychia and discuss conflicts between mitochondrial genes and classic morphological approaches for identifying and delimiting species. Our study revealed cryptic diversity within an ubiquitous genus of Neotropical butterflies.

  14. A multilocus analysis provides evidence for more than one species within Eugenes fulgens (Aves: Trochilidae).

    PubMed

    Zamudio-Beltrán, Luz E; Hernández-Baños, Blanca E

    2015-09-01

    The status of subspecies in systematic zoology is the focus of controversy. Recent studies use DNA sequences to evaluate the status of subspecies within species complexes and to recognize and delimit species. Here, we assessed the phylogenetic relationships, the taxonomic status of the proposed subspecies, and the species limits of the monotypic hummingbird genus Eugenes (E. fulgens with traditionally recognized subspecies E. f. fulgens, E. f. viridiceps, and E. f. spectabilis), using nuclear (Beta Fibrinogen BFib, Ornithine Decarboxylase ODC, and Muscle Skeletal Receptor Tyrosine Kinase MUSK) and mitochondrial (NADH dehydrogenase subunit 2 ND2, NADH dehydrogenase subunit 4 ND4, and Control Region CR) markers. We performed Bayesian and Bayesian Phylogenetics and Phylogeography analyses and found genetic differences between the three groups, suggesting the existence of two cryptic species (E. fulgens and E. viridiceps) and one phenotypically differentiated species (E. spectabilis). Our analyses show that the E. viridiceps and E. fulgens groups are more closely related with one another than with E. spectabilis. PMID:25982690

  15. Ecological interpretations of the leaf anatomy of amphibious species of Aeschynomene L. (Leguminosae - Papilionoideae).

    PubMed

    Leme, F M; Scremin-Dias, E

    2014-02-01

    We present the leaf anatomy of seven amphibious species of Aeschynomene L. (Papilionoideae, Leguminosae), interpreting their structures and ecological functions, and also, providing information on which their taxonomy can be based, especially of morphologically similar species. We evaluated Aeschynomene americana, A. ciliata, A. evenia, A. denticulata, A. fluminensis, A. rudis and A. sensitiva. The anatomy corroborates the separation of the series Americanae, Fluminenses, Indicae and Sensitivae, with the shape of the petiole, types of trichomes and quantity of vascular units in the petiole as main characteristics to delimit the species. The petiole shape varies from cylindric in A. americana, A. sensitiva and A. fluminensis, to triangular in A. evenia and quadrangular in A. rudis, A. denticulata and A. ciliata. We observed four types of trichomes: hydathode trichome, long conic trichome, short conic trichome and bulb-based trichome. The hydathode trichome was the most common, except for A. americana and A. fluminensis. Species with higher affinity with water share similar adaptive characteristics, including hydathode trichomes described for the first time for the genus. This article adds unseen descriptions for the genus and on the adaptation factors of the amphibious species.

  16. Assessing spider species richness and composition in Mediterranean cork oak forests

    NASA Astrophysics Data System (ADS)

    Cardoso, Pedro; Gaspar, Clara; Pereira, Luis C.; Silva, Israel; Henriques, Sérgio S.; da Silva, Ricardo R.; Sousa, Pedro

    2008-01-01

    Semi-quantitative sampling protocols have been proposed as the most cost-effective and comprehensive way of sampling spiders in many regions of the world. In the present study, a balanced sampling design with the same number of samples per day, time of day, collector and method, was used to assess the species richness and composition of a Quercus suber woodland in Central Portugal. A total of 475 samples, each corresponding to one hour of effective fieldwork, were taken. One hundred sixty eight species were captured, of which 150 were recorded inside a delimited one-hectare plot; this number corresponds to around 90% of the estimated species richness. We tested the effect of applying different sampling approaches (sampling day, time of day, collector experience and method) on species richness, abundance, and composition. Most sampling approaches were found to influence the species measures, of which method, time of day and the respective interaction had the strongest influence. The data indicated that fauna depletion of the sampled area possibly occurred and that the inventory was reaching a plateau by the end of the sampling process. We advocate the use of the Chao estimators as best for intensive protocols limited in space and time and the use of the asymptotic properties of the Michaelis-Menten curve as a stopping or reliability rule, as it allows the investigator to know when a close-to-complete inventory has been obtained and when reliable non-parametric estimators have been achieved.

  17. Shaping species with ephemeral boundaries: The distribution and genetic structure of desert tortoise (Gopherus morafkai) in the Sonoran Desert region

    USGS Publications Warehouse

    Edwards, Taylor; Vaughn, Mercy; Rosen, Philip C.; Torres, Ma. Cristina Melendez; Karl, Alice E.; Culver, Melanie; Murphy, Robert W.

    2015-01-01

    The historically shifting ecotone between tropical deciduous forest and Sonoran desertscrub appears to be a boundary that fostered divergence between parapatric lineages of tortoises. The sharp genetic cline between the two lineages suggests that periods of isolation in temporary refugia due to Pleistocene climatic cycling influenced divergence. Despite incomplete reproductive isolation, the Sonoran and Sinaloan lineages of G. morafkai are on separate evolutionary trajectories.

  18. Exploring Genetic Divergence in a Species-Rich Insect Genus Using 2790 DNA Barcodes.

    PubMed

    Lin, Xiaolong; Stur, Elisabeth; Ekrem, Torbjørn

    2015-01-01

    DNA barcoding using a fragment of the mitochondrial cytochrome c oxidase subunit 1 gene (COI) has proven to be successful for species-level identification in many animal groups. However, most studies have been focused on relatively small datasets or on large datasets of taxonomically high-ranked groups. We explore the quality of DNA barcodes to delimit species in the diverse chironomid genus Tanytarsus (Diptera: Chironomidae) by using different analytical tools. The genus Tanytarsus is the most species-rich taxon of tribe Tanytarsini (Diptera: Chironomidae) with more than 400 species worldwide, some of which can be notoriously difficult to identify to species-level using morphology. Our dataset, based on sequences generated from own material and publicly available data in BOLD, consist of 2790 DNA barcodes with a fragment length of at least 500 base pairs. A neighbor joining tree of this dataset comprises 131 well separated clusters representing 121 morphological species of Tanytarsus: 77 named, 16 unnamed and 28 unidentified theoretical species. For our geographically widespread dataset, DNA barcodes unambiguously discriminate 94.6% of the Tanytarsus species recognized through prior morphological study. Deep intraspecific divergences exist in some species complexes, and need further taxonomic studies using appropriate nuclear markers as well as morphological and ecological data to be resolved. The DNA barcodes cluster into 120-242 molecular operational taxonomic units (OTUs) depending on whether Objective Clustering, Automatic Barcode Gap Discovery (ABGD), Generalized Mixed Yule Coalescent model (GMYC), Poisson Tree Process (PTP), subjective evaluation of the neighbor joining tree or Barcode Index Numbers (BINs) are used. We suggest that a 4-5% threshold is appropriate to delineate species of Tanytarsus non-biting midges. PMID:26406595

  19. Exploring Genetic Divergence in a Species-Rich Insect Genus Using 2790 DNA Barcodes

    PubMed Central

    Lin, Xiaolong; Stur, Elisabeth; Ekrem, Torbjørn

    2015-01-01

    DNA barcoding using a fragment of the mitochondrial cytochrome c oxidase subunit 1 gene (COI) has proven to be successful for species-level identification in many animal groups. However, most studies have been focused on relatively small datasets or on large datasets of taxonomically high-ranked groups. We explore the quality of DNA barcodes to delimit species in the diverse chironomid genus Tanytarsus (Diptera: Chironomidae) by using different analytical tools. The genus Tanytarsus is the most species-rich taxon of tribe Tanytarsini (Diptera: Chironomidae) with more than 400 species worldwide, some of which can be notoriously difficult to identify to species-level using morphology. Our dataset, based on sequences generated from own material and publicly available data in BOLD, consist of 2790 DNA barcodes with a fragment length of at least 500 base pairs. A neighbor joining tree of this dataset comprises 131 well separated clusters representing 121 morphological species of Tanytarsus: 77 named, 16 unnamed and 28 unidentified theoretical species. For our geographically widespread dataset, DNA barcodes unambiguously discriminate 94.6% of the Tanytarsus species recognized through prior morphological study. Deep intraspecific divergences exist in some species complexes, and need further taxonomic studies using appropriate nuclear markers as well as morphological and ecological data to be resolved. The DNA barcodes cluster into 120–242 molecular operational taxonomic units (OTUs) depending on whether Objective Clustering, Automatic Barcode Gap Discovery (ABGD), Generalized Mixed Yule Coalescent model (GMYC), Poisson Tree Process (PTP), subjective evaluation of the neighbor joining tree or Barcode Index Numbers (BINs) are used. We suggest that a 4–5% threshold is appropriate to delineate species of Tanytarsus non-biting midges. PMID:26406595

  20. Exploring Genetic Divergence in a Species-Rich Insect Genus Using 2790 DNA Barcodes.

    PubMed

    Lin, Xiaolong; Stur, Elisabeth; Ekrem, Torbjørn

    2015-01-01

    DNA barcoding using a fragment of the mitochondrial cytochrome c oxidase subunit 1 gene (COI) has proven to be successful for species-level identification in many animal groups. However, most studies have been focused on relatively small datasets or on large datasets of taxonomically high-ranked groups. We explore the quality of DNA barcodes to delimit species in the diverse chironomid genus Tanytarsus (Diptera: Chironomidae) by using different analytical tools. The genus Tanytarsus is the most species-rich taxon of tribe Tanytarsini (Diptera: Chironomidae) with more than 400 species worldwide, some of which can be notoriously diff