Sample records for delivery system includes

  1. Modeling the Delivery Physiology of Distributed Learning Systems.

    ERIC Educational Resources Information Center

    Paquette, Gilbert; Rosca, Ioan

    2003-01-01

    Discusses instructional delivery models and their physiology in distributed learning systems. Highlights include building delivery models; types of delivery models, including distributed classroom, self-training on the Web, online training, communities of practice, and performance support systems; and actors (users) involved, including experts,…

  2. Multi-channel gas-delivery system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozenzon, Yan; Trujillo, Robert T.; Beese, Steven C.

    One embodiment of the present invention provides a gas-delivery system for delivering reaction gas to a reactor chamber. The gas-delivery system includes a main gas-inlet port for receiving reaction gases and a gas-delivery plate that includes a plurality of gas channels. A gas channel includes a plurality of gas holes for allowing the reaction gases to enter the reactor chamber from the gas channel. The gas-delivery system further includes a plurality of sub-gas lines coupling together the main gas-inlet port and the gas-delivery plate, and a respective sub-gas line is configured to deliver a portion of the received reaction gasesmore » to a corresponding gas channel.« less

  3. Including safety-net providers in integrated delivery systems: issues and options for policymakers.

    PubMed

    Witgert, Katherine; Hess, Catherine

    2012-08-01

    Health care reform legislation has spurred efforts to develop integrated health care delivery systems that seek to coordinate the continuum of health services. These systems may be of particular benefit to patients who face barriers to accessing care or have multiple health conditions. But it remains to be seen how safety-net providers, including community health centers and public hospitals--which have long experience in caring for these vulnerable populations--will be included in integrated delivery systems. This issue brief explores key considerations for incorporating safety-net providers into integrated delivery systems and discusses the roles of state and federal agencies in sup­porting and testing models of integrated care delivery. The authors conclude that the most important principles in creating integrated delivery systems for vulnerable populations are: (1) an emphasis on primary care; (2) coordination of all care, including behavioral, social, and public health services; and (3) accountability for population health outcomes.

  4. Optical diagnostics integrated with laser spark delivery system

    DOEpatents

    Yalin, Azer [Fort Collins, CO; Willson, Bryan [Fort Collins, CO; Defoort, Morgan [Fort Collins, CO; Joshi, Sachin [Fort Collins, CO; Reynolds, Adam [Fort Collins, CO

    2008-09-02

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  5. Fiber laser coupled optical spark delivery system

    DOEpatents

    Yalin, Azer [Fort Collins, CO; Willson, Bryan [Fort Collins, CO; Defoort, Morgan [Fort Collins, CO; Joshi, Sachin [Fort Collins, CO; Reynolds, Adam [Fort Collins, CO

    2008-03-04

    A spark delivery system for generating a spark using a laser beam is provided, and includes a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. The laser delivery assembly further includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. Other embodiments use a fiber laser to generate a spark. Embodiments of the present invention may be used to create a spark in an engine. Yet other embodiments include collecting light from the spark or a flame resulting from the spark and conveying the light for diagnostics. Methods of using the spark delivery systems and diagnostic systems are provided.

  6. Nanoparticle-Hydrogel: A Hybrid Biomaterial System for Localized Drug Delivery

    PubMed Central

    Gao, Weiwei; Zhang, Yue; Zhang, Qiangzhe; Zhang, Liangfang

    2016-01-01

    Nanoparticles have offered a unique set of properties for drug delivery including high drug loading capacity, combinatorial delivery, controlled and sustained drug release, prolonged stability and lifetime, and targeted delivery. To further enhance therapeutic index, especially for localized application, nanoparticles have been increasingly combined with hydrogels to form a hybrid biomaterial system for controlled drug delivery. Herein, we review recent progresses in engineering such nanoparticle-hydrogel hybrid system (namely ‘NP-gel’) with a particular focus on its application for localized drug delivery. Specifically, we highlight four research areas where NP-gel has shown great promises, including (1) passively controlled drug release, (2) stimuli-responsive drug delivery, (3) site-specific drug delivery, and (4) detoxification. Overall, integrating therapeutic nanoparticles with hydrogel technologies creates a unique and robust hybrid biomaterial system that enables effective localized drug delivery. PMID:26951462

  7. Recent developments in solid lipid nanoparticle and surface-modified solid lipid nanoparticle delivery systems for oral delivery of phyto-bioactive compounds in various chronic diseases

    PubMed Central

    Ko, Young Tag; Choi, Dong-Kug

    2018-01-01

    Solid lipid nanoparticle (SLN) delivery systems have a wide applicability in the delivery of phyto-bioactive compounds to treat various chronic diseases, including diabetes, cancer, obesity and neurodegenerative diseases. The multiple benefits of SLN delivery include improved stability, smaller particle size, leaching prevention and enhanced lymphatic uptake of the bioactive compounds through oral delivery. However, the burst release makes the SLN delivery systems inadequate for the oral delivery of various phyto-bioactive compounds that can treat such chronic diseases. Recently, the surface-modified SLN (SMSLN) was observed to overcome this limitation for oral delivery of phyto-bioactive compounds, and there is growing evidence of an enhanced uptake of curcumin delivered orally via SMSLNs in the brain. This review focuses on different SLN and SMSLN systems that are useful for oral delivery of phyto-bioactive compounds to treat various chronic diseases. PMID:29588585

  8. Fiber coupled optical spark delivery system

    DOEpatents

    Yalin, Azer; Willson, Bryan; Defoort, Morgan

    2008-08-12

    A spark delivery system for generating a spark using a laser beam is provided, the spark delivery system including a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. In addition, the laser delivery assembly includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. In accordance with embodiments of the present invention, the assembly may be used to create a spark in a combustion engine. In accordance with other embodiments of the present invention, a method of using the spark delivery system is provided. In addition, a method of choosing an appropriate fiber for creating a spark using a laser beam is also presented.

  9. Continuing Professional Education Delivery Systems.

    ERIC Educational Resources Information Center

    Weeks, James P.

    This investigation of delivery systems for continuing professional education provides an overview of current operational delivery systems in continuing professional education, drawing on experience as found in the literature. Learning theories and conclusions are woven into the descriptive text. Delivery systems profiled in the paper include the…

  10. Reservoir-Based Drug Delivery Systems Utilizing Microtechnology

    PubMed Central

    Stevenson, Cynthia L.; Santini, John T.; Langer, Robert

    2012-01-01

    This review covers reservoir-based drug delivery systems that incorporate microtechnology, with an emphasis on oral, dermal, and implantable systems. Key features of each technology are highlighted such as working principles, fabrication methods, dimensional constraints, and performance criteria. Reservoir-based systems include a subset of microfabricated drug delivery systems and provide unique advantages. Reservoirs, whether external to the body or implanted, provide a well-controlled environment for a drug formulation, allowing increased drug stability and prolonged delivery times. Reservoir systems have the flexibility to accommodate various delivery schemes, including zero order, pulsatile, and on demand dosing, as opposed to a standard sustained release profile. Furthermore, the development of reservoir-based systems for targeted delivery for difficult to treat applications (e.g., ocular) has resulted in potential platforms for patient therapy. PMID:22465783

  11. Inhalable particulate drug delivery systems for lung cancer therapy: Nanoparticles, microparticles, nanocomposites and nanoaggregates.

    PubMed

    Abdelaziz, Hadeer M; Gaber, Mohamed; Abd-Elwakil, Mahmoud M; Mabrouk, Moustafa T; Elgohary, Mayada M; Kamel, Nayra M; Kabary, Dalia M; Freag, May S; Samaha, Magda W; Mortada, Sana M; Elkhodairy, Kadria A; Fang, Jia-You; Elzoghby, Ahmed O

    2018-01-10

    There is progressive evolution in the use of inhalable drug delivery systems (DDSs) for lung cancer therapy. The inhalation route offers many advantages, being non-invasive method of drug administration as well as localized delivery of anti-cancer drugs to tumor tissue. This article reviews various inhalable colloidal systems studied for tumor-targeted drug delivery including polymeric, lipid, hybrid and inorganic nanocarriers. The active targeting approaches for enhanced delivery of nanocarriers to lung cancer cells were illustrated. This article also reviews the recent advances of inhalable microparticle-based drug delivery systems for lung cancer therapy including bioresponsive, large porous, solid lipid and drug-complex microparticles. The possible strategies to improve the aerosolization behavior and maintain the critical physicochemical parameters for efficient delivery of drugs deep into lungs were also discussed. Therefore, a strong emphasis is placed on the approaches which combine the merits of both nanocarriers and microparticles including inhalable nanocomposites and nanoaggregates and on the optimization of such formulations using the proper techniques and carriers. Finally, the toxicological behavior and market potential of the inhalable anti-cancer drug delivery systems are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Erythrocytes-based synthetic delivery systems: transition from conventional to novel engineering strategies.

    PubMed

    Bhateria, Manisha; Rachumallu, Ramakrishna; Singh, Rajbir; Bhatta, Rabi Sankar

    2014-08-01

    Erythrocytes (red blood cells [RBCs]) and artificial or synthetic delivery systems such as liposomes, nanoparticles (NPs) are the most investigated carrier systems. Herein, progress made from conventional approach of using RBC as delivery systems to novel approach of using synthetic delivery systems based on RBC properties will be reviewed. We aim to highlight both conventional and novel approaches of using RBCs as potential carrier system. Conventional approaches which include two main strategies are: i) directly loading therapeutic moieties in RBCs; and ii) coupling them with RBCs whereas novel approaches exploit structural, mechanical and biological properties of RBCs to design synthetic delivery systems through various engineering strategies. Initial attempts included coupling of antibodies to liposomes to specifically target RBCs. Knowledge obtained from several studies led to the development of RBC membrane derived liposomes (nanoerythrosomes), inspiring future application of RBC or its structural features in other attractive delivery systems (hydrogels, filomicelles, microcapsules, micro- and NPs) for even greater potential. In conclusion, this review dwells upon comparative analysis of various conventional and novel engineering strategies in developing RBC based drug delivery systems, diversifying their applications in arena of drug delivery. Regardless of the challenges in front of us, RBC based delivery systems offer an exciting approach of exploiting biological entities in a multitude of medical applications.

  13. Delivery system for molten salt oxidation of solid waste

    DOEpatents

    Brummond, William A.; Squire, Dwight V.; Robinson, Jeffrey A.; House, Palmer A.

    2002-01-01

    The present invention is a delivery system for safety injecting solid waste particles, including mixed wastes, into a molten salt bath for destruction by the process of molten salt oxidation. The delivery system includes a feeder system and an injector that allow the solid waste stream to be accurately metered, evenly dispersed in the oxidant gas, and maintained at a temperature below incineration temperature while entering the molten salt reactor.

  14. Advances in bioresponsive closed-loop drug delivery systems.

    PubMed

    Yu, Jicheng; Zhang, Yuqi; Yan, Junjie; Kahkoska, Anna R; Gu, Zhen

    2017-11-27

    Controlled drug delivery systems are able to improve efficacy and safety of therapeutics by optimizing the duration and kinetics of release. Among them, closed-loop delivery strategies, also known as self-regulated administration, have proven to be a practical tool for homeostatic regulation, by tuning drug release as a function of biosignals relevant to physiological and pathological processes. A typical example is glucose-responsive insulin delivery system, which can mimic the pancreatic beta cells to release insulin with a proper dose at a proper time point by responding to plasma glucose levels. Similar self-regulated systems are also important in the treatment of other diseases including thrombosis and bacterial infection. In this review, we survey the recent advances in bioresponsive closed-loop drug delivery systems, including glucose-responsive, enzyme-activated, and other biosignal-mediated delivery systems. We also discuss the future opportunities and challenges in this field. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Stabilization challenges and formulation strategies associated with oral biologic drug delivery systems.

    PubMed

    Truong-Le, Vu; Lovalenti, Phillip M; Abdul-Fattah, Ahmad M

    2015-10-01

    Delivery of proteins to mucosal tissues of GI tract typically utilize formulations which protect against proteolysis and target the mucosal tissues. Using case studies from literature and the authors' own work, the in-process stability and solid state storage stability of biopharmaceuticals formulated in delivery systems designed for oral delivery to the GI tract will be reviewed. Among the range of delivery systems, biodegradable polymer systems for protection and controlled release of proteins have been the most studied; hence these systems will be covered in greater depth. These delivery systems include polymeric biodegradable microspheres or nanospheres that contain proteins or vaccines, which are designed to reduce the number of administrations/inoculations and the total protein dose required to achieve the desired biological effect. Specifically, this review will include a landscape survey of the systems that have been studied, the manufacturing processes involved, stability through the manufacturing process, key pharmaceutical formulation parameters that impact stability of the encased proteins, and storage stability of the encapsulated proteins in these delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Drug Delivery and Nanoformulations for the Cardiovascular System.

    PubMed

    Geldenhuys, W J; Khayat, M T; Yun, J; Nayeem, M A

    2017-02-01

    Therapeutic delivery to the cardiovascular system may play an important role in the successful treatment of a variety of disease state, including atherosclerosis, ischemic-reperfusion injury and other types of microvascular diseases including hypertension. In this review we evaluate the different options available for the development of suitable delivery systems that include the delivery of small organic compounds [adenosin A 2A receptor agonist (CGS 21680), CYP-epoxygenases inhibitor (N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide, trans-4-[4-(3-adamantan-1-ylureido)cyclohexyloxy] benzoic acid), soluble epoxide hydrolase inhibitor (N-methylsulfonyl-12,12-dibromododec-11-enamide), PPARγ agonist (rosiglitazone) and PPARγ antagonist (T0070907)], nanoparticles, peptides, and siRNA to the cardiovascular system. Effective formulations of nanoproducts have significant potential to overcome physiological barriers and improve therapeutic outcomes in patients. As per the literature covering targeted delivery to the cardiovascular system, we found that this area is still at infancy stage, as compare to the more mature fields of tumor cancer or brain delivery (e.g. blood-brain barrier permeability) with fewer publications focused on the targeted drug delivery technologies. Additionally, we show how pharmacology needs to be well understood when considering the cardiovascular system. Therefore, we discussed in this review various receptors agonists, antagonists, activators and inhibitors which will have effects on cardiovascular system.

  17. Sensitivity Analysis of Algan/GAN High Electron Mobility Transistors to Process Variation

    DTIC Science & Technology

    2008-02-01

    delivery system gas panel including both hydride and alkyl delivery modules and the vent/valve configurations [14...Reactor Gas Delivery Systems A basic schematic diagram of an MOCVD reactor delivery gas panel is shown in Figure 13. The reactor gas delivery...system, or gas panel , consists of a network of stainless steel tubing, automatic valves and electronic mass flow controllers (MFC). There are separate

  18. Comparative health systems research among Kaiser Permanente and other integrated delivery systems: a systematic literature review.

    PubMed

    Maeda, Jared Lane K; Lee, Karen M; Horberg, Michael

    2014-01-01

    Because of rising health care costs, wide variations in quality, and increased patient complexity, the US health care system is undergoing rapid changes that include payment reform and movement toward integrated delivery systems. Well-established integrated delivery systems, such as Kaiser Permanente (KP), should work to identify the specific system-level factors that result in superior patient outcomes in response to policymakers' concerns. Comparative health systems research can provide insights into which particular aspects of the integrated delivery system result in improved care delivery. To provide a baseline understanding of comparative health systems research related to integrated delivery systems and KP. Systematic literature review. We conducted a literature search on PubMed and the KP Publications Library. Studies that compared KP as a system or organization with other health care systems or across KP facilities internally were included. The literature search identified 1605 articles, of which 65 met the study inclusion criteria and were examined by 3 reviewers. Most comparative health systems studies focused on intra-KP comparisons (n = 42). Fewer studies compared KP with other US (n = 15) or international (n = 12) health care systems. Several themes emerged from the literature as possible factors that may contribute to improved care delivery in integrated delivery systems. Of all studies published by or about KP, only a small proportion of articles (4%) was identified as being comparative health systems research. Additional empirical studies that compare the specific factors of the integrated delivery system model with other systems of care are needed to better understand the "system-level" factors that result in improved and/or diminished care delivery.

  19. Barriers to Liposomal Gene Delivery: from Application Site to the Target.

    PubMed

    Saffari, Mostafa; Moghimi, Hamid Reza; Dass, Crispin R

    2016-01-01

    Gene therapy is a therapeutic approach to deliver genetic material into cells to alter their function in entire organism. One promising form of gene delivery system (DDS) is liposomes. The success of liposome-mediated gene delivery is a multifactorial issue and well-designed liposomal systems might lead to optimized gene transfection particularly in vivo. Liposomal gene delivery systems face different barriers from their site of application to their target, which is inside the cells. These barriers include presystemic obstacles (epithelial barriers), systemic barriers in blood circulation and cellular barriers. Epithelial barriers differ depending on the route of administration. Systemic barriers include enzymatic degradation, binding and opsonisation. Both of these barriers can act as limiting hurdles that genetic material and their vector should overcome before reaching the cells. Finally liposomes should overcome cellular barriers that include cell entrance, endosomal escape and nuclear uptake. These barriers and their impact on liposomal gene delivery will be discussed in this review.

  20. Intracochlear Drug Delivery Systems

    PubMed Central

    Borenstein, Jeffrey T.

    2011-01-01

    Introduction Advances in molecular biology and in the basic understanding of the mechanisms associated with sensorineural hearing loss and other diseases of the inner ear, are paving the way towards new approaches for treatments for millions of patients. However, the cochlea is a particularly challenging target for drug therapy, and new technologies will be required to provide safe and efficacious delivery of these compounds. Emerging delivery systems based on microfluidic technologies are showing promise as a means for direct intracochlear delivery. Ultimately, these systems may serve as a means for extended delivery of regenerative compounds to restore hearing in patients suffering from a host of auditory diseases. Areas covered in this review Recent progress in the development of drug delivery systems capable of direct intracochlear delivery is reviewed, including passive systems such as osmotic pumps, active microfluidic devices, and systems combined with currently available devices such as cochlear implants. The aim of this article is to provide a concise review of intracochlear drug delivery systems currently under development, and ultimately capable of being combined with emerging therapeutic compounds for the treatment of inner ear diseases. Expert Opinion Safe and efficacious treatment of auditory diseases will require the development of microscale delivery devices, capable of extended operation and direct application to the inner ear. These advances will require miniaturization and integration of multiple functions, including drug storage, delivery, power management and sensing, ultimately enabling closed-loop control and timed-sequence delivery devices for treatment of these diseases. PMID:21615213

  1. Superparamagnetic Iron Oxide Nanoparticle-Based Delivery Systems for Biotherapeutics

    PubMed Central

    Mok, Hyejung; Zhang, Miqin

    2014-01-01

    Introduction Superparamagnetic iron oxide nanoparticle (SPION)-based carrier systems have many advantages over other nanoparticle-based systems. They are biocompatible, biodegradable, facilely tunable, and superparamagnetic and thus controllable by an external magnetic field. These attributes enable their broad biomedical applications. In particular, magnetically-driven carriers are drawing considerable interest as an emerging therapeutic delivery system because of their superior delivery efficiency. Area covered This article reviews the recent advances in use of SPION-based carrier systems to improve the delivery efficiency and target specificity of biotherapeutics. We examine various formulations of SPION-based delivery systems, including SPION micelles, clusters, hydrogels, liposomes, and micro/nanospheres, as well as their specific applications in delivery of biotherapeutics. Expert opinion Recently, biotherapeutics including therapeutic cells, proteins and genes have been studied as alternative treatments to various diseases. Despite the advantages of high target specificity and low adverse effects, clinical translation of biotherapeutics has been hindered by the poor stability and low delivery efficiency compared to chemical drugs. Accordingly, biotherapeutic delivery systems that can overcome these limitations are actively pursued. SPION-based materials can be ideal candidates for developing such delivery systems because of their excellent biocompatibility and superparamagnetism that enables long-term accumulation/retention at target sites by utilization of a suitable magnet. In addition, synthesis technologies for production of finely-tuned, homogeneous SPIONs have been well developed, which may promise their rapid clinical translation. PMID:23199200

  2. Approaches to Neural Tissue Engineering Using Scaffolds for Drug Delivery

    PubMed Central

    Willerth, Stephanie M.; Sakiyama-Elbert, Shelly E.

    2007-01-01

    This review seeks to give an overview of the current approaches to drug delivery from scaffolds for neural tissue engineering applications. The challenges presented by attempting to replicate the three types of nervous tissue (brain, spinal cord, and peripheral nerve) are summarized. Potential scaffold materials (both synthetic and natural) and target drugs are discussed with the benefits and drawbacks given. Finally, common methods of drug delivery, including degradable/diffusion-based delivery systems, affinity-based delivery systems, immobilized drug delivery systems, and electrically controlled drug delivery systems, are examined and critiqued. Based on the current body of work, suggestions for future directions of research in the field of neural tissue engineering are presented. PMID:17482308

  3. Assessment of Alternative Student and Delivery Systems: Assessment of the Current Delivery System. Supplement I to the Final Report.

    ERIC Educational Resources Information Center

    Advanced Technology, Inc., Reston, VA.

    The effects of the current student financial aid delivery system on five major participant groups are examined: federal government, states/guarantee agencies, postsecondary institutions, lenders and secondary markets, and applicants and families. Attention is directed to effects of the current system, including: administrative costs, fund…

  4. Intrathecal Drug Delivery and Spinal Cord Stimulation for the Treatment of Cancer Pain.

    PubMed

    Xing, Fangfang; Yong, R Jason; Kaye, Alan David; Urman, Richard D

    2018-02-05

    The purpose of the present investigation is to summarize the body and quality of evidence including the most recent studies in support of intrathecal drug delivery systems and spinal cord stimulation for the treatment of cancer-related pain. In the past 3 years, a number of prospective studies have been published supporting intrathecal drug delivery systems for cancer pain. Additional investigation with adjuvants to morphine-based analgesia including dexmedetomidine and ziconotide support drug-induced benefits of patient-controlled intrathecal analgesia. A study has also been recently published regarding cost-savings for intrathecal drug delivery system compared to pharmacologic management, but an analysis in the Ontario, Canada healthcare system projects additional financial costs. Finally, the Polyanalgesic Consensus Committee has updated its recommendations regarding clinical guidelines for intrathecal drug delivery systems to include new information on dosing, trialing, safety, and systemic opioid reduction. There is still a paucity of clinical evidence for spinal cord stimulation in the treatment of cancer pain. There are new intrathecal drugs under investigation including various conopeptides and AYX1. Large, prospective, modern, randomized controlled studies are still needed to support the use of both intrathecal drug delivery systems as well as spinal cord stimulation for cancer pain populations. There are multiple prospective and small randomized controlled studies that highlight a potential promising future for these interventional modalities. Related to the challenge and urgency of cancer pain, the pain practitioner community is moving toward a multimodal approach that includes discussions regarding the role of intrathecal therapies and spinal cord stimulation to the individualized treatment of patients.

  5. The role of intracochlear drug delivery devices in the management of inner ear disease.

    PubMed

    Ayoob, Andrew M; Borenstein, Jeffrey T

    2015-03-01

    Diseases of the inner ear include those of the auditory and vestibular systems, and frequently result in disabling hearing loss or vertigo. Despite a rapidly expanding pipeline of potential cochlear therapeutics, the inner ear remains a challenging organ for targeted drug delivery, and new technologies are required to deliver these therapies in a safe and efficacious manner. In addition to traditional approaches for direct inner ear drug delivery, novel microfluidics-based systems are under development, promising improved control over pharmacokinetics over longer periods of delivery, ultimately with application towards hair cell regeneration in humans. Advances in the development of intracochlear drug delivery systems are reviewed, including passive systems, active microfluidic technologies and cochlear prosthesis-mediated delivery. This article provides a description of novel delivery systems and their potential future clinical applications in treating inner ear disease. Recent progresses in microfluidics and miniaturization technologies are enabling the development of wearable and ultimately implantable drug delivery microsystems. Progress in this field is being spurred by the convergence of advances in molecular biology, microfluidic flow control systems and models for drug transport in the inner ear. These advances will herald a new generation of devices, with near-term applications in preclinical models, and ultimately with human clinical use for a range of diseases of the inner ear.

  6. Advancements in ocular drug delivery.

    PubMed

    Weiner, Alan L; Gilger, Brian C

    2010-11-01

    This review covers both noninvasive and invasive ophthalmic drug delivery systems that can have application to therapy of veterinary ophthalmic diseases. Noninvasive approaches include gel technologies, permeation enhancement via pro-drug development, solubilization agents and nanoparticle technologies, iontophoresis, microneedles, drug-eluting contact lenses and eye misters, and microdroplets. More invasive systems include both eroding implants and noneroding technologies that encompass diffusion based systems, active pumps, intraocular lenses, suprachoroidal drug delivery, and episcleral reservoirs. In addition to addressing the physiologic challenges of achieving the necessary duration of delivery, tissue targeting and patient compliance, the commercial development factors of biocompatibility, sterilization, manufacturability and long-term stability will be discussed. © 2010 American College of Veterinary Ophthalmologists.

  7. Development of the Choctaw Health Delivery System.

    ERIC Educational Resources Information Center

    Nguyen, Binh N.

    The Choctaw Tribe is the first and only tribe to develop a health delivery system to take over an existing Indian Health Service inpatient facility. The takeover was accomplished in January 1984 under the Indian Self-Determination Act through a contract with the Indian Health Service. The Choctaw Health Delivery System includes a 35-bed general…

  8. Nanomedicines based drug delivery systems for anti-cancer targeting and treatment.

    PubMed

    Jain, Vikas; Jain, Shikha; Mahajan, S C

    2015-01-01

    Cancer is defined as an uncontrolled growth of abnormal cells. Current treatment strategies for cancer include combination of radiation, chemotherapy and surgery. The long-term use of conventional drug delivery systems for cancer chemotherapy leads to fatal damage of normal proliferate cells and this is particularly used for the management of solid tumors, where utmost tumor cells are not invaded quickly. A targeted drug delivery system (TDDS) is a system, which releases the drug at a preselected biosite in a controlled manner. Nanotechnology based delivery systems are making a significant impact on cancer treatment and the polymers play key role in the development of nanopraticlulate carriers for cancer therapy. Some important technological advantages of nanotherapeutic drug delivery systems (NDDS) include prolonged half-life, improved bio-distribution, increased circulation time of the drug, controlled and sustained release of the drug, versatility of route of administration, increased intercellular concentration of drug and many more. This review covers the current research on polymer based anticancer agents, the rationale for development of these polymer therapeutical systems and discusses the benefits and challenges of cancer nanomedicines including polymer-drug conjugates, micelles, dendrimers, immunoconjugates, liposomes, nanoparticles.

  9. Micro injector sample delivery system for charged molecules

    DOEpatents

    Davidson, James C.; Balch, Joseph W.

    1999-11-09

    A micro injector sample delivery system for charged molecules. The injector is used for collecting and delivering controlled amounts of charged molecule samples for subsequent analysis. The injector delivery system can be scaled to large numbers (>96) for sample delivery to massively parallel high throughput analysis systems. The essence of the injector system is an electric field controllable loading tip including a section of porous material. By applying the appropriate polarity bias potential to the injector tip, charged molecules will migrate into porous material, and by reversing the polarity bias potential the molecules are ejected or forced away from the tip. The invention has application for uptake of charged biological molecules (e.g. proteins, nucleic acids, polymers, etc.) for delivery to analytical systems, and can be used in automated sample delivery systems.

  10. Stimuli-Responsive Polymeric Systems for Controlled Protein and Peptide Delivery: Future Implications for Ocular Delivery.

    PubMed

    Mahlumba, Pakama; Choonara, Yahya E; Kumar, Pradeep; du Toit, Lisa C; Pillay, Viness

    2016-07-30

    Therapeutic proteins and peptides have become notable in the drug delivery arena for their compatibility with the human body as well as their high potency. However, their biocompatibility and high potency does not negate the existence of challenges resulting from physicochemical properties of proteins and peptides, including large size, short half-life, capability to provoke immune responses and susceptibility to degradation. Various delivery routes and delivery systems have been utilized to improve bioavailability, patient acceptability and reduce biodegradation. The ocular route remains of great interest, particularly for responsive delivery of macromolecules due to the anatomy and physiology of the eye that makes it a sensitive and complex environment. Research in this field is slowly gaining attention as this could be the breakthrough in ocular drug delivery of macromolecules. This work reviews stimuli-responsive polymeric delivery systems, their use in the delivery of therapeutic proteins and peptides as well as examples of proteins and peptides used in the treatment of ocular disorders. Stimuli reviewed include pH, temperature, enzymes, light, ultrasound and magnetic field. In addition, it discusses the current progress in responsive ocular drug delivery. Furthermore, it explores future prospects in the use of stimuli-responsive polymers for ocular delivery of proteins and peptides. Stimuli-responsive polymers offer great potential in improving the delivery of ocular therapeutics, therefore there is a need to consider them in order to guarantee a local, sustained and ideal delivery of ocular proteins and peptides, evading tissue invasion and systemic side-effects.

  11. Exosomes as nanocarriers for siRNA delivery: paradigms and challenges.

    PubMed

    Shahabipour, Fahimeh; Banach, Maciej; Sahebkar, Amirhossein

    2016-12-01

    Exosomes are nano-sized vesicles that facilitate intercellular communications through carrying genetic materials and functional biomolecules. Owing to their unique size and structure, exosomes have emerged as a useful tool to overcome the limitations of siRNA delivery. The use of exosomes as siRNA delivery vehicles lacks certain disadvantages of the existing foreign delivery systems such as viruses, polycationic polymers and liposomes, and introduces several advantages including inherent capacity to pass through biological barriers and escape from phagocytosis by the reticuloendothelial system, as well as being biocompatible, non-toxic, and immunologically inert. Different strategies have been employed to harness exosome-based delivery systems, including surface modification with targeting ligands, and using exosome-display technology, virus-modified exosomes, and exosome-mimetic vesicles. The present review provides a capsule summary of the recent advances and current challenges in the field of exosome-mediated siRNA delivery.

  12. Protein-Based Nanomedicine Platforms for Drug Delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma Ham, Aihui; Tang, Zhiwen; Wu, Hong

    2009-08-03

    Drug delivery systems have been developed for many years, however some limitations still hurdle the pace of going to clinical phase, for example, poor biodistribution, drug molecule cytotoxicity, tissue damage, quick clearance from the circulation system, solubility and stability of drug molecules. To overcome the limitations of drug delivery, biomaterials have to be developed and applied to drug delivery to protect the drug molecules and to enhance the drug’s efficacy. Protein-based nanomedicine platforms for drug delivery are platforms comprised of naturally self-assembled protein subunits of the same protein or a combination of proteins making up a complete system. They aremore » ideal for drug delivery platforms due to their biocompatibility and biodegradability coupled with low toxicity. A variety of proteins have been used and characterized for drug delivery systems including the ferritin/apoferritin protein cage, plant derived viral capsids, the small Heat shock protein (sHsp) cage, albumin, soy and whey protein, collagen, and gelatin. There are many different types and shapes that have been prepared to deliver drug molecules using protein-based platforms including the various protein cages, microspheres, nanoparticles, hydrogels, films, minirods and minipellets. There are over 30 therapeutic compounds that have been investigated with protein-based drug delivery platforms for the potential treatment of various cancers, infectious diseases, chronic diseases, autoimmune diseases. In protein-based drug delivery platforms, protein cage is the most newly developed biomaterials for drug delivery and therapeutic applications. Their uniform sizes, multifunctions, and biodegradability push them to the frontier for drug delivery. In this review, the recent strategic development of drug delivery has been discussed with a special emphasis upon the polymer based, especially protein-based nanomedicine platforms for drug delivery. The advantages and disadvantages are also discussed for each type of protein based drug delivery system.« less

  13. Quality assurance of intensity-modulated radiation therapy.

    PubMed

    Palta, Jatinder R; Liu, Chihray; Li, Jonathan G

    2008-01-01

    The current paradigm for the quality assurance (QA) program for intensity-modulated radiation therapy (IMRT) includes QA of the treatment planning system, QA of the delivery system, and patient-specific QA. Although the IMRT treatment planning and delivery system is the same as for conventional three-dimensional conformal radiation therapy, it has more parameters to coordinate and verify. Because of complex beam intensity modulation, each IMRT field often includes many small irregular off-axis fields, resulting in isodose distributions for each IMRT plan that are more conformal than those from conventional treatment plans. Therefore, these features impose a new and more stringent set of QA requirements for IMRT planning and delivery. The generic test procedures to validate dose calculation and delivery accuracy for both treatment planning and IMRT delivery have to be customized for each type of IMRT planning and delivery strategy. The rationale for such an approach is that the overall accuracy of IMRT delivery is incumbent on the piecewise uncertainties in both the planning and delivery processes. The end user must have well-defined evaluation criteria for each element of the planning and delivery process. Such information can potentially be used to determine a priori the accuracy of IMRT planning and delivery.

  14. Solid Lipid Nanoparticles as Efficient Drug and Gene Delivery Systems: Recent Breakthroughs

    PubMed Central

    Ezzati Nazhad Dolatabadi, Jafar; Valizadeh, Hadi; Hamishehkar, Hamed

    2015-01-01

    In recent years, nanomaterials have been widely applied as advanced drug and gene delivery nanosystems. Among them, solid lipid nanoparticles (SLNs) have attracted great attention as colloidal drug delivery systems for incorporating hydrophilic or lipophilic drugs and various macromolecules as well as proteins and nucleic acids. Therefore, SLNs offer great promise for controlled and site specific drug and gene delivery. This article includes general information about SLN structures and properties, production procedures, characterization. In addition, recent progress on development of drug and gene delivery systems using SLNs was reviewed. PMID:26236652

  15. [Integrated delivery systems in California--success and failure determining factors for the first 10 years and impetus for Germany].

    PubMed

    Janus, K; Amelung, V E

    2004-10-01

    Since the coming into effect of the Health Care Modernization Act (Gesundheitsmodernisierungsgesetz) the conditions for integrated health care delivery are favourable in Germany. However, comprehensive approaches are a long time in coming. In contrast, integrated health care delivery as an integral part of the spreading of managed care entered a further stage of development, which enables health care decision makers to draw conclusions regarding the further development of integrated health care delivery in Germany. Based on case studies integrated delivery systems in the San Francisco Bay Area have been analyzed with the objective to evaluate pitfalls and successful strategies for integrated health care delivery. The major pitfalls refer to an insufficient local focus, a lack of actual integration and the application of per capita reimbursement (which is a key subject on the political agenda in Germany as well) within integrated delivery systems. On the contrary, successful strategies include achieving a dynamic tension between centralized and decentralized coordination, internal and external relationship management, well organised human resource management including a well-defined corporate policy and a comprehensive implementation of information technology. Based on US experiences with integrated delivery systems implications for the design of integrated health care delivery in Germany are discussed.

  16. Electronic Document Supply Systems.

    ERIC Educational Resources Information Center

    Cawkell, A. E.

    1991-01-01

    Describes electronic document delivery systems used by libraries and document image processing systems used for business purposes. Topics discussed include technical specifications; analogue read-only laser videodiscs; compact discs and CD-ROM; WORM; facsimile; ADONIS (Article Delivery over Network Information System); DOCDEL; and systems at the…

  17. Nanocarriers in ocular drug delivery: an update review.

    PubMed

    Wadhwa, Sheetu; Paliwal, Rishi; Paliwal, Shivani Rai; Vyas, S P

    2009-01-01

    Controlled drug delivery to eye is one of the most challenging fields of pharmaceutical research. Low drug-contact time and poor ocular bioavailability due to drainage of solution, tear turnover and its dilution or lacrimation are the problems associated with conventional systems. In addition, anatomical barriers and physiological conditions of eye are also important parameters which control designing of drug delivery systems. Nanosized carriers like micro/nano-suspensions, liposome, niosome, dendrimer, nanoparticles, ocular inserts, implants, hydrogels and prodrug approaches have been developed for this purpose. These novel systems offer manifold advantages over conventional systems as they increase the efficiency of drug delivery by improving the release profile and also reduce drug toxicity. Conventional delivery systems get diluted with tear, washed away through the lacrimal gland and usually require administering at regular time intervals whereas nanocarriers release drug at constant rate for a prolonged period of time and thus enhance its absorption and site specific delivery. This review presents an overview of the various aspects of the ocular drug delivery, with special emphasis on nanocarrier based strategies, including structure of eye, its barriers, delivery routes and the challenges/limitations associated with development of novel nanocarriers. The recent progresses in therapy of ocular disease like gene therapy have also been included so that future options should also be considered from the delivery point of view. Recent progress in the delivery of proteins and peptides via ocular route has also been incorporated for reader benefit.

  18. Integrating mitosis, toxicity, and transgene expression in a telecommunications packet-switched network model of lipoplex-mediated gene delivery.

    PubMed

    Martin, Timothy M; Wysocki, Beata J; Beyersdorf, Jared P; Wysocki, Tadeusz A; Pannier, Angela K

    2014-08-01

    Gene delivery systems transport exogenous genetic information to cells or biological systems with the potential to directly alter endogenous gene expression and behavior with applications in functional genomics, tissue engineering, medical devices, and gene therapy. Nonviral systems offer advantages over viral systems because of their low immunogenicity, inexpensive synthesis, and easy modification but suffer from lower transfection levels. The representation of gene transfer using models offers perspective and interpretation of complex cellular mechanisms,including nonviral gene delivery where exact mechanisms are unknown. Here, we introduce a novel telecommunications model of the nonviral gene delivery process in which the delivery of the gene to a cell is synonymous with delivery of a packet of information to a destination computer within a packet-switched computer network. Such a model uses nodes and layers to simplify the complexity of modeling the transfection process and to overcome several challenges of existing models. These challenges include a limited scope and limited time frame, which often does not incorporate biological effects known to affect transfection. The telecommunication model was constructed in MATLAB to model lipoplex delivery of the gene encoding the green fluorescent protein to HeLa cells. Mitosis and toxicity events were included in the model resulting in simulation outputs of nuclear internalization and transfection efficiency that correlated with experimental data. A priori predictions based on model sensitivity analysis suggest that increasing endosomal escape and decreasing lysosomal degradation, protein degradation, and GFP-induced toxicity can improve transfection efficiency by three-fold. Application of the telecommunications model to nonviral gene delivery offers insight into the development of new gene delivery systems with therapeutically relevant transfection levels.

  19. St. Louis Regional Library Network Manuals: Delivery System Manual, INFO-PASS Manual, Interlibrary Loan Protocol, Procedures and Policies Manual.

    ERIC Educational Resources Information Center

    Saint Louis Regional Library Network, MO.

    Included in this set of manuals are: (1) guidelines for document delivery to member libraries within the St. Louis Regional Library Network (SLRLN) in which eligible materials are described, addressing and packing are outlined, routing and deliveries are discussed, and a list of delivery system participants is provided; (2) a descriptive guide to…

  20. Targeted delivery of growth factors in ischemic stroke animal models.

    PubMed

    Rhim, Taiyoun; Lee, Minhyung

    2016-01-01

    Ischemic stroke is caused by reduced blood supply and leads to loss of brain function. The reduced oxygen and nutrient supply stimulates various physiological responses, including induction of growth factors. Growth factors prevent neuronal cell death, promote neovascularization, and induce cell growth. However, the concentration of growth factors is not sufficient to recover brain function after the ischemic damage, suggesting that delivery of growth factors into the ischemic brain may be a useful treatment for ischemic stroke. In this review, various approaches for the delivery of growth factors to ischemic brain tissue are discussed, including local and targeting delivery systems. To develop growth factor therapy for ischemic stroke, important considerations should be taken into account. First, growth factors may have possible side effects. Thus, concentration of growth factors should be restricted to the ischemic tissues by local administration or targeted delivery. Second, the duration of growth factor therapy should be optimized. Growth factor proteins may be degraded too fast to have a high enough therapeutic effect. Therefore, delivery systems for controlled release or gene delivery may be useful. Third, the delivery systems to the brain should be optimized according to the delivery route.

  1. Target isolation system, high power laser and laser peening method and system using same

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd A.; Harris, Fritz

    2007-11-06

    A system for applying a laser beam to work pieces, includes a laser system producing a high power output beam. Target delivery optics are arranged to deliver the output beam to a target work piece. A relay telescope having a telescope focal point is placed in the beam path between the laser system and the target delivery optics. The relay telescope relays an image between an image location near the output of the laser system and an image location near the target delivery optics. A baffle is placed at the telescope focal point between the target delivery optics and the laser system to block reflections from the target in the target delivery optics from returning to the laser system and causing damage.

  2. Application of Emerging Pharmaceutical Technologies for Therapeutic Challenges of Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Putcha, Lakshmi

    2011-01-01

    An important requirement of therapeutics for extended duration exploration missions beyond low Earth orbit will be the development of pharmaceutical technologies suitable for sustained and preventive health care in remote and adverse environmental conditions. Availability of sustained, stable and targeted delivery pharmaceuticals for preventive health of major organ systems including gastrointestinal, hepato-renal, musculo-skeletal and immune function are essential to offset adverse effects of space environment beyond low Earth orbit. Specifically, medical needs may include multi-drug combinations for hormone replacement, radiation protection, immune enhancement and organ function restoration. Additionally, extended stability of pharmaceuticals dispensed in space must be also considered in future drug development. Emerging technologies that can deliver stable and multi-therapy pharmaceutical preparations and delivery systems include nanotechnology based drug delivery platforms, targeted-delivery systems in non-oral and non-parenteral formulation matrices. Synthetic nanomaterials designed with molecular precision offer defined structures, electronics, and chemistries to be efficient drug carriers with clear advantages over conventional materials of drug delivery matricies. Nano-carrier materials like the bottle brush polymers may be suitable for systemic delivery of drug cocktails while Superparamagnetic Iron Oxide Nanoparticles or (SPIONS) have great potential to serve as carriers for targeted drug delivery to a specific site. These and other emerging concepts of drug delivery and extended shelf-life technologies will be reviewed in light of their application to address health-care challenges of exploration missions. Innovations in alternate treatments for sustained immune enhancement and infection control will be also discussed.

  3. Elastin-Like Recombinamers As Smart Drug Delivery Systems.

    PubMed

    Arias, F Javier; Santos, Mercedes; Ibanez-Fonseca, Arturo; Pina, Maria Jesus; Serrano, Sofía

    2018-02-19

    Drug delivery systems that are able to control the release of bioactive molecules and designed to carry drugs to target sites are of particular interest for tissue therapy. Moreover, systems comprising materials that can respond to environmental stimuli and promote self-assembly and higher order supramolecular organization are especially useful in the biomedical field. Objetive: This review focuses on biomaterials suitable for this purpose and that include elastin-like recombinamers (ELRs), a class of proteinaceous polymers bioinspired by natural elastin, designed using recombinant technologies. The self-assembly and thermoresponsive behaviour of these systems, along with their biodegradability, biocompatibility and well-defined composition as a result of their tailormade design, make them particularly attractive for controlled drug delivery. ELR-based delivery systems that allow targeted delivery are reviewed, especially ELR-drug recombinant fusion constructs, ELR-drug systems chemically bioconjugated in their monomeric and soluble forms, and drug encapsulation by nanoparticle-forming ELRs. Subsequently, the review focuses on those drug carriers in which smart release is triggered by pH or temperature with a particular focus on cancer treatments. Systems for controlled drug release based on depots and hydrogels that act as both a support and reservoir in which drugs can be stored will be described, and their applications in drug delivery discussed. Finally, smart drug-delivery systems not based on ELRs, including those comprising proteins, synthetic polymers and non-polymeric systems, will also be briefly discussed. Several different constructions based on ELRs are potential candidates for controlled drug delivery to be applied in advanced biomedical treatments. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Electronic Document Delivery: New Options for Libraries.

    ERIC Educational Resources Information Center

    Leach, Ronald G.; Tribble, Judith E.

    1993-01-01

    Examines commercial electronic document delivery services that are available to academic libraries. Highlights include collection development issues; criteria for selection and evaluation; remote access systems, including CARL UnCover 2, Faxon Finder and Faxon Xpress, ContentsFirst and ArticleFirst, and CitaDel; and on-site access systems,…

  5. Gastroretentive drug delivery systems for the treatment of Helicobacter pylori

    PubMed Central

    Zhao, Shan; Lv, Yan; Zhang, Jian-Bin; Wang, Bing; Lv, Guo-Jun; Ma, Xiao-Jun

    2014-01-01

    Helicobacter pylori (H. pylori) is one of the most common pathogenic bacterial infections and is found in the stomachs of approximately half of the world’s population. It is the primary known cause of gastritis, gastroduodenal ulcer disease and gastric cancer. However, combined drug therapy as the general treatment in the clinic, the rise of antibiotic-resistant bacteria, adverse reactions and poor patient compliance are major obstacles to the eradication of H. pylori. Oral site-specific drug delivery systems that could increase the longevity of the treatment agent at the target site might improve the therapeutic effect and avoid side effects. Gastroretentive drug delivery systems potentially prolong the gastric retention time and controlled/sustained release of a drug, thereby increasing the concentration of the drug at the application site, potentially improving its bioavailability and reducing the necessary dosage. Recommended gastroretentive drug delivery systems for enhancing local drug delivery include floating systems, bioadhesive systems and expandable systems. In this review, we summarize the important physiological parameters of the gastrointestinal tract that affect the gastric residence time. We then focus on various aspects useful in the development of gastroretentive drug delivery systems, including current trends and the progress of novel forms, especially with respect to their application for the treatment of H. pylori infections. PMID:25071326

  6. Osmotic Drug Delivery System as a Part of Modified Release Dosage Form

    PubMed Central

    Keraliya, Rajesh A.; Patel, Chirag; Patel, Pranav; Keraliya, Vipul; Soni, Tejal G.; Patel, Rajnikant C.; Patel, M. M.

    2012-01-01

    Conventional drug delivery systems are known to provide an immediate release of drug, in which one can not control the release of the drug and can not maintain effective concentration at the target site for longer time. Controlled drug delivery systems offer spatial control over the drug release. Osmotic pumps are most promising systems for controlled drug delivery. These systems are used for both oral administration and implantation. Osmotic pumps consist of an inner core containing drug and osmogens, coated with a semipermeable membrane. As the core absorbs water, it expands in volume, which pushes the drug solution out through the delivery ports. Osmotic pumps release drug at a rate that is independent of the pH and hydrodynamics of the dissolution medium. The historical development of osmotic systems includes development of the Rose-Nelson pump, the Higuchi-Leeper pumps, the Alzet and Osmet systems, the elementary osmotic pump, and the push-pull system. Recent advances include development of the controlled porosity osmotic pump, and systems based on asymmetric membranes. This paper highlights the principle of osmosis, materials used for fabrication of pumps, types of pumps, advantages, disadvantages, and marketed products of this system. PMID:22852100

  7. Ocular Drug Delivery Barriers-Role of Nanocarriers in the Treatment of Anterior Segment Ocular Diseases.

    PubMed

    Bachu, Rinda Devi; Chowdhury, Pallabitha; Al-Saedi, Zahraa H F; Karla, Pradeep K; Boddu, Sai H S

    2018-02-27

    Ocular drug delivery is challenging due to the presence of anatomical and physiological barriers. These barriers can affect drug entry into the eye following multiple routes of administration (e.g., topical, systemic, and injectable). Topical administration in the form of eye drops is preferred for treating anterior segment diseases, as it is convenient and provides local delivery of drugs. Major concerns with topical delivery include poor drug absorption and low bioavailability. To improve the bioavailability of topically administered drugs, novel drug delivery systems are being investigated. Nanocarrier delivery systems demonstrate enhanced drug permeation and prolonged drug release. This review provides an overview of ocular barriers to anterior segment delivery, along with ways to overcome these barriers using nanocarrier systems. The disposition of nanocarriers following topical administration, their safety, toxicity and clinical trials involving nanocarrier systems are also discussed.

  8. Ocular Drug Delivery Barriers—Role of Nanocarriers in the Treatment of Anterior Segment Ocular Diseases

    PubMed Central

    Bachu, Rinda Devi; Chowdhury, Pallabitha; Al-Saedi, Zahraa H. F.; Karla, Pradeep K.; Boddu, Sai H. S.

    2018-01-01

    Ocular drug delivery is challenging due to the presence of anatomical and physiological barriers. These barriers can affect drug entry into the eye following multiple routes of administration (e.g., topical, systemic, and injectable). Topical administration in the form of eye drops is preferred for treating anterior segment diseases, as it is convenient and provides local delivery of drugs. Major concerns with topical delivery include poor drug absorption and low bioavailability. To improve the bioavailability of topically administered drugs, novel drug delivery systems are being investigated. Nanocarrier delivery systems demonstrate enhanced drug permeation and prolonged drug release. This review provides an overview of ocular barriers to anterior segment delivery, along with ways to overcome these barriers using nanocarrier systems. The disposition of nanocarriers following topical administration, their safety, toxicity and clinical trials involving nanocarrier systems are also discussed. PMID:29495528

  9. Application of Chitosan and its Derivatives in Nanocarrier Based Pulmonary Drug Delivery Systems.

    PubMed

    Dua, Kamal; Bebawy, Mary; Awasthi, Rajendra; Tekade, Rakesh K; Tekade, Muktika; Gupta, Gaurav; De Jesus Andreoli Pinto, Terezinha; Hansbro, Philip M

    2017-01-01

    The respiratory tract as a non-invasive route of drug administration is gaining increasing attention in the present time on achieving both local and the systemic therapeutic effects. Success in achieving pulmonary delivery, requires overcoming barriers including mucociliary clearance and uptake by macrophages. An effective drug delivery system delivers the therapeutically active moieties at the right time and rate to target sites. A major limitation associated with most of the currently available conventional and controlled release drug delivery devices is that not all the drug candidates are well absorbed uniformly locally or systemically. We searched and reviewed the literature focusing on chitosan and chitosan derivative based nanocarrier systems used in pulmonary drug delivery. We focused on the applications of chitosan in the development of nanoparticles for this purpose. Chitosan, a natural linear bio-polyaminosaccharide is central in the development of novel drug delivery systems (NDDS) including nanoparticles for use in the treatment of various respiratory diseases. It achieves this through its unique properties of biodegradability, biocompatibility, mucoadhesivity and its ability to enhance macromolecule permeation across membranes. It also achieves sustained and targeted effects, primary requirements for an effective pulmonary drug delivery system. This review highlights the applications and importance of chitosan with special emphasis on nanotechnology, employed in the management of respiratory diseases such as asthma, Chronic Obstructive Pulmonary Disease (COPD), lung cancer and pulmonary fibrosis. This review will be of interest to both the biological and formulation scientists as it provides a summary on the utility of chitosan in pulmonary drug delivery systems. At present, there are no patented chitosan based controlled release products available for pulmonary drug delivery and so this area has enormous potential in the field of respiratory science. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Convection-enhanced delivery to the central nervous system.

    PubMed

    Lonser, Russell R; Sarntinoranont, Malisa; Morrison, Paul F; Oldfield, Edward H

    2015-03-01

    Convection-enhanced delivery (CED) is a bulk flow-driven process. Its properties permit direct, homogeneous, targeted perfusion of CNS regions with putative therapeutics while bypassing the blood-brain barrier. Development of surrogate imaging tracers that are co-infused during drug delivery now permit accurate, noninvasive real-time tracking of convective infusate flow in nervous system tissues. The potential advantages of CED in the CNS over other currently available drug delivery techniques, including systemic delivery, intrathecal and/or intraventricular distribution, and polymer implantation, have led to its application in research studies and clinical trials. The authors review the biophysical principles of convective flow and the technology, properties, and clinical applications of convective delivery in the CNS.

  11. Applications of ethylene vinyl acetate copolymers (EVA) in drug delivery systems.

    PubMed

    Schneider, Christian; Langer, Robert; Loveday, Donald; Hair, Dirk

    2017-09-28

    The potential for use of polymers in controlled drug delivery systems has been long recognized. Since their appearance in the literature, a wide range of degradable and non-degradable polymers have been demonstrated in drug delivery devices. The significance and features of ethylene-vinyl acetate (EVA) copolymers in initial research and development led to commercial drug delivery systems. This review examines the breadth of EVA use in drug delivery, and will aid the researcher in locating key references and experimental results, as well as understanding the features of EVA as a highly versatile, biocompatible polymer for drug delivery devices. Topics will include. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Gene delivery with viral vectors for cerebrovascular diseases

    PubMed Central

    Gan, Yu; Jing, Zheng; Stetler, R. Anne; Cao, Guodong

    2017-01-01

    Recent achievements in the understanding of molecular events involved in the pathogenesis of central nervous system (CNS) injury have made gene transfer a promising approach for various neurological disorders, including cerebrovascular diseases. However, special obstacles, including the post-mitotic nature of neurons and the blood-brain barrier (BBB), constitute key challenges for gene delivery to the CNS. Despite the various limitations in current gene delivery systems, a spectrum of viral vectors has been successfully used to deliver genes to the CNS. Furthermore, recent advancements in vector engineering have improved the safety and delivery of viral vectors. Numerous viral vector-based clinical trials for neurological disorders have been initiated. This review will summarize the current implementation of viral gene delivery in the context of cerebrovascular diseases including ischemic stroke, hemorrhagic stroke and subarachnoid hemorrhage (SAH). In particular, we will discuss the potentially feasible ways in which viral vectors can be manipulated and exploited for use in neural delivery and therapy. PMID:23276981

  13. Radiation delivery system and method

    DOEpatents

    Sorensen, Scott A.; Robison, Thomas W.; Taylor, Craig M. V.

    2002-01-01

    A radiation delivery system and method are described. The system includes a treatment configuration such as a stent, balloon catheter, wire, ribbon, or the like, a portion of which is covered with a gold layer. Chemisorbed to the gold layer is a radiation-emitting self-assembled monolayer or a radiation-emitting polymer. The radiation delivery system is compatible with medical catheter-based technologies to provide a therapeutic dose of radiation to a lesion following an angioplasty procedure.

  14. Renewable energy delivery systems and methods

    DOEpatents

    Walker, Howard Andrew

    2013-12-10

    A system, method and/or apparatus for the delivery of energy at a site, at least a portion of the energy being delivered by at least one or more of a plurality of renewable energy technologies, the system and method including calculating the load required by the site for the period; calculating the amount of renewable energy for the period, including obtaining a capacity and a percentage of the period for the renewable energy to be delivered; comparing the total load to the renewable energy available; and, implementing one or both of additional and alternative renewable energy sources for delivery of energy to the site.

  15. Poly(lactic-co-glycolic) acid drug delivery systems through transdermal pathway: an overview.

    PubMed

    Naves, Lucas; Dhand, Chetna; Almeida, Luis; Rajamani, Lakshminarayanan; Ramakrishna, Seeram; Soares, Graça

    2017-05-01

    In past few decades, scientists have made tremendous advancement in the field of drug delivery systems (DDS), through transdermal pathway, as the skin represents a ready and large surface area for delivering drugs. Efforts are in progress to design efficient transdermal DDS that support sustained drug release at the targeted area for longer duration in the recommended therapeutic window without producing side-effects. Poly(lactic-co-glycolic acid) (PLGA) is one of the most promising Food and Drug Administration approved synthetic polymers in designing versatile drug delivery carriers for different drug administration routes, including transdermal drug delivery. The present review provides a brief introduction over the transdermal drug delivery and PLGA as a material in context to its role in designing drug delivery vehicles. Attempts are made to compile literatures over PLGA-based drug delivery vehicles, including microneedles, nanoparticles, and nanofibers and their role in transdermal drug delivery of different therapeutic agents. Different nanostructure evaluation techniques with their working principles are briefly explained.

  16. Adenosine-Associated Delivery Systems

    PubMed Central

    Kazemzadeh-Narbat, Mehdi; Annabi, Nasim; Tamayol, Ali; Oklu, Rahmi; Ghanem, Amyl; Khademhosseini, Ali

    2016-01-01

    Adenosine is a naturally occurring purine nucleoside in every cell. Many critical treatments such as modulating irregular heartbeat (arrhythmias), regulation of central nervous system (CNS) activity, and inhibiting seizural episodes can be carried out using adenosine. Despite the significant potential therapeutic impact of adenosine and its derivatives, the severe side effects caused by their systemic administration have significantly limited their clinical use. In addition, due to adenosine’s extremely short half-life in human blood (less than 10 s), there is an unmet need for sustained delivery systems to enhance efficacy and reduce side effects. In this paper, various adenosine delivery techniques, including encapsulation into biodegradable polymers, cell-based delivery, implantable biomaterials, and mechanical-based delivery systems, are critically reviewed and the existing challenges are highlighted. PMID:26453156

  17. Advances of blood cell-based drug delivery systems.

    PubMed

    Sun, Yanan; Su, Jing; Liu, Geyi; Chen, Jianjun; Zhang, Xiumei; Zhang, Ran; Jiang, Minhan; Qiu, Mingfeng

    2017-01-01

    Blood cells, including erythrocytes, leukocytes and platelets are used as drug carriers in a wide range of applications. They have many unique advantages such as long life-span in circulation (especially erythrocytes), target release capacities (especially platelets), and natural adhesive properties (leukocytes and platelets). These properties make blood cell based delivery systems, as well as their membrane-derived carriers, far superior to other drug delivery systems. Despite the advantages, the further development of blood cell-based delivery systems was hindered by limitations in the source, storage, and mass production. To overcome these problems, synthetic biomaterials that mimic blood cell and nanocrystallization of blood cells have been developed and may represent the future direction for blood cell membrane-based delivery systems. In this paper, we review recent progress of the rising blood cell-based drug delivery systems, and also discuss their challenges and future tendency of development. Copyright © 2016. Published by Elsevier B.V.

  18. Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape.

    PubMed

    Zylberberg, Claudia; Matosevic, Sandro

    2016-11-01

    Liposomes were the first nanoscale drug to be approved for clinical use in 1995. Since then, the technology has grown considerably, and pioneering recent work in liposome-based delivery systems has brought about remarkable developments with significant clinical implications. This includes long-circulating liposomes, stimuli-responsive liposomes, nebulized liposomes, elastic liposomes for topical, oral and transdermal delivery and covalent lipid-drug complexes for improved drug plasma membrane crossing and targeting to specific organelles. While the regulatory bodies' opinion on liposomes is well-documented, current guidance that address new delivery systems are not. This review describes, in depth, the current state-of-the-art of these new liposomal delivery systems and provides a critical overview of the current regulatory landscape surrounding commercialization efforts of higher-level complexity systems, the expected requirements and the hurdles faced by companies seeking to bring novel liposome-based systems for clinical use to market.

  19. Advanced Technology Tech Prep Partnership for Northern Kane Regional Delivery System. Final Report.

    ERIC Educational Resources Information Center

    Elgin Community Coll., IL.

    A 1-year project was undertaken to continue implementation, evaluation, and revision of a model advanced technology partnership between Elgin Community College (ECC) and the Northern Kane Regional Delivery System in Illinois. The model program, which originally included three high schools, was expanded to include five additional high schools in…

  20. Biodegradable Scaffolds for Bone Regeneration Combined with Drug-Delivery Systems in Osteomyelitis Therapy

    PubMed Central

    Dorati, Rossella; DeTrizio, Antonella; Modena, Tiziana; Conti, Bice; Benazzo, Francesco; Gastaldi, Giulia; Genta, Ida

    2017-01-01

    A great deal of research is ongoing in the area of tissue engineering (TE) for bone regeneration. A possible improvement in restoring damaged tissues involves the loading of drugs such as proteins, genes, growth factors, antibiotics, and anti-inflammatory drugs into scaffolds for tissue regeneration. This mini-review is focused on the combination of the local delivery of antibiotic agents with bone regenerative therapy for the treatment of a severe bone infection such as osteomyelitis. The review includes a brief explanation of scaffolds for bone regeneration including scaffolds characteristics and types, a focus on severe bone infections (especially osteomyelitis and its treatment), and a literature review of local antibiotic delivery by the combination of scaffolds and drug-delivery systems. Some examples related to published studies on gentamicin sulfate-loaded drug-delivery systems combined with scaffolds are discussed, and future perspectives are highlighted. PMID:29231857

  1. Levodopa delivery systems: advancements in delivery of the gold standard.

    PubMed

    Ngwuluka, Ndidi; Pillay, Viness; Du Toit, Lisa C; Ndesendo, Valence; Choonara, Yahya; Modi, Girish; Naidoo, Dinesh

    2010-02-01

    Despite the fact that Parkinson's disease (PD) was discovered almost 200 years ago, its treatment and management remain immense challenges because progressive loss of dopaminergic nigral neurons, motor complications experienced by the patients as the disease progresses and drawbacks of pharmacotherapeutic management still persist. Various therapeutic agents have been used in the management of PD, including levodopa (l-DOPA), selegiline, amantadine, bromocriptine, entacapone, pramipexole dihydrochloride and more recently istradefylline and rasagiline. Of all agents, l-DOPA although the oldest, remains the most effective. l-DOPA is easier to administer, better tolerated, less expensive and is required by almost all PD patients. However, l-DOPA's efficacy in advanced PD is significantly reduced due to metabolism, subsequent low bioavailability and irregular fluctuations in its plasma levels. Significant strides have been made to improve the delivery of l-DOPA in order to enhance its bioavailability and reduce plasma fluctuations as well as motor complications experienced by patients purportedly resulting from pulsatile stimulation of the striatal dopamine receptors. Drug delivery systems that have been instituted for the delivery of l-DOPA include immediate release formulations, liquid formulations, dispersible tablets, controlled release formulations, dual-release formulations, microspheres, infusion and transdermal delivery, among others. In this review, the l-DOPA-loaded drug delivery systems developed over the past three decades are elaborated. The ultimate aim was to assess critically the attempts made thus far directed at improving l-DOPA absorption, bioavailability and maintenance of constant plasma concentrations, including the drug delivery technologies implicated. This review highlights the fact that neuropharmaceutics is at a precipice, which is expected to spur investigators to take that leap to enable the generation of innovative delivery systems for the effective management of PD.

  2. Recent insights in the use of nanocarriers for the oral delivery of bioactive proteins and peptides.

    PubMed

    Batista, Patrícia; Castro, Pedro M; Madureira, Ana Raquel; Sarmento, Bruno; Pintado, Manuela

    2018-03-01

    Bioactive proteins and peptides have been used with either prophylactic or therapeutic purposes, presenting inherent advantages as high specificity and biocompatibility. Nanocarriers play an important role in the stabilization of proteins and peptides, offering enhanced buccal permeation and protection while crossing the gastrointestinal tract. Moreover, preparation of nanoparticles as oral delivery systems for proteins/peptides may include tailored formulation along with functionalization aiming bioavailability enhancement of carried proteins or peptides. Oral delivery systems, namely buccal delivery systems, represent an interesting alternative route to parenteric delivery systems to carry proteins and peptides, resulting in higher comfort of administration and, therefore, compliance to treatment. This paper outlines an extensive overview of the existing publications on proteins/peptides oral nanocarriers delivery systems, with special focus on buccal route. Manufacturing aspects of most commonly used nanoparticles for oral delivery (e.g. polymeric nanoparticles using synthetic or natural polymers and lipid nanoparticles) advantages and limitations and potential applications of nanoparticles as proteins/peptides delivery systems will also be thoroughly addressed. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Convection-Enhanced Delivery for the Treatment of Pediatric Neurologic Disorders

    PubMed Central

    Song, Debbie K.; Lonser, Russell R.

    2013-01-01

    Direct perfusion of specific regions of the central nervous system by convection-enhanced delivery is becoming more widely used for the delivery of compounds in the research and treatment of various neural disorders. In contrast to other currently available central nervous system delivery techniques, convection-enhanced delivery relies on bulk flow for distribution of solute. This allows for safe, targeted, reliable, and homogeneous delivery of small- and large-molecular-weight substances over clinically relevant volumes in a manner that bypasses the blood-central nervous system barrier. Recent studies have also shown that coinfused imaging surrogate tracers can be used to monitor and control the convective distribution of therapeutic agents in vivo. The unique features of convection-enhanced delivery, including the ability to monitor distribution in real-time, provide an opportunity to develop new research and treatment paradigms for pediatric patients with a variety of intrinsic central nervous system disorders. PMID:18952590

  4. Connecting drug delivery reality to smart materials design.

    PubMed

    Grainger, David W

    2013-09-15

    Inflated claims to both design and mechanistic novelty in drug delivery and imaging systems, including most nanotechnologies, are not supported by the generally poor translation of these systems to clinical efficacy. The "form begets function" design paradigm is seductive but perhaps over-simplistic in translation to pharmaceutical efficacy. Most innovations show few clinically important distinctions in their therapeutic benefits in relevant preclinical disease and delivery models, despite frequent claims to the contrary. Long-standing challenges in drug delivery issues must enlist more realistic, back-to-basics approaches to address fundamental materials properties in complex biological systems, preclinical test beds, and analytical methods to more reliably determine fundamental pharmaceutical figures of merit, including drug carrier purity and batch-batch variability, agent biodistribution, therapeutic index (safety), and efficacy. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Ocular delivery of macromolecules

    PubMed Central

    Kim, Yoo-Chun; Chiang, Bryce; Wu, Xianggen; Prausnitz, Mark R.

    2014-01-01

    Biopharmaceuticals are making increasing impact on medicine, including treatment of indications in the eye. Macromolecular drugs are typically given by physician-administered invasive delivery methods, because non--invasive ocular delivery methods, such as eye drops, and systemic delivery, have low bioavailability and/or poor ocular targeting. There is a need to improve delivery of biopharmaceuticals to enable less-invasive delivery routes, less-frequent dosing through controlled-release drug delivery and improved drug targeting within the eye to increase efficacy and reduce side effects. This review discusses the barriers to drug delivery via various ophthalmic routes of administration in the context of macromolecule delivery and discusses efforts to develop controlled-release systems for delivery of biopharmaceuticals to the eye. The growing number of macromolecular therapies in the eye needs improved drug delivery methods that increase drug efficacy, safety and patient compliance. PMID:24998941

  6. Nanobiotechnology-based drug delivery in brain targeting.

    PubMed

    Dinda, Subas C; Pattnaik, Gurudutta

    2013-01-01

    Blood brain barrier (BBB) found to act as rate limiting factor in drug delivery to brain in combating the central nervous system (CNS) disorders. Such limiting physiological factors include the reticuloendothelial system and protein opsonization, which present across BBB, play major role in reducing the passage of drug. Several approaches employed to improve the drug delivery across the BBB. Nanoparticles (NP) are the solid colloidal particle ranges from 1 to 1000 nm in size utilized as career for drug delivery. At present NPs are found to play a significant advantage over the other methods of available drug delivery systems to deliver the drug across the BBB. Nanoparticles may be because of its size and functionalization characteristics able to penetrate and facilitate the drug delivery through the barrier. There are number of mechanisms and strategies found to be involved in this process, which are based on the type of nanomaterials used and its combination with therapeutic agents, such materials include liposomes, polymeric nanoparticles and non-viral vectors of nano-sizes for CNS gene therapy, etc. Nanotechnology is expected to reduce the need for invasive procedures for delivery of therapeutics to the CNS. Some devices such as implanted catheters and reservoirs however will still be needed to overcome the problems in effective drug delivery to the CNS. Nanomaterials are found to improve the safety and efficacy level of drug delivery devices in brain targeting. Nanoegineered devices are found to be delivering the drugs at cellular levels through nono-fluidic channels. Different drug delivery systems such as liposomes, microspheres, nanoparticles, nonogels and nonobiocapsules have been used to improve the bioavailability of the drug in the brain, but microchips and biodegradable polymeric nanoparticulate careers are found to be more effective therapeutically in treating brain tumor. The physiological approaches also utilized to improve the transcytosis capacity of specific receptors expressed across the BBB. It is found that the low density lipoproteins related protein (LPR) with engineered peptide compound (EpiC) formed the platform incorporating the Angiopep peptide as a new effective therapeutics. The current challenges are to design and develop the drug delivery careers, which must be able to deliver the drug across the BBB at a safe and effective manner. Nanoparticles are found to be effective careers in delivery of conventional drugs, recombinant proteins, vaccines as well as nucleotides. Nanoparticlulate drug delivery systems are found to be improving in the pharmacokinetic strategies of the drug molecules such as biodistribution, bioavailability and drug release characteristics in a controlled and effective manner with site specific drug delivery targeting to tissue or cell with reduction in toxic manifestation. Therefore, the use of nanotechnology in the field of pharmaceutical biotechnology helps in improving the drug delivery strategy including the kinetics and therapeutic index to solve the delivery problems of some biotech drugs including the recombinant proteins and oligonucleotides. This review is made to provide an insight to the role of nanobiotechnology in drug delivery and drug targeting to brain and its recent advances in the field of drug delivery systems.

  7. Zebra Mussel Chemical Control Guide, Version 2.0

    DTIC Science & Technology

    2015-07-01

    delivery systems, including potable water treatment, agriculture, industry, power generation, and fire protection. Since this invasive organism’s...delivery systems, including potable water treatment, agriculture, industry, power generation, and fire protection (Mackie and Claudi 2010). Zebra mussels...generators, pipes, valves, sensing equipment (level, flow, and pressure) and fire protection (Mackie and Claudi 2010; Prescott et al. 2014). Other USACE

  8. AcademyHealth's Delivery System Science Fellowship: Training Embedded Researchers to Design, Implement, and Evaluate New Models of Care.

    PubMed

    Kanani, Nisha; Hahn, Erin; Gould, Michael; Brunisholz, Kimberly; Savitz, Lucy; Holve, Erin

    2017-07-01

    AcademyHealth's Delivery System Science Fellowship (DSSF) provides a paid postdoctoral pragmatic learning experience to build capacity within learning healthcare systems to conduct research in applied settings. The fellowship provides hands-on training and professional leadership opportunities for researchers. Since its inception in 2012, the program has grown rapidly, with 16 health systems participating in the DSSF to date. In addition to specific projects conducted within health systems (and numerous publications associated with those initiatives), the DSSF has made several broader contributions to the field, including defining delivery system science, identifying a set of training objectives for researchers working in delivery systems, and developing a national collaborative network of care delivery organizations, operational leaders, and trainees. The DSSF is one promising approach to support higher-value care by promoting continuous learning and improvement in health systems. © 2017 Society of Hospital Medicine.

  9. Career Information Delivery Systems: A Summary Status Report. NOICC Occasional Paper.

    ERIC Educational Resources Information Center

    Hopkins, Valorie; Kinnison, Joyce; Morgenthau, Eleanor; Ollis, Harvey

    The National Occupational Information Coordinating Committee/State Occupational Information Coordinating Committees (NOICC/SOICC) Network sponsors numerous occupational information programs and systems, including career information delivery systems (CIDS). CIDS provide useful national, state, and local information for people who are exploring,…

  10. The impact of a preloaded intraocular lens delivery system on operating room efficiency in routine cataract surgery.

    PubMed

    Jones, Jason J; Chu, Jeffrey; Graham, Jacob; Zaluski, Serge; Rocha, Guillermo

    2016-01-01

    The aim of this study was to evaluate the operational impact of using preloaded intraocular lens (IOL) delivery systems compared with manually loaded IOL delivery processes during routine cataract surgeries. Time and motion data, staff and surgery schedules, and cost accounting reports were collected across three sites located in the US, France, and Canada. Time and motion data were collected for manually loaded IOL processes and preloaded IOL delivery systems over four surgery days. Staff and surgery schedules and cost accounting reports were collected during the 2 months prior and after introduction of the preloaded IOL delivery system. The study included a total of 154 routine cataract surgeries across all three sites. Of these, 77 surgeries were performed using a preloaded IOL delivery system, and the remaining 77 surgeries were performed using a manual IOL delivery process. Across all three sites, use of the preloaded IOL delivery system significantly decreased mean total case time by 6.2%-12.0% (P<0.001 for data from Canada and the US and P<0.05 for data from France). Use of the preloaded delivery system also decreased surgeon lens time, surgeon delays, and eliminated lens touches during IOL preparation. Compared to a manual IOL delivery process, use of a preloaded IOL delivery system for cataract surgery reduced total case time, total surgeon lens time, surgeon delays, and eliminated IOL touches. The time savings provided by the preloaded IOL delivery system provide an opportunity for sites to improve routine cataract surgery throughput without impacting surgeon or staff capacity.

  11. Gene delivery systems by the combination of lipid bubbles and ultrasound.

    PubMed

    Negishi, Yoichi; Endo-Takahashi, Yoko; Maruyama, Kazuo

    2016-11-28

    Gene therapy is promising for the treatment of many diseases including cancers and genetic diseases. From the viewpoint of safety, ultrasound (US)-mediated gene delivery with nano/ microbubbles was recently developed as a novel non-viral vector system. US-mediated gene delivery using nano/microbubbles are able to produce transient changes in the permeability of the cell membrane after US-induced cavitation while reducing cellular damage and enables the tissue-specific or the site-specific intracellular delivery of gene both in vitro and in vivo. We have recently developed novel lipid nanobubbles (Lipid Bubbles). These nanobubbles can also be used to enhance the efficacy of the US-mediated genes (plasmid DNA, siRNA, and miRNA etc.) delivery. In this review, we describe US-mediated delivery systems combined with nano/microbubbles and discuss their feasibility as non-viral vector systems.

  12. Gene delivery for cancer therapy.

    PubMed

    Zhang, Teng

    2014-01-01

    Gene therapy has potential in the treatment of human cancers. However, its clinical implication has only achieved little success due to the lack of an efficient gene delivery system. A major hurdle in the current available approaches is in the ability to transduce target tissues at very high efficiencies that ultimately lead to therapeutic levels of transgene expression. This review outlines the characteristics and utilities of several available gene delivery systems, including their advantages and drawbacks in the context of cancer treatment. A perspective of existing challenges and future directions is also included.

  13. Assessment of Alternative Student Aid Delivery Systems: Assessment of the Current Delivery System.

    ERIC Educational Resources Information Center

    Advanced Technology, Inc., Reston, VA.

    The effects of the current system for delivering federal financial assistance to students under the Pell Grant, Guaranteed Student Loan (GSL), and campus-based programs are analyzed. Information is included on the use of the assessment model, which combines program evaluation, systems research, and policy analysis methodologies.…

  14. Assembling nanoparticle coatings to improve the drug delivery performance of lipid based colloids

    NASA Astrophysics Data System (ADS)

    Simovic, Spomenka; Barnes, Timothy J.; Tan, Angel; Prestidge, Clive A.

    2012-02-01

    Lipid based colloids (e.g. emulsions and liposomes) are widely used as drug delivery systems, but often suffer from physical instabilities and non-ideal drug encapsulation and delivery performance. We review the application of engineered nanoparticle layers at the interface of lipid colloids to improve their performance as drug delivery systems. In addition we focus on the creation of novel hybrid nanomaterials from nanoparticle-lipid colloid assemblies and their drug delivery applications. Specifically, nanoparticle layers can be engineered to enhance the physical stability of submicron lipid emulsions and liposomes, satbilise encapsulated active ingredients against chemical degradation, control molecular transport and improve the dermal and oral delivery characteristics, i.e. increase absorption, bioavailability and facilitate targeted delivery. It is feasible that hybrid nanomaterials composed of nanoparticles and colloidal lipids are effective encapsulation and delivery systems for both poorly soluble drugs and biological drugs and may form the basis for the next generation of medicines. Additional pre-clinical research including specific animal model studies are required to advance the peptide/protein delivery systems, whereas the silica lipid hybrid systems have now entered human clinical trials for poorly soluble drugs.

  15. Inhaled nano- and microparticles for drug delivery

    PubMed Central

    El-Sherbiny, Ibrahim M.; El-Baz, Nancy M.; Yacoub, Magdi H.

    2015-01-01

    The 21st century has seen a paradigm shift to inhaled therapy, for both systemic and local drug delivery, due to the lung's favourable properties of a large surface area and high permeability. Pulmonary drug delivery possesses many advantages, including non-invasive route of administration, low metabolic activity, control environment for systemic absorption and avoids first bypass metabolism. However, because the lung is one of the major ports of entry, it has multiple clearance mechanisms, which prevent foreign particles from entering the body. Although these clearance mechanisms maintain the sterility of the lung, clearance mechanisms can also act as barriers to the therapeutic effectiveness of inhaled drugs. This effectiveness is also influenced by the deposition site and delivered dose. Particulate-based drug delivery systems have emerged as an innovative and promising alternative to conventional inhaled drugs to circumvent pulmonary clearance mechanisms and provide enhanced therapeutic efficiency and controlled drug release. The principle of multiple pulmonary clearance mechanisms is reviewed, including mucociliary, alveolar macrophages, absorptive, and metabolic degradation. This review also discusses the current approaches and formulations developed to achieve optimal pulmonary drug delivery systems. PMID:26779496

  16. Strategies for drug delivery to the central nervous system by systemic route.

    PubMed

    Kasinathan, Narayanan; Jagani, Hitesh V; Alex, Angel Treasa; Volety, Subrahmanyam M; Rao, J Venkata

    2015-05-01

    Delivery of a drug into the central nervous system (CNS) is considered difficult. Most of the drugs discovered over the past decade are biological, which are high in molecular weight and polar in nature. The delivery of such drugs across the blood-brain barrier presents problems. This review discusses some of the options available to reach the CNS by systemic route. The focus is mainly on the recent developments in systemic delivery of a drug to the CNS. Databases such as Scopus, Google scholar, Science Direct, SciFinder and online journals were referred for preparing this article including 89 references. There are at least nine strategies that could be adopted to achieve the required drug concentration in the CNS. The recent developments in drug delivery are very promising to deliver biologicals into the CNS.

  17. Applications of lipid based formulation technologies in the delivery of biotechnology-based therapeutics.

    PubMed

    du Plessis, Lissinda H; Marais, Etienne B; Mohammed, Faruq; Kotzé, Awie F

    2014-01-01

    In the last decades several new biotechnologically-based therapeutics have been developed due to progress in genetic engineering. A growing challenge facing pharmaceutical scientists is formulating these compounds into oral dosage forms with adequate bioavailability. An increasingly popular approach to formulate biotechnology-based therapeutics is the use of lipid based formulation technologies. This review highlights the importance of lipid based drug delivery systems in the formulation of oral biotechnology based therapeutics including peptides, proteins, DNA, siRNA and vaccines. The different production procedures used to achieve high encapsulation efficiencies of the bioactives are discussed, as well as the factors influencing the choice of excipient. Lipid based colloidal drug delivery systems including liposomes and solid lipid nanoparticles are reviewed with a focus on recent advances and updates. We further describe microemulsions and self-emulsifying drug delivery systems and recent findings on bioactive delivery. We conclude the review with a few examples on novel lipid based formulation technologies.

  18. Biopolymers as transdermal drug delivery systems in dermatology therapy.

    PubMed

    Basavaraj, K H; Johnsy, George; Navya, M A; Rashmi, R; Siddaramaiah

    2010-01-01

    The skin is considered a complex organ for drug delivery because of its structure. Drug delivery systems are designed for the controlled release of drugs through the skin into the systemic circulation, maintaining consistent efficacy and reducing the dose of the drugs and their related side effects. Transdermal drug delivery represents one of the most rapidly advancing areas of novel drug delivery. The excellent impervious nature of the skin is the greatest challenge that must be overcome for successful drug delivery. Today, polymers have been proven to be successful for long-term drug delivery applications as no single polymer can satisfy all of the requirements. Biopolymers in the field of dermal application are rare and the mechanisms that affect skin absorption are almost unknown. Biopolymers are widely used as drug delivery systems, but as such the use of biopolymers as drug delivery systems in dermatologic therapy is still in progress. Commonly used biopolymers include hydrocolloids, alginates, hydrogels, polyurethane, collagen, poly(lactic-co-glycolic acid), chitosan, proteins and peptides, pectin, siRNAs, and hyaluronic acid. These new and exciting methods for drug delivery are already increasing the number and quality of dermal and transdermal therapies. This article reviews current research on biopolymers and focuses on their potential as drug carriers, particularly in relation to the dermatologic aspects of their use.

  19. Porous silicon for drug delivery applications and theranostics: recent advances, critical review and perspectives.

    PubMed

    Kumeria, Tushar; McInnes, Steven J P; Maher, Shaheer; Santos, Abel

    2017-12-01

    Porous silicon (pSi) engineered by electrochemical etching has been used as a drug delivery vehicle to address the intrinsic limitations of traditional therapeutics. Biodegradability, biocompatibility, and optoelectronic properties make pSi a unique candidate for developing biomaterials for theranostics and photodynamic therapies. This review presents an updated overview about the recent therapeutic systems based on pSi, with a critical analysis on the problems and opportunities that this technology faces as well as highlighting pSi's growing potential. Areas covered: Recent progress in pSi-based research includes drug delivery systems, including biocompatibility studies, drug delivery, theranostics, and clinical trials with the most relevant examples of pSi-based systems presented here. A critical analysis about the technical advantages and disadvantages of these systems is provided along with an assessment on the challenges that this technology faces, including clinical trials and investors' support. Expert opinion: pSi is an outstanding material that could improve existing drug delivery and photodynamic therapies in different areas, paving the way for developing advanced theranostic nanomedicines and incorporating payloads of therapeutics with imaging capabilities. However, more extensive in-vivo studies are needed to assess the feasibility and reliability of this technology for clinical practice. The technical and commercial challenges that this technology face are still uncertain.

  20. Recent advances on smart TiO2 nanotube platforms for sustainable drug delivery applications.

    PubMed

    Wang, Qun; Huang, Jian-Ying; Li, Hua-Qiong; Zhao, Allan Zi-Jian; Wang, Yi; Zhang, Ke-Qin; Sun, Hong-Tao; Lai, Yue-Kun

    To address the limitations of traditional drug delivery, TiO 2 nanotubes (TNTs) are recognized as a promising material for localized drug delivery systems. With regard to the excellent biocompatibility and physicochemical properties, TNTs prepared by a facile electrochemical anodizing process have been used to fabricate new drug-releasing implants for localized drug delivery. This review discusses the development of TNTs applied in localized drug delivery systems, focusing on several approaches to control drug release, including the regulation of the dimensions of TNTs, modification of internal chemical characteristics, adjusting pore openings by biopolymer coatings, and employing polymeric micelles as drug nanocarriers. Furthermore, rational strategies on external conditions-triggered stimuli-responsive drug release for localized drug delivery systems are highlighted. Finally, the review concludes with the recent advances on TNTs for controlled drug delivery and corresponding prospects in the future.

  1. Recent advances on smart TiO2 nanotube platforms for sustainable drug delivery applications

    PubMed Central

    Wang, Qun; Huang, Jian-Ying; Li, Hua-Qiong; Zhao, Allan Zi-Jian; Wang, Yi; Zhang, Ke-Qin; Sun, Hong-Tao; Lai, Yue-Kun

    2017-01-01

    To address the limitations of traditional drug delivery, TiO2 nanotubes (TNTs) are recognized as a promising material for localized drug delivery systems. With regard to the excellent biocompatibility and physicochemical properties, TNTs prepared by a facile electrochemical anodizing process have been used to fabricate new drug-releasing implants for localized drug delivery. This review discusses the development of TNTs applied in localized drug delivery systems, focusing on several approaches to control drug release, including the regulation of the dimensions of TNTs, modification of internal chemical characteristics, adjusting pore openings by biopolymer coatings, and employing polymeric micelles as drug nanocarriers. Furthermore, rational strategies on external conditions-triggered stimuli-responsive drug release for localized drug delivery systems are highlighted. Finally, the review concludes with the recent advances on TNTs for controlled drug delivery and corresponding prospects in the future. PMID:28053530

  2. A software tool to automatically assure and report daily treatment deliveries by a cobalt‐60 radiation therapy device

    PubMed Central

    Wooten, H. Omar; Green, Olga; Li, Harold H.; Liu, Shi; Li, Xiaoling; Rodriguez, Vivian; Mutic, Sasa; Kashani, Rojano

    2016-01-01

    The aims of this study were to develop a method for automatic and immediate verification of treatment delivery after each treatment fraction in order to detect and correct errors, and to develop a comprehensive daily report which includes delivery verification results, daily image‐guided radiation therapy (IGRT) review, and information for weekly physics reviews. After systematically analyzing the requirements for treatment delivery verification and understanding the available information from a commercial MRI‐guided radiotherapy treatment machine, we designed a procedure to use 1) treatment plan files, 2) delivery log files, and 3) beam output information to verify the accuracy and completeness of each daily treatment delivery. The procedure verifies the correctness of delivered treatment plan parameters including beams, beam segments and, for each segment, the beam‐on time and MLC leaf positions. For each beam, composite primary fluence maps are calculated from the MLC leaf positions and segment beam‐on time. Error statistics are calculated on the fluence difference maps between the plan and the delivery. A daily treatment delivery report is designed to include all required information for IGRT and weekly physics reviews including the plan and treatment fraction information, daily beam output information, and the treatment delivery verification results. A computer program was developed to implement the proposed procedure of the automatic delivery verification and daily report generation for an MRI guided radiation therapy system. The program was clinically commissioned. Sensitivity was measured with simulated errors. The final version has been integrated into the commercial version of the treatment delivery system. The method automatically verifies the EBRT treatment deliveries and generates the daily treatment reports. Already in clinical use for over one year, it is useful to facilitate delivery error detection, and to expedite physician daily IGRT review and physicist weekly chart review. PACS number(s): 87.55.km PMID:27167269

  3. Method and devices for performing stereotactic microbeam radiation therapy

    DOEpatents

    Dilmanian, F. Avraham

    2010-01-05

    A radiation delivery system generally includes either a synchrotron source or a support frame and a plurality of microbeam delivery devices supported on the support frame, both to deliver a beam in a hemispherical arrangement. Each of the microbeam delivery devices or synchrotron irradiation ports is adapted to deliver at least one microbeam of radiation along a microbeam delivery axis, wherein the microbeam delivery axes of the plurality of microbeam delivery devices cross within a common target volume.

  4. Transdermal patches: history, development and pharmacology

    PubMed Central

    Pastore, Michael N; Kalia, Yogeshvar N; Horstmann, Michael; Roberts, Michael S

    2015-01-01

    Transdermal patches are now widely used as cosmetic, topical and transdermal delivery systems. These patches represent a key outcome from the growth in skin science, technology and expertise developed through trial and error, clinical observation and evidence-based studies that date back to the first existing human records. This review begins with the earliest topical therapies and traces topical delivery to the present-day transdermal patches, describing along the way the initial trials, devices and drug delivery systems that underpin current transdermal patches and their actives. This is followed by consideration of the evolution in the various patch designs and their limitations as well as requirements for actives to be used for transdermal delivery. The properties of and issues associated with the use of currently marketed products, such as variability, safety and regulatory aspects, are then described. The review concludes by examining future prospects for transdermal patches and drug delivery systems, such as the combination of active delivery systems with patches, minimally invasive microneedle patches and cutaneous solutions, including metered-dose systems. PMID:25560046

  5. pH-sensitive nano-systems for drug delivery in cancer therapy.

    PubMed

    Liu, Juan; Huang, Yuran; Kumar, Anil; Tan, Aaron; Jin, Shubin; Mozhi, Anbu; Liang, Xing-Jie

    2014-01-01

    Nanotechnology has been widely used in the development of new strategies for drug delivery and cancer therapy. Compared to traditional drug delivery systems, nano-based drug delivery system have greater potential in a variety of areas, such as multiple targeting functionalization, in vivo imaging, combined drug delivery, extended circulation time, and systemic control release. Nano-systems incorporating stimulus-responsive materials have remarkable properties which allow them to bypass biological barriers and achieve targeted intracellular drug delivery. As a result of the active metabolism of tumor cells, the tumor microenvironment (TME) is highly acidic compared to normal tissues. pH-Sensitive nano-systems have now been developed in which drug release is specifically triggered by the acidic tumor environment. Studies have demonstrated that novel pH-sensitive drug delivery systems are capable of improving the efficiency of cancer treatment. A number of these have been translated from bench to clinical application and have been approved by the Food and Drug Administration (FDA) for treatment of various cancerous diseases. Herein, this review mainly focuses on pH-sensitive nano-systems, including advances in drug delivery, mechanisms of drug release, and possible improvements in drug absorption, with the emphasis on recent research in this field. With deeper understanding of the difference between normal and tumor tissues, it might be possible to design ever more promising pH-responsive nano-systems for drug delivery and cancer therapy in the near future. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  6. Peptide and protein delivery using new drug delivery systems.

    PubMed

    Jain, Ashish; Jain, Aviral; Gulbake, Arvind; Shilpi, Satish; Hurkat, Pooja; Jain, Sanjay K

    2013-01-01

    Pharmaceutical and biotechnological research sorts protein drug delivery systems by importance based on their various therapeutic applications. The effective and potent action of the proteins/peptides makes them the drugs of choice for the treatment of numerous diseases. Major research issues in protein delivery include the stabilization of proteins in delivery devices and the design of appropriate target-specific protein carriers. Many efforts have been made for effective delivery of proteins/peptidal drugs through various routes of administrations for successful therapeutic effects. Nanoparticles made of biodegradable polymers such as poly lactic acid, polycaprolactone, poly(lactic-co-glycolic acid), the poly(fumaric-co-sebacic) anhydride chitosan, and modified chitosan, as well as solid lipids, have shown great potential in the delivery of proteins/peptidal drugs. Moreover, scientists also have used liposomes, PEGylated liposomes, niosomes, and aquasomes, among others, for peptidal drug delivery. They also have developed hydrogels and transdermal drug delivery systems for peptidal drug delivery. A receptor-mediated delivery system is another attractive strategy to overcome the limitation in drug absorption that enables the transcytosis of the protein across the epithelial barrier. Modification such as PEGnology is applied to various proteins and peptides of the desired protein and peptides also increases the circulating life, solubility and stability, pharmacokinetic properties, and antigenicity of protein. This review focuses on various approaches for effective protein/peptidal drug delivery, with special emphasis on insulin delivery.

  7. Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm

    NASA Technical Reports Server (NTRS)

    Robinson, John W.; McCleskey, Carey M.; Rhodes, Russel E.; Lepsch, Roger A.; Henderson, Edward M.; Joyner, Claude R., III; Levack, Daniel J. H.

    2013-01-01

    This paper describes Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm. It builds on the work of the previous paper "Approach to an Affordable and Productive Space Transportation System". The scope includes both flight and ground system elements, and focuses on their compatibility and capability to achieve a technical solution that is operationally productive and also affordable. A clear and revolutionary approach, including advanced propulsion systems (advanced LOX rich booster engine concept having independent LOX and fuel cooling systems, thrust augmentation with LOX rich boost and fuel rich operation at altitude), improved vehicle concepts (autogeneous pressurization, turbo alternator for electric power during ascent, hot gases to purge system and keep moisture out), and ground delivery systems, was examined. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on space flight system engineering methods, along with operationally efficient propulsion system concepts and technologies. This paper continues the previous work by exploring the propulsion technology aspects in more depth and how they may enable the vehicle designs from the previous paper. Subsequent papers will explore the vehicle design, the ground support system, and the operations aspects of the new delivery paradigm in greater detail.

  8. An Overview of Clinical and Commercial Impact of Drug Delivery Systems

    PubMed Central

    Anselmo, Aaron C.; Mitragotri, Samir

    2014-01-01

    Drug delivery systems are widely researched and developed to improve the delivery of pharmaceutical compounds and molecules. The last few decades have seen a marked growth of the field fueled by increased number of researchers, research funding, venture capital and the number of start-ups. Collectively, the growth has led to novel systems that make use of micro/nano-particles, transdermal patches, inhalers, drug reservoir implants and antibody-drug conjugates. While the increased research activity is clearly an indication of proliferation of the field, clinical and commercial translation of early-stage research ideas is critically important for future growth and interest in the field. Here, we will highlight some of the examples of novel drug delivery systems that have undergone such translation. Specifically, we will discuss the developments, advantages, limitations and lessons learned from: (i) microparticle-based depot formulations, (ii) nanoparticle-based cancer drugs, (iii) transdermal systems, (iv) oral drug delivery systems, (v) pulmonary drug delivery, (vi) implants and (vii) antibody-drug conjugates. These systems have impacted treatment of many prevalent diseases including diabetes, cancer and cardiovascular diseases, among others. At the same time, these systems are integral and enabling components of products that collectively generate annual revenues exceeding US $100 billion. These examples provide strong evidence of the clinical and commercial impact of drug delivery systems. PMID:24747160

  9. Colloidal microgels in drug delivery applications

    PubMed Central

    Vinogradov, Serguei V.

    2005-01-01

    Colloidal microgels have recently received attention as environmentally responsive systems and now are increasingly used in applications as carriers for therapeutic drugs and diagnostic agents. Synthetic microgels consist of a crosslinked polymer network that provides a depot for loaded drugs, protection against environmental hazards and template for post-synthetic modification or vectorization of the drug carriers. The aim of this manuscript is to review recent attempts to develop new microgel formulations for oral drug delivery, to design metal-containing microgels for diagnostic and therapeutic applications, and to advance approaches including the systemic administration of microgels. Novel nanogel drug delivery systems developed in the authors’ laboratory are discussed in details including aspects of their synthesis, vectorization and recent applications for encapsulation of low molecular weight drugs or formulation of biological macromolecules. The findings reviewed here are encouraging for further development of the nanogels as intelligent drug carriers with such features as targeted delivery and triggered drug release. PMID:17168773

  10. American Heart Association's Call to Action for Payment and Delivery System Reform.

    PubMed

    Bufalino, Vincent J; Berkowitz, Scott A; Gardner, Timothy J; Piña, Ileana L; Konig, Madeleine

    2017-08-15

    The healthcare system is undergoing a transition from paying for volume to paying for value. Clinicians, as well as public and private payers, are beginning to implement alternative delivery and payment models, such as the patient-centered medical home, accountable care organizations, and bundled payment arrangements. Implementation of these new models will necessitate delivery system transformation and will actively involve all fields of medical care, in particular medicine and surgery. This call to action, on behalf of the American Heart Association's Expert Panel on Payment and Delivery System Reform, serves to offer support and direction for further involvement by the American Heart Association. In doing so, it (1) provides baseline review and definition of the present models and some of the early results of these delivery models, including outcomes; (2) initiates a conversation within the American Heart Association on the impact of payment and delivery system reform, as well as how the American Heart Association should engage in the interest of patients; (3) issues a call to action to our organization and to cardiovascular and stroke health professionals across the country to become educated about these models so to as to understand their impact on patient care; and (4) asks the government and other funding agencies, including the American Heart Association, to begin supporting and prioritizing meaningful research endeavors to further evaluate these models. © 2017 American Heart Association, Inc.

  11. Intranasal delivery: physicochemical and therapeutic aspects.

    PubMed

    Costantino, Henry R; Illum, Lisbeth; Brandt, Gordon; Johnson, Paul H; Quay, Steven C

    2007-06-07

    Interest in intranasal (IN) administration as a non-invasive route for drug delivery continues to grow rapidly. The nasal mucosa offers numerous benefits as a target issue for drug delivery, such as a large surface area for delivery, rapid drug onset, potential for central nervous system delivery, and no first-pass metabolism. A wide variety of therapeutic compounds can be delivered IN, including relatively large molecules such as peptides and proteins, particularly in the presence of permeation enhancers. The current review provides an in-depth discussion of therapeutic aspects of IN delivery including consideration of the intended indication, regimen, and patient population, as well as physicochemical properties of the drug itself. Case examples are provided to illustrate the utility of IN dosing. It is anticipated that the present review will prove useful for formulation scientists considering IN delivery as a delivery route.

  12. Calcium silicate-based drug delivery systems.

    PubMed

    Zhu, Ying-Jie; Guo, Xiao-Xuan; Sham, Tsun-Kong

    2017-02-01

    Compared with other inorganic materials such as silica, metal oxides, noble metals and carbon, calcium silicate-based materials, especially nanostructured calcium silicate materials, have high biocompatibility, bioactivity and biodegradability, high specific surface area, nanoporous/hollow structure, high drug-loading capacity, pH-responsive drug release behavior and desirable drug release properties, and thus they are promising for the application in drug delivery. Calcium silicate-based drug delivery systems have a long drug-release time, which can significantly prolong the therapeutic effect of drugs. Another advantage of calcium silicate-based drug delivery systems is their pH-responsive drug release property, which can act as an ideal platform for targeted drug delivery. Areas covered: In recent years, studies have been carried out on calcium silicate-based drug delivery systems, and important results and insights have been documented. This article is not intended to offer a comprehensive review on the research on calcium silicate-based drug delivery systems, but presents some examples reported in the literature, and includes new insights obtained by tracking the interactions between drug molecules and calcium silicate carriers on the molecular level using the synchrotron-based X-ray spectroscopy. Expert opinion: Finally, our opinions on calcium silicate-based drug delivery systems are provided, and several research directions for the future studies are proposed.

  13. Recent advancements in nanoparticle based drug delivery for gastrointestinal disorders.

    PubMed

    Mittal, Rahul; Patel, Amit P; Jhaveri, Vasanti M; Kay, Sae-In S; Debs, Luca H; Parrish, James M; Pan, Debbie R; Nguyen, Desiree; Mittal, Jeenu; Jayant, Rahul Dev

    2018-03-01

    The emergent field of nanoparticles has presented a wealth of opportunities for improving the treatment of human diseases. Recent advances have allowed for promising developments in drug delivery, diagnostics, and therapeutics. Modified delivery systems allow improved drug delivery over traditional pH, microbe, or receptor dependent models, while antibody association allows for more advanced imaging modalities. Nanoparticles have potential clinical application in the field of gastroenterology as they offer several advantages compared to the conventional treatment systems including target drug delivery, enhanced treatment efficacy, and reduced side effects. Areas covered: The aim of this review article is to summarize the recent advancements in developing nanoparticle technologies to treat gastrointestinal diseases. We have covered the application of nanoparticles in various gastrointestinal disorders including inflammatory bowel disease and colorectal cancer. We also have discussed how the gut microbiota affects the nanoparticle based drug delivery in the gastrointestinal tract. Expert opinion: Nanoparticles based drug delivery offers a great platform for targeted drug delivery for gastrointestinal disorders. However, it is influenced by the presence of microbiota, drug interaction with nanoparticles, and cytotoxicity of nanoparticles. With the advancements in nanoparticle technology, it may be possible to overcome these barriers leading to efficient drug delivery for gastrointestinal disorders based on nanoparticle platform.

  14. Micro- and nanofabrication methods in nanotechnological medical and pharmaceutical devices

    PubMed Central

    Betancourt, Tania; Brannon-Peppas, Lisa

    2006-01-01

    Micro- and nanofabrication techniques have revolutionized the pharmaceutical and medical fields as they offer the possibility for highly reproducible mass-fabrication of systems with complex geometries and functionalities, including novel drug delivery systems and bionsensors. The principal micro- and nanofabrication techniques are described, including photolithography, soft lithography, film deposition, etching, bonding, molecular self assembly, electrically induced nanopatterning, rapid prototyping, and electron, X-ray, colloidal monolayer, and focused ion beam lithography. Application of these techniques for the fabrication of drug delivery and biosensing systems including injectable, implantable, transdermal, and mucoadhesive devices is described. PMID:17722281

  15. Potential and problems in ultrasound-responsive drug delivery systems

    PubMed Central

    Zhao, Ying-Zheng; Du, Li-Na; Lu, Cui-Tao; Jin, Yi-Guang; Ge, Shu-Ping

    2013-01-01

    Ultrasound is an important local stimulus for triggering drug release at the target tissue. Ultrasound-responsive drug delivery systems (URDDS) have become an important research focus in targeted therapy. URDDS include many different formulations, such as microbubbles, nanobubbles, nanodroplets, liposomes, emulsions, and micelles. Drugs that can be loaded into URDDS include small molecules, biomacromolecules, and inorganic substances. Fields of clinical application include anticancer therapy, treatment of ischemic myocardium, induction of an immune response, cartilage tissue engineering, transdermal drug delivery, treatment of Huntington’s disease, thrombolysis, and disruption of the blood–brain barrier. This review focuses on recent advances in URDDS, and discusses their formulations, clinical application, and problems, as well as a perspective on their potential use in the future. PMID:23637531

  16. Biomimetics in drug delivery systems: A critical review.

    PubMed

    Sheikhpour, Mojgan; Barani, Leila; Kasaeian, Alibakhsh

    2017-05-10

    Today, the advanced drug delivery systems have been focused on targeted drug delivery fields. The novel drug delivery is involved with the improvement of the capacity of drug loading in drug carriers, cellular uptake of drug carriers, and the sustained release of drugs within target cells. In this review, six groups of therapeutic drug carriers including biomimetic hydrogels, biomimetic micelles, biomimetic liposomes, biomimetic dendrimers, biomimetic polymeric carriers and biomimetic nanostructures, are studied. The subject takes advantage of the biomimetic methods of productions or the biomimetic techniques for the surface modifications, similar to what accrues in natural cells. Moreover, the effects of these biomimetic approaches for promoting the drug efficiency in targeted drug delivery are visible. The study demonstrates that the fabrication of biomimetic nanocomposite drug carriers could noticeably promote the efficiency of drugs in targeted drug delivery systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Polymeric nanoparticles: potent vectors for vaccine delivery targeting cancer and infectious diseases.

    PubMed

    Bolhassani, Azam; Javanzad, Shabnam; Saleh, Tayebeh; Hashemi, Mehrdad; Aghasadeghi, Mohammad Reza; Sadat, Seyed Mehdi

    2014-01-01

    Nanocarriers with various compositions and biological properties have been extensively applied for in vitro/in vivo drug and gene delivery. The family of nanocarriers includes polymeric nanoparticles, lipid-based carriers (liposomes/micelles), dendrimers, carbon nanotubes, and gold nanoparticles (nanoshells/nanocages). Among different delivery systems, polymeric carriers have several properties such as: easy to synthesize, inexpensive, biocompatible, biodegradable, non-immunogenic, non-toxic, and water soluble. In addition, cationic polymers seem to produce more stable complexes led to a more protection during cellular trafficking than cationic lipids. Nanoparticles often show significant adjuvant effects in vaccine delivery since they may be easily taken up by antigen presenting cells (APCs). Natural polymers such as polysaccharides and synthetic polymers have demonstrated great potential to form vaccine nanoparticles. The development of new adjuvants or delivery systems for DNA and protein immunization is an expanding research field. This review describes polymeric carriers especially PLGA, chitosan, and PEI as vaccine delivery systems.

  18. Drug Delivery Innovations for Enhancing the Anticancer Potential of Vitamin E Isoforms and Their Derivatives

    PubMed Central

    Neophytou, Christiana M.; Constantinou, Andreas I.

    2015-01-01

    Vitamin E isoforms have been extensively studied for their anticancer properties. Novel drug delivery systems (DDS) that include liposomes, nanoparticles, and micelles are actively being developed to improve Vitamin E delivery. Furthermore, several drug delivery systems that incorporate Vitamin E isoforms have been synthesized in order to increase the bioavailability of chemotherapeutic agents or to provide a synergistic effect. D-alpha-tocopheryl polyethylene glycol succinate (Vitamin E TPGS or TPGS) is a synthetic derivative of natural alpha-tocopherol which is gaining increasing interest in the development of drug delivery systems and has also shown promising anticancer effect as a single agent. This review provides a summary of the properties and anticancer effects of the most potent Vitamin E isoforms and an overview of the various formulations developed to improve their efficacy, with an emphasis on the use of TPGS in drug delivery approaches. PMID:26137487

  19. Mesoporous carbon nanomaterials in drug delivery and biomedical application.

    PubMed

    Zhao, Qinfu; Lin, Yuanzhe; Han, Ning; Li, Xian; Geng, Hongjian; Wang, Xiudan; Cui, Yu; Wang, Siling

    2017-01-01

    Recent development of nano-technology provides highly efficient and versatile treatment methods to achieve better therapeutic efficacy and lower side effects of malignant cancer. The exploration of drug delivery systems (DDSs) based on nano-material shows great promise in translating nano-technology to clinical use to benefit patients. As an emerging inorganic nanomaterial, mesoporous carbon nanomaterials (MCNs) possess both the mesoporous structure and the carbonaceous composition, endowing them with superior nature compared with mesoporous silica nanomaterials and other carbon-based materials, such as carbon nanotube, graphene and fullerene. In this review, we highlighted the cutting-edge progress of carbon nanomaterials as drug delivery systems (DDSs), including immediate/sustained drug delivery systems and controlled/targeted drug delivery systems. In addition, several representative biomedical applications of mesoporous carbon such as (1) photo-chemo synergistic therapy; (2) delivery of therapeutic biomolecule and (3) in vivo bioimaging are discussed and integrated. Finally, potential challenges and outlook for future development of mesoporous carbon in biomedical fields have been discussed in detail.

  20. Finasteride topical delivery systems for androgenetic alopecia.

    PubMed

    Khan, Muhammad Zia Ullah; Khan, Shujaat Ali; Ubaid, Muhammad; Shah, Aamna; Kousar, Rozina; Murtaza, Ghulam

    2018-01-23

    Androgenetic alopecia, generally recognized as male pattern baldness, is a gradually developing medical and physiological change, which is manifested by continuous hair-loss from scalp. Finasteride (4-aza-3-oxosteroid) is a potent anti-baldness compound that selectively and competitively inhibits the 5α-reductase isoenzymes. Prolonged oral use of finasteride leads to the emergence of sexual disorders including decrease in libido, gynecomastia, erectile dysfunction, ejaculation disorder, orgasm disorders and mood disturbances. Since, hair follicles widely home in 5α-reductase, topical formulations of finasteride in comparison to its oral formulations are expected to potentially reduce its systemic adverse effects. The analysis of literature has revealed some delivery systems developed for the enhanced and localized penetration of finasteride into the skin. These finasteride delivery systems include polymersomes, vesicular nanocarriers, vesicular ethosomal carriers, liposomes and niosomes, liquid crystalline nanoparticles, topical solutions and gels. The aim of this review article is to briefly amass all literature on topical delivery of finasteride to elaborate best dosage form, i.e. formulation having maximum permeation rate. This study will serve as a future perspective regarding topical delivery of finasteride. The literature analysis has exhibited that most of the previous investigators have used propylene glycol in their finasteride-loaded topical formulations, while poloxamer P407, monoolein, transcutol P and choline was used in few formulations. Moreover among all drug delivery systems, finasteride liposomal gel system consisting of 2% methyl cellulose and gel system containing poloxamer P407 exhibited the highest flux with a value of 28.4 ± 1.3 µg/cm2h and 23.1 ± 1.4 µg/cm2h, respectively. Several topical drug delivery techniques such as topical microneedles, aerosol foams, nanoemulsions, microsponges, and emulsifier free formulations, fullerenes, ointments, pastes, creams, gel and lotions are still to be worthy regarding finasteride topical delivery in future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Novel drug delivery systems for glaucoma

    PubMed Central

    Lavik, E; Kuehn, M H; Kwon, Y H

    2011-01-01

    Reduction of intraocular pressure (IOP) by pharmaceutical or surgical means has long been the standard treatment for glaucoma. A number of excellent drugs are available that are effective in reducing IOP. These drugs are typically applied as eye drops. However, patient adherence can be poor, thus reducing the clinical efficacy of the drugs. Several novel delivery systems designed to address the issue of adherence and to ensure consistent reduction of IOP are currently under development. These delivery systems include contact lenses-releasing glaucoma medications, injectables such as biodegradable micro- and nanoparticles, and surgically implanted systems. These new technologies are aimed at increasing clinical efficacy by offering multiple delivery options and are capable of managing IOP for several months. There is also a desire to have complementary neuroprotective approaches for those who continue to show progression, despite IOP reduction. Many potential neuroprotective agents are not suitable for traditional oral or drop formulations. Their potential is dependent on developing suitable delivery systems that can provide the drugs in a sustained, local manner to the retina and optic nerve. Drug delivery systems have the potential to improve patient adherence, reduce side effects, increase efficacy, and ultimately, preserve sight for glaucoma patients. In this review, we discuss benefits and limitations of the current systems of delivery and application, as well as those on the horizon. PMID:21475311

  2. Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery.

    PubMed

    Zhao, Chun-Xia

    2013-11-01

    Considerable effort has been directed towards developing novel drug delivery systems. Microfluidics, capable of generating monodisperse single and multiple emulsion droplets, executing precise control and operations on these droplets, is a powerful tool for fabricating complex systems (microparticles, microcapsules, microgels) with uniform size, narrow size distribution and desired properties, which have great potential in drug delivery applications. This review presents an overview of the state-of-the-art multiphase flow microfluidics for the production of single emulsions or multiple emulsions for drug delivery. The review starts with a brief introduction of the approaches for making single and multiple emulsions, followed by presentation of some potential drug delivery systems (microparticles, microcapsules and microgels) fabricated in microfluidic devices using single or multiple emulsions as templates. The design principles, manufacturing processes and properties of these drug delivery systems are also discussed and compared. Furthermore, drug encapsulation and drug release (including passive and active controlled release) are provided and compared highlighting some key findings and insights. Finally, site-targeting delivery using multiphase flow microfluidics is also briefly introduced. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Current Perspectives on Novel Drug Delivery Systems and Therapies for Management of Prostate Cancer: An Inclusive Review.

    PubMed

    Bhosale, Rohit R; Gangadharappa, H V; Hani, Umme; Ali M Osmani, Riyaz; Vaghela, Rudra; Kulkarni, P K; Koganti, Venkata Sairam

    2017-01-01

    Prostate cancer (PC) is a prostate gland cells carcinoma, the foremost reason of cancer deaths in men in developed countries, representing most common malignancy in adult males. The key obstacle to achieve practicable therapeutic effect of active drugs and capable hopeful agents including proteins and peptides, and nucleic acid for prostate cancer is the scarcity of targeted drug delivery to cells of prostate cancer. As a result, need for novel systems, strategies or therapeutic approaches to enhance the assortment of active agents meant for prostate cancer becomes an important criterion. Currently cancer research focuses on improving treatment of prostate cancer using various novel drug delivery systems of chemotherapeutic agents. These novel drug delivery systems comprise nanoparticles and liposomes. Also, strategies or therapeutic approaches intended for the prostate cancer include radiation therapy for localized prostate cancer, hormonal therapy for suppressing tumor growth, and gene-and-immunologic therapy. These systems and approaches can deliver the drugs to their selected or targeted cancer cells for the drug release in cancer atmosphere of prostate thereby enhancing the effectiveness of tumor penetration. The objective was to collect and report the recent research findings to manage the PC. Present review encloses existing diverse novel drug delivery systems and approaches intended for the management of PC. The reported miscellaneous novel drug delivery systems along with the diverse therapies are seem to be precise, secure and relatively effective; and in consequence could lead to a new track for obliteration of prostate cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Bi-Regional Educational Improvement Forum (Atlanta, Georgia, November 19-20, 1979).

    ERIC Educational Resources Information Center

    Appalachia Educational Lab., Charleston, WV.

    The Bi-Regional Educational Improvement Forum in Atlanta, Georgia (November 1979) considered three areas of school improvement, including State Department of Education (SEA) delivery systems and the use of technology to improve schooling. The three forum articles concerned with delivery systems treat the transformation of policies emanating from…

  5. Electronic Information Delivery Systems: Reports on Five Projects Sponsored by the Fred Meyer Charitable Trust.

    ERIC Educational Resources Information Center

    Ferguson, Douglas K.; And Others

    1987-01-01

    Describes five research projects that are setting up electronic information delivery systems to serve rural areas in the Pacific Northwest. The technologies being evaluated include simultaneous remote searching, facsimile transmissions, bit map image transmissions, and a combination of optical character recognition equipment and television…

  6. Automating Document Delivery: A Conference Report.

    ERIC Educational Resources Information Center

    Ensor, Pat

    1992-01-01

    Describes presentations made at a forum on automation, interlibrary loan (ILL), and document delivery sponsored by the Houston Area Library Consortium. Highlights include access versus ownership; software for ILL; fee-based services; automated management systems for ILL; and electronic mail and online systems for end-user-generated ILL requests.…

  7. A Promising Combo Gene Delivery System Developed from (3-Aminopropyl)triethoxysilane-Modified Iron Oxide Nanoparticles and Cationic Polymers

    NASA Astrophysics Data System (ADS)

    Zhang, Zubin; Song, Lina; Dong, Jinlai; Guo, Dawei; Du, Xiaolin; Cao, Biyin; Zhang, Yu; Gu, Ning; Mao, Xinliang

    2013-05-01

    (3-Aminopropyl)triethoxysilane-modified iron oxide nanoparticles (APTES-IONPs) have been evaluated for various biomedical applications, including medical imaging and drug delivery. Cationic polymers (CPs) such as Lipofectamine and TurboFect are widely used for research in gene delivery, but their toxicity and low in vivo efficiency limited their further application. In the present study, we synthesized water-soluble APTES-IONPs and developed a combo gene delivery system based on APTES-IONPs and CPs. This system significantly increased gene-binding capacity, protected genes from degradation, and improved gene transfection efficiency for DNA and siRNA in both adherent and suspension cells. Because of its great biocompatibility, high gene-carrying ability, and very low cytotoxicity, this combo gene delivery system will be expected for a wide application, and it might provide a new method for gene therapy.

  8. Modification of Instructional Delivery and Student Learning with the Use of Educational Technologies

    ERIC Educational Resources Information Center

    Rogers, Jeffrey Ray

    2012-01-01

    The purpose of this study was to determine if educational technologies, including LCD projectors, interactive whiteboards, tablets, document cameras, and student response systems, modify instructional delivery and student learning. This case study was researched in four classrooms, including an English, math, science and social studies classroom…

  9. Overcoming the Challenges of siRNA Delivery: Nanoparticle Strategies.

    PubMed

    Shajari, Neda; Mansoori, Behzad; Davudian, Sadaf; Mohammadi, Ali; Baradaran, Behzad

    2017-01-01

    Despite therapeutics based on siRNA have an immense potential for the treatment of incurable diseases such as cancers. However, the in vivo utilization of siRNA and also the delivery of this agent to the target site is one of the most controversial challenges. The helpful assistance by nanoparticles can improve stable delivery and also enhance efficacy. More nanoparticle-based siRNA therapeutics is expected to become available in the near future. The search strategy followed the guidelines of the Centre of Reviews and Dissemination. The studies were identified from seven databases (Scopus, Web of Science, Academic Search Premiere, CINAHL, Medline Ovid, Eric and Cochrane Library). Studies was selected based on titles, abstracts and full texts. One hundred twenty nine papers were included in the review. These papers defined hurdles in RNAi delivery and also strategies to overcome these hurdles. This review discussed the existing hurdles for systemic administration of siRNA as therapeutic agents and highlights the various strategies to overcome these hurdles, including lipid-based nanoparticles and polymeric nanoparticles, and we also briefly reviewed chemical modification. Delivery of siRNA to the target site is the biggest challenge for its application in the clinic. The findings of this review confirmed by encapsulation siRNA in the nanoparticles can overcome these challenges. The rapid progress in nanotechnology has enabled the development of effective nanoparticles as the carrier for siRNA delivery. However, our data about siRNA-based therapeutics and also nanomedicine are still limited. More clinical data needs to be completely understood in the benefits and drawbacks of siRNA-based therapeutics. Prospective studies must pay attention to the in vivo safety profiles of the different delivery systems, including uninvited immune system stimulation and cytotoxicity. In essence, the development of nontoxic, biocompatible, and biodegradable delivery systems for medical application of RNAi-based therapeutics is needed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. An overview of clinical and commercial impact of drug delivery systems.

    PubMed

    Anselmo, Aaron C; Mitragotri, Samir

    2014-09-28

    Drug delivery systems are widely researched and developed to improve the delivery of pharmaceutical compounds and molecules. The last few decades have seen a marked growth of the field fueled by increased number of researchers, research funding, venture capital and the number of start-ups. Collectively, the growth has led to novel systems that make use of micro/nano-particles, transdermal patches, inhalers, drug reservoir implants and antibody-drug conjugates. While the increased research activity is clearly an indication of proliferation of the field, clinical and commercial translation of early-stage research ideas is critically important for future growth and interest in the field. Here, we will highlight some of the examples of novel drug delivery systems that have undergone such translation. Specifically, we will discuss the developments, advantages, limitations and lessons learned from: (i) microparticle-based depot formulations, (ii) nanoparticle-based cancer drugs, (iii) transdermal systems, (iv) oral drug delivery systems, (v) pulmonary drug delivery, (vi) implants and (vii) antibody-drug conjugates. These systems have impacted treatment of many prevalent diseases including diabetes, cancer and cardiovascular diseases, among others. At the same time, these systems are integral and enabling components of products that collectively generate annual revenues exceeding US $100 billion. These examples provide strong evidence of the clinical and commercial impact of drug delivery systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Overview on zein protein: a promising pharmaceutical excipient in drug delivery systems and tissue engineering.

    PubMed

    Labib, Gihan

    2018-01-01

    Natural pharmaceutical excipients have been applied extensively in the past decades owing to their safety and biocompatibility. Zein, a natural protein of plant origin offers great benefit over other synthetic polymers used in controlled drug and biomedical delivery systems. It was used in a variety of medical fields including pharmaceutical and biomedical drug targeting, vaccine, tissue engineering, and gene delivery. Being biodegradable and biocompatible, the current review focuses on the history and the medical application of zein as an attractive still promising biopolymer. Areas covered: The current review gives a broadscope on zein as a still promising protein excipient in different fields. Zein- based drug and biomedical delivery systems are discussed with special focus on current and potential application in controlled drug delivery systems, and tissue engineering. Expert opinion: Zein as a protein of natural origin can still be considered a promising polymer in the field of drug delivery systems as well as in tissue engineering. Although different researchers spotted light on zein application in different industrial fields extensively, the feasibility of its use in the field of drug delivery replenished by investigators in recent years has not yet been fully approached.

  12. Recent advances in ophthalmic drug delivery

    PubMed Central

    Kompella, Uday B; Kadam, Rajendra S; Lee, Vincent HL

    2011-01-01

    Topical ocular drug bioavailability is notoriously poor, in the order of 5% or less. This is a consequence of effective multiple barriers to drug entry, comprising nasolacrimal drainage, epithelial drug transport barriers and clearance from the vasculature in the conjunctiva. While sustained drug delivery to the back of the eye is now feasible with intravitreal implants such as Vitrasert™ (~6 months), Retisert™ (~3 years) and Iluvien™ (~3 years), currently there are no marketed delivery systems for long-term drug delivery to the anterior segment of the eye. The purpose of this article is to summarize the resurgence in interest to prolong and improve drug entry from topical administration. These approaches include mucoadhesives, viscous polymer vehicles, transporter-targeted prodrug design, receptor-targeted functionalized nanoparticles, iontophoresis, punctal plug and contact lens delivery systems. A few of these delivery systems might be useful in treating diseases affecting the back of the eye. Their effectiveness will be compared against intravitreal implants (upper bound of effectiveness) and trans-scleral systems (lower bound of effectiveness). Refining the animal model by incorporating the latest advances in microdialysis and imaging technology is key to expanding the knowledge central to the design, testing and evaluation of the next generation of innovative ocular drug delivery systems. PMID:21399724

  13. Financing and systems barriers to seasonal influenza vaccine delivery in community settings.

    PubMed

    Penfold, Robert B; Rusinak, Donna; Lieu, Tracy A; Shefer, Abigail; Messonnier, Mark; Lee, Grace M

    2011-12-06

    Recommendations for annual seasonal influenza vaccination have expanded to now include >300 million children and adults each year. Community settings have become increasingly important venues for influenza vaccination. We sought to identify barriers to and solutions for expanding influenza vaccination in community settings. Semi-structured telephone interviews were conducted from 01/09 to 06/10 with a range of stakeholders involved in influenza vaccination, including health plans, medical services firms, retail based clinics, pharmacies, schools, and state and local public health immunization programs. Participants (n=65) were asked about barriers and feasible solutions to influenza vaccine delivery to children and adults in community settings. Key themes were identified through iterative coding using a grounded theory approach. Stakeholders identified specific financial barriers to influenza vaccine delivery in 3 major areas: purchase and distribution, delivery, and reimbursement. Limited purchasing power, the uncertain nature of public demand, and unpredictable timing of influenza vaccine supply were important barriers to enhance delivery in community settings. Barriers to delivery included complexities in running off-site clinics, especially in school settings, the need to manage publicly vs. privately purchased vaccines separately, and state-to-state variability in requirements for credentialing, physician oversight, and reporting. Reimbursement barriers included a protracted credentialing process, the need to determine insurance eligibility at point-of-service, and lack of a billing infrastructure in off-site clinics. Opportunities to mitigate financial barriers to influenza vaccine delivery in community settings focused on coordination across providers and the role of public health as a "trusted broker" to overcome existing challenges. Financial and systems barriers hamper the optimal use of community settings to effectively deliver influenza vaccines. Public health partners at the federal, state, and local levels are well-positioned to facilitate the engagement of all stakeholders in this important and complex vaccine delivery system. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Drug Delivery in Cancer Therapy, Quo Vadis?

    PubMed

    Lu, Zheng-Rong; Qiao, Peter

    2018-03-22

    The treatment of malignancies has undergone dramatic changes in the past few decades. Advances in drug delivery techniques and nanotechnology have allowed for new formulations of old drugs, so as to improve the pharmacokinetics, to enhance accumulation in solid tumors, and to reduce the significant toxic effects of these important therapeutic agents. Here, we review the published clinical data in cancer therapy of several major drug delivery systems, including targeted radionuclide therapy, antibody-drug conjugates, liposomes, polymer-drug conjugates, polymer implants, micelles, and nanoparticles. The clinical outcomes of these delivery systems from various phases of clinical trials are summarized. The success and limitations of the drug delivery strategies are discussed based on the clinical observations. In addition, the challenges in applying drug delivery for efficacious cancer therapy, including physical barriers, tumor heterogeneity, drug resistance, and metastasis, are discussed along with future perspectives of drug delivery in cancer therapy. In doing so, we intend to underscore that efficient delivery of cancer therapeutics to solid malignancies remains a major challenge in cancer therapy, and requires a multidisciplinary approach that integrates knowledge from the diverse fields of chemistry, biology, engineering, and medicine. The overall objective of this review is to improve our understanding of the clinical fate of commonly investigated drug delivery strategies, and to identify the limitations that must be addressed in future drug delivery strategies, toward the pursuit of curative therapies for cancer.

  15. RNase non-sensitive and endocytosis independent siRNA delivery system: delivery of siRNA into tumor cells and high efficiency induction of apoptosis

    NASA Astrophysics Data System (ADS)

    Jiang, Xinglu; Wang, Guobao; Liu, Ru; Wang, Yaling; Wang, Yongkui; Qiu, Xiaozhong; Gao, Xueyun

    2013-07-01

    To date, RNase degradation and endosome/lysosome trapping are still serious problems for siRNA-based molecular therapy, although different kinds of delivery formulations have been tried. In this report, a cell penetrating peptide (CPP, including a positively charged segment, a linear segment, and a hydrophobic segment) and a single wall carbon nanotube (SWCNT) are applied together by a simple method to act as a siRNA delivery system. The siRNAs first form a complex with the positively charged segment of CPP via electrostatic forces, and the siRNA-CPP further coats the surface of the SWCNT via hydrophobic interactions. This siRNA delivery system is non-sensitive to RNase and can avoid endosome/lysosome trapping in vitro. When this siRNA delivery system is studied in Hela cells, siRNA uptake was observed in 98% Hela cells, and over 70% mRNA of mammalian target of rapamycin (mTOR) is knocked down, triggering cell apoptosis on a significant scale. Our siRNA delivery system is easy to handle and benign to cultured cells, providing a very efficient approach for the delivery of siRNA into the cell cytosol and cleaving the target mRNA therein.

  16. Bicellar systems as a new colloidal delivery strategy for skin.

    PubMed

    Rubio, L; Rodríguez, G; Barbosa-Barros, L; Alonso, C; Cócera, M; de la Maza, A; Parra, J L; López, O

    2012-04-01

    The presented work evaluates the use of bicellar systems as new delivery vectors for controlled release of compounds through the skin. Two different active principles were introduced into the bicellar systems: diclofenac diethylamine (DDEA) and flufenamic acid (Ffa). Bicellar systems are discoidal aggregates formed by long and short alkyl chain phospholipids. Characterization of the bicellar systems by dynamic light scattering (DLS) and cryogenic transmission electron microscopy (Cryo-TEM) showed that particle size decreased when DDEA was encapsulated and increased when Ffa was included in the bicellar systems. Percutaneous absorption studies demonstrated a lower penetration of DDEA and Ffa through the skin when the drugs were included in the bicellar systems than when the drugs were applied in an aqueous solution (DDEA) and in an ethanolic solution (Ffa); the reduction in penetration was more pronounced with Ffa. These bicellar systems may have retardant effects on percutaneous absorption, which result in a promising strategy for future drug or cosmetic delivery applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Transdermal patches: history, development and pharmacology.

    PubMed

    Pastore, Michael N; Kalia, Yogeshvar N; Horstmann, Michael; Roberts, Michael S

    2015-05-01

    Transdermal patches are now widely used as cosmetic, topical and transdermal delivery systems. These patches represent a key outcome from the growth in skin science, technology and expertise developed through trial and error, clinical observation and evidence-based studies that date back to the first existing human records. This review begins with the earliest topical therapies and traces topical delivery to the present-day transdermal patches, describing along the way the initial trials, devices and drug delivery systems that underpin current transdermal patches and their actives. This is followed by consideration of the evolution in the various patch designs and their limitations as well as requirements for actives to be used for transdermal delivery. The properties of and issues associated with the use of currently marketed products, such as variability, safety and regulatory aspects, are then described. The review concludes by examining future prospects for transdermal patches and drug delivery systems, such as the combination of active delivery systems with patches, minimally invasive microneedle patches and cutaneous solutions, including metered-dose systems. © 2015 The British Pharmacological Society.

  18. Development of controlled drug delivery systems for bone fracture-targeted therapeutic delivery: A review.

    PubMed

    Wang, Yuchen; Newman, Maureen R; Benoit, Danielle S W

    2018-06-01

    Impaired fracture healing is a major clinical problem that can lead to patient disability, prolonged hospitalization, and significant financial burden. Although the majority of fractures heal using standard clinical practices, approximately 10% suffer from delayed unions or non-unions. A wide range of factors contribute to the risk for nonunions including internal factors, such as patient age, gender, and comorbidities, and external factors, such as the location and extent of injury. Current clinical approaches to treat nonunions include bone grafts and low-intensity pulsed ultrasound (LIPUS), which realizes clinical success only to select patients due to limitations including donor morbidities (grafts) and necessity of fracture reduction (LIPUS), respectively. To date, therapeutic approaches for bone regeneration rely heavily on protein-based growth factors such as INFUSE, an FDA-approved scaffold for delivery of bone morphogenetic protein 2 (BMP-2). Small molecule modulators and RNAi therapeutics are under development to circumvent challenges associated with traditional growth factors. While preclinical studies has shown promise, drug delivery has become a major hurdle stalling clinical translation. Therefore, this review overviews current therapies employed to stimulate fracture healing pre-clinically and clinically, including a focus on drug delivery systems for growth factors, parathyroid hormone (PTH), small molecules, and RNAi therapeutics, as well as recent advances and future promise of fracture-targeted drug delivery. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Microencapsulation: A promising technique for controlled drug delivery.

    PubMed

    Singh, M N; Hemant, K S Y; Ram, M; Shivakumar, H G

    2010-07-01

    MICROPARTICLES OFFER VARIOUS SIGNIFICANT ADVANTAGES AS DRUG DELIVERY SYSTEMS, INCLUDING: (i) an effective protection of the encapsulated active agent against (e.g. enzymatic) degradation, (ii) the possibility to accurately control the release rate of the incorporated drug over periods of hours to months, (iii) an easy administration (compared to alternative parenteral controlled release dosage forms, such as macro-sized implants), and (iv) Desired, pre-programmed drug release profiles can be provided which match the therapeutic needs of the patient. This article gives an overview on the general aspects and recent advances in drug-loaded microparticles to improve the efficiency of various medical treatments. An appropriately designed controlled release drug delivery system can be a foot ahead towards solving problems concerning to the targeting of drug to a specific organ or tissue, and controlling the rate of drug delivery to the target site. The development of oral controlled release systems has been a challenge to formulation scientist due to their inability to restrain and localize the system at targeted areas of gastrointestinal tract. Microparticulate drug delivery systems are an interesting and promising option when developing an oral controlled release system. The objective of this paper is to take a closer look at microparticles as drug delivery devices for increasing efficiency of drug delivery, improving the release profile and drug targeting. In order to appreciate the application possibilities of microcapsules in drug delivery, some fundamental aspects are briefly reviewed.

  20. Microencapsulation: A promising technique for controlled drug delivery

    PubMed Central

    Singh, M.N.; Hemant, K.S.Y.; Ram, M.; Shivakumar, H.G.

    2010-01-01

    Microparticles offer various significant advantages as drug delivery systems, including: (i) an effective protection of the encapsulated active agent against (e.g. enzymatic) degradation, (ii) the possibility to accurately control the release rate of the incorporated drug over periods of hours to months, (iii) an easy administration (compared to alternative parenteral controlled release dosage forms, such as macro-sized implants), and (iv) Desired, pre-programmed drug release profiles can be provided which match the therapeutic needs of the patient. This article gives an overview on the general aspects and recent advances in drug-loaded microparticles to improve the efficiency of various medical treatments. An appropriately designed controlled release drug delivery system can be a foot ahead towards solving problems concerning to the targeting of drug to a specific organ or tissue, and controlling the rate of drug delivery to the target site. The development of oral controlled release systems has been a challenge to formulation scientist due to their inability to restrain and localize the system at targeted areas of gastrointestinal tract. Microparticulate drug delivery systems are an interesting and promising option when developing an oral controlled release system. The objective of this paper is to take a closer look at microparticles as drug delivery devices for increasing efficiency of drug delivery, improving the release profile and drug targeting. In order to appreciate the application possibilities of microcapsules in drug delivery, some fundamental aspects are briefly reviewed. PMID:21589795

  1. Applying Toyota production system techniques for medication delivery: improving hospital safety and efficiency.

    PubMed

    Newell, Terry L; Steinmetz-Malato, Laura L; Van Dyke, Deborah L

    2011-01-01

    The inpatient medication delivery system used at a large regional acute care hospital in the Midwest had become antiquated and inefficient. The existing 24-hr medication cart-fill exchange process with delivery to the patients' bedside did not always provide ordered medications to the nursing units when they were needed. In 2007 the principles of the Toyota Production System (TPS) were applied to the system. Project objectives were to improve medication safety and reduce the time needed for nurses to retrieve patient medications. A multidisciplinary team was formed that included representatives from nursing, pharmacy, informatics, quality, and various operational support departments. Team members were educated and trained in the tools and techniques of TPS, and then designed and implemented a new pull system benchmarking the TPS Ideal State model. The newly installed process, providing just-in-time medication availability, has measurably improved delivery processes as well as patient safety and satisfaction. Other positive outcomes have included improved nursing satisfaction, reduced nursing wait time for delivered medications, and improved efficiency in the pharmacy. After a successful pilot on two nursing units, the system is being extended to the rest of the hospital. © 2010 National Association for Healthcare Quality.

  2. Building Student and Family-Centered Care Coordination Through Ongoing Delivery System Design.

    PubMed

    Baker, Dian; Anderson, Lori; Johnson, Jody

    2017-01-01

    In 2016 the National Association of School Nurses released an updated framework for school nurse practice. One highlight of the new framework is 21st century care coordination. That is, moving beyond basic case management to a systems-level approach for delivery of school health services. The framework broadly applies the term care coordination to include direct care and communication across systems. School nurses are often engaged in efforts to create school health care homes that serve as an axis of coordination for students and families between primary care offices and the schools. Effective care coordination requires that the school nurses not only know the principles of traditional case management but also understand complex systems that drive effective care coordination. The outcome of a system-level approach is enhanced access to services in an integrated health care delivery system that includes the school nurse as an integral member of the school's health care team. This article presents a comprehensive, system-level model of care coordination for school nurse leadership and practice.

  3. Evaluation of Roadmap to Achieve Energy Delivery Systems Cybersecurity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavez, Adrian R.

    The Department of Energy/Office of Electricity Delivery and Energy Reliability (DOE/OE) Cybersecurity for Energy Delivery Systems (CEDS) program is currently evaluating the Roadmap to Achieve Energy Delivery Systems Cybersecurity document that sets a vision and outlines a set of milestones. The milestones are divided into five strategic focus areas that include: 1. Build a Culture of Security; 2. Assess and Monitor Risk; 3. Develop and Implement New Protective Measures to Reduce Risk; 4. Manage Incidents; and 5. Sustain Security Improvements. The most current version of the roadmap was last updated in September of 2016. Sandia National Laboratories (SNL) has beenmore » tasked with revisiting the roadmap to update the current state of energy delivery systems cybersecurity protections. SNL is currently working with previous and current partners to provide feedback on which of the roadmap milestones have been met and to identify any preexisting or new gaps that are not addressed by the roadmap. The specific focus areas SNL was asked to evaluate are: 1. Develop and Implement New Protective Measures to Reduce Risk and 2. Sustain Security Improvements. SNL has formed an Industry Advisory Board (IAB) to assist in answering these questions. The IAB consists of previous partners on past CEDS funded efforts as well as new collaborators that have unique insights into the current state of cybersecurity within energy delivery systems. The IAB includes asset owners, utilities and vendors of control systems. SNL will continue to maintain regular communications with the IAB to provide various perspectives on potential future updates to further improve the breadth of cybersecurity coverage of the roadmap.« less

  4. Determining the feasibility of robotic courier medication delivery in a hospital setting.

    PubMed

    Kirschling, Thomas E; Rough, Steve S; Ludwig, Brad C

    2009-10-01

    The feasibility of a robotic courier medication delivery system in a hospital setting was evaluated. Robotic couriers are self-guiding, self-propelling robots that navigate hallways and elevators to pull an attached or integrated cart to a desired destination. A robotic courier medication delivery system was pilot tested in two patient care units at a 471-bed tertiary care academic medical center. Average transit for the existing manual medication delivery system hourly hospitalwide deliveries was 32.6 minutes. Of this, 32.3% was spent at the patient care unit and 67.7% was spent pushing the cart or waiting at an elevator. The robotic courier medication delivery system traveled as fast as 1.65 ft/sec (52% speed of the manual system) in the absence of barriers but moved at an average rate of 0.84 ft/sec (26% speed of the manual system) during the study, primarily due to hallway obstacles. The robotic courier was utilized for 50% of the possible 1750 runs during the 125-day pilot due to technical or situational difficulties. Of the runs that were sent, a total of 79 runs failed, yielding an overall 91% success rate. During the final month of the pilot, the success rate reached 95.6%. Customer satisfaction with the traditional manual delivery system was high. Customer satisfaction with deliveries declined after implementation of the robotic courier medication distribution system. A robotic courier medication delivery system was implemented but was not expanded beyond the two pilot units. Challenges of implementation included ongoing education on how to properly move the robotic courier and keeping the hallway clear of obstacles.

  5. Controlled growth factor release from synthetic extracellular matrices

    NASA Astrophysics Data System (ADS)

    Lee, Kuen Yong; Peters, Martin C.; Anderson, Kenneth W.; Mooney, David J.

    2000-12-01

    Polymeric matrices can be used to grow new tissues and organs, and the delivery of growth factors from these matrices is one method to regenerate tissues. A problem with engineering tissues that exist in a mechanically dynamic environment, such as bone, muscle and blood vessels, is that most drug delivery systems have been designed to operate under static conditions. We thought that polymeric matrices, which release growth factors in response to mechanical signals, might provide a new approach to guide tissue formation in mechanically stressed environments. Critical design features for this type of system include the ability to undergo repeated deformation, and a reversible binding of the protein growth factors to polymeric matrices to allow for responses to repeated stimuli. Here we report a model delivery system that can respond to mechanical signalling and upregulate the release of a growth factor to promote blood vessel formation. This approach may find a number of applications, including regeneration and engineering of new tissues and more general drug-delivery applications.

  6. Exploration of the Performance of a Hybrid Closed Loop Insulin Delivery Algorithm That Includes Insulin Delivery Limits Designed to Protect Against Hypoglycemia.

    PubMed

    de Bock, Martin; Dart, Julie; Roy, Anirban; Davey, Raymond; Soon, Wayne; Berthold, Carolyn; Retterath, Adam; Grosman, Benyamin; Kurtz, Natalie; Davis, Elizabeth; Jones, Timothy

    2017-01-01

    Hypoglycemia remains a risk for closed loop insulin delivery particularly following exercise or if the glucose sensor is inaccurate. The aim of this study was to test whether an algorithm that includes a limit to insulin delivery is effective at protecting against hypoglycemia under those circumstances. An observational study on 8 participants with type 1 diabetes was conducted, where a hybrid closed loop system (HCL) (Medtronic™ 670G) was challenged with hypoglycemic stimuli: exercise and an overreading glucose sensor. There was no overnight or exercise-induced hypoglycemia during HCL insulin delivery. All daytime hypoglycemia was attributable to postmeal bolused insulin in those participants with a more aggressive carbohydrate factor. HCL systems rely on accurate carbohydrate ratios and carbohydrate counting to avoid hypoglycemia. The algorithm that was tested against moderate exercise and an overreading glucose sensor performed well in terms of hypoglycemia avoidance. Algorithm refinement continues in preparation for long-term outpatient trials.

  7. Coordinating Mental Health Care across Primary Care and Schools: ADHD as a Case Example

    ERIC Educational Resources Information Center

    Power, Thomas J.; Blum, Nathan J.; Guevara, James P.; Jones, Heather A.; Leslie, Laurel K.

    2013-01-01

    Although primary care practices and schools are major venues for the delivery of mental health services to children, these systems are disconnected, contributing to fragmentation in service delivery. This paper describes barriers to collaboration across the primary care and school systems, including administrative and fiscal pressures, conceptual…

  8. Vocational Education Distance Learning Delivery System. Final Report.

    ERIC Educational Resources Information Center

    Hardy, Darcy Walsh

    A project was conducted to identify criteria and procedures for using a distance learning delivery system at the University of Texas TeleLearning Center to teach Health Occupations II to high school seniors. Another objective was expanding the current distance learning program for health occupations to include between 15 and 20 school districts.…

  9. Integration of e-Management, e-Development and e-Learning Technologies for Blended Course Delivery

    ERIC Educational Resources Information Center

    Johnson, Lynn E.; Tang, Michael

    2005-01-01

    This paper describes and assesses a pre-engineering curriculum development project called Foundations of Engineering, Science and Technology (FEST). FEST integrates web-based technologies into an inter-connected system to enable delivery of a blended program at multiple institutions. Tools and systems described include 1) technologies to deliver…

  10. Surface-Modified Nanocarriers for Nose-to-Brain Delivery: From Bioadhesion to Targeting

    PubMed Central

    Clementino, Adryana; Buttini, Francesca; Colombo, Gaia; Pescina, Silvia; Stanisçuaski Guterres, Silvia; Nicoli, Sara

    2018-01-01

    In the field of nasal drug delivery, nose-to-brain delivery is among the most fascinating applications, directly targeting the central nervous system, bypassing the blood brain barrier. Its benefits include dose lowering and direct brain distribution of potent drugs, ultimately reducing systemic side effects. Recently, nasal administration of insulin showed promising results in clinical trials for the treatment of Alzheimer’s disease. Nanomedicines could further contribute to making nose-to-brain delivery a reality. While not disregarding the need for devices enabling a formulation deposition in the nose’s upper part, surface modification of nanomedicines appears the key strategy to optimize drug delivery from the nasal cavity to the brain. In this review, nanomedicine delivery based on particle engineering exploiting surface electrostatic charges, mucoadhesive polymers, or chemical moieties targeting the nasal epithelium will be discussed and critically evaluated in relation to nose-to-brain delivery. PMID:29543755

  11. Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: A review.

    PubMed

    McClements, David Julian

    2018-03-01

    There are many examples of bioactive proteins and peptides that would benefit from oral delivery through functional foods, supplements, or medical foods, including hormones, enzymes, antimicrobials, vaccines, and ACE inhibitors. However, many of these bioactive proteins are highly susceptible to denaturation, aggregation or hydrolysis within commercial products or inside the human gastrointestinal tract (GIT). Moreover, many bioactive proteins have poor absorption characteristics within the GIT. Colloidal systems, which contain nanoparticles or microparticles, can be designed to encapsulate, retain, protect, and deliver bioactive proteins. For instance, a bioactive protein may have to remain encapsulated and stable during storage and passage through the mouth and stomach, but then be released within the small intestine where it can be absorbed. This article reviews the application of food-grade colloidal systems for oral delivery of bioactive proteins, including microemulsions, emulsions, nanoemulsions, solid lipid nanoparticles, multiple emulsions, liposomes, and microgels. It also provides a critical assessment of the characteristics of colloidal particles that impact the effectiveness of protein delivery systems, such as particle composition, size, permeability, interfacial properties, and stability. This information should be useful for the rational design of medical foods, functional foods, and supplements for effective oral delivery of bioactive proteins. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. System and method for delivery of neutron beams for medical therapy

    DOEpatents

    Nigg, David W.; Wemple, Charles A.

    1999-01-01

    A neutron delivery system that provides improved capability for tumor control during medical therapy. The system creates a unique neutron beam that has a bimodal or multi-modal energy spectrum. This unique neutron beam can be used for fast-neutron therapy, boron neutron capture therapy (BNCT), or both. The invention includes both an apparatus and a method for accomplishing the purposes of the invention.

  13. Novel drug delivery system: an immense hope for diabetics.

    PubMed

    Rai, Vineet Kumar; Mishra, Nidhi; Agrawal, Ashish Kumar; Jain, Sanyog; Yadav, Narayan Prasad

    2016-09-01

    Existing medication systems for the treatment of diabetes mellitus (DM) are inconvenient and troublesome for effective and safe delivery of drugs to the specific site. Therefore, investigations are desired to deliver antidiabetics using novel delivery approaches followed by their commercialization. The present review aims to provide a compilation on the latest development in the field of novel drug delivery systems (NDDSs) for antidiabetics with special emphasis on particulate, vesicular and miscellaneous systems. Review of literature (restricted to English language only) was done using electronic databases like Pubmed® and Scirus, i.e. published during 2005-2013. The CIMS/MIMS India Medical Drug Information eBook was used regarding available marketed formulation of antidiabetic drugs. Keywords used were "nanoparticle", "microparticle", "liposomes", "niosomes", "transdermal systems", "insulin", "antidiabetic drugs" and "novel drug delivery systems". Single inclusion was made for one article. If in vivo study was not done then article was seldom included in the manuscript. The curiosity to develop NDDSs of antidiabetic drugs with special attention to the nanoparticulate system followed by microparticulate and lipid-based system is found to emerge gradually to overcome the problems associated with the conventional dosage forms and to win the confidence of end users towards the higher acceptability. In the current scientific panorama when the area of novel drug delivery system has been recognized for its palpable benefits, unique potential of providing physical stability, sustained and site-specific drug delivery for a scheduled period of time can open new vistas for precise, safe and quality treatment of DM.

  14. Buccal drug delivery technologies for patient-centred treatment of radiation-induced xerostomia (dry mouth).

    PubMed

    Malallah, Osamah S; Garcia, Cristina M Aller; Proctor, Gordon B; Forbes, Ben; Royall, Paul G

    2018-04-25

    Radiotherapy is a life-saving treatment for head and neck cancers, but almost 100% of patients develop dry mouth (xerostomia) because of radiation-induced damage to their salivary glands. Patients with xerostomia suffer symptoms that severely affect their health as well as physical, social and emotional aspects of their life. The current management of xerostomia is the application of saliva substitutes or systemic delivery of saliva-stimulating cholinergic agents, including pilocarpine, cevimeline or bethanechol tablets. It is almost impossible for substitutes to replicate all the functional and sensory facets of natural saliva. Salivary stimulants are a better treatment option than saliva substitutes as the former induce the secretion of natural saliva from undamaged glands; typically, these are the minor salivary glands. However, patients taking cholinergic agents systemically experience pharmacology-related side effects including sweating, excessive lacrimation and gastrointestinal tract distresses. Local delivery direct to the buccal mucosa has the potential to provide rapid onset of drug action, i.e. activation of minor salivary glands within the buccal mucosa, while sparing systemic drug exposure and off-target effects. This critical review of the technologies for the local delivery of saliva-stimulating agents includes oral disintegrating tablets (ODTs), oral disintegrating films, medicated chewing gums and implantable drug delivery devices. Our analysis makes a strong case for the development of ODTs for the buccal delivery of cholinergic agents: these must be patient-friendly delivery platforms with variable loading capacities that release the drug rapidly in fluid volumes typical of residual saliva in xerostomia (0.05-0.1 mL). Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: selective targeting to diseased versus healthy tissue.

    PubMed

    Hua, Susan; Marks, Ellen; Schneider, Jennifer J; Keely, Simon

    2015-07-01

    Colon targeted drug delivery is an active area of research for local diseases affecting the colon, as it improves the efficacy of therapeutics and enables localized treatment, which reduces systemic toxicity. Targeted delivery of therapeutics to the colon is particularly advantageous for the treatment of inflammatory bowel disease (IBD), which includes ulcerative colitis and Crohn's disease. Advances in oral drug delivery design have significantly improved the bioavailability of drugs to the colon; however in order for a drug to have therapeutic efficacy during disease, considerations must be made for the altered physiology of the gastrointestinal (GI) tract that is associated with GI inflammation. Nanotechnology has been used in oral dosage formulation design as strategies to further enhance uptake into diseased tissue within the colon. This review will describe some of the physiological challenges faced by orally administered delivery systems in IBD, the important developments in orally administered nano-delivery systems for colon targeting, and the future advances of this research. Inflammatory Bowel Disease (IBD) poses a significant problem for a large number of patients worldwide. Current medical therapy mostly aims at suppressing the active inflammatory episodes. In this review article, the authors described and discussed the various approaches current nano-delivery systems can offer in overcoming the limitations of conventional drug formulations. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Porous Carriers for Controlled/Modulated Drug Delivery

    PubMed Central

    Ahuja, G.; Pathak, K.

    2009-01-01

    Considerable research efforts have been directed in recent years towards the development of porous carriers as controlled drug delivery matrices because of possessing several features such as stable uniform porous structure, high surface area, tunable pore size and well-defined surface properties. Owing to wide range of useful properties porous carriers have been used in pharmaceuticals for many purposes including development of floating drug delivery systems, sustained drug delivery systems. Various types of pores like open, closed, transport and blind pores in the porous solid allow them to adsorb drugs and release them in a more reproducible and predictable manner. Pharmaceutically exploited porous adsorbents includes, silica (mesoporous), ethylene vinyl acetate (macroporous), polypropylene foam powder (microporous), titanium dioxide (nanoporous). When porous polymeric drug delivery system is placed in contact with appropriate dissolution medium, release of drug to medium must be preceded by the drug dissolution in the water filled pores or from surface and by diffusion through the water filled channels. The porous carriers are used to improve the oral bioavailability of poorly water soluble drugs, to increase the dissolution of relatively insoluble powders and conversion of crystalline state to amorphous state. PMID:20376211

  17. Current Multistage Drug Delivery Systems Based on the Tumor Microenvironment

    PubMed Central

    Chen, Binlong; Dai, Wenbing; He, Bing; Zhang, Hua; Wang, Xueqing; Wang, Yiguang; Zhang, Qiang

    2017-01-01

    The development of traditional tumor-targeted drug delivery systems based on EPR effect and receptor-mediated endocytosis is very challenging probably because of the biological complexity of tumors as well as the limitations in the design of the functional nano-sized delivery systems. Recently, multistage drug delivery systems (Ms-DDS) triggered by various specific tumor microenvironment stimuli have emerged for tumor therapy and imaging. In response to the differences in the physiological blood circulation, tumor microenvironment, and intracellular environment, Ms-DDS can change their physicochemical properties (such as size, hydrophobicity, or zeta potential) to achieve deeper tumor penetration, enhanced cellular uptake, timely drug release, as well as effective endosomal escape. Based on these mechanisms, Ms-DDS could deliver maximum quantity of drugs to the therapeutic targets including tumor tissues, cells, and subcellular organelles and eventually exhibit the highest therapeutic efficacy. In this review, we expatiate on various responsive modes triggered by the tumor microenvironment stimuli, introduce recent advances in multistage nanoparticle systems, especially the multi-stimuli responsive delivery systems, and discuss their functions, effects, and prospects. PMID:28255348

  18. Laboratory formulated magnetic nanoparticles for enhancement of viral gene expression in suspension cell line.

    PubMed

    Bhattarai, Shanta Raj; Kim, Sun Young; Jang, Kyu Yun; Lee, Ki Chang; Yi, Ho Keun; Lee, Dae Yeol; Kim, Hak Yong; Hwang, Pyoung Han

    2008-02-01

    One factor critical to successful gene therapy is the development of efficient delivery systems. Although advances in gene transfer technology including viral and non-viral vectors have been made, an ideal vector system has not yet been constructed. Due to the growing concerns over the toxicity and immunogenicity of viral DNA delivery systems, DNA delivery via improve viral routes has become more desirable and advantageous. The ideal improve viral DNA delivery system should be a synthetic materials plus viral vectors. The materials should also be biocompatible, efficient, and modular so that it is tunable to various applications in both research and clinical settings. The successful steps towards this improve viral DNA delivery system is demonstrated: a magnetofection system mediated by modified cationic chitosan-coated iron oxide nanoparticles. Dense colloidal cationic iron oxide nanoparticles serve as an uptake-enhancing component by physical concentration at the cell surface in presence of external magnetic fields; enhanced viral gene expression (3-100-fold) due to the particles is seen as compared to virus vector alone with little virus dose.

  19. Current Multistage Drug Delivery Systems Based on the Tumor Microenvironment.

    PubMed

    Chen, Binlong; Dai, Wenbing; He, Bing; Zhang, Hua; Wang, Xueqing; Wang, Yiguang; Zhang, Qiang

    2017-01-01

    The development of traditional tumor-targeted drug delivery systems based on EPR effect and receptor-mediated endocytosis is very challenging probably because of the biological complexity of tumors as well as the limitations in the design of the functional nano-sized delivery systems. Recently, multistage drug delivery systems (Ms-DDS) triggered by various specific tumor microenvironment stimuli have emerged for tumor therapy and imaging. In response to the differences in the physiological blood circulation, tumor microenvironment, and intracellular environment, Ms-DDS can change their physicochemical properties (such as size, hydrophobicity, or zeta potential) to achieve deeper tumor penetration, enhanced cellular uptake, timely drug release, as well as effective endosomal escape. Based on these mechanisms, Ms-DDS could deliver maximum quantity of drugs to the therapeutic targets including tumor tissues, cells, and subcellular organelles and eventually exhibit the highest therapeutic efficacy. In this review, we expatiate on various responsive modes triggered by the tumor microenvironment stimuli, introduce recent advances in multistage nanoparticle systems, especially the multi-stimuli responsive delivery systems, and discuss their functions, effects, and prospects.

  20. Transdermal delivery of scopolamine by natural submicron injectors: in-vivo study in pig.

    PubMed

    Shaoul, Esther; Ayalon, Ari; Tal, Yossi; Lotan, Tamar

    2012-01-01

    Transdermal drug delivery has made a notable contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. While transdermal delivery systems would appear to provide an attractive solution for local and systemic drug delivery, only a limited number of drugs can be delivered through the outer layer of the skin. The most difficult to deliver in this way are hydrophilic drugs. The aquatic phylum Cnidaria, which includes sea anemones, corals, jellyfish and hydra, is one of the most ancient multicellular phyla that possess stinging cells containing organelles (cnidocysts), comprising a sophisticated injection system. The apparatus is folded within collagenous microcapsules and upon activation injects a thin tubule that immediately penetrates the prey and delivers its contents. Here we show that this natural microscopic injection system can be adapted for systemic transdermal drug delivery once it is isolated from the cells and uploaded with the drug. Using a topically applied gel containing isolated natural sea anemone injectors and the muscarinic receptor antagonist scopolamine, we found that the formulated injectors could penetrate porcine skin and immediately deliver this hydrophilic drug. An in-vivo study in pigs demonstrated, for the first time, rapid systemic delivery of scopolamine, with T(max) of 30 minutes and C(max) 5 times higher than in controls treated topically with a scopolamine-containing gel without cnidocysts. The ability of the formulated natural injection system to penetrate a barrier as thick as the skin and systemically deliver an exogenous compound presents an intriguing and attractive alternative for hydrophilic transdermal drug delivery.

  1. Transdermal Delivery of Scopolamine by Natural Submicron Injectors: In-Vivo Study in Pig

    PubMed Central

    Shaoul, Esther; Ayalon, Ari; Tal, Yossi; Lotan, Tamar

    2012-01-01

    Transdermal drug delivery has made a notable contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. While transdermal delivery systems would appear to provide an attractive solution for local and systemic drug delivery, only a limited number of drugs can be delivered through the outer layer of the skin. The most difficult to deliver in this way are hydrophilic drugs. The aquatic phylum Cnidaria, which includes sea anemones, corals, jellyfish and hydra, is one of the most ancient multicellular phyla that possess stinging cells containing organelles (cnidocysts), comprising a sophisticated injection system. The apparatus is folded within collagenous microcapsules and upon activation injects a thin tubule that immediately penetrates the prey and delivers its contents. Here we show that this natural microscopic injection system can be adapted for systemic transdermal drug delivery once it is isolated from the cells and uploaded with the drug. Using a topically applied gel containing isolated natural sea anemone injectors and the muscarinic receptor antagonist scopolamine, we found that the formulated injectors could penetrate porcine skin and immediately deliver this hydrophilic drug. An in-vivo study in pigs demonstrated, for the first time, rapid systemic delivery of scopolamine, with Tmax of 30 minutes and Cmax 5 times higher than in controls treated topically with a scopolamine-containing gel without cnidocysts. The ability of the formulated natural injection system to penetrate a barrier as thick as the skin and systemically deliver an exogenous compound presents an intriguing and attractive alternative for hydrophilic transdermal drug delivery. PMID:22363770

  2. Polymeric drug delivery systems for intraoral site-specific chemoprevention of oral cancer.

    PubMed

    Desai, Kashappa Goud H

    2018-04-01

    Oral cancer is among the most prevalent cancers in the world. Moreover, it is one of the major health problems and causes of death in many regions of the world. The traditional treatment modalities include surgical removal, radiation therapy, systemic chemotherapy, or a combination of these methods. In recent decades, there has been significant interest in intraoral site-specific chemoprevention via local drug delivery using polymeric systems. Because of its easy accessibility and clear visibility, the oral mucosa is amenable for local drug delivery. A variety of polymeric systems-such as gels, tablets, films, patches, injectable systems (e.g., millicylindrical implants, microparticles, and in situ-forming depots), and nanosized carriers (e.g., polymeric nanoparticles, nanofibers, polymer-drug conjugates, polymeric micelles, nanoliposomes, nanoemulsions, and polymersomes)-have been developed and evaluated for the local delivery of natural and synthetic chemopreventive agents. The findings of in vitro, ex vivo, and in vivo studies and the positive outcome of clinical trials demonstrate that intraoral site-specific drug delivery is an attractive, highly effective and patient-friendly strategy for the management of oral cancer. Intraoral site-specific drug delivery provides unique therapeutic advantages when compared to systemic chemotherapy. Moreover, intraoral drug delivery systems are self-administrable and can be removed when needed, increasing patient compliance. This article covers important aspects and advances related to the design, development, and efficacy of polymeric systems for intraoral site-specific drug delivery. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1383-1413, 2018. © 2017 Wiley Periodicals, Inc.

  3. Calcium phosphate ceramics in drug delivery

    NASA Astrophysics Data System (ADS)

    Bose, Susmita; Tarafder, Solaiman; Edgington, Joe; Bandyopadhyay, Amit

    2011-04-01

    Calcium phosphate (CaP) particulates, cements and scaffolds have attracted significant interest as drug delivery vehicles. CaP systems, including both hydroxyapaptite and tricalcium phosphates, possess variable stoichiometry, functionality and dissolution properties which make them suitable for cellular delivery. Their chemical similarity to bone and thus biocompatibility, as well as variable surface charge density contribute to their controlled release properties. Among specific research areas, nanoparticle size, morphology, surface area due to porosity, and chemistry controlled release kinetics are the most active. This article discusses CaP systems in their particulate, cements, and scaffold forms for drug, protein, and growth factor delivery toward orthopedic and dental applications.

  4. Solid source MOCVD system

    DOEpatents

    Hubert, Brian N.; Wu, Xin Di

    1998-01-01

    A system for MOCVD fabrication of superconducting and non-superconducting oxide films provides a delivery system for the feeding of metalorganic precursors for multi-component chemical vapor deposition. The delivery system can include multiple cartridges containing tightly packed precursor materials. The contents of each cartridge can be ground at a desired rate and fed together with precursor materials from other cartridges to a vaporization zone and then to a reaction zone within a deposition chamber for thin film deposition.

  5. Development of a Microfluidics-Based Intracochlear Drug Delivery Device

    PubMed Central

    Sewell, William F.; Borenstein, Jeffrey T.; Chen, Zhiqiang; Fiering, Jason; Handzel, Ophir; Holmboe, Maria; Kim, Ernest S.; Kujawa, Sharon G.; McKenna, Michael J.; Mescher, Mark M.; Murphy, Brian; Leary Swan, Erin E.; Peppi, Marcello; Tao, Sarah

    2009-01-01

    Background Direct delivery of drugs and other agents into the inner ear will be important for many emerging therapies, including the treatment of degenerative disorders and guiding regeneration. Methods We have taken a microfluidics/MEMS (MicroElectroMechanical Systems) technology approach to develop a fully implantable reciprocating inner-ear drug-delivery system capable of timed and sequenced delivery of agents directly into perilymph of the cochlea. Iterations of the device were tested in guinea pigs to determine the flow characteristics required for safe and effective delivery. For these tests, we used the glutamate receptor blocker DNQX, which alters auditory nerve responses but not cochlear distortion product otoacoustic emissions. Results We have demonstrated safe and effective delivery of agents into the scala tympani. Equilibration of the drug in the basal turn occurs rapidly (within tens of minutes) and is dependent on reciprocating flow parameters. Conclusion We have described a prototype system for the direct delivery of drugs to the inner ear that has the potential to be a fully implantable means for safe and effective treatment of hearing loss and other diseases. PMID:19923811

  6. Microneedles for enhanced transdermal and intraocular drug delivery.

    PubMed

    Moffatt, Kurtis; Wang, Yujing; Raj Singh, Thakur Raghu; Donnelly, Ryan F

    2017-10-01

    Microneedle mediated delivery based research has garnered great interest in recent years. In the past, the initial focus was delivery of macromolecules of biological origin, however the field has now broadened its scope to include transdermal delivery of conventional low molecular weight drug molecules. Great success has been demonstrated utilising this approach, particularly in the field of vaccine delivery. Current technological advances have permitted an enhancement in design formulation, allowing delivery of therapeutic doses of small molecule drugs and biomolecules, aided by larger patch sizes and scalable manufacture. In addition, it has been recently shown that microneedles are beneficial in localisation of drug delivery systems within targeted ocular tissues. Microneedles have the capacity to modify the means in which therapeutics and formulations are delivered to the eye. However, further research is still required due to potential drawbacks and challenges. Indeed, no true microneedle-based transdermal or ocular drug delivery system has yet been marketed. Some concerns have been raised regarding regulatory issues and manufacturing processes of such systems, and those in the field are now actively working to address them. Microneedle-based transdermal and ocular drug delivery systems have the potential to greatly impact not only patient benefits, but also industry, and through diligence, innovation and collaboration, their true potential will begin to be realised within the next 3-5 years. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Inhaled Micro/Nanoparticulate Anticancer Drug Formulations: An Emerging Targeted Drug Delivery Strategy for Lung Cancers.

    PubMed

    Islam, Nazrul; Richard, Derek

    2018-05-24

    Local delivery of drug to the target organ via inhalation offers enormous benefits in the management of many diseases. Lung cancer is the most common of all cancers and it is the leading cause of death worldwide. Currently available treatment systems (intravenous or oral drug delivery) are not efficient in accumulating the delivered drug into the target tumor cells and are usually associated with various systemic and dose-related adverse effects. The pulmonary drug delivery technology would enable preferential accumulation of drug within the cancer cell and thus be superior to intravenous and oral delivery in reducing cancer cell proliferation and minimising the systemic adverse effects. Site-specific drug delivery via inhalation for the treatment of lung cancer is both feasible and efficient. The inhaled drug delivery system is non-invasive, produces high bioavailability at low dose and avoids first pass metabolism of the delivered drug. Various anticancer drugs including chemotherapeutics, proteins and genes have been investigated for inhalation in lung cancers with significant outcomes. Pulmonary delivery of drugs from dry powder inhaler (DPI) formulation is stable and has high patient compliance. Herein, we report the potential of pulmonary drug delivery from dry powder inhaler (DPI) formulations inhibiting lung cancer cell proliferation at very low dose with reduced unwanted adverse effects. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Transforaminal lumbar interbody graft placement using an articulating delivery arm facilitates increased segmental lordosis with superior anterior and midline graft placement.

    PubMed

    Shau, David N; Parker, Scott L; Mendenhall, Stephen K; Zuckerman, Scott L; Godil, Saniya S; Devin, Clinton J; McGirt, Matthew J

    2015-05-01

    Transforaminal lumbar interbody fusion (TLIF) is a frequently performed method of lumbar arthrodesis in patients failing medical management of back and leg pain. Accurate placement of the interbody graft and restoration of lordosis has been shown to be crucial when performing lumbar fusion procedures. We performed a single-surgeon, prospective, randomized study to determine whether a novel articulating versus traditional straight graft delivery arm system allows for superior graft placement and increased lordosis for single-level TLIF. Thirty consecutive patients undergoing single-level TLIF were included and prospectively randomized to one of the 2 groups (articulated vs. straight delivery arm system). Three radiographic characteristics were evaluated at 6-week follow-up: (1) degree of segmental lumbar lordosis at the fused level; (2) the percent anterior location of the interbody graft in disk space; and (3) the distance (mm) off midline of the interbody graft placement. Randomization yielded 16 patients in the articulated delivery arm cohort and 14 in the straight delivery arm cohort. The articulating delivery arm system yielded an average of 14.7-degree segmental lordosis at fused level, 35% anterior location, and 3.6 mm off midline. The straight delivery arm system yielded an average of 10.7-degree segmental lordosis at fused level, 46% anterior location, and 7.0 mm off midline. All 3 comparisons were statistically significant (P<0.05). The study suggests that an articulating delivery arm system facilitates superior anterior and midline TLIF graft placement allowing for increased segmental lordosis compared with a traditional straight delivery arm system.

  9. Zein-based Nanocarriers as Potential Natural Alternatives for Drug and Gene Delivery: Focus on Cancer Therapy.

    PubMed

    Elzoghby, Ahmed; Freag, May; Mamdouh, Hadeer; Elkhodairy, Kadria

    2017-01-01

    Protein nanocarriers possess unique merits including minimal cytotoxicity, numerous renewable sources, and high drug-binding capability. In opposition to delivery carriers utilizing hydrophilic animal proteins, hydrophobic plant proteins (e.g, zein) have great tendency in fabricating controlled-release particulate carriers without additional chemical modification to stiffen them, which in turn evades the use of toxic chemical crosslinkers. Moreover, zein is related to a class of alcohol-soluble prolamins and generally recognized as safe (GRAS) carrier for drug delivery. Various techniques have been adopted to fabricate zein-based nanoparticulate systems including phase separation coacervation, spray-drying, supercritical anti-solvent approach, electrospinning and self-assembly. This manuscript reviews the recent advances in the zein-based colloidal nano-carrier systems such as nanospheres, nanocapsules, micelles and nanofibers with a special focus on their physicochemical characteristics and drug delivery applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Fuel delivery system including heat exchanger means

    NASA Technical Reports Server (NTRS)

    Coffinberry, G. A. (Inventor)

    1978-01-01

    A fuel delivery system is presented wherein first and second heat exchanger means are each adapted to provide the transfer of heat between the fuel and a second fluid such as lubricating oil associated with the gas turbine engine. Valve means are included which are operative in a first mode to provide for flow of the second fluid through both first and second heat exchange means and further operative in a second mode for bypassing the second fluid around the second heat exchanger means.

  11. Liposome-based drug co-delivery systems in cancer cells.

    PubMed

    Zununi Vahed, Sepideh; Salehi, Roya; Davaran, Soodabeh; Sharifi, Simin

    2017-02-01

    Combination therapy and nanotechnology offer a promising therapeutic method in cancer treatment. By improving drug's pharmacokinetics, nanoparticulate systems increase the drug's therapeutic effects while decreasing its adverse side effects related to high dosage. Liposomes are extensively used as drug delivery systems and several liposomal nanomedicines have been approved for clinical applications. In this regard, liposome-based combination chemotherapy (LCC) opens a novel avenue in drug delivery research and has increasingly become a significant approach in clinical cancer treatment. This review paper focuses on LCC strategies including co-delivery of: two chemotherapeutic drugs, chemotherapeutic agent with anti-cancer metals, and chemotherapeutic agent with gene agents and ligand-targeted liposome for co-delivery of chemotherapeutic agents. Definitely, the multidisciplinary method may help improve the efficacy of cancer therapy. An extensive literature review was performed mainly using PubMed. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Liposomal Formulations in Clinical Use: An Updated Review

    PubMed Central

    Bulbake, Upendra; Doppalapudi, Sindhu; Kommineni, Nagavendra; Khan, Wahid

    2017-01-01

    Liposomes are the first nano drug delivery systems that have been successfully translated into real-time clinical applications. These closed bilayer phospholipid vesicles have witnessed many technical advances in recent years since their first development in 1965. Delivery of therapeutics by liposomes alters their biodistribution profile, which further enhances the therapeutic index of various drugs. Extensive research is being carried out using these nano drug delivery systems in diverse areas including the delivery of anti-cancer, anti-fungal, anti-inflammatory drugs and therapeutic genes. The significant contribution of liposomes as drug delivery systems in the healthcare sector is known by many clinical products, e.g., Doxil®, Ambisome®, DepoDur™, etc. This review provides a detailed update on liposomal technologies e.g., DepoFoam™ Technology, Stealth technology, etc., the formulation aspects of clinically used products and ongoing clinical trials on liposomes. PMID:28346375

  13. Polymeric nanoparticles

    PubMed Central

    Bolhassani, Azam; Javanzad, Shabnam; Saleh, Tayebeh; Hashemi, Mehrdad; Aghasadeghi, Mohammad Reza; Sadat, Seyed Mehdi

    2014-01-01

    Nanocarriers with various compositions and biological properties have been extensively applied for in vitro/in vivo drug and gene delivery. The family of nanocarriers includes polymeric nanoparticles, lipid-based carriers (liposomes/micelles), dendrimers, carbon nanotubes, and gold nanoparticles (nanoshells/nanocages). Among different delivery systems, polymeric carriers have several properties such as: easy to synthesize, inexpensive, biocompatible, biodegradable, non-immunogenic, non-toxic, and water soluble. In addition, cationic polymers seem to produce more stable complexes led to a more protection during cellular trafficking than cationic lipids. Nanoparticles often show significant adjuvant effects in vaccine delivery since they may be easily taken up by antigen presenting cells (APCs). Natural polymers such as polysaccharides and synthetic polymers have demonstrated great potential to form vaccine nanoparticles. The development of new adjuvants or delivery systems for DNA and protein immunization is an expanding research field. This review describes polymeric carriers especially PLGA, chitosan, and PEI as vaccine delivery systems. PMID:24128651

  14. Turning theory into practice: the development of modern transdermal drug delivery systems and future trends.

    PubMed

    Perumal, O; Murthy, S N; Kalia, Y N

    2013-01-01

    Despite its remarkable barrier function, the skin remains an attractive site for systemic drug delivery given its easy accessibility, large surface area and the possibility to bypass the gastrointestinal tract and the liver and so modify drug absorption kinetics. The pioneering work of Scheuplein, Higuchi and others in the 1960s helped to explain the processes involved in passive percutaneous absorption and led to the development of mathematical models to describe transdermal drug delivery. The intervening years have seen these theories turned to practice and a significant number of transdermal systems are now available including some that employ active drug delivery. This review briefly discusses the evolution of transdermal therapeutic systems over the years and the potential of newer transdermal technologies to deliver hydrophilic drugs and macromolecules through the skin. © 2013 S. Karger AG, Basel.

  15. Transportation and Travel: DoD Container Delivery System Used for Moving International Freight in Support of US Forces.

    DTIC Science & Technology

    1983-11-17

    aerosol spray cam of paint, deodorant and shaving cream are Included in the hazardous cargo category. (2) Detailed information must be given to the...accepted that a certain amount of detention is inevitable because of the nature of the container delivery system. Each DOD component is held accountable for

  16. Efficiency performance of China's health care delivery system.

    PubMed

    Zhang, Luyu; Cheng, Gang; Song, Suhang; Yuan, Beibei; Zhu, Weiming; He, Li; Ma, Xiaochen; Meng, Qingyue

    2017-07-01

    Improving efficiency performance of the health care delivery system has been on the agenda for the health system reform that China initiated in 2009. This study examines the changes in efficiency performance and determinants of efficiency after the reform to provide evidence to assess the progress of the reform from the perspective of efficiency. Descriptive analysis, Data Envelopment Analysis, the Malmquist Index, and multilevel regressions are used with data from multiple sources, including the World Bank, the China Health Statistical Yearbook, and routine reports. The results indicate that over the last decade, health outcomes compared with health investment were relatively higher in China than in most other countries worldwide, and the trend was stable. The overall efficiency and total factor productivity increased after the reform, indicating that the reform was likely to have had a positive impact on the efficiency performance of the health care delivery system. However, the health care delivery structure showed low system efficiency, mainly attributed to the weakened primary health care system. Strengthening the primary health care system is central to enhancing the future performance of China's health care delivery system. Copyright © 2017 John Wiley & Sons, Ltd.

  17. A quantitative study of IMRT delivery effects in commercial planning systems for the case of oesophagus and prostate tumours.

    PubMed

    Seco, J; Clark, C H; Evans, P M; Webb, S

    2006-05-01

    This study focuses on understanding the impact of intensity-modulated radiotherapy (IMRT) delivery effects when applied to plans generated by commercial treatment-planning systems such as Pinnacle (ADAC Laboratories Inc.) and CadPlan/Helios (Varian Medical Systems). These commercial planning systems have had several version upgrades (with improvements in the optimization algorithm), but the IMRT delivery effects have not been incorporated into the optimization process. IMRT delivery effects include head-scatter fluence from IMRT fields, transmission through leaves and the effect of the rounded shape of the leaf ends. They are usually accounted for after optimization when leaf sequencing the "optimal" fluence profiles, to derive the delivered fluence profile. The study was divided into two main parts: (a) analysing the dose distribution within the planning-target volume (PTV), produced by each of the commercial treatment-planning systems, after the delivered fluence had been renormalized to deliver the correct dose to the PTV; and (b) studying the impact of the IMRT delivery technique on the surrounding critical organs such as the spinal cord, lungs, rectum, bladder etc. The study was performed for tumours of (i) the oesophagus and (ii) the prostate and pelvic nodes. An oesophagus case was planned with the Pinnacle planning system for IMRT delivery, via multiple-static fields (MSF) and compensators, using the Elekta SL25 with a multileaf collimator (MLC) component. A prostate and pelvic nodes IMRT plan was performed with the Cadplan/Helios system for a dynamic delivery (DMLC) using the Varian 120-leaf Millennium MLC. In these commercial planning systems, since IMRT delivery effects are not included into the optimization process, fluence renormalization is required such that the median delivered PTV dose equals the initial prescribed PTV dose. In preparing the optimum fluence profile for delivery, the PTV dose has been "smeared" by the IMRT delivery techniques. In the case of the oesophagus, the critical organ, spinal cord, received a greater dose than initially planned, due to the delivery effects. The increase in the spinal cord dose is of the order of 2-3 Gy. In the case of the prostate and pelvic nodes, the IMRT delivery effects led to an increase of approximately 2 Gy in the dose delivered to the secondary PTV, the pelvic nodes. In addition to this, the small bowel, rectum and bladder received an increased dose of the order of 2-3 Gy to 50% of their total volume. IMRT delivery techniques strongly influence the delivered dose distributions for the oesophagus and prostate/pelvic nodes tumour sites and these effects are not yet accounted for in the Pinnacle and the CadPlan/Helios planning systems. Currently, they must be taken into account during the optimization stage by altering the dose limits accepted during optimization so that the final (sequenced) dose is within the constraints.

  18. Nanomedicines for cancer therapy: state-of-the-art and limitations to pre-clinical studies that hinder future developments

    NASA Astrophysics Data System (ADS)

    Dawidczyk, Charlene; Russell, Luisa; Searson, Peter

    2014-08-01

    The ability to efficiently deliver a drug or gene to a tumor site is dependent on a wide range of factors including circulation time, interactions with the mononuclear phagocyte system, extravasation from circulation at the tumor site, targeting strategy, release from the delivery vehicle, and uptake in cancer cells. Nanotechnology provides the possibility of creating delivery systems where the design constraints are decoupled, allowing new approaches for reducing the unwanted side effects of systemic delivery, increasing tumor accumulation, and improving efficacy. The physico-chemical properties of nanoparticle-based delivery platforms introduce additional complexity associated with pharmacokinetics and tumor accumulation. To assess the impact of nanoparticle-based delivery systems, we first review the design strategies and pharmacokinetics of FDA-approved nanomedicines. Next we review nanomedicines under development, summarizing the range of nanoparticle platforms, strategies for targeting, and pharmacokinetics. We show how the lack of uniformity in preclinical trials prevents systematic comparison and hence limits advances in the field.

  19. Design and development of hyaluronan-functionalized polybenzofulvene nanoparticles as CD44 receptor mediated drug delivery system

    NASA Astrophysics Data System (ADS)

    Licciardi, Mariano; Scialabba, Cinzia; Giammona, Gaetano; Paolino, Marco; Razzano, Vincenzo; Grisci, Giorgio; Giuliani, Germano; Makovec, Francesco; Cappelli, Andrea

    2017-06-01

    A tri-component polymer brush (TCPB ), composed of a polybenzofulvene copolymer bearing low molecular weight hyaluronic acid (HA) on the surface of its cylindrical brush-like backbone and oligo-PEG fractions, was employed in the preparation of 350 nm nanostructured drug delivery systems capable of delivering the anticancer drug doxorubicin. The obtained drug delivery systems were characterized on the basis of drug loading and release, dimensions and zeta potential, morphology and in vitro cell activity, and uptake on three different human cell lines, namely the bronchial epithelial 16HBE, the breast adenocarcinoma MCF-7, and the colon cancer HCT116 cells. Finally, the ability of doxorubicin-loaded TCPB nanoparticles (DOXO-TCPB) to be internalized into cancer cells by CD44 receptor mediated uptake was assessed by means of uptake studies in HCT cells. These data were supported by anti-CD44-FITC staining assay. The proposed TCPB nanostructured drug delivery systems have many potential applications in nanomedicine, including cancer targeted drug delivery.

  20. Delivery Systems for Biopharmaceuticals. Part I: Nanoparticles and Microparticles.

    PubMed

    Silva, Ana C; Lopes, Carla M; Lobo, José M S; Amaral, Maria H

    2015-01-01

    Pharmaceutical biotechnology has been showing therapeutic success never achieved with conventional drug molecules. Therefore, biopharmaceutical products are currently well-established in clinic and the development of new ones is expected. These products comprise mainly therapeutic proteins, although nucleic acids and cells are also included. However, according to their sensitive molecular structures, the efficient delivery of biopharmaceuticals is challenging. Several delivery systems (e.g. microparticles and nanoparticles) composed of different materials (e.g. polymers and lipids) have been explored and demonstrated excellent outcomes, such as: high cellular transfection efficiency for nucleic acids, cell targeting, increased proteins and peptides bioavailability, improved immune response in vaccination, and viability maintenance of microencapsulated cells. Nonetheless, important issues need to be addressed before they reach clinics. For example, more in vivo studies in animals, accessing the toxicity potential and predicting in vivo failure of these delivery systems are required. This is the Part I of two review articles, which presents the state of the art of delivery systems for biopharmaceuticals. Part I deals with microparticles and polymeric and lipid nanoparticles.

  1. Nose-to-brain drug delivery by nanoparticles in the treatment of neurological disorders.

    PubMed

    Ong, Wei-Yi; Shalini, Suku-Maran; Costantino, Luca

    2014-01-01

    Many potential drugs for the treatment of neurological diseases are unable to reach the brain in sufficient enough concentrations to be therapeutic because of the blood brain barrier. On the other hand, direct delivery of drugs to the brain provides the possibility of a greater therapeutic-toxic ratio than with systemic drug delivery. The use of intranasal delivery of therapeutic agents to the brain provides a means of bypassing the blood brain barrier in a non-invasive manner. In this respect, nanosized drug carriers were shown to enhance the delivery of drugs to CNS compared to equivalent drug solution formulations. Neurological conditions that have been studied in animal models that could benefit from nose-to-brain delivery of nanotherapeutics include pain, epilepsy, neurodegenerative disease and infectious diseases. The delivery of drugs to the brain via the nose-to-brain route holds great promise, on the basis of preclinical research by means of drug delivery systems such as polymeric nanoparticles and clinical data related to intranasal delivery to CNS of large molecular weight biologics administered in solution, but safety issues about toxicity on nasal mucosa, Np transport into the brain, delivery only to specific brain regions and variability in the adsorbed dose still represent research topics that need to be considered, with a view of clinical translation of these delivery systems.

  2. Nanostructured Platforms for the Sustained and Local Delivery of Antibiotics in the Treatment of Osteomyelitis

    PubMed Central

    Uskoković, Vuk

    2015-01-01

    This article provides a critical view of the current state of the development of nanoparticulate and other solid-state carriers for the local delivery of antibiotics in the treatment of osteomyelitis. Mentioned are the downsides of traditional means for treating bone infection, which involve systemic administration of antibiotics and surgical debridement, along with the rather imperfect local delivery options currently available in the clinic. Envisaged are more sophisticated carriers for the local and sustained delivery of antimicrobials, including bioresorbable polymeric, collagenous, liquid crystalline, and bioglass- and nanotube-based carriers, as well as those composed of calcium phosphate, the mineral component of bone and teeth. A special emphasis is placed on composite multifunctional antibiotic carriers of a nanoparticulate nature and on their ability to induce osteogenesis of hard tissues demineralized due to disease. An ideal carrier of this type would prevent the long-term, repetitive, and systemic administration of antibiotics and either minimize or completely eliminate the need for surgical debridement of necrotic tissue. Potential problems faced by even hypothetically “perfect” antibiotic delivery vehicles are mentioned too, including (i) intracellular bacterial colonies involved in recurrent, chronic osteomyelitis; (ii) the need for mechanical and release properties to be adjusted to the area of surgical placement; (iii) different environments in which in vitro and in vivo testings are carried out; (iv) unpredictable synergies between drug delivery system components; and (v) experimental sensitivity issues entailing the increasing subtlety of the design of nanoplatforms for the controlled delivery of therapeutics. PMID:25746204

  3. System and method for delivery of neutron beams for medical therapy

    DOEpatents

    Nigg, D.W.; Wemple, C.A.

    1999-07-06

    A neutron delivery system that provides improved capability for tumor control during medical therapy is disclosed. The system creates a unique neutron beam that has a bimodal or multi-modal energy spectrum. This unique neutron beam can be used for fast-neutron therapy, boron neutron capture therapy (BNCT), or both. The invention includes both an apparatus and a method for accomplishing the purposes of the invention. 5 figs.

  4. Military Handbook: Management and Design Guidance Electromagnetic Radiation Hardness for Air Launched Ordnance Systems

    DTIC Science & Technology

    1981-01-15

    system is attacted to the delivery aircraft until it Impacto a target, it is exposed to electromagnetic radiation from emitters aboard the delivery...homogeneous, isotropic, ambient medium may be a lossy dielectric. Antenna computations include cur- rent distribution, input impedance, radiation...permissible ambient interference level in the system, and when determining the expected signal-to-inter- ference ratio of the signal transmission circuits

  5. Microenvironmental Regulation of Biomacromolecular Therapies

    DTIC Science & Technology

    2007-06-01

    of novel drug delivery systems. NATURE REVIEWS | DRUG DISCOVERY VOLUME 6 | JUNE 2007 | 455 REVIEWS © 2007 Nature Publishing Group Report...direct manner to provide cell responsiveness to protein drugs . Combined delivery of survival cytokines, including stem-cell fac- tor (SCF; also known...Figure 3 | Potential strategies to engineer cell micro environments in vivo to modulate the cellular response to protein drugs . a | Delivery of anti

  6. Update on Nanotechnology-based Drug Delivery Systems in Cancer Treatment.

    PubMed

    Ho, Benjamin N; Pfeffer, Claire M; Singh, Amareshwar T K

    2017-11-01

    The emerging field of nanotechnology meets the demands for innovative approaches in the diagnosis and treatment of cancer. The nanoparticles are biocompatible and biodegradable and are made of a core, a particle that acts as a carrier, and one or more functional groups on the core which target specific sites. Nanotech in drug delivery includes nanodisks, High Density Lipoprotein nanostructures, liposomes, and gold nanoparticles. The fundamental advantages of nanoparticles are: improved delivery of water-insoluble drugs, targeted delivery, co-delivery of two or more drugs for combination therapy, and visualization of the drug delivery site by combining imaging system and a therapeutic drug. One of the potential applications of nanotechnology is in the treatment of cancer. Conventional methods for cancer treatments have included chemotherapy, surgery, or radiation. Early recognition and treatment of cancer with these approaches is still challenging. Innovative technologies are needed to overcome multidrug resistance, and increase drug localization and efficacy. Application of nanotechnology to cancer biology has brought in a new hope for developing treatment strategies on cancer. In this study, we present a review on the recent advances in nanotechnology-based approaches in cancer treatment. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  7. Short-peptide-based molecular hydrogels: novel gelation strategies and applications for tissue engineering and drug delivery

    NASA Astrophysics Data System (ADS)

    Wang, Huaimin; Yang, Zhimou

    2012-08-01

    Molecular hydrogels hold big potential for tissue engineering and controlled drug delivery. Our lab focuses on short-peptide-based molecular hydrogels formed by biocompatible methods and their applications in tissue engineering (especially, 3D cell culture) and controlled drug delivery. This feature article firstly describes our recent progresses of the development of novel methods to form hydrogels, including the strategy of disulfide bond reduction and assistance with specific protein-peptide interactions. We then introduce the applications of our hydrogels in fields of controlled stem cell differentiation, cell culture, surface modifications of polyester materials by molecular self-assembly, and anti-degradation of recombinant complex proteins. A novel molecular hydrogel system of hydrophobic compounds that are only formed by hydrolysis processes was also included in this article. The hydrogels of hydrophobic compounds, especially those of hydrophobic therapeutic agents, may be developed into a carrier-free delivery system for long term delivery of therapeutic agents. With the efforts in this field, we believe that molecular hydrogels formed by short peptides and hydrophobic therapeutic agents can be practically applied for 3D cell culture and long term drug delivery in near future, respectively.

  8. Nasal-nanotechnology: revolution for efficient therapeutics delivery.

    PubMed

    Kumar, Amrish; Pandey, Aditya Nath; Jain, Sunil Kumar

    2016-01-01

    In recent years, nanotechnology-based delivery systems have gained interest to overcome the problems of restricted absorption of therapeutic agents from the nasal cavity, depending upon the physicochemical properties of the drug and physiological properties of the human nose. The well-tolerated and non-invasive nasal drug delivery when combined with the nanotechnology-based novel formulations and carriers, opens the way for the effective systemic and brain targeting delivery of various therapeutic agents. To accomplish competent drug delivery, it is imperative to recognize the interactions among the nanomaterials and the nasal biological environment, targeting cell-surface receptors, drug release, multiple drug administration, stability of therapeutic agents and molecular mechanisms of cell signaling involved in patho-biology of the disease under consideration. Quite a few systems have been successfully formulated using nanomaterials for intranasal (IN) delivery. Carbon nanotubes (CNTs), chitosan, polylactic-co-glycolic acid (PLGA) and PLGA-based nanosystems have also been studied in vitro and in vivo for the delivery of several therapeutic agents which shown promising concentrations in the brain after nasal administration. The use of nanomaterials including peptide-based nanotubes and nanogels (NGs) for vaccine delivery via nasal route is a new approach to control the disease progression. In this review, the recent developments in nanotechnology utilized for nasal drug delivery have been discussed.

  9. Developing a health information network within an integrated delivery system: a case study.

    PubMed

    Wager, K A; Heda, S; Austin, C J

    1997-05-01

    Changes in the health care environment, such as the growth of integrated delivery systems and the proliferation of managed care, are having a profound impact on the way in which health care organizations manage both clinical and financial information. Health information networks (HINs) are emerging to support the goals and internal needs of integrated delivery systems. In this environment, health care managers must assume a leadership role in planning for the development of HINs. The article provides an overview of the principal issues that should be addressed in an organization's information systems plan when a HIN is being developed and includes a case study that illustrates the key points discussed.

  10. Solid source MOCVD system

    DOEpatents

    Hubert, B.N.; Wu, X.D.

    1998-10-13

    A system for MOCVD fabrication of superconducting and non-superconducting oxide films provides a delivery system for the feeding of metallorganic precursors for multi-component chemical vapor deposition. The delivery system can include multiple cartridges containing tightly packed precursor materials. The contents of each cartridge can be ground at a desired rate and fed together with precursor materials from other cartridges to a vaporization zone and then to a reaction zone within a deposition chamber for thin film deposition. 13 figs.

  11. Study on Use of Fuel-Cell Auxiliary Power Units in Refrigerator Cars Employed for Delivery to Convenience Store

    NASA Astrophysics Data System (ADS)

    Katayama, Noboru; Kamiyama, Hideyuki; Kogoshi, Sumio; Kudo, Yusuke; Fukada, Takafumi; Ogawa, Makoto

    The use of fuel-cell auxiliary power units (FC-APU) in refrigerator cars employed delivery to for convenience store delivery has been studied. The delivery pattern is assumed to be a typical pattern that includes driving between convenience stores or between a delivery center and a convenience store, unloading, driver's lunch break. The M15 driving mode, which simulates the driving condition in urban areas, is used as the driving mode in the delivery pattern. The FC-APU system includes a proton-exchange membrane fuel cell (PEFC) module, an inverter, and DC/DC converter. Bench tests of the FC-APU are performed to determine the hydrogen fuel consumption rate and the energy efficiency; these values depend on the output power of the PEFC module. The calculated relationship between the output power and fuel consumption rate of a current used system, which consists of an alternator and a secondary battery, are used to estimate the energy efficiency of the current used system. On the basis of the measurement data in this study and the results for the model proposed by Brodric et al. [C. J. Brodrick et al., Trans. Res. D, vol 7, pp. 303 (2002)], the payback period is calculated. The results indicate that the payback period would be 2.1 years when the FC-APU operates at a load of 70%.

  12. Delivery Systems for Birch-Bark Triterpenoids and Their Derivatives in Anticancer Research.

    PubMed

    Mierina, Inese; Vilskersts, Reinis; Turks, Maris

    2018-05-29

    Birch-bark triterpenoids and their semi-synthetic derivatives possess a wide range of biological activities including cytotoxic effects on various tumour cell lines. However, due to the low solubility and bioavailability, their medicinal applications are rather limited. The use of various nanotechnology-based drug delivery systems is rapidly developing approach to the solubilisation of insufficiently bioavailable pharmaceuticals. Herein, the drug delivery systems deemed to be applicable for birch-bark triterpenoid structures are reviewed. The aforementioned disadvantages of birch-bark triterpenoids and their semi-synthetic derivatives can be overcome through their incorporation into organic nanoparticles, which include various dendrimeric systems, as well as embedding the active compounds into polymer matrices or complexation with carbohydrate nanoparticles without covalent bonding. Some of the known triterpenoid delivery systems consist of nanoparticles featuring inorganic cores covered with carbohydrates or other polymers. Methods for delivering the title compounds through encapsulation and emulsification into lipophilic media are also suitable. Besides, the birch-bark triterpenoids can form self-assembling systems with increased bio-availability. Even more, the self-assembling systems are used as carriers for delivering other chemotherapeutic agents. Another advantage besides increased bioavailability and anticancer activity is the reduced overall systemic toxicity in most of the cases, when triterpenoids are delivered with any of the carriers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine.

    PubMed

    Jahangirian, Hossein; Lemraski, Ensieh Ghasemian; Webster, Thomas J; Rafiee-Moghaddam, Roshanak; Abdollahi, Yadollah

    2017-01-01

    This review discusses the impact of green and environmentally safe chemistry on the field of nanotechnology-driven drug delivery in a new field termed "green nanomedicine". Studies have shown that among many examples of green nanotechnology-driven drug delivery systems, those receiving the greatest amount of attention include nanometal particles, polymers, and biological materials. Furthermore, green nanodrug delivery systems based on environmentally safe chemical reactions or using natural biomaterials (such as plant extracts and microorganisms) are now producing innovative materials revolutionizing the field. In this review, the use of green chemistry design, synthesis, and application principles and eco-friendly synthesis techniques with low side effects are discussed. The review ends with a description of key future efforts that must ensue for this field to continue to grow.

  14. Nanotechnology-based drug delivery systems for the treatment of Alzheimer’s disease

    PubMed Central

    Fonseca-Santos, Bruno; Gremião, Maria Palmira Daflon; Chorilli, Marlus

    2015-01-01

    Alzheimer’s disease is a neurological disorder that results in cognitive and behavioral impairment. Conventional treatment strategies, such as acetylcholinesterase inhibitor drugs, often fail due to their poor solubility, lower bioavailability, and ineffective ability to cross the blood–brain barrier. Nanotechnological treatment methods, which involve the design, characterization, production, and application of nanoscale drug delivery systems, have been employed to optimize therapeutics. These nanotechnologies include polymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, microemulsion, nanoemulsion, and liquid crystals. Each of these are promising tools for the delivery of therapeutic devices to the brain via various routes of administration, particularly the intranasal route. The objective of this study is to present a systematic review of nanotechnology-based drug delivery systems for the treatment of Alzheimer’s disease. PMID:26345528

  15. Dual delivery of biological therapeutics for multimodal and synergistic cancer therapies.

    PubMed

    Jang, Bora; Kwon, Hyokyoung; Katila, Pramila; Lee, Seung Jin; Lee, Hyukjin

    2016-03-01

    Cancer causes >8.2 million deaths annually worldwide; thus, various cancer treatments have been investigated over the past decades. Among them, combination drug therapy has become extremely popular, and treatment with more than one drug is often necessary to achieve appropriate anticancer efficacy. With the development of nanoformulations and nanoparticulate-based drug delivery, researchers have explored the feasibility of dual delivery of biological therapeutics to overcome the current drawbacks of cancer therapy. Compared with the conventional single drug therapy, dual delivery of therapeutics has provided various synergistic effects in addition to offering multimodality to cancer treatment. In this review, we highlight and summarize three aspects of dual-delivery systems for cancer therapy. These include (1) overcoming drug resistance by the dual delivery of chemical drugs with biological therapeutics for synergistic therapy, (2) targeted and controlled drug release by the dual delivery of drugs with stimuli-responsive nanomaterials, and (3) multimodal theranostics by the dual delivery of drugs and molecular imaging probes. Furthermore, recent developments, perspectives, and new challenges regarding dual-delivery systems for cancer therapy are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Erythrocyte membrane based cationic polymer-mcDNA complexes as an efficient gene delivery system.

    PubMed

    Huang, Ping; Zhao, Jing; Wei, Chiju; Hou, Xiaohu; Chen, Pingzhang; Tan, Yan; He, Cheng-Yi; Wang, Zhiyong; Chen, Zhi-Ying

    2016-12-20

    Gene therapy has great promise for the treatment of obtained and inherited serious diseases. However, the lack of safe and efficient gene delivery systems remains a barrier for their clinical application. Here, we reported a potential gene delivery vehicle composed of the erythrocyte membrane and cationic polymers, for example the XtremeGENE from Roche and the ε-caprolactone modified polyethylenimine. In addition to high efficiency, this system showed negligible cytotoxicity compared to the two cationic polymers alone in various cell lines, including human embryonic kidney cells (293T), human liver cancer cells (Huh7 and HepG2), murine dendritic cells (DC2.4) and human umbilical cord mesenchymal stem cells (Hu-MSCs). Moreover, the results of confocal laser scanning microscopy and flow cytometry suggested that the cell uptake of this gene vector was improved and might be introduced by the fusion interaction between the erythrocyte membrane and targeted cells.Thus, all the results revealed that the erythrocyte membrane based gene delivery system might be able to serve as an excellent gene delivery system.

  17. Advances in Bone-targeted Drug Delivery Systems for Neoadjuvant Chemotherapy for Osteosarcoma.

    PubMed

    Li, Cheng-Jun; Liu, Xiao-Zhou; Zhang, Lei; Chen, Long-Bang; Shi, Xin; Wu, Su-Jia; Zhao, Jian-Ning

    2016-05-01

    Targeted therapy for osteosarcoma includes organ, cell and molecular biological targeting; of these, organ targeting is the most mature. Bone-targeted drug delivery systems are used to concentrate chemotherapeutic drugs in bone tissues, thus potentially resolving the problem of reaching the desired foci and minimizing the toxicity and adverse effects of neoadjuvant chemotherapy. Some progress has been made in bone-targeted drug delivery systems for treatment of osteosarcoma; however, most are still at an experimental stage and there is a long transitional period to clinical application. Therefore, determining how to combine new, polymolecular and multi-pathway targets is an important research aspect of designing new bone-targeted drug delivery systems in future studies. The purpose of this article was to review the status of research on targeted therapy for osteosarcoma and to summarize the progress made thus far in developing bone-targeted drug delivery systems for neoadjuvant chemotherapy for osteosarcoma with the aim of providing new ideas for highly effective therapeutic protocols with low toxicity for patients with osteosarcoma. © 2016 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.

  18. Clinical experience with drug delivery systems as tools to decrease the toxicity of anticancer chemotherapeutic agents.

    PubMed

    Maranhão, Raul C; Vital, Carolina G; Tavoni, Thauany M; Graziani, Silvia R

    2017-10-01

    The toxicity of chemotherapeutic agents, resulting from their low pharmacological index, introduces considerable discomfort and risk to cancer patients. Among several strategies to reduce the toxicity of chemotherapeutic agents, targeted drug delivery is the most promising one. Areas covered: Liposomes, micelles, albumin-based, polymeric, dendritic and lipid core nanoparticles have been used as carriers to concentrate anticancer drugs in neoplastic tissues, and clinical studies of those preparations are reviewed. In most clinical studies, drug delivery systems reduced drug toxicity. Lipid core nanoparticles (LDE) that bind to cell lipoprotein receptors have the ability to concentrate in neoplastic tissues and were the first artificial non-liposomal system shown in in vivo studies to possess targeting properties. The toxicity reduction achieved by LDE as vehicle of carmustine, etoposide and paclitaxel was singularly strong. Expert opinion: The reduced toxicity offered by drug delivery systems has expanded treatment population that may benefit from chemotherapy including feeble, overtreated and elderly patients that would otherwise be offered palliative therapy. Drug delivery systems may either prolong the duration of treatments or allow increases in drug dose.

  19. Cell-Based Biohybrid Drug Delivery Systems: The Best of the Synthetic and Natural Worlds.

    PubMed

    Banskota, Samagya; Yousefpour, Parisa; Chilkoti, Ashutosh

    2017-01-01

    The goal of drug delivery is to deliver therapeutics to the site of disease while reducing unwanted side effects. In recent years, a diverse variety of synthetic nano and microparticles have been developed as drug delivery systems. The success of these systems for drug delivery lies in their ability to overcome biological barriers such as the blood-brain barrier, to evade immune clearance and avoid nonspecific biodistribution. This Review provides an overview of recent advances in the design of biohybrid drug delivery systems, which combine cells with synthetic systems to overcome some of these biological hurdles. Examples include eukaryotic cells, such as stem cells, red blood cells, immune cells, platelets, and cancer cells that are used to carry drug-loaded synthetic particles. Synthetic particles can also be cloaked with naturally derived cell membranes and thereby evade immune clearance, exhibit prolonged systemic circulation, and target specific tissues by capitalizing on the interaction/homing tendency of certain cells and their membrane components to particular tissues. Different designs of cell-based biohybrid systems and their applications, as well as their promise and limitations, are discussed herein. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Intrathecal Drug Delivery Systems for Noncancer Pain: A Health Technology Assessment.

    PubMed

    2016-01-01

    Intrathecal drug delivery systems can be used to manage refractory or persistent chronic nonmalignant (noncancer) pain. We investigated the benefits, harms, cost-effectiveness, and budget impact of these systems compared with current standards of care for adult patients with chronic pain owing to nonmalignant conditions. We searched Ovid MEDLINE, Ovid Embase, the Cochrane Library, and the National Health Service's Economic Evaluation Database and Tufts Cost-Effectiveness Analysis Registry from January 1994 to April 2014 for evidence of effectiveness, harms, and cost-effectiveness. We used existing systematic reviews that had employed reliable search and screen methods and also searched for studies published after the search date reported in the latest systematic review to identify studies. Two reviewers screened records and assessed study validity. We found comparative evidence of effectiveness and harms in one cohort study at high risk of bias (≥ 3-year follow-up, N = 130). Four economic evaluations of low to very low quality were also included. Compared with oral opioid analgesia alone or a program of analgesia plus rehabilitation, intrathecal drug delivery systems significantly reduced pain (27% additional improvement) and morphine consumption. Despite these reductions, intrathecal drug delivery systems were not superior in patient-reported well-being or quality of life. There is no evidence of superiority of intrathecal drug delivery systems over oral opioids in global pain improvement and global treatment satisfaction. Comparative evidence of harms was not found. Cost-effectiveness evidence is of insufficient quality to assess the appropriateness of funding intrathecal drug delivery systems. Evidence comparing intrathecal drug delivery systems with standard care was of very low quality. Current evidence does not establish (or rule out) superiority or cost-effectiveness of intrathecal drug delivery systems for managing chronic refractory nonmalignant pain. The budget impact of funding intrathecal drug delivery systems would be between $1.5 and $5.0 million per year.

  1. Angiogenic therapy for cardiac repair based on protein delivery systems.

    PubMed

    Formiga, F R; Tamayo, E; Simón-Yarza, T; Pelacho, B; Prósper, F; Blanco-Prieto, M J

    2012-05-01

    Cardiovascular diseases remain the first cause of morbidity and mortality in the developed countries and are a major problem not only in the western nations but also in developing countries. Current standard approaches for treating patients with ischemic heart disease include angioplasty or bypass surgery. However, a large number of patients cannot be treated using these procedures. Novel curative approaches under investigation include gene, cell, and protein therapy. This review focuses on potential growth factors for cardiac repair. The role of these growth factors in the angiogenic process and the therapeutic implications are reviewed. Issues including aspects of growth factor delivery are presented in relation to protein stability, dosage, routes, and safety matters. Finally, different approaches for controlled growth factor delivery are discussed as novel protein delivery platforms for cardiac regeneration.

  2. Nanoscale drug delivery systems and the blood-brain barrier.

    PubMed

    Alyautdin, Renad; Khalin, Igor; Nafeeza, Mohd Ismail; Haron, Muhammad Huzaimi; Kuznetsov, Dmitry

    2014-01-01

    The protective properties of the blood-brain barrier (BBB) are conferred by the intricate architecture of its endothelium coupled with multiple specific transport systems expressed on the surface of endothelial cells (ECs) in the brain's vasculature. When the stringent control of the BBB is disrupted, such as following EC damage, substances that are safe for peripheral tissues but toxic to neurons have easier access to the central nervous system (CNS). As a consequence, CNS disorders, including degenerative diseases, can occur independently of an individual's age. Although the BBB is crucial in regulating the biochemical environment that is essential for maintaining neuronal integrity, it limits drug delivery to the CNS. This makes it difficult to deliver beneficial drugs across the BBB while preventing the passage of potential neurotoxins. Available options include transport of drugs across the ECs through traversing occludins and claudins in the tight junctions or by attaching drugs to one of the existing transport systems. Either way, access must specifically allow only the passage of a particular drug. In general, the BBB allows small molecules to enter the CNS; however, most drugs with the potential to treat neurological disorders other than infections have large structures. Several mechanisms, such as modifications of the built-in pumping-out system of drugs and utilization of nanocarriers and liposomes, are among the drug-delivery systems that have been tested; however, each has its limitations and constraints. This review comprehensively discusses the functional morphology of the BBB and the challenges that must be overcome by drug-delivery systems and elaborates on the potential targets, mechanisms, and formulations to improve drug delivery to the CNS.

  3. Graphene as multifunctional delivery platform in cancer therapy.

    PubMed

    Nejabat, Mojgan; Charbgoo, Fahimeh; Ramezani, Mohammad

    2017-08-01

    The biomedical applications of graphene-based nanomaterials including drug and gene delivery have grown rapidly in the past few years. This is due to its high surface area that results in high cargo loading capacity. It is demonstrated that graphene can improve drug efficacy without increasing the dose of the chemotherapeutic agent in cancer treatment. Considering these valuable benefits of graphene, this review focused on the newest advancements in drug and gene delivery systems using graphene and unveiling advantages and disadvantages of different graphene-based materials in introducing an effective cargo delivery system for cancer therapy. Different approaches for reducing cytotoxic impacts of graphene oxide and production of biocompatible delivery platform were also reviewed. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2355-2367, 2017. © 2017 Wiley Periodicals, Inc.

  4. Drug delivery across length scales.

    PubMed

    Delcassian, Derfogail; Patel, Asha K; Cortinas, Abel B; Langer, Robert

    2018-02-20

    Over the last century, there has been a dramatic change in the nature of therapeutic, biologically active molecules available to treat disease. Therapies have evolved from extracted natural products towards rationally designed biomolecules, including small molecules, engineered proteins and nucleic acids. The use of potent drugs which target specific organs, cells or biochemical pathways, necessitates new tools which can enable controlled delivery and dosing of these therapeutics to their biological targets. Here, we review the miniaturisation of drug delivery systems from the macro to nano-scale, focussing on controlled dosing and controlled targeting as two key parameters in drug delivery device design. We describe how the miniaturisation of these devices enables the move from repeated, systemic dosing, to on-demand, targeted delivery of therapeutic drugs and highlight areas of focus for the future.

  5. Recent Advances of Cocktail Chemotherapy by Combination Drug Delivery Systems

    PubMed Central

    Hu, Quanyin; Sun, Wujin; Wang, Chao; Gu, Zhen

    2016-01-01

    Combination chemotherapy is widely exploited for enhanced cancer treatment in clinic. However, the traditional cocktail administration of combination regimens often suffers from varying pharmacokinetics among different drugs. The emergence of nanotechnology offers an unparalleled opportunity for developing advanced combination drug delivery strategies with the ability to encapsulate various drugs simultaneously and unify the pharmacokinetics of each drug. This review surveys the most recent advances in combination delivery of multiple small molecule chemotherapeutics using nanocarriers. The mechanisms underlying combination chemotherapy, including the synergistic, additive and potentiation effects, are also discussed with typical examples. We further highlight the sequential and site-specific co-delivery strategies, which provide new guidelines for development of programmable combination drug delivery systems. Clinical outlook and challenges are also discussed in the end. PMID:26546751

  6. Systems modeling and simulation applications for critical care medicine

    PubMed Central

    2012-01-01

    Critical care delivery is a complex, expensive, error prone, medical specialty and remains the focal point of major improvement efforts in healthcare delivery. Various modeling and simulation techniques offer unique opportunities to better understand the interactions between clinical physiology and care delivery. The novel insights gained from the systems perspective can then be used to develop and test new treatment strategies and make critical care delivery more efficient and effective. However, modeling and simulation applications in critical care remain underutilized. This article provides an overview of major computer-based simulation techniques as applied to critical care medicine. We provide three application examples of different simulation techniques, including a) pathophysiological model of acute lung injury, b) process modeling of critical care delivery, and c) an agent-based model to study interaction between pathophysiology and healthcare delivery. Finally, we identify certain challenges to, and opportunities for, future research in the area. PMID:22703718

  7. Health system factors affecting implementation of integrated management of childhood illness (IMCI): qualitative insights from a South African province.

    PubMed

    Pandya, Himani; Slemming, Wiedaad; Saloojee, Haroon

    2018-03-01

    The Integrated Management of Childhood Illness (IMCI) strategy has been adopted by 102 countries including South Africa, as the preferred primary health care (PHC) delivery strategy for sick children under 5 years. Despite substantial investment to support IMCI in South Africa, its delivery remains sub-optimal, with varied implementation in different settings. There is scarce research globally, and in the local context, examining the effects of health system characteristics on IMCI implementation. This study explored key determinants of IMCI delivery in a South African province, with a specific focus on health system building blocks using a health system dynamics framework. In-depth interviews were conducted with 38 districts, provincial and national respondents involved with IMCI co-ordination and delivery, exploring their involvement in, and perceptions of, IMCI strategy implementation. Identified barriers included poor definition of elements of a service package for children and how IMCI aligned with this, incompetence of trained nurses exacerbated by inappropriate rotation practices, use of inappropriate indicators to track progress, multiple cadres coordinating similar activities with poor role delineation, and fragmented, vertical governance of programmes included within IMCI, such as immunization. Enabling practices in one district included the use of standardized child health records incorporating IMCI activities and stringent practice monitoring through record audits. Using IMCI as a case study, our work highlights critical health system deficiencies affecting service delivery for young children which need to be resolved to reposition IMCI within the broader child 'survive, thrive and transform' agenda. Recommendations for appropriate health system strengthening include the need for redefining IMCI within a broader PHC service package for children, prioritizing post-training supervision and mentoring of practitioners through appropriate duty allocation and rotation policies, strengthening IMCI monitoring with a specific focus on quality of care and building stronger clinical governance through workforce allocation, role delineation and improved accountability. © The Author 2017. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Generation and delivery device for ozone gas

    NASA Technical Reports Server (NTRS)

    Andrews, Craig C. (Inventor); Murphy, Oliver J. (Inventor)

    2002-01-01

    The present invention provides an ozone generation and delivery system that lends itself to small scale applications and requires very low maintenance. The system preferably includes an anode reservoir and a cathode phase separator each having a hydrophobic membrane to allow phase separation of produced gases from water. The hydrogen gas, ozone gas and water containing ozone may be delivered under pressure.

  9. Chronopharmaceutical Drug Delivery Systems: Hurdles, Hype or Hope?⊗

    PubMed Central

    Youan, Bi-Botti C.

    2010-01-01

    The current advances in chronobiology and the knowledge gained from chronotherapy of selected diseases strongly suggest that “the one size fits all at all times” approach to drug delivery is no longer substantiated, at least for selected bioactive agents and disease therapy or prevention. Thus, there is a critical and urgent need for chronopharmaceutical research (e.g., design and evaluation of robust, spatially and temporally controlled drug delivery systems that would be clinically intended for chronotherapy by different routes of administration). This review provides a brief overview of current delivery system intended for chronotherapy. In theory, such an ideal “magic pill” preferably with affordable cost, would improve the safety, efficacy and patient compliance of old and new drugs. However, currently, there are three major hurdles for the successful transition of such system from laboratory to patient bedside. These include the challenges to identify adequate (i) rhythmic biomaterials and systems, (ii) rhythm engineering modeling, perhaps using system biology and (iii) regulatory guidance. PMID:20438781

  10. Exploring information systems outsourcing in U.S. hospital-based health care delivery systems.

    PubMed

    Diana, Mark L

    2009-12-01

    The purpose of this study is to explore the factors associated with outsourcing of information systems (IS) in hospital-based health care delivery systems, and to determine if there is a difference in IS outsourcing activity based on the strategic value of the outsourced functions. IS sourcing behavior is conceptualized as a case of vertical integration. A synthesis of strategic management theory (SMT) and transaction cost economics (TCE) serves as the theoretical framework. The sample consists of 1,365 hospital-based health care delivery systems that own 3,452 hospitals operating in 2004. The findings indicate that neither TCE nor SMT predicted outsourcing better than the other did. The findings also suggest that health care delivery system managers may not be considering significant factors when making sourcing decisions, including the relative strategic value of the functions they are outsourcing. It is consistent with previous literature to suggest that the high cost of IS may be the main factor driving the outsourcing decision.

  11. Fluid delivery control system

    DOEpatents

    Hoff, Brian D.; Johnson, Kris William; Algrain, Marcelo C.; Akasam, Sivaprasad

    2006-06-06

    A method of controlling the delivery of fluid to an engine includes receiving a fuel flow rate signal. An electric pump is arranged to deliver fluid to the engine. The speed of the electric pump is controlled based on the fuel flow rate signal.

  12. 7 CFR 400.701 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., unique policy provisions or endorsements, the delivery process of the submission, and the process of... information is based, such data may include, but is not limited to, focus group results, market research studies, qualitative market estimates, effects upon the delivery system or ancillary participants...

  13. 7 CFR 400.701 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., unique policy provisions or endorsements, the delivery process of the submission, and the process of... information is based, such data may include, but is not limited to, focus group results, market research studies, qualitative market estimates, effects upon the delivery system or ancillary participants...

  14. 7 CFR 400.701 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., unique policy provisions or endorsements, the delivery process of the submission, and the process of... information is based, such data may include, but is not limited to, focus group results, market research studies, qualitative market estimates, effects upon the delivery system or ancillary participants...

  15. 7 CFR 400.701 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., unique policy provisions or endorsements, the delivery process of the submission, and the process of... information is based, such data may include, but is not limited to, focus group results, market research studies, qualitative market estimates, effects upon the delivery system or ancillary participants...

  16. In situ-forming hydrogels for sustained ophthalmic drug delivery.

    PubMed

    Nanjawade, Basavaraj K; Manvi, F V; Manjappa, A S

    2007-09-26

    Ophthalmic drug delivery is one of the most interesting and challenging endeavors facing the pharmaceutical scientist. The conventional ocular drug delivery systems like solutions, suspensions, and ointments show drawbacks such as increased precorneal elimination, high variability in efficiency, and blurred vision respectively. In situ-forming hydrogels are liquid upon instillation and undergo phase transition in the ocular cul-de-sac to form visco-elastic gel and this provides a response to environmental changes. In the past few years, an impressive number of novel temperature, pH, and ion induced in situ-forming systems have been reported for sustain ophthalmic drug delivery. Each system has its own advantages and drawbacks. The choice of a particular hydrogel depends on its intrinsic properties and envisaged therapeutic use. This review includes various temperature, pH, and ion induced in situ-forming polymeric systems used to achieve prolonged contact time of drugs with the cornea and increase their bioavailability.

  17. Functionalized single-walled carbon nanotubes: cellular uptake, biodistribution and applications in drug delivery.

    PubMed

    Li, Zixian; de Barros, Andre Luis Branco; Soares, Daniel Cristian Ferreira; Moss, Sara Nicole; Alisaraie, Laleh

    2017-05-30

    The unique properties of single-walled carbon nanotubes (SWNTs) enable them to play important roles in many fields. One of their functional roles is to transport cargo into cell. SWNTs are able to traverse amphipathic cell membranes due to their large surface area, flexible interactions with cargo, customizable dimensions, and surface chemistry. The cargoes delivered by SWNTs include peptides, proteins, nucleic acids, as well as drug molecules for therapeutic purpose. The drug delivery functions of SWNTs have been explored over the past decade. Many breakthrough studies have shown the high specificity and potency of functionalized SWNT-based drug delivery systems for the treatment of cancers and other diseases. In this review, we discuss different aspects of drug delivery by functionalized SWNT carriers, diving into the cellular uptake mechanisms, biodistribution of the delivery system, and safety concerns on degradation of the carriers. We emphasize the delivery of several common drugs to highlight the recent achievements of SWNT-based drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Factors Influencing Solar Electric Propulsion Vehicle Payload Delivery for Outer Planet Missions

    NASA Technical Reports Server (NTRS)

    Cupples, Michael; Green, Shaun; Coverstone, Victoria

    2003-01-01

    Systems analyses were performed for missions utilizing solar electric propulsion systems to deliver payloads to outer-planet destinations. A range of mission and systems factors and their affect on the delivery capability of the solar electric propulsion system was examined. The effect of varying the destination, the trip time, the launch vehicle, and gravity-assist boundary conditions was investigated. In addition, the affects of selecting propulsion system and power systems characteristics (including primary array power variation, number of thrusters, thruster throttling mode, and thruster Isp) on delivered payload was examined.

  19. Method and system for providing cooling for turbine components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Victor John; Lacy, Benjamin Paul

    2016-08-16

    A system for providing cooling for a turbine component that includes an outer surface exposed to combustion gases is provided. A component base includes at least one fluid supply passage coupleable to a source of cooling fluid. At least one feed passage communicates with the at least one fluid supply passage. At least one delivery channel communicates with the at least one feed passage. At least one cover layer covers the at least one feed passage and the at least one delivery channel, defining at least in part the component outer surface. At least one discharge passage extends to themore » outer surface. A diffuser section is defined in at least one of the at least one delivery channel and the at least one discharge passage, such that a fluid channeled through the system is diffused prior to discharge adjacent the outer surface.« less

  20. Multi-tube thermal fuse for nozzle protection from a flame holding or flashback event

    DOEpatents

    Lacy, Benjamin Paul; Davis, Jr., Lewis Berkley; Johnson, Thomas Edward; York, William David

    2012-07-03

    A protection system for a pre-mixing apparatus for a turbine engine, includes: a main body having an inlet portion, an outlet portion and an exterior wall that collectively establish a fuel delivery plenum; and a plurality of fuel mixing tubes that extend through at least a portion of the fuel delivery plenum, each of the plurality of fuel mixing tubes including at least one fuel feed opening fluidly connected to the fuel delivery plenum; at least one thermal fuse disposed on an exterior surface of at least one tube, the at least one thermal fuse including a material that will melt upon ignition of fuel within the at least one tube and cause a diversion of fuel from the fuel feed opening to at least one bypass opening. A method and a turbine engine in accordance with the protection system are also provided.

  1. Expanding Alternative Delivery Systems.

    ERIC Educational Resources Information Center

    Baltzer, Jan A.

    Alternative educational delivery systems that might be useful to community colleges are considered. The following categories of delivery systems are covered: broadcast delivery systems; copy delivery systems, print delivery systems, computer delivery systems, telephone delivery systems, and satellites. Among the applications for broadcast…

  2. Engineering functional inorganic-organic hybrid systems: advances in siRNA therapeutics.

    PubMed

    Shen, Jianliang; Zhang, Wei; Qi, Ruogu; Mao, Zong-Wan; Shen, Haifa

    2018-03-21

    Cancer treatment still faces a lot of obstacles such as tumor heterogeneity, drug resistance and systemic toxicities. Beyond the traditional treatment modalities, exploitation of RNA interference (RNAi) as an emerging approach has immense potential for the treatment of various gene-caused diseases including cancer. The last decade has witnessed enormous research and achievements focused on RNAi biotechnology. However, delivery of small interference RNA (siRNA) remains a key challenge in the development of clinical RNAi therapeutics. Indeed, functional nanomaterials play an important role in siRNA delivery, which could overcome a wide range of sequential physiological and biological obstacles. Nanomaterial-formulated siRNA systems have potential applications in protection of siRNA from degradation, improving the accumulation in the target tissues, enhancing the siRNA therapy and reducing the side effects. In this review, we explore and summarize the role of functional inorganic-organic hybrid systems involved in the siRNA therapeutic advancements. Additionally, we gather the surface engineering strategies of hybrid systems to optimize for siRNA delivery. Major progress in the field of inorganic-organic hybrid platforms including metallic/non-metallic cores modified with organic shells or further fabrication as the vectors for siRNA delivery is discussed to give credit to the interdisciplinary cooperation between chemistry, pharmacy, biology and medicine.

  3. 47 CFR 14.34 - Informal complaints; form, filing, content, and consumer assistance.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., including the Commission's online informal complaint filing system, U.S. Mail, overnight delivery, or email. Any Requests filed using a method other than the Commission's online system should include a cover...

  4. 47 CFR 14.34 - Informal complaints; form, filing, content, and consumer assistance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., including the Commission's online informal complaint filing system, U.S. Mail, overnight delivery, or email. Any Requests filed using a method other than the Commission's online system should include a cover...

  5. 47 CFR 14.34 - Informal complaints; form, filing, content, and consumer assistance.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., including the Commission's online informal complaint filing system, U.S. Mail, overnight delivery, or email. Any Requests filed using a method other than the Commission's online system should include a cover...

  6. Chitosan Microspheres in Novel Drug Delivery Systems

    PubMed Central

    Mitra, Analava; Dey, Baishakhi

    2011-01-01

    The main aim in the drug therapy of any disease is to attain the desired therapeutic concentration of the drug in plasma or at the site of action and maintain it for the entire duration of treatment. A drug on being used in conventional dosage forms leads to unavoidable fluctuations in the drug concentration leading to under medication or overmedication and increased frequency of dose administration as well as poor patient compliance. To minimize drug degradation and loss, to prevent harmful side effects and to increase drug bioavailability various drug delivery and drug targeting systems are currently under development. Handling the treatment of severe disease conditions has necessitated the development of innovative ideas to modify drug delivery techniques. Drug targeting means delivery of the drug-loaded system to the site of interest. Drug carrier systems include polymers, micelles, microcapsules, liposomes and lipoproteins to name some. Different polymer carriers exert different effects on drug delivery. Synthetic polymers are usually non-biocompatible, non-biodegradable and expensive. Natural polymers such as chitin and chitosan are devoid of such problems. Chitosan comes from the deacetylation of chitin, a natural biopolymer originating from crustacean shells. Chitosan is a biocompatible, biodegradable, and nontoxic natural polymer with excellent film-forming ability. Being of cationic character, chitosan is able to react with polyanions giving rise to polyelectrolyte complexes. Hence chitosan has become a promising natural polymer for the preparation of microspheres/nanospheres and microcapsules. The techniques employed to microencapsulate with chitosan include ionotropic gelation, spray drying, emulsion phase separation, simple and complex coacervation. This review focuses on the preparation, characterization of chitosan microspheres and their role in novel drug delivery systems. PMID:22707817

  7. It takes a village: Exploring the impact of social determinants on delivery system outcomes for heart failure patients.

    PubMed

    Knighton, Andrew J; Savitz, Lucy A; Benuzillo, Jose; VanDerslice, James A

    2017-06-24

    Local social determinants may act as effect modifiers for the impact of neighborhood material deprivation on patient-level healthcare outcomes. The objective of this study was to understand the mediating effect of local social determinants on neighborhood material deprivation and delivery outcomes in heart failure (HF) patients. A retrospective cohort study was conducted using 4737 HF patients receiving inpatient care (n=6065 encounters) from an integrated healthcare delivery system from 2010 to 2014. Outcomes included post-discharge mortality, readmission risk and length of stay. Deprivation was measured using an area deprivation index by address of residence. Effect modifications measured included urban-rural residency and faith identification using generalized linear regression models. Patient-level data was drawn from the delivery system data warehouse. Faith identification had a significant protective effect on HF patients from deprived areas, lowering 30-day mortality odds by one-third over patients who did not identify with a faith (OR 0.35 95%CI:0.12-0.98;p=0.05). Significant effects persisted at the 90 and 180-day timeframes. In rural areas, lack of faith identification had a multiplicative effect on 30-day mortality for deprived patients (OR 14.0 95%CI:1.47-132.7;p=0.02). No significant effects were noted for other healthcare outcomes. The lack of expected association between area deprivation and healthcare outcomes in some communities may be explained by the presence of effect modifiers. Understanding existing effect modifiers for area deprivation in local communities that delivery systems serve can inform targeted quality improvement. These factors should also be considered when comparing delivery system performance for reimbursement and in population health management. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The Role of Telecommunications in the Regional Delivery of Education Services: A Study of the Potential Use of Instructional Television for Vocational Education in the Appalachian States.

    ERIC Educational Resources Information Center

    INTASA, Inc., Menlo Park, CA.

    This report documents a research project focusing on the role of telecommunications technology in the regional delivery of educational services, including assessment of needs, factors in choosing the technology for implementation, alternative delivery systems, cost analysis, and a study of possible demonstration projects in South Carolina,…

  9. Teledermatology in a capitated delivery system using distributed information architecture: design and development.

    PubMed

    Kvedar, J C; Menn, E R; Baradagunta, S; Smulders-Meyer, O; Gonzalez, E

    1999-01-01

    This report describes the design, development, and technical evaluation of a teledermatology system utilizing digital images and electronic forms captured through, stored on, and viewed through a common web server in an urban capitated delivery system. The authors designed a system whereby a primary care physician was able to seek a dermatologic consultation electronically, provide the specialist with digital images acquired according to a standardized protocol, and review the specialist response within 2 business days of the request. The settings were two primary care practices in eastern Massachusetts that were affiliated with a large integrated delivery system. Technical evaluation of the effectiveness of the system involved 18 patients. Main outcome measures included physician and patient satisfaction and comfort and efficiency of care delivery. In 15 cases, the consultant dermatologist was comfortable in providing definitive diagnosis and treatment recommendations. In 3 cases, additional information (laboratory studies or more history) was requested. There were no instances where the dermatologist felt that a face-to-face visit was necessary. This novel approach shows promise for the delivery of specialist expertise via the internet. Cost-effectiveness studies may be necessary for more widespread implementation.

  10. Microparticles, microcapsules and microspheres: A review of recent developments and prospects for oral delivery of insulin.

    PubMed

    Wong, Chun Y; Al-Salami, Hani; Dass, Crispin R

    2018-02-15

    Diabetes mellitus is a chronic metabolic health disease affecting the homeostasis of blood sugar levels. However, subcutaneous injection of insulin can lead to patient non-compliance, discomfort, pain and local infection. Sub-micron sized drug delivery systems have gained attention in oral delivery of insulin for diabetes treatment. In most of the recent literature, the terms "microparticles" and "nanoparticle" refer to particles where the dimensions of the particle are measured in micrometers and nanometers respectively. For instance, insulin-loaded particles are defined as microparticles with size larger than 1 μm by most of the research groups. The size difference between nanoparticles and microparticles proffers numerous effects on the drug loading efficiency, aggregation, permeability across the biological membranes, cell entry and tissue retention. For instance, microparticulate drug delivery systems have demonstrated a number of advantages including protective effect against enzymatic degradation, enhancement of peptide stability, site-specific and controlled drug release. Compared to nanoparticulate drug delivery systems, microparticulate formulations can facilitate oral absorption of insulin by paracellular, transcellular and lymphatic routes. In this article, we review the current status of microparticles, microcapsules and microspheres for oral administration of insulin. A number of novel techniques including layer-by-layer coating, self-polymerisation of shell, nanocomposite microparticulate drug delivery system seem to be promising for enhancing the oral bioavailability of insulin. This review draws several conclusions for future directions and challenges to be addressed for optimising the properties of microparticulate drug formulations and enhancing their hypoglycaemic effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Distance Learning: What's Holding Back This Boundless Delivery System?

    ERIC Educational Resources Information Center

    Bruder, Isabelle

    1989-01-01

    Discusses distance learning, identifies who distance learners may be, and examines issues involved in establishing distance learning systems. Topics discussed include teacher concerns, including job security and certification; curriculum concerns, including state and local requirements and cross-cultural issues; cooperative development,…

  12. Chemical and biological warfare. Should defenses be researched and deployed?

    PubMed

    Orient, J M

    1989-08-04

    The threat of chemical and biological weapons of mass destruction has intensified because of improved delivery systems and advances in chemistry, genetics, and other sciences. Possible US responses to this threat include deterrence, defenses, and/or disarmament, including a reaffirmation of the Biological and Toxin Weapons Convention of 1972, which is now in jeopardy. This article discusses the history of chemical and biological warfare, existing and potential weapons, the proliferation of weapons and delivery systems, ways to prevent the use of these weapons, and ways to protect populations from their effects.

  13. Information Delivery Systems: The Future Is Here.

    ERIC Educational Resources Information Center

    O'Malley, Penelope Grenoble

    1993-01-01

    Looks at developments in information delivery (including new interactive media formats, vastly increased channel capacity for standard cable television, and the development of wireless cable and other distribution technologies) that are revolutionizing the communications industry. Raises questions about the role technical communicators are being…

  14. Traversing the Skin Barrier with Nano-emulsions.

    PubMed

    Burger, Cornel; Shahzad, Yasser; Brummer, Alicia; Gerber, Minja; du Plessis, Jeanetta

    2017-01-01

    In recent years, colloidal delivery systems based on nano-emulsion are gaining popularity; being used for encapsulation and delivery of many drugs. This review therefore aims at summarizing various methods of nano-emulsion formulation and their use as a topical and transdermal delivery vehicle for a number of active pharmaceutical ingredients from different pharmacological classes. This article represents a systematic review of nano-emulsions for topical and transdermal drug delivery. A vast literature was searched and critically analysed. Nano-emulsions are thermokinetically stable dispersion systems, which have been used in topical and transdermal delivery of a number of pharmaceutically active compounds. Nano-emulsions have a narrow droplet size range with tuneable surface properties, which make them an ideal delivery vehicle. Nanoemulsions have a number of advantages over conventional emulsions, including easy preparation using various low and high energy methods, optical transparency, high solubilisation capacity, high stability to droplet aggregation and the ability to penetrate the skin; thus allowing the transdermal delivery of drugs. This review indicated that nano-emulsions are promising vehicle for entrapping various drugs and are suitable for traversing the skin barrier for systemic effects. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Dendrimeric Systems and Their Applications in Ocular Drug Delivery

    PubMed Central

    Yavuz, Burçin; Bozdağ Pehlivan, Sibel; Ünlü, Nurşen

    2013-01-01

    Ophthalmic drug delivery is one of the most attractive and challenging research area for pharmaceutical scientists and ophthalmologists. Absorption of an ophthalmic drug in conventional dosage forms is seriously limited by physiological conditions. The use of nonionic or ionic biodegradable polymers in aqueous solutions and colloidal dosage forms such as liposomes, nanoparticles, nanocapsules, microspheres, microcapsules, microemulsions, and dendrimers has been studied to overcome the problems mentioned above. Dendrimers are a new class of polymeric materials. The unique nanostructured architecture of dendrimers has been studied to examine their role in delivery of therapeutics and imaging agents. Dendrimers can enhance drug's water solubility, bioavailability, and biocompatibility and can be applied for different routes of drug administration successfully. Permeability enhancer properties of dendrimers were also reported. The use of dendrimers can also reduce toxicity versus activity and following an appropriate application route they allow the delivery of the drug to the targeted site and provide desired pharmacokinetic parameters. Therefore, dendrimeric drug delivery systems are of interest in ocular drug delivery. In this review, the limitations related to eye's unique structure, the advantages of dendrimers, and the potential applications of dendrimeric systems to ophthalmology including imaging, drug, peptide, and gene delivery will be discussed. PMID:24396306

  16. Non-Viral Nucleic Acid Delivery Strategies to the Central Nervous System

    PubMed Central

    Tan, James-Kevin Y.; Sellers, Drew L.; Pham, Binhan; Pun, Suzie H.; Horner, Philip J.

    2016-01-01

    With an increased prevalence and understanding of central nervous system (CNS) injuries and neurological disorders, nucleic acid therapies are gaining promise as a way to regenerate lost neurons or halt disease progression. While more viral vectors have been used clinically as tools for gene delivery, non-viral vectors are gaining interest due to lower safety concerns and the ability to deliver all types of nucleic acids. Nevertheless, there are still a number of barriers to nucleic acid delivery. In this focused review, we explore the in vivo challenges hindering non-viral nucleic acid delivery to the CNS and the strategies and vehicles used to overcome them. Advantages and disadvantages of different routes of administration including: systemic injection, cerebrospinal fluid injection, intraparenchymal injection and peripheral administration are discussed. Non-viral vehicles and treatment strategies that have overcome delivery barriers and demonstrated in vivo gene transfer to the CNS are presented. These approaches can be used as guidelines in developing synthetic gene delivery vectors for CNS applications and will ultimately bring non-viral vectors closer to clinical application. PMID:27847462

  17. Recent Advances in Nanoparticle-Based Targeted Drug-Delivery Systems Against Cancer and Role of Tumor Microenvironment.

    PubMed

    Ashfaq, Usman Ali; Riaz, Muhammad; Yasmeen, Erum; Yousaf, Muhammad Zubair

    2017-01-01

    Cancer is one of the major causes of death worldwide. The silent activation of cellular factors responsible for deviation from normal regulatory pathways leads to the development of cancer. Nano-biotechnology is a novel drug-delivery system with high potential of efficacy and accuracy to target lethal cancers. Various biocompatible nanoparticle (NP)-based drug-delivery systems such as liposomes, dendrimers, micelles, silica, quantum dots, and magnetic, gold, and carbon nanotubes have already been reported for successful targeted cancer treatment. NPs are functionalized with different biological molecules, peptides, antibody, and protein ligands for targeted drug delivery. These systems include a hydrophilic central core, a target-oriented biocompatible outer layer, and a middle hydrophobic core where the drug destined to reach target site resides. Most of the NPs have the ability to maintain their structural shape and are constructed according to the cancer microenvironment. The self-assembling and colloidal properties of NPs have caused them to become the best vehicles for targeted drug delivery. The tumor microenvironment (TME) plays a major role in cancer progression, detection, and treatment. Due to its continuous complex behavior, the TME can hinder delivery systems, thus halting cancer treatment. Nonetheless, a successful biophysiological interaction between the NPs and the TME results in targeted release of drugs. Currently, a number of drugs and NP-based delivery systems against cancer are in clinical and preclinical trials and a few have been approved by Food and Drug Administration (FDA); for example: taxol, doxil, cerubidine, and adrucil. This review summarizes topical advances about the drugs being used for cancer treatment, their targeted delivery systems based on NPs, and the role of TME in this connection.

  18. Turbine airfoil cooling system with cooling systems using high and low pressure cooling fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsh, Jan H.; Messmann, Stephen John; Scribner, Carmen Andrew

    A turbine airfoil cooling system including a low pressure cooling system and a high pressure cooling system for a turbine airfoil of a gas turbine engine is disclosed. In at least one embodiment, the low pressure cooling system may be an ambient air cooling system, and the high pressure cooling system may be a compressor bleed air cooling system. In at least one embodiment, the compressor bleed air cooling system in communication with a high pressure subsystem that may be a snubber cooling system positioned within a snubber. A delivery system including a movable air supply tube may be usedmore » to separate the low and high pressure cooling subsystems. The delivery system may enable high pressure cooling air to be passed to the snubber cooling system separate from low pressure cooling fluid supplied by the low pressure cooling system to other portions of the turbine airfoil cooling system.« less

  19. The role of public insurance and the public delivery system in improving birth outcomes for low-income pregnant women.

    PubMed

    Susan Marquis, M; Long, Stephen H

    2002-11-01

    Insurance expansions and service delivery system expansions are alternative policy instruments used to try to improve birth outcomes for low-income women. The objective of this research is to investigate the effect of expansions of public insurance on access and birth outcomes for pregnant women and the role of different delivery systems in these outcomes. The experience in Florida during the years 1989-1994 is studied. Data are from linked birth certificates, hospital discharge data, Medicaid eligibility and claims files, and county health department records. Use of prenatal care and birthweight for low-income women is compared under different financing for prenatal care and for those using different delivery systems. Several approaches to control for self-selection are adopted, and similar results are obtained with each. Women enrolled in Medicaid have more prenatal care visits than the uninsured. Outcomes for those on Medicaid and the uninsured are significantly better if they receive care in the public health system than if they receive care in the private system-including private offices, clinics, and HMOs. Over time, the gap in outcomes between those in the public system and those receiving prenatal care from private physicians has diminished. Public insurance improves access to services, but the delivery system is a key factor in improving outcomes.

  20. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine

    PubMed Central

    Jahangirian, Hossein; Lemraski, Ensieh Ghasemian; Webster, Thomas J; Rafiee-Moghaddam, Roshanak; Abdollahi, Yadollah

    2017-01-01

    This review discusses the impact of green and environmentally safe chemistry on the field of nanotechnology-driven drug delivery in a new field termed “green nanomedicine”. Studies have shown that among many examples of green nanotechnology-driven drug delivery systems, those receiving the greatest amount of attention include nanometal particles, polymers, and biological materials. Furthermore, green nanodrug delivery systems based on environmentally safe chemical reactions or using natural biomaterials (such as plant extracts and microorganisms) are now producing innovative materials revolutionizing the field. In this review, the use of green chemistry design, synthesis, and application principles and eco-friendly synthesis techniques with low side effects are discussed. The review ends with a description of key future efforts that must ensue for this field to continue to grow. PMID:28442906

  1. Sustained, Controlled and Stimuli-Responsive Drug Release Systems Based on Nanoporous Anodic Alumina with Layer-by-Layer Polyelectrolyte

    NASA Astrophysics Data System (ADS)

    Porta-i-Batalla, Maria; Eckstein, Chris; Xifré-Pérez, Elisabet; Formentín, Pilar; Ferré-Borrull, J.; Marsal, Lluis F.

    2016-08-01

    Controlled drug delivery systems are an encouraging solution to some drug disadvantages such as reduced solubility, deprived biodistribution, tissue damage, fast breakdown of the drug, cytotoxicity, or side effects. Self-ordered nanoporous anodic alumina is an auspicious material for drug delivery due to its biocompatibility, stability, and controllable pore geometry. Its use in drug delivery applications has been explored in several fields, including therapeutic devices for bone and dental tissue engineering, coronary stent implants, and carriers for transplanted cells. In this work, we have created and analyzed a stimuli-responsive drug delivery system based on layer-by-layer pH-responsive polyelectrolyte and nanoporous anodic alumina. The results demonstrate that it is possible to control the drug release using a polyelectrolyte multilayer coating that will act as a gate.

  2. Novel engineered systems for oral, mucosal and transdermal drug delivery.

    PubMed

    Li, Hairui; Yu, Yuan; Faraji Dana, Sara; Li, Bo; Lee, Chi-Ying; Kang, Lifeng

    2013-08-01

    Technological advances in drug discovery have resulted in increasing number of molecules including proteins and peptides as drug candidates. However, how to deliver drugs with satisfactory therapeutic effect, minimal side effects and increased patient compliance is a question posted before researchers, especially for those drugs with poor solubility, large molecular weight or instability. Microfabrication technology, polymer science and bioconjugate chemistry combine to address these problems and generate a number of novel engineered drug delivery systems. Injection routes usually have poor patient compliance due to their invasive nature and potential safety concerns over needle reuse. The alternative non-invasive routes, such as oral, mucosal (pulmonary, nasal, ocular, buccal, rectal, vaginal), and transdermal drug delivery have thus attracted many attentions. Here, we review the applications of the novel engineered systems for oral, mucosal and transdermal drug delivery.

  3. Qualification of the GASGUARD® SAS GGT Arsine Sub-Atmospheric Gas Delivery System for Ion Implantation

    NASA Astrophysics Data System (ADS)

    Dunn, James P.; Rolland, James L.; Grim, James S.; Machado, Reinaldo M.; Hartz, Christopher L.

    2006-11-01

    A beta level evaluation of the GASGUARD® SAS GGT Arsine ion implant dopant supply developed by Air Products and Chemicals, Inc. was conducted by Atmel Corporation. The evaluation included characterization of the normalized wafer yield, mass spectra, ionization efficiency, flow rate, beam current, extraction of usable material and cylinder lifetime. This new and novel sub-atmospheric dopant gas delivery system utilizes a unique electrochemical process, which can generate, on demand, high flows of arsine at a constant 400 torr pressure while limiting net inventory of arsine to only 1 gram. This paper illustrates how Atmel Corporation evaluated and released this new arsine dopant delivery system for commercial production and verified high delivery capacity, resulting in reduced gas costs and increased cylinder life compared to the traditional adsorbent based technology.

  4. Laser beam delivery at ELI-NP

    DOE PAGES

    Ursescu, Daniel; Cheriaux, G.; Audebert, P.; ...

    2017-01-01

    The Laser Beam Delivery (LBD) system technical design report covers the interface between the High Power Laser System (HPLS) and the experiments, together with the pulse quality management. Here, the laser transport part of the LBD has a number of subsystems as follows: the beam transport lines for the six main outputs of HPLS, the additional short and long pulses and the synchronization system including the timing of the laser pulses with the Gamma Beam System (GBS) and the experiments on femtosecond timescale. Pulse quality management, discussed further here, consist in the generation and delivery of multiple HPLS pulses, coherentmore » combining of the HPLS arms, laser pulse diagnostics on target, laser beam dumps, shutters and output energy adaption.« less

  5. Multimodal optical imaging system for in vivo investigation of cerebral oxygen delivery and energy metabolism

    PubMed Central

    Yaseen, Mohammad A.; Srinivasan, Vivek J.; Gorczynska, Iwona; Fujimoto, James G.; Boas, David A.; Sakadžić, Sava

    2015-01-01

    Improving our understanding of brain function requires novel tools to observe multiple physiological parameters with high resolution in vivo. We have developed a multimodal imaging system for investigating multiple facets of cerebral blood flow and metabolism in small animals. The system was custom designed and features multiple optical imaging capabilities, including 2-photon and confocal lifetime microscopy, optical coherence tomography, laser speckle imaging, and optical intrinsic signal imaging. Here, we provide details of the system’s design and present in vivo observations of multiple metrics of cerebral oxygen delivery and energy metabolism, including oxygen partial pressure, microvascular blood flow, and NADH autofluorescence. PMID:26713212

  6. Magnetic nanoparticles-based drug and gene delivery systems for the treatment of pulmonary diseases.

    PubMed

    El-Sherbiny, Ibrahim M; Elbaz, Nancy M; Sedki, Mohammed; Elgammal, Abdulaziz; Yacoub, Magdi H

    2017-02-01

    Magnetic nanoparticles (MNPs) have gained much attention due to their unique properties such as biocompatibility and biodegradability as well as magnetic and heat-medicated characteristics. Due to these inherent properties, MNPs have been widely used in various biomedical applications including targeted drug delivery and hyperthermia-based therapy. Hyperthermia is a promising approach for the thermal activation therapy of several diseases, including pulmonary diseases. Additionally, due to their large loading capacity and controlled release ability, several MNP-based drug delivery systems have been emerged for treatment of cystic fibrosis and lung cancer. This review provides an overview on the unique properties of MNPs and magnetic-mediated hyperthermia with emphasis on the recent biomedical applications of MNPs in treatment of both lung cancer and cystic fibrosis.

  7. Nanocarriers for cancer-targeted drug delivery.

    PubMed

    Kumari, Preeti; Ghosh, Balaram; Biswas, Swati

    2016-01-01

    Nanoparticles as drug delivery system have received much attention in recent years, especially for cancer treatment. In addition to improving the pharmacokinetics of the loaded poorly soluble hydrophobic drugs by solubilizing them in the hydrophobic compartments, nanoparticles allowed cancer specific drug delivery by inherent passive targeting phenomena and adopted active targeting strategies. For this reason, nanoparticles-drug formulations are capable of enhancing the safety, pharmacokinetic profiles and bioavailability of the administered drugs leading to improved therapeutic efficacy compared to conventional therapy. The focus of this review is to provide an overview of various nanoparticle formulations in both research and clinical applications with a focus on various chemotherapeutic drug delivery systems for the treatment of cancer. The use of various nanoparticles, including liposomes, polymeric nanoparticles, dendrimers, magnetic and other inorganic nanoparticles for targeted drug delivery in cancer is detailed.

  8. Generation and delivery device for ozone gas and ozone dissolved in water

    NASA Technical Reports Server (NTRS)

    Andrews, Craig C. (Inventor); Murphy, Oliver J. (Inventor)

    2004-01-01

    The present invention provides an ozone generation and delivery system that lends itself to small scale applications and requires very low maintenance. The system preferably includes an anode reservoir and a cathode phase separator each having a hydrophobic membrane to allow phase separation of produced gases from water. The hydrogen gas, ozone gas and water containing ozone may be delivered under pressure.

  9. Targeting and synergistic action of an antifungal peptide in an antibiotic drug-delivery system.

    PubMed

    Park, Seong-Cheol; Kim, Young-Min; Lee, Jong-Kook; Kim, Nam-Hong; Kim, Eun-Ji; Heo, Hun; Lee, Min-Young; Lee, Jung Ro; Jang, Mi-Kyeong

    2017-06-28

    Amphotericin B (AmB) has been widely used against fungal infections throughout almost the entire body, including the skin, nails, oral cavity, respiratory tract, and urinary tract. However, the development of AmB-loaded nanoparticles demands a novel technique that reduces its toxicity and other associated problems. Here, we developed a pH-responsive and redox-sensitive polymer-based AmB-delivery carrier system. In particular, this system was functionalized by conjugation with the antifungal peptide histatin 5, which acts both as a targeting ligand and a synergistic antifungal molecule against Candida albicans, a major systemic fungal pathogen of humans. Our results in vitro and in vivo suggest that this drug-delivery system may serve as a novel tool to facilitate the use of antimicrobial peptides as targeting ligands to pathogenic microbes, which would open new avenues of investigation in the field of drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Bioresorbable polyelectrolytes for smuggling drugs into cells.

    PubMed

    Jaganathan, Sripriya

    2016-06-01

    There is ample evidence that biodegradable polyelectrolyte nanocapsules are multifunctional vehicles which can smuggle drugs into cells, and release them upon endogenous activation. A large number of endogenous stimuli have already been tested in vitro, and in vivo research is escalating. Thus, the interest in the design of intelligent polyelectrolyte multilayer (PEM) drug delivery systems is clear. The need of the hour is a systematic translation of PEM-based drug delivery systems from the lab to clinical studies. Reviews on multifarious stimuli that can trigger the release of drugs from such systems already exist. This review summarizes the available literature, with emphasis on the recent progress in PEM-based drug delivery systems that are receptive in the presence of endogenous stimuli, including enzymes, glucose, glutathione, pH, and temperature, and addresses different active and passive drug targeting strategies. Insights into the current knowledge on the diversified endogenous approaches and methodological challenges may bring inspiration to resolve issues that currently bottleneck the successful implementation of polyelectrolytes into the catalog of third-generation drug delivery systems.

  11. Hydrogels for Hydrophobic Drug Delivery. Classification, Synthesis and Applications

    PubMed Central

    Stewart, Sarah; Ervine, Michael; Al-Kasasbeh, Rehan; Donnelly, Ryan F.

    2018-01-01

    Hydrogels have been shown to be very useful in the field of drug delivery due to their high biocompatibility and ability to sustain delivery. Therefore, the tuning of their properties should be the focus of study to optimise their potential. Hydrogels have been generally limited to the delivery of hydrophilic drugs. However, as many of the new drugs coming to market are hydrophobic in nature, new approaches for integrating hydrophobic drugs into hydrogels should be developed. This article discusses the possible new ways to incorporate hydrophobic drugs within hydrogel structures that have been developed through research. This review describes hydrogel-based systems for hydrophobic compound delivery included in the literature. The section covers all the main types of hydrogels, including physical hydrogels and chemical hydrogels. Additionally, reported applications of these hydrogels are described in the subsequent sections. PMID:29364833

  12. Delivery systems for biopharmaceuticals. Part II: Liposomes, Micelles, Microemulsions and Dendrimers.

    PubMed

    Silva, Ana C; Lopes, Carla M; Lobo, José M S; Amaral, Maria H

    2015-01-01

    Biopharmaceuticals are a generation of drugs that include peptides, proteins, nucleic acids and cell products. According to their particular molecular characteristics (e.g. high molecular size, susceptibility to enzymatic activity), these products present some limitations for administration and usually parenteral routes are the only option. To avoid these limitations, different colloidal carriers (e.g. liposomes, micelles, microemulsions and dendrimers) have been proposed to improve biopharmaceuticals delivery. Liposomes are promising drug delivery systems, despite some limitations have been reported (e.g. in vivo failure, poor long-term stability and low transfection efficiency), and only a limited number of formulations have reached the market. Micelles and microemulsions require more studies to exclude some of the observed drawbacks and guarantee their potential for use in clinic. According to their peculiar structures, dendrimers have been showing good results for nucleic acids delivery and a great development of these systems during next years is expected. This is the Part II of two review articles, which provides the state of the art of biopharmaceuticals delivery systems. Part II deals with liposomes, micelles, microemulsions and dendrimers.

  13. Prototype solar heating and cooling systems including potable hot water

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Progress is reviewed in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water. The system consisted of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

  14. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors

    PubMed Central

    Ullah, Izhar; Qureshi, Omer Salman; Mustapha, Omer; Shafique, Shumaila; Zeb, Alam

    2017-01-01

    Nanotechnology has recently gained increased attention for its capability to effectively diagnose and treat various tumors. Nanocarriers have been used to circumvent the problems associated with conventional antitumor drug delivery systems, including their nonspecificity, severe side effects, burst release and damaging the normal cells. Nanocarriers improve the bioavailability and therapeutic efficiency of antitumor drugs, while providing preferential accumulation at the target site. A number of nanocarriers have been developed; however, only a few of them are clinically approved for the delivery of antitumor drugs for their intended actions at the targeted sites. The present review is divided into three main parts: first part presents introduction of various nanocarriers and their relevance in the delivery of anticancer drugs, second part encompasses targeting mechanisms and surface functionalization on nanocarriers and third part covers the description of selected tumors, including breast, lungs, colorectal and pancreatic tumors, and applications of relative nanocarriers in these tumors. This review increases the understanding of tumor treatment with the promising use of nanotechnology. PMID:29042776

  15. Nanoscale drug delivery systems and the blood–brain barrier

    PubMed Central

    Alyautdin, Renad; Khalin, Igor; Nafeeza, Mohd Ismail; Haron, Muhammad Huzaimi; Kuznetsov, Dmitry

    2014-01-01

    The protective properties of the blood–brain barrier (BBB) are conferred by the intricate architecture of its endothelium coupled with multiple specific transport systems expressed on the surface of endothelial cells (ECs) in the brain’s vasculature. When the stringent control of the BBB is disrupted, such as following EC damage, substances that are safe for peripheral tissues but toxic to neurons have easier access to the central nervous system (CNS). As a consequence, CNS disorders, including degenerative diseases, can occur independently of an individual’s age. Although the BBB is crucial in regulating the biochemical environment that is essential for maintaining neuronal integrity, it limits drug delivery to the CNS. This makes it difficult to deliver beneficial drugs across the BBB while preventing the passage of potential neurotoxins. Available options include transport of drugs across the ECs through traversing occludins and claudins in the tight junctions or by attaching drugs to one of the existing transport systems. Either way, access must specifically allow only the passage of a particular drug. In general, the BBB allows small molecules to enter the CNS; however, most drugs with the potential to treat neurological disorders other than infections have large structures. Several mechanisms, such as modifications of the built-in pumping-out system of drugs and utilization of nanocarriers and liposomes, are among the drug-delivery systems that have been tested; however, each has its limitations and constraints. This review comprehensively discusses the functional morphology of the BBB and the challenges that must be overcome by drug-delivery systems and elaborates on the potential targets, mechanisms, and formulations to improve drug delivery to the CNS. PMID:24550672

  16. External triggering and triggered targeting strategies for drug delivery

    NASA Astrophysics Data System (ADS)

    Wang, Yanfei; Kohane, Daniel S.

    2017-06-01

    Drug delivery systems that are externally triggered to release drugs and/or target tissues hold considerable promise for improving the treatment of many diseases by minimizing nonspecific toxicity and enhancing the efficacy of therapy. These drug delivery systems are constructed from materials that are sensitive to a wide range of external stimuli, including light, ultrasound, electrical and magnetic fields, and specific molecules. The responsiveness conferred by these materials allows the release of therapeutics to be triggered on demand and remotely by a physician or patient. In this Review, we describe the rationales for such systems and the types of stimuli that can be deployed, and provide an outlook for the field.

  17. Peptides Used in the Delivery of Small Noncoding RNA

    PubMed Central

    2015-01-01

    RNA interference (RNAi) is an endogenous process in which small noncoding RNAs, including small interfering RNAs (siRNAs) and microRNAs (miRNAs), post-transcriptionally regulate gene expressions. In general, siRNA and miRNA/miRNA mimics are similar in nature and activity except their origin and specificity. Although both siRNAs and miRNAs have been extensively studied as novel therapeutics for a wide range of diseases, the large molecular weight, anionic surface charges, instability in blood circulation, and intracellular trafficking to the RISC after cellular uptake have hindered the translation of these RNAs from bench to clinic. As a result, a great variety of delivery systems have been investigated for safe and effective delivery of small noncoding RNAs. Among these systems, peptides, especially cationic peptides, have emerged as a promising type of carrier due to their inherent ability to condense negatively charged RNAs, ease of synthesis, controllable size, and tunable structure. In this review, we will focus on three major types of cationic peptides, including poly(l-lysine) (PLL), protamine, and cell penetrating peptides (CPP), as well as peptide targeting ligands that have been extensively used in RNA delivery. The delivery strategies, applications, and limitations of these cationic peptides in siRNA/miRNA delivery will be discussed. PMID:25157701

  18. Universal institutional delivery among mothers in a remote mountain district of Nepal: what are the challenges?

    PubMed

    Joshi, D; Baral, S C; Giri, S; Kumar, A M V

    2016-12-21

    Setting: Eight village development committees of Mugu District, a remote mountainous district of Nepal that has poor maternal health indicators. Objectives: 1) To assess the proportion of mothers who delivered in health facilities (institutional delivery); 2) among mothers who delivered at home, to understand their reasons for doing so; and 3) among mothers who delivered in health facilities, to understand their challenges. Design: Cross-sectional study involving semi-structured interviews with mothers conducted in 2015. Results: Of 275 mothers, 97 (35%) had an institutional delivery. Multivariate logistic regression analysis showed that women who resided within 1 h distance from the birthing centre, had adequate mass media exposure or had only one child were more likely to deliver in hospital. Reasons for non-institutional delivery ( n = 178) were related to geographical access (49%), personal preferences (18%) and perceived poor quality care (4%). Mothers who accessed institutional delivery ( n = 97) also reported difficulties related to travel (60%), costs (28%), dysfunctional health system (18%) and unfriendly attitudes of the health-care providers (7%). Conclusion: To improve access to institutional delivery, the government should establish a 24/7 emergency ambulance network, including air ambulance. Health system issues, including unfriendly staff attitudes, urgently need to be addressed to gain the trust of the mothers.

  19. A sight on protein-based nanoparticles as drug/gene delivery systems.

    PubMed

    Salatin, Sara; Jelvehgari, Mitra; Maleki-Dizaj, Solmaz; Adibkia, Khosro

    2015-01-01

    Polymeric nanomaterials have extensively been applied for the preparation of targeted and controlled release drug/gene delivery systems. However, problems involved in the formulation of synthetic polymers such as using of the toxic solvents and surfactants have limited their desirable applications. In this regard, natural biomolecules including proteins and polysaccharide are suitable alternatives due to their safety. According to literature, protein-based nanoparticles possess many advantages for drug and gene delivery such as biocompatibility, biodegradability and ability to functionalize with targeting ligands. This review provides a general sight on the application of biodegradable protein-based nanoparticles in drug/gene delivery based on their origins. Their unique physicochemical properties that help them to be formulated as pharmaceutical carriers are also discussed.

  20. Cesarean Delivery in the United States 2005 - 2014: A Population-Based Analysis Using the Robson Ten Group Classification System.

    PubMed

    Hehir, Mark P; Ananth, Cande V; Siddiq, Zainab; Flood, Karen; Friedman, Alexander M; D'Alton, Mary E

    2018-04-12

    Cesarean delivery has increased steadily in the United States over recent decades with significant downstream health consequences. The World Health Organization has endorsed the Robson Ten Group Classification System (TGCS) as a global standard to facilitate analysis and comparison of cesarean delivery rates. Our objective was to apply the TGCS to a nationwide cohort in the United States over a 10-year period. This population-based analysis applied the TGCS to all births in the United States from 2005-2014, recorded in the 2003-revised birth certificate format. Over the study 10-year period 27,044,217 deliveries met inclusion criteria. Five parameters (parity including previous cesarean, gestational age, labor onset, fetal presentation and plurality), identifiable on presentation for delivery, were used to classify all women included into one of ten groups. The overall cesarean rate was 31.6%. Group 3 births (singleton, term, cephalic multiparas in spontaneous labor) were most common, while Group 5 births (those with a previous cesarean) accounted for the most cesarean deliveries increasing from 27% of all cesareans in 2005-06 to over 34% in 2013-14. Breech pregnancies (Groups 6 and 7) had cesarean rates above 90%. Primiparous and multiparous women who had a prelabor cesarean [Groups 2(b) and 4(b)] accounted for over one quarter of all cesarean deliveries. Women with a previous cesarean delivery represent an increasing proportion of cesarean deliveries. Use of the Robson criteria allows standardised comparisons of data and identifies clinical scenarios driving changes in cesarean rates. Hospitals and health organisations can use the TGCS to evaluate quality and processes associated with cesarean delivery. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Hydraulic Hybrid Parcel Delivery Truck Deployment, Testing & Demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallo, Jean-Baptiste

    2014-03-07

    Although hydraulic hybrid systems have shown promise over the last few years, commercial deployment of these systems has primarily been limited to Class 8 refuse trucks. In 2005, the Hybrid Truck Users Forum initiated the Parcel Delivery Working Group including the largest parcel delivery fleets in North America. The goal of the working group was to evaluate and accelerate commercialization of hydraulic hybrid technology for parcel delivery vehicles. FedEx Ground, Purolator and United Parcel Service (UPS) took delivery of the world’s first commercially available hydraulic hybrid parcel delivery trucks in early 2012. The vehicle chassis includes a Parker Hannifin hydraulicmore » hybrid drive system, integrated and assembled by Freightliner Custom Chassis Corp., with a body installed by Morgan Olson. With funding from the U.S. Department of Energy, CALSTART and its project partners assessed the performance, reliability, maintainability and fleet acceptance of three pre-production Class 6 hydraulic hybrid parcel delivery vehicles using information and data from in-use data collection and on-road testing. This document reports on the deployment of these vehicles operated by FedEx Ground, Purolator and UPS. The results presented provide a comprehensive overview of the performance of commercial hydraulic hybrid vehicles in parcel delivery applications. This project also informs fleets and manufacturers on the overall performance of hydraulic hybrid vehicles, provides insights on how the technology can be both improved and more effectively used. The key findings and recommendations of this project fall into four major categories: -Performance, -Fleet deployment, -Maintenance, -Business case. Hydraulic hybrid technology is relatively new to the market, as commercial vehicles have been introduced only in the past few years in refuse and parcel delivery applications. Successful demonstration could pave the way for additional purchases of hydraulic hybrid vehicles throughout the trucking industry. By providing unbiased, third-party assessment of this “hybrid without batteries” technology, this report offers relevant, timely and valuable information to the industry.« less

  2. Multifunctional pH-Sensitive Amino Lipids for siRNA Delivery.

    PubMed

    Gujrati, Maneesh; Vaidya, Amita; Lu, Zheng-Rong

    2016-01-20

    RNA interference (RNAi) represents a powerful modality for human disease therapy that can regulate gene expression signature using small interfering RNA (siRNA). Successful delivery of siRNA into the cytoplasm of target cells is imperative for efficient RNAi and also constitutes the primary stumbling block in the clinical applicability of RNAi. Significant progress has been made in the development of lipid-based siRNA delivery systems, which have practical advantages like simple chemistry and easy formulation of nanoparticles with siRNA. This review discusses the recent development of pH-sensitive amino lipids, with particular focus on multifunctional pH-sensitive amino lipids for siRNA delivery. The key components of these multifunctional lipids include a protonatable amino head group, distal lipid tails, and two cross-linkable thiol groups, which together facilitate the facile formation of stable siRNA-nanoparticles, easy surface modification for target-specific delivery, endosomal escape in response to the pH decrease during subcellular trafficking, and reductive dissociation of the siRNA-nanoparticles for cytoplasmic release of free siRNA. By virtue of these properties, multifunctional pH-sensitive lipids can mediate efficient cytosolic siRNA delivery and gene silencing. Targeted siRNA nanoparticles can be readily formulated with these lipids, without the need for other helper lipids, to promote systemic delivery of therapeutic siRNAs. Such targeted siRNA nanoparticles have been shown to effectively regulate the expression of cancer-related genes, resulting in significant efficacy in the treatment of aggressive tumors, including metastatic triple negative breast cancer. These multifunctional pH-sensitive lipids constitute a promising platform for the systemic and targeted delivery of therapeutic siRNA for the treatment of human diseases. This review summarizes the structure-property relationship of the multifunctional pH-sensitive lipids and their efficacy in in vitro and in vivo siRNA delivery and gene silencing.

  3. 40 CFR 86.155-98 - Records required; refueling test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-integrated systems, fuel system (including fuel tank(s) capacity and location), basic engine description... odometer reading. (g) All pertinent instrument information including nozzle and fuel delivery system description. As an alternative, a reference to a vehicle test cell number may be used, with advance approval...

  4. 40 CFR 86.155-98 - Records required; refueling test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-integrated systems, fuel system (including fuel tank(s) capacity and location), basic engine description... odometer reading. (g) All pertinent instrument information including nozzle and fuel delivery system description. As an alternative, a reference to a vehicle test cell number may be used, with advance approval...

  5. 40 CFR 86.155-98 - Records required; refueling test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-integrated systems, fuel system (including fuel tank(s) capacity and location), basic engine description... odometer reading. (g) All pertinent instrument information including nozzle and fuel delivery system description. As an alternative, a reference to a vehicle test cell number may be used, with advance approval...

  6. 40 CFR 86.155-98 - Records required; refueling test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-integrated systems, fuel system (including fuel tank(s) capacity and location), basic engine description... odometer reading. (g) All pertinent instrument information including nozzle and fuel delivery system description. As an alternative, a reference to a vehicle test cell number may be used, with advance approval...

  7. 40 CFR 86.155-98 - Records required; refueling test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-integrated systems, fuel system (including fuel tank(s) capacity and location), basic engine description... odometer reading. (g) All pertinent instrument information including nozzle and fuel delivery system description. As an alternative, a reference to a vehicle test cell number may be used, with advance approval...

  8. 77 FR 44306 - Service Delivery Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-27

    ... SOCIAL SECURITY ADMINISTRATION [Docket No. SSA-2012-0048] Service Delivery Plan AGENCY: Social... publicly available. Do not include in your comments any personal information, such as Social Security... function of the Web page to find docket number SSA-2012-0048. The system will issue you a tracking number...

  9. A Digital Library in the Mid-Nineties, Ahead or On Schedule?

    ERIC Educational Resources Information Center

    Dijkstra, Joost

    1994-01-01

    Discussion of the future possibilities of digital library systems highlights digital projects developed at Tilburg University (Netherlands). Topics addressed include online access to databases; electronic document delivery; agreements between libraries and Elsevier Science publishers to provide journal articles; full text document delivery; and…

  10. Federal Research and Development for Satellite Communications.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    This report of the Committee on Satellite Communications (COSC) reviews a number of future communication needs which could be satisfied by satellite systems, including needs in fields such as education, health care delivery, hazard warning, navigation aids, search and rescue, electronic mail delivery, time and frequency dissemination, and…

  11. New Updates Pertaining to Drug Delivery of Local Anesthetics in Particular Bupivacaine Using Lipid Nanoparticles

    NASA Astrophysics Data System (ADS)

    Beiranvand, Siavash; Eatemadi, Ali; Karimi, Arash

    2016-06-01

    Lipid nanoparticles (liposomes) were first described in 1965, and several work have led to development of important technical advances like triggered release liposomes and drug-loaded liposomes. These advances have led to numerous clinical trials in such diverse areas such as the delivery of anti-cancer, antifungal, and antibiotic drugs; the delivery of gene medicines; and most importantly the delivery of anesthesia drugs. Quite a number of liposomes are on the market, and many more are still in developmental stage. Lipid nanoparticles are the first nano-medicine delivery system to be advanced from laboratory concept to clinical application with high considerable clinical acceptance. Drug delivery systems for local anesthetics (LAs) have caught the interest of many researchers because there are many biomedical advantages connected to their application. There have been several formulation techniques to systemically deliver LA that include encapsulation in liposomes and complexation in cyclodextrins, nanoparticles, and to a little extent gold nanoparticles. The proposed formulations help to decrease the LA concentration utilized, increase its permeability, and most importantly increase the localization of the LA for a long period of time thereby leading to increase in the duration of the LA effect and finally to reduce any local and systemic toxicity. In this review, we will highlight on new updates pertaining to drug delivery of local anesthetics in particular bupivacaine using lipid nanoparticles.

  12. New Updates Pertaining to Drug Delivery of Local Anesthetics in Particular Bupivacaine Using Lipid Nanoparticles.

    PubMed

    Beiranvand, Siavash; Eatemadi, Ali; Karimi, Arash

    2016-12-01

    Lipid nanoparticles (liposomes) were first described in 1965, and several work have led to development of important technical advances like triggered release liposomes and drug-loaded liposomes. These advances have led to numerous clinical trials in such diverse areas such as the delivery of anti-cancer, antifungal, and antibiotic drugs; the delivery of gene medicines; and most importantly the delivery of anesthesia drugs. Quite a number of liposomes are on the market, and many more are still in developmental stage. Lipid nanoparticles are the first nano-medicine delivery system to be advanced from laboratory concept to clinical application with high considerable clinical acceptance. Drug delivery systems for local anesthetics (LAs) have caught the interest of many researchers because there are many biomedical advantages connected to their application. There have been several formulation techniques to systemically deliver LA that include encapsulation in liposomes and complexation in cyclodextrins, nanoparticles, and to a little extent gold nanoparticles. The proposed formulations help to decrease the LA concentration utilized, increase its permeability, and most importantly increase the localization of the LA for a long period of time thereby leading to increase in the duration of the LA effect and finally to reduce any local and systemic toxicity. In this review, we will highlight on new updates pertaining to drug delivery of local anesthetics in particular bupivacaine using lipid nanoparticles.

  13. How to achieve optimal organization of primary care service delivery at system level: lessons from Europe.

    PubMed

    Pelone, Ferruccio; Kringos, Dionne S; Spreeuwenberg, Peter; De Belvis, Antonio G; Groenewegen, Peter P

    2013-09-01

    To measure the relative efficiency of primary care (PC) in turning their structures into services delivery and turning their services delivery into quality outcomes. Cross-sectional study based on the dataset of the Primary Healthcare Activity Monitor for Europe project. Two Data Envelopment models were run to compare the relative technical efficiency. A sensitivity analysis of the resulting efficiency scores was performed. PC systems in 22 European countries in 2009/2010. Model 1 included data on PC governance, workforce development and economic conditions as inputs and access, coordination, continuity and comprehensiveness of care as outputs. Model 2 included the previous process dimensions as inputs and quality indicators as outputs. There is relatively reasonable efficiency in all countries at delivering as many as possible PC processes at a given level of PC structure. It is particularly important to invest in economic conditions to achieve an efficient structure-process balance. Only five countries have fully efficient PC systems in turning their services delivery into high quality outcomes, using a similar combination of access, continuity and comprehensiveness, although they differ on the adoption of coordination of services. There is a large variation in efficiency levels obtained by countries with inefficient PC in turning their services delivery into quality outcomes. Maximizing the individual functions of PC without taking into account the coherence within the health-care system is not sufficient from a policymaker's point of view when aiming to achieve efficiency.

  14. Recent advances in inorganic nanoparticle-based drug delivery systems.

    PubMed

    Murakami, Tatsuya; Tsuchida, Kunihiro

    2008-02-01

    Drug delivery systems, designed to enhance drug efficacy and reduce their adverse effects, have evolved accompanied by the development of novel materials. Nanotechnology is an emerging scientific area that has created a variety of intriguing inorganic nanoparticles. In this review, we focus on the feasibility of inorganic nanoparticles, including iron oxide nanoparticles, gold nanoparticles, fullerenes and carbon nanohorns, as drug carriers, and summarize recent advances in this field.

  15. Clinical, biochemical, and hygiene assessment of stabled horses provided continuous or intermittent access to drinking water.

    PubMed

    Freeman, D A; Cymbaluk, N F; Schott, H C; Hinchcliff, K; McDonnell, S M; Kyle, B

    1999-11-01

    To compare health, hydration status, and management of stabled pregnant mares provided drinking water continuously or via 1 of 3 intermittent delivery systems. 22 Quarter Horse (QH) or QH-crossbred mares and 18 Belgian or Belgian-crossbred mares (study 1); 24 QH or QH-crossbred mares and 18 Belgian or Belgian-crossbred mares (study 2). Stabled horses were provided water continuously or via 1 of 3 intermittent water delivery systems in 2 study periods during a 2-year period. Body temperature, attitude, appetite, water intake, and urine output were recorded daily. Hygiene of each horse and the stable were assessed weekly. Clinical and biochemical measures of hydration were determined 3 times during each study. Clinical measures of hydration included skin turgor, gum moisture, capillary refill time, and fecal consistency. Biochemical measures of hydration included PCV, plasma total protein concentration, serum osmolality, plasma vasopressin concentration, urine specific gravity, and urine osmolality. All horses remained healthy. Stable hygiene was worse when horses had continuous access to water. Clinical and biochemical measures of hydration did not differ among water delivery systems. Various continuous and intermittent water delivery systems provided adequate amounts of water to stabled horses to maintain health and hydration status. Providing intermittent access to water may be preferable on the basis of stable hygiene.

  16. Gelatin device for the delivery of growth factors involved in endochondral ossification.

    PubMed

    Ahrens, Lucas A J; Vonwil, Daniel; Christensen, Jon; Shastri, V Prasad

    2017-01-01

    Controlled release drug delivery systems are well established as oral and implantable dosage forms. However, the controlled release paradigm can also be used to present complex soluble signals responsible for cellular organization during development. Endochondral ossification (EO), the developmental process of bone formation from a cartilage matrix is controlled by several soluble signals with distinct functions that vary in structure, molecular weight and stability. This makes delivering them from a single vehicle rather challenging. Herein, a gelatin-based delivery system suitable for the delivery of small molecules as well as recombinant human (rh) proteins (rhWNT3A, rhFGF2, rhVEGF, rhBMP4) is reported. The release behavior and biological activity of the released molecules was validated using analytical and biological assays, including cell reporter systems. The simplicity of fabrication of the gelatin device should foster its adaptation by the diverse scientific community interested in interrogating developmental processes, in vivo.

  17. Gelatin device for the delivery of growth factors involved in endochondral ossification

    PubMed Central

    Ahrens, Lucas A. J.; Vonwil, Daniel; Christensen, Jon

    2017-01-01

    Controlled release drug delivery systems are well established as oral and implantable dosage forms. However, the controlled release paradigm can also be used to present complex soluble signals responsible for cellular organization during development. Endochondral ossification (EO), the developmental process of bone formation from a cartilage matrix is controlled by several soluble signals with distinct functions that vary in structure, molecular weight and stability. This makes delivering them from a single vehicle rather challenging. Herein, a gelatin-based delivery system suitable for the delivery of small molecules as well as recombinant human (rh) proteins (rhWNT3A, rhFGF2, rhVEGF, rhBMP4) is reported. The release behavior and biological activity of the released molecules was validated using analytical and biological assays, including cell reporter systems. The simplicity of fabrication of the gelatin device should foster its adaptation by the diverse scientific community interested in interrogating developmental processes, in vivo. PMID:28380024

  18. SU-F-T-242: A Method for Collision Avoidance in External Beam Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buzurovic, I; Cormack, R

    2016-06-15

    Purpose: We proposed a method for collision avoidance (CA) in external beam radiation therapy (EBRT). The method encompasses the analysis of all positions of the moving components of the beam delivery system such as the treatment table and gantry, including patient specific information obtained from the CT images. This method eliminates the need for time-consuming dry-runs prior to the actual treatments. Methods: The QA procedure for EBRT requires that the collision should be checked prior to treatment. We developed a system capable of a rigorous computer simulation of all moving components including positions of the couch and gantry during themore » delivery, position of the patients, and imaging equipment. By running this treatment simulation it is possible to quantify and graphically represent all positions and corresponding trajectories of all points of the moving parts during the treatment delivery. The development of the workflow for implementation of the CA includes several steps: a) derivation of combined dynamic equation of motion of the EBRT delivery systems, b) developing the simulation model capable of drawing the motion trajectories of the specific points, c) developing the interface between the model and the treatment plan parameters such as couch and gantry parameters for each field. Results: The patient CT images were registered to the treatment couch so the patient dimensions were included into the simulation. The treatment field parameters were structured in the xml-file which was used as the input into the dynamic equations. The trajectories of the moving components were plotted on the same graph using the dynamic equations. If the trajectories intersect that was the signal that collision exists. Conclusion: This CA method was proved to be effective in the simulation of treatment delivery. The proper implementation of this system can potentially improve the QA program and increase the efficacy in the clinical setup.« less

  19. Harnessing the potential of biomaterials for brain repair after stroke

    NASA Astrophysics Data System (ADS)

    Tuladhar, Anup; Payne, Samantha L.; Shoichet, Molly S.

    2018-03-01

    Stroke is a devastating disease for which no clinical treatment exists to regenerate lost tissue. Strategies for brain repair in animal models of stroke include the delivery of drug or cell-based therapeutics; however, the complex anatomy and functional organization of the brain presents many challenges. Biomaterials may alleviate some of these challenges by providing a scaffold, localizing the therapy to the site of action, and/or modulating cues to brain cells. Here, the challenges associated with delivery of therapeutics to the brain and the biomaterial strategies used to overcome these challenges are described. For example, innovative hydrogel delivery systems have been designed to provide sustained trophic factor delivery for endogenous repair and to support transplanted cell survival and integration. Novel treatments, such as electrical stimulation of transplanted cells and the delivery of factors for the direct reprogramming of astrocytes into neurons, may be further enhanced by biomaterial delivery systems. Ultimately, improved clinical translation will be achieved by combining clinically relevant therapies with biomaterials strategies.

  20. Recent Advances in the Application of Vitamin E TPGS for Drug Delivery

    PubMed Central

    Yang, Conglian; Wu, Tingting; Qi, Yan; Zhang, Zhiping

    2018-01-01

    D-ɑ-tocopheryl polyethylene glycol succinate (Vitamin E TPGS or TPGS) has been approved by FDA as a safe adjuvant and widely used in drug delivery systems. The biological and physicochemical properties of TPGS provide multiple advantages for its applications in drug delivery like high biocompatibility, enhancement of drug solubility, improvement of drug permeation and selective antitumor activity. Notably, TPGS can inhibit the activity of ATP dependent P-glycoprotein and act as a potent excipient for overcoming multi-drug resistance (MDR) in tumor. In this review, we aim to discuss the recent advances of TPGS in drug delivery including TPGS based prodrugs, nitric oxide donor and polymers, and unmodified TPGS based formulations. These potential applications are focused on enhancing delivery efficiency as well as the therapeutic effect of agents, especially on overcoming MDR of tumors. It also demonstrates that the clinical translation of TPGS based nanomedicines is still faced with many challenges, which requires more detailed study on TPGS properties and based delivery system in the future. PMID:29290821

  1. Deep Space Systems Technology Program Future Deliveries

    NASA Technical Reports Server (NTRS)

    Salvo, Christopher G.; Keuneke, Matthew S.

    2000-01-01

    NASA is in a period of frequent launches of low cost deep space missions with challenging performance needs. The modest budgets of these missions make it impossible for each to develop its own technology, therefore, efficient and effective development and insertion of technology for these missions must be approached at a higher level than has been done in the past. The Deep Space Systems Technology Program (DSST), often referred to as X2000, has been formed to address this need. The program is divided into a series of "Deliveries" that develop and demonstrate a set of spacecraft system capabilities with broad applicability for use by multiple missions. The First Delivery Project, to be completed in 2001, will provide a one MRAD-tolerant flight computer, power switching electronics, efficient radioisotope power source, and a transponder with services at 8.4 GHz and 32 GHz bands. Plans call for a Second Delivery in late 2003 to enable complete deep space systems in the 10 to 50 kg class, and a Third Delivery built around Systems on a Chip (extreme levels of electronic and microsystems integration) around 2006. Formulation of Future Deliveries (past the First Delivery) is ongoing and includes plans for such developments as highly miniaturized digital/analog/power electronics, optical communications, multifunctional structures, miniature lightweight propulsion, advanced thermal control techniques, highly efficient radioisotope power sources, and a unified flight ground software architecture to support the needs of future highly intelligent space systems. All developments are targeted at broad applicability and reuse, and will be commercialized within the US.

  2. Engineering liposomal nanoparticles for targeted gene therapy.

    PubMed

    Zylberberg, C; Gaskill, K; Pasley, S; Matosevic, S

    2017-08-01

    Recent mechanistic studies have attempted to deepen our understanding of the process by which liposome-mediated delivery of genetic material occurs. Understanding the interactions between lipid nanoparticles and cells is still largely elusive. Liposome-mediated delivery of genetic material faces systemic obstacles alongside entry into the cell, endosomal escape, lysosomal degradation and nuclear uptake. Rational design approaches for targeted delivery have been developed to reduce off-target effects and enhance transfection. These strategies, which have included the modification of lipid nanoparticles with target-specific ligands to enhance intracellular uptake, have shown significant promise at the proof-of-concept stage. Control of physical and chemical specifications of liposome composition, which includes lipid-to-DNA charge, size, presence of ester bonds, chain length and nature of ligand complexation, is integral to the performance of targeted liposomes as genetic delivery agents. Clinical advances are expected to rely on such systems in the therapeutic application of liposome nanoparticle-based gene therapy. Here, we discuss the latest breakthroughs in the development of targeted liposome-based agents for the delivery of genetic material, paying particular attention to new ligand and cationic lipid design as well as recent in vivo advances.

  3. Stimuli-Responsive Nanomaterials for Therapeutic Protein Delivery

    PubMed Central

    Lu, Yue; Sun, Wujin; Gu, Zhen

    2014-01-01

    Protein therapeutics have emerged as a significant role in treatment of a broad spectrum of diseases, including cancer, metabolic disorders and autoimmune diseases. The efficacy of protein therapeutics, however, is limited by their instability, immunogenicity and short half-life. In order to overcome these barriers, tremendous efforts have recently been made in developing controlled protein delivery systems. Stimuli-triggered release is an appealing and promising approach for protein delivery and has made protein delivery with both spatiotemporal- and dosage-controlled manners possible. This review surveys recent advances in controlled protein delivery of proteins or peptides using stimuli-responsive nanomaterials. Strategies utilizing both physiological and external stimuli are introduced and discussed. PMID:25151983

  4. Intranasal delivery of antiviral siRNA.

    PubMed

    Barik, Sailen

    2011-01-01

    Intranasal administration of synthetic siRNA is an effective modality of RNAi delivery for the prevention and therapy of respiratory diseases, including pulmonary infections. Vehicles used for nasal siRNA delivery include established as well as novel reagents, many of which have been recently optimized. In general, they all promote significant uptake of siRNA into the lower respiratory tract, including the lung. When properly designed and optimized, these siRNAs offer significant protection against respiratory viruses such as influenza virus, parainfluenza virus and respiratory syncytial virus (RSV). Nasally administered siRNA remains within the lung and does not access systemic blood flow, as judged by its absence in other major organs such as liver, heart, kidney, and skeletal muscle. Adverse immune reaction is generally not encountered, especially when immunogenic and/or off-target siRNA sequences and toxic vehicles are avoided. In fact, siRNA against RSV has entered Phase II clinical trials in human with promising results. Here, we provide a standardized procedure for using the nose as a specific route for siRNA delivery into the lung of laboratory animals. It should be clear that this simple and efficient system has enormous potential for therapeutics.

  5. Hydrazone linkages in pH responsive drug delivery systems.

    PubMed

    Sonawane, Sandeep J; Kalhapure, Rahul S; Govender, Thirumala

    2017-03-01

    Stimuli-responsive polymeric drug delivery systems using various triggers to release the drug at the sites have become a major focus area. Among various stimuli-responsive materials, pH-responsiveness has been studied extensively. The materials used for fabricating pH-responsive drug delivery systems include a specific chemical functionality in their structure that can respond to changes in the pH of the surrounding environment. Various chemical functionalities, for example, acetal, amine, ortho ester, amine and hydrazone, have been used to design materials that are capable of releasing their payload at the acidic pH conditions of the tumor or infection sites. Hydrazone linkages are significant synthons for numerous transformations and have gained importance in pharmaceutical sciences due to their various biological and clinical applications. These linkages have been employed in various drug delivery vehicles, such as linear polymers, star shaped polymers, dendrimers, micelles, liposomes and inorganic nanoparticles, for pH-responsive drug delivery. This review paper focuses on the synthesis and characterization methods of hydrazone bond containing materials and their applications in pH-responsive drug delivery systems. It provides detailed suggestions as guidelines to materials and formulation scientists for designing biocompatible pH-responsive materials with hydrazone linkages and identifying future studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Development In Drug Targeting And Delivery In Cervical Cancer.

    PubMed

    Aggarwal, Urvashi; Goyal, Amit Kumar; Rath, Goutam

    2017-10-09

    Cervical cancer is the second most common cancer in women. Standard treatment options available for cervical cancer including chemotherapy, surgery and radiation therapy associated with their own side effects and toxicities. Tumor-targeted delivery of anticancer drugs is perhaps one of the most appropriate strategies to achieve optimal outcomes from treatment and improve quality of life. Recently nanocarriers based drug delivery systems owing to their unique properties have been extensively investigated for anticancer drug delivery. In addition to that addressing the anatomical significance of cervical cancer, various local drug delivery strategies for the cancer treatment are introduced like: gels, nanoparticles, polymeric films, rods and wafers, lipid based nanocarrier. Localized drug delivery systems allows passive drug targeting results in high drug concentration at the target site. Further they can be tailor made to achieve both sustained and controlled release behavior, substantially improving therapeutic outcomes and minimizing side effects. This review summarizes the meaningful advances in drug delivery strategies to treat cervical cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Sericin/Dextran Injectable Hydrogel as an Optically Trackable Drug Delivery System for Malignant Melanoma Treatment.

    PubMed

    Liu, Jia; Qi, Chao; Tao, Kaixiong; Zhang, Jinxiang; Zhang, Jian; Xu, Luming; Jiang, Xulin; Zhang, Yunti; Huang, Lei; Li, Qilin; Xie, Hongjian; Gao, Jinbo; Shuai, Xiaoming; Wang, Guobin; Wang, Zheng; Wang, Lin

    2016-03-01

    Severe side effects of cancer chemotherapy prompt developing better drug delivery systems. Injectable hydrogels are an effective site-target system. For most of injectable hydrogels, once delivered in vivo, some properties including drug release and degradation, which are critical to chemotherapeutic effects and safety, are challenging to monitor. Developing a drug delivery system for effective cancer therapy with in vivo real-time noninvasive trackability is highly desired. Although fluorescence dyes are used for imaging hydrogels, the cytotoxicity limits their applications. By using sericin, a natural photoluminescent protein from silk, we successfully synthesized a hydrazone cross-linked sericin/dextran injectable hydrogel. This hydrogel is biodegradable and biocompatible. It achieves efficient drug loading and controlled release of both macromolecular and small molecular drugs. Notably, sericin's photoluminescence from this hydrogel is directly and stably correlated with its degradation, enabling long-term in vivo imaging and real-time monitoring of the remaining drug. The hydrogel loaded with Doxorubicin significantly suppresses tumor growth. Together, the work demonstrates the efficacy of this drug delivery system, and the in vivo effectiveness of this sericin-based optical monitoring strategy, providing a potential approach for improving hydrogel design toward optimal efficiency and safety of chemotherapies, which may be widely applicable to other drug delivery systems.

  8. Manufacturing Techniques and Surface Engineering of Polymer Based Nanoparticles for Targeted Drug Delivery to Cancer

    PubMed Central

    Wang, Yichao; Li, Puwang; Truong-Dinh Tran, Thao; Zhang, Juan; Kong, Lingxue

    2016-01-01

    The evolution of polymer based nanoparticles as a drug delivery carrier via pharmaceutical nano/microencapsulation has greatly promoted the development of nano- and micro-medicine in the past few decades. Poly(lactide-co-glycolide) (PLGA) and chitosan, which are biodegradable and biocompatible polymers, have been approved by both the Food & Drug Administration (FDA) and European Medicine Agency (EMA), making them ideal biomaterials that can be advanced from laboratory development to clinical oral and parental administrations. PLGA and chitosan encapsulated nanoparticles (NPs) have successfully been developed as new oral drug delivery systems with demonstrated high efficacy. This review aims to provide a comprehensive overview of the fabrication of PLGA and chitosan particulate systems using nano/microencapsulation methods, the current progress and the future outlooks of the nanoparticulate drug delivery systems. Especially, we focus on the formulations and nano/micro-encapsulation techniques using top-down techniques. It also addresses how the different phases including the organic and aqueous ones in the emulsion system interact with each other and subsequently influence the properties of the drug delivery system. Besides, surface modification strategies which can effectively engineer intrinsic physicochemical properties are summarised. Finally, future perspectives and potential directions of PLGA and chitosan nano/microencapsulated drug systems are outlined. PMID:28344283

  9. Assessment of Delivery Accuracy in an Operational-Like Environment

    NASA Technical Reports Server (NTRS)

    Sharma, Shivanjli; Wynnyk, Mitch

    2016-01-01

    In order to enable arrival management concepts and solutions in a Next Generation Air Transportation System (NextGen) environment, ground-based sequencing and scheduling functions were developed to support metering operations in the National Airspace System. These sequencing and scheduling tools are designed to assist air traffic controllers in developing an overall arrival strategy, from enroute down to the terminal area boundary. NASA developed a ground system concept and protoype capability called Terminal Sequencing and Spacing (TSAS) to extend metering operations into the terminal area to the runway. To demonstrate the use of these scheduling and spacing tools in an operational-like environment, the FAA, NASA, and MITRE conducted an Operational Integration Assessment (OIA) of a prototype TSAS system at the FAA's William J. Hughes Technical Center (WJHTC). This paper presents an analysis of the arrival management strategies utilized and delivery accuracy achieved during the OIA. The analysis demonstrates how en route preconditioning, in various forms, and schedule disruptions impact delivery accuracy. As the simulation spanned both enroute and terminal airspace, the use of Ground Interval Management - Spacing (GIM-S) enroute speed advisories was investigated. Delivery accuracy was measured as the difference between the Scheduled Time of Arrival (STA) and the Actual Time of Arrival (ATA). The delivery accuracy was computed across all runs conducted during the OIA, which included deviations from nominal operations which are known to commonly occur in real operations, such as schedule changes and missed approaches. Overall, 83% of all flights were delivered into the terminal airspace within +/- 30 seconds of their STA and 94% of flights were delivered within +/- 60 seconds. The meter fix delivery accuracy standard deviation was found to be between 36 and 55 seconds across all arrival procedures. The data also showed when schedule disruptions were excluded, the percentage of aircraft delivered within +/- 30 seconds was between 85 and 90% across the various arrival procedures at the meter fix. This paper illustrates the ability to meet new delivery accuracy requirements in an operational-like environment using operational systems and NATCA controller participants, while also including common events that might cause disruptions to the schedule and overall system.

  10. Application of liposomes in drug development — focus on gastroenterological targets

    PubMed Central

    Zhang, Jian-Xin; Wang, Kun; Mao, Zheng-Fa; Fan, Xin; Jiang, De-Li; Chen, Min; Cui, Lei; Sun, Kang; Dang, Sheng-Chun

    2013-01-01

    Over the past decade, liposomes became a focal point in developing drug delivery systems. New liposomes, with novel lipid molecules or conjugates, and new formulations opened possibilities for safely and efficiently treating many diseases including cancers. New types of liposomes can prolong circulation time or specifically deliver drugs to therapeutic targets. This article concentrates on current developments in liposome based drug delivery systems for treating diseases of the gastrointestinal tract. We will review different types and uses of liposomes in the development of therapeutics for gastrointestinal diseases including inflammatory bowel diseases and colorectal cancer. PMID:23630417

  11. 3D printed drug delivery and testing systems - a passing fad or the future?

    PubMed

    Lim, Seng Han; Kathuria, Himanshu; Tan, Justin Jia Yao; Kang, Lifeng

    2018-05-18

    The US Food and Drug Administration approval of the first 3D printed tablet in 2015 has ignited growing interest in 3D printing, or additive manufacturing (AM), for drug delivery and testing systems. Beyond just a novel method for rapid prototyping, AM provides key advantages over traditional manufacturing of drug delivery and testing systems. These includes the ability to fabricate complex geometries to achieve variable drug release kinetics; ease of personalising pharmacotherapy for patient and lowering the cost for fabricating personalised dosages. Furthermore, AM allows fabrication of complex and micron-sized tissue scaffolds and models for drug testing systems that closely resemble in vivo conditions. However, there are several limitations such as regulatory concerns that may impede the progression to market. Here, we provide an overview of the advantages of AM drug delivery and testing, as compared to traditional manufacturing techniques. Also, we discuss the key challenges and future directions for AM enabled pharmaceutical applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Computerized Educational Delivery Strategies in Nine North American Colleges.

    ERIC Educational Resources Information Center

    Bowles, John C.

    1988-01-01

    Results of survey of high technology educational delivery systems in nine two-year colleges (five in the United States and four in Canada) emphasize the use of computers to provide alternatives to traditional classroom teaching. Topics discussed include open education, self-paced (fleximode) learning, artificial intelligence, software, and…

  13. Zero-order drug delivery system: theory and preliminary testing.

    PubMed

    Brooke, D; Washkuhn, R J

    1977-02-01

    A new approach to zero-order drug delivery that includes geometric factors is described. An experimental device based on the theory was tested by following the release of stearic acid into ethanol. Three separate trials indicated that the solid was released via a zero-order process in a reproducible manner.

  14. Design of a peptide-based vector, PepFect6, for efficient delivery of siRNA in cell culture and systemically in vivo

    PubMed Central

    EL Andaloussi, Samir; Lehto, Taavi; Mäger, Imre; Rosenthal-Aizman, Katri; Oprea, Iulian I.; Simonson, Oscar E.; Sork, Helena; Ezzat, Kariem; Copolovici, Dana M.; Kurrikoff, Kaido; Viola, Joana R.; Zaghloul, Eman M.; Sillard, Rannar; Johansson, Henrik J.; Said Hassane, Fatouma; Guterstam, Peter; Suhorutšenko, Julia; Moreno, Pedro M. D.; Oskolkov, Nikita; Hälldin, Jonas; Tedebark, Ulf; Metspalu, Andres; Lebleu, Bernard; Lehtiö, Janne; Smith, C. I. Edvard; Langel, Ülo

    2011-01-01

    While small interfering RNAs (siRNAs) have been rapidly appreciated to silence genes, efficient and non-toxic vectors for primary cells and for systemic in vivo delivery are lacking. Several siRNA-delivery vehicles, including cell-penetrating peptides (CPPs), have been developed but their utility is often restricted by entrapment following endocytosis. Hence, developing CPPs that promote endosomal escape is a prerequisite for successful siRNA implementation. We here present a novel CPP, PepFect 6 (PF6), comprising the previously reported stearyl-TP10 peptide, having pH titratable trifluoromethylquinoline moieties covalently incorporated to facilitate endosomal release. Stable PF6/siRNA nanoparticles enter entire cell populations and rapidly promote endosomal escape, resulting in robust RNAi responses in various cell types (including primary cells), with minimal associated transcriptomic or proteomic changes. Furthermore, PF6-mediated delivery is independent of cell confluence and, in most cases, not significantly hampered by serum proteins. Finally, these nanoparticles promote strong RNAi responses in different organs following systemic delivery in mice without any associated toxicity. Strikingly, similar knockdown in liver is achieved by PF6/siRNA nanoparticles and siRNA injected by hydrodynamic infusion, a golden standard technique for liver transfection. These results imply that the peptide, in addition to having utility for RNAi screens in vitro, displays therapeutic potential. PMID:21245043

  15. Microemulsion and Microemulsion-Based Gels for Topical Antifungal Therapy with Phytochemicals.

    PubMed

    Boonme, Prapaporn; Kaewbanjong, Jarika; Amnuaikit, Thanaporn; Andreani, Tatiana; Silva, Amélia M; Souto, Eliana B

    2016-01-01

    Skin fungal infections are regular injuries suffered by people living in tropical areas. Most common pathogens are Trichophyton, Microsporum and Epidermophyton which can cause skin lesions in many parts of body. Topical antifungal phytochemicals are commonly used to avoid systemic adverse events and are more convenient for patient application than those administered by other routes. However, the effectiveness of topical treatments in eradicating fungal infection is more limited since the stratum corneum acts as the skin barrier, resulting in long treatment duration and low patient's compliance. The goal of this work is to identify optimized drug delivery systems to improve topic clinical efficacy. Microemulsions i.e. liquid dispersions of oil and water stabilized with an interfacial film of surfactant are well known drug delivery systems. A thickening agent may be included to form microemulsion-based gels to increase skin adhesion. Microemulsions and microemulsion-based gels can be loaded with several hydrophilic and lipophilic drugs because they are composed of both water and oil phases. Microemulsions and microemulsion-based gels can also be used for the delivery of many drugs including antifungal drugs through stratum corneum due to their capacity to act as skin penetration enhancement. In addition to a comprehensive review of microemulsion and microemulsion-based gels as suitable carriers for skin delivery of various antifungal drugs, this review also aims to discuss the delivery of antifungal phytochemicals.

  16. Integration mechanisms and hospital efficiency in integrated health care delivery systems.

    PubMed

    Wan, Thomas T H; Lin, Blossom Yen-Ju; Ma, Allen

    2002-04-01

    This study analyzes integration mechanisms that affect system performances measured by indicators of efficiency in integrated delivery systems (IDSs) in the United States. The research question is, do integration mechanisms improve IDSs' efficiency in hospital care? American Hospital Association's Annual Survey (1998) and Dorenfest's Survey on Information Systems in Integrated Healthcare Delivery Systems (1998) were used to conduct the study, using IDS as the unit of analysis. A covariance structure equation model of the effects of system integration mechanisms on IDS performance was formulated and validated by an empirical examination of IDSs. The study sample includes 973 hospital-based integrated health care delivery systems operating in the United States, carried in the list of Dorenfests Survey on Information Systems in Integrated Health care Delivery Systems. The measurement indicators of system integration mechanisms are categorized into six related domains: informatic integration, case management, hybrid physician-hospital integration, forward integration, backward integration, and high tech medical services. The multivariate analysis reveals that integration mechanisms in system operation are positively correlated and positively affect IDSs' efficiency. The six domains of integration mechanisms account for 58.9% of the total variance in hospital performance. The service differentiation strategy such as having more high tech medical services have much stronger influences on efficiency than other integration mechanisms do. The beneficial effects of integration mechanisms have been realized in IDS performance. High efficiency in hospital care can be achieved by employing proper integration strategies in operations.

  17. Transdermal drug delivery: feasibility for treatment of superficial bone stress fractures.

    PubMed

    Aghazadeh-Habashi, Ali; Yang, Yang; Tang, Kathy; Lőbenberg, Raimar; Doschak, Michael R

    2015-12-01

    Transdermal drug delivery offers the promise of effective drug therapy at selective sites of pathology whilst reducing systemic exposure to the pharmaceutical agents in off-target organs and tissues. However, that strategy is often limited to cells comprising superficial tissues of the body (rarely to deeper bony structures) and mostly indicated with small hydrophobic pharmacological agents, such as steroid hormones and anti-inflammatory gels to skin, muscle, and joints. Nonetheless, advances in transdermal liposomal formulation have rendered the ability to readily incorporate pharmacologically active hydrophilic drug molecules and small peptide biologics into transdermal dosage forms to impart the effective delivery of those bioactive agents across the skin barrier to underlying superficial tissue structures including bone, often enhanced by some form of electrical, chemical, and mechanical facilitation. In the following review, we evaluate transdermal drug delivery systems, with a particular focus on delivering therapeutic agents to treat superficial bone pain, notably stress fractures. We further introduce and discuss several small peptide hormones active in bone (such as calcitonins and parathyroid hormone) that have shown potential for transdermal delivery, often under the added augmentation of transdermal drug delivery systems that employ lipo/hydrophilicity, electric charge, and/or microprojection facilitation across the skin barrier.

  18. Cell-Mediated Drugs Delivery

    PubMed Central

    Batrakova, Elena V.; Gendelman, Howard E.; Kabanov, Alexander V.

    2011-01-01

    INTRODUCTION Drug targeting to sites of tissue injury, tumor or infection with limited toxicity is the goal for successful pharmaceutics. Immunocytes (including mononuclear phagocytes (dendritic cells, monocytes and macrophages), neutrophils, and lymphocytes) are highly mobile; they can migrate across impermeable barriers and release their drug cargo at sites of infection or tissue injury. Thus immune cells can be exploited as trojan horses for drug delivery. AREAS COVERED IN THIS REVIEW This paper reviews how immunocytes laden with drugs can cross the blood brain or blood tumor barriers, to facilitate treatments for infectious diseases, injury, cancer, or inflammatory diseases. The promises and perils of cell-mediated drug delivery are reviewed, with examples of how immunocytes can be harnessed to improve therapeutic end points. EXPERT OPINION Using cells as delivery vehicles enables targeted drug transport, and prolonged circulation times, along with reductions in cell and tissue toxicities. Such systems for drug carriage and targeted release represent a novel disease combating strategy being applied to a spectrum of human disorders. The design of nanocarriers for cell-mediated drug delivery may differ from those used for conventional drug delivery systems; nevertheless, engaging different defense mechanisms into drug delivery may open new perspectives for the active delivery of drugs. PMID:21348773

  19. Anti-Cancer Drug Delivery Using Carbohydrate-Based Polymers.

    PubMed

    Ranjbari, Javad; Mokhtarzadeh, Ahad; Alibakhshi, Abbas; Tabarzad, Maryam; Hejazi, Maryam; Ramezani, Mohammad

    2018-02-12

    Polymeric drug delivery systems in the form of nanocarriers are the most interesting vehicles in anticancer therapy. Among different types of biocompatible polymers, carbohydrate-based polymers or polysaccharides are the most common natural polymers with complex structures consisting of long chains of monosaccharide or disaccharide units bound by glycosidic linkages. Their appealing properties such as availability, biocompatibility, biodegradability, low toxicity, high chemical reactivity, facile chemical modification and low cost led to their extensive applications in biomedical and pharmaceutical fields including development of nano-vehicles for delivery of anti-cancer therapeutic agents. Generally, reducing systemic toxicity, increasing short half-lives and tumor localization of agents are the top priorities for a successful cancer therapy. Polysaccharide-based or - coated nanosystems with respect to their advantageous features as well as accumulation in tumor tissue due to enhanced permeation and retention (EPR) effect can provide promising carrier systems for the delivery of noblest impressive agents. Most challenging factor in cancer therapy was the toxicity of anti-cancer therapeutic agents for normal cells and therefore, targeted delivery of these drugs to the site of action can be considered as an interesting therapeutic strategy. In this regard, several polysaccharides exhibited selective affinity for specific cell types, and so they can act as a targeting agent in drug delivery systems. Accordingly, different aspects of polysaccharide applications in cancer treatment or diagnosis were reviewed in this paper. In this regard, after a brief introduction of polysaccharide structure and its importance, the pharmaceutical usage of carbohydrate-based polymers was considered according to the identity of accompanying active pharmaceutical agents. It was also presented that the carbohydrate based polymers have been extensively considered as promising materials in the design of efficient nanocarriers for anti-cancer biopharmaceuticals including peptide and proteins or nucleic acid-based therapeutics. Then, the importance of various polysaccharide co-polymers in the drug delivery approaches was illustrated. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Cyclodextrin-based supramolecular systems for drug delivery: Recent progress and future perspective

    PubMed Central

    Zhang, Jianxiang; Ma, Peter X

    2013-01-01

    The excellent biocompatibility and unique inclusion capability as well as powerful functionalization capacity of cyclodextrins and their derivatives make them especially attractive for engineering novel functional materials for biomedical applications. There has been increasing interest recently to fabricate supramolecular systems for drug and gene delivery based on cyclodextrin materials. This review focuses on state of the art and recent advances in the construction of cyclodextrin-based assemblies and their applications for controlled drug delivery. First, we introduce cyclodextrin materials utilized for self-assembly. The fabrication technologies of supramolecular systems including nanoplatforms and hydrogels as well as their applications in nanomedicine and pharmaceutical sciences are then highlighted. At the end, the future directions of this field are discussed. PMID:23673149

  1. Overcoming the Cutaneous Barrier with Microemulsions

    PubMed Central

    Lopes, Luciana B.

    2014-01-01

    Microemulsions are fluid and isotropic formulations that have been widely studied as delivery systems for a variety of routes, including the skin. In spite of what the name suggests, microemulsions are nanocarriers, and their use as topical delivery systems derives from their multiple advantages compared to other dermatological formulations, such as ease of preparation, thermodynamic stability and penetration-enhancing properties. Composition, charge and internal structure have been reported as determinant factors for the modulation of drug release and cutaneous and transdermal transport. This manuscript aims at reviewing how these and other characteristics affect delivery and make microemulsions appealing for topical and transdermal administration, as well as how they can be modulated during the formulation design to improve the potential and efficacy of the final system. PMID:24590260

  2. Nanoparticles for cancer gene therapy: Recent advances, challenges, and strategies.

    PubMed

    Wang, Kui; Kievit, Forrest M; Zhang, Miqin

    2016-12-01

    Compared to conventional treatments, gene therapy offers a variety of advantages for cancer treatment including high potency and specificity, low off-target toxicity, and delivery of multiple genes that concurrently target cancer tumorigenesis, recurrence, and drug resistance. In the past decades, gene therapy has undergone remarkable progress, and is now poised to become a first line therapy for cancer. Among various gene delivery systems, nanoparticles have attracted much attention because of their desirable characteristics including low toxicity profiles, well-controlled and high gene delivery efficiency, and multi-functionalities. This review provides an overview on gene therapeutics and gene delivery technologies, and highlight recent advances, challenges and insights into the design and the utility of nanoparticles in gene therapy for cancer treatment. Copyright © 2016. Published by Elsevier Ltd.

  3. Pectin-based oral drug delivery to the colon.

    PubMed

    Sande, Sverre Arne

    2005-05-01

    This review presents an overview of studies concerning oral formulations intended for site-specific drug delivery to the colon with pectin as the main excipient. The biological aspects covered include gastrointestinal transit and the enzymatic degradation of pectin. Scintigraphic methods demonstrating the functionality of pectin formulations are discussed. The main focus is on the various formulations reported, including matrix tablets, multiparticulate formulations as pellets and hydrogel beads, and pectin-based coatings. Also included is an evaluation of common excipients employed to improve colon specificity by crosslinking or increasing the hydrophobicity. Finally, properties of the pectin molecules that are important for successful formulations are examined. The conclusion is that the studies found in the literature provide an excellent platform for the development of pectin-based colon delivery systems.

  4. Designing and assessing a sustainable networked delivery (SND) system: hybrid business-to-consumer book delivery case study.

    PubMed

    Kim, Junbeum; Xu, Ming; Kahhat, Ramzy; Allenby, Braden; Williams, Eric

    2009-01-01

    We attempted to design and assess an example of a sustainable networked delivery (SND) system: a hybrid business-to-consumer book delivery system. This system is intended to reduce costs, achieve significant reductions in energy consumption, and reduce environmental emissions of critical local pollutants and greenhouse gases. The energy consumption and concomitant emissions of this delivery system compared with existing alternative delivery systems were estimated. We found that regarding energy consumption, an emerging hybrid delivery system which is a sustainable networked delivery system (SND) would consume 47 and 7 times less than the traditional networked delivery system (TND) and e-commerce networked delivery system (END). Regarding concomitant emissions, in the case of CO2, the SND system produced 32 and 7 times fewer emissions than the TND and END systems. Also the SND system offer meaningful economic benefit such as the costs of delivery and packaging, to the online retailer, grocery, and consumer. Our research results show that the SND system has a lot of possibilities to save local transportation energy consumption and delivery costs, and reduce environmental emissions in delivery system.

  5. Particulate delivery systems for vaccination against bioterrorism agents and emerging infectious pathogens

    PubMed Central

    Fan, Yuchen; Moon, James J.

    2016-01-01

    Bioterrorism agents that can be easily transmitted with high mortality rates and cause debilitating diseases pose major threats to national security and public health. The recent Ebola virus outbreak in West Africa and ongoing Zika virus outbreak in Brazil, now spreading throughout Latin America, are case examples of emerging infectious pathogens that have incited widespread fear and economic and social disruption on a global scale. Prophylactic vaccines would provide effective countermeasures against infectious pathogens and biological warfare agents. However, traditional approaches relying on attenuated or inactivated vaccines have been hampered by their unacceptable levels of reactogenicity and safety issues, whereas subunit antigen-based vaccines suffer from suboptimal immunogenicity and efficacy. In contrast, particulate vaccine delivery systems offer key advantages, including efficient and stable delivery of subunit antigens, co-delivery of adjuvant molecules to bolster immune responses, low reactogenicity due to the use of biocompatible biomaterials, and robust efficiency to elicit humoral and cellular immunity in systemic and mucosal tissues. Thus, vaccine nanoparticles and microparticles are promising platforms for clinical development of biodefense vaccines. In this review, we summarize the current status of research efforts to develop particulate vaccine delivery systems against bioterrorism agents and emerging infectious pathogens. PMID:27038091

  6. Chitosan nanoparticle based delivery systems for sustainable agriculture.

    PubMed

    Kashyap, Prem Lal; Xiang, Xu; Heiden, Patricia

    2015-01-01

    Development of technologies that improve food productivity without any adverse impact on the ecosystem is the need of hour. In this context, development of controlled delivery systems for slow and sustained release of agrochemicals or genetic materials is crucial. Chitosan has emerged as a valuable carrier for controlled delivery of agrochemicals and genetic materials because of its proven biocompatibility, biodegradability, non-toxicity, and adsorption abilities. The major advantages of encapsulating agrochemicals and genetic material in a chitosan matrix include its ability to function as a protective reservoir for the active ingredients, protecting the ingredients from the surrounding environment while they are in the chitosan domain, and then controlling their release, allowing them to serve as efficient gene delivery systems for plant transformation or controlled release of pesticides. Despite the great progress in the use of chitosan in the area of medical and pharmaceutical sciences, there is still a wide knowledge gap regarding the potential application of chitosan for encapsulation of active ingredients in agriculture. Hence, the present article describes the current status of chitosan nanoparticle-based delivery systems in agriculture, and to highlight challenges that need to be overcome. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Soil chemical sensor and precision agricultural chemical delivery system and method

    DOEpatents

    Colburn, Jr., John W.

    1991-01-01

    A real time soil chemical sensor and precision agricultural chemical delivery system includes a plurality of ground-engaging tools in association with individual soil sensors which measure soil chemical levels. The system includes the addition of a solvent which rapidly saturates the soil/tool interface to form a conductive solution of chemicals leached from the soil. A multivalent electrode, positioned within a multivalent frame of the ground-engaging tool, applies a voltage or impresses a current between the electrode and the tool frame. A real-time soil chemical sensor and controller senses the electrochemical reaction resulting from the application of the voltage or current to the leachate, measures it by resistivity methods, and compares it against pre-set resistivity levels for substances leached by the solvent. Still greater precision is obtained by calibrating for the secondary current impressed through solvent-less soil. The appropriate concentration is then found and the servo-controlled delivery system applies the appropriate amount of fertilizer or agricultural chemicals substantially in the location from which the soil measurement was taken.

  8. Recent Advances in Anticancer Activities and Drug Delivery Systems of Tannins.

    PubMed

    Cai, Yuee; Zhang, Jinming; Chen, Nelson G; Shi, Zhi; Qiu, Jiange; He, Chengwei; Chen, Meiwan

    2017-07-01

    Tannins, polyphenols in medicinal plants, have been divided into two groups of hydrolysable and condensed tannins, including gallotannins, ellagitannins, and (-)-epigallocatechin-3-gallate (EGCG). Potent anticancer activities have been observed in tannins (especially EGCG) with multiple mechanisms, such as apoptosis, cell cycle arrest, and inhibition of invasion and metastases. Furthermore, the combinational effects of tannins and anticancer drugs have been demonstrated in this review, including chemoprotective, chemosensitive, and antagonizing effects accompanying with anticancer effect. However, the applications of tannins have been hindered due to their poor liposolubility, low bioavailability, off-taste, and shorter half-life time in human body, such as EGCG, gallic acid, and ellagic acid. To tackle these obstacles, novel drug delivery systems have been employed to deliver tannins with the aim of improving their applications, such as gelatin nanoparticles, micelles, nanogold, liposomes, and so on. In this review, the chemical characteristics, anticancer properties, and drug delivery systems of tannins were discussed with an attempt to provide a systemic reference to promote the development of tannins as anticancer agents. © 2016 Wiley Periodicals, Inc.

  9. Soil chemical sensor and precision agricultural chemical delivery system and method

    DOEpatents

    Colburn, J.W. Jr.

    1991-07-23

    A real time soil chemical sensor and precision agricultural chemical delivery system includes a plurality of ground-engaging tools in association with individual soil sensors which measure soil chemical levels. The system includes the addition of a solvent which rapidly saturates the soil/tool interface to form a conductive solution of chemicals leached from the soil. A multivalent electrode, positioned within a multivalent frame of the ground-engaging tool, applies a voltage or impresses a current between the electrode and the tool frame. A real-time soil chemical sensor and controller senses the electrochemical reaction resulting from the application of the voltage or current to the leachate, measures it by resistivity methods, and compares it against pre-set resistivity levels for substances leached by the solvent. Still greater precision is obtained by calibrating for the secondary current impressed through solvent-less soil. The appropriate concentration is then found and the servo-controlled delivery system applies the appropriate amount of fertilizer or agricultural chemicals substantially in the location from which the soil measurement was taken. 5 figures.

  10. Polypyrrole Film as a Drug Delivery System for the Controlled Release of Risperidone

    NASA Astrophysics Data System (ADS)

    Svirskis, Darren; Travas-Sejdic, Jadranka; Rodgers, Anthony; Garg, Sanjay

    2009-07-01

    Conducting polymers are finding applications in medicine including drug delivery systems, biosensors and templates for the regeneration of nervous pathways. We aim to develop a novel system where the drug release rate can be controlled by electrical stimulation. Polypyrrole (PPY) is being used as a drug delivery system due to its inherent electrical conductivity, ease of preparation and apparent biocompatibility. Risperidone is an atypical antipsychotic drug used in the treatment of psychosis and related disorders, including schizophrenia. PPY was synthesised using p-toluene sulfonic acid as a primary dopant, in the presence of risperidone. A validated high performance liquid chromatography (HPLC) analytical method was used to quantify risperidone release. It has been demonstrated that the release rate of risperidone can be altered through the application, or absence, of electrical stimulation. Technology such as this would find use in drug-delivering implants where the dose could be adjusted through application of external stimulus, optimising benefit to side effect ratio, while simultaneously ensuring patient adherence (which is a particular challenge in mental health conditions).

  11. Biotube

    NASA Technical Reports Server (NTRS)

    Richards, Stephanie E. (Compiler); Levine, Howard G.; Romero, Vergel

    2016-01-01

    Biotube was developed for plant gravitropic research investigating the potential for magnetic fields to orient plant roots as they grow in microgravity. Prior to flight, experimental seeds are placed into seed cassettes, that are capable of containing up to 10 seeds, and inserted between two magnets located within one of three Magnetic Field Chamber (MFC). Biotube is stored within an International Space Station (ISS) stowage locker and provides three levels of containment for chemical fixatives. Features include monitoring of temperature, fixative/ preservative delivery to specimens, and real-time video imaging downlink. Biotube's primary subsystems are: (1) The Water Delivery System that automatically activates and controls the delivery of water (to initiate seed germination). (2) The Fixative Storage and Delivery System that stores and delivers chemical fixative or RNA later to each seed cassette. (3) The Digital Imaging System consisting of 4 charge-coupled device (CCD) cameras, a video multiplexer, a lighting multiplexer, and 16 infrared light-emitting diodes (LEDs) that provide illumination while the photos are being captured. (4) The Command and Data Management System that provides overall control of the integrated subsystems, graphical user interface, system status and error message display, image display, and other functions.

  12. Recent technologies in pulsatile drug delivery systems

    PubMed Central

    Jain, Deepika; Raturi, Richa; Jain, Vikas; Bansal, Praveen; Singh, Ranjit

    2011-01-01

    Pulsatile drug delivery systems (PDDS) have attracted attraction because of their multiple benefits over conventional dosage forms. They deliver the drug at the right time, at the right site of action and in the right amount, which provides more benefit than conventional dosages and increased patient compliance. These systems are designed according to the circadian rhythm of the body, and the drug is released rapidly and completely as a pulse after a lag time. These products follow the sigmoid release profile characterized by a time period. These systems are beneficial for drugs with chronopharmacological behavior, where nocturnal dosing is required, and for drugs that show the first-pass effect. This review covers methods and marketed technologies that have been developed to achieve pulsatile delivery. Marketed technologies, such as PulsincapTM, Diffucaps®, CODAS®, OROS® and PULSYSTM, follow the above mechanism to render a sigmoidal drug release profile. Diseases wherein PDDS are promising include asthma, peptic ulcers, cardiovascular ailments, arthritis and attention deficit syndrome in children and hypercholesterolemia. Pulsatile drug delivery systems have the potential to bring new developments in the therapy of many diseases. PMID:23507727

  13. Potential Use of Alginate-Based Carriers As Antifungal Delivery System

    PubMed Central

    Spadari, Cristina de Castro; Lopes, Luciana B.; Ishida, Kelly

    2017-01-01

    Fungal infections have become a major public health problem, growing in number and severity in recent decades due to an increase of immunocompromised patients. The use of therapeutic agents available to treat these fungal infections is limited by their toxicity, low bioavailability, antifungal resistance, and high cost of treatment. Thus, it becomes extremely important to search for new therapeutic options. The use of polymeric systems as drug carriers has emerged as a promising alternative to conventional formulations for antifungals. Alginate is a natural polymer that has been explored in the last decade for development of drug delivery systems due to its non-toxicity, biodegradability, biocompatibility, low cost, mucoadhesive, and non-immunogenic properties. Several antifungal agents have been incorporated in alginate-based delivery systems, including micro and nanoparticles, with great success, displaying promising in vitro and in vivo results for antifungal activities, reduction in the toxicity and the total drug dose used in the treatment, and improved bioavailability. This review aims at discussing the potential use and benefits of alginate-based nanocarriers and other delivery systems containing antifungal agents in the therapy of fungal infections. PMID:28194145

  14. Prospective multicenter study of ultrasound-based measurements of fetal head station and position throughout labor.

    PubMed

    Vitner, D; Paltieli, Y; Haberman, S; Gonen, R; Ville, Y; Nizard, J

    2015-11-01

    To assess the relationship between fetal head position and head station during labor, as measured using an ultrasound-based system, and the occurrence of occiput posterior (OP) position at delivery. This was an international prospective observational study including women who delivered between January 2009 and September 2013 in four centers: one in Brooklyn, NY, USA; one in Haifa, Israel; and two in Paris, France. We used an ultrasound-based system (LaborPro) to monitor fetal head station and position non-invasively throughout labor. We collected data on demographics, labor parameters and outcome. A total of 595 women were included. In 563 (94.6%) women, fetal head position at delivery was occiput anterior (OA), in 31 (5.2%) it was OP and in one (0.2%) it was occiput transverse. In 89% of pregnancies with intrapartum OP when fetal head station was above -2, the head position turned to OA at delivery; the equivalent figures were 74% and 63% OA at delivery when intrapartum OP was diagnosed at head stations of -2 to < 0, and 0 and below, respectively. Cesarean delivery was performed in 35% of pregnancies with fetal head in OP position at delivery, as opposed to 10% of those with non-OP position at delivery. On retrospective analysis, all deliveries in OP were already in OP at station -2 and below. In this first assessment of fetal head position at delivery according to fetal head position at various station levels, our data show that 100% of OP positions at delivery were already in OP position at station -2 and below. We did not observe rotation from a non-OP to an OP position from station -2 and below. Nearly two-thirds of fetuses in OP at station 0 and below will rotate to an OA position for delivery. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.

  15. Potential drug delivery approaches for XFS-associated and XFS-associated glaucoma.

    PubMed

    Kulkarni, Shreya S; Kompella, Uday B

    2014-01-01

    Key tissue targets in treating exfoliation syndrome (XFS) and the associated glaucoma include lens, iris, and ciliary body, which produce the exfoliative material, and the trabecular meshwork, which may be impaired by the exfoliative material. In addition to antiglaucoma drug therapy, strategies for treating the disease include approaches for preventing formation of exfoliative material as well as those aimed at digesting exfoliative material. A variety of drug molecules including small molecules, protein drugs, and nucleic acids are potential candidates for treating XFS. Potential drug classes include antioxidants, lysyl oxidase-like 1 enhancers, antifibrotics, anti-inflammatory agents, proteases, and chaperones. However, the delivery of these agents to the target tissues in the anterior segment is hindered by protective static and dynamic barriers of the eye. Thus, unique drug delivery approaches are needed for each drug type (small molecules, proteins, and nucleic acids). In addition, there is a need for sustaining drug therapy for treating XFS, which can potentially be addressed by using nanoparticles, microparticles, implants, and contact lens delivery systems. This article provides an overview of drug delivery challenges and opportunities in treating XFS with the focus being on nanomedicines.

  16. Update of Ablative Fractionated Lasers to Enhance Cutaneous Topical Drug Delivery.

    PubMed

    Waibel, Jill S; Rudnick, Ashley; Shagalov, Deborah R; Nicolazzo, Danielle M

    2017-08-01

    Ablative fractional lasers (AFXL) enhance uptake of therapeutics and this newly emerging field is called laser-assisted drug delivery (LAD). This new science has emerged over the past decade and is finding its way into clinical practice. LAD is poised to change how medicine delivers drugs. Topical and systemic application of pharmaceutical agents for therapeutic effect is an integral part of medicine. With topical therapy, the stratum corneum barrier of the skin impairs the ability of drugs to enter the body. The purpose of LAD is to alter the stratum corneum, epidermis, and dermis to facilitate increased penetration of a drug, device, or cell to its respected target. AFXL represents an innovative, non-invasive strategy to overcome the epidermal barrier. LAD employs three steps: (1) breakdown of the skin barrier with a laser, (2) optional use a laser for a therapeutic effect, (3) delivery of the medicine through laser channels to further enhance the therapeutic effect. The advantages of using lasers for drug delivery include the ease of accessibility, the non-invasive aspect, and its effectiveness. By changing the laser settings, one may use LAD to have a drug remain locally within the skin or to have systemic delivery. Many drugs are not intended for use in the dermis and so it has yet to be determined which drugs are appropriate for this technique. It appears this developing technology has the ability to be a new delivery system for both localized and systemic delivery of drugs, cells, and other molecules. With responsible development AFXL-assisted drug delivery may become a new important part of medicine.

  17. Synthetic Tumor Networks for Screening Drug Delivery Systems

    PubMed Central

    Prabhakarpandian, Balabhaskar; Shen, Ming-Che; Nichols, Joseph B.; Garson, Charles J.; Mills, Ivy R.; Matar, Majed M.; Fewell, Jason G.; Pant, Kapil

    2015-01-01

    Tumor drug delivery is a complex phenomenon affected by several elements in addition to drug or delivery vehicle’s physico-chemical properties. A key factor is tumor microvasculature with complex effects including convective transport, high interstitial pressure and enhanced vascular permeability due to the presence of “leaky vessels”. Current in vitro models of the tumor microenvironment for evaluating drug delivery are oversimplified and, as a result, show poor correlation with in vivo performance. In this study, we report on the development of a novel microfluidic platform that models the tumor microenvironment more accurately, with physiologically and morphologically realistic microvasculature including endothelial cell lined leaky capillary vessels along with 3D solid tumors. Endothelial cells and 3D spheroids of cervical tumor cells were co-cultured in the networks. Drug vehicle screening was demonstrated using GFP gene delivery by different formulations of nanopolymers. The synthetic tumor network was successful in predicting in vivo delivery efficiencies of the drug vehicles. The developed assay will have critical applications both in basic research, where it can be used to develop next generation delivery vehicles, and in drug discovery where it can be used to study drug transport and delivery efficacy in realistic tumor microenvironment, thereby enabling drug compound and/or delivery vehicle screening. PMID:25599856

  18. Curb Challenges of the “Trojan Horse” Approach: Smart Strategies in Achieving Effective yet Safe Cell-penetrating Peptide-based Drug Delivery

    PubMed Central

    Huang, Yongzhuo; Jiang, Yifan; Wang, Huiyuan; Wang, Jianxin; Shin, Meong Cheol; Byun, Youngro; He, Huining; Liang, Yanqin; Yang, Victor C.

    2013-01-01

    Cell-penetrating peptide (CPP)-mediated intracellular drug delivery system, often specifically termed as “the Trojan horse approach”, has become the “holy grail” in achieving effective delivery of macromolecular compounds such as proteins, DNA, siRNAs, and drug carriers. It is characterized by the unique cell- (or receptor-), temperature-, and payload-independent mechanisms, therefore offering potent means to improve poor cellular uptake of a variety of macromolecular drugs. Nevertheless, this “Trojan horse” approach also acts like a double-edged sword, causing serious safety and toxicity concerns to normal tissues or organs for in vivo application, due to lack of target selectivity of the powerful cell penetrating activity. To overcome this problem of potent yet non-selective penetration vs. targeting delivery, a number of “smart” strategies have been developed in recent years, including controllable CPP-based drug delivery systems based on various stimuli-responsive mechanisms. This review article provides a fundamental understanding of these smart systems, as well as a discussion of their real-time in vivo applicability. PMID:23369828

  19. Automated Developmental Disabilities Out-Patient Treatment Review System (ADDOPTRS)—Development and Automation of a Microcomputer Based Case Management System

    PubMed Central

    Fisch, Clifford B.; Fisch, Martin L.

    1979-01-01

    The Stanley S. Lamm Institute for Developmental Disabilities of The Long Island College Hospital, in conjunction with Micro-Med Systems has developed a low cost micro-computer based information system (ADDOP TRS) which monitors quality of care in outpatient settings rendering services to the developmentally disabled population. The process of conversion from paper record keeping systems to direct key-to-disk data capture at the point of service delivery is described. Data elements of the information system including identifying patient information, coded and English-grammar entry procedures for tracking elements of service as well as their delivery status are described. Project evaluation criteria are defined including improved quality of care, improved productivity for clerical and professional staff and enhanced decision making capability. These criteria are achieved in a cost effective manner as a function of more efficient information flow. Administrative applications including staff/budgeting procedures, submissions for third party reimbursement and case reporting to utilization review committees are considered.

  20. Designing polymers with sugar-based advantages for bioactive delivery applications.

    PubMed

    Zhang, Yingyue; Chan, Jennifer W; Moretti, Alysha; Uhrich, Kathryn E

    2015-12-10

    Sugar-based polymers have been extensively explored as a means to increase drug delivery systems' biocompatibility and biodegradation. Here,we review he use of sugar-based polymers for drug delivery applications, with a particular focus on the utility of the sugar component(s) to provide benefits for drug targeting and stimuli responsive systems. Specifically, numerous synthetic methods have been developed to reliably modify naturally-occurring polysaccharides, conjugate sugar moieties to synthetic polymer scaffolds to generate glycopolymers, and utilize sugars as a multifunctional building block to develop sugar-linked polymers. The design of sugar-based polymer systems has tremendous implications on both the physiological and biological properties imparted by the saccharide units and are unique from synthetic polymers. These features include the ability of glycopolymers to preferentially target various cell types and tissues through receptor interactions, exhibit bioadhesion for prolonged residence time, and be rapidly recognized and internalized by cancer cells. Also discussed are the distinct stimuli-sensitive properties of saccharide-modified polymers to mediate drug release under desired conditions. Saccharide-based systems with inherent pH- and temperature-sensitive properties, as well as enzyme-cleavable polysaccharides for targeted bioactive delivery, are covered. Overall, this work emphasizes inherent benefits of sugar-containing polymer systems for bioactive delivery.

  1. A review on bioadhesive buccal drug delivery systems: current status of formulation and evaluation methods

    PubMed Central

    Chinna Reddy, P; Chaitanya, K.S.C.; Madhusudan Rao, Y.

    2011-01-01

    Owing to the ease of the administration, the oral cavity is an attractive site for the delivery of drugs. Through this route it is possible to realize mucosal (local effect) and transmucosal (systemic effect) drug administration. In the first case, the aim is to achieve a site-specific release of the drug on the mucosa, whereas the second case involves drug absorption through the mucosal barrier to reach the systemic circulation. The main obstacles that drugs meet when administered via the buccal route derive from the limited absorption area and the barrier properties of the mucosa. The effective physiological removal mechanisms of the oral cavity that take the formulation away from the absorption site are the other obstacles that have to be considered. The strategies studied to overcome such obstacles include the employment of new materials that, possibly, combine mucoadhesive, enzyme inhibitory and penetration enhancer properties and the design of innovative drug delivery systems which, besides improving patient compliance, favor a more intimate contact of the drug with the absorption mucosa. This presents a brief description of advantages and limitations of buccal drug delivery and the anatomical structure of oral mucosa, mechanisms of drug permeation followed by current formulation design in line with developments in buccal delivery systems and methodology in evaluating buccal formulations. PMID:23008684

  2. The importance of microfluidics for the preparation of nanoparticles as advanced drug delivery systems.

    PubMed

    Martins, João Pedro; Torrieri, Giulia; Santos, Hélder A

    2018-05-01

    Nanoparticles are anticipated to overcome persistent challenges in efficient drug delivery, but the limitations associated with conventional methods of preparation are resulting in slow translation from research to clinical applications. Due to their enormous potential, microfluidic technologies have emerged as an advanced approach for the development of drug delivery systems with well-defined physicochemical characteristics and in a reproducible manner. Areas covered: This review provides an overview of microfluidic devices and materials used for their manufacturing, together with the flow patterns and regimes commonly used for nanoparticle preparation. Additionally, the different geometries used in droplet microfluidics are reviewed, with particular attention to the co-flow geometry used for the production of nanoparticles. Finally, this review summarizes the main and most recent nanoparticulate systems prepared using microfluidics, including drug nanosuspensions, polymeric, lipid, structured, and theranostic nanoparticles. Expert opinion: The production of nanoparticles at industrial scale is still a challenge, but the microfluidic technologies bring exciting opportunities to develop drug delivery systems that can be engineered in an easy, cost-effective and reproducible manner. As a highly interdisciplinary research field, more efforts and general acceptance are needed to allow for the translation of nanoparticulate drug delivery systems from academic research to the clinical practice.

  3. Delivery arrangements for health systems in low-income countries: an overview of systematic reviews

    PubMed Central

    Ciapponi, Agustín; Lewin, Simon; Herrera, Cristian A; Opiyo, Newton; Pantoja, Tomas; Paulsen, Elizabeth; Rada, Gabriel; Wiysonge, Charles S; Bastías, Gabriel; Dudley, Lilian; Flottorp, Signe; Gagnon, Marie-Pierre; Garcia Marti, Sebastian; Glenton, Claire; Okwundu, Charles I; Peñaloza, Blanca; Suleman, Fatima; Oxman, Andrew D

    2017-01-01

    Background Delivery arrangements include changes in who receives care and when, who provides care, the working conditions of those who provide care, coordination of care amongst different providers, where care is provided, the use of information and communication technology to deliver care, and quality and safety systems. How services are delivered can have impacts on the effectiveness, efficiency and equity of health systems. This broad overview of the findings of systematic reviews can help policymakers and other stakeholders identify strategies for addressing problems and improve the delivery of services. Objectives To provide an overview of the available evidence from up-to-date systematic reviews about the effects of delivery arrangements for health systems in low-income countries. Secondary objectives include identifying needs and priorities for future evaluations and systematic reviews on delivery arrangements and informing refinements of the framework for delivery arrangements outlined in the review. Methods We searched Health Systems Evidence in November 2010 and PDQ-Evidence up to 17 December 2016 for systematic reviews. We did not apply any date, language or publication status limitations in the searches. We included well-conducted systematic reviews of studies that assessed the effects of delivery arrangements on patient outcomes (health and health behaviours), the quality or utilisation of healthcare services, resource use, healthcare provider outcomes (such as sick leave), or social outcomes (such as poverty or employment) and that were published after April 2005. We excluded reviews with limitations important enough to compromise the reliability of the findings. Two overview authors independently screened reviews, extracted data, and assessed the certainty of evidence using GRADE. We prepared SUPPORT Summaries for eligible reviews, including key messages, 'Summary of findings' tables (using GRADE to assess the certainty of the evidence), and assessments of the relevance of findings to low-income countries. Main results We identified 7272 systematic reviews and included 51 of them in this overview. We judged 6 of the 51 reviews to have important methodological limitations and the other 45 to have only minor limitations. We grouped delivery arrangements into eight categories. Some reviews provided more than one comparison and were in more than one category. Across these categories, the following intervention were effective; that is, they have desirable effects on at least one outcome with moderate- or high-certainty evidence and no moderate- or high-certainty evidence of undesirable effects. Who receives care and when: queuing strategies and antenatal care to groups of mothers. Who provides care: lay health workers for caring for people with hypertension, lay health workers to deliver care for mothers and children or infectious diseases, lay health workers to deliver community-based neonatal care packages, midlevel health professionals for abortion care, social support to pregnant women at risk, midwife-led care for childbearing women, non-specialist providers in mental health and neurology, and physician-nurse substitution. Coordination of care: hospital clinical pathways, case management for people living with HIV and AIDS, interactive communication between primary care doctors and specialists, hospital discharge planning, adding a service to an existing service and integrating delivery models, referral from primary to secondary care, physician-led versus nurse-led triage in emergency departments, and team midwifery. Where care is provided: high-volume institutions, home-based care (with or without multidisciplinary team) for people living with HIV and AIDS, home-based management of malaria, home care for children with acute physical conditions, community-based interventions for childhood diarrhoea and pneumonia, out-of-facility HIV and reproductive health services for youth, and decentralised HIV care. Information and communication technology: mobile phone messaging for patients with long-term illnesses, mobile phone messaging reminders for attendance at healthcare appointments, mobile phone messaging to promote adherence to antiretroviral therapy, women carrying their own case notes in pregnancy, interventions to improve childhood vaccination. Quality and safety systems: decision support with clinical information systems for people living with HIV/AIDS. Complex interventions (cutting across delivery categories and other health system arrangements): emergency obstetric referral interventions. Authors' conclusions A wide range of strategies have been evaluated for improving delivery arrangements in low-income countries, using sound systematic review methods in both Cochrane and non-Cochrane reviews. These reviews have assessed a range of outcomes. Most of the available evidence focuses on who provides care, where care is provided and coordination of care. For all the main categories of delivery arrangements, we identified gaps in primary research related to uncertainty about the applicability of the evidence to low-income countries, low- or very low-certainty evidence or a lack of studies. Effects of delivery arrangements for health systems in low-income countries What is the aim of this overview? The aim of this Cochrane Overview is to provide a broad summary of what is known about the effects of delivery arrangements for health systems in low-income countries. This overview is based on 51 systematic reviews. These systematic reviews searched for studies that evaluated different types of delivery arrangements. The reviews included a total of 850 studies. This overview is one of a series of four Cochrane Overviews that evaluate health system arrangements. What was studied in the overview? Delivery arrangements include changes in who receives care and when, who provides care, the working conditions of those who provide care, coordination of care amongst different health care providers, where care is provided, the use of information and communication technology to deliver care, and quality and safety systems. How services are delivered can have impacts on the effectiveness, efficiency and equity of health systems. This overview can help policymakers and other stakeholders to identify evidence-informed strategies to improve the delivery of services. What are the main results of the overview? When focusing only on evidence assessed as high to moderate certainty, the overview points to a number of delivery arrangements that had at least one desirable outcome and no evidence of any undesirable outcomes. These include the following: Who receives care and when - Queuing strategies - Group antenatal care Who provides care – role expansion or task shifting - Lay or community health workers supporting the care of people with hypertension - Community-based neonatal packages that include additional training of outreach workers - Lay health workers to deliver care for mothers and children or for infectious diseases - Mid-level, non-physician providers for abortion care - Health workers providing social support during at-risk pregnancies - Midwife-led care for childbearing women and their infants - Non-specialist health workers or other professionals with health roles to help people with mental, neurological and substance-abuse disorders - Nurses substituting for physicians in providing care Coordination of care - Structured multidisciplinary care plans (care pathways) used by health care providers in hospitals to detail essential steps in the care of people with a specific clinical problem - Interactive communication between collaborating primary care physicians and specialist physicians in outpatient care - Planning to facilitate patients’ discharge from hospital to home - Adding a new health service to an existing service and integrating services in health care delivery - Integrating vaccination with other healthcare services - Using physicians rather than nurses to lead triage in emergency departments - Groups or teams of midwives providing care for a group of women during pregnancy and childbirth and after childbirth Where care is provided – site of service delivery - Clinics or hospitals that manage a high volume of people living with HIV and AIDS rather than smaller volumes - Intensive home-based care for people living with HIV and AIDS - Home-based management of malaria in children - Providing care closer to home for children with long-term health conditions - Community-based interventions using lay health workers for childhood diarrhoea and pneumonia - Youth HIV and reproductive health services provided outside of health facilities - Decentralising care for initiation and maintenance of HIV and AIDS medicine treatment to peripheral health centres or lower levels of healthcare Information and communication technology - Mobile phone messaging for people with long-term illnesses - Mobile phone messaging reminders for attendance at healthcare appointments - Mobile phone messaging to promote adherence to antiretroviral therapy - Women carrying their own case notes in pregnancy - Information and communication interventions to improve childhood vaccination coverage Quality and safety systems - Establishing clinical information systems to organize patient data for people living with HIV and AIDS Packages that include multiple interventions - Interventions to improve referral for emergency care during pregnancy and childbirth How up to date is this overview? The overview authors searched for systematic reviews that had been published up to 17 December 2016. PMID:28901005

  4. Porous silicon advances in drug delivery and immunotherapy

    PubMed Central

    Savage, D; Liu, X; Curley, S; Ferrari, M; Serda, RE

    2013-01-01

    Biomedical applications of porous silicon include drug delivery, imaging, diagnostics and immunotherapy. This review summarizes new silicon particle fabrication techniques, dynamics of cellular transport, advances in the multistage vector approach to drug delivery, and the use of porous silicon as immune adjuvants. Recent findings support superior therapeutic efficacy of the multistage vector approach over single particle drug delivery systems in mouse models of ovarian and breast cancer. With respect to vaccine development, multivalent presentation of pathogen-associated molecular patterns on the particle surface creates powerful platforms for immunotherapy, with the porous matrix able to carry both antigens and immune modulators. PMID:23845260

  5. Floating drug delivery systems: a review.

    PubMed

    Arora, Shweta; Ali, Javed; Ahuja, Alka; Khar, Roop K; Baboota, Sanjula

    2005-10-19

    The purpose of writing this review on floating drug delivery systems (FDDS) was to compile the recent literature with special focus on the principal mechanism of floatation to achieve gastric retention. The recent developments of FDDS including the physiological and formulation variables affecting gastric retention, approaches to design single-unit and multiple-unit floating systems, and their classification and formulation aspects are covered in detail. This review also summarizes the in vitro techniques, in vivo studies to evaluate the performance and application of floating systems, and applications of these systems. These systems are useful to several problems encountered during the development of a pharmaceutical dosage form.

  6. Reflections on CD-ROM: Bridging the Gap between Technology and Purpose.

    ERIC Educational Resources Information Center

    Saviers, Shannon Smith

    1987-01-01

    Provides a technological overview of CD-ROM (Compact Disc-Read Only Memory), an optically-based medium for data storage offering large storage capacity, computer-based delivery system, read-only medium, and economic mass production. CD-ROM database attributes appropriate for information delivery are also reviewed, including large database size,…

  7. Service Delivery for Native American Children in Los Angeles County, 1996.

    ERIC Educational Resources Information Center

    Champagne, Duane; Goldberg-Ambrose, Carole; Machamer, Amber; Phillips, Bethany; Evans, Tessa

    A study explored the human services delivery system for American Indian children in Los Angeles County (California). Telephone interviews were conducted with 29 Indian organizations, 19 members of the American Indian community, and 14 government agencies that provide services for children. Topics discussed included Indian child welfare, education,…

  8. A microfluidic reciprocating intracochlear drug delivery system with reservoir and active dose control

    PubMed Central

    Kim, Ernest S.; Gustenhoven, Erich; Mescher, Mark J.; Pararas, Erin E. Leary; Smith, Kim A.; Spencer, Abigail J.; Tandon, Vishal; Borenstein, Jeffrey T.; Fiering, Jason

    2014-01-01

    Reciprocating microfluidic drug delivery, as compared to steady or pulsed infusion, has unique features which may be advantageous in many therapeutic applications. We have previously described a device, designed for wearable use in small animal models, which periodically infuses then withdraws a sub-microliter volume of drug solution to and from the endogenous fluid of the inner ear. This delivery approach results in zero net volume of liquid transfer while enabling mass transport of compounds to the cochlea by means of diffusion and mixing. We report here on an advanced wearable delivery system aimed at further miniaturization and complex dose protocols. Enhancements to the system include the incorporation of a planar micropump to generate reciprocating flow and a novel drug reservoir which maintains zero net volume delivery and permits programmable modulation of the drug concentration in the infused bolus. The reciprocating pump is fabricated from laminated polymer films and employs a miniature electromagnetic actuator to meet the size and weight requirements of a head-mounted in vivo guinea pig testing system. The reservoir comprises a long microchannel in series with a micropump, connected in parallel with the reciprocating flow network. We characterized in vitro the response and repeatability of the planar pump and compared the results with a lumped element simulation. We also characterized the performance of the reservoir, including repeatability of dosing and range of dose modulation. Acute in vivo experiments were performed in which the reciprocating pump was used to deliver a test compound to the cochlea of anesthetized guinea pigs to evaluate short-term safety and efficacy of the system. These advances are key steps toward realization of an implantable device for long-term therapeutic applications in humans. PMID:24302432

  9. Smart multifunctional drug delivery towards anticancer therapy harmonized in mesoporous nanoparticles.

    PubMed

    Baek, Seonmi; Singh, Rajendra K; Khanal, Dipesh; Patel, Kapil D; Lee, Eun-Jung; Leong, Kam W; Chrzanowski, Wojciech; Kim, Hae-Won

    2015-09-14

    Nanomedicine seeks to apply nanoscale materials for the therapy and diagnosis of diseased and damaged tissues. Recent advances in nanotechnology have made a major contribution to the development of multifunctional nanomaterials, which represents a paradigm shift from single purpose to multipurpose materials. Multifunctional nanomaterials have been proposed to enable simultaneous target imaging and on-demand delivery of therapeutic agents only to the specific site. Most advanced systems are also responsive to internal or external stimuli. This approach is particularly important for highly potent drugs (e.g. chemotherapeutics), which should be delivered in a discreet manner and interact with cells/tissues only locally. Both advances in imaging and precisely controlled and localized delivery are critically important in cancer treatment, and the use of such systems - theranostics - holds great promise to minimise side effects and boost therapeutic effectiveness of the treatment. Among others, mesoporous silica nanoparticles (MSNPs) are considered one of the most promising nanomaterials for drug delivery. Due to their unique intrinsic features, including tunable porosity and size, large surface area, structural diversity, easily modifiable chemistry and suitability for functionalization, and biocompatibility, MSNPs have been extensively utilized as multifunctional nanocarrier systems. The combination or hybridization with biomolecules, drugs, and other nanoparticles potentiated the ability of MSNPs towards multifunctionality, and even smart actions stimulated by specified signals, including pH, optical signal, redox reaction, electricity and magnetism. This paper provides a comprehensive review of the state-of-the-art of multifunctional, smart drug delivery systems centered on advanced MSNPs, with special emphasis on cancer related applications.

  10. Smart multifunctional drug delivery towards anticancer therapy harmonized in mesoporous nanoparticles

    NASA Astrophysics Data System (ADS)

    Baek, Seonmi; Singh, Rajendra K.; Khanal, Dipesh; Patel, Kapil D.; Lee, Eun-Jung; Leong, Kam W.; Chrzanowski, Wojciech; Kim, Hae-Won

    2015-08-01

    Nanomedicine seeks to apply nanoscale materials for the therapy and diagnosis of diseased and damaged tissues. Recent advances in nanotechnology have made a major contribution to the development of multifunctional nanomaterials, which represents a paradigm shift from single purpose to multipurpose materials. Multifunctional nanomaterials have been proposed to enable simultaneous target imaging and on-demand delivery of therapeutic agents only to the specific site. Most advanced systems are also responsive to internal or external stimuli. This approach is particularly important for highly potent drugs (e.g. chemotherapeutics), which should be delivered in a discreet manner and interact with cells/tissues only locally. Both advances in imaging and precisely controlled and localized delivery are critically important in cancer treatment, and the use of such systems - theranostics - holds great promise to minimise side effects and boost therapeutic effectiveness of the treatment. Among others, mesoporous silica nanoparticles (MSNPs) are considered one of the most promising nanomaterials for drug delivery. Due to their unique intrinsic features, including tunable porosity and size, large surface area, structural diversity, easily modifiable chemistry and suitability for functionalization, and biocompatibility, MSNPs have been extensively utilized as multifunctional nanocarrier systems. The combination or hybridization with biomolecules, drugs, and other nanoparticles potentiated the ability of MSNPs towards multifunctionality, and even smart actions stimulated by specified signals, including pH, optical signal, redox reaction, electricity and magnetism. This paper provides a comprehensive review of the state-of-the-art of multifunctional, smart drug delivery systems centered on advanced MSNPs, with special emphasis on cancer related applications.

  11. Stimuli-responsive nanomaterials for therapeutic protein delivery.

    PubMed

    Lu, Yue; Sun, Wujin; Gu, Zhen

    2014-11-28

    Protein therapeutics have emerged as a significant role in treatment of a broad spectrum of diseases, including cancer, metabolic disorders and autoimmune diseases. The efficacy of protein therapeutics, however, is limited by their instability, immunogenicity and short half-life. In order to overcome these barriers, tremendous efforts have recently been made in developing controlled protein delivery systems. Stimuli-triggered release is an appealing and promising approach for protein delivery and has made protein delivery with both spatiotemporal- and dosage-controlled manners possible. This review surveys recent advances in controlled protein delivery of proteins or peptides using stimuli-responsive nanomaterials. Strategies utilizing both physiological and external stimuli are introduced and discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. An update on the use of laser technology in skin vaccination

    PubMed Central

    Chen, Xinyuan; Wang, Ji; Shah, Dilip; Wu, Mei X

    2014-01-01

    Vaccination via skin often induces stronger immune responses than via muscle. This, in line with potential needle-free, painless delivery, makes skin a very attractive site for immunization. Yet, despite decades of effort, effective skin delivery is still in its infant stage and safe and potent adjuvants for skin vaccination remain largely undefined. We have shown that laser technologies including both fractional and non-fractional lasers can greatly augment vaccine-induced immune response without incurring any significant local and systemic side effects. Laser illumination at specific settings can accelerate the motility of antigen-presenting cells or trigger release of ‘danger’ signals stimulating the immune system. Moreover, several other groups including the authors explore laser technologies for needle-free transcutaneous vaccine delivery. As these laser-mediated resurfacing technologies are convenient, safe and cost-effective, their new applications in vaccination warrant clinical studies in the very near future. PMID:24127871

  13. Buccal drug delivery.

    PubMed

    Smart, John D

    2005-05-01

    Buccal formulations have been developed to allow prolonged localised therapy and enhanced systemic delivery. The buccal mucosa, however, while avoiding first-pass effects, is a formidable barrier to drug absorption, especially for biopharmaceutical products (proteins and oligonucleotides) arising from the recent advances in genomics and proteomics. The buccal route is typically used for extended drug delivery, so formulations that can be attached to the buccal mucosa are favoured. The bioadhesive polymers used in buccal drug delivery to retain a formulation are typically hydrophilic macro-molecules containing numerous hydrogen bonding groups. Newer second-generation bioadhesives have been developed and these include modified or new polymers that allow enhanced adhesion and/or drug delivery, in addition to site-specific ligands such as lectins. Over the last 20 years a wide range of formulations has been developed for buccal drug delivery (tablet, patch, liquids and semisolids) but comparatively few have found their way onto the market. Currently, this route is restricted to the delivery of a limited number of small lipophilic molecules that readily cross the buccal mucosa. However, this route could become a significant means for the delivery of a range of active agents in the coming years, if the barriers to buccal drug delivery are overcome. In particular, patient acceptability and the successful systemic delivery of large molecules (proteins, oligonucleotides and polysaccharides) via this route remains both a significant opportunity and challenge, and new/improved technologies may be required to address these.

  14. Role of excipients and polymeric advancements in preparation of floating drug delivery systems

    PubMed Central

    Kaushik, Avinash Y; Tiwari, Ajay K; Gaur, Ajay

    2015-01-01

    Since decade or two, the development of floating drug delivery systems becomes a significant and novel tool as having low density than gastric content. There are various advanced polymers including chitosan, eudragit, etc., and excipients such as; pore forming agent, surfactants, etc. All of them are discussed briefly, and results are concluded from various reputed researches. We have discussed all natural and synthetic systems with their effect on the release and other parameters which are essential for the floating formulation development. PMID:25599027

  15. Plant Growth Module (PGM) conceptual design

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, Steven H.; Rasmussen, Daryl

    1987-01-01

    The Plant Growth Module for the Controlled Ecological Life Support System (CELSS), designed to answer basic science questions related to growing plants in closed systems, is described functionally with artist's conception drawings. Subsystems are also described, including enclosure and access; data acquisition and control; gas monitor and control; heating, ventilation, and air conditioning; air delivery; nutrient monitor and control; microbial monitoring and control; plant support and nutrient delivery; illumination; and internal operations. The hardware development plan is outlined.

  16. Aerobrake concepts for NTP systems study

    NASA Technical Reports Server (NTRS)

    Cruz, Manuel I.

    1992-01-01

    Design concepts are described for landing large spacecraft masses on the Mars surface in support of manned missions with interplanetary transportation using Nuclear Thermal Propulsion (NTP). Included are the mission and systems analyses, trade studies and sensitivity analyses, design analyses, technology assessment, and derived requirements to support this concept. The mission phases include the Mars de-orbit, entry, terminal descent, and terminal touchdown. The study focuses primarily on Mars surface delivery from orbit after Mars orbit insertion using an NTP. The requirements associated with delivery of logistical supplies, habitats, and other equipment on minimum energy Earth to Mars transfers are also addressed in a preliminary fashion.

  17. Neuropathic Pain and Lung Delivery of Nanoparticulate Drugs: An Emerging Novel Therapeutic Strategy.

    PubMed

    Islam, Nazrul; Abbas, Muzaffar; Rahman, Shafiqur

    2017-01-01

    Neuropathic pain is a chronic neurological disorder affecting millions of people around the world. The currently available pharmacologic agents for the treatment of neuropathic pain have limited efficacy and are associated with dose related unwanted adverse effects. Due to the limited access of drug molecules across blood-brain barrier, a small percentage of drug that is administered systematically, reaches the central nervous system in active form. These therapeutic agents also require daily treatment regimen that is inconvenient and potentially impact patient compliance. Application of nanoparticulate drugs for enhanced delivery system has been explored extensively in the last decades. Pulmonary delivery of nanomedicines for the management of various diseases has become an emerging treatment strategy that ensures the targeted delivery of drugs both for systemic and local effects with low dose and limited adverse effects. To the best of our knowledge, there are no inhaled drug products available on market for the treatment of neuropathic pain. The advantages of delivering therapeutics into deep lungs include non-invasive drug delivery, higher bioavailability with low dose, lower systemic toxicity, and potentially greater blood-brain barrier penetration. This review discusses and highlights the important issues on the application of emerging nanoparticulate lung delivery of drugs for the effective treatment of neuropathic pain. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Facilitators and barriers to implementing electronic referral and/or consultation systems: a qualitative study of 16 health organizations.

    PubMed

    Tuot, Delphine S; Leeds, Kiren; Murphy, Elizabeth J; Sarkar, Urmimala; Lyles, Courtney R; Mekonnen, Tekeshe; Chen, Alice H M

    2015-12-19

    Access to specialty care remains a challenge for primary care providers and patients. Implementation of electronic referral and/or consultation (eCR) systems provides an opportunity for innovations in the delivery of specialty care. We conducted key informant interviews to identify drivers, facilitators, barriers and evaluation metrics of diverse eCR systems to inform widespread implementation of this model of specialty care delivery. Interviews were conducted with leaders of 16 diverse health care delivery organizations between January 2013 and April 2014. A limited snowball sampling approach was used for recruitment. Content analysis was used to examine key informant interview transcripts. Electronic referral systems, which provide referral management and triage by specialists, were developed to enhance tracking and operational efficiency. Electronic consultation systems, which encourage bi-directional communication between primary care and specialist providers facilitating longitudinal virtual co-management, were developed to improve access to specialty expertise. Integrated eCR systems leverage both functionalities to enhance the delivery of coordinated, specialty care at the population level. Elements of successful eCR system implementation included executive and clinician leadership, established funding models for specialist clinician reimbursement, and a commitment to optimizing clinician workflows. eCR systems have great potential to streamline access to and enhance the coordination of specialty care delivery. While different eCR models help solve different organizational challenges, all require institutional investments for successful implementation, such as funding for program management, leadership and clinician incentives.

  19. Fungal diseases: could nanostructured drug delivery systems be a novel paradigm for therapy?

    PubMed Central

    Voltan, Aline Raquel; Quindós, Guillermo; Alarcón, Kaila P Medina; Fusco-Almeida, Ana Marisa; Mendes-Giannini, Maria José Soares; Chorilli, Marlus

    2016-01-01

    Invasive mycoses are a major problem for immunocompromised individuals and patients in intensive care units. Morbidity and mortality rates of these infections are high because of late diagnosis and delayed treatment. Moreover, the number of available antifungal agents is low, and there are problems with toxicity and resistance. Alternatives for treating invasive fungal infections are necessary. Nanostructured systems could be excellent carriers for antifungal drugs, reducing toxicity and targeting their action. The use of nanostructured systems for antifungal therapy began in the 1990s, with the appearance of lipid formulations of amphotericin B. This review encompasses different antifungal drug delivery systems, such as liposomes, carriers based on solid lipids and nanostructure lipids, polymeric nanoparticles, dendrimers, and others. All these delivery systems have advantages and disadvantages. Main advantages are the improvement in the antifungal properties, such as bioavailability, reduction in toxicity, and target tissue, which facilitates innovative therapeutic techniques. Conversely, a major disadvantage is the high cost of production. In the near future, the use of nanosystems for drug delivery strategies can be used for delivering peptides, including mucoadhesive systems for the treatment of oral and vaginal candidiasis. PMID:27540288

  20. Dendrimer advances for the central nervous system delivery of therapeutics.

    PubMed

    Xu, Leyuan; Zhang, Hao; Wu, Yue

    2014-01-15

    The effectiveness of noninvasive treatment for central nervous system (CNS) diseases is generally limited by the poor access of therapeutic agents into the CNS. Most CNS drugs cannot permeate into the brain parenchyma because of the blood-brain barrier (BBB), and overcoming this has become one of the most significant challenges in the development of CNS therapeutics. Rapid advances in nanotechnology have provided promising solutions to this challenge. This review discusses the latest applications of dendrimers in the treatment of CNS diseases with an emphasis on brain tumors. Dendrimer-mediated drug delivery, imaging, and diagnosis are also reviewed. The toxicity, biodistribution, and transport mechanisms in dendrimer-mediated delivery of CNS therapeutic agents bypassing or crossing the BBB are also discussed. Future directions and major challenges of dendrimer-mediated delivery of CNS therapeutic agents are included.

  1. Dendrimer Advances for the Central Nervous System Delivery of Therapeutics

    PubMed Central

    2013-01-01

    The effectiveness of noninvasive treatment for central nervous system (CNS) diseases is generally limited by the poor access of therapeutic agents into the CNS. Most CNS drugs cannot permeate into the brain parenchyma because of the blood-brain barrier (BBB), and overcoming this has become one of the most significant challenges in the development of CNS therapeutics. Rapid advances in nanotechnology have provided promising solutions to this challenge. This review discusses the latest applications of dendrimers in the treatment of CNS diseases with an emphasis on brain tumors. Dendrimer-mediated drug delivery, imaging, and diagnosis are also reviewed. The toxicity, biodistribution, and transport mechanisms in dendrimer-mediated delivery of CNS therapeutic agents bypassing or crossing the BBB are also discussed. Future directions and major challenges of dendrimer-mediated delivery of CNS therapeutic agents are included. PMID:24274162

  2. TiO2 nanotube platforms for smart drug delivery: a review

    PubMed Central

    Wang, Qun; Huang, Jian-Ying; Li, Hua-Qiong; Chen, Zhong; Zhao, Allan Zi-Jian; Wang, Yi; Zhang, Ke-Qin; Sun, Hong-Tao; Al-Deyab, Salem S; Lai, Yue-Kun

    2016-01-01

    Titania nanotube (TNT) arrays are recognized as promising materials for localized drug delivery implants because of their excellent properties and facile preparation process. This review highlights the concept of localized drug delivery systems based on TNTs, considering their outstanding biocompatibility in a series of ex vivo and in vivo studies. Considering the safety of TNT implants in the host body, studies of the biocompatibility present significant importance for the clinical application of TNT implants. Toward smart TNT platforms for sustainable drug delivery, several advanced approaches were presented in this review, including controlled release triggered by temperature, light, radiofrequency magnetism, and ultrasonic stimulation. Moreover, TNT implants used in medical therapy have been demonstrated by various examples including dentistry, orthopedic implants, cardiovascular stents, and so on. Finally, a future perspective of TNTs for clinical applications is provided. PMID:27703349

  3. TiO2 nanotube platforms for smart drug delivery: a review.

    PubMed

    Wang, Qun; Huang, Jian-Ying; Li, Hua-Qiong; Chen, Zhong; Zhao, Allan Zi-Jian; Wang, Yi; Zhang, Ke-Qin; Sun, Hong-Tao; Al-Deyab, Salem S; Lai, Yue-Kun

    Titania nanotube (TNT) arrays are recognized as promising materials for localized drug delivery implants because of their excellent properties and facile preparation process. This review highlights the concept of localized drug delivery systems based on TNTs, considering their outstanding biocompatibility in a series of ex vivo and in vivo studies. Considering the safety of TNT implants in the host body, studies of the biocompatibility present significant importance for the clinical application of TNT implants. Toward smart TNT platforms for sustainable drug delivery, several advanced approaches were presented in this review, including controlled release triggered by temperature, light, radiofrequency magnetism, and ultrasonic stimulation. Moreover, TNT implants used in medical therapy have been demonstrated by various examples including dentistry, orthopedic implants, cardiovascular stents, and so on. Finally, a future perspective of TNTs for clinical applications is provided.

  4. Does vacuum delivery carry a higher risk of shoulder dystocia? Review and meta-analysis of the literature.

    PubMed

    Dall'Asta, Andrea; Ghi, Tullio; Pedrazzi, Giuseppe; Frusca, Tiziana

    2016-09-01

    Vacuum extractor has been increasingly used over the last decades and is acknowledged as a risk factor for shoulder dystocia (SD). In this meta-analysis we assess the actual risk of SD following a vacuum delivery compared to spontaneous vaginal delivery (SVD) and forceps. Systematic literature search (English literature only) on MEDLINE, EMBASE, ScienceDirect, the Cochrane library and ClinicalTrials.gov conducted up to May 2015. Key search terms included: Operative/Vacuum/Forceps delivery [Mesh] and shoulder dystocia and subheadings. 2 stage-process study selection. We included only studies where data concerning the occurrence of SD following operative vaginal delivery were reported as adjusted odds ratio (AOR) and no significant difference in confounding factors for SD was recorded. Included trials clustered according to the delivery mode (1) vacuum vs. SVD, (2) forceps vs. vacuum. Methodological quality of each study evaluated with the Newcastle-Ottawa System (NOS). 87 potentially relevant papers. After applying inclusion and exclusion criteria only 7 were selected for the meta-analysis. Vacuum delivery appeared associated with a higher risk of SD than SVD in both fixed and random model (OR 2.87 and 2.98 respectively). No difference in the rate of SD was found between vacuum and forceps (p>0.05). Vacuum extractor carries an increased risk of SD compared with spontaneous vaginal delivery whereas the occurrence of SD does not seem to vary following vacuum or forceps. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. pH-Responsive carriers for oral drug delivery: challenges and opportunities of current platforms.

    PubMed

    Liu, Lin; Yao, WenDong; Rao, YueFeng; Lu, XiaoYang; Gao, JianQing

    2017-11-01

    Oral administration is a desirable alternative of parenteral administration due to the convenience and increased compliance to patients, especially for chronic diseases that require frequent administration. The oral drug delivery is a dynamic research field despite the numerous challenges limiting their effective delivery, such as enzyme degradation, hydrolysis and low permeability of intestinal epithelium in the gastrointestinal (GI) tract. pH-Responsive carriers offer excellent potential as oral therapeutic systems due to enhancing the stability of drug delivery in stomach and achieving controlled release in intestines. This review provides a wide perspective on current status of pH-responsive oral drug delivery systems prepared mainly with organic polymers or inorganic materials, including the strategies used to overcome GI barriers, the challenges in their development and future prospects, with focus on technology trends to improve the bioavailability of orally delivered drugs, the mechanisms of drug release from pH-responsive oral formulations, and their application for drug delivery, such as protein and peptide therapeutics, vaccination, inflammatory bowel disease (IBD) and bacterial infections.

  6. Self-Assembled Nanocarriers Based on Amphiphilic Natural Polymers for Anti- Cancer Drug Delivery Applications.

    PubMed

    Sabra, Sally; Abdelmoneem, Mona; Abdelwakil, Mahmoud; Mabrouk, Moustafa Taha; Anwar, Doaa; Mohamed, Rania; Khattab, Sherine; Bekhit, Adnan; Elkhodairy, Kadria; Freag, May; Elzoghby, Ahmed

    2017-01-01

    Micellization provides numerous merits for the delivery of water insoluble anti-cancer therapeutic agents including a nanosized 'core-shell' drug delivery system. Recently, hydrophobically-modified polysaccharides and proteins are attracting much attention as micelle forming polymers to entrap poorly soluble anti-cancer drugs. By virtue of their small size, the self-assembled micelles can passively target tumor tissues via enhanced permeation and retention effect (EPR). Moreover, the amphiphilic micelles can be exploited for active-targeted drug delivery by attaching specific targeting ligands to the outer micellar hydrophilic surface. Here, we review the conjugation techniques, drug loading methods, physicochemical characteristics of the most important amphiphilic polysaccharides and proteins used as anti-cancer drug delivery systems. Attention focuses on the mechanisms of tumor-targeting and enhanced anti-tumor efficacy of the encapsulated drugs. This review will highlight the remarkable advances of hydrophobized polysaccharide and protein micelles and their potential applications as anti-cancer drug delivery nanosystems. Micellar nanocarriers fabricated from amphiphilic natural polymers hold great promise as vehicles for anti-cancer drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Biocompatible Capsules and Methods of Making

    NASA Technical Reports Server (NTRS)

    Loftus, David J. (Inventor)

    2017-01-01

    Embodiments of the invention include capsules for containing medical implants and delivery systems for release of active biological substances into a host body. Delivery systems comprise a capsule comprising an interior enclosed by walls, and a source of active biological substances enclosed within the capsule interior, wherein the active biological substances are free to diffuse across the capsule walls. The capsule walls comprise a continuous mesh of biocompatible fibers and a seal region where two capsule walls overlap. The interior of the capsule is substantially isolated from the medium surrounding the capsule, except for diffusion of at least one species of molecule between the capsule interior and the ambient medium, and prevents cell migration into or out of the capsule. Methods for preparing and using the capsules and delivery systems are provided.

  8. Nanotechnology-Based Drug Delivery Systems for Melanoma Antitumoral Therapy: A Review

    PubMed Central

    Rigon, Roberta Balansin; Oyafuso, Márcia Helena; Fujimura, Andressa Terumi; do Prado, Alice Haddad; Gremião, Maria Palmira Daflon

    2015-01-01

    Melanoma (MEL) is a less common type of skin cancer, but it is more aggressive with a high mortality rate. The World Cancer Research Fund International (GLOBOCAN 2012) estimates that there were 230,000 new cases of MEL in the world in 2012. Conventional MEL treatment includes surgery and chemotherapy, but many of the chemotherapeutic agents used present undesirable properties. Drug delivery systems are an alternative strategy by which to carry antineoplastic agents. Encapsulated drugs are advantageous due to such properties as high stability, better bioavailability, controlled drug release, a long blood circulation time, selective organ or tissue distribution, a lower total required dose, and minimal toxic side effects. This review of scientific research supports applying a nanotechnology-based drug delivery system for MEL therapy. PMID:26078967

  9. Nanotechnology-Based Drug Delivery Systems for Melanoma Antitumoral Therapy: A Review.

    PubMed

    Rigon, Roberta Balansin; Oyafuso, Márcia Helena; Fujimura, Andressa Terumi; Gonçalez, Maíra Lima; do Prado, Alice Haddad; Gremião, Maria Palmira Daflon; Chorilli, Marlus

    2015-01-01

    Melanoma (MEL) is a less common type of skin cancer, but it is more aggressive with a high mortality rate. The World Cancer Research Fund International (GLOBOCAN 2012) estimates that there were 230,000 new cases of MEL in the world in 2012. Conventional MEL treatment includes surgery and chemotherapy, but many of the chemotherapeutic agents used present undesirable properties. Drug delivery systems are an alternative strategy by which to carry antineoplastic agents. Encapsulated drugs are advantageous due to such properties as high stability, better bioavailability, controlled drug release, a long blood circulation time, selective organ or tissue distribution, a lower total required dose, and minimal toxic side effects. This review of scientific research supports applying a nanotechnology-based drug delivery system for MEL therapy.

  10. A method for evaluating nanoparticle transport through the blood-brain barrier in vitro.

    PubMed

    Guarnieri, Daniela; Muscetti, Ornella; Netti, Paolo A

    2014-01-01

    Blood-brain barrier (BBB) represents a formidable barrier for many therapeutic drugs to enter the brain tissue. The development of new strategies for enhancing drug delivery to the brain is of great importance in diagnostics and therapeutics of central nervous system (CNS) diseases. In this context, nanoparticles are an emerging class of drug delivery systems that can be easily tailored to deliver drugs to various compartments of the body, including the brain. To identify, characterize, and validate novel nanoparticles applicable to brain delivery, in vitro BBB model systems have been developed. In this work, we describe a method to screen nanoparticles with variable size and surface functionalization in order to define the physicochemical characteristics underlying the design of nanoparticles that are able to efficiently cross the BBB.

  11. Unmanned Aerial System (UAS) Traffic Management (UTM): Enabling Low-Altitude Airspace and UAS Operations

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal H.

    2014-01-01

    Many civilian applications of Unmanned Aerial Systems (UAS) have been imagined ranging from remote to congested urban areas, including goods delivery, infrastructure surveillance, agricultural support, and medical services delivery. Further, these UAS will have different equipage and capabilities based on considerations such as affordability, and mission needs applications. Such heterogeneous UAS mix, along with operations such as general aviation, helicopters, gliders must be safely accommodated at lower altitudes. However, key infrastructure to enable and safely manage widespread use of low-altitude airspace and UAS operations therein does not exist. Therefore, NASA is exploring functional design, concept and technology development, and a prototype UAS Traffic Management (UTM) system. UTM will support safe and efficient UAS operations for the delivery of goods and services

  12. MicroRNA delivery for regenerative medicine.

    PubMed

    Peng, Bo; Chen, Yongming; Leong, Kam W

    2015-07-01

    MicroRNA (miRNA) directs post-transcriptional regulation of a network of genes by targeting mRNA. Although relatively recent in development, many miRNAs direct differentiation of various stem cells including induced pluripotent stem cells (iPSCs), a major player in regenerative medicine. An effective and safe delivery of miRNA holds the key to translating miRNA technologies. Both viral and nonviral delivery systems have seen success in miRNA delivery, and each approach possesses advantages and disadvantages. A number of studies have demonstrated success in augmenting osteogenesis, improving cardiogenesis, and reducing fibrosis among many other tissue engineering applications. A scaffold-based approach with the possibility of local and sustained delivery of miRNA is particularly attractive since the physical cues provided by the scaffold may synergize with the biochemical cues induced by miRNA therapy. Herein, we first briefly cover the application of miRNA to direct stem cell fate via replacement and inhibition therapies, followed by the discussion of the promising viral and nonviral delivery systems. Next we present the unique advantages of a scaffold-based delivery in achieving lineage-specific differentiation and tissue development. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Delivery of RNAi Therapeutics to the Airways-From Bench to Bedside.

    PubMed

    Qiu, Yingshan; Lam, Jenny K W; Leung, Susan W S; Liang, Wanling

    2016-09-20

    RNA interference (RNAi) is a potent and specific post-transcriptional gene silencing process. Since its discovery, tremendous efforts have been made to translate RNAi technology into therapeutic applications for the treatment of different human diseases including respiratory diseases, by manipulating the expression of disease-associated gene(s). Similar to other nucleic acid-based therapeutics, the major hurdle of RNAi therapy is delivery. Pulmonary delivery is a promising approach of delivering RNAi therapeutics directly to the airways for treating local conditions and minimizing systemic side effects. It is a non-invasive route of administration that is generally well accepted by patients. However, pulmonary drug delivery is a challenge as the lungs pose a series of anatomical, physiological and immunological barriers to drug delivery. Understanding these barriers is essential for the development an effective RNA delivery system. In this review, the different barriers to pulmonary drug delivery are introduced. The potential of RNAi molecules as new class of therapeutics, and the latest preclinical and clinical studies of using RNAi therapeutics in different respiratory conditions are discussed in details. We hope this review can provide some useful insights for moving inhaled RNAi therapeutics from bench to bedside.

  14. Increasing the Delivery of Preventive Health Services in Public Education.

    PubMed

    Cruden, Gracelyn; Kelleher, Kelly; Kellam, Sheppard; Brown, C Hendricks

    2016-10-01

    The delivery of prevention services to children and adolescents through traditional healthcare settings is challenging for a variety of reasons. Parent- and community-focused services are typically not reimbursable in traditional medical settings, and personal healthcare services are often designed for acute and chronic medical treatment rather than prevention. To provide preventive services in a setting that reaches the widest population, those interested in public health and prevention often turn to school settings. This paper proposes that an equitable, efficient manner in which to promote health across the life course is to integrate efforts from public health, primary care, and public education through the delivery of preventive healthcare services, in particular, in the education system. Such an integration of systems will require a concerted effort on the part of various stakeholders, as well as a shared vision to promote child health via community and institutional stakeholder partnerships. This paper includes (1) examination of some key system features necessary for delivery of preventive services that improve child outcomes; (2) a review of the features of some common models of school health services for their relevance to prevention services; and (3) policy and implementation strategy recommendations to further the delivery of preventive services in schools. These recommendations include the development of common metrics for health outcomes reporting, facilitated data sharing of these metrics, shared organization incentives for integration, and improved reimbursement and funding opportunities. Copyright © 2016 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  15. Electrostatic Surface Modifications to Improve Gene Delivery

    PubMed Central

    Shmueli, Ron B.; Anderson, Daniel G.

    2010-01-01

    Importance of the field Gene therapy has the potential to treat a wide variety of diseases including genetic diseases and cancer. Areas covered in this review This review introduces biomaterials used for gene delivery and then focuses on the use of electrostatic surface modifications to improve gene delivery materials. These modifications have been used to stabilize therapeutics in vivo, add cell-specific targeting ligands, and promote controlled release. Coatings of nanoparticles and microparticles as well as non-particulate surface coatings are covered in this review. Electrostatic principles are crucial for the development of multilayer delivery structures fabricated by the layer-by-layer method. What the reader will gain The reader will gain knowledge about the composition of biomaterials used for surface modifications and how these coatings and multilayers can be utilized to improve spatial control and efficiency of delivery. Examples are shown for the delivery of nucleic acids, including DNA and siRNA, to in vitro and in vivo systems. Take home message The versatile and powerful approach of electrostatic coatings and multilayers will lead to the development of enhanced gene therapies. PMID:20201712

  16. Time-reversal Techniques in Ultrasound-assisted Convection-enhanced Drug Delivery to the Brain: Technology Development and In Vivo Evaluation

    PubMed Central

    Lewis, George K.; Guarino, Sabrina; Gandhi, Gaurav; Filinger, Laurent; Lewis, George K.; Olbricht, Willam L.; Sarvazyan, Armen

    2011-01-01

    We describe a drug delivery method that combines Time-Reversal Acoustics (TRA) with Convection-Enhanced Delivery (CED) to improve the delivery of therapeutics to the interstitium of the brain. The Ultrasound-assisted CED approach (UCED) circumvents the blood-brain barrier by infusing compounds through a cannula that is inserted into the brain while simultaneously delivering ultrasound to improve the penetration of pharmaceuticals. CED without ultrasound-assistance has been used to treat a variety of neural disorders, including glioblastoma multiforme, a malignancy that presents a very poor prognosis for patients. We describe a novel system that is used to infuse fluids into the brain parenchyma while simultaneously exposing the tissue to safe levels of 1-MHz, low intensity, ultrasound energy. The system includes a combined infusion needle-hydrophone, a 10-channel ultralow-output impedance amplifier, a broad-band ultrasound resonator, and MatLab®-based TRA control and user-interface. TRA allows easy coupling of ultrasound therapy through the skull without complex phase-correction and array design. The smart targeting UCED system has been tested in vivo and results show it provides 1.5-mm spatial resolution for UCED and improves tracer distribution in the brain over CED alone. PMID:21881622

  17. The Adaptive Aerosol Delivery (AAD) technology: Past, present, and future.

    PubMed

    Denyer, John; Dyche, Tony

    2010-04-01

    Conventional aerosol delivery systems and the availability of new technologies have led to the development of "intelligent" nebulizers such as the I-neb Adaptive Aerosol Delivery (AAD) System. Based on the AAD technology, the I-neb AAD System has been designed to continuously adapt to changes in the patient's breathing pattern, and to pulse aerosol only during the inspiratory part of the breathing cycle. This eliminates waste of aerosol during exhalation, and creates a foundation for precise aerosol (dose) delivery. To facilitate the delivery of precise metered doses of aerosol to the patient, a unique metering chamber design has been developed. Through the vibrating mesh technology, the metering chamber design, and the AAD Disc function, the aerosol output rate and metered (delivered) dose can be tailored to the demands of the specific drug to be delivered. In the I-neb AAD System, aerosol delivery is guided through two algorithms, one for the Tidal Breathing Mode (TBM), and one for slow and deep inhalations, the Target Inhalation Mode (TIM). The aim of TIM is to reduce the treatment time by increasing the total inhalation time per minute, and to increase lung deposition by reducing impaction in the upper airways through slow and deep inhalations. A key feature of the AAD technology is the patient feedback mechanisms that are provided to guide the patient on delivery performance. These feedback signals, which include visual, audible, and tactile forms, are configured in a feedback cascade that leads to a high level of compliance with the use of the I-neb AAD System. The I-neb Insight and the Patient Logging System facilitate a further degree of sophistication to the feedback mechanisms, by providing information on long term adherence and compliance data. These can be assessed by patients and clinicians via a Web-based delivery of information in the form of customized graphical analyses.

  18. Nebuliser systems for drug delivery in cystic fibrosis.

    PubMed

    Daniels, Tracey; Mills, Nicola; Whitaker, Paul

    2013-04-30

    Nebuliser systems are used to deliver medications to control the symptoms and the progression of lung disease in people with cystic fibrosis. Many types of nebuliser systems are available for use with various medications; however, there has been no previous systematic review which has evaluated these systems. To evaluate effectiveness, safety, burden of treatment and adherence to nebulised therapy using different nebuliser systems for people with cystic fibrosis. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register comprising references identified from comprehensive electronic database searches, handsearching of relevant journals and abstract books of conference proceedings. We searched the reference lists of each study for additional publications and approached the manufacturers of both nebuliser systems and nebulised medications for published and unpublished data. Date of the most recent search: 15 Oct 2012. Randomised controlled trials or quasi-randomised controlled trials comparing nebuliser systems including conventional nebulisers, vibrating mesh technology systems, adaptive aerosol delivery systems and ultrasonic nebuliser systems. Two authors independently assessed studies for inclusion. They also independently extracted data and assessed the risk of bias. A third author assessed studies where agreement could not be reached. The search identified 40 studies with 20 of these (1936 participants) included in the review. These studies compared the delivery of tobramycin, colistin, dornase alfa, hypertonic sodium chloride and other solutions through the different nebuliser systems. This review demonstrates variability in the delivery of medication depending on the nebuliser system used. Conventional nebuliser systems providing higher flows, higher respirable fractions and smaller particles decrease treatment time, increase deposition and may be preferred by people with CF, as compared to conventional nebuliser systems providing lower flows, lower respirable fractions and larger particles. Nebulisers using adaptive aerosol delivery or vibrating mesh technology reduce treatment time to a far greater extent. Deposition (as a percentage of priming dose) is greater than conventional with adaptive aerosol delivery. Vibrating mesh technology systems may give greater deposition than conventional when measuring sputum levels, but lower deposition when measuring serum levels or using gamma scintigraphy. The available data indicate that these newer systems are safe when used with an appropriate priming dose, which may be different to the priming dose used for conventional systems. There is an indication that adherence is maintained or improved with systems which use these newer technologies, but also that some nebuliser systems using vibrating mesh technology may be subject to increased failures. Clinicians should be aware of the variability in the performance of different nebuliser systems. Technologies such as adaptive aerosol delivery and vibrating mesh technology have advantages over conventional systems in terms of treatment time, deposition as a percentage of priming dose, patient preference and adherence. There is a need for long-term randomised controlled trials of these technologies to determine patient-focused outcomes (such as quality of life and burden of care), safe and effective dosing levels of medications and clinical outcomes (such as hospitalisations and need for antibiotics) and an economic evaluation of their use.

  19. Oral Drug Delivery Systems Comprising Altered Geometric Configurations for Controlled Drug Delivery

    PubMed Central

    Moodley, Kovanya; Pillay, Viness; Choonara, Yahya E.; du Toit, Lisa C.; Ndesendo, Valence M. K.; Kumar, Pradeep; Cooppan, Shivaan; Bawa, Priya

    2012-01-01

    Recent pharmaceutical research has focused on controlled drug delivery having an advantage over conventional methods. Adequate controlled plasma drug levels, reduced side effects as well as improved patient compliance are some of the benefits that these systems may offer. Controlled delivery systems that can provide zero-order drug delivery have the potential for maximizing efficacy while minimizing dose frequency and toxicity. Thus, zero-order drug release is ideal in a large area of drug delivery which has therefore led to the development of various technologies with such drug release patterns. Systems such as multilayered tablets and other geometrically altered devices have been created to perform this function. One of the principles of multilayered tablets involves creating a constant surface area for release. Polymeric materials play an important role in the functioning of these systems. Technologies developed to date include among others: Geomatrix® multilayered tablets, which utilizes specific polymers that may act as barriers to control drug release; Procise®, which has a core with an aperture that can be modified to achieve various types of drug release; core-in-cup tablets, where the core matrix is coated on one surface while the circumference forms a cup around it; donut-shaped devices, which possess a centrally-placed aperture hole and Dome Matrix® as well as “release modules assemblage”, which can offer alternating drug release patterns. This review discusses the novel altered geometric system technologies that have been developed to provide controlled drug release, also focusing on polymers that have been employed in such developments. PMID:22312236

  20. Nanocarriers for treatment of ocular neovascularization in the back of the eye: new vehicles for ophthalmic drug delivery.

    PubMed

    Shen, Hsin-Hui; Chan, Elsa C; Lee, Jia Hui; Bee, Youn-Shen; Lin, Tsung-Wu; Dusting, Gregory J; Liu, Guei-Sheung

    2015-01-01

    Pathologic neovascularization of the retina is a major cause of substantial and irreversible loss of vision. Drugs are difficult to deliver to the lesions in the back of the eye and this is a major obstacle for the therapeutics. Current pharmacological approach involves an intravitreal injection of anti-VEGF agents to prevent aberrant growth of blood vessels, but it has limitations including therapeutic efficacy and side-effects associated with systemic exposure and invasive surgery. Nanotechnology provides novel opportunities to overcome the limitations of conventional delivery system to reach the back of the eye through fabrication of nanostructures capable of encapsulating and delivering small molecules. This review article introduces various forms of nanocarrier that can be adopted by ocular drug delivery systems to improve current therapy. The application of nanotechnology in medicine brings new hope for ocular drug delivery in the back of the eye to manage the major causes of blindness associated with ocular neovascularization.

  1. Intrathecal Drug Delivery Systems for Cancer Pain: A Health Technology Assessment

    PubMed Central

    2016-01-01

    Background Intrathecal drug delivery systems can be used to manage refractory or persistent cancer pain. We investigated the benefits, harms, cost-effectiveness, and budget impact of these systems compared with current standards of care for adult patients with chronic pain due owing to cancer. Methods We searched Ovid MEDLINE, Ovid Embase, the Cochrane Library databases, National Health Service's Economic Evaluation Database, and Tufts Cost-Effectiveness Analysis Registry from January 1994 to April 2014 for evidence of effectiveness, harms, and cost-effectiveness. We used existing systematic reviews that had employed reliable search and screen methods and searched for studies published after the search date reported in the latest systematic review to identify studies. Two reviewers screened records and assessed study validity. The cost burden of publicly funding intrathecal drug delivery systems for cancer pain was estimated for a 5-year timeframe using a combination of published literature, information from the device manufacturer, administrative data, and expert opinion for the inputs. Results We included one randomized trial that examined effectiveness and harms, and one case series that reported an eligible economic evaluation. We found very low quality evidence that intrathecal drug delivery systems added to comprehensive pain management reduce overall drug toxicity; no significant reduction in pain scores was observed. Weak conclusions from economic evidence suggested that intrathecal drug delivery systems had the potential to be more cost-effective than high-cost oral therapy if administered for 7 months or longer. The cost burden of publicly funding this therapy is estimated to be $100,000 in the first year, increasing to $500,000 by the fifth year. Conclusions Current evidence could not establish the benefit, harm, or cost-effectiveness of intrathecal drug delivery systems compared with current standards of care for managing refractory cancer pain in adults. Publicly funding intrathecal drug delivery systems for cancer pain would result in a budget impact of several hundred thousand dollars per year. PMID:27026796

  2. Intrathecal Drug Delivery Systems for Cancer Pain: A Health Technology Assessment.

    PubMed

    2016-01-01

    Intrathecal drug delivery systems can be used to manage refractory or persistent cancer pain. We investigated the benefits, harms, cost-effectiveness, and budget impact of these systems compared with current standards of care for adult patients with chronic pain due owing to cancer. We searched Ovid MEDLINE, Ovid Embase, the Cochrane Library databases, National Health Service's Economic Evaluation Database, and Tufts Cost-Effectiveness Analysis Registry from January 1994 to April 2014 for evidence of effectiveness, harms, and cost-effectiveness. We used existing systematic reviews that had employed reliable search and screen methods and searched for studies published after the search date reported in the latest systematic review to identify studies. Two reviewers screened records and assessed study validity. The cost burden of publicly funding intrathecal drug delivery systems for cancer pain was estimated for a 5-year timeframe using a combination of published literature, information from the device manufacturer, administrative data, and expert opinion for the inputs. We included one randomized trial that examined effectiveness and harms, and one case series that reported an eligible economic evaluation. We found very low quality evidence that intrathecal drug delivery systems added to comprehensive pain management reduce overall drug toxicity; no significant reduction in pain scores was observed. Weak conclusions from economic evidence suggested that intrathecal drug delivery systems had the potential to be more cost-effective than high-cost oral therapy if administered for 7 months or longer. The cost burden of publicly funding this therapy is estimated to be $100,000 in the first year, increasing to $500,000 by the fifth year. Current evidence could not establish the benefit, harm, or cost-effectiveness of intrathecal drug delivery systems compared with current standards of care for managing refractory cancer pain in adults. Publicly funding intrathecal drug delivery systems for cancer pain would result in a budget impact of several hundred thousand dollars per year.

  3. In vivo real-time monitoring system of electroporation mediated control of transdermal and topical drug delivery.

    PubMed

    Blagus, Tanja; Markelc, Bostjan; Cemazar, Maja; Kosjek, Tina; Preat, Veronique; Miklavcic, Damijan; Sersa, Gregor

    2013-12-28

    Electroporation (EP) is a physical method for the delivery of molecules into cells and tissues, including the skin. In this study, in order to control the degree of transdermal and topical drug delivery, EP at different amplitudes of electric pulses was evaluated. A new in vivo real-time monitoring system based on fluorescently labeled molecules was developed, for the quantification of transdermal and topical drug delivery. EP of the mouse skin was performed with new non-invasive multi-array electrodes, delivering different amplitudes of electric pulses ranging from 70 to 570 V, between the electrode pin pairs. Patches, soaked with 4 kDa fluorescein-isothiocyanate labeled dextran (FD), doxorubicin (DOX) or fentanyl (FEN), were applied to the skin before and after EP. The new monitoring system was developed based on the delivery of FD to and through the skin. FD relative quantity was determined with fluorescence microscopy imaging, in the treated region of the skin for topical delivery and in a segment of the mouse tail for transdermal delivery. The application of electric pulses for FD delivery resulted in enhanced transdermal delivery. Depending on the amplitude of electric pulses, it increased up to the amplitude of 360 V, and decreased at higher amplitudes (460 and 570 V). Topical delivery steadily enhanced with increasing the amplitude of the delivered electric pulses, being even higher than after tape stripping used as a positive control. The non-invasive monitoring of the delivery of DOX, a fluorescent chemotherapeutic drug, qualitatively and quantitatively confirmed the effects of EP at 360 and 570 V pulse amplitudes on topical and transdermal drug delivery. Delivery of FEN at 360 and 570 V pulse amplitudes verified the observed effects as obtained with FD and DOX, by the measured physiological responses of the mice as well as FEN plasma concentration. This study demonstrates that with the newly developed non-invasive multi-array electrodes and with the varying electric pulse amplitude, the amount of topical and transdermal drug delivery to the skin can be controlled. Furthermore, the newly developed monitoring system provides a tool for rapid real-time determination of both, transdermal and topical delivery, when the delivered molecule is fluorescent. © 2013 Elsevier B.V. All rights reserved.

  4. Lipid based delivery and immuno-stimulatory systems: Master tools to combat leishmaniasis.

    PubMed

    Sabur, Abdus; Asad, Mohammad; Ali, Nahid

    2016-11-01

    Disease management of leishmaniasis is appalling due to lack of a human vaccine and the toxicity and resistance concerns with limited therapeutic drugs. The challenges in development of a safe vaccine for generation and maintenance of robust antileishmanial protective immunity through a human administrable route of immunization can be addressed through immunomodulation and targeted delivery. The versatility of lipid based particulate system for deliberate delivery of diverse range of molecules including immunomodulators, antigens and drugs have essentially found pivotal role in design of proficient vaccination and therapeutic strategies against leishmaniasis. The prospects of lipid based preventive and curative formulations for leishmaniasis have been highlighted in this review. Copyright © 2016. Published by Elsevier Inc.

  5. Biocompatibility of Chitosan Carriers with Application in Drug Delivery

    PubMed Central

    Rodrigues, Susana; Dionísio, Marita; Remuñán López, Carmen; Grenha, Ana

    2012-01-01

    Chitosan is one of the most used polysaccharides in the design of drug delivery strategies for administration of either biomacromolecules or low molecular weight drugs. For these purposes, it is frequently used as matrix forming material in both nano and micron-sized particles. In addition to its interesting physicochemical and biopharmaceutical properties, which include high mucoadhesion and a great capacity to produce drug delivery systems, ensuring the biocompatibility of the drug delivery vehicles is a highly relevant issue. Nevertheless, this subject is not addressed as frequently as desired and even though the application of chitosan carriers has been widely explored, the demonstration of systems biocompatibility is still in its infancy. In this review, addressing the biocompatibility of chitosan carriers with application in drug delivery is discussed and the methods used in vitro and in vivo, exploring the effect of different variables, are described. We further provide a discussion on the pros and cons of used methodologies, as well as on the difficulties arising from the absence of standardization of procedures. PMID:24955636

  6. Medicated chewing gum--a potential drug delivery system.

    PubMed

    Chaudhary, Shivang A; Shahiwala, Aliasgar F

    2010-07-01

    Over the years, patient convenience and patient compliance-orientated research in the field of drug delivery has resulted in bringing out potential innovative drug delivery options. Out of which, medicated chewing gum (MCG) offers a highly convenient patient-compliant way of dosing medications, not only for special population groups with swallowing difficulties such as children and the elderly, but also for the general population, including the young generation. In this review, various formulation ingredients, different manufacturing processes, and assessment of in vivo and in vitro drug release from MCG are thoroughly discussed along with the therapeutic potential and limitations of MCG. Readers will gain knowledge about the rationale and prominent formulation and performance evaluation strategies behind chewing gum as a drug delivery system. The availability of directly compressible co-processed gum material enables rapid, safe and low-cost development of MCG as a drug delivery option. By MCG formulation, revitalization of old products and reformulation of new patented products is possible, to differentiate them from upcoming generics competition in the market.

  7. Recent developments in anticancer drug delivery using cell penetrating and tumor targeting peptides.

    PubMed

    Dissanayake, Shama; Denny, William A; Gamage, Swarna; Sarojini, Vijayalekshmi

    2017-03-28

    Efficient intracellular trafficking and targeted delivery to the site of action are essential to overcome the current drawbacks of cancer therapeutics. Cell Penetrating Peptides (CPPs) offer the possibility of efficient intracellular trafficking, and, therefore the development of drug delivery systems using CPPs as cargo carriers is an attractive strategy to address the current drawbacks of cancer therapeutics. Additionally, the possibility of incorporating Tumor Targeting Peptides (TTPs) into the delivery system provides the necessary drug targeting effect. Therefore the conjugation of CPPs and/or TTPs with therapeutics provides a potentially efficient method of improving intracellular drug delivery mechanisms. Peptides used as cargo carriers in DDS have been shown to enhance the cellular uptake of drugs and thereby provide an efficient therapeutic benefit over the drug on its own. After providing a brief overview of various drug targeting approaches, this review focusses on peptides as carriers and targeting moieties in drug-peptide covalent conjugates and summarizes the most recent literature examples where CPPs on their own or CPPs together with TTPs have been conjugated to anticancer drugs such as Doxorubicin, Methotrexate, Paclitaxel, Chlorambucil etc. A short section on CPPs used in multicomponent drug delivery systems is also included. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Design attributes of long-circulating polymeric drug delivery vehicles.

    PubMed

    Beck-Broichsitter, Moritz; Nicolas, Julien; Couvreur, Patrick

    2015-11-01

    Following systemic administration polymeric drug delivery vehicles allow for a controlled and targeted release of the encapsulated medication at the desired site of action. For an elevated and organ specific accumulation of their cargo, nanocarriers need to avoid opsonization, activation of the complement system and uptake by macrophages of the mononuclear phagocyte system. In this respect, camouflaged vehicles revealed a delayed elimination from systemic circulation and an improved target organ deposition. For instance, a steric shielding of the carrier surface by poly(ethylene glycol) substantially decreased interactions with the biological environment. However, recent studies disclosed possible deficits of this approach, where most notably, poly(ethylene glycol)-modified drug delivery vehicles caused significant immune responses. At present, identification of novel potential carrier coating strategies facilitating negligible immune reactions is an emerging field of interest in drug delivery research. Moreover, physical carrier properties including geometry and elasticity seem to be very promising design attributes to surpass numerous biological barriers, in order to improve the efficacy of the delivered medication. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Toward an evidence-based system for innovation support for implementing innovations with quality: tools, training, technical assistance, and quality assurance/quality improvement.

    PubMed

    Wandersman, Abraham; Chien, Victoria H; Katz, Jason

    2012-12-01

    An individual or organization that sets out to implement an innovation (e.g., a new technology, program, or policy) generally requires support. In the Interactive Systems Framework for Dissemination and Implementation, a Support System should work with Delivery Systems (national, state and/or local entities such as health and human service organizations, community-based organizations, schools) to enhance their capacity for quality implementation of innovations. The literature on the Support System [corrected] has been underresearched and under-developedThis article begins to conceptualize theory, research, and action for an evidence-based system for innovation support (EBSIS). EBSIS describes key priorities for strengthening the science and practice of support. The major goal of EBSIS is to enhance the research and practice of support in order to build capacity in the Delivery System for implementing innovations with quality, and thereby, help the Delivery System achieve outcomes. EBSIS is guided by a logic model that includes four key support components: tools, training, technical assistance, and quality assurance/quality improvement. EBSIS uses the Getting To Outcomes approach to accountability to aid the identification and synthesis of concepts, tools, and evidence for support. We conclude with some discussion of the current status of EBSIS and possible next steps, including the development of collaborative researcher-practitioner-funder-consumer partnerships to accelerate accumulation of knowledge on the Support System.

  10. Towards Effective Evaluation and Reform in Medical Education: A Cognitive and Learning Sciences Perspective

    ERIC Educational Resources Information Center

    Patel, Vimla L.; Yoskowitz, Nicole A.; Arocha, Jose F.

    2009-01-01

    Health professions education is dealing with major transformations in light of the changing nature of the health care delivery system, including the use of technology for "just in time" delivery of care, evidence-based practice, personalized medical care and learning, as health professionals strive to integrate biomedical advances and clinical…

  11. What Is the Role of Distance Learning in the State University System? Information Brief. Volume 6, Issue 2

    ERIC Educational Resources Information Center

    Florida Board of Governors, State University System, 2008

    2008-01-01

    Distance learning is the term used when the delivery of instruction involves the separation of student(s) and the instructor by time and/or space. Some forms of distance learning include correspondence, telecourses, online instruction, computer assisted instruction, and instructional delivery that relies upon satellite, cable, broadcast (TV or…

  12. 20 CFR 669.310 - What are the basic components of an NFJP service delivery strategy?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... include: (a) A customer-centered case management approach; (b) The provision of workforce investment... Investment Boards for the delivery of the services available through the One-Stop system to MSFW's; and (d... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false What are the basic components of an NFJP...

  13. 20 CFR 669.310 - What are the basic components of an NFJP service delivery strategy?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... include: (a) A customer-centered case management approach; (b) The provision of workforce investment... Investment Boards for the delivery of the services available through the One-Stop system to MSFW's; and (d... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false What are the basic components of an NFJP...

  14. Water-based preparation of spider silk films as drug delivery matrices.

    PubMed

    Agostini, Elisa; Winter, Gerhard; Engert, Julia

    2015-09-10

    The main focus of this work was to obtain a drug delivery matrix characterized by biocompatibility, water insolubility and good mechanical properties. Moreover the preparation process has to be compatible with protein encapsulation and the obtained matrix should be able to sustain release a model protein. Spider silk proteins represent exceptional natural polymers due to their mechanical properties in combination with biocompatibility. As both hydrophobic and slowly biodegrading biopolymers, recombinant spider silk proteins fulfill the required properties for a drug delivery system. In this work, we present the preparation of eADF4(C16) films as drug delivery matrices without the use of any organic solvent. Water-based spider silk films were characterized in terms of protein secondary structure, thermal stability, zeta-potential, solubility, mechanical properties, and water absorption and desorption. Additionally, this study includes an evaluation of their application as a drug delivery system for both small molecular weight drugs and high molecular weight molecules such as proteins. Our investigation focused on possible improvements in the film's mechanical properties including plasticizers in the film matrix. Furthermore, different film designs were prepared, such as: monolayer, coated monolayer, multilayer (sandwich), and coated multilayer. The release of the model protein BSA from these new systems was studied. Results indicated that spider silk films are a promising protein drug delivery matrix, capable of releasing the model protein over 90 days with a release profile close to zero order kinetic. Such films could be used for several pharmaceutical and medical purposes, especially when mechanical strength of a drug eluting matrix is of high importance. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. YSA-conjugated mesoporous silica nanoparticles effectively target EphA2-overexpressing breast cancer cells.

    PubMed

    Liu, Zhi; Tao, Zijian; Zhang, Qing; Wan, Song; Zhang, Fenglin; Zhang, Yan; Wu, Guanyu; Wang, Jiandong

    2018-04-01

    Neoadjuvant chemotherapy is commonly used to treat patients with locally advanced breast cancer and a common option for primary operable disease. However, systemic toxicity including cardiotoxicity and inefficient delivery are significant challenges form any chemotherapeutics. The development of targeted treatments that lower the risk of toxicity has, therefore, become an active area of research in the field of novel cancer therapeutics. Mesoporous silica nanoparticles (MSNs) have attracted significant attention as efficient drug delivery carriers, due to their high surface area and tailorable mesoporous structures. Eph receptors are the largest receptor tyrosine kinase family, which are divided into the A- and the B-type. Eph receptors play critical roles in embryonic development and human diseases including cancer. EphA2 is expressed in breast cancer cells and has roles in carcinogenesis, progression and prognosis of breast cancer. A homing peptide with the sequence YSAYPDSVPMMSK (YSA) that binds specifically to EphA2 was used to functionalize MSN. We focus on a novel EphA2-targeted delivery MSN system for breast cancer cells. We show that the EphA2 receptor is differentially expressed in breast cancer cells and highly expressed in the HER2-negative breast cancer cell line MCF7. Our results suggest that EphA2-targeted MSN for doxorubicin delivery (MSN-YSA-DOX) are more effective than MSN-DOX in treating breast cancer cell lines in vitro. Our preliminary observations suggest that the EphA2-targeted MSN delivery system may provide a strategy for enhancing delivery of therapeutic agents to breast cancer cells expressing EphA2, and potentially reduce toxicity while enhancing therapeutic efficacy.

  16. Osmotically driven drug delivery through remote-controlled magnetic nanocomposite membranes.

    PubMed

    Zaher, A; Li, S; Wolf, K T; Pirmoradi, F N; Yassine, O; Lin, L; Khashab, N M; Kosel, J

    2015-09-01

    Implantable drug delivery systems can provide long-term reliability, controllability, and biocompatibility, and have been used in many applications, including cancer pain and non-malignant pain treatment. However, many of the available systems are limited to zero-order, inconsistent, or single burst event drug release. To address these limitations, we demonstrate prototypes of a remotely operated drug delivery device that offers controllability of drug release profiles, using osmotic pumping as a pressure source and magnetically triggered membranes as switchable on-demand valves. The membranes are made of either ethyl cellulose, or the proposed stronger cellulose acetate polymer, mixed with thermosensitive poly(N-isopropylacrylamide) hydrogel and superparamagnetic iron oxide particles. The prototype devices' drug diffusion rates are on the order of 0.5-2 μg/h for higher release rate designs, and 12-40 ng/h for lower release rates, with maximum release ratios of 4.2 and 3.2, respectively. The devices exhibit increased drug delivery rates with higher osmotic pumping rates or with magnetically increased membrane porosity. Furthermore, by vapor deposition of a cyanoacrylate layer, a drastic reduction of the drug delivery rate from micrograms down to tens of nanograms per hour is achieved. By utilizing magnetic membranes as the valve-control mechanism, triggered remotely by means of induction heating, the demonstrated drug delivery devices benefit from having the power source external to the system, eliminating the need for a battery. These designs multiply the potential approaches towards increasing the on-demand controllability and customizability of drug delivery profiles in the expanding field of implantable drug delivery systems, with the future possibility of remotely controlling the pressure source.

  17. Osmotically driven drug delivery through remote-controlled magnetic nanocomposite membranes

    PubMed Central

    Zaher, A.; Li, S.; Wolf, K. T.; Pirmoradi, F. N.; Yassine, O.; Lin, L.; Khashab, N. M.; Kosel, J.

    2015-01-01

    Implantable drug delivery systems can provide long-term reliability, controllability, and biocompatibility, and have been used in many applications, including cancer pain and non-malignant pain treatment. However, many of the available systems are limited to zero-order, inconsistent, or single burst event drug release. To address these limitations, we demonstrate prototypes of a remotely operated drug delivery device that offers controllability of drug release profiles, using osmotic pumping as a pressure source and magnetically triggered membranes as switchable on-demand valves. The membranes are made of either ethyl cellulose, or the proposed stronger cellulose acetate polymer, mixed with thermosensitive poly(N-isopropylacrylamide) hydrogel and superparamagnetic iron oxide particles. The prototype devices' drug diffusion rates are on the order of 0.5–2 μg/h for higher release rate designs, and 12–40 ng/h for lower release rates, with maximum release ratios of 4.2 and 3.2, respectively. The devices exhibit increased drug delivery rates with higher osmotic pumping rates or with magnetically increased membrane porosity. Furthermore, by vapor deposition of a cyanoacrylate layer, a drastic reduction of the drug delivery rate from micrograms down to tens of nanograms per hour is achieved. By utilizing magnetic membranes as the valve-control mechanism, triggered remotely by means of induction heating, the demonstrated drug delivery devices benefit from having the power source external to the system, eliminating the need for a battery. These designs multiply the potential approaches towards increasing the on-demand controllability and customizability of drug delivery profiles in the expanding field of implantable drug delivery systems, with the future possibility of remotely controlling the pressure source. PMID:26487899

  18. Intelligent Information Systems.

    ERIC Educational Resources Information Center

    Zabezhailo, M. I.; Finn, V. K.

    1996-01-01

    An Intelligent Information System (IIS) uses data warehouse technology to facilitate the cycle of data and knowledge processing, including input, standardization, storage, representation, retrieval, calculation, and delivery. This article provides an overview of IIS products and artificial intelligence systems, illustrates examples of IIS…

  19. Implementation of a protocol to reduce occurrence of retained sponges after vaginal delivery.

    PubMed

    Lutgendorf, Monica A; Schindler, Lynnett L; Hill, James B; Magann, Everett F; O'Boyle, John D

    2011-06-01

    Retained sponges (gossypiboma) following vaginal delivery are an uncommon occurrence. Although significant morbidity from such an event is unlikely, there are many reported adverse effects, including symptoms of malodorous discharge, loss of confidence in providers and the medical system, and legal claims. To report a protocol intended to reduce the occurrence of retained sponges following vaginal delivery. After identification of limitations with existing delivery room protocols, we developed a sponge count protocol to reduce occurrence of retained vaginal sponges. We report our experience at Naval Medical Center Portsmouth, a large tertiary care military treatment facility with our efforts to implement a sponge count protocol to reduce retained sponges following vaginal delivery. With appropriate pre-implementation training, protocols which incorporate post-delivery vaginal sweep and sponge counts are well accepted by the health care team and can be incorporated into the delivery room routine.

  20. Rationalising polymer selection for supersaturated film forming systems produced by an aerosol spray for the transdermal delivery of methylphenidate.

    PubMed

    Edwards, A; Qi, S; Liu, F; Brown, M B; McAuley, W J

    2017-05-01

    Film forming systems offer a number of advantages for topical and transdermal drug delivery, in particular enabling production of a supersaturated state which can greatly improve drug absorption and bioavailability. However the suitability of individual film forming polymers to stabilise the supersaturated state and optimise delivery of drugs is not well understood. This study reports the use of differential scanning calorimetry (DSC) to measure the solubility of methylphenidate both as the free base and as the hydrochloride salt in two polymethacrylate copolymers, Eudragit RS (EuRS) and Eudragit E (EuE) and relates this to the ability of films formed using these polymers to deliver methylphenidate across a model membrane. EuRS provided greater methylphenidate delivery when the drug was formulated as the free base in comparison EuE because the lower solubility of the drug in EuRS provided a higher degree of drug saturation in the polymeric film. In contrast EuE provided greater delivery of methylphenidate hydrochloride as EuRS could not prevent its crystallisation from a supersaturated state. Methylphenidate flux across the membrane could be directly related to degree of saturation of the drug in the film formulation as estimated by the drug solubility in the individual polymers demonstrating the importance of drug solubility in the polymer included in film forming systems for topical/transdermal drug delivery. In addition DSC has been demonstrated to be a useful tool for determining the solubility of drugs in polymers used in film forming systems and the approaches outlined here are likely to be useful for predicting the suitability of polymers for particular drugs in film forming transdermal drug delivery systems. Copyright © 2017. Published by Elsevier B.V.

  1. Characterization of particulate drug delivery systems for oral delivery of Peptide and protein drugs.

    PubMed

    Christophersen, Philip Carsten; Fano, Mathias; Saaby, Lasse; Yang, Mingshi; Nielsen, Hanne Mørck; Mu, Huiling

    2015-01-01

    Oral drug delivery is a preferred route because of good patient compliance. However, most peptide/ protein drugs are delivered via parenteral routes because of the absorption barriers in the gastrointestinal (GI) tract such as enzymatic degradation by proteases and low permeability acrossthe biological membranes. To overcome these barriers, different formulation strategies for oral delivery of biomacromolecules have been proposed, including lipid based formulations and polymer-based particulate drug delivery systems (DDS). The aim of this review is to summarize the existing knowledge about oral delivery of peptide/protein drugs and to provide an overview of formulationand characterization strategies. For a better understanding of the challenges in oral delivery of peptide/protein drugs, the composition of GI fluids and the digestion processes of different kinds of excipients in the GI tract are summarized. Additionally, the paper provides an overview of recent studies on characterization of solid drug carriers for peptide/protein drugs, drug distribution in particles, drug release and stability in simulated GI fluids, as well as the absorption of peptide/protein drugs in cell-based models. The use of biorelevant media when applicable can increase the knowledge about the quality of DDS for oral protein delivery. Hopefully, the knowledge provided in this review will aid the establishment of improved biorelevant models capable of forecasting the performance of particulate DDS for oral peptide/protein delivery.

  2. A Native American Community with a 7% Cesarean Delivery Rate: Does Case Mix, Ethnicity, or Labor Management Explain the Low Rate?

    PubMed Central

    Leeman, Lawrence; Leeman, Rebecca

    2003-01-01

    PURPOSE Cesarean delivery rates vary widely across populations. Studying communities with low rates of cesarean delivery may identify practices that can lower the cesarean rate. METHODS A population-based historical cohort study included all pregnant women (N = 1132) from 1992 through 1996 in a predominantly Native American region of northwestern New Mexico known to have a high prevalence of gestational diabetes and preeclampsia. The outcomes studied included delivery type (eg, cesarean, operative vaginal, spontaneous vaginal), indication for cesarean delivery, presence of obstetrical risk factors, and use of labor induction or augmentation. RESULTS The cesarean delivery rate of the study group (7.3%) was only 35% of the 1996 US rate of 20.7%. Among study participants, the relative risk of a primary cesarean delivery for dystocia was 0.22 (95% CI, 0.14, 0.35). Trial of labor after cesarean delivery was attempted by 93% of study participants compared with 42% of women nationwide in 1994. The cesarean delivery rates for women with diabetes in pregnancy (11.5% versus 35.4%) and preeclampsia (14.8% versus 37.4%) were significantly lower than nationwide rates. Case-mix analysis comparison with a standardized population and comparison of standard (ie, term, singleton, vertex) primiparous women demonstrate that the low rate of cesarean delivery was not because of a lower prevalence of risk factors. CONCLUSIONS The community’s low rate of cesarean delivery is primarily the result of a decreased use of cesarean delivery for labor dystocia and an almost universal acceptance of trial of labor after cesarean delivery. Cultural attitudes toward childbirth, design of the perinatal system, and genetic factors also may explain the low rate of cesarean delivery. PMID:15043178

  3. A Native American community with a 7% cesarean delivery rate: does case mix, ethnicity, or labor management explain the low rate?

    PubMed

    Leeman, Lawrence; Leeman, Rebecca

    2003-01-01

    Cesarean delivery rates vary widely across populations. Studying communities with low rates of cesarean delivery may identify practices that can lower the cesarean rate. A population-based historical cohort study included all pregnant women (N = 1132) from 1992 through 1996 in a predominantly Native American region of northwestern New Mexico known to have a high prevalence of gestational diabetes and preeclampsia. The outcomes studied included delivery type (eg, cesarean, operative vaginal, spontaneous vaginal), indication for cesarean delivery, presence of obstetrical risk factors, and use of labor induction or augmentation. The cesarean delivery rate of the study group (7.3%) was only 35% of the 1996 US rate of 20.7%. Among study participants, the relative risk of a primary cesarean delivery for dystocia was 0.22 (95% CI, 0.14, 0.35). Trial of labor after cesarean delivery was attempted by 93% of study participants compared with 42% of women nationwide in 1994. The cesarean delivery rates for women with diabetes in pregnancy (11.5% versus 35.4%) and preeclampsia (14.8% versus 37.4%) were significantly lower than nationwide rates. Case-mix analysis comparison with a standardized population and comparison of standard (ie, term, singleton, vertex) primiparous women demonstrate that the low rate of cesarean delivery was not because of a lower prevalence of risk factors. The community's low rate of cesarean delivery is primarily the result of a decreased use of cesarean delivery for labor dystocia and an almost universal acceptance of trial of labor after cesarean delivery. Cultural attitudes toward childbirth, design of the perinatal system, and genetic factors also may explain the low rate of cesarean delivery.

  4. The significance of transferrin receptors in oncology: the development of functional nano-based drug delivery systems.

    PubMed

    Tortorella, Stephanie; Karagiannis, Tom C

    2014-01-01

    Anticancer therapeutic research aims to improve clinical management of the disease through the development of strategies that involve currently-relevant treatment options and targeted delivery. Tumour-specific and -targeted delivery of compounds to the site of malignancy allows for enhanced cellular uptake, increased therapeutic benefit with high intratumoural drug concentrations, and decreased systemic exposure. Due to the upregulation of transferrin receptor expression in a wide variety of cancers, its function and its highly efficient recycling pathway, strategies involving the selective targeting of the receptor are well documented. Direct conjugation and immunotoxin studies using the transferrin peptide or anti-transferrin receptor antibodies as the targeting moiety have established the capacity to enhance cellular uptake, cross the blood brain barrier, limit systemic toxicity and reverse multi-drug resistance. Limitations in direct conjugation, including the difficulty in linking an adequate amount of therapeutic compound to the ligand or antibody have identified the requirement to develop novel delivery methods. The application of nanoparticulate theory in the development of functional drug delivery systems has proven to be most promising, with the ability to selectively modify size-dependent properties and surface chemistry. The transferrin modification on a range of nanoparticle formulations enhances selective cellular uptake through transferrin-mediated processes, and increases therapeutic benefit through the ability to encapsulate high concentrations of relevant drug to the tumour site. Although ineffective in crossing the blood brain barrier in its free form, chemotherapeutic compounds including doxorubicin, may be loaded into transferrin-conjugated nanocarriers and impart cytotoxic effects in glioma cells in vitro and in vivo. Additionally, transferrin-targeted nanoparticles may be used in selective diagnostic applications with enhanced selectivity and sensitivity. Four transferrin-modified nano-based drug delivery systems are currently in early phases of human clinical trials. Despite the collective promise, inconsistencies in some studies have exposed some limitations in current formulations and the difficulty in translating preliminary studies into clinically-relevant therapeutic options. The main objective of this review is to investigate the development of transferrin targeted nano-based drug delivery systems in order to establish the use of transferrin as a cancer-targeted moiety, and to ultimately evaluate the progression of cancer therapeutic strategies for future research.

  5. Porous tube plant nutrient delivery system development: A device for nutrient delivery in microgravity

    NASA Technical Reports Server (NTRS)

    Dreschel, T. W.; Brown, C. S.; Piastuch, W. C.; Hinkle, C. R.; Knott, W. M.

    1994-01-01

    The Porous Tube Plant Nutrient Delivery Systems or PTPNDS (U.S. Patent #4,926,585) has been under development for the past six years with the goal of providing a means for culturing plants in microgravity, specifically providing water and nutrients to the roots. Direct applications of the PTPNDS include plant space biology investigations on the Space Shuttle and plant research for life support in the Space Station Freedom. In the past, we investigated various configurations, the suitability of different porous materials, and the effects of pressure and pore size on plant growth. Current work is focused on characterizing the physical operation of the system, examining the effects of solution aeration, and developing prototype configurations for the Plant Growth Unit (PGU), the flight system for the Shuttle mid-deck. Future developments will involve testing on KC-135 parabolic flights, the design of flight hardware and testing aboard the Space Shuttle.

  6. Delivery arrangements for health systems in low-income countries: an overview of systematic reviews.

    PubMed

    Ciapponi, Agustín; Lewin, Simon; Herrera, Cristian A; Opiyo, Newton; Pantoja, Tomas; Paulsen, Elizabeth; Rada, Gabriel; Wiysonge, Charles S; Bastías, Gabriel; Dudley, Lilian; Flottorp, Signe; Gagnon, Marie-Pierre; Garcia Marti, Sebastian; Glenton, Claire; Okwundu, Charles I; Peñaloza, Blanca; Suleman, Fatima; Oxman, Andrew D

    2017-09-13

    Delivery arrangements include changes in who receives care and when, who provides care, the working conditions of those who provide care, coordination of care amongst different providers, where care is provided, the use of information and communication technology to deliver care, and quality and safety systems. How services are delivered can have impacts on the effectiveness, efficiency and equity of health systems. This broad overview of the findings of systematic reviews can help policymakers and other stakeholders identify strategies for addressing problems and improve the delivery of services. To provide an overview of the available evidence from up-to-date systematic reviews about the effects of delivery arrangements for health systems in low-income countries. Secondary objectives include identifying needs and priorities for future evaluations and systematic reviews on delivery arrangements and informing refinements of the framework for delivery arrangements outlined in the review. We searched Health Systems Evidence in November 2010 and PDQ-Evidence up to 17 December 2016 for systematic reviews. We did not apply any date, language or publication status limitations in the searches. We included well-conducted systematic reviews of studies that assessed the effects of delivery arrangements on patient outcomes (health and health behaviours), the quality or utilisation of healthcare services, resource use, healthcare provider outcomes (such as sick leave), or social outcomes (such as poverty or employment) and that were published after April 2005. We excluded reviews with limitations important enough to compromise the reliability of the findings. Two overview authors independently screened reviews, extracted data, and assessed the certainty of evidence using GRADE. We prepared SUPPORT Summaries for eligible reviews, including key messages, 'Summary of findings' tables (using GRADE to assess the certainty of the evidence), and assessments of the relevance of findings to low-income countries. We identified 7272 systematic reviews and included 51 of them in this overview. We judged 6 of the 51 reviews to have important methodological limitations and the other 45 to have only minor limitations. We grouped delivery arrangements into eight categories. Some reviews provided more than one comparison and were in more than one category. Across these categories, the following intervention were effective; that is, they have desirable effects on at least one outcome with moderate- or high-certainty evidence and no moderate- or high-certainty evidence of undesirable effects. Who receives care and when: queuing strategies and antenatal care to groups of mothers. Who provides care: lay health workers for caring for people with hypertension, lay health workers to deliver care for mothers and children or infectious diseases, lay health workers to deliver community-based neonatal care packages, midlevel health professionals for abortion care, social support to pregnant women at risk, midwife-led care for childbearing women, non-specialist providers in mental health and neurology, and physician-nurse substitution. Coordination of care: hospital clinical pathways, case management for people living with HIV and AIDS, interactive communication between primary care doctors and specialists, hospital discharge planning, adding a service to an existing service and integrating delivery models, referral from primary to secondary care, physician-led versus nurse-led triage in emergency departments, and team midwifery. Where care is provided: high-volume institutions, home-based care (with or without multidisciplinary team) for people living with HIV and AIDS, home-based management of malaria, home care for children with acute physical conditions, community-based interventions for childhood diarrhoea and pneumonia, out-of-facility HIV and reproductive health services for youth, and decentralised HIV care. Information and communication technology: mobile phone messaging for patients with long-term illnesses, mobile phone messaging reminders for attendance at healthcare appointments, mobile phone messaging to promote adherence to antiretroviral therapy, women carrying their own case notes in pregnancy, interventions to improve childhood vaccination. Quality and safety systems: decision support with clinical information systems for people living with HIV/AIDS. Complex interventions (cutting across delivery categories and other health system arrangements): emergency obstetric referral interventions. A wide range of strategies have been evaluated for improving delivery arrangements in low-income countries, using sound systematic review methods in both Cochrane and non-Cochrane reviews. These reviews have assessed a range of outcomes. Most of the available evidence focuses on who provides care, where care is provided and coordination of care. For all the main categories of delivery arrangements, we identified gaps in primary research related to uncertainty about the applicability of the evidence to low-income countries, low- or very low-certainty evidence or a lack of studies.

  7. DELIVERY OF THERAPEUTIC PROTEINS

    PubMed Central

    Pisal, Dipak S.; Kosloski, Matthew P.; Balu-Iyer, Sathy V.

    2009-01-01

    The safety and efficacy of protein therapeutics are limited by three interrelated pharmaceutical issues, in vitro and in vivo instability, immunogenicity and shorter half-lives. Novel drug modifications for overcoming these issues are under investigation and include covalent attachment of poly(ethylene glycol) (PEG), polysialic acid, or glycolic acid, as well as developing new formulations containing nanoparticulate or colloidal systems (e.g. liposomes, polymeric microspheres, polymeric nanoparticles). Such strategies have the potential to develop as next generation protein therapeutics. This review includes a general discussion on these delivery approaches. PMID:20049941

  8. Changes in Local Public Health System Performance Before and After Attainment of National Accreditation Standards.

    PubMed

    Ingram, Richard C; Mays, Glen P; Kussainov, Nurlan

    The aim of this study is to investigate the impact of Public Health Accreditation Board (PHAB) accreditation on the delivery of public health services and on participation from other sectors in the delivery of public health services in local public health systems. This study uses a longitudinal repeated measures design to identify differences between a cohort of public health systems containing PHAB-accredited local health departments and a cohort of public health systems containing unaccredited local health departments. It uses data spanning from 2006 to 2016. This study examines a cohort of local public health systems that serves large populations and contains unaccredited and PHAB-accredited local health departments. Data in this study were collected from the directors of health departments that include local public health systems followed in the National Longitudinal Study of Public Health Systems. The intervention examined is PHAB accreditation. The study focuses on 4 areas: the delivery of core public health services, local health department contribution toward these services, participation in the delivery of these services by other members of the public health system, and public health system makeup. Prior to the advent of accreditation, public health systems containing local health departments that were later accredited by PHAB appear quite similar to their unaccredited peers. Substantial differences between the 2 cohorts appear to manifest themselves after the advent of accreditation. Specifically, the accredited cohort seems to offer a broader array of public health services, involve more partners in the delivery of those services, and enjoy a higher percentage of comprehensive public health systems. The results of this study suggest that accreditation may yield significant benefits and may help public health systems develop the public health system capital necessary to protect and promote the public's health.

  9. Enhancing topical analgesic administration: review and prospect for transdermal and transbuccal drug delivery systems.

    PubMed

    Sanz, Roser; Calpena, Ana C; Mallandrich, Mireia; Clares, Beatriz

    2015-01-01

    Topical administration is an appealing method for drug delivery due to its non-invasiveness, self-controlled application, avoidance of first-pass metabolism in the liver and reduction of systemic side effects compared to other conventional routes such as oral and parenteral. However, topical administration must overcome the permeable barriers that skin and mucosa represent for the drug to achieve its desired therapeutic effect. Penetration of drugs through human skin is mainly impaired by the stratum corneum- the uppermost keratinized skin layer. In contrast, the stratified squamous epithelium (a nonkeratinized tissue) represents the major physical barrier for transbuccal drug administration in humans. Different technologies have been studied to enhance the bioavailability or local effects of drugs administered through skin and buccal mucosa. Those technologies involve the use of physical or chemical enhancers and new dosage forms such as vesicles, cyclodextrins, nanoparticles and other complex systems. Combinations of these technologies may further increase drug delivery in some cases. As analgesia is one of the main therapeutic effects sought through topical administration, this paper focuses on the review of drug delivery systems to improve the topical and transdermal/transbuccal drug delivery of substances with known analgesic action. A discussion of their possibilities and limitations is also included.

  10. Surfactant-based drug delivery systems for treating drug-resistant lung cancer.

    PubMed

    Kaur, Prabhjot; Garg, Tarun; Rath, Goutam; Murthy, R S R; Goyal, Amit K

    2016-01-01

    Among all cancers, lung cancer is the major cause of deaths. Lung cancer can be categorized into two classes for prognostic and treatment purposes: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Both categories of cancer are resistant to certain drugs. Various mechanisms behind drug resistance are over-expression of superficial membrane proteins [glycoprotein (P-gp)], lung resistance-associated proteins, aberration of the intracellular enzyme system, enhancement of the cell repair system and deregulation of cell apoptosis. Structure-performance relationships and chemical compatibility are consequently major fundamentals in surfactant-based formulations, with the intention that a great deal investigation is committed to this region. With the purpose to understand the potential of P-gp in transportation of anti-tumor drugs to cancer cells with much effectiveness and specificity, several surfactant-based delivery systems have been developed which may include microspheres, nanosized drug carriers (nanoparticles, nanoemulsions, stealth liposomes, nanogels, polymer-drug conjugates), novel powders, hydrogels and mixed micellar systems intended for systemic and/or localized delivery.

  11. Porous silicon advances in drug delivery and immunotherapy.

    PubMed

    Savage, David J; Liu, Xuewu; Curley, Steven A; Ferrari, Mauro; Serda, Rita E

    2013-10-01

    Biomedical applications of porous silicon include drug delivery, imaging, diagnostics and immunotherapy. This review summarizes new silicon particle fabrication techniques, dynamics of cellular transport, advances in the multistage vector approach to drug delivery, and the use of porous silicon as immune adjuvants. Recent findings support superior therapeutic efficacy of the multistage vector approach over single particle drug delivery systems in mouse models of ovarian and breast cancer. With respect to vaccine development, multivalent presentation of pathogen-associated molecular patterns on the particle surface creates powerful platforms for immunotherapy, with the porous matrix able to carry both antigens and immune modulators. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Nanobiotechnology and its applications in drug delivery system: a review.

    PubMed

    Khan, Imran; Khan, Momin; Umar, Muhammad Naveed; Oh, Deog-Hwan

    2015-12-01

    Nanobiotechnology holds great potential in various regimes of life sciences. In this review, the potential applications of nanobiotechnology in various sectors of nanotechnologies, including nanomedicine and nanobiopharmaceuticals, are highlighted. To overcome the problems associated with drug delivery, nanotechnology has gained increasing interest in recent years. Nanosystems with different biological properties and compositions have been extensively investigated for drug delivery applications. Nanoparticles fabricated through various techniques have elevated therapeutic efficacy, provided stability to the drugs and proved capable of targeting the cells and controlled release inside the cell. Polymeric nanoparticles have shown increased development and usage in drug delivery as well as in diagnostics in recent decades.

  13. Intracranial microcapsule chemotherapy delivery for the localized treatment of rodent metastatic breast adenocarcinoma in the brain.

    PubMed

    Upadhyay, Urvashi M; Tyler, Betty; Patta, Yoda; Wicks, Robert; Spencer, Kevin; Scott, Alexander; Masi, Byron; Hwang, Lee; Grossman, Rachel; Cima, Michael; Brem, Henry; Langer, Robert

    2014-11-11

    Metastases represent the most common brain tumors in adults. Surgical resection alone results in 45% recurrence and is usually accompanied by radiation and chemotherapy. Adequate chemotherapy delivery to the CNS is hindered by the blood-brain barrier. Efforts at delivering chemotherapy locally to gliomas have shown modest increases in survival, likely limited by the infiltrative nature of the tumor. Temozolomide (TMZ) is first-line treatment for gliomas and recurrent brain metastases. Doxorubicin (DOX) is used in treating many types of breast cancer, although its use is limited by severe cardiac toxicity. Intracranially implanted DOX and TMZ microcapsules are compared with systemic administration of the same treatments in a rodent model of breast adenocarcinoma brain metastases. Outcomes were animal survival, quantified drug exposure, and distribution of cleaved caspase 3. Intracranial delivery of TMZ and systemic DOX administration prolong survival more than intracranial DOX or systemic TMZ. Intracranial TMZ generates the more robust induction of apoptotic pathways. We postulate that these differences may be explained by distribution profiles of each drug when administered intracranially: TMZ displays a broader distribution profile than DOX. These microcapsule devices provide a safe, reliable vehicle for intracranial chemotherapy delivery and have the capacity to be efficacious and superior to systemic delivery of chemotherapy. Future work should include strategies to improve the distribution profile. These findings also have broader implications in localized drug delivery to all tissue, because the efficacy of a drug will always be limited by its ability to diffuse into surrounding tissue past its delivery source.

  14. An Automated Microfluidic Multiplexer for Fast Delivery of C. elegans Populations from Multiwells

    PubMed Central

    Ghorashian, Navid; Gökçe, Sertan Kutal; Guo, Sam Xun; Everett, William Neil; Ben-Yakar, Adela

    2013-01-01

    Automated biosorter platforms, including recently developed microfluidic devices, enable and accelerate high-throughput and/or high-resolution bioassays on small animal models. However, time-consuming delivery of different organism populations to these systems introduces a major bottleneck to executing large-scale screens. Current population delivery strategies rely on suction from conventional well plates through tubing periodically exposed to air, leading to certain disadvantages: 1) bubble introduction to the sample, interfering with analysis in the downstream system, 2) substantial time drain from added bubble-cleaning steps, and 3) the need for complex mechanical systems to manipulate well plate position. To address these concerns, we developed a multiwell-format microfluidic platform that can deliver multiple distinct animal populations from on-chip wells using multiplexed valve control. This Population Delivery Chip could operate autonomously as part of a relatively simple setup that did not require any of the major mechanical moving parts typical of plate-handling systems to address a given well. We demonstrated automatic serial delivery of 16 distinct C. elegans worm populations to a single outlet without introducing any bubbles to the samples, causing cross-contamination, or damaging the animals. The device achieved delivery of more than 90% of the population preloaded into a given well in 4.7 seconds; an order of magnitude faster than delivery modalities in current use. This platform could potentially handle other similarly sized model organisms, such as zebrafish and drosophila larvae or cellular micro-colonies. The device’s architecture and microchannel dimensions allow simple expansion for processing larger numbers of populations. PMID:24069313

  15. Secondary fuel delivery system

    DOEpatents

    Parker, David M.; Cai, Weidong; Garan, Daniel W.; Harris, Arthur J.

    2010-02-23

    A secondary fuel delivery system for delivering a secondary stream of fuel and/or diluent to a secondary combustion zone located in the transition piece of a combustion engine, downstream of the engine primary combustion region is disclosed. The system includes a manifold formed integral to, and surrounding a portion of, the transition piece, a manifold inlet port, and a collection of injection nozzles. A flowsleeve augments fuel/diluent flow velocity and improves the system cooling effectiveness. Passive cooling elements, including effusion cooling holes located within the transition boundary and thermal-stress-dissipating gaps that resist thermal stress accumulation, provide supplemental heat dissipation in key areas. The system delivers a secondary fuel/diluent mixture to a secondary combustion zone located along the length of the transition piece, while reducing the impact of elevated vibration levels found within the transition piece and avoiding the heat dissipation difficulties often associated with traditional vibration reduction methods.

  16. Localized Cell and Drug Delivery for Auditory Prostheses

    PubMed Central

    Hendricks, Jeffrey L.; Chikar, Jennifer A.; Crumling, Mark A.; Raphael, Yehoash; Martin, David C.

    2011-01-01

    Localized cell and drug delivery to the cochlea and central auditory pathway can improve the safety and performance of implanted auditory prostheses (APs). While generally successful, these devices have a number of limitations and adverse effects including limited tonal and dynamic ranges, channel interactions, unwanted stimulation of non-auditory nerves, immune rejection, and infections including meningitis. Many of these limitations are associated with the tissue reactions to implanted auditory prosthetic devices and the gradual degeneration of the auditory system following deafness. Strategies to reduce the insertion trauma, degeneration of target neurons, fibrous and bony tissue encapsulation, and immune activation can improve the viability of tissue required for AP function as well as improve the resolution of stimulation for reduced channel interaction and improved place-pitch and level discrimination. Many pharmaceutical compounds have been identified that promote the viability of auditory tissue and prevent inflammation and infection. Cell delivery and gene therapy have provided promising results for treating hearing loss and reversing degeneration. Currently, many clinical and experimental methods can produce extremely localized and sustained drug delivery to address AP limitations. These methods provide better control over drug concentrations while eliminating the adverse effects of systemic delivery. Many of these drug delivery techniques can be integrated into modern auditory prosthetic devices to optimize the tissue response to the implanted device and reduce the risk of infection or rejection. Together, these methods and pharmaceutical agents can be used to optimize the tissue-device interface for improved AP safety and effectiveness. PMID:18573323

  17. Ultra-fast bright field and fluorescence imaging of the dynamics of micrometer-sized objects

    NASA Astrophysics Data System (ADS)

    Chen, Xucai; Wang, Jianjun; Versluis, Michel; de Jong, Nico; Villanueva, Flordeliza S.

    2013-06-01

    High speed imaging has application in a wide area of industry and scientific research. In medical research, high speed imaging has the potential to reveal insight into mechanisms of action of various therapeutic interventions. Examples include ultrasound assisted thrombolysis, drug delivery, and gene therapy. Visual observation of the ultrasound, microbubble, and biological cell interaction may help the understanding of the dynamic behavior of microbubbles and may eventually lead to better design of such delivery systems. We present the development of a high speed bright field and fluorescence imaging system that incorporates external mechanical waves such as ultrasound. Through collaborative design and contract manufacturing, a high speed imaging system has been successfully developed at the University of Pittsburgh Medical Center. We named the system "UPMC Cam," to refer to the integrated imaging system that includes the multi-frame camera and its unique software control, the customized modular microscope, the customized laser delivery system, its auxiliary ultrasound generator, and the combined ultrasound and optical imaging chamber for in vitro and in vivo observations. This system is capable of imaging microscopic bright field and fluorescence movies at 25 × 106 frames per second for 128 frames, with a frame size of 920 × 616 pixels. Example images of microbubble under ultrasound are shown to demonstrate the potential application of the system.

  18. Ultra-fast bright field and fluorescence imaging of the dynamics of micrometer-sized objects

    PubMed Central

    Chen, Xucai; Wang, Jianjun; Versluis, Michel; de Jong, Nico; Villanueva, Flordeliza S.

    2013-01-01

    High speed imaging has application in a wide area of industry and scientific research. In medical research, high speed imaging has the potential to reveal insight into mechanisms of action of various therapeutic interventions. Examples include ultrasound assisted thrombolysis, drug delivery, and gene therapy. Visual observation of the ultrasound, microbubble, and biological cell interaction may help the understanding of the dynamic behavior of microbubbles and may eventually lead to better design of such delivery systems. We present the development of a high speed bright field and fluorescence imaging system that incorporates external mechanical waves such as ultrasound. Through collaborative design and contract manufacturing, a high speed imaging system has been successfully developed at the University of Pittsburgh Medical Center. We named the system “UPMC Cam,” to refer to the integrated imaging system that includes the multi-frame camera and its unique software control, the customized modular microscope, the customized laser delivery system, its auxiliary ultrasound generator, and the combined ultrasound and optical imaging chamber for in vitro and in vivo observations. This system is capable of imaging microscopic bright field and fluorescence movies at 25 × 106 frames per second for 128 frames, with a frame size of 920 × 616 pixels. Example images of microbubble under ultrasound are shown to demonstrate the potential application of the system. PMID:23822346

  19. Polymer therapeutics: concepts and applications.

    PubMed

    Haag, Rainer; Kratz, Felix

    2006-02-13

    Polymer therapeutics encompass polymer-protein conjugates, drug-polymer conjugates, and supramolecular drug-delivery systems. Numerous polymer-protein conjugates with improved stability and pharmacokinetic properties have been developed, for example, by anchoring enzymes or biologically relevant proteins to polyethylene glycol components (PEGylation). Several polymer-protein conjugates have received market approval, for example the PEGylated form of adenosine deaminase. Coupling low-molecular-weight anticancer drugs to high-molecular-weight polymers through a cleavable linker is an effective method for improving the therapeutic index of clinically established agents, and the first candidates have been evaluated in clinical trials, including, N-(2-hydroxypropyl)methacrylamide conjugates of doxorubicin, camptothecin, paclitaxel, and platinum(II) complexes. Another class of polymer therapeutics are drug-delivery systems based on well-defined multivalent and dendritic polymers. These include polyanionic polymers for the inhibition of virus attachment, polycationic complexes with DNA or RNA (polyplexes), and dendritic core-shell architectures for the encapsulation of drugs. In this Review an overview of polymer therapeutics is presented with a focus on concepts and examples that characterize the salient features of the drug-delivery systems.

  20. Bioavailability enhancers of herbal origin: An overview

    PubMed Central

    Kesarwani, Kritika; Gupta, Rajiv

    2013-01-01

    Recently, the use of herbal medicines has been increased all over the world due to their therapeutic effects and fewer adverse effects as compared to the modern medicines. However, many herbal drugs and herbal extracts despite of their impressive in-vitro findings demonstrates less or negligible in-vivo activity due to their poor lipid solubility or improper molecular size, resulting in poor absorption and hence poor bioavailability. Nowadays with the advancement in the technology, novel drug delivery systems open the door towards the development of enhancing bioavailability of herbal drug delivery systems. For last one decade many novel carriers such as liposomes, microspheres, nanoparticles, transferosomes, ethosomes, lipid based systems etc. have been reported for successful modified delivery of various herbal drugs. Many herbal compounds including quercetin, genistein, naringin, sinomenine, piperine, glycyrrhizin and nitrile glycoside have demonstrated capability to enhance the bioavailability. The objective of this review is to summarize various available novel drug delivery technologies which have been developed for delivery of drugs (herbal), and to achieve better therapeutic response. An attempt has also been made to compile a profile on bioavailability enhancers of herbal origin with the mechanism of action (wherever reported) and studies on improvement in drug bioavailability, exhibited particularly by natural compounds. PMID:23620848

  1. System Dynamics Modeling for Public Health: Background and Opportunities

    PubMed Central

    Homer, Jack B.; Hirsch, Gary B.

    2006-01-01

    The systems modeling methodology of system dynamics is well suited to address the dynamic complexity that characterizes many public health issues. The system dynamics approach involves the development of computer simulation models that portray processes of accumulation and feedback and that may be tested systematically to find effective policies for overcoming policy resistance. System dynamics modeling of chronic disease prevention should seek to incorporate all the basic elements of a modern ecological approach, including disease outcomes, health and risk behaviors, environmental factors, and health-related resources and delivery systems. System dynamics shows promise as a means of modeling multiple interacting diseases and risks, the interaction of delivery systems and diseased populations, and matters of national and state policy. PMID:16449591

  2. Nanostructure-mediated drug delivery.

    PubMed

    Hughes, Gareth A

    2005-03-01

    Nanotechnology is expected to have an impact on all industries including semiconductors, manufacturing, and biotechnology. Tools that provide the capability to characterize and manipulate materials at the nanoscale level further elucidate nanoscale phenomena and equip researchers and developers with the ability to fabricate novel materials and structures. One of the most promising societal impacts of nanotechnology is in the area of nanomedicine. Personalized health care, rational drug design, and targeted drug delivery are some of the benefits of a nanomedicine-based approach to therapy. This review will focus on the development of nanoscale drug delivery mechanisms. Nanostructured drug carriers allow for the delivery of not only small-molecule drugs but also the delivery of nucleic acids and proteins. Delivery of these molecules to specific areas within the body can be achieved, which will reduce systemic side effects and allow for more efficient use of the drug.

  3. Lipid Nanoparticles Enabling Gene Therapies: From Concepts to Clinical Utility.

    PubMed

    Kulkarni, Jayesh A; Cullis, Pieter R; van der Meel, Roy

    2018-04-23

    Genetic drugs based on RNA or DNA have remarkable therapeutic potential as virtually any disease can be treated by silencing a pathological gene, expressing a beneficial protein, or by editing defective genes. However, therapies based on nucleic acid polymers require sophisticated delivery systems to deliver these macromolecules to the interior of target cells. In this study, we review progress in developing nonviral lipid nanoparticle (LNP) delivery systems that have attractive properties, including ease of manufacture, reduced immune responses, multidosing capabilities, larger payloads, and flexibility of design. LNP systems represent the most advanced delivery systems for genetic drugs as it is expected that an LNP-short interfering RNA (siRNA) formulation will receive clinical approval from the Food and Drug Administration (FDA) in 2018 for treatment of the hereditary condition transthyretin-mediated amyloidosis, a fatal condition for which there is currently no treatment. This achievement is largely due to the development of optimized ionizable cationic lipids, arguably the most important factor in the clinical success of LNP-siRNA. In addition, we highlight potential LNP applications, including targeting tissues beyond the liver and therapeutic approaches based on messenger RNA or Clustered Regularly Interspaced Short Palindromic Repeats/Cas.

  4. Use of liposomes as injectable-drug delivery systems.

    PubMed

    Ostro, M J; Cullis, P R

    1989-08-01

    The formation of liposomes and their application as delivery systems for injectable drugs are described. Liposomes are microscopic vesicles composed of one or more lipid membranes surrounding discrete aqueous compartments. These vesicles can encapsulate water-soluble drugs in their aqueous spaces and lipid-soluble drugs within the membrane itself. Liposomes release their contents by interacting with cells in one of four ways: adsorption, endocytosis, lipid exchange, or fusion. Liposome-entrapped drugs are distributed within the body much differently than free drugs; when administered intravenously to healthy animals and humans, most of the injected vesicles accumulate in the liver, spleen, lungs, bone marrow, and lymph nodes. Liposomes also accumulate preferentially at the sites of inflammation and infection and in some solid tumors; however, the reason for this accumulation is not clear. Four major factors influence liposomes' in vivo behavior and biodistribution: (1) liposomes tend to leak if cholesterol is not included in the vesicle membrane, (2) small liposomes are cleared more slowly than large liposomes, (3) the half-life of a liposome increases as the lipid dose increases, and (4) charged liposomal systems are cleared more rapidly than uncharged systems. The most advanced application of liposome-based therapy is in the treatment of systemic fungal infections, especially with amphotericin B. Liposomes are also under investigation for treatment of neoplastic disorders. Liposomes' uses in cancer therapy include encapsulation of known antineoplastic agents such as doxorubicin and methotrexate, delivery of immune modulators such as N-acetylmuramyl-L-alanine-D-isoglutamine, and encapsulation of new chemical entities that are synthesized with lipophilic segments tailored for insertion into lipid bilayers. Liposomal formulations of injectable antimicrobial agents and antineoplastic agents already are undergoing clinical testing, and most probably will receive approval for marketing in the early 1990s. Liposomal encapsulation of drugs represents a new drug delivery system that appears to offer important therapeutic advantages over existing methods of drug delivery.

  5. Estimating the costs of the vaccine supply chain and service delivery for selected districts in Kenya and Tanzania.

    PubMed

    Mvundura, Mercy; Lorenson, Kristina; Chweya, Amos; Kigadye, Rosemary; Bartholomew, Kathryn; Makame, Mohammed; Lennon, T Patrick; Mwangi, Steven; Kirika, Lydia; Kamau, Peter; Otieno, Abner; Murunga, Peninah; Omurwa, Tom; Dafrossa, Lyimo; Kristensen, Debra

    2015-05-28

    Having data on the costs of the immunization system can provide decision-makers with information to benchmark the costs when evaluating the impact of new technologies or programmatic innovations. This paper estimated the supply chain and immunization service delivery costs and cost per dose in selected districts in Kenya and Tanzania. We also present operational data describing the supply chain and service delivery points (SDPs). To estimate the supply chain costs, we collected resource-use data for the cold chain, distribution system, and health worker time and per diems paid. We also estimated the service delivery costs, which included the time cost of health workers to provide immunization services, and per diems and transport costs for outreach sessions. Data on the annual quantities of vaccines distributed to each facility, and the occurrence and duration of stockouts were collected from stock registers. These data were collected from the national store, 2 regional and 4 district stores, and 12 SDPs in each country for 2012. Cost per dose for the supply chain and immunization service delivery were estimated. The average annual costs per dose at the SDPs were $0.34 (standard deviation (s.d.) $0.18) for Kenya when including only the vaccine supply chain costs, and $1.33 (s.d. $0.82) when including immunization service delivery costs. In Tanzania, these costs were $0.67 (s.d. $0.35) and $2.82 (s.d. $1.64), respectively. Both countries experienced vaccine stockouts in 2012, bacillus Calmette-Guérin vaccine being more likely to be stocked out in Kenya, and oral poliovirus vaccine in Tanzania. When stockouts happened, they usually lasted for at least one month. Tanzania made investments in 2011 in preparation for planned vaccine introductions, and their supply chain cost per dose is expected to decline with the new vaccine introductions. Immunization service delivery costs are a significant portion of the total costs at the SDPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Delivering safer immunotherapies for cancer

    PubMed Central

    Milling, Lauren; Zhang, Yuan; Irvine, Darrell J.

    2017-01-01

    Cancer immunotherapy is now a powerful clinical reality, with a steady progression of new drug approvals and a massive pipeline of additional treatments in clinical and preclinical development. However, modulation of the immune system can be a double-edged sword: Drugs that activate immune effectors are prone to serious non-specific systemic inflammation and autoimmune side effects. Drug delivery technologies have an important role to play in harnessing the power of immune therapeutics while avoiding on-target/off-tumor toxicities. Here we review mechanisms of toxicity for clinically-relevant immunotherapeutics, and discuss approaches based in drug delivery technology to enhance the safety and potency of these treatments. These include strategies to merge drug delivery with adoptive cellular therapies, targeting immunotherapies to tumors or select immune cells, and localizing therapeutics intratumorally. Rational design employing lessons learned from the drug delivery and nanomedicine fields has the potential to facilitate immunotherapy reaching its full potential. PMID:28545888

  7. A high-density lipoprotein-mediated drug delivery system.

    PubMed

    Mo, Zhong-Cheng; Ren, Kun; Liu, Xing; Tang, Zhen-Li; Yi, Guang-Hui

    2016-11-15

    High-density lipoprotein (HDL) is a comparatively dense and small lipoprotein that can carry lipids as a multifunctional aggregate in plasma. Several studies have shown that increasing the levels or improving the functionality of HDL is a promising target for treating a wide variety of diseases. Among lipoproteins, HDL particles possess unique physicochemical properties, including naturally synthesized physiological components, amphipathic apolipoproteins, lipid-loading and hydrophobic agent-incorporating characteristics, specific protein-protein interactions, heterogeneity, nanoparticles, and smaller size. Recently, the feasibility and superiority of using HDL particles as drug delivery vehicles have been of great interest. In this review, we summarize the structure, constituents, biogenesis, remodeling, and reconstitution of HDL drug delivery systems, focusing on their delivery capability, characteristics, applications, manufacturing, and drug-loading and drug-targeting characteristics. Finally, the future prospects are presented regarding the clinical application and challenges of using HDL as a pharmacodelivery carrier. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Medicated chewing gum, a novel drug delivery system

    PubMed Central

    Aslani, Abolfazl; Rostami, Farnaz

    2015-01-01

    New formulations and technologies have been developed through oral drug delivery systems’ researches. Such researches display significance of oral route amongst patients. We’ve reviewed all the features associated with medicated chewing gum as a modern drug delivery by introducing the history, advantages and disadvantages, methods of manufacturing, composition differences, evaluation tests and examples of varieties of medicated chewing gums. Acceptance of medicated chewing gum has been augmented through years. The advantages and therapeutic benefits of chewing gum support its development as we can see new formulations with new drugs contained have been produced from past and are going to find a place in market by formulation of new medicated chewing gums. Potential applications of medicated chewing gums are highly widespread as they will be recognized in future. Nowadays standards for qualifying chewing gums are the same as tablets. Patient-centered studies include medicated chewing gums as a delivery system too which creates compliance for patients. PMID:26109999

  9. Prototype solar heating and cooling systems, including potable hot water

    NASA Technical Reports Server (NTRS)

    Bloomquist, D.; Oonk, R. L.

    1977-01-01

    Progress made in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water is reported. The system consists of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition. A comparison of the proposed Solaron Heat Pump and Solar Desiccant Heating and Cooling Systems, installation drawings, data on the Akron House at Akron, Ohio, and other program activities are included.

  10. Patient and provider perspectives on the design and implementation of an electronic consultation system for kidney care delivery in Canada: a focus group study.

    PubMed

    Bello, Aminu K; Molzahn, Anita E; Girard, Louis P; Osman, Mohamed A; Okpechi, Ikechi G; Glassford, Jodi; Thompson, Stephanie; Keely, Erin; Liddy, Clare; Manns, Braden; Jinda, Kailash; Klarenbach, Scott; Hemmelgarn, Brenda; Tonelli, Marcello

    2017-03-02

    We assessed stakeholder perceptions on the use of an electronic consultation system (e-Consult) to improve the delivery of kidney care in Alberta. We aim to identify acceptability, barriers and facilitators to the use of an e-Consult system for ambulatory kidney care delivery. This was a qualitative focus group study using a thematic analysis design. Eight focus groups were held in four locations in the province of Alberta, Canada. In total, there were 72 participants in two broad stakeholder categories: patients (including patients' relatives) and providers (including primary care physicians, nephrologists, other care providers and policymakers). The e-Consult system was generally acceptable across all stakeholder groups. The key barriers identified were length of time required for referring physicians to complete the e-Consult due to lack of integration with current electronic medical records, and concerns that increased numbers of requests might overwhelm nephrologists and lead to a delayed response or an unsustainable system. The key facilitators identified were potential improvement of care coordination, dissemination of best practice through an educational platform, comprehensive data to make decisions without the need for face-to-face consultation, timely feedback to primary care providers, timeliness/reduced delays for patients' rapid triage and identification of cases needing urgent care and improved access to information to facilitate decision-making in patient care. Stakeholder perceptions regarding the e-Consult system were favourable, and the key barriers and facilitators identified will be considered in design and implementation of an acceptable and sustainable electronic consultation system for kidney care delivery. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  11. Enhancing endosomal escape for nanoparticle mediated siRNA delivery

    NASA Astrophysics Data System (ADS)

    Ma, Da

    2014-05-01

    Gene therapy with siRNA is a promising biotechnology to treat cancer and other diseases. To realize siRNA-based gene therapy, a safe and efficient delivery method is essential. Nanoparticle mediated siRNA delivery is of great importance to overcome biological barriers for systemic delivery in vivo. Based on recent discoveries, endosomal escape is a critical biological barrier to be overcome for siRNA delivery. This feature article focuses on endosomal escape strategies used for nanoparticle mediated siRNA delivery, including cationic polymers, pH sensitive polymers, calcium phosphate, and cell penetrating peptides. Work has been done to develop different endosomal escape strategies based on nanoparticle types, administration routes, and target organ/cell types. Also, enhancement of endosomal escape has been considered along with other aspects of siRNA delivery to ensure target specific accumulation, high cell uptake, and low toxicity. By enhancing endosomal escape and overcoming other biological barriers, great progress has been achieved in nanoparticle mediated siRNA delivery.

  12. Systems and Components Fuel Delivery System, Water Delivery System, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Systems and Components - Fuel Delivery System, Water Delivery System, Derrick Crane System, and Crane System Details - Marshall Space Flight Center, F-1 Engine Static Test Stand, On Route 565 between Huntsville and Decatur, Huntsville, Madison County, AL

  13. Generation and delivery device for ozone gas and ozone dissolved in water

    NASA Technical Reports Server (NTRS)

    Andrews, Craig C. (Inventor); Murphy, Oliver J. (Inventor)

    2006-01-01

    The present invention provides an ozone generation and delivery system that lends itself to small scale applications and requires very low maintenance. The system includes an anode reservoir and a cathode phase separator each having a hydrophobic membrane to allow phase separation of produced gases from water. The system may be configured to operate passively with no moving parts or in a self-pressurizing manner with the inclusion of a pressure controlling device or valve in the gas outlet of the anode reservoir. The hydrogen gas, ozone gas and water containing ozone may be delivered under pressure.

  14. Generation and delivery device for ozone gas and ozone dissolved in water

    NASA Technical Reports Server (NTRS)

    Andrews, Craig C. (Inventor); Rogers, Thomas D. (Inventor); Murphy, Oliver J. (Inventor)

    1999-01-01

    The present invention provides an ozone generation and delivery system that lends itself to small scale applications and requires very low maintenance. The system includes an anode reservoir and a cathode phase separator each having a hydrophobic membrane to allow phase separation of produced gases from water. The system may be configured to operate passively with no moving parts or in a self-pressurizing manner with the inclusion of a pressure controlling device or valve in the gas outlet of the anode reservoir. The hydrogen gas, ozone gas and water containing ozone may be delivered under pressure.

  15. Advances in using chitosan-based nanoparticles for in vitro and in vivo drug and gene delivery.

    PubMed

    Duceppe, Nicolas; Tabrizian, Maryam

    2010-10-01

    This review aims to provide an overview of state-of-the-art chitosan-based nanosized carriers for the delivery of therapeutic agents. Chitosan nanocarriers are smart delivery systems owing to the possibility of their property alterations with various approaches, which would confer them with the possibility of spatiotemporal delivery features. The focus of this review is principally on those aspects that have not often been addressed in other reviews. These include the influence of physicochemical properties of chitosan on delivery mechanisms and chitosan modification with a variety of ligand moieties specific for cell surface receptors to increase recognition and uptake of nanocarriers into cells through receptor-mediated endocytosis. Multiple examples that demonstrate the advantages of chitosan-based nanocarriers over other delivery systems of therapeutic agents are highlighted. Particular emphasis is given to the alteration of material properties by functionalization or combination with other polymers for their specific applications. Finally, structural and experimental parameters influencing transfection efficiency of chitosan-based nanocarriers are presented for both in vitro and in vivo gene delivery. The readers will acquire knowledge of parameters influencing the properties of the chitosan-based nanocarriers for delivery of therapeutic agents (genetic material or drugs) in vitro and in vivo. They will get a better idea of the strategies to be adapted to tune the characteristics of chitosan and chitosan derivatives for specific delivery applications. Chitosan is prone to chemical and physical modifications, and is very responsive to environmental stimuli such as temperature and pH. These features make chitosan a smart material with great potential for developing multifunctional nanocarrier systems to deliver large varieties of therapeutic agents administrated in multiple ways with reduced side effects.

  16. Prototype solar heating and cooling systems including potable hot water

    NASA Technical Reports Server (NTRS)

    1978-01-01

    These combined quarterly reports summarize the activities from November 1977 through September 1978, and over the progress made in the development, delivery and support of two prototype solar heating and cooling systems including potable hot water. The system consists of the following subsystems: solar collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

  17. Abstracts of SIG Sessions.

    ERIC Educational Resources Information Center

    Proceedings of the ASIS Annual Meeting, 1996

    1996-01-01

    Includes abstracts of special interest group (SIG) sessions. Highlights include digital imagery; text summarization; browsing; digital libraries; icons and the Web; information management; curricula planning; interfaces; information systems; theories; scholarly and scientific communication; global development; archives; document delivery;…

  18. Public Investments in Training: Perspectives on Macro-Level Structural Issues and Micro-Level Delivery Systems. EQW Working Papers WP24.

    ERIC Educational Resources Information Center

    Cascio, Wayne F.

    Training issues can be examined from at least two perspectives: the structural level (macro-level) and the micro-level. Structural issues in the delivery of training include the following: absent or uneven corporate commitment, inadequate expenditures by businesses, degrees awarded by schools that do not guarantee skill mastery, poaching of…

  19. Nanomedicines for Back of the Eye Drug Delivery, Gene Delivery, and Imaging

    PubMed Central

    Kompella, Uday B.; Amrite, Aniruddha C.; Ravi, Rashmi Pacha; Durazo, Shelley A.

    2013-01-01

    Treatment and management of diseases of the posterior segment of the eye such as diabetic retinopathy, retinoblastoma, retinitis pigmentosa, and choroidal neovascularization is a challenging task due to the anatomy and physiology of ocular barriers. For instance, traditional routes of drug delivery for therapeutic treatment are hindered by poor intraocular penetration and/or rapid ocular elimination. One possible approach to improve ocular therapy is to employ nanotechnology. Nanomedicines, products of nanotechnology, having at least one dimension in the nanoscale include nanoparticles, micelles, nanotubes, and dendrimers, with and without targeting ligands, are making a significant impact in the fields of ocular drug delivery, gene delivery, and imaging, the focus of this review. Key applications of nanotechnology discussed in this review include a) bioadhesive nanomedicines; b) functionalized nanomedicines that enhance target recognition and/or cell entry; c) nanomedicines capable of controlled release of the payload; d) nanomedicines capable of enhancing gene transfection and duration of transfection; f) nanomedicines responsive to stimuli including light, heat, ultrasound, electrical signals, pH, and oxidative stress; g) diversely sized and colored nanoparticles for imaging, and h) nanowires for retinal prostheses. Additionally, nanofabricated delivery systems including implants, films, microparticles, and nanoparticles are described. Although the above nanomedicines may be administered by various routes including topical, intravitreal, intravenous, transscleral, suprachoroidal, and subretinal routes, each nanomedicine should be tailored for the disease, drug, and site of administration. In addition to the nature of materials used in nanomedicine design, depending on the site of nanomedicine administration, clearance and toxicity are expected to differ. PMID:23603534

  20. Intrauterine device insertion in the postpartum period: a systematic review.

    PubMed

    Sonalkar, Sarita; Kapp, Nathalie

    2015-02-01

    Given new research on postpartum placement of levonorgestrel and copper intrauterine devices (IUDs), our objective was to update a prior systematic review of the safety and expulsion rates of postpartum IUDs. We searched MEDLINE, CENTRAL, LILACS, POPLINE, Web of Science, and ClinicalTrials.gov databases for articles between the database inception until July 2013. We included studies that compared IUD insertion time intervals and routes during the postpartum period. We used standard abstract forms and the United States Preventive Services Task Force grading system to summarise and assess the quality of the evidence. We included 18 articles. New evidence suggests that a levonorgestrel releasing-intrauterine system (LNG-IUS) insertion within 48 hours of delivery is safe. Postplacental insertion and insertion between 10 minutes and 48 hours after delivery result in higher expulsion rates than insertion 4 to 6 weeks postpartum, or non-postpartum insertion. Insertion at the time of caesarean section is associated with lower expulsion rates than postplacental insertion at the time of vaginal delivery. This review supports the evidence that insertion of an intrauterine contraceptive within the first 48 hours of vaginal or caesarean delivery is safe. Expulsion rates should be further studied in larger randomised controlled trials.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Passarge, M; Fix, M K; Manser, P

    Purpose: To create and test an accurate EPID-frame-based VMAT QA metric to detect gross dose errors in real-time and to provide information about the source of error. Methods: A Swiss cheese model was created for an EPID-based real-time QA process. The system compares a treatmentplan- based reference set of EPID images with images acquired over each 2° gantry angle interval. The metric utilizes a sequence of independent consecutively executed error detection Methods: a masking technique that verifies infield radiation delivery and ensures no out-of-field radiation; output normalization checks at two different stages; global image alignment to quantify rotation, scaling andmore » translation; standard gamma evaluation (3%, 3 mm) and pixel intensity deviation checks including and excluding high dose gradient regions. Tolerances for each test were determined. For algorithm testing, twelve different types of errors were selected to modify the original plan. Corresponding predictions for each test case were generated, which included measurement-based noise. Each test case was run multiple times (with different noise per run) to assess the ability to detect introduced errors. Results: Averaged over five test runs, 99.1% of all plan variations that resulted in patient dose errors were detected within 2° and 100% within 4° (∼1% of patient dose delivery). Including cases that led to slightly modified but clinically equivalent plans, 91.5% were detected by the system within 2°. Based on the type of method that detected the error, determination of error sources was achieved. Conclusion: An EPID-based during-treatment error detection system for VMAT deliveries was successfully designed and tested. The system utilizes a sequence of methods to identify and prevent gross treatment delivery errors. The system was inspected for robustness with realistic noise variations, demonstrating that it has the potential to detect a large majority of errors in real-time and indicate the error source. J. V. Siebers receives funding support from Varian Medical Systems.« less

  2. The History of Therapeutic Aerosols: A Chronological Review.

    PubMed

    Stein, Stephen W; Thiel, Charles G

    2017-02-01

    In 1956, Riker Laboratories, Inc., (now 3 M Drug Delivery Systems) introduced the first pressurized metered dose inhaler (MDI). In many respects, the introduction of the MDI marked the beginning of the modern pharmaceutical aerosol industry. The MDI was the first truly portable and convenient inhaler that effectively delivered drug to the lung and quickly gained widespread acceptance. Since 1956, the pharmaceutical aerosol industry has experienced dramatic growth. The signing of the Montreal Protocol in 1987 led to a surge in innovation that resulted in the diversification of inhaler technologies with significantly enhanced delivery efficiency, including modern MDIs, dry powder inhalers, and nebulizer systems. The innovative inhalers and drugs discovered by the pharmaceutical aerosol industry, particularly since 1956, have improved the quality of life of literally hundreds of millions of people. Yet, the delivery of therapeutic aerosols has a surprisingly rich history dating back more than 3500 years to ancient Egypt. The delivery of atropine and related compounds has been a crucial inhalation therapy throughout this period and the delivery of associated structural analogs remains an important therapy today. Over the centuries, discoveries from many cultures have advanced the delivery of therapeutic aerosols. For thousands of years, therapeutic aerosols were prepared by the patient or a physician with direct oversight of the patient using custom-made delivery systems. However, starting with the Industrial Revolution, advancements in manufacturing resulted in the bulk production of therapeutic aerosol delivery systems produced by people completely disconnected from contact with the patient. This trend continued and accelerated in the 20th century with the mass commercialization of modern pharmaceutical inhaler products. In this article, we will provide a summary of therapeutic aerosol delivery from ancient times to the present along with a look to the future. We hope that you will find this chronological summary intriguing and informative.

  3. The History of Therapeutic Aerosols: A Chronological Review

    PubMed Central

    Thiel, Charles G.

    2017-01-01

    Abstract In 1956, Riker Laboratories, Inc., (now 3 M Drug Delivery Systems) introduced the first pressurized metered dose inhaler (MDI). In many respects, the introduction of the MDI marked the beginning of the modern pharmaceutical aerosol industry. The MDI was the first truly portable and convenient inhaler that effectively delivered drug to the lung and quickly gained widespread acceptance. Since 1956, the pharmaceutical aerosol industry has experienced dramatic growth. The signing of the Montreal Protocol in 1987 led to a surge in innovation that resulted in the diversification of inhaler technologies with significantly enhanced delivery efficiency, including modern MDIs, dry powder inhalers, and nebulizer systems. The innovative inhalers and drugs discovered by the pharmaceutical aerosol industry, particularly since 1956, have improved the quality of life of literally hundreds of millions of people. Yet, the delivery of therapeutic aerosols has a surprisingly rich history dating back more than 3500 years to ancient Egypt. The delivery of atropine and related compounds has been a crucial inhalation therapy throughout this period and the delivery of associated structural analogs remains an important therapy today. Over the centuries, discoveries from many cultures have advanced the delivery of therapeutic aerosols. For thousands of years, therapeutic aerosols were prepared by the patient or a physician with direct oversight of the patient using custom-made delivery systems. However, starting with the Industrial Revolution, advancements in manufacturing resulted in the bulk production of therapeutic aerosol delivery systems produced by people completely disconnected from contact with the patient. This trend continued and accelerated in the 20th century with the mass commercialization of modern pharmaceutical inhaler products. In this article, we will provide a summary of therapeutic aerosol delivery from ancient times to the present along with a look to the future. We hope that you will find this chronological summary intriguing and informative. PMID:27748638

  4. Non-ototoxic local delivery of bisphosphonate to the mammalian cochlea

    PubMed Central

    Kang, Woo Seok; Sun, Shuting; Nguyen, Kim; Kashemirov, Boris; McKenna, Charles E.; Hacking, S. Adam; Quesnel, Alicia M.; Sewell, William F.; McKenna, Michael J.; Jung, David H.

    2015-01-01

    Hypothesis Local delivery of bisphosphonates results in superior localization of these compounds for the treatment of cochlear otosclerosis, without ototoxicity. Background Otosclerosis is a common disorder of abnormal bone remodeling within the human otic capsule. It is a frequent cause of conductive hearing loss from stapes fixation. Large lesions that penetrate the cochlear endosteum and injure the spiral ligament result in sensorineural hearing loss. Nitrogen-containing bisphosphonates (e.g., zoledronate) are potent inhibitors of bone remodeling with proven efficacy in the treatment of metabolic bone diseases, including otosclerosis. Local delivery to the cochlea may allow for improved drug targeting, higher local concentrations, and the avoidance of systemic complications. In this study, we utilize a fluorescently labeled bisphosphonate compound (6-FAM-ZOL) to determine drug localization and concentration within the otic capsule. Various methods for delivery are compared. Ototoxicity is evaluated by ABR and DPOAEs. Methods 6-FAM-ZOL was administered to guinea pigs via intraperitoneal injection, placement of alginate beads onto the round window membrane (RWM), or microfluidic pump infusion via a cochleostomy. Hearing was evaluated. Specimens were embedded into resin blocks, ground to a mid-modiolar section, and quantitatively imaged using fluorescence microscopy. Results There was a dose-dependent increase in fluorescent signal following systemic 6-FAM-ZOL treatment. Local delivery via the RWM or a cochleostomy increased delivery efficiency. No significant ototoxicity was observed following either systemic or local 6-FAM-ZOL delivery. Conclusions These findings establish important pre-clinical parameters for the treatment of cochlear otosclerosis in humans. PMID:25996080

  5. Progress update on cryogenic system for ARIEL E-linac at TRIUMF

    NASA Astrophysics Data System (ADS)

    Koveshnikov, A.; Bylinskii, I.; Hodgson, G.; Yosifov, D.

    2014-01-01

    TRIUMF is involved in a major upgrade. The Advanced Rare IsotopeE Laboratory (ARIEL) has become a fully funded project in July 2010. A 10 mA 50 MeV SRF electron linac (e-linac) operating CW at 1.3 GHz is the key component of this initiative. This machine will serve as a second independent photo-fission driver for Rare Isotope Beams (RIB) production at TRIUMF's Isotope Separator and Accelerator (ISAC) facility. The cryogens delivery system requirements are driven by the electron accelerator cryomodule design [1, 2]. Since commencement of the project in 2010 the cryogenic system of e-linac has moved from the conceptual design phase into engineering design and procurement stage. The present document summarizes the progress in cryogenic system development and construction. Current status of e-linac cryogenic system including details of LN2 storage and delivery systems, and helium subatmospheric (SA) system is presented. The first phase of e-linac consisting of two cryomodules, cryogens storage, delivery, and distribution systems, and a 600 W class liquid helium cryoplant is scheduled for installation and commissioning by year 2014.

  6. Preliminary analysis of hub and spoke air freight distribution system

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.

    1978-01-01

    A brief analysis is made of the hub and spoke air freight distribution system which would employ less than 15 hub centers world wide with very large advanced distributed-load freighters providing the line-haul delivery between hubs. This system is compared to a more conventional network using conventionally-designed long-haul freighters which travel between numerous major airports. The analysis calculates all of the transportation costs, including handling charges and pickup and delivery costs. The results show that the economics of the hub/spoke system are severely compromised by the extensive use of feeder aircraft to deliver cargo into and from the large freighter terminals. Not only are the higher costs for the smaller feeder airplanes disadvantageous, but their use implies an additional exchange of cargo between modes compared to truck delivery. The conventional system uses far fewer feeder airplanes, and in many cases, none at all. When feeder aircraft are eliminated from the hub/spoke system, however, that system is universally more economical than any conventional system employing smaller line-haul aircraft.

  7. Predictors of maternal health services utilization by poor, rural women: a comparative study in Indian States of Gujarat and Tamil Nadu.

    PubMed

    Vora, Kranti Suresh; Koblinsky, Sally A; Koblinsky, Marge A

    2015-07-31

    India leads all nations in numbers of maternal deaths, with poor, rural women contributing disproportionately to the high maternal mortality ratio. In 2005, India launched the world's largest conditional cash transfer scheme, Janani Suraksha Yojana (JSY), to increase poor women's access to institutional delivery, anticipating that facility-based birthing would decrease deaths. Indian states have taken different approaches to implementing JSY. Tamil Nadu adopted JSY with a reorganization of its public health system, and Gujarat augmented JSY with the state-funded Chiranjeevi Yojana (CY) scheme, contracting with private physicians for delivery services. Given scarce evidence of the outcomes of these approaches, especially in states with more optimal health indicators, this cross-sectional study examined the role of JSY/CY and other healthcare system and social factors in predicting poor, rural women's use of maternal health services in Gujarat and Tamil Nadu. Using the District Level Household Survey (DLHS)-3, the sample included 1584 Gujarati and 601 Tamil rural women in the lowest two wealth quintiles. Multivariate logistic regression analyses examined associations between JSY/CY and other salient health system, socio-demographic, and obstetric factors with three outcomes: adequate antenatal care, institutional delivery, and Cesarean-section. Tamil women reported greater use of maternal healthcare services than Gujarati women. JSY/CY participation predicted institutional delivery in Gujarat (AOR = 3.9), but JSY assistance failed to predict institutional delivery in Tamil Nadu, where mothers received some cash for home births under another scheme. JSY/CY assistance failed to predict adequate antenatal care, which was not incentivized. All-weather road access predicted institutional delivery in both Tamil Nadu (AOR = 3.4) and Gujarat (AOR = 1.4). Women's education predicted institutional delivery and Cesarean-section in Tamil Nadu, while husbands' education predicted institutional delivery in Gujarat. Overall, assistance from health financing schemes, good road access to health facilities, and socio-demographic and obstetric factors were associated with differential use of maternity health services by poor, rural women in the two states. Policymakers and practitioners should promote financing schemes to increase access, including consideration of incentives for antenatal care, and address health system and social factors in designing state-level interventions to promote safe motherhood.

  8. Beyond Web-Based Training: Learning Unplugged.

    ERIC Educational Resources Information Center

    Gayeski, Diane M.

    2002-01-01

    Discussion of corporate training focuses on the Internet, Web-based training, and the latest trend toward wireless technology. Topics include the emerging workplace, including continuous learning and collaboration and aiding performance; mobile delivery systems for corporate instructional designers; and types of mobile devices, including PDAs…

  9. Oral and transdermal drug delivery systems: role of lipid-based lyotropic liquid crystals.

    PubMed

    Rajabalaya, Rajan; Musa, Muhammad Nuh; Kifli, Nurolaini; David, Sheba R

    2017-01-01

    Liquid crystal (LC) dosage forms, particularly those using lipid-based lyotropic LCs (LLCs), have generated considerable interest as potential drug delivery systems. LCs have the physical properties of liquids but retain some of the structural characteristics of crystalline solids. They are compatible with hydrophobic and hydrophilic compounds of many different classes and can protect even biologicals and nucleic acids from degradation. This review, focused on research conducted over the past 5 years, discusses the structural evaluation of LCs and their effects in drug formulations. The structural classification of LLCs into lamellar, hexagonal and micellar cubic phases is described. The structures of these phases are influenced by the addition of surfactants, which include a variety of nontoxic, biodegradable lipids; these also enhance drug solubility. LLC structure influences drug localization, particle size and viscosity, which, in turn, determine drug delivery properties. Through several specific examples, we describe the applications of LLCs in oral and topical drug formulations, the latter including transdermal and ocular delivery. In oral LLC formulations, micelle compositions and the resulting LLC structures can determine drug solubilization and stability as well as intestinal transport and absorption. Similarly, in topical LLC formulations, composition can influence whether the drug is retained in the skin or delivered transdermally. Owing to their enhancement of drug stability and promotion of controlled drug delivery, LLCs are becoming increasingly popular in pharmaceutical formulations.

  10. Oral and transdermal drug delivery systems: role of lipid-based lyotropic liquid crystals

    PubMed Central

    Rajabalaya, Rajan; Musa, Muhammad Nuh; Kifli, Nurolaini; David, Sheba R

    2017-01-01

    Liquid crystal (LC) dosage forms, particularly those using lipid-based lyotropic LCs (LLCs), have generated considerable interest as potential drug delivery systems. LCs have the physical properties of liquids but retain some of the structural characteristics of crystalline solids. They are compatible with hydrophobic and hydrophilic compounds of many different classes and can protect even biologicals and nucleic acids from degradation. This review, focused on research conducted over the past 5 years, discusses the structural evaluation of LCs and their effects in drug formulations. The structural classification of LLCs into lamellar, hexagonal and micellar cubic phases is described. The structures of these phases are influenced by the addition of surfactants, which include a variety of nontoxic, biodegradable lipids; these also enhance drug solubility. LLC structure influences drug localization, particle size and viscosity, which, in turn, determine drug delivery properties. Through several specific examples, we describe the applications of LLCs in oral and topical drug formulations, the latter including transdermal and ocular delivery. In oral LLC formulations, micelle compositions and the resulting LLC structures can determine drug solubilization and stability as well as intestinal transport and absorption. Similarly, in topical LLC formulations, composition can influence whether the drug is retained in the skin or delivered transdermally. Owing to their enhancement of drug stability and promotion of controlled drug delivery, LLCs are becoming increasingly popular in pharmaceutical formulations. PMID:28243062

  11. Transdermal Drug Delivery: Opportunities and Challenges for Controlled Delivery of Therapeutic Agents Using Nanocarriers.

    PubMed

    Kurmi, Balak Das; Tekchandani, Pawan; Paliwal, Rishi; Paliwal, Shivani Rai

    2017-01-01

    Transdermal drug delivery represents an extremely attractive and innovative route across the skin owing to the possibility for achieving systemic effect of drugs. The present scenario demands a special focus on developing safe medicine with minimized toxic adverse effects related to most of the pharmacologically active agents. Transdermal drug delivery would be a focal paradigm which provides patient convenience, first-pass hepatic metabolism avoidance, local targeting and reduction in toxic effect related to various categories of drugs like, analgesics, antiinflammatory, antibiotics, antiviral, anaesthetic, anticancer etc. Even this route has challenges due to highly organized structure of skin which acts as a main barrier to penetration of drug via the skin. Several alternative possible strategies are available which overcome these barriers, including use of penetration enhancer, eletroporation, iontophoresis and various nanotechnologically developed nanocarrier systems. The latest one includes employing liposome, dendrimers, nanoparticles, ethosome, carbon nanotube and many more to avoid associated limitations of conventional formulations. Numerous transdermal products such as Estrasorb, Diractin, VivaGel®, Daytrana®, Aczone, Sileryst® are available in the market having a novel strategy to achieve higher penetration of drugs. This encourages formulation fraternity to develop structurally deformable and stable nanocarriers as an alternative approach for controlled and reliable drug delivery across the skin barrier. In this review, we will discuss nanocarriers mediated approaches that come-up with the solutions to the different challenges towards transdermal drug delivery, its clinical importance and latest insight to research in it. The reports presented in this review confirm the wide application of nanocarriers for transdermal delivery of drug/gene. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. MO-G-BRD-01: Point/Counterpoint Debate: Arc Based Techniques Will Make Conventional IMRT Obsolete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepard, D; Popple, R; Balter, P

    2014-06-15

    A variety of intensity modulated radiation therapy (IMRT) delivery techniques have been developed that have provided clinicians with the ability to deliver highly conformal dose distributions. The delivery techniques include compensators, step-and-shoot IMRT, sliding window IMRT, volumetric modulated arc therapy (VMAT), and tomotherapy. A key development in the field of IMRT was the introduction of new planning algorithms and delivery control systems in 2007 that made it possible to coordinate the gantry rotation speed, dose rate, and multileaf collimator leaf positions during the delivery of arc therapy. With these developments, VMAT became a routine clinical tool. The use of VMATmore » has continued to grow in recent years and some would argue that this will soon make conventional IMRT obsolete, and this is the premise of this debate. To introduce the debate, David Shepard, Ph.D. will provide an overview of IMRT delivery techniques including historical context and how they are being used today. The debate will follow with Richard Popple, Ph.D. arguing FOR the Proposition and Peter Balter, Ph.D. arguing AGAINST it. Learning Objectives: Understand the different delivery techniques for IMRT. Understand the potential benefits of conventional IMRT. Understand the potential benefits of arc-based IMRT delivery.« less

  13. pH-Sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents

    PubMed Central

    Karimi, Mahdi; Eslami, Masoud; Sahandi-Zangabad, Parham; Mirab, Fereshteh; Farajisafiloo, Negar; Shafaei, Zahra; Ghosh, Deepanjan; Bozorgomid, Mahnaz; Dashkhaneh, Fariba; Hamblin, Michael R.

    2016-01-01

    In recent years miscellaneous smart micro/nanosystems that respond to various exogenous/endogenous stimuli including temperature, magnetic/electric field, mechanical force, ultrasound/light irradiation, redox potentials, and biomolecule concentration have been developed for targeted delivery and release of encapsulated therapeutic agents such as drugs, genes, proteins, and metal ions specifically at their required site of action. Owing to physiological differences between malignant and normal cells, or between tumors and normal tissues, pH-sensitive nanosystems represent promising smart delivery vehicles for transport and delivery of anticancer agents. Furthermore, pH-sensitive systems possess applications in delivery of metal ions and biomolecules such as proteins, insulin, etc., as well as co-delivery of cargos, dual pH-sensitive nanocarriers, dual/multi stimuli-responsive nanosystems, and even in the search for new solutions for therapy of diseases such as Alzheimer’s. In order to design an optimized system, it is necessary to understand the various pH-responsive micro/nanoparticles and the different mechanisms of pH-sensitive drug release. This should be accompanied by an assessment of the theoretical and practical challenges in the design and use of these carriers. PMID:26762467

  14. SU-F-T-518: Development and Characterization of a Gated Treatment System Implemented with An In-House Optical Tracking System and the Elekta Response Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barraclough, B; Park, J; Li, F

    2016-06-15

    Purpose: To report the development and characterization of the first in-house gating system implemented with an optical tracking system (OTS) and the Elekta Response™ interface. Methods: The Response™ connects a patient tracking system with a linac, enabling the tracking system to control radiation delivery. The developed system uses an in-house OTS to monitor patient breathing. The OTS consists of two infrared-based cameras, tracking markers affixed on patient. It achieves gated or breath-held (BH) treatment by calling beam ON/OFF functions in the Response™ dynamic-link library (DLL). A 4D motion phantom was used to evaluate its dosimetric and time delay characteristics. Twomore » FF- and two FFF-IMRT beams were delivered in non-gated, BH and gated mode. The sinusoidal gating signal had a 6 sec period and 15 mm amplitude. The duty cycle included 10%, 20%, 30% and 50%. The BH signal was adapted from the sinusoidal wave by inserting 15 sec BHs. Each delivery was measured with a 2D diode array (MapCHECK™) and compared with the non-gated delivery using gamma analysis (3%). The beam ON/OFF time was captured using the service graphing utility of the linac. Results: The gated treatments were successfully delivered except the 10% duty cycle. The BH delivery had perfect agreement (100%) with non-gated delivery; the agreement of gated delivery decreased from 99% to 88% as duty cycle reduced from 50% to 20%. The beam on/off delay was on average 0.25/0.06 sec. The delivery time for the 50%, 30% and 20% duty cycle increased by 29%, 71% and 139%, respectively. No dosimetric or time delay difference was noticed between FF- and FFF-IMRT beams. Conclusion: The in-house gating system was successfully developed with dosimetric and time delay characteristics in line with published results for commercial systems. It will be an important platform for further research and clinical development of gated treatment.« less

  15. Abuse-resistant drug delivery.

    PubMed

    DuPont, Robert L; Bensinger, Peter B

    2006-08-01

    In attempting to reduce the nonmedical use of controlled substances, a reasonable step is to educate the physicians prescribing controlled substances, including the prescription stimulants used to treat ADHD, as well as patients and family members, about the risks of nonmedical use and the dangers of giving or selling these medicines to persons for whom they were not prescribed. Patients who find benefits in the use of such medicines have a significant interest in protecting their continued access to them. Such access is potentially threatened by concerns about widespread nonmedical use. Physicians can help protect the appropriate medical use of prescription stimulants by considering the abuse potential of various medicines used to treat patients with ADHD, especially when these patients also have a history of nonmedical substance use. In addition, we suggest that today there is an opportunity to add a new and perhaps more hopeful paradigm: the wider use of drug delivery systems that make products less attractive to drug abusers. This new drug abuse prevention paradigm holds great promise for efforts to reduce the nonmedical use of prescription controlled substances, including the prescription stimulants used to treat ADHD. To achieve the full potential of this new paradigm to reduce prescription drug abuse, it will be necessary to develop standards to assess the relative abuse resistance of various drug formulations and delivery systems, as well as meaningful incentives to foster the development of these abuse-resistant delivery systems for controlled substances.

  16. Chicken adenovirus (CELO virus) particles augment receptor-mediated DNA delivery to mammalian cells and yield exceptional levels of stable transformants.

    PubMed Central

    Cotten, M; Wagner, E; Zatloukal, K; Birnstiel, M L

    1993-01-01

    Delivery of genes via receptor-mediated endocytosis is severely limited by the poor exit of endocytosed DNA from the endosome. A large enhancement in delivery efficiency has been obtained by including human adenovirus particles in the delivery system. This enhancement is probably a function of the natural adenovirus entry mechanism, which must include passage through or disruption of the endosomal membrane. In an effort to identify safer virus particles useful in this application, we have tested the chicken adenovirus CELO virus for its ability to augment receptor-mediated gene delivery. We report here that CELO virus possesses pH-dependent, liposome disruption activity similar to that of human adenovirus type 5. Furthermore, the chicken adenovirus can be used to augment receptor-mediated gene delivery to levels comparable to those found for the human adenovirus when it is physically linked to polylysine ligand-condensed DNA particles. The chicken adenovirus has the advantage of being produced inexpensively in embryonated eggs, and the virus is naturally replication defective in mammalian cells, even in the presence of wild-type human adenovirus. Images PMID:8099627

  17. Microneedles for intradermal and transdermal delivery

    PubMed Central

    Tuan-Mahmood, Tuan-Mazlelaa; McCrudden, Maeliosa T.C.; Torrisi, Barbara M.; McAlister, Emma; Garland, Martin J; Singh, Thakur Raghu Raj; Donnelly, Ryan F

    2014-01-01

    The formidable barrier properties of the uppermost layer of the skin, the stratum corneum impose significant limitations for successful systemic delivery of a broad range of therapeutic molecules, particularly macromolecules and genetic material. Microneedle delivery has been proposed as a strategy to breach the SC barrier function in order to facilitate effective transport of molecules across the skin. This strategy involves the use of micron sized needles fabricated from different materials and using different geometries to create transient aqueous conduits across the skin. Microneedles in isolation, or in combination with other enhancing strategies, have been shown to dramatically enhance the skin permeability of numerous therapeutic molecules including biopharmaceuticals either in vitro, ex vivo or in vivo. Progress in the areas of microneedle design, development and manufacture have proven promising in terms of the potential use of this emerging delivery method in clinical applications such as insulin delivery, transcutaneous immunisations and cutaneous gene delivery. This review article focuses on recent and potential future developments in microneedle technologies. This will include the detailing of progress made in microneedle design, an exploration of the challenges faced in this field and potential forward strategies to embrace the exploitation of microneedle methodologies, while considering the inherent safety aspects of such therapeutic tools. PMID:23680534

  18. Simulation-optimization aids in resolving water conflict: Temecula Basin, Southern California

    USGS Publications Warehouse

    Hanson, Randall T.; Faunt, Claudia C.; Schmid, Wolfgang; Lear, Jonathan

    2014-01-01

    The productive agricultural areas of Pajaro Valley, California have exclusively relied on ground water from coastal aquifers in central Monterey Bay. As part of the Basin Management Plan (BMP), the Pajaro Valley Water Management Agency (PVWMA) is developing additional local supplies to replace coastal pumpage, which is causing seawater intrusion. The BMP includes an aquifer storage and recovery (ASR) system, which captures and stores local winter runoff, and supplies it to growers later in the growing season in lieu of ground-water pumpage. A Coastal Distribution System (CDS) distributes water from the ASR and other supplemental sources. A detailed model of the Pajaro Valley is being used to simulate the coupled supply and demand components of irrigated agriculture from 1963 to 2006. Recent upgrades to the Farm Process in MODFLOW (MF2K-FMP) allow simulating the effects of ASR deliveries and reduced pumping for farms in subregions connected to the CDS. The BMP includes a hierarchy of monthly supply alternatives, including a recovery well field around the ASR system, a supplemental wellfield, and onsite farm supply wells. The hierarchy of delivery requirements is used by MF2K-FMP to estimate the effects of these deliveries on coastal ground-water pumpage and recovery of water levels. This integrated approach can be used to assess the effectiveness of the BMP under variable climatic conditions, and to test the impacts of more complete subscription by coastal farmers to the CDS deliveries. The model will help managers assess the effects of new BMP components to further reduce pumpage and seawater intrusion.

  19. Liquid Crystalline Systems Based on Glyceryl Monooleate and Penetration Enhancers for Skin Delivery of Celecoxib: Characterization, In Vitro Drug Release, and In Vivo Studies.

    PubMed

    Dante, Mariane de Cássia Lima; Borgheti-Cardoso, Livia Neves; Fantini, Marcia Carvalho de Abreu; Praça, Fabíola Silva Garcia; Medina, Wanessa Silva Garcia; Pierre, Maria Bernadete Riemma; Lara, Marilisa Guimarães

    2018-03-01

    Celecoxib (CXB) is a widely used anti-inflammatory drug that also acts as a chemopreventive agent against several types of cancer, including skin cancer. As the long-term oral administration of CXB has been associated with severe side effects, the skin delivery of this drug represents a promising alternative for the treatment of skin inflammatory conditions and chemoprevention of skin cancer. We prepared and characterized liquid crystalline systems based on glyceryl monooleate and water containing penetration enhancers which were primarily designed to promote skin delivery of CXB. Analysis of their phase behavior revealed the formation of cubic and hexagonal phases depending on the systems' composition. The systems' structure and composition markedly affected the in vitro CXB release profile. Oleic acid reduced CXB release rate, but association oleic acid/propylene glycol increased the drug release rate. The developed systems significantly reduced inflammation in an aerosil-induced rat paw edema model. The systems' composition and liquid crystalline structure influenced their anti-inflammatory potency. Cubic phase systems containing oleic acid/propylene glycol association reduced edema in a sustained manner, indicating that they modulate CXB release and permeation. Our findings demonstrate that the developed liquid crystalline systems are potential carriers for the skin delivery of CXB. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  20. Microchips and controlled-release drug reservoirs.

    PubMed

    Staples, Mark

    2010-01-01

    This review summarizes and updates the development of implantable microchip-containing devices that control dosing from drug reservoirs integrated with the devices. As the expense and risk of new drug development continues to increase, technologies that make the best use of existing therapeutics may add significant value. Trends of future medical care that may require advanced drug delivery systems include individualized therapy and the capability to automate drug delivery. Implantable drug delivery devices that promise to address these anticipated needs have been constructed in a variety of ways using micro- and nanoelectromechanical systems (MEMS or NEMS)-based technology. These devices expand treatment options for addressing unmet medical needs related to dosing. Within the last few years, advances in several technologies (MEMS or NEMS fabrication, materials science, polymer chemistry, and data management) have converged to enable the construction of miniaturized implantable devices for controlled delivery of therapeutic agents from one or more reservoirs. Suboptimal performance of conventional dosing methods in terms of safety, efficacy, pain, or convenience can be improved with advanced delivery devices. Microchip-based implantable drug delivery devices allow localized delivery by direct placement of the device at the treatment site, delivery on demand (emergency administration, pulsatile, or adjustable continuous dosing), programmable dosing cycles, automated delivery of multiple drugs, and dosing in response to physiological and diagnostic feedback. In addition, innovative drug-medical device combinations may protect labile active ingredients within hermetically sealed reservoirs. Copyright (c) 2010 John Wiley & Sons, Inc.

  1. A study on the gas-solid particle flows in a needle-free drug delivery device

    NASA Astrophysics Data System (ADS)

    Rasel, Md. Alim Iftekhar; Taher, Md. Abu; Kim, H. D.

    2013-08-01

    Different systems have been used over the years to deliver drug particles to the human skin for pharmaceutical effect. Research has been done to improve the performance and flexibility of these systems. In recent years a unique system called the transdermal drug delivery has been developed. Transdermal drug delivery opened a new door in the field of drug delivery as it is more flexible and offers better performance than the conventional systems. The principle of this system is to accelerate drug particles with a high speed gas flow. Among different transdermal drug delivery systems we will concentrate on the contour shock tube system in this paper. A contoured shock tube is consists of a rupture chamber, a shock tube and a supersonic nozzle section. The drug particles are retained between a set of bursting diaphragm. When the diaphragm is ruptured at a certain pressure, a high speed unsteady flow is initiated through the shock tube which accelerates the particles. Computational fluid dynamics is used to simulate and analyze the flow field. The DPM (discrete phase method) is used to model the particle flow. As an unsteady flow is initiated though the shock tube the drag correlation proposed by Igra et al is used other than the standard drag correlation. The particle velocities at different sections including the nozzle exit are investigated under different operating conditions. Static pressure histories in different sections in the shock tube are investigated to analyze the flow field. The important aspects of the gas and particle dynamics in the shock tube are discussed and analyzed in details.

  2. Ethosomes and Transfersomes: Principles, Perspectives and Practices.

    PubMed

    Garg, Varun; Singh, Harmanpreet; Bimbrawh, Sneha; Singh, Sachin Kumar; Gulati, Monica; Vaidya, Yogyata; Kaur, Prabhjot

    2017-01-01

    The success story of liposomes in the treatment of systemic infectious diseases and various carcinomas lead the scientists to the innovation of elastic vesicles to achieve similar success through transdermal route. In this direction, ethosomes and transfersomes were developed with the objective to design the vesicles that could pass through the skin. However, there is a lack of systematic review outlining the principles, method of preparation, latest advancement and applications of ethosomes and transfersomes. This review covers various aspects that would be helpful to scientists in understanding advantages of these vesicular systems and designing a unique nano vesicular delivery system. Structured search of bibliographic databases for previously published peer-reviewed research papers was explored and data was culminated in terms of principle of these vesicular delivery systems, composition, mechanism of actions, preparation techniques, methods for their characterization and their application. A total of 182 papers including both, research and review articles, were included in this review in order to make the article comprehensive and readily understandable. The mechanism of action and composition of ethosomes and transfersomes was extensively discussed. Various methods of preparation such as, rotary film evaporation method, reverse phase evaporation method, vortex/ sonication method, ethanol injection method, freeze thaw methods, along with their advantages has been discussed. It was also discussed that both these elastic nanocarriers offer unique advantages of ferrying the drug across membranes, sustaining drug release as well as protecting the encapsulated bio actives from external environment. The enhanced bioavailability and skin penetration of ethosomes as compared to conventional vesicular delivery systems is attributed to the presence of ethanol in the bilayers while that for transfersomes accrues due to their elasticity along with their ability to retain their shape because of the presence of edge activators. Successful delivery of synthetic drugs as well as phytomedicines has been extensively reported through these vesicles. Though these vesicular systems offer a good potential for rational drug delivery, a thoughtfully designed process is required to optimize the process variables involved. Industrial scale production of efficacious, safe, cost effective and stable formulations of both these delivery systems appears to be a pre-requisite to ensure their utility as the trans-dermal vehicles. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Spacecraft surgical scrub system

    NASA Technical Reports Server (NTRS)

    Abbate, M.

    1980-01-01

    Ease of handling and control in zero gravity and minimizing the quantity of water required were prime considerations. The program tasks include the selection of biocidal agent from among the variety used for surgical scrub, formulation of a dispensing system, test, and delivery of flight dispensers. The choice of an iodophore was based on effectiveness on single applications, general familiarity among surgeons, and previous qualification for space use. The delivery system was a choice between the squeeze foamer system and impregnated polyurethane foam pads. The impregnated foam pad was recommended because it is a simpler system since the squeeze foamer requires some applicator to effectively clean the skin surfaces, whereas the form pad is the applicator and agent combined. Testing demonstrated that both systems are effective for use as surgical scrubs.

  4. Pelvic floor dysfunction in the immediate puerperium, and 1 month and 3 months after vaginal or cesarean delivery.

    PubMed

    Colla, Cássia; L Paiva, Luciana; Ferla, Lia; B Trento, Maria J; M P de Vargas, Isadora; A Dos Santos, Bianca; Ferreira, Charles F; L Ramos, José G

    2018-06-07

    To identify and assess postpartum pelvic floor dysfunction (PFD) between vaginal delivery, elective cesarean delivery (ECD), and intrapartum cesarean delivery (ICD). The present prospective observational study included women aged at least 18 years with no history of pelvic surgery or lower urinary tract malformation, and who had not undergone pelvic floor muscle (PFM) training in the preceding 12 months, who underwent delivery at Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil between August 1, 2016, and May 31, 2017. Participants were assessed at 48 hours (phase 1), 1 month (phase 2), and 3 months (phase 3) after delivery. Assessments included the International Consultation on Incontinence Questionnaire, Short Form (ICIQ-SF); the Jorge-Wexner anal incontinence scale; a self-rated visual analog scale for pelvic pain; the pelvic organ prolapse quantification (POP-Q) system; and a PFM perineometer. A total of 227 women were assessed in phase 1 (141 vaginal deliveries; 28 ICDs; and 58 ECDs), 79 in phase 2, and 41 in phase 3. The ICIQ-SF, Jorge-Wexner scale, visual analog scale, and perineometer measurements did not identify significant differences in relation to the type of delivery (P>0.05). The type of delivery was not associated with differences in the short-term development of postpartum PFD. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Transdermal delivery of biomacromolecules using lipid-like nanoparticles

    NASA Astrophysics Data System (ADS)

    Bello, Evelyn A.

    The transdermal delivery of biomacromolecules, including proteins and nucleic acids, is challenging, owing to their large size and the penetration-resistant nature of the stratum corneum. Thus, an urgent need exists for the development of transdermal delivery methodologies. This research focuses on the use of cationic lipid-like nanoparticles (lipidoids) for the transdermal delivery of proteins, and establishes an in vitro model for the study. The lipidoids used were first combinatorially designed and synthesized; afterwards, they were employed for protein encapsulation in a vesicular system. A skin penetration study demonstrated that lipidoids enhance penetration depth in a pig skin model, overcoming the barrier that the stratum corneum presents. This research has successfully identified active lipidoids capable of efficiently penetrating the skin; therefore, loading proteins into lipidoid nanoparticles will facilitate the transdermal delivery of proteins. Membrane diffusion experiments were used to confirm the results. This research has confirmed that lipidoids are a suitable material for transdermal protein delivery enhancement.

  6. Effect of Surface Properties on Liposomal siRNA Delivery

    PubMed Central

    Xia, Yuqiong; Tian, Jie; Chen, Xiaoyuan

    2015-01-01

    Liposomes are one of the most widely investigated carriers for siRNA delivery. The surface properties of liposomal carriers, including the surface charge, PEGylation, and ligand modification can significantly affect the gene silencing efficiency. Three barriers of systemic siRNA delivery (long blood circulation, efficient tumor penetration and efficient cellular uptake/endosomal escape) are analyzed on liposomal carriers with different surface charges, PEGylations and ligand modifications. Cationic formulations dominate siRNA delivery and neutral formulations also have good performance while anionic formulations are generally not proper for siRNA delivery. The PEG dilemma (prolonged blood circulation vs. reduced cellular uptake/endosomal escape) and the side effect of repeated PEGylated formulation (accelerated blood clearance) were discussed. Effects of ligand modification on cationic and neutral formulations were analyzed. Finally, we summarized the achievements in liposomal siRNA delivery, outlined existing problems and provided some future perspectives. PMID:26695117

  7. Opening the Black Box: Exploring the Effect of Transformation on Online Service Delivery in Local Governments

    NASA Astrophysics Data System (ADS)

    van Veenstra, Anne Fleur; Zuurmond, Arre

    To enhance the quality of their online service delivery, many government organizations seek to transform their organization beyond merely setting up a front office. This transformation includes elements such as the formation of service delivery chains, the adoption of a management strategy supporting process orientation and the implementation of enterprise architecture. This paper explores whether undertaking this transformation has a positive effect on the quality of online service delivery, using data gathered from seventy local governments. We found that having an externally oriented management strategy in place, adopting enterprise architecture, aligning information systems to business and sharing activities between processes and departments are positively related to the quality of online service delivery. We recommend that further research should be carried out to find out whether dimensions of organizational development too have an effect on online service delivery in the long term.

  8. Advancing drug delivery systems for the treatment of multiple sclerosis.

    PubMed

    Tabansky, Inna; Messina, Mark D; Bangeranye, Catherine; Goldstein, Jeffrey; Blitz-Shabbir, Karen M; Machado, Suly; Jeganathan, Venkatesh; Wright, Paul; Najjar, Souhel; Cao, Yonghao; Sands, Warren; Keskin, Derin B; Stern, Joel N H

    2015-12-01

    Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease of the central nervous system. It is characterized by demyelination of neurons and loss of neuronal axons and oligodendrocytes. In MS, auto-reactive T cells and B cells cross the blood-brain barrier (BBB), causing perivenous demyelinating lesions that form multiple discrete inflammatory demyelinated plaques located primarily in the white matter. In chronic MS, cortical demyelination and progressive axonal transections develop. Treatment for MS can be stratified into disease-modifying therapies (DMTs) and symptomatic therapy. DMTs aim to decrease circulating immune cells or to prevent these cells from crossing the BBB and reduce the inflammatory response. There are currently 10 DMTs approved for the relapsing forms of MS; these vary with regard to their efficacy, route and frequency of administration, adverse effects, and toxicity profile. Better drug delivery systems are being developed in order to decrease adverse effects, increase drug efficacy, and increase patient compliance through the direct targeting of pathologic cells. Here, we address the uses and benefits of advanced drug delivery systems, including nanoparticles, microparticles, fusion antibodies, and liposomal formulations. By altering the properties of therapeutic particles and enhancing targeting, breakthrough drug delivery technologies potentially applicable to multiple disease treatments may rapidly emerge.

  9. Sulfated Seaweed Polysaccharides as Multifunctional Materials in Drug Delivery Applications

    PubMed Central

    Cunha, Ludmylla; Grenha, Ana

    2016-01-01

    In the last decades, the discovery of metabolites from marine resources showing biological activity has increased significantly. Among marine resources, seaweed is a valuable source of structurally diverse bioactive compounds. The cell walls of marine algae are rich in sulfated polysaccharides, including carrageenan in red algae, ulvan in green algae and fucoidan in brown algae. Sulfated polysaccharides have been increasingly studied over the years in the pharmaceutical field, given their potential usefulness in applications such as the design of drug delivery systems. The purpose of this review is to discuss potential applications of these polymers in drug delivery systems, with a focus on carrageenan, ulvan and fucoidan. General information regarding structure, extraction process and physicochemical properties is presented, along with a brief reference to reported biological activities. For each material, specific applications under the scope of drug delivery are described, addressing in privileged manner particulate carriers, as well as hydrogels and beads. A final section approaches the application of sulfated polysaccharides in targeted drug delivery, focusing with particular interest the capacity for macrophage targeting. PMID:26927134

  10. Dynamic Visualization of Dendritic Cell-Antigen Interactions in the Skin Following Transcutaneous Immunization

    PubMed Central

    Rattanapak, Teerawan; Birchall, James C.; Young, Katherine; Kubo, Atsuko; Fujimori, Sayumi; Ishii, Masaru; Hook, Sarah

    2014-01-01

    Delivery of vaccines into the skin provides many advantages over traditional parenteral vaccination and is a promising approach due to the abundance of antigen presenting cells (APC) residing in the skin including Langerhans cells (LC) and dermal dendritic cells (DDC). However, the main obstacle for transcutaneous immunization (TCI) is the effective delivery of the vaccine through the stratum corneum (SC) barrier to the APC in the deeper skin layers. This study therefore utilized microneedles (MN) and a lipid-based colloidal delivery system (cubosomes) as a synergistic approach for the delivery of vaccines to APC in the skin. The process of vaccine uptake and recruitment by specific types of skin APC was investigated in real-time over 4 hours in B6.Cg-Tg (Itgax-EYFP) 1 Mnz/J mice by two-photon microscopy. Incorporation of the vaccine into a particulate delivery system and the use of MN preferentially increased vaccine antigen uptake by a highly motile subpopulation of skin APC known as CD207+ DC. No uptake of antigen or any response to immunisation by LC could be detected. PMID:24586830

  11. Ultrasound-Mediated Local Drug and Gene Delivery Using Nanocarriers

    PubMed Central

    Zhou, Qiu-Lan; Chen, Zhi-Yi; Yang, Feng

    2014-01-01

    With the development of nanotechnology, nanocarriers have been increasingly used for curative drug/gene delivery. Various nanocarriers are being introduced and assessed, such as polymer nanoparticles, liposomes, and micelles. As a novel theranostic system, nanocarriers hold great promise for ultrasound molecular imaging, targeted drug/gene delivery, and therapy. Nanocarriers, with the properties of smaller particle size, and long circulation time, would be advantageous in diagnostic and therapeutic applications. Nanocarriers can pass through blood capillary walls and cell membrane walls to deliver drugs. The mechanisms of interaction between ultrasound and nanocarriers are not clearly understood, which may be related to cavitation, mechanical effects, thermal effects, and so forth. These effects may induce transient membrane permeabilization (sonoporation) on a single cell level, cell death, and disruption of tissue structure, ensuring noninvasive, targeted, and efficient drug/gene delivery and therapy. The system has been used in various tissues and organs (in vitro or in vivo), including tumor tissues, kidney, cardiac, skeletal muscle, and vascular smooth muscle. In this review, we explore the research progress and application of ultrasound-mediated local drug/gene delivery with nanocarriers. PMID:25202710

  12. Trojan particles: Large porous carriers of nanoparticles for drug delivery

    PubMed Central

    Tsapis, N.; Bennett, D.; Jackson, B.; Weitz, D. A.; Edwards, D. A.

    2002-01-01

    We have combined the drug release and delivery potential of nanoparticle (NP) systems with the ease of flow, processing, and aerosolization potential of large porous particle (LPP) systems by spray drying solutions of polymeric and nonpolymeric NPs into extremely thin-walled macroscale structures. These hybrid LPPs exhibit much better flow and aerosolization properties than the NPs; yet, unlike the LPPs, which dissolve in physiological conditions to produce molecular constituents, the hybrid LPPs dissolve to produce NPs, with the drug release and delivery advantages associated with NP delivery systems. Formation of the large porous NP (LPNP) aggregates occurs via a spray-drying process that ensures the drying time of the sprayed droplet is sufficiently shorter than the characteristic time for redistribution of NPs by diffusion within the drying droplet, implying a local Peclet number much greater than unity. Additional control over LPNPs physical characteristics is achieved by adding other components to the spray-dried solutions, including sugars, lipids, polymers, and proteins. The ability to produce LPNPs appears to be largely independent of molecular component type as well as the size or chemical nature of the NPs. PMID:12200546

  13. Revolutionary Impact of Nanodrug Delivery on Neuroscience

    PubMed Central

    Khanbabaie, Reza; Jahanshahi, Mohsen

    2012-01-01

    Brain research is the most expanding interdisciplinary research that is using the state of the art techniques to overcome limitations in order to conduct more accurate and effective experiments. Drug delivery to the target site in the central nervous system (CNS) is one of the most difficult steps in neuroscience researches and therapies. Taking advantage of the nanoscale structure of neural cells (both neurons and glia); nanodrug delivery (second generation of biotechnological products) has a potential revolutionary impact into the basic understanding, visualization and therapeutic applications of neuroscience. Current review article firstly provides an overview of preparation and characterization, purification and separation, loading and delivering of nanodrugs. Different types of nanoparticle bioproducts and a number of methods for their fabrication and delivery systems including (carbon) nanotubes are explained. In the second part, neuroscience and nervous system drugs are deeply investigated. Different mechanisms in which nanoparticles enhance the uptake and clearance of molecules form cerebrospinal fluid (CSF) are discussed. The focus is on nanodrugs that are being used or have potential to improve neural researches, diagnosis and therapy of neurodegenerative disorders. PMID:23730260

  14. Nanotechnology and pharmaceutical inhalation aerosols.

    PubMed

    Patel, A R; Vavia, P R

    2007-02-01

    Pharmaceutical inhalation aerosols have been playing a crucial role in the health and well being of millions of people throughout the world for many years. The technology's continual advancement, the ease of use and the more desirable pulmonary-rather-than-needle delivery for systemic drugs has increased the attraction for the pharmaceutical aerosol in recent years. But administration of drugs by the pulmonary route is technically challenging because oral deposition can be high, and variations in inhalation technique can affect the quantity of drug delivered to the lungs. Recent advances in nanotechnology, particularly drug delivery field have encouraged formulation scientists to expand their reach in solving tricky problems related to drug delivery. Moreover, application of nanotechnology to aerosol science has opened up a new category of pharmaceutical aerosols (collectively known as nanoenabled-aerosols) with added advantages and effectiveness. In this review, some of the latest approaches of nano-enabled aerosol drug delivery system (including nano-suspension, trojan particles, bioadhesive nanoparticles and smart particle aerosols) that can be employed successfully to overcome problems of conventional aerosol systems have been introduced.

  15. MicroRNAs as therapeutics for future drug delivery systems in treatment of lung diseases.

    PubMed

    Dua, Kamal; Hansbro, Nicole G; Foster, Paul S; Hansbro, Philip M

    2017-02-01

    The rapid advancement in the area of microRNAs (miRNAs) from discovery to their translation into therapeutic moieties reflects their significance as important regulators in the management of disease pathology. The miRNAs can potentially be a new class of drugs in the near future for the treatment of various lung diseases, but it lacks the current knowledge how these identified therapeutic moieties can be designed into an effective, patient complaint and targeted drug delivery system. miRNAs have characteristic features like small size and low molecular weight which makes them easily translated into an effective drug delivery system. In this review, we have summarised the concept of miRNAs and different approaches which can be employed to deliver miRNAs effectively and safely to the target cells including the challenges associated with their development in particular emphasis on pulmonary diseases. Such approaches will be of interest for both the biological and formulation scientists to understand and explore the new vistas in the area of miRNA delivery for pulmonary inflammatory diseases.

  16. Breakthrough delivery systems: applying business process innovation.

    PubMed

    Nackel, J G

    1995-01-01

    The way the health care industry conducts business today has been ingrained by over fifty years of tradition. This tradition includes physician training concepts, physician/nurse/patient relationships, and overall organization of the health care delivery system. The industry is now beginning to understand that viewing its operations from an organizational process perspective can provide tremendous competitive advantage. The industry faces perhaps the greatest challenge, because business process innovation requires rethinking the way an organization conducts business. It requires a rediscovery of customer expectations and new revelations about how to provide them with value-added service.

  17. A transient thermal model of a neutral buoyancy cryogenic fluid delivery system

    NASA Astrophysics Data System (ADS)

    Bue, Grant C.; Conger, Bruce S.

    A thermal-performance model is presently used to evaluate a preliminary Neutral Buoyancy Cryogenic fluid-delivery system for underwater EVA training. Attention is given to the modeling of positional transients generated from the moving of internal components, including the control of cycling artifacts, as well as to the convection and boiling characteristics of the cryofluid, 250-psi N2/O2 gas, and water contained in the tank. Two piston designs are considered according to performance criteria; temperature and heat-transfer rate profiles are presented.

  18. Advancements in the oral delivery of Docetaxel: challenges, current state-of-the-art and future trends

    PubMed Central

    Sohail, Muhammad Farhan; Rehman, Mubashar; Sarwar, Hafiz Shoaib; Naveed, Sara; Salman, Omer; Bukhari, Nadeem Irfan; Hussain, Irshad; Webster, Thomas J; Shahnaz, Gul

    2018-01-01

    The oral delivery of cancer chemotherapeutic drugs is challenging due to low bioavailability, gastrointestinal side effects, first-pass metabolism and P-glycoprotein efflux pumps. Thus, chemotherapeutic drugs, including Docetaxel, are administered via an intravenous route, which poses many disadvantages of its own. Recent advances in pharmaceutical research have focused on designing new and efficient drug delivery systems for site-specific targeting, thus leading to improved bioavailability and pharmacokinetics. A decent number of studies have been reported for the safe and effective oral delivery of Docetaxel. These nanocarriers, including liposomes, polymeric nanoparticles, metallic nanoparticles, hybrid nanoparticles, dendrimers and so on, have shown promising results in research papers and clinical trials. The present article comprehensively reviews the research efforts made so far in designing various advancements in the oral delivery of Docetaxel. Different strategies to improve oral bioavailability, prevent first-pass metabolism and inhibition of efflux pumping leading to improved pharmacokinetics and anticancer activity are discussed. The final portion of this review article presents key issues such as safety of nanomaterials, regulatory approval and future trends in nanomedicine research. PMID:29922053

  19. Advancements in the oral delivery of Docetaxel: challenges, current state-of-the-art and future trends.

    PubMed

    Sohail, Muhammad Farhan; Rehman, Mubashar; Sarwar, Hafiz Shoaib; Naveed, Sara; Salman, Omer; Bukhari, Nadeem Irfan; Hussain, Irshad; Webster, Thomas J; Shahnaz, Gul

    2018-01-01

    The oral delivery of cancer chemotherapeutic drugs is challenging due to low bioavailability, gastrointestinal side effects, first-pass metabolism and P-glycoprotein efflux pumps. Thus, chemotherapeutic drugs, including Docetaxel, are administered via an intravenous route, which poses many disadvantages of its own. Recent advances in pharmaceutical research have focused on designing new and efficient drug delivery systems for site-specific targeting, thus leading to improved bioavailability and pharmacokinetics. A decent number of studies have been reported for the safe and effective oral delivery of Docetaxel. These nanocarriers, including liposomes, polymeric nanoparticles, metallic nanoparticles, hybrid nanoparticles, dendrimers and so on, have shown promising results in research papers and clinical trials. The present article comprehensively reviews the research efforts made so far in designing various advancements in the oral delivery of Docetaxel. Different strategies to improve oral bioavailability, prevent first-pass metabolism and inhibition of efflux pumping leading to improved pharmacokinetics and anticancer activity are discussed. The final portion of this review article presents key issues such as safety of nanomaterials, regulatory approval and future trends in nanomedicine research.

  20. Protein nanoparticles as drug delivery carriers for cancer therapy.

    PubMed

    Lohcharoenkal, Warangkana; Wang, Liying; Chen, Yi Charlie; Rojanasakul, Yon

    2014-01-01

    Nanoparticles have increasingly been used for a variety of applications, most notably for the delivery of therapeutic and diagnostic agents. A large number of nanoparticle drug delivery systems have been developed for cancer treatment and various materials have been explored as drug delivery agents to improve the therapeutic efficacy and safety of anticancer drugs. Natural biomolecules such as proteins are an attractive alternative to synthetic polymers which are commonly used in drug formulations because of their safety. In general, protein nanoparticles offer a number of advantages including biocompatibility and biodegradability. They can be prepared under mild conditions without the use of toxic chemicals or organic solvents. Moreover, due to their defined primary structure, protein-based nanoparticles offer various possibilities for surface modifications including covalent attachment of drugs and targeting ligands. In this paper, we review the most significant advancements in protein nanoparticle technology and their use in drug delivery arena. We then examine the various sources of protein materials that have been used successfully for the construction of protein nanoparticles as well as their methods of preparation. Finally, we discuss the applications of protein nanoparticles in cancer therapy.

  1. Advanced drug and gene delivery systems based on functional biodegradable polycarbonates and copolymers.

    PubMed

    Chen, Wei; Meng, Fenghua; Cheng, Ru; Deng, Chao; Feijen, Jan; Zhong, Zhiyuan

    2014-09-28

    Biodegradable polymeric nanocarriers are one of the most promising systems for targeted and controlled drug and gene delivery. They have shown several unique advantages such as excellent biocompatibility, prolonged circulation time, passive tumor targeting via the enhanced permeability and retention (EPR) effect, and degradation in vivo into nontoxic products after completing their tasks. The current biodegradable drug and gene delivery systems exhibit, however, typically low in vivo therapeutic efficacy, due to issues of low loading capacity, inadequate in vivo stability, premature cargo release, poor uptake by target cells, and slow release of therapeutics inside tumor cells. To overcome these problems, a variety of advanced drug and gene delivery systems has recently been designed and developed based on functional biodegradable polycarbonates and copolymers. Notably, polycarbonates and copolymers with diverse functionalities such as hydroxyl, carboxyl, amine, alkene, alkyne, halogen, azido, acryloyl, vinyl sulfone, pyridyldisulfide, and saccharide, could be readily obtained by controlled ring-opening polymerization. In this paper, we give an overview on design concepts and recent developments of functional polycarbonate-based nanocarriers including stimuli-sensitive, photo-crosslinkable, or active targeting polymeric micelles, polymersomes and polyplexes for enhanced drug and gene delivery in vitro and in vivo. These multifunctional biodegradable nanosystems might be eventually developed for safe and efficient cancer chemotherapy and gene therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Using systems thinking to identify workforce enablers for a whole systems approach to urgent and emergency care delivery: a multiple case study.

    PubMed

    Manley, Kim; Martin, Anne; Jackson, Carolyn; Wright, Toni

    2016-08-09

    Overcrowding in emergency departments is a global issue, which places pressure on the shrinking workforce and threatens the future of high quality, safe and effective care. Healthcare reforms aimed at tackling this crisis have focused primarily on structural changes, which alone do not deliver anticipated improvements in quality and performance. The purpose of this study was to identify workforce enablers for achieving whole systems urgent and emergency care delivery. A multiple case study design framed around systems thinking was conducted in South East England across one Trust consisting of five hospitals, one community healthcare trust and one ambulance trust. Data sources included 14 clinical settings where upstream or downstream pinch points are likely to occur including discharge planning and rapid response teams; ten regional stakeholder events (n = 102); a qualitative survey (n = 48); and a review of literature and analysis of policy documents including care pathways and protocols. The key workforce enablers for whole systems urgent and emergency care delivery identified were: clinical systems leadership, a single integrated career and competence framework and skilled facilitation of work based learning. In this study, participants agreed that whole systems urgent and emergency care allows for the design and implementation of care delivery models that meet complexity of population healthcare needs, reduce duplication and waste and improve healthcare outcomes and patients' experiences. For this to be achieved emphasis needs to be placed on holistic changes in structures, processes and patterns of the urgent and emergency care system. Often overlooked, patterns that drive the thinking and behavior in the workplace directly impact on staff recruitment and retention and the overall effectiveness of the organization. These also need to be attended to for transformational change to be achieved and sustained. Research to refine and validate a single integrated career and competence framework and to develop standards for an integrated approach to workplace facilitation to grow the capacity of facilitators that can use the workplace as a resource for learning is needed.

  3. Hypoxia Responsive Drug Delivery Systems in Tumor Therapy.

    PubMed

    Alimoradi, Houman; Matikonda, Siddharth S; Gamble, Allan B; Giles, Gregory I; Greish, Khaled

    2016-01-01

    Hypoxia is a common characteristic of solid tumors. It is mainly determined by low levels of oxygen resulting from imperfect vascular networks supplying most tumors. In an attempt to improve the present chemotherapeutic treatment and reduce associated side effects, several prodrug strategies have been introduced to achieve hypoxia-specific delivery of cytotoxic anticancer agents. With the advances in nanotechnology, novel delivery systems activated by the consequent outcomes of hypoxia have been developed. However, developing hypoxia responsive drug delivery systems (which only depend on low oxygen levels) is currently naïve. This review discusses four main hypoxia responsive delivery systems: polymeric based drug delivery systems, oxygen delivery systems combined with radiotherapy and chemotherapy, anaerobic bacteria which are used for delivery of genes to express anticancer proteins such as tumor necrosis alpha (TNF-α) and hypoxia-inducible transcription factors 1 alpha (HIF1α) responsive gene delivery systems.

  4. Recent in vivo advances in cell-penetrating peptide-assisted drug delivery.

    PubMed

    Kurrikoff, Kaido; Gestin, Maxime; Langel, Ülo

    2016-01-01

    Delivery of macromolecular drugs is an important field in medical research. However, macromolecules are usually unable to cross the cell membrane without the assistance of a delivery system. Cell penetrating peptides (CPPs) are unique tools to gain access to the cell interior and deliver a bioactive cargo into the cytosol or nucleus. In addition to macromolecular delivery, CPPs have been used to deliver smaller bioactive molecules. Therefore CPPs have become an intensive field of research for medical treatment. In this review, we highlight studies that include CPP in vivo disease models. We review different strategies and approaches that have been used, with specific attention on recent publications. The approaches that have been used include CPP-cargo covalent conjugation strategies and nanoparticle strategies. Various additional strategies have been used to achieve disease targeting, including active targeting, passive targeting, and combined active/passive strategies. As a result, delivery of various types of molecule has been achieved, including small drug molecules, proteins and nucleic acid-based macromolecules (e.g. siRNA, antisense nucleotides and plasmid DNA). Despite recent advances in the field, confusions surrounding CPP internalization mechanisms and intracellular trafficking are hindering the development of new and more efficient vectors. Nevertheless, the recent increase in the number of publications containing in vivo CPP utilization looks promising that the number of clinical trials would also increase in the near future.

  5. Impact of a diagnosis-related group payment system on cesarean section in Korea.

    PubMed

    Kim, Seung Ju; Han, Kyu-Tae; Kim, Sun Jung; Park, Eun-Cheol; Park, Hye Ki

    2016-06-01

    Cesarean sections (CSs) are the most expensive method of delivery, which may affect the physician's choice of treatment when providing health services to patients. We investigated the effects of the diagnosis-related group (DRG)-based payment system on CSs in Korea. We used National Health Insurance claim data from 2011 to 2014, which included 1,289,989 delivery cases at 674 hospitals. We used a generalized estimating equation model to evaluate the association between the likelihood of cesarean delivery and the length of the DRG adoption period. A total of 477,309 (37.0%) delivery cases were performed by CSs. We found that a longer DRG adoption period was associated with a lower odds ratio of CSs (odds ratio [OR]: 0.997, 95% CI: 0.996-0.998). In addition, a longer DRG adoption period was associated with a lower odds ratio for CSs in hospitals that had voluntarily adopted the DRG system. Similar results were also observed for urban hospitals, primiparas, and those under 28 years old and over 33 years old. Our results suggest that the change in the reimbursement system was associated with a low likelihood of CSs. The impact of DRG adoption on cesarean delivery can also be expected to increase with time, as our finding provides evidence that the reimbursement system is associated with the health provider's decision to provide health services for patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Safe Active Scanning for Energy Delivery Systems Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helms, J.; Salazar, B.; Scheibel, P.

    The Department of Energy’s Cybersecurity for Energy Delivery Systems Program has funded Safe(r) Active Scanning for Energy Delivery Systems, led by Lawrence Livermore National Laboratory, to investigate and analyze the impacts of active scanning in the operational environment of energy delivery systems. In collaboration with Pacific Northwest National Laboratory and Idaho National Laboratory, active scans across three testbeds including 38 devices were performed. This report gives a summary of the initial literature survey performed on the SASEDS project as well as industry partner interview summaries and main findings from Phase 1 of the project. Additionally, the report goes into themore » details of scanning techniques, methodologies for testing, testbed descriptions, and scanning results, with appendices to elaborate on the specific scans that were performed. As a result of testing, a single device out of 38 exhibited problems when actively scanned, and a reboot was required to fix it. This single failure indicates that active scanning is not likely to have a detrimental effect on the safety and resilience of energy delivery systems. We provide a path forward for future research that could enable wide adoption of active scanning and lead utilities to incorporate active scanning as part of their default network security plans to discover and rectify rogue devices, adversaries, and services that may be on the network. This increased network visibility will allow operational technology cybersecurity practitioners to improve their situational awareness of networks and their vulnerabilities.« less

  7. Exosomes: Nanoparticulate tools for RNA interference and drug delivery.

    PubMed

    Shahabipour, Fahimeh; Barati, Nastaran; Johnston, Thomas P; Derosa, Giuseppe; Maffioli, Pamela; Sahebkar, Amirhossein

    2017-07-01

    Exosomes are naturally occurring extracellular vesicles released by most mammalian cells in all body fluids. Exosomes are known as key mediators in cell-cell communication and facilitate the transfer of genetic and biochemical information between distant cells. Structurally, exosomes are composed of lipids, proteins, and also several types of RNAs which enable these vesicles to serve as important disease biomarkers. Moreover, exosomes have emerged as novel drug and gene delivery tools owing to their multiple advantages over conventional delivery systems. Recently, increasing attention has been focused on exosomes for the delivery of drugs, including therapeutic recombinant proteins, to various target tissues. Exosomes are also promising vehicles for the delivery of microRNAs and small interfering RNAs, which is usually hampered by rapid degradation of these RNAs, as well as inefficient tissue specificity of currently available delivery strategies. This review highlights the most recent accomplishments and trends in the use of exosomes for the delivery of drugs and therapeutic RNA molecules. © 2017 Wiley Periodicals, Inc.

  8. Factors influencing deliveries at health facilities in a rural Maasai Community in Magadi sub-County, Kenya.

    PubMed

    Karanja, Sarah; Gichuki, Richard; Igunza, Patrick; Muhula, Samuel; Ofware, Peter; Lesiamon, Josephine; Leshore, Lepantas; Kyomuhangi-Igbodipe, Lenny Bazira; Nyagero, Josephat; Binkin, Nancy; Ojakaa, David

    2018-01-03

    In response to poor maternal, newborn, and child health indicators in Magadi sub-county, the "Boma" model was launched to promote health facility delivery by establishing community health units and training community health volunteers (CHVs) and traditional birth attendants (TBAs) as safe motherhood promoters. As a result, health facility delivery increased from 14% to 24%, still considerably below the national average (61%). We therefore conducted this study to determine factors influencing health facility delivery and describe barriers and motivators to the same. A mixed methods cross-sectional study involving a survey with 200 women who had delivered in the last 24 months, 3 focus group discussions with health providers, chiefs and CHVs and 26 in-depth interviews with mothers, key decision influencers and TBAs. Adjusted odds ratios (aOR) and 95% confidence intervals (CI) using logistic regression were calculated to identify predictive factors for health facility delivery. Thematic analysis was done to describe barriers and motivators to the same. Of the women interviewed, 39% delivered at the health facility. Factors positively associated with health facility deliveries included belonging to the highest wealth quintiles [aOR 4.9 (95%CI 1.5-16.5)], currently not married [aOR 2.4 (95%CI 1.1-5.4)] and living near the health facility [aOR 2.2 (95%CI 1.1 = 4.4)]. High parity [aOR 0.7 (95%CI 0.5-0.9)] was negatively associated with health facility delivery. Barriers to health facility delivery included women not being final decision makers on place of birth, lack of a birth plan, gender of health provider, unfamiliar birthing position, disrespect and/or abuse, distance, attitude of health providers and lack of essential drugs and supplies. Motivators included proximity to health facility, mother's health condition, integration of TBAs into the health system, and health education/advice received. Belonging to the highest wealth quintile, currently not married and living near a health facility were positively associated with health facility delivery. Gender inequity and cultural practices such as lack of birth preparedness should be addressed. Transport mechanisms need to be established to avoid delay in reaching a health facility. The health systems also need to be functional with adequate supplies and motivated staff.

  9. Cabinet of Curiosities: Venom Systems and Their Ecological Function in Mammals, with a Focus on Primates.

    PubMed

    Rode-Margono, Johanna E; Nekaris, K Anne-Isola

    2015-07-17

    Venom delivery systems (VDS) are common in the animal kingdom, but rare amongst mammals. New definitions of venom allow us to reconsider its diversity amongst mammals by reviewing the VDS of Chiroptera, Eulipotyphla, Monotremata, and Primates. All orders use modified anterior dentition as the venom delivery apparatus, except Monotremata, which possesses a crural system. The venom gland in most taxa is a modified submaxillary salivary gland. In Primates, the saliva is activated when combined with brachial gland exudate. In Monotremata, the crural spur contains the venom duct. Venom functions include feeding, intraspecific competition, anti-predator defense and parasite defense. Including mammals in discussion of venom evolution could prove vital in our understanding protein functioning in mammals and provide a new avenue for biomedical and therapeutic applications and drug discovery.

  10. Cabinet of Curiosities: Venom Systems and Their Ecological Function in Mammals, with a Focus on Primates

    PubMed Central

    Rode-Margono, Johanna E.; Nekaris, K. Anne-Isola

    2015-01-01

    Venom delivery systems (VDS) are common in the animal kingdom, but rare amongst mammals. New definitions of venom allow us to reconsider its diversity amongst mammals by reviewing the VDS of Chiroptera, Eulipotyphla, Monotremata, and Primates. All orders use modified anterior dentition as the venom delivery apparatus, except Monotremata, which possesses a crural system. The venom gland in most taxa is a modified submaxillary salivary gland. In Primates, the saliva is activated when combined with brachial gland exudate. In Monotremata, the crural spur contains the venom duct. Venom functions include feeding, intraspecific competition, anti-predator defense and parasite defense. Including mammals in discussion of venom evolution could prove vital in our understanding protein functioning in mammals and provide a new avenue for biomedical and therapeutic applications and drug discovery. PMID:26193318

  11. Healthcare reform: the role of coordinated critical care.

    PubMed

    Cerra, F B

    1993-03-01

    To evaluate and editorialize the evolving role of the discipline of critical care as a healthcare delivery system in the process of healthcare reform. The sources included material from the Federal Office of Management and Budget, Health Care Financing Review, President Bush's Office, Association of American Medical Colleges, and publications of the Society of Critical Care Medicine. Data were selected that the author felt was relevant to the healthcare reform process and its implications for the discipline of critical care. The data were extracted by the author to illustrate the forces behind healthcare reform, the implications for the practice of critical care, and role of critical care as a coordinated (managed) care system in the process of healthcare reform. Healthcare reform has been initiated because of a number of considerations that arise in evaluating the current healthcare delivery system: access, financing, cost, dissatisfactions with the mechanisms of delivery, and political issues. The reform process will occur with or without the involvement of critical care practitioners. Reforms may greatly alter the delivery of critical care services, education, training, and research in critical care. Critical care has evolved into a healthcare delivery system that provides services to patients who need and request them and provides these services in a coordinated (managed) care model. Critical care practitioners must become involved in the healthcare reform process, and critical care services that are effective must be preserved, as must the education, training, and research programs. Critical care as a healthcare delivery system utilizing a coordinated (managed) care model has the potential to provide services to all patients who need them and to deliver them in a manner that is cost effective and recognized as providing added value.

  12. Dropwise additive manufacturing of pharmaceutical products for amorphous and self emulsifying drug delivery systems.

    PubMed

    Içten, Elçin; Purohit, Hitesh S; Wallace, Chelsey; Giridhar, Arun; Taylor, Lynne S; Nagy, Zoltan K; Reklaitis, Gintaras V

    2017-05-30

    The improvements in healthcare systems and the advent of the precision medicine initiative have created the need to develop more innovative manufacturing methods for the delivery and production of individualized dosing and personalized treatments. In accordance with the changes observed in healthcare systems towards more innovative therapies, this paper presents dropwise additive manufacturing of pharmaceutical products (DAMPP) for small scale, distributed manufacturing of individualized dosing as an alternative to conventional manufacturing methods A dropwise additive manufacturing process for amorphous and self-emulsifying drug delivery systems is reported, which utilizes drop-on-demand printing technology for automated and controlled deposition of melt-based formulations onto inert tablets. The advantages of drop on demand technology include reproducible production of droplets with adjustable sizing and high placement accuracy, which enable production of individualized dosing even for low dose and high potency drugs. Flexible use of different formulations, such as lipid-based formulations, allows enhancement of the solubility of poorly water soluble and highly lipophilic drugs with DAMPP. Here, DAMPP is used to produce solid oral dosage forms from melts of an active pharmaceutical ingredient and a surfactant. The dosage forms are analyzed to show the amorphous nature, self-emulsifying drug delivery system characteristics and dissolution behavior of these formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Lessons Learned from Gemcitabine: Impact of Therapeutic Carrier Systems and Gemcitabine's Drug Conjugates on Cancer Therapy.

    PubMed

    Dyawanapelly, Sathish; Kumar, Animesh; Chourasia, Manish K

    2017-01-01

    Currently, drug delivery systems have a high impact in cancer therapy and are receiving more attention than conventional cancer treatment modalities. Compared with current cancer therapies, gemcitabine (2', 2'-difluoro-2'-deoxycytidine) has been proven to be an effective chemotherapeutic agent against pancreatic, colon, bladder, breast, ovarian, non-small-cell lung, and head and neck cancers in combination with other anticancer agents. To improve the safety and efficacy of cytotoxic drugs, several drug delivery systems have been explored. This review outlines the recent work directed toward gemcitabine delivery systems for cancer therapy, including aerosols, polymeric nanoparticles, liposomes, microparticles, carbon nanotubes, and multifunctional theranostic nanomedicines. It also provides insight into the design and development of gemcitabine conjugation for safe and effective cancer therapy. Despite the clinical promises of gemcitabine, many therapeutic challenges remain. Specifically, its therapeutic use in cancer chemotherapy is impeded by a short biological half-life, caused by its rapid metabolism, and resistance due to increased expression of ribonucleotide reductase. In our opinion, many research investigations have contributed to improve the selectivity and efficacy of gemcitabine. This combined approach of drug delivery systems and gemcitabine conjugates has shown promising efficacy in preclinical models and significant potential for future clinical cancer-therapeutic applications. Also, these strategies overcome most of the aforementioned limits of gemcitabine.

  14. Software Implements a Space-Mission File-Transfer Protocol

    NASA Technical Reports Server (NTRS)

    Rundstrom, Kathleen; Ho, Son Q.; Levesque, Michael; Sanders, Felicia; Burleigh, Scott; Veregge, John

    2004-01-01

    CFDP is a computer program that implements the CCSDS (Consultative Committee for Space Data Systems) File Delivery Protocol, which is an international standard for automatic, reliable transfers of files of data between locations on Earth and in outer space. CFDP administers concurrent file transfers in both directions, delivery of data out of transmission order, reliable and unreliable transmission modes, and automatic retransmission of lost or corrupted data by use of one or more of several lost-segment-detection modes. The program also implements several data-integrity measures, including file checksums and optional cyclic redundancy checks for each protocol data unit. The metadata accompanying each file can include messages to users application programs and commands for operating on remote file systems.

  15. Through-Metal-Wall Power Delivery and Data Transmission for Enclosed Sensors: A Review

    PubMed Central

    Yang, Ding-Xin; Hu, Zheng; Zhao, Hong; Hu, Hai-Feng; Sun, Yun-Zhe; Hou, Bao-Jian

    2015-01-01

    The aim of this review was to assess the current viable technologies for wireless power delivery and data transmission through metal barriers. Using such technologies sensors enclosed in hermetical metal containers can be powered and communicate through exterior power sources without penetration of the metal wall for wire feed-throughs. In this review, we first discuss the significant and essential requirements for through-metal-wall power delivery and data transmission and then we: (1) describe three electromagnetic coupling based techniques reported in the literature, which include inductive coupling, capacitive coupling, and magnetic resonance coupling; (2) present a detailed review of wireless ultrasonic through-metal-wall power delivery and/or data transmission methods; (3) compare various ultrasonic through-metal-wall systems in modeling, transducer configuration and communication mode with sensors; (4) summarize the characteristics of electromagnetic-based and ultrasound-based systems, evaluate the challenges and development trends. We conclude that electromagnetic coupling methods are suitable for through thin non-ferromagnetic metal wall power delivery and data transmission at a relatively low data rate; piezoelectric transducer-based ultrasonic systems are particularly advantageous in achieving high power transfer efficiency and high data rates; the combination of more than one single technique may provide a more practical and reliable solution for long term operation. PMID:26694392

  16. Solid lipid nanoparticles as insulin inhalation carriers for enhanced pulmonary delivery.

    PubMed

    Bi, Ru; Shao, Wei; Wang, Qun; Zhang, Na

    2009-02-01

    Growing attentions have been paid to the pulmonary route for systemic delivery of peptide and protein drugs, such as insulin. Advantages of this non-injective route include rapid drug deposition in the target organ, fewer systemic side effects and avoiding first pass metabolism. However, sustained release formulations for pulmonary delivery have not been fully exploited till now. In our study, a novel dry powder inhalation (DPI) system of insulin loaded solid lipid nanoparticles (Ins-SLNs) was investigated for prolonged drug release, improved stability and effective inhalation. Firstly, the drug was incorporated into the lipid carriers for a maximum entrapment efficiency as high as 69.47 +/- 3.27% (n = 3). Secondly, DPI formulation was prepared by spray freeze drying of Ins-SLNs suspension, with optimized lyoprotectant and technique parameters in this procedure. The properties of DPI particles were characterized for their pulmonary delivery potency. Thirdly, the in vivo study of intratracheal instillation of Ins-SLNs to diabetic rats showed prolonged hypoglycemic effect and a relative pharmacological bioavailability of 44.40% could be achieved in the group of 8 IU/kg dosage. These results indicated that SLNs have shown increasing potential as an efficient and non-toxic lipophilic colloidal drug carrier for enhanced pulmonary delivery of insulin.

  17. Strategies of targeting oral drug delivery systems to the colon and their potential use for the treatment of colorectal cancer.

    PubMed

    Krishnaiah, Yellela S R; Khan, Mansoor A

    2012-01-01

    Colorectal cancer (CRC) is the third most common cause of cancer-related death in both men and women. Often, surgical intervention remains the choice in treating CRC. Traditional dosage forms used for treating CRC deliver drug to wanted as well as unwanted sites of drug action resulting in several adverse side effects. Targeted oral drug delivery systems are being investigated to target and deliver chemotherapeutic and chemopreventive agents directly to colon and rectum. Site-specific delivery of a drug to colon increases its concentration at the target site, and thus requires a lower dose with reduced incidence of side effects. The major obstacle to be overcome for successful targeting of drug to colon through oral route is that drug absorption/degradation must be avoided in stomach and small intestine before the dosage form reaches colon. The review includes discussion of physiological factors that must be considered when targeting drugs directly to colorectal region, an outline on drugs used for treatment and prevention of CRC, and a brief description of various types of colon-targeted oral drug delivery systems. The focus is on the assessment of various formulation approaches being investigated for oral colon-specific delivery of drugs used in the treatment and prevention of CRC.

  18. Systems and method for delivering liquified gas to an engine

    DOEpatents

    Bingham, Dennis N.; Wilding, Bruce M.; O'Brien, James E.; Siahpush, Ali S.; Brown, Kevin B.

    2002-01-01

    A liquified gas delivery system for a motorized platform includes a holding tank configured to receive liquified gas. A first conduit extends from a vapor holding portion of the tank to a valve device. A second conduit extends from a liquid holding portion of the tank to the valve device. Fluid coupled to the valve device is a vaporizer which is in communication with an engine. The valve device selectively withdraws either liquified gas or liquified gas vapor from the tank depending on the pressure within the vapor holding portion of the tank. Various configurations of the delivery system can be utilized for pressurizing the tank during operation.

  19. Systems for delivering liquified gas to an engine

    DOEpatents

    Bingham, Dennis N.; Wilding, Bruce M.; O'Brien, James E.; Siahpush, Ali S.; Brown, Kevin B.

    2006-05-16

    A liquified gas delivery system for a motorized platform includes a holding tank configured to receive liquified gas. A first conduit extends from a vapor holding portion of the tank to a valve device. A second conduit extends from a liquid holding portion of the tank to the valve device. Fluid coupled to the valve device is a vaporizer which is in communication with an engine. The valve device selectively withdraws either liquified gas or liquified gas vapor from the tank depending on the pressure within the vapor holding portion of the tank. Various configurations of the delivery system can be utilized for pressurizing the tank during operation.

  20. The Primary Mechanism of Cellular Internalization for a Short Cell- Penetrating Peptide as a Nano-Scale Delivery System.

    PubMed

    Liu, Betty R; Huang, Yue-Wern; Korivi, Mallikarjuna; Lo, Shih-Yen; Aronstam, Robert S; Lee, Han-Jung

    2017-01-01

    Development of effective drug delivery systems (DDS) is a critical issue in health care and medicine. Advances in molecular biology and nanotechnology have allowed the introduction of nanomaterial-based drug delivery systems. Cell-penetrating peptides (CPPs) can form the basis of drug delivery systems by virtue of their ability to support the transport of cargoes into the cell. Potential cargoes include proteins, DNA, RNA, liposomes, and nanomaterials. These cargoes generally retain their bioactivities upon entering cells. In the present study, the smallest, fully-active lactoferricin-derived CPP, L5a is used to demonstrate the primary contributor of cellular internalization. The secondary helical structure of L5a encompasses symmetrical positive charges around the periphery. The contributions of cell-specificity, peptide length, concentration, zeta potential, particle size, and spatial structure of the peptides were examined, but only zeta potential and spatial structure affected protein transduction efficiency. FITC-labeled L5a appeared to enter cells via direct membrane translocation insofar as endocytic modulators did not block FITC-L5a entry. This is the same mechanism of protein transduction active in Cy5 labeled DNA delivery mediated by FITC-L5a. A significant reduction of transduction efficiency was observed with structurally incomplete FITC-L5a formed by tryptic destruction, in which case the mechanism of internalization switched to a classical energydependent endocytosis pathway. These results support the continued development of the non-cytotoxic L5a as an efficient tool for drug delivery. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Health Systems Innovation at Academic Health Centers: Leading in a New Era of Health Care Delivery.

    PubMed

    Ellner, Andrew L; Stout, Somava; Sullivan, Erin E; Griffiths, Elizabeth P; Mountjoy, Ashlin; Phillips, Russell S

    2015-07-01

    Challenged by demands to reduce costs and improve service delivery, the U.S. health care system requires transformational change. Health systems innovation is defined broadly as novel ideas, products, services, and processes-including new ways to promote healthy behaviors and better integrate health services with public health and other social services-which achieve better health outcomes and/or patient experience at equal or lower cost. Academic health centers (AHCs) have an opportunity to focus their considerable influence and expertise on health systems innovation to create new approaches to service delivery and to nurture leaders of transformation. AHCs have traditionally used their promotions criteria to signal their values; creating a health systems innovator promotion track could be a critical step towards creating opportunities for innovators in academic medicine. In this Perspective, the authors review publicly available promotions materials at top-ranked medical schools and find that while criteria for advancement increasingly recognize systems innovation, there is a lack of specificity on metrics beyond the traditional yardstick of peer-reviewed publications. In addition to new promotions pathways and alternative evidence for the impact of scholarship, other approaches to fostering health systems innovation at AHCs include more robust funding for career development in health systems innovation, new curricula to enable trainees to develop skills in health systems innovation, and new ways for innovators to disseminate their work. AHCs that foster health systems innovation could meet a critical need to contribute both to the sustainability of our health care system and to AHCs' continued leadership role within it.

  2. Construction of a controlled-release delivery system for pesticides using biodegradable PLA-based microcapsules.

    PubMed

    Liu, Baoxia; Wang, Yan; Yang, Fei; Wang, Xing; Shen, Hong; Cui, Haixin; Wu, Decheng

    2016-08-01

    Conventional pesticides usually need to be used in more than recommended dosages due to their loss and degradation, which results in a large waste of resources and serious environmental pollution. Encapsulation of pesticides in biodegradable carriers is a feasible approach to develop environment-friendly and efficient controlled-release delivery system. In this work, we fabricated three kinds of polylactic acid (PLA) carriers including microspheres, microcapsules, and porous microcapsules for controlled delivery of Lambda-Cyhalothrin (LC) via premix membrane emulsification (PME). The microcapsule delivery system had better water dispersion than the other two systems. Various microcapsules with a high LC contents as much as 40% and tunable sizes from 0.68 to 4.6μm were constructed by manipulating the process parameters. Compared with LC technical and commercial microcapsule formulation, the microcapsule systems showed a significantly sustained release of LC for a longer period. The LC release triggered by LC diffusion and matrix degradation could be optimally regulated by tuning LC contents and particle sizes of the microcapsules. This multi-regulated release capability is of great significance to achieve the precisely controlled release of pesticides. A preliminary bioassay against plutella xylostella revealed that 0.68μm LC-loaded microcapsules with good UV and thermal stability exhibited an activity similar to a commercial microcapsule formulation. These results demonstrated such an aqueous microcapsule delivery system had a great potential to be further explored for developing an effective and environmentally friendly pesticide-release formulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. The in vitro and in vivo investigation of a novel small chamber dry powder inhalation delivery system for preclinical dosing to rats.

    PubMed

    Sellers, Shari; Horodnik, Walter; House, Aileen; Wylie, Jennifer; Mauser, Peter; Donovan, Brent

    2015-01-01

    This research describes a novel "minitower" dry powder delivery system for nose-only delivery of dry powder aerosols to spontaneously breathing rats. The minitower system forces pressurized air through pre-filled capsules to deliver aerosolized drug to four nose ports; three of which house spontaneously breathing rats, with the fourth used as a control. Within each port are vent filters which capture drug that was not inhaled for further quantitation. These vent filters along with a novel control system referred to as the "artificial rat lung", allow for the theoretical amount of drug delivered and subsequently inhaled by each rat to be calculated. In vitro and in vivo studies have demonstrated this system's ability to deliver aerosolized drug to rats. The in vitro study showed that ∼30% of the starting dose reached the 4 ports and was available for inhalation. During in-vivo studies, rats inhaled ∼34% of the delivered dose. Of the estimated inhaled dose, 12-18% was detectable in the various tissue samples, with over 30% of the recovered dose found in the rat's lungs. Results show that this system is capable of reproducibly delivering drug to the lungs of spontaneously breathing rats. Advantages over current delivery methods include being amenable to the administration of multiple doses and using less (milligram) amount of starting material. In addition, this technique avoids anesthesia which is typically required for instillation or insufflation, and thus has the potential as an efficient and noninvasive aerosol delivery method for preclinical drug development.

  4. Local drug delivery agents as adjuncts to endodontic and periodontal therapy

    PubMed Central

    Puri, K; Puri, N

    2013-01-01

    Abstract In the treatment of intracanal and periodontal infections, the local application of antibiotics and other therapeutic agents in the root canal or in periodontal pockets may be a promising approach to achieve sustained/controlled drug release, high antimicrobial activity and low systemic side effects. The conventional method for the elimination of subgingival microbial infection includes mechanical debridement, irrigation with antimicrobial agents or surgical access. But, the effectiveness of conventional nonsurgical treatment is limited by lack of accessibility to bacteria in deeper periodontal pockets, and/or does not completely eliminate intracanal microorganisms. Surgical intervention may be beneficial but cannot be done in all cases, medically compromised cases and also in patients not willing to be subjected to surgical therapy. Development of local drug delivery systems provides an answer to all such difficulties. This comprehensive review tries to cover the detailed information about the latest advances in the various local drug delivery systems, their indications, contraindications and their advantages over systemic drug therapy. PMID:24868252

  5. Development of drug-loaded polymer microcapsules for treatment of epilepsy.

    PubMed

    Chen, Yu; Gu, Qi; Yue, Zhilian; Crook, Jeremy M; Moulton, Simon E; Cook, Mark J; Wallace, Gordon G

    2017-09-26

    Despite significant progress in developing new drugs for seizure control, epilepsy still affects 1% of the global population and is drug-resistant in more than 30% of cases. To improve the therapeutic efficacy of epilepsy medication, a promising approach is to deliver anti-epilepsy drugs directly to affected brain areas using local drug delivery systems. The drug delivery systems must meet a number of criteria, including high drug loading efficiency, biodegradability, neuro-cytocompatibility and predictable drug release profiles. Here we report the development of fibre- and sphere-based microcapsules that exhibit controllable uniform morphologies and drug release profiles as predicted by mathematical modelling. Importantly, both forms of fabricated microcapsules are compatible with human brain derived neural stem cells and differentiated neurons and neuroglia, indicating clinical compliance for neural implantation and therapeutic drug delivery.

  6. Quantitative analysis of beam delivery parameters and treatment process time for proton beam therapy.

    PubMed

    Suzuki, Kazumichi; Gillin, Michael T; Sahoo, Narayan; Zhu, X Ronald; Lee, Andrew K; Lippy, Denise

    2011-07-01

    To evaluate patient census, equipment clinical availability, maximum daily treatment capacity, use factor for major beam delivery parameters, and treatment process time for actual treatments delivered by proton therapy systems. The authors have been recording all beam delivery parameters, including delivered dose, energy, range, spread-out Bragg peak widths, gantry angles, and couch angles for every treatment field in an electronic medical record system. We analyzed delivery system downtimes that had been recorded for every equipment failure and associated incidents. These data were used to evaluate the use factor of beam delivery parameters, the size of the patient census, and the equipment clinical availability of the facility. The duration of each treatment session from patient walk-in and to patient walk-out of the treatment room was measured for 82 patients with cancers at various sites. The yearly average equipment clinical availability in the last 3 yrs (June 2007-August 2010) was 97%, which exceeded the target of 95%. Approximately 2200 patients had been treated as of August 2010. The major disease sites were genitourinary (49%), thoracic (25%), central nervous system (22%), and gastrointestinal (2%). Beams have been delivered in approximately 8300 treatment fields. The use factor for six beam delivery parameters was also evaluated. Analysis of the treatment process times indicated that approximately 80% of this time was spent for patient and equipment setup. The other 20% was spent waiting for beam delivery and beam on. The total treatment process time can be expressed by a quadratic polynomial of the number of fields per session. The maximum daily treatment capacity of our facility using the current treatment processes was estimated to be 133 +/- 35 patients. This analysis shows that the facility has operated at a high performance level and has treated a large number of patients with a variety of diseases. The use factor of beam delivery parameters varies by disease site. Further improvements in efficiency may be realized in the equipment- and patient-related processes of treatment.

  7. Transdermal delivery and cutaneous targeting of antivirals using a penetration enhancer and lysolipid prodrugs.

    PubMed

    Diblíková, Denisa; Kopečná, Monika; Školová, Barbora; Krečmerová, Marcela; Roh, Jaroslav; Hrabálek, Alexandr; Vávrová, Kateřina

    2014-04-01

    In this work, we investigate prodrug and enhancer approaches for transdermal and topical delivery of antiviral drugs belonging to the 2,6-diaminopurine acyclic nucleoside phosphonate (ANP) group. Our question was whether we can differentiate between transdermal and topical delivery, i.e., to control the delivery of a given drug towards either systemic absorption or retention in the skin. The in vitro transdermal delivery and skin concentrations of seven antivirals, including (R)- and (S)-9-[2-(phosphonomethoxy)propyl]-2,6-diaminopurine (PMPDAP), (S)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]-2,6-diaminopurine ((S)-HPMPDAP), its 8-aza analog, and their cyclic and hexadecyloxypropyl (HDP) prodrugs, was investigated with and without the penetration enhancer dodecyl-6-(dimethylamino)hexanoate (DDAK) using human skin. The ability of ANPs to cross the human skin barrier was very low (0.5-1.4 nmol/cm(2)/h), and the majority of the compounds were found in the stratum corneum, the uppermost skin layer. The combination of antivirals and the penetration enhancer DDAK proved to be a viable approach for transdermal delivery, especially in case of (R)-PMPDAP, an anti-HIV effective drug (30.2 ± 2.3 nmol/cm(2)/h). On the other hand, lysophospholipid-like HDP prodrugs, e.g., HDP-(S)-HPMPDAP, reached high concentrations in viable epidermis without significant systemic absorption. By using penetration enhancers or lysolipid prodrugs, it is possible to effectively target systemic diseases by the transdermal route or to target cutaneous pathologies by topical delivery.

  8. Calculating length of gestation from the Society for Assisted Reproductive Technology Clinic Outcome Reporting System (SART CORS) database versus vital records may alter reported rates of prematurity.

    PubMed

    Stern, Judy E; Kotelchuck, Milton; Luke, Barbara; Declercq, Eugene; Cabral, Howard; Diop, Hafsatou

    2014-05-01

    To compare length of gestation after assisted reproductive technology (ART) as calculated by three methods from the Society for Assisted Reproductive Technology Clinic Outcome Reporting System (SART CORS) and vital records (birth and fetal death) in the Massachusetts Pregnancy to Early Life Longitudinal Data System (PELL). Historical cohort study. Database linkage analysis. Live or stillborn deliveries. None. ART deliveries were linked to live birth or fetal death certificates. Length of gestation in 7,171 deliveries from fresh autologous ART cycles (2004-2008) was calculated and compared with that of SART CORS with the use of methods: M1 = outcome date - cycle start date; M2 = outcome date - transfer date + 17 days; and M3 = outcome date - transfer date + 14 days + day of transfer. Generalized estimating equation models were used to compare methods. Singleton and multiple deliveries were included. Overall prematurity (delivery <37 weeks) varied by method of calculation: M1 29.1%; M2 25.6%; M3 25.2%; and PELL 27.2%. The SART methods, M1-M3, varied from those of PELL by ≥ 3 days in >45% of deliveries and by more than 1 week in >22% of deliveries. Each method differed from each other. Estimates of preterm birth in ART vary depending on source of data and method of calculation. Some estimates may overestimate preterm birth rates for ART conceptions. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  9. Current understanding of interactions between nanoparticles and the immune system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobrovolskaia, Marina A., E-mail: marina@mail.nih.

    2016-05-15

    The delivery of drugs, antigens, and imaging agents benefits from using nanotechnology-based carriers. The successful translation of nanoformulations to the clinic involves thorough assessment of their safety profiles, which, among other end-points, includes evaluation of immunotoxicity. The past decade of research focusing on nanoparticle interaction with the immune system has been fruitful in terms of understanding the basics of nanoparticle immunocompatibility, developing a bioanalytical infrastructure to screen for nanoparticle-mediated immune reactions, beginning to uncover the mechanisms of nanoparticle immunotoxicity, and utilizing current knowledge about the structure–activity relationship between nanoparticles' physicochemical properties and their effects on the immune system to guidemore » safe drug delivery. In the present review, we focus on the most prominent pieces of the nanoparticle–immune system puzzle and discuss the achievements, disappointments, and lessons learned over the past 15 years of research on the immunotoxicity of engineered nanomaterials. - Graphical abstract: API — active pharmaceutical ingredient; NP — nanoparticles; PCP — physicochemical properties, CARPA — complement activation-related pseudoallergy, ICH — International Conference on Harmonization. Display Omitted - Highlights: • Achievements, disappointments and lessons learned over past decade are reviewed. • Areas in focus include characterization, immunotoxicity and utility in drug delivery. • Future direction focusing on mechanistic immunotoxicity studies is proposed.« less

  10. Discovery of Cationic Polymers for Non-viral Gene Delivery using Combinatorial Approaches

    PubMed Central

    Barua, Sutapa; Ramos, James; Potta, Thrimoorthy; Taylor, David; Huang, Huang-Chiao; Montanez, Gabriela; Rege, Kaushal

    2015-01-01

    Gene therapy is an attractive treatment option for diseases of genetic origin, including several cancers and cardiovascular diseases. While viruses are effective vectors for delivering exogenous genes to cells, concerns related to insertional mutagenesis, immunogenicity, lack of tropism, decay and high production costs necessitate the discovery of non-viral methods. Significant efforts have been focused on cationic polymers as non-viral alternatives for gene delivery. Recent studies have employed combinatorial syntheses and parallel screening methods for enhancing the efficacy of gene delivery, biocompatibility of the delivery vehicle, and overcoming cellular level barriers as they relate to polymer-mediated transgene uptake, transport, transcription, and expression. This review summarizes and discusses recent advances in combinatorial syntheses and parallel screening of cationic polymer libraries for the discovery of efficient and safe gene delivery systems. PMID:21843141

  11. Non-viral gene therapy for bone tissue engineering.

    PubMed

    Wegman, Fiona; Oner, F Cumhur; Dhert, Wouter J A; Alblas, Jacqueline

    2013-01-01

    The possibilities of using gene therapy for bone regeneration have been extensively investigated. Improvements in the design of new transfection agents, combining vectors and delivery/release systems to diminish cytotoxicity and increase transfection efficiencies have led to several successful in vitro, ex vivo and in vivo strategies. These include growth factor or short interfering ribonucleic acid (siRNA) delivery, or even enzyme replacement therapies, and have led to increased osteogenic differentiation and bone formation in vivo. These results provide optimism to consider use in humans with some of these gene-delivery strategies in the near future.

  12. Advances in Nanotechnology for Efficacious and Stable Formulation Development

    NASA Technical Reports Server (NTRS)

    Putcha, Lakshimi

    2012-01-01

    Current operational medical kits aboard the International Space Station (ISS) include an array of medications intended for the treatment of minor ambulatory care symptoms, first aid, and basic life support. All medications contained in the flight kits are commercially available off-the-shelf formulations used for treatment of illnesses on Earth. However, transport and stowage of supplies including medications for space missions are exposed to adverse environmental conditions and extended shelf-life demands. Proposed missions to Mars and near-Earth objects such as asteroid 1999 AO10 will present crew health risk that is different both quantitatively and qualitatively from those encountered on ISS missions. Few drug options are available at the present time for mitigation of crew health risk of planned space exploration missions. Alternatives to standard oral formulations that include sustained and targeted delivery technologies for preventive healthcare in space will be a welcome addition to the space formulary and may include controlled release topical, sub-cutaneous, intranasal and inhalation dosage forms. An example of such a technology development endeavor can be nanotechnology-based multi-stage drug cocktail and vaccine delivery systems. Nanostructures also have the ability to protect drugs encapsulated within them from physiologic degradation, target their delivery with sustained release and are suitable for per oral routes of administration. The use of nanostructures such as polymeric nanoparticles offers a non-invasive approach for penetrating the blood brain barrier. Finally, nanotechnology offers great potential for the development of safe and efficacious drug delivery systems for preventive health care in space and on Earth.

  13. Trace explosives sensor testbed (TESTbed)

    NASA Astrophysics Data System (ADS)

    Collins, Greg E.; Malito, Michael P.; Tamanaha, Cy R.; Hammond, Mark H.; Giordano, Braden C.; Lubrano, Adam L.; Field, Christopher R.; Rogers, Duane A.; Jeffries, Russell A.; Colton, Richard J.; Rose-Pehrsson, Susan L.

    2017-03-01

    A novel vapor delivery testbed, referred to as the Trace Explosives Sensor Testbed, or TESTbed, is demonstrated that is amenable to both high- and low-volatility explosives vapors including nitromethane, nitroglycerine, ethylene glycol dinitrate, triacetone triperoxide, 2,4,6-trinitrotoluene, pentaerythritol tetranitrate, and hexahydro-1,3,5-trinitro-1,3,5-triazine. The TESTbed incorporates a six-port dual-line manifold system allowing for rapid actuation between a dedicated clean air source and a trace explosives vapor source. Explosives and explosives-related vapors can be sourced through a number of means including gas cylinders, permeation tube ovens, dynamic headspace chambers, and a Pneumatically Modulated Liquid Delivery System coupled to a perfluoroalkoxy total-consumption microflow nebulizer. Key features of the TESTbed include continuous and pulseless control of trace vapor concentrations with wide dynamic range of concentration generation, six sampling ports with reproducible vapor profile outputs, limited low-volatility explosives adsorption to the manifold surface, temperature and humidity control of the vapor stream, and a graphical user interface for system operation and testing protocol implementation.

  14. Controlled-release, pegylation, liposomal formulations: new mechanisms in the delivery of injectable drugs.

    PubMed

    Reddy, K R

    2000-01-01

    To review recent developments in novel injectable drug delivery mechanisms and outline the advantages and disadvantages of each. A MEDLINE (1995-January 2000) search using the terms polyethylene glycol, liposomes, polymers, polylactic acid, and controlled release was conducted. Additional references were identified by scanning bibliographies. All articles were considered for inclusion. Abstracts were included only if they were judged to add critical information not otherwise available in the medical literature. A number of systems that alter the delivery of injectable drugs have been developed in attempts to improve pharmacodynamic and pharmacokinetic properties of therapeutic agents. New drug delivery systems can be produced either through a change in formulation (e.g., continuous-release products, liposomes) or an addition to the drug molecule (e.g., pegylation). Potential advantages of new delivery mechanisms include an increased or prolonged duration of pharmacologic activity, a decrease in adverse effects, and increased patient compliance and quality of life. Injectable continuous-release systems deliver drugs in a controlled, predetermined fashion and are particularly appropriate when it is important to avoid large fluctuations in plasma drug concentrations. Encapsulating a drug within a liposome can produce a prolonged half-life and a shift of distribution toward tissues with increased capillary permeability (e.g., tumors, infected tissue). Pegylation provides a method for modification of therapeutic proteins to minimize many of the limitations (e.g., poor stability, short half-life, immunogenicity) associated with these agents. Pegylation of therapeutic proteins is an established process with new applications. However, not all pegylated proteins are alike, and each requires optimization on a protein-by-protein basis to derive maximum clinical benefit. The language required to describe each pegylated therapeutic protein must be more precise to accurately distinguish each protein's differential pharmacologic properties.

  15. Beyond the rhetoric: what do we mean by a 'model of care'?

    PubMed

    Davidson, Patricia; Halcomb, Elizabeth; Hickman, L; Phillips, J; Graham, B

    2006-01-01

    Contemporary health care systems are constantly challenged to revise traditional methods of health care delivery. These challenges are multifaceted and stem from: (1) novel pharmacological and non-pharmacological treatments; (2) changes in consumer demands and expectations; (3) fiscal and resource constraints; (4) changes in societal demographics in particular the ageing of society; (5) an increasing burden of chronic disease; (6) documentation of limitations in traditional health care delivery; (7) increased emphasis on transparency, accountability, evidence-based practice (EBP) and clinical governance structures; and (8) the increasing cultural diversity of the community. These challenges provoke discussion of potential alternative models of care, with scant reference to defining what constitutes a model of care. This paper aims to define what is meant by the term 'model of care' and document the pragmatic systems and processes necessary to develop, plan, implement and evaluate novel models of care delivery. Searches of electronic databases, the reference lists of published materials, policy documents and the Internet were conducted using key words including 'model*', 'framework*', 'models, theoretical' and 'nursing models, theoretical'. The collated material was then analysed and synthesised into this review. This review determined that in addition to key conceptual and theoretical perspectives, quality improvement theory (eg. collaborative methodology), project management methods and change management theory inform both pragmatic and conceptual elements of a model of care. Crucial elements in changing health care delivery through the development of innovative models of care include the planning, development, implementation, evaluation and assessment of the sustainability of the new model. Regardless of whether change in health care delivery is attempted on a micro basis (eg. ward level) or macro basis (eg. national or state system) in order to achieve sustainable, effective and efficient changes a well-planned, systematic process is essential.

  16. Advanced Materials and Processing for Drug Delivery: The Past and the Future

    PubMed Central

    Zhang, Ying; Chan, Hon Fai; Leong, Kam W.

    2012-01-01

    Design and synthesis of efficient drug delivery systems are of vital importance for medicine and healthcare. Materials innovation and nanotechnology have synergistically fueled the advancement of drug delivery. Innovation in material chemistry allows the generation of biodegradable, biocompatible, environment-responsive, and targeted delivery systems. Nanotechnology enables control over size, shape and multi-functionality of particulate drug delivery systems. In this review, we focus on the materials innovation and processing of drug delivery systems and how these advances have shaped the past and may influence the future of drug delivery. PMID:23088863

  17. The impact of health plan delivery system organization on clinical quality and patient satisfaction.

    PubMed

    Gillies, Robin R; Chenok, Kate Eresian; Shortell, Stephen M; Pawlson, Gregory; Wimbush, Julian J

    2006-08-01

    The purpose of this study was to examine the extent to which measures of health plan clinical performance and measures of patient perceptions of care are associated with health plan organizational characteristics, including the percentage of care provided based on a group or staff model delivery system, for-profit (tax) status, and affiliation with a national managed care firm. Data describing health plans on region, age of health plan, for-profit status, affiliation with a national managed care firm, percentage of Medicare business, total enrollment, ratio of primary care physicians to specialists, HMO penetration, and form of health care delivery system (e.g., IPA, network, mixed, staff, group) were obtained from InterStudy. Clinical performance measures for women's health screening rates, child and adolescent immunization rates, heart disease screening rates, diabetes screening rates, and smoking cessation were developed from HEDIS data. Measures of patient perceptions of care are obtained from CAHPS survey data submitted as Healthplan Employer Data and Information Set, Consumer Assessment of Health Plans 2.0 H. Multivariate regression cross-sectional analysis of 272 health plans was used to evaluate the relationship of health plan characteristics with measures of clinical performance and patient perceptions of care. The form of delivery system, measured by percent of care delivered by staff and group model systems, is significantly related (p < or = .05) with four of the five clinical performance indices but none of the three satisfaction performance indices. Other variables significantly associated with performance were being geographically located in the Northeast, having nonprofit status, and for patient satisfaction, not being part of a larger insurance company. These comparative results provide evidence suggesting that the type of delivery system used by health plans is related to many clinical performance measures but is not related to patient perceptions of care. These findings underscore the importance of the form of the delivery system and the need for further inquiry that examines the relationship between organizational form and performance.

  18. Managing Decline in Rural School Systems: Program Organization and Delivery.

    ERIC Educational Resources Information Center

    Sackney, L. E.

    Organizational theory offers rural school administrators several ways of thinking about retrenchment made necessary by declining enrollment. Obstacles to innovative responses to retrenchment include a shift in how organizations are perceived: from closed systems in which rational decisions are made about changes, to open systems in which…

  19. The Integrated Library System of the 1990s: The OhioLINK Experience.

    ERIC Educational Resources Information Center

    Hawks, Carol Pitts

    1992-01-01

    Discussion of integrated library systems focuses on the development of the Ohio Library and Information Network (OhioLINK). Capabilities of eight existing systems are described, including catalog creation and maintenance; the online public access catalog (OPAC); circulation, interlibrary loan, and document delivery; acquisitions and serials…

  20. Recommendations for routine reporting on indications for cesarean delivery in developing countries.

    PubMed

    Stanton, Cynthia; Ronsmans, Carine

    2008-09-01

    Cesarean delivery rates are increasing rapidly in many developing countries, particularly among wealthy women. Poor women have lower rates, often so low that they do not reach the minimum rate of 1 percent. Little data are available on clinical indications for cesarean section, information that could assist in understanding why cesarean delivery rates have changed. This paper presents recommendations for routine reporting on indications for cesarean delivery in developing countries. These recommendations resulted from an international consultation of researchers held in February 2006 to promote the collection of comparable data to understand change in, or composition of, the cesarean delivery rate in developing countries. Data are presented from selected countries, categorizing cesareans by three classification systems. A single classification system was recommended for use in both high and low cesarean delivery rate settings, given that underuse and overuse of cesarean section are evident within many populations. The group recommended a hierarchical categorization, prioritizing cesareans performed for absolute maternal indications. Categorization among the remaining nonabsolute indications is based on the primary indication for the procedure and include maternal and fetal indications and psychosocial indications, required for high cesarean delivery rate settings. Data on indications for cesarean sections are available everywhere the procedure is performed. All that is required is compilation and review at facility and at higher levels. Advocacy within ministries of health and medical professional organizations is required to advance these recommendations since researchers have inadequately communicated the health effects of both underuse and overuse of cesarean delivery.

  1. Systems, Stakeholders, and Students: Including Students in School Reform

    ERIC Educational Resources Information Center

    Zion, Shelley D.

    2009-01-01

    The education system in the United States is under pressure from a variety of sources to reform and improve the delivery of educational services to students. Change across a system as complex and dynamic as the educational system requires a systemic approach and requires the participation or buy-in of all participants and stakeholders. This…

  2. Transitioning From Volume to Value: One Academic Medical Center's Approach to Improving Population Health.

    PubMed

    Halvorson, Stephanie A C; Tanski, Mary E; Yackel, Thomas R

    2017-05-01

    The U.S. health care system is undergoing a major transformation. Clinical delivery systems are now being paid according to the value of the care they provide, in accordance with the Triple Aim, which incorporates improving the quality and cost of care and the patient experience. Increasingly, financial risk is being transferred from insurers to clinical delivery systems that become responsible for both episode-based clinical care and the longitudinal care of patients. Thus, these delivery systems need to develop strategies to manage the health of populations. Academic medical centers (AMCs) serve a unique role in many markets yet may be ill prepared for this transformation. In 2013, Oregon Health & Science University (OHSU) partnered with a large health insurer and six other hospitals across the state to form Propel Health, a collaborative partnership designed to deliver the tools, methods, and support necessary for population health management. OHSU also developed new internal structures and transformed its business model to embrace this value-based care model. Each Propel Health partner included the employees and dependents enrolled in its employee medical plan, for approximately 55,000 covered individuals initially. By 2017, Propel Health is expected to cover 110,000 individuals. Other outcomes to measure in the future include the quality and cost of care provided under this partnership. Anticipated challenges to overcome include insufficient primary care networks, conflicting incentives, local competition, and the magnitude of the transformation. Still, the time is right for AMCs to commit to improving the health of populations.

  3. Multi-pulse drug delivery from a resorbable polymeric microchip device

    NASA Astrophysics Data System (ADS)

    Grayson, Amy C. Richards; Choi, Insung S.; Tyler, Betty M.; Wang, Paul P.; Brem, Henry; Cima, Michael J.; Langer, Robert

    2003-11-01

    Controlled-release drug delivery systems have many applications, including treatments for hormone deficiencies and chronic pain. A biodegradable device that could provide multi-dose drug delivery would be advantageous for long-term treatment of conditions requiring pulsatile drug release. In this work, biodegradable polymeric microchips were fabricated that released four pulses of radiolabelled dextran, human growth hormone or heparin in vitro. Heparin that was released over 142 days retained on average 96 +/- 12% of its bioactivity. The microchips were 1.2 cm in diameter, 480-560 μm thick and had 36 reservoirs that could each be filled with a different chemical. The devices were fabricated from poly(L-lactic acid) and had poly(D,L-lactic-co-glycolic acid) membranes of different molecular masses covering the reservoirs. A drug delivery system can be designed with the potential to release pulses of different drugs at intervals after implantation in a patient by using different molecular masses or materials for the membrane.

  4. Impact of Absorption and Transport on Intelligent Therapeutics and Nano-scale Delivery of Protein Therapeutic Agents

    PubMed Central

    Peppas, Nicholas A.; Carr, Daniel A

    2009-01-01

    The combination of materials design and advances in nanotechnology has led to the development of new therapeutic protein delivery systems. The pulmonary, nasal, buccal and other routes have been investigated as delivery options for protein therapy, but none result in improved patient compliances and patient quality of life as the oral route. For the oral administration of these new systems, an understanding of protein transport is essential because of the dynamic nature of the gastrointestinal tract and the barriers to transport that exist. Models have been developed to describe the transport between the gastrointestinal lumen and the bloodstream, and laboratory techniques like cell culture provide a means to investigate the absorption and transport of many therapeutic agents. Biomaterials, including stimuli-sensitive complexation hydrogels, have been investigated as promising carriers for oral delivery. However, the need to develop models that accurately predict protein blood concentration as a function of the material structure and properties still exists. PMID:20161384

  5. A COMPREHENSIVE INSIGHT ON OCULAR PHARMACOKINETICS

    PubMed Central

    Agrahari, Vibhuti; Mandal, Abhirup; Agrahari, Vivek; Trinh, Hoang My; Joseph, Mary; Ray, Animikh; Hadji, Hicheme; Mitra, Ranjana; Pal, Dhananjay; Mitra, Ashim K.

    2017-01-01

    Eye is a distinctive organ with protective anatomy and physiology. Several pharmacokinetics compartment model of ocular drug delivery has been developed for describing the absorption, distribution and elimination of ocular drugs in the eye. Determining pharmacokinetics parameters in ocular tissues is a major challenge because of the complex anatomy and dynamic physiological barrier of the eye. In this review, pharmacokinetics of these compartments exploring different drugs, delivery systems and routes of administration are discussed including factors affecting intraocular bioavailability. Factors such as pre-corneal fluid drainage, drug binding to tear proteins, systemic drug absorption, corneal factors, melanin binding, drug metabolism renders ocular delivery challenging and elaborated in this manuscript. Several compartment models are discussed those are developed in ocular drug delivery to study the pharmacokinetics parameters. There are several transporters present in both anterior and posterior segments of the eye which play a significant role in ocular pharmacokinetics and summarized briefly. Moreover, several ocular pharmacokinetics animal models and relevant studies are reviewed and discussed in addition to the pharmacokinetics of various ocular formulations. PMID:27798766

  6. Technology-mediated therapy for chronic pain management: the challenges of adapting behavior change interventions for delivery with pervasive communication technology.

    PubMed

    Rosser, Benjamin A; McCullagh, Paul; Davies, Richard; Mountain, Gail A; McCracken, Lance; Eccleston, Christopher

    2011-04-01

    Adapting therapeutic practice from traditional face-to-face exchange to remote technology-based delivery presents challenges for the therapist, patient, and technical writer. This article documents the process of therapy adaptation and the resultant specification for the SMART2 project-a technology-based self-management system for assisting long-term health conditions, including chronic pain. Focus group discussions with healthcare professionals and patients were conducted to inform selection of therapeutic objectives and appropriate technology. Pertinent challenges are identified, relating to (1) reduction and definition of therapeutic objectives, and (2) how to approach adaptation of therapy to a form suited to technology delivery. The requirement of the system to provide dynamic and intelligent responses to patient experience and behavior is also emphasized. Solutions to these challenges are described in the context of the SMART2 technology-based intervention. More explicit discussion and documentation of therapy adaptation to technology-based delivery within the literature is encouraged.

  7. Exploring Current and Future Roles of Non-Dental Professionals: Implications for Dental Hygiene Education.

    PubMed

    Maxey, Hannah L; Farrell, Christine; Gwozdek, Anne

    2017-09-01

    The health care system is undergoing transformation in which oral health is not only valued as an aspect of overall health, but health care delivery systems are aligning to better deliver total patient care. As a result of this transformation, education for many non-dental professionals incorporates oral health content to prepare them to practice in comprehensive delivery models. While some non-dental professionals already incorporate oral health care in their service, many opportunities exist for expansion of oral health care delivery by other non-dental professionals, including radiologic technicians, nursing staff, and human services professionals. As non-dental professionals take on expanded roles in oral health care, the dental hygiene workforce must be prepared to practice in settings with new types of professionals. Dental hygiene curricula should prioritize interprofessional education to best prepare these students for practice in evolved delivery models. This article was written as part of the project "Advancing Dental Education in the 21 st Century."

  8. Nano-based theranostics for chronic obstructive lung diseases: challenges and therapeutic potential.

    PubMed

    Vij, Neeraj

    2011-09-01

    The major challenges in the delivery and therapeutic efficacy of nano-delivery systems in chronic obstructive airway conditions are airway defense, severe inflammation and mucous hypersecretion. Chronic airway inflammation and mucous hypersecretion are hallmarks of chronic obstructive airway diseases, including asthma, COPD (chronic obstructive pulmonary disease) and CF (cystic fibrosis). Distinct etiologies drive inflammation and mucous hypersecretion in these diseases, which are further induced by infection or components of cigarette smoke. Controlling chronic inflammation is at the root of treatments such as corticosteroids, antibiotics or other available drugs, which pose the challenge of sustained delivery of drugs to target cells or tissues. In spite of the wide application of nano-based drug delivery systems, very few are tested to date. Targeted nanoparticle-mediated sustained drug delivery is required to control inflammatory cell chemotaxis, fibrosis, protease-mediated chronic emphysema and/or chronic lung obstruction in COPD. Moreover, targeted epithelial delivery is indispensable for correcting the underlying defects in CF and targeted inflammatory cell delivery for controlling other chronic inflammatory lung diseases. We propose that the design and development of nano-based targeted theranostic vehicles with therapeutic, imaging and airway-defense penetrating capability, will be invaluable for treating chronic obstructive lung diseases. This paper discusses a novel nano-theranostic strategy that we are currently evaluating to treat the underlying cause of CF and COPD lung disease.

  9. Highly efficient in vitro and in vivo delivery of functional RNAs using new versatile MS2-chimeric retrovirus-like particles

    PubMed Central

    Prel, Anne; Caval, Vincent; Gayon, Régis; Ravassard, Philippe; Duthoit, Christine; Payen, Emmanuel; Maouche-Chretien, Leila; Creneguy, Alison; Nguyen, Tuan Huy; Martin, Nicolas; Piver, Eric; Sevrain, Raphaël; Lamouroux, Lucille; Leboulch, Philippe; Deschaseaux, Frédéric; Bouillé, Pascale; Sensébé, Luc; Pagès, Jean-Christophe

    2015-01-01

    RNA delivery is an attractive strategy to achieve transient gene expression in research projects and in cell- or gene-based therapies. Despite significant efforts investigating vector-directed RNA transfer, there is still a requirement for better efficiency of delivery to primary cells and in vivo. Retroviral platforms drive RNA delivery, yet retrovirus RNA-packaging constraints limit gene transfer to two genome-molecules per viral particle. To improve retroviral transfer, we designed a dimerization-independent MS2-driven RNA packaging system using MS2-Coat-retrovirus chimeras. The engineered chimeric particles promoted effective packaging of several types of RNAs and enabled efficient transfer of biologically active RNAs in various cell types, including human CD34+ and iPS cells. Systemic injection of high-titer particles led to gene expression in mouse liver and transferring Cre-recombinase mRNA in muscle permitted widespread editing at the ROSA26 locus. We could further show that the VLPs were able to activate an osteoblast differentiation pathway by delivering RUNX2- or DLX5-mRNA into primary human bone-marrow mesenchymal-stem cells. Thus, the novel chimeric MS2-lentiviral particles are a versatile tool for a wide range of applications including cellular-programming or genome-editing. PMID:26528487

  10. A summary of porous tube plant nutrient delivery system investigations from 1985 to 1991

    NASA Technical Reports Server (NTRS)

    Dreschel, T. W.; Brown, C. S.; Piastuch, W. C.; Hinkle, C. R.; Sager, J. C.; Wheeler, R. M.; Knott, W. M.

    1992-01-01

    The Controlled Ecological Life Support System (CELSS) Program is a research effort to evaluate biological processes at a one person scale to provide air, water, and food for humans in closed environments for space habitation. This program focuses currently on the use of conventional crop plants and the use of hydroponic systems to grow them. Because conventional hydroponic systems are dependent on gravity to conduct solution flow, they cannot be used in the microgravity of space. Thus, there is a need for a system that will deliver water and nutrients to plant roots under microgravity conditions. The Plant Space Biology Program is interested in investigating the effect that the space environment has on the growth and development of plants. Thus, there is also a need to have a standard nutrient delivery method for growing plants in space for research into plant responses to microgravity. The Porous Tube Plant Nutrient Delivery System (PTPNDS) utilizes a hydrophilic, microporous material to control water and nutrient delivery to plant roots. It has been designed and analyzed to support plant growth independent of gravity and plans are progressing to test it in microgravity. It has been used successfully to grow food crops to maturity in an earth-bound laboratory. This document includes a bibliography and summary reports from the growth trials performed utilizing the PTPNDS.

  11. [Nanoscale drug carriers for traditional Chinese medicine research and development].

    PubMed

    Yi, Cheng-xue; Yu, Jiang-nan; Xu, Xi-ming

    2008-08-01

    Nanocarriers generally made of natural or artificial polymers ranging in size from about 10-1 000 nm, possess versatile properties suitable for drug delivery, including good biocompatibility and biodegradability, potential capability of targeted delivery and controlled release of incorporated drugs, and have been extensively used in the development of new drug delivery systems (DDS). These types of nano-DDS have considerable potential to traditional Chinese medicine (TCM), and recently have attracted increasing efforts on the TCM research and development. In this review, the recently published literature worldwide is covered to describe the latest advances in the applications as TCM delivery carriers, and to highlight the characteristics and preparation methods of some selected examples of promising nanocarriers such as nanoparticles, lipid nanoparticles, nanoemulsions, nanomicelles and nanoliposomes.

  12. Use of pharmacy delivery robots in intensive care units.

    PubMed

    Summerfield, Marc R; Seagull, F Jacob; Vaidya, Neelesh; Xiao, Yan

    2011-01-01

    The use of pharmacy delivery robots in an institution's intensive care units was evaluated. In 2003, the University of Maryland Medical Center (UMMC) began a pilot program to determine the logistic capability and functional utility of robotic technology in the delivery of medications from satellite pharmacies to patient care units. Three satellite pharmacies currently used the robotic system. Five data sources (electronic robot activation records, logs, interviews, surveys, and observations) were used to assess five key aspects of robotic delivery: robot use, reliability, timeliness, cost minimization, and acceptance. A 19-item survey using a 7-point Likert-type scale was developed to determine if pharmacy delivery robots changed nurses' perception of pharmacy service. The components measured included general satisfaction, reliability, timeliness, stat orders, services, interaction with pharmacy, and status tracking. A total of 23 pre-implementation, 96 post-implementation, and 30 two-year follow-up surveys were completed. After implementation of the robotic delivery system, time from fax to label, order preparation time, and idle time for medications to be delivered decreased, while nurses' general satisfaction with the pharmacy and opinion of the reliability of pharmacy delivery significantly increased. Robotic delivery did not influence the perceived quality of delivery service or the timeliness of orders or stat orders. Robot reliability was a major issue for the technician but not for pharmacists, who did not have as much interaction with the devices. By considering the needs of UMMC and its patients and matching them with available technology, the institution was able to improve the medication-use process and timeliness of medication departure from the pharmacy.

  13. Comparison of standard (self-directed) versus intensive patient training for the human insulin inhalation powder (HIIP) delivery system in patients with type 2 diabetes: efficacy, safety, and training measures.

    PubMed

    Rosenstock, Julio; Nakano, Masako; Silverman, Bernard L; Sun, Bin; de la Peña, Amparo; Suri, Ajit; Muchmore, Douglas B

    2007-02-01

    The Lilly/Alkermes human insulin inhalation powder (HIIP) delivery system [AIR (a registered trademark of Alkermes, Inc., Cambridge, MA) Inhaled Insulin System] was designed to be easy to use. Training methods were compared in insulin-naive patients with type 2 diabetes. Patients (n = 102) were randomized to standard or intensive training. With standard training, patients learned how to use the HIIP delivery system by reading directions for use (DFU) and trying on their own. Intensive training included orientation to the HIIP delivery system with individual coaching and inspiratory flow rate training. Both groups received preprandial HIIP + metformin with or without a thiazolidinedione for 4 weeks. Overall 2-h postprandial blood glucose (PPBG) excursion was the primary measure. Noninferiority was defined as the upper limit of the two-sided 95% confidence interval of the mean difference between groups being 1.2 < or = mmol/L. Overall 2-h PPBG excursions (least squares mean +/- SE) at endpoint were -0.11 +/- 0.38 (standard training) and 0.23 +/- 0.36 (intensive training) mmol/L. The mean difference (standard minus intensive training) and two-sided 95% confidence interval were -0.35 (-1.02, 0.33) mmol/L. No statistically or clinically significant differences were observed between training methods in premeal, postmeal, or bedtime blood glucose values, HIIP doses at endpoint, or blood glucose values after a test meal. No discontinuations occurred because of difficulty of use or dislike of the HIIP system. DFU compliance was >90% in both training groups. There were no significant differences between training methods in safety measures. The HIIP delivery system is easy to use, and most patients can learn to use it by reading the DFU without assistance from health care professionals.

  14. MO-G-BRE-04: Automatic Verification of Daily Treatment Deliveries and Generation of Daily Treatment Reports for a MR Image-Guided Treatment Machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, D; Li, X; Li, H

    2014-06-15

    Purpose: Two aims of this work were to develop a method to automatically verify treatment delivery accuracy immediately after patient treatment and to develop a comprehensive daily treatment report to provide all required information for daily MR-IGRT review. Methods: After systematically analyzing the requirements for treatment delivery verification and understanding the available information from a novel MR-IGRT treatment machine, we designed a method to use 1) treatment plan files, 2) delivery log files, and 3) dosimetric calibration information to verify the accuracy and completeness of daily treatment deliveries. The method verifies the correctness of delivered treatment plans and beams, beammore » segments, and for each segment, the beam-on time and MLC leaf positions. Composite primary fluence maps are calculated from the MLC leaf positions and the beam-on time. Error statistics are calculated on the fluence difference maps between the plan and the delivery. We also designed the daily treatment delivery report by including all required information for MR-IGRT and physics weekly review - the plan and treatment fraction information, dose verification information, daily patient setup screen captures, and the treatment delivery verification results. Results: The parameters in the log files (e.g. MLC positions) were independently verified and deemed accurate and trustable. A computer program was developed to implement the automatic delivery verification and daily report generation. The program was tested and clinically commissioned with sufficient IMRT and 3D treatment delivery data. The final version has been integrated into a commercial MR-IGRT treatment delivery system. Conclusion: A method was developed to automatically verify MR-IGRT treatment deliveries and generate daily treatment reports. Already in clinical use since December 2013, the system is able to facilitate delivery error detection, and expedite physician daily IGRT review and physicist weekly chart review.« less

  15. Design and optimization of a flexible high-peak-power laser-to-fiber coupled illumination system used in digital particle image velocimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Ronald A.; Ilev, Ilko K.

    We present a study on the design and parameter optimization of a flexible high-peak-power fiber-optic laser delivery system using commercially available solid-core silica fibers and an experimental glass hollow waveguide (HW). The fiber-optic delivery system provides a flexible, safe, and easily and precisely positioned laser irradiation for many applications including uniform illumination for digital particle image velocimetry (DPIV). The delivery fibers, when coupled through a line-generating lens, produce a uniform thin laser sheet illumination for accurate and repeatable DPIV two-dimensional velocity measurements. We report experimental results on homogenizing the laser beam profile using various mode-mixing techniques. Furthermore, because a fundamentalmore » problem for fiber-optic-based high-peak-power laser delivery systems is the possible damage effects of the fiber material, we determine experimentally the peak power density damage threshold of various delivery fibers designed for the visible spectral range at a typical DPIV laser wavelength of 532 nm. In the case of solid-core silica delivery fibers using conventional lens-based laser-to-fiber coupling, the damage threshold varies from 3.7 GW/cm{sup 2} for a 100-{mu}m-core-diameter high-temperature fiber to 3.9 GW/cm{sup 2} for a 200-{mu}m-core-diameter high-power delivery fiber, with a total output laser energy delivered of at least 3-10 mJ for those respective fibers. Therefore, these fibers are marginally suitable for most macro-DPIV applications. However, to improve the high-power delivery capability for close-up micro-DPIV applications, we propose and validate an experimental fiber link with much higher laser power delivery capability than the solid-core fiber links. We use an uncoated grazing-incidence-based tapered glass funnel coupled to a glass HW with hollow air-core diameter of 700 {mu}m, a low numerical aperture of 0.05, and a thin inside cladding of cyclic olefin polymer coating for optimum transmission at 532 nm. Because of the mode homogenizing effect and lower power density, the taper-waveguide laser delivery technique ensured high damage threshold for the delivery HW, and as a result, no damage occurred at the maximum measured input laser energy of 33 mJ used in this study.« less

  16. Novel Nanostructured Solid Materials for Modulating Oral Drug Delivery from Solid-State Lipid-Based Drug Delivery Systems.

    PubMed

    Dening, Tahnee J; Rao, Shasha; Thomas, Nicky; Prestidge, Clive A

    2016-01-01

    Lipid-based drug delivery systems (LBDDS) have gained significant attention in recent times, owing to their ability to overcome the challenges limiting the oral delivery of poorly water-soluble drugs. Despite the successful commercialization of several LBDDS products over the years, a large discrepancy exists between the number of poorly water-soluble drugs displaying suboptimal in vivo performances and the application of LBDDS to mitigate their various delivery challenges. Conventional LBDDS, including lipid solutions and suspensions, emulsions, and self-emulsifying formulations, suffer from various drawbacks limiting their widespread use and commercialization. Accordingly, solid-state LBDDS, fabricated by adsorbing LBDDS onto a chemically inert solid carrier material, have attracted substantial interest as a viable means of stabilizing LBDDS whilst eliminating some of the various limitations. This review describes the impact of solid carrier choice on LBDDS performance and highlights the importance of appropriate solid carrier material selection when designing hybrid solid-state LBDDS. Specifically, emphasis is placed on discussing the ability of the specific solid carrier to modulate drug release, control lipase action and lipid digestion, and enhance biopharmaceutical performance above the original liquid-state LBDDS. To encourage the interested reader to consider their solid carrier choice on a higher level, various novel materials with the potential for future use as solid carriers for LBDDS are described. This review is highly significant in guiding future research directions in the solid-state LBDDS field and fostering the translation of these delivery systems to the pharmaceutical marketplace.

  17. Home is best: Why women in rural Zimbabwe deliver in the community.

    PubMed

    Dodzo, Munyaradzi Kenneth; Mhloyi, Marvellous

    2017-01-01

    Maternal mortality in Zimbabwe has unprecedentedly risen over the last two and half decades although a decline has been noted recently. Many reasons have been advanced for the rising trend, including deliveries without skilled care, in places without appropriate or adequate facilities to handle complications. The recent decline has been attributed to health systems strengthening through a multi-donor pooled funding mechanism. On the other hand, the proportion of community deliveries has also been growing steadily over the years and in this study we investigate why. We used twelve (12) focus group discussions with child-bearing women and eight (8) key informant interviews (KIIs). Four (4) were traditional birth attendants and four (4) were spiritual birth attendants. A thematic approach was used to analyse the data in Ethnography software. The study shows that women prefer community deliveries due to perceived low economic, social and opportunity costs involved; pliant and flexible services offered; and diminishing quality and appeal of institutional maternity services. We conclude that rural women are very economic, logical and rational in making choices on place of delivery. Delivering in the community offers financial, social and opportunity advantages to disenfranchised women, particularly in remote rural areas. We recommend for increased awareness of the dangers of community deliveries; establishment of basic obstetric care facilities in the community and more efficient emergency referral systems. In the long-term, there should be a sustainable improvement of the public health delivery system to make it accessible, affordable and usable by the public.

  18. Home is best: Why women in rural Zimbabwe deliver in the community

    PubMed Central

    Mhloyi, Marvellous

    2017-01-01

    Maternal mortality in Zimbabwe has unprecedentedly risen over the last two and half decades although a decline has been noted recently. Many reasons have been advanced for the rising trend, including deliveries without skilled care, in places without appropriate or adequate facilities to handle complications. The recent decline has been attributed to health systems strengthening through a multi-donor pooled funding mechanism. On the other hand, the proportion of community deliveries has also been growing steadily over the years and in this study we investigate why. We used twelve (12) focus group discussions with child-bearing women and eight (8) key informant interviews (KIIs). Four (4) were traditional birth attendants and four (4) were spiritual birth attendants. A thematic approach was used to analyse the data in Ethnography software. The study shows that women prefer community deliveries due to perceived low economic, social and opportunity costs involved; pliant and flexible services offered; and diminishing quality and appeal of institutional maternity services. We conclude that rural women are very economic, logical and rational in making choices on place of delivery. Delivering in the community offers financial, social and opportunity advantages to disenfranchised women, particularly in remote rural areas. We recommend for increased awareness of the dangers of community deliveries; establishment of basic obstetric care facilities in the community and more efficient emergency referral systems. In the long-term, there should be a sustainable improvement of the public health delivery system to make it accessible, affordable and usable by the public. PMID:28793315

  19. Cell-penetrating DNA-binding protein as a safe and efficient naked DNA delivery carrier in vitro and in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Eun-Sung; Yang, Seung-Woo; Hong, Dong-Ki

    Non-viral gene delivery is a safe and suitable alternative to viral vector-mediated delivery to overcome the immunogenicity and tumorigenesis associated with viral vectors. Using the novel, human-origin Hph-1 protein transduction domain that can facilitate the transduction of protein into cells, we developed a new strategy to deliver naked DNA in vitro and in vivo. The new DNA delivery system contains Hph-1-GAL4 DNA-binding domain (DBD) fusion protein and enhanced green fluorescent protein (EGFP) reporter plasmid that includes the five repeats of GAL4 upstream activating sequence (UAS). Hph-1-GAL4-DBD protein formed complex with plasmid DNA through the specific interaction between GAL4-DBD and UAS,more » and delivered into the cells via the Hph-1-PTD. The pEGFP DNA was successfully delivered by the Hph-1-GAL4 system, and the EGFP was effectively expressed in mammalian cells such as HeLa and Jurkat, as well as in Bright Yellow-2 (BY-2) plant cells. When 10 {mu}g of pEGFP DNA was intranasally administered to mice using Hph-1-GAL4 protein, a high level of EGFP expression was detected throughout the lung tissue for 7 days. These results suggest that an Hph-1-PTD-mediated DNA delivery strategy may be an useful non-viral DNA delivery system for gene therapy and DNA vaccines.« less

  20. Breath Powered Nasal Delivery: A New Route to Rapid Headache Relief

    PubMed Central

    Djupesland, Per G; Messina, John C; Mahmoud, Ramy A

    2013-01-01

    The nose offers an attractive noninvasive alternative for drug delivery. Nasal anatomy, with a large mucosal surface area and high vascularity, allows for rapid systemic absorption and other potential benefits. However, the complex nasal geometry, including the narrow anterior valve, poses a serious challenge to efficient drug delivery. This barrier, plus the inherent limitations of traditional nasal delivery mechanisms, has precluded achievement of the full potential of nasal delivery. Breath Powered bi-directional delivery, a simple but novel nasal delivery mechanism, overcomes these barriers. This innovative mechanism has now been applied to the delivery of sumatriptan. Multiple studies of drug deposition, including comparisons of traditional nasal sprays to Breath Powered delivery, demonstrate significantly improved deposition to superior and posterior intranasal target sites beyond the nasal valve. Pharmacokinetic studies in both healthy subjects and migraineurs suggest that improved deposition of sumatriptan translates into improved absorption and pharmacokinetics. Importantly, the absorption profile is shifted toward a more pronounced early peak, representing nasal absorption, with a reduced late peak, representing predominantly gastrointestinal (GI) absorption. The flattening and “spreading out” of the GI peak appears more pronounced in migraine sufferers than healthy volunteers, likely reflecting impaired GI absorption described in migraineurs. In replicated clinical trials, Breath Powered delivery of low-dose sumatriptan was well accepted and well tolerated by patients, and onset of pain relief was faster than generally reported in previous trials with noninjectable triptans. Interestingly, Breath Powered delivery also allows for the potential of headache-targeted medications to be better delivered to the trigeminal nerve and the sphenopalatine ganglion, potentially improving treatment of various types of headache. In brief, Breath Powered bi-directional intranasal delivery offers a new and more efficient mechanism for nasal drug delivery, providing an attractive option for improved treatment of headaches by enabling or enhancing the benefits of current and future headache therapies. PMID:24024605

Top