Sample records for delivery system utilizing

  1. Silk-based delivery systems of bioactive molecules

    PubMed Central

    Numata, Keiji; Kaplan, David L

    2010-01-01

    Silks are biodegradable, biocompatible, self-assemblying proteins that can also be tailored via genetic engineering to contain specific chemical features, offering utility for drug and gene delivery. Silkworm silk has been used in biomedical sutures for decades and has recently achieved Food and Drug Administration approval for expanded biomaterials device utility. With the diversity and control of size, structure and chemistry, modified or recombinant silk proteins can be designed and utilized in various biomedical application, such as for the delivery of bioactive molecules. This review focuses on the biosynthesis and applications of silk-based multi-block copolymer systems and related silk protein drug delivery systems. The utility of these systems for the delivery of small molecule drugs, proteins and genes are reviewed. PMID:20298729

  2. Silk-based delivery systems of bioactive molecules.

    PubMed

    Numata, Keiji; Kaplan, David L

    2010-12-30

    Silks are biodegradable, biocompatible, self-assembling proteins that can also be tailored via genetic engineering to contain specific chemical features, offering utility for drug and gene delivery. Silkworm silk has been used in biomedical sutures for decades and has recently achieved Food and Drug Administration approval for expanded biomaterials device utility. With the diversity and control of size, structure and chemistry, modified or recombinant silk proteins can be designed and utilized in various biomedical application, such as for the delivery of bioactive molecules. This review focuses on the biosynthesis and applications of silk-based multi-block copolymer systems and related silk protein drug delivery systems. The utility of these systems for the delivery of small molecule drugs, proteins and genes is reviewed. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Iontophoresis: A Potential Emergence of a Transdermal Drug Delivery System

    PubMed Central

    Dhote, Vinod; Bhatnagar, Punit; Mishra, Pradyumna K.; Mahajan, Suresh C.; Mishra, Dinesh K.

    2012-01-01

    The delivery of drugs into systemic circulation via skin has generated much attention during the last decade. Transdermal therapeutic systems propound controlled release of active ingredients through the skin and into the systemic circulation in a predictive manner. Drugs administered through these systems escape first-pass metabolism and maintain a steady state scenario similar to a continuous intravenous infusion for up to several days. However, the excellent impervious nature of the skin offers the greatest challenge for successful delivery of drug molecules by utilizing the concepts of iontophoresis. The present review deals with the principles and the recent innovations in the field of iontophoretic drug delivery system together with factors affecting the system. This delivery system utilizes electric current as a driving force for permeation of ionic and non-ionic medications. The rationale behind using this technique is to reversibly alter the barrier properties of skin, which could possibly improve the penetration of drugs such as proteins, peptides and other macromolecules to increase the systemic delivery of high molecular weight compounds with controlled input kinetics and minimum inter-subject variability. Although iontophoresis seems to be an ideal candidate to overcome the limitations associated with the delivery of ionic drugs, further extrapolation of this technique is imperative for translational utility and mass human application. PMID:22396901

  4. A novel misoprostol delivery system for induction of labor: clinical utility and patient considerations.

    PubMed

    Stephenson, Megan L; Wing, Deborah A

    2015-01-01

    Induction of labor is one of the most commonly performed obstetric procedures and will likely become more common as the reproductive population in developed nations changes. As the proportion of women undergoing induction grows, there is a constant search for more efficacious ways to induce labor while maintaining fetal and maternal safety as well as patient satisfaction. With almost half of induced labors requiring cervical ripening, methods for achieving active labor and vaginal delivery are constantly being investigated. Prostaglandins have been shown to be effective induction agents, and specifically vaginal misoprostol, used off-label, have been widely utilized to initiate cervical ripening and active labor. The challenge is to administer this medication accurately while maintaining the ability to discontinue the medication when needed. The misoprostol vaginal insert initiates cervical ripening utilizing a delivery system that controls medication release and can be rapidly removed. This paper reviews the design, development, and clinical utility of the misoprostol vaginal insert for induction of labor as well as patient considerations related to the delivery system.

  5. Opportunities and Challenges for Niosomes as Drug Delivery Systems.

    PubMed

    Thakkar, Miloni; Brijesh, S

    2016-01-01

    With the increase in drug resistance observed in most infectious diseases as well as some forms of cancer, and with the chances of development of new drug molecules to address this issue looking bleak, one of the most plausible ways to disease treatment is combination therapy. Combination therapy would ensure delay in drug resistance, if utilized rationally. However, the biggest difficulty in employing combination therapy are adverse effects due to potential drug-drug interactions and patient compliance due to multiple routes of administration or multiple dosing that may be required. To overcome these issues, researchers have utilized nanoparticle-based systems that can hold multiple drugs in a single carrier. There are several nanocarrier systems available for such purposes. However, the focus of this review will be non-ionic surfactant-based systems (niosomes) for delivery of multiple therapeutic agents. Niosomes are artificially prepared drug delivery carriers. They are structurally similar to liposomes albeit more stable than them. Literature pertaining to combination drug delivery and various drug delivery systems was reviewed. It was conceptualized that many of the methods used to prepare various types of carriers for combination delivery of drugs may be used for niosomal systems as well. We envisage that niosomes may effectively be utilized to package older drugs in newer ways. The review will thus focus on techniques that may be used for the formulation of niosomes, ways to encapsulate multiple-drug moieties, and challenges associated in preparing and optimizing such systems.

  6. Platelets as delivery systems for disease treatments

    PubMed Central

    Shi, Qizhen; Montgomery, Robert R.

    2010-01-01

    Platelets are small, anucleate, discoid shaped blood cells that play a fundamental role in hemostasis. Platelets contain a large number of biologically active molecules within cytoplasmic granules that are critical to normal platelet function. Because platelets circulate in blood through out the body, release biological molecules and mediators on demand, and participate in hemostasis as well as many other pathophysiologic processes, targeting expression of proteins of interest to platelets and utilizing platelets as delivery systems for disease treatment would be a logical approach. This paper reviews the genetic therapy for inherited bleeding disorders utilizing platelets as delivery system, with a particular focus on platelet-derived FVIII for hemophilia A treatment. PMID:20619307

  7. Dimensions of antenatal care service and the alacrity of mothers towards institutional delivery in South and South East Asia.

    PubMed

    Dixit, Priyanka; Khan, Junaid; Dwivedi, Laxmi Kant; Gupta, Amrita

    2017-01-01

    A number of studies have assessed the effectiveness of antenatal care (ANC) on uptake of institutional delivery care. However, none address the issue of association between the different components of ANC i.e. ANC component which is independent of health care delivery systems (timing and number of ANC visits), ANC components which depends on health care delivery systems (specific ANC procedures that women receive) with institutional delivery. Data for the study has been taken from the DHS conducted in the six selected South and South-East Asian countries during 1998-2013. The two dimensions of ANC are the key predictors. The outcome variable is a binary variable, where zero '0' denotes a home delivery and one '1' denotes an institutional delivery. In addition to probit estimation biprobit estimation method has been used to correct for the possible endogeneity. Analysis suggests that both the factors show a positive effect on institutional delivery but the level of associations are different. Probit estimation for each country suggests that the association is higher for the factor- which depends on health care delivery systems than the other factor. After correction of endogeneity through biprobit estimation we get the true associations for both the dimensions and it confirms that the ANC components which depends on health care delivery systems is more associated with the utilization of institutional delivery than the other factor. The content of care may fulfill the women's need and expectations while visiting for ANC care. The study suggests that the quality of antenatal care must be improved which depends on health care delivery systems to motivates the women to utilize the institutional delivery.

  8. Dimensions of antenatal care service and the alacrity of mothers towards institutional delivery in South and South East Asia

    PubMed Central

    Dixit, Priyanka; Khan, Junaid; Dwivedi, Laxmi Kant; Gupta, Amrita

    2017-01-01

    Background A number of studies have assessed the effectiveness of antenatal care (ANC) on uptake of institutional delivery care. However, none address the issue of association between the different components of ANC i.e. ANC component which is independent of health care delivery systems (timing and number of ANC visits), ANC components which depends on health care delivery systems (specific ANC procedures that women receive) with institutional delivery. Methods Data for the study has been taken from the DHS conducted in the six selected South and South-East Asian countries during 1998–2013. The two dimensions of ANC are the key predictors. The outcome variable is a binary variable, where zero '0' denotes a home delivery and one '1' denotes an institutional delivery. In addition to probit estimation biprobit estimation method has been used to correct for the possible endogeneity. Findings Analysis suggests that both the factors show a positive effect on institutional delivery but the level of associations are different. Probit estimation for each country suggests that the association is higher for the factor- which depends on health care delivery systems than the other factor. After correction of endogeneity through biprobit estimation we get the true associations for both the dimensions and it confirms that the ANC components which depends on health care delivery systems is more associated with the utilization of institutional delivery than the other factor. Conclusions The content of care may fulfill the women’s need and expectations while visiting for ANC care. The study suggests that the quality of antenatal care must be improved which depends on health care delivery systems to motivates the women to utilize the institutional delivery. PMID:28742809

  9. Reservoir-Based Drug Delivery Systems Utilizing Microtechnology

    PubMed Central

    Stevenson, Cynthia L.; Santini, John T.; Langer, Robert

    2012-01-01

    This review covers reservoir-based drug delivery systems that incorporate microtechnology, with an emphasis on oral, dermal, and implantable systems. Key features of each technology are highlighted such as working principles, fabrication methods, dimensional constraints, and performance criteria. Reservoir-based systems include a subset of microfabricated drug delivery systems and provide unique advantages. Reservoirs, whether external to the body or implanted, provide a well-controlled environment for a drug formulation, allowing increased drug stability and prolonged delivery times. Reservoir systems have the flexibility to accommodate various delivery schemes, including zero order, pulsatile, and on demand dosing, as opposed to a standard sustained release profile. Furthermore, the development of reservoir-based systems for targeted delivery for difficult to treat applications (e.g., ocular) has resulted in potential platforms for patient therapy. PMID:22465783

  10. Large-scale educational telecommunications systems for the US: An analysis of educational needs and technological opportunities

    NASA Technical Reports Server (NTRS)

    Morgan, R. P.; Singh, J. P.; Rothenberg, D.; Robinson, B. E.

    1975-01-01

    The needs to be served, the subsectors in which the system might be used, the technology employed, and the prospects for future utilization of an educational telecommunications delivery system are described and analyzed. Educational subsectors are analyzed with emphasis on the current status and trends within each subsector. Issues which affect future development, and prospects for future use of media, technology, and large-scale electronic delivery within each subsector are included. Information on technology utilization is presented. Educational telecommunications services are identified and grouped into categories: public television and radio, instructional television, computer aided instruction, computer resource sharing, and information resource sharing. Technology based services, their current utilization, and factors which affect future development are stressed. The role of communications satellites in providing these services is discussed. Efforts to analyze and estimate future utilization of large-scale educational telecommunications are summarized. Factors which affect future utilization are identified. Conclusions are presented.

  11. Providing Services for Handicapped Persons in Rural/Sparsely Populated Areas.

    ERIC Educational Resources Information Center

    Weatherman, Richard

    The experiences of the 3-year Minnesota Severely Handicapped Delivery System Project have led to a model which utilizes resources of regional systems as key elements of a differentiated system for educational service delivery to the handicapped in rural areas and involves state education agencies, statewide regional centers, local education units,…

  12. Utility installation review system : implementation report.

    DOT National Transportation Integrated Search

    2009-03-01

    Each year, the Texas Department of Transportation (TxDOT) issues thousands of approvals that enable new : utility installations to occupy the state right of way (ROW). The current utility installation review process : relies on the physical delivery ...

  13. Fabrication, Characterization, and Biological Activity of Avermectin Nano-delivery Systems with Different Particle Sizes

    NASA Astrophysics Data System (ADS)

    Wang, Anqi; Wang, Yan; Sun, Changjiao; Wang, Chunxin; Cui, Bo; Zhao, Xiang; Zeng, Zhanghua; Yao, Junwei; Yang, Dongsheng; Liu, Guoqiang; Cui, Haixin

    2018-01-01

    Nano-delivery systems for the active ingredients of pesticides can improve the utilization rates of pesticides and prolong their control effects. This is due to the nanocarrier envelope and controlled release function. However, particles containing active ingredients in controlled release pesticide formulations are generally large and have wide size distributions. There have been limited studies about the effect of particle size on the controlled release properties and biological activities of pesticide delivery systems. In the current study, avermectin (Av) nano-delivery systems were constructed with different particle sizes and their performances were evaluated. The Av release rate in the nano-delivery system could be effectively controlled by changing the particle size. The biological activity increased with decreasing particle size. These results suggest that Av nano-delivery systems can significantly improve the controllable release, photostability, and biological activity, which will improve efficiency and reduce pesticide residues.

  14. A Titan Explorer Mission Utilizing Solar Electric Propulsion and Chemical Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Cupples, Michael; Coverstone, Vicki

    2003-01-01

    Mission and Systems analyses were performed for a Titan Explorer Mission scenario utilizing medium class launch vehicles, solar electric propulsion system (SEPS) for primary interplanetary propulsion, and chemical propulsion for capture at Titan. An examination of a range of system factors was performed to determine their affect on the payload delivery capability to Titan. The effect of varying the launch vehicle, solar array power, associated number of SEPS thrusters, chemical propellant combinations, tank liner thickness, and tank composite overwrap stress factor was investigated. This paper provides a parametric survey of the aforementioned set of system factors, delineating their affect on Titan payload delivery, as well as discussing aspects of planetary capture methodology.

  15. Nanomedicine for therapeutic drug therapy: Approaches to increase the efficacy of drug therapy with nanoemulsion delivery and reduce the toxicity of quantum dots

    NASA Astrophysics Data System (ADS)

    Kambalapally, Swetha Reddy

    The advancement of nanotechnology has paved the way for novel nanoscale materials for use in a wide range of applications. The use of these nanomaterials in biomedicine facilitates the improvement of existing technologies for disease prevention and treatment through diagnostics, tumor detection, drug delivery, medical imaging and vaccine development. Nanotechnology delivery systems for therapeutic uses includes the formulation of nanoparticles in emulsions. These novel delivery systems can improve drug efficacy by their ability to enhance bioavailability, minimize drug side effects, decrease drug toxicity, provide targeted site delivery and increase circulation of the drug in the blood. Additionally, these delivery systems also improve the drug stability and encapsulation efficiency. In the Introduction, this thesis will describe a novel technique for the preparation of nanoemulsions which was utilized in drug delivery and diagnostic applications. This novel Phase Inversion Temperature (PIT) method is a solvent and polymer-free and low energy requiring emulsification method, typically utilizing oils stabilized by nonionic surfactants to prepare water in oil (W/O) emulsions. The correlation between the particle size, zeta potential and the emulsion stability is described. The use of this nanoemulsion delivery system for pharmaceuticals and nutraceuticals by utilizing in vitro systems was investigated. Using the PIT method, a self assembling nanoemulsion (SANE) of gamma Tocotrienols (gammaT3), a component of Vitamin E family has been demonstrated to reduce cholesterol accumulation in HepG-2 cells. The nanoemulsion is stable and the particle size is around 20 nm with a polydispersity index (PDI) of 0.065. The effect of the nano gammaT3 on the metabolism of cholesterol, HMG-CoA activity and Apo-B levels were evaluated in an in vitro system utilizing HepG2 cells. A new class of nanoparticles, Quantum dots (QDs) has shown immense potential as novel nanomaterials used as fluorescent labels. They have been studied extensively due to their interesting optical and electrical properties. The study of their applications has led to their use as novel platforms for delivery into living systems for use in medical imaging. The second part of this thesis discusses the toxicity of the various semiconductor nanocrystals, CdSe and InP. The results show the toxicity of CdSe and InP QDs in in vitro cultures of whole skin biopsies exposed to similar concentrations. This forms the basis for further studies involving QDs and approaches to reduce the toxicity of these nanoparticles. Finally, ligand exchange mediated Solutol HS-15 modified CdSe QDs were prepared for the first time. The modified CdSe QDs demonstrated long term stability and reduced cytotoxicity. Such behavior is interpreted as arising from decreased aggregation of the QDs due to the incorporation of the surfactant.

  16. Designing polymers with sugar-based advantages for bioactive delivery applications.

    PubMed

    Zhang, Yingyue; Chan, Jennifer W; Moretti, Alysha; Uhrich, Kathryn E

    2015-12-10

    Sugar-based polymers have been extensively explored as a means to increase drug delivery systems' biocompatibility and biodegradation. Here,we review he use of sugar-based polymers for drug delivery applications, with a particular focus on the utility of the sugar component(s) to provide benefits for drug targeting and stimuli responsive systems. Specifically, numerous synthetic methods have been developed to reliably modify naturally-occurring polysaccharides, conjugate sugar moieties to synthetic polymer scaffolds to generate glycopolymers, and utilize sugars as a multifunctional building block to develop sugar-linked polymers. The design of sugar-based polymer systems has tremendous implications on both the physiological and biological properties imparted by the saccharide units and are unique from synthetic polymers. These features include the ability of glycopolymers to preferentially target various cell types and tissues through receptor interactions, exhibit bioadhesion for prolonged residence time, and be rapidly recognized and internalized by cancer cells. Also discussed are the distinct stimuli-sensitive properties of saccharide-modified polymers to mediate drug release under desired conditions. Saccharide-based systems with inherent pH- and temperature-sensitive properties, as well as enzyme-cleavable polysaccharides for targeted bioactive delivery, are covered. Overall, this work emphasizes inherent benefits of sugar-containing polymer systems for bioactive delivery.

  17. Stabilization challenges and formulation strategies associated with oral biologic drug delivery systems.

    PubMed

    Truong-Le, Vu; Lovalenti, Phillip M; Abdul-Fattah, Ahmad M

    2015-10-01

    Delivery of proteins to mucosal tissues of GI tract typically utilize formulations which protect against proteolysis and target the mucosal tissues. Using case studies from literature and the authors' own work, the in-process stability and solid state storage stability of biopharmaceuticals formulated in delivery systems designed for oral delivery to the GI tract will be reviewed. Among the range of delivery systems, biodegradable polymer systems for protection and controlled release of proteins have been the most studied; hence these systems will be covered in greater depth. These delivery systems include polymeric biodegradable microspheres or nanospheres that contain proteins or vaccines, which are designed to reduce the number of administrations/inoculations and the total protein dose required to achieve the desired biological effect. Specifically, this review will include a landscape survey of the systems that have been studied, the manufacturing processes involved, stability through the manufacturing process, key pharmaceutical formulation parameters that impact stability of the encased proteins, and storage stability of the encapsulated proteins in these delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Perspectives on utilization of community based health information systems in Western Kenya.

    PubMed

    Flora, Otieno Careena; Margaret, Kaseje; Dan, Kaseje

    2017-01-01

    Health information systems (HIS) are considered fundamental for the efficient delivery of high quality health care. However, a large number of legal and practical constraints influence the design and introduction of such systems. The inability to quantify and analyse situations with credible data and to use data in planning and managing service delivery plagues Africa. Establishing effective information systems and using this data for planning efficient health service delivery is essential to district health systems' performance improvement. Community Health Units in Kenya are central points for community data collection, analysis, dissemination and use. In Kenya, data tend to be collected for reporting purposes and not for decision-making at the point of collection. This paper describes the perspectives of local users on information use in various socio-economic contexts in Kenya. Information for this study was gathered through semi-structured interviews. The interviewees were purposefully selected from various community health units and public health facilities in the study area. The data were organized and analysed manually, grouping them into themes and categories. Information needs of the community included service utilization and health status information. Dialogue was the main way of information utilization in the community. However, health systems and personal challenges impeded proper collection and use of information. The challenges experienced in health information utilization may be overcome by linkages and coordination between the community and the health facilities. The personal challenges can be remedied using a motivational package that includes training of the Community Health Workers.

  19. Exploring the role of peptides in polymer-based gene delivery.

    PubMed

    Sun, Yanping; Yang, Zhen; Wang, Chunxi; Yang, Tianzhi; Cai, Cuifang; Zhao, Xiaoyun; Yang, Li; Ding, Pingtian

    2017-09-15

    Polymers are widely studied as non-viral gene vectors because of their strong DNA binding ability, capacity to carry large payload, flexibility of chemical modifications, low immunogenicity, and facile processes for manufacturing. However, high cytotoxicity and low transfection efficiency substantially restrict their application in clinical trials. Incorporating functional peptides is a promising approach to address these issues. Peptides demonstrate various functions in polymer-based gene delivery systems, such as targeting to specific cells, breaching membrane barriers, facilitating DNA condensation and release, and lowering cytotoxicity. In this review, we systematically summarize the role of peptides in polymer-based gene delivery, and elaborate how to rationally design polymer-peptide based gene delivery vectors. Polymers are widely studied as non-viral gene vectors, but suffer from high cytotoxicity and low transfection efficiency. Incorporating short, bioactive peptides into polymer-based gene delivery systems can address this issue. Peptides demonstrate various functions in polymer-based gene delivery systems, such as targeting to specific cells, breaching membrane barriers, facilitating DNA condensation and release, and lowering cytotoxicity. In this review, we highlight the peptides' roles in polymer-based gene delivery, and elaborate how to utilize various functional peptides to enhance the transfection efficiency of polymers. The optimized peptide-polymer vectors should be able to alter their structures and functions according to biological microenvironments and utilize inherent intracellular pathways of cells, and consequently overcome the barriers during gene delivery to enhance transfection efficiency. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Microneedles As a Delivery System for Gene Therapy

    PubMed Central

    Chen, Wei; Li, Hui; Shi, De; Liu, Zhenguo; Yuan, Weien

    2016-01-01

    Gene delivery systems can be divided to two major types: vector-based (either viral vector or non-viral vector) and physical delivery technologies. Many physical carriers, such as electroporation, gene gun, ultrasound start to be proved to have the potential to enable gene therapy. A relatively new physical delivery technology for gene delivery consists of microneedles (MNs), which has been studied in many fields and for many molecule types and indications. Microneedles can penetrate the stratum corneum, which is the main barrier for drug delivery through the skin with ease of administration and without significant pain. Many different kinds of MNs, such as metal MNs, coated MNs, dissolving MNs have turned out to be promising in gene delivery. In this review, we discussed the potential as well as the challenges of utilizing MNs to deliver nucleic acids for gene therapy. We also proposed that a combination of MNs and other gene delivery approaches may lead to a better delivery system for gene therapy. PMID:27303298

  1. Role of Nanodiamonds in Drug Delivery and Stem Cell Therapy.

    PubMed

    Ansari, Shakeel Ahmed; Satar, Rukhsana; Jafri, Mohammad Alam; Rasool, Mahmood; Ahmad, Waseem; Kashif Zaidi, Syed

    2016-09-01

    The use of nanotechnology in medicine and more specifically drug delivery is set to spread rapidly. Currently many substances are under investigation for drug delivery and more specifically for cancer therapy. Nanodiamonds (NDs) have contributed significantly in the development of highly efficient and successful drug delivery systems, and in stem cell therapy. Drug delivery through NDs is an intricate and complex process that deserves special attention to unravel underlying molecular mechanisms in order to overcome certain bottlenecks associated with it. It has already been established that NDs based drug delivery systems have excellent biocompatibility, nontoxicity, photostability and facile surface functionalization properties. There is mounting evidence that suggests that such conjugated delivery systems well retain the properties of nanoparticles like small size, large surface area to volume ratio that provide greater biocatalytic activity to the attached drug in terms of selectivity, loading and stability. NDs based drug delivery systems may form the basis for the development of effective novel drug delivery vehicles with salient features that may facilitate their utility in fluorescence imaging, target specificity and sustainedrelease.

  2. Development of a utility conflict management system.

    DOT National Transportation Integrated Search

    2009-02-01

    A critical process for the timely development and delivery of highway construction projects is the early : identification and depiction of utility interests that may interfere with proposed highway facilities. The : effective management of such utili...

  3. Structural design principles for delivery of bioactive components in nutraceuticals and functional foods.

    PubMed

    McClements, David Julian; Decker, Eric Andrew; Park, Yeonhwa; Weiss, Jochen

    2009-06-01

    There have been major advances in the design and fabrication of structured delivery systems for the encapsulation of nutraceutical and functional food components. A wide variety of delivery systems is now available, each with its own advantages and disadvantages for particular applications. This review begins by discussing some of the major nutraceutical and functional food components that need to be delivered and highlights the main limitations to their current utilization within the food industry. It then discusses the principles underpinning the rational design of structured delivery systems: the structural characteristics of the building blocks; the nature of the forces holding these building blocks together; and, the different ways of assembling these building blocks into structured delivery systems. Finally, we review the major types of structured delivery systems that are currently available to food scientists: lipid-based (simple, multiple, multilayer, and solid lipid particle emulsions); surfactant-based (simple micelles, mixed micelles, vesicles, and microemulsions) and biopolymer-based (soluble complexes, coacervates, hydrogel droplets, and particles). For each type of delivery system we describe its preparation, properties, advantages, and limitations.

  4. Linear and non-linear contributions to oxygen transport and utilization during moderate random exercise in humans.

    PubMed

    Beltrame, T; Hughson, R L

    2017-05-01

    What is the central question of this study? The pulmonary oxygen uptake (pV̇O2) data used to study the muscle aerobic system dynamics during moderate-exercise transitions is classically described as a mono-exponential function controlled by a complex interaction of the oxygen delivery-utilization balance. This elevated complexity complicates the acquisition of relevant information regarding aerobic system dynamics based on pV̇O2 data during a varying exercise stimulus. What is the main finding and its importance? The elevated complexity of pV̇O2 dynamics is a consequence of a multiple-order interaction between muscle oxygen uptake and circulatory distortion. Our findings challenge the use of a first-order function to study the influences of the oxygen delivery-utilization balance over the pV̇O2 dynamics. The assumption of aerobic system linearity implies that the pulmonary oxygen uptake (pV̇O2) dynamics during exercise transitions present a first-order characteristic. The main objective of this study was to test the linearity of the oxygen delivery-utilization balance during random moderate exercise. The cardiac output (Q̇) and deoxygenated haemoglobin concentration ([HHb]) were measured to infer the central and local O 2 availability, respectively. Thirteen healthy men performed two consecutive pseudorandom binary sequence cycling exercises followed by an incremental protocol. The system input and the outputs pV̇O2, [HHb] and Q̇ were submitted to frequency-domain analysis. The linearity of the variables was tested by computing the ability of the response at a specific frequency to predict the response at another frequency. The predictability levels were assessed by the coefficient of determination. In a first-order system, a participant who presents faster dynamics at a specific frequency should also present faster dynamics at any other frequency. All experimentally obtained variables (pV̇O2, [HHb] and Q̇) presented a certainly degree of non-linearity. The local O 2 availability, evaluated by the ratio pV̇O2/[HHb], presented the most irregular behaviour. The overall [HHb] kinetics were faster than pV̇O2 and Q̇ kinetics. In conclusion, the oxygen delivery-utilization balance behaved as a non-linear phenomenon. Therefore, the elevated complexity of the pulmonary oxygen uptake dynamics is governed by a complex multiple-order interaction between the oxygen delivery and utilization systems. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  5. Solubility enhancement and delivery systems of curcumin a herbal medicine: a review.

    PubMed

    Hani, Umme; Shivakumar, H G

    2014-01-01

    Curcumin diferuloylmethane is a main yellow bioactive component of turmeric, possess wide spectrum of biological actions. It was found to have anti-inflammatory, antioxidant, anticarcinogenic, antimutagenic, anticoagulant, antifertility, antidiabetic, antibacterial, antifungal, antiprotozoal, antiviral, antifibrotic, antivenom, antiulcer, hypotensive and hypocholesteremic activities. However, the benefits are curtailed by its extremely poor aqueous solubility, which subsequently limits the bioavailability and therapeutic effects of curcumin. Nanotechnology is the available approach in solving these issues. Therapeutic efficacy of curcumin can be utilized effectively by doing improvement in formulation properties or delivery systems. Numerous attempts have been made to design a delivery system of curcumin. Currently, nanosuspensions, micelles, nanoparticles, nano-emulsions, etc. are used to improve the in vitro dissolution velocity and in vivo efficiency of curcumin. This review focuses on the methods to increase solubility of curcumin and various nanotechnologies based delivery systems and other delivery systems of curcumin.

  6. Utilization of KSC Present Broadband Communications Data System for Digital Video Services

    NASA Technical Reports Server (NTRS)

    Andrawis, Alfred S.

    2002-01-01

    This report covers a visibility study of utilizing present KSC broadband communications data system (BCDS) for digital video services. Digital video services include compressed digital TV delivery and video-on-demand. Furthermore, the study examines the possibility of providing interactive video on demand to desktop personal computers via KSC computer network.

  7. Utilization of KSC Present Broadband Communications Data System For Digital Video Services

    NASA Technical Reports Server (NTRS)

    Andrawis, Alfred S.

    2001-01-01

    This report covers a visibility study of utilizing present KSC broadband communications data system (BCDS) for digital video services. Digital video services include compressed digital TV delivery and video-on-demand. Furthermore, the study examines the possibility of providing interactive video on demand to desktop personal computers via KSC computer network.

  8. Planetary Regolith Delivery Systems for ISRU

    NASA Technical Reports Server (NTRS)

    Mantovani, James G.; Townsend, Ivan I., III

    2012-01-01

    The challenges associated with collecting regolith on a planetary surface and delivering it to an in-situ resource utilization system differ significantly from similar activities conducted on Earth. Since system maintenance on a planetary body can be difficult or impossible to do, high reliability and service life are expected of a regolith delivery system. Mission costs impose upper limits on power and mass. The regolith delivery system must provide a leak-tight interface between the near-vacuum planetary surface and the pressurized ISRU system. Regolith delivery in amounts ranging from a few grams to tens of kilograms may be required. Finally, the spent regolith must be removed from the ISRU chamber and returned to the planetary environment via dust tolerant valves capable of operating and sealing over a large temperature range. This paper will describe pneumatic and auger regolith transfer systems that have already been field tested for ISRU, and discuss other systems that await future field testing.

  9. DNA Nanotechnology for Precise Control over Drug Delivery and Gene Therapy.

    PubMed

    Angell, Chava; Xie, Sibai; Zhang, Liangfang; Chen, Yi

    2016-03-02

    Nanomedicine has been growing exponentially due to its enhanced drug targeting and reduced drug toxicity. It uses the interactions where nanotechnological components and biological systems communicate with each other to facilitate the delivery performance. At this scale, the physiochemical properties of delivery systems strongly affect their capacities. Among current delivery systems, DNA nanotechnology shows many advantages because of its unprecedented engineering abilities. Through molecular recognition, DNA nanotechnology can be used to construct a variety of nanostructures with precisely controllable size, shape, and surface chemistry, which can be appreciated in the delivery process. In this review, different approaches that are currently used for the construction of DNA nanostructures are reported. Further, the utilization of these DNA nanostructures with the well-defined parameters for the precise control in drug delivery and gene therapy is discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Perspectives on utilization of community based health information systems in Western Kenya

    PubMed Central

    Flora, Otieno Careena; Margaret, Kaseje; Dan, Kaseje

    2017-01-01

    Introduction Health information systems (HIS) are considered fundamental for the efficient delivery of high quality health care. However, a large number of legal and practical constraints influence the design and introduction of such systems. The inability to quantify and analyse situations with credible data and to use data in planning and managing service delivery plagues Africa. Establishing effective information systems and using this data for planning efficient health service delivery is essential to district health systems' performance improvement. Community Health Units in Kenya are central points for community data collection, analysis, dissemination and use. In Kenya, data tend to be collected for reporting purposes and not for decision-making at the point of collection. This paper describes the perspectives of local users on information use in various socio-economic contexts in Kenya. Methods Information for this study was gathered through semi-structured interviews. The interviewees were purposefully selected from various community health units and public health facilities in the study area. The data were organized and analysed manually, grouping them into themes and categories. Results Information needs of the community included service utilization and health status information. Dialogue was the main way of information utilization in the community. However, health systems and personal challenges impeded proper collection and use of information. Conclusion The challenges experienced in health information utilization may be overcome by linkages and coordination between the community and the health facilities. The personal challenges can be remedied using a motivational package that includes training of the Community Health Workers. PMID:28904707

  11. Impact of information and communications technologies on residental customer energy services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldman, C.; Kempton, W.; Eide, A.

    1996-10-01

    This study analyzes the potential impact of information and communications technologies on utility delivery of residential customer energy services. Many utilities are conducting trials which test energy-related and non-energy services using advanced communications systems.

  12. The Effect of Armed Conflict on the Utilization of Maternal Health Services in Uganda: A Population-based Study.

    PubMed

    Namasivayam, Amrita; Arcos González, Pedro; Castro Delgado, Rafael; Chi, Primus Che

    2017-10-03

    Maternal mortality rates can be adversely affected by armed conflict, implying a greater level of vulnerability among women, and is often linked to the lack of or limited access to maternal healthcare during conflict. Previous research in Uganda has shown that armed conflict negatively impacts women's utilization of maternal healthcare services for a multitude of reasons at the individual, health-system and political levels. This study compared aggregated Demographic and Health Surveys data from 13 districts in Northern Uganda, a conflict-affected region, with data from the rest of the country, for the use of maternal healthcare services for the years 1988, 1995, 2000, 2006 and 2011, using statistical analyses and logistic regression. Specific indicators for maternal healthcare utilization included contraceptive use, antenatal care, skilled assistance at birth and institutional delivery. Use of contraception and institutional deliveries among women in Northern Uganda was significantly lower compared to the rest of the country. However, skilled assistance at birth among women in Northern Uganda was significantly higher. The findings in this study show that armed conflict can have a negative impact on aspects of maternal healthcare such as contraceptive use and institutional deliveries; however, other indicators such as skilled assistance at birth were seen to be better among conflict-affected populations. This reiterates the complex nature of armed conflict and the interplay of different factors such as conflict intensity, existing health systems and services, and humanitarian interventions that could influence maternal healthcare utilization. Armed conflict, maternal health utilization, Northern Uganda, contraception, skilled assistance at birth, antenatal care, institutional delivery.

  13. Impact of free delivery policy on utilization of maternal health services in county referral hospitals in Kenya.

    PubMed

    Njuguna, John; Kamau, Njoroge; Muruka, Charles

    2017-06-21

    Kenya has a high maternal mortality rate. Provision of skilled delivery plays a major role in reducing maternal mortality. Cost is a hindrance to the utilization of skilled delivery. The Government of Kenya introduced a policy of free delivery services in government facilities beginning June 2013. We sought to determine the impact of this intervention on facility based deliveries in Kenya. We compared deliveries and antenatal attendance in 47 county referral hospitals and 30 low cost private hospitals not participating in the free delivery policy for 2013 and 2014 respectively. The data was extracted from the Kenya Health Information System. Multiple regression was done to assess factors influencing increase in number of deliveries among the county referral hospitals. The number of deliveries and antenatal attendance increased by 26.8% and 16.2% in county referral hospitals and decreased by 11.9% and 5.4% respectively in low cost private hospitals. Increase in deliveries among county referral hospitals was influenced by population size of county and type of county referral hospital. Counties with level 5 hospitals recorded more deliveries compared to those with level 4 hospitals. This intervention increased the number of facility based deliveries. Policy makers may consider incorporating low cost private hospitals so as to increase the coverage of this intervention.

  14. Developing and deploying a community healthcare worker-driven, digitally- enabled integrated care system for municipalities in rural Nepal.

    PubMed

    Citrin, David; Thapa, Poshan; Nirola, Isha; Pandey, Sachit; Kunwar, Lal Bahadur; Tenpa, Jasmine; Acharya, Bibhav; Rayamazi, Hari; Thapa, Aradhana; Maru, Sheela; Raut, Anant; Poudel, Sanjaya; Timilsina, Diwash; Dhungana, Santosh Kumar; Adhikari, Mukesh; Khanal, Mukti Nath; Pratap Kc, Naresh; Acharya, Bhim; Karki, Khem Bahadur; Singh, Dipendra Raman; Bangura, Alex Harsha; Wacksman, Jeremy; Storisteanu, Daniel; Halliday, Scott; Schwarz, Ryan; Schwarz, Dan; Choudhury, Nandini; Kumar, Anirudh; Wu, Wan-Ju; Kalaunee, S P; Chaudhari, Pushpa; Maru, Duncan

    2018-06-04

    Integrating care at the home and facility level is a critical yet neglected function of healthcare delivery systems. There are few examples in practice or in the academic literature of affordable, digitally-enabled integrated care approaches embedded within healthcare delivery systems in low- and middle-income countries. Simultaneous advances in affordable digital technologies and community healthcare workers offer an opportunity to address this challenge. We describe the development of an integrated care system involving community healthcare worker networks that utilize a home-to-facility electronic health record platform for rural municipalities in Nepal. Key aspects of our approach of relevance to a global audience include: community healthcare workers continuously engaging with populations through household visits every three months; community healthcare workers using digital tools during the routine course of clinical care; individual and population-level data generated routinely being utilized for program improvement; and being responsive to privacy, security, and human rights concerns. We discuss implementation, lessons learned, challenges, and opportunities for future directions in integrated care delivery systems. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Implementation of health information technology to maximize efficiency of resource utilization in a geographically dispersed prenatal care delivery system.

    PubMed

    Cochran, Marlo Baker; Snyder, Russell R; Thomas, Elizabeth; Freeman, Daniel H; Hankins, Gary D V

    2012-04-01

    This study investigated the utilization of health information technology (HIT) to enhance resource utilization in a geographically dispersed tertiary care system with extensive outpatient and delivery services. It was initiated as a result of a systems change implemented after Hurricane Ike devastated southeast Texas. A retrospective database and electronic medical record review was performed, which included data collection from all patients evaluated 18 months prior (epoch I) and 18 months following (epoch II) the landfall of Hurricane Ike. The months immediately following the storm were omitted from the analysis, allowing time to establish a new baseline. We analyzed a total of 21,201 patients evaluated in triage at the University of Texas Medical Branch. Epoch I consisted of 11,280 patients and epoch II consisted of 9922 patients. Using HIT, we were able to decrease the number of visits to triage while simultaneously managing more complex patients in the outpatient setting with no clinically significant change in maternal or fetal outcome. This study developed an innovated model of care using constrained resources while providing quality and safety to our patients without additional cost to the health care delivery system. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  16. Superparamagnetic Iron Oxide Nanoparticle-Based Delivery Systems for Biotherapeutics

    PubMed Central

    Mok, Hyejung; Zhang, Miqin

    2014-01-01

    Introduction Superparamagnetic iron oxide nanoparticle (SPION)-based carrier systems have many advantages over other nanoparticle-based systems. They are biocompatible, biodegradable, facilely tunable, and superparamagnetic and thus controllable by an external magnetic field. These attributes enable their broad biomedical applications. In particular, magnetically-driven carriers are drawing considerable interest as an emerging therapeutic delivery system because of their superior delivery efficiency. Area covered This article reviews the recent advances in use of SPION-based carrier systems to improve the delivery efficiency and target specificity of biotherapeutics. We examine various formulations of SPION-based delivery systems, including SPION micelles, clusters, hydrogels, liposomes, and micro/nanospheres, as well as their specific applications in delivery of biotherapeutics. Expert opinion Recently, biotherapeutics including therapeutic cells, proteins and genes have been studied as alternative treatments to various diseases. Despite the advantages of high target specificity and low adverse effects, clinical translation of biotherapeutics has been hindered by the poor stability and low delivery efficiency compared to chemical drugs. Accordingly, biotherapeutic delivery systems that can overcome these limitations are actively pursued. SPION-based materials can be ideal candidates for developing such delivery systems because of their excellent biocompatibility and superparamagnetism that enables long-term accumulation/retention at target sites by utilization of a suitable magnet. In addition, synthesis technologies for production of finely-tuned, homogeneous SPIONs have been well developed, which may promise their rapid clinical translation. PMID:23199200

  17. Development of the Dual Aerodynamic Nozzle Model for the NTF Semi-Span Model Support System

    NASA Technical Reports Server (NTRS)

    Jones, Greg S.; Milholen, William E., II; Goodliff, Scott L.

    2011-01-01

    The recent addition of a dual flow air delivery system to the NASA Langley National Transonic Facility was experimentally validated with a Dual Aerodynamic Nozzle semi-span model. This model utilized two Stratford calibration nozzles to characterize the weight flow system of the air delivery system. The weight flow boundaries for the air delivery system were identified at mildly cryogenic conditions to be 0.1 to 23 lbm/sec for the high flow leg and 0.1 to 9 lbm/sec for the low flow leg. Results from this test verified system performance and identified problems with the weight-flow metering system that required the vortex flow meters to be replaced at the end of the test.

  18. Gene delivery for cancer therapy.

    PubMed

    Zhang, Teng

    2014-01-01

    Gene therapy has potential in the treatment of human cancers. However, its clinical implication has only achieved little success due to the lack of an efficient gene delivery system. A major hurdle in the current available approaches is in the ability to transduce target tissues at very high efficiencies that ultimately lead to therapeutic levels of transgene expression. This review outlines the characteristics and utilities of several available gene delivery systems, including their advantages and drawbacks in the context of cancer treatment. A perspective of existing challenges and future directions is also included.

  19. ADONIS: One Library's Experience with a CD-ROM Document Delivery System.

    ERIC Educational Resources Information Center

    Pereira, Monica

    Academic libraries have traditionally used interlibrary lending to facilitate document delivery. The trend of stagnating or dwindling serials budgets in libraries, coupled with increased journal costs, has served to increase libraries' reliance on the benefits of consortium pricing and shared costs, by utilizing interlibrary lending of journals.…

  20. Factors Influencing Solar Electric Propulsion Vehicle Payload Delivery for Outer Planet Missions

    NASA Technical Reports Server (NTRS)

    Cupples, Michael; Green, Shaun; Coverstone, Victoria

    2003-01-01

    Systems analyses were performed for missions utilizing solar electric propulsion systems to deliver payloads to outer-planet destinations. A range of mission and systems factors and their affect on the delivery capability of the solar electric propulsion system was examined. The effect of varying the destination, the trip time, the launch vehicle, and gravity-assist boundary conditions was investigated. In addition, the affects of selecting propulsion system and power systems characteristics (including primary array power variation, number of thrusters, thruster throttling mode, and thruster Isp) on delivered payload was examined.

  1. System-state and operating condition sensitive control method and apparatus for electric power delivery systems

    NASA Technical Reports Server (NTRS)

    Burns, III, William Wesley (Inventor); Wilson, Thomas George (Inventor)

    1978-01-01

    This invention provides a method and apparatus for determining a precise switching sequence for the power switching elements of electric power delivery systems of the on-off switching type and which enables extremely fast transient response, precise regulation and highly stable operation. The control utilizes the values of the power delivery system power handling network components, a desired output characteristic, a system timing parameter, and the externally imposed operating conditions to determine where steady state operations should be in order to yield desired output characteristics for the given system specifications. The actual state of the power delivery system is continuously monitored and compared to a state-space boundary which is derived from the desired equilibrium condition, and from the information obtained from this comparison, the system is moved to the desired equilibrium condition in one cycle of switching control. Since the controller continuously monitors the power delivery system's externally imposed operating conditions, a change in the conditions is immediately sensed and a new equilibrium condition is determined and achieved, again in a single cycle of switching control.

  2. A summary of porous tube plant nutrient delivery system investigations from 1985 to 1991

    NASA Technical Reports Server (NTRS)

    Dreschel, T. W.; Brown, C. S.; Piastuch, W. C.; Hinkle, C. R.; Sager, J. C.; Wheeler, R. M.; Knott, W. M.

    1992-01-01

    The Controlled Ecological Life Support System (CELSS) Program is a research effort to evaluate biological processes at a one person scale to provide air, water, and food for humans in closed environments for space habitation. This program focuses currently on the use of conventional crop plants and the use of hydroponic systems to grow them. Because conventional hydroponic systems are dependent on gravity to conduct solution flow, they cannot be used in the microgravity of space. Thus, there is a need for a system that will deliver water and nutrients to plant roots under microgravity conditions. The Plant Space Biology Program is interested in investigating the effect that the space environment has on the growth and development of plants. Thus, there is also a need to have a standard nutrient delivery method for growing plants in space for research into plant responses to microgravity. The Porous Tube Plant Nutrient Delivery System (PTPNDS) utilizes a hydrophilic, microporous material to control water and nutrient delivery to plant roots. It has been designed and analyzed to support plant growth independent of gravity and plans are progressing to test it in microgravity. It has been used successfully to grow food crops to maturity in an earth-bound laboratory. This document includes a bibliography and summary reports from the growth trials performed utilizing the PTPNDS.

  3. RS-34 Phoenix (Peacekeeper Post Boost Propulsion System) Utilization Study

    NASA Technical Reports Server (NTRS)

    Esther, Elizabeth A.; Kos, Larry; Bruno, Cy

    2012-01-01

    The Advanced Concepts Office (ACO) at the NASA Marshall Space Flight Center (MSFC) in conjunction with Pratt & Whitney Rocketdyne conducted a study to evaluate potential in-space applications for the Rocketdyne produced RS-34 propulsion system. The existing RS-34 propulsion system is a remaining asset from the decommissioned United States Air Force Peacekeeper ICBM program; specifically the pressure-fed storable bipropellant Stage IV Post Boost Propulsion System, renamed Phoenix. MSFC gained experience with the RS-34 propulsion system on the successful Ares I-X flight test program flown in October 2009. RS-34 propulsion system components were harvested from stages supplied by the USAF and used on the Ares I-X Roll control system (RoCS). The heritage hardware proved extremely robust and reliable and sparked interest for further utilization on other potential in-space applications. Subsequently, MSFC is working closely with the USAF to obtain all the remaining RS-34 stages for re-use opportunities. Prior to pursuit of securing the hardware, MSFC commissioned the Advanced Concepts Office to understand the capability and potential applications for the RS-34 Phoenix stage as it benefits NASA, DoD, and commercial industry. Originally designed, the RS-34 Phoenix provided in-space six-degrees-of freedom operational maneuvering to deploy multiple payloads at various orbital locations. The RS-34 Phoenix Utilization Study sought to understand how the unique capabilities of the RS-34 Phoenix and its application to six candidate missions: 1) small satellite delivery (SSD), 2) orbital debris removal (ODR), 3) ISS re-supply, 4) SLS kick stage, 5) manned GEO servicing precursor mission, and an Earth-Moon L-2 Waypoint mission. The small satellite delivery and orbital debris removal missions were found to closely mimic the heritage RS-34 mission. It is believed that this technology will enable a small, low-cost multiple satellite delivery to multiple orbital locations with a single boost. For both the small satellite delivery and the orbital debris mission candidates, the RS-34 Phoenix requires the least amount of modification to the existing hardware. The results of the RS-34 Phoenix Utilization Study show that the system is technically sufficient to successfully support all of the missions analyzed

  4. RS-34 Phoenix (Peacekeeper Post Boost Propulsion System) Utilization Study

    NASA Technical Reports Server (NTRS)

    Esther, Elizabeth A.; Kos, Larry; Burnside, Christopher G.; Bruno, Cy

    2013-01-01

    The Advanced Concepts Office (ACO) at the NASA Marshall Space Flight Center (MSFC) in conjunction with Pratt & Whitney Rocketdyne conducted a study to evaluate potential in-space applications for the Rocketdyne produced RS-34 propulsion system. The existing RS-34 propulsion system is a remaining asset from the de-commissioned United States Air Force Peacekeeper ICBM program, specifically the pressure-fed storable bipropellant Stage IV Post Boost Propulsion System, renamed Phoenix. MSFC gained experience with the RS-34 propulsion system on the successful Ares I-X flight test program flown in October 2009. RS-34 propulsion system components were harvested from stages supplied by the USAF and used on the Ares I-X Roll control system (RoCS). The heritage hardware proved extremely robust and reliable and sparked interest for further utilization on other potential in-space applications. MSFC is working closely with the USAF to obtain RS-34 stages for re-use opportunities. Prior to pursuit of securing the hardware, MSFC commissioned the Advanced Concepts Office to understand the capability and potential applications for the RS-34 Phoenix stage as it benefits NASA, DoD, and commercial industry. As originally designed, the RS-34 Phoenix provided in-space six-degrees-of freedom operational maneuvering to deploy multiple payloads at various orbital locations. The RS-34 Phoenix Utilization Study sought to understand how the unique capabilities of the RS-34 Phoenix and its application to six candidate missions: 1) small satellite delivery (SSD), 2) orbital debris removal (ODR), 3) ISS re-supply, 4) SLS kick stage, 5) manned GEO servicing precursor mission, and an Earth-Moon L-2 Waypoint mission. The small satellite delivery and orbital debris removal missions were found to closely mimic the heritage RS-34 mission. It is believed that this technology will enable a small, low-cost multiple satellite delivery to multiple orbital locations with a single boost. For both the small satellite delivery and the orbital debris mission candidates, the RS-34 Phoenix requires the least amount of modification to the existing hardware. The results of the RS-34 Phoenix Utilization Study show that the system is technically sufficient to successfully support all of the missions analyzed.

  5. Fe₃O₄ Nanoparticles in Targeted Drug/Gene Delivery Systems.

    PubMed

    Shen, Lazhen; Li, Bei; Qiao, Yongsheng

    2018-02-23

    Fe₃O₄ nanoparticles (NPs), the most traditional magnetic nanoparticles, have received a great deal of attention in the biomedical field, especially for targeted drug/gene delivery systems, due to their outstanding magnetism, biocompatibility, lower toxicity, biodegradability, and other features. Naked Fe₃O₄ NPs are easy to aggregate and oxidize, and thus are often made with various coatings to realize superior properties for targeted drug/gene delivery. In this review, we first list the three commonly utilized synthesis methods of Fe₃O₄ NPs, and their advantages and disadvantages. In the second part, we describe coating materials that exhibit noticeable features that allow functionalization of Fe₃O₄ NPs and summarize their methods of drug targeting/gene delivery. Then our efforts will be devoted to the research status and progress of several different functionalized Fe₃O₄ NP delivery systems loaded with chemotherapeutic agents, and we present targeted gene transitive carriers in detail. In the following section, we illuminate the most effective treatment systems of the combined drug and gene therapy. Finally, we propose opportunities and challenges of the clinical transformation of Fe₃O₄ NPs targeting drug/gene delivery systems.

  6. Impact of referral transport system on institutional deliveries in Haryana, India.

    PubMed

    Prinja, Shankar; Jeet, Gursimer; Kaur, Manmeet; Aggarwal, Arun Kumar; Manchanda, Neha; Kumar, Rajesh

    2014-06-01

    Creation of a strong referral transport network across the country is necessary for improving physical access to public sector health facilities. In this study we evaluated the referral transport services in Haryana, i.e. Haryana Swasthya Vaahan Sewa (HSVS), now known as National Ambulance Service (NAS), to assess the extent and pattern of utilization, and to ascertain its effect on public sector institutional deliveries. Secondary data on 116,562 patients transported during April to July 2011 in Haryana state were analysed to assess extent and pattern of NAS utilization. Exit interviews were conducted with 270 consecutively selected users and non- users of referral services respectively in Ambala (High NAS utilization), Hisar (medium utilization) and Narnaul (low utilization) districts. Month-wise data on institutional deliveries in public facilities during 2005-2012 were collected in these three districts, and analysed using interrupted time series analysis to assess the impact of NAS on institutional deliveries. Female gender (OR=77.7), rural place of residence (OR=5.96) and poor socio-economic status (poorest wealth quintile OR=2.64) were significantly associated with NAS ambulance service usage. Institutional deliveries in Haryana rose significantly after the introduction of NAS service in Ambala (OR=137.4, 95% CI=22.4-252.4) and Hisar (OR=215, 95% CI=88.5-341.3) districts. No significant increase was observed in Narnaul (OR=4.5, 95% CI=-137.4 to 146.4) district. The findings of the present study showed a positive effect of referral transport service on increasing institutional deliveries. However, this needs to be backed up with adequate supply of basic and emergency obstetric care at hospitals and health centres.

  7. The energy consumption and cost savings of truck electrification for heavy duty vocational applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhiming; Lin, Zhenhong; Franzese, Oscar

    This paper evaluates the application of battery electric vehicles (BEVs) and genset plug-in hybrid electric vehicles (PHEVs) to Class-7 local delivery trucks and genset PHEV for Class-8 utility bucket trucks over widely real-world driving data performed by conventional heavy-duty trucks. A simulation tool based on vehicle tractive energy methodology and component efficiency for addressing component and system performance was developed to evaluate the energy consumption and performance of the trucks. As part of this analysis, various battery sizes combined with different charging powers on the E-Trucks for local delivery and utility bucket applications were investigated. The results show that themore » E-Truck applications not only reduce energy consumption but also achieve significant energy cost savings. For delivery E-Trucks, the results show that periodic stops at delivery sites provide sufficient time for battery charging, and for this reason, a high-power charger is not necessary. For utility bucket PHEV trucks, energy consumption per mile of bucket truck operation is typically higher because of longer idling times and extra high idling load associated with heavy utility work. The availability of on-route charging is typically lacking at the work sites of bucket trucks; hence, the battery size of these trucks is somewhat larger than that of the delivery trucks studied.« less

  8. Laser beam uniformity and stability using homogenizer-based fiber optic launch method: square core fiber delivery

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd E.

    2011-03-01

    Over the years, technological achievements within the laser medical diagnostic, treatment, and therapy markets have led to ever increasing requirements for greater control of critical laser beam parameters. Increased laser power/energy stabilization, temporal and spatial beam shaping and flexible laser beam delivery systems with ergonomic focusing or imaging lens systems are sought by leading medical laser system producers. With medical procedures that utilize laser energy, there is a constant emphasis on reducing adverse effects that come about by the laser itself or its optical system, but even when these variables are well controlled the medical professional will still need to deal with the multivariate nature of the human body. Focusing on the variables that can be controlled, such as accurate placement of the laser beam where it will expose a surface being treated as well as laser beam shape and uniformity is critical to minimizing adverse conditions. This paper covers the use of fiber optic beam delivery as a means of defining the beam shape (intensity/power distribution uniformity) at the target plane as well as the use of fiber delivery as a means to allow more flexible articulation of the laser beam over the surface being treated. The paper will present a new concept of using a square core fiber beam delivery design utilizing a unique micro lens array (MLA) launch method that improves the overall stability of the system, by minimizing the impact of the laser instability. The resulting performance of the prototype is presented to demonstrate its stability in comparison to simple lens launch techniques, with an emphasis on homogenization and articulated fiber delivery.

  9. Technical prospects for commercial and residential distribution and utilization of hydrogen

    NASA Technical Reports Server (NTRS)

    Pangborn, J.; Scott, M.; Sharer, J.

    1976-01-01

    Various investigators have assumed that hydrogen will be compatible with conventional gas delivery systems and that, with minor modifications, hydrogen can be utilized in existing equipment for heating and cooking. The paper addresses some of the issues of concern in the compatibility of natural gas systems with hydrogen and hydrogen mixtures and identifies areas for which tests, research, or development are appropriate. Requirements to be met by atmospheric burners built for most commercial and residential gas appliances are discussed. Expected modifications to appliances for satisfactory operation with hydrogen are closing the primary air shutters, replacing the burners, adjusting the appliance gas regulator for proper delivery pressure, and possibly replacing the gas regulator or its vent.

  10. Research Fellowships Program of the National Center for Health Services Research and Development. Policies and Guidelines for Applicants.

    ERIC Educational Resources Information Center

    Health Services and Mental Health Administration (DHEW), Bethesda, MD.

    The National Center for Health Services Research and Development supports individual research training in an institutional setting for the development of competence in research techniques relevant to the organization, delivery, quality, financing, utilization, and evaluation of health delivery systems. The evolution of health services science…

  11. Cell Based Drug Delivery: Micrococcus luteus Loaded Neutrophils as Chlorhexidine Delivery Vehicles in a Mouse Model of Liver Abscesses in Cattle.

    PubMed

    Wendel, Sebastian O; Menon, Sailesh; Alshetaiwi, Hamad; Shrestha, Tej B; Chlebanowski, Lauren; Hsu, Wei-Wen; Bossmann, Stefan H; Narayanan, Sanjeev; Troyer, Deryl L

    2015-01-01

    The recent WHO report on antibiotic resistances shows a dramatic increase of microbial resistance against antibiotics. With only a few new antibiotics in the pipeline, a different drug delivery approach is urgently needed. We have obtained evidence demonstrating the effectiveness of a cell based drug delivery system that utilizes the innate immune system as targeting carrier for antibacterial drugs. In this study we show the efficient loading of neutrophil granulocytes with chlorhexidine and the complete killing of E. coli as well as Fusobacterium necrophorum in in-vitro studies. Fusobacterium necrophorum causes hepatic abscesses in cattle fed high grain diets. We also show in a mouse model that this delivery system targets infections of F. necrophorum in the liver and reduces the bacterial burden by an order of magnitude from approximately 2•106 to 1•105.

  12. Skilled delivery service utilization and its association with the establishment of Women's Health Development Army in Yeky district, South West Ethiopia: a multilevel analysis.

    PubMed

    Negero, Melese Girmaye; Mitike, Yifru Berhan; Worku, Abebaw Gebeyehu; Abota, Tafesse Lamaro

    2018-01-30

    Because of the unacceptably high maternal and perinatal morbidity and mortality, the government of Ethiopia has established health extension program with a community-based network involving health extension workers (HEWs) and a community level women organization which is known as "Women's Health Development Army" (WHDA). Currently, the HEWs and WHDA network is the approach preferred by the government to register pregnant women and encourage them to link in the healthcare system. However, its association with skilled delivery service utilization is not well known. A community-based cross-sectional study was conducted from January to February 2015. Within 380 clusters of WHDA, a total of 748 reproductive-age women who gave birth in 1 year preceding the study, were included using multistage sampling technique. The data were entered into EPI info version 7 statistical software and exported to STATA version 11 for analysis. Multilevel analysis technique was applied to check for an association of selected variables with a utilization of skilled delivery service. About 45% of women have received skilled delivery care. A significant heterogeneity was observed between "Women's Health Development Teams (clusters)" for skilled delivery care service utilization which explains about 62% of the total variation. Individual-level predictors including urban residence [AOR (95% CI) 35.10 (4.62, 266.52)], previous exposure of complications [AOR (95% CI) 3.81 (1.60, 9.08)], at least four ANC visits [AOR (95% CI) 7.44 (1.48, 37.42)] and preference of skilled personnel [AOR (95% CI) 8.11 (2.61, 25.15)] were significantly associated with skilled delivery service use. Among cluster level variables, the distance of clusters within 2 km radius from the nearest health facility was significantly associated [AOR (95% CI) 6.03 (1.92, 18.93)] with skilled delivery service utilization. In this study, significant variation among clusters of WHDA was observed. Both individual and cluster level variables were identified to predict skilled delivery service utilization. Encouraging women to have frequent ANC visits (- 4 and above), enhancing awareness creation towards the delivery care attendance, constructing more health facilities and roads in hard to reach areas and establishing telemedicine services are recommended.

  13. Membrane-targeting liquid crystal nanoparticles (LCNPs) for drug delivery

    NASA Astrophysics Data System (ADS)

    Nag, Okhil K.; Naciri, Jawad; Spillmann, Christopher M.; Delehanty, James B.

    2016-03-01

    In addition to maintaining the structural integrity of the cell, the plasma membrane regulates multiple important cellular processes, such as endocytosis and trafficking, apoptotic pathways and drug transport. The modulation or tracking of such cellular processes by means of controlled delivery of drugs or imaging agents via nanoscale delivery systems is very attractive. Nanoparticle-mediated delivery systems that mediate long-term residence (e.g., days) and controlled release of the cargoes in the plasma membrane while simultaneously not interfering with regular cellular physiology would be ideal for this purpose. Our laboratory has developed a plasma membrane-targeted liquid crystal nanoparticle (LCNP) formulation that can be loaded with dyes or drugs which can be slowly released from the particle over time. Here we highlight the utility of these nanopreparations for membrane delivery and imaging.

  14. Estimation of low-potential heat recuperation efficiency of smoke fumes in a condensation heat utilizer under various operation conditions of a boiler and a heating system

    NASA Astrophysics Data System (ADS)

    Ionkin, I. L.; Ragutkin, A. V.; Luning, B.; Zaichenko, M. N.

    2016-06-01

    For enhancement of the natural gas utilization efficiency in boilers, condensation heat utilizers of low-potential heat, which are constructed based on a contact heat exchanger, can be applied. A schematic of the contact heat exchanger with a humidifier for preheating and humidifying of air supplied in the boiler for combustion is given. Additional low-potential heat in this scheme is utilized for heating of the return delivery water supplied from a heating system. Preheating and humidifying of air supplied for combustion make it possible to use the condensation utilizer for heating of a heat-transfer agent to temperature exceeding the dewpoint temperature of water vapors contained in combustion products. The decision to mount the condensation heat utilizer on the boiler was taken based on the preliminary estimation of the additionally obtained heat. The operation efficiency of the condensation heat utilizer is determined by its structure and operation conditions of the boiler and the heating system. The software was developed for the thermal design of the condensation heat utilizer equipped by the humidifier. Computation investigations of its operation are carried out as a function of various operation parameters of the boiler and the heating system (temperature of the return delivery water and smoke fumes, air excess, air temperature at the inlet and outlet of the condensation heat utilizer, heating and humidifying of air in the humidifier, and portion of the circulating water). The heat recuperation efficiency is estimated for various operation conditions of the boiler and the condensation heat utilizer. Recommendations on the most effective application of the condensation heat utilizer are developed.

  15. Design of a peptide-based vector, PepFect6, for efficient delivery of siRNA in cell culture and systemically in vivo

    PubMed Central

    EL Andaloussi, Samir; Lehto, Taavi; Mäger, Imre; Rosenthal-Aizman, Katri; Oprea, Iulian I.; Simonson, Oscar E.; Sork, Helena; Ezzat, Kariem; Copolovici, Dana M.; Kurrikoff, Kaido; Viola, Joana R.; Zaghloul, Eman M.; Sillard, Rannar; Johansson, Henrik J.; Said Hassane, Fatouma; Guterstam, Peter; Suhorutšenko, Julia; Moreno, Pedro M. D.; Oskolkov, Nikita; Hälldin, Jonas; Tedebark, Ulf; Metspalu, Andres; Lebleu, Bernard; Lehtiö, Janne; Smith, C. I. Edvard; Langel, Ülo

    2011-01-01

    While small interfering RNAs (siRNAs) have been rapidly appreciated to silence genes, efficient and non-toxic vectors for primary cells and for systemic in vivo delivery are lacking. Several siRNA-delivery vehicles, including cell-penetrating peptides (CPPs), have been developed but their utility is often restricted by entrapment following endocytosis. Hence, developing CPPs that promote endosomal escape is a prerequisite for successful siRNA implementation. We here present a novel CPP, PepFect 6 (PF6), comprising the previously reported stearyl-TP10 peptide, having pH titratable trifluoromethylquinoline moieties covalently incorporated to facilitate endosomal release. Stable PF6/siRNA nanoparticles enter entire cell populations and rapidly promote endosomal escape, resulting in robust RNAi responses in various cell types (including primary cells), with minimal associated transcriptomic or proteomic changes. Furthermore, PF6-mediated delivery is independent of cell confluence and, in most cases, not significantly hampered by serum proteins. Finally, these nanoparticles promote strong RNAi responses in different organs following systemic delivery in mice without any associated toxicity. Strikingly, similar knockdown in liver is achieved by PF6/siRNA nanoparticles and siRNA injected by hydrodynamic infusion, a golden standard technique for liver transfection. These results imply that the peptide, in addition to having utility for RNAi screens in vitro, displays therapeutic potential. PMID:21245043

  16. Do Health Care Delivery System Reforms Improve Value? The Jury Is Still Out.

    PubMed

    Korenstein, Deborah; Duan, Kevin; Diaz, Manuel J; Ahn, Rosa; Keyhani, Salomeh

    2016-01-01

    Widespread restructuring of health delivery systems is underway in the United States to reduce costs and improve the quality of health care. To describe studies evaluating the impact of system-level interventions (incentives and delivery structures) on the value of US health care, defined as the balance between quality and cost. We identified articles in PubMed (2003 to July 2014) using keywords identified through an iterative process, with reference and author tracking. We searched tables of contents of relevant journals from August 2014 through 11 August 2015 to update our sample. We included prospective or retrospective studies of system-level changes, with a control, reporting both quality and either cost or utilization of resources. Data about study design, study quality, and outcomes was extracted by one reviewer and checked by a second. Thirty reports of 28 interventions were included. Interventions included patient-centered medical home implementations (n=12), pay-for-performance programs (n=10), and mixed interventions (n=6); no other intervention types were identified. Most reports (n=19) described both cost and utilization outcomes. Quality, cost, and utilization outcomes varied widely; many improvements were small and process outcomes predominated. Improved value (improved quality with stable or lower cost/utilization or stable quality with lower cost/utilization) was seen in 23 reports; 1 showed decreased value, and 6 showed unchanged, unclear, or mixed results.Study limitations included variability among specific endpoints reported, inconsistent methodologies, and lack of full adjustment in some observational trials. Lack of standardized MeSH terms was also a challenge in the search. On balance, the literature suggests that health system reforms can improve value. However, this finding is tempered by the varying outcomes evaluated across studies with little documented improvement in outcome quality measures. Standardized measures of value would facilitate assessment of the impact of interventions across studies and better estimates of the broad impact of system change.

  17. Delivery of growth factors for tissue regeneration and wound healing.

    PubMed

    Koria, Piyush

    2012-06-01

    Growth factors are soluble secreted proteins capable of affecting a variety of cellular processes important for tissue regeneration. Consequently, the self-healing capacity of patients can be augmented by artificially enhancing one or more processes important for healing through the application of growth factors. However, their application in clinics remains limited due to lack of robust delivery systems and biomaterial carriers. Interestingly, all clinically approved therapies involving growth factors utilize some sort of a biomaterial carrier for growth factor delivery. This suggests that biomaterial delivery systems are extremely important for successful usage of growth factors in regenerative medicine. This review outlines the role of growth factors in tissue regeneration, and their application in both pre-clinical animal models of regeneration and clinical trials is discussed. Additionally, current status of biomaterial substrates and sophisticated delivery systems such as nanoparticles for delivery of exogenous growth factors and peptides in humans are reviewed. Finally, issues and possible future research directions for growth factor therapy in regenerative medicine are discussed.

  18. Intracellular Protein Delivery System Using a Target-Specific Repebody and Translocation Domain of Bacterial Exotoxin.

    PubMed

    Kim, Hee-Yeon; Kang, Jung Ae; Ryou, Jeong-Hyun; Lee, Gyeong Hee; Choi, Dae Seong; Lee, Dong Eun; Kim, Hak-Sung

    2017-11-17

    With the high efficacy of protein-based therapeutics and plenty of intracellular drug targets, cytosolic protein delivery in a cell-specific manner has attracted considerable attention in the field of precision medicine. Herein, we present an intracellular protein delivery system based on a target-specific repebody and the translocation domain of Pseudomonas aeruginosa exotoxin A. The delivery platform was constructed by genetically fusing an EGFR-specific repebody as a targeting moiety to the translocation domain, while a protein cargo was fused to the C-terminal end of the delivery platform. The delivery platform was revealed to efficiently translocate a protein cargo to the cytosol in a target-specific manner. We demonstrate the utility and potential of the delivery platform by showing a remarkable tumor regression with negligible toxicity in a xenograft mice model when gelonin was used as the cytotoxic protein cargo. The present platform can find wide applications to the cell-selective cytosolic delivery of diverse proteins in many areas.

  19. Increased Utilization of Primary Health Care Centers for Birthing Care in Tamil Nadu, India: A Visible Impact of Policies, Initiatives, and Innovations.

    PubMed

    Pandian, Jayanthi; Suresh, Saradha; Desikachari, B R; Padmanaban, P

    2013-01-01

    Tamil Nadu has been showing an increasing trend in institutional deliveries since early 1990's and has now achieved near 100%. Among the institutional deliveries, a change was observed since 2006, wherein primary health centers (PHCs) showed a four-fold increase in deliveries, while other public and private health facilities showed a decline, despite equal access to all categories of health facilities. What led to this increased utilization of PHCs for birthing care? Policies, documents, and published reports of the Government of Tamil Nadu (GoTN) were reviewed and interviews were conducted with the various stakeholders involved in providing birthing care in the PHCs. This study analyzes the impact of the policies and supply side initiatives and innovations which led to increase utilization of the PHCs for birthing care. Scaling up of 24 × 7 services in all PHCs, upgrading PHCs with good infrastructure, human resources, and women friendly services have helped to boost the image of the PHCs. Pro-women policies like maternity benefit schemes, birth companionship, providing food, and compulsory stay for 48 h following delivery have attracted women towards PHC. Innovative strategies like maternity picnics and use of expected date of delivery (EDD) chart for follow-up have made women choose PHCs, while periodic reviews and support to staff has improved service delivery. Women centered policies, efficient managerial systems, quality care, and innovative marketing of services have together contributed to increased utilization of PHCs for birthing. Other states could explore the possibility of replicating this model to make optimal use the PHC facilities.

  20. Addressing Health Insurance Literacy Gaps in an Urban African American Population: A Qualitative Study.

    PubMed

    Ali, Nida M; Combs, Ryan M; Muvuka, Baraka; Ayangeakaa, Suur D

    2018-06-20

    Health insurance and health systems literacy needs are evolving with changes to the U.S. healthcare system. Following the implementation of the Affordable Care Act, many residents in West Louisville, Kentucky, a predominantly African American community, gained health insurance coverage for the first time. A qualitative study was conducted to assess residents' health insurance and health systems needs and to identify ways of assisting residents with navigating the healthcare system and utilizing their health insurance coverage. Twelve focus groups were conducted with a total of eighty-seven residents. Round one explored participants' experiences with health insurance, and round two examined their health information delivery preferences. An inductive thematic analysis was performed. Participants revealed the complexity of the health insurance system, many citing difficulty understanding health insurance concepts and finding suitable healthcare providers. High costs, mistrust in the healthcare system, and perceived public-private disparities were barriers to effective health insurance utilization. Health insurance materials in their current form have limited value in translating health insurance and health systems information to the West Louisville population. Alternative forms of information delivery, such as locally accessible and culturally competent community health workers may be better received and more successfully utilized by the community.

  1. Stimuli-Responsive Polymeric Systems for Controlled Protein and Peptide Delivery: Future Implications for Ocular Delivery.

    PubMed

    Mahlumba, Pakama; Choonara, Yahya E; Kumar, Pradeep; du Toit, Lisa C; Pillay, Viness

    2016-07-30

    Therapeutic proteins and peptides have become notable in the drug delivery arena for their compatibility with the human body as well as their high potency. However, their biocompatibility and high potency does not negate the existence of challenges resulting from physicochemical properties of proteins and peptides, including large size, short half-life, capability to provoke immune responses and susceptibility to degradation. Various delivery routes and delivery systems have been utilized to improve bioavailability, patient acceptability and reduce biodegradation. The ocular route remains of great interest, particularly for responsive delivery of macromolecules due to the anatomy and physiology of the eye that makes it a sensitive and complex environment. Research in this field is slowly gaining attention as this could be the breakthrough in ocular drug delivery of macromolecules. This work reviews stimuli-responsive polymeric delivery systems, their use in the delivery of therapeutic proteins and peptides as well as examples of proteins and peptides used in the treatment of ocular disorders. Stimuli reviewed include pH, temperature, enzymes, light, ultrasound and magnetic field. In addition, it discusses the current progress in responsive ocular drug delivery. Furthermore, it explores future prospects in the use of stimuli-responsive polymers for ocular delivery of proteins and peptides. Stimuli-responsive polymers offer great potential in improving the delivery of ocular therapeutics, therefore there is a need to consider them in order to guarantee a local, sustained and ideal delivery of ocular proteins and peptides, evading tissue invasion and systemic side-effects.

  2. Rumen-stable delivery systems.

    PubMed

    Papas; Wu

    1997-12-08

    Ruminants have a distinct digestive system which serves a unique symbiotic relationship between the host animal and predominantly anaerobic rumen bacteria and protozoa. Rumen fermentation can be both beneficial by enabling utilization of cellulose and non-protein nitrogen and detrimental by reducing the nutritive value of some carbohydrates, high biological value proteins and by hydrogenating unsaturated lipids. In addition it can also result in the modification and inactivation of many pharmacologically active ingredients administered to the host animal via the oral route. The advances in ruminant nutrition and health demand a rumen-stable delivery system which can deliver the active ingredient post-ruminally while simultaneously meet efficacy, safety and cost criteria. In contrast to drug delivery systems for humans, the demand for low-cost has hindered the development of effective rumen-stable delivery systems. Historically, heat and chemical treatment of feed components, low solubility analogues or lipid-based formulations have been used to achieve some degree of rumen-stability, and products have been developed accordingly. Recently, a polymeric pH-dependent rumen-stable delivery system has been developed and commercialized. The rationale of this delivery system is based on the pH difference between ruminal and abomasal fluids. The delivery system is composed of a basic polymer, a hydrophobic substance and a pigment material. It can be applied as a coating to solid particles via a common encapsulation method such as air-suspension coating. In the future, the delivery system could be used to deliver micronutrients and pharmaceuticals post-ruminally to ruminant animals. A further possible application of the delivery system is that it could also be combined with other controlled delivery devices/systems in order to enhance slow release or to achieve targeted delivery needs for ruminants. This paper discusses the rumen protection and the abomasal release mechanism of the polymeric coating. It also reviews other rumen stable delivery systems and methods for evaluating their in vitro and in vivo performance.

  3. Microscale Symmetrical Electroporator Array as a Versatile Molecular Delivery System

    NASA Astrophysics Data System (ADS)

    Ouyang, Mengxing; Hill, Winfield; Lee, Jung Hyun; Hur, Soojung Claire

    2017-03-01

    Successful developments of new therapeutic strategies often rely on the ability to deliver exogenous molecules into cytosol. We have developed a versatile on-chip vortex-assisted electroporation system, engineered to conduct sequential intracellular delivery of multiple molecules into various cell types at low voltage in a dosage-controlled manner. Micro-patterned planar electrodes permit substantial reduction in operational voltages and seamless integration with an existing microfluidic technology. Equipped with real-time process visualization functionality, the system enables on-chip optimization of electroporation parameters for cells with varying properties. Moreover, the system’s dosage control and multi-molecular delivery capabilities facilitate intracellular delivery of various molecules as a single agent or in combination and its utility in biological research has been demonstrated by conducting RNA interference assays. We envision the system to be a powerful tool, aiding a wide range of applications, requiring single-cell level co-administrations of multiple molecules with controlled dosages.

  4. Stimuli-Responsive Nanomaterials for Therapeutic Protein Delivery

    PubMed Central

    Lu, Yue; Sun, Wujin; Gu, Zhen

    2014-01-01

    Protein therapeutics have emerged as a significant role in treatment of a broad spectrum of diseases, including cancer, metabolic disorders and autoimmune diseases. The efficacy of protein therapeutics, however, is limited by their instability, immunogenicity and short half-life. In order to overcome these barriers, tremendous efforts have recently been made in developing controlled protein delivery systems. Stimuli-triggered release is an appealing and promising approach for protein delivery and has made protein delivery with both spatiotemporal- and dosage-controlled manners possible. This review surveys recent advances in controlled protein delivery of proteins or peptides using stimuli-responsive nanomaterials. Strategies utilizing both physiological and external stimuli are introduced and discussed. PMID:25151983

  5. Qualification of the GASGUARD® SAS GGT Arsine Sub-Atmospheric Gas Delivery System for Ion Implantation

    NASA Astrophysics Data System (ADS)

    Dunn, James P.; Rolland, James L.; Grim, James S.; Machado, Reinaldo M.; Hartz, Christopher L.

    2006-11-01

    A beta level evaluation of the GASGUARD® SAS GGT Arsine ion implant dopant supply developed by Air Products and Chemicals, Inc. was conducted by Atmel Corporation. The evaluation included characterization of the normalized wafer yield, mass spectra, ionization efficiency, flow rate, beam current, extraction of usable material and cylinder lifetime. This new and novel sub-atmospheric dopant gas delivery system utilizes a unique electrochemical process, which can generate, on demand, high flows of arsine at a constant 400 torr pressure while limiting net inventory of arsine to only 1 gram. This paper illustrates how Atmel Corporation evaluated and released this new arsine dopant delivery system for commercial production and verified high delivery capacity, resulting in reduced gas costs and increased cylinder life compared to the traditional adsorbent based technology.

  6. The utilization rate of the regional health information exchange: how it impacts on health care delivery outcomes.

    PubMed

    Mäenpää, Tiina; Asikainen, Paula; Gissler, Mika; Siponen, Kimmo; Maass, Marianne; Saranto, Kaija; Suominen, Tarja

    2012-01-01

    Interest in improving quality and effectiveness is the primary driver for health information exchange efforts across a health care system to improve the provision of public health care services. The aim here was to describe and identify the impact of a regional health information exchange (HIE) using quantitative statistics for 2004-2008 in one hospital district in Finland. We conducted a comparative, longitudinal 5-year follow-up study to evaluate the utilization rates of HIE, and the impact on health care delivery outcomes. The selected outcomes were total laboratory tests, radiology examinations, appointments, emergency visits, and referrals. The HIE utilization rates increased annually in all 10 federations of municipalities, and the viewing of reference information increased steadily in each professional group over the 5-year study period. In these federations, a significant connection was found to the number of laboratory tests and radiology examinations, with a statistically significant increase in the number of viewed references and use of HIE. The higher the numbers of emergency visits and appointments, the higher the numbers of emergency referrals to specialized care, viewed references, and HIE usage among the groups of different health care professionals. There is increasing interest in HIE usage through regional health information system among health professionals to improve health care delivery regionally and bring information on the patient directly to care delivery. It will be important to study which changes in working methods in the service system are explained by RHIS. Also, the experiences of the change that has taken place should be studied among the different stakeholders, administrative representatives, and patients.

  7. Transdermal solid delivery of epigallocatechin-3-gallate using self-double-emulsifying drug delivery system as vehicle: Formulation, evaluation and vesicle-skin interaction.

    PubMed

    Hu, Caibiao; Gu, Chengyu; Fang, Qiao; Wang, Qiang; Xia, Qiang

    2016-02-01

    The present study investigated a self-double-emulsifying drug delivery system loaded with epigallocatechin-3-gallate to improve epigallocatechin-3-gallate skin retention. The long chain solid lipids (cetostearyl alcohol) and macadamia oil were utilized as a carrier to deliver the bioactive ingredient. Response surface methodology was used to optimize the formulation, and the solid lipid to total lipid weight ratio, concentration of epigallocatechin-3-gallate and hydrophilic surfactant on skin retention were found to be the principal factors. The optimum formulation with high encapsulation efficiency (95.75%), self-double-emulsification performance (99.58%) and skin retention (87.24%) were derived from the fitted models and experimentally examined, demonstrating a reasonable agreement between experimental and predicted values. Epigallocatechin-3-gallate-self-double-emulsifying drug delivery system was found to be stable for 3 months. Transdermal studies could explain a higher skin diffusion of epigallocatechin-3-gallate from the self-double-emulsifying drug delivery system compared with EGCG aqueous solution. In vitro cytotoxicity showed that epigallocatechin-3-gallate-self-double-emulsifying drug delivery system did not exert hazardous effect on L929 cells up to 1:10. © The Author(s) 2015.

  8. Fe3O4 Nanoparticles in Targeted Drug/Gene Delivery Systems

    PubMed Central

    Shen, Lazhen; Li, Bei; Qiao, Yongsheng

    2018-01-01

    Fe3O4 nanoparticles (NPs), the most traditional magnetic nanoparticles, have received a great deal of attention in the biomedical field, especially for targeted drug/gene delivery systems, due to their outstanding magnetism, biocompatibility, lower toxicity, biodegradability, and other features. Naked Fe3O4 NPs are easy to aggregate and oxidize, and thus are often made with various coatings to realize superior properties for targeted drug/gene delivery. In this review, we first list the three commonly utilized synthesis methods of Fe3O4 NPs, and their advantages and disadvantages. In the second part, we describe coating materials that exhibit noticeable features that allow functionalization of Fe3O4 NPs and summarize their methods of drug targeting/gene delivery. Then our efforts will be devoted to the research status and progress of several different functionalized Fe3O4 NP delivery systems loaded with chemotherapeutic agents, and we present targeted gene transitive carriers in detail. In the following section, we illuminate the most effective treatment systems of the combined drug and gene therapy. Finally, we propose opportunities and challenges of the clinical transformation of Fe3O4 NPs targeting drug/gene delivery systems. PMID:29473914

  9. Silk-Based Biomaterials for Sustained Drug Delivery

    PubMed Central

    Yucel, Tuna; Lovett, Michael L.; Kaplan, David L.

    2014-01-01

    Silk presents a rare combination of desirable properties for sustained drug delivery, including aqueous-based purification and processing options without chemical cross-linkers, compatibility with common sterilization methods, controllable and surface-mediated biodegradation into non-inflammatory by-products, biocompatibility, utility in drug stabilization, and robust mechanical properties. A versatile silk-based toolkit is currently available for sustained drug delivery formulations of small molecule through macromolecular drugs, with a promise to mitigate several drawbacks associated with other degradable sustained delivery technologies in the market. Silk-based formulations utilize silk’s well-defined nano- through microscale structural hierarchy, stimuli-responsive self-assembly pathways and crystal polymorphism, as well as sequence and genetic modification options towards targeted pharmaceutical outcomes. Furthermore, by manipulating the interactions between silk and drug molecules, near-zero order sustained release may be achieved through diffusion- and degradation-based release mechanisms. Because of these desirable properties, there has been increasing industrial interest in silk-based drug delivery systems currently at various stages of the developmental pipeline from pre-clinical to FDA-approved products. Here, we discuss the unique aspects of silk technology as a sustained drug delivery platform and highlight the current state of the art in silk-based drug delivery. We also offer a potential early development pathway for silk-based sustained delivery products. PMID:24910193

  10. Calcium carbonate nanoparticles as cancer drug delivery system.

    PubMed

    Maleki Dizaj, Solmaz; Barzegar-Jalali, Mohammad; Zarrintan, Mohammad Hossein; Adibkia, Khosro; Lotfipour, Farzaneh

    2015-01-01

    Calcium carbonate (CaCO3) has broad biomedical utilizations owing to its availability, low cost, safety, biocompatibility, pH-sensitivity and slow biodegradability. Recently, there has been widespread interest in their application as drug delivery systems for different groups of drugs. Among them, CaCO3 nanoparticles have exhibited promising potential as drug carriers targeting cancer tissues and cells. The pH-dependent properties, alongside the potential to be functionalized with targeting agents give them the unique property that can be used in targeted delivery systems for anticancer drugs. Also, due to the slow degradation of CaCO3 matrices, these nanoparticles can be used as sustained release systems to retain drugs in cancer tissues for longer times after administration. Development of drug delivery carriers using CaCO3 nanoparticles has been reviewed. The current state of CaCO3 nanoparticles as cancer drug delivery systems with focus on their special properties like pH-sensitivity and biodegradability has also been evaluated. According to our review, CaCO3 nanoparticles, owing to their special characteristics, will have a potential role in safe and efficient cancer treatment in future.

  11. Engineered Polymers for Advanced Drug Delivery

    PubMed Central

    Kim, Sungwon; Kim, Jong-Ho; Jeon, Oju; Kwon, Ick Chan; Park, Kinam

    2009-01-01

    Engineered polymers have been utilized for developing advanced drug delivery systems. The development of such polymers has caused advances in polymer chemistry, which, in turn, has resulted in smart polymers that can respond to changes in environmental condition, such as temperature, pH, and biomolecules. The responses vary widely from swelling/deswelling to degradation. Drug-polymer conjugates and drug-containing nano/micro-particles have been used for drug targeting. Engineered polymers and polymeric systems have also been used in new areas, such as molecular imaging as well as in nanotechnology. This review examines the engineered polymers that have been used as traditional drug delivery and as more recent applications in nanotechnology. PMID:18977434

  12. Application of Various Types of Liposomes in Drug Delivery Systems

    PubMed Central

    Alavi, Mehran; Karimi, Naser; Safaei, Mohsen

    2017-01-01

    Liposomes, due to their various forms, require further exploration. These structures can deliver both hydrophilic and hydrophobic drugs for cancer, antibacterial, antifungal, immunomodulation, diagnostics, ophtalmica, vaccines, enzymes and genetic elements. Preparation of liposomes results in different properties for these systems. In addition, based on preparation methods, liposomes types can be unilamellar, multilamellar and giant unilamellar; however, there are many factors and difficulties that affect the development of liposome drug delivery structure. In the present review, we discuss some problems that impact drug delivery by liposomes. In addition, we discuss a new generation of liposomes, which is utilized for decreasing the limitation of the conventional liposomes. PMID:28507932

  13. Safe delivery care practices in western Nepal: Does women's autonomy influence the utilization of skilled care at birth?

    PubMed

    Bhandari, Tulsi Ram; Kutty, V Raman; Sarma, P Sankara; Dangal, Ganesh

    2017-01-01

    Despite various efforts to increase the utilization of skilled birth attendants (SBA), nearly two-thirds of deliveries take place at home without the assistance of SBAs in Nepal. We hypothesized that the ability of women to take decisions about their own lives-women's autonomy-plays an important part in birth choices. To know this, we conducted a community-based cross-sectional study for assessing women's autonomy and utilization of safe delivery care service in Kapilvastu district of Nepal from June to October 2014. We used multivariate modeling to associate socioeconomic factors and women's autonomy with the utilization of safe delivery care services. Just over one-third of women sought institutional delivery care during the birth of their last child. Out of the total deliveries at health facilities, nearly 58% women visited health facility for self-reported emergency obstructive care. Only 6.2% home deliveries were handled by health workers and 14.7% women used the safe delivery kit for home delivery care. Higher levels of women's education had a strong positive association (odds ratio = 24.11, CI = 9.43-61.64) with institutional delivery care. Stratified analysis showed that when the husband is educated, women's education seems to work partly through their autonomy in decision making. Educational status of women emerged as one of the key predictors of the utilization of delivery care services in Kapilvastu district. Economic status of household and husband's education are other dominant predictors of the utilization of safe delivery care services. Improving the economic and educational status may be the way out for improving the proportion of institutional deliveries. Women's autonomy may be an important mediating factor in this pathway.

  14. Safe delivery care practices in western Nepal: Does women’s autonomy influence the utilization of skilled care at birth?

    PubMed Central

    Kutty, V. Raman; Sarma, P. Sankara; Dangal, Ganesh

    2017-01-01

    Despite various efforts to increase the utilization of skilled birth attendants (SBA), nearly two-thirds of deliveries take place at home without the assistance of SBAs in Nepal. We hypothesized that the ability of women to take decisions about their own lives—women’s autonomy—plays an important part in birth choices. To know this, we conducted a community-based cross-sectional study for assessing women’s autonomy and utilization of safe delivery care service in Kapilvastu district of Nepal from June to October 2014. We used multivariate modeling to associate socioeconomic factors and women’s autonomy with the utilization of safe delivery care services. Just over one-third of women sought institutional delivery care during the birth of their last child. Out of the total deliveries at health facilities, nearly 58% women visited health facility for self-reported emergency obstructive care. Only 6.2% home deliveries were handled by health workers and 14.7% women used the safe delivery kit for home delivery care. Higher levels of women’s education had a strong positive association (odds ratio = 24.11, CI = 9.43–61.64) with institutional delivery care. Stratified analysis showed that when the husband is educated, women’s education seems to work partly through their autonomy in decision making. Educational status of women emerged as one of the key predictors of the utilization of delivery care services in Kapilvastu district. Economic status of household and husband’s education are other dominant predictors of the utilization of safe delivery care services. Improving the economic and educational status may be the way out for improving the proportion of institutional deliveries. Women’s autonomy may be an important mediating factor in this pathway. PMID:28771579

  15. Mercury sorbent delivery system for flue gas

    DOEpatents

    Klunder,; Edgar, B [Bethel Park, PA

    2009-02-24

    The invention presents a device for the removal of elemental mercury from flue gas streams utilizing a layer of activated carbon particles contained within the filter fabric of a filter bag for use in a flue gas scrubbing system.

  16. Increased Utilization of Primary Health Care Centers for Birthing Care in Tamil Nadu, India: A Visible Impact of Policies, Initiatives, and Innovations

    PubMed Central

    Pandian, Jayanthi; Suresh, Saradha; Desikachari, B. R.; Padmanaban, P.

    2013-01-01

    Background: Tamil Nadu has been showing an increasing trend in institutional deliveries since early 1990's and has now achieved near 100%. Among the institutional deliveries, a change was observed since 2006, wherein primary health centers (PHCs) showed a four-fold increase in deliveries, while other public and private health facilities showed a decline, despite equal access to all categories of health facilities. What led to this increased utilization of PHCs for birthing care? Material and Methods: Policies, documents, and published reports of the Government of Tamil Nadu (GoTN) were reviewed and interviews were conducted with the various stakeholders involved in providing birthing care in the PHCs. This study analyzes the impact of the policies and supply side initiatives and innovations which led to increase utilization of the PHCs for birthing care. Results: Scaling up of 24 × 7 services in all PHCs, upgrading PHCs with good infrastructure, human resources, and women friendly services have helped to boost the image of the PHCs. Pro-women policies like maternity benefit schemes, birth companionship, providing food, and compulsory stay for 48 h following delivery have attracted women towards PHC. Innovative strategies like maternity picnics and use of expected date of delivery (EDD) chart for follow-up have made women choose PHCs, while periodic reviews and support to staff has improved service delivery. Conclusion: Women centered policies, efficient managerial systems, quality care, and innovative marketing of services have together contributed to increased utilization of PHCs for birthing. Other states could explore the possibility of replicating this model to make optimal use the PHC facilities. PMID:26664836

  17. A system for EPID-based real-time treatment delivery verification during dynamic IMRT treatment.

    PubMed

    Fuangrod, Todsaporn; Woodruff, Henry C; van Uytven, Eric; McCurdy, Boyd M C; Kuncic, Zdenka; O'Connor, Daryl J; Greer, Peter B

    2013-09-01

    To design and develop a real-time electronic portal imaging device (EPID)-based delivery verification system for dynamic intensity modulated radiation therapy (IMRT) which enables detection of gross treatment delivery errors before delivery of substantial radiation to the patient. The system utilizes a comprehensive physics-based model to generate a series of predicted transit EPID image frames as a reference dataset and compares these to measured EPID frames acquired during treatment. The two datasets are using MLC aperture comparison and cumulative signal checking techniques. The system operation in real-time was simulated offline using previously acquired images for 19 IMRT patient deliveries with both frame-by-frame comparison and cumulative frame comparison. Simulated error case studies were used to demonstrate the system sensitivity and performance. The accuracy of the synchronization method was shown to agree within two control points which corresponds to approximately ∼1% of the total MU to be delivered for dynamic IMRT. The system achieved mean real-time gamma results for frame-by-frame analysis of 86.6% and 89.0% for 3%, 3 mm and 4%, 4 mm criteria, respectively, and 97.9% and 98.6% for cumulative gamma analysis. The system can detect a 10% MU error using 3%, 3 mm criteria within approximately 10 s. The EPID-based real-time delivery verification system successfully detected simulated gross errors introduced into patient plan deliveries in near real-time (within 0.1 s). A real-time radiation delivery verification system for dynamic IMRT has been demonstrated that is designed to prevent major mistreatments in modern radiation therapy.

  18. Camptothecin-loaded fusogenic nanodroplets as ultrasound theranostic agent in stem cell-mediated drug-delivery system.

    PubMed

    Ho, Yi-Ju; Chiang, Yu-Jung; Kang, Shih-Tsung; Fan, Ching-Hsiang; Yeh, Chih-Kuang

    2018-05-28

    Adipose-derived stem cells (ADSCs) have been utilized in cellular delivery systems to carry therapeutic agents into tumors by migration. Drug-loaded nanodroplets release drugs and form bubbles after acoustic droplet vaporization (ADV) triggered by ultrasound stimulation, providing a system for ultrasound-induced cellular delivery of theranostic agents. In order to improve the efficiency of drug release, fusogenic nanodroplets were designed to go from nano to micron size upon uptake by ADSCs for reducing ADV threshold. The purpose of our study was to demonstrate the utility of camptothecin-loaded fusogenic nanodroplets (CPT-FNDs) as ultrasound theranostic agents in an ADSCs delivery system. CPT-FNDs showed an increase in size from 81.6 ± 3.5 to 1043.5 ± 28.3 nm and improved CPT release from 22.0 ± 1.8% to 37.6 ± 2.1%, demonstrating the fusion ability of CPT-FNDs. CPT-FNDs-loaded ADSCs demonstrated a cell viability of 77 ± 4%, and the in vitro migration ability was 3.2 ± 1.2-fold for the tumor condition compared to the cell growth condition. Ultrasound enhancement imaging showed intratumoral ADV-generated bubble formation (increasing 3.24 ± 0.47 dB) triggered by ultrasound after CPT-FNDs-loaded ADSCs migration into B16F0 tumors. Histological images revealed intratumoral distribution of CPT-FNDs-loaded ADSCs and tissue damage due to the ADV. The CPT-FNDs can be used as theranostic agents in an ADSCs delivery system to provide the ultrasound contrast imaging and deliver combination therapy of drug release and physical damage after ADV. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Advanced drug delivery systems for antithrombotic agents

    PubMed Central

    Greineder, Colin F.; Howard, Melissa D.; Carnemolla, Ronald; Cines, Douglas B.

    2013-01-01

    Despite continued achievements in antithrombotic pharmacotherapy, difficulties remain in managing patients at high risk for both thrombosis and hemorrhage. Utility of antithrombotic agents (ATAs) in these settings is restricted by inadequate pharmacokinetics and narrow therapeutic indices. Use of advanced drug delivery systems (ADDSs) may help to circumvent these problems. Various nanocarriers, affinity ligands, and polymer coatings provide ADDSs that have the potential to help optimize ATA pharmacokinetics, target drug delivery to sites of thrombosis, and sense pathologic changes in the vascular microenvironment, such as altered hemodynamic forces, expression of inflammatory markers, and structural differences between mature hemostatic and growing pathological clots. Delivery of ATAs using biomimetic synthetic carriers, host blood cells, and recombinant fusion proteins that are activated preferentially at sites of thrombus development has shown promising outcomes in preclinical models. Further development and translation of ADDSs that spare hemostatic fibrin clots hold promise for extending the utility of ATAs in the management of acute thrombotic disorders through rapid, transient, and targeted thromboprophylaxis. If the potential benefit of this technology is to be realized, a systematic and concerted effort is required to develop clinical trials and translate the use of ADDSs to the clinical arena. PMID:23798715

  20. Test rig and particulate deposit and cleaning evaluation processes using the same

    DOEpatents

    Schroder, Mark Stewart; Woodmansee, Donald Ernest; Beadie, Douglas Frank

    2002-01-01

    A rig and test program for determining the amount, if any, of contamination that will collect in the passages of a fluid flow system, such as a power plant fluid delivery system to equipment assemblies or sub-assemblies, and for establishing methods and processes for removing contamination therefrom. In the presently proposed embodiment, the rig and test programs are adapted in particular to utilize a high-pressure, high-volume water flush to remove contamination from substantially the entire fluid delivery system, both the quantity of contamination and as disposed or deposited within the system.

  1. Current Progress of Virus-mimicking Nanocarriers for Drug Delivery

    PubMed Central

    Somiya, Masaharu; Liu, Qiushi; Kuroda, Shun'ichi

    2017-01-01

    Nanomedicines often involve the use of nanocarriers as a delivery system for drugs or genes for maximizing the therapeutic effect and/or minimizing the adverse effect. From drug administration to therapeutic activity, nanocarriers must evade the host's immune system, specifically and efficiently target and enter the cell, and release their payload into the cell cytoplasm by endosomal escape. These processes constitute the early infection stage of viruses. Viruses are a powerful natural nanomaterial for the efficient delivery of genetic information by sophisticated mechanisms. Over the past two decades, many virus-inspired nanocarriers have been generated to permit successful drug and gene delivery. In this review, we summarize the early infection machineries of viruses, of which the part has so far been utilized for delivery systems. Furthermore, we describe basics and applications of the bio-nanocapsule, which is a hepatitis B virus-mimicking nanoparticle harboring nearly all activities involved in the early infection machineries (i.e., stealth activity, targeting activity, cell entry activity, endosomal escaping activity). PMID:29188175

  2. Determining the feasibility of robotic courier medication delivery in a hospital setting.

    PubMed

    Kirschling, Thomas E; Rough, Steve S; Ludwig, Brad C

    2009-10-01

    The feasibility of a robotic courier medication delivery system in a hospital setting was evaluated. Robotic couriers are self-guiding, self-propelling robots that navigate hallways and elevators to pull an attached or integrated cart to a desired destination. A robotic courier medication delivery system was pilot tested in two patient care units at a 471-bed tertiary care academic medical center. Average transit for the existing manual medication delivery system hourly hospitalwide deliveries was 32.6 minutes. Of this, 32.3% was spent at the patient care unit and 67.7% was spent pushing the cart or waiting at an elevator. The robotic courier medication delivery system traveled as fast as 1.65 ft/sec (52% speed of the manual system) in the absence of barriers but moved at an average rate of 0.84 ft/sec (26% speed of the manual system) during the study, primarily due to hallway obstacles. The robotic courier was utilized for 50% of the possible 1750 runs during the 125-day pilot due to technical or situational difficulties. Of the runs that were sent, a total of 79 runs failed, yielding an overall 91% success rate. During the final month of the pilot, the success rate reached 95.6%. Customer satisfaction with the traditional manual delivery system was high. Customer satisfaction with deliveries declined after implementation of the robotic courier medication distribution system. A robotic courier medication delivery system was implemented but was not expanded beyond the two pilot units. Challenges of implementation included ongoing education on how to properly move the robotic courier and keeping the hallway clear of obstacles.

  3. Nasal-nanotechnology: revolution for efficient therapeutics delivery.

    PubMed

    Kumar, Amrish; Pandey, Aditya Nath; Jain, Sunil Kumar

    2016-01-01

    In recent years, nanotechnology-based delivery systems have gained interest to overcome the problems of restricted absorption of therapeutic agents from the nasal cavity, depending upon the physicochemical properties of the drug and physiological properties of the human nose. The well-tolerated and non-invasive nasal drug delivery when combined with the nanotechnology-based novel formulations and carriers, opens the way for the effective systemic and brain targeting delivery of various therapeutic agents. To accomplish competent drug delivery, it is imperative to recognize the interactions among the nanomaterials and the nasal biological environment, targeting cell-surface receptors, drug release, multiple drug administration, stability of therapeutic agents and molecular mechanisms of cell signaling involved in patho-biology of the disease under consideration. Quite a few systems have been successfully formulated using nanomaterials for intranasal (IN) delivery. Carbon nanotubes (CNTs), chitosan, polylactic-co-glycolic acid (PLGA) and PLGA-based nanosystems have also been studied in vitro and in vivo for the delivery of several therapeutic agents which shown promising concentrations in the brain after nasal administration. The use of nanomaterials including peptide-based nanotubes and nanogels (NGs) for vaccine delivery via nasal route is a new approach to control the disease progression. In this review, the recent developments in nanotechnology utilized for nasal drug delivery have been discussed.

  4. Cyclodextrin-based supramolecular systems for drug delivery: Recent progress and future perspective

    PubMed Central

    Zhang, Jianxiang; Ma, Peter X

    2013-01-01

    The excellent biocompatibility and unique inclusion capability as well as powerful functionalization capacity of cyclodextrins and their derivatives make them especially attractive for engineering novel functional materials for biomedical applications. There has been increasing interest recently to fabricate supramolecular systems for drug and gene delivery based on cyclodextrin materials. This review focuses on state of the art and recent advances in the construction of cyclodextrin-based assemblies and their applications for controlled drug delivery. First, we introduce cyclodextrin materials utilized for self-assembly. The fabrication technologies of supramolecular systems including nanoplatforms and hydrogels as well as their applications in nanomedicine and pharmaceutical sciences are then highlighted. At the end, the future directions of this field are discussed. PMID:23673149

  5. Husbands' involvement in delivery care utilization in rural Bangladesh: A qualitative study

    PubMed Central

    2012-01-01

    Background A primary cause of high maternal mortality in Bangladesh is lack of access to professional delivery care. Examining the role of the family, particularly the husband, during pregnancy and childbirth is important to understanding women's access to and utilization of professional maternal health services that can prevent maternal mortality. This qualitative study examines husbands' involvement during childbirth and professional delivery care utilization in a rural sub-district of Netrokona district, Bangladesh. Methods Using purposive sampling, ten households utilizing a skilled attendant during the birth of the youngest child were selected and matched with ten households utilizing an untrained traditional birth attendant, or dhatri. Households were selected based on a set of inclusion criteria, such as approximate household income, ethnicity, and distance to the nearest hospital. Twenty semi-structured interviews were conducted in Bangla with husbands in these households in June 2010. Interviews were transcribed, translated into English, and analyzed using NVivo 9.0. Results By purposefully selecting households that differed on the type of provider utilized during delivery, common themes--high costs, poor transportation, and long distances to health facilities--were eliminated as sufficient barriers to the utilization of professional delivery care. Divergent themes, namely husbands' social support and perceived social norms, were identified as underlying factors associated with delivery care utilization. We found that husbands whose wives utilized professional delivery care provided emotional, instrumental and informational support to their wives during delivery and believed that medical intervention was necessary. By contrast, husbands whose wives utilized an untrained dhatri at home were uninvolved during delivery and believed childbirth should take place at home according to local traditions. Conclusions This study provides novel evidence about male involvement during childbirth in rural Bangladesh. These findings have important implications for program planners, who should pursue culturally sensitive ways to involve husbands in maternal health interventions and assess the effectiveness of education strategies targeted at husbands. PMID:22494576

  6. Advancement of multifunctional hybrid nanogel systems: Construction and application in drug co-delivery and imaging technique.

    PubMed

    Ma, Yakun; Ge, Yanxiu; Li, Lingbing

    2017-02-01

    Nanogel-based multifunctional drug delivery systems, especially hybrid nanogels and multicompartment nanogels have drawn more and more extensive attention from the researchers in pharmacy because it can result in achieving a superior functionality through the synergistic property enhancement of each component. The unique hybrid and compartmentalized structures provide the great potential for co-delivery of multiple agents even the multiple agents with different physicochemical properties. Otherwise the hybrid nanogel encapsulating optical and magnetic resonance imaging contrast can be utilized in imaging technique for disease diagnosis. More importantly through nanogel-based multifunctional drug delivery systems the stimuli-responsive features might be easily employed for the design of targeted release of drug. This review summarizes the construction of diverse hybrid nanogels and multicompartment nanogels. The application in co-delivery of multiple agents and imaging agents for diagnosis as well as the application in the design of stimuli-responsive multifunctional nanogels as drug delivery are also reviewed and discussed. The future prospects in application of multifunctional nanogels will be also discussed in this review. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. A Proposal for Better Drug Utilization and Education in Tompkins County (New York)

    ERIC Educational Resources Information Center

    Rivkin, Lawrence S.

    1976-01-01

    This proposal contains a mechanism to provide the population with useful drug information at the time of purchase. This mechanism may also provide the system with useful information concerning drug utilization by the consuming public. Such information is vital to health planners and others interested in health care delivery. (Author)

  8. Kleinke's "Bleeding Edge" sees utility role for providers.

    PubMed

    Johnson, D E

    1998-10-01

    Hospitals will evolve into units of health care delivery systems that will eventually resemble utilities, like water and the telephone, according to a new book. Donald E.L. Johnson reviews Bleeding Edge: The Business View of Health Care in the New Century, by J.D. Kleinke, and discusses the strategic implications of Kleinke's predictions.

  9. Intranasal delivery: physicochemical and therapeutic aspects.

    PubMed

    Costantino, Henry R; Illum, Lisbeth; Brandt, Gordon; Johnson, Paul H; Quay, Steven C

    2007-06-07

    Interest in intranasal (IN) administration as a non-invasive route for drug delivery continues to grow rapidly. The nasal mucosa offers numerous benefits as a target issue for drug delivery, such as a large surface area for delivery, rapid drug onset, potential for central nervous system delivery, and no first-pass metabolism. A wide variety of therapeutic compounds can be delivered IN, including relatively large molecules such as peptides and proteins, particularly in the presence of permeation enhancers. The current review provides an in-depth discussion of therapeutic aspects of IN delivery including consideration of the intended indication, regimen, and patient population, as well as physicochemical properties of the drug itself. Case examples are provided to illustrate the utility of IN dosing. It is anticipated that the present review will prove useful for formulation scientists considering IN delivery as a delivery route.

  10. Nano-enabled drug delivery systems for brain cancer and Alzheimer's disease: research patterns and opportunities.

    PubMed

    Ma, Jing; Porter, Alan L; Aminabhavi, Tejraj M; Zhu, Donghua

    2015-10-01

    "Tech mining" applies bibliometric and text analytic methods to scientific literature of a target field. In this study, we compare the evolution of nano-enabled drug delivery (NEDD) systems for two different applications - viz., brain cancer (BC) and Alzheimer's disease (AD) - using this approach. In this process, we derive research intelligence from papers indexed in MEDLINE. Review by domain specialists helps understand the macro-level disease problems and pathologies to identify commonalities and differences between BC and AD. Results provide a fresh perspective on the developmental pathways for NEDD approaches that have been used in the treatment of BC and AD. Results also point toward finding future solutions to drug delivery issues that are critical to medical practitioners and pharmaceutical scientists addressing the brain. Drug delivery to brain cells has been very challenging due to the presence of the blood-brain barrier (BBB). Suitable and effective nano-enabled drug delivery (NEDD) system is urgently needed. In this study, the authors utilized "tech-mining" tools to describe and compare various choices of delivery system available for the diagnosis, as well as treatment, of brain cancer and Alzheimer's disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Using CASE Software to Teach Undergraduates Systems Analysis and Design.

    ERIC Educational Resources Information Center

    Wilcox, Russell E.

    1988-01-01

    Describes the design and delivery of a college course for information system students utilizing a Computer-Aided Software Engineering program. Discusses class assignments, cooperative learning, student attitudes, and the advantages of using this software in the course. (CW)

  12. Current Status of Messenger RNA Delivery Systems.

    PubMed

    Stanton, Matthew G

    2018-06-01

    Messenger RNA is emerging as a highly versatile biological construct for creation of impactful medicines. mRNA vaccines directed toward infectious disease and cancer are in clinical development with encouraging early reads on tolerability and efficacy. The use of mRNA to direct intense but transient expression of paracrine factors is finding utility in reprogramming progenitor cells for wound healing and cardiac regeneration and for stimulation of antitumor immune responses, at least preclinically as we await clinical results. The use of mRNA for prolonged and repeated expression of proteins and enzymes to treat rare, typically monogenic disease is nearing clinical entry. These uses of mRNA require delivery solutions, and the application of and improvement to existing nanoparticle nucleic acid delivery systems have jump started the pace of development and reenergized the field of particle based nucleic acid delivery. The current status of mRNA delivery is reviewed in this article with an eye toward clinical tractability.

  13. Stimuli-responsive nanomaterials for therapeutic protein delivery.

    PubMed

    Lu, Yue; Sun, Wujin; Gu, Zhen

    2014-11-28

    Protein therapeutics have emerged as a significant role in treatment of a broad spectrum of diseases, including cancer, metabolic disorders and autoimmune diseases. The efficacy of protein therapeutics, however, is limited by their instability, immunogenicity and short half-life. In order to overcome these barriers, tremendous efforts have recently been made in developing controlled protein delivery systems. Stimuli-triggered release is an appealing and promising approach for protein delivery and has made protein delivery with both spatiotemporal- and dosage-controlled manners possible. This review surveys recent advances in controlled protein delivery of proteins or peptides using stimuli-responsive nanomaterials. Strategies utilizing both physiological and external stimuli are introduced and discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Colon-targeted oral drug delivery systems: design trends and approaches.

    PubMed

    Amidon, Seth; Brown, Jack E; Dave, Vivek S

    2015-08-01

    Colon-specific drug delivery systems (CDDS) are desirable for the treatment of a range of local diseases such as ulcerative colitis, Crohn's disease, irritable bowel syndrome, chronic pancreatitis, and colonic cancer. In addition, the colon can be a potential site for the systemic absorption of several drugs to treat non-colonic conditions. Drugs such as proteins and peptides that are known to degrade in the extreme gastric pH, if delivered to the colon intact, can be systemically absorbed by colonic mucosa. In order to achieve effective therapeutic outcomes, it is imperative that the designed delivery system specifically targets the drugs into the colon. Several formulation approaches have been explored in the development colon-targeted drug delivery systems. These approaches involve the use of formulation components that interact with one or more aspects of gastrointestinal (GI) physiology, such as the difference in the pH along the GI tract, the presence of colonic microflora, and enzymes, to achieve colon targeting. This article highlights the factors influencing colon-specific drug delivery and colonic bioavailability, and the limitations associated with CDDS. Further, the review provides a systematic discussion of various conventional, as well as relatively newer formulation approaches/technologies currently being utilized for the development of CDDS.

  15. Teledermatology in a capitated delivery system using distributed information architecture: design and development.

    PubMed

    Kvedar, J C; Menn, E R; Baradagunta, S; Smulders-Meyer, O; Gonzalez, E

    1999-01-01

    This report describes the design, development, and technical evaluation of a teledermatology system utilizing digital images and electronic forms captured through, stored on, and viewed through a common web server in an urban capitated delivery system. The authors designed a system whereby a primary care physician was able to seek a dermatologic consultation electronically, provide the specialist with digital images acquired according to a standardized protocol, and review the specialist response within 2 business days of the request. The settings were two primary care practices in eastern Massachusetts that were affiliated with a large integrated delivery system. Technical evaluation of the effectiveness of the system involved 18 patients. Main outcome measures included physician and patient satisfaction and comfort and efficiency of care delivery. In 15 cases, the consultant dermatologist was comfortable in providing definitive diagnosis and treatment recommendations. In 3 cases, additional information (laboratory studies or more history) was requested. There were no instances where the dermatologist felt that a face-to-face visit was necessary. This novel approach shows promise for the delivery of specialist expertise via the internet. Cost-effectiveness studies may be necessary for more widespread implementation.

  16. Nanobiotechnology-based drug delivery in brain targeting.

    PubMed

    Dinda, Subas C; Pattnaik, Gurudutta

    2013-01-01

    Blood brain barrier (BBB) found to act as rate limiting factor in drug delivery to brain in combating the central nervous system (CNS) disorders. Such limiting physiological factors include the reticuloendothelial system and protein opsonization, which present across BBB, play major role in reducing the passage of drug. Several approaches employed to improve the drug delivery across the BBB. Nanoparticles (NP) are the solid colloidal particle ranges from 1 to 1000 nm in size utilized as career for drug delivery. At present NPs are found to play a significant advantage over the other methods of available drug delivery systems to deliver the drug across the BBB. Nanoparticles may be because of its size and functionalization characteristics able to penetrate and facilitate the drug delivery through the barrier. There are number of mechanisms and strategies found to be involved in this process, which are based on the type of nanomaterials used and its combination with therapeutic agents, such materials include liposomes, polymeric nanoparticles and non-viral vectors of nano-sizes for CNS gene therapy, etc. Nanotechnology is expected to reduce the need for invasive procedures for delivery of therapeutics to the CNS. Some devices such as implanted catheters and reservoirs however will still be needed to overcome the problems in effective drug delivery to the CNS. Nanomaterials are found to improve the safety and efficacy level of drug delivery devices in brain targeting. Nanoegineered devices are found to be delivering the drugs at cellular levels through nono-fluidic channels. Different drug delivery systems such as liposomes, microspheres, nanoparticles, nonogels and nonobiocapsules have been used to improve the bioavailability of the drug in the brain, but microchips and biodegradable polymeric nanoparticulate careers are found to be more effective therapeutically in treating brain tumor. The physiological approaches also utilized to improve the transcytosis capacity of specific receptors expressed across the BBB. It is found that the low density lipoproteins related protein (LPR) with engineered peptide compound (EpiC) formed the platform incorporating the Angiopep peptide as a new effective therapeutics. The current challenges are to design and develop the drug delivery careers, which must be able to deliver the drug across the BBB at a safe and effective manner. Nanoparticles are found to be effective careers in delivery of conventional drugs, recombinant proteins, vaccines as well as nucleotides. Nanoparticlulate drug delivery systems are found to be improving in the pharmacokinetic strategies of the drug molecules such as biodistribution, bioavailability and drug release characteristics in a controlled and effective manner with site specific drug delivery targeting to tissue or cell with reduction in toxic manifestation. Therefore, the use of nanotechnology in the field of pharmaceutical biotechnology helps in improving the drug delivery strategy including the kinetics and therapeutic index to solve the delivery problems of some biotech drugs including the recombinant proteins and oligonucleotides. This review is made to provide an insight to the role of nanobiotechnology in drug delivery and drug targeting to brain and its recent advances in the field of drug delivery systems.

  17. Barriers to using skilled birth attendants' services in mid- and far-western Nepal: a cross-sectional study.

    PubMed

    Choulagai, Bishnu; Onta, Sharad; Subedi, Narayan; Mehata, Suresh; Bhandari, Gajananda P; Poudyal, Amod; Shrestha, Binjwala; Mathai, Matthews; Petzold, Max; Krettek, Alexandra

    2013-12-23

    Skilled birth attendants (SBAs) provide important interventions that improve maternal and neonatal health and reduce maternal and neonatal mortality. However, utilization and coverage of services by SBAs remain poor, especially in rural and remote areas of Nepal. This study examined the characteristics associated with utilization of SBA services in mid- and far-western Nepal. This cross-sectional study examined three rural and remote districts of mid- and far-western Nepal (i.e., Kanchanpur, Dailekh and Bajhang), representing three ecological zones (southern plains [Tarai], hill and mountain, respectively) with low utilization of services by SBAs. Enumerators assisted a total of 2,481 women. All respondents had delivered a baby within the past 12 months. We used bivariate and multivariate analyses to assess the association between antenatal and delivery care visits and the women's background characteristics. Fifty-seven percent of study participants had completed at least four antenatal care visits and 48% delivered their babies with the assistance of SBAs. Knowing the danger signs of pregnancy and delivery (e.g., premature labor, prolonged labor, breech delivery, postpartum hemorrhage, severe headache) associated positively with four or more antenatal care visits (OR = 1.71; 95% CI: 1.41-2.07). Living less than 30 min from a health facility associated positively with increased use of both antenatal care (OR = 1.44; 95% CI: 1.18-1.77) and delivery services (OR = 1.25; CI: 1.03-1.52). Four or more antenatal care visits was a determining factor for the utilization of SBAs. Less than half of the women in our study delivered babies with the aid of SBAs, indicating a need to increase utilization of such services in rural and remote areas of Nepal. Distance from health facilities and inadequate transportation pose major barriers to the utilization of SBAs. Providing women with transportation funds before they go to a facility for delivery and managing transportation options will increase service utilization. Moreover, SBA utilization associates positively with women's knowledge of pregnancy danger signs, wealth quintile, and completed antenatal care visits. Nepal's health system must develop strategies that generate demand for SBAs and also reduce financial, geographic and cultural barriers to such services.

  18. Application of Chitosan and its Derivatives in Nanocarrier Based Pulmonary Drug Delivery Systems.

    PubMed

    Dua, Kamal; Bebawy, Mary; Awasthi, Rajendra; Tekade, Rakesh K; Tekade, Muktika; Gupta, Gaurav; De Jesus Andreoli Pinto, Terezinha; Hansbro, Philip M

    2017-01-01

    The respiratory tract as a non-invasive route of drug administration is gaining increasing attention in the present time on achieving both local and the systemic therapeutic effects. Success in achieving pulmonary delivery, requires overcoming barriers including mucociliary clearance and uptake by macrophages. An effective drug delivery system delivers the therapeutically active moieties at the right time and rate to target sites. A major limitation associated with most of the currently available conventional and controlled release drug delivery devices is that not all the drug candidates are well absorbed uniformly locally or systemically. We searched and reviewed the literature focusing on chitosan and chitosan derivative based nanocarrier systems used in pulmonary drug delivery. We focused on the applications of chitosan in the development of nanoparticles for this purpose. Chitosan, a natural linear bio-polyaminosaccharide is central in the development of novel drug delivery systems (NDDS) including nanoparticles for use in the treatment of various respiratory diseases. It achieves this through its unique properties of biodegradability, biocompatibility, mucoadhesivity and its ability to enhance macromolecule permeation across membranes. It also achieves sustained and targeted effects, primary requirements for an effective pulmonary drug delivery system. This review highlights the applications and importance of chitosan with special emphasis on nanotechnology, employed in the management of respiratory diseases such as asthma, Chronic Obstructive Pulmonary Disease (COPD), lung cancer and pulmonary fibrosis. This review will be of interest to both the biological and formulation scientists as it provides a summary on the utility of chitosan in pulmonary drug delivery systems. At present, there are no patented chitosan based controlled release products available for pulmonary drug delivery and so this area has enormous potential in the field of respiratory science. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Nanomaterials in cancer-therapy drug delivery system.

    PubMed

    Zhang, Gen; Zeng, Xin; Li, Ping

    2013-05-01

    Nanomaterials can enhance the delivery and treatment efficiency of anti-cancer drugs, and the mechanisms of the tumor-reducing activity of nanomaterials with cancer drug have been investigated. The task for drug to reach pathological areas has facilitated rapid advances in nanomedicine. Herein, we summarize promising findings with respect to cancer therapeutics based on nano-drug delivery vectors. Relatively high toxicity of uncoated nanoparticles restricts the use of these materials in humans. In order to reduce toxicity, many approaches have focused on the encapsulation of nanoparticles with biocompatible materials. Efficient delivery systems have been developed that utilized nanoparticles loaded with high dose of cancer drug in the presence of bilayer molecules. Well-established nanotechnologies have been designed for drug delivery with specific bonding. Surface-modified nanoparticles as vehicles for drug delivery system that contains multiple nano-components, each specially designed to achieve aimed task for the emerging application delivery of therapeutics. Drug-coated polymer nanoparticles could efficiently increase the intracellular accumulation of anti-cancer drugs. This review also introduces the nanomaterials with drug on the induction of apoptosis in cancer cells in vitro and in vivo. Direct interactions between the particles and cellular molecules to cause adverse biological responses are also discussed.

  20. An open system approach to process reengineering in a healthcare operational environment.

    PubMed

    Czuchry, A J; Yasin, M M; Norris, J

    2000-01-01

    The objective of this study is to examine the applicability of process reengineering in a healthcare operational environment. The intake process of a mental healthcare service delivery system is analyzed systematically to identify process-related problems. A methodology which utilizes an open system orientation coupled with process reengineering is utilized to overcome operational and patient related problems associated with the pre-reengineered intake process. The systematic redesign of the intake process resulted in performance improvements in terms of cost, quality, service and timing.

  1. Mode of Delivery and Long-Term Health-Related Quality-of-Life Outcomes: A Prospective Population-Based Study.

    PubMed

    Petrou, Stavros; Kim, Sung Wook; McParland, Penny; Boyle, Elaine M

    2017-06-01

    Relatively little is known about the effects of mode of delivery on long-term health-related quality-of-life outcomes. Furthermore, no previous study has expressed these outcomes in preference-based (utility) metrics. The study population comprised 2,161 mothers recruited from a prospective population-based study in the East Midlands of England encompassing live births and stillbirths between 32 +0 and 36 +6 weeks' gestation and a sample of term-born controls. Perinatal data were extracted from the mothers' maternity records. Health-related quality-of-life outcomes were assessed at 12 months postpartum, using the EuroQol Five Dimensions (EQ-5D) measure with responses to the EQ-5D descriptive system converted into health utility scores. Descriptive statistics and multivariable analyses were used to estimate the relationship between the mode of delivery and health-related quality-of-life outcomes. The overall health-related quality-of-life profile of the women in the study cohort mirrored that of the English adult population as revealed by national health surveys. A significantly higher proportion of women delivering by cesarean delivery reported some, moderate, severe, or extreme pain or discomfort at 12 months postpartum than women undergoing spontaneous vaginal delivery. Multivariable analyses, using the Ordinary Least Squares estimator revealed that, after controlling for maternal sociodemographic characteristics, cesarean delivery without maternal or fetal compromise was associated with a significant EQ-5D utility decrement in comparison to spontaneous vaginal delivery among all women (-0.026; p = 0.038) and among mothers of term-born infants (-0.062; p < 0.001). Among mothers of term-born infants, this result was replicated in models that controlled for all maternal and infant characteristics (utility decrement of -0.061; p < 0.001). The results were confirmed by sensitivity analyses that varied the categorization of the main exposure variable (mode of delivery) and the econometric strategy. Among mothers of term-born infants, cesarean delivery without maternal or fetal compromise is associated with poorer long-term health-related quality of life in comparison to spontaneous vaginal delivery. Further longitudinal studies are needed to understand the magnitude, trajectory, and underpinning mechanisms of health-related quality-of-life outcomes following different modes of delivery. © 2016 Wiley Periodicals, Inc.

  2. The Association Between Gender Inequalities and Women's Utilization of Maternal Health Services: A Cross-Sectional Survey in Eight South Central Coast Provinces, Vietnam.

    PubMed

    Bui, Ha Thi Thu; Le, Thi Minh; Van Pham, Tac; Doan, Duong Thi Thuy; Nguyen, Duy Anh; Nguyen, Canh Chuong; Duong, Duc Minh

    Gender inequalities influence the utilization of maternal health services in Vietnam, but little research has been published. This study, therefore, aimed to explore the association between gender inequalities and women's utilization of maternal health services in Vietnam. The study was conducted in 8 provinces in the South Central Coast region of Vietnam during August 2013 to May 2014. A total of 907 women who delivered a year prior to the date of interview participated in the study. A multiple logistic regression model was used to examine the association between gender inequalities (including sociodemographic determinants of health) and utilization of 4 or more antenatal care (ANC4+) services, institutional delivery, and ever used contraceptive methods. The utilization rate of maternal health services was varied, from 53.9% for ANC4+ to 87.7% for ever used a contraceptive method and 97% for institutional delivery. Ethnicity was identified as the most influential variable out of all sociodemographic determinants of health. Regarding gender inequalities, couple communication was the only variable having significant association with women's utilization of maternal health services. Women's equal role within context of their daily life and relations with their husbands (discussing maternal care with husband and having equal income to husband) supported their use of maternal health services. Therefore, there should be concerted efforts from all relevant stakeholders including the health system to focus on disadvantaged women in planning and delivery of maternal health services, especially to ethnic minority women. Male involvement strategy should be implemented to promote maternal health care, especially during the prenatal and postpartum period. To provide more culturally sensitive and right-based approaches in delivery of maternal health services to disadvantaged women in Vietnam, interventions are recommended that promote male involvement, that is, to engage men in service delivery to adapt and ensure the most appropriate and effective maternal health care.

  3. Improving the delivery of care and reducing healthcare costs with the digitization of information.

    PubMed

    Noffsinger, R; Chin, S

    2000-01-01

    In the coming years, the digitization of information and the Internet will be extremely powerful in reducing healthcare costs while assisting providers in the delivery of care. One example of healthcare inefficiency that can be managed through information digitization is the process of prescription writing. Due to the handwritten and verbal communication surrounding prescription writing, as well as the multiple tiers of authorizations, the prescription drug process causes extensive financial waste as well as medical errors, lost time, and even fatal accidents. Electronic prescription management systems are being designed to address these inefficiencies. By utilizing new electronic prescription systems, physicians not only prescribe more accurately, but also improve formulary compliance thereby reducing pharmacy utilization. These systems expand patient care by presenting proactive alternatives at the point of prescription while reducing costs and providing additional benefits for consumers and healthcare providers.

  4. Fluorescent nanocolloids for differential labeling of the endocytic pathway and drug delivery applications

    NASA Astrophysics Data System (ADS)

    Delehanty, James B.; Spillmann, Christopher M.; Naciri, Jawad; Algar, W. Russ; Ratna, Banahalli R.; Medintz, Igor L.

    2013-02-01

    The demonstration of fine control over nanomaterials within biological systems, particularly in live cells, is integral for the successful implementation of nanoparticles (NPs) in biomedical applications. Here, we show the ability to differentially label the endocytic pathway of mammalian cells in a spatiotemporal manner utilizing fluorescent nanocolloids (NCs) doped with a perylene-based dye. EDC-based conjugation of green- and red-emitting NCs to the iron transport protein transferrin resulted in stable bioconjugates that were efficiently endocytosed by HEK 293T/17 cells. The staggered delivery of the bioconjugates allowed for the time-resolved, differential labeling of distinct vesicular compartments along the endocytic pathway in a nontoxic manner. We further demonstrated the ability of the NCs to be impregnated with the anticancer therapeutic, doxorubicin. Delivery of the drug-doped nanoconjugates resulted in the intracellular release and nuclear accumulation of doxorubicin in a time- and dose-dependent manner. We discuss our results in the context of the utility of such materials for NP-mediated drug delivery applications.

  5. Institutional delivery and postnatal care services utilizations in Abuna Gindeberet District, West Shewa, Oromiya Region, Central Ethiopia: A Community-based cross sectional study.

    PubMed

    Darega, Birhanu; Dida, Nagasa; Tafese, Fikru; Ololo, Shimeles

    2016-07-07

    Delivery at health institutions under the care of trained health-care providers and utilization of postnatal cares services plays vital roles in promoting child survival and reducing the risk of maternal mortality. More than 80 % of maternal deaths can be prevented if pregnant women access to essential maternity cares like antenatal care, institutional delivery and postnatal care services. Thus, this study aimed to assess institutional delivery and postnatal care services utilizations in Abuna Gindeberet District, West Shewa, Oromiya Regional State, Ethiopia. A community-based cross-sectional study design was employed among 703 randomly identified mothers of Abuna Gindeberet district in March, 2013. Data were collected through interviewer-administered questionnaires and analyzed using SPSS version 16.0. Descriptive, bivariate and multivariate analyses were used to determine prevalence and to identify associated factors with institutional delivery and postnatal care, considering p-value of less than 0.05 as significant. The results were presented in a narrative forms, tables and graphs. One hundred one (14.4 %) of mothers gave birth to their last baby in health institutions. From 556 (79.1 %) of respondents who heard about postnatal care services, only 223 (31.7 %) of them utilized postnatal care services for their recent childbirth. From the total postnatal care users, 204 (91.5 %) of them took the services from health extension workers. Decision-making styles, household distances from health institutions, household being model family and ANC services utilizations were found to be statistically significant with both institutional delivery and postnatal care services utilizations. But educational status of husbands was statistically significant with only postnatal care services utilizations. Both institutional delivery and postnatal care services utilizations from health institutions were low. Decision-making styles, household distances from health institutions, household being model family and ANC services utilizations were the common factors that affect institutional delivery and postnatal care services utilizations from health institutions. Therefore, giving attention to the identified factors could improve and sustain institutional delivery and postnatal care services utilizations from health institutions.

  6. Regenerated cellulose capsules for controlled drug delivery: Part III. Developing a fabrication method and evaluating extemporaneous utility for controlled-release.

    PubMed

    Bhatt, Bhavik; Kumar, Vijay

    2016-08-25

    In this article, we describe a method to utilize cellulose dissolved in dimethyl sulfoxide and paraformaldehyde solvent system to fabricate two-piece regenerated cellulose hard shell capsules for their potential use as an oral controlled drug delivery a priori vehicle. A systematic evaluation of solution rheology as well as resulting capsule mechanical, visual and thermal analysis was performed to develop a suitable method to repeatedly fabricate RC hard shell capsule halves. Because of the viscoelastic nature of the cellulose solution, a combination of dip-coating and casting method, herein referred to as dip-casting method, was developed. The dip-casting method was formalized by utilizing two-stage 2(2) full factorial design approach in order to determine a suitable approach to fabricate capsules with minimal variability. Thermal annealing is responsible for imparting shape rigidity of the capsules. Proof-of-concept analysis for the utility of these capsules in controlled drug delivery was performed by evaluating the release of KCl from them as well as from commercially available USP equivalent formulations. Release of KCl from cellulose capsules was comparable to extended release capsule formulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Interactive Cable Television. Final Report.

    ERIC Educational Resources Information Center

    Active Learning Systems, Inc., Minneapolis, MN.

    This report describes an interactive video system developed by Active Learning Systems which utilizes a cable television (TV) network as its delivery system to transmit computer literacy lessons to high school and college students. The system consists of an IBM PC, Pioneer LDV 4000 videodisc player, and Whitney Supercircuit set up at the head end…

  8. Geographic and socioeconomic factors affecting delivery of bariatric surgery across high- and low-utilization healthcare systems.

    PubMed

    Doumouras, A G; Saleh, F; Sharma, A M; Anvari, S; Gmora, S; Anvari, M; Hong, D

    2017-06-01

    In countries with universal health coverage, the delivery of care should be driven by need. However, other factors, such as proximity to local facilities or neighbourhood socioeconomic status, may be more important. The objective of this study was to evaluate which geographic and socioeconomic factors affect the delivery of bariatric care in Canada. This was a national retrospective cohort study of all adult patients undergoing bariatric surgery between April 2008 and March 2015 in Canada (excluding Quebec). The main outcome was neighbourhood rate of bariatric surgery per 1000 obese individuals (BMI over 30 kg/m 2 ). Geographic cluster analysis and multilevel ordinal logistic regression were used to identify high-use clusters, and to evaluate the effect of geographic and socioeconomic factors on care delivery. Having a bariatric facility within the same public health unit as the neighbourhood was associated with a 6·6 times higher odds of being in a bariatric high-use cluster (odds ratio (OR) 6·60, 95 per cent c.i. 1·90 to 22·88; P = 0·003). This finding was consistent across provinces after adjusting for utilization rates. Neighbourhoods with higher obesity rates were also more likely to be within high-use clusters (OR per 5 per cent increase: 2·95, 1·54 to 5·66; P = 0·001), whereas neighbourhoods closer to bariatric centres were less likely to be (OR per 50 km: 0·91, 0·82 to 1·00; P = 0·048). In this study, across provincial healthcare systems with high and low utilization, the delivery of care was driven by the presence of local facilities and neighbourhood obesity rates. Increasing distance to bariatric centres substantially influenced care delivery. © 2017 BJS Society Ltd Published by John Wiley & Sons Ltd.

  9. Nanotechnology controlled drug delivery for treating bone diseases.

    PubMed

    Yang, Lei; Webster, Thomas J

    2009-08-01

    Rapid developments at the intersection of nanotechnology and controlled drug delivery have triggered exceptional growth in treating various bone diseases. As a result, over the past decade, nanotechnology has contributed tremendously to controlling drug delivery for treating various bone diseases, and in many cases, has led to increased bone regeneration. In this review paper, the recent experimental progress towards using nanotechnology to treat bone-specific diseases is reviewed. Novel applications of different types of nanomaterials (from nanoparticles to 3D nanostructured scaffolds) for treating bone diseases are summarized. In addition, fundamental principles for utilizing nanomaterials to create better drug delivery systems, especially for treating bone diseases and regenerating bone, are emphasized.

  10. Utilization of Variable Consumption Biofuel in Diesel Engine

    NASA Astrophysics Data System (ADS)

    Markov, V. A.; Kamaltdinov, V. G.; Savastenko, A. A.

    2018-01-01

    The depletion of oil fields and the deteriorating environmental situation leads to the need for the search of new alternative sources of energy. Actuality of the article due to the need for greater use of the alternative fuels in internal combustion engines is necessary. The advantages of vegetables origin fuels using as engine fuels are shown. Diesel engine operation on mixtures of petroleum diesel and rapeseed oil is researched. A fuel delivery system of mixture biofuel with a control system of the fuel compound is considered. The results of the system experimental researches of fuel delivery of mixture biofuel are led.

  11. A technical evaluation of the Nucletron FIRST system: conformance of a remote afterloading brachytherapy seed implantation system to manufacturer specifications and AAPM Task Group report recommendations.

    PubMed

    Rivard, Mark J; Evans, Dee-Ann Radford; Kay, Ian

    2005-01-01

    The Fully Integrated Real-time Seed Treatment (FIRST) system by Nucletron has been available in Europe since November 2001 and is being used more and more in Canada and the United States. Like the conventional transrectal ultrasound implant procedure, the FIRST system utilizes an ultrasound probe, needles, and brachytherapy seeds. However, this system is unique in that it (1) utilizes a low-dose-rate brachytherapy seed remote afterloader (the seedSelectron), (2) utilizes 3D image reconstruction acquired from electromechanically controlled, nonstepping rotation of the ultrasound probe, (3) integrates the control of a remote afterloader with electromechanical control of the ultrasound probe for integrating the clinical procedure into a single system, and (4) automates the transfer of planning information and seed delivery to improve quality assurance and radiation safety. This automated delivery system is specifically intended to address reproducibility and accuracy of seed positioning during implantation. The FIRST computer system includes two software environments: SPOT PRO and seedSelectron; both are used to facilitate treatment planning and brachytherapy seed implantation from beginning to completion of the entire procedure. In addition to these features, the system is reported to meet certain product specifications for seed delivery positioning accuracy and reproducibility, seed calibration accuracy and reliability, and brachytherapy dosimetry calculations. Consequently, a technical evaluation of the FIRST system was performed to determine adherence to manufacturer specifications and to the American Association of Physicists in Medicine (AAPM) Task Group Reports 43, 53, 56, 59, and 64 and recommendations of the American Brachytherapy Society (ABS). The United States Nuclear Regulatory Commission (NRC) has recently added Licensing Guidance for the seedSelectron system under 10 CFR 35.1000. Adherence to licensing guidance is made by referencing applicable AAPM Task Group recommendations. In general, results of this evaluation indicated that the system met its claimed specifications as well as the applicable recommendations outlined in the AAPM and ABS reports.

  12. Utilizing grassroots workers in family planning programs in India: prospects and problems.

    PubMed

    Mani, S B

    1991-01-01

    In order to rapidly expand the network of delivery systems and speed up the process of acceptance of family planning messages and methods, a shift took place in the Indian family planning program from the bureaucratic "clinical" approach to the people oriented "extension" approach. As a result, there is an increasing emphasis on moving the family planning efforts closer to the grassroots level. A key methodological issue centers on the proper selection, cultural acceptability, and the effectiveness of the grassroots workers who are to be trained and through whom family planning motivational messages and methods are to be introduced. The Indian government, from time to time, has trained and utilized different groups of grassroots workers in its family planning promotional efforts. Anthropological field studies were conducted in two different regions in India to examine the potential and actual roles of two groups of grassroots workers--opinion leaders and traditional birth attendants--in the delivery of family planning services in the rural areas. These studies revealed that while the traditional birth attendants can be trained and utilized to a limited extent in promoting family planning efforts, especially to the eligible female clients, the role of the opinion leaders in such efforts is at best questionable. Based on these field studies, cultural and technical (including bureaucratic) problems in training and utilizing opinion leaders and traditional birth attendants are explored in detail. Modifications in the training program strategies are suggested to improve and expand the family planning delivery system in rural India.

  13. Modular design of H - synchrotrons for radiation therapy

    NASA Astrophysics Data System (ADS)

    Martin, R. L.

    1989-04-01

    A modular synchrotron for accelerating H - ions and a proton beam delivery system are being developed for radiation therapy with protons under SBIR grants from the National Cancer Institute. The advantage proposed for accelerating H - ions and utilizing charge exchange as a slow extraction mechanism lies in enhanced control of the extracted beam current, important for beam delivery with raster scanning for 3D dose contouring of a tumor site. Under these grants prototype magnets and vacuum systems are being constructed, appropriate H - sources are being developed and beam experiments will be carried out to demonstrate some of the key issues of this concept. The status of this program is described along with a discussion of a relatively inexpensive beam delivery system and a proposed program for its development.

  14. An effective tumor-targeting strategy utilizing hypoxia-sensitive siRNA delivery system for improved anti-tumor outcome.

    PubMed

    Kang, Lin; Fan, Bo; Sun, Ping; Huang, Wei; Jin, Mingji; Wang, Qiming; Gao, Zhonggao

    2016-10-15

    Hypoxia is a feature of most solid tumors, targeting hypoxia is considered as the best validated yet not extensively exploited strategy in cancer therapy. Here, we reported a novel tumor-targeting strategy using a hypoxia-sensitive siRNA delivery system. In the study, 2-nitroimidazole (NI), a hydrophobic component that can be converted to hydrophilic 2-aminoimidazole (AI) through bioreduction under hypoxic conditions, was conjugated to the alkylated polyethyleneimine (bPEI1.8k-C6) to form amphiphilic bPEI1.8k-C6-NI polycations. bPEI1.8k-C6-NI could self-assemble into micelle-like aggregations in aqueous, which contributed to the improved stability of the bPEI1.8k-C6-NI/siRNA polyplexes, resulted in increased cellular uptake. After being transported into the hypoxic tumor cells, the selective nitro-to-amino reduction would cause structural change and elicit a relatively loose structure to facilitate the siRNA dissociation in the cytoplasm, for enhanced gene silencing efficiency ultimately. Therefore, the conflict between the extracellular stability and the intracellular siRNA release ability of the polyplexes was solved by introducing the hypoxia-responsive unit. Consequently, the survivin-targeted siRNA loaded polyplexes shown remarkable anti-tumor effect not only in hypoxic cells, but also in tumor spheroids and tumor-bearing mice, indicating that the hypoxia-sensitive siRNA delivery system had great potential for tumor-targeted therapy. Hypoxia is one of the most remarkable features of most solid tumors, and targeting hypoxia is considered as the best validated strategy in cancer therapy. However, in the past decades, there were few reports about using this strategy in the drug delivery system, especially in siRNA delivery system. Therefore, we constructed a hypoxia-sensitive siRNA delivery system utilizing a hypoxia-responsive unit, 2-nitroimidazole, by which the unavoidable conflict between improved extracellular stability and promoted intracellular siRNA release in the same delivery system could be effectively solved, resulting in enhanced siRNA silencing efficiency in tumor cells. To our knowledge, the described work is the first demonstration of a siRNA delivery system using a hypoxia trigger for regulation of siRNA release, which represents a new strategy for tumor-targeted therapy, and it is expected that this meaningful strategy must be widely applied in the future. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Current understanding of interactions between nanoparticles and the immune system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobrovolskaia, Marina A., E-mail: marina@mail.nih.

    2016-05-15

    The delivery of drugs, antigens, and imaging agents benefits from using nanotechnology-based carriers. The successful translation of nanoformulations to the clinic involves thorough assessment of their safety profiles, which, among other end-points, includes evaluation of immunotoxicity. The past decade of research focusing on nanoparticle interaction with the immune system has been fruitful in terms of understanding the basics of nanoparticle immunocompatibility, developing a bioanalytical infrastructure to screen for nanoparticle-mediated immune reactions, beginning to uncover the mechanisms of nanoparticle immunotoxicity, and utilizing current knowledge about the structure–activity relationship between nanoparticles' physicochemical properties and their effects on the immune system to guidemore » safe drug delivery. In the present review, we focus on the most prominent pieces of the nanoparticle–immune system puzzle and discuss the achievements, disappointments, and lessons learned over the past 15 years of research on the immunotoxicity of engineered nanomaterials. - Graphical abstract: API — active pharmaceutical ingredient; NP — nanoparticles; PCP — physicochemical properties, CARPA — complement activation-related pseudoallergy, ICH — International Conference on Harmonization. Display Omitted - Highlights: • Achievements, disappointments and lessons learned over past decade are reviewed. • Areas in focus include characterization, immunotoxicity and utility in drug delivery. • Future direction focusing on mechanistic immunotoxicity studies is proposed.« less

  16. Examining Dehydration and Hypoxic Stress in Wheat Plants Using a Porous Tube Plant Nutrient Delivery System Developed for Microgravity

    NASA Technical Reports Server (NTRS)

    Dreschel, T. W.; Hall, C. R.; Foster, T. E.; Salganic, M.; Warren, L.; Corbett, M.

    2005-01-01

    The Porous Tube Plant Nutrient Delivery System (PTPNDS) was designed for NASA to grow plants in microgravity of space. The system utilizes a controlled fluid loop to supply nutrients and water to plant roots growing on a ceramic surface moistened by capiflary action. A PTPNDS test bed was developed and utilizing remote sensing systems, spectral analyses procedures, gas-exchange, and fluorescence measurements, we examined differences in plant water status for wheat plants (Triticum aestivum, cv. Perigee) grown in a modified growth chamber during the summers of 2003 and 2004. Some differences in plant performance were detectable in the gas-exchange and fluorescence measurements. For instance, in both years the plants grown with the most available water had the lowest rates of photosynthesis and exhibited higher proportions of non-photochemical quenching particularly under low light levels. In addition, small differences in mean leaf water content between treatments were detected using spectral reflectance analyses.

  17. Stabilization and delivery approaches for protein and peptide pharmaceuticals: an extensive review of patents.

    PubMed

    Swain, Suryakanta; Mondal, Debanik; Beg, Sarwar; Patra, Chinam Niranjan; Dinda, Subas Chandra; Sruti, Jammula; Rao, Muddana Eswara Bhanoji

    2013-04-01

    Proteins and peptides are the building blocks of human body and act as the arsenal to combat against the invading pathogenic organisms for treatment and management of diseases. Majority of such biomacromolecules are synthesized by the human body itself. However, entry of disease causing pathogens causes misleading in the synthesis of desired proteins for antibody formation. In such alarming situations, the delivery of requisite protein and peptide from external source helps in augmenting the body's immunity. The major drawbacks underlying poor biopharmaceutical performance of high molecular weight protein and peptide drugs are due to poor oral absorption, formulation stability, degradation in the gastric milieu, susceptible to presystemic metabolism. Numerous literature recounts the application of myriad drug delivery strategies for the effective delivery of protein and peptides viz. parentral, oral, transdermal, nasal, pulmonary, rectal, buccal and ocular drug delivery systems. There are many reviews on various delivery strategies for protein and peptide pharmaceuticals, but the present review article provides a bird's eye view on various novel drug delivery systems used for enhanced delivery of protein and peptide pharmaceuticals in the light of patent literature. Apart from this, the present manuscript endeavor provides idea on possible causes and major degradation pathways responsible for poor stability of protein and peptide drugs along with recent market instances on them utilizing novel drug delivery systems.

  18. Emerging Roles for Extracellular Vesicles in Tissue Engineering and Regenerative Medicine

    PubMed Central

    Lamichhane, Tek N.; Sokic, Sonja; Schardt, John S.; Raiker, Rahul S.; Lin, Jennifer W.

    2015-01-01

    Extracellular vesicles (EVs)—comprising a heterogeneous population of cell-derived lipid vesicles including exosomes, microvesicles, and others—have recently emerged as both mediators of intercellular information transfer in numerous biological systems and vehicles for drug delivery. In both roles, EVs have immense potential to impact tissue engineering and regenerative medicine applications. For example, the therapeutic effects of several progenitor and stem cell-based therapies have been attributed primarily to EVs secreted by these cells, and EVs have been recently reported to play direct roles in injury-induced tissue regeneration processes in multiple physiological systems. In addition, EVs have been utilized for targeted drug delivery in regenerative applications and possess unique potential to be harnessed as patient-derived drug delivery vehicles for personalized medicine. This review discusses EVs in the context of tissue repair and regeneration, including their utilization as drug carriers and their crucial role in cell-based therapies. Furthermore, the article highlights the growing need for bioengineers to understand, consider, and ultimately design and specifically control the activity of EVs to maximize the efficacy of tissue engineering and regenerative therapies. PMID:24957510

  19. Wealth from Health: an incentive program for disease and population management: a 12-year project.

    PubMed

    Ratner, D; Louria, D; Sheffet, A; Fain, R; Curran, J; Saed, N; Bhaskar, S; Quereshi, M; Cable, G

    2001-01-01

    The future of healthcare is linked with its ability to face the challenges of consumerism. Disease and population management will represent the dominant style of healthcare delivery in the future. This article describes the Wealth from Health programs which utilize current and future technologies to help the healthcare system become a leader in healthcare delivery and to assist many communities at an affordable cost.

  20. Recent Advances in Skin Penetration Enhancers for Transdermal Gene and Drug Delivery.

    PubMed

    Amjadi, Morteza; Mostaghaci, Babak; Sitti, Metin

    2017-01-01

    There is a growing interest in transdermal delivery systems because of their noninvasive, targeted, and on-demand delivery of gene and drugs. However, efficient penetration of therapeutic compounds into the skin is still challenging largely due to the impermeability of the outermost layer of the skin, known as stratum corneum. Recently, there have been major research activities to enhance the skin penetration depth of pharmacological agents. This article reviews recent advances in the development of various strategies for skin penetration enhancement. We show that approaches such as ultrasound waves, laser, and microneedle patches have successfully been employed to physically disrupt the stratum corneum structure for enhanced transdermal delivery. Rather than physical approaches, several non-physical route have also been utilized for efficient transdermal delivery across the skin barrier. Finally, we discuss some clinical applications of transdermal delivery systems for gene and drug delivery. This paper shows that transdermal delivery devices can potentially function for diverse healthcare and medical applications while further investigations are still necessary for more efficient skin penetration of gene and drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Delivery of siRNA Silencing Runx2 Using a Multifunctional Polymer-Lipid Nanoparticle Inhibits Osteogenesis in a Cell Culture Model of Heterotopic Ossification

    PubMed Central

    Mishra, Swati; Vaughn, Asa D.; Devore, David I.

    2015-01-01

    Heterotopic ossification (HO) associated with traumatic neurological or musculoskeletal injuries remains a major clinical challenge. One approach to understanding better and potentially treating this condition is to silence one or more genes believed to be responsible for osteogenesis by small interfering RNA (siRNA) post-injury. Improved methods of delivering siRNA to myoprogenitor cells as well as relevant cell culture models of HO are needed to advance this approach. We utilize a model of HO featuring C2C12 myoprogenitor cells stimulated to the osteogenic phenotype by addition of BMP-2. For siRNA delivery, we utilize a nanocomposite consisting of DOTAP- based cationic liposomes coated with a graft copolymer of poly(propylacrylic acid) grafted with polyetheramine (Jeffamine), as this system has been shown previously to deliver antisense oligonucleotides safely into cells and out of endosomes for gene silencing in vitro and in vivo. Delivery of siRNA targeting Runx2, a transcription factor downstream of BMP-2, to stimulated C2C12 cells produced greater than 60% down-regulation of the Runx2 gene. This level of gene silencing was sufficient to inhibit alkaline phosphatase activity over the course of several days and calcium phosphate deposition over the course of 2 weeks. These results show the utility of the BMP-2/C2C12 model for capturing the cellular cell-fate decision in HO. Further, they suggest DOTAP/PPAA-g-Jeffamine as a promising delivery system for siRNA– based therapy for HO. PMID:23146945

  2. Laser-induced disruption of systemically administered liposomes for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Mackanos, Mark A.; Larabi, Malika; Shinde, Rajesh; Simanovskii, Dmitrii M.; Guccione, Samira; Contag, Christopher H.

    2009-07-01

    Liposomal formulations of drugs have been shown to enhance drug efficacy by prolonging circulation time, increasing local concentration and reducing off-target effects. Controlled release from these formulations would increase their utility, and hyperthermia has been explored as a stimulus for targeted delivery of encapsulated drugs. Use of lasers as a thermal source could provide improved control over the release of the drug from the liposomes with minimal collateral tissue damage. Appropriate methods for assessing local release after systemic delivery would aid in testing and development of better formulations. We use in vivo bioluminescence imaging to investigate the spatiotemporal distribution of luciferin, used as a model small molecule, and demonstrate laser-induced release from liposomes in animal models after systemic delivery. These liposomes were tested for luciferin release between 37 and 45 °C in PBS and serum using bioluminescence measurements. In vivo studies were performed on transgenic reporter mice that express luciferase constitutively throughout the body, thus providing a noninvasive readout for controlled release following systemic delivery. An Nd:YLF laser was used (527 nm) to heat tissues and induce rupture of the intravenously delivered liposomes in target tissues. These data demonstrate laser-mediated control of small molecule delivery using thermally sensitive liposomal formulations.

  3. Microemulsion utility in pharmaceuticals: Implications for multi-drug delivery.

    PubMed

    Callender, Shannon P; Mathews, Jessica A; Kobernyk, Katherine; Wettig, Shawn D

    2017-06-30

    Emulsion technology has been utilized extensively in the pharmaceutical industry. This article presents a comprehensive review of the literature on an important subcategory of emulsions, microemulsions. Microemulsions are optically transparent, thermodynamically stable colloidal systems, 10-100nm diameter, that form spontaneously upon mixing of oil, water and emulsifier. This review is the first to address advantages and disadvantages, as well as considerations and challenges in multi-drug delivery. For the period 1 January 2011-30 April 2016, 431 publications related to microemulsion drug delivery were identified and screened according to microemulsion, drug classification, and surfactant types. Results indicate the use of microemulsions predominantly in lipophilic drug delivery (79.4%) via oil-in-water microemulsions and non-ionic surfactants (90%) for oral or topical administration. Cancer is the disease state most targeted followed by inflammatory diseases, microbial infections and cardiovascular disease. Key generalizations from this analysis include: 1) microemulsion formulation is largely based on trial-and-error despite over 1200 publications related to microemulsion drug delivery since their discovery in 1943; 2) characterization using methods including interfacial tension, droplet size, electrical conductivity, turbidity and viscosity may provide additional information for greater predictability; 3) microemulsion drug delivery publications arise primarily from China (27%) and India (21%) suggesting additional research opportunities elsewhere. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. On-Board File Management and Its Application in Flight Operations

    NASA Technical Reports Server (NTRS)

    Kuo, N.

    1998-01-01

    In this paper, the author presents the minimum functions required for an on-board file management system. We explore file manipulation processes and demonstrate how the file transfer along with the file management system will be utilized to support flight operations and data delivery.

  5. New Updates Pertaining to Drug Delivery of Local Anesthetics in Particular Bupivacaine Using Lipid Nanoparticles

    NASA Astrophysics Data System (ADS)

    Beiranvand, Siavash; Eatemadi, Ali; Karimi, Arash

    2016-06-01

    Lipid nanoparticles (liposomes) were first described in 1965, and several work have led to development of important technical advances like triggered release liposomes and drug-loaded liposomes. These advances have led to numerous clinical trials in such diverse areas such as the delivery of anti-cancer, antifungal, and antibiotic drugs; the delivery of gene medicines; and most importantly the delivery of anesthesia drugs. Quite a number of liposomes are on the market, and many more are still in developmental stage. Lipid nanoparticles are the first nano-medicine delivery system to be advanced from laboratory concept to clinical application with high considerable clinical acceptance. Drug delivery systems for local anesthetics (LAs) have caught the interest of many researchers because there are many biomedical advantages connected to their application. There have been several formulation techniques to systemically deliver LA that include encapsulation in liposomes and complexation in cyclodextrins, nanoparticles, and to a little extent gold nanoparticles. The proposed formulations help to decrease the LA concentration utilized, increase its permeability, and most importantly increase the localization of the LA for a long period of time thereby leading to increase in the duration of the LA effect and finally to reduce any local and systemic toxicity. In this review, we will highlight on new updates pertaining to drug delivery of local anesthetics in particular bupivacaine using lipid nanoparticles.

  6. New Updates Pertaining to Drug Delivery of Local Anesthetics in Particular Bupivacaine Using Lipid Nanoparticles.

    PubMed

    Beiranvand, Siavash; Eatemadi, Ali; Karimi, Arash

    2016-12-01

    Lipid nanoparticles (liposomes) were first described in 1965, and several work have led to development of important technical advances like triggered release liposomes and drug-loaded liposomes. These advances have led to numerous clinical trials in such diverse areas such as the delivery of anti-cancer, antifungal, and antibiotic drugs; the delivery of gene medicines; and most importantly the delivery of anesthesia drugs. Quite a number of liposomes are on the market, and many more are still in developmental stage. Lipid nanoparticles are the first nano-medicine delivery system to be advanced from laboratory concept to clinical application with high considerable clinical acceptance. Drug delivery systems for local anesthetics (LAs) have caught the interest of many researchers because there are many biomedical advantages connected to their application. There have been several formulation techniques to systemically deliver LA that include encapsulation in liposomes and complexation in cyclodextrins, nanoparticles, and to a little extent gold nanoparticles. The proposed formulations help to decrease the LA concentration utilized, increase its permeability, and most importantly increase the localization of the LA for a long period of time thereby leading to increase in the duration of the LA effect and finally to reduce any local and systemic toxicity. In this review, we will highlight on new updates pertaining to drug delivery of local anesthetics in particular bupivacaine using lipid nanoparticles.

  7. Characterization and In Vitro Permeation Study of Cubic Liquid Crystal Containing Sinomenine Hydrochloride.

    PubMed

    Chu, Xiaoqin; Li, Qian; Gui, Shuangying; Li, Zhengguang; Cao, Jiaojiao; Jiang, Jianqin

    2018-05-08

    This study developed a new transdermal delivery system for the improved delivery of sinomenine hydrochloride (SH). The delivery system utilized the advantages of lyotropic liquid crystals (LLC) creating an adaptable system that offers a variety of options for the field of transdermal delivery. The formulation was prepared, characterized, and evaluated for its skin penetration in vitro. In the study, the appearance of samples was characterized by visual observation, and these LLC gels were colorless and transparent. Polarizing light microscopy (PLM) and small-angle X-ray diffraction (SAXS) were used to analyze the internal structures of gels, and the gels displayed a cubic double-diamond (P n 3 m ) internal structure with a dark field of vision. The Franze diffusion cell was used to evaluate its skin penetration. There were several factors which might influence the skin penetration of drugs, such as drug loading, water content, and the layer spacing of the LLC. In our case, drug concentration gradient played a more powerful role. The result of in vitro permeation studies demonstrated that the drug concentration was higher; the cumulative osmotic quantity of SH (Q) was greater. Therefore, the system was a promising formulation for successful percutaneous delivery of SH through the skin.

  8. A novel in situ permeation system and its utility in cancer tissue ablation

    PubMed Central

    WATANABE, MASAMI

    2015-01-01

    Focal ablation therapy is an emerging treatment modality for localized cancer lesions. It is an attractive strategy for inhibiting tumor progression and preventing morbidity associated with open surgery. As for intratissue drug delivery systems for use in local therapy, the convection-enhanced delivery (CED) of liquid drugs has been utilized, particularly for the treatment of malignant brain tumors. Although the conventional CED system is useful for providing drug/vehicle-based local therapy, there are several reported disadvantages in terms of the ability to control the extent of drug diffusion. We herein developed and validated a novel in situ permeation (ISP)-MW-1 system for achieving intratissue drug diffusion. The ISP system includes a perfusion catheter connected to an injector and aspirator, which enables intratissue perfusion of the solute diluted in the vehicle in the tip-inserted cavity. We subsequently evaluated the utility of the ISP-MW-1 system for in situ permeation in a subcutaneous tumor model in hamsters. Dehydrated ethanol, saline and 50% acetic acid were evaluated as the vehicle, and methylene blue was used as a dissolved substance for evaluating the diffusion of the agent. As a result, almost all of the tumor tissue within the capsule (tumor size: ~3 cm) was permeated with the dehydrated ethanol and 50% acetic acid and partially with the saline. We further demonstrated that ISP treatment with 50% acetic acid completely ablated the subcutaneous tumors in all of the treated hamsters (n=3). Therefore, the ISP-MW-1 system is a promising approach for controlling the intratissue diffusion of therapeutic agents and for providing local ablation therapy for cancer lesions. We believe that this system may be applicable to a broad range of medicinal and industrial fields, such as regenerative medicine, drug delivery systems, biochemistry and material technologies as well as cancer therapy. PMID:26134633

  9. Nanoemulsion-based delivery systems for polyunsaturated (ω-3) oils: formation using a spontaneous emulsification method.

    PubMed

    Gulotta, Alessandro; Saberi, Amir Hossein; Nicoli, Maria Cristina; McClements, David Julian

    2014-02-19

    Nanoemulsion-based delivery systems are finding increasing utilization to encapsulate lipophilic bioactive components in food, personal care, cosmetic, and pharmaceutical applications. In this study, a spontaneous emulsification method was used to fabricate nanoemulsions from polyunsaturated (ω-3) oils, that is, fish oil. This low-energy method relies on formation of fine oil droplets when an oil/surfactant mixture is added to an aqueous solution. The influence of surfactant-to-oil ratio (SOR), oil composition (lemon oil and MCT), and cosolvent composition (glycerol, ethanol, propylene glycol, and water) on the formation and stability of the systems was determined. Optically transparent nanoemulsions could be formed by controlling SOR, oil composition, and aqueous phase composition. The spontaneous emulsification method therefore has considerable potential for fabricating nanoemulsion-based delivery systems for incorporating polyunsatured oils into clear food, personal care, and pharmaceutical products.

  10. Institutional delivery service utilization and associated factors among mothers who gave birth in the last 12 months in Sekela District, North West of Ethiopia: A community - based cross sectional study

    PubMed Central

    2012-01-01

    Background Reduction of maternal mortality is a global priority particularly in developing countries including Ethiopia where maternal mortality ratio is one of the highest in the world. The key to reducing maternal mortality ratio and improving maternal health is increasing attendance by skilled health personnel throughout pregnancy and delivery. However, delivery service is significantly lower in Amhara Regional State, Ethiopia. Therefore, this study aimed to assess factors affecting institutional delivery service utilization among mothers who gave birth in the last 12 months in Sekela District, Amhara Region, Ethiopia. Methods Community-based cross-sectional study was conducted among mothers with birth in the last 12 months during August, 2010. Multistage sampling technique was used to select 371 participants. A pre tested and structured questionnaire was used to collect data. Bivariate and multivariate data analysis was performed using SPSS version 16.0 software. Results The study indicated that 12.1% of the mothers delivered in health facilities. Of 87.9% mothers who gave birth at home, 80.0% of them were assisted by family members and relatives. The common reasons for home delivery were closer attention from family members and relatives (60.9%), home delivery is usual practice (57.7%), unexpected labour (33.4%), not being sick or no problem at the time of delivery (21.6%) and family influence (14.4%). Being urban resident (AOR [95% CI] = 4.6 [1.91, 10.9]), ANC visit during last pregnancy (AOR [95% CI] = 4.26 [1.1, 16.4]), maternal education level (AOR [95%CI] =11.98 [3.36, 41.4]) and knowledge of mothers on pregnancy and delivery services (AOR [95% CI] = 2.97[1.1, 8.6]) had significant associations with institutional delivery service utilization. Conclusions Very low institutional delivery service utilization was observed in the study area. Majority of the births at home were assisted by family members and relatives. ANC visit and lack of knowledge on pregnancy and delivery services were found to be associated with delivery service utilization. Strategies with focus on increasing ANC uptake and building knowledge of the mothers and their partners would help to increase utilization of the service. Training and assigning skilled attendants at Health Posta level to provide skilled home delivery would improve utilization of the service. PMID:22849421

  11. Institutional delivery service utilization and associated factors among mothers who gave birth in the last 12 months in Sekela District, north west of Ethiopia: a community-based cross sectional study.

    PubMed

    Teferra, Alemayehu Shimeka; Alemu, Fekadu Mazengia; Woldeyohannes, Solomon Meseret

    2012-07-31

    Reduction of maternal mortality is a global priority particularly in developing countries including Ethiopia where maternal mortality ratio is one of the highest in the world. The key to reducing maternal mortality ratio and improving maternal health is increasing attendance by skilled health personnel throughout pregnancy and delivery. However, delivery service is significantly lower in Amhara Regional State, Ethiopia. Therefore, this study aimed to assess factors affecting institutional delivery service utilization among mothers who gave birth in the last 12 months in Sekela District, Amhara Region, Ethiopia. Community-based cross-sectional study was conducted among mothers with birth in the last 12 months during August, 2010. Multistage sampling technique was used to select 371 participants. A pre tested and structured questionnaire was used to collect data. Bivariate and multivariate data analysis was performed using SPSS version 16.0 software. The study indicated that 12.1% of the mothers delivered in health facilities. Of 87.9% mothers who gave birth at home, 80.0% of them were assisted by family members and relatives. The common reasons for home delivery were closer attention from family members and relatives (60.9%), home delivery is usual practice (57.7%), unexpected labour (33.4%), not being sick or no problem at the time of delivery (21.6%) and family influence (14.4%). Being urban resident (AOR [95% CI] = 4.6 [1.91, 10.9]), ANC visit during last pregnancy (AOR [95% CI] = 4.26 [1.1, 16.4]), maternal education level (AOR [95%CI] =11.98 [3.36, 41.4]) and knowledge of mothers on pregnancy and delivery services (AOR [95% CI] = 2.97[1.1, 8.6]) had significant associations with institutional delivery service utilization. Very low institutional delivery service utilization was observed in the study area. Majority of the births at home were assisted by family members and relatives. ANC visit and lack of knowledge on pregnancy and delivery services were found to be associated with delivery service utilization. Strategies with focus on increasing ANC uptake and building knowledge of the mothers and their partners would help to increase utilization of the service. Training and assigning skilled attendants at Health Posta level to provide skilled home delivery would improve utilization of the service.

  12. Image-Guided Drug Delivery with Single-Photon Emission Computed Tomography: A Review of Literature

    PubMed Central

    Chakravarty, Rubel; Hong, Hao; Cai, Weibo

    2014-01-01

    Tremendous resources are being invested all over the world for prevention, diagnosis, and treatment of various types of cancer. Successful cancer management depends on accurate diagnosis of the disease along with precise therapeutic protocol. The conventional systemic drug delivery approaches generally cannot completely remove the competent cancer cells without surpassing the toxicity limits to normal tissues. Therefore, development of efficient drug delivery systems holds prime importance in medicine and healthcare. Also, molecular imaging can play an increasingly important and revolutionizing role in disease management. Synergistic use of molecular imaging and targeted drug delivery approaches provides unique opportunities in a relatively new area called `image-guided drug delivery' (IGDD). Single-photon emission computed tomography (SPECT) is the most widely used nuclear imaging modality in clinical context and is increasingly being used to guide targeted therapeutics. The innovations in material science have fueled the development of efficient drug carriers based on, polymers, liposomes, micelles, dendrimers, microparticles, nanoparticles, etc. Efficient utilization of these drug carriers along with SPECT imaging technology have the potential to transform patient care by personalizing therapy to the individual patient, lessening the invasiveness of conventional treatment procedures and rapidly monitoring the therapeutic efficacy. SPECT-IGDD is not only effective for treatment of cancer but might also find utility in management of several other diseases. Herein, we provide a concise overview of the latest advances in SPECT-IGDD procedures and discuss the challenges and opportunities for advancement of the field. PMID:25182469

  13. Online medical care: the current state of "eVisits" in acute primary care delivery.

    PubMed

    Hickson, Ryan; Talbert, Jeffery; Thornbury, William C; Perin, Nathan R; Goodin, Amie J

    2015-02-01

    Online technologies offer the promise of an efficient, improved healthcare system. Patients benefit from increased access to care, physicians are afforded greater flexibility in care delivery, and the health system itself benefits from lower costs to provide such care. One method of incorporating online care into clinical practice, called electronic office visits or "eVisits," allows physicians to provide a consultation with patients online. We performed an analysis of the current published literature on eVisits as well as present emerging research describing the use of mobile platforms as the delivery model. We focused on the role of eVisits in acute primary care practice. A literature review was conducted using electronic databases with a variety of search terms related to the use of eVisits in primary care. Several advantages to eVisit utilization in the primary care setting were identified, namely, improvements in efficiency, continuity of care, quality of care, and access to care. Barriers to eVisit implementation were also identified, including challenges with incorporation into workflow, reimbursement, physician technological literacy, patient health literacy, overuse, security, confidentiality, and integration with existing medical technologies. Only one study of patient satisfaction with eVisit acute primary care services was identified, and this suggests that previous analyses of eVisit utilization are lacking this key component of healthcare service delivery evaluations. The delivery of primary care via eVisits on mobile platforms is still in adolescence, with few methodologically rigorous analyses of outcomes of efficiency, patient health, and satisfaction.

  14. Systemic Delivery of Morpholinos to Skip Multiple Exons in a Dog Model of Duchenne Muscular Dystrophy.

    PubMed

    Maruyama, Rika; Echigoya, Yusuke; Caluseriu, Oana; Aoki, Yoshitsugu; Takeda, Shin'ichi; Yokota, Toshifumi

    2017-01-01

    Exon-skipping therapy is an emerging approach that uses synthetic DNA-like molecules called antisense oligonucleotides (AONs) to splice out frame-disrupting parts of mRNA, restore the reading frame, and produce truncated yet functional proteins. Multiple exon skipping utilizing a cocktail of AONs can theoretically treat 80-90% of patients with Duchenne muscular dystrophy (DMD). The success of multiple exon skipping by the systemic delivery of a cocktail of AONs called phosphorodiamidate morpholino oligomers (PMOs) in a DMD dog model has made a significant impact on the development of therapeutics for DMD, leading to clinical trials of PMO-based drugs. Here, we describe the systemic delivery of a cocktail of PMOs to skip multiple exons in dystrophic dogs and the evaluation of the efficacies and toxicity in vivo.

  15. Preparing for an aging population and improving chronic disease management.

    PubMed

    Dexter, Paul R; Miller, Douglas K; Clark, Daniel O; Weiner, Michael; Harris, Lisa E; Livin, Lee; Myers, Isaac; Shaw, David; Blue, Lee Ann; Kunzer, John; Overhage, J Marc

    2010-11-13

    New models of health care delivery are inevitable. There is likely to be increasing emphasis on patient self-monitoring, health care delivery at patient homes, interdisciplinary treatment plans, a greater percentage of medical care delivered by non-physician health professionals, targeted health educational materials, and greater involvement and training of informal caregivers. The Information Technologies (IT) infrastructure of health systems will need to adapt. We have begun sorting out the implications of this future within a County public hospital system: defining the desirable features, relevant technologies, necessary modifications to the network, and additional data elements to be captured. We seek to build an infrastructure that will support new patient-focused technologies designed to more efficiently and effectively support older individuals. We hypothesize utility to further exploring the impact that new health care delivery models will have on health systems' IT infrastructures.

  16. Cost and utilisation of hospital based delivery care in Empowered Action Group (EAG) states of India.

    PubMed

    Mohanty, Sanjay K; Srivastava, Akanksha

    2013-10-01

    Large scale investment in the National Rural Health Mission is expected to increase the utilization and reduce the cost of maternal care in public health centres in India. The objective of this paper is to examine recent trends in the utilization and cost of hospital based delivery care in the Empowered Action Group (EAG) states of India. The unit data from the District Level Household Survey 3, 2007-2008 is used in the analyses. The coverage and the cost of hospital based delivery at constant price is analyzed for five consecutive years preceding the survey. Descriptive and multivariate analyses are used to understand the socio-economic differentials in cost and utilization of delivery care. During 2004-2008, the utilization of delivery care from public health centres has increased in all the eight EAG states. Adjusting for inflation, the household cost of delivery care has declined for the poor, less educated and in public health centres in the EAG states. The cost of delivery care in private health centres has not shown any significant changes across the states. Results of the multivariate analyses suggest that time, state, place of residence, economic status; educational attainment and delivery characteristics of mother are significant predictors of hospital based delivery care in India. The study demonstrates the utility of public spending on health care and provides a thrust to the ongoing debate on universal health coverage in India.

  17. Developing Adaptable Online Information Literacy Modules for a Learning Management System

    ERIC Educational Resources Information Center

    Mune, Christina; Goldman, Crystal; Higgins, Silke; Eby, Laurel; Chan, Emily K.; Crotty, Linda

    2015-01-01

    Higher education institutions increasingly utilize learning management systems (LMS) to teach courses and programs in hybrid or online-only formats. Providing information literacy instruction in these emerging digital environments poses challenges to librarians as the delivery of instruction requires familiarity with navigating an LMS and…

  18. Development of smart spray systems to enhance delivery of pesticides in field nursery production

    USDA-ARS?s Scientific Manuscript database

    Two smart sprayer prototypes have been developed and are being evaluated with a goal of increasing pesticide application efficiency and minimizing environmental impact in field nursery production sites. The first prototype, a modified hydraulic vertical boom system, utilizes ultrasonic sensors to d...

  19. Barriers to using skilled birth attendants’ services in mid- and far-western Nepal: a cross-sectional study

    PubMed Central

    2013-01-01

    Background Skilled birth attendants (SBAs) provide important interventions that improve maternal and neonatal health and reduce maternal and neonatal mortality. However, utilization and coverage of services by SBAs remain poor, especially in rural and remote areas of Nepal. This study examined the characteristics associated with utilization of SBA services in mid- and far-western Nepal. Methods This cross-sectional study examined three rural and remote districts of mid- and far-western Nepal (i.e., Kanchanpur, Dailekh and Bajhang), representing three ecological zones (southern plains [Tarai], hill and mountain, respectively) with low utilization of services by SBAs. Enumerators assisted a total of 2,481 women. All respondents had delivered a baby within the past 12 months. We used bivariate and multivariate analyses to assess the association between antenatal and delivery care visits and the women’s background characteristics. Results Fifty-seven percent of study participants had completed at least four antenatal care visits and 48% delivered their babies with the assistance of SBAs. Knowing the danger signs of pregnancy and delivery (e.g., premature labor, prolonged labor, breech delivery, postpartum hemorrhage, severe headache) associated positively with four or more antenatal care visits (OR = 1.71; 95% CI: 1.41-2.07). Living less than 30 min from a health facility associated positively with increased use of both antenatal care (OR = 1.44; 95% CI: 1.18-1.77) and delivery services (OR = 1.25; CI: 1.03-1.52). Four or more antenatal care visits was a determining factor for the utilization of SBAs. Conclusions Less than half of the women in our study delivered babies with the aid of SBAs, indicating a need to increase utilization of such services in rural and remote areas of Nepal. Distance from health facilities and inadequate transportation pose major barriers to the utilization of SBAs. Providing women with transportation funds before they go to a facility for delivery and managing transportation options will increase service utilization. Moreover, SBA utilization associates positively with women’s knowledge of pregnancy danger signs, wealth quintile, and completed antenatal care visits. Nepal’s health system must develop strategies that generate demand for SBAs and also reduce financial, geographic and cultural barriers to such services. PMID:24365039

  20. Variation in outpatient mental health service utilization under capitation.

    PubMed

    Chou, Ann F; Wallace, Neal; Bloom, Joan R; Hu, Teh-Wei

    2005-03-01

    To improve the financing of Colorado's public mental health system, the state designed, implemented, and evaluated a pilot program that consisted of three reimbursement models for the provision of outpatient services. Community mental health centers (CMHCs), the primary providers of comprehensive mental health services to Medicaid recipients in Colorado, had to search for innovative ways to provide cost-effective services. This study assessed outpatient service delivery to Medicaid-eligible consumers under this program. This paper is among the first to study variations in the delivery of specific types of outpatient mental health services under capitated financing systems. This study uses claims data (1994-1997) from Colorado's Medicaid and Mental Health Services Agency. The fee-for-service (FFS) model served as the comparison model. Two capitated models under evaluation are: (i) direct capitation (DC), where the state contracts with a non-profit entity to provide both the services and administers the capitated financing, and (ii) managed behavioral health organization (MBHO), which is a joint venture between a for-profit company who manages the capitated financing and a number of non-profit entities who deliver the services. A sample of severely mentally ill patients who reported at least one inpatient visit was included in the analysis. Types of outpatient services of interest are: day-treatment visits, group therapy, individual therapy, medication monitoring, case management, testing, and all other services. Comparisons were set up to examine differences in service utilization and cost between FFS and each of the two capitated models, using a two-part model across three time periods. Results showed differences in service delivery among reimbursement models over time. Capitated providers had higher initial utilization in most outpatient service categories than their FFS counterparts and as a result of capitation, outpatient services delivered under these providers decreased to converge to the FFS pattern. Findings also suggest substitution between group therapy and individual psychotherapy. Overall, more service integration was observed and less complex service packages were provided post capitation. IMPLICATION FOR HEALTH CARE PROVISION AND POLICIES: Financing models and organizational arrangements have an impact on mental health service delivery. Changes in utilization and costs of specific types of outpatient services reflect the effects of capitation. Understanding the mechanism for these changes may lead to more streamlined service delivery allowing extra funding for expanding the range of cost-effective treatment alternatives. These changes pose implications for improving the financing of public mental health systems, coordination of mental health services with other healthcare and human services, and provision of services through a more efficient financing system.

  1. 'Genipin' - the natural water soluble cross-linking agent and its importance in the modified drug delivery systems: an overview.

    PubMed

    Manickam, Balamurugan; Sreedharan, Rajesh; Elumalai, Manogaran

    2014-01-01

    One of the popular approaches in controlling drug delivery from the polymeric carriers is suitably achieved by the inclusion of crosslinking agents into the formulations at different concentrations. Nevertheless, addition of the chemical crosslinkers such as glutaraldehyde, formaldehyde etc, used in the drug delivery systems causes very serious cytotoxic reactions. These chemical crosslinking agents did not offer any significant advantageous effects when compared to the natural crosslinking agents for instance genipin, which is quite less toxic, biocompatible and offers very stable crosslinked products. Based on the earlier reports the safety of this particular natural crosslinker is very well established, since it has been widely used as a Chinese traditional medicine for long-time, isolated from fruits of the plant Gardenia jasminoides Ellis. This concise article largely portrayed the value of this unique natural crosslinker, utilized in controlling the drug delivery from the various formulations.

  2. Transdermal Delivery of Functional Collagen Via Polyvinylpyrrolidone Microneedles

    PubMed Central

    Sun, Wenchao; Inayathullah, Mohammed; Manoukian, Martin A. C.; Malkovskiy, Andrey V.; Manickam, Sathish; Marinkovich, M. Peter; Lane, Alfred T.; Tayebi, Lobat; Seifalian, Alexander M.; Rajadas, Jayakumar

    2017-01-01

    Collagen makes up a large proportion of the human body, particularly the skin. As the body ages, collagen content decreases, resulting in wrinkled skin and decreased wound healing capabilities. This paper presents a method of delivering type I collagen into porcine and human skin utilizing a polyvinylpyrrolidone microneedle delivery system. The microneedle patches were made with concentrations of 1, 2, 4, and 8% type I collagen (w/w). Microneedle structures and the distribution of collagen were characterized using scanning electron microscopy and confocal microscopy. Patches were then applied on the porcine and human skin, and their effectiveness was examined using fluorescence microscopy. The results illustrate that this microneedle delivery system is effective in delivering collagen I into the epidermis and dermis of porcine and human skin. Since the technique presented in this paper is quick, safe, effective and easy, it can be considered as a new collagen delivery method for cosmetic and therapeutic applications. PMID:26066056

  3. Zein-based Nanocarriers as Potential Natural Alternatives for Drug and Gene Delivery: Focus on Cancer Therapy.

    PubMed

    Elzoghby, Ahmed; Freag, May; Mamdouh, Hadeer; Elkhodairy, Kadria

    2017-01-01

    Protein nanocarriers possess unique merits including minimal cytotoxicity, numerous renewable sources, and high drug-binding capability. In opposition to delivery carriers utilizing hydrophilic animal proteins, hydrophobic plant proteins (e.g, zein) have great tendency in fabricating controlled-release particulate carriers without additional chemical modification to stiffen them, which in turn evades the use of toxic chemical crosslinkers. Moreover, zein is related to a class of alcohol-soluble prolamins and generally recognized as safe (GRAS) carrier for drug delivery. Various techniques have been adopted to fabricate zein-based nanoparticulate systems including phase separation coacervation, spray-drying, supercritical anti-solvent approach, electrospinning and self-assembly. This manuscript reviews the recent advances in the zein-based colloidal nano-carrier systems such as nanospheres, nanocapsules, micelles and nanofibers with a special focus on their physicochemical characteristics and drug delivery applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Harvard Community Health Plan's Mental Health Redesign Project: a managerial and clinical partnership.

    PubMed

    Abrams, H S

    1993-01-01

    Harvard Community Health Plan, founded in 1969 as a staff model HMO, is currently a staff and group model HMO with 521,000 members, 19 health centers and 12 independently owned group practices with 26 locations. In 1987, the Plan initiated a review of its mental health benefit and program because its costs were rising, member and clinician dissatisfaction was increasing and many believed the problem was the nature and scope of the benefit. After two years of study, surveys, interviews, cost and utilization analysis, the Plan identified its professional staff as its key asset but recognized many problem areas, including problems with access, variation from site to site, inconsistent service delivery, lack of consistent utilization management and the need for greater diversity along the spectrum of care available to members. From 1989 to 1990, more than 200 clinicians and support staff were engaged in the process of developing a variety of components to the "mental health redesign program." Three simultaneous efforts included developing a method of categorizing patients, restructuring the delivery system and redesigning the benefit. A Mental Health Patient Assessment Tool was created which assists clinicians in performing comprehensive evaluations, administers the benefit, measures progress and supports outcomes research. Delivery system changes included the implementation of self-referral, access standards, intake triage functions by non-clinical staff, program development and an outpatient utilization management function.

  5. Systems and method for delivering liquified gas to an engine

    DOEpatents

    Bingham, Dennis N.; Wilding, Bruce M.; O'Brien, James E.; Siahpush, Ali S.; Brown, Kevin B.

    2002-01-01

    A liquified gas delivery system for a motorized platform includes a holding tank configured to receive liquified gas. A first conduit extends from a vapor holding portion of the tank to a valve device. A second conduit extends from a liquid holding portion of the tank to the valve device. Fluid coupled to the valve device is a vaporizer which is in communication with an engine. The valve device selectively withdraws either liquified gas or liquified gas vapor from the tank depending on the pressure within the vapor holding portion of the tank. Various configurations of the delivery system can be utilized for pressurizing the tank during operation.

  6. Systems for delivering liquified gas to an engine

    DOEpatents

    Bingham, Dennis N.; Wilding, Bruce M.; O'Brien, James E.; Siahpush, Ali S.; Brown, Kevin B.

    2006-05-16

    A liquified gas delivery system for a motorized platform includes a holding tank configured to receive liquified gas. A first conduit extends from a vapor holding portion of the tank to a valve device. A second conduit extends from a liquid holding portion of the tank to the valve device. Fluid coupled to the valve device is a vaporizer which is in communication with an engine. The valve device selectively withdraws either liquified gas or liquified gas vapor from the tank depending on the pressure within the vapor holding portion of the tank. Various configurations of the delivery system can be utilized for pressurizing the tank during operation.

  7. Selenium nanoparticles: potential in cancer gene and drug delivery.

    PubMed

    Maiyo, Fiona; Singh, Moganavelli

    2017-05-01

    In recent decades, colloidal selenium nanoparticles have emerged as exceptional selenium species with reported chemopreventative and therapeutic properties. This has sparked widespread interest in their use as a carrier of therapeutic agents with results displaying synergistic effects of selenium with its therapeutic cargo and improved anticancer activity. Functionalization remains a critical step in selenium nanoparticles' development for application in gene or drug delivery. In this review, we highlight recent developments in the synthesis and functionalization strategies of selenium nanoparticles used in cancer drug and gene delivery systems. We also provide an update of recent preclinical studies utilizing selenium nanoparticles in cancer therapeutics.

  8. Enhancement of antigen-specific CD4 + and CD8 + T cell responses using a self-assembled biologic nanolipoprotein particle vaccine

    DOE PAGES

    Weilhammer, Dina; Dunkle, Alexis D.; Blanchette, Craig D.; ...

    2017-02-14

    To address the need for vaccine platforms that induce robust cell-mediated immunity, we investigated the potential of utilizing self-assembling biologic nanolipoprotein particles (NLPs) as an antigen and adjuvant delivery system to induce antigen-specific murine T cell responses. Here, we utilized OT-I and OT-II TCR-transgenic mice to investigate the effects of NLP-mediated delivery of the model antigen ovalbumin (OVA) on T cell activation. Delivery of OVA with the TLR4 agonist monophosphoryl lipid A (MPLA) in the context of NLPs significantly enhanced the activation of both CD4 + and CD8 + T cells in vitro compared to co-administration of free OVA andmore » MPLA. Upon intranasal immunization of mice harboring TCR-transgenic cells, NLPs enhanced the adjuvant effects of MPLA and the in vivo delivery of OVA, leading to significantly increased expansion of CD4 + and CD8 + T cells in lung-draining lymph nodes. Therefore, NLPs are a promising vaccine platform for inducing T cell responses following intranasal administration.« less

  9. Enhancement of antigen-specific CD4 + and CD8 + T cell responses using a self-assembled biologic nanolipoprotein particle vaccine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weilhammer, Dina; Dunkle, Alexis D.; Blanchette, Craig D.

    To address the need for vaccine platforms that induce robust cell-mediated immunity, we investigated the potential of utilizing self-assembling biologic nanolipoprotein particles (NLPs) as an antigen and adjuvant delivery system to induce antigen-specific murine T cell responses. Here, we utilized OT-I and OT-II TCR-transgenic mice to investigate the effects of NLP-mediated delivery of the model antigen ovalbumin (OVA) on T cell activation. Delivery of OVA with the TLR4 agonist monophosphoryl lipid A (MPLA) in the context of NLPs significantly enhanced the activation of both CD4 + and CD8 + T cells in vitro compared to co-administration of free OVA andmore » MPLA. Upon intranasal immunization of mice harboring TCR-transgenic cells, NLPs enhanced the adjuvant effects of MPLA and the in vivo delivery of OVA, leading to significantly increased expansion of CD4 + and CD8 + T cells in lung-draining lymph nodes. Therefore, NLPs are a promising vaccine platform for inducing T cell responses following intranasal administration.« less

  10. Cyber-intrusion Auto-response and Policy Management System (CAPMS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lusk, Steve; Lawrence, David; Suvana, Prakash

    The Cyber-intrusion Auto-response and Policy Management System (CAPMS) project was funded by a grant from the US Department of Energy (DOE) Cybersecurity for Energy Delivery Systems (CEDS) program with contributions from two partner electric utilities: Southern California Edison (SCE) and Duke Energy. The goal of the project was to demonstrate protecting smart grid assets from a cyber attack in a way that “does not impede critical energy delivery functions.” This report summarizes project goals and activities for the CAPMS project and explores what did and did not work as expected. It concludes with an assessment of possible benefits and valuemore » of the system for the future.« less

  11. Engineering Escherichia coli into a protein delivery system for mammalian cells.

    PubMed

    Reeves, Analise Z; Spears, William E; Du, Juan; Tan, Kah Yong; Wagers, Amy J; Lesser, Cammie F

    2015-05-15

    Many Gram-negative pathogens encode type 3 secretion systems, sophisticated nanomachines that deliver proteins directly into the cytoplasm of mammalian cells. These systems present attractive opportunities for therapeutic protein delivery applications; however, their utility has been limited by their inherent pathogenicity. Here, we report the reengineering of a laboratory strain of Escherichia coli with a tunable type 3 secretion system that can efficiently deliver heterologous proteins into mammalian cells, thereby circumventing the need for virulence attenuation. We first introduced a 31 kB region of Shigella flexneri DNA that encodes all of the information needed to form the secretion nanomachine onto a plasmid that can be directly propagated within E. coli or integrated into the E. coli chromosome. To provide flexible control over type 3 secretion and protein delivery, we generated plasmids expressing master regulators of the type 3 system from either constitutive or inducible promoters. We then constructed a Gateway-compatible plasmid library of type 3 secretion sequences to enable rapid screening and identification of sequences that do not perturb function when fused to heterologous protein substrates and optimized their delivery into mammalian cells. Combining these elements, we found that coordinated expression of the type 3 secretion system and modified target protein substrates produces a nonpathogenic strain that expresses, secretes, and delivers heterologous proteins into mammalian cells. This reengineered system thus provides a highly flexible protein delivery platform with potential for future therapeutic applications.

  12. Performance of Regolith Feed Systems for Analog Field Tests of In-Situ Resource Utilization Oxygen Production Plants in Mauna Kea, Hawaii

    NASA Technical Reports Server (NTRS)

    Townsend, Ivan I.; Mueller, Robert P.; Mantovani, James G.; Zacny, Kris A.; Craft, Jack

    2010-01-01

    This paper focuses on practical aspects of mechanical auger and pneumatic regolith conveying system feeding In-Situ Resource Utilization Oxygen production plants. The subsystems of these feedstock delivery systems include an enclosed auger device, pneumatic venturi educator, jet-lift regolith transfer, innovative electro-cyclone gas-particle separation/filtration systems, and compressors capable of dealing with hot hydrogen and/or methane gas re-circulating in the system. Lessons learned from terrestrial laboratory, reduced gravity and field testing on Mauna Kea Volcano in Hawaii during NASA lunar analog field tests will be discussed and practical design tips will be presented.

  13. The Utilization of PBTE by the Rhode Island Teacher Center and the New England Program in Teacher Education.

    ERIC Educational Resources Information Center

    Pitman, John C.

    The primary purposes of this paper are (a) to describe how the Performance Based Teacher Education (PBTE) Component of the New England Program in Teacher Education (NEPTE) and Rhode Island Teacher Center (RITC) are currently operating, and (b) to project how the NEPTE and RITC delivery systems might be further utilized to diffuse PBTE. Both NEPTE…

  14. Are institutional deliveries promoted by Janani Suraksha Yojana in a district of West Bengal, India?

    PubMed

    Panja, Tanmay Kanti; Mukhopadhyay, Dipta Kanti; Sinha, Nirmalya; Saren, Asit Baran; Sinhababu, Apurba; Biswas, Akhil Bandhu

    2012-01-01

    'Janani Suraksha Yojana (JSY)' was implemented in India to promote institutional deliveries among the poorer section of the society. A cross-sectional study was conducted in Bankura district among 324 women who delivered in last 12 months selected through 40 cluster technique to find out institutional delivery rate, utilization of JSY during antenatal period and relation between cash benefit under JSY during antenatal period and institutional delivery. Overall institutional delivery rate was 73.1% and utilization of JSY among eligible women was 50.5%. Institutional delivery (84.0%), consumption of 100 iron-folic acid tablets (46.0%) and three or more antenatal check-ups (91.0%) were better in women who received financial assistance from JSY during antenatal period than other women. After adjustment for socio-demographic factors, JSY utilization came out to be significantly (P=0.031) associated with institutional deliveries. The study showed that cash incentive under JSY in antenatal period had positive association on institutional deliveries.

  15. Women's preferences for obstetric care in rural Ethiopia: a population-based discrete choice experiment in a region with low rates of facility delivery.

    PubMed

    Kruk, M E; Paczkowski, M M; Tegegn, A; Tessema, F; Hadley, C; Asefa, M; Galea, S

    2010-11-01

    Delivery attended by skilled professionals is essential to reducing maternal mortality. Although the facility delivery rate in Ethiopia's rural areas is extremely low, little is known about which health system characteristics most influence women's preferences for delivery services. In this study, women's preferences for attributes of health facilities for delivery in rural Ethiopia were investigated. A population-based discrete choice experiment (DCE) was fielded in Gilgel Gibe, in southwest Ethiopia, among women with a delivery in the past 5 years. Women were asked to select a hypothetical health facility for future delivery from two facilities on a picture card. A hierarchical Bayesian procedure was used to estimate utilities associated with facility attributes: distance, type of provider, provider attitude, drugs and medical equipment, transport and cost. 1006 women completed 8045 DCE choice tasks. Among them, 93.8% had delivered their last child at home. The attributes with the greatest influence on the overall utility of a health facility for delivery were availability of drugs and equipment (mean β=3.9, p<0.01), seeing a doctor versus a health extension worker (mean β=2.1, p<0.01) and a receptive provider attitude (mean β=1.4, p<0.01). Women in rural southwest Ethiopia who have limited personal experience with facility delivery nonetheless value health facility attributes that indicate high technical quality: availability of drugs and equipment and physician providers. Well-designed policy experiments that measure the contribution of quality improvements to facility delivery rates in Ethiopia and other countries with low health service utilisation and high maternal mortality may inform national efforts to reduce maternal mortality.

  16. A space transportation system operations model

    NASA Technical Reports Server (NTRS)

    Morris, W. Douglas; White, Nancy H.

    1987-01-01

    Presented is a description of a computer program which permits assessment of the operational support requirements of space transportation systems functioning in both a ground- and space-based environment. The scenario depicted provides for the delivery of payloads from Earth to a space station and beyond using upper stages based at the station. Model results are scenario dependent and rely on the input definitions of delivery requirements, task times, and available resources. Output is in terms of flight rate capabilities, resource requirements, and facility utilization. A general program description, program listing, input requirements, and sample output are included.

  17. Diffusion and utilization of scientific and technological knowledge within state and local governments: Executive summary

    NASA Technical Reports Server (NTRS)

    Feller, I.; Flanary, P. E.

    1979-01-01

    The requirements for technology transfer among the state and local governments are analyzed. Topics discussed include: information systems, federal funding, delivery channels, state executive programs, and state legislature requirements for scientific information.

  18. Effective in vitro and in vivo gene delivery by the combination of liposomal bubbles (bubble liposomes) and ultrasound exposure.

    PubMed

    Suzuki, Ryo; Maruyama, Kazuo

    2010-01-01

    Gene delivery with a physical mechanism using ultrasound (US) and nano/microbubbles is expected as an ideal system in terms of delivering plasmid DNA noninvasively into a specific target site. We developed novel liposomal bubbles (Bubble liposomes (BLs)) containing the lipid nanobubbles of perfluoropropane which were utilized for contrast enhancement in ultrasonography. BLs were smaller in diameter than conventional microbubbles and induced cavitation upon exposure ultrasound. In addition, when coupled with US exposure, BLs could deliver plasmid DNA into various types of cells in vitro and in vivo. The transfection efficiency with BLs and US was higher than that with conventional lipofection method. Therefore, the combination of BLs and US might be an efficient and novel nonviral gene delivery system.

  19. Nano-Science-Engineering-Technology Applications to Food and Nutrition.

    PubMed

    Nakajima, Mitsutoshi; Wang, Zheng; Chaudhry, Qasim; Park, Hyun Jin; Juneja, Lekh R

    2015-01-01

    Nanoscale Science, Engineering and Technology are applied to Food and Nutrition. Various delivery systems include nanoemulsions, microemulsions, solid lipid nanoparticles, micelles, and liposomes. The nanoscale systems have advantages, such as higher bioavailabitity, and other physicochemical properties. The symposium will provide an overview of the formulation, characterization, and utilization of nanotechnology-based food and nutrition.

  20. Intelligent system design for bionanorobots in drug delivery.

    PubMed

    Fletcher, Mark; Biglarbegian, Mohammad; Neethirajan, Suresh

    A nanorobot is defined as any smart structure which is capable of actuation, sensing, manipulation, intelligence, and swarm behavior at the nanoscale. In this study, we designed an intelligent system using fuzzy logic for diagnosis and treatment of tumors inside the human body using bionanorobots. We utilize fuzzy logic and a combination of thermal, magnetic, optical, and chemical nanosensors to interpret the uncertainty associated with the sensory information. Two different fuzzy logic structures, for diagnosis (Mamdani structure) and for cure (Takagi-Sugeno structure), were developed to efficiently identify the tumors and treat them through delivery of effective dosages of a drug. Validation of the designed system with simulated conditions proved that the drug delivery of bionanorobots was robust to reasonable noise that may occur in the bionanorobot sensors during navigation, diagnosis, and curing of the cancer cells. Bionanorobots represent a great hope for successful cancer therapy in the near future.

  1. Convection-enhanced delivery in glioblastoma: a review of preclinical and clinical studies

    PubMed Central

    Jahangiri, Arman; Chin, Aaron T.; Flanigan, Patrick M.; Chen, Rebecca; Bankiewicz, Krystof; Aghi, Manish K.

    2017-01-01

    Glioblastoma is the most common malignant brain tumor, and it carries an extremely poor prognosis. Attempts to develop targeted therapies have been hindered because the blood-brain barrier prevents many drugs from reaching tumors cells. Furthermore, systemic toxicity of drugs often limits their therapeutic potential. A number of alternative methods of delivery have been developed, one of which is convection-enhanced delivery (CED), the focus of this review. The authors describe CED as a therapeutic measure and review preclinical studies and the most prominent clinical trials of CED in the treatment of glioblastoma. The utilization of this technique for the delivery of a variety of agents is covered, and its shortcomings and challenges are discussed in detail. PMID:27035164

  2. Polymeric Nanoparticles as a Metolachlor Carrier: Water-Based Formulation for Hydrophobic Pesticides and Absorption by Plants.

    PubMed

    Tong, Yujia; Wu, Yan; Zhao, Caiyan; Xu, Yong; Lu, Jianqing; Xiang, Sheng; Zong, Fulin; Wu, Xuemin

    2017-08-30

    Pesticide formulation is highly desirable for effective utilization of pesticide and environmental pollution reduction. Studies of pesticide delivery system such as microcapsules are developing prosperously. In this work, we chose polymeric nanoparticles as a pesticide delivery system and metolachlor was used as a hydrophobic pesticide model to study water-based mPEG-PLGA nanoparticle formulation. Preparation, characterization results showed that the resulting nanoparticles enhanced "water solubility" of hydrophobic metolachlor and contained no organic solvent or surfactant, which represent one of the most important sources of pesticide pollution. After the release study, absorption of Cy5-labeled nanoparticles into rice roots suggested a possible transmitting pathway of this metolachlor formulation and increased utilization of metolachlor. Furthermore, the bioassay test demonstrated that this nanoparticle showed higher effect than non-nano forms under relatively low concentrations on Oryza sativa, Digitaria sanguinalis. In addition, a simple cytotoxicity test involving metolachlor and metolachlor-loaded nanoparticles was performed, indicating toxicity reduction of the latter to the preosteoblast cell line. All of these results showed that those polymeric nanoparticles could serve as a pesticide carrier with lower environmental impact, comparable effect, and effective delivery.

  3. Directed transport of bacteria-based drug delivery vehicles: bacterial chemotaxis dominates particle shape.

    PubMed

    Sahari, Ali; Traore, Mahama A; Scharf, Birgit E; Behkam, Bahareh

    2014-10-01

    Several attenuated and non-pathogenic bacterial species have been demonstrated to actively target diseased sites and successfully deliver plasmid DNA, proteins and other therapeutic agents into mammalian cells. These disease-targeting bacteria can be employed for targeted delivery of therapeutic and imaging cargos in the form of a bio-hybrid system. The bio-hybrid drug delivery system constructed here is comprised of motile Escherichia coli MG1655 bacteria and elliptical disk-shaped polymeric microparticles. The transport direction for these vehicles can be controlled through biased random walk of the attached bacteria in presence of chemoattractant gradients in a process known as chemotaxis. In this work, we utilize a diffusion-based microfluidic platform to establish steady linear concentration gradients of a chemoattractant and investigate the roles of chemotaxis and geometry in transport of bio-hybrid drug delivery vehicles. Our experimental results demonstrate for the first time that bacterial chemotactic response dominates the effect of body shape in extravascular transport; thus, the non-spherical system could be more favorable for drug delivery applications owing to the known benefits of using non-spherical particles for vascular transport (e.g. relatively long circulation time).

  4. Factors associated with institutional delivery in Dangila district, North West Ethiopia: a cross-sectional study.

    PubMed

    Demilew, Yeshalem Mulugeta; Gebregergs, Gebremedhin Berhe; Negusie, Azezu Asres

    2016-03-01

    Childbirth in a health institution has been shown to be associated with lower rates of maternal and neonatal mortality. However, about 85% of mothers in Ethiopia deliver at home. To assess factors associated with institutional delivery service utilization among women who gave birth within one year prior to the study in Dangila district. A cross-sectional study was conducted from February 01-28, 2015. A total of 763 mothers were interviewed using structured questionnaire. SPSS version 20 was used for analysis. Crude and adjusted Odds ratios were computed for selected variables. A P-value less than 0.05 was considered statistical significant. Only 18.3% of mothers gave birth at health facilities. Knowledge on danger signs [AOR=2.0, 95% CI: (1.1, 3.4)], plan to give birth at health institution [AOR=5.4, 95% CI: (3.0, 9.6)], having ANC follow up during pregnancy [AOR=12.9, 95% CI: (5.0, 33.3)] and time taken to get to a nearby health institution [AOR=5.1, 95% CI: (2.9, 9.1)] were associated with institutional delivery service utilization. Institutional delivery was very low. Knowledge about danger signs, having ANC visits, and time were factors associated with institutional delivery service utilization. Thus, the findings recommend repeated re-enforcement of institutional delivery service utilization through professionals. And also, the findings recommend promotion of institutional delivery service utilization through mass media.

  5. Rationalizing the selection of oral lipid based drug delivery systems by an in vitro dynamic lipolysis model for improved oral bioavailability of poorly water soluble drugs.

    PubMed

    Dahan, Arik; Hoffman, Amnon

    2008-07-02

    As a consequence of modern drug discovery techniques, there has been a consistent increase in the number of new pharmacologically active lipophilic compounds that are poorly water soluble. A great challenge facing the pharmaceutical scientist is making these molecules into orally administered medications with sufficient bioavailability. One of the most popular approaches to improve the oral bioavailability of these molecules is the utilization of a lipid based drug delivery system. Unfortunately, current development strategies in the area of lipid based delivery systems are mostly empirical. Hence, there is a need for a simplified in vitro method to guide the selection of a suitable lipidic vehicle composition and to rationalize the delivery system design. To address this need, a dynamic in vitro lipolysis model, which provides a very good simulation of the in vivo lipid digestion process, has been developed over the past few years. This model has been extensively used for in vitro assessment of different lipid based delivery systems, leading to enhanced understanding of the suitability of different lipids and surfactants as a delivery system for a given poorly water soluble drug candidate. A key goal in the development of the dynamic in vitro lipolysis model has been correlating the in vitro data of various drug-lipidic delivery system combinations to the resultant in vivo drug profile. In this paper, we discuss and review the need for this model, its underlying theory, practice and limitations, and the available data accumulated in the literature. Overall, the dynamic in vitro lipolysis model seems to provide highly useful initial guidelines in the development process of oral lipid based drug delivery systems for poorly water soluble drugs, and it predicts phenomena that occur in the pre-enterocyte stages of the intestinal absorption cascade.

  6. The Utilization of Psychologists for Staff Development in a Large Public School System: A Staff Development Director's Perspective.

    ERIC Educational Resources Information Center

    Stone, James L., Jr.

    This model proposes the TAP Team approach as an on-site delivery system for local school staff development in large, urban school systems. TAP emphasizes in-service training for both upgrading skills of staff and for helping staff acquire new skills in the areas of coping strategies, classroom management, communication skills, instructional…

  7. Development of TOPS

    NASA Astrophysics Data System (ADS)

    Tanaka, Yoshiyuki; Tsugiishi, Shigemi

    The off-line patent and utility model information management system at Teijin Ltd. had been developed and operated since 1980. To achieve efficient business management through office automation and to get ready for easy access to electronic document delivery so-called Paperless project being developed by Japan Patent Office, the system was reviewed and new online system was constructed in 1985. The paper describes its details.

  8. Endoscopic ultrasound-guided biliary drainage using a newly designed metal stent with a thin delivery system: a preclinical study in phantom and porcine models.

    PubMed

    Minaga, Kosuke; Kitano, Masayuki; Itonaga, Masahiro; Imai, Hajime; Miyata, Takeshi; Yamao, Kentaro; Tamura, Takashi; Nuta, Junya; Warigaya, Kenji; Kudo, Masatoshi

    2017-12-08

    This study was designed to evaluate the feasibility and safety of a newly designed self-expandable metal stent for endoscopic ultrasound-guided biliary drainage (EUS-BD) when it was delivered via three different stent delivery systems: a 7.5Fr delivery catheter with a bullet-shaped tip (7.5Fr-bullet), a 7Fr catheter with a bullet-shaped tip (7Fr-bullet), or a 7Fr catheter with a tee-shaped tip (7Fr-tee). This experimental study utilized a porcine model of biliary dilatation involving ten pigs. In the animal study, technical feasibility and clinical outcomes of the stent when placed with each of the delivery systems were examined. In addition, a phantom model was used to measure the resistance of these delivery systems to advancement. Phantom experiments showed that, compared with 7Fr-bullet, 7Fr-tee had less resistance force to the advancement of the stent delivery system. EUS-BD was technically successful in all ten pigs. Fistulous tract dilation was necessary in 100% (2/2), 75% (3/4), and 0% (0/4) of the pigs that underwent EUS-BD using 7.5Fr-bullet, 7Fr-bullet, and 7Fr-tee, respectively. There were no procedure-related complications. Our newly designed metal stent may be feasible and safe for EUS-BD, particularly when delivered by 7Fr-tee, because it eliminates the need for fistulous tract dilation.

  9. Stimuli-sensitive hydrogels: ideal carriers for chronobiology and chronotherapy.

    PubMed

    Peppas, Nicholas A; Leobandung, William

    2004-01-01

    The development of solid-phase peptide synthesis in the early 1960s and recombinant DNA technology in the early 1970s boosted the scientific interest of utilizing proteins and peptides as potential therapeutic agents to battle poorly controlled diseases. While there has been rapid progress in the development and synthesis of new proteins and peptides as potential therapeutic agents, the formulation and development of the associated delivery systems is lacking. The development of delivery systems is equally important due to the problems of stability, low bioavailability and short half-life of proteins and peptides. The main problem in this field is that low stability leads to low bioavailability. In this review we draw attention to chrono-pharmacological drug-delivery systems, which can be used to match the delivery of therapeutic agents with the biological rhythm. They are very important especially in endocrinology and in vaccine therapy. We show that the treatment of hypopituitary dwarfism by administration of human growth-hormone-releasing hormone (GHRH) is more effective when GHRH is administered in a pulsatile manner that exhibits a period characteristic of the patient's circadian rhythm. Here we examine how to design novel chrono-pharmacological drug-delivery systems that should be able to release the therapeutic agents at predetermined intervals.

  10. Noninvasive delivery systems for peptides and proteins in osteoporosis therapy: a retroperspective.

    PubMed

    Hoyer, Herbert; Perera, Glen; Bernkop-Schnürch, Andreas

    2010-01-01

    The aim of this review is to provide the reader general and inspiring prospects in various attempts to make noninvasive delivery systems of calcitonin and teriparatide feasible and as convenient as possible. Calcitonin and teriparatide play an important role in both calcium homeostasis and bone remodelling. Currently calcitonin is available as a subcutaneous injection and as a nasal spray whereas teriparatide is administered subcutaneously. In the past few years, an increasing number of articles about drug delivery systems for calcitonin and teriparatide have been published. These delivery systems have been developed to overcome the inherent barriers for the uptake across the diverse membranes on the various routes for protein and peptide delivery. Co-administration of permeation enhancers, mucoadhesive agents, viscosity modifying agents, multifunctional polymers, protease inhibitors as well as encapsulation and chemical modification are utilized in order to improve calcitonin and teriparatide absorption after oral, nasal, pulmonal, or buccal administration. The majority of research groups have been working on the development of formulations based on the encapsulation of molecules in biodegradable and biocompatible polymeric nanoparticles. However these observations are based on data obtained under different experimental conditions. Hence, it is difficult to compare the obtained results in order to draw general conclusions about the most promising characteristics required for oral and nasal formulations for these peptides.

  11. Leukocytes as carriers for targeted cancer drug delivery.

    PubMed

    Mitchell, Michael J; King, Michael R

    2015-03-01

    Metastasis contributes to over 90% of cancer-related deaths. Numerous nanoparticle platforms have been developed to target and treat cancer, yet efficient delivery of these systems to the appropriate site remains challenging. Leukocytes, which share similarities to tumor cells in terms of their transport and migration through the body, are well suited to serve as carriers of drug delivery systems to target cancer sites. This review focuses on the use and functionalization of leukocytes for therapeutic targeting of metastatic cancer. Tumor cell and leukocyte extravasation, margination in the bloodstream, and migration into soft tissue are discussed, along with the potential to exploit these functional similarities to effectively deliver drugs. Current nanoparticle-based drug formulations for the treatment of cancer are reviewed, along with methods to functionalize delivery vehicles to leukocytes, either on the surface and/or within the cell. Recent progress in this area, both in vitro and in vivo, is also discussed, with a particular emphasis on targeting cancer cells in the bloodstream as a means to interrupt the metastatic process. Leukocytes interact with cancer cells both in the bloodstream and at the site of solid tumors. These interactions can be utilized to effectively deliver drugs to targeted areas, which can reduce both the amount of drug required and various nonspecific cytotoxic effects within the body. If drug delivery vehicle functionalization does not interfere with leukocyte function, this approach may be utilized to neutralize tumor cells in the bloodstream to prevent the formation of new metastases, and also to deliver drugs to metastatic sites within tissues.

  12. Leukocytes as carriers for targeted cancer drug delivery

    PubMed Central

    Mitchell, Michael J

    2017-01-01

    Introduction Metastasis contributes to over 90% of cancer-related deaths. Numerous nanoparticle platforms have been developed to target and treat cancer, yet efficient delivery of these systems to the appropriate site remains challenging. Leukocytes, which share similarities to tumor cells in terms of their transport and migration through the body, are well suited to serve as carriers of drug delivery systems to target cancer sites. Areas covered This review focuses on the use and functionalization of leukocytes for therapeutic targeting of metastatic cancer. Tumor cell and leukocyte extravasation, margination in the bloodstream, and migration into soft tissue are discussed, along with the potential to exploit these functional similarities to effectively deliver drugs. Current nanoparticle-based drug formulations for the treatment of cancer are reviewed, along with methods to functionalize delivery vehicles to leukocytes, either on the surface and/or within the cell. Recent progress in this area, both in vitro and in vivo, is also discussed, with a particular emphasis on targeting cancer cells in the bloodstream as a means to interrupt the metastatic process. Expert opinion Leukocytes interact with cancer cells both in the bloodstream and at the site of solid tumors. These interactions can be utilized to effectively deliver drugs to targeted areas, which can reduce both the amount of drug required and various nonspecific cytotoxic effects within the body. If drug delivery vehicle functionalization does not interfere with leukocyte function, this approach may be utilized to neutralize tumor cells in the bloodstream to prevent the formation of new metastases, and also to deliver drugs to metastatic sites within tissues. PMID:25270379

  13. A Study to Ascertain the Feasibility of Joint Efforts to Establish a Comprehensive Health Care Delivery System Utilizing Hill-Burton Constructed Hospital,

    DTIC Science & Technology

    1978-12-15

    Utilization Review Procedures ................ 22 Reduced Philanthropy ......................... 22 Lack of Incentives ........................... 23 Reductions...challenges are made on hospitals in the form of status of technology, elite physician compliments, and increased specialization of labor which ccnstantly...construction are now marginally subsidized by philanthropy . Third party reimbursement is now the dominant source of hospital revenue with cost based formula

  14. Where is the state? How is the state? Accessing water and the state in Mumbai and Johannesburg.

    PubMed

    Bawa, Zainab

    2011-01-01

    This article examines the water distribution systems in Johannesburg and Mumbai to argue that the political and institutional contexts of service delivery shape people’s access to the state and its resources, and also mediation between citizens and government institutions by councillors. Through ethnographies of water supply and distribution systems in Mumbai and Johannesburg, I explain how the organizational structure of the water utility, institutional arrangements of service delivery, regulatory systems, councillors’ proximity to decision makers and their relationship with municipal officials, civil servants and party members variously influence councillors’ mediation capacities and their ability to fulfil the claims of their constituencies for piped water supply and connections.

  15. Sample Delivery and Computer Control Systems for Detecting Leaks in the Main Engines of the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Griffin, Timothy P.; Naylor, Guy R.; Hritz, Richard J.; Barrett, Carolyn A.

    1997-01-01

    The main engines of the Space Shuttle use hydrogen and oxygen as the fuel and oxidant. The explosive and fire hazards associated with these two components pose a serious danger to personnel and equipment. Therefore prior to use the main engines undergo extensive leak tests. Instead of using hazardous gases there tests utilize helium as the tracer element. This results in a need to monitor helium in the ppm level continuously for hours. The major challenge in developing such a low level gas monitor is the sample delivery system. This paper discuss a system developed to meet the requirements while also being mobile. Also shown is the calibration technique, stability, and accuracy results for the system.

  16. Novel Approaches in Formulation and Drug Delivery using Contact Lenses

    PubMed Central

    Singh, Kishan; Nair, Anroop B; Kumar, Ashok; Kumria, Rachna

    2011-01-01

    The success of ocular delivery relies on the potential to enhance the drug bioavailability by controlled and extended release of drug on the eye surface. Several new approaches have been attempted to augment the competence and diminish the intrinsic side effects of existing ocular drug delivery systems. In this contest, progress has been made to develop drug-eluting contact lens using different techniques, which have the potential to control and sustain the delivery of drug. Further, the availability of novel polymers have facilitated and promoted the utility of contact lenses in ocular drug delivery. Several research groups have already explored the feasibility and potential of contact lens using conventional drugs for the treatment of periocular and intraocular diseases. Contact lenses formulated using modern technology exhibits high loading, controlled drug release, apposite thickness, water content, superior mechanical and optical properties as compared to commercial lenses. In general, this review discus various factors and approaches designed and explored for the successful delivery of ophthalmic drugs using contact lenses as drug delivery device PMID:24826007

  17. 7 CFR 1940.959 - Area plan.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS-COOPERATIVE SERVICE, RURAL UTILITIES SERVICE, AND FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE (CONTINUED) PROGRAM REGULATIONS (CONTINUED) GENERAL System for Delivery of Certain Rural Development Programs § 1940.959 Area plan...

  18. 7 CFR 1940.959 - Area plan.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS-COOPERATIVE SERVICE, RURAL UTILITIES SERVICE, AND FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE (CONTINUED) PROGRAM REGULATIONS (CONTINUED) GENERAL System for Delivery of Certain Rural Development Programs § 1940.959 Area plan...

  19. 7 CFR 1940.959 - Area plan.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS-COOPERATIVE SERVICE, RURAL UTILITIES SERVICE, AND FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE (CONTINUED) PROGRAM REGULATIONS (CONTINUED) GENERAL System for Delivery of Certain Rural Development Programs § 1940.959 Area plan...

  20. 7 CFR 1940.959 - Area plan.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS-COOPERATIVE SERVICE, RURAL UTILITIES SERVICE, AND FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE (CONTINUED) PROGRAM REGULATIONS (CONTINUED) GENERAL System for Delivery of Certain Rural Development Programs § 1940.959 Area plan...

  1. Perinatal mortality among infants born during health user-fees (Cash & Carry) and the national health insurance scheme (NHIS) eras in Ghana: a cross-sectional study.

    PubMed

    Ibrahim, Abdallah; Maya, Ernest T; Donkor, Ernestina; Agyepong, Irene A; Adanu, Richard M

    2016-12-08

    This research determined the rates of perinatal mortality among infants delivered under Ghana's national health insurance scheme (NHIS) compared to infants delivered under the previous "Cash and Carry" system in Northern Region, especially as the country takes stock of its progress toward meeting the Millennium Development Goals (MDG) 4 and 5. The labor and maternity wards delivery records of infants delivered before and after the implementation of the NHIS in Northern Region were examined. Records of available daily deliveries during the two health systems were extracted. Fisher's exact tests of non-random association were used to examine the bivariate association between categorical independent variables and perinatal mortality. On average, 8% of infants delivered during the health user-fee (Cash & Carry) died compared to about 4% infant deaths during the NHIS delivery fee exemption period in Northern Region, Ghana. There were no remarkable difference in the rate of infant deaths among mothers in almost all age categories in both the Cash and Carry and the NHIS periods except in mothers age 35 years and older. Infants born to multiparous mothers were significantly more likely to die than those born to first time mothers. There were more twin deaths during the Cash and Carry system (p = 0.001) compared to the NHIS system. Deliveries by caesarean section increased from an average of 14% in the "Cash and Carry" era to an average of 20% in the NHIS era. The overall rate of perinatal mortality declined by half (50%) in infants born during the NHIS era compared to the Cash and Carry era. However, caesarean deliveries increased during the NHIS era. These findings suggest that pregnant women in the Northern Region of Ghana were able to access the opportunity to utilize the NHIS for antenatal visits and possibly utilized skilled care at delivery at no cost or very minimal cost to them, which therefore improved Ghana's progress towards meeting the MDG 4, (reducing under-five deaths by two-thirds).

  2. Utility of large spot binocular indirect laser delivery for peripheral photocoagulation therapy in children.

    PubMed

    Balasubramaniam, Saranya C; Mohney, Brian G; Bang, Genie M; Link, Thomas P; Pulido, Jose S

    2012-09-01

    The purpose of this article is to demonstrate the utility of the large spot size (LSS) setting using a binocular laser indirect delivery system for peripheral ablation in children. One patient with bilateral retinopathy of prematurity received photocoagulation with standard spot size burns placed adjacently to LSS burns. Using a pixel analysis program called Image J on the Retcam picture, the areas of each retinal spot size were determined in units of pixels, giving a standard spot range of 805 to 1294 pixels and LSS range of 1699 to 2311 pixels. Additionally, fluence was calculated using theoretical retinal areas produced by each spot size: the standard spot setting was 462 mJ/mm2 and the LSS setting was 104 mJ/mm2. For eyes with retinopathy of prematurity, our study shows that LSS laser indirect delivery halves the number of spots required for treatment and reduces fluence by almost one-quarter, producing more uniform spots.

  3. Dynamic Visualization of Dendritic Cell-Antigen Interactions in the Skin Following Transcutaneous Immunization

    PubMed Central

    Rattanapak, Teerawan; Birchall, James C.; Young, Katherine; Kubo, Atsuko; Fujimori, Sayumi; Ishii, Masaru; Hook, Sarah

    2014-01-01

    Delivery of vaccines into the skin provides many advantages over traditional parenteral vaccination and is a promising approach due to the abundance of antigen presenting cells (APC) residing in the skin including Langerhans cells (LC) and dermal dendritic cells (DDC). However, the main obstacle for transcutaneous immunization (TCI) is the effective delivery of the vaccine through the stratum corneum (SC) barrier to the APC in the deeper skin layers. This study therefore utilized microneedles (MN) and a lipid-based colloidal delivery system (cubosomes) as a synergistic approach for the delivery of vaccines to APC in the skin. The process of vaccine uptake and recruitment by specific types of skin APC was investigated in real-time over 4 hours in B6.Cg-Tg (Itgax-EYFP) 1 Mnz/J mice by two-photon microscopy. Incorporation of the vaccine into a particulate delivery system and the use of MN preferentially increased vaccine antigen uptake by a highly motile subpopulation of skin APC known as CD207+ DC. No uptake of antigen or any response to immunisation by LC could be detected. PMID:24586830

  4. Recent advances in aliphatic polyesters for drug delivery applications.

    PubMed

    Washington, Katherine E; Kularatne, Ruvanthi N; Karmegam, Vasanthy; Biewer, Michael C; Stefan, Mihaela C

    2017-07-01

    The use of aliphatic polyesters in drug delivery applications has been a field of significant interest spanning decades. Drug delivery strategies have made abundant use of polyesters in their structures owing to their biocompatibility and biodegradability. The properties afforded from these materials provide many avenues for the tunability of drug delivery systems to suit individual needs of diverse applications. Polyesters can be formed in several different ways, but the most prevalent is the ring-opening polymerization of cyclic esters. When used to form amphiphilic block copolymers, these materials can be utilized to form various drug carriers such as nanoparticles, micelles, and polymersomes. These drug delivery systems can be tailored through the addition of targeting moieties and the addition of stimuli-responsive groups into the polymer chains. There are also different types of polyesters that can be used to modify the degradation rates or mechanical properties. Here, we discuss the reasons that polyesters have become so popular, the current research focuses, and what the future holds for these materials in drug delivery applications. WIREs Nanomed Nanobiotechnol 2017, 9:e1446. doi: 10.1002/wnan.1446 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  5. Oral Drug Delivery Systems Comprising Altered Geometric Configurations for Controlled Drug Delivery

    PubMed Central

    Moodley, Kovanya; Pillay, Viness; Choonara, Yahya E.; du Toit, Lisa C.; Ndesendo, Valence M. K.; Kumar, Pradeep; Cooppan, Shivaan; Bawa, Priya

    2012-01-01

    Recent pharmaceutical research has focused on controlled drug delivery having an advantage over conventional methods. Adequate controlled plasma drug levels, reduced side effects as well as improved patient compliance are some of the benefits that these systems may offer. Controlled delivery systems that can provide zero-order drug delivery have the potential for maximizing efficacy while minimizing dose frequency and toxicity. Thus, zero-order drug release is ideal in a large area of drug delivery which has therefore led to the development of various technologies with such drug release patterns. Systems such as multilayered tablets and other geometrically altered devices have been created to perform this function. One of the principles of multilayered tablets involves creating a constant surface area for release. Polymeric materials play an important role in the functioning of these systems. Technologies developed to date include among others: Geomatrix® multilayered tablets, which utilizes specific polymers that may act as barriers to control drug release; Procise®, which has a core with an aperture that can be modified to achieve various types of drug release; core-in-cup tablets, where the core matrix is coated on one surface while the circumference forms a cup around it; donut-shaped devices, which possess a centrally-placed aperture hole and Dome Matrix® as well as “release modules assemblage”, which can offer alternating drug release patterns. This review discusses the novel altered geometric system technologies that have been developed to provide controlled drug release, also focusing on polymers that have been employed in such developments. PMID:22312236

  6. Evaluation of Roadmap to Achieve Energy Delivery Systems Cybersecurity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavez, Adrian R.

    The Department of Energy/Office of Electricity Delivery and Energy Reliability (DOE/OE) Cybersecurity for Energy Delivery Systems (CEDS) program is currently evaluating the Roadmap to Achieve Energy Delivery Systems Cybersecurity document that sets a vision and outlines a set of milestones. The milestones are divided into five strategic focus areas that include: 1. Build a Culture of Security; 2. Assess and Monitor Risk; 3. Develop and Implement New Protective Measures to Reduce Risk; 4. Manage Incidents; and 5. Sustain Security Improvements. The most current version of the roadmap was last updated in September of 2016. Sandia National Laboratories (SNL) has beenmore » tasked with revisiting the roadmap to update the current state of energy delivery systems cybersecurity protections. SNL is currently working with previous and current partners to provide feedback on which of the roadmap milestones have been met and to identify any preexisting or new gaps that are not addressed by the roadmap. The specific focus areas SNL was asked to evaluate are: 1. Develop and Implement New Protective Measures to Reduce Risk and 2. Sustain Security Improvements. SNL has formed an Industry Advisory Board (IAB) to assist in answering these questions. The IAB consists of previous partners on past CEDS funded efforts as well as new collaborators that have unique insights into the current state of cybersecurity within energy delivery systems. The IAB includes asset owners, utilities and vendors of control systems. SNL will continue to maintain regular communications with the IAB to provide various perspectives on potential future updates to further improve the breadth of cybersecurity coverage of the roadmap.« less

  7. Does quality influence utilization of primary health care? Evidence from Haiti.

    PubMed

    Gage, Anna D; Leslie, Hannah H; Bitton, Asaf; Jerome, J Gregory; Joseph, Jean Paul; Thermidor, Roody; Kruk, Margaret E

    2018-06-20

    Expanding coverage of primary healthcare services such as antenatal care and vaccinations is a global health priority; however, many Haitians do not utilize these services. One reason may be that the population avoids low quality health facilities. We examined how facility infrastructure and the quality of primary health care service delivery were associated with community utilization of primary health care services in Haiti. We constructed two composite measures of quality for all Haitian facilities using the 2013 Service Provision Assessment survey. We geographically linked population clusters from the Demographic and Health Surveys to nearby facilities offering primary health care services. We assessed the cross-sectional association between quality and utilization of four primary care services: antenatal care, postnatal care, vaccinations and sick child care, as well as one more complex service: facility delivery. Facilities performed poorly on both measures of quality, scoring 0.55 and 0.58 out of 1 on infrastructure and service delivery quality respectively. In rural areas, utilization of several primary cares services (antenatal care, postnatal care, and vaccination) was associated with both infrastructure and quality of service delivery, with stronger associations for service delivery. Facility delivery was associated with infrastructure quality, and there was no association for sick child care. In urban areas, care utilization was not associated with either quality measure. Poor quality of care may deter utilization of beneficial primary health care services in rural areas of Haiti. Improving health service quality may offer an opportunity not only to improve health outcomes for patients, but also to expand coverage of key primary health care services.

  8. Smart Micro/Nano-robotic Systems for Gene Delivery.

    PubMed

    Pedram, Alireza; Pishkenari, Hossein Nejat

    2017-01-01

    Small scale robotics have attracted growing attention for the prospect of targeting and accessing cell-sized sites, necessary for high precision biomedical applications and drug/gene delivery. The loss of controlled gene therapy, inducing systemic side effects and reduced therapeutic efficiency, can be settled utilizing these intelligent carriers. Newly proposed solutions for the main challenges of control, power supplying, gene release and final carrier extraction/degradation have shifted these smart miniature robots to the point of being employed for practical applications of transferring oligonucleotides (pDNA, siRNA, mRNA, etc.) in near future. In this paper, different scenarios and their endeavors to address the vital working demands and steps, in particular, carrier attachment and release, cell internalization, manipulation concerns as well as actuation systems are discussed.This review highlights some promising experimental results showing controlled gene release of robotic systems in comparison with current non-specific gene delivery methods. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Utilization of nanoemulsions to enhance bioactivity of pharmaceuticals, supplements, and nutraceuticals: Nanoemulsion delivery systems and nanoemulsion excipient systems.

    PubMed

    Aboalnaja, Khaled Omer; Yaghmoor, Soonham; Kumosani, Taha Abdullah; McClements, David Julian

    2016-09-01

    The efficacy of many hydrophobic bioactives (pharmaceuticals, supplements, and nutraceuticals) is limited due to their relatively low or highly variable bioavailability. Nanoemulsions consisting of small lipid droplets (r < 100 nm) dispersed in water can be designed to improve bioavailability. The major factors limiting the oral bioavailability of hydrophobic bioactive agents are highlighted: bioaccessibility, absorption and transformation. Two nanoemulsion-based approaches to control these processes and improve bioavailability are discussed: nanoemulsion delivery systems (NDS) and nanoemulsion excipient systems (NES). In NDS, hydrophobic bioactives are dissolved within the lipid phase of oil-in-water nanoemulsions. In NES, the bioactives are present within a conventional drug, supplement, or food, which is consumed with an oil-in-water nanoemulsion. Examples of NDS and NES utilization to improve bioactive bioavailability are given. Considerable progress has been made in nanoemulsion design, fabrication, and testing. This knowledge facilitates the design of new formulations to improve the bioavailability of pharmaceuticals, supplements, and nutraceuticals. NDS and NES must be carefully designed based on the major factors limiting the bioavailability of specific bioactives. Research is still required to ensure these systems are commercially viable, and to demonstrate their safety and efficacy using animal and human feeding studies.

  10. Large-Scale Educational Telecommunications Systems for the U.S.: An Analysis of Educational Needs and Technological Opportunities.

    ERIC Educational Resources Information Center

    Morgan, Robert P.; And Others

    Opportunities for utilizing large-scale educational telecommunications delivery systems to aid in meeting needs of U.S. education are extensively analyzed in a NASA-funded report. Status, trends, and issues in various educational subsectors are assessed, along with current use of telecommunications and technology and factors working for and…

  11. Computer-assisted surgical planning and automation of laser delivery systems

    NASA Astrophysics Data System (ADS)

    Zamorano, Lucia J.; Dujovny, Manuel; Dong, Ada; Kadi, A. Majeed

    1991-05-01

    This paper describes a 'real time' surgical treatment planning interactive workstation, utilizing multimodality imaging (computer tomography, magnetic resonance imaging, digital angiography) that has been developed to provide the neurosurgeon with two-dimensional multiplanar and three-dimensional 'display' of a patient's lesion.

  12. Rethinking the service delivery system of psychological interventions in low and middle income countries.

    PubMed

    Murray, L K; Jordans, M J D

    2016-07-12

    Global mental health is a growing field intricately connected to broader health, violence and economic issues. Despite the high prevalence and cost of mental health disorders, an estimated 75 % of those with need in lower resource settings do not receive intervention. Most studies to date have examined the effectiveness of single-disorder mental health treatments - an approach that may be a significant challenge to scale-up and sustainability in lower resource settings. This paper presents a brief overview of the scientific progress in global mental health, and suggests consideration of an internal stepped care delivery approach. An internal stepped care model is one idea of a delivery system, utilizing a common elements approach, where the same provider could navigate between different elements based on severity and type of problems of the client. It is distinct from traditional stepped care models in that clients remain with the same provider, rather than relying on referral systems. An internal stepped care delivery system based on a simplified common elements approach could be more efficient, scalable, sustainable, and reduce the loss of clients to referrals in lower resource settings.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Passarge, M; Fix, M K; Manser, P

    Purpose: To create and test an accurate EPID-frame-based VMAT QA metric to detect gross dose errors in real-time and to provide information about the source of error. Methods: A Swiss cheese model was created for an EPID-based real-time QA process. The system compares a treatmentplan- based reference set of EPID images with images acquired over each 2° gantry angle interval. The metric utilizes a sequence of independent consecutively executed error detection Methods: a masking technique that verifies infield radiation delivery and ensures no out-of-field radiation; output normalization checks at two different stages; global image alignment to quantify rotation, scaling andmore » translation; standard gamma evaluation (3%, 3 mm) and pixel intensity deviation checks including and excluding high dose gradient regions. Tolerances for each test were determined. For algorithm testing, twelve different types of errors were selected to modify the original plan. Corresponding predictions for each test case were generated, which included measurement-based noise. Each test case was run multiple times (with different noise per run) to assess the ability to detect introduced errors. Results: Averaged over five test runs, 99.1% of all plan variations that resulted in patient dose errors were detected within 2° and 100% within 4° (∼1% of patient dose delivery). Including cases that led to slightly modified but clinically equivalent plans, 91.5% were detected by the system within 2°. Based on the type of method that detected the error, determination of error sources was achieved. Conclusion: An EPID-based during-treatment error detection system for VMAT deliveries was successfully designed and tested. The system utilizes a sequence of methods to identify and prevent gross treatment delivery errors. The system was inspected for robustness with realistic noise variations, demonstrating that it has the potential to detect a large majority of errors in real-time and indicate the error source. J. V. Siebers receives funding support from Varian Medical Systems.« less

  14. Methods For Delivering Liquified Gas To An Engine

    DOEpatents

    Bingham, Dennis N.; Wilding, Bruce M.; O'Brien, James E.; Siahpush, Ali S.; Brown, Kevin B.

    2003-09-16

    A liquified gas delivery system for a motorized platform includes a holding tank configured to receive liquified gas. A first conduit extends from a vapor holding portion of the tank to a valve device. A second conduit extends from a liquid holding portion of the tank to the valve device. Fluid coupled to the valve device is a vaporizer which is in communication with an engine. The valve device selectively withdraws either liquified gas or liquified gas vapor from the tank depending on the pressure within the vapor holding portion of the tank. Various configurations of the delivery system can be utilized for pressurizing the tank during operation.

  15. Methods For Delivering Liquified Gas To An Engine

    DOEpatents

    Bingham, Dennis N.; Wilding, Bruce M.; O'Brien, James E.; Siahpush, Ali S.; Brown, Kevin B.

    2005-10-11

    A liquified gas delivery system for a motorized platform includes a holding tank configured to receive liquified gas. A first conduit extends from a vapor holding portion of the tank to a valve device. A second conduit extends from a liquid holding portion of the tank to the valve device. Fluid coupled to the valve device is a vaporizer which is in communication with an engine. The valve device selectively withdraws either liquified gas or liquified gas vapor from the tank depending on the pressure within the vapor holding portion of the tank. Various configurations of the delivery system can be utilized for pressurizing the tank during operation.

  16. Integrating disease management into the outpatient delivery system during and after managed care.

    PubMed

    Villagra, Victor G

    2004-01-01

    Managed care introduced disease management as a replacement strategy to utilization management. The focus changed from influencing treatment decisions to supporting self-care and compliance. Disease management rendered operational many elements of the chronic care model, but it did so outside the delivery system, thus escaping the financial limitations, cultural barriers, and inertia inherent in effecting radical change from within. Medical management "after managed care" should include the functional and structural integration of disease management with primary care clinics. Such integration would supply the infrastructure that primary care physicians need to coordinate the care of chronically ill patients more effectively.

  17. Stimuli responsive drug delivery systems based on nano-graphene for cancer therapy.

    PubMed

    Yang, Kai; Feng, Liangzhu; Liu, Zhuang

    2016-10-01

    Nano-graphene as a class of two-dimensional sp 2 carbon nanomaterial has attracted tremendous attentions in various fields in the past decade. Utilizing its unique physical and chemical properties, nano-graphene has also shown great promises in the area of biomedicine, for application in biosensing, imaging and therapy. In particular, with all atoms exposed on its surface, nano-graphene exhibits ultra-high surface area available for efficient binding/loading of various biomolecules of interests, and has been widely used as multifunctional nano-carriers for drug and gene delivery. In this review article, we will summarize the recent advances in the development of nano-graphene as stimuli-responsive nano-carriers for drug delivery, as well as the applications of these smart systems for cancer therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Osmotically driven drug delivery through remote-controlled magnetic nanocomposite membranes.

    PubMed

    Zaher, A; Li, S; Wolf, K T; Pirmoradi, F N; Yassine, O; Lin, L; Khashab, N M; Kosel, J

    2015-09-01

    Implantable drug delivery systems can provide long-term reliability, controllability, and biocompatibility, and have been used in many applications, including cancer pain and non-malignant pain treatment. However, many of the available systems are limited to zero-order, inconsistent, or single burst event drug release. To address these limitations, we demonstrate prototypes of a remotely operated drug delivery device that offers controllability of drug release profiles, using osmotic pumping as a pressure source and magnetically triggered membranes as switchable on-demand valves. The membranes are made of either ethyl cellulose, or the proposed stronger cellulose acetate polymer, mixed with thermosensitive poly(N-isopropylacrylamide) hydrogel and superparamagnetic iron oxide particles. The prototype devices' drug diffusion rates are on the order of 0.5-2 μg/h for higher release rate designs, and 12-40 ng/h for lower release rates, with maximum release ratios of 4.2 and 3.2, respectively. The devices exhibit increased drug delivery rates with higher osmotic pumping rates or with magnetically increased membrane porosity. Furthermore, by vapor deposition of a cyanoacrylate layer, a drastic reduction of the drug delivery rate from micrograms down to tens of nanograms per hour is achieved. By utilizing magnetic membranes as the valve-control mechanism, triggered remotely by means of induction heating, the demonstrated drug delivery devices benefit from having the power source external to the system, eliminating the need for a battery. These designs multiply the potential approaches towards increasing the on-demand controllability and customizability of drug delivery profiles in the expanding field of implantable drug delivery systems, with the future possibility of remotely controlling the pressure source.

  19. Osmotically driven drug delivery through remote-controlled magnetic nanocomposite membranes

    PubMed Central

    Zaher, A.; Li, S.; Wolf, K. T.; Pirmoradi, F. N.; Yassine, O.; Lin, L.; Khashab, N. M.; Kosel, J.

    2015-01-01

    Implantable drug delivery systems can provide long-term reliability, controllability, and biocompatibility, and have been used in many applications, including cancer pain and non-malignant pain treatment. However, many of the available systems are limited to zero-order, inconsistent, or single burst event drug release. To address these limitations, we demonstrate prototypes of a remotely operated drug delivery device that offers controllability of drug release profiles, using osmotic pumping as a pressure source and magnetically triggered membranes as switchable on-demand valves. The membranes are made of either ethyl cellulose, or the proposed stronger cellulose acetate polymer, mixed with thermosensitive poly(N-isopropylacrylamide) hydrogel and superparamagnetic iron oxide particles. The prototype devices' drug diffusion rates are on the order of 0.5–2 μg/h for higher release rate designs, and 12–40 ng/h for lower release rates, with maximum release ratios of 4.2 and 3.2, respectively. The devices exhibit increased drug delivery rates with higher osmotic pumping rates or with magnetically increased membrane porosity. Furthermore, by vapor deposition of a cyanoacrylate layer, a drastic reduction of the drug delivery rate from micrograms down to tens of nanograms per hour is achieved. By utilizing magnetic membranes as the valve-control mechanism, triggered remotely by means of induction heating, the demonstrated drug delivery devices benefit from having the power source external to the system, eliminating the need for a battery. These designs multiply the potential approaches towards increasing the on-demand controllability and customizability of drug delivery profiles in the expanding field of implantable drug delivery systems, with the future possibility of remotely controlling the pressure source. PMID:26487899

  20. Nanoparticles for cancer gene therapy: Recent advances, challenges, and strategies.

    PubMed

    Wang, Kui; Kievit, Forrest M; Zhang, Miqin

    2016-12-01

    Compared to conventional treatments, gene therapy offers a variety of advantages for cancer treatment including high potency and specificity, low off-target toxicity, and delivery of multiple genes that concurrently target cancer tumorigenesis, recurrence, and drug resistance. In the past decades, gene therapy has undergone remarkable progress, and is now poised to become a first line therapy for cancer. Among various gene delivery systems, nanoparticles have attracted much attention because of their desirable characteristics including low toxicity profiles, well-controlled and high gene delivery efficiency, and multi-functionalities. This review provides an overview on gene therapeutics and gene delivery technologies, and highlight recent advances, challenges and insights into the design and the utility of nanoparticles in gene therapy for cancer treatment. Copyright © 2016. Published by Elsevier Ltd.

  1. Importance of integrating nanotechnology with pharmacology and physiology for innovative drug delivery and therapy - an illustration with firsthand examples.

    PubMed

    Zhang, Rui Xue; Li, Jason; Zhang, Tian; Amini, Mohammad A; He, Chunsheng; Lu, Brian; Ahmed, Taksim; Lip, HoYin; Rauth, Andrew M; Wu, Xiao Yu

    2018-05-01

    Nanotechnology has been applied extensively in drug delivery to improve the therapeutic outcomes of various diseases. Tremendous efforts have been focused on the development of novel nanoparticles and delineation of the physicochemical properties of nanoparticles in relation to their biological fate and functions. However, in the design and evaluation of these nanotechnology-based drug delivery systems, the pharmacology of delivered drugs and the (patho-)physiology of the host have received less attention. In this review, we discuss important pharmacological mechanisms, physiological characteristics, and pathological factors that have been integrated into the design of nanotechnology-enabled drug delivery systems and therapies. Firsthand examples are presented to illustrate the principles and advantages of such integrative design strategies for cancer treatment by exploiting 1) intracellular synergistic interactions of drug-drug and drug-nanomaterial combinations to overcome multidrug-resistant cancer, 2) the blood flow direction of the circulatory system to maximize drug delivery to the tumor neovasculature and cells overexpressing integrin receptors for lung metastases, 3) endogenous lipoproteins to decorate nanocarriers and transport them across the blood-brain barrier for brain metastases, and 4) distinct pathological factors in the tumor microenvironment to develop pH- and oxidative stress-responsive hybrid manganese dioxide nanoparticles for enhanced radiotherapy. Regarding the application in diabetes management, a nanotechnology-enabled closed-loop insulin delivery system was devised to provide dynamic insulin release at a physiologically relevant time scale and glucose levels. These examples, together with other research results, suggest that utilization of the interplay of pharmacology, (patho-)physiology and nanotechnology is a facile approach to develop innovative drug delivery systems and therapies with high efficiency and translational potential.

  2. Diatoms: a biotemplating approach to fabricating drug delivery reservoirs.

    PubMed

    Chao, Joshua T; Biggs, Manus J P; Pandit, Abhay S

    2014-11-01

    Biotemplating is a rapidly expanding subfield that utilizes nature-inspired systems and structures to create novel functional materials, and it is through these methods that the limitations of current engineering practices may be advanced. The diatom is an exceptional template for drug delivery applications, owing largely to its highly-ordered pores, large surface area, species-specific architecture, and flexibility for surface modifications. Diatoms have been studied in a wide range of biomedical applications and their potential as the next frontier of drug delivery has yet to be fully exploited. In this editorial, the authors aim to review the use of diatoms in the delivery of poorly water-soluble drugs as reported in the literature, discuss the progress and advancements that have been made thus far, identify the shortcomings and limitations in the field, and, lastly, present their expert opinion and convey the future outlook on biotemplating approaches for drug delivery.

  3. Effect of video server topology on contingency capacity requirements

    NASA Astrophysics Data System (ADS)

    Kienzle, Martin G.; Dan, Asit; Sitaram, Dinkar; Tetzlaff, William H.

    1996-03-01

    Video servers need to assign a fixed set of resources to each video stream in order to guarantee on-time delivery of the video data. If a server has insufficient resources to guarantee the delivery, it must reject the stream request rather than slowing down all existing streams. Large scale video servers are being built as clusters of smaller components, so as to be economical, scalable, and highly available. This paper uses a blocking model developed for telephone systems to evaluate video server cluster topologies. The goal is to achieve high utilization of the components and low per-stream cost combined with low blocking probability and high user satisfaction. The analysis shows substantial economies of scale achieved by larger server images. Simple distributed server architectures can result in partitioning of resources with low achievable resource utilization. By comparing achievable resource utilization of partitioned and monolithic servers, we quantify the cost of partitioning. Next, we present an architecture for a distributed server system that avoids resource partitioning and results in highly efficient server clusters. Finally, we show how, in these server clusters, further optimizations can be achieved through caching and batching of video streams.

  4. Factors associated with home delivery in Bahirdar, Ethiopia: a case control study.

    PubMed

    Abebe, Fantu; Berhane, Yemane; Girma, Belaineh

    2012-11-24

    In Ethiopia although pregnant mothers increasingly attend antenatal clinics, utilization of skilled delivery service remains very low. The individual or health system factors that affect women's preferences for delivery places are not well known. A case control study was conducted in July 2010 to assess factors associated with utilization of institutional delivery service. A total of 324 mothers who recently delivered and visited either postnatal care or sought immunization services were included. Cases (n = 108) were mothers who gave birth at home and controls (n = 216) were those who delivered at health facility. Pre-tested and standardized questionnaires were used to collect relevant data by trained data collectors. Logistic regression model was used to control for confounding. The likelihood of delivering at home was greater among mothers with inadequate knowledge of pregnancy related services (AOR = 62, 95% CI: 3, 128.4), those who started attending ANC after 24 weeks of gestation (AOR 8.7, 95% CI: 2.2, 33.3), mothers having no formal education (Adjusted OR 4.2, 95% CI 1.63, 11.27) and rural residents (AOR = 3.6, 95%CI: 1.4, 9.0). The predominant factors associated with home delivery services were lack of knowledge about obstetrics care, delay in starting Antenatal Care (ANC) follow up, having, Illiteracy and rural residence. Audience specific behavioral change communication should be designed to improve the demand for delivery services. Health professionals should take the opportunity to encourage mothers attend delivery services during ANC follow up. Improvements should be made in social conditions including literacy and major social mobilization endeavors.

  5. Microneedle-mediated transdermal bacteriophage delivery

    PubMed Central

    Ryan, Elizabeth; Garland, Martin J.; Singh, Thakur Raghu Raj; Bambury, Eoin; O’Dea, John; Migalska, Katarzyna; Gorman, Sean P.; McCarthy, Helen O.; Gilmore, Brendan F.; Donnelly, Ryan F.

    2012-01-01

    Interest in bacteriophages as therapeutic agents has recently been reawakened. Parenteral delivery is the most routinely-employed method of administration. However, injection of phages has numerous disadvantages, such as the requirement of a health professional for administration and the possibility of cross-contamination. Transdermal delivery offers one potential means of overcoming many of these problems. The present study utilized a novel poly (carbonate) (PC) hollow microneedle (MN) device for the transdermal delivery of Escherichia coli-specific T4 bacteriophages both in vitro and in vivo. MN successfully achieved bacteriophage delivery in vitro across dermatomed and full thickness skin. A concentration of 2.67 × 106 PFU/ml (plaque forming units per ml) was detected in the receiver compartment when delivered across dermatomed skin and 4.0 × 103 PFU/ml was detected in the receiver compartment when delivered across full thickness skin. An in vivo study resulted in 4.13 × 103 PFU/ml being detected in blood 30 min following initial MN-mediated phage administration. Clearance occurred rapidly, with phages being completely cleared from the systemic circulation within 24 h, which was expected in the absence of infection. We have shown here that MN-mediated delivery allows successful systemic phage absorption. Accordingly, bacteriophage-based therapeutics may now have an alternative route for systemic delivery. Once fully-investigated, this could lead to more widespread investigation of these interesting therapeutic viruses. PMID:22750416

  6. Non-ototoxic local delivery of bisphosphonate to the mammalian cochlea

    PubMed Central

    Kang, Woo Seok; Sun, Shuting; Nguyen, Kim; Kashemirov, Boris; McKenna, Charles E.; Hacking, S. Adam; Quesnel, Alicia M.; Sewell, William F.; McKenna, Michael J.; Jung, David H.

    2015-01-01

    Hypothesis Local delivery of bisphosphonates results in superior localization of these compounds for the treatment of cochlear otosclerosis, without ototoxicity. Background Otosclerosis is a common disorder of abnormal bone remodeling within the human otic capsule. It is a frequent cause of conductive hearing loss from stapes fixation. Large lesions that penetrate the cochlear endosteum and injure the spiral ligament result in sensorineural hearing loss. Nitrogen-containing bisphosphonates (e.g., zoledronate) are potent inhibitors of bone remodeling with proven efficacy in the treatment of metabolic bone diseases, including otosclerosis. Local delivery to the cochlea may allow for improved drug targeting, higher local concentrations, and the avoidance of systemic complications. In this study, we utilize a fluorescently labeled bisphosphonate compound (6-FAM-ZOL) to determine drug localization and concentration within the otic capsule. Various methods for delivery are compared. Ototoxicity is evaluated by ABR and DPOAEs. Methods 6-FAM-ZOL was administered to guinea pigs via intraperitoneal injection, placement of alginate beads onto the round window membrane (RWM), or microfluidic pump infusion via a cochleostomy. Hearing was evaluated. Specimens were embedded into resin blocks, ground to a mid-modiolar section, and quantitatively imaged using fluorescence microscopy. Results There was a dose-dependent increase in fluorescent signal following systemic 6-FAM-ZOL treatment. Local delivery via the RWM or a cochleostomy increased delivery efficiency. No significant ototoxicity was observed following either systemic or local 6-FAM-ZOL delivery. Conclusions These findings establish important pre-clinical parameters for the treatment of cochlear otosclerosis in humans. PMID:25996080

  7. Lactoferrin modified graphene oxide iron oxide nanocomposite for glioma-targeted drug delivery.

    PubMed

    Song, Meng-Meng; Xu, Huai-Liang; Liang, Jun-Xing; Xiang, Hui-Hui; Liu, Rui; Shen, Yu-Xian

    2017-08-01

    Targeting delivery of drugs in a specific manner represents a potential powerful technology in gliomas. Herein, we prepared a multifunctional targeted delivery system based on graphene oxide (GO) that contains a molecular bio-targeting ligand and superparamagnetic iron oxide nanoparticles on the surface of GO for magnetic targeting. Superparamagnetic Fe 3 O 4 nanoparticles was loaded on the surface of GO via chemical precipitation method to form GO@Fe 3 O 4 nanocomposites. Lactoferrin (Lf), an iron-transporting serum glycoprotein that binds to receptors overexpressed at the surface of glioma cells and vascular endothelial cell of the blood brain barrier, was chosen as the targeted ligand to construct the targeted delivery system Lf@GO@Fe 3 O 4 through EDC/NHS chemistry. With the confirmation of TEM, DLS and VSM, the resulting Lf@GO@Fe 3 O 4 had a size distribution of 200-1000nm and exhibited a superparamagnetic behavior. The nano delivery system had a high loading capacity and exhibited a pH-dependent release behavior. Compared with free DOX and DOX@GO@Fe 3 O 4 , Lf@GO@Fe 3 O 4 @DOX displayed greater intracellular delivery efficiency and stronger cytotoxicity against C6 glioma cells. The results demonstrated the potential utility of Lf conjugated GO@Fe 3 O 4 nanocomposites for therapeutic application in the treatment of gliomas. Copyright © 2017. Published by Elsevier B.V.

  8. Utilization of maternal healthcare among adolescent mothers in urban India: evidence from DLHS-3.

    PubMed

    Singh, Aditya; Kumar, Abhishek; Pranjali, Pragya

    2014-01-01

    Background. Low use of maternal healthcare services is one of the reasons why maternal mortality is still considerably high among adolescents mothers in India. To increase the utilization of these services, it is necessary to identify factors that affect service utilization. To our knowledge, no national level study in India has yet examined the issue in the context urban adolescent mothers. The present study is an attempt to fill this gap. Data and Methods. Using information from the third wave of District Level Household Survey (2007-08), we have examined factors associated with the utilization of maternal healthcare services among urban Indian married adolescent women (aged 13-19 years) who have given live/still births during last three years preceding the survey. The three outcome variables included in the analyses are 'full antenatal care (ANC)', 'safe delivery' and 'postnatal care within 42 days of delivery'. We have used Chi-square test to determine the difference in proportion and the binary logistic regression to understand the net effect of predictor variables on the utilization of maternity care. Results. About 22.9% of mothers have received full ANC, 65.1% of mothers have had at least one postnatal check-up within 42 days of pregnancy. The proportion of mother having a safe delivery, i.e., assisted by skilled personnel, is about 70.5%. Findings indicate that there is considerable amount of variation in use of maternity care by educational attainment, household wealth, religion, parity and region of residence. Receiving full antenatal care is significantly associated with mother's education, religion, caste, household wealth, parity, exposure to healthcare messages and region of residence. Mother's education, full antenatal care, parity, household wealth, religion and region of residence are also statistically significant in case of safe delivery. The use of postnatal care is associated with household wealth, woman's education, full antenatal care, safe delivery care and region of residence. Conclusion. Several socioeconomic and demographic factors affect the utilization of maternal healthcare services among urban adolescent women in India. Promoting the use of family planning, female education and higher age at marriage, targeting vulnerable groups such as poor, illiterate, high parity women, involving media and grass root level workers and collaboration between community leaders and health care system could be some important policy level interventions to address the unmet need of maternity services among urban adolescents.

  9. Factors associated with institutional delivery service utilization in Ethiopia.

    PubMed

    Kebede, Alemi; Hassen, Kalkidan; Nigussie Teklehaymanot, Aderajew

    2016-01-01

    Most obstetric complications occur unpredictably during the time of delivery, but they can be prevented with proper medical care in the health facilities. Despite the Ethiopian government's efforts to expand health service facilities and promote health institution-based delivery service in the country, an estimated 85% of births still take place at home. The review was conducted with the aim of generating the best evidence on the determinants of institutional delivery service utilization in Ethiopia. The reviewed studies were accessed through electronic web-based search strategy from PubMed, HINARI, Mendeley reference manager, Cochrane Library for Systematic Reviews, and Google Scholar. Review Manager V5.3 software was used for meta-analysis. Mantel-Haenszel odds ratios (ORs) and their 95% confidence intervals (CIs) were calculated. Heterogeneity of the study was assessed using I (2) test. People living in urban areas (OR =13.16, CI =1.24, 3.68), with primary and above educational level of the mother and husband (OR =4.95, CI =2.3, 4. 8, and OR =4.43, CI =1.14, 3.36, respectively), who encountered problems during pregnancy (OR =2.83, CI =4.54, 7.39), and living at a distance <5 km from nearby health facility (OR =2.6, CI =3.33, 6.57) showed significant association with institutional delivery service utilization. Women's autonomy was not significantly associated with institutional delivery service utilization. Distance to health facility and problems during pregnancy were factors positively and significantly associated with institutional delivery service utilization. Promoting couples education beyond primary education regarding the danger signs of pregnancy and benefits of institutional delivery through available communication networks such as health development army and promotion of antenatal care visits and completion of four standard visits by pregnant women were recommended.

  10. Factors associated with institutional delivery service utilization in Ethiopia

    PubMed Central

    Kebede, Alemi; Hassen, Kalkidan; Nigussie Teklehaymanot, Aderajew

    2016-01-01

    Background Most obstetric complications occur unpredictably during the time of delivery, but they can be prevented with proper medical care in the health facilities. Despite the Ethiopian government’s efforts to expand health service facilities and promote health institution-based delivery service in the country, an estimated 85% of births still take place at home. Objective The review was conducted with the aim of generating the best evidence on the determinants of institutional delivery service utilization in Ethiopia. Methods The reviewed studies were accessed through electronic web-based search strategy from PubMed, HINARI, Mendeley reference manager, Cochrane Library for Systematic Reviews, and Google Scholar. Review Manager V5.3 software was used for meta-analysis. Mantel–Haenszel odds ratios (ORs) and their 95% confidence intervals (CIs) were calculated. Heterogeneity of the study was assessed using I2 test. Results People living in urban areas (OR =13.16, CI =1.24, 3.68), with primary and above educational level of the mother and husband (OR =4.95, CI =2.3, 4. 8, and OR =4.43, CI =1.14, 3.36, respectively), who encountered problems during pregnancy (OR =2.83, CI =4.54, 7.39), and living at a distance <5 km from nearby health facility (OR =2.6, CI =3.33, 6.57) showed significant association with institutional delivery service utilization. Women’s autonomy was not significantly associated with institutional delivery service utilization. Conclusion and recommendation Distance to health facility and problems during pregnancy were factors positively and significantly associated with institutional delivery service utilization. Promoting couples education beyond primary education regarding the danger signs of pregnancy and benefits of institutional delivery through available communication networks such as health development army and promotion of antenatal care visits and completion of four standard visits by pregnant women were recommended. PMID:27672342

  11. Distance from health facility and mothers' perception of quality related to skilled delivery service utilization in northern Ethiopia.

    PubMed

    Fisseha, Girmatsion; Berhane, Yemane; Worku, Alemayehu; Terefe, Wondwossen

    2017-01-01

    Poor maternal health service utilization is one of the contributing factors to a high level of maternal and newborn mortality in Ethiopia. The factors associated with utilization of services are believed to differ from one context to another. We assessed the factors associated with skilled delivery service utilization in rural northern Ethiopia. A community-based survey was conducted among mothers who gave birth in the 12 months preceding the study period, from January to February 2015, in the Tigray region of Ethiopia. Multistage sampling technique was used to select mothers from the identified clusters. Households within a 10 km radius of the health facility were taken as a cluster for a community survey. Data were collected using face-to-face interview at the household level. We compared the mothers who reported giving birth to the index child in a health facility and those who reported delivering at home, in order to identify the predictors of skilled delivery utilization. Multivariable logistic regression model was used to determine the predictors of skilled delivery service utilization. The results are presented with odds ratio (OR) and 95% confidence interval (CI). A total of 1,796 mothers participated in the study, with a 100% response rate. Distance to health facilities (adjusted odds ratio [AOR] =0.53 [95% CI: 0.39, 0.71]), perception of mothers to the availability of adequate equipment in the delivery service in their catchment area (AOR =1.5 [95% CI: 1.11, 2.13]), experiencing any complication during childbirth, using antenatal care, lower birth order and having an educated partner were the significant predictors of skilled delivery service utilization. Implementing community-based intervention programs that will address the physical accessibility of delivery services, such as the ambulance service, road issues and waiting rooms, and improving quality maternity service will likely reduce the current problem.

  12. Distance from health facility and mothers’ perception of quality related to skilled delivery service utilization in northern Ethiopia

    PubMed Central

    Fisseha, Girmatsion; Berhane, Yemane; Worku, Alemayehu; Terefe, Wondwossen

    2017-01-01

    Background Poor maternal health service utilization is one of the contributing factors to a high level of maternal and newborn mortality in Ethiopia. The factors associated with utilization of services are believed to differ from one context to another. We assessed the factors associated with skilled delivery service utilization in rural northern Ethiopia. Subjects and methods A community-based survey was conducted among mothers who gave birth in the 12 months preceding the study period, from January to February 2015, in the Tigray region of Ethiopia. Multistage sampling technique was used to select mothers from the identified clusters. Households within a 10 km radius of the health facility were taken as a cluster for a community survey. Data were collected using face-to-face interview at the household level. We compared the mothers who reported giving birth to the index child in a health facility and those who reported delivering at home, in order to identify the predictors of skilled delivery utilization. Multivariable logistic regression model was used to determine the predictors of skilled delivery service utilization. The results are presented with odds ratio (OR) and 95% confidence interval (CI). Results A total of 1,796 mothers participated in the study, with a 100% response rate. Distance to health facilities (adjusted odds ratio [AOR] =0.53 [95% CI: 0.39, 0.71]), perception of mothers to the availability of adequate equipment in the delivery service in their catchment area (AOR =1.5 [95% CI: 1.11, 2.13]), experiencing any complication during childbirth, using antenatal care, lower birth order and having an educated partner were the significant predictors of skilled delivery service utilization. Conclusion Implementing community-based intervention programs that will address the physical accessibility of delivery services, such as the ambulance service, road issues and waiting rooms, and improving quality maternity service will likely reduce the current problem. PMID:29042819

  13. An equity analysis of utilization of health services in Afghanistan using a national household survey.

    PubMed

    Kim, Christine; Saeed, Khwaja Mir Ahad; Salehi, Ahmad Shah; Zeng, Wu

    2016-12-05

    Afghanistan has made great strides in the coverage of health services across the country but coverage of key indicators remains low nationally and whether the poorest households are accessing these services is not well understood. We analyzed the Afghanistan Mortality Survey 2010 on utilization of inpatient and outpatient care, institutional delivery and antenatal care by wealth quintiles. Concentration indexes (CIs) were generated to measure the inequality of using the four services. Additional analyses were conducted to examine factors that explain the health inequalities (e.g. age, gender, education and residence). Among households reporting utilization of health services, public health facilities were used more often for inpatient care, while they were used less for outpatient care. Overall, the utilization of inpatient and outpatient care, and antenatal care was equally distributed among income groups, with CIs of 0.04, 0.03 and 0.08, respectively. However, the poor used more public facilities while the wealthy used more private facilities. There was a substantial inequality in the use of institutional delivery services, with a CI of 0.31. Poorer women had a lower rate of institutional deliveries overall, in both public and private facilities, compared to the wealthy. Location was an important factor in explaining the inequality in the use of health services. The large gap between the rich and poor in access to and utilization of key maternal services, such as institutional delivery, may be a central factor to the high rates of maternal mortality and morbidity and impedes efforts to make progress toward universal health coverage. While poorer households use public health services more often, the use of public facilities for outpatient visits remains half that of private facilities. Pro-poor targeting as well as a better understanding of the private sector's role in increasing equitable coverage of maternal health services is needed. Equity-oriented approaches in health should be prioritized to promote more inclusive health system reforms.

  14. Laser assisted drug delivery: a review of an evolving technology.

    PubMed

    Sklar, Lindsay R; Burnett, Christopher T; Waibel, Jill S; Moy, Ronald L; Ozog, David M

    2014-04-01

    Topically applied drugs have a relatively low cutaneous bioavailability. This article reviews the existing applications of laser assisted drug delivery, a means by which the permeation of topically applied agents can be enhanced into the skin. The existing literature suggests that lasers are a safe and effective means of enhancing the delivery of topically applied agents through the skin. The types of lasers most commonly studied in regards to drug delivery are the carbon dioxide (CO2 ) and erbium:yttrium-aluminum-garnet (Er:YAG) lasers. Both conventional ablative and fractional ablative modalities have been utilized and are summarized herein. The majority of the existing studies on laser assisted drug delivery have been performed on animal models and additional human studies are needed. Laser assisted drug delivery is an evolving technology with potentially broad clinical applications. Multiple studies demonstrate that laser pretreatment of the skin can increase the permeability and depth of penetration of topically applied drug molecules for both local cutaneous and systemic applications. © 2014 Wiley Periodicals, Inc.

  15. Optimizing utility owner participation in the project development and delivery process.

    DOT National Transportation Integrated Search

    2013-04-01

    Coordination with utility owners during the project development and delivery process involves multiple : activities, such as requesting and collecting data about the location and characteristics of existing facilities to : identifying and analyzing u...

  16. Dropwise additive manufacturing of pharmaceutical products for amorphous and self emulsifying drug delivery systems.

    PubMed

    Içten, Elçin; Purohit, Hitesh S; Wallace, Chelsey; Giridhar, Arun; Taylor, Lynne S; Nagy, Zoltan K; Reklaitis, Gintaras V

    2017-05-30

    The improvements in healthcare systems and the advent of the precision medicine initiative have created the need to develop more innovative manufacturing methods for the delivery and production of individualized dosing and personalized treatments. In accordance with the changes observed in healthcare systems towards more innovative therapies, this paper presents dropwise additive manufacturing of pharmaceutical products (DAMPP) for small scale, distributed manufacturing of individualized dosing as an alternative to conventional manufacturing methods A dropwise additive manufacturing process for amorphous and self-emulsifying drug delivery systems is reported, which utilizes drop-on-demand printing technology for automated and controlled deposition of melt-based formulations onto inert tablets. The advantages of drop on demand technology include reproducible production of droplets with adjustable sizing and high placement accuracy, which enable production of individualized dosing even for low dose and high potency drugs. Flexible use of different formulations, such as lipid-based formulations, allows enhancement of the solubility of poorly water soluble and highly lipophilic drugs with DAMPP. Here, DAMPP is used to produce solid oral dosage forms from melts of an active pharmaceutical ingredient and a surfactant. The dosage forms are analyzed to show the amorphous nature, self-emulsifying drug delivery system characteristics and dissolution behavior of these formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Maternal Health Care Utilization Among Syrian Refugees in Lebanon and Jordan.

    PubMed

    Tappis, Hannah; Lyles, Emily; Burton, Ann; Doocy, Shannon

    2017-09-01

    Purpose The influx of Syrian refugees into Jordan and Lebanon over the last 5 years presents an immense burden to national health systems. This study was undertaken to assess utilization of maternal health services among Syrian refugees in both countries. Description A cross-sectional survey of Syrian refugees living in urban and rural (non-camp) settings was conducted using a two-stage cluster survey design with probability proportional to size sampling in 2014-2015. Eighty-six percent of surveyed households in Lebanon and 88% of surveyed households in Jordan included women with a live birth in the last year. Information from women in this sub-set of households was analyzed to understand antenatal and intrapartum health service utilization. Assessment A majority of respondents reported seeking antenatal care, 82% and 89% in Jordan and Lebanon, respectively. Women had an average of at least six antenatal care visits. Nearly all births (98% in Jordan and 94% in Lebanon) took place in a health facility. Cesarean rates were similar in both countries; approximately one-third of all births were cesarean deliveries. A substantial proportion of women incurred costs for intrapartum care; 33% of Syrian women in Jordan and 94% of Syrian women in Lebanon reported paying out of pocket for their deliveries. The proportion of women incurring costs for intrapartum care was higher in Jordan both countries for women with cesarean deliveries compared to those with vaginal deliveries; however, this difference was not statistically significant in either country (Jordan p-value = 0.203; Lebanon p-value = 0.099). Conclusion Syrian refugees living in Jordan and Lebanon had similar levels of utilization of maternal health services, despite different health systems and humanitarian assistance provisions. As expected, a substantial proportion of households incurred out-of-pocket costs for essential maternal and newborn health services, making cost a major factor in care-seeking decisions and locations. As health financing policies shift to account for the continued burden of refugee hosting on the health system, sustained attention to the availability and quality of essential maternal and newborn health services is needed to protect both refugee and host populations women's rights to health and health care during pregnancy, childbirth, and the postpartum period.

  18. Tumor regression following intravenous administration of lactoferrin- and lactoferricin-bearing dendriplexes

    PubMed Central

    Lim, Li Ying; Koh, Pei Yin; Somani, Sukrut; Al Robaian, Majed; Karim, Reatul; Yean, Yi Lyn; Mitchell, Jennifer; Tate, Rothwelle J.; Edrada-Ebel, RuAngelie; Blatchford, David R.; Mullin, Margaret; Dufès, Christine

    2015-01-01

    The possibility of using gene therapy for the treatment of cancer is limited by the lack of safe, intravenously administered delivery systems able to selectively deliver therapeutic genes to tumors. In this study, we investigated if the conjugation of the polypropylenimine dendrimer to lactoferrin and lactoferricin, whose receptors are overexpressed on cancer cells, could result in a selective gene delivery to tumors and a subsequently enhanced therapeutic efficacy. The conjugation of lactoferrin and lactoferricin to the dendrimer significantly increased the gene expression in the tumor while decreasing the non-specific gene expression in the liver. Consequently, the intravenous administration of the targeted dendriplexes encoding TNFα led to the complete suppression of 60% of A431 tumors and up to 50% of B16-F10 tumors over one month. The treatment was well tolerated by the animals. These results suggest that these novel lactoferrin- and lactoferricin-bearing dendrimers are promising gene delivery systems for cancer therapy. From the Clinical Editor Specific targeting of cancer cells should enhance the delivery of chemotherapeutic agents. This is especially true for gene delivery. In this article, the authors utilized a dendrimer-based system and conjugated this with lactoferrin and lactoferricin to deliver anti-tumor genes. The positive findings in animal studies should provide the basis for further clinical studies. PMID:25933695

  19. Custom fractional factorial designs to develop atorvastatin self-nanoemulsifying and nanosuspension delivery systems--enhancement of oral bioavailability.

    PubMed

    Hashem, Fahima M; Al-Sawahli, Majid M; Nasr, Mohamed; Ahmed, Osama A A

    2015-01-01

    Poor water solubility of a drug is a major challenge in drug delivery research and a main cause for limited bioavailability and pharmacokinetic parameters. This work aims to utilize custom fractional factorial design to assess the development of self-nanoemulsifying drug delivery systems (SNEDDS) and solid nanosuspensions (NS) in order to enhance the oral delivery of atorvastatin (ATR). According to the design, 14 experimental runs of ATR SNEDDS were formulated utilizing the highly ATR solubilizing SNEDDS components: oleic acid, Tween 80, and propylene glycol. In addition, 12 runs of NS were formulated by the antisolvent precipitation-ultrasonication method. Optimized formulations of SNEDDS and solid NS, deduced from the design, were characterized. Optimized SNEDDS formula exhibited mean globule size of 73.5 nm, zeta potential magnitude of -24.1 mV, and 13.5 μs/cm of electrical conductivity. Optimized solid NS formula exhibited mean particle size of 260.3 nm, 7.4 mV of zeta potential, and 93.2% of yield percentage. Transmission electron microscopy showed SNEDDS droplets formula as discrete spheres. The solid NS morphology showed flaky nanoparticles with irregular shapes using scanning electron microscopy. The release behavior of the optimized SNEDDS formula showed 56.78% of cumulative ATR release after 10 minutes. Solid NS formula showed lower rate of release in the first 30 minutes. Bioavailability estimation in Wistar albino rats revealed an augmentation in ATR bioavailability, relative to ATR suspension and the commercial tablets, from optimized ATR SNEDDS and NS formulations by 193.81% and 155.31%, respectively. The findings of this work showed that the optimized nanocarriers enhance the oral delivery and pharmacokinetic profile of ATR.

  20. An Automated System for Generating Situation-Specific Decision Support in Clinical Order Entry from Local Empirical Data

    ERIC Educational Resources Information Center

    Klann, Jeffrey G.

    2011-01-01

    Clinical Decision Support is one of the only aspects of health information technology that has demonstrated decreased costs and increased quality in healthcare delivery, yet it is extremely expensive and time-consuming to create, maintain, and localize. Consequently, a majority of health care systems do not utilize it, and even when it is…

  1. The Development of a Distributive Interactive Computing Model in Consumer Economics, Utilizing Jerome S. Bruner's Theory of Instruction.

    ERIC Educational Resources Information Center

    Morrison, James L.

    A computerized delivery system in consumer economics developed at the University of Delaware uses the PLATO system to provide a basis for analyzing consumer behavior in the marketplace. The 16 sequential lessons, part of the Consumer in the Marketplace Series (CMS), demonstrate consumer economic theory in layman's terms and are structured to focus…

  2. Proximity-activated nanoparticles: in vitro performance of specific structural modification by enzymatic cleavage

    PubMed Central

    Adam Smith, R; Sewell, Sarah L; Giorgio, Todd D

    2008-01-01

    The development and in vitro performance of a modular nanoscale system capable of specific structural modification by enzymatic activity is described in this work. Due to its small physical size and adaptable characteristics, this system has the potential for utilization in targeted delivery systems and biosensing. Nanoparticle probes were synthesized containing two distinct fluorescent species including a quantum dot base particle and fluorescently labeled cleavable peptide substrate. Activity of these probes was monitored by gel electrophoresis with quantitative cleavage measurements made by fluorometric analysis. The model proximity-activated nanoparticles studied here exhibit significant susceptibility to cleavage by matrix metalloprotease-7 (MMP-7) at physiologically relevant concentrations, with nearly complete cleavage of available substrate molecules after 24 hours. This response is specific to MMP-7 enzyme activity, as cleavage is completely inhibited with the addition of EDTA. Utilization of enzyme-specific modification is a sensitive approach with broad applications for targeted therapeutics and biosensing. The versatility of this nanoparticle system is highlighted in its modular design, as it has the capability to integrate characteristics for detection, biosensing, targeting, and payload delivery into a single, multifunctional nanoparticle structure. PMID:18488420

  3. Factors associated with Institutional delivery service utilization among mothers in Bahir Dar City administration, Amhara region: a community based cross sectional study

    PubMed Central

    2014-01-01

    Background High maternal mortality is a continued challenge for the achievement of the fifth millennium development goal in Sub-Saharan African countries including Ethiopia. Although institutional delivery service utilization ensures safe birth and a key to reduce maternal mortality, interventions at the community and/or institutions were unsatisfactorily reduced maternal mortality. Institutional delivery service utilization is affected by the interaction of personal, socio-cultural, behavioral and institutional factors. Therefore this study was designed to assess factors associated with institutional delivery service use among mothers in Bahir Dar city administration. Methods A community based cross sectional study was conducted in Bahir Dar City administration Northwest of Addis Ababa, Ethiopia. Four hundred eighty four mothers were included in the study. Data were collected by trained female data collectors. Descriptive statistics, binary and multivariable logistic regression analyses were computed. Statistical significance was considered at p < 0.05 and the strength of statistical association was assessed by odds ratios (OR) with 95% confidence intervals. Result In this study, 78.8% of women gave birth to their current child at health institution. The multivariable logistic regression showed that, attending primary education (AOR = 4.7[95% CI:1.3-16.7], secondary education (AOR = 3.5[95% CI:1.1-10.7]), age at first marriage; first time marriage at 15–19 years (AOR = 5.4[95% CI:2.0-15.0]) and first time marriage at 20–24 years (AOR = 5.0[95% CI:1.5-16.8] and gestational age at first ANC visit (first trimester) (AOR = 5.3[1.3-22.2]) and second trimester (AOR = 2.8[95% CI:0.7-11.]) were independent factors affecting institutional delivery service utilization. Conclusion In this study, institutional delivery service utilization is optimal, urban mothers were more likely to practice institutional delivery. This study indicated that age at first marriage, educational status of the women and gestational age at first ANC visit are independent predictors of delivery service utilization. Hence, intensifying education for women and behavior change communication (BCC) interventions to increase early initiation and up-take of ANC service use in the first trimester and delaying marriage are recommended to promote institutional delivery service utilization. PMID:24629278

  4. Potential of geographical variation analysis for realigning providers to value-based care. ECHO case study on lower-value indications of C-section in five European countries.

    PubMed

    García-Armesto, Sandra; Angulo-Pueyo, Ester; Martínez-Lizaga, Natalia; Mateus, Céu; Joaquim, Inês; Bernal-Delgado, Enrique

    2015-02-01

    Although C-section is a highly effective procedure, literature abounds with evidence of overuse and particularly misuse, in lower-value indications such as low-risk deliveries. This study aims to quantify utilization of C-section in low-risk cases, mapping out areas showing excess-usage in each country and to estimate excess-expenditure as a proxy of the opportunity cost borne by healthcare systems. Observational, ecologic study on deliveries in 913 sub-national administrative areas of five European countries (Denmark, England, Portugal, Slovenia and Spain) from 2002 to 2009. The study includes a cross-section analysis with 2009 data and a time-trend analysis for the whole period. Main endpoints: age-standardized utilization rates of C-section in low-risk pregnancies and deliveries per 100 deliveries. Secondary endpoints: Estimated excess-cases per geographical unit of analysis in two scenarios of minimized utilization. C-section is widely used in all examined countries (ranging from 19% of Slovenian deliveries to 33% of deliveries in Portugal). With the exception of Portugal, there are no systematic variations in intensity of use across areas in the same country. Cross-country comparison of lower-value C-section leaves Denmark with 10% and Portugal with 2%, the highest and lowest. Such behaviour was stable over the period of analysis. Within each country, the scattered geographical patterns of use intensity speak for local drivers playing a major role within the national trend. The analysis conducted suggests plenty of room for enhancing value in obstetric care and equity in women's access to such within the countries studied. The analysis of geographical variations in lower-value care can constitute a powerful screening tool. © The Author 2015. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.

  5. Architecture and Methods for Substation SCADA Cybersecurity: Best Practices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albunashee, Hamdi; Al Sarray, Muthanna; McCann, Roy

    There are over 3000 electricity providers in the United States, encompassing investor and publicly owned utilities as well as electric cooperatives. There has been ongoing trends to increasingly automate and provide remote control and monitoring of electric energy delivery systems. The deployment of computer network technologies has increased the efficiency and reliability of electric power infrastructure. However, the increased use of digital communications has also increased the vulnerability to malicious cyber attacks [1]. In 2004 the National Research Councils (National Academies) formed a committee of specialists to address these vulnerabilities and propose possible solutions with an objective to prioritize themore » R&D needs for developing countermeasures. The committee addressed many potential concerns in the electric power delivery system and classified them based upon different criteria and presented recommendations to minimize the gap between the academic research directions and the needs of the electric utility industry. The complexity and diversity of the electric power delivery system in the U.S. has opened many ports for attackers and intruders [1]. This complexity and diversity is attributed to the fact that power delivery system is a network of substations, transmission and distribution lines, sub-networks of controlling, sensing and monitoring units, and human operator involvement for running the system [1]. Accordingly, any incident such as the occurrence of a fault or disturbance in this complex network cannot be deferred and should be resolved within an order of milliseconds, otherwise there is risk of large-scale outages similar to the occurrences in India and the U.S. in 2003 [2]. There are three main vulnerabilities in supervisory control and data acquisition (SCADA) systems commonly identified—physical vulnerability, cyber vulnerability and personal vulnerability [1]. In terms of cyber threats, SCADA systems are the most critical elements in the electric power grid in the U.S. Unauthorized access to a SCADA system could enable/disable unexpected equipment (such as disable the protection system or a circuit breaker) which could cause large scale disruptions of electric power delivery. This paper provides an overview of power system SCADA technologies in transmission substations (Section 2) and summarizes the best practices for implementing a cyber security program. After introducing SCADA system operations in Section 2, a description of the security challenges for SCADA systems is presented in Section 3. In Section 4, NECRC Critical Infrastructure Protection standards CIP-002 through CIP-009 are summarized. An overview of industry best practices is presented in Section 5.« less

  6. Nanoscale drug delivery systems and the blood-brain barrier.

    PubMed

    Alyautdin, Renad; Khalin, Igor; Nafeeza, Mohd Ismail; Haron, Muhammad Huzaimi; Kuznetsov, Dmitry

    2014-01-01

    The protective properties of the blood-brain barrier (BBB) are conferred by the intricate architecture of its endothelium coupled with multiple specific transport systems expressed on the surface of endothelial cells (ECs) in the brain's vasculature. When the stringent control of the BBB is disrupted, such as following EC damage, substances that are safe for peripheral tissues but toxic to neurons have easier access to the central nervous system (CNS). As a consequence, CNS disorders, including degenerative diseases, can occur independently of an individual's age. Although the BBB is crucial in regulating the biochemical environment that is essential for maintaining neuronal integrity, it limits drug delivery to the CNS. This makes it difficult to deliver beneficial drugs across the BBB while preventing the passage of potential neurotoxins. Available options include transport of drugs across the ECs through traversing occludins and claudins in the tight junctions or by attaching drugs to one of the existing transport systems. Either way, access must specifically allow only the passage of a particular drug. In general, the BBB allows small molecules to enter the CNS; however, most drugs with the potential to treat neurological disorders other than infections have large structures. Several mechanisms, such as modifications of the built-in pumping-out system of drugs and utilization of nanocarriers and liposomes, are among the drug-delivery systems that have been tested; however, each has its limitations and constraints. This review comprehensively discusses the functional morphology of the BBB and the challenges that must be overcome by drug-delivery systems and elaborates on the potential targets, mechanisms, and formulations to improve drug delivery to the CNS.

  7. Implementing Group Medical Visits for Older Adults at Group Health Cooperative

    PubMed Central

    Levine, Martin D.; Ross, Tyler R.; Balderson, Benjamin H.K.; Phelan, Elizabeth A.

    2010-01-01

    In a pair of randomized controlled trials in Kaiser Colorado in the 1990s, Group Visits for older adults (monthly non disease-specific group medical appointments for a cohort of patients led by primary care teams) were proven to reduce costs, decrease hospitalizations, and improve patient and provider satisfaction. As part of a translational effort, this Group Visit intervention was replicated in a delivery system in Seattle, WA, and the log of total health care costs measured in the first year of the intervention. Utilization and patient and physician satisfaction were secondary outcomes. For the cost and utilization analysis, a retrospective case-control design compared 221 case patients 65 years of age and older with high outpatient utilization in the previous 18 months with 1,015 control patient selected randomly from clinics not participating in the intervention. Controls were matched to cases on the number of primary care visits in the prior 18 months. Total costs were not statistically different for intervention patients compared to controls ($8,845 vs. $10,288, p=0.11), nor were there statistically significant differences in utilization, including hospital admissions and outpatient visits. However, patient and provider satisfaction was high. This translational effort did not demonstrate the cost savings of the original efficacy trials. Possible explanations for these divergent results may have to do with differences in those who participated and differences between the two delivery systems. PMID:20002506

  8. Partnerships through Innovative Telecommunications at California State University, Chico.

    ERIC Educational Resources Information Center

    Meuter, Ralph F.; And Others

    California State University (CSU), Chico, has used its relatively isolated location to develop an extensive educational system known as "Instructional Television for Students" (ITFS). Currently, the university is launching plans for new partnerships utilizing satellite technology for the delivery of educational programs. Over the years,…

  9. Lipid-Based Nanoparticles as a Potential Delivery Approach in the Treatment of Rheumatoid Arthritis

    PubMed Central

    Chuang, Shih-Yi; Lin, Chih-Hung; Huang, Tse-Hung

    2018-01-01

    Rheumatoid arthritis (RA), a chronic and joint-related autoimmune disease, results in immune dysfunction and destruction of joints and cartilages. Small molecules and biological therapies have been applied in a wide variety of inflammatory disorders, but their utility as a therapeutic agent is limited by poor absorption, rapid metabolism, and serious side effects. To improve these limitations, nanoparticles, which are capable of encapsulating and protecting drugs from degradation before they reach the target site in vivo, may serve as drug delivery systems. The present research proposes a platform for different lipid nanoparticle approaches for RA therapy, taking advantage of the newly emerging field of lipid nanoparticles to develop a targeted theranostic system for application in the treatment of RA. This review aims to present the recent major application of lipid nanoparticles that provide a biocompatible and biodegradable delivery system to effectively improve RA targeting over free drugs via the presentation of tissue-specific targeting of ligand-controlled drug release by modulating nanoparticle composition. PMID:29342965

  10. Safe Active Scanning for Energy Delivery Systems Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helms, J.; Salazar, B.; Scheibel, P.

    The Department of Energy’s Cybersecurity for Energy Delivery Systems Program has funded Safe(r) Active Scanning for Energy Delivery Systems, led by Lawrence Livermore National Laboratory, to investigate and analyze the impacts of active scanning in the operational environment of energy delivery systems. In collaboration with Pacific Northwest National Laboratory and Idaho National Laboratory, active scans across three testbeds including 38 devices were performed. This report gives a summary of the initial literature survey performed on the SASEDS project as well as industry partner interview summaries and main findings from Phase 1 of the project. Additionally, the report goes into themore » details of scanning techniques, methodologies for testing, testbed descriptions, and scanning results, with appendices to elaborate on the specific scans that were performed. As a result of testing, a single device out of 38 exhibited problems when actively scanned, and a reboot was required to fix it. This single failure indicates that active scanning is not likely to have a detrimental effect on the safety and resilience of energy delivery systems. We provide a path forward for future research that could enable wide adoption of active scanning and lead utilities to incorporate active scanning as part of their default network security plans to discover and rectify rogue devices, adversaries, and services that may be on the network. This increased network visibility will allow operational technology cybersecurity practitioners to improve their situational awareness of networks and their vulnerabilities.« less

  11. Cancer Immunotherapy Utilized Bubble Liposomes and Ultrasound as Antigen Delivery System

    NASA Astrophysics Data System (ADS)

    Oda, Yusuke; Otake, Shota; Suzuki, Ryo; Otake, Shota; Nishiie, Norihito; Hirata, Keiichi; Taira, Yuichiro; Utoguchi, Naoki; Maruyama, Kazuo

    2010-03-01

    In dendritic cells (DCs)-based cancer immunotherapy, it is important to present the epitope peptide derived from tumor associated antigens (TAAs) on MHC class I in order to induce tumor specific cytotoxic T lymphocytes (CTLs). However, MHC class I molecules generally present the epitope peptides derived from endogenous antigens for DCs but not exogenous ones such as TAAs. Recently, we developed the novel liposomal bubbles (Bubble liposomes) encapsulating perfluoropropane nanobubbles. In this study, we attempted to establish the novel antigen delivery system to induce MHC class I presentation using the combination of ultrasound and Bubble liposomes. Using ovalbumin (OVA) as model antigen, the combination of Bubble liposomes and ultrasound exposure for the DC could induce MHC class I presentation. In addition, the viability of DCs was more than 80%. These results suggest that Bubble liposomes might be a novel ultrasound enhanced antigen delivery tool in DC-based cancer immunotherapy.

  12. Designing food delivery systems: challenges related to the in vitro methods employed to determine the fate of bioactives in the gut.

    PubMed

    Arranz, Elena; Corredig, Milena; Guri, Anilda

    2016-08-10

    An in depth understanding of the underpinning mechanisms that relate to food disruption and processing in the gastrointestinal tract is necessary to achieve optimal intake of nutrients and their bioefficacy. Although in vivo trials can provide insights on physiological responses of nutrients, in vitro assays are often applied as tools to understand specific mechanisms, or as prescreening methods to determine the factors associated with the uptake of food components in the gastrointestinal tract. In vitro assays are also often utilized to design novel or improved food delivery systems. In this review the available approaches to study delivery and uptake of food bioactives and the associated challenges are discussed. For an in depth understanding of food processing in the gastrointestinal tract, it is necessary to apply multidisciplinary methodologies, at the interface between materials science, chemistry, physics and biology.

  13. Trends in inequalities in utilization of reproductive health services from 2000 to 2011 in Vietnam.

    PubMed

    Duc, Nguyen Huu Chau; Nakamura, Keiko; Kizuki, Masashi; Seino, Kaoruko; Rahman, Mosiur

    2015-01-01

    This study aimed to examine changes in utilization of reproductive health services by wealth status from 2000 to 2011 in Vietnam. Data from the Vietnam Multiple Indicator Cluster Surveys in 2000, 2006, and 2011 were used. The subjects were 550, 1023, and 1363 women, respectively, aged between 15 and 49 years who had given birth in the previous one or two years. The wealth index, a composite measure of a household's ownership of selected assets, materials used for housing construction, and types of water access and sanitation facilities, was used as a measure of wealth status. Main utilization indicators were utilization of antenatal care services, receipt of a tetanus vaccine, receipt of blood pressure measurement, blood examination and urine examination during antenatal care, receipt of HIV testing, skilled birth attendance at delivery, health-facility-based delivery, and cesarean section delivery. Inequalities by wealth index were measured by prevalence ratios, concentration indices, and multivariable adjusted regression coefficients. Significant increase in overall utilization was observed in all indicators (all p < 0.001). The concentration indices were 0.19 in 2000 and 0.06 in 2011 for antenatal care, 0.10 in 2000 and 0.06 in 2011 for tetanus vaccination, 0.23 in 2000 and 0.08 in 2011 for skilled birth attendance, 0.29 in 2006 and 0.12 in 2011 for blood examination, and 0.18 in 2006 and 0.09 in 2011 for health-facility-based delivery. The multivariable adjusted regression coefficients of reproductive health service utilization by wealth category were 0.06 in 2000 and 0.04 in 2011 for antenatal care, 0.07 in 2000 and 0.05 in 2011 for skilled birth attendance, and 0.07 in 2006 and 0.05 in 2011 for health-facility-based delivery. More women utilized reproductive health services in 2011 than in 2000. Inequality by wealth status in utilization of antenatal care, skilled birth attendance, and health-facility-based delivery had been reduced.

  14. Development of A 2,000-10,000-Lb Improved Container Delivery System

    DTIC Science & Technology

    2010-04-01

    System. The fourth airdrop system within the program is the Skirt Reefed G-12. The Skirt Reefed G-12 is intended to be a HV airdrop system...UNCLASSIFIED 5 D. Skirt Reefed G-12 System The Skirt Reefed G-12 System utilizes the G-12 parachute packed in accordance with Humanitarian Airdrop...Procedures2 with a slight variation in the reefing line material used. After several tests and many failures, the 9/16- inch tubular nylon and 2 turns of

  15. Evaluation of Embedded System Component Utilized in Delivery Integrated Design Project Course

    NASA Astrophysics Data System (ADS)

    Junid, Syed Abdul Mutalib Al; Hussaini, Yusnira; Nazmie Osman, Fairul; Razak, Abdul Hadi Abdul; Idros, Mohd Faizul Md; Karimi Halim, Abdul

    2018-03-01

    This paper reports the evaluation of the embedded system component utilized in delivering the integrated electronic engineering design project course. The evaluation is conducted based on the report project submitted as to fulfil the assessment criteria for the integrated electronic engineering design project course named; engineering system design. Six projects were assessed in this evaluation. The evaluation covers the type of controller, programming language and the number of embedded component utilization as well. From the evaluation, the C-programming based language is the best solution preferred by the students which provide them flexibility in the programming. Moreover, the Analog to Digital converter is intensively used in the projects which include sensors in their proposed design. As a conclusion, in delivering the integrated design project course, the knowledge over the embedded system solution is very important since the high density of the knowledge acquired in accomplishing the project assigned.

  16. A light-weight compact proton gantry design with a novel dose delivery system for broad-energetic laser-accelerated beams

    NASA Astrophysics Data System (ADS)

    Masood, U.; Cowan, T. E.; Enghardt, W.; Hofmann, K. M.; Karsch, L.; Kroll, F.; Schramm, U.; Wilkens, J. J.; Pawelke, J.

    2017-07-01

    Proton beams may provide superior dose-conformity in radiation therapy. However, the large sizes and costs limit the widespread use of proton therapy (PT). The recent progress in proton acceleration via high-power laser systems has made it a compelling alternative to conventional accelerators, as it could potentially reduce the overall size and cost of the PT facilities. However, the laser-accelerated beams exhibit different characteristics than conventionally accelerated beams, i.e. very intense proton bunches with large divergences and broad-energy spectra. For the application of laser-driven beams in PT, new solutions for beam transport, such as beam capture, integrated energy selection, beam shaping and delivery systems are required due to the specific beam parameters. The generation of these beams are limited by the low repetition rate of high-power lasers and this limitation would require alternative solutions for tumour irradiation which can efficiently utilize the available high proton fluence and broad-energy spectra per proton bunch to keep treatment times short. This demands new dose delivery system and irradiation field formation schemes. In this paper, we present a multi-functional light-weight and compact proton gantry design for laser-driven sources based on iron-less pulsed high-field magnets. This achromatic design includes improved beam capturing and energy selection systems, with a novel beam shaping and dose delivery system, so-called ELPIS. ELPIS system utilizes magnetic fields, instead of physical scatterers, for broadening the spot-size of broad-energetic beams while capable of simultaneously scanning them in lateral directions. To investigate the clinical feasibility of this gantry design, we conducted a treatment planning study with a 3D treatment planning system augmented for the pulsed beams with optimizable broad-energetic widths and selectable beam spot sizes. High quality treatment plans could be achieved with such unconventional beam parameters, deliverable via the presented gantry and ELPIS dose delivery system. The conventional PT gantries are huge and require large space for the gantry to rotate the beam around the patient, which could be reduced up to 4 times with the presented pulse powered gantry system. The further developments in the next generation petawatt laser systems and laser-targets are crucial to reach higher proton energies. However, if proton energies required for therapy applications are reached it could be possible in future to reduce the footprint of the PT facilities, without compromising on clinical standards.

  17. A light-weight compact proton gantry design with a novel dose delivery system for broad-energetic laser-accelerated beams.

    PubMed

    Masood, U; Cowan, T E; Enghardt, W; Hofmann, K M; Karsch, L; Kroll, F; Schramm, U; Wilkens, J J; Pawelke, J

    2017-07-07

    Proton beams may provide superior dose-conformity in radiation therapy. However, the large sizes and costs limit the widespread use of proton therapy (PT). The recent progress in proton acceleration via high-power laser systems has made it a compelling alternative to conventional accelerators, as it could potentially reduce the overall size and cost of the PT facilities. However, the laser-accelerated beams exhibit different characteristics than conventionally accelerated beams, i.e. very intense proton bunches with large divergences and broad-energy spectra. For the application of laser-driven beams in PT, new solutions for beam transport, such as beam capture, integrated energy selection, beam shaping and delivery systems are required due to the specific beam parameters. The generation of these beams are limited by the low repetition rate of high-power lasers and this limitation would require alternative solutions for tumour irradiation which can efficiently utilize the available high proton fluence and broad-energy spectra per proton bunch to keep treatment times short. This demands new dose delivery system and irradiation field formation schemes. In this paper, we present a multi-functional light-weight and compact proton gantry design for laser-driven sources based on iron-less pulsed high-field magnets. This achromatic design includes improved beam capturing and energy selection systems, with a novel beam shaping and dose delivery system, so-called ELPIS. ELPIS system utilizes magnetic fields, instead of physical scatterers, for broadening the spot-size of broad-energetic beams while capable of simultaneously scanning them in lateral directions. To investigate the clinical feasibility of this gantry design, we conducted a treatment planning study with a 3D treatment planning system augmented for the pulsed beams with optimizable broad-energetic widths and selectable beam spot sizes. High quality treatment plans could be achieved with such unconventional beam parameters, deliverable via the presented gantry and ELPIS dose delivery system. The conventional PT gantries are huge and require large space for the gantry to rotate the beam around the patient, which could be reduced up to 4 times with the presented pulse powered gantry system. The further developments in the next generation petawatt laser systems and laser-targets are crucial to reach higher proton energies. However, if proton energies required for therapy applications are reached it could be possible in future to reduce the footprint of the PT facilities, without compromising on clinical standards.

  18. Institutional Delivery Service Utilization among Women from Rural Districts of Wolaita and Dawro Zones, Southern Ethiopia; a Community Based Cross-Sectional Study

    PubMed Central

    Arba, Mihiretu Alemayehu; Darebo, Tadele Dana; Koyira, Mengistu Meskele

    2016-01-01

    Introduction The highest number of maternal deaths occur during labour, delivery and the first day after delivery highlighting the critical need for good quality care during this period. Therefore, for the strategies of institutional delivery to be effective, it is essential to understand the factors that influence individual and household factors to utilize skilled birth attendance and institutions for delivery. This study was aimed to assess factors affecting the utilization of institutional delivery service of women in rural districts of Wolaita and Dawro Zones. Methods A community based cross-sectional study was done among mothers who gave birth within the past one year preceding the survey in Wolaita and Dawro Zones, from February 01 –April 30, 2015 by using a three stage sampling technique. Initially, 6 districts were selected randomly from the total of 17 eligible districts. Then, 2 kebele from each district was selected randomly cumulating a total of 12 clusters. Finally, study participants were selected from each cluster by using systematic sampling technique. Accordingly, 957 mothers were included in the survey. Data was collected by using a pretested interviewer administered structured questionnaire. The questionnaire was prepared by including socio-demographic variables and variables of maternal health service utilization factors. Data was entered using Epi-data version 1.4.4.0 and exported to SPSS version 20 for analysis. Bivariate and multiple logistic regressions were applied to identify candidate and predictor variables respectively. Result Only 38% of study participants delivered the index child at health facility. Husband’s educational status, wealth index, average distance from nearest health facility, wanted pregnancy, agreement to follow post-natal care, problem faced during delivery, birth order, preference of health professional for ante-natal care and maternity care were predictors of institutional delivery. Conclusion The use of institutional delivery service is low in the study community. Eventhough antenatal care service is high; nearly two in every three mothers delivered their index child out of health facility. Improving socio-economic status of mothers as well as availing modern health facilities to the nearest locality will have a good impact to improve institutional delivery service utilization. Similarly, education is also a tool to improve awareness of mothers and their husbands for the improvement of health care service utilization. PMID:26986563

  19. Institutional Delivery Service Utilization among Women from Rural Districts of Wolaita and Dawro Zones, Southern Ethiopia; a Community Based Cross-Sectional Study.

    PubMed

    Arba, Mihiretu Alemayehu; Darebo, Tadele Dana; Koyira, Mengistu Meskele

    2016-01-01

    The highest number of maternal deaths occur during labour, delivery and the first day after delivery highlighting the critical need for good quality care during this period. Therefore, for the strategies of institutional delivery to be effective, it is essential to understand the factors that influence individual and household factors to utilize skilled birth attendance and institutions for delivery. This study was aimed to assess factors affecting the utilization of institutional delivery service of women in rural districts of Wolaita and Dawro Zones. A community based cross-sectional study was done among mothers who gave birth within the past one year preceding the survey in Wolaita and Dawro Zones, from February 01 -April 30, 2015 by using a three stage sampling technique. Initially, 6 districts were selected randomly from the total of 17 eligible districts. Then, 2 kebele from each district was selected randomly cumulating a total of 12 clusters. Finally, study participants were selected from each cluster by using systematic sampling technique. Accordingly, 957 mothers were included in the survey. Data was collected by using a pretested interviewer administered structured questionnaire. The questionnaire was prepared by including socio-demographic variables and variables of maternal health service utilization factors. Data was entered using Epi-data version 1.4.4.0 and exported to SPSS version 20 for analysis. Bivariate and multiple logistic regressions were applied to identify candidate and predictor variables respectively. Only 38% of study participants delivered the index child at health facility. Husband's educational status, wealth index, average distance from nearest health facility, wanted pregnancy, agreement to follow post-natal care, problem faced during delivery, birth order, preference of health professional for ante-natal care and maternity care were predictors of institutional delivery. The use of institutional delivery service is low in the study community. Eventhough antenatal care service is high; nearly two in every three mothers delivered their index child out of health facility. Improving socio-economic status of mothers as well as availing modern health facilities to the nearest locality will have a good impact to improve institutional delivery service utilization. Similarly, education is also a tool to improve awareness of mothers and their husbands for the improvement of health care service utilization.

  20. Determinants of maternal health service utilization in Ethiopia: analysis of the 2011 Ethiopian Demographic and Health Survey.

    PubMed

    Tarekegn, Shegaw Mulu; Lieberman, Leslie Sue; Giedraitis, Vincentas

    2014-05-07

    Antenatal Care (ANC), use of skilled delivery attendants and postnatal care (PNC) services are key maternal health services that can significantly reduce maternal mortality. Understanding the factors that affect service utilization helps to design appropriate strategies and policies towards improvement of service utilization and thereby reduce maternal mortality. The objective of this study was to identify factors that affect utilization of maternal health services in Ethiopia. Data were drawn from the 2011 Ethiopia Demographic and Health Survey. The dependent variables were use of ANC, skilled delivery attendants and PNC services. The independent variables were categorized as socio-cultural, perceived needs and accessibility related factors. Data analysis was done using SPSS for windows version 20.0. Bivariate and multivariate logistic regression models were used in the analysis. Thirty four percent of women had ANC visits, 11.7% used skilled delivery attendants and 9.7% of women had a postnatal health checkup. Education of women, place of residence, ethnicity, parity, women's autonomy and household wealth had a significant association with the use of maternal health services. Women who completed higher education were more likely to use ANC (AOR = 3.8, 95% CI = 1.8-7.8), skilled delivery attendants (AOR = 3.4, 95% CI = 1.9-6.2) and PNC (AOR = 3.2, 95% CI = 2.0-5.2). Women from urban areas use ANC (AOR = 2.3, 95% CI = 1.9-2.9), skilled delivery attendants (AOR = 4.9, 95% CI = 3.8-6.3) and PNC services (AOR = 2.6, 95% CI = 2.0-3.4) more than women from rural areas. Women who have had ANC visits during the index pregnancy were more likely to subsequently use skilled delivery attendants (AOR = 1.3, 95% CI = 1.1-1.7) and PNC (AOR = 3.4, 95% CI = 2.8-4.1). Utilization of ANC, delivery and PNC services is more among more autonomous women than those whose spending is controlled by other people. Maternal health service utilization in Ethiopia is very low. Socio-demographic and accessibility related factors are major determinants of service utilization. There is a high inequality in service utilization among women with differences in education, household wealth, autonomy and residence. ANC is an important entry point for subsequent use of delivery and PNC services. Strategies that aim improving maternal health service utilization should target improvement of education, economic status and empowerment of women.

  1. Determinants of maternal health service utilization in Ethiopia: analysis of the 2011 Ethiopian Demographic and Health Survey

    PubMed Central

    2014-01-01

    Background Antenatal Care (ANC), use of skilled delivery attendants and postnatal care (PNC) services are key maternal health services that can significantly reduce maternal mortality. Understanding the factors that affect service utilization helps to design appropriate strategies and policies towards improvement of service utilization and thereby reduce maternal mortality. The objective of this study was to identify factors that affect utilization of maternal health services in Ethiopia. Methods Data were drawn from the 2011 Ethiopia Demographic and Health Survey. The dependent variables were use of ANC, skilled delivery attendants and PNC services. The independent variables were categorized as socio-cultural, perceived needs and accessibility related factors. Data analysis was done using SPSS for windows version 20.0. Bivariate and multivariate logistic regression models were used in the analysis. Results Thirty four percent of women had ANC visits, 11.7% used skilled delivery attendants and 9.7% of women had a postnatal health checkup. Education of women, place of residence, ethnicity, parity, women’s autonomy and household wealth had a significant association with the use of maternal health services. Women who completed higher education were more likely to use ANC (AOR = 3.8, 95% CI = 1.8-7.8), skilled delivery attendants (AOR = 3.4, 95% CI = 1.9-6.2) and PNC (AOR = 3.2, 95% CI = 2.0-5.2). Women from urban areas use ANC (AOR = 2.3, 95% CI = 1.9-2.9), skilled delivery attendants (AOR = 4.9, 95% CI = 3.8-6.3) and PNC services (AOR = 2.6, 95% CI = 2.0-3.4) more than women from rural areas. Women who have had ANC visits during the index pregnancy were more likely to subsequently use skilled delivery attendants (AOR = 1.3, 95% CI = 1.1-1.7) and PNC (AOR = 3.4, 95% CI = 2.8-4.1). Utilization of ANC, delivery and PNC services is more among more autonomous women than those whose spending is controlled by other people. Conclusion Maternal health service utilization in Ethiopia is very low. Socio-demographic and accessibility related factors are major determinants of service utilization. There is a high inequality in service utilization among women with differences in education, household wealth, autonomy and residence. ANC is an important entry point for subsequent use of delivery and PNC services. Strategies that aim improving maternal health service utilization should target improvement of education, economic status and empowerment of women. PMID:24886529

  2. Multifunctional (3-in-1) cancer theranostics applications of hydroxyquinoline-appended polyfluorene nanoparticles† †Electronic supplementary information (ESI) available: Synthesis, characterization, stability, optical properties, imaging, drug delivery, etc. See DOI: 10.1039/c7sc03321d

    PubMed Central

    Chowdhury, Sayan Roy; Mukherjee, Sudip; Das, Sourav

    2017-01-01

    The accumulation of fluorescent hydroxyquinoline-affixed polyfluorene (PF-HQ) nanoparticles and their utility for multi-color bio-imaging and drug delivery for cancer treatment are reported. The formation of nanoparticles (PF-HQ) containing hydrophobic pockets via three-dimensional growth of a polymeric backbone in a higher water fraction (THF : H2O = 1 : 9) was observed. The nanoparticles showed incredible dual-state optical and fluorescence properties, which were further explored in multi-color cell imaging in both cancer and normal cells. The cell viability assay in various normal cells confirmed the biocompatible nature of PF-HQ, which was further supported by an ex vivo (chick chorioallantoic membrane assay) model. This encouraged us to fabricate PF-HQ-based new drug delivery systems (DDS: PF-HQ–DOX) upon conjugation with the FDA-approved anti-cancer drug doxorubicin (DOX) by filling the hydrophobic pockets of the polymer nanoparticles. The enhanced anti-cancer activity of the DDS (PF-HQ–DOX) compared with that of free DOX was observed in mouse melanoma cancer cells (B16F10) and a subcutaneous mouse (C57BL6/J) melanoma tumor model upon administration of PF-HQ–DOX. Ex vivo biodistribution studies using a fluorescence quantification method demonstrated the enhanced accumulation of DOX in tumor tissues in the PF-HQ–DOX-treated group compared to that of the free drug, signifying the drug delivery efficacy of the delivery system by a passive targeting manner. Based on the above biological data (in vitro and in the pre-clinical model), these robust and versatile fluorescent hydroxyquinoline-affixed polyfluorene (PF-HQ) nanoparticles could be effectively utilized for multifunctional biomedical applications (as they are biocompatible and can be used for bio-imaging and as a drug delivery vehicle). PMID:29568419

  3. Utilizing Health Information Technology to Support Universal Healthcare Delivery: Experience of a National Healthcare System.

    PubMed

    Syed-Abdul, Shabbir; Hsu, Min-Huei; Iqbal, Usman; Scholl, Jeremiah; Huang, Chih-Wei; Nguyen, Phung Anh; Lee, Peisan; García-Romero, Maria Teresa; Li, Yu-Chuan Jack; Jian, Wen-Shan

    2015-09-01

    Recent discussions have focused on using health information technology (HIT) to support goals related to universal healthcare delivery. These discussions have generally not reflected on the experience of countries with a large amount of experience using HIT to support universal healthcare on a national level. HIT was compared globally by using data from the Ministry of the Interior, Republic of China (Taiwan). Taiwan has been providing universal healthcare since 1995 and began to strategically implement HIT on a national level at that time. Today the national-level HIT system is more extensive in Taiwan than in many other countries and is used to aid administration, clinical care, and public health. The experience of Taiwan thus can provide an illustration of how HIT can be used to support universal healthcare delivery. In this article we present an overview of some key historical developments and successes in the adoption of HIT in Taiwan over a 17-year period, as well as some more recent developments. We use this experience to offer some strategic perspectives on how it can aid in the adoption of large-scale HIT systems and on how HIT can be used to support universal healthcare delivery.

  4. Coordination responsive tellurium-containing multilayer film for controlled delivery.

    PubMed

    Cao, Wei; Wang, Lu; Xu, Huaping

    2015-03-28

    A coordination-responsive tellurium containing film was fabricated for controlled release. The coordination chemistry between telluride molecules and cisplatin was utilized for the loading of cisplatin, while competitive ligands were used for triggered release. This work could enrich the coordination responsive system and further tune the release kinetics of cisplatin.

  5. Online Tools to Support the Delivery of Evidence-Based Practices for Students with ASD

    ERIC Educational Resources Information Center

    Sam, Ann M.; Kucharczyk, Suzanne; Waters, Victoria

    2018-01-01

    Educators continually encounter new challenges that require different tools or ways to utilize current tools in novel ways. Common challenges when working with students with autism spectrum disorder (ASD) may include addressing interfering behavior, developing communication systems, increasing social opportunities for students, and addressing…

  6. Formulation of consumables management models. Consumables flight planning worksheet utilization

    NASA Technical Reports Server (NTRS)

    Newman, C. M.

    1977-01-01

    The updated and reformatted consumables flight planning worksheet is documented. An instruction set for applying the worksheet, and a sample application of the worksheet is disclosed. The particular application is for the STS interfacing with sortie payloads and typifies the interfacing of the delivery system and payloads.

  7. Automatic, sterile, and apyrogenic delivery of PET radiotracers from the cyclotron to the patient

    NASA Astrophysics Data System (ADS)

    Votaw, J. R.; Cashion, D. B.; Clanton, J. A.

    1991-05-01

    An automatic delivery remote injection system has been developed to administer either 13N-labelled ammonia, or 15O-labelled water or 18F-labelled FDG to patients. Automation increases the throughout and efficiency of the PET center, and remote dose administration ensures patient safety and reduces the radiation exposure to the technologist supervising the radiopharmaceutical injection. The remote dose administration apparatus utilizes a syringe pump to transfer liquid activity and a solenoid three-way valve to switch between lines connected to a patient and a receiving vial. To ensure apyrogenicity and sterility of the injected product, the entire system is washed with sterile water before it is used. Since the tracer is delivered in an ~ 8 ml bolus of water, the next delivery through the system is considered safe for injection if pyrogens are not detected at a threshold of 3 endotoxin units per ml (EU/ml) in the wash. Time delayed tests shows that the system may be left unused for up to 6 h before the wash must be repeated.

  8. Lactoferrin delivery systems: approaches for its more effective use.

    PubMed

    Onishi, Hiraku

    2011-11-01

    Recently, pharmacotherapy has advanced extensively, but there are still many refractory diseases which cannot be solved fully by existing therapeutic agents. Therefore, alternative medicine and health foods are now attracting much attention, for example, lactoferrin (LF): a multifunctional glycoprotein. As LF is non-toxic and low-cost, its application in healthcare and therapeutics is expected to be widespread. In this review, LF's general basic features are described. The interaction of LF with its receptors activates the immune system, including cytokine production and balance. In particular, the immune activation of orally administered LF is considered as a new strategy for the treatment of refractory diseases, such as inflammatory bowel disease, virus infection and tumor metastasis. Also mentioned are the problems associated with the use of LF. As LF is degraded rapidly in the body due to enzymatic hydrolysis, high amounts or frequent dosing is required; an appropriate delivery system may improve these problems and increase its efficiency. Chemical modifications, such as PEGylation, can enhance the stability of LF in the body, resulting in increased efficacy. Also, liposomes and enteric or microparticulate formulations can promote the function of LF in oral administration due to target site delivery and protection of LF from enzymatic hydrolysis. These delivery systems are expected to improve the utility of LF.

  9. Nanodiamond-DGEA peptide conjugates for enhanced delivery of doxorubicin to prostate cancer

    PubMed Central

    Hwang, Patrick; McIntosh, Roberus; Green, Hadiyah N; Jun, Ho-Wook; Dean, Derrick

    2014-01-01

    Summary The field of nanomedicine has emerged as an approach to enhance the specificity and efficacy of cancer treatments as stand-alone therapies and in combination with standard chemotherapeutic treatment regimens. The current standard of care for metastatic cancer, doxorubicin (DOX), is presented with challenges, namely toxicity due to a lack of specificity and targeted delivery. Nano-enabled targeted drug delivery systems can provide an avenue to overcome these issues. Nanodiamonds (ND), in particular, have been researched over the past five years for use in various drug delivery systems but minimal work has been done that incorporates targeting capability. In this study, a novel targeted drug delivery system for bone metastatic prostate cancer was developed, characterized, and evaluated in vitro. NDs were conjugated with the Asp–Gly–Glu–Ala (DGEA) peptide to target α2β1 integrins over-expressed in prostate cancers during metastasis. To facilitate drug delivery, DOX was adsorbed to the surface of the ND-DGEA conjugates. Successful preparation of the ND-DGEA conjugates and the ND-DGEA+DOX system was confirmed with transmission electron microscopy, hydrodynamic size, and zeta potential measurements. Since traditional DOX treatment regimens lack specificity and increased toxicity to normal tissues, the ND-DGEA conjugates were designed to distinguish between cells that overexpress α2β1 integrin, bone metastatic prostate cancers cells (PC3), and cells that do not, human mesenchymal stem cells (hMSC). Utilizing the ND-DGEA+DOX system, the efficacy of 1 µg/mL and 2 µg/mL DOX doses increased from 2.5% to 12% cell death and 11% to 34% cell death, respectively. These studies confirmed that the delivery and efficacy of DOX were enhanced by ND-DGEA conjugates. Thus, the targeted ND-DGEA+DOX system provides a novel approach for decreasing toxicity and drug doses. PMID:25161829

  10. Preparation of Monodisperse Biodegradable Polymer Microparticles Using a Microfluidic Flow-focusing Device for Controlled Drug Delivery

    PubMed Central

    Xu, Qiaobing; Hashimoto, Michinao; Dang, Tram T.; Hoare, Todd; Kohane, Daniel S.; Whitesides, George M.; Langer, Robert; Anderson, Daniel G.

    2009-01-01

    Degradable microparticles have broad utility as vehicles for drug delivery and form the basis of several FDA-approved therapies. Conventional emulsion-based methods of manufacturing produce particles with a wide range of diameters (and thus kinetics of release) in each batch. This paper describes the fabrication of monodisperse, drug-loaded microparticles from biodegradable polymers using the microfluidic flow-focusing (FF) devices and the drug delivery properties of those particles. Particles were engineered with defined sizes, ranging from 10 μm to 50 μm. These particles were nearly monodisperse (polydispersity index = 3.9 %). We incorporated a model amphiphilic drug (bupivacaine) within the biodegradable matrix of the particles. Kinetic analysis showed that the release of drug from these monodisperse particles was slower than that from conventional methods of the same average size but a broader distribution of sizes and, most importantly, exhibited a significantly lower initial burst than that observed with conventional particles. The difference in the initial kinetics of drug release was attributed to the uniform distribution of drug inside the particles generated using the microfluidic methods. These results demonstrated the utility of microfluidic FF for the generation of homogenous systems of particles for the delivery of drugs. PMID:19296563

  11. Implementation of an electronic health record-based care management system to improve tobacco treatment.

    PubMed

    Kruse, Gina R; Kelley, Jennifer H K; Linder, Jeffrey A; Park, Elyse R; Rigotti, Nancy A

    2012-12-01

    Tobacco treatment is underused in primary care. We designed a Tobacco Care Management system to increase the delivery of treatment and reduce the burden on primary care providers (PCPs). A one-click functionality added to the electronic health record (EHR) allowed PCPs to refer smokers to a centralized tobacco treatment coordinator (TTC) who called smokers, provided brief counseling, connected them to ongoing treatment and gave feedback to PCPs. To study the system's feasibility and acceptability among PCPs, and its utilization by smokers. Using a mixed methods design, we documented system utilization quantitatively from February 1, 2010 to July 31, 2011, and conducted two focus groups with PCPs in June 2011. Thirty-six PCPs and 2,894 smokers from two community health centers in Massachusetts. Quantitative: One-click referral utilization by PCPs, proportion of smokers referred and connected to treatment. Qualitative: PCPs' reasons for use, barriers to use, and experiences with feedback. Twenty-nine PCPs (81 %) used the functionality more than once, generating 466 referrals for 15 % of known smokers seen during the study. The TTC reached 260 (56 %) of the referrals and connected 135 (29 %) to additional treatment. The director of one center sent PCPs monthly feedback about their utilization compared to peers. These PCPs referred a greater proportion of their known smokers (18 % vs. 9 %, p<0.0001) and reported that monthly feedback motivated referrals. PCPs attending focus groups (n=24) appreciated the system's simplicity, access to updated resources, and time-efficient way to address smoking, and wanted more feedback about cessation outcomes. They collectively supported the system's continuation. A novel EHR-based Tobacco Care Management system was adopted by PCPs, especially those receiving performance feedback, and connected one-third of referred smokers to treatment. The model has the potential to improve the delivery and outcomes of evidence-based tobacco treatment in primary care.

  12. Recent progress on fabrication and drug delivery applications of nanostructured hydroxyapatite.

    PubMed

    Mondal, Sudip; Dorozhkin, Sergy V; Pal, Umapada

    2018-07-01

    Through this brief review, we provide a comprehensive historical background of the development of nanostructured hydroxyapatite (nHAp), and its application potentials for controlled drug delivery, drug conjugation, and other biomedical treatments. Aspects associated with efficient utilization of hydroxyapatite (HAp) nanostructures such as their synthesis, interaction with drug molecules, and other concerns, which need to be resolved before they could be used as a potential drug carrier in body system, are discussed. This review focuses on the evolution of perceptions, practices, and accomplishments in providing improved delivery systems for drugs until date. The pioneering developments that have presaged today's fascinating state of the art drug delivery systems based on HAp and HAp-based composite nanostructures are also discussed. Special emphasis has been given to describe the application and effectiveness of modified HAp as drug carrier agent for different diseases such as bone-related disorders, carriers for antibiotics, anti-inflammatory, carcinogenic drugs, medical imaging, and protein delivery agents. As only a very few published works made comprehensive evaluation of HAp nanostructures for drug delivery applications, we try to cover the three major areas: concepts, practices and achievements, and applications, which have been consolidated and patented for their practical usage. The review covers a broad spectrum of nHAp and HAp modified inorganic drug carriers, emphasizing some of their specific aspects those needed to be considered for future drug delivery applications. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease Nanotechnology Approaches to Biology > Cells at the Nanoscale. © 2017 Wiley Periodicals, Inc.

  13. Miniature DMFCs with passive thermal-fluids management system

    NASA Astrophysics Data System (ADS)

    Guo, Zhen; Faghri, Amir

    A new miniature DMFC system that includes a fuel cell stack, a fuel tank and a passive ancillary system (termed "thermal-fluids management system" in this paper) is presented. The thermal-fluids management system utilizes passive approaches for fuel storage and delivery, air breathing, water management, CO 2 release and thermal management. With 5.1 g of neat methanol in the fuel cartridge, a prototype has successfully demonstrated 18 h of continuous operation with total power output of 1.56 Wh.

  14. Healthcare reform: the role of coordinated critical care.

    PubMed

    Cerra, F B

    1993-03-01

    To evaluate and editorialize the evolving role of the discipline of critical care as a healthcare delivery system in the process of healthcare reform. The sources included material from the Federal Office of Management and Budget, Health Care Financing Review, President Bush's Office, Association of American Medical Colleges, and publications of the Society of Critical Care Medicine. Data were selected that the author felt was relevant to the healthcare reform process and its implications for the discipline of critical care. The data were extracted by the author to illustrate the forces behind healthcare reform, the implications for the practice of critical care, and role of critical care as a coordinated (managed) care system in the process of healthcare reform. Healthcare reform has been initiated because of a number of considerations that arise in evaluating the current healthcare delivery system: access, financing, cost, dissatisfactions with the mechanisms of delivery, and political issues. The reform process will occur with or without the involvement of critical care practitioners. Reforms may greatly alter the delivery of critical care services, education, training, and research in critical care. Critical care has evolved into a healthcare delivery system that provides services to patients who need and request them and provides these services in a coordinated (managed) care model. Critical care practitioners must become involved in the healthcare reform process, and critical care services that are effective must be preserved, as must the education, training, and research programs. Critical care as a healthcare delivery system utilizing a coordinated (managed) care model has the potential to provide services to all patients who need them and to deliver them in a manner that is cost effective and recognized as providing added value.

  15. Artificial Muscle (AM) Cilia Array for Underwater Systems

    DTIC Science & Technology

    2016-12-15

    structures, including cilia-like structures. Specifically, a custom 3D printer was created that utilizes custom-made Nafion filament for 30 printing of custom... printing ) of IPMC material to create custom-shaped AM structures, including cilia-like structures. Various custom-shaped AM structures were fabricated via...integrating square cross-section IPMC actuators with a printed circuit board power delivery system. IV. Concise Accomplishments Performance

  16. Conceptual and Preliminary Design of a Low-Cost Precision Aerial Delivery System

    DTIC Science & Technology

    2016-06-01

    test results. It includes an analysis of the failure modes encountered during flight experimentation , methodology used for conducting coordinate...and experimentation . Additionally, the current and desired end state of the research is addressed. Finally, this chapter outlines the methodology ...preliminary design phases are utilized to investigate and develop a potentially low-cost alternative to existing systems. Using an Agile methodology

  17. Facilitating process changes in meal delivery and radiological testing to improve inpatient insulin timing using six sigma method.

    PubMed

    Yamamoto, J Jay; Malatestinic, Bill; Lehman, Angela; Juneja, Rattan

    2010-01-01

    The objective of this project was to improve the timing of inpatient insulin administration related to meal delivery and the scheduling of radiology tests by Lean Six Sigma method. A multidisciplinary hospital team and a Six Sigma team from a pharmaceutical manufacturer collaborated to evaluate food delivery and radiology scheduling processes related to the timing of insulin administration. Key factors leading to problems within each system were addressed to improve the efficiency of each process while improving the timeliness of glucose testing and insulin administration. Standardizing the food delivery schedule and utilizing scorecards to track on-time meal deliveries to the floor enabled nursing to more accurately administer insulin in coordination with the delivery of meals. Increasing communication and restricting the scheduling of inpatient procedures during mealtimes reduced disruptions to insulin administration. Data at 6 months postimplementation demonstrated that the institution met goals for most primary outcome metrics including increasing on-time meal delivery and the proportion of patients taking insulin scheduled for radiology tests during appropriate times. By implementing the recommendations identified via Lean Six Sigma, this collaborative effort improved the timing of inpatient insulin administration related to meal delivery and radiology testing.

  18. Synthesis of [closo-B12(OH)11NH3]-: a new heterobifunctional dodecaborane scaffold for drug delivery applications.

    PubMed

    Bondarev, Oleg; Khan, Aslam A; Tu, Xiaoyan; Sevryugina, Yulia V; Jalisatgi, Satish S; Hawthorne, M Frederick

    2013-09-04

    Effective utilization of [closo-B12H12](2-) derivatives in targeted drug delivery applications depends upon an efficient strategy to differentiate at least one of the 12 vertices on the B12(2-) core. Precursor molecules must also be able to withstand the initial harsh hydrogen peroxide treatment necessary for hydroxylation of the B-H vertices. We report here a method for preparation of the ammonio derivative [closo-B12(OH)11NH3](-) and also demonstrate its utility in construction of a targeted drug delivery scaffold. Treatment of the precursor [closo-B12H11NH3](-) with hydrogen peroxide gives the corresponding nitro derivative [closo-B12(OH)11NO2](2-) in good yield. The nitro group is easily reduced with hydrogen over a Raney nickel catalyst to produce [closo-B12(OH)11NH3](-). The 11 hydroxyl groups can then be readily converted to carbonates or carbamates. As a proof-of-principle of its utility as a drug delivery system, we used the resulting vertex-differentiated ammonio derivative to construct a platinated pro-drug possessing 11 copies of a carboplatin analogue conjugated to the B12(2-) core via carbamate linkage and a fluorescein molecule attached at the remaining vertex by an amide linkage. In vitro cytotoxicity assays demonstrated that activity of an untagged analog was similar to carboplatin against platinum-sensitive A459 cells and higher than carboplatin against platinum-resistant SK-OV-3 cells. Further fluorescence microscopy revealed that the fluorescein-tagged pro-drug localizes to the nuclei of A459 cells.

  19. Kinetic Limitations of Cooperativity-Based Drug Delivery Systems

    NASA Astrophysics Data System (ADS)

    Licata, Nicholas A.; Tkachenko, Alexei V.

    2008-04-01

    We study theoretically a novel drug delivery system that utilizes the overexpression of certain proteins in cancerous cells for cell-specific chemotherapy. The system consists of dendrimers conjugated with “keys” (ex: folic acid) which “key-lock” bind to particular cell-membrane proteins (ex: folate receptor). The increased concentration of “locks” on the surface leads to a longer residence time for the dendrimer and greater incorporation into the cell. Cooperative binding of the nanocomplexes leads to an enhancement of cell specificity. However, both our theory and detailed analysis of in vitro experiments indicate that the degree of cooperativity is kinetically limited. We demonstrate that cooperativity and hence the specificity to particular cell type can be increased by making the strength of individual bonds weaker, and suggest a particular implementation of this idea.

  20. Utilization of Antenatal HealthCare Services among Fishermen Population in Kanchipuram District, Tamil Nadu: A Cross-sectional Study.

    PubMed

    Danasekaran, Raja; Raja, Pavithra; Ranganathan, Karnaboopathy

    2017-01-01

    Considering the global and national level commitments in improving the maternal health as well as reducing the maternal mortality, assessment of factors influencing the delivery of antenatal healthcare services becomes essential. The aim is to assess the utilization of antenatal health services and to identify the factors influencing their utilization among women of fishermen population in Kanchipuram district, Tamil Nadu. The cross-sectional study was carried out among the mothers in Kovalam area of Kanchipuram district. Details were collected using a pretested questionnaire and analyzed using statistical software. The study included 284 mothers, of which 35% were illiterates. Nearly 60.21% have got registered with the Government sector, 59.51% of the mothers had three or more antenatal visits, 64.08% have received two doses of tetanus toxoid, and 73.24% have taken iron and folic acid tablets. Factors which were identified to have statistically significant association with better utilization of antenatal health services were age >30 years, higher educational status, skilled workers, those having their first child, and higher socioeconomic class. This study has reported the fact that antenatal healthcare services were not utilized fully by the community and the fishermen population being a special group has to be given the needed attention from the healthcare delivery system.

  1. Nanotechnology-based drug delivery systems for control of microbial biofilms: a review.

    PubMed

    Dos Santos Ramos, Matheus Aparecido; Da Silva, Patrícia Bento; Spósito, Larissa; De Toledo, Luciani Gaspar; Bonifácio, Bruna Vidal; Rodero, Camila Fernanda; Dos Santos, Karen Cristina; Chorilli, Marlus; Bauab, Taís Maria

    2018-01-01

    Since the dawn of civilization, it has been understood that pathogenic microorganisms cause infectious conditions in humans, which at times, may prove fatal. Among the different virulent properties of microorganisms is their ability to form biofilms, which has been directly related to the development of chronic infections with increased disease severity. A problem in the elimination of such complex structures (biofilms) is resistance to the drugs that are currently used in clinical practice, and therefore, it becomes imperative to search for new compounds that have anti-biofilm activity. In this context, nanotechnology provides secure platforms for targeted delivery of drugs to treat numerous microbial infections that are caused by biofilms. Among the many applications of such nanotechnology-based drug delivery systems is their ability to enhance the bioactive potential of therapeutic agents. The present study reports the use of important nanoparticles, such as liposomes, microemulsions, cyclodextrins, solid lipid nanoparticles, polymeric nanoparticles, and metallic nanoparticles, in controlling microbial biofilms by targeted drug delivery. Such utilization of these nanosystems has led to a better understanding of their applications and their role in combating biofilms.

  2. Nanotechnology-based drug delivery systems for control of microbial biofilms: a review

    PubMed Central

    Dos Santos Ramos, Matheus Aparecido; Da Silva, Patrícia Bento; Spósito, Larissa; De Toledo, Luciani Gaspar; Bonifácio, Bruna Vidal; Rodero, Camila Fernanda; Dos Santos, Karen Cristina; Chorilli, Marlus; Bauab, Taís Maria

    2018-01-01

    Since the dawn of civilization, it has been understood that pathogenic microorganisms cause infectious conditions in humans, which at times, may prove fatal. Among the different virulent properties of microorganisms is their ability to form biofilms, which has been directly related to the development of chronic infections with increased disease severity. A problem in the elimination of such complex structures (biofilms) is resistance to the drugs that are currently used in clinical practice, and therefore, it becomes imperative to search for new compounds that have anti-biofilm activity. In this context, nanotechnology provides secure platforms for targeted delivery of drugs to treat numerous microbial infections that are caused by biofilms. Among the many applications of such nanotechnology-based drug delivery systems is their ability to enhance the bioactive potential of therapeutic agents. The present study reports the use of important nanoparticles, such as liposomes, microemulsions, cyclodextrins, solid lipid nanoparticles, polymeric nanoparticles, and metallic nanoparticles, in controlling microbial biofilms by targeted drug delivery. Such utilization of these nanosystems has led to a better understanding of their applications and their role in combating biofilms. PMID:29520143

  3. Use of pharmacy delivery robots in intensive care units.

    PubMed

    Summerfield, Marc R; Seagull, F Jacob; Vaidya, Neelesh; Xiao, Yan

    2011-01-01

    The use of pharmacy delivery robots in an institution's intensive care units was evaluated. In 2003, the University of Maryland Medical Center (UMMC) began a pilot program to determine the logistic capability and functional utility of robotic technology in the delivery of medications from satellite pharmacies to patient care units. Three satellite pharmacies currently used the robotic system. Five data sources (electronic robot activation records, logs, interviews, surveys, and observations) were used to assess five key aspects of robotic delivery: robot use, reliability, timeliness, cost minimization, and acceptance. A 19-item survey using a 7-point Likert-type scale was developed to determine if pharmacy delivery robots changed nurses' perception of pharmacy service. The components measured included general satisfaction, reliability, timeliness, stat orders, services, interaction with pharmacy, and status tracking. A total of 23 pre-implementation, 96 post-implementation, and 30 two-year follow-up surveys were completed. After implementation of the robotic delivery system, time from fax to label, order preparation time, and idle time for medications to be delivered decreased, while nurses' general satisfaction with the pharmacy and opinion of the reliability of pharmacy delivery significantly increased. Robotic delivery did not influence the perceived quality of delivery service or the timeliness of orders or stat orders. Robot reliability was a major issue for the technician but not for pharmacists, who did not have as much interaction with the devices. By considering the needs of UMMC and its patients and matching them with available technology, the institution was able to improve the medication-use process and timeliness of medication departure from the pharmacy.

  4. SU-F-T-518: Development and Characterization of a Gated Treatment System Implemented with An In-House Optical Tracking System and the Elekta Response Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barraclough, B; Park, J; Li, F

    2016-06-15

    Purpose: To report the development and characterization of the first in-house gating system implemented with an optical tracking system (OTS) and the Elekta Response™ interface. Methods: The Response™ connects a patient tracking system with a linac, enabling the tracking system to control radiation delivery. The developed system uses an in-house OTS to monitor patient breathing. The OTS consists of two infrared-based cameras, tracking markers affixed on patient. It achieves gated or breath-held (BH) treatment by calling beam ON/OFF functions in the Response™ dynamic-link library (DLL). A 4D motion phantom was used to evaluate its dosimetric and time delay characteristics. Twomore » FF- and two FFF-IMRT beams were delivered in non-gated, BH and gated mode. The sinusoidal gating signal had a 6 sec period and 15 mm amplitude. The duty cycle included 10%, 20%, 30% and 50%. The BH signal was adapted from the sinusoidal wave by inserting 15 sec BHs. Each delivery was measured with a 2D diode array (MapCHECK™) and compared with the non-gated delivery using gamma analysis (3%). The beam ON/OFF time was captured using the service graphing utility of the linac. Results: The gated treatments were successfully delivered except the 10% duty cycle. The BH delivery had perfect agreement (100%) with non-gated delivery; the agreement of gated delivery decreased from 99% to 88% as duty cycle reduced from 50% to 20%. The beam on/off delay was on average 0.25/0.06 sec. The delivery time for the 50%, 30% and 20% duty cycle increased by 29%, 71% and 139%, respectively. No dosimetric or time delay difference was noticed between FF- and FFF-IMRT beams. Conclusion: The in-house gating system was successfully developed with dosimetric and time delay characteristics in line with published results for commercial systems. It will be an important platform for further research and clinical development of gated treatment.« less

  5. A non-invasive system for delivering neural growth factors across the blood-brain barrier: a review.

    PubMed

    Granholm, A C; Albeck, D; Bäckman, C; Curtis, M; Ebendal, T; Friden, P; Henry, M; Hoffer, B; Kordower, J; Rose, G M; Söderström, S; Bartus, R T

    1998-01-01

    Intraventricular administration of nerve growth factor (NGF) in rats has been shown to reduce age-related atrophy of central cholinergic neurons and the accompanying memory impairment, as well as protect these neurons against a variety of perturbations. Since neurotrophins do not pass the blood-brain barrier (BBB) in significant amounts, a non-invasive delivery system for this group of therapeutic molecules needs to be developed. We have utilized a carrier system, consisting of NGF covalently linked to an anti-transferrin receptor antibody (OX-26), to transport biologically active NGF across the BBB. The biological activity of this carrier system was tested using in vitro bioassays and intraocular transplants; we were able to demonstrate that cholinergic markers in both developing and aged intraocular septal grafts were enhanced by intravenous delivery of the OX-26-NGF conjugate. In subsequent experiments, aged (24 months old) Fischer 344 rats received intravenous injections of the OX-26-NGF conjugate for 6 weeks, resulting in a significant improvement in spatial learning in previously impaired rats, but disrupting the learning ability of previously unimpaired rats. Neuroanatomical analyses showed that OX-26-NGF conjugate treatment resulted in a significant increase in cholinergic cell size as well as an upregulation of both low and high affinity NGF receptors in the medial septal region of rats initially impaired in spatial learning. Finally, OX-26-NGF was able to protect striatal cholinergic neurons against excitotoxicity and basal forebrain cholinergic neurons from degeneration associated with chemically-induced loss of target neurons. These results indicate the potential utility of the transferrin receptor antibody delivery system for treatment of neurodegenerative disorders with neurotrophic substances.

  6. Nanotechnology for protein delivery: Overview and perspectives.

    PubMed

    Yu, Mikyung; Wu, Jun; Shi, Jinjun; Farokhzad, Omid C

    2016-10-28

    Protein-based therapeutics have made a significant impact in the treatment of a variety of important human diseases. However, given their intrinsically vulnerable structure and susceptibility to enzymatic degradation, many therapeutic proteins such as enzymes, growth factors, hormones, and cytokines suffer from poor physicochemical/biological stability and immunogenicity that may limit their potential benefits, and in some cases limit their utility. Furthermore, when protein therapeutics are developed for intracellular targets, their internalization and biological activity may be limited by inefficient membrane permeability and/or endosomal escape. Development of effective protein delivery strategies is therefore essential to further enhance therapeutic outcomes to enable widespread medical applications. This review discusses the advantages and limitations of marketed and developmental-stage protein delivery strategies, and provides a focused overview of recent advances in nanotechnology platforms for the systemic delivery of therapeutic proteins. In addition, we also highlight nanoparticle-mediated non-invasive administration approaches (e.g., oral, nasal, pulmonary, and transdermal routes) for protein delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Tumor regression following intravenous administration of lactoferrin- and lactoferricin-bearing dendriplexes.

    PubMed

    Lim, Li Ying; Koh, Pei Yin; Somani, Sukrut; Al Robaian, Majed; Karim, Reatul; Yean, Yi Lyn; Mitchell, Jennifer; Tate, Rothwelle J; Edrada-Ebel, RuAngelie; Blatchford, David R; Mullin, Margaret; Dufès, Christine

    2015-08-01

    The possibility of using gene therapy for the treatment of cancer is limited by the lack of safe, intravenously administered delivery systems able to selectively deliver therapeutic genes to tumors. In this study, we investigated if the conjugation of the polypropylenimine dendrimer to lactoferrin and lactoferricin, whose receptors are overexpressed on cancer cells, could result in a selective gene delivery to tumors and a subsequently enhanced therapeutic efficacy. The conjugation of lactoferrin and lactoferricin to the dendrimer significantly increased the gene expression in the tumor while decreasing the non-specific gene expression in the liver. Consequently, the intravenous administration of the targeted dendriplexes encoding TNFα led to the complete suppression of 60% of A431 tumors and up to 50% of B16-F10 tumors over one month. The treatment was well tolerated by the animals. These results suggest that these novel lactoferrin- and lactoferricin-bearing dendrimers are promising gene delivery systems for cancer therapy. Specific targeting of cancer cells should enhance the delivery of chemotherapeutic agents. This is especially true for gene delivery. In this article, the authors utilized a dendrimer-based system and conjugated this with lactoferrin and lactoferricin to deliver anti-tumor genes. The positive findings in animal studies should provide the basis for further clinical studies. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Clustered Integrin Ligands as a Novel Approach for the Targeting of Non-Viral Vectors

    NASA Astrophysics Data System (ADS)

    Ng, Quinn Kwan Tai

    Gene transfer or gene delivery is described as the process in which foreign DNA is introduced into cells. Over the years, gene delivery has gained the attention of many researchers and has been developed as powerful tools for use in biotechnology and medicine. With the completion of the Human Genome Project, such advances in technology allowed for the identification of diseases ranging from hereditary disorders to acquired ones (cancer) which were thought to be incurable. Gene therapy provides the means necessary to treat or eliminate genetic diseases from its origin, unlike traditional medicine which only treat symptoms. With ongoing clinical trials for gene therapy increasing, the greatest difficulty still lies in developing safe systems which can target cells of interest to provide efficient delivery. Nature, over millions of years of evolution, has provided an example of one of the most efficient delivery systems: viruses. Although the use of viruses for gene delivery has been well studied, the safety issues involving immunogenicity, insertional mutagenesis, high cost, and poor reproducibility has provided problems for their clinical application. From understanding viruses, we gain insight to designing new systems for non-viral gene delivery. One of these techniques utilized by adenoviruses is the clustering of ligands on its surface through the use of a protein called a penton base. Through the use of nanotechnology we can mimic this basic concept in non-viral gene delivery systems. This dissertation research is focused on developing and applying a novel system for displaying the integrin binding ligand (RGD) in a constrained manner to form a clustered integrin ligand binding platform to be used to enhance the targeting and efficiency of non-viral gene delivery vectors. Peptide mixed monolayer protected gold nanoparticles provides a suitable surface for ligand clustering. A relationship between the peptide ratios in the reaction solution used to form these ligand clusters compared to the reacted amounts on the surface of the particle was studied. This provided us the ability to control the size of the clusters formed and the spacing between the integrins for gold nanoparticles of various sizes. We then applied the clustered ligand binding system for targeting of DNA/PEI polyplexes and demonstrated that the use of RGD nanoclusters enhances gene transfer up to 35-fold which was dependent on the density of alphavbeta3 integrins on the cell surface. Cell integrin sensitivity was shown in which cells with higher alpha vbeta3 densities resulting in higher luciferase transgene expression. The targeting of RGD nanoclusters for DNA/PEI polyplexes was further shown in vivo using PET/CT technology which displayed improved targeting towards high level alphavbeta3 integrin expression (U87MG) tumors over medium level alphavbeta 3 integrin expression (HeLa). In addition to studying the clustered integrin binding system, the current non-viral vectors used suffer from stability and toxicity issues in vitro and in vivo. We have applied a new chemistry for synthesizing nanogels utilizing a Traut's reagent initiated Michael addition reaction for modification of diamine containing crosslikers which will allow for the development of stable and cell demanded release of oligonucleotides. We have shown bulk gels made were capable of encapsulating and holding DNA within the gel and were able to synthesize them into nanogels. The combined research shown here using clustered integrin ligands and a new type of nanogel synthesis provides an ideal system for gene delivery in the future.

  9. Nanoscale drug delivery systems and the blood–brain barrier

    PubMed Central

    Alyautdin, Renad; Khalin, Igor; Nafeeza, Mohd Ismail; Haron, Muhammad Huzaimi; Kuznetsov, Dmitry

    2014-01-01

    The protective properties of the blood–brain barrier (BBB) are conferred by the intricate architecture of its endothelium coupled with multiple specific transport systems expressed on the surface of endothelial cells (ECs) in the brain’s vasculature. When the stringent control of the BBB is disrupted, such as following EC damage, substances that are safe for peripheral tissues but toxic to neurons have easier access to the central nervous system (CNS). As a consequence, CNS disorders, including degenerative diseases, can occur independently of an individual’s age. Although the BBB is crucial in regulating the biochemical environment that is essential for maintaining neuronal integrity, it limits drug delivery to the CNS. This makes it difficult to deliver beneficial drugs across the BBB while preventing the passage of potential neurotoxins. Available options include transport of drugs across the ECs through traversing occludins and claudins in the tight junctions or by attaching drugs to one of the existing transport systems. Either way, access must specifically allow only the passage of a particular drug. In general, the BBB allows small molecules to enter the CNS; however, most drugs with the potential to treat neurological disorders other than infections have large structures. Several mechanisms, such as modifications of the built-in pumping-out system of drugs and utilization of nanocarriers and liposomes, are among the drug-delivery systems that have been tested; however, each has its limitations and constraints. This review comprehensively discusses the functional morphology of the BBB and the challenges that must be overcome by drug-delivery systems and elaborates on the potential targets, mechanisms, and formulations to improve drug delivery to the CNS. PMID:24550672

  10. Place of Delivery Associated With Postnatal Care Utilization Among Childbearing Women in Zambia.

    PubMed

    Chungu, Charles; Makasa, Mpundu; Chola, Mumbi; Jacobs, Choolwe Nkwemu

    2018-01-01

    Postnatal care (PNC) utilization is critical to the prevention of maternal morbidity and mortality. Despite its importance, the proportion of women utilizing this service is still low in Zambia. We investigated if place of delivery was associated with PNC utilization in the first 48 h among childbearing women in Zambia. Data from the 2013/14 Zambia Demographic and Health Survey for women, aged 15-49 years, who reported giving birth in the 2 years preceding the survey was used. The data comprised of sociodemographic and other obstetric data, which were cleaned, recoded, and analyzed using STATA version 13 (Stata Corporation, College Station, TX, USA). Multivariate logistic regression was used to examine the association of place of delivery and other background variables. Women who delivered in a health facility were more likely to utilize PNC in the first 48 h compared to those who did not deliver in a health facility: government hospital (AOR 7.24, 95% CI 4.92-11.84), government health center/clinic (AOR 7.15 95% CI 4.79-10.66), other public sector (AOR 23.2 95% CI 3.69-145.91), private hospital/clinic (AOR 10.08 95% CI 3.35-30.35), and Mission hospital/clinic (AOR 8.56 95% CI 4.71-15.53). Additionally, women who were attended to by a skilled personnel during delivery of the baby were more likely to utilize PNC (AOR 2.30, 95% CI 1.57-3.37). Women from rural areas were less likely to utilize PNC in the first 48 h (AOR 0.70, 95% CI 0.53-0.90). Place of delivery was found to be linked with PNC utilization in this population although access to health care is still driven by inequity-related dynamics and imbalances. Given that inequity stresses are heaviest in the rural and poor groups, interventions should aim to reach this group. The study results will help program managers to increase access to health facility delivery and direct interventional efforts toward the affected subpopulations, such as the young and rural women. Furthermore, results will help promote maternal health education on importance of health facility delivery and advise policy makers and program implementers.

  11. Data Requirements for Oceanic Processes in the Open Ocean, Coastal Zone, and Cryosphere

    NASA Technical Reports Server (NTRS)

    Nagler, R. G.; Mccandless, S. W., Jr.

    1978-01-01

    The type of information system that is needed to meet the requirements of ocean, coastal, and polar region users was examined. The requisite qualities of the system are: (1) availability, (2) accessibility, (3) responsiveness, (4) utility, (5) continuity, and (6) NASA participation. The system would not displace existing capabilities, but would have to integrate and expand the capabilities of existing systems and resolve the deficiencies that currently exist in producer-to-user information delivery options.

  12. Overcoming the Challenges of siRNA Delivery: Nanoparticle Strategies.

    PubMed

    Shajari, Neda; Mansoori, Behzad; Davudian, Sadaf; Mohammadi, Ali; Baradaran, Behzad

    2017-01-01

    Despite therapeutics based on siRNA have an immense potential for the treatment of incurable diseases such as cancers. However, the in vivo utilization of siRNA and also the delivery of this agent to the target site is one of the most controversial challenges. The helpful assistance by nanoparticles can improve stable delivery and also enhance efficacy. More nanoparticle-based siRNA therapeutics is expected to become available in the near future. The search strategy followed the guidelines of the Centre of Reviews and Dissemination. The studies were identified from seven databases (Scopus, Web of Science, Academic Search Premiere, CINAHL, Medline Ovid, Eric and Cochrane Library). Studies was selected based on titles, abstracts and full texts. One hundred twenty nine papers were included in the review. These papers defined hurdles in RNAi delivery and also strategies to overcome these hurdles. This review discussed the existing hurdles for systemic administration of siRNA as therapeutic agents and highlights the various strategies to overcome these hurdles, including lipid-based nanoparticles and polymeric nanoparticles, and we also briefly reviewed chemical modification. Delivery of siRNA to the target site is the biggest challenge for its application in the clinic. The findings of this review confirmed by encapsulation siRNA in the nanoparticles can overcome these challenges. The rapid progress in nanotechnology has enabled the development of effective nanoparticles as the carrier for siRNA delivery. However, our data about siRNA-based therapeutics and also nanomedicine are still limited. More clinical data needs to be completely understood in the benefits and drawbacks of siRNA-based therapeutics. Prospective studies must pay attention to the in vivo safety profiles of the different delivery systems, including uninvited immune system stimulation and cytotoxicity. In essence, the development of nontoxic, biocompatible, and biodegradable delivery systems for medical application of RNAi-based therapeutics is needed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Electrostatic Surface Modifications to Improve Gene Delivery

    PubMed Central

    Shmueli, Ron B.; Anderson, Daniel G.

    2010-01-01

    Importance of the field Gene therapy has the potential to treat a wide variety of diseases including genetic diseases and cancer. Areas covered in this review This review introduces biomaterials used for gene delivery and then focuses on the use of electrostatic surface modifications to improve gene delivery materials. These modifications have been used to stabilize therapeutics in vivo, add cell-specific targeting ligands, and promote controlled release. Coatings of nanoparticles and microparticles as well as non-particulate surface coatings are covered in this review. Electrostatic principles are crucial for the development of multilayer delivery structures fabricated by the layer-by-layer method. What the reader will gain The reader will gain knowledge about the composition of biomaterials used for surface modifications and how these coatings and multilayers can be utilized to improve spatial control and efficiency of delivery. Examples are shown for the delivery of nucleic acids, including DNA and siRNA, to in vitro and in vivo systems. Take home message The versatile and powerful approach of electrostatic coatings and multilayers will lead to the development of enhanced gene therapies. PMID:20201712

  14. Hierarchical design of a polymeric nanovehicle for efficient tumor regression and imaging

    NASA Astrophysics Data System (ADS)

    An, Jinxia; Guo, Qianqian; Zhang, Peng; Sinclair, Andrew; Zhao, Yu; Zhang, Xinge; Wu, Kan; Sun, Fang; Hung, Hsiang-Chieh; Li, Chaoxing; Jiang, Shaoyi

    2016-04-01

    Effective delivery of therapeutics to disease sites significantly contributes to drug efficacy, toxicity and clearance. Here we designed a hierarchical polymeric nanoparticle structure for anti-cancer chemotherapy delivery by utilizing state-of-the-art polymer chemistry and co-assembly techniques. This novel structural design combines the most desired merits for drug delivery in a single particle, including a long in vivo circulation time, inhibited non-specific cell uptake, enhanced tumor cell internalization, pH-controlled drug release and simultaneous imaging. This co-assembled nanoparticle showed exceptional stability in complex biological media. Benefiting from the synergistic effects of zwitterionic and multivalent galactose polymers, drug-loaded nanoparticles were selectively internalized by cancer cells rather than normal tissue cells. In addition, the pH-responsive core retained their cargo within their polymeric coating through hydrophobic interaction and released it under slightly acidic conditions. In vivo pharmacokinetic studies in mice showed minimal uptake of nanoparticles by the mononuclear phagocyte system and excellent blood circulation half-lives of 14.4 h. As a result, tumor growth was completely inhibited and no damage was observed for normal organ tissues. This newly developed drug nanovehicle has great potential in cancer therapy, and the hierarchical design principle should provide valuable information for the development of the next generation of drug delivery systems.Effective delivery of therapeutics to disease sites significantly contributes to drug efficacy, toxicity and clearance. Here we designed a hierarchical polymeric nanoparticle structure for anti-cancer chemotherapy delivery by utilizing state-of-the-art polymer chemistry and co-assembly techniques. This novel structural design combines the most desired merits for drug delivery in a single particle, including a long in vivo circulation time, inhibited non-specific cell uptake, enhanced tumor cell internalization, pH-controlled drug release and simultaneous imaging. This co-assembled nanoparticle showed exceptional stability in complex biological media. Benefiting from the synergistic effects of zwitterionic and multivalent galactose polymers, drug-loaded nanoparticles were selectively internalized by cancer cells rather than normal tissue cells. In addition, the pH-responsive core retained their cargo within their polymeric coating through hydrophobic interaction and released it under slightly acidic conditions. In vivo pharmacokinetic studies in mice showed minimal uptake of nanoparticles by the mononuclear phagocyte system and excellent blood circulation half-lives of 14.4 h. As a result, tumor growth was completely inhibited and no damage was observed for normal organ tissues. This newly developed drug nanovehicle has great potential in cancer therapy, and the hierarchical design principle should provide valuable information for the development of the next generation of drug delivery systems. Electronic supplementary information (ESI) available: Experimental details, 1H NMR spectra and GPC of polymers. See DOI: 10.1039/c6nr01595f

  15. [Neurological disorders and the blood-brain barrier. Strategies and limitations for drug delivery to the brain].

    PubMed

    Domínguez, Alazne; Álvarez, Antonia; Suárez-Merino, Blanca; Goñi-de-Cerio, Felipe

    2014-03-01

    The incidence in the central nervous system diseases has increased with a growing elderly population. Unfortunately, conventional treatments used to treat the mentioned diseases are frequently ineffective due to the presence of the blood brain barrier. To illustrate the blood-brain barrier properties that limit drug transport into the brain and the main strategies employed to treat neurologic disorders. The blood-brain barrier is mainly composed of a specialized microvascular endothelium and of glial cells. It constitutes a valuable tool to separate the central nervous system from the rest of the body. Nevertheless, it also represents an obstacle to the delivery of therapeutic drugs to the brain. To be effective, drugs must reach their target in the brain. On one hand, therapeutic agents could be designed to be able to cross the blood brain barrier. On the other hand, drug delivery systems could be employed to facilitate the therapeutic agents' entry into the central nervous system. In vivo models of neurological diseases, in addition to in vitro models of the blood brain barrier, have been widely employed for the evaluation of drugs utilized to treat central nervous system diseases.

  16. [Study on the status of institutional delivery and its determinants in rural Guangxi autonomous region].

    PubMed

    Li, Jian; Chen, Li-Li; Chen, Shu-Zhen; Cen, Ming-Yang; Zhao, Nai-Qing; Qian, Xu

    2008-03-01

    To understand the situation of institutional delivery of rural pregnant women in Guangxi Autonomous Region in the period of 1998 - 2003 and to identify the determinants on institutional delivery utilization. Using Andersen's behavioral model as analytical framework and Guangxi databank of the 3rd National Health Service Survey as data source, we described the status of institutional delivery with the rural women having had live birth history in the period of 1998 - 2003 as subjects, while and the univariate analysis and multivariate logistic analysis were done to identify determinants of institutional delivery utilization. Among a total number of 407 women with live birth history, 39.80 percent of them delivered at the health-care facilities. The rate of institutional delivery increased annually in 1998 - 2003 (P< 0.0001). The proportion of delivery in township health centers increased and the proportion of home delivery decreased by year (P< 0.0001). Results from both univariate and multivariate analysis showed that parity, education background of women, type of drinking water, time needed to get to the nearest healthcare facilities by the most convenient traffic,frequency of prenatal checkup, together with whether or not being advocated on institutional delivery etc. were determinants of delivery utilization. The OR value were 1.749 for multipara, 1.995 for those going to the nearest healthcare facilities by the most convenient traffic in less than 10 minutes, 3.011 for those drinking tap water, 5.435 for those with the education of high school, 29.149 for those with over 5 times in terms of frequency of prenatal checkup and 37.822 for those being advocated on institutional delivery. Socio-economic situation, status of maternal health care and parity made main contribution to institutional delivery and skilled birth attendance for women in rural Guangxi.

  17. Northern Cheyenne Follow Through Project. Lame Deer, Montana 59043.

    ERIC Educational Resources Information Center

    Montana State Dept. of Public Instruction, Helena.

    Focusing on the basic skills of reading, math, and handwriting, the Northern Cheyenne Follow Through Project utilizes six concepts. First, token delivery of contract system for motivation involves having the child earn tokens or work on a contract as he accomplishes tasks in specific skills. During the spend period, he may trade for desired…

  18. Turning a dream into reality: the evolution of a seamless electronic health record.

    PubMed

    Dalander, G; Willner, S; Brasch, S

    1997-10-01

    Growing competition in the healthcare industry has created a strong-demand for improvement in all areas. Learn how integrated delivery systems have been created and effectively utilized in order to change how the business side of healthcare is conducted and how provider organizations measure and achieve success.

  19. Design & Delivery of Training for a State-Wide Data Communication Network.

    ERIC Educational Resources Information Center

    Zacher, Candace M.

    This report describes the process of development of training for agricultural research, teaching, and extension professionals in how to use the Fast Agricultural Communications Terminal (FACTS) computer network at Purdue University (Indiana), which is currently being upgraded in order to utilize the latest computer technology. The FACTS system is…

  20. A Feasibility Study for Mobile Marketing and Distribution Occupational Laboratories in North Dakota.

    ERIC Educational Resources Information Center

    Kohns, Donald P.

    A study determined the feasibility of a mobile laboratory for marketing and distribution in North Dakota. It attempted to answer four questions: (1) What types of staffing, equipment, curriculum, and delivery systems are presently being utilized in mobile laboratories throughout the nation? (2) What significant information obtained from mobile…

  1. The Common Market Concept: Using Community Based Resources in New Ways to Deliver Innovative Agriculture Programs.

    ERIC Educational Resources Information Center

    Upchurch, Jim; Fischer, Larry

    The cooperative agricultural programs described in this report were undertaken by John Wood Community College (JWCC) as part of a "common market" instructional delivery system, which utilizes existing community resources through contractual agreements with area schools, businesses, and government agencies. The report first provides a rationale for…

  2. Drug Usage and Health Characteristics in Non-Institutionalized Mexican-American Elderly.

    ERIC Educational Resources Information Center

    Vener, A. M.; And Others

    1980-01-01

    Results of in-depth interviews with 32 elderly Mexican Americans revealed minimal potential hazardous drug interactions. Mexican Americans showed a disinclination to utilize over-the-counter drugs to alleviate minor ailments. Professionals involved in health care delivery systems for the aging should become aware of the special needs of ethnic…

  3. Group 3 Unmanned Aircraft Systems Maintenance Challenges Within The Naval Aviation Enterprise

    DTIC Science & Technology

    2017-12-01

    cross winds . We again went through the mishap processes and reviewed training and maintenance records. A couple months later, there was a third crash...gas turbine engines powering aircraft with humans on board (DON, 2017). Group 3 unmanned aircraft utilize a sealed fuel system. The tank is filled...aircraft do not use gas turbine engines. They use either rotary Wankle or piston driven engines with much simpler fuel delivery systems such as carburetors

  4. A telemedicine health care delivery system

    NASA Technical Reports Server (NTRS)

    Sanders, Jay H.

    1991-01-01

    The Interactive Telemedicine Systems (ITS) system was specifically developed to address the ever widening gap between our medical care expertise and our medical care delivery system. The frustrating reality is that as our knowledge of how to diagnose and treat medical conditions has continued to advance, the system to deliver that care has remained in an embryonic stage. This has resulted in millions of people being denied their most basic health care needs. Telemedicine utilizes an interactive video system integrated with biomedical telemetry that allows a physician at a base station specialty medical complex or teaching hospital to examine and treat a patient at multiple satellite locations, such as rural hospitals, ambulatory health centers, correctional institutions, facilities caring for the elderly, community hospital emergency departments, or international health facilities. Based on the interactive nature of the system design, the consulting physician at the base station can do a complete history and physical examination, as if the patient at the satellite site was sitting in the physician's office. This system is described.

  5. Wealth inequality and utilization of reproductive health services in the Republic of Vanuatu: insights from the multiple indicator cluster survey, 2007

    PubMed Central

    2011-01-01

    Background Although the Republic of Vanuatu has improved maternal indicators, more needs to be done to improve equity among the poorest in the use of reproductive health services to expedite the progress towards the Millennium Development Goal 5(MDG 5) target. While large developing country studies provide evidence of a rich-poor gap in reproductive health services utilization, not much is written in terms of Pacific Islands. Thus, this study aims to examine the degree of inequality in utilization of reproductive health services in a nationally representative sample of Vanuatu households. Methods This paper used data from the 2007 Vanuatu Multiple Indicator Cluster Survey (MICS). The analyses were based on responses from 615 ever married women, living with at least one child below two years of age. Outcomes included antenatal care (ANC) and use of birth attendants at delivery, place of delivery, and counseling and testing for HIV/AIDS. Descriptive statistics and multivariate logistic regression methods were employed in the analysis. Results Findings revealed that the economic well-being status of the household to which women belong, played a crucial role in explaining the variation in service utilization. Inequality in utilization was found to be more pronounced between the poorest and richest groups within the wealth quintiles. In adjusted models, mothers in the richest bands of wealth were 5.50 (95% confidence interval [CI]: 1.34-22.47), 2.12 (95% CI: 1.02-3.42), 4.0 (95% CI 1.58-10.10), and 2.0 (95% CI 1.02-5.88) times more likely to have assisted delivery from medically trained personnel, have institutional deliveries, and have counseling and testing for HIV/AIDS. Conclusions Association between household wealth inequality and utilization of ANC and delivery assistance from medically trained personnel, institutional delivery, and counseling and testing for HIV/AIDS suggest that higher utilization of reproductive health care services in Vanuatu poor-rich inequalities need to be addressed. Reducing poverty and making services more available and accessible to the poor may be essential for improving overall reproductive health care utilization rate in Vanuatu. PMID:22132828

  6. Trends in inequalities in utilization of reproductive health services from 2000 to 2011 in Vietnam

    PubMed Central

    Duc, Nguyen Huu Chau; Nakamura, Keiko; Kizuki, Masashi; Seino, Kaoruko; Rahman, Mosiur

    2015-01-01

    Objective: This study aimed to examine changes in utilization of reproductive health services by wealth status from 2000 to 2011 in Vietnam. Methods: Data from the Vietnam Multiple Indicator Cluster Surveys in 2000, 2006, and 2011 were used. The subjects were 550, 1023, and 1363 women, respectively, aged between 15 and 49 years who had given birth in the previous one or two years. The wealth index, a composite measure of a household’s ownership of selected assets, materials used for housing construction, and types of water access and sanitation facilities, was used as a measure of wealth status. Main utilization indicators were utilization of antenatal care services, receipt of a tetanus vaccine, receipt of blood pressure measurement, blood examination and urine examination during antenatal care, receipt of HIV testing, skilled birth attendance at delivery, health-facility-based delivery, and cesarean section delivery. Inequalities by wealth index were measured by prevalence ratios, concentration indices, and multivariable adjusted regression coefficients. Results: Significant increase in overall utilization was observed in all indicators (all p < 0.001). The concentration indices were 0.19 in 2000 and 0.06 in 2011 for antenatal care, 0.10 in 2000 and 0.06 in 2011 for tetanus vaccination, 0.23 in 2000 and 0.08 in 2011 for skilled birth attendance, 0.29 in 2006 and 0.12 in 2011 for blood examination, and 0.18 in 2006 and 0.09 in 2011 for health-facility-based delivery. The multivariable adjusted regression coefficients of reproductive health service utilization by wealth category were 0.06 in 2000 and 0.04 in 2011 for antenatal care, 0.07 in 2000 and 0.05 in 2011 for skilled birth attendance, and 0.07 in 2006 and 0.05 in 2011 for health-facility-based delivery. Conclusions: More women utilized reproductive health services in 2011 than in 2000. Inequality by wealth status in utilization of antenatal care, skilled birth attendance, and health-facility-based delivery had been reduced. PMID:26705431

  7. Utilizing Maximum Power Point Trackers in Parallel to Maximize the Power Output of a Solar (Photovoltaic) Array

    DTIC Science & Technology

    2012-12-01

    photovoltaic (PV) system to use a maximum power point tracker ( MPPT ) to increase... photovoltaic (PV) system to use a maximum power point tracker ( MPPT ) to increase the power output of the solar array. Currently, most military... MPPT ) is an optimizing circuit that is used in conjunction with photovoltaic (PV) arrays to achieve the maximum delivery of power from the array

  8. Fabrication and in vitro characterization of gadolinium-based nanoclusters for simultaneous drug delivery and radiation enhancement

    NASA Astrophysics Data System (ADS)

    Yoo, Shannon S.; Guo, Linghong; Sun, Xuejun; Shaw, Andrew R.; Yuan, Zhipeng; Löbenberg, Raimar; Roa, Wilson H.

    2016-09-01

    We report the synthesis of a gadolinium hydroxide (Gd(OH)3) nanorod based doxorubicin (Dox) delivery system that can enhance both magnetic resonance imaging contrast and radiation sensitivity. A simple and cost effective wet-chemical method was utilized in the presence of manganese (Mn) ions and Dox to produce the Gd(OH)3:Mn·Dox nanocluster structure. The Gd(OH)3:Mn·Dox nanocluster was composed of Mn-doped Gd(OH)3 nanorods arranged in parallel with Dox as a linker molecule between the adjacent nanorods. No other studies have utilized Dox as both the linker and therapeutic molecule in a nanostructure to date. The Gd(OH)3 nanorod is reported to have no significant cellular or in vivo toxicity, which makes it an ideal base material for this biomedical application. The Gd(OH)3:Mn·Dox nanocluster exhibited paramagnetic behavior and was stable in a colloidal solution. The nanocluster also enabled high Dox loading capacity and specifically released Dox in a sustained and pH-dependent manner. The positively charged Gd(OH)3:Mn·Dox nanoclusters were readily internalized into MDA-MB-231 breast cancer cells via endocytosis, which resulted in intracellular release of Dox. The released Dox in cells was effective in conferring cytotoxicity and inhibiting proliferation of cancer cells. Furthermore, a synergistic anticancer effect could be observed with radiation treatment. Overall, the Gd(OH)3:Mn·Dox nanocluster drug delivery system described herein may have potential utility in clinics as a multifunctional theranostic nanoparticle with combined benefits in both diagnosis and therapy in the management of cancer.

  9. Targeting of small molecule anticancer drugs to the tumour and its vasculature using cationic liposomes: lessons from gene therapy

    PubMed Central

    Dass, Crispin R; Choong, Peter FM

    2006-01-01

    Cationic (positively charged) liposomes have been tested in various gene therapy clinical trials for neoplastic and other diseases. They have demonstrated selectivity for tumour vascular endothelial cells raising hopes for both antiangiogenic and antivascular therapies. They are also capable of being selectively delivered to the lungs and liver when administered intravenously. These vesicles are being targeted to the tumour in various parts of the body by using advanced liposomal systems such as ligand-receptor and antibody-antigen combinations. At present, the transferrin receptor is commonly used for cancer-targeted drug delivery systems including cationic liposomes. This review looks at the growing utility of these vesicles for delivery of small molecule anticancer drugs. PMID:16792817

  10. Metrics for the National SCADA Test Bed Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, Philip A.; Mortensen, J.; Dagle, Jeffery E.

    2008-12-05

    The U.S. Department of Energy Office of Electricity Delivery and Energy Reliability (DOE-OE) National SCADA Test Bed (NSTB) Program is providing valuable inputs into the electric industry by performing topical research and development (R&D) to secure next generation and legacy control systems. In addition, the program conducts vulnerability and risk analysis, develops tools, and performs industry liaison, outreach and awareness activities. These activities will enhance the secure and reliable delivery of energy for the United States. This report will describe metrics that could be utilized to provide feedback to help enhance the effectiveness of the NSTB Program.

  11. The Apollo experiment for document delivery via satellite communication

    NASA Astrophysics Data System (ADS)

    1985-03-01

    Dutch participation possibilities in the Apollo document delivery project, wishes and idea's of potential user and tender groups, and plans and activities of Dutch institutes and companies, are surveyed. The Apollo storage and transport system, demand and administration network, potential markets, and subject areas of the documents are investigated. Utilization areas (scientific, technical, administration, and business information) are listed. High tariffs and the lack of necessary provision make a direct participation strategy impossible. However, in the experimental phase, Dutch companies must be allowed to contribute in technical developments and availability of organizational and technical facilities must be stimulated.

  12. Self-assembled mirror DNA nanostructures for tumor-specific delivery of anticancer drugs.

    PubMed

    Kim, Kyoung-Ran; Kim, Hyo Young; Lee, Yong-Deok; Ha, Jong Seong; Kang, Ji Hee; Jeong, Hansaem; Bang, Duhee; Ko, Young Tag; Kim, Sehoon; Lee, Hyukjin; Ahn, Dae-Ro

    2016-12-10

    Nanoparticle delivery systems have been extensively investigated for targeted delivery of anticancer drugs over the past decades. However, it is still a great challenge to overcome the drawbacks of conventional nanoparticle systems such as liposomes and micelles. Various novel nanomaterials consist of natural polymers are proposed to enhance the therapeutic efficacy of anticancer drugs. Among them, deoxyribonucleic acid (DNA) has received much attention as an emerging material for preparation of self-assembled nanostructures with precise control of size and shape for tailored uses. In this study, self-assembled mirror DNA tetrahedron nanostructures is developed for tumor-specific delivery of anticancer drugs. l-DNA, a mirror form of natural d-DNA, is utilized for resolving a poor serum stability of natural d-DNA. The mirror DNA nanostructures show identical thermodynamic properties to that of natural d-DNA, while possessing far enhanced serum stability. This unique characteristic results in a significant effect on the pharmacokinetics and biodistribution of DNA nanostructures. It is demonstrated that the mirror DNA nanostructures can deliver anticancer drugs selectively to tumors with enhanced cellular and tissue penetration. Furthermore, the mirror DNA nanostructures show greater anticancer effects as compared to that of conventional PEGylated liposomes. Our new approach provides an alternative strategy for tumor-specific delivery of anticancer drugs and highlights the promising potential of the mirror DNA nanostructures as a novel drug delivery platform. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Genetic modification of cells for transplantation.

    PubMed

    Lai, Yi; Drobinskaya, Irina; Kolossov, Eugen; Chen, Chunguang; Linn, Thomas

    2008-01-14

    Progress in gene therapy has produced promising results that translate experimental research into clinical treatment. Gene modification has been extensively employed in cell transplantation. The main barrier is an effective gene delivery system. Several viral vectors were utilized in end-stage differentiated cells. Recently, successful applications were described with adenovirus-associated vectors. As an alternative, embryonic stem cell- and stem cell-like systems were established for generation of tissue-specified gene-modified cells. Owing to the feasibility for genetic manipulations and the self-renewing potency of these cells they can be used in a way enabling large-scale in vitro production. This approach offers the establishment of in vitro cell culture systems that will deliver sufficient amounts of highly purified, immunoautologous cells suitable for application in regenerative medicine. In this review, the current technology of gene delivery systems to cells is recapitulated and the latest developments for cell transplantation are discussed.

  14. Five-year trends in women veterans' use of VA maternity benefits, 2008-2012.

    PubMed

    Mattocks, Kristin M; Frayne, Susan; Phibbs, Ciaran S; Yano, Elizabeth M; Zephyrin, Laurie; Shryock, Holly; Haskell, Sally; Katon, Jodie; Sullivan, J Cherry; Weinreb, Linda; Ulbricht, Christine; Bastian, Lori A

    2014-01-01

    An increasing number of young women veterans are returning from war and military service and are seeking reproductive health care from the Veterans Health Administration (VHA). Many of these women seek maternity benefits from the VHA, and yet little is known regarding the number of women veterans utilizing VHA maternity benefits nor the characteristics of pregnant veterans using these benefits. In May 2010, VHA maternity benefits were expanded to include 7 days of infant care, which may serve to entice more women to use VHA maternity benefits. Understanding the changing trends in women veterans seeking maternity benefits will help the VHA to improve the quality of reproductive care over time. The goal of this study was to examine the trends in delivery claims among women veterans receiving VHA maternity benefits over a 5-year period and the characteristics of pregnant veterans utilizing VHA benefits. We undertook a retrospective, national cohort study of pregnant veterans enrolled in VHA care with inpatient deliveries between fiscal years (FY) 2008 and 2012. We included pregnant veterans using VHA maternity benefits for delivery. Measures included annualized numbers and rates of inpatient deliveries and delivery-related costs, as well as cesarean section rates as a quality indicator. During the 5-year study period, there was a significant increase in the number of deliveries to women veterans using VHA maternity benefits. The overall delivery rate increased by 44% over the study period from 12.4 to 17.8 deliveries per 1,000 women veterans. A majority of women using VHA maternity benefits were age 30 or older and had a service-connected disability. From FY 2008 to 2012, the VHA paid more than $46 million in delivery claims to community providers for deliveries to women veterans ($4,993/veteran). Over a 5-year period, the volume of women veterans using VHA maternity benefits increased by 44%. Given this sizeable increase, the VHA must increase its capacity to care for pregnant veterans and ensure care coordination systems are in place to address the needs of pregnant veterans with service-connected disabilities. Published by Elsevier Inc.

  15. Job shop scheduling model for non-identic machine with fixed delivery time to minimize tardiness

    NASA Astrophysics Data System (ADS)

    Kusuma, K. K.; Maruf, A.

    2016-02-01

    Scheduling non-identic machines problem with low utilization characteristic and fixed delivery time are frequent in manufacture industry. This paper propose a mathematical model to minimize total tardiness for non-identic machines in job shop environment. This model will be categorized as an integer linier programming model and using branch and bound algorithm as the solver method. We will use fixed delivery time as main constraint and different processing time to process a job. The result of this proposed model shows that the utilization of production machines can be increase with minimal tardiness using fixed delivery time as constraint.

  16. Macrophages with cellular backpacks for targeted drug delivery to the brain.

    PubMed

    Klyachko, Natalia L; Polak, Roberta; Haney, Matthew J; Zhao, Yuling; Gomes Neto, Reginaldo J; Hill, Michael C; Kabanov, Alexander V; Cohen, Robert E; Rubner, Michael F; Batrakova, Elena V

    2017-09-01

    Most potent therapeutics are unable to cross the blood-brain barrier following systemic administration, which necessitates the development of unconventional, clinically applicable drug delivery systems. With the given challenges, biologically active vehicles are crucial to accomplishing this task. We now report a new method for drug delivery that utilizes living cells as vehicles for drug carriage across the blood brain barrier. Cellular backpacks, 7-10 μm diameter polymer patches of a few hundred nanometers in thickness, are a potentially interesting approach, because they can act as drug depots that travel with the cell-carrier, without being phagocytized. Backpacks loaded with a potent antioxidant, catalase, were attached to autologous macrophages and systemically administered into mice with brain inflammation. Using inflammatory response cells enabled targeted drug transport to the inflamed brain. Furthermore, catalase-loaded backpacks demonstrated potent therapeutic effects deactivating free radicals released by activated microglia in vitro. This approach for drug carriage and release can accelerate the development of new drug formulations for all the neurodegenerative disorders. Copyright © 2017. Published by Elsevier Ltd.

  17. Optimization of a jet-propelled particle injection system for the uniform transdermal delivery of drug/vaccine.

    PubMed

    Liu, Yi; Kendall, Mark A F

    2007-08-01

    A jet-propelled particle injection system, the biolistics, has been developed and employed to accelerate micro-particles for transdermal drug delivery. We have examined a prototype biolistic device employing a converging-diverging supersonic nozzle (CDSN), and found that the micro-particles were delivered with a wide velocity range (200-800 m/s) and spatial distribution. To provide a controllable system for transdermal drug delivery, we present a contoured shock-tube (CST) concept and its embodiment device. The CST configuration utilizes a quasi-steady, quasi-one dimensional and shock-free supersonic flow to deliver the micro-particles with an almost uniform velocity (the mean velocity and the standard deviation, 699 +/- 4.7 m/s) and spatial distribution. The transient gas and particle dynamics in both prototype devices are interrogated with the validated computational fluid dynamics (CFD) approach. The predicted results for static pressure and Mach number histories, gas flow structures, particle velocity distributions and gas-particle interactions are presented and interpreted. The implications for clinical uses are discussed. (c) 2007 Wiley Periodicals, Inc.

  18. DNA origami as an in vivo drug delivery vehicle for cancer therapy.

    PubMed

    Zhang, Qian; Jiang, Qiao; Li, Na; Dai, Luru; Liu, Qing; Song, Linlin; Wang, Jinye; Li, Yaqian; Tian, Jie; Ding, Baoquan; Du, Yang

    2014-07-22

    Many chemotherapeutics used for cancer treatments encounter issues during delivery to tumors in vivo and may have high levels of systemic toxicity due to their nonspecific distribution. Various materials have been explored to fabricate nanoparticles as drug carriers to improve delivery efficiency. However, most of these materials suffer from multiple drawbacks, such as limited biocompatibility and inability to engineer spatially addressable surfaces that can be utilized for multifunctional activity. Here, we demonstrate that DNA origami possessed enhanced tumor passive targeting and long-lasting properties at the tumor region. Particularly, the triangle-shaped DNA origami exhibits optimal tumor passive targeting accumulation. The delivery of the known anticancer drug doxorubicin into tumors by self-assembled DNA origami nanostructures was performed, and this approach showed prominent therapeutic efficacy in vivo. The DNA origami carriers were prepared through the self-assembly of M13mp18 phage DNA and hundreds of complementary DNA helper strands; the doxorubicin was subsequently noncovalently intercalated into these nanostructures. After conducting fluorescence imaging and safety evaluation, the doxorubicin-containing DNA origami exhibited remarkable antitumor efficacy without observable systemic toxicity in nude mice bearing orthotopic breast tumors labeled with green fluorescent protein. Our results demonstrated the potential of DNA origami nanostructures as innovative platforms for the efficient and safe drug delivery of cancer therapeutics in vivo.

  19. Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems

    PubMed Central

    Kaur, Randeep; Badea, Ildiko

    2013-01-01

    Detonation nanodiamonds (NDs) are emerging as delivery vehicles for small chemical drugs and macromolecular biotechnology products due to their primary particle size of 4 to 5 nm, stable inert core, reactive surface, and ability to form hydrogels. Nanoprobe technology capitalizes on the intrinsic fluorescence, high refractive index, and unique Raman signal of the NDs, rendering them attractive for in vitro and in vivo imaging applications. This review provides a brief introduction of the various types of NDs and describes the development of procedures that have led to stable single-digit-sized ND dispersions, a crucial feature for drug delivery systems and nanoprobes. Various approaches used for functionalizing the surface of NDs are highlighted, along with a discussion of their biocompatibility status. The utilization of NDs to provide sustained release and improve the dispersion of hydrophobic molecules, of which chemotherapeutic drugs are the most investigated, is described. The prospects of improving the intracellular delivery of nucleic acids by using NDs as a platform are exemplified. The photoluminescent and optical scattering properties of NDs, together with their applications in cellular labeling, are also reviewed. Considering the progress that has been made in understanding the properties of NDs, they can be envisioned as highly efficient drug delivery and imaging biomaterials for use in animals and humans. PMID:23326195

  20. Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems.

    PubMed

    Kaur, Randeep; Badea, Ildiko

    2013-01-01

    Detonation nanodiamonds (NDs) are emerging as delivery vehicles for small chemical drugs and macromolecular biotechnology products due to their primary particle size of 4 to 5 nm, stable inert core, reactive surface, and ability to form hydrogels. Nanoprobe technology capitalizes on the intrinsic fluorescence, high refractive index, and unique Raman signal of the NDs, rendering them attractive for in vitro and in vivo imaging applications. This review provides a brief introduction of the various types of NDs and describes the development of procedures that have led to stable single-digit-sized ND dispersions, a crucial feature for drug delivery systems and nanoprobes. Various approaches used for functionalizing the surface of NDs are highlighted, along with a discussion of their biocompatibility status. The utilization of NDs to provide sustained release and improve the dispersion of hydrophobic molecules, of which chemotherapeutic drugs are the most investigated, is described. The prospects of improving the intracellular delivery of nucleic acids by using NDs as a platform are exemplified. The photoluminescent and optical scattering properties of NDs, together with their applications in cellular labeling, are also reviewed. Considering the progress that has been made in understanding the properties of NDs, they can be envisioned as highly efficient drug delivery and imaging biomaterials for use in animals and humans.

  1. Poly (lactic-co-glycolic acid) controlled release systems: experimental and modeling insights

    PubMed Central

    Hines, Daniel J.; Kaplan, David L.

    2013-01-01

    Poly-lactic-co-glycolic acid (PLGA) has been the most successful polymeric biomaterial for use in controlled drug delivery systems. There are several different chemical and physical properties of PLGA that impact the release behavior of drugs from PLGA delivery devices. These properties must be considered and optimized in drug release device formulation. Mathematical modeling is a useful tool for identifying, characterizing, and predicting the mechanisms of controlled release. The advantages and limitations of poly (lactic-co-glycolic acid) for controlled release are reviewed, followed by a review of current approaches in controlled release technology that utilize PLGA. Mathematical modeling applied towards controlled release rates from PLGA-based devices will also be discussed to provide a complete picture of state of the art understanding of the control achievable with this polymeric system, as well as the limitations. PMID:23614648

  2. Synthesis and characterization of novel amphiphilic copolymer stearic acid-coupled F127 nanoparticles for nano-technology based drug delivery system.

    PubMed

    Gao, Qihe; Liang, Qing; Yu, Fei; Xu, Jian; Zhao, Qihua; Sun, Baiwang

    2011-12-01

    Pluronic, F127, amphiphilic block copolymers, are used for several applications, including drug delivery systems. The critical micelle concentration (CMC) of F127 is about 0.26-0.8 wt% so that the utility of F127 in nano-technology based drug delivery system is limited since the nano-sized micelles could dissociate upon dilution. Herein, stearic acid (SA) was simply coupled to F127 between the carboxyl group of SA and the hydroxyl group of F127, which formed a novel copolymer named as SA-coupled F127, with significantly lower CMC. Above the CMC 6.9 × 10(-5)wt%, SA-coupled F127 self-assembled stable nanoparticles with Zeta potential -36 mV. Doxorubicin (DOX)-loaded nanoparticles were made, with drug loading (DL) 5.7 wt% and Zeta potential -36 to -39 mV, and the nanoparticles exhibited distinct shape with the size distribution from 20 to 50 nm. DOX-loaded nanoparticles were relatively stable and exhibited DOX dependant cytotoxicity toward MCF-7 cells in vitro. These results suggest that SA-coupled F127 potentially could be applied as a nano-technology based drug delivery method. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Current trends in the use of vitamin E-based micellar nanocarriers for anticancer drug delivery.

    PubMed

    Muddineti, Omkara Swami; Ghosh, Balaram; Biswas, Swati

    2017-06-01

    Owing to the complexity of cancer pathogenesis, conventional chemotherapy can be an inadequate method of killing cancer cells effectively. Nanoparticle-based drug delivery systems have been widely exploited pre-clinically in recent years. Areas covered: Incorporation of vitamin-E in nanocarriers have the advantage of (1) improving the hydrophobicity of the drug delivery system, thereby improving the solubility of the loaded poorly soluble anticancer drugs, (2) enhancing the biocompatibility of the polymeric drug carriers, and (3) improving the anticancer potential of the chemotherapeutic agents by reversing the cellular drug resistance via simultaneous administration. In addition to being a powerful antioxidant, vitamin E demonstrated its anticancer potential by inducing apoptosis in various cancer cell lines. Various vitamin E analogs have proven their ability to cause marked inhibition of drug efflux transporters. Expert opinion: The review discusses the potential of incorporating vitamin E in the polymeric micelles which are designed to carry poorly water-soluble anticancer drugs. Current applications of various vitamin E-based polymeric micelles with emphasis on the use of α-tocopherol, D-α-tocopheryl succinate (α-TOS) and its conjugates such as D-α-tocopheryl polyethylene glycol-succinate (TPGS) in micellar system is delineated. Advantages of utilizing polymeric micelles for drug delivery and the challenges to treat cancer, including multiple drug resistance have been discussed.

  4. Towards Optimal Design of Cancer Nanomedicines: Multi-stage Nanoparticles for the Treatment of Solid Tumors.

    PubMed

    Stylianopoulos, Triantafyllos; Economides, Eva-Athena; Baish, James W; Fukumura, Dai; Jain, Rakesh K

    2015-09-01

    Conventional drug delivery systems for solid tumors are composed of a nano-carrier that releases its therapeutic load. These two-stage nanoparticles utilize the enhanced permeability and retention (EPR) effect to enable preferential delivery to tumor tissue. However, the size-dependency of the EPR, the limited penetration of nanoparticles into the tumor as well as the rapid binding of the particles or the released cytotoxic agents to cancer cells and stromal components inhibit the uniform distribution of the drug and the efficacy of the treatment. Here, we employ mathematical modeling to study the effect of particle size, drug release rate and binding affinity on the distribution and efficacy of nanoparticles to derive optimal design rules. Furthermore, we introduce a new multi-stage delivery system. The system consists of a 20-nm primary nanoparticle, which releases 5-nm secondary particles, which in turn release the chemotherapeutic drug. We found that tuning the drug release kinetics and binding affinities leads to improved delivery of the drug. Our results also indicate that multi-stage nanoparticles are superior over two-stage nano-carriers provided they have a faster drug release rate and for high binding affinity drugs. Furthermore, our results suggest that smaller nanoparticles achieve better treatment outcome.

  5. Green fluorescent protein (GFP): is seeing believing and is that enough?

    PubMed

    Shorter, Susan A; Pettit, Marie W; Dyer, Paul D R; Coakley Youngs, Emma; Gorringe-Pattrick, Monique A M; El-Daher, Samer; Richardson, Simon

    Intracellular compartmentalisation is a significant barrier to the successful nucleocytosolic delivery of biologics. The endocytic system has been shown to be responsible for compartmentalisation, providing an entry point, and trigger(s) for the activation of drug delivery systems. Consequently, many of the technologies used to understand endocytosis have found utility within the field of drug delivery. The use of fluorescent proteins as markers denoting compartmentalisation within the endocytic system has become commonplace. Several of the limitations associated with the use of green fluorescent protein (GFP) within the context of drug delivery have been explored here by asking a series of related questions: (1) Are molecules that regulate fusion to a specific compartment (i.e. Rab- or SNARE-GFP fusions) a good choice of marker for that compartment? (2) How reliable was GFP-marker overexpression when used to define a given endocytic compartment? (3) Can glutathione-s-transferase (GST) fused in frame with GFP (GST-GFP) act as a fluid phase endocytic probe? (4) Was GFP fluorescence a robust indicator of (GFP) protein integrity? This study concluded that there are many appropriate and useful applications for GFP; however, thought and an understanding of the biological and physicochemical character of these markers are required for the generation of meaningful data.

  6. Controlled-release systemic delivery - a new concept in cancer chemoprevention

    PubMed Central

    2012-01-01

    Many chemopreventive agents have encountered bioavailability issues in pre-clinical/clinical studies despite high oral doses. We report here a new concept utilizing polycaprolactone implants embedded with test compounds to obtain controlled systemic delivery, circumventing oral bioavailability issues and reducing the total administered dose. Compounds were released from the implants in vitro dose dependently and for long durations (months), which correlated with in vivo release. Polymeric implants of curcumin significantly inhibited tissue DNA adducts following the treatment of rats with benzo[a]pyrene, with the total administered dose being substantially lower than typical oral doses. A comparison of bioavailability of curcumin given by implants showed significantly higher levels of curcumin in the plasma, liver and brain 30 days after treatment compared with the dietary route. Withaferin A implants resulted in a nearly 60% inhibition of lung cancer A549 cell xenografts, but no inhibition occurred when the same total dose was administered intraperitoneally. More than 15 phytochemicals have been tested successfully by this formulation. Together, our data indicate that this novel implant-delivery system circumvents oral bioavailability issues, provides continuous delivery for long durations and lowers the total administered dose, eliciting both chemopreventive/chemotherapeutic activities. This would also allow the assessment of activity of minor constituents and synthetic metabolites, which otherwise remain uninvestigated in vivo. PMID:22696595

  7. Recent advancements in the field of nanotechnology for the delivery of anti-Alzheimer drug in the brain region.

    PubMed

    Agrawal, Mukta; Saraf, Swarnlata; Saraf, Shailendra; Antimisiaris, Sophia G; Hamano, Nobuhito; Li, Shyh-Dar; Chougule, Mahavir; Shoyele, Sunday A; Gupta, Umesh; Ajazuddin; Alexander, Amit

    2018-06-01

    Brain is supposed to be the most complicated part of the body which is very far from the reach of drug moieties. The drug entry in to the brain region depends upon various factors, and among those, the blood-brain-barrier remains the most prominent one. This barrier restricts the entry of almost all the drug and most of the essential biological components like proteins, peptides, etc. and hinders treatment of the CNS disorders. Alzheimer Disease (AD) is one such brain disorder, more specifically a neurodegenerative disorder which primarily affects the older adults. Areas covered: From solubility enhancement to targeted delivery, the nanoparticulate system became the answer for almost all the criticality related to drug delivery. Hence, nanoparticulate drug carrier system has been widely utilizing to remove the hurdles of brain drug delivery. Keeping this in mind, we have underlined the proficiencies of the nanocarrier systems which claim to improve the drug efficacy for the treatment of the AD. Expert opinion: The nanotechnological approaches are highly exploited by the researchers to enhance the drug permeation across the BBB to improve its bioavailability and efficacy by protecting the drug from peripheral degradation. However, still in this area of drug targeting provides vast scope for discoveries towards the enhancement of drug efficacy through surface modifications, site specification, reduced toxicity of the nanocarrier system and so on.

  8. Investigation of Fragment Antibody Stability and Its Release Mechanism from Poly(Lactide-co-Glycolide)-Triacetin Depots for Sustained-Release Applications.

    PubMed

    Chang, Debby P; Garripelli, Vivek Kumar; Rea, Jennifer; Kelley, Robert; Rajagopal, Karthikan

    2015-10-01

    Achieving long-term drug release from polymer-based delivery systems continues to be a challenge particularly for the delivery of large hydrophilic molecules such as therapeutic antibodies and proteins. Here, we report on the utility of an in situ-forming and injectable polymer-solvent system for the long-term release of a model antibody fragment (Fab1). The delivery system was prepared by dispersing a spray-dried powder of Fab1 within poly(lactide-co-glycolide) (PLGA)-triacetin solution. The formulation viscosity was within the range 1.0 ± 0.3 Pa s but it was injectable through a 27G needle. The release profile of Fab1, measured in phosphate-buffered saline (PBS), showed a lag phase followed by sustained-release phase for close to 80 days. Antibody degradation during its residence within the depot was comparable to its degradation upon long-term incubation in PBS. On the basis of temporal changes in surface morphology, stiffness, and depot mass, a mechanism to account for the drug release profile has been proposed. The unprecedented release profile and retention of greater than 80% of antigen-binding capacity even after several weeks demonstrates that PLGA-triacetin solution could be a promising system for the long-term delivery of biologics. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. Numerical modelling of transdermal delivery from matrix systems: parametric study and experimental validation with silicone matrices.

    PubMed

    Snorradóttir, Bergthóra S; Jónsdóttir, Fjóla; Sigurdsson, Sven Th; Másson, Már

    2014-08-01

    A model is presented for transdermal drug delivery from single-layered silicone matrix systems. The work is based on our previous results that, in particular, extend the well-known Higuchi model. Recently, we have introduced a numerical transient model describing matrix systems where the drug dissolution can be non-instantaneous. Furthermore, our model can describe complex interactions within a multi-layered matrix and the matrix to skin boundary. The power of the modelling approach presented here is further illustrated by allowing the possibility of a donor solution. The model is validated by a comparison with experimental data, as well as validating the parameter values against each other, using various configurations with donor solution, silicone matrix and skin. Our results show that the model is a good approximation to real multi-layered delivery systems. The model offers the ability of comparing drug release for ibuprofen and diclofenac, which cannot be analysed by the Higuchi model because the dissolution in the latter case turns out to be limited. The experiments and numerical model outlined in this study could also be adjusted to more general formulations, which enhances the utility of the numerical model as a design tool for the development of drug-loaded matrices for trans-membrane and transdermal delivery. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  10. Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets.

    PubMed

    Chen, Cherry C; Sheeran, Paul S; Wu, Shih-Ying; Olumolade, Oluyemi O; Dayton, Paul A; Konofagou, Elisa E

    2013-12-28

    Focused ultrasound (FUS) in the presence of systemically administered microbubbles has been shown to locally, transiently and reversibly increase the permeability of the blood-brain barrier (BBB), thus allowing targeted delivery of therapeutic agents in the brain for the treatment of central nervous system diseases. Currently, microbubbles are the only agents that have been used to facilitate the FUS-induced BBB opening. However, they are constrained within the intravascular space due to their micron-size diameters, limiting the delivery effect at or near the microvessels. In the present study, acoustically-activated nanodroplets were used as a new class of contrast agents to mediate FUS-induced BBB opening in order to study the feasibility of utilizing these nanoscale phase-shift particles for targeted drug delivery in the brain. Significant dextran delivery was achieved in the mouse hippocampus using nanodroplets at clinically relevant pressures. Passive cavitation detection was used in the attempt to establish a correlation between the amount of dextran delivered in the brain and the acoustic emission recorded during sonication. Conventional microbubbles with the same lipid shell composition and perfluorobutane core as the nanodroplets were also used to compare the efficiency of an FUS-induced dextran delivery. It was found that nanodroplets had a higher BBB opening pressure threshold but a lower stable cavitation threshold than microbubbles, suggesting that contrast agent-dependent acoustic emission monitoring was needed. A more homogeneous dextran delivery within the targeted hippocampus was achieved using nanodroplets without inducing inertial cavitation or compromising safety. Our results offered a new means of developing the FUS-induced BBB opening technology for potential extravascular targeted drug delivery in the brain, extending the potential drug delivery region beyond the cerebral vasculature. © 2013.

  11. Factors affecting utilization of skilled maternal care in Northwest Ethiopia: a multilevel analysis.

    PubMed

    Worku, Abebaw Gebeyehu; Yalew, Alemayehu Worku; Afework, Mesganaw Fantahun

    2013-04-15

    The evaluation of all potential sources of low skilled maternal care utilization is crucial for Ethiopia. Previous studies have largely disregarded the contribution of different levels. This study was planned to assess the effect of individual, communal, and health facility characteristics in the utilization of antenatal, delivery, and postnatal care by a skilled provider. A linked facility and population-based survey was conducted over three months (January - March 2012) in twelve "kebeles" of North Gondar Zone, Amhara Region. A total of 1668 women who had births in the year preceding the survey were selected for analysis. Using a multilevel modelling, we examined the effect of cluster variation and a number of individual, communal (kebele), and facility-related variables for skilled maternal care utilization. About 32.3%, 13.8% and 6.3% of the women had the chance to get skilled providers for their antenatal, delivery and postnatal care, respectively. A significant heterogeneity was observed among clusters for each indicator of skilled maternal care utilization. At the individual level, variables related to awareness and perceptions were found to be much more relevant for skilled maternal service utilization. Preference for skilled providers and previous experience of antenatal care were consistently strong predictors of all indicators of skilled maternal health care utilizations. Birth order, maternal education, and awareness about health facilities to get skilled professionals were consistently strong predictors of skilled antenatal and delivery care use. Communal factors were relevant for both delivery and postnatal care, whereas the characteristics of a health facility were more relevant for use of skilled delivery care than other maternity services. Factors operating at individual and "kebele" levels play a significant role in determining utilization of skilled maternal health services. Interventions to create better community awareness and perception about skilled providers and their care, and ensuring the seamless performance of health care facilities have been considered crucial to improve skilled maternal services in the study area. Such interventions should target underprivileged women.

  12. The use of reproductive healthcare at commune health stations in a changing health system in Vietnam.

    PubMed

    Ngo, Anh D; Hill, Peter S

    2011-09-27

    With health sector reform in Vietnam moving towards greater pluralism, commune health stations (CHSs) have been subject to growing competition from private health services and increasing numbers of patients bypassing CHSs for higher-level health facilities. This study describes the pattern of reproductive health (RH) and family planning (FP) service utilization among women at CHSs and other health facilities, and explores socio-demographic determinants of RH service utilization at the CHS level. This study was based on a cross-sectional survey conducted in Thua Thien Hue and Vinh Long provinces, using a multi-stage cluster sampling technique. Questionnaire-based interviews with 978 ever-married women at reproductive age provided data on socio-demographic characteristics, current use of FP methods, history of RH service use, and the health facility attended for their most recent services. Multiple logistic regression analyses were used to identify socio-demographic determinants of their use of CHS RH services. Eighty nine percent of ever-married women reported current use of birth control with 49% choosing intra-uterine device (IUD). Eighty nine percent of pregnant women attended facility-based antenatal care (ANC) with 62% having at least 3 check-ups during their latest pregnancy. Ninety one percent of mothers had their last delivery in a health facility. Seventy-one percent of respondents used CHS for IUD insertion, 55% for antenatal check-ups, and 77% gynecological examination. District and provincial/central hospitals dominated the provision of delivery service, used by 57% of mothers for their latest delivery. The percentage of women opting for private ANC services was reported at 35%, though the use of private delivery services was low (11%). Women who were farmers, earning a lower income, having more than 2 children, and living in a rural area were more likely than others to use ANC, delivery, and/or gynecological check-up services at the CHS. Women choice of providers for FP and RH services that help them plan and protect their pregnancies is driven by socio-economic factors. While the CHS retains significant utilization rates, it is under challenge by preferences for hospital-based delivery and the growing use of private ANC services.

  13. Progress in the utilization of antenatal and delivery care services in Bangladesh: where does the equity gap lie?

    PubMed

    Pulok, Mohammad Habibullah; Sabah, Md Nasim-Us; Uddin, Jalal; Enemark, Ulrika

    2016-07-29

    Universal access to health care services does not automatically guarantee equity in the health system. In the post Millennium Development Goals (MDGs) era, the progress towards universal access to maternal health care services in a developing country, like Bangladesh requires an evaluation in terms of equity lens. This study, therefore, analysed the trend in inequity and identified the equity gap in the utilization of antenatal care (ANC) and delivery care services in Bangladesh between 2004 and 2011. The data of this study came from the Bangladesh Demographic and Health Survey. We employed rate ratio, concentration curve and concentration index to examine the trend in inequity of ANC and delivery care services. We also used logistic regression models to analyse the relationship between socioeconomic factors and maternal health care services. The concentration index for 4+ ANC visits dropped from 0.42 in 2004 to 0.31 in 2011 with a greater decline in urban area. There was almost no change in the concentration index for ANC services from medically trained providers during this period. We also found a decreasing trend in inequity in the utilization of both health facility delivery and skilled birth assistance but this trend was again more pronounced in urban area compared to rural area. The concentration index for C-section delivery decreased by about 33 % over 2004-2011 with a similar rate in both urban and rural areas. Women from the richest households were about 3 times more likely to have 4+ ANC visits, delivery at a health facility and skilled birth assistance compared to women from the poorest households. Women's and their husbands' education were significantly associated with greater use of maternal health care services. In addition, women's exposure to mass media, their involvement in microcredit programs and autonomy in healthcare decision-making appeared as significant predictors of using some of these health care services. Bangladesh faces not only a persistent pro-rich inequity but also a significant rural-urban equity gap in the uptake of maternal health care services. An equity perspective in policy interventions is much needed to ensure safe motherhood and childbirth in Bangladesh.

  14. In vivo evaluation of drug delivery after ultrasound application: A new use for the photoacoustic technique

    NASA Astrophysics Data System (ADS)

    Barja, P. R.; Acosta-Avalos, D.; Rompe, P. C. B.; Dos Anjos, F. H.; Marciano, F. R.; da Silva, M. D.

    2005-06-01

    Ultrasound application is a therapeutical resource widely employed in physiotherapy. One of its applications is the phonophoresis, a technique in which the ultrasound radiation is utilized to deliver drugs through the skin to soft tissues. The proposal of our study was to employ the Photoacoustic Technique to evaluate the efficacy of such treatment, analyzing if phonophoresis could enhance drug delivery through skin when compared to the more traditional method of manual massage. The configuration of the system employed was such that it was possible to perform in vivo measurements, which is a pre-requisite for this kind of study. The changes observed in the photoacoustic signal amplitude after each form of drug application were attributed to changes in the thermal effusivity of the system, due to penetration of the drug. The technique was able to detect differences in drug delivery between the specified physiotherapy treatments, indicating that phonophoresis enhances drug absorption by tissue.

  15. Meeting patient expectations: healthcare professionals and service re-engineering.

    PubMed

    Laing, Angus

    2002-08-01

    A central theme underpinning the reform of healthcare systems in western economies since the 1980s has been the emphasis on reorienting service provision around the patient. Healthcare organizations have been forced to re-appraise the design of the service delivery process, specifically the service encounter, to take account of these changing patient expectations. This reorientation of healthcare services around the patient has fundamental implications for healthcare professionals, specifically challenging the dominance of service professionals in the design and delivery of health services. Utilizing a qualitative methodological framework, this paper explores the responses of healthcare professionals to service redesign initiatives implemented in acute NHS hospitals in Scotland and considers the implications of such professional responses for the development of patient-focused service delivery. Within this, it specifically examines evolving professional perspectives on the place of a service user focus in a publicly funded healthcare system, professional attitudes towards private sector managerial practices, and the dynamics of changing professional behaviour.

  16. Self-Assembled Peptide-Lanthanide Nanoclusters for Safe Tumor Therapy: Overcoming and Utilizing Biological Barriers to Peptide Drug Delivery.

    PubMed

    Yan, Jin; He, Wangxiao; Yan, Siqi; Niu, Fan; Liu, Tianya; Ma, Bohan; Shao, Yongping; Yan, Yuwei; Yang, Guang; Lu, Wuyuan; Du, Yaping; Lei, Bo; Ma, Peter X

    2018-02-27

    Developing a sophisticated nanomedicine platform to deliver therapeutics effectively and safely into tumor/cancer cells remains challenging in the field of nanomedicine. In particular, reliable peptide drug delivery systems capable of overcoming biological barriers are still lacking. Here, we developed a simple, rapid, and robust strategy to manufacture nanoclusters of ∼90 nm in diameter that are self-assembled from lanthanide-doped nanoparticles (5 nm), two anticancer peptides with different targets (BIM and PMI), and one cyclic peptide iNGR targeted to cancer cells. The peptide-lanthanide nanoclusters (LDC-PMI-BIM-iNGR) enhanced the resistance of peptide drugs to proteolysis, disassembled in response to reductive conditions that are present in the tumor microenvironment and inhibited cancer cell growth in vitro and in vivo. Notably, LDC-PMI-BIM-iNGR exhibited extremely low systemic toxicity and side effects in vivo. Thus, the peptide-lanthanide nanocluster may serve as an ideal multifunctional platform for safe, targeted, and efficient peptide drug delivery in cancer therapy.

  17. Plasmonic nanocarrier grid-enhanced Raman sensor for studies of anticancer drug delivery.

    PubMed

    Kurzątkowska, Katarzyna; Santiago, Ty; Hepel, Maria

    2017-05-15

    Targeted drug delivery systems using nanoparticle nanocarriers offer remarkable promise for cancer therapy by discriminating against devastating cytotoxicity of chemotherapeutic drugs to healthy cells. To aid in the development of new drug nanocarriers, we propose a novel plasmonic nanocarrier grid-enhanced Raman sensor which can be applied for studies and testing of drug loading onto the nanocarriers, attachment of targeting ligands, dynamics of drug release, assessment of nanocarrier stability in biological environment, and general capabilities of the nanocarrier. The plasmonic nanogrid sensor offers strong Raman enhancement due to the overlapping plasmonic fields emanating from the nearest-neighbor gold nanoparticle nanocarriers and creating the enhancement "hot spots". The sensor has been tested for immobilization of an anticancer drug gemcitabine (2',2'-difluoro-2'-deoxycytidine, GEM) which is used in treatment of pancreatic tumors. The drawbacks of currently applied treatment include high systemic toxicity, rapid drug decay, and low efficacy (ca. 20%). Therefore, the development of a targeted GEM delivery system is highly desired. We have demonstrated that the proposed nanocarrier SERS sensor can be utilized to investigate attachment of targeting ligands to nanocarriers (attachment of folic acid ligand recognized by folate receptors of cancer cells is described). Further testing of the nanocarrier SERS sensor involved drug release induced by lowering pH and increasing GSH levels, both occurring in cancer cells. The proposed sensor can be utilized for a variety of drugs and targeting ligands, including those which are Raman inactive, since the linkers can act as the Raman markers, as illustrated with mercaptobenzoic acid and para-aminothiophenol. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. In situ metrology to characterize water vapor delivery during atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmido, Tariq, E-mail: tariq.ahmido@nist.gov; Kimes, William A.; Sperling, Brent A.

    Water is often employed as the oxygen source in metal oxide atomic layer deposition (ALD) processes. It has been reported that variations in the amount of water delivered during metal oxide ALD can impact the oxide film properties. Hence, one contribution to optimizing metal oxide ALD processes would be to identify methods to better control water dose. The development of rapid, quantitative techniques for in situ water vapor measurements during ALD processes would be beneficial to achieve this goal. In this report, the performance of an in situ tunable diode laser absorption spectroscopy (TDLAS) scheme for performing rapid, quantitative watermore » partial pressure measurements in a representative quarter-inch ALD delivery line is described. This implementation of TDLAS, which utilizes a near-infrared distributed-feedback diode laser and wavelength modulation spectroscopy, provides measurements of water partial pressure on a timescale comparable to or shorter than the timescale of the gas dynamics in typical ALD systems. Depending on the degree of signal averaging, this TDLAS system was capable of measuring the water partial pressure with a detection limit in the range of ∼0.80 to ∼0.08 Pa. The utility of this TDLAS scheme was demonstrated by using it to identify characteristics of a representative water delivery system that otherwise would have been difficult to predict. Those characteristics include (1) the magnitude and time dependence of the pressure transient that can occur during water injection, and (2) the dependence of the steady-state water partial pressure on the carrier gas flow rate and the setting of the water ampoule flow restriction.« less

  19. Hybrid protein-inorganic nanoparticles: From tumor-targeted drug delivery to cancer imaging.

    PubMed

    Elzoghby, Ahmed O; Hemasa, Ayman L; Freag, May S

    2016-12-10

    Recently, a great interest has been paid to the development of hybrid protein-inorganic nanoparticles (NPs) for drug delivery and cancer diagnostics in order to combine the merits of both inorganic and protein nanocarriers. This review primarily discusses the most outstanding advances in the applications of the hybrids of naturally-occurring proteins with iron oxide, gadolinium, gold, silica, calcium phosphate NPs, carbon nanotubes, and quantum dots in drug delivery and cancer imaging. Various strategies that have been utilized for the preparation of protein-functionalized inorganic NPs and the mechanisms involved in the drug loading process are discussed. How can the protein functionalization overcome the limitations of colloidal stability, poor dispersibility and toxicity associated with inorganic NPs is also investigated. Moreover, issues relating to the influence of protein hybridization on the cellular uptake, tumor targeting efficiency, systemic circulation, mucosal penetration and skin permeation of inorganic NPs are highlighted. A special emphasis is devoted to the novel approaches utilizing the protein-inorganic nanohybrids in combined cancer therapy, tumor imaging, and theranostic applications as well as stimuli-responsive drug release from the nanohybrids. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Fibrin-binding, peptide amphiphile micelles for targeting glioblastoma☆

    PubMed Central

    Chung, Eun Ji; Cheng, Yu; Morshed, Ramin; Nord, Kathryn; Han, Yu; Wegscheid, Michelle L.; Auffinger, Brenda; Wainwright, Derek A.; Lesniak, Maciej S.; Tirrell, Matthew V.

    2013-01-01

    Glioblastoma-targeted drug delivery systems facilitate efficient delivery of chemotherapeutic agents to malignant gliomas, while minimizing systemic toxicity and side effects. Taking advantage of the fibrin deposition that is characteristic of tumors, we constructed spherical, Cy7-labeled, targeting micelles to glioblastoma through the addition of the fibrin-binding pentapeptide, cysteine–arginine–glutamic acid–lysine–alanine, or CREKA. Conjugation of the CREKA peptide to Cy7-micelles increased the average particle size and zeta potential. Upon intravenous administration to GL261 glioma bearing mice, Cy7-micelles passively accumulated at the brain tumor site via the enhanced permeability and retention (EPR) effect, and Cy7-CREKA-micelles displayed enhanced tumor homing via active targeting as early as 1 h after administration, as confirmed via in vivo and ex vivo imaging and immunohistochemistry. Biodistribution of micelles showed an accumulation within the liver and kidneys, leading to micelle elimination via renal clearance and the reticuloendothelial system (RES). Histological evaluation showed no signs of cytotoxicity or tissue damage, confirming the safety and utility of this nanoparticle system for delivery to glioblastoma. Our findings offer strong evidence for the glioblastoma-targeting potential of CREKA-micelles and provide the foundation for CREKA-mediated, targeted therapy of glioma. PMID:24211079

  1. Lipid Nanoparticles Enabling Gene Therapies: From Concepts to Clinical Utility.

    PubMed

    Kulkarni, Jayesh A; Cullis, Pieter R; van der Meel, Roy

    2018-04-23

    Genetic drugs based on RNA or DNA have remarkable therapeutic potential as virtually any disease can be treated by silencing a pathological gene, expressing a beneficial protein, or by editing defective genes. However, therapies based on nucleic acid polymers require sophisticated delivery systems to deliver these macromolecules to the interior of target cells. In this study, we review progress in developing nonviral lipid nanoparticle (LNP) delivery systems that have attractive properties, including ease of manufacture, reduced immune responses, multidosing capabilities, larger payloads, and flexibility of design. LNP systems represent the most advanced delivery systems for genetic drugs as it is expected that an LNP-short interfering RNA (siRNA) formulation will receive clinical approval from the Food and Drug Administration (FDA) in 2018 for treatment of the hereditary condition transthyretin-mediated amyloidosis, a fatal condition for which there is currently no treatment. This achievement is largely due to the development of optimized ionizable cationic lipids, arguably the most important factor in the clinical success of LNP-siRNA. In addition, we highlight potential LNP applications, including targeting tissues beyond the liver and therapeutic approaches based on messenger RNA or Clustered Regularly Interspaced Short Palindromic Repeats/Cas.

  2. Case study of a central-station grid-intertie photovoltaic system with V-trough concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freilich, J.; Gordon, J.M.

    1991-01-01

    This presentation is a cast study of an installed, central-station (no storage), utility-intertie photovoltaic (PV) system in Sede Boqer, Israel (latitude 30.9{degree}N). The nominally 12 kW peak PV system is comprised of 189 polycrystalline silicon modules mounted on inexpensive, one-axis north-south horizontal trackers with V-trough mirrors for optical boost. The power conditioning unit operates at a fixed voltage rather than at maximum power point (MPP). The primary task in analyzing the installed system was to investigate the cause of measured power output significantly below the design predictions of the installers, and to recommend system design modifications. Subsequent tasks included themore » quantitative assessment of fixed-voltage operation and of the energetic value of V-trough concentration and one-axis tracking for this system. Sample results show: (1) fixed-voltage operation at the best fixed voltage (BFV) can achieve around 96% of the yearly energy of MPP operation; (2) the sensitivity of the yearly energy delivery to the selection of fixed voltage and its marked asymmetry about the BFV; (3) the influences of inverter current constraints on yearly energy delivery and BFV; and (4) how the separate effects of tracking and optical concentration increase yearly energy delivery.« less

  3. Smart multifunctional drug delivery towards anticancer therapy harmonized in mesoporous nanoparticles.

    PubMed

    Baek, Seonmi; Singh, Rajendra K; Khanal, Dipesh; Patel, Kapil D; Lee, Eun-Jung; Leong, Kam W; Chrzanowski, Wojciech; Kim, Hae-Won

    2015-09-14

    Nanomedicine seeks to apply nanoscale materials for the therapy and diagnosis of diseased and damaged tissues. Recent advances in nanotechnology have made a major contribution to the development of multifunctional nanomaterials, which represents a paradigm shift from single purpose to multipurpose materials. Multifunctional nanomaterials have been proposed to enable simultaneous target imaging and on-demand delivery of therapeutic agents only to the specific site. Most advanced systems are also responsive to internal or external stimuli. This approach is particularly important for highly potent drugs (e.g. chemotherapeutics), which should be delivered in a discreet manner and interact with cells/tissues only locally. Both advances in imaging and precisely controlled and localized delivery are critically important in cancer treatment, and the use of such systems - theranostics - holds great promise to minimise side effects and boost therapeutic effectiveness of the treatment. Among others, mesoporous silica nanoparticles (MSNPs) are considered one of the most promising nanomaterials for drug delivery. Due to their unique intrinsic features, including tunable porosity and size, large surface area, structural diversity, easily modifiable chemistry and suitability for functionalization, and biocompatibility, MSNPs have been extensively utilized as multifunctional nanocarrier systems. The combination or hybridization with biomolecules, drugs, and other nanoparticles potentiated the ability of MSNPs towards multifunctionality, and even smart actions stimulated by specified signals, including pH, optical signal, redox reaction, electricity and magnetism. This paper provides a comprehensive review of the state-of-the-art of multifunctional, smart drug delivery systems centered on advanced MSNPs, with special emphasis on cancer related applications.

  4. Smart multifunctional drug delivery towards anticancer therapy harmonized in mesoporous nanoparticles

    NASA Astrophysics Data System (ADS)

    Baek, Seonmi; Singh, Rajendra K.; Khanal, Dipesh; Patel, Kapil D.; Lee, Eun-Jung; Leong, Kam W.; Chrzanowski, Wojciech; Kim, Hae-Won

    2015-08-01

    Nanomedicine seeks to apply nanoscale materials for the therapy and diagnosis of diseased and damaged tissues. Recent advances in nanotechnology have made a major contribution to the development of multifunctional nanomaterials, which represents a paradigm shift from single purpose to multipurpose materials. Multifunctional nanomaterials have been proposed to enable simultaneous target imaging and on-demand delivery of therapeutic agents only to the specific site. Most advanced systems are also responsive to internal or external stimuli. This approach is particularly important for highly potent drugs (e.g. chemotherapeutics), which should be delivered in a discreet manner and interact with cells/tissues only locally. Both advances in imaging and precisely controlled and localized delivery are critically important in cancer treatment, and the use of such systems - theranostics - holds great promise to minimise side effects and boost therapeutic effectiveness of the treatment. Among others, mesoporous silica nanoparticles (MSNPs) are considered one of the most promising nanomaterials for drug delivery. Due to their unique intrinsic features, including tunable porosity and size, large surface area, structural diversity, easily modifiable chemistry and suitability for functionalization, and biocompatibility, MSNPs have been extensively utilized as multifunctional nanocarrier systems. The combination or hybridization with biomolecules, drugs, and other nanoparticles potentiated the ability of MSNPs towards multifunctionality, and even smart actions stimulated by specified signals, including pH, optical signal, redox reaction, electricity and magnetism. This paper provides a comprehensive review of the state-of-the-art of multifunctional, smart drug delivery systems centered on advanced MSNPs, with special emphasis on cancer related applications.

  5. Automated Developmental Disabilities Out-Patient Treatment Review System (ADDOPTRS)—Development and Automation of a Microcomputer Based Case Management System

    PubMed Central

    Fisch, Clifford B.; Fisch, Martin L.

    1979-01-01

    The Stanley S. Lamm Institute for Developmental Disabilities of The Long Island College Hospital, in conjunction with Micro-Med Systems has developed a low cost micro-computer based information system (ADDOP TRS) which monitors quality of care in outpatient settings rendering services to the developmentally disabled population. The process of conversion from paper record keeping systems to direct key-to-disk data capture at the point of service delivery is described. Data elements of the information system including identifying patient information, coded and English-grammar entry procedures for tracking elements of service as well as their delivery status are described. Project evaluation criteria are defined including improved quality of care, improved productivity for clerical and professional staff and enhanced decision making capability. These criteria are achieved in a cost effective manner as a function of more efficient information flow. Administrative applications including staff/budgeting procedures, submissions for third party reimbursement and case reporting to utilization review committees are considered.

  6. Crew systems and architectural considerations for first lunar surface return missions

    NASA Astrophysics Data System (ADS)

    Winisdoerffer, F.; Ximenes, S.

    1992-08-01

    The design requirements for the habitability of the pressurized volumes of a typical first manned lander are presented. Attention is given to providing dual habitation/exploration services (EVA/IVA), supporting the separation of the surface/flight functions, allowing growth potential based on site characteristics, and in situ resources utilization. Lunar lander conceptual diagrams are provided for the basic system architecture, automatic cargo delivery, the piloted crew module, and the pressurized volumes.

  7. Aligning with physicians to regionalize services.

    PubMed

    Fink, John

    2014-11-01

    When effectively designed and implemented, regionalization allows a health system to coordinate care, eliminate redundancies, reduce costs, optimize resource utilization, and improve outcomes. The preferred model to manage service lines regionally will depend on each facility's capabilities and the willingness of physicians to accept changes in clinical delivery. Health systems can overcome physicians' objections to regionalization by implementing a hospital-physician alignment structure that gives a measure of shared control in the management of the organization.

  8. Assessment of the adequacy of oxygen delivery.

    PubMed

    Mayer, Katherine; Trzeciak, Stephen; Puri, Nitin K

    2016-10-01

    This article reviews the recent literature pertaining to assessment of the adequacy of oxygen delivery in critically ill patients with circulatory shock. The assessment of the adequacy of oxygen delivery has traditionally involved measurement of lactate, central (or mixed) venous oxygen saturation (ScvO2), and global hemodynamic markers such as mean arterial pressure and cardiac index. The search for noninvasive, reliable, and sensitive methods to detect derangements in oxygen delivery and utilization continues. Recent studies focus on near-infrared spectroscopy (NIRS) to assess regional tissue oxygenation, as well as bedside ultrasound techniques to assess the macrovascular hemodynamic factors in oxygen delivery. In this article, we review physiologic principles of global oxygen delivery, and discuss the bedside approach to assessing the adequacy of oxygen delivery in critically ill patients. Although there have been technological advances in the assessment of oxygen delivery, we revisit and emphasize the importance of a 'tried and true' method - the physical examination. Also potentially important in the evaluation of oxygen delivery is the utilization of biomarkers (e.g., lactate, ScvO2, NIRS). In complementary fashion, bedside ultrasound for hemodynamic assessment may augment the physical examination and biomarkers, and represents a potentially important adjunct for assessing the adequacy of oxygen delivery.

  9. Characterization of Nano Bamboo Charcoal Drug Delivery System for Eucommia ulmoides Extract and Its Anticancer Effect In vitro.

    PubMed

    Zeng, Zhaoyan; Li, Xiangzhou; Zhang, Sheng; Huang, Dan

    2017-01-01

    Nano bamboo charcoal is being widely used as sustained release carrier for chemicals for its high specific surface area, sound biocompatibility, and nontoxicity; however, there have been no reports on nano bamboo charcoal as sustained release carrier for traditional Chinese medicine (TCM). To study the effect of nano bamboo charcoal in absorbing and sustained releasing Eucommia ulmoides extract (EUE) and to verify the in vitro anticancer effect of the sustained release liquid, so as to provide a theoretical basis for the development and utilization of nano bamboo charcoal as TCM sustained-release preparation. The adsorption capacity for the nano bamboo charcoal on EUE was measured by Langmuir model, and the release experiment was carried out under intestinal fluid condition. Characteristic changes for the nano bamboo charcoal nano-drug delivery system with and without adsorption of E. ulmoides were evaluated by scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and specific surface area. In addition, the anticancer effect from this novel bamboo charcoal E. ulmoides delivery system was evaluated against a human colon cancer cell line (HCT116). It was found that nano bamboo charcoal exhibits good adsorption capacity (up to 462.96 mg/g at 37°C). The cumulative release rate for EUE from this nano bamboo charcoal delivery system was 70.67%, and specific surface area for the nano bamboo charcoal decreased from 820.32 m 2 /g to 443.80 m 2 /g after EUE was loaded. An in vitro anticancer study showed that the inhibition rate for E. ulmoides against HCT116 cancer cells was 23.07%, for this novel bamboo charcoal nano-drug delivery system. This study provides a novel strategy for the delivery of traditional Chinese medicine using bamboo charcoal nano-drug delivery system. The adsorption equilibrium was reached after 30 min of ultrasonic treatmentThe saturated adsorption capacity of Eucommia ulmoides extract by nano bamboo charcoal under ultrosonic condition was 462. 96 mg/gThe cumulative release rate of E. ulmoides extract from the nano bamboo charcoal delivery system in artificial intestinal juice was 70.67%The inhibition ratio of HCT116 cancer cells by sustained release liquid was 23.07%. Abbreviation used: EUE: Eucommia ulmoides extract.

  10. Learning Technologies Management System (LiTMS): A Multidimensional Service Delivery Model for College Students with Learning Disabilities and ADHD

    ERIC Educational Resources Information Center

    Parker, David R.; White, Cheri E.; Collins, Laura; Banerjee, Manju; McGuire, Joan M.

    2009-01-01

    Today's college students are expected to utilize a variety of learning technologies to succeed in higher education. Students with learning disabilities (LD) and/or Attention-Deficit/Hyperactivity Disorders (ADHD) can encounter barriers to equal access and effective learning in this new digital environment, including the development of proficiency…

  11. Tri-partite complex for axonal transport drug delivery achieves pharmacological effect

    PubMed Central

    2010-01-01

    Background Targeted delivery of pharmaceutical agents into selected populations of CNS (Central Nervous System) neurons is an extremely compelling goal. Currently, systemic methods are generally used for delivery of pain medications, anti-virals for treatment of dermatomal infections, anti-spasmodics, and neuroprotectants. Systemic side effects or undesirable effects on parts of the CNS that are not involved in the pathology limit efficacy and limit clinical utility for many classes of pharmaceuticals. Axonal transport from the periphery offers a possible selective route, but there has been little progress towards design of agents that can accomplish targeted delivery via this intraneural route. To achieve this goal, we developed a tripartite molecular construction concept involving an axonal transport facilitator molecule, a polymer linker, and a large number of drug molecules conjugated to the linker, then sought to evaluate its neurobiology and pharmacological behavior. Results We developed chemical synthesis methodologies for assembling these tripartite complexes using a variety of axonal transport facilitators including nerve growth factor, wheat germ agglutinin, and synthetic facilitators derived from phage display work. Loading of up to 100 drug molecules per complex was achieved. Conjugation methods were used that allowed the drugs to be released in active form inside the cell body after transport. Intramuscular and intradermal injection proved effective for introducing pharmacologically effective doses into selected populations of CNS neurons. Pharmacological efficacy with gabapentin in a paw withdrawal latency model revealed a ten fold increase in half life and a 300 fold decrease in necessary dose relative to systemic administration for gabapentin when the drug was delivered by axonal transport using the tripartite vehicle. Conclusion Specific targeting of selected subpopulations of CNS neurons for drug delivery by axonal transport holds great promise. The data shown here provide a basic framework for the intraneural pharmacology of this tripartite complex. The pharmacologically efficacious drug delivery demonstrated here verify the fundamental feasibility of using axonal transport for targeted drug delivery. PMID:20085661

  12. Skilled delivery care service utilization in Ethiopia: analysis of rural-urban differentials based on national demographic and health survey (DHS) data.

    PubMed

    Fekadu, Melaku; Regassa, Nigatu

    2014-12-01

    Despite the slight progress made on Antenatal Care (ANC) utilization, skilled delivery care service utilization in Ethiopia is still far-below any acceptable standards. Only 10% of women receive assistance from skilled birth attendants either at home or at health institutions, and as a result the country is recording a high maternal mortality ratio (MMR) of 676 per 100,000 live births (EDHS, 2011). Hence, this study aimed at identifying the rural-urban differentials in the predictors of skilled delivery care service utilization in Ethiopia. The study used the recent Ethiopian Demographic and Health Survey (EDHS 2011) data. Women who had at least one birth in the five years preceding the survey were included in this study. The data were analyzed using univariate (percentage), bivariate (chi-square) and multivariate (Bayesian logistic regression). The results showed that of the total 6,641 women, only 15.6% received skilled delivery care services either at home or at health institution. Rural women were at greater disadvantage to receive the service. Only 4.5% women in rural areas received assistance from skilled birth attendants (SBAs) compared to 64.1 % of their urban counter parts. Through Bayesian logistic regression analysis, place of residence, ANC utilization, women's education, age and birth order were identified as key predictors of service utilization. The findings highlight the need for coordinated effort from government and stakeholders to improve women's education, as well as strengthen community participation. Furthermore, the study recommended the need to scale up the quality of ANC and family planning services backed by improved and equitable access, availability and quality of skilled delivery care services.

  13. Localized delivery of chemotherapy to the cervix for radiosensitization.

    PubMed

    Hodge, Lucy S; Downs, Levi S; Chura, Justin C; Thomas, Sajeena G; Callery, Patrick S; Soisson, A Patrick; Kramer, Paul; Wolfe, Stephen S; Tracy, Timothy S

    2012-10-01

    Chemoradiation is the mainstay of therapy for advanced cervical cancer, with the most effective treatment regimens involving combinations of radiosensitizing agents. However, administration of radiosensitizing chemotherapeutics concurrently with pelvic radiation is not without side effects. The aim of this study was to examine the utility of localized drug delivery as a means of improving drug targeting of radiosensitizing chemotherapeutics to the cervix while limiting systemic toxicities. An initial proof-of-concept study was performed in 14 healthy women following local administration of diazepam utilizing a novel cervical delivery device (CerviPrep™). Uterine vein and peripheral blood samples were collected and diazepam was measured using a GC-MS method. In the follow-up study, gemcitabine was applied to the cervix in 17 women undergoing hysterectomy for various gynecological malignancies. Cervical tissue, uterine vein blood samples, and peripheral plasma were collected, and gemcitabine and its deaminated metabolite 2',2'-difluorodeoxyuridine (dFdU) were measured using HPLC-UV and LC/MS methods. Targeted delivery of diazepam to the cervix was consistent with parent drug detectable in the uterine vein of 13 of 14 women. In the second study, pharmacologically relevant concentrations of gemcitabine (0.01-6.6 nmol/g tissue) were detected in the cervical tissue of 11 of 16 available specimens with dFdU measureable in 15 samples (0.04-8.8 nmol/g tissue). Neither gemcitabine nor its metabolites were detected in the peripheral plasma of any subject. Localized drug delivery to the cervix is possible and may be useful in limiting toxicity associated with intravenous administration of chemotherapeutics for radiosensitization. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect.

    PubMed

    Acharya, Sarbari; Sahoo, Sanjeeb K

    2011-03-18

    As mortality due to cancer continues to rise, advances in nanotechnology have significantly become an effective approach for achieving efficient drug targeting to tumour tissues by circumventing all the shortcomings of conventional chemotherapy. During the past decade, the importance of polymeric drug-delivery systems in oncology has grown exponentially. In this context, poly(lactic-co-glycolic acid) (PLGA) is a widely used polymer for fabricating 'nanoparticles' because of biocompatibility, long-standing track record in biomedical applications and well-documented utility for sustained drug release, and hence has been the centre of focus for developing drug-loaded nanoparticles for cancer therapy. Such PLGA nanoparticles have also been used to develop proteins and peptides for nanomedicine, and nanovaccines, as well as a nanoparticle-based drug- and gene-delivery system for cancer therapy, and nanoantigens and growth factors. These drug-loaded nanoparticles extravasate through the tumour vasculature, delivering their payload into the cells by the enhanced permeability and retention (EPR) effect, thereby increasing their therapeutic effect. Ongoing research about drug-loaded nanoparticles and their delivery by the EPR effect to the tumour tissues has been elucidated in this review with clarity. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Assessment of Delivery Accuracy in an Operational-Like Environment

    NASA Technical Reports Server (NTRS)

    Sharma, Shivanjli; Wynnyk, Mitch

    2016-01-01

    In order to enable arrival management concepts and solutions in a Next Generation Air Transportation System (NextGen) environment, ground-based sequencing and scheduling functions were developed to support metering operations in the National Airspace System. These sequencing and scheduling tools are designed to assist air traffic controllers in developing an overall arrival strategy, from enroute down to the terminal area boundary. NASA developed a ground system concept and protoype capability called Terminal Sequencing and Spacing (TSAS) to extend metering operations into the terminal area to the runway. To demonstrate the use of these scheduling and spacing tools in an operational-like environment, the FAA, NASA, and MITRE conducted an Operational Integration Assessment (OIA) of a prototype TSAS system at the FAA's William J. Hughes Technical Center (WJHTC). This paper presents an analysis of the arrival management strategies utilized and delivery accuracy achieved during the OIA. The analysis demonstrates how en route preconditioning, in various forms, and schedule disruptions impact delivery accuracy. As the simulation spanned both enroute and terminal airspace, the use of Ground Interval Management - Spacing (GIM-S) enroute speed advisories was investigated. Delivery accuracy was measured as the difference between the Scheduled Time of Arrival (STA) and the Actual Time of Arrival (ATA). The delivery accuracy was computed across all runs conducted during the OIA, which included deviations from nominal operations which are known to commonly occur in real operations, such as schedule changes and missed approaches. Overall, 83% of all flights were delivered into the terminal airspace within +/- 30 seconds of their STA and 94% of flights were delivered within +/- 60 seconds. The meter fix delivery accuracy standard deviation was found to be between 36 and 55 seconds across all arrival procedures. The data also showed when schedule disruptions were excluded, the percentage of aircraft delivered within +/- 30 seconds was between 85 and 90% across the various arrival procedures at the meter fix. This paper illustrates the ability to meet new delivery accuracy requirements in an operational-like environment using operational systems and NATCA controller participants, while also including common events that might cause disruptions to the schedule and overall system.

  16. The emerging role of the client in the delivery of primary care to older Americans.

    PubMed Central

    Counte, M A

    1998-01-01

    OBJECTIVE: To address the likely influences, on options faced by older clients, of specific changes in the delivery system and several possible responses to these changes and the changed options, by older persons in the aggregate. STUDY DESIGN: Four specific topics are discussed at length: (1) the probable altered role for the older healthcare client brought on by organizational changes; (2) findings from research on elderly health maintenance behavior and reasons for the increased importance of this issue; (3) the effectiveness of the conventional approach to explaining health services utilization in population studies; and (4) recommendations for future research into the direct or indirect influence of organizational changes in the primary healthcare system on the health-related decisions and behaviors of older persons. PMID:9618677

  17. MATHEMATICAL METHODS IN MEDICAL IMAGE PROCESSING

    PubMed Central

    ANGENENT, SIGURD; PICHON, ERIC; TANNENBAUM, ALLEN

    2013-01-01

    In this paper, we describe some central mathematical problems in medical imaging. The subject has been undergoing rapid changes driven by better hardware and software. Much of the software is based on novel methods utilizing geometric partial differential equations in conjunction with standard signal/image processing techniques as well as computer graphics facilitating man/machine interactions. As part of this enterprise, researchers have been trying to base biomedical engineering principles on rigorous mathematical foundations for the development of software methods to be integrated into complete therapy delivery systems. These systems support the more effective delivery of many image-guided procedures such as radiation therapy, biopsy, and minimally invasive surgery. We will show how mathematics may impact some of the main problems in this area, including image enhancement, registration, and segmentation. PMID:23645963

  18. Internalized compartments encapsulated nanogels for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Yu, Jicheng; Zhang, Yuqi; Sun, Wujin; Wang, Chao; Ranson, Davis; Ye, Yanqi; Weng, Yuyan; Gu, Zhen

    2016-04-01

    Drug delivery systems inspired by natural particulates hold great promise for targeted cancer therapy. An endosome formed by internalization of plasma membrane has a massive amount of membrane proteins and receptors on the surface, which is able to specifically target the homotypic cells. Herein, we describe a simple method to fabricate an internalized compartments encapsulated nanogel with endosome membrane components (EM-NG) from source cancer cells. Following intracellular uptake of methacrylated hyaluronic acid (m-HA) adsorbed SiO2/Fe3O4 nanoparticles encapsulating a crosslinker and a photoinitiator, EM-NG was readily prepared through in situ crosslinking initiated under UV irradiation after internalization. The resulting nanogels loaded with doxorubicin (DOX) displayed enhanced internalization efficiency to the source cells through a specific homotypic affinity in vitro. However, when treated with the non-source cells, the EM-NGs exhibited insignificant difference in therapeutic efficiency compared to a bare HA nanogel with DOX. This study illustrates the potential of utilizing an internalized compartments encapsulated formulation for targeted cancer therapy, and offers guidelines for developing a natural particulate-inspired drug delivery system.Drug delivery systems inspired by natural particulates hold great promise for targeted cancer therapy. An endosome formed by internalization of plasma membrane has a massive amount of membrane proteins and receptors on the surface, which is able to specifically target the homotypic cells. Herein, we describe a simple method to fabricate an internalized compartments encapsulated nanogel with endosome membrane components (EM-NG) from source cancer cells. Following intracellular uptake of methacrylated hyaluronic acid (m-HA) adsorbed SiO2/Fe3O4 nanoparticles encapsulating a crosslinker and a photoinitiator, EM-NG was readily prepared through in situ crosslinking initiated under UV irradiation after internalization. The resulting nanogels loaded with doxorubicin (DOX) displayed enhanced internalization efficiency to the source cells through a specific homotypic affinity in vitro. However, when treated with the non-source cells, the EM-NGs exhibited insignificant difference in therapeutic efficiency compared to a bare HA nanogel with DOX. This study illustrates the potential of utilizing an internalized compartments encapsulated formulation for targeted cancer therapy, and offers guidelines for developing a natural particulate-inspired drug delivery system. Electronic supplementary information (ESI) available: Synthesis of m-HA; synthesis of rhodamine-HA derivative; supplementary data on relative fluorescence intensity of DOX-EN-NGs on HeLa cells. See DOI: 10.1039/c5nr08895j

  19. Targeted cancer drug delivery with aptamer-functionalized polymeric nanoparticles.

    PubMed

    Zununi Vahed, Sepideh; Fathi, Nazanin; Samiei, Mohammad; Maleki Dizaj, Solmaz; Sharifi, Simin

    2018-06-21

    Based on exceptional advantages of aptamers, increasing attention has been presented in the utilize of them as targeted ligands for cancer drug delivery. Recently, the progress of aptamer- targeted nanoparticles has presented new therapeutic systems for several types of cancer with decreased toxicity and improved efficacy. We highlight some of the promising formulations of aptamer-conjugated polymeric nanoparticles for specific targeted drug delivery to cancer cells. This review paper focuses on the current progresses in the use of the novel strategies to aptamer-targeted drug delivery for chemotherapy. An extensive literature review was performed using internet database, mainly PubMed based on MeSH keywords. The searches included full-text publications written in English without any limitation in date. The abstracts, reviews, books as well as studies without obvious relating of aptamers as targeted ligands for cancer drug delivery were excluded from the study. The reviewed literature revealed that aptamers with ability to modify and conjugate to various molecules can be used as targeted cancer therapy agents. However, development of aptamers unique to each individual's tumor to the development of personalized medicine seems to be needed.

  20. Ultraviolet, visible, and infrared laser delivery using laser-to-fiber coupling via a grazing-incidence-based hollow taper

    NASA Astrophysics Data System (ADS)

    Ilev, Ilko K.; Waynant, Ronald W.

    2001-01-01

    We present a novel all-optical-waveguide method for ultraviolet (UV), visible (VIS) and infrared (IR) laser delivery including a lens-free method of laser-to-fiber coupling using a simple uncoated glass hollow taper. Based on the grazing incidence effect, the hollow taper provides a way of direct launching, without any intermediate focusing elements, high power laser radiation into delivery fibers. Because of the mutual action of the nearly parallel laser excitation, the mode coupling process, and mode filtering effect, the hollow taper serves as a mode converter that transforms the highly multimode profile of the input laser emission into a high-quality Gaussian-shaped profile at the taper output. When the grazing incidence effect of the taper is applied to laser delivery, the maintenance of high reflectance coefficients in a wide spectral region allows to utilize the same uncoated hollow taper for laser radiation in the UV, VIS and IR ranges. Applying the experimental hollow-taper based delivery systems, we obtain high laser- to-taper and taper-to-fiber coupling efficiencies.

  1. Transportable educational programs for scientific and technical professionals: More effective utilization of automated scientific and technical data base systems

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D.

    1987-01-01

    This grant final report executive summary documents a major, long-term program addressing innovative educational issues associated with the development, administration, evaluation, and widespread distribution of transportable educational programs for scientists and engineers to increase their knowledge of, and facilitate their utilization of automated scientific and technical information storage and retrieval systems. This educational program is of very broad scope, being targeted at Colleges of Engineering and Colleges of Physical sciences at a large number of colleges and universities throughout the United States. The educational program is designed to incorporate extensive hands-on, interactive usage of the NASA RECON system and is supported by a number of microcomputer-based software systems to facilitate the delivery and usage of the educational course materials developed as part of the program.

  2. Nanoparticle bioconjugate for controlled cellular delivery of doxorubicin

    NASA Astrophysics Data System (ADS)

    Sangtani, Ajmeeta; Petryayeva, Eleonora; Wu, Miao; Susumu, Kimihiro; Oh, Eunkeu; Huston, Alan L.; Lasarte-Aragones, Guillermo; Medintz, Igor L.; Algar, W. Russ; Delehanty, James B.

    2018-02-01

    Nanoparticle (NP)-mediated drug delivery offers the potential to overcome limitations of systemic delivery, including the ability to specifically target cargo and control release of NP-associated drug cargo. Doxorubicin (DOX) is a widely used FDA-approved cancer therapeutic; however, multiple side effects limit its utility. Thus, there is wide interest in modulating toxicity after cell delivery. Our goal here was to realize a NP-based DOX-delivery system that can modulate drug toxicity by controlling the release kinetics of DOX from the surface of a hard NP carrier. To achieve this, we employed a quantum dot (QD) as a central scaffold which DOX was appended via three different peptidyl linkages (ester, disulfide, hydrazone) that are cleavable in response to various intracellular conditions. Attachment of a cell penetrating peptide (CPP) containing a positively charged polyarginine sequence facilitates endocytosis of the ensemble. Polyhistidine-driven metal affinity coordination was used to self-assemble both peptides to the QD surface, allowing for fine control over both the ratio of peptides attached to the QD as well as DOX dose delivered to cells. Microplate-based Förster resonance energy transfer assays confirmed the successful ratiometric assembly of the conjugates and functionality of the linkages. Cell delivery experiments and cytotoxicity assays were performed to compare the various cleavable linkages to a control peptide where DOX is attached through an amide bond. The role played by various attachment chemistries used in QD-peptide-drug assemblies and their implications for the rationale in design of NPbased constructs for drug delivery is described here.

  3. Synthesis of the project leadership staffing needs for successful development of alternative delivery programs.

    DOT National Transportation Integrated Search

    2017-08-01

    This research provides a synthesis of practices in organizational structuring and professional staffing of the innovative delivery units in several state DOTs across the nation that are actively utilizing alternative project delivery. Several major c...

  4. A Meta-heuristic Approach for Variants of VRP in Terms of Generalized Saving Method

    NASA Astrophysics Data System (ADS)

    Shimizu, Yoshiaki

    Global logistic design is becoming a keen interest to provide an essential infrastructure associated with modern societal provision. For examples, we can designate green and/or robust logistics in transportation systems, smart grids in electricity utilization systems, and qualified service in delivery systems, and so on. As a key technology for such deployments, we engaged in practical vehicle routing problem on a basis of the conventional saving method. This paper extends such idea and gives a general framework available for various real-world applications. It can cover not only delivery problems but also two kind of pick-up problems, i.e., straight and drop-by routings. Moreover, multi-depot problem is considered by a hybrid approach with graph algorithm and its solution method is realized in a hierarchical manner. Numerical experiments have been taken place to validate effectiveness of the proposed method.

  5. Mitigation of the consequence of seismically induced damage on a utility water network by means of next generation SCADA

    NASA Astrophysics Data System (ADS)

    Robertson, Jamie; Shinozuka, Masanobu; Wu, Felix

    2011-04-01

    When a lifeline system such as a water delivery network is damaged due to a severe earthquake, it is critical to identify its location and extent of the damage in real time in order to minimize the potentially disastrous consequence such damage could otherwise entail. This paper demonstrates how the degree of such minimization can be estimated qualitatively by using the water delivery system of Irvine Water Ranch District (IRWD) as testbed, when it is subjected to magnitude 6.6 San Joaquin Hills Earthquake. In this demonstration, we consider two cases when the IRWD system is equipped or not equipped with a next generation SCADA which consists of a network of MEMS acceleration sensors densely populated and optimally located. These sensors are capable of identifying the location and extent of the damage as well as transmitting the data to the SCADA center for monitoring and control.

  6. Evaluating new health information technologies: expanding the frontiers of health care delivery and health promotion.

    PubMed

    Kreps, Gary L

    2002-01-01

    The modern health care system is being irrevocably changed by the development and introduction of new health information technologies (such as health information systems, decision-support tools, specialized websites, and innovative communication devices). While many of these new technologies hold the promise of revolutionizing the modern health system and facilitating improvements in health care delivery, health education, and health promotion, it is imperative to carefully examine and assess the effectiveness of these technological tools to determine which products are most useful to apply in specific contexts, as well as to learn how to best utilize these products and processes. Without good evaluative information about new technologies, we are unlikely to reap the greatest benefits from these powerful new tools. This chapter examines the demand for evaluating health information technologies and suggests several strategies for conducting rigorous and relevant evaluation research.

  7. Advancement in carbon nanotubes: basics, biomedical applications and toxicity.

    PubMed

    Beg, Sarwar; Rizwan, Mohammad; Sheikh, Asif M; Hasnain, M Saquib; Anwer, Khalid; Kohli, Kanchan

    2011-02-01

    Carbon nanotubes (CNTs) have attracted much attention by researchers worldwide in recent years for their small dimensions and unique architecture, and for having immense potential in nanomedicine as biocompatible and supportive substrates, as a novel tool for the delivery of therapeutic molecules including peptides, RNA and DNA, and also as sensors, actuators and composites. CNTs have been employed in the development of molecular electronic, composite materials and others due to their unique atomic structure, high surface area-to-volume ratio and excellent electronic, mechanical and thermal properties. Recently they have been exploited as novel nanocarriers in drug delivery systems and biomedical applications. Their larger inner volume as compared with the dimensions of the tube and easy immobilization of their outer surface with biocompatible materials make CNTs a superior nanomaterial for drug delivery. Literature reveals that CNTs are versatile carriers for controlled and targeted drug delivery, especially for cancer cells, because of their cell membrane penetrability. This review enlightens the biomedical application of CNTs with special emphasis on utilization in controlled and targeted drug delivery, as a diagnostics tool and other possible uses in therapeutic systems. The review also focuses on the toxicity aspects of CNTs, and revealed that genotoxic potential, mutagenic and carcinogenic effects of different types of CNTs must be explored and overcome by formulating safe biomaterial for drug delivery. The review also describes the regulatory aspects and clinical and market status of CNTs. © 2010 The Authors. JPP © 2010 Royal Pharmaceutical Society.

  8. Do Physical Proximity and Availability of Adequate Infrastructure at Public Health Facility Increase Institutional Delivery? A Three Level Hierarchical Model Approach

    PubMed Central

    Patel, Rachana; Ladusingh, Laishram

    2015-01-01

    This study aims to examine the inter-district and inter-village variation of utilization of health services for institutional births in EAG states in presence of rural health program and availability of infrastructures. District Level Household Survey-III (2007–08) data on delivery care and facility information was used for the purpose. Bivariate results examined the utilization pattern by states in presence of correlates of women related while a three-level hierarchical multilevel model illustrates the effect of accessibility, availability of health facility and community health program variables on the utilization of health services for institutional births. The study found a satisfactory improvement in state Rajasthan, Madhya Pradesh and Orissa, importantly, in Bihar and Uttaranchal. The study showed that increasing distance from health facility discouraged institutional births and there was a rapid decline of more than 50% for institutional delivery as the distance to public health facility exceeded 10 km. Additionally, skilled female health worker (ANM) and observed improved public health facility led to significantly increase the probability of utilization as compared to non-skilled ANM and not-improved health centers. Adequacy of essential equipment/laboratory services required for maternal care significantly encouraged deliveries at public health facility. District/village variables neighborhood poverty was negatively related to institutional delivery while higher education levels in the village and women’s residing in more urbanized districts increased the utilization. “Inter-district” variation was 14 percent whereas “between-villages” variation for the utilization was 11 percent variation once controlled for all the three-level variables in the model. This study suggests that the mere availability of health facilities is necessary but not sufficient condition to promote utilization until the quality of service is inadequate and inaccessible considering the inter-districts variation for the program implementation. PMID:26689199

  9. Do Physical Proximity and Availability of Adequate Infrastructure at Public Health Facility Increase Institutional Delivery? A Three Level Hierarchical Model Approach.

    PubMed

    Patel, Rachana; Ladusingh, Laishram

    2015-01-01

    This study aims to examine the inter-district and inter-village variation of utilization of health services for institutional births in EAG states in presence of rural health program and availability of infrastructures. District Level Household Survey-III (2007-08) data on delivery care and facility information was used for the purpose. Bivariate results examined the utilization pattern by states in presence of correlates of women related while a three-level hierarchical multilevel model illustrates the effect of accessibility, availability of health facility and community health program variables on the utilization of health services for institutional births. The study found a satisfactory improvement in state Rajasthan, Madhya Pradesh and Orissa, importantly, in Bihar and Uttaranchal. The study showed that increasing distance from health facility discouraged institutional births and there was a rapid decline of more than 50% for institutional delivery as the distance to public health facility exceeded 10 km. Additionally, skilled female health worker (ANM) and observed improved public health facility led to significantly increase the probability of utilization as compared to non-skilled ANM and not-improved health centers. Adequacy of essential equipment/laboratory services required for maternal care significantly encouraged deliveries at public health facility. District/village variables neighborhood poverty was negatively related to institutional delivery while higher education levels in the village and women's residing in more urbanized districts increased the utilization. "Inter-district" variation was 14 percent whereas "between-villages" variation for the utilization was 11 percent variation once controlled for all the three-level variables in the model. This study suggests that the mere availability of health facilities is necessary but not sufficient condition to promote utilization until the quality of service is inadequate and inaccessible considering the inter-districts variation for the program implementation.

  10. Institutional delivery service utilization in Munisa Woreda, South East Ethiopia: a community based cross-sectional study.

    PubMed

    Amano, Abdella; Gebeyehu, Abebaw; Birhanu, Zelalem

    2012-10-08

    Reducing maternal morbidity and mortality is a global priority which is particularly relevant to developing countries like Ethiopia. One of the key strategies for reducing maternal morbidity and mortality is increasing institutional delivery service utilization of mothers under the care of skilled birth attendants. The aim of this study was to determine the level of institutional delivery service utilization and associated factors. A community-based cross-sectional survey was conducted from April 1-20, 2011, among mothers who gave birth 12 months before the study began in Munesa Woreda, Arsi Zone, Oromia Region, Southeast Ethiopia. A stratified cluster sampling was used to select a sample of 855 participants. Out of all deliveries, only 12.3% took place at health facilities. Women who were urban residents (AOR = 2.27, 95%CI: 1.17, 4.40), women of age at interview less than 20 years (AOR = 6.06, 95%CI: 1.54, 23.78), women with first pregnancy (AOR = 2.41, 95%CI: 1.17, 4.97) and, women who had ANC visit during the last pregnancy (AOR = 4.18, 95%CI: 2.54, 6.89) were more likely to deliver at health institutions. Secondary and above level of mother`s and husband`s education had also a significant effect on health institution delivery with AOR = 4.31 (95%CI: 1.62, 11.46) and AOR = 2.77 (95%CI: 1.07, 7.19) respectively. Institutional delivery service utilization was found to be low in the study area. Secondary and above level of mother`s and husband`s education, urban residence and ANC visit were amongst the main factors that had an influence on health institution delivery. Increasing the awareness of mothers and their partners about the benefits of institutional delivery services are recommended.

  11. Institutional delivery service utilization in Munisa Woreda, South East Ethiopia: a community based cross-sectional study

    PubMed Central

    2012-01-01

    Background Reducing maternal morbidity and mortality is a global priority which is particularly relevant to developing countries like Ethiopia. One of the key strategies for reducing maternal morbidity and mortality is increasing institutional delivery service utilization of mothers under the care of skilled birth attendants. The aim of this study was to determine the level of institutional delivery service utilization and associated factors. Methods A community-based cross-sectional survey was conducted from April 1–20, 2011, among mothers who gave birth 12 months before the study began in Munesa Woreda, Arsi Zone, Oromia Region, Southeast Ethiopia. A stratified cluster sampling was used to select a sample of 855 participants. Results Out of all deliveries, only 12.3% took place at health facilities. Women who were urban residents (AOR = 2.27, 95%CI: 1.17, 4.40), women of age at interview less than 20 years (AOR = 6.06, 95%CI: 1.54, 23.78), women with first pregnancy (AOR = 2.41, 95%CI: 1.17, 4.97) and, women who had ANC visit during the last pregnancy (AOR = 4.18, 95%CI: 2.54, 6.89) were more likely to deliver at health institutions. Secondary and above level of mother`s and husband`s education had also a significant effect on health institution delivery with AOR = 4.31 (95%CI: 1.62, 11.46) and AOR = 2.77 (95%CI: 1.07, 7.19) respectively. Conclusion Institutional delivery service utilization was found to be low in the study area. Secondary and above level of mother`s and husband`s education, urban residence and ANC visit were amongst the main factors that had an influence on health institution delivery. Increasing the awareness of mothers and their partners about the benefits of institutional delivery services are recommended. PMID:23043258

  12. Synthesis of Trigeneration Systems: Sensitivity Analyses and Resilience

    PubMed Central

    Carvalho, Monica; Lozano, Miguel A.; Ramos, José; Serra, Luis M.

    2013-01-01

    This paper presents sensitivity and resilience analyses for a trigeneration system designed for a hospital. The following information is utilized to formulate an integer linear programming model: (1) energy service demands of the hospital, (2) technical and economical characteristics of the potential technologies for installation, (3) prices of the available utilities interchanged, and (4) financial parameters of the project. The solution of the model, minimizing the annual total cost, provides the optimal configuration of the system (technologies installed and number of pieces of equipment) and the optimal operation mode (operational load of equipment, interchange of utilities with the environment, convenience of wasting cogenerated heat, etc.) at each temporal interval defining the demand. The broad range of technical, economic, and institutional uncertainties throughout the life cycle of energy supply systems for buildings makes it necessary to delve more deeply into the fundamental properties of resilient systems: feasibility, flexibility and robustness. The resilience of the obtained solution is tested by varying, within reasonable limits, selected parameters: energy demand, amortization and maintenance factor, natural gas price, self-consumption of electricity, and time-of-delivery feed-in tariffs. PMID:24453881

  13. Synthesis of trigeneration systems: sensitivity analyses and resilience.

    PubMed

    Carvalho, Monica; Lozano, Miguel A; Ramos, José; Serra, Luis M

    2013-01-01

    This paper presents sensitivity and resilience analyses for a trigeneration system designed for a hospital. The following information is utilized to formulate an integer linear programming model: (1) energy service demands of the hospital, (2) technical and economical characteristics of the potential technologies for installation, (3) prices of the available utilities interchanged, and (4) financial parameters of the project. The solution of the model, minimizing the annual total cost, provides the optimal configuration of the system (technologies installed and number of pieces of equipment) and the optimal operation mode (operational load of equipment, interchange of utilities with the environment, convenience of wasting cogenerated heat, etc.) at each temporal interval defining the demand. The broad range of technical, economic, and institutional uncertainties throughout the life cycle of energy supply systems for buildings makes it necessary to delve more deeply into the fundamental properties of resilient systems: feasibility, flexibility and robustness. The resilience of the obtained solution is tested by varying, within reasonable limits, selected parameters: energy demand, amortization and maintenance factor, natural gas price, self-consumption of electricity, and time-of-delivery feed-in tariffs.

  14. Assessment of transcutaneous vaccine delivery by optical coherence tomography Assessment of transcutaneous vaccine delivery by OCT

    NASA Astrophysics Data System (ADS)

    Kamali, T.; Doronin, A.; Rattanapak, T.; Hook, S.; Meglinski, I.

    2012-08-01

    Immunization is one of the most efficient and cost-effective means for the prevention of diseases. The latest trend for inducing protective immunity is topical application of vaccines to intact skin rather than invasive administration via injection. Apart from being a non-invasive route of drug delivery, skin itself also offers advantages through the presence of cells of the immune system in both the dermis and epidermis. However, vaccine penetration through the outermost layers of skin is limited by the barrier provided by the Stratum corneum. In the current study utilizing conventional Optical Coherence Tomography (OCT) we investigate the transcutaneous delivery of a nano- particulate peptide vaccine into mouse skin in vivo. We demonstrate that a front of molecular diffusion within the skin can be clearly observed by using cross-correlations of successive 2D OCT images. Thus, OCT provides a unique tool for quantitative assessment of dynamics of diffusion of drugs, target compounds, analytes, cosmetics and various chemical agents in biological tissues in vivo.

  15. Combination Anticancer Nanopreparations of Novel Proapoptotic Drug, TRAIL and siRNA

    NASA Astrophysics Data System (ADS)

    Riehle, Robert D.

    Development of drugs for the treatment of cancer is a challenging endeavor often hindered by the solubility and distribution of the drug in the body. Drug delivery systems have been used for many years to overcome these issues. Polyethylene glycol-phosphatidylethanolamine (PEG-PE) micelles in particular have shown utility as a nanosized drug delivery vehicle capable of incorporating poorly soluble drugs and preferentially delivering them to the tumor. Addition of PEG polymers to the surface prolongs the half-life of the particle in the blood by evading clearance by the reticuloendothelial system (RES) and increases tumor accumulation through the utilization of the enhanced permeability and retention (EPR) effect. Micelles have also been shown to successfully incorporate and protect modified siRNA, a notoriously challenging therapeutic to deliver. Additionally, co-delivery of multiple therapeutics in multifunctional micelles has emerged as an important area in combination therapy research. The main goal of this project was to develop a multifunctional PEG-PE micellar delivery system capable of delivering multiple therapeutics for increased anti-tumor activity. Previous studies have indicated the utility of a DM-PIT-1, a member of a class of novel PIP3-PH inhibitors, and its potential in the treatment of cancer. The PIP3-kinase (PI3K) pathway has been shown to have serious implications in cancer. Inhibiting this pathway has been shown to sensitize the cell to apoptosis. A second generation of more potent and druggable compounds has been developed based on the structure of DM- PIT-1. However, it has been difficult to develop successful compounds inhibiting PIP3 signaling while maintaining the physicochemical properties necessary for an effective drug. Many of these compounds are limited by their poor solubility and rapid clearance in vivo. Incorporating these compounds into PEG-PE micelles allows for increased solubility, prolonged half-life and tumor accumulation. The addition of TNFa-related apoptosis-inducing ligand (TRAIL) bound to the surface of the micelle creates a combination micelle with excellent cytotoxic effects. TRAIL has been shown to be an effective apoptosis inducing ligand in a variety of in vitro and in vivo studies. TRAIL receptors are preferentially expressed on many cancer cell types as compared to healthy cells making this ligand an intriguing potential therapy. The combination of TRAIL and PIP3-PH inhibitors in a micellar delivery system has the potential to create a powerful anti-cancer therapeutic. Including modified siRNA to down regulate cancer defense mechanisms can further sensitize the cell to apoptosis. siRNA delivery has been shown to be a difficult task. Rapid metabolism and clearance in the blood hinders their ability to reach the tumor. Additionally, their large size and negative charge prevents them from crossing the cell membrane to reach their location of action. Reversibly conjugating a modified siRNA to a lipid thereby creating an siRNA-S-S-PE, allows for their incorporation into PEG-PE micelles. These mixed micelles have been shown to protect the siRNA and successfully transfect cells. This study aimed to combine the aforementioned therapeutics into a multifunctional PEG-PE based micelle delivery system. Novel proapoptotic drugs targeting the PIP3-PH binding domain have been successfully incorporated into the lipid core of the micelle. These drugs were able to effectively sensitize the cell to the effects of surface-bound TRAIL. Additionally, siRNA targeting the anti-apoptotic protein survivin was shown to be incorporated into the micelles and further sensitize the tumor to the effects of the above compounds. Lastly, conjugating transferrin (TF) to the surface of the micelle was shown increase the tumor cell targeting and cytotoxicity in vitro. Critical evaluation of this system was performed along the following specific aims: (1) characterization of PIP3-PH inhibition and cytotoxicity of proapoptotic drug DM-PIT-1 and its novel analogs in vitro with and without TRAIL; (2) preparation and characterization of TRAIL-modified micelles loaded with DM-PIT-1 or its analogs; (3) evaluation of in vitro cytotoxicity of combination formulations across a range of tumor cell types; (4) characterization of TF-modified micelles targeting potential and their effects on cytotoxicity in vitro; (5) formulation and characterization of siRNA-S-S-PE mixed micelles and evaluation of gene silencing in vitro and in vivo; (6) evaluation of combination micelles as a multifunctional delivery system utilizing in vivo mouse models of human cancer.

  16. Foundational Report Series. Advanced Distribution management Systems for Grid Modernization (Importance of DMS for Distribution Grid Modernization)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jianhui

    2015-09-01

    Grid modernization is transforming the operation and management of electric distribution systems from manual, paper-driven business processes to electronic, computer-assisted decisionmaking. At the center of this business transformation is the distribution management system (DMS), which provides a foundation from which optimal levels of performance can be achieved in an increasingly complex business and operating environment. Electric distribution utilities are facing many new challenges that are dramatically increasing the complexity of operating and managing the electric distribution system: growing customer expectations for service reliability and power quality, pressure to achieve better efficiency and utilization of existing distribution system assets, and reductionmore » of greenhouse gas emissions by accommodating high penetration levels of distributed generating resources powered by renewable energy sources (wind, solar, etc.). Recent “storm of the century” events in the northeastern United States and the lengthy power outages and customer hardships that followed have greatly elevated the need to make power delivery systems more resilient to major storm events and to provide a more effective electric utility response during such regional power grid emergencies. Despite these newly emerging challenges for electric distribution system operators, only a small percentage of electric utilities have actually implemented a DMS. This paper discusses reasons why a DMS is needed and why the DMS may emerge as a mission-critical system that will soon be considered essential as electric utilities roll out their grid modernization strategies.« less

  17. Factors associated with the utilization of institutional delivery services in Bangladesh.

    PubMed

    Yaya, Sanni; Bishwajit, Ghose; Ekholuenetale, Michael

    2017-01-01

    Bangladesh has made remarkable progress towards reducing its maternal mortality rate (MMR) over the last two decades and is one of the few countries on track to achieving the MMR-related Millennium Development Goals (MDG-5A). However, the provision of universal access to reproductive healthcare (MDG-5B) and the utilization of maternal healthcare services (MHS) such as institutional delivery, which are crucial to the reduction of maternal mortality, are far behind the internationally agreed-upon target. Effective policymaking to promote the utilization of MHS can be greatly facilitated by the identification of the factors that hinder service uptake. In this study, we therefore aim to measure the prevalence of institutional delivery services and explore the factors associated with their utilization in Bangladesh. Data for this study were extracted from the 2011 Bangladesh Demographic and Health Survey (BDHS, 2011); participants were 7,313 women between the ages of 15 and 49 years, selected from both urban and rural households. Data were analyzed using Chi-square analysis, and conditional logistic regression. According to the findings, fewer than one in three women reported delivering at a health facility. The multivariable regression analysis showed that participants from rural areas were 46.9% less likely to have institutional deliveries compared to urban dwellers (OR = 0.531; p<0.001; 95%CI: 0.467-0.604), and participants aged between 30 and 49 years had a 23.6% higher prevalence of institutional delivery service utilization compared to those aged 15 to 29 years (OR = 1.236; p = 0.006; 95%CI: 1.062-1.437). Moreover, participants with higher educational attainment were about twice as likely to deliver at a standard health facility when compared to those without formal education (OR = 2.081; p<0.001; 95%CI: 1.650-2.624), and similarly, husbands with higher educational attainment exhibited an approximately 71% higher service utilization of institutional delivery facilities compared to those without formal education (OR = 1.709; p<0.001; 95%CI: 1.412-2.069). Wealth status was also a significant predictor of institutional delivery service use, with participants belonging to the highest economic stratum being more likely to receive skilled care compared to the lowest economic stratum (OR = 2.507; p<0.001; 95%CI: 2.118-2.968). In addition, results indicated that households of average economic class had a 27% higher level of institutional delivery service utilization compared to those of lower economic status (OR = 1.272; p = 0.011; 95%CI: 1.057-1.531). Furthermore, institutional health service use was 18% higher among participants who were aware of community clinical services compared to those who were hardly aware of these services (OR = 0.816; p = 0.012; 95%CI: 0.696-0.957). Lastly, the odds of utilizing delivery services was 1.553 times more likely for participants who use family planning compared to those who do not (p<0.001; 95%CI: 1.374-1.754), and 3.639 times more likely for those who receive antenatal care compared to those who do not (p<0.001; 95%CI: 3.074-4.308). These were found to be significant predictors of the choice of delivery services. Our results suggest that efforts towards reducing national maternal mortality in Bangladesh could be aided by investments into education, poverty reduction and the strengthening of reproductive healthcare services through community clinics, with particular focus on rural areas.

  18. Interactions of biomacromolecules with reverse hexagonal liquid crystals: drug delivery and crystallization applications.

    PubMed

    Libster, Dima; Aserin, Abraham; Garti, Nissim

    2011-04-15

    Recently, self-assembled lyotropic liquid crystals (LLCs) of lipids and water have attracted the attention of both scientific and applied research communities, due to their remarkable structural complexity and practical potential in diverse applications. The phase behavior of mixtures of glycerol monooleate (monoolein, GMO) was particularly well studied due to the potential utilization of these systems in drug delivery systems, food products, and encapsulation and crystallization of proteins. Among the studied lyotropic mesophases, reverse hexagonal LLC (H(II)) of monoolein/water were not widely subjected to practical applications since these were stable only at elevated temperatures. Lately, we obtained stable H(II) mesophases at room temperature by incorporating triacylglycerol (TAG) molecules into the GMO/water mixtures and explored the physical properties of these structures. The present feature article summarizes recent systematic efforts in our laboratory to utilize the H(II) mesophases for solubilization, and potential release and crystallization of biomacromolecules. Such a concept was demonstrated in the case of two therapeutic peptides-cyclosporin A (CSA) and desmopressin, as well as RALA peptide, which is a model skin penetration enhancer, and eventually a larger macromolecule-lysozyme (LSZ). In the course of the study we tried to elucidate relationships between the different levels of organization of LLCs (from the microstructural level, through mesoscale, to macroscopic level) and find feasible correlations between them. Since the structural properties of the mesophase systems are a key factor in drug release applications, we investigated the effects of these guest molecules on their conformations and the way these molecules partition within the domains of the mesophases. The examined H(II) mesophases exhibited great potential as transdermal delivery vehicles for bioactive peptides, enabling tuning the release properties according to their chemical composition and physical properties. Furthermore, we showed a promising opportunity for crystallization of CSA and LSZ in single crystal form as model biomacromolecules for crystallographic structure determination. The main outcomes of our research demonstrated that control of the physical properties of hexagonal LLC on different length scales is key for rational design of these systems as delivery vehicles and crystallization medium for biomacromolecules. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. "As Good as Your Word": Face-Threat Mitigation and the Use of Instructor Nonverbal Cues on Students' Perceptions of Digital Feedback

    ERIC Educational Resources Information Center

    Clark-Gordon, Cathlin V.; Bowman, Nicholas D.; Watts, Evan R.; Banks, Jaime; Knight, Jennifer M.

    2018-01-01

    Research has established that students often consider the delivery of instructor feedback to be a face-threatening event. To minimize the potential negative effects of feedback, verbal and nonverbal face-threat mitigation (FTM) strategies are utilized by instructors. Advances in digital feedback systems, like online documents and learning…

  20. Professional Development Needs of Directors Leading in a Mixed Service Delivery Preschool System

    ERIC Educational Resources Information Center

    Ryan, Sharon; Whitebook, Marcy; Kipnis, Fran; Sakai, Laura

    2011-01-01

    This paper reports on an interview study with directors of Head Start and child care programs who are collaborating with local education authorities to provide publicly funded preschool in New Jersey, USA. A standardized interview protocol was utilized with 98 directors chosen to represent a range of center types from across the three main regions…

  1. The Development of a Field Services Network for a Satellite-Based Educational Telecommunications Experiment. Satellite Technology Demonstration, Technical Report No. 0333.

    ERIC Educational Resources Information Center

    Anderson, Frank; And Others

    The Satellite Technology Demonstration (STD) of the Federation of Rocky Mountain States (FRMS) employed a technical delivery system to merge effectively hardware and software, products and services. It also needed a nontechnical component to insure product and service acceptance. Accordingly, the STD's Utilization Component was responsible for…

  2. [Pyr1]-Apelin-13 delivery via nano-liposomal encapsulation attenuates pressure overload-induced cardiac dysfunction

    PubMed Central

    Serpooshan, Vahid; Sivanesan, Senthilkumar; Huang, Xiaoran; Mahmoudi, Morteza; Malkovskiy, Andrey V.; Zhao, Mingming; Inayathullah, Mohammed; Wagh, Dhananjay; Zhang, Xuexiang J.; Metzler, Scott; Bernstein, Daniel; Wu, Joseph C.; Ruiz-Lozano, Pilar; Rajadas, Jayakumar

    2017-01-01

    Nanoparticle-mediated sustained delivery of therapeutics is one of the highly effective and increasingly utilized applications of nanomedicine. Here, we report the development and application of a drug delivery system consisting of polyethylene glycol (PEG)-conjugated liposomal nanoparticles as an efficient in vivo delivery approach for [Pyr1]-apelin-13 polypeptide. Apelin is an adipokine that regulates a variety of biological functions including cardiac hypertrophy and hypertrophy-induced heart failure. The clinical use of apelin has been greatly impaired by its remarkably short half-life in circulation. Here, we investigate whether [Pyr1]-apelin-13 encapsulation in liposome nanocarriers, conjugated with PEG polymer on their surface, can prolong apelin stability in the blood stream and potentiate apelin beneficial effects in cardiac function. Atomic force microscopy and dynamic light scattering were used to assess the structure and size distribution of drug-laden nanoparticles. [Pyr1]-apelin-13 encapsulation in PEGylated liposomal nanocarriers resulted in sustained and extended drug release both in vitro and in vivo. Moreover, intraperitoneal injection of [Pyr1]-apelin-13 nanocarriers in a mouse model of pressure-overload induced heart failure demonstrated a sustainable long-term effect of [Pyr1]-apelin-13 in preventing cardiac dysfunction. We concluded that this engineered nanocarrier system can serve as a delivery platform for treating heart injuries through sustained bioavailability of cardioprotective therapeutics. PMID:25443792

  3. Utilization of solid lipid nanoparticles for enhanced delivery of curcumin in cocultures of HT29-MTX and Caco-2 cells.

    PubMed

    Guri, Anilda; Gülseren, Ibrahim; Corredig, Milena

    2013-09-01

    Solid lipid nanoparticles (SLN) have shown potential for encapsulation, protection and delivery of lipophilic functional components. In this study, we have investigated the capabilities of SLN to deliver a hydrophobic polyphenol compound, curcumin, in a coculture system of absorptive Caco-2 and mucus secreting HT29-MTX cells. The cells were grown on transport filters to mimic the human intestinal epithelium. Because of the hydrophobic nature of curcumin, its delivery to the basolateral compartment is expected to take place via a paracellular route. The changes in curcumin concentration in various compartments (i.e., apical, basolateral, mucus, and cell lysates) were evaluated using fluorescence spectroscopy. Two SLN systems were prepared with different emulsifying agents. The encapsulation of curcumin in SLN caused enhanced delivery compared to unencapsulated curcumin. In addition, SLN showed enhanced delivery compared to emulsion droplets containing liquid soy oil. The SLN were retained on the apical mucosal layer to a greater extent than emulsion droplets. The presence of SLN did not affect the integrity of the cellular junctions, as indicated by the TEER values, and the route of transport of the solid particles was simple diffusion, with permeability rates of about 7 × 10(-6) cm s(-1). Approximately 1% of total curcumin was delivered to the basolateral compartment, suggesting that most of the curcumin was absorbed and metabolized by the cell.

  4. A smart polymeric platform for multistage nucleus-targeted anticancer drug delivery.

    PubMed

    Zhong, Jiaju; Li, Lian; Zhu, Xi; Guan, Shan; Yang, Qingqing; Zhou, Zhou; Zhang, Zhirong; Huang, Yuan

    2015-10-01

    Tumor cell nucleus-targeted delivery of antitumor agents is of great interest in cancer therapy, since the nucleus is one of the most frequent targets of drug action. Here we report a smart polymeric conjugate platform, which utilizes stimulus-responsive strategies to achieve multistage nuclear drug delivery upon systemic administration. The conjugates composed of a backbone based on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer and detachable nucleus transport sub-units that sensitive to lysosomal enzyme. The sub-units possess a biforked structure with one end conjugated with the model drug, H1 peptide, and the other end conjugated with a novel pH-responsive targeting peptide (R8NLS) that combining the strength of cell penetrating peptide and nuclear localization sequence. The conjugates exhibited prolonged circulation time and excellent tumor homing ability. And the activation of R8NLS in acidic tumor microenvironment facilitated tissue penetration and cellular internalization. Once internalized into the cell, the sub-units were unleashed for nuclear transport through nuclear pore complex. The unique features resulted in 50-fold increase of nuclear drug accumulation relative to the original polymer-drug conjugates in vitro, and excellent in vivo nuclear drug delivery efficiency. Our report provides a strategy in systemic nuclear drug delivery by combining the microenvironment-responsive structure and detachable sub-units. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Star-shaped poly(oligoethylene glycol) copolymer-based gels: Thermo-responsive behaviour and bioapplicability for risedronate intranasal delivery.

    PubMed

    Soliman, Mahmoud E; Elmowafy, Enas; Casettari, Luca; Alexander, Cameron

    2018-05-30

    The aim of this work was to obtain an intranasal delivery system with improved mechanical and mucoadhesive properties that could provide prolonged retention time for the delivery of risedronate (RS). For this, novel in situ forming gels comprising thermo-responsive star-shaped polymers, utilizing either polyethylene glycol methyl ether (PEGMA-ME 188, Mn 188) or polyethylene glycol ethyl ether (PEGMA-EE 246, Mn 246), with polyethylene glycol methyl ether (PEGMA-ME 475, Mn 475), were synthesized and characterized. RS was trapped in the selected gel-forming solutions at a concentration of 0.2% w/v. The pH, rheological properties, in vitro drug release, ex vivo permeation as well as mucoadhesion were also examined. MTT assays were conducted to verify nasal tolerability of the developed formulations. Initial in vivo studies were carried out to evaluate anti-osteoporotic activity in a glucocorticoid induced osteoporosis model in rats. The results showed successful development of thermo-sensitive formulations with favorable mechanical properties at 37 °C, which formed non-irritant, mucoadhesive porous networks, facilitating nasal RS delivery. Moreover, sustained release of RS, augmented permeability and marked anti-osteoporotic efficacy as compared to intranasal (IN) and intravenous (IV) RS solutions were realized. The combined results show that the in situ gels should have promising application as nasal drug delivery systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. [Costs of maternal-infant care in an institutionalized health care system].

    PubMed

    Villarreal Ríos, E; Salinas Martínez, A M; Guzmán Padilla, J E; Garza Elizondo, M E; Tovar Castillo, N H; García Cornejo, M L

    1998-01-01

    Partial and total maternal and child health care costs were estimated. The study was developed in a Primary Care Health Clinic (PCHC) and a General Hospital (GH) of a social security health care system. Maternal and child health care services, type of activity and frequency utilization during 1995, were defined; cost examination was done separately for the PCHC and the GH. Estimation of fixed cost included departmentalization, determination of inputs, costs, basic services disbursements, and weighing. These data were related to depreciation, labor period and productivity. Estimation of variable costs required the participation of field experts; costs corresponded to those registered in billing records. The fixed cost plus the variable cost determined the unit cost, which multiplied by the of frequency of utilization generated the prenatal care, labor and delivery care, and postnatal care cost. The sum of these three equaled the maternal and child health care cost. The prenatal care cost was $1,205.33, the labor and delivery care cost was $3,313.98, and the postnatal care was $559.91. The total cost of the maternal and child health care corresponded to $5,079.22. Cost information is valuable for the health care personnel for health care planning activities.

  7. Shaping the Future of Nanomedicine: Anisotropy in Polymeric Nanoparticle Design

    PubMed Central

    Meyer, Randall A.; Green, Jordan J.

    2015-01-01

    Nanofabrication and biomedical applications of polymeric nanoparticles have become important areas of research. Biocompatible polymeric nanoparticles have been investigated for their use as delivery vehicles for therapeutic and diagnostic agents. Although polymeric nanoconstructs have traditionally been fabricated as isotropic spheres, anisotropic, non-spherical nanoparticles have gained interest in the biomaterials community due to their unique interactions with biological systems. Polymeric nanoparticles with different forms of anisotropy have been manufactured utilizing a variety of novel methods in recent years. In addition, they have enhanced physical, chemical, and biological properties compared to spherical nanoparticles, including increased targeting avidity and decreased non-specific in vivo clearance. With these desirable properties, anisotropic nanoparticles have been successfully utilized in many biomedical settings and have performed superiorly to analogous spherical nanoparticles. We summarize the current state-of-the-art fabrication methods for anisotropic polymeric nanoparticles including top-down, bottom-up, and microfluidic design approaches. We also summarize the current and potential future applications of these nanoparticles, including drug delivery, biological targeting, immunoengineering, and tissue engineering. Ongoing research into the properties and utility of anisotropic polymeric nanoparticles will prove critical to realizing their potential in nanomedicine. PMID:25981390

  8. Computerized Management Information System in a Community Health Nursing Agency

    PubMed Central

    Simmons, DeLanne A.

    1981-01-01

    The Visiting Nurse Association of Omaha is a nonprofit, voluntary agency providing home health care, preventive care, clinical services, and school health services in an urban-rural setting. It has developed a computerized system which provides for: (1) centralized dictation by service delivery staff; (2) the printing of a uniform clinical, family problem-oriented record; (3) an integrated data base, statistical system, and financial system; and (4) the communication capability to remote stations. (The hardware utilized is an IBM System 34.) Cost effectiveness has been demonstrated by a reduction in cost of visit from $47.02 to $43.79.

  9. Mitochondrial Delivery of Doxorubicin Using MITO-Porter Kills Drug-Resistant Renal Cancer Cells via Mitochondrial Toxicity.

    PubMed

    Yamada, Yuma; Munechika, Reina; Kawamura, Eriko; Sakurai, Yu; Sato, Yusuke; Harashima, Hideyoshi

    2017-09-01

    Most anticancer drugs are intended to function in the nuclei of cancer cells. If an anticancer drug could be delivered to mitochondria, the source of cellular energy, this organelle would be destroyed, resulting in the arrest of the energy supply and the killing of the cancer cells. To achieve such an innovative strategy, a mitochondrial drug delivery system targeted to cancer cells will be required. We recently reported on the development of a MITO-Porter, a liposome for mitochondrial delivery. In this study, we validated the utility of such a cancer therapeutic strategy by delivering anticancer drugs directly to mitochondria. We succeeded in packaging doxorubicin (DOX) as a model cargo in MITO-Porter to produce a DOX-MITO-Porter. We evaluated cellular toxicity of OS-RC-2 cell, a type of DOX-resistant cancer cell, after delivering DOX to mitochondria using the MITO-Porter system. Cell viability was decreased by the DOX-MITO-Porter treatment, while cell viability was not decreased in the case of naked DOX and a conventional DOX liposomal formulation. We also found a relationship between cellular toxicity and mitochondrial toxicity. The use of a MITO-Porter system for mitochondrial delivery of a toxic agent represents a possible therapeutic strategy for treating drug-resistant cancers. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. Polymer Self-Assembled Nanostructures as Innovative Drug Nanocarrier Platforms.

    PubMed

    Pippa, Natassa; Pispas, Stergios; Demetzos, Costas

    2016-01-01

    Polymer self-assembled nanostructures are used in pharmaceutical sciences as bioactive molecules' delivery systems for therapeutic and diagnostic purposes. Micelles, polyelectrolyte complexes, polymersomes, polymeric nanoparticles, nanogels and polymer grafted liposomes represent delivery vehicles that are marketed and/or under clinical development, as drug formulations. In this mini-review, these, recently appeared in the literature, innovative polymer drug nanocarrier platforms are discussed, starting from their technological development in the laboratory to their potential clinical use, through studies of their biophysics, thermodynamics, physical behavior, morphology, bio-mimicry, therapeutic efficacy and safety. The properties of an ideal drug delivery system are the structural control over size and shape of drug or imaging agent cargo/domain, biocompatibility, nontoxic polymer/ pendant functionality and the precise, nanoscale container and/or scaffolding properties with high drug or imaging agent capacity features. Self-assembled polymer nanostructures exhibit all these properties and could be considered as ideal drug nanocarriers through control of their size, structure and morphology, with the aid of a large variety of parameters, in vitro and in vivo. These modern trends reside at the interface of soft matter self-assembly and pharmaceutical sciences and the technologies for health. Great advantages related to basic science and applications are expected by understanding the self-assembly behavior of these polymeric nanotechnological drug delivery systems, created through bio-inspiration and biomimicry and have potential utilization into clinical applications.

  11. Optimization of a Multi-Product Intra-Supply Chain System with Failure in Rework.

    PubMed

    Chiu, Singa Wang; Chen, Shin-Wei; Chang, Chih-Kai; Chiu, Yuan-Shyi Peter

    2016-01-01

    Globalization has created tremendous opportunities, but also made business environment highly competitive and turbulent. To gain competitive advantage, management of present-day transnational firms always seeks options to trim down various transaction and coordination costs, especially in the area of controllable intra-supply chain system. This study investigates a multi-product intra-supply chain system with failure in rework. To achieve maximum machine utilization, multiple products are fabricated in succession on a single machine. During the process, production of some defective items is inevitable. Reworking of nonconforming items is used to reduce the quality cost in production and achieving the goal of lower overall production cost. Because reworks are sometimes unsuccessful, failures in rework are also considered in this study. Finished goods for each product are transported to the sales offices when the entire production lot is quality assured after rework. A multi-delivery policy is used, wherein fixed quantity n installments of the finished lot are transported at fixed intervals during delivery time. The objective is to jointly determine the common production cycle time and the number of deliveries needed to minimize the long-term expected production-inventory-delivery costs for the problem. With the help of a mathematical model along with optimization technique, the optimal production-shipment policy is obtained. We have used a numerical example to demonstrate applicability of the result of our research.

  12. Optimization of a Multi–Product Intra-Supply Chain System with Failure in Rework

    PubMed Central

    2016-01-01

    Globalization has created tremendous opportunities, but also made business environment highly competitive and turbulent. To gain competitive advantage, management of present-day transnational firms always seeks options to trim down various transaction and coordination costs, especially in the area of controllable intra-supply chain system. This study investigates a multi–product intra-supply chain system with failure in rework. To achieve maximum machine utilization, multiple products are fabricated in succession on a single machine. During the process, production of some defective items is inevitable. Reworking of nonconforming items is used to reduce the quality cost in production and achieving the goal of lower overall production cost. Because reworks are sometimes unsuccessful, failures in rework are also considered in this study. Finished goods for each product are transported to the sales offices when the entire production lot is quality assured after rework. A multi-delivery policy is used, wherein fixed quantity n installments of the finished lot are transported at fixed intervals during delivery time. The objective is to jointly determine the common production cycle time and the number of deliveries needed to minimize the long–term expected production–inventory–delivery costs for the problem. With the help of a mathematical model along with optimization technique, the optimal production–shipment policy is obtained. We have used a numerical example to demonstrate applicability of the result of our research. PMID:27918588

  13. Using program impact pathways to understand and improve program delivery, utilization, and potential for impact of Helen Keller International's homestead food production program in Cambodia.

    PubMed

    Olney, Deanna K; Vicheka, Sao; Kro, Meng; Chakriya, Chhom; Kroeun, Hou; Hoing, Ly Sok; Talukder, Aminzzaman; Quinn, Victoria; Iannotti, Lora; Becker, Elisabeth; Roopnaraine, Terry

    2013-06-01

    Evidence of the impact of homestead food production programs on nutrition outcomes such as anemia and growth is scant. In the absence of information on program impact pathways, it is difficult to understand why these programs, which have been successful in increasing intake of micronutrient-rich foods, have had such limited documented impact on nutrition outcomes. To conduct a process evaluation of Helen Keller International's (HKI's) homestead food production program in Cambodia to assess whether the program was operating as planned (in terms of design, delivery, and utilization) and to identify ways in which the program might need to be strengthened in order to increase its potential for impact. A program theory framework, which laid out the primary components along the hypothesized program impact pathways, was developed in collaboration with HKI and used to design the research. Semistructured interviews and focus group discussions with program beneficiaries (n = 36 and 12, respectively), nonbeneficiaries (n = 12), and program implementers (n = 17 and 2, respectively) and observations of key program delivery points, including health and nutrition training sessions (n = 6), village model farms (n = 6), and household gardens of beneficiaries (n = 36) and nonbeneficiaries (n = 12), were conducted to assess the delivery and utilization of the primary program components along the impact pathways. The majority of program components were being delivered and utilized as planned. However, challenges with some of the key components posited to improve outcomes such as anemia and growth were noted. Among these were a gap in the expected pathway from poultry production to increased intake of eggs and poultry meat, and some weaknesses in the delivery of the health and nutrition training sessions and related improvements in knowledge among the village health volunteers and beneficiaries. Although the program has been successful in delivering the majority of the program components as planned and has documented achievements in improving household production and intake of micronutrient-rich foods, it is likely that strengthening delivery and increasing utilization of some program components would increase its potential for nutritional impacts. This research has highlighted the importance of designing a program theory framework and assessing the components that lie along the primary program impact pathways to optimize program service delivery and utilization and, in turn, potential for impact.

  14. Optimization of a Biomimetic Apatite Nanoparticle Delivery System for Non-viral Gene Transfection---a Simulated Body Fluid Approach

    NASA Astrophysics Data System (ADS)

    Das, Debobrato

    Current methods for gene delivery utilize nanocarriers such as liposomes and viral vectors that may produce in vivo toxicity, immunogenicity, or mutagenesis. Moreover, these common high-cost systems have a low efficacy of gene-vehicle transport across the cell plasma membrane followed by inadequate release and weak intracellular stability of the genetic sequence. Thus, this study aims to maximize gene transfection while minimizing cytotoxicity by utilizing supersaturated blood-plasma ions derived from simulated body fluids (SBF). With favorable electrostatic interactions to create biocompatible calcium-phosphate nanoparticles (NPs) derived from biomimetic apatite (BA), results suggest that the SBF system, though naturally sensitive to reaction conditions, after optimization can serve as a tunable and versatile platform for the delivery of various types of nucleic acids. From a systematic exploration of the effects of nucleation pH, incubation temperature, and time on transfection efficiency, the study proposes distinct characteristic trends in SBF BA-NP morphology, cellular uptake, cell viability, and gene modulation. Specifically, with aggressive nucleation and growth of BA-NPs in solution (observed via scanning electron microscopy), the ensuing microenvironment imposes a more toxic cellular interaction (indicated by alamarBlue and BCA assays), limiting particle uptake (fluorescence experiments) and subsequent gene knockdown (quantitative loss of function assays). Controlled precipitation of BA-NPs function to increase particle accessibility by surrounding cells, and subsequently enhance uptake and transfection efficiency. By closely examining such trends, an optimal fabrication condition of pH 6.5-37C can be observed where particle growth is more tamed and less chaotic, providing improved, favorable cellular interactions that increase cell uptake and consequently maximize gene transfection, without compromising cellular viability.

  15. An assessment of rural health care delivery system in some areas of West Bengal-an overview.

    PubMed

    Ray, Sandip Kumar; Basu, Subhra S; Basu, Amal Kumar

    2011-01-01

    A cross sectional observational study was carried out in three districts of West Bengal by following observational, quantitative and qualitative methods during July to December 2006 to find out the extent of utilization, strengths, weaknesses and gap as well as suggest recommendations in connection with health care delivery system for the state of West Bengal, India. A total of 672 episodes of illnesses were reported (2 weeks recall) by the study population of the three selected districts in three geographically separated divisions of West Bengal. None did seek care from any health facilities for treatment in case of 221 (32.89%) episodes; especially from tribal areas where in case of 76.19% none sought any health care from any facilities depended on their home remedies. In rest of episodes the (451), majority preferred government health facilities (38.58%), followed by Unqualified quacks (29.27%) due to low cost as well as living in close proximity, 27.27% preferred qualified Private practitioners and only 4.88% preferred AYUSH, as a first choice. Referral was mostly by self or by close relatives/families (61%) and not by a doctor. Awareness is required to avoid unnecessary referral. Cleanliness of the premises, face-lift, and clean toilet with privacy and availability of safe drinking water facilities could have an improved client satisfaction in rural health care delivery systems. This could be achieved through community participation with the involvement of PRI. However, as observed in the study RCH services including Family Planning as well as immunization services (preventive services) were utilized much better while there was a strong need of improvement of Post Natal Care, otherwise, Neonatal and Maternal mortality and morbidity will continue to be high.

  16. Physiological Parameters for Oral Delivery and In vitro Testing

    PubMed Central

    Mudie, Deanna M.; Amidon, Gordon L.; Amidon, Gregory E.

    2010-01-01

    Pharmaceutical solid oral dosage forms must undergo dissolution in the intestinal fluids of the gastrointestinal tract before they can be absorbed and reach the systemic circulation. Therefore, dissolution is a critical part of the drug-delivery process. The rate and extent of drug dissolution and absorption depend on the characteristics of the active ingredient as well as properties of the dosage form. Just as importantly, characteristics of the physiological environment such as buffer species, pH, bile salts, gastric emptying rate, intestinal motility, and hydrodynamics can significantly impact dissolution and absorption. While significant progress has been made since 1970 when the first compendial dissolution test was introduced (USP Apparatus 1), current dissolution testing does not take full advantage of the extensive physiologic information that is available. For quality control purposes, where the question is one of lot-to-lot consistency in performance, using nonphysiologic test conditions that match drug and dosage form properties with practical dissolution media and apparatus may be appropriate. However, where in vitro – in vivo correlations are desired, it is logical to consider and utilize knowledge of the in vivo condition. This publication critically reviews the literature that is relevant to oral human drug delivery. Physiologically relevant information must serve as a basis for the design of dissolution test methods and systems that are more representative of the human condition. As in vitro methods advance in their physiological relevance, better in vitro - in vivo correlations will be possible. This will, in turn, lead to in vitro systems that can be utilized to more effectively design dosage forms that have improved and more consistent oral bioperformance. PMID:20822152

  17. Factors affecting utilization of skilled maternal care in Northwest Ethiopia: a multilevel analysis

    PubMed Central

    2013-01-01

    Background The evaluation of all potential sources of low skilled maternal care utilization is crucial for Ethiopia. Previous studies have largely disregarded the contribution of different levels. This study was planned to assess the effect of individual, communal, and health facility characteristics in the utilization of antenatal, delivery, and postnatal care by a skilled provider. Methods A linked facility and population-based survey was conducted over three months (January - March 2012) in twelve “kebeles” of North Gondar Zone, Amhara Region. A total of 1668 women who had births in the year preceding the survey were selected for analysis. Using a multilevel modelling, we examined the effect of cluster variation and a number of individual, communal (kebele), and facility-related variables for skilled maternal care utilization. Result About 32.3%, 13.8% and 6.3% of the women had the chance to get skilled providers for their antenatal, delivery and postnatal care, respectively. A significant heterogeneity was observed among clusters for each indicator of skilled maternal care utilization. At the individual level, variables related to awareness and perceptions were found to be much more relevant for skilled maternal service utilization. Preference for skilled providers and previous experience of antenatal care were consistently strong predictors of all indicators of skilled maternal health care utilizations. Birth order, maternal education, and awareness about health facilities to get skilled professionals were consistently strong predictors of skilled antenatal and delivery care use. Communal factors were relevant for both delivery and postnatal care, whereas the characteristics of a health facility were more relevant for use of skilled delivery care than other maternity services. Conclusion Factors operating at individual and “kebele” levels play a significant role in determining utilization of skilled maternal health services. Interventions to create better community awareness and perception about skilled providers and their care, and ensuring the seamless performance of health care facilities have been considered crucial to improve skilled maternal services in the study area. Such interventions should target underprivileged women. PMID:23587369

  18. Recent Trend of New Type Power Delivery System and its Demonstrative Project in Japan

    NASA Astrophysics Data System (ADS)

    Morozumi, Satoshi; Nara, Koichi

    Recently many such distributed generating systems as co-generation, photovoltaic, wind, fuel cells etc. are introduced into power distribution system, and the power system must cope with the situation with distributed generators. Moreover, such industries as IT request reliable and high quality power to preserve their businesses, and some other electric energy based industries request less reliable but cheaper electricity. From these backgrounds, several new type power delivery systems are emerging where lots of distributed generators (DGs) can be connected and many benefits offered by DGs can be realized without affecting the existing power system. They are referred to various names. In U.S.A., Microgrid, Power Park and Virtual Utilities, etc. are proposed. In Europe, DISPOWER or Smart Grid is under developing. In Japan, FRIENDS and Demand Area Network System etc. are proposed and tested in real sites. In this paper, first, general concepts of such new type power delivery systems and new businesses expected to be created by using DGs are introduced. Then, recent research activities in this area in Japan are introduced so as to stimulate new business opportunities. In the later part of this paper, related NEDO's demonstrative projects are introduced. NEDO is the largest public R&D management organization and promoting several projects regarding grid connecting issues on the power system. Those projects were planned to solve several problems on the power system where distributed renewable energy resources are installed.

  19. Implementing antiretroviral therapy programs in resource-constrained settings: lessons from Monze, Zambia.

    PubMed

    Adedimeji, Adebola; Malokota, Oliver; Manafa, Ogenna

    2011-05-01

    We describe the impact of an antiretroviral therapy program on human resource utilization and service delivery in a rural hospital in Monze, Zambia, using qualitative data. We assess project impact on staff capacity utilization, service delivery, and community perception of care. Increased workload resulted in fatigue, low staff morale, and exacerbated critical manpower shortages, but also an increase in users of antiretroviral therapy, improvement in hospital infrastructure and funding, and an overall community satisfaction with service delivery. Integrating HAART programs within existing hospital units and services may be a good alternative to increase overall efficiency.

  20. Health Worker mHealth Utilization: A Systematic Review

    PubMed Central

    White, Alice; Thomas, Deborah S.K.; Ezeanochie, Nnamdi; Bull, Sheana

    2016-01-01

    This systematic review describes mHealth interventions directed at healthcare workers in low resource settings from the PubMed database from March, 2009 to May, 2015. Thirty-one articles were selected for final review. Four categories emerged from the reviewed articles: data collection during patient visits; communication between health workers and patients; communication between health workers; and public health surveillance. Most studies used a combination of quantitative and qualitative methods to assess acceptability of use, barriers to use, changes in healthcare delivery, and improved health outcomes. Few papers included theory explicitly to guide development and evaluation of their mHealth programs. Overall, evidence indicated that mobile technology tools, such as smartphones and tablets, substantially benefit healthcare workers, their patients, and health care delivery. Limitations to mHealth tools included insufficient program use and sustainability, unreliable Internet and electricity, and security issues. Despite these limitations, this systematic review demonstrates the utility of using mHealth in low-resource settings and the potential for widespread health system improvements using technology. PMID:26955009

  1. DNA/RNA-based formulations for treatment of breast cancer.

    PubMed

    Xie, Zhaolu; Zeng, Xianghui

    2017-12-01

    To develop a successful formulation for the gene therapy of breast cancer, an effective therapeutic nucleic acid and a proper delivery system are essential. Increased understanding of breast cancer, and developments in biotechnology, material science and nanotechnology have provided a major impetus in the development of effective formulations for the gene therapy of breast cancer. Areas covered: We discuss DNA/RNA-based formulations that can inhibit the growth of breast cancer cells and control the progress of breast cancer. Targets for the gene therapy of breast cancer, DNA/RNA-based therapeutics and delivery systems are summarized. And examples of successful DNA/RNA-based formulations for breast cancer gene therapy are reviewed. Expert opinion: Several challenges remain in developing effective DNA/RNA-based formulations for treatment of breast cancer. Firstly, most of the currently utilized targets are not effective enough as monotherapy for breast cancer. Secondly, the requirements for co-delivery system make the preparation of formulation more complicated. Thirdly, nanoparticles with the modification of tumor-targeting ligands could be more unstable in circulation and normal tissues. Lastly, immune responses against the viral vectors are unfavorable for the gene therapy of breast cancer because of the damage to the host and the impaired therapeutic ability.

  2. Gamma radiation-induced synthesis and characterization of Polyvinylpyrrolidone nanogels

    NASA Astrophysics Data System (ADS)

    Ges, A. A.; Viltres, H.; Borja, R.; Rapado, M.; Aguilera, Y.

    2017-01-01

    Due to the importance of bioactive peptides, proteins and drug for pharmaceutical purpose, there is a growing interest for suitable delivery systems, able to increase their bioavailability and to target them to the desired location. Some of the most studied delivery systems involve encapsulation or entrapment of drugs into biocompatible polymeric devices. A multitude of techniques have been described for the synthesis of nanomaterials from polymers, however, the use of ionizing radiation (γ, e-), to obtain nano- and microgels polymer is characterized by the possibility of obtaining products with a high degree of purity. Although, in the world, electronic radiation is used for this purpose, gamma radiation has not been utilized for these purposes. In this paper is developed the formulation the formulation of Polyvinylpyrrolidone (PVP) nanogels synthesized by gamma radiation techniques, for their evaluation as potential system of drug delivery. Experiments were performed in absence of oxygen using aqueous solutions of PVP (0.05% -1%). Crosslinking reactions were carried out at 25° C in a gamma irradiation chamber with a 60Co source (MPX-γ 30). The Viscosimetry, Light Scattering, X-Ray Diffraction and Transmission Electron Microscopy (TEM), were used as characterization techniques.

  3. Grumman WS33 wind system: prototype construction and testing, Phase II technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adler, F.M.; Henton, P.; King, P.W.

    1980-11-01

    The prototype fabrication and testing of the 8 kW small wind energy conversion system are reported. The turbine is a three-bladed, down-wind machine designed to interface directly with an electrical utility network. The machine as finally fabricated is rated at 15 kW at 24 mpH and peak power of 18 kW at 35 mph. Utility compatible electrical power is generated in winds between a cut-in speed of 9 mph and a cut-out speed of 35 mph by using the torque characteristics of the unit's induction generator combined with the rotor aerodynamics to maintain essentially constant speed. Inspection procedures, pre-delivery testing,more » and a cost analysis are included.« less

  4. Examining the Effect of Household Wealth and Migration Status on Safe Delivery Care in Urban India, 1992–2006

    PubMed Central

    Singh, Prashant Kumar; Rai, Rajesh Kumar; Singh, Lucky

    2012-01-01

    Background Although the urban health issue has been of long-standing interest to public health researchers, majority of the studies have looked upon the urban poor and migrants as distinct subgroups. Another concern is, whether being poor and at the same time migrant leads to a double disadvantage in the utilization of maternal health services? This study aims to examine the trends and factors that affect safe delivery care utilization among the migrants and the poor in urban India. Methodology/Principal Findings Using data from the National Family Health Survey, 1992–93 and 2005–06, this study grouped the household wealth and migration status into four distinct categories poor-migrant, poor-non migrant, non poor-migrant, non poor-non migrant. Both chi-square test and binary logistic regression were performed to examine the influence of household wealth and migration status on safe delivery care utilization among women who had experienced a birth in the four years preceding the survey. Results suggest a decline in safe delivery care among poor-migrant women during 1992–2006. The present study identifies two distinct groups in terms of safe delivery care utilization in urban India – one for poor-migrant and one for non poor-non migrants. While poor-migrant women were most vulnerable, non poor-non migrant women were the highest users of safe delivery care. Conclusion This study reiterates the inequality that underlies the utilization of maternal healthcare services not only by the urban poor but also by poor-migrant women, who deserve special attention. The ongoing programmatic efforts under the National Urban Health Mission should start focusing on the poorest of the poor groups such as poor-migrant women. Importantly, there should be continuous evaluation to examine the progress among target groups within urban areas. PMID:22970324

  5. Electrostatic Precipitation in Nearly Pure Gaseous Nitrogen

    NASA Technical Reports Server (NTRS)

    Buhler, Charles; Calle, Carlos; Clements, Sid; Cox, Bobby; Ritz, Mindy

    2008-01-01

    Electrostatic precipitation was performed in a nearly pure gaseous nitrogen system as a possible remedy for black dust contaminant from high pressure 6000 psi lines at the NASA Kennedy Space Center. The results of a prototype electrostatic precipitator that was built and tested using nitrogen gas at standard atmospheric pressures is presented. High voltage pulsed waveforms are generated using a rotating spark gap system at 30 Hz. A unique dust delivery system utilizing the Venturi effect was devised that supplies a given amount of dust per unit time for testing purposes.

  6. Solubility of ocular therapeutic agents in self-emulsifying oils. I. Self-emulsifying oils for ocular drug delivery: solubility of indomethacin, aciclovir and hydrocortisone.

    PubMed

    Czajkowska-Kośnik, Anna; Sznitowska, Małgorzata

    2009-01-01

    Self-emulsifying drug delivery systems (SEDDS) were prepared by dissolving Cremophor EL, Tween 20, Tween 80 and Span 80 (1% or 5%) in oils (Miglyol 812 or castor oil). Solubilities of three ophthalmic drugs, namely aciclovir, hydrocortisone and indomethacin were determined in these systems. In addition, the effect of a small amount of water (0.5% and 2%) on solubilization properties of the systems was estimated. Of the three substances, indomethacin showed the best solubility in Miglyol while aciclovir was practically insoluble in this oil. The surfactants usually increased drug solubility in the oily phase. Only Tween 20 was found to decrease the solubility of aciclovir and hydrocortisone in Miglyol. Addition of a small amount of water to the oil/surfactant system increased solubility of hydrocortisone, but not of indomethacin. The results of the current study may be utilized to design a suitable composition of SEDDS and allow continuation of research on this type of drug carriers.

  7. Puncture mechanics of cnidarian cnidocysts: a natural actuator

    PubMed Central

    Oppegard, Shawn C; Anderson, Peter A; Eddington, David T

    2009-01-01

    Background Cnidocysts isolated from cnidarian organisms are attractive as a drug-delivery platform due to their fast, efficient delivery of toxins. The cnidocyst could be utilized as the means to deliver therapeutics in a wearable drug-delivery patch. Cnidocysts have been previously shown to discharge upon stimulation via electrical, mechanical, and chemical pathways. Cnidocysts isolated from the Portuguese Man O' War jellyfish (Physalia physalis) are attractive for this purpose because they possess relatively long threads, are capable of puncturing through hard fish scales, and are stable for years. Results As a first step in using cnidocysts as a functional component of a drug delivery system, the puncture mechanics of the thread were characterized. Tentacle-contained cnidocysts were used as a best-case scenario due to physical immobilization of the cnidocysts within the tentacle. Ex vivo tentacle-contained cnidocysts from Physalia possessed an elastic modulus puncture threshold of approximately 1-2 MPa, based on puncture tests of materials with a gamut of hardness. Also, a method for inducing discharge of isolated cnidocysts was found, utilizing water as the stimulant. Preliminary lectin-binding experiments were performed using fluorophore-conjugated lectins as a possible means to immobilize the isolated cnidocyst capsule, and prevent reorientation upon triggering. Lectins bound homogeneously to the surface of the capsule, suggesting the lectins could be used for cnidocyst immobilization but not orientation. Conclusion Cnidocysts were found to puncture materials up to 1 MPa in hardness, can be discharged in a dry state using water as a stimulant, and bind homogeneously to lectins, a potential means of immobilization. The information gained from this preliminary work will aid in determining the materials and design of the patch that could be used for drug delivery. PMID:19785761

  8. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers

    PubMed Central

    Wahajuddin; Arora, Sumit

    2012-01-01

    A targeted drug delivery system is the need of the hour. Guiding magnetic iron oxide nanoparticles with the help of an external magnetic field to its target is the principle behind the development of superparamagnetic iron oxide nanoparticles (SPIONs) as novel drug delivery vehicles. SPIONs are small synthetic γ-Fe2O3 (maghemite) or Fe3O4 (magnetite) particles with a core ranging between 10 nm and 100 nm in diameter. These magnetic particles are coated with certain biocompatible polymers, such as dextran or polyethylene glycol, which provide chemical handles for the conjugation of therapeutic agents and also improve their blood distribution profile. The current research on SPIONs is opening up wide horizons for their use as diagnostic agents in magnetic resonance imaging as well as for drug delivery vehicles. Delivery of anticancer drugs by coupling with functionalized SPIONs to their targeted site is one of the most pursued areas of research in the development of cancer treatment strategies. SPIONs have also demonstrated their efficiency as nonviral gene vectors that facilitate the introduction of plasmids into the nucleus at rates multifold those of routinely available standard technologies. SPION-induced hyperthermia has also been utilized for localized killing of cancerous cells. Despite their potential biomedical application, alteration in gene expression profiles, disturbance in iron homeostasis, oxidative stress, and altered cellular responses are some SPION-related toxicological aspects which require due consideration. This review provides a comprehensive understanding of SPIONs with regard to their method of preparation, their utility as drug delivery vehicles, and some concerns which need to be resolved before they can be moved from bench top to bedside. PMID:22848170

  9. Methods for Gene Transfer to the Central Nervous System

    PubMed Central

    Kantor, Boris; Bailey, Rachel M.; Wimberly, Keon; Kalburgi, Sahana N.; Gray, Steven J.

    2015-01-01

    Gene transfer is an increasingly utilized approach for research and clinical applications involving the central nervous system (CNS). Vectors for gene transfer can be as simple as an unmodified plasmid, but more commonly involve complex modifications to viruses to make them suitable gene delivery vehicles. This chapter will explain how tools for CNS gene transfer have been derived from naturally occurring viruses. The current capabilities of plasmid, retroviral, adeno-associated virus, adenovirus, and herpes simplex virus vectors for CNS gene delivery will be described. These include both focal and global CNS gene transfer strategies, with short- or long-term gene expression. As is described in this chapter, an important aspect of any vector is the cis-acting regulatory elements incorporated into the vector genome that control when, where, and how the transgene is expressed. PMID:25311922

  10. Challenges to neurology residency education in today's health care environment.

    PubMed

    Bega, Danny; Krainc, Dimitri

    2016-09-01

    Residency training has had to adapt to higher patient volumes, increased complexity of medical care, and the commercialized system of health care. These changes have led to a concerning culture shift in neurology. We review the relationship between the emerging health care delivery system and residency training, highlighting issues related to duty hours and work-life balance, the changing technological landscape, high patient volumes, and complex service obligations. We propose that the current challenges in health care delivery offer the opportunity to improve neurology residency through faculty development programs, bringing teaching back to the bedside, increasing resident autonomy, utilizing near-peer teaching, and rewarding educators who facilitate an environment of inquiry and scholarship, with the ultimate goal of better alignment between education and patient care. Ann Neurol 2016;80:315-320. © 2016 American Neurological Association.

  11. Defining the health care product to ensure quality and manage costs.

    PubMed

    Burns, J

    1994-02-01

    The frenzy of health care reform activity now led by the Clinton Administration's American Health Security Act of 1993 might end in the worst of all possible outcomes: a new government entitlement program financed by business and a global budget. Unbridled entitlement could drive utilization of benefits to the maximum and, with a budget cap, guarantee rationing. So far, the administration has talked about expanding access and controlling costs--not about the health care product. Given the threat that change poses for vested interests, time will undoubtedly lapse before final implementation of a new system. Unless physicians involved in health management seize the opportunity during this window of opportunity to help shape the future of health care delivery, the likelihood of preserving the U.S. health care delivery system as we know it will be dim indeed.

  12. Fibrin-binding, peptide amphiphile micelles for targeting glioblastoma.

    PubMed

    Chung, Eun Ji; Cheng, Yu; Morshed, Ramin; Nord, Kathryn; Han, Yu; Wegscheid, Michelle L; Auffinger, Brenda; Wainwright, Derek A; Lesniak, Maciej S; Tirrell, Matthew V

    2014-01-01

    Glioblastoma-targeted drug delivery systems facilitate efficient delivery of chemotherapeutic agents to malignant gliomas, while minimizing systemic toxicity and side effects. Taking advantage of the fibrin deposition that is characteristic of tumors, we constructed spherical, Cy7-labeled, targeting micelles to glioblastoma through the addition of the fibrin-binding pentapeptide, cysteine-arginine-glutamic acid-lysine-alanine, or CREKA. Conjugation of the CREKA peptide to Cy7-micelles increased the average particle size and zeta potential. Upon intravenous administration to GL261 glioma bearing mice, Cy7-micelles passively accumulated at the brain tumor site via the enhanced permeability and retention (EPR) effect, and Cy7-CREKA-micelles displayed enhanced tumor homing via active targeting as early as 1 h after administration, as confirmed via in vivo and ex vivo imaging and immunohistochemistry. Biodistribution of micelles showed an accumulation within the liver and kidneys, leading to micelle elimination via renal clearance and the reticuloendothelial system (RES). Histological evaluation showed no signs of cytotoxicity or tissue damage, confirming the safety and utility of this nanoparticle system for delivery to glioblastoma. Our findings offer strong evidence for the glioblastoma-targeting potential of CREKA-micelles and provide the foundation for CREKA-mediated, targeted therapy of glioma. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Gene delivery in conjunction with gold nanoparticle and tumor treating electric field

    NASA Astrophysics Data System (ADS)

    Tiwari, Pawan K.; Soo Lee, Yeon

    2013-08-01

    The advances in electrotherapy to treat the diseased biological cell instigate its extension in gene therapy through the delivery of gene into the nucleus. The objective of this study is to investigate the application of moderate intensity alternating electric field, also known as tumor treating electric field on a carrier system consisting of a charged gene complex conjugated to the surface of a gold nanoparticle. The gene delivery mechanism relies on the magnitude and direction of the induced electric field inside the cytoplasm in presence of carrier system. The induced electric field strength is significant in breaking the gene complex-gold nanoparticle bonding, and exerting an electric force pushing the charged gene into the nucleus. The electric force orientation is dependent on the aspect ratio (AR) of the gold nanoparticle and a relationship between them is studied via Maxwell two-dimensional (2D) finite element simulation analyzer. The development of charge density on the surface of carrier system and the required electric field strength to break the bonding are investigated utilizing the Gouy-Chapman-Grahame-Stern (GCGS) theoretical model. A carrier system having the aspect ratio of the gold nanoparticle in the range 1 < AR ≤ 5 and AR = 1 are substantial delivering cationic and anionic genes into the nucleus, respectively.

  14. [Business administration of PET facilities: a cost analysis of three facilities utilizing delivery FDG].

    PubMed

    Mitsutake, Naohiro; Oku, Shinya; Fujii, Ryo; Furui, Yuji; Yasunaga, Hideo

    2008-05-01

    PET (positron emission tomography) has been proved to be a powerful imaging tool in clinical oncology. The number of PET facilities in Japan has remarkably increased over the last decade. Furthermore, the approval of delivery FDG in 2005 resulted in a tremendous expansion of the PET institutions without a cyclotron facility. The aim of this study was to conduct a cost analysis of PET institutions that utilized delivery FDG. Three PET facilities using delivery FDG were investigated about the costs for PET service. Fixed costs included depreciation costs for construction and medical equipments such as positron camera. Variable costs consisted of costs for medical materials including delivery FDG. The break-even point was analyzed in each of three institutions. In the three hospitals (A, B and C), the annual number of PET scan was 1,591, 1,637 and 914, while cost per scan was accounted as yen 110,262, yen 111,091, and yen 134,192, respectively. The break-even point was calculated to be 2,583, 2,679 and 2,081, respectively. PET facilities utilizing delivery FDG seemed to have difficulty in business administration. Such a situation suggests the possibility that the current supply of PET facilities might exceed actual demand for the service. The efficiency of resource allocation should be taken into consideration in the future health service researches on PET.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    KIRKBRIDE, R.A.

    The Tank Waste Remediation System Operation and Utilization Plan updates the operating scenario and plans for the delivery of feed to BNFL Inc., retrieval of waste from single-shell tanks, and the overall process flowsheets for Phases I and II of the privatization of the Tank Waste Remediation System. The plans and flowsheets are updated with the most recent tank-by-tank inventory and sludge washing data. Sensitivity cases were run to evaluate the impact or benefits of proposed changes to the BNFL Inc. contract and to evaluate a risk-based SST retrieval strategy.

  16. SMUD Community Renewable Energy Deployment Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sison-Lebrilla, Elaine; Tiangco, Valentino; Lemes, Marco

    2015-06-08

    This report summarizes the completion of four renewable energy installations supported by California Energy Commission (CEC) grant number CEC Grant PIR-11-005, the US Department of Energy (DOE) Assistance Agreement, DE-EE0003070, and the Sacramento Municipal Utility District (SMUD) Community Renewable Energy Deployment (CRED) program. The funding from the DOE, combined with funding from the CEC, supported the construction of a solar power system, biogas generation from waste systems, and anaerobic digestion systems at dairy facilities, all for electricity generation and delivery to SMUD’s distribution system. The deployment of CRED projects shows that solar projects and anaerobic digesters can be successfully implementedmore » under favorable economic conditions and business models and through collaborative partnerships. This work helps other communities learn how to assess, overcome barriers, utilize, and benefit from renewable resources for electricity generation in their region. In addition to reducing GHG emissions, the projects also demonstrate that solar projects and anaerobic digesters can be readily implemented through collaborative partnerships. This work helps other communities learn how to assess, overcome barriers, utilize, and benefit from renewable resources for electricity generation in their region.« less

  17. Utilization of maternal health care services among married adolescent women: insights from the Nigeria Demographic and Health Survey, 2008.

    PubMed

    Rai, Rajesh Kumar; Singh, Prashant Kumar; Singh, Lucky

    2012-01-01

    An ongoing social catastrophe of very poor performance in maternal health coupled with an unacceptably high number of maternal deaths is evident in Nigeria, especially among adolescent women. This study examines the factors associated with selected maternity services-married adolescent women who have had at least four antenatal care (ANC) visits, those who have undergone safe delivery care, and those who received postnatal care within 42 days of delivery. Data from Nigeria Demographic and Health Survey, 2008, were used. An eligible sample of 2,434 married adolescent (aged 15-19 years) women was included in the analysis. Pearson chi-square test and binary logistic regression were performed to fulfill the study objective. It was found that about 35% of adolescent women had at least four ANC visits, a little over 25% had undergone safe delivery care, and nearly 32% received postnatal care within 42 days of delivery. Women's education, husband's education, wealth quintile, and region of residence were documented as the most important factors associated with maternal healthcare service utilization. The ANC visit was found to be vital in the utilization of safe delivery and postnatal care. Findings indicate that programs to improve maternal healthcare have not succeeded in overcoming the socioeconomic obstacles in the way of adolescents' utilizing maternity services. In the long run, the content and service delivery strategy of maternity programs must be designed in keeping with the socioeconomic context with special attention to adolescent women who are uneducated, poor, and residing in rural areas. Copyright © 2012 Jacobs Institute of Women's Health. Published by Elsevier Inc. All rights reserved.

  18. Ada and the rapid development lifecycle

    NASA Technical Reports Server (NTRS)

    Deforrest, Lloyd; Gref, Lynn

    1991-01-01

    JPL is under contract, through NASA, with the US Army to develop a state-of-the-art Command Center System for the US European Command (USEUCOM). The Command Center System will receive, process, and integrate force status information from various sources and provide this integrated information to staff officers and decision makers in a format designed to enhance user comprehension and utility. The system is based on distributed workstation class microcomputers, VAX- and SUN-based data servers, and interfaces to existing military mainframe systems and communication networks. JPL is developing the Command Center System utilizing an incremental delivery methodology called the Rapid Development Methodology with adherence to government and industry standards including the UNIX operating system, X Windows, OSF/Motif, and the Ada programming language. Through a combination of software engineering techniques specific to the Ada programming language and the Rapid Development Approach, JPL was able to deliver capability to the military user incrementally, with comparable quality and improved economies of projects developed under more traditional software intensive system implementation methodologies.

  19. (3-aminopropyl)-4-methylpiperazine end-capped poly(1,4-butanediol diacrylate-co-4-amino-1-butanol)-based multilayer films for gene delivery.

    PubMed

    Li, Cuicui; Tzeng, Stephany Y; Tellier, Liane E; Green, Jordan J

    2013-07-10

    Biodegradable polyelectrolyte surfaces for gene delivery were created through electrospinning of biodegradable polycations combined with iterative solution-based multilayer coating. Poly(β-amino ester) (PBAE) poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) end-capped with 1-(3-aminopropyl)-4-methylpiperazine was utilized because of its ability to electrostatically interact with anionic molecules like DNA, its biodegradability, and its low cytotoxicity. A new DNA release system was developed for sustained release of DNA over 24 h, accompanied by high exogenous gene expression in primary human glioblastoma (GB) cells. Electrospinning a different PBAE, poly(1,4-butanediol diacrylate-co-4,4'-trimethylenedipiperidine), and its combination with polyelectrolyte 1-(3-aminopropyl)-4-methylpiperazine end-capped poly(1,4-butanediol diacrylate-co-4-amino-1-butanol)-based multilayers are promising for DNA release and intracellular delivery from a surface.

  20. (3-Aminopropyl)-4-methylpiperazine End-capped Poly(1,4-butanediol diacrylate-co-4-amino-1-butanol)-based Multilayer Films for Gene Delivery

    PubMed Central

    Li, Cuicui; Tzeng, Stephany Y; Tellier, Liane E.; Green, Jordan J

    2013-01-01

    Biodegradable polyelectrolyte surfaces for gene delivery were created through electrospinning of biodegradable polycations combined with iterative solution-based multilayer coating. Poly(β-amino ester) (PBAE) poly(1,4-butanediol diacrylate-co-4-amino-1-butanol) end-capped with 1-(3-aminopropyl)-4-methylpiperazine was utilized due to its ability to electrostatically interact with anionic molecules like DNA, its biodegradability, and its low cytotoxicity. A new DNA release system was developed for sustained release of DNA over 24 hours, accompanied by high exogenous gene expression in primary human glioblastoma (GB) cells. Electrospinning a different PBAE, poly(1,4-butanediol diacrylate-co-4,4′-trimethylenedipiperidine), and its combination with polyelectrolyte 1-(3-aminopropyl)-4-methylpiperazine end-capped poly(1,4-butanediol diacrylate-co-4-amino-1-butanol)-based multilayers are promising for DNA release and intracellular delivery from a surface. PMID:23755861

  1. The power of collaboration: using internet-based tools to facilitate networking and benchmarking within a consortium of academic health centers.

    PubMed

    Korner, Eli J; Oinonen, Michael J; Browne, Robert C

    2003-02-01

    The University HealthSystem Consortium (UHC) represents a strategic alliance of 169 academic health centers and associated institutions engaged in knowledge sharing and idea-generation. The use of the Internet as a tool in the delivery of UHC's products and services has increased dramatically over the past year and will continue to increase during the foreseeable future. This paper examines the current state of UHC-member institution driven tools and services that utilize the Web as a fundamental component in their delivery. The evolution of knowledge management at UHC, its management information and reporting tools, and expansion of e-commerce provide real world examples of Internet use in health care delivery and management. Health care workers are using these Web-based tools to help manage rising costs and optimize patient outcomes. Policy, technical, and organizational issues must be resolved to facilitate rapid adoption of Internet applications.

  2. The use of reproductive healthcare at commune health stations in a changing health system in Vietnam

    PubMed Central

    2011-01-01

    Background With health sector reform in Vietnam moving towards greater pluralism, commune health stations (CHSs) have been subject to growing competition from private health services and increasing numbers of patients bypassing CHSs for higher-level health facilities. This study describes the pattern of reproductive health (RH) and family planning (FP) service utilization among women at CHSs and other health facilities, and explores socio-demographic determinants of RH service utilization at the CHS level. Methods This study was based on a cross-sectional survey conducted in Thua Thien Hue and Vinh Long provinces, using a multi-stage cluster sampling technique. Questionnaire-based interviews with 978 ever-married women at reproductive age provided data on socio-demographic characteristics, current use of FP methods, history of RH service use, and the health facility attended for their most recent services. Multiple logistic regression analyses were used to identify socio-demographic determinants of their use of CHS RH services. Results Eighty nine percent of ever-married women reported current use of birth control with 49% choosing intra-uterine device (IUD). Eighty nine percent of pregnant women attended facility-based antenatal care (ANC) with 62% having at least 3 check-ups during their latest pregnancy. Ninety one percent of mothers had their last delivery in a health facility. Seventy-one percent of respondents used CHS for IUD insertion, 55% for antenatal check-ups, and 77% gynecological examination. District and provincial/central hospitals dominated the provision of delivery service, used by 57% of mothers for their latest delivery. The percentage of women opting for private ANC services was reported at 35%, though the use of private delivery services was low (11%). Women who were farmers, earning a lower income, having more than 2 children, and living in a rural area were more likely than others to use ANC, delivery, and/or gynecological check-up services at the CHS. Conclusions Women choice of providers for FP and RH services that help them plan and protect their pregnancies is driven by socio-economic factors. While the CHS retains significant utilization rates, it is under challenge by preferences for hospital-based delivery and the growing use of private ANC services. PMID:21943073

  3. Ultrasound-responsive nanobubbles contained with peptide-camptothecin conjugates for targeted drug delivery.

    PubMed

    Xie, Xiangyang; Lin, Wen; Liu, Hui; Deng, Jianping; Chen, Ying; Liu, Hong; Fu, Xudong; Yang, Yang

    2016-10-01

    To improve the targeting delivery efficiency of anticancer drug to tumor sites, a new strategy combining cell-permeable peptide (CPP) and ultrasound was reported in this article. In this study, we devised and tested a strategy for functional payload delivery to cells by loading CPP-camptothecin conjugate (CPP-CPT) into nanobubble (CPP-CPT NB). Here, CPP existing in the conjugation form of CPP and CPT was hidden in nanobubble to cloak the penetration activity of CPP. Meanwhile, local tumor ultrasound was utilized to achieve specific targeting of CPP-CPT to the tumor cells. The mean particle size of the prepared CPP-CPT NB was ∼200 nm, and the drug entrapment efficiency was >80%. Stimulated by ultrasound, over 90% of the entrapped CPP-CPTs would release from the nanobubbles. Subsequent research demonstrated that the CPP-CPT NB showed effective cellular uptake and significant cytotoxic activity in HeLa cells in vitro. Additionally, after systemic administration in mice, CPP-CPT NB with ultrasound showed a higher tumor inhibition effect in nude mice xenografted HeLa cells tumors and excellent body safety when compared with normal CPT injection group. In conclusion, the carrier constructed in this study would be a safe and efficiently drug delivery system for specific cancer treatment.

  4. Exploiting Nanotechnology for the Development of MicroRNA-Based Cancer Therapeutics.

    PubMed

    Tyagi, Nikhil; Arora, Sumit; Deshmukh, Sachin K; Singh, Seema; Marimuthu, Saravanakumar; Singh, Ajay P

    2016-01-01

    MicroRNAs (miRNAs/miRs) represent a novel class of small non-coding RNAs that post-transcriptionally regulate gene expression by base pairing with complementary sequences in the 3' untranslated region (UTR) of target mRNAs. Functional studies suggest that miRNAs control almost every biological process, and their aberrant expression leads to a disease state, such as cancer. Differential expression of miRNAs in cancerous versus normal cells have generated enormous interest for the development of miRNA-based cancer cell-targeted therapeutics. Depending on the miRNA function and expression in cancer, two types of miRNA-based therapeutic strategies can be utilized that either restore or inhibit miRNA function through exogenous delivery of miRNAs mimics or inhibitors (anti-miRs). However, hydrophilic nature of miRNA mimics/anti-miRs, sensitivity to nuclease degradation in serum, poor penetration and reduced uptake by the tumor cells are chief hurdles in accomplishing their efficient in vivo delivery. To overcome these barriers, several nanotechnology-based systems are being developed and tested for delivery efficacy. This review summarizes the importance of miRNAs-based therapeutics in cancer, associated translational challenges and novel nanotechnology-assisted delivery systems that hold potential for next-generation miRNA-based cancer therapeutics.

  5. Formal and informal maternal health care: comparing the service provision of health facilities and village health volunteers in East Sepik Province.

    PubMed

    O'Keefe, Daniel; Davis, Jessica; Yakuna, Glenda; Van Gemert, Caroline; Morgan, Chris

    2011-01-01

    Maternal health across Papua New Guinea (PNG) is of extreme public health concern. In response, the National Department of Health explicitly prioritized improving maternal, neonatal and child health services, envisaging increased collaboration between the formal health system and community-based initiatives as one method for achieving this. This study examined the patterns of formal and non-formal service utilization during pregnancy and childbirth in one province. We analysed the activity database of the East Sepik Women and Children's Health Project's Village Health Volunteer (VHV) program, an informal health service in East Sepik Province of PNG, estimating VHV activity and coverage for two maternal health care services (first antenatal care visit and VHV-attended deliveries) and comparing these to the volume and estimated coverage of these services delivered by the formal health system in East Sepik over the years 2007 to 2010. We found a significant increase in women's utilization of VHVs for first antenatal care and for an attended delivery. Reported coverage of these services delivered by the formal health service declined or at best remained static over the same time period. Our data cannot illuminate the causes of an apparent and highly concerning decline in health facility usage for assisted delivery, nor the reasons for increased usage of VHVs. The factors contributing to these trends in service provision require urgent study, to improve our understanding of the drivers of utilization of critical maternal health services. Our study demonstrates that VHVs deliver a substantial proportion of maternal health services in East Sepik. This finding alone highlights the importance of considering this cadre when planning health service improvements and suggests that a national VHV policy that builds on the work of the National Health Plan in defining the most appropriate role for VHVs in maternal health care is long overdue.

  6. Vaccine delivery to disease control: a paradigm shift in health policy.

    PubMed

    John, T Jacob; Jain, Yogesh; Nadimpally, Sarojini; Jesani, Amar

    2017-01-01

    India's Universal Immunisation Programme (UIP) has resulted in the creation of infrastructure, human resources and systems for the procurement and delivery of vaccines. Recently, new vaccines have been added and there are plans for the introduction of more. However, the outcomes in terms of reduction of the diseases for which the vaccines are being administered remain ambiguous. This is evident from the persistent health issues that children continue to experience, despite immunisation. This situation raises a fundamental ethical question for public health: vaccinations are one of the tools of disease control, but are they properly aligned to the control of disease so as to produce the expected public health utility or benefit?

  7. Hydrocolloid-based nutraceutical delivery systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janaswamy, Srinivas; Youngren, Susanne R.

    Nutraceuticals are important due to their inherent health benefits. However, utilization and consumption are limited by their poor water solubility and instability at normal processing and storage conditions. Herein, we propose an elegant and novel approach for the delivery of nutraceuticals in their active form using hydrocolloid matrices that are inexpensive and non-toxic with generally recognized as safe (GRAS) status. Iota-carrageenan and curcumin have been chosen as models of hydrocolloid and nutraceutical compounds, respectively. The iota-carrageenan network maintains a stable organization after encapsulating curcumin molecules, protects them from melting and then releases them in a sustained manner. These findings laymore » a strong foundation for developing value-added functional and medicinal foods.« less

  8. Air Force Aerospace Medicine Enterprise Ambulatory Medical Care Survey

    DTIC Science & Technology

    2014-03-01

    aerospace medicine • utilization • health care • Air Force Introduction The planning and management of health care delivery is becoming increasingly...preferences and to adhere to the prescribed regimen. In the broader context of heath care systems, managers and policy makers influence budget and...providers, managers , policy makers, and researchers on the effectiveness of health care organization, patterns of service use, quality of care, health

  9. Breadboard activities for advanced protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz; Banish, Michael

    1993-01-01

    The proposed work entails the design, assembly, testing, and delivery of a turn-key system for the semi-automated determination of protein solubilities as a function of temperature. The system will utilize optical scintillation as a means of detecting and monitoring nucleation and crystallite growth during temperature lowering (or raising, with retrograde solubility systems). The deliverables of this contract are: (1) turn-key scintillation system for the semi-automatic determination of protein solubilities as a function of temperature, (2) instructions and software package for the operation of the scintillation system, and (3) one semi-annual and one final report including the test results obtained for ovostatin with the above scintillation system.

  10. A novel delivery system of doxorubicin with high load and pH-responsive release from the nanoparticles of poly (α,β-aspartic acid) derivative.

    PubMed

    Wang, Xiaojuan; Wu, Guolin; Lu, Caicai; Zhao, Weipeng; Wang, Yinong; Fan, Yunge; Gao, Hui; Ma, Jianbiao

    2012-08-30

    A poly (amino acid)-based amphiphilic copolymer was utilized to fabricate a better micellar drug delivery system (DDS) with improved compatibility and sustained release of doxorubicin (DOX). First, poly (ethylene glycol) monomethyl ether (mPEG) and DOX were conjugated onto polyasparihyazide (PAHy), prepared by hydrazinolysis of the poly (succinimide) (PSI), to afford an amphiphilic polymer [PEG-hyd-P (AHy-hyd-DOX)] with acid-liable hydrazone bonds. The DOX, chemically conjugated to the PAHy, was designed to supply hydrophobic segments. PEGs were also grafted to the polymer via hydrazone bonds to supply hydrophiphilic segments and prolong its lifetime in blood circulation. Free DOX molecules could be entrapped into the nanoparticles fabricated by such an amphiphilic polymer (PEG-hyd-P (AHy-hyd-DOX)), via hydrophobic interaction and π-π stacking between the conjugated and free DOX molecules to obtain a pH responsive drug delivery system with high DOX loaded. The drug loading capacity, drug release behavior, and morphology of the micelles were investigated. The biological activity of micelles was evaluated in vitro. The drug loading capacity was intensively augmented by adjusting the feed ratio, and the maximum loading capacity was as high as 38%. Besides, the DOX-loaded system exhibited pH-dependent drug release profiles in vitro. The cumulative release of DOX was much faster at pH 5.0 than that at pH 7.4. The DOX-loaded system kept highly antitumor activity for a long time, compared with free DOX. This easy-prepared DDS, with features of biocompatibility, biodegradability, high drug loading capacity and pH-responsiveness, was a promising controlled release delivery system for DOX. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Effects of nasal drug delivery device and its orientation on sprayed particle deposition in a realistic human nasal cavity.

    PubMed

    Tong, Xuwen; Dong, Jingliang; Shang, Yidan; Inthavong, Kiao; Tu, Jiyuan

    2016-10-01

    In this study, the effects of nasal drug delivery device and the spray nozzle orientation on sprayed droplets deposition in a realistic human nasal cavity were numerically studied. Prior to performing the numerical investigation, an in-house designed automated actuation system representing mean adults actuation force was developed to produce realistic spray plume. Then, the spray plume development was filmed by high speed photography system, and spray characteristics such as spray cone angle, break-up length, and average droplet velocity were obtained through off-line image analysis. Continuing studies utilizing those experimental data as boundary conditions were applied in the following numerical spray simulations using a commercially available nasal spray device, which was inserted into a realistic adult nasal passage with external facial features. Through varying the particle releasing direction, the deposition fractions of selected particle sizes on the main nasal passage for targeted drug delivery were compared. The results demonstrated that the middle spray direction showed superior spray efficiency compared with upper or lower directions, and the 10µm agents were the most suitable particle size as the majority of sprayed agents can be delivered to the targeted area, the main passage. This study elaborates a comprehensive approach to better understand nasal spray mechanism and evaluate its performance for existing nasal delivery practices. Results of this study can assist the pharmaceutical industry to improve the current design of nasal drug delivery device and ultimately benefit more patients through optimized medications delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. In Silico Models of Aerosol Delivery to the Respiratory Tract – Development and Applications

    PubMed Central

    Longest, P. Worth; Holbrook, Landon T.

    2011-01-01

    This review discusses the application of computational models to simulate the transport and deposition of inhaled pharmaceutical aerosols from the site of particle or droplet formation to deposition within the respiratory tract. Traditional one-dimensional (1-D) whole-lung models are discussed briefly followed by a more in-depth review of three-dimensional (3-D) computational fluid dynamics (CFD) simulations. The review of CFD models is organized into sections covering transport and deposition within the inhaler device, the extrathoracic (oral and nasal) region, conducting airways, and alveolar space. For each section, a general review of significant contributions and advancements in the area of simulating pharmaceutical aerosols is provided followed by a more in-depth application or case study that highlights the challenges, utility, and benefits of in silico models. Specific applications presented include the optimization of an existing spray inhaler, development of charge-targeted delivery, specification of conditions for optimal nasal delivery, analysis of a new condensational delivery approach, and an evaluation of targeted delivery using magnetic aerosols. The review concludes with recommendations on the need for more refined model validations, use of a concurrent experimental and CFD approach for developing aerosol delivery systems, and development of a stochastic individual path (SIP) model of aerosol transport and deposition throughout the respiratory tract. PMID:21640772

  13. Conatumumab (AMG 655) coated nanoparticles for targeted pro-apoptotic drug delivery.

    PubMed

    Fay, Francois; McLaughlin, Kirsty M; Small, Donna M; Fennell, Dean A; Johnston, Patrick G; Longley, Daniel B; Scott, Christopher J

    2011-11-01

    Colloidal nanoparticle drug delivery systems have attracted much interest for their ability to enable effective formulation and delivery of therapeutic agents. The selective delivery of these nanoparticles to the disease site can be enhanced by coating the surface of the nanoparticles with targeting moieties, such as antibodies. In this current work, we demonstrate that antibodies on the surface of the particles can also elicit key biological effects. Specifically, we demonstrate the induction of apoptosis in colorectal HCT116 cancer cells using PLGA nanoparticles coated with Conatumumab (AMG 655) death receptor 5-specific antibodies (DR5-NP). We show that DR5-NP preferentially target DR5-expressing cells and present a sufficient density of antibody paratopes to induce apoptosis via DR5, unlike free AMG 655 or non-targeted control nanoparticles. We also demonstrate that DR5-targeted nanoparticles encapsulating the cytotoxic drug camptothecin are effectively targeted to the tumour cells, thereby producing enhanced cytotoxic effects through simultaneous drug delivery and apoptosis induction. These results demonstrate that antibodies on nanoparticulate surfaces can be exploited for dual modes of action to enhance the therapeutic utility of the modality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Sodium dependent multivitamin transporter (SMVT): a potential target for drug delivery.

    PubMed

    Vadlapudi, Aswani Dutt; Vadlapatla, Ramya Krishna; Mitra, Ashim K

    2012-06-01

    Sodium dependent multivitamin transporter (SMVT; product of the SLC5A6 gene) is an important transmembrane protein responsible for translocation of vitamins and other essential cofactors such as biotin, pantothenic acid and lipoic acid. Hydropathy plot (Kyte-Dolittle algorithm) revealed that human SMVT protein consists of 635 amino acids and 12 transmembrane domains with both amino and carboxyl termini oriented towards the cytoplasm. SMVT is expressed in various tissues such as placenta, intestine, brain, liver, lung, kidney, cornea, retina and heart. This transporter displays broad substrate specificity and excellent capacity for utilization in drug delivery. Drug absorption is often limited by the presence of physiological (epithelial tight junctions), biochemical (efflux transporters and enzymatic degradation) and chemical (size, lipophilicity, molecular weight, charge etc.) barriers. These barriers may cause many potential therapeutics to be dropped from the preliminary screening portfolio and subsequent entry into the market. Transporter targeted delivery has become a powerful approach to deliver drugs to target tissues because of the ability of the transporter to translocate the drug to intracellular organelles at a higher rate. This review highlights studies employing SMVT transporter as a target for drug delivery to improve bioavailability and investigate the feasibility of developing SMVT targeted drug delivery systems.

  15. Women's Preferences for Place of Delivery in Rural Tanzania: A Population-Based Discrete Choice Experiment

    PubMed Central

    Paczkowski, Magdalena; Mbaruku, Godfrey; de Pinho, Helen; Galea, Sandro

    2009-01-01

    Objectives. We fielded a population-based discrete choice experiment (DCE) in rural western Tanzania, where only one third of women deliver children in a health facility, to evaluate health-system factors that influence women's delivery decisions. Methods. Women were shown choice cards that described 2 hypothetical health centers by means of 6 attributes (distance, cost, type of provider, attitude of provider, drugs and equipment, free transport). The women were then asked to indicate which of the 2 facilities they would prefer to use for a future delivery. We used a hierarchical Bayes procedure to estimate individual and mean utility parameters. Results. A total of 1203 women completed the DCE. The model showed good predictive validity for actual facility choice. The most important facility attributes were a respectful provider attitude and availability of drugs and medical equipment. Policy simulations suggested that if these attributes were improved at existing facilities, the proportion of women preferring facility delivery would rise from 43% to 88%. Conclusions. In regions in which attended delivery rates are low despite availability of primary care facilities, policy experiments should test the effect of targeted quality improvements on facility use. PMID:19608959

  16. Silk-elastin-like protein biomaterials for the controlled delivery of therapeutics.

    PubMed

    Huang, Wenwen; Rollett, Alexandra; Kaplan, David L

    2015-05-01

    Genetically engineered biomaterials are useful for controlled delivery owing to their rational design, tunable structure-function, biocompatibility, degradability and target specificity. Silk-elastin-like proteins (SELPs), a family of genetically engineered recombinant protein polymers, possess these properties. Additionally, given the benefits of combining semi-crystalline silk-blocks and elastomeric elastin-blocks, SELPs possess multi-stimuli-responsive properties and tunability, thereby becoming promising candidates for targeted cancer therapeutics delivery and controlled gene release. An overview of SELP biomaterials for drug delivery and gene release is provided. Biosynthetic strategies used for SELP production, fundamental physicochemical properties and self-assembly mechanisms are discussed. The review focuses on sequence-structure-function relationships, stimuli-responsive features and current and potential drug delivery applications. The tunable material properties allow SELPs to be pursued as promising biomaterials for nanocarriers and injectable drug release systems. Current applications of SELPs have focused on thermally-triggered biomaterial formats for the delivery of therapeutics, based on local hyperthermia in tumors or infections. Other prominent controlled release applications of SELPs as injectable hydrogels for gene release have also been pursued. Further biomedical applications that utilize other stimuli to trigger the reversible material responses of SELPs for targeted delivery, including pH, ionic strength, redox, enzymatic stimuli and electric field, are in progress. Exploiting these additional stimuli-responsive features will provide a broader range of functional biomaterials for controlled therapeutics release and tissue regeneration.

  17. Lumbar spine intervertebral disc gene delivery: a pilot study in lewis rats.

    PubMed

    Damle, Sheela R; Rawlins, Bernard A; Boachie-Adjei, Oheneba; Crystal, Ronald G; Hidaka, Chisa; Cunningham, Matthew E

    2013-02-01

    Basic research toward understanding and treating disc pathology in the spine has utilized numerous animal models, with delivery of small molecules, purified factors, and genes of interest. To date, gene delivery to the rat lumbar spine has only been described utilizing genetically programmed cells in a matrix which has required partial disc excision, and expected limitation of treatment diffusion into the disc. This study was designed to develop and describe a surgical technique for lumbar spine exposure and disc space preparation, and use of a matrix-free method for gene delivery. Naïve or genetically programmed isogeneic bone marrow stromal cells were surgically delivered to adolescent male Lewis rat lumbar discs, and utilizing quantitative biochemical and qualitative immunohistological assessments, the implanted cells were detected 3 days post-procedure. Statistically significant differences were noted for recovery of the β-galactosidase marker gene comparing delivery of naïve or labeled cells (10(5) cells per disc) from the site of implantation, and between delivery of 10(5) or 10(6) labeled cells per disc at the site of implantation and the adjacent vertebral body. Immunohistology confirmed that the β-galactosidase marker was detected in the adjacent vertebra bone in the zone of surgical implantation. The model requires further testing in larger cohorts and with biologically active genes of interest, but the observations from the pilot experiments are very encouraging that this will be a useful comparative model for basic spine research involving gene or cell delivery, or other locally delivered therapies to the intervertebral disc or adjacent vertebral bodies in rats.

  18. Induction of a robust immune response against avian influenza virus following transdermal inoculation with H5-DNA vaccine formulated in modified dendrimer-based delivery system in mouse model.

    PubMed

    Bahadoran, Azadeh; Ebrahimi, Mehdi; Yeap, Swee Keong; Safi, Nikoo; Moeini, Hassan; Hair-Bejo, Mohd; Hussein, Mohd Zobir; Omar, Abdul Rahman

    2017-01-01

    This study was aimed to evaluate the immunogenicity of recombinant plasmid deoxyribonucleic acid (DNA), pBud-H5-green fluorescent protein (GFP)-interferon-regulatory factor (IRF)3 following delivery using polyamidoamine (PAMAM) dendrimer and transactivator of transcription (TAT)-conjugated PAMAM dendrimer as well as the effect of IRF3 as the genetic adjuvant. BALB/c mice were vaccinated transdermally with pBud-H5-GFP, PAMAM/pBud-H5-GFP, TAT-PAMAM/pBud-H5-GFP, and TAT-PAMAM/pBud-H5-GFP-IRF3. The expression analysis of H5 gene from the blood by using quantitative real-time reverse transcriptase polymerase chain reaction confirmed the ability of PAMAM dendrimer as a carrier for gene delivery, as well as the ability of TAT peptide to enhance the delivery efficiency of PAMAM dendrimer. Mice immunized with modified PAMAM by TAT peptide showed higher hemagglutination inhibition titer, and larger CD3 + /CD4 + T cells and CD3 + /CD8 + T cells population, as well as the production of cytokines, namely, interferon (IFN)-γ, interleukin (IL)-2, IL-15, IL-12, IL-6, and tumor necrosis factor-α compared with those immunized with native PAMAM. These results suggest that the function of TAT peptide as a cell-penetrating peptide is able to enhance the gene delivery, which results in rapid distribution of H5 in the tissues of the immunized mice. Furthermore, pBud-H5-GFP co-expressing IRF3 as a genetic adjuvant demonstrated the highest hemagglutination inhibition titer besides larger CD3 + /CD4 + and CD3 + /CD8 + T cells population, and strong Th1-like cytokine responses among all the systems tested. In conclusion, TAT-PAMAM dendrimer-based delivery system with IRF3 as a genetic adjuvant is an attractive transdermal DNA vaccine delivery system utilized to evaluate the efficacy of the developed DNA vaccine in inducing protection during challenge with virulent H5N1 virus.

  19. Methodology for the in vitro evaluation of the delivery efficiency from valved holding chambers with facemasks.

    PubMed

    Xu, Zhen; Hsu, Wenchi; von Hollen, Dirk; Viswanath, Ashwin; Nikander, Kurt; Dalby, Richard

    2014-08-01

    In vitro performance studies of valved holding chamber (VHC)-facemask systems are a cost-effective means of circumventing potentially confounding clinical variables. This article reports results of an in vitro investigation into VHC-facemask performance, using three age-specific soft anatomical model (SAM) faces, under clinically relevant conditions. A potentially standardized method was developed to assess VHC-facemask seal leakage, and evaluate the in vitro delivery efficiency of conventional and antistatic VHC-facemask systems. A custom-built test rig and VHC cradles were used to position the VHC-facemask systems against the SAM faces, with a constant, reproducible force. A standardized simulated pediatric breathing pattern (tidal volume = 155 mL; inhalation:exhalation ratio = 40:60; 25 breaths/min) was utilized. Percent facemask seal leakage, percent delivered dose, and the effect of different numbers of simulated breaths (2 to 8) were investigated. Of the VHC-facemask systems tested, the OptiChamber Diamond VHC with LiteTouch facemask (Diamond) system had the lowest percent seal leakage with each SAM face. Percent seal leakage from the other VHC-facemask systems was similar with SAM0 and SAM2 faces; the AeroChamber Plus Z-Stat VHC with ComfortSeal facemask (AC Z-Stat) system had a substantially greater percent seal leakage with the SAM1 face. Regardless of the number of simulated breaths, the Diamond system delivered the greatest mean percent delivered dose, with the lowest coefficient of variation, with each SAM face. Percent delivered dose did not correlate well with seal leakage, particularly for VHC-facemask systems with high seal leakage. The electrostatic properties of the VHCs appeared to influence drug delivery. This study describes a potentially standardized method for the evaluation of VHC-facemask systems. Use of this method enabled a comprehensive investigation into the influence of clinically relevant variables, including age-specific facial anatomy, number of simulated breaths, and seal leakage, on the delivery efficiency of several commercially available VHC-facemask systems.

  20. DC Microgrids Scoping Study. Estimate of Technical and Economic Benefits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backhaus, Scott N.; Swift, Gregory William; Chatzivasileiadis, Spyridon

    Microgrid demonstrations and deployments are expanding in US power systems and around the world. Although goals are specific to each site, these microgrids have demonstrated the ability to provide higher reliability and higher power quality than utility power systems and improved energy utilization. The vast majority of these microgrids are based on AC power transfer because this has been the traditionally dominant power delivery scheme. Independently, manufacturers, power system designers and researchers are demonstrating and deploying DC power distribution systems for applications where the end-use loads are natively DC, e.g., computers, solid-state lighting, and building networks. These early DC applicationsmore » may provide higher efficiency, added flexibility, reduced capital costs over their AC counterparts. Further, when onsite renewable generation, electric vehicles and storage systems are present, DC-based microgrids may offer additional benefits. Early successes from these efforts raises a question - can a combination of microgrid concepts and DC distribution systems provide added benefits beyond what has been achieved individually?« less

  1. Employment of cationic solid-lipid nanoparticles as RNA carriers.

    PubMed

    Montana, Giovanna; Bondì, Maria L; Carrotta, Rita; Picone, Pasquale; Craparo, Emanuela F; San Biagio, Pier L; Giammona, Gaetano; Di Carlo, Marta

    2007-01-01

    Gene transfer represents an important advance in the treatment of both genetic and acquired diseases. In this article, the suitability of cationically modified solid-lipid nanoparticles (SLN) as a nonviral vector for gene delivery was investigated, in order to obtain stable materials able to condense RNA. Cationic SLN were produced by microemulsion using Compritol ATO 888 as matrix lipid, Pluronic F68 as tenside, and dimethyldioctadecylammonium bromide (DDAB) as cationic lipid. The resulting particles were approximately 100 nm in size and showed a highly positive surface charge (+41 mV) in water. Size and shape were further characterized by scanning electron microscopy (SEM) measurements. Moreover, we utilized the sea urchin as a model system to test their applicability on a living organism. To evaluate cationic SLN ability to complex the in vitro transcribed Paracentrotus lividus bep3 RNA, we utilized both light scattering and gel mobility experiments, and protection by nuclease degradation was also investigated. By microinjection experiment, we demonstrated that the nanoparticles do not inference with the viability of the P. lividus embryo and the complex nanoparticles-bep3 permits movement of the RNA during its localization in the egg, suggesting that it could be a suitable system for gene delivery. Taken together, all these results indicate that the cationic SNL are a good RNA carrier for gene transfer system and the sea urchin a simple and versatile candidate to test biological properties of nanotechnology devices.

  2. Expanding Alternative Delivery Systems.

    ERIC Educational Resources Information Center

    Baltzer, Jan A.

    Alternative educational delivery systems that might be useful to community colleges are considered. The following categories of delivery systems are covered: broadcast delivery systems; copy delivery systems, print delivery systems, computer delivery systems, telephone delivery systems, and satellites. Among the applications for broadcast…

  3. HESTIA Commodities Exchange Pallet and Sounding Rocket Test Stand

    NASA Technical Reports Server (NTRS)

    Chaparro, Javier

    2013-01-01

    During my Spring 2016 internship, my two major contributions were the design of the Commodities Exchange Pallet and the design of a test stand for a 100 pounds-thrust sounding rocket. The Commodities Exchange Pallet is a prototype developed for the Human Exploration Spacecraft Testbed for Integration and Advancement (HESTIA) program. Under the HESTIA initiative the Commodities Exchange Pallet was developed as a method for demonstrating multi-system integration thru the transportation of In-Situ Resource Utilization produced oxygen and water to a human habitat. Ultimately, this prototype's performance will allow for future evaluation of integration, which may lead to the development of a flight capable pallet for future deep-space exploration missions. For HESTIA, my main task was to design the Commodities Exchange Pallet system to be used for completing an integration demonstration. Under the guidance of my mentor, I designed, both, the structural frame and fluid delivery system for the commodities pallet. The fluid delivery system includes a liquid-oxygen to gaseous-oxygen system, a water delivery system, and a carbon-dioxide compressors system. The structural frame is designed to meet safety and transportation requirements, as well as the ability to interface with the ER division's Portable Utility Pallet. The commodities pallet structure also includes independent instrumentation oxygen/water panels for operation and system monitoring. My major accomplishments for the commodities exchange pallet were the completion of the fluid delivery systems and the structural frame designs. In addition, parts selection was completed in order to expedite construction of the prototype, scheduled to begin in May of 2016. Once the commodities pallet is assembled and tested it is expected to complete a fully integrated transfer demonstration with the ISRU unit and the Environmental Control and Life Support System test chamber in September of 2016. In addition to the development of the Commodities Exchange Pallet, I also assisted in preparation for testing the upper stage of a sounding rocket developed as a Center Innovation Fund project. The main objective of this project is to demonstrate the integration between a propulsion system and a solid oxide fuel cell (SOFC). The upper stage and SOFC are scheduled to complete an integrated test in August of 2016. As part of preparation for scheduled testing, I was responsible for designing the upper stage's test stand/support structure and main engine plume deflector to be used during hot-fire testing (fig. 3). The structural components of the test stand need to meet safety requirements for operation of the propulsion system, which consist of a 100 pounds-thrust main engine and two 15 pounds-thrust reaction control thrusters. My main accomplishment for this project was the completion of the design and the parts selection for construction of the structure, scheduled to begin late April of 2016.

  4. Oleic acid-enhanced transdermal delivery pathways of fluorescent nanoparticles

    NASA Astrophysics Data System (ADS)

    Lo, Wen; Ghazaryan, Ara; Tso, Chien-Hsin; Hu, Po-Sheng; Chen, Wei-Liang; Kuo, Tsung-Rong; Lin, Sung-Jan; Chen, Shean-Jen; Chen, Chia-Chun; Dong, Chen-Yuan

    2012-05-01

    Transdermal delivery of nanocarriers provides an alternative pathway to transport therapeutic agents, alleviating pain, improving compliance of patients, and increasing overall effectiveness of delivery. In this work, enhancement of transdermal delivery of fluorescent nanoparticles and sulforhodamine B with assistance of oleic acid was visualized utilizing multiphoton microscopy (MPM) and analyzed quantitatively using multi-photon excitation-induced fluorescent signals. Results of MPM imaging and MPM intensity-based spatial depth-dependent analysis showed that oleic acid is effective in facilitating transdermal delivery of nanoparticles.

  5. Effectiveness of a Hybrid Classroom in the Delivery of Medical Terminology Course Content

    ERIC Educational Resources Information Center

    Martin, Jeffrey S.; Kreiger, Joan E.; Apicerno, Amy L

    2015-01-01

    Hybrid courses are emerging as a viable option for content delivery across college campuses. In an attempt to maximize learning outcomes while leveraging resources, one institution used several sections of a Medical Terminology course as a pilot. Traditional and hybrid course delivery were compared utilizing a quantitative research method to…

  6. WE-D-BRD-01: Innovation in Radiation Therapy Delivery: Advanced Digital Linac Features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, L; Wong, J; Li, R

    2014-06-15

    Last few years has witnessed significant advances in linac technology and therapeutic dose delivery method. Digital linacs equipped with high dose rate FFF beams have been clinically implemented in a number of hospitals. Gated VMAT is becoming increasingly popular in treating tumors affected by respiratory motion. This session is devoted to update the audience with these technical advances and to present our experience in clinically implementing the new linacs and dose delivery methods. Topics to be covered include, technical features of new generation of linacs from different vendors, dosimetric characteristics and clinical need for FFF-beam based IMRT and VMAT, respiration-gatedmore » VMAT, the concept and implementation of station parameter optimized radiation therapy (SPORT), beam level imaging and onboard image guidance tools. Emphasis will be on providing fundamental understanding of the new treatment delivery and image guidance strategies, control systems, and the associated dosimetric characteristics. Commissioning and acceptance experience on these new treatment delivery technologies will be reported. Clinical experience and challenges encountered during the process of implementation of the new treatment techniques and future applications of the systems will also be highlighted. Learning Objectives: Present background knowledge of emerging digital linacs and summarize their key geometric and dosimetric features. SPORT as an emerging radiation therapy modality specifically designed to take advantage of digital linacs. Discuss issues related to the acceptance and commissioning of the digital linacs and FFF beams. Describe clinical utility of the new generation of digital linacs and their future applications.« less

  7. Spatiotemporally synchronized cancer combination therapy using photo-activated nanoparticle drug delivery systems (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hasan, Tayyaba

    2016-03-01

    This talk will introduce a new nanotechnology platform for cancer combination therapy that utilizes near infrared light activation not only for photodynamic damage but also as an extrinsic mechanism to initiate release of complimentary drugs to suppress dynamic bursts in molecular signaling networks that promote tumor cell survival and treatment escape. The goal is to achieve co-delivery with concomitant activity of photodynamic, molecular inhibitor and chemotherapeutic agents, selectively within the tumor. This approach overcomes challenges in achieving synergistic interactions using sequential drug delivery. Conventional drug delivery is compromised by the differential pharmacokinetics of individual agents and potentially antagonistic effects—such as vascular shutdown by one agent that limits delivery of the second. Here, photodynamic damage—which efficiently kills drug-resistant cells via damage of common proteins involved in drug-resistance (such as anti-apoptosis factors and drug-efflux transporters)—is synchronized spatially and temporally with the photo-initiated release of complimentary agents—to enable full interaction amongst the individual therapies. This spatiotemporal synchronization offers new prospects for exploiting time-sensitive synergistic interactions. Specific implementations of these concepts will be presented in preclinical models of cancer. Strategies to enable molecular-targeting of cancer cells via site-specific attachment of targeting moieties to the outer lipid shell of these nanovehicles will also be discussed. If successful in humans, this new paradigm for synchronized, tumor-focused combination therapy will ultimately supersede the present use of chronic drug injection by increasing efficacy per cycle whilst reducing systemic exposure to toxic drugs.

  8. Synthetic mRNA is a more reliable tool for the delivery of DNA-targeting proteins into the cell nucleus than fusion with a protein transduction domain.

    PubMed

    Leontovyc, Ivan; Habart, David; Loukotova, Sarka; Kosinova, Lucie; Kriz, Jan; Saudek, Frantisek; Koblas, Tomas

    2017-01-01

    Cell reprogramming requires efficient delivery of reprogramming transcription factors into the cell nucleus. Here, we compared the robustness and workload of two protein delivery methods that avoid the risk of genomic integration. The first method is based on fusion of the protein of interest to a protein transduction domain (PTD) for delivery across the membranes of target cells. The second method relies on de novo synthesis of the protein of interest inside the target cells utilizing synthetic mRNA (syn-mRNA) as a template. We established a Cre/lox reporter system in three different cell types derived from human (PANC-1, HEK293) and rat (BRIN-BD11) tissues and used Cre recombinase to model a protein of interest. The system allowed constitutive expression of red fluorescence protein (RFP), while green fluorescence protein (GFP) was expressed only after the genomic action of Cre recombinase. The efficiency of protein delivery into cell nuclei was quantified as the frequency of GFP+ cells in the total cell number. The PTD method showed good efficiency only in BRIN-BD11 cells (68%), whereas it failed in PANC-1 and HEK293 cells. By contrast, the syn-mRNA method was highly effective in all three cell types (29-71%). We conclude that using synthetic mRNA is a more robust and less labor-intensive approach than using the PTD-fusion alternative.

  9. Telepathology in cytopathology: challenges and opportunities.

    PubMed

    Collins, Brian T

    2013-01-01

    Telepathology in cytopathology is becoming more commonly utilized, and newer technologic infrastructures afford the laboratory a variety of options. The options and design of a telepathology system are driven by the clinical needs. This is primarily focused on providing rapid on-site evaluation service for fine needle aspiration. The clinical requirements and needs of a system are described. Available tools to design and implement a telepathology system are covered, including methods of image capture, network connectivity and remote viewing options. The primary telepathology method currently used and described involves the delivery via a network connection of a live video image to a remote site which is passively viewed by an internet web-based browser. By utilizing live video information and a voice connection to the on-site location, the remote viewer can collect clinical information and direct their view of the slides. Telepathology systems for use in cytopathology can be designed and implemented with commercially available infrastructure. It is necessary for the laboratory to validate the designed system and adhere to the required regulatory requirements. Telepathology for cytopathology can be reliably utilized by adapting existing technology, and newer advances hold great promise for further applications in the cytopathology laboratory. Copyright © 2013 S. Karger AG, Basel.

  10. Delivery of health services to migrant and seasonal farmworkers.

    PubMed

    Arcury, Thomas A; Quandt, Sara A

    2007-01-01

    Farmworkers are low-paid, uninsured employees in an extremely hazardous industry, and they provide an essential service for U.S. society. This review evaluates the delivery of health services to farmworkers. It describes the farmworker population in the United States, noting characteristics (e.g., migratory and immigration status) that limit their access to and utilization of health services. It describes the health services needs of this population, including occupational health, mental health, oral health, and chronic disease treatment. Cultural, structural, legal, financial, and geographic barriers to health services utilization are described. Existing research on health services utilization among farmworkers is discussed. Programs that have been developed to address the barriers to health services utilization among farmworkers are reviewed. Finally, research needed to improve knowledge of farmworker health services utilization is suggested. These research needs include formal evaluations of existing programs and basic research to characterize the health services utilization patterns of farmworkers.

  11. 'Drug adherence levels are falling down again': health worker perceptions of women's service utilization before and after integration of HIV/AIDS services into general care in India.

    PubMed

    Shukla, Shrivridhi; Muchomba, Felix M; McCoyd, Judith L M

    2018-06-01

    Integrated models of HIV/AIDS service delivery are believed to have advantages over stand-alone models of care from health planners' and providers' perspectives. Integration models differ, yet there is little information about the influence of differing models on workers' beliefs about models' efficacy. Here, we examine the effect of integration of HIV care into the general health system in India. In 2014, India replaced its stand-alone model of HIV service delivery-Community Care Centers (CCCs)-with a purported integrated model that delivers HIV medical services at general hospitals and HIV psychosocial services at nearby Care and Support Centers (CSCs). We examine 15 health workers' perceptions of how change from the earlier stand-alone model to the current model impacted women's care in a district in Uttar Pradesh, India. Results indicate that (1) Women's antiretroviral (ART) adherence and utilization of psychosocial support service for HIV/AIDS suffered when services were not provided at one site; (2) Provision of inpatient care in the CCC model offered women living in poverty personal safety in accessing HIV health services and promoted chances of competent ART usage and repeat service utilization; and (3) Although integration of HIV services with the general health system was perceived to improve patient anonymity and decrease chances of HIV-related stigma and discrimination, resource shortages continued to plague the integrated system while shifting costs of time and money to the patients. Findings suggest that integration efforts need to consider the context of service provision and the gendered nature of access to HIV care.

  12. Stellate macroporous silica nanospheres in bio-macromolecules encapsulation and delivery

    NASA Astrophysics Data System (ADS)

    Chi, Hao-Hsin

    This project focused on using mesoporous silica as a solid support to encapsulate enzymes for operating a highly economic, and recyclable biomass processing system. The main objective is to turn non-food biomass sources into food products. Enzymes are macromolecules with the structural backbone of proteins or ribonucleic acid sequences (RNAs) which work as catalysts in living organisms. Enzymes have the advantage of being the least contaminating catalyst due to normal catalyst might generate toxic by-product, and preferable to organic and inorganic catalysts, especially when used for product related to human used, which require biocompatibility of final product. However, there are several disadvantages in enzyme utilization. Their fabrication is time-consuming and requires elaborated molecular biology processes. Most of the enzymes need well-defined reaction conditions to be functional and operate at high yield. Unfortunately, although they are reusable as normal catalysts, it proves difficult to extract or reuse the enzymes from a reaction. Also, enzyme molecules are easily degradable and demand proper storage. To overcome some of the disadvantages, especially regarding stability to degradation, recovery, and reusability, immobilization of enzyme on solid support has become a thriving methodology. In recent years, mesoporous silica nanomaterials(MSN) have been at the forefront of enzyme immobilization given their extensive surface area, which provides capability to increase enzyme loading and for their demonstrate ability to protect enzyme from degradation, thus enabling high recyclability. Mesoporous silica is biocompatible and has already been used for several applications included. Catalysis, drug delivery, and Bio-imaging. Previously published research utilized mesoporous silica to deliver drugs, DNAs, RNAs or encapsulate single enzyme. The objective of this research is completed to develop a new porous silica platform that is unique in its porosity structure and develop it into a dual-enzyme platform with the scope of demonstrating a multi-reaction bio nanocatalyst. In regard to the further applications, the stellate MSN can be used as drug delivery or become a package of the biomacromolecule delivery system kit.

  13. PEGylated Polyamidoamine dendrimer conjugated with tumor homing peptide as a potential targeted delivery system for glioma.

    PubMed

    Jiang, Yan; Lv, Lingyan; Shi, Huihui; Hua, Yabing; Lv, Wei; Wang, Xiuzhen; Xin, Hongliang; Xu, Qunwei

    2016-11-01

    Glioblastoma multiforme (GBM) is the most common and aggressive primary central nervous system (CNS) tumor with a short survival time. The failure of chemotherapy is ascribed to the low transport of chemotherapeutics across the Blood Brain Tumor Barrier (BBTB) and poor penetration into tumor tissue. In order to overcome the two barriers, small nanoparticles with active targeted capability are urgently needed for GBM drug delivery. In this study, we proposed PEGylated Polyamidoamine (PAMAM) dendrimer nanoparticles conjugated with glioma homing peptides (Pep-1) as potential glioma targeting delivery system (Pep-PEG-PAMAM), where PEGylated PAMAM dendrimer nanoparticle was utilized as carrier due to its small size and perfect penetration into tumor and Pep-1 was used to overcome BBTB via interleukin 13 receptor α2 (IL-13Rα2) mediated endocytosis. The preliminary availability and safety of Pep-PEG-PAMAM as a nanocarrier for glioma was evaluated. In vitro results indicated that a significantly higher amount of Pep-PEG-PAMAM was endocytosed by U87 MG cells. In vivo fluorescence imaging of U87MG tumor-bearing mice confirmed that the fluorescence intensity at glioma site of targeted group was 2.02 folds higher than that of untargeted group (**p<0.01), and glioma distribution experiment further revealed that Pep-PEG-PAMAM exhibited a significantly enhanced accumulation and improved penetration at tumor site. In conclusion, Pep-1 modified PAMAM was a promising nanocarrier for targeted delivery of brain glioma. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Versatile RNA Interference Nanoplatform for Systemic Delivery of RNAs

    PubMed Central

    2015-01-01

    Development of nontoxic, tumor-targetable, and potent in vivo RNA delivery systems remains an arduous challenge for clinical application of RNAi therapeutics. Herein, we report a versatile RNAi nanoplatform based on tumor-targeted and pH-responsive nanoformulas (NFs). The NF was engineered by combination of an artificial RNA receptor, Zn(II)-DPA, with a tumor-targetable and drug-loadable hyaluronic acid nanoparticle, which was further modified with a calcium phosphate (CaP) coating by in situ mineralization. The NF can encapsulate small-molecule drugs within its hydrophobic inner core and strongly secure various RNA molecules (siRNAs, miRNAs, and oligonucleotides) by utilizing Zn(II)-DPA and a robust CaP coating. We substantiated the versatility of the RNAi nanoplatform by demonstrating effective delivery of siRNA and miRNA for gene silencing or miRNA replacement into different human types of cancer cells in vitro and into tumor-bearing mice in vivo by intravenous administration. The therapeutic potential of NFs coloaded with an anticancer drug doxorubicin (Dox) and multidrug resistance 1 gene target siRNA (siMDR) was also demonstrated in this study. NFs loaded with Dox and siMDR could successfully sensitize drug-resistant OVCAR8/ADR cells to Dox and suppress OVCAR8/ADR tumor cell proliferation in vitro and tumor growth in vivo. This gene/drug delivery system appears to be a highly effective nonviral method to deliver chemo- and RNAi therapeutics into host cells. PMID:24779637

  15. Review paper: critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems.

    PubMed

    Naderi, Hojjat; Matin, Maryam M; Bahrami, Ahmad Reza

    2011-11-01

    Tissue engineering is a newly emerging biomedical technology, which aids and increases the repair and regeneration of deficient and injured tissues. It employs the principles from the fields of materials science, cell biology, transplantation, and engineering in an effort to treat or replace damaged tissues. Tissue engineering and development of complex tissues or organs, such as heart, muscle, kidney, liver, and lung, are still a distant milestone in twenty-first century. Generally, there are four main challenges in tissue engineering which need optimization. These include biomaterials, cell sources, vascularization of engineered tissues, and design of drug delivery systems. Biomaterials and cell sources should be specific for the engineering of each tissue or organ. On the other hand, angiogenesis is required not only for the treatment of a variety of ischemic conditions, but it is also a critical component of virtually all tissue-engineering strategies. Therefore, controlling the dose, location, and duration of releasing angiogenic factors via polymeric delivery systems, in order to ultimately better mimic the stem cell niche through scaffolds, will dictate the utility of a variety of biomaterials in tissue regeneration. This review focuses on the use of polymeric vehicles that are made of synthetic and/or natural biomaterials as scaffolds for three-dimensional cell cultures and for locally delivering the inductive growth factors in various formats to provide a method of controlled, localized delivery for the desired time frame and for vascularized tissue-engineering therapies.

  16. School-based service delivery for homeless students: relevant laws and overcoming access barriers.

    PubMed

    Sulkowski, Michael L; Joyce-Beaulieu, Diana K

    2014-11-01

    Schools in the United States are facing a record number of homeless students. These students are highly at-risk for experiencing negative life outcomes, and they face considerable academic and social-emotional functional impairments. To help address the complex needs of homeless students, this article reviews the intersection of laws and practices that impact homeless students, as well as contemporary school-based service delivery efforts to support the academic and social-emotional needs of these students. In addition, this article also reviews several barriers to school-based service delivery for homeless students and ways to overcome these barriers. These barriers include confusion regarding consent and record-sharing procedures, ineffectively utilizing homeless liaisons, and misapplying tenants of Multitiered Systems of Support (MTSS), which is a school-based service-delivery framework that has been adopted by and implemented in many U.S. schools. Ultimately, this article aims to provide members of school communities with practical information that they can use to support the homeless youth they encounter and serve. (c) 2014 APA, all rights reserved.

  17. Mesoporous materials and nanocrystals for enhancing the dissolution behavior of poorly water-soluble drugs.

    PubMed

    Santos, Helder A; Peltonen, Leena; Limnell, Tarja; Hirvonen, Jouni

    2013-01-01

    Advanced drug delivery formulations are presently recognized as promising tools for overcoming the adverse physicochemical properties of conventional drug molecules, such as poor water solubility, which often leads to poor drug bioavailability. Oral drug delivery is considered as the easiest and most convenient route of drug administration. However, via the current trends utilizing combinatorial chemistry and high throughput screening in drug development, new drug molecules are moving towards lipophilic and poorly water-soluble large molecules, and the oral delivery route is becoming increasingly challenging. In this context, formulation of poorly soluble and/or permeable drugs using mesoporous materials and nanocrystals technology have proven to be highly successful due to the greater surface/volume ratio of these systems, resulting in improvements in dissolution and bioavailability, as well as enhanced drug permeability. This review addresses the issues of poorly water-soluble drugs with a major focus on recent developments in the application of the mesoporous materials (e.g., porous silicon and silica) and nanocrystals in drug delivery applications. In addition, we present several recent examples of the significant potential of these materials for the pharmaceutical field.

  18. Factors associated with safe delivery service utilization among women in Sheka zone, southwest Ethiopia.

    PubMed

    Asres, Abyot; Davey, Gail

    2015-04-01

    Attempts to predict pregnancy and childbirth complications before they occur have not been successful. Provision of safe delivery service for all births is considered to be a critical intervention for ensuring safe motherhood. Hence the aim of the study was to assess factors associated with safe delivery service utilization among women in Sheka Zone South West Ethiopia. A community based comparative cross sectional survey was conducted among 554 women in Sheka Zone from February to March 2008. Data were collected through structured pre-tested questionnaire and entered into Epinfo version 3.3. Analyses were done with SPSS version 13 computer software with which bivariate and multiple logistic regressions were carried out. Mothers who completed at least secondary school were more likely to give birth at health facility than those uneducated (AOR = 3.26, 95 % CI 1.51-7.06). Women with birth order above four were less likely to give birth in a health facility than those with first order births (AOR = 0.21, 95 %CI 0.10-0.43). Women who had encountered problems in their immediate birth and received prenatal care were more likely to give birth at health facilities AOR = 33.78 95 % CI 16.44-69.39) and (AOR = 2.55, 95 % CI 1.05-6.21) respectively. Factors associated with safe delivery service utilization are related to the women's socioeconomic status and obstetric experiences. Consequently promotion of maternal education, prenatal care utilization, information education and communication on obstetric risks and general health service expansion are needed to ensure safe delivery service.

  19. Orally dissolving strips: A new approach to oral drug delivery system

    PubMed Central

    Bala, Rajni; Pawar, Pravin; Khanna, Sushil; Arora, Sandeep

    2013-01-01

    Recently, fast dissolving films are gaining interest as an alternative of fast dissolving tablets. The films are designed to dissolve upon contact with a wet surface, such as the tongue, within a few seconds, meaning the consumer can take the product without need for additional liquid. This convenience provides both a marketing advantage and increased patient compliance. As the drug is directly absorbed into systemic circulation, degradation in gastrointestinal tract and first pass effect can be avoided. These points make this formulation most popular and acceptable among pediatric and geriatric patients and patients with fear of choking. Over-the-counter films for pain management and motion sickness are commercialized in the US markets. Many companies are utilizing transdermal drug delivery technology to develop thin film formats. In the present review, recent advancements regarding fast dissolving buccal film formulation and their evaluation parameters are compiled. PMID:24015378

  20. Polysaccharide based nanogels in the drug delivery system: Application as the carrier of pharmaceutical agents.

    PubMed

    Debele, Tilahun Ayane; Mekuria, Shewaye Lakew; Tsai, Hsieh-Chih

    2016-11-01

    Polysaccharide-based nanoparticles have fascinated attention as a vesicle of different pharmaceutical agents due to their unique multi-functional groups in addition to their physicochemical properties, including biocompatibility and biodegradability. The existence of multi-functional groups on the polysaccharide backbone permits facile chemical or biochemical modification to synthesize polysaccharide based nanoparticles with miscellaneous structures. Polysaccharide-based nanogels have high water content, large surface area for multivalent bioconjugation, tunable size, and interior network for the incorporation of different pharmaceutical agents. These unique properties offer great potential for the utilization of polysaccharide-based nanogels in the drug delivery systems. Hence, this review describes chemistry of certain common polysaccharides, several methodologies used to synthesize polysaccharide nanoparticles and primarily focused on the polysaccharide (or polysaccharide derivative) based nanogels as the carrier of pharmaceutical agents. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Enterprise-wide worklist management.

    PubMed

    Locko, Roberta C; Blume, Hartwig; Goble, John C

    2002-01-01

    Radiologists in multi-facility health care delivery networks must serve not only their own departments but also departments of associated clinical facilities. We describe our experience with a picture archiving and communication system (PACS) implementation that provides a dynamic view of relevant radiological workload across multiple facilities. We implemented a distributed query system that permits management of enterprise worklists based on modality, body part, exam status, and other criteria that span multiple compatible PACSs. Dynamic worklists, with lesser flexibility, can be constructed if the incompatible PACSs support specific DICOM functionality. Enterprise-wide worklists were implemented across Generations Plus/Northern Manhattan Health Network, linking radiology departments of three hospitals (Harlem, Lincoln, and Metropolitan) with 1465 beds and 4260 ambulatory patients per day. Enterprise-wide, dynamic worklist management improves utilization of radiologists and enhances the quality of care across large multi-facility health care delivery organizations. Integration of other workflow-related components remain a significant challenge.

  2. Design of liposomal colloidal systems for ocular delivery of ciprofloxacin

    PubMed Central

    Taha, Ehab I.; El-Anazi, Magda H.; El-Bagory, Ibrahim M.; Bayomi, Mohsen A.

    2013-01-01

    Ophthalmic drug bioavailability is limited due to protective mechanisms of the eye which require the design of a system to enhance ocular delivery. In this study several liposomal formulations containing ciprofloxacin (CPX) have been formulated using reverse phase evaporation technique with final dispersion of pH 7.4. Different types of phospholipids including Phosphatidylcholine, Dipalmitoylphosphatidylcholine and Dimyristoyl-sn-glycero-3-phosphocholine were utilized. The effect of formulation factors such as type of phospholipid, cholesterol content, incorporation of positively charging inducing agents and ultrasonication on the properties of the liposomal vesicles was studied. Bioavailability of selected liposomal formulations in rabbit eye aqueous humor has been investigated and compared with that of commercially available CPX eye drops (Ciprocin®). Pharmacokinetic parameters including Cmax, Tmax, elimination rate constant, t1/2, MRT and AUC0–∞, were determined. The investigated formulations showed more than three folds of improvement in CPX ocular bioavailability compared with the commercial product. PMID:25061409

  3. Influence of family members on utilization of maternal health care services among teen and adult pregnant women in Kathmandu, Nepal: a cross sectional study.

    PubMed

    Upadhyay, Priti; Liabsuetrakul, Tippawan; Shrestha, Amir Babu; Pradhan, Neelam

    2014-12-23

    In some developing countries a woman's decision to utilize maternal health care services is not made by the woman herself but by other family members. The perception of family members regarding who is the most influential person for making the decision to utilize these services is inconclusive. Hence, this study aimed to determine the perceived influential person on utilization of antenatal care (ANC) and delivery care services among teen, young adult and adult pregnant women from the perspective of the woman themselves, their husband and their mother-in-law, identify the factors associated with the woman being the most influential person, and assess the level of agreement between the woman's and her husband's response to the woman being the most influential person. A cross-sectional study was conducted at Paropakar Maternity and Women's Hospital and Tribhuvan University Teaching Hospital. Purposive sampling technique was used to select 315 women of which 105 were from each age group and their accompanied husbands (n = 315) and mothers-in-law (n = 315). The proportion of perceived influential person and mean priority score of the perceived influence with its 95% confidence interval was calculated. The factors associated with the woman perceived as the most influential person were analyzed by multivariate logistic regression model. The agreement was analyzed using kappa statistic. Among teens and young adults and their husband and mother-in-law, the woman's husband was perceived as the most influential person. Among adults, the most influential person for ANC was the woman herself but for delivery care was the woman's husband. A woman of adult age, having a non-indigenous ethnicity or who was not referred was more likely to perceive herself as the most influential person in the decision to utilize delivery care. A fair to poor level of agreement was found on the perception of the most influential person for ANC and delivery care utilization. Both women and their husbands influenced the decision to utilize ANC and delivery care but husbands were more influential, especially in teens and young adults. Thus, husband's involvement is crucial as a strategy to improve maternal health care utilization in Nepal.

  4. Delivery of cardiopulmonary resuscitation in the microgravity environment

    NASA Technical Reports Server (NTRS)

    Barratt, M. R.; Billica, R. D.

    1992-01-01

    The microgravity environment presents several challenges for delivering effective cardiopulmonary resuscitation (CPR). Chest compressions must be driven by muscular force rather than by the weight of the rescuer's upper torso. Airway stabilization is influenced by the neutral body posture. Rescuers will consist of crew members of varying sizes and degrees of physical deconditioning from space flight. Several methods of CPR designed to accommodate these factors were tested in the one G environment, in parabolic flight, and on a recent shuttle flight. Methods: Utilizing study participants of varying sizes, different techniques of CPR delivery were evaluated using a recording CPR manikin to assess adequacy of compressive force and frequency. Under conditions of parabolic flight, methods tested included conventional positioning of rescuer and victim, free floating 'Heimlich type' compressions, straddling the patient with active and passive restraints, and utilizing a mechanical cardiac compression assist device (CCAD). Multiple restrain systems and ventilation methods were also assessed. Results: Delivery of effective CPR was possible in all configurations tested. Reliance on muscular force alone was quickly fatiguing to the rescuer. Effectiveness of CPR was dependent on technique, adequate restraint of the rescuer and patient, and rescuer size and preference. Free floating CPR was adequate but rapidly fatiguing. The CCAD was able to provide adequate compressive force but positioning was problematic. Conclusions: Delivery of effective CPR in microgravity will be dependent on adequate resuer and patient restraint, technique, and rescuer size and preference. Free floating CPR may be employed as a stop gap method until patient restraint is available. Development of an adequate CCAD would be desirable to compensate for the effects of deconditioning.

  5. In-situ Resource Utilization (ISRU) and Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Sanders, Jerry; Larson, Bill; Sacksteder, Kurt

    2007-01-01

    This viewgraph presentation reviews the benefits of In-Situ Resource Utilization (ISRU) on the surface of the moon. Included in this review is the commercialization of Lunar ISRU. ISRU will strongly influence architecture and critical technologies. ISRU is a critical capability and key implementation of the Vision for Space Exploration (VSE). ISRU will strongly effects lunar outpost logistics, design and crew safety. ISRU will strongly effect outpost critical technologies. ISRU mass investment is minimal compared to immediate and long-term architecture delivery mass and reuse capabilities provided. Therefore, investment in ISRU constitutes a commitment to the mid and long term future of human exploration.

  6. Lentiviral vector-mediated genetic modification of human neural progenitor cells for ex vivo gene therapy.

    PubMed

    Capowski, Elizabeth E; Schneider, Bernard L; Ebert, Allison D; Seehus, Corey R; Szulc, Jolanta; Zufferey, Romain; Aebischer, Patrick; Svendsen, Clive N

    2007-07-30

    Human neural progenitor cells (hNPC) hold great potential as an ex vivo system for delivery of therapeutic proteins to the central nervous system. When cultured as aggregates, termed neurospheres, hNPC are capable of significant in vitro expansion. In the current study, we present a robust method for lentiviral vector-mediated gene delivery into hNPC that maintains the differentiation and proliferative properties of neurosphere cultures while minimizing the amount of viral vector used and controlling the number of insertion sites per population. This method results in long-term, stable expression even after differentiation of the hNPC to neurons and astrocytes and allows for generation of equivalent transgenic populations of hNPC. In addition, the in vitro analysis presented predicts the behavior of transgenic lines in vivo when transplanted into a rodent model of Parkinson's disease. The methods presented provide a powerful tool for assessing the impact of factors such as promoter systems or different transgenes on the therapeutic utility of these cells.

  7. Predictors of maternal health services utilization by poor, rural women: a comparative study in Indian States of Gujarat and Tamil Nadu.

    PubMed

    Vora, Kranti Suresh; Koblinsky, Sally A; Koblinsky, Marge A

    2015-07-31

    India leads all nations in numbers of maternal deaths, with poor, rural women contributing disproportionately to the high maternal mortality ratio. In 2005, India launched the world's largest conditional cash transfer scheme, Janani Suraksha Yojana (JSY), to increase poor women's access to institutional delivery, anticipating that facility-based birthing would decrease deaths. Indian states have taken different approaches to implementing JSY. Tamil Nadu adopted JSY with a reorganization of its public health system, and Gujarat augmented JSY with the state-funded Chiranjeevi Yojana (CY) scheme, contracting with private physicians for delivery services. Given scarce evidence of the outcomes of these approaches, especially in states with more optimal health indicators, this cross-sectional study examined the role of JSY/CY and other healthcare system and social factors in predicting poor, rural women's use of maternal health services in Gujarat and Tamil Nadu. Using the District Level Household Survey (DLHS)-3, the sample included 1584 Gujarati and 601 Tamil rural women in the lowest two wealth quintiles. Multivariate logistic regression analyses examined associations between JSY/CY and other salient health system, socio-demographic, and obstetric factors with three outcomes: adequate antenatal care, institutional delivery, and Cesarean-section. Tamil women reported greater use of maternal healthcare services than Gujarati women. JSY/CY participation predicted institutional delivery in Gujarat (AOR = 3.9), but JSY assistance failed to predict institutional delivery in Tamil Nadu, where mothers received some cash for home births under another scheme. JSY/CY assistance failed to predict adequate antenatal care, which was not incentivized. All-weather road access predicted institutional delivery in both Tamil Nadu (AOR = 3.4) and Gujarat (AOR = 1.4). Women's education predicted institutional delivery and Cesarean-section in Tamil Nadu, while husbands' education predicted institutional delivery in Gujarat. Overall, assistance from health financing schemes, good road access to health facilities, and socio-demographic and obstetric factors were associated with differential use of maternity health services by poor, rural women in the two states. Policymakers and practitioners should promote financing schemes to increase access, including consideration of incentives for antenatal care, and address health system and social factors in designing state-level interventions to promote safe motherhood.

  8. Disposable world-to-chip interface for digital microfluidics

    DOEpatents

    Van Dam, R. Michael; Shah, Gaurav; Keng, Pei-Yuin

    2017-05-16

    The present disclosure sets forth incorporating microfluidic chips interfaces for use with digital microfluidic processes. Methods and devices according to the present disclosure utilize compact, integrated platforms that interface with a chip upstream and downstream of the reaction, as well as between intermediate reaction steps if needed. In some embodiments these interfaces are automated, including automation of a multiple reagent process. Various reagent delivery systems and methods are also disclosed.

  9. How Are the Costs of Care for Medical Falls Distributed? The Costs of Medical Falls by Component of Cost, Timing, and Injury Severity

    ERIC Educational Resources Information Center

    Bohl, Alex A.; Phelan, Elizabeth A.; Fishman, Paul A.; Harris, Jeffrey R.

    2012-01-01

    Purpose of the Study: To examine the components of cost that drive increased total costs after a medical fall over time, stratified by injury severity. Design and Methods: We used 2004-2007 cost and utilization data for persons enrolled in an integrated care delivery system. We used a longitudinal cohort study design, where each individual…

  10. TRIGA: Telecommunications Protocol Processing Subsystem Using Reconfigurable Interoperable Gate Arrays

    NASA Technical Reports Server (NTRS)

    Pang, Jackson; Pingree, Paula J.; Torgerson, J. Leigh

    2006-01-01

    We present the Telecommunications protocol processing subsystem using Reconfigurable Interoperable Gate Arrays (TRIGA), a novel approach that unifies fault tolerance, error correction coding and interplanetary communication protocol off-loading to implement CCSDS File Delivery Protocol and Datalink layers. The new reconfigurable architecture offers more than one order of magnitude throughput increase while reducing footprint requirements in memory, command and data handling processor utilization, communication system interconnects and power consumption.

  11. CBM Reading, Mathematics, and Written Expression at the Secondary Level: Examining Latent Composite Relations among Indices and Unique Predictions with a State Achievement Test

    ERIC Educational Resources Information Center

    Codding, Robin S.; Petscher, Yaacov; Truckenmiller, Adrea

    2015-01-01

    A paucity of research has examined the utility of curriculum-based measurement (CBM) for data-based decision making at the secondary level. As schools move to multitiered systems of service delivery, it is conceivable that multiple screening measures will be used that address various academic subject areas. The value of including different CBM…

  12. Beneath the Surface: Intelligence Preparation of the Battlespace for Counterterrorism

    DTIC Science & Technology

    2004-11-01

    consisting of those sub-systems existing below ground to include subways , sewers, utility structures and others.161 Although 155 Three reasons adapted...activities that provide for governance and basic human needs. Roads, subways , waterways, railroads and sea and airports are a few of the elements of the...recruiting, financing, and service (medicine, food , education) delivery oper- ations. Finally, the con- cept of avenues has parallels in cyberspace and

  13. The Information Processing Role of the Informal and Quasi-Formal Support Systems among the Hispanic Elderly: Implications for the Delivery of Formal Social Services.

    ERIC Educational Resources Information Center

    Starrett, Richard A.; And Others

    The study examined relationships among factors influencing utilization of social services by Hispanic elderly, particularly factors categorized as: (1) informal, such as support groups of family, kin, neighbors, friends, and (2) quasi-formal, such as church groups. Thirty-seven variables and data selected from a 1979-80 15-state survey of 1,805…

  14. Impact of nanotechnology on the delivery of natural products for cancer prevention and therapy.

    PubMed

    Siddiqui, Imtiaz A; Sanna, Vanna

    2016-06-01

    Chemoprevention of human cancer by dietary products is a practical approach of cancer control, especially when chemoprevention is involved during the early stages of the carcinogenesis process. Research over the last few decades has clearly demonstrated the efficacy of dietary products for chemoprevention in cell culture and preclinical animal model systems. However, these in vitro and in vivo effects have not been able to be translated to bedside for clinical use. Among many reasons, inefficient systemic delivery and bioavailability of promising chemopreventive agents are considered to significantly contribute to such a disconnection. Since its advent in the field of cancer, nanotechnology has provided researchers with expertise to explore new avenues for diagnosis, prevention, and therapy of the disease. In a similar trait, we introduced a novel concept in which nanotechnology was utilized for enhancing the outcome of chemoprevention (Cancer Res. 2009; 69:1712-1716). This idea, which we termed as 'nanochemoprevention', was exploited by several laboratories and has now become an advancing field in chemoprevention research. This review summarizes some of these applications of nanotechnology in medicine, particularly focused on controlled and sustained release of bioactive compounds with emphasis on current and future utilization of nanochemoprevention for prevention and therapy of cancer. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A supersaturating delivery system of silibinin exhibiting high payload achieved by amorphous nano-complexation with chitosan.

    PubMed

    Nguyen, Minh-Hiep; Yu, Hong; Dong, Bingxue; Hadinoto, Kunn

    2016-06-30

    The therapeutic potentials of silibinin - a phytochemical isolated from milk thistle plants - have not been fully realized due to its poor oral bioavailability caused by the low aqueous solubility. Existing solubility enhancement strategies of silibinin by nanonization were limited by their low payload. Herein we developed a supersaturating delivery system of silibinin exhibiting a high payload (≈76%) in the form of amorphous silibinin-chitosan nanoparticle complex (or silibinin nanoplex in short) prepared by self-assembly drug-polysaccharide complexation. The effects of (1) pH and (2) charge ratio of chitosan to silibinin on the nanoplex's physical characteristics (i.e. size, zeta potential, and payload) and preparation efficiency (i.e. silibinin utilization, overall yield) were investigated. The formation of nanoplex (≈240nm) was feasible only in a narrow pH range (5.1-5.8) and favored charge ratio below unity. At the optimal condition (pH 5.8 and charge ratio of 0.30), the nanoplex preparation exhibited 87% silibinin utilization rate and 63% yield signifying its high efficiency. The amorphous state and colloidal stabilities of the nanoplex during storage, and prolonged supersaturation generation (3h) at more than 10× of the saturation solubility were successfully demonstrated. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Ancillary-service costs for 12 US electric utilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirby, B.; Hirst, E.

    1996-03-01

    Ancillary services are those functions performed by electrical generating, transmission, system-control, and distribution-system equipment and people to support the basic services of generating capacity, energy supply, and power delivery. The Federal Energy Regulatory Commission defined ancillary services as ``those services necessary to support the transmission of electric power from seller to purchaser given the obligations of control areas and transmitting utilities within those control areas to maintain reliable operations of the interconnected transmission system.`` FERC divided these services into three categories: ``actions taken to effect the transaction (such as scheduling and dispatching services) , services that are necessary to maintainmore » the integrity of the transmission system [and] services needed to correct for the effects associated with undertaking a transaction.`` In March 1995, FERC published a proposed rule to ensure open and comparable access to transmission networks throughout the country. The rule defined six ancillary services and developed pro forma tariffs for these services: scheduling and dispatch, load following, system protection, energy imbalance, loss compensation, and reactive power/voltage control.« less

  17. Moon Express Media Event

    NASA Image and Video Library

    2014-11-03

    Rob Mueller, NASA senior technologist in the Surface Systems Office in Kennedy Space Center's Engineering and Technology Directorate, demonstrates the Regolith Advanced Surface System Operations Robot, or RASSOR, during a media event at Kennedy's automated landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility. The event was held to announce Moon Express Inc., of Moffett Field, California is selected to utilize Kennedy facilities for NASA's Lunar Cargo Transportation and Landing by Soft Touchdown, or Lunar CATALYST, initiative. Moon Express is developing a lander with capabilities that will enable delivery of payloads to the surface of the moon, as well as new science and exploration missions of interest to NASA and scientific and academic communities. Moon Express will base its activities at Kennedy and utilize the Morpheus ALHAT field and a hangar nearby for CATALYST testing. The Advanced Exploration Systems Division of NASA's Human Exploration and Operations Mission Directorate manages Lunar CATALYST.

  18. Preparation and optimization of tablets containing a self-nano-emulsifying drug delivery system loaded with rosuvastatin.

    PubMed

    Salem, Heba F; Kharshoum, Rasha M; Halawa, Abdel Khalek A; Naguib, Demiana M

    2018-06-01

    Rosuvastatin (ROS) calcium is the latest synthetic drug in the statin group that has an anti-hyperlipidemic activity. It is available as tablets, and its poor aqueous solubility, slow dissolution rate and low-absorption extent result in less than 20% bioavailability and about 80% being excreted unchanged in the feces without absorption. To utilize nanotechnology to reformulate ROS as a self-nano-emulsifying drug delivery system (SNEDDS), and utilizing design optimization to fabricate the SNEDDS as a tablet. The solubility of ROS in different oils, surfactants and co-surfactants was tested. Pseudo-ternary phase diagrams were developed and various SNEDDS formulations were prepared and evaluated regarding globule size, self-emulsification, viscosity and transmittance. The optimized system was examined using transmission electron microscopy. The self-nano-emulsifying tablets were prepared using two types of nano-silica and different percentages of Avicel as a binder and Ac-Di-Sol as a disintegrant. The prepared tablets were evaluated for their physicochemical properties. Bioavailability in human volunteers was assessed. A SNEDDS system was successfully developed with a droplet size range of 15 nm and a composition of 10% Labrafac, 80% Cremophore RH40 and 10% Propylene glycol. The optimized tablet formula contained: hydrophilic nano-silica, 3% Ac-Di-Sol and 30% Avicel. The pharmacokinetic study revealed that the bioavailability was enhanced by more than 2.4-fold compared with the commercially available tablet. Tablets containing SNEDDS loaded with ROS represent a promising novel formula that has higher gastrointestinal absorption and enhanced systemic bioavailability.

  19. A dual-targeting liposome conjugated with transferrin and arginine-glycine-aspartic acid peptide for glioma-targeting therapy.

    PubMed

    Qin, Li; Wang, Cheng-Zheng; Fan, Hui-Jie; Zhang, Chong-Jian; Zhang, Heng-Wei; Lv, Min-Hao; Cui, Shu-DE

    2014-11-01

    The treatment of a brain glioma remains one of the most difficult challenges in oncology. In the present study a delivery system was developed for targeted drug delivery across the blood-brain barrier (BBB) to the brain cancer cells. A cyclic arginine-glycine-aspartic acid (RGD) peptide and transferrin (TF) were utilized as targeting ligands. Cyclic RGD peptides are specific targeting ligands of cancer cells and TFs are ligands that specifically target the BBB and cancer cells. Liposome (LP) was used to conjugate the cyclic RGD and TFs to establish the brain glioma cascade delivery system (RGD/TF-LP). The LPs were prepared by the thin film hydration method and physicochemical characterization was conducted. In vitro cell uptake and three-dimensional tumor spheroid penetration studies demonstrated that the system could target endothelial and tumor cells, as well as penetrate the tumor cells to reach the core of the tumor spheroids. The results of the in vivo imaging further demonstrated that the RGD/TF-LP provided the highest brain distribution. As a result, the paclitaxel-loaded RGD/TF-LP presents the best antiproliferative activity against C6 cells and tumor spheroids. In conclusion, the RGD/TF-LP may precisely target brain glioma, which may be valuable for glioma imaging and therapy.

  20. Megalin-mediated specific uptake of chitosan/siRNA nanoparticles in mouse kidney proximal tubule epithelial cells enables AQP1 gene silencing.

    PubMed

    Gao, Shan; Hein, San; Dagnæs-Hansen, Frederik; Weyer, Kathrin; Yang, Chuanxu; Nielsen, Rikke; Christensen, Erik I; Fenton, Robert A; Kjems, Jørgen

    2014-01-01

    RNAi-based strategies provide a great therapeutic potential for treatment of various human diseases including kidney disorders, but face the challenge of in vivo delivery and specific targeting. The chitosan delivery system has previously been shown to target siRNA specifically to the kidneys in mice when administered intravenously. Here we confirm by 2D and 3D bioimaging that chitosan formulated siRNA is retained in the kidney for more than 48 hours where it accumulates in proximal tubule epithelial cells (PTECs), a process that was strongly dependent on the molecular weight of chitosan. Chitosan/siRNA nanoparticles, administered to chimeric mice with conditional knockout of the megalin gene, distributed almost exclusively in cells that expressed megalin, implying that the chitosan/siRNA particle uptake was mediated by a megalin-dependent endocytotic pathway. Knockdown of the water channel aquaporin 1 (AQP1) by up to 50% in PTECs was achieved utilizing the systemic i.v. delivery of chitosan/AQP1 siRNA in mice. In conclusion, specific targeting PTECs with the chitosan nanoparticle system may prove to be a useful strategy for knockdown of specific genes in PTECs, and provides a potential therapeutic strategy for treating various kidney diseases.

  1. Megalin-Mediated Specific Uptake of Chitosan/siRNA Nanoparticles in Mouse Kidney Proximal Tubule Epithelial Cells Enables AQP1 Gene Silencing

    PubMed Central

    Gao, Shan; Hein, San; Dagnæs-Hansen, Frederik; Weyer, Kathrin; Yang, Chuanxu; Nielsen, Rikke; Christensen, Erik I; Fenton, Robert A; Kjems, Jørgen

    2014-01-01

    RNAi-based strategies provide a great therapeutic potential for treatment of various human diseases including kidney disorders, but face the challenge of in vivo delivery and specific targeting. The chitosan delivery system has previously been shown to target siRNA specifically to the kidneys in mice when administered intravenously. Here we confirm by 2D and 3D bioimaging that chitosan formulated siRNA is retained in the kidney for more than 48 hours where it accumulates in proximal tubule epithelial cells (PTECs), a process that was strongly dependent on the molecular weight of chitosan. Chitosan/siRNA nanoparticles, administered to chimeric mice with conditional knockout of the megalin gene, distributed almost exclusively in cells that expressed megalin, implying that the chitosan/siRNA particle uptake was mediated by a megalin-dependent endocytotic pathway. Knockdown of the water channel aquaporin 1 (AQP1) by up to 50% in PTECs was achieved utilizing the systemic i.v. delivery of chitosan/AQP1 siRNA in mice. In conclusion, specific targeting PTECs with the chitosan nanoparticle system may prove to be a useful strategy for knockdown of specific genes in PTECs, and provides a potential therapeutic strategy for treating various kidney diseases. PMID:25157280

  2. Updates on smart polymeric carrier systems for protein delivery.

    PubMed

    El-Sherbiny, Ibrahim; Khalil, Islam; Ali, Isra; Yacoub, Magdi

    2017-10-01

    Smart materials are those materials that are responsive to chemical (organic molecules, chemical agents or specific agents), biochemical (protein, enzymes, growth factors, substrates or ligands), physical (electric field, magnetic field, temperature, pH, ionic strength or radiation) or mechanical (pressure or mechanical stress) signals. These responsive materials interact with the stimuli by changing their properties or conformational structures in a predictable manner. Recently, smart polymers have been utilized in various biomedical applications. Particularly, they have been used as a platform to synthesize stimuli-responsive systems that could deliver therapeutics to a specific site for a specific period with minimal adverse effects. For instance, stimuli-responsive polymers-based systems have been recently reported to deliver different bioactive molecules such as carbohydrates (heparin), chemotherapeutic agents (doxorubicin), small organic molecules (anti-coagulants), nucleic acids (siRNA), and proteins (growth factors and hormones). Protein therapeutics played a fundamental role in treatment of various chronic and some autoimmune diseases. For instance insulin has been used in treatment of diabetes. However, being a protein in nature, insulin delivery is limited by its instability, short half-life, and easy denaturation when administered orally. To overcome these challenges, and as highlighted in this review article, much research efforts have been recently devoted to design and develop convenient smart controlled nanosystems for protein therapeutics delivery.

  3. Effect of ca2+ to salicylic acid release in pectin based controlled drug delivery system

    NASA Astrophysics Data System (ADS)

    Kistriyani, L.; Wirawan, S. K.; Sediawan, W. B.

    2016-01-01

    Wastes from orange peel are potentially be utilized to produce pectin, which are currently an import commodity. Pectin can be used in making edible film. Edible films are potentially used as a drug delivery system membrane after a tooth extraction. Drug which is used in the drug delivery system is salicylic acid. It is an antiseptic. In order to control the drug release rate, crosslinking process is added in the manufacturing of membrane with CaCl2.2H2O as crosslinker. Pectin was diluted in water and mixed with a plasticizer and CaCl2.2H2O solution at 66°C to make edible film. Then the mixture was dried in an oven at 50 °C. After edible film was formed, it was coated using plasticizer and CaCl2.2H2O solution with various concentration 0, 0.015, 0.03 and 0.05g/mL. This study showed that the more concentration of crosslinker added, the slower release of salicylic acid would be. This was indicated by the value of diffusivites were getting smaller respectively. The addition of crosslinker also caused smaller gels swelling value,which made the membrane is mechanically stronger

  4. Injectable thermosensitive chitosan/glycerophosphate-based hydrogels for tissue engineering and drug delivery applications: a review.

    PubMed

    Tahrir, Farzaneh G; Ganji, Fariba; Ahooyi, Taha M

    2015-01-01

    Recently, great attention has been paid to in situ gel-forming chitosan/glycerophosphate (CS/Gp) formulation due to its high biocompatibility with incorporated cells and medical agents, biodegradability and sharp thermosensitive gelation. CS/Gp is in liquid state at room temperature and after minimally invasive administration into the desired tissue, it forms a solid-like gel as a response to temperature increase. The overview of various recently patented strategies on injectable delivery systems indicates the significance of this formulation in biomedical applications. This thermosensitive hydrogel has a great potential as scaffold material in tissue engineering, due to its good biocompatibility, minimal immune reaction, high antibacterial nature, good adhesion to cells and the ability to be molded in various geometries. Moreover, CS/Gp hydrogel has been utilized as a smart drug delivery system to increase patient compliance by maintaining the drug level in the therapeutic window for a long time while avoiding the need for frequent injections of the therapeutic agent. This review paper highlights the recent patents and investigations on different formulations of CS/Gp hydrogels as tissue engineering scaffolds and carriers for therapeutic agents. Additionally, the dominant mechanism of sol-gel transition in those systems as well as their physicochemical properties and biocompatibility are discussed in detail.

  5. Teacher Read-Aloud Style and Delivery: Fiction and Nonfiction Texts

    ERIC Educational Resources Information Center

    Wright, Jana D.

    2011-01-01

    The purpose of this study was to examine what read-aloud style and delivery of an elementary school teacher looked like, as well as how style and delivery varied from teacher to teacher. Both fiction and nonfiction texts were considered. The reading styles utilized by the teacher participants during two fiction and two nonfiction read-aloud events…

  6. Ethosomes and Transfersomes: Principles, Perspectives and Practices.

    PubMed

    Garg, Varun; Singh, Harmanpreet; Bimbrawh, Sneha; Singh, Sachin Kumar; Gulati, Monica; Vaidya, Yogyata; Kaur, Prabhjot

    2017-01-01

    The success story of liposomes in the treatment of systemic infectious diseases and various carcinomas lead the scientists to the innovation of elastic vesicles to achieve similar success through transdermal route. In this direction, ethosomes and transfersomes were developed with the objective to design the vesicles that could pass through the skin. However, there is a lack of systematic review outlining the principles, method of preparation, latest advancement and applications of ethosomes and transfersomes. This review covers various aspects that would be helpful to scientists in understanding advantages of these vesicular systems and designing a unique nano vesicular delivery system. Structured search of bibliographic databases for previously published peer-reviewed research papers was explored and data was culminated in terms of principle of these vesicular delivery systems, composition, mechanism of actions, preparation techniques, methods for their characterization and their application. A total of 182 papers including both, research and review articles, were included in this review in order to make the article comprehensive and readily understandable. The mechanism of action and composition of ethosomes and transfersomes was extensively discussed. Various methods of preparation such as, rotary film evaporation method, reverse phase evaporation method, vortex/ sonication method, ethanol injection method, freeze thaw methods, along with their advantages has been discussed. It was also discussed that both these elastic nanocarriers offer unique advantages of ferrying the drug across membranes, sustaining drug release as well as protecting the encapsulated bio actives from external environment. The enhanced bioavailability and skin penetration of ethosomes as compared to conventional vesicular delivery systems is attributed to the presence of ethanol in the bilayers while that for transfersomes accrues due to their elasticity along with their ability to retain their shape because of the presence of edge activators. Successful delivery of synthetic drugs as well as phytomedicines has been extensively reported through these vesicles. Though these vesicular systems offer a good potential for rational drug delivery, a thoughtfully designed process is required to optimize the process variables involved. Industrial scale production of efficacious, safe, cost effective and stable formulations of both these delivery systems appears to be a pre-requisite to ensure their utility as the trans-dermal vehicles. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Magnetic resonance imaging: A tool to monitor and optimize enzyme distribution during porcine pancreas distention for islet isolation

    PubMed Central

    Scott, WE; Weegman, BP; Balamurugan, AN; Ferrer-Fabrega, J; Anazawa, T; Karatzas, T; Jie, T; Hammer, BE; Matsumoto, S; Avgoustiniatos, ES; Maynard, KS; Sutherland, DER; Hering, BJ; Papas, KK

    2014-01-01

    Background Porcine islet xenotransplantation is emerging as a potential alternative for allogeneic clinical islet transplantation. Optimization of porcine islet isolation in terms of yield and quality is critical for the success and cost effectiveness of this approach. Incomplete pancreas distension and inhomogeneous enzyme distribution have been identified as key factors for limiting viable islet yield per porcine pancreas. The aim of this study was to explore the utility of Magnetic Resonance Imaging (MRI) as a tool to investigate the homogeneity of enzyme delivery in porcine pancreata. Traditional and novel methods for enzyme delivery aimed at optimizing enzyme distribution were examined. Methods Pancreata were procured from Landrace pigs via en bloc viscerectomy. The main pancreatic duct was then cannulated with an 18g winged catheter and MRI performed at 1.5 T. Images were collected before and after ductal infusion of chilled MRI contrast agent (gadolinium) in physiological saline. Results Regions of the distal aspect of the splenic lobe and portions of the connecting lobe and bridge exhibited reduced delivery of solution when traditional methods of distension were utilized. Use of alternative methods of delivery (such as selective re-cannulation and distension of identified problem regions) resolved these issues and MRI was successfully utilized as a guide and assessment tool for improved delivery. Conclusion Current methods of porcine pancreas distension do not consistently deliver enzyme uniformly or adequately to all regions of the pancreas. Novel methods of enzyme delivery should be investigated and implemented for improved enzyme distribution. MRI serves as a valuable tool to visualize and evaluate the efficacy of current and prospective methods of pancreas distension and enzyme delivery. PMID:24986758

  8. Magnetic resonance imaging: a tool to monitor and optimize enzyme distribution during porcine pancreas distention for islet isolation.

    PubMed

    Scott, William E; Weegman, Bradley P; Balamurugan, Appakalai N; Ferrer-Fabrega, Joana; Anazawa, Takayuki; Karatzas, Theodore; Jie, Tun; Hammer, Bruce E; Matsumoto, Shuchiro; Avgoustiniatos, Efstathios S; Maynard, Kristen S; Sutherland, David E R; Hering, Bernhard J; Papas, Klearchos K

    2014-01-01

    Porcine islet xenotransplantation is emerging as a potential alternative for allogeneic clinical islet transplantation. Optimization of porcine islet isolation in terms of yield and quality is critical for the success and cost-effectiveness of this approach. Incomplete pancreas distention and inhomogeneous enzyme distribution have been identified as key factors for limiting viable islet yield per porcine pancreas. The aim of this study was to explore the utility of magnetic resonance imaging (MRI) as a tool to investigate the homogeneity of enzyme delivery in porcine pancreata. Traditional and novel methods for enzyme delivery aimed at optimizing enzyme distribution were examined. Pancreata were procured from Landrace pigs via en bloc viscerectomy. The main pancreatic duct was then cannulated with an 18-g winged catheter and MRI performed at 1.5-T. Images were collected before and after ductal infusion of chilled MRI contrast agent (gadolinium) in physiological saline. Regions of the distal aspect of the splenic lobe and portions of the connecting lobe and bridge exhibited reduced delivery of solution when traditional methods of distention were utilized. Use of alternative methods of delivery (such as selective re-cannulation and distention of identified problem regions) resolved these issues, and MRI was successfully utilized as a guide and assessment tool for improved delivery. Current methods of porcine pancreas distention do not consistently deliver enzyme uniformly or adequately to all regions of the pancreas. Novel methods of enzyme delivery should be investigated and implemented for improved enzyme distribution. MRI serves as a valuable tool to visualize and evaluate the efficacy of current and prospective methods of pancreas distention and enzyme delivery. © 2014 John Wiley & Sons A/S Published by John Wiley & Sons Ltd.

  9. Cetuximab-conjugated nanodiamonds drug delivery system for enhanced targeting therapy and 3D Raman imaging.

    PubMed

    Li, Dandan; Chen, Xin; Wang, Hong; Liu, Jie; Zheng, Meiling; Fu, Yang; Yu, Yuan; Zhi, Jinfang

    2017-12-01

    In this study, a multicomponent nanodiamonds (NDs)-based targeting drug delivery system, cetuximab-NDs-cisplatin bioconjugate, combining both specific targeting and enhanced therapeutic efficacy capabilities, is developed and characterized. The specific targeting ability of cetuximab-NDs-cisplatin system on human liver hepatocellular carcinoma (HepG2) cells is evaluated through epidermal growth factor receptor (EGFR) blocking experiments, since EGFR is over-expressed on HepG2 cell membrane. Besides, cytotoxic evaluation confirms that cetuximab-NDs-cisplatin system could significantly inhibit the growth of HepG2 cells, and the therapeutic activity of this system is proven to be better than that of both nonspecific NDs-cisplatin conjugate and specific EGF-NDs-cisplatin conjugate. Furthermore, a 3-dimensional (3D) Raman imaging technique is utilized to visualize the targeting efficacy and enhanced internalization of cetuximab-NDs-cisplatin system in HepG2 cells, using the NDs existing in the bioconjugate as Raman probes, based on the characteristic Raman signal of NDs at 1332 cm -1 . These advantageous properties of cetuximab-NDs-cisplatin system propose a prospective imaging and treatment tool for further diagnostic and therapeutic purposes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. In vivo delivery of recombinant human growth hormone from genetically engineered human fibroblasts implanted within Baxter immunoisolation devices.

    PubMed

    Josephs, S F; Loudovaris, T; Dixit, A; Young, S K; Johnson, R C

    1999-01-01

    Continuous delivery of therapeutic peptide to the systemic circulation would be the optimal treatment for a variety of diseases. The Baxter TheraCyte system is a membrane encapsulation system developed for implantation of tissues, cells such as endocrine cells or cell lines genetically engineered for therapeutic peptide delivery in vivo. To demonstrate the utility of this system, cell lines were developed which expressed human growth hormone (hGH) at levels exceeding 1 microgram per million cells per day. These were loaded into devices which were then implanted into juvenile nude rats. Significant levels of hGH of up to 2.5 ng/ml were detected in plasma throughout the six month duration of the study. In contrast, animals implanted with free cells showed peak plasma levels of 0.5 to 1.2 ng four days after implantation with no detectable hGH beyond 10 days. Histological examination of explanted devices showed they were vascularized and contained cells that were viable and morphologically healthy. After removal of the implants, no hGH could be detected which confirmed that the source of hGH was from cells contained within the device. The long term expression of human growth hormone as a model peptide has implications for the peptide therapies for a variety of human diseases using membrane encapsulated cells.

  11. Care coordination in accountable care organizations: moving beyond structure and incentives.

    PubMed

    Press, Matthew J; Michelow, Marilyn D; MacPhail, Lucy H

    2012-12-01

    Accountable care organizations (ACOs) are considered by many to be a key component of healthcare delivery system improvement. One expectation is that the structural elements of the ACO model, including clinical integration and financial accountability, will lead to better coordination of care for patients. But, while structure and incentives may facilitate the delivery of coordinated care, they will not necessarily ensure that care coordination is done well. For that, physicians and other healthcare providers within ACOs must possess and utilize specific skills, particularly in the areas of collaboration, communication, and teamwork. In this article, we present strategies in 3 domains--training, support tools, and organizational culture--that ACOs can implement to foster the development of these skills and support their use in clinical practice.

  12. Nanoparticle formulations of cisplatin for cancer therapy

    PubMed Central

    Duan, Xiaopin; He, Chunbai; Kron, Stephen J.; Lin, Wenbin

    2016-01-01

    The genotoxic agent cisplatin, used alone or in combination with radiation and/or other chemotherapeutic agents, is an important first-line chemotherapy for a broad range of cancers. The clinical utility of cisplatin is limited both by intrinsic and acquired resistance and dose-limiting normal tissue toxicity. That cisplatin shows little selectivity for tumor versus normal tissue may be a critical factor limiting its value. To overcome the low therapeutic ratio of the free drug, macromolecular, liposomal and nanoparticle drug delivery systems have been explored toward leveraging the enhanced permeability and retention (EPR) effect and promoting delivery of cisplatin to tumors. Here, we survey recent advances in nanoparticle formulations of cisplatin, focusing on agents that show promise in preclinical or clinical settings. PMID:26848041

  13. Business resilience: Reframing healthcare risk management.

    PubMed

    Simeone, Cynthia L

    2015-09-01

    The responsibility of risk management in healthcare is fractured, with multiple stakeholders. Most hospitals and healthcare systems do not have a fully integrated risk management system that spans the entire organizational and operational structure for the delivery of key services. This article provides insight toward utilizing a comprehensive Business Resilience program and associated methodology to understand and manage organizational risk leading to organizational effectiveness and operational efficiencies, with the fringe benefit of realizing sustainable operational capability during adverse conditions. © 2015 American Society for Healthcare Risk Management of the American Hospital Association.

  14. Chemical and Solar Electric Propulsion Systems Analyses for Mars Sample Return Missions

    NASA Technical Reports Server (NTRS)

    Donahue, Benjamin B.; Green, Shaun E.; Coverstone, Victoria L.; Woo, Byoungsam

    2004-01-01

    Conceptual in-space transfer stages, including those utilizing solar electric propulsion, chemical propulsion, and chemical propulsion with aerobraking or aerocapture assist at Mars, were evaluated. Roundtrip Mars sample return mission vehicles were analyzed to determine how specific system technology selections influence payload delivery capability. Results show how specific engine, thruster, propellant, capture mode, trip time and launch vehicle technology choices would contribute to increasing payload or decreasing the size of the required launch vehicles. Heliocentric low-thrust trajectory analyses for Solar Electric Transfer were generated with the SEPTOP code.

  15. ISD3: a particokinetic model for predicting the combined effects of particle sedimentation, diffusion and dissolution on cellular dosimetry for in vitro systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Dennis G.; Smith, Jordan N.; Thrall, Brian D.

    The development of particokinetic models describing the delivery of insoluble or poorly soluble nanoparticles to cells in liquid cell culture systems has improved the basis for dose-response analysis, hazard ranking from high-throughput systems, and now allows for translation of exposures across in vitro and in vivo test systems. Complimentary particokinetic models that address processes controlling delivery of both particles and released ions to cells, and the influence of particle size changes from dissolution on particle delivery for cell-culture systems would help advance our understanding of the role of particles ion dosimetry on cellular toxicology. We developed ISD3, an extension ofmore » our previously published model for insoluble particles, by deriving a specific formulation of the Population Balance Equation for soluble particles. ISD3 describes the time, concentration and particle size dependent dissolution of particles, their delivery to cells, and the delivery and uptake of ions to cells in in vitro liquid test systems. The model is modular, and can be adapted by application of any empirical model of dissolution, alternative approaches to calculating sedimentation rates, and cellular uptake or treatment of boundary conditions. We apply the model to calculate the particle and ion dosimetry of nanosilver and silver ions in vitro after calibration of two empirical models, one for particle dissolution and one for ion uptake. The results demonstrate utility and accuracy of the ISD3 framework for dosimetry in these systems. Total media ion concentration, particle concentration and total cell-associated silver time-courses were well described by the model, across 2 concentrations of 20 and 110 nm particles. ISD3 was calibrated to dissolution data for 20 nm particles as a function of serum protein concentration, but successfully described the media and cell dosimetry time-course for both particles at all concentrations and time points. We also report the finding that protein content in media has effects both on the initial rate of dissolution and the resulting near-steady state ion concentration in solution.« less

  16. A gastro-resistant ovalbumin bi-layered mini-tablet-in-tablet system for the delivery of Lactobacillus acidophilus probiotic to simulated human intestinal and colon conditions.

    PubMed

    Govender, Mershen; Choonara, Yahya Essop; van Vuuren, Sandy; Kumar, Pradeep; du Toit, Lisa Claire; Pillay, Viness

    2015-07-01

    The viability of probiotic bacteria during formulation processes and delivery is vital to ensure health benefits. This study focuses on the use of gastro-resistant denatured ovalbumin for the targeted delivery of probiotic Lactobacillus acidophilus to simulated human intestinal and colon conditions through a bi-layered mini-tablet-in-tablet system (BMTTS). The BMTTS consists of two gastro-resistant ovalbumin mini-tablets containing L. acidophilus suspended in lactose and eudragit S100 for targeted intestinal and colonic delivery respectively. Luminescence has been utilized to ensure probiotic viability during formulation processes in addition to determining all probiotic release profiles. The mechanism of probiotic release from the ovalbumin matrix was ascertained using mathematical modelling and molecular docking studies. Magnetic resonance imaging and differential scanning calorimetry are also included as part of the in-vitro characterization of the ovalbumin system. The BMTTS was effective in the delivery of L. acidophilus to simulated human intestinal and colon conditions. Formulation processes were furthermore determined to maintain probiotic viability. Statistical analysis of the release data noted a significant effect of pH denaturation on the release properties of ovalbumin. Magnetic resonance imaging results have indicated a decrease in ovalbumin matrix size upon exposure to simulated intestinal fluid. Molecular docking studies carried out depicted the interaction and binding positions inherent to the ovalbumin-pancreatic trypsin interaction complex indicating the possible enzymatic degradation of ovalbumin leading to the release of the probiotic from the protein matrix. The BMTTS has been determined to be effective in the protection and delivery of probiotic L. acidophilus to simulated human intestinal and colonic conditions. Molecular docking analysis has noted that pancreatin exerts a significant effect on probiotic release from the gastro-resistant ovalbumin matrix. © 2015 Royal Pharmaceutical Society.

  17. Nanoparticle-mediated siRNA delivery assessed in a 3D co-culture model simulating prostate cancer bone metastasis.

    PubMed

    Fitzgerald, Kathleen A; Guo, Jianfeng; Raftery, Rosanne M; Castaño, Irene Mencía; Curtin, Caroline M; Gooding, Matt; Darcy, Raphael; O' Brien, Fergal J; O' Driscoll, Caitriona M

    2016-09-25

    siRNA has emerged as a potential therapeutic for the treatment of prostate cancer but effective delivery remains a major barrier to its clinical application. This study aimed to develop and characterise a 3D in vitro co-culture model to simulate prostate cancer bone metastasis and to assess the ability of the model to investigate nanoparticle-mediated siRNA delivery and gene knockdown. PC3 or LNCaP prostate cancer cells were co-cultured with hFOB 1.19 osteoblast cells in 2D on plastic tissue culture plates and in 3D on collagen scaffolds mimicking the bone microenvironment. To characterise the co-culture model, cell proliferation, enzyme secretion and the utility of two different gene delivery vectors to mediate siRNA uptake and gene knockdown were assessed. Cell proliferation was reduced by∼50% by day 7 in the co-culture system relative to monoculture (PC3 and LNCaP co-cultures, in 2D and 3D) and an enhanced level of MMP9 (a marker of bone metastasis) was secreted into the media (1.2-4-fold increase depending on the co-culture system). A cationic cyclodextrin gene delivery vector proved significantly less toxic in the co-culture system relative to the commercially available vector Lipofectamine 2000(®). In addition, knockdown of both the GAPDH gene (minimum 15%) and RelA subunit of the NF-κB transcription factor (minimum 20%) was achieved in 2D and 3D cell co-cultures. Results indicate that the prostate cancer-osteoblast in vitro co-culture model was more physiologically relevant vs the monoculture. This model has the potential to help improve the design and efficacy of gene delivery formulations, to more accurately predict in vivo performance and, therefore, to reduce the risk of product failure in late-stage clinical development. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Enhancing the cellular uptake of siRNA duplexes following noncovalent packaging with protein transduction domain peptides.

    PubMed

    Meade, Bryan R; Dowdy, Steven F

    2008-03-01

    The major limitation in utilizing information rich macromolecules for basic science and therapeutic applications is the inability of these large molecules to readily diffuse across the cellular membrane. While this restriction represents an efficient defense system against cellular penetration of unwanted foreign molecules and thus a crucial component of cell survival, overcoming this cellular characteristic for the intracellular delivery of macromolecules has been the focus of a large number of research groups worldwide. Recently, with the discovery of RNA interference, many of these groups have redirected their attention and have applied previously characterized cell delivery methodologies to synthetic short interfering RNA duplexes (siRNA). Protein transduction domain and cell penetrating peptides have been shown to enhance the delivery of multiple types of macromolecular cargo including peptides, proteins and antisense oligonucleotides and are now being utilized to enhance the cellular uptake of siRNA molecules. The dense cationic charge of these peptides that is critical for interaction with cell membrane components prior to internalization has also been shown to readily package siRNA molecules into stable nanoparticles that are capable of traversing the cell membrane. This review discusses the recent advances in noncovalent packaging of siRNA molecules with cationic peptides and the potential for the resulting complexes to successfully induce RNA interference within both in vitro and in vivo settings.

  19. Postnatal Care Service Utilization and Associated Factors among Women Who Gave Birth in the Last 12 Months prior to the Study in Debre Markos Town, Northwestern Ethiopia: A Community-Based Cross-Sectional Study.

    PubMed

    Limenih, Miteku Andualem; Endale, Zerfu Mulaw; Dachew, Berihun Assefa

    2016-01-01

    Improving maternal and newborn health through proper postnatal care services under the care of skilled health personnel is the key strategy to reduce maternal and neonatal mortality. However, there were limited evidences on utilization of postnatal care services in Ethiopia. A community based cross-sectional study was conducted in Debremarkos town, Northwest Ethiopia. Cluster sampling technique was used to select 588 study participants. Bivariate and multivariable logistic regression model was fitted to identify factors associated with postnatal care utilization. Odds ratio with 95% confidence interval was computed to determine the level of significance. Postnatal care service utilization was found to be 33.5%. Awareness about maternal complication (AOR: 2.72, 95% CI (1.71, 4.34)), place of delivery of last child (AOR: 1.68, 95% CI: (1.01, 2.79)), outcome of birth (AOR: 2.71, 95% CI (1.19, 6.19)), delivery by cesarean section (AOR: 4.82, 95% CI (1.86, 12.54)), and delivery complication that occurred during birth (AOR: 2.58, 95% CI (1.56, 4.28)) were factors associated with postnatal care service utilization. Postnatal care service utilization was found to be low. Increasing awareness about postnatal care, preventing maternal and neonatal complication, and scheduling mothers based on the national postnatal care follow-up protocol would increase postnatal care service utilization.

  20. Three methods to monitor utilization of healthcare services by the poor

    PubMed Central

    Bhuiya, Abbas; Hanifi, SMA; Urni, Farhana; Mahmood, Shehrin Shaila

    2009-01-01

    Background Achieving equity by way of improving the condition of the economically poor or otherwise disadvantaged is among the core goals of contemporary development paradigm. This places importance on monitoring outcome indicators among the poor. National surveys allow disaggregation of outcomes by socioeconomic status at national level and do not have statistical adequacy to provide estimates for lower level administrative units. This limits the utility of these data for programme managers to know how well particular services are reaching the poor at the lowest level. Managers are thus left without a tool for monitoring results for the poor at lower levels. This paper demonstrates that with some extra efforts community and facility based data at the lower level can be used to monitor utilization of healthcare services by the poor. Methods Data used in this paper came from two sources- Chakaria Health and Demographic Surveillance System (HDSS) of ICDDR,B and from a special study conducted during 2006 among patients attending the public and private health facilities in Chakaria, Bangladesh. The outcome variables included use of skilled attendants for delivery and use of facilities. Rate-ratio, rate-difference, concentration index, benefit incidence ratio, sequential sampling, and Lot Quality Assurance Sampling were used to assess how pro-poor is the use of skilled attendants for delivery and healthcare facilities. Findings Poor are using skilled attendants for delivery far less than the better offs. Government health service facilities are used more than the private facilities by the poor. Benefit incidence analysis and sequential sampling techniques could assess the situation realistically which can be used for monitoring utilization of services by poor. The visual display of the findings makes both these methods attractive. LQAS, on the other hand, requires small fixed sample and always enables decision making. Conclusion With some extra efforts monitoring of the utilization of healthcare services by the poor at the facilities can be done reliably. If monitored, the findings can guide the programme and facility managers to act in a timely fashion to improve the effectiveness of the programme in reaching the poor. PMID:19650938

  1. Outreach in the Delivery of Mental Health Services to Hispanic Elders.

    ERIC Educational Resources Information Center

    Szapocznik, Jose; And Others

    1979-01-01

    The study investigated the effectiveness of two outreach/education modalities established to increase the utilization of mental health services by Hispanic elders: (1) a service delivery modality, and (2) a mass media modality. (NQ)

  2. Urban-rural disparity and determinants of delivery care utilization in Oromia region, Ethiopia: Community-based cross-sectional study.

    PubMed

    Kenea, Dinke; Jisha, Hunduma

    2017-02-01

    Low delivery care utilization continues to be a public health problem that significantly contributes to maternal morbidity and mortality, especially in developing countries like Ethiopia. The aim of the study is to determine the extent of urban-rural disparity of delivery care utilization and its determinants. A community-based cross-sectional quantitative study supplemented with qualitative data was conducted from February 15 to March 10, 2014. Data were collected from eligible woman using interviewer-guided semistructured questionnaires and focus group discussions. Logistic regression analysis with 95% confidence interval and p-value less than 5% was used to identify potential determinant variables. From 567 women, institutional delivery care was attended by 45.9% (260) respondents of whom 69.3% were urban and 21.3% were rural. Mass media and antenatal care attendance were the major determinants in urban respondents, whereas children ever born, partners' occupation, women's autonomy, and pregnancy-related health problems were statistically significant associations in rural women. The need for maternal health care is not met to the required level. There is a significant disparity in delivery care attendance among urban and rural women of the study area. Women's empowerment and awareness creation should be extensively worked on through mass media and posters or health information. © 2017 John Wiley & Sons Australia, Ltd.

  3. Delivery of Chemotherapeutics Across the Blood–Brain Barrier: Challenges and Advances

    PubMed Central

    Doolittle, Nancy D.; Muldoon, Leslie L.; Culp, Aliana Y.; Neuwelt, Edward A.

    2017-01-01

    The blood–brain barrier (BBB) limits drug delivery to brain tumors. We utilize intraarterial infusion of hyperosmotic mannitol to reversibly open the BBB by shrinking endothelial cells and opening tight junctions between the cells. This approach transiently increases the delivery of chemotherapy, antibodies, and nanoparticles to brain. Our preclinical studies have optimized the BBB disruption (BBBD) technique and clinical studies have shown its safety and efficacy. The delivery of methotrexate-based chemotherapy in conjunction with BBBD provides excellent outcomes in primary central nervous system lymphoma (PCNSL) including stable or improved cognitive function in survivors a median of 12 years (range 2–26 years) after diagnosis. The addition of rituximab to chemotherapy with BBBD for PCNSL can be safely accomplished with excellent overall survival. Our translational studies of thiol agents to protect against platinum-induced toxicities led to the development of a two-compartment model in brain tumor patients. We showed that delayed high-dose sodium thiosulfate protects against carboplatin-induced hearing loss, providing the framework for large cooperative group trials of hearing chemoprotection. Neuroimaging studies have identified that ferumoxytol, an iron oxide nanoparticle blood pool agent, appears to be a superior contrast agent to accurately assess therapy-induced changes in brain tumor vasculature, in brain tumor response to therapy, and in differentiating central nervous system lesions with inflammatory components. This chapter reviews the breakthroughs, challenges, and future directions for BBBD. PMID:25307218

  4. In vivo demonstration of ultrasound power delivery to charge implanted medical devices via acute and survival porcine studies

    PubMed Central

    Radziemski, Leon; Makin, Inder Raj S.

    2015-01-01

    Animal studies are an important step in proving the utility and safety of an ultrasound based implanted battery recharging system. To this end an Ultrasound Electrical Recharging System (USER™) was developed and tested. Experiments in vitro demonstrated power deliveries at the battery of up to 600 mW through 10 – 15 mm of tissue, 50 mW of power available at tissue depths of up to 50 mm, and the feasibility of using transducers bonded to titanium as used in medical implants. Acute in vivo studies in a porcine model were used to test reliability of power delivery, temperature excursions, and cooling techniques. The culminating five-week survival study involved repeated battery charging, a total of 10.5 hours of ultrasound exposure of the intervening living tissue, with an average RF input to electrical charging efficiency of 20%. This study was potentially the first long term cumulative living-tissue exposure using transcutaneous ultrasound power transmission to an implanted receiver in situ. Histology of the exposed tissue showed changes attributable primarily due to surgical implantation of the prototype device, and no damage due to the ultrasound exposure. The in vivo results are indicative of the potential safe delivery of ultrasound energy for a defined set of source conditions for charging batteries within implants. PMID:26243566

  5. In vivo demonstration of ultrasound power delivery to charge implanted medical devices via acute and survival porcine studies.

    PubMed

    Radziemski, Leon; Makin, Inder Raj S

    2016-01-01

    Animal studies are an important step in proving the utility and safety of an ultrasound based implanted battery recharging system. To this end an Ultrasound Electrical Recharging System (USER™) was developed and tested. Experiments in vitro demonstrated power deliveries at the battery of up to 600 mW through 10-15 mm of tissue, 50 mW of power available at tissue depths of up to 50 mm, and the feasibility of using transducers bonded to titanium as used in medical implants. Acute in vivo studies in a porcine model were used to test reliability of power delivery, temperature excursions, and cooling techniques. The culminating five-week survival study involved repeated battery charging, a total of 10.5h of ultrasound exposure of the intervening living tissue, with an average RF input to electrical charging efficiency of 20%. This study was potentially the first long term cumulative living-tissue exposure using transcutaneous ultrasound power transmission to an implanted receiver in situ. Histology of the exposed tissue showed changes attributable primarily due to surgical implantation of the prototype device, and no damage due to the ultrasound exposure. The in vivo results are indicative of the potential safe delivery of ultrasound energy for a defined set of source conditions for charging batteries within implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Extended Range Aerial Delivery Using an Unpowered Autonomous Tailless UAV

    NASA Astrophysics Data System (ADS)

    Kraft, Tyler E.

    An alternative approach for precision aerial delivery utilizing a flying wing for controllable forward glide is presented. Although effective, current delivery methods either display a lack of control, or require close standoff distances, potentially endangering aircraft personnel as well as bystanders. Hardware-in-the-loop simulations provide an efficient method for evaluating various wing designs and actuation configurations. Four control surface configurations are presented and evaluated, encompassing traditional aircraft and ram-air parafoil control approaches. Fixed-wing and multirotor unmanned aircraft-based flight tests were conducted to evaluate the controllability and handling performance of the various configurations of both a fixed wing model and a model with collapsing wings. A manufacturing process was developed to allow repeatable results in the field using cheap, mostly disposable materials. A powered flying wing model was used to maximize data collection in later stages of software development. Data collected during flight tests was used to create a model of the system and develop a Nonlinear Dynamic Inversion controller for autonomous flight. The NDI controller was able to provide stable flight in pitch, but will need more development to control yaw, instead an intentional bias was built in to show proof of concept for direct yaw control. The results demonstrate the feasibility of the flying wing-based aerial delivery; however, significant challenges remain regarding the stability and scalability of the system.

  7. A review of integrating electroactive polymers as responsive systems for specialized drug delivery applications.

    PubMed

    Pillay, Viness; Tsai, Tong-Sheng; Choonara, Yahya E; du Toit, Lisa C; Kumar, Pradeep; Modi, Girish; Naidoo, Dinesh; Tomar, Lomas K; Tyagi, Charu; Ndesendo, Valence M K

    2014-06-01

    Electroactive polymers (EAPs) are promising candidate materials for the design of drug delivery technologies, especially in conditions where an "on-off" drug release mechanism is required. To achieve this, EAPs such as polyaniline, polypyrrole, polythiophene, ethylene vinyl acetate, and polyethylene may be blended into responsive hydrogels in conjunction with the desired drug to obtain a patient-controlled drug release system. The "on-off" drug release mechanism can be achieved through the environmental-responsive nature of the interpenetrating hydrogel-EAP complex via (i) charged ions initiated diffusion of drug molecules; (ii) conformational changes that occur during redox switching of EAPs; or (iii) electroerosion. These release mechanisms are not exhaustive and new release mechanisms are still under investigation. Therefore, this review seeks to provide a concise incursion and critical overview of EAPs and responsive hydrogels as a strategy for advanced drug delivery, for example, controlled release of neurotransmitters, sulfosalicyclic acid from cross-linked hydrogel, and vaccine delivery. The review further discusses techniques such as linear sweep voltammetry, cyclic voltammetry, impedance spectroscopy, and chronoamperometry for the determination of the redox capability of EAPs. The future implications of the hydrogel-EAP composites include, but not limited to, application toward biosensors, DNA hybridizations, microsurgical tools, and miniature bioreactors and may be utilized to their full potential in the form of injectable devices as nanorobots or nanobiosensors. Copyright © 2013 Wiley Periodicals, Inc.

  8. Systematic Propulsion Optimization Tools (SPOT)

    NASA Technical Reports Server (NTRS)

    Bower, Mark; Celestian, John

    1992-01-01

    This paper describes a computer program written by senior-level Mechanical Engineering students at the University of Alabama in Huntsville which is capable of optimizing user-defined delivery systems for carrying payloads into orbit. The custom propulsion system is designed by the user through the input of configuration, payload, and orbital parameters. The primary advantages of the software, called Systematic Propulsion Optimization Tools (SPOT), are a user-friendly interface and a modular FORTRAN 77 code designed for ease of modification. The optimization of variables in an orbital delivery system is of critical concern in the propulsion environment. The mass of the overall system must be minimized within the maximum stress, force, and pressure constraints. SPOT utilizes the Design Optimization Tools (DOT) program for the optimization techniques. The SPOT program is divided into a main program and five modules: aerodynamic losses, orbital parameters, liquid engines, solid engines, and nozzles. The program is designed to be upgraded easily and expanded to meet specific user needs. A user's manual and a programmer's manual are currently being developed to facilitate implementation and modification.

  9. Development of glucose-responsive 'smart' insulin systems.

    PubMed

    Rege, Nischay K; Phillips, Nelson F B; Weiss, Michael A

    2017-08-01

    The complexity of modern insulin-based therapy for type I and type II diabetes mellitus and the risks associated with excursions in blood-glucose concentration (hyperglycemia and hypoglycemia) have motivated the development of 'smart insulin' technologies (glucose-responsive insulin, GRI). Such analogs or delivery systems are entities that provide insulin activity proportional to the glycemic state of the patient without external monitoring by the patient or healthcare provider. The present review describes the relevant historical background to modern GRI technologies and highlights three distinct approaches: coupling of continuous glucose monitoring (CGM) to deliver devices (algorithm-based 'closed-loop' systems), glucose-responsive polymer encapsulation of insulin, and molecular modification of insulin itself. Recent advances in GRI research utilizing each of the three approaches are illustrated; these include newly developed algorithms for CGM-based insulin delivery systems, glucose-sensitive modifications of existing clinical analogs, newly developed hypoxia-sensitive polymer matrices, and polymer-encapsulated, stem-cell-derived pancreatic β cells. Although GRI technologies have yet to be perfected, the recent advances across several scientific disciplines that are described in this review have provided a path towards their clinical implementation.

  10. A social systems model of hospital utilization.

    PubMed Central

    Anderson, J G

    1976-01-01

    A social systems model for the health services system serving the state of New Mexico is presented. Utilization of short-term general hospitals is viewed as a function of sociodemographic characteristics of the population and of the supply of health manpower and facilities available to that population. The model includes a network specifying the causal relationships hypothesized as existing among a set of social, demographic, and economic variables known to be related to the supply of health manpower and facilities and to their utilization. Inclusion of feedback into the model as well as lagged values of physician supply variables permits examination of the dynamic behavior of the social system over time. A method for deriving the reduced form of the structural model is presented along with the reduced-form equations. These equations provide valuable information for policy decisions regarding the likely consequences of changes in the structure of the population and in the supply of health manpower and facilities. The structural and reduced-form equations have been used to predict the consequences for one New Mexico county of state and federal policies that would affect the organization and delivery of health services. PMID:1017949

  11. Antenatal care and women's decision making power as determinants of institutional delivery in rural area of Western Ethiopia.

    PubMed

    Tekelab, Tesfalidet; Yadecha, Birhanu; Melka, Alemu Sufa

    2015-12-11

    Delivery by skilled birth attendance serves as an indicator of progress towards reducing maternal mortality. In Ethiopia, the proportions of births attended by skilled personnel were very low 15 % and Oromia region 14.7 %. The current study identified factors associated with utilization of institutional delivery among married women in rural area of Western Ethiopia. A community based cross-sectional study was employed from January 2 to January 31, 2015 among mothers who gave birth in the last 2 years in rural area of East Wollega Zone. A multi-stage sampling procedure was used to select 798 study participants. A pre-tested structured questionnaire was used to collect data and female high school graduates data collectors were involved in the data collection process. Bivariate and multivariable logistic regression model was fit and statistical significance was determined through a 95 % confidence level. The study revealed that 39.7 % of the mothers delivered in health facilities. Age 15-24 years (AOR 4.20, 95 % CI 2.07-8.55), 25-34 years (AOR 2.21, 95 % CI 1.32-3.69), women's educational level (AOR 2.00, 95 % CI 1.19-3.34), women's decision making power (AOR 2.11, 95 % CI 1.54-2.89), utilization of antenatal care (ANC) during the index pregnancy (AOR 1.56, 95 % CI 1.08-2.23) and parity one (AOR 2.20, 95 % CI 1.10-4.38) showed significant positive association with utilization of institutional delivery. In this study proportion of institutional delivery were low (39.7 %). Age, women's literacy status, women's decision making power, ANC practice and numbers of live birth were found important predictors of institutional delivery. The findings of current study highlight the importance of boosting women involvement in formal education and decision making power. Moreover since ANC is big pillar for the remaining maternal health services effort should be there to increase ANC service utilization.

  12. A Cross-Sectional Analytic Study of Postpartum Health Care Service Utilization in the Philippines

    PubMed Central

    Yamashita, Tadashi; Suplido, Sherri Ann; Ladines-Llave, Cecilia; Tanaka, Yuko; Senba, Naomi; Matsuo, Hiroya

    2014-01-01

    Background The maternal mortality ratio in the Philippines remains high; thus, it will be difficult to achieve the Millennium Development Goals 5 by 2015. Approximately two-thirds of all maternal deaths occur during the postpartum period. Therefore, we conducted the present study to examine the current state of postpartum health care service utilization in the Philippines, and identify challenges to accessing postpartum care. Methods A questionnaire and knowledge test were distributed to postpartum women in the Philippines. The questionnaire collected demographical characteristics and information about their utilization of health care services during pregnancy and the postpartum period. The knowledge test consisted of 11 questions regarding 6 topics related to possible physical and mental symptoms after delivery. Sixty-four questionnaires and knowledge tests were analyzed. Results The mean time of first postpartum health care visit was 5.1±5.2 days after delivery. Postpartum utilization of health care services was significantly correlated with delivery location (P<0.01). Women who delivered at home had a lower rate of postpartum health care service utilization than women who delivered at medical facilities. The majority of participants scored low on the knowledge test. Conclusion We found inadequate postpartum health care service utilization, especially for women who delivered at home. Our results also suggest that postpartum women lack knowledge about postpartum health concerns. In the Philippines, Barangay health workers may play a role in educating postpartum women regarding health care service utilization to improve their knowledge of possible concerns and their overall utilization of health care services. PMID:24465626

  13. Can efficient supply management in the operating room save millions?

    PubMed

    Park, Kyung W; Dickerson, Cheryl

    2009-04-01

    Supply expenses occupy an ever-increasing portion of the expense budget in today's increasingly technologically complex operating rooms. Yet, little has been studied and published in the anesthesia literature. This review attempts to bring the topic of supply management to anesthesiologists, who play a significant role in operating room management. Little investigative work has been performed on supply management. Anecdotal reports suggest the benefits of a perpetual inventory system over a periodic inventory system. A perpetual inventory system uses utilization data to update inventory on hand continually and this information is linked to purchasing and restocking, whereas a periodic inventory system counts inventory at some regular intervals (such as annually) and uses average utilization to set par levels. On the basis of application of operational management concepts, ways of taking advantage of a perpetual inventory system to achieve savings in supply expenses are outlined. These include linking the operating room scheduling and supply order system, distributor-driven just-in-time delivery of case carts, continual updating of preference lists based on utilization patterns, increasing inventory turnovers, standardizing surgical practices, and vendor consignment of high unit-cost items such as implants. In addition, Lean principles of visual management and elimination of eight wastes may be applicable to supply management.

  14. Nanoemulsions as self-emulsified drug delivery carriers for enhanced permeability of the poorly water-soluble selective β₁-adrenoreceptor blocker Talinolol.

    PubMed

    Ghai, Damanjeet; Sinha, Vivek Ranjan

    2012-07-01

    To enhance the bioavailability of the poorly water-soluble drug talinolol, a self-nanoemulsifying drug delivery system (SNEDDS) comprising 5% (w/v) Brij-721 ethanolic solution (Smix), triacetin, and water, in the ratio of 40:20:40 (% w/w) was developed by constructing pseudo-ternary phase diagrams and evaluated for droplet size, polydispersity index, and surface morphology of nanoemulsions. The effect of nanodrug carriers on drug release and permeability was assessed using stripped porcine jejunum and everted rat gut sac method and compared with hydroalcoholic drug solution, oily solution, and conventional emulsion and suspension. The SNEDDS showed a significant (P < 0.001) increase in drug release, permeability, and in vivo bioavailability as compared to drug suspension. This may be attributed to increased solubility and enhanced permeability of the drug from nanosized emulsion. In this study, a self-nanoemulsifying drug delivery system was utilized to enhance the bioavailability of the poorly water-soluble beta-blocker talinolol. Significant increase in drug release, permeability, and in vivo bioavailability were demonstrated as compared to standard drug suspension. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Nanoparticle Delivery of Antisense Oligonucleotides and Their Application in the Exon Skipping Strategy for Duchenne Muscular Dystrophy

    PubMed Central

    Falzarano, Maria Sofia; Passarelli, Chiara

    2014-01-01

    Antisense therapy is a powerful tool for inducing post-transcriptional modifications and thereby regulating target genes associated with disease. There are several classes of antisense oligonucleotides (AONs) with therapeutic use, such as double-stranded RNAs (interfering RNAs, utilized for gene silencing, and single-stranded AONs with various chemistries, which are useful for antisense targeting of micro-RNAs and mRNAs. In particular, the use of AONs for exon skipping, by targeting pre-mRNA, is proving to be a highly promising therapy for some genetic disorders like Duchenne muscular dystrophy and spinal muscular atrophy. However, AONs are unable to cross the plasma membrane unaided, and several other obstacles still remain to be overcome, in particular their instability due to their nuclease sensitivity and their lack of tissue specificity. Various drug delivery systems have been explored to improve the bioavailability of nucleic acids, and nanoparticles (NPs) have been suggested as potential vectors for DNA/RNA. This review describes the recent progress in AON conjugation with natural and synthetic delivery systems, and provides an overview of the efficacy of NP-AON complexes as an exon-skipping treatment for Duchenne muscular dystrophy. PMID:24506782

  16. Design and mechanistic study of a novel gold nanocluster-based drug delivery system.

    PubMed

    Li, Qinzhen; Pan, Yiting; Chen, Tiankai; Du, Yuanxin; Ge, Honghua; Zhang, Buchang; Xie, Jianping; Yu, Haizhu; Zhu, Manzhou

    2018-05-22

    Chemically-triggered drug delivery systems (DDSs) have been extensively studied as they do not require specialized equipment to deliver the drug and can deeply penetrate human tissue. However, their syntheses are complicated and they tend to be cytotoxic, which restricts their clinical utility. In this work, the self-regulated drug loading and release capabilities of peptide-protected gold nanoclusters (Pep-Au NCs) are investigated using vancomycin (Van) as the model drug. Gold nanoclusters (Au NCs) coated with a custom-designed pentapeptide are synthesized as drug delivery nanocarriers and loaded with Van - a spontaneous process reliant on the specific binding between Van and the custom-designed peptide. The Van-loaded Au NCs show comparable antimicrobial activity with Van on its own, and the number of Van released by the Pep-Au NCs is found to be proportional to the amount of bacteria present. The controlled nature of the Van release is very encouraging, and predominantly due to the stronger binding affinity of Van with bacteria than that with Au NCs. In addition, these fluorescent Au NCs could also be used to construct temperature sensors, which enable the in vitro and in vivo bioimaging.

  17. Dual drug-loaded nanoparticles on self-integrated scaffold for controlled delivery

    PubMed Central

    Bennet, Devasier; Marimuthu, Mohana; Kim, Sanghyo; An, Jeongho

    2012-01-01

    Antioxidant (quercetin) and hypoglycemic (voglibose) drug-loaded poly-D,L-lactideco-glycolide nanoparticles were successfully synthesized using the solvent evaporation method. The dual drug-loaded nanoparticles were incorporated into a scaffold film using a solvent casting method, creating a controlled transdermal drug-delivery system. Key features of the film formulation were achieved utilizing several ratios of excipients, including polyvinyl alcohol, polyethylene glycol, hyaluronic acid, xylitol, and alginate. The scaffold film showed superior encapsulation capability and swelling properties, with various potential applications, eg, the treatment of diabetes-associated complications. Structural and light scattering characterization confirmed a spherical shape and a mean particle size distribution of 41.3 nm for nanoparticles in the scaffold film. Spectroscopy revealed a stable polymer structure before and after encapsulation. The thermoresponsive swelling properties of the film were evaluated according to temperature and pH. Scaffold films incorporating dual drug-loaded nanoparticles showed remarkably high thermoresponsivity, cell compatibility, and ex vivo drug-release behavior. In addition, the hybrid film formulation showed enhanced cell adhesion and proliferation. These dual drug-loaded nanoparticles incorporated into a scaffold film may be promising for development into a transdermal drug-delivery system. PMID:22888222

  18. Factors associated with utilization of skilled service delivery among women in rural Northern Ghana: a cross sectional study.

    PubMed

    Gudu, William; Addo, Bright

    2017-05-31

    Ghana's current Maternal Mortality Ratio (MMR) of 319 per 100,000 live births makes achievement of the Sustainable Development Goal of 70 maternal deaths per 100,000 live births or less by 2030 appear to be illusory. Skilled assistance during childbirth is a critical strategy to reducing maternal mortality, yet the proportion of deliveries taking place within health facilities where such assistance is provided is very low in Ghana, with huge disparity between urban and rural women. To address the gap in skilled attendance in rural Upper East Region, the Ghana Health Service (GHS) in 2005 piloted a program that involved training of Community Health Officers (CHOs) as midwives. This study explored factors associated with skilled delivery services utilization in a predominantly rural district in Ghana. A cross-sectional study, data was collected from a sample of 400 women between the ages of 15 and 49 years who had given birth a year prior to the study. We used frequencies and percentages for descriptive analysis and chi-square (χ 2 ) test for relationship between independents factors and utilization of skilled delivery services. Of the 400 women included in the analysis, 93.3% of them delivered in a health facility. Almost all of the mothers (97.3%) attended or received antenatal care at their last pregnancy with 75.0% of them having four or more ANC visits. The proportion of women who received ANC and utilized skilled delivery services was high (91.5%). Mother's educational attainment, ANC attendance, frequency of ANC visits, satisfaction with ANC services and possession of valid NHIS card significantly associated with utilisation of skilled delivery services. For a predominantly rural district, the percentage of women who deliver within health facilities where skilled assistance is available is very encouraging and a significant stride towards reducing Ghana's overall MMR. Having four or more ANC visits and improving on the quality of care provided has a great potential of improving uptake of skilled delivery services.

  19. Magnitude of institutional delivery service utilization and associated factors among women in pastoral community of Awash Fentale district Afar Regional State, Ethiopia.

    PubMed

    Assefa, Luelseged; Alemayehu, Mussie; Debie, Ayal

    2018-03-02

    Reduction of maternal mortality is a global priority particularly in developing countries like Ethiopia where maternal mortality ratio is one of the highest in the world. Most deliveries in developing countries occur at home without skilled birth attendants. Therefore, the objective of this study was to assess institutional delivery service utilization and associated factors among women in pastoral community of Awash Fentale district, Ethiopia. Overall, 35.2% of women delivered at health facilities. Women who had good knowledge AOR = 2.1, 95% CI 1.32, 4.87), Ante Natal Care (ANC) follow up (AOR = 3.2, 95% CI 1.55, 6.63), resided in a place where distance to reach at the nearby health facilities takes < 30 min (AOR = 3.1; 95% CI 2.57, 66.33) and women whose husband involved in decision regarding delivery place (AOR = 1.9; 95% CI 1.49, 5.07) were more likely to deliver at health facility. Therefore, strengthening ANC services, improving maternal knowledge, involving husbands in decision of delivery place and expanding health facilities in the community would enhance institutional delivery.

  20. Comparing variation in hospital rates of cesarean delivery among low-risk women using 3 different measures.

    PubMed

    Armstrong, Joanne C; Kozhimannil, Katy B; McDermott, Patricia; Saade, George R; Srinivas, Sindhu K

    2016-02-01

    This report describes the development of a measure of low-risk cesarean delivery by the Society for Maternal-Fetal Medicine (SMFM). Safely lowering the cesarean delivery rate is a priority for maternity care clinicians and health care delivery systems. Therefore, hospital quality assurance programs are increasingly tracking cesarean delivery rates among low-risk pregnancies. Two commonly used definitions of "low risk" are available, the Joint Commission (JC) and the Agency for Healthcare Research and Quality (AHRQ) measures, but these measures are not clinically comprehensive. We sought to refine the definition of the low-risk cesarean delivery rate to enhance the validity of the metric for quality measurement. We created this refined definition-called the SMFM definition-and compared it to the JC and AHRQ measures using claims-based data from the 2011 Nationwide Inpatient Sample of >863,000 births in 612 hospitals. Using these definitions, we calculated means and interquartile ranges (25th-75th percentile range) for hospital low-risk cesarean delivery rates, stratified by hospital size, teaching status, urban/rural location, and payer mix. Across all hospitals, the mean low-risk cesarean delivery rate was lowest for the SMFM definition (12.65%), but not substantially different from the JC and AHRQ measures (13.12% and 13.29%, respectively). We empirically examined the SMFM definition to ensure its validity and utility. This refined definition performs similarly to existing measures and has the added advantage of clinical perspective, enhanced face validity, and ease of use. Copyright © 2016 Elsevier Inc. All rights reserved.

Top