Efficient Biologically Inspired Photocell Enhanced by Delocalized Quantum States
NASA Astrophysics Data System (ADS)
Creatore, C.; Parker, M. A.; Emmott, S.; Chin, A. W.
2013-12-01
Artificially implementing the biological light reactions responsible for the remarkably efficient photon-to-charge conversion in photosynthetic complexes represents a new direction for the future development of photovoltaic devices. Here, we develop such a paradigm and present a model photocell based on the nanoscale architecture and molecular elements of photosynthetic reaction centers. Quantum interference of photon absorption and emission induced by the dipole-dipole interaction between molecular excited states guarantees an enhanced light-to-current conversion and power generation for a wide range of electronic, thermal, and optical parameters for optimized dipolar geometries. This result opens a promising new route for designing artificial light-harvesting devices inspired by biological photosynthesis and quantum technologies.
Gong, Longyan; Tong, Peiqing
2006-11-01
The von Neumann entropy for an electron in periodic, disorder, and quasiperiodic quantum small-world networks (QSWN's) is studied numerically. For the disorder QSWN's, the derivative of the spectrum-averaged von Neumann entropy is maximal at a certain density of shortcut links p*, which can be as a signature of the localization-delocalization transition of electron states. The transition point p* is agreement with that obtained by the level statistics method. For the quasiperiodic QSWN's, it is found that there are two regions of the potential parameter. The behaviors of electron states in different regions are similar to that of periodic and disorder QSWN's, respectively. PMID:17279964
Badri, Zahra; Foroutan-Nejad, Cina
2016-04-28
In the present account we investigate a theoretical link between the bond length, electron sharing, and bond energy within the context of quantum chemical topology theories. The aromatic stabilization energy, ASE, was estimated from this theoretical link without using isodesmic reactions for the first time. The ASE values obtained from our method show a meaningful correlation with the number of electrons contributing to the aromaticity. This theoretical link demonstrates that structural, electronic, and energetic criteria of aromaticity - ground-state aromaticity - belong to the same class and guarantees that they assess the same property as aromaticity. Theory suggests that interatomic exchange-correlation potential, obtained from the theory of Interacting Quantum Atoms (IQA), is linearly connected to the delocalization index of Quantum Theory of Atoms in Molecules (QTAIM) and the bond length through a first order approximation. Our study shows that the relationship between energy, structure and electron sharing marginally deviates from the ideal linear form expected from the first order approximation. The observed deviation from linearity was attributed to a different contribution of exchange-correlation to the bond energy for the σ- and π-frameworks. Finally, we proposed two-dimensional energy-structure-based aromaticity indices in analogy to the electron sharing indices of aromaticity. PMID:26678719
High-fidelity teleportation of continuous-variable quantum states using delocalized single photons.
Andersen, Ulrik L; Ralph, Timothy C
2013-08-01
Traditional continuous-variable teleportation can only approach unit fidelity in the limit of an infinite (and unphysical) amount of squeezing. We describe a new method for continuous-variable teleportation that approaches unit fidelity with finite resources. The protocol is not based on squeezed states as in traditional teleportation but on an ensemble of single photon entangled states. We characterize the teleportation scheme with coherent states, mesoscopic superposition states, and two-mode squeezed states and we find several situations in which near-unity teleportation fidelity can be obtained with modest resources. PMID:23952378
Delocalized single-photon Dicke states and the Leggett-Garg inequality in solid state systems
Chen, Guang-Yin; Lambert, Neill; Li, Che-Ming; Chen, Yueh-Nan; Nori, Franco
2012-01-01
We show how to realize a single-photon Dicke state in a large one-dimensional array of two-level systems, and discuss how to test its quantum properties. The realization of single-photon Dicke states relies on the cooperative nature of the interaction between a field reservoir and an array of two-level-emitters. The resulting dynamics of the delocalized state can display Rabi-like oscillations when the number of two-level emitters exceeds several hundred. In this case, the large array of emitters is essentially behaving like a “mirror-less cavity”. We outline how this might be realized using a multiple-quantum-well structure or a dc-SQUID array coupled to a transmission line, and discuss how the quantum nature of these oscillations could be tested with an extension of the Leggett-Garg inequality. PMID:23162693
Subpicosecond hole tunneling by nonresonant delocalization in asymmetric double quantum wells
NASA Astrophysics Data System (ADS)
Krol, M. F.; Ten, S.; McGinnis, B. P.; Hayduk, M. J.; Khitrova, G.; Peyghambarian, N.
1995-11-01
We present experimental evidence for subpicosecond hole tunneling in asymmetric double-quantum-well structures. A single tunneling time is observed at low carrier densities indicating that hole tunneling times are at least as fast as electron tunneling times despite the absence of resonances between hole states. We have conducted band-structure and tunneling-time calculations suggesting that nonresonant delocalization of hole wave functions combined with alloy scattering provides an efficient mechanism for fast hole transfer from the narrow well (NW) to the wide well (WW) at finite in-plane momenta. We suggest that holes tunnel to the WW before reaching the bottom of the lowest subband in the NW.
NASA Astrophysics Data System (ADS)
Tiihonen, Juha; Schramm, Andreas; Kylänpää, Ilkka; Rantala, Tapio T.
2016-02-01
A thorough simulation study is carried out on thermal and quantum delocalization effects on the feasibility of a quantum-dot cellular automata (QCA) cell. The occupation correlation of two electrons is modeled with a simple four-site array of harmonic quantum dots (QD). QD sizes range from 20 nm to 40 nm with site separations from 20 nm to 100 nm, relevant for state-of-the-art GaAs/InAs semiconductor technology. The choice of parameters introduces QD overlap, which is only simulated properly with exact treatment of strong Coulombic correlation and thermal equilibrium quantum statistics. These are taken into account with path integral Monte Carlo approach. Thus, we demonstrate novel joint effects of quantum delocalization and decoherence in QCA, but also highly sophisticated quantitative evidence supporting the traditional relations in pragmatic QCA design. Moreover, we show the effects of dimensionality and spin state, and point out the parameter space conditions, where the ‘classical’ treatment becomes invalid.
Quantum delocalization of protons in the hydrogen-bond network of an enzyme active site
Wang, Lu; Fried, Stephen D.; Boxer, Steven G.; Markland, Thomas E.
2014-01-01
Enzymes use protein architectures to create highly specialized structural motifs that can greatly enhance the rates of complex chemical transformations. Here, we use experiments, combined with ab initio simulations that exactly include nuclear quantum effects, to show that a triad of strongly hydrogen-bonded tyrosine residues within the active site of the enzyme ketosteroid isomerase (KSI) facilitates quantum proton delocalization. This delocalization dramatically stabilizes the deprotonation of an active-site tyrosine residue, resulting in a very large isotope effect on its acidity. When an intermediate analog is docked, it is incorporated into the hydrogen-bond network, giving rise to extended quantum proton delocalization in the active site. These results shed light on the role of nuclear quantum effects in the hydrogen-bond network that stabilizes the reactive intermediate of KSI, and the behavior of protons in biological systems containing strong hydrogen bonds. PMID:25503367
2015-01-01
The delocalization of the photoexcited triplet state in a linear butadiyne-linked porphyrin dimer is investigated by time-resolved and pulse electron paramagnetic resonance (EPR) with laser excitation. The transient EPR spectra of the photoexcited triplet states of the porphyrin monomer and dimer are characterized by significantly different spin polarizations and an increase of the zero-field splitting parameter D from monomer to dimer. The proton and nitrogen hyperfine couplings, determined using electron nuclear double resonance (ENDOR) and X- and Q-band HYSCORE, are reduced to about half in the porphyrin dimer. These data unequivocally prove the delocalization of the triplet state over both porphyrin units, in contrast to the conclusions from previous studies on the triplet states of closely related porphyrin dimers. The results presented here demonstrate that the most accurate estimate of the extent of triplet state delocalization can be obtained from the hyperfine couplings, while interpretation of the zero-field splitting parameter D can lead to underestimation of the delocalization length, unless combined with quantum chemical calculations. Furthermore, orientation-selective ENDOR and HYSCORE results, in combination with the results of density functional theory (DFT) calculations, allowed determination of the orientations of the zero-field splitting tensors with respect to the molecular frame in both porphyrin monomer and dimer. The results provide evidence for a reorientation of the zero-field splitting tensor and a change in the sign of the zero-field splitting D value. The direction of maximum dipolar coupling shifts from the out-of-plane direction in the porphyrin monomer to the vector connecting the two porphyrin units in the dimer. This reorientation, leading to an alignment of the principal optical transition moment and the axis of maximum dipolar coupling, is also confirmed by magnetophotoselection experiments. PMID:25914154
Estévez-Fregoso, Mar; Hernández-Trujillo, Jesús
2016-04-28
The four lowest singlet electronic states of benzene, the acenes from naphthalene to pentacene, phenanthrene and pyrene were studied by means of theoretical methods. Their vertical excitation energies from the ground electronic states were computed at the CASPT2 approximation. As an attempt to explain the trends observed in the excitation energies, several descriptors based on the electron density were used and the similarity of these molecules with their ground state counterparts was analyzed. It was found that the changes of the topological properties at the C-C bond critical points do not explain the decreasing trends for the excitation energies with the increase of the number of rings, in part because the small changes that take place in the electron density occur above and below the molecular plane. A similarity index based on electron delocalization between quantum topological atoms was defined to compare a molecule in two different electronic states. It was found that, mainly for the acenes, this index goes in line with the excitation energies to the first excited state. Implications of the changes in electron delocalization on the aromatic character of these molecules are also discussed. In general, local aromaticity decreases upon excitation. PMID:26795361
Guan, Zhiqiang; Li, Ho-Wa; Zhang, Jinfeng; Cheng, Yuanhang; Yang, Qingdan; Lo, Ming-Fai; Ng, Tsz-Wai; Tsang, Sai-Wing; Lee, Chun-Sing
2016-08-24
How charge-transfer states (CTSs) assist charge separation of a Coulombically bound exciton in organic photovoltaics has been a hot topic. It is believed that the delocalization feature of a CTS plays a crucial role in the charge separation process. However, the delocalization of the "hot" and the "relaxed" CTSs is still under debate. Here, with a novel frequency dependent charge-modulated electroabsorption spectroscopy (CMEAS) technique, we elucidate clearly that both "hot" and "relaxed" CTSs are loosely bound and delocalized states. This is confirmed by comparing the CMEAS results of CTSs with those of localized polaron states. Our results reveal the role of CTS delocalization on charge separation and indicate that no substantial delocalization gradient exists in CTSs. PMID:27482867
NASA Astrophysics Data System (ADS)
Deckman, Jason
The following dissertation is an account of my research in the Mandelshtam group at UC Irvine beginning in the Fall of 2006 and ending in the Summer of 2011. My general area of study falls within the realm of equilibrium quantum statistical mechanics, a discipline which attempts to relate molecular-scale properties to time averaged, macroscopic observables. The major tools used herein are the Variational Gaussian Wavepacket (VGW) approximation for quantum calculations, and Monte-Carlo methods, particularly parallel tempering, for global optimization and the prediction of equilibrium thermodynamic properties. Much of my work used these two methods to model both small and bulk systems at equilibrium where quantum effects are significant. All the systems considered are characterized by inter-molecular van der Waals forces, which are weak but significant electrostatic attractions between atoms and molecules and posses a 1/r6 dependence. The research herein begins at the microscopic level, starting with Lennard-Jones (LJ) clusters, then later shifts to the macroscopic for a study involving bulk para-hydrogen. For the LJ clusters the structural transitions induced by a changing deBoer parameter, Λ, a measure of quantum delocalization of the constituent particles, are investigated over a range of cluster sizes, N. From the data a "phase" diagram as a function of Λ and N is constructed, which depicts the structural motifs favored at different size and quantum parameter. Comparisons of the "quantum induced" structural transitions depicted in the latter are also made with temperature induced transitions and those caused by varying the range of the Morse potential. Following this, the structural properties of binary para-Hydrogen/ ortho-Deuterium clusters are investigated using the VGW approximation and Monte-Carlo methods within the GMIN framework. The latter uses the "Basin-Hopping" algorithm, which simplifies the potential energy landscape, and coupled with the VGW
How far do electrons delocalize?
Janesko, Benjamin G; Scalmani, Giovanni; Frisch, Michael J
2014-10-14
Electron delocalization is central to chemical bonding, but it is also a fundamentally nonclassical and nonintuitive quantum mechanical phenomenon. Tools to quantify and visualize electron delocalization help to understand, teach, and predict chemical reactivity. We develop a new approach to quantify and visualize electron delocalization in real space. Our electron delocalization range function EDR (r⃗;u) quantifies the degree to which electrons at point r⃗ in a calculated wavefunction delocalize over length scale u. Its predictions are physically reasonable. For example, EDR (r⃗;u=0.25 bohr ) is close to one at points r⃗ in the cores of first-row atoms, consistent with the localization of core electrons to ~0.25 bohr. EDR (r⃗;u=1 bohr ) is close to one at points r⃗ in typical covalent bonds, consistent with electrons delocalizing over the length of the bond. Our approach provides a rich representation of atomic shell structure; covalent and ionic bonding; the delocalization of excited states, defects, and solvated electrons; metallic and insulating systems; and bond stretching and strong correlation. PMID:25318712
How far do electrons delocalize?
Janesko, Benjamin G.; Scalmani, Giovanni; Frisch, Michael J.
2014-10-14
Electron delocalization is central to chemical bonding, but it is also a fundamentally nonclassical and nonintuitive quantum mechanical phenomenon. Tools to quantify and visualize electron delocalization help to understand, teach, and predict chemical reactivity. We develop a new approach to quantify and visualize electron delocalization in real space. Our electron delocalization range function EDR(r{sup -vector};u) quantifies the degree to which electrons at point r{sup -vector} in a calculated wavefunction delocalize over length scale u. Its predictions are physically reasonable. For example, EDR(r{sup -vector};u=0.25 bohr) is close to one at points r{sup -vector} in the cores of first-row atoms, consistent with the localization of core electrons to ∼0.25 bohr. EDR(r{sup -vector};u=1 bohr) is close to one at points r{sup -vector} in typical covalent bonds, consistent with electrons delocalizing over the length of the bond. Our approach provides a rich representation of atomic shell structure; covalent and ionic bonding; the delocalization of excited states, defects, and solvated electrons; metallic and insulating systems; and bond stretching and strong correlation.
How far do electrons delocalize?
NASA Astrophysics Data System (ADS)
Janesko, Benjamin G.; Scalmani, Giovanni; Frisch, Michael J.
2014-10-01
Electron delocalization is central to chemical bonding, but it is also a fundamentally nonclassical and nonintuitive quantum mechanical phenomenon. Tools to quantify and visualize electron delocalization help to understand, teach, and predict chemical reactivity. We develop a new approach to quantify and visualize electron delocalization in real space. Our electron delocalization range function {EDR}({r};u) quantifies the degree to which electrons at point {r} in a calculated wavefunction delocalize over length scale u. Its predictions are physically reasonable. For example, {EDR}({r};u=0.25 {bohr}) is close to one at points {r} in the cores of first-row atoms, consistent with the localization of core electrons to ˜0.25 bohr. {EDR}({r};u=1 {bohr}) is close to one at points {r} in typical covalent bonds, consistent with electrons delocalizing over the length of the bond. Our approach provides a rich representation of atomic shell structure; covalent and ionic bonding; the delocalization of excited states, defects, and solvated electrons; metallic and insulating systems; and bond stretching and strong correlation.
NASA Astrophysics Data System (ADS)
Katsuki, Hiroyuki; Kayanuma, Yosuke; Ohmori, Kenji
2013-07-01
Local excitations of indistinguishable particles in a solid are quantum-mechanically superposed to give delocalized wave functions. Their interference is often so short-lived that it eludes observation and manipulation. Here we have actively controlled interference of delocalized vibrational wave functions in solid para-hydrogen produced by a pair of ultrashort laser pulses. The ultrafast evolution of their interference changes from almost completely constructive (amplification by a factor of ˜4) to destructive when we change the timing of those two laser pulses by only 4 fs. This active control serves as an experimental tool to investigate the spatiotemporal evolution of a wave function in a bulk solid.
Hassani Nia, Iman; Fathipour, Vala; Mohseni, Hooman
2015-08-15
We report the first observation of non-threshold Auger mechanism for a quantum well structure with Type-I band alignment. Excitation-dependent photoluminescence measurements were used to extract the Auger recombination coefficients from 77 K up to room temperature. The results verify the role of interface mediated momentum exchange as well as suppression of Auger recombination for delocalized electron-hole wavefunctions.
NASA Astrophysics Data System (ADS)
Hwang, Myung-Joong; Kim, M. S.; Choi, Mahn-Soo
2016-04-01
We explore the photon population dynamics in two coupled circuit QED systems. For a sufficiently weak intercavity photon hopping, as the photon-cavity coupling increases, the dynamics undergoes double transitions first from a delocalized to a localized phase and then from the localized to another delocalized phase. The latter delocalized phase is distinguished from the former one; instead of oscillating between the two cavities, the photons rapidly quasiequilibrate over the two cavities. These intriguing features are attributed to an interplay between two qualitatively distinctive nonlinear behaviors of the circuit QED systems in the utrastrong coupling regime, whose distinction has been widely overlooked.
Hwang, Myung-Joong; Kim, M S; Choi, Mahn-Soo
2016-04-15
We explore the photon population dynamics in two coupled circuit QED systems. For a sufficiently weak intercavity photon hopping, as the photon-cavity coupling increases, the dynamics undergoes double transitions first from a delocalized to a localized phase and then from the localized to another delocalized phase. The latter delocalized phase is distinguished from the former one; instead of oscillating between the two cavities, the photons rapidly quasiequilibrate over the two cavities. These intriguing features are attributed to an interplay between two qualitatively distinctive nonlinear behaviors of the circuit QED systems in the utrastrong coupling regime, whose distinction has been widely overlooked. PMID:27127967
Evolution of superclusters and delocalized states in GaAs1–xNx
Fluegel, B.; Alberi, K.; Beaton, D. A.; Crooker, S. A.; Ptak, A. J.; Mascarenhas, A.
2012-11-21
The evolution of individual nitrogen cluster bound states into an extended state infinite supercluster in dilute GaAs1–xNx was probed through temperature and intensity-dependent, time-resolved and magnetophotoluminescence (PL) measurements. Samples with compositions less than 0.23% N exhibit PL behavior that is consistent with emission from the extended states of the conduction band. Near a composition of 0.23% N, a discontinuity develops between the extended state PL peak energy and the photoluminescence excitation absorption edge. The existence of dual localized/delocalized state behavior near this composition signals the formation of an N supercluster just below the conduction band edge. The infinite supercluster ismore » fully developed by 0.32% N.« less
Quantum localization/delocalization of muonium in the glycine-K+ complex
NASA Astrophysics Data System (ADS)
Yoshikawa, Takehiro; Honda, Tomohiro; Takayanagi, Toshiyuki
2014-08-01
Previous electronic structure studies have revealed that the glycine-K+ complex has a low-barrier intramolecular proton-transfer pathway between zwitterionic and neutral forms. We have theoretically calculated quantum molecular structures of this complex including the proton-transfer process using a path-integral molecular dynamics technique on an interpolated potential energy surface developed at the B3LYP level of theory. When the transferring proton is substituted by muon, it was found that the muonium atom showed a broad distribution around the proton(muon)-transfer transition state region between the neutral and zwitterionic structures due to extreme nuclear quantum effects of a very light particle although the distribution peak is slightly deviated from the transition state. The present study demonstrates that Mu can be employed to probe transition-state regions of potential energy surfaces of proton-transfer chemical reactions.
Tait, Claudia E; Neuhaus, Patrik; Peeks, Martin D; Anderson, Harry L; Timmel, Christiane R
2016-02-21
The optoelectronic properties of conjugated porphyrin arrays render them excellent candidates for use in a variety of molecular electronic devices. Understanding the factors controlling the electron delocalization in these systems is important for further developments in this field. Here, we use transient EPR and ENDOR (Electron Nuclear Double Resonance) to study the extent of electronic delocalization in the photoexcited triplet states of a series of butadiyne-linked porphyrin oligomers. We are able to distinguish between planar and twisted arrangements of adjacent porphyrin units, as the different conformations are preferentially excited at different wavelengths in the visible range. We show that the extent of triplet state delocalization is modulated by the torsional angle between the porphyrins and therefore by the excitation wavelength. These results have implications for the design of supramolecular systems with fine-tuned excitonic interactions and for the control of charge transport. PMID:26814427
Sawaya, Nicolas P D; Huh, Joonsuk; Fujita, Takatoshi; Saikin, Semion K; Aspuru-Guzik, Alán
2015-03-11
Chlorosomes are efficient light-harvesting antennas containing up to hundreds of thousands of bacteriochlorophyll molecules. With massively parallel computer hardware, we use a nonperturbative stochastic Schrödinger equation, while including an atomistically derived spectral density, to study excitonic energy transfer in a realistically sized chlorosome model. We find that fast short-range delocalization leads to robust long-range transfer due to the antennae's concentric-roll structure. Additionally, we discover anomalous behavior arising from different initial conditions, and outline general considerations for simulating excitonic systems on the nanometer to micrometer scale. PMID:25694170
Quantum Tunneling of Water in Beryl: A New State of the Water Molecule
NASA Astrophysics Data System (ADS)
Kolesnikov, Alexander I.; Reiter, George F.; Choudhury, Narayani; Prisk, Timothy R.; Mamontov, Eugene; Podlesnyak, Andrey; Ehlers, George; Seel, Andrew G.; Wesolowski, David J.; Anovitz, Lawrence M.
2016-04-01
Using neutron scattering and ab initio simulations, we document the discovery of a new "quantum tunneling state" of the water molecule confined in 5 Å channels in the mineral beryl, characterized by extended proton and electron delocalization. We observed a number of peaks in the inelastic neutron scattering spectra that were uniquely assigned to water quantum tunneling. In addition, the water proton momentum distribution was measured with deep inelastic neutron scattering, which directly revealed coherent delocalization of the protons in the ground state.
Tait, Claudia E; Neuhaus, Patrik; Peeks, Martin D; Anderson, Harry L; Timmel, Christiane R
2015-07-01
The photoexcited triplet states of a series of linear and cyclic butadiyne-linked porphyrin oligomers were investigated by transient Electron Paramagnetic Resonance (EPR) and Electron Nuclear DOuble Resonance (ENDOR). The spatial delocalization of the triplet state wave function in systems with different numbers of porphyrin units and different geometries was analyzed in terms of zero-field splitting parameters and proton hyperfine couplings. Even though no significant change in the zero-field splitting parameters (D and E) is observed for linear oligomers with two to six porphyrin units, the spin polarization of the transient EPR spectra is particularly sensitive to the number of porphyrin units, implying a change of the mechanism of intersystem crossing. Analysis of the proton hyperfine couplings in linear oligomers with more than two porphyrin units, in combination with density functional theory calculations, indicates that the spin density is localized mainly on two to three porphyrin units rather than being distributed evenly over the whole π-system. The sensitivity of the zero-field splitting parameters to changes in geometry was investigated by comparing free linear oligomers with oligomers bound to a hexapyridyl template. Significant changes in the zero-field splitting parameter D were observed, while the proton hyperfine couplings show no change in the extent of triplet state delocalization. The triplet state of the cyclic porphyrin hexamer has a much decreased zero-field splitting parameter D and much smaller proton hyperfine couplings with respect to the monomeric unit, indicating complete delocalization over six porphyrin units in this symmetric system. This surprising result provides the first evidence for extensive triplet state delocalization in an artificial supramolecular assembly of porphyrins. PMID:26035477
2015-01-01
The photoexcited triplet states of a series of linear and cyclic butadiyne-linked porphyrin oligomers were investigated by transient Electron Paramagnetic Resonance (EPR) and Electron Nuclear DOuble Resonance (ENDOR). The spatial delocalization of the triplet state wave function in systems with different numbers of porphyrin units and different geometries was analyzed in terms of zero-field splitting parameters and proton hyperfine couplings. Even though no significant change in the zero-field splitting parameters (D and E) is observed for linear oligomers with two to six porphyrin units, the spin polarization of the transient EPR spectra is particularly sensitive to the number of porphyrin units, implying a change of the mechanism of intersystem crossing. Analysis of the proton hyperfine couplings in linear oligomers with more than two porphyrin units, in combination with density functional theory calculations, indicates that the spin density is localized mainly on two to three porphyrin units rather than being distributed evenly over the whole π-system. The sensitivity of the zero-field splitting parameters to changes in geometry was investigated by comparing free linear oligomers with oligomers bound to a hexapyridyl template. Significant changes in the zero-field splitting parameter D were observed, while the proton hyperfine couplings show no change in the extent of triplet state delocalization. The triplet state of the cyclic porphyrin hexamer has a much decreased zero-field splitting parameter D and much smaller proton hyperfine couplings with respect to the monomeric unit, indicating complete delocalization over six porphyrin units in this symmetric system. This surprising result provides the first evidence for extensive triplet state delocalization in an artificial supramolecular assembly of porphyrins. PMID:26035477
Chandrasekaran, Naresh; Gann, Eliot; Jain, Nakul; Kumar, Anshu; Gopinathan, Sreelekha; Sadhanala, Aditya; Friend, Richard H; Kumar, Anil; McNeill, Christopher R; Kabra, Dinesh
2016-08-10
In this paper we correlate the solar cell performance with bimolecular packing of donor:acceptor bulk heterojunction (BHJ) organic solar cells (OSCs), where interchain ordering of the donor molecule and its influence on morphology, optical properties, and charge carrier dynamics of BHJ solar cells are studied in detail. Solar cells that are fabricated using more ordered defect free 100% regioregular poly(3-hexylthiophene) (DF-P3HT) as the donor polymer show ca. 10% increase in the average power conversion efficiency (PCE) when compared to that of the solar cell fabricated using 92% regioregularity P3HT, referred to as rr-P3HT. EQE and UV-vis absorption spectrum show a clear increase in the 607 nm vibronic shoulder of the DF-P3HT blend suggesting better interchain ordering which was also reflected in the less Urbach energy (Eu) value for this system. The increase in ordering inside the blend has enhanced the hole-mobility which is calculated from the single carrier device J-V characteristics. Electroluminance (EL) studies on the DF-P3HT system showed a red-shifted peak when compared to rr-P3HT-based devices suggesting low CT energy states in DF-P3HT. The morphologies of the blend films are studied using AFM and grazing-incidence wide-angle X-ray scattering (GIWAXS) suggesting increase in the roughness and phase segregation which could enhance the internal scattering of the light inside the device and improvement in the crystallinity along alkyl and π-stacking direction. Hence, higher PCE, lower Eu, red-shifted EL emission, high hole-mobility, and better crystallinity suggest improved interchain ordering has facilitated a more delocalized HOMO state in DF-P3HT-based BHJ solar cells. PMID:27415029
Aruda, Kenneth O; Amin, Victor A; Thompson, Christopher M; Lau, Bryan; Nepomnyashchii, Alexander B; Weiss, Emily A
2016-04-12
This work describes the quantitative characterization of the interfacial chemical and electronic structure of CdSe quantum dots (QDs) coated in one of five p-substituted thiophenolates (X-TP, X = NH2, CH3O, CH3, Cl, or NO2), and the dependence of this structure on the p-substituent X. (1)H NMR spectra of mixtures of CdSe QDs and X-TPs yield the number of X-TPs bound to the surface of each QD. The binding data, in combination with the shift in the energy of the first excitonic peak of the QDs as a function of the surface coverage of X-TP and Raman and NMR analysis of the mixtures, indicate that X-TP binds to CdSe QDs in at least three modes, two modes that are responsible for exciton delocalization and a third mode that does not affect the excitonic energy. The first two modes involve displacement of OPA from the QD core, whereas the third mode forms cadmium-thiophenolate complexes that are not electronically coupled to the QD core. Fits to the data using the dual-mode binding model also yield the values of Δr1, the average radius of exciton delocalization due to binding of the X-TP in modes 1 and 2. A 3D parametrized particle-in-a-sphere model enables the conversion of the measured value of Δr1 for each X-TP to the height of the potential barrier that the ligand presents for tunneling of excitonic hole into the interfacial region. The height of this barrier increases from 0.3 to 0.9 eV as the substituent, X, becomes more electron-withdrawing. PMID:27002248
Gate-Induced Carrier Delocalization in Quantum Dot Field Effect Transistors
NASA Astrophysics Data System (ADS)
Turk, M. E.; Choi, J.-H.; Oh, S. J.; Fafarman, A. T.; Diroll, B. T.; Murray, C. B.; Kagan, C. R.; Kikkawa, J. M.
2015-03-01
We study the low temperature resistance and magnetotransport of high-mobility indium-doped CdSe quantum dot (QD) field effect transistors. Low temperature resistance measurements show a characteristic dependence of R (T) =R0 exp(T0 / T) p with p = 2 / 3 , consistent with a recent model based on Coulomb gap variable range hopping plus thermal broadening. We show that using the gate bias VG to accumulate electrons in the QD channel increases the ``localization product'' κa (localization length a, dielectric constant κ), as expected for Fermi level changes near an Anderson mobility edge. Under any reasonable assumptions, a increases significantly beyond the QD diameter as gate bias is applied. Magnetoresistance (MR) measurements display both positive and negative MR contributions that vary with VG and T. For each VG, we observe a universal negative MR lineshape for higher temperatures (T > 20 K) that scales as T - 4 / 3, consistent with Zeeman MR for p = 2 / 3 with a gate bias-modulated mobility gap (Δɛ). All aspects of this work supported by the U.S. Department of Energy Office of Basic Energy Sciences, Division of Materials Science and Engineering, under Award No. DE-SC0002158.
NASA Astrophysics Data System (ADS)
Viennot, David; Aubourg, Lucile
2016-02-01
We study a theoretical model of closed quasi-hermitian chain of spins which exhibits quantum analogues of chimera states, i.e. long life classical states for which a part of an oscillator chain presents an ordered dynamics whereas another part presents a disordered dynamics. For the quantum analogue, the chimera behaviour deals with the entanglement between the spins of the chain. We discuss the entanglement properties, quantum chaos, quantum disorder and semi-classical similarity of our quantum chimera system. The quantum chimera concept is novel and induces new perspectives concerning the entanglement of multipartite systems.
Evolution of superclusters and delocalized states in GaAs_{1–x}N_{x}
Fluegel, B.; Alberi, K.; Beaton, D. A.; Crooker, S. A.; Ptak, A. J.; Mascarenhas, A.
2012-11-21
The evolution of individual nitrogen cluster bound states into an extended state infinite supercluster in dilute GaAs_{1–x}N_{x} was probed through temperature and intensity-dependent, time-resolved and magnetophotoluminescence (PL) measurements. Samples with compositions less than 0.23% N exhibit PL behavior that is consistent with emission from the extended states of the conduction band. Near a composition of 0.23% N, a discontinuity develops between the extended state PL peak energy and the photoluminescence excitation absorption edge. The existence of dual localized/delocalized state behavior near this composition signals the formation of an N supercluster just below the conduction band edge. The infinite supercluster is fully developed by 0.32% N.
New localized/delocalized emitting state of Eu2+ in orange-emitting hexagonal EuAl2O4
Liu, Feng; Meltzer, Richard S.; Li, Xufan; Budai, John D.; Chen, Yu-Sheng; Pan, Zhengwei
2014-01-01
Eu2+-activated phosphors are being widely used in illuminations and displays. Some of these phosphors feature an extremely broad and red-shifted Eu2+ emission band; however, convincing explanation of this phenomenon is lacking. Here we report a new localized/delocalized emitting state of Eu2+ ions in a new hexagonal EuAl2O4 phosphor whose Eu2+ luminescence exhibits a very large bandwidth and an extremely large Stokes shift. At 77 K, two luminescent sites responsible for 550 nm and 645 nm broadband emissions are recognized, while at room temperature only the 645 nm emission band emits. The 645 nm emission exhibits a typical radiative lifetime of 1.27 μs and an unusually large Stokes shift of 0.92 eV. We identify the 645 nm emission as originating from a new type of emitting state whose composition is predominantly that of localized 4f65d character but which also contains a complementary component with delocalized conduction-band-like character. This investigation provides new insights into a unique type of Eu2+ luminescence in solids whose emission exhibits both a very large bandwidth and an extremely large Stokes shift. PMID:25403911
New localized/delocalized emitting state of Eu2+ in orange-emitting hexagonal EuAl2O4
Liu, Feng; Meltzer, Richard S.; Li, Xufan; Budai, John D.; Chen, Yu -Sheng; Pan, Zhengwei
2014-11-18
Eu2+-activated phosphors are being widely used in illuminations and displays. Some of these phosphors feature an extremely broad and red-shifted Eu2+ emission band; however, convincing explanation of this phenomenon is lacking. Here we report a new localized/delocalized emitting state of Eu2+ ions in a new hexagonal EuAl2O4 phosphor whose Eu2+ luminescence exhibits a very large bandwidth and an extremely large Stokes shift. At 77 K, two luminescent sites responsible for 550 nm and 645 nm broadband emissions are recognized, while at room temperature only the 645 nm emission band emits. The 645 nm emission exhibits a typical radiative lifetime ofmore » 1.27 μs and an unusually large Stokes shift of 0.92 eV. We identify the 645 nm emission as originating from a new type of emitting state whose composition is predominantly that of localized 4f65d character but which also contains a complementary component with delocalized conduction-band-like character. This investigation gives new insights into a unique type of Eu2+ luminescence in solids whose emission exhibits both a very large bandwidth and an extremely large Stokes shift.« less
NASA Astrophysics Data System (ADS)
Lance, Andrew M.; Symul, Thomas; Bowen, Warwick P.; Sanders, Barry C.; Lam, Ping Koy
2004-05-01
We demonstrate a multipartite protocol that utilizes entanglement to securely distribute and reconstruct a quantum state. A secret quantum state is encoded into a tripartite entangled state and distributed to three players. By collaborating together, a majority of the players can reconstruct the state, whilst the remaining player obtains nothing. This (2,3) threshold quantum state sharing scheme is characterized in terms of fidelity (F), signal transfer (T) and reconstruction noise (V). We demonstrate a fidelity averaged over all reconstruction permutations of 0.73 +/- 0.04, a level achievable only using quantum resources.
Tripartite quantum state sharing.
Lance, Andrew M; Symul, Thomas; Bowen, Warwick P; Sanders, Barry C; Lam, Ping Koy
2004-04-30
We demonstrate a multipartite protocol to securely distribute and reconstruct a quantum state. A secret quantum state is encoded into a tripartite entangled state and distributed to three players. By collaborating, any two of the three players can reconstruct the state, while individual players obtain nothing. We characterize this (2,3) threshold quantum state sharing scheme in terms of fidelity, signal transfer, and reconstruction noise. We demonstrate a fidelity averaged over all reconstruction permutations of 0.73+/-0.04, a level achievable only using quantum resources. PMID:15169193
Tripartite Quantum State Sharing
NASA Astrophysics Data System (ADS)
Lance, Andrew M.; Symul, Thomas; Bowen, Warwick P.; Sanders, Barry C.; Lam, Ping Koy
2004-04-01
We demonstrate a multipartite protocol to securely distribute and reconstruct a quantum state. A secret quantum state is encoded into a tripartite entangled state and distributed to three players. By collaborating, any two of the three players can reconstruct the state, while individual players obtain nothing. We characterize this (2,3) threshold quantum state sharing scheme in terms of fidelity, signal transfer, and reconstruction noise. We demonstrate a fidelity averaged over all reconstruction permutations of 0.73±0.04, a level achievable only using quantum resources.
Quantum correlations and distinguishability of quantum states
Spehner, Dominique
2014-07-15
A survey of various concepts in quantum information is given, with a main emphasis on the distinguishability of quantum states and quantum correlations. Covered topics include generalized and least square measurements, state discrimination, quantum relative entropies, the Bures distance on the set of quantum states, the quantum Fisher information, the quantum Chernoff bound, bipartite entanglement, the quantum discord, and geometrical measures of quantum correlations. The article is intended both for physicists interested not only by collections of results but also by the mathematical methods justifying them, and for mathematicians looking for an up-to-date introductory course on these subjects, which are mainly developed in the physics literature.
NASA Astrophysics Data System (ADS)
Kanada-En'yo, Yoshiko
2014-10-01
We analyze the α-cluster wave functions in cluster states of ^8Be and ^{20}Ne by comparing the exact relative wave function obtained by the generator coordinate method (GCM) with various types of trial functions. For the trial functions, we adopt the fixed range shifted Gaussian of the Brink-Bloch (BB) wave function, the spherical Gaussian with the adjustable range parameter of the spherical Tohsaki-Horiuchi-Schuck-Röpke (sTHSR), the deformed Gaussian of the deformed THSR (dTHSR), and a function with the Yukawa tail (YT). The quality of the description of the exact wave function with a trial function is judged by the squared overlap between the trial function and the GCM wave function. A better result is obtained with the sTHSR wave function than the BB wave function, and further improvement can be made with the dTHSR wave function because these wave functions can describe the outer tail better. The YT wave function gives almost an equal quality to or even better quality than the dTHSR wave function, indicating that the outer tail of α-cluster states is characterized by the Yukawa-like tail rather than the Gaussian tail. In weakly bound α-cluster states with small α separation energy and the low centrifugal and Coulomb barriers, the outer tail part is the slowly damping function described well by the quantum penetration through the effective barrier. This outer tail characterizes the almost zero-energy free α gas behavior, i.e., the delocalization of the cluster.
Bhuyan, Sumi; Pal, Bipul; Bansal, Bhavtosh; Das, Sanat K.; Dhar, Sunanda
2014-07-14
Optically active states in liquid phase epitaxy-grown ultra-dilute GaAsN are studied. The feature-rich low temperature photoluminescence spectrum has contributions from excitonic band states of the GaAsN alloy, and two types of defect states—localized and extended. The degree of delocalization for extended states both within the conduction and defect bands, characterized by the electron temperature, is found to be similar. The degree of localization in the defect band is analyzed by the strength of the phonon replicas. Stronger emission from these localized states is attributed to their giant oscillator strength.
Signatures of discrete breathers in coherent state quantum dynamics
Igumenshchev, Kirill; Ovchinnikov, Misha; Prezhdo, Oleg; Maniadis, Panagiotis
2013-02-07
In classical mechanics, discrete breathers (DBs) - a spatial time-periodic localization of energy - are predicted in a large variety of nonlinear systems. Motivated by a conceptual bridging of the DB phenomena in classical and quantum mechanical representations, we study their signatures in the dynamics of a quantum equivalent of a classical mechanical point in phase space - a coherent state. In contrast to the classical point that exhibits either delocalized or localized motion, the coherent state shows signatures of both localized and delocalized behavior. The transition from normal to local modes have different characteristics in quantum and classical perspectives. Here, we get an insight into the connection between classical and quantum perspectives by analyzing the decomposition of the coherent state into system's eigenstates, and analyzing the spacial distribution of the wave-function density within these eigenstates. We find that the delocalized and localized eigenvalue components of the coherent state are separated by a mixed region, where both kinds of behavior can be observed. Further analysis leads to the following observations. Considered as a function of coupling, energy eigenstates go through avoided crossings between tunneling and non-tunneling modes. The dominance of tunneling modes in the high nonlinearity region is compromised by the appearance of new types of modes - high order tunneling modes - that are similar to the tunneling modes but have attributes of non-tunneling modes. Certain types of excitations preferentially excite higher order tunneling modes, allowing one to study their properties. Since auto-correlation functions decrease quickly in highly nonlinear systems, short-time dynamics are sufficient for modeling quantum DBs. This work provides a foundation for implementing modern semi-classical methods to model quantum DBs, bridging classical and quantum mechanical signatures of DBs, and understanding spectroscopic experiments that
Quantum Tunneling of Water in Beryl: A New State of the Water Molecule.
Kolesnikov, Alexander I; Reiter, George F; Choudhury, Narayani; Prisk, Timothy R; Mamontov, Eugene; Podlesnyak, Andrey; Ehlers, George; Seel, Andrew G; Wesolowski, David J; Anovitz, Lawrence M
2016-04-22
Using neutron scattering and ab initio simulations, we document the discovery of a new "quantum tunneling state" of the water molecule confined in 5 Å channels in the mineral beryl, characterized by extended proton and electron delocalization. We observed a number of peaks in the inelastic neutron scattering spectra that were uniquely assigned to water quantum tunneling. In addition, the water proton momentum distribution was measured with deep inelastic neutron scattering, which directly revealed coherent delocalization of the protons in the ground state. PMID:27152824
NASA Astrophysics Data System (ADS)
Bengtsson, Ingemar; Zyczkowski, Karol
2006-05-01
Quantum information theory is at the frontiers of physics, mathematics and information science, offering a variety of solutions that are impossible using classical theory. This book provides an introduction to the key concepts used in processing quantum information and reveals that quantum mechanics is a generalisation of classical probability theory. After a gentle introduction to the necessary mathematics the authors describe the geometry of quantum state spaces. Focusing on finite dimensional Hilbert spaces, they discuss the statistical distance measures and entropies used in quantum theory. The final part of the book is devoted to quantum entanglement - a non-intuitive phenomenon discovered by Schrödinger, which has become a key resource for quantum computation. This richly-illustrated book is useful to a broad audience of graduates and researchers interested in quantum information theory. Exercises follow each chapter, with hints and answers supplied. The first book to focus on the geometry of quantum states Stresses the similarities and differences between classical and quantum theory Uses a non-technical style and numerous figures to make the book accessible to non-specialists
Jang, Seogjoo; Rivera, Eva; Montemayor, Daniel
2015-03-19
The light harvesting 2 (LH2) antenna complex from purple photosynthetic bacteria is an efficient natural excitation energy carrier with well-known symmetric structure, but the molecular level design principle governing its structure-function relationship is unknown. Our all-atomistic simulations of nonnatural analogues of LH2 as well as those of a natural LH2 suggest that nonnatural sizes of LH2-like complexes could be built. However, stable and consistent hydrogen bonding (HB) between bacteriochlorophyll and the protein is shown to be possible only near naturally occurring sizes, leading to significantly smaller disorder than for nonnatural ones. Extensive quantum calculations of intercomplex exciton transfer dynamics, sampled for a large set of disorder, reveal that taming the negative effect of disorder through a reliable HB as well as quantum delocalization of the exciton is a critical mechanism that makes LH2 highly functional, which also explains why the natural sizes of LH2 are indeed optimal. PMID:26262847
Quantum Tunneling of Water in Beryl. A New State of the Water Molecule
Kolesnikov, Alexander I.; Reiter, George F.; Choudhury, Narayani; Prisk, Timothy R.; Mamontov, Eugene; Podlesnyak, Andrey; Ehlers, George; Seel, Andrew G.; Wesolowski, David J.; Anovitz, Lawrence M.
2016-04-22
When using neutron scattering and ab initio simulations, we document the discovery of a new “quantum tunneling state” of the water molecule confined in 5 Å channels in the mineral beryl, characterized by extended proton and electron delocalization. We observed a number of peaks in the inelastic neutron scattering spectra that were uniquely assigned to water quantum tunneling. Additionally, the water proton momentum distribution was measured with deep inelastic neutron scattering, which directly revealed coherent delocalization of the protons in the ground state.
Interpreting quantum discord through quantum state merging
Madhok, Vaibhav; Datta, Animesh
2011-03-15
We present an operational interpretation of quantum discord based on the quantum state merging protocol. Quantum discord is the markup in the cost of quantum communication in the process of quantum state merging, if one discards relevant prior information. Our interpretation has an intuitive explanation based on the strong subadditivity of von Neumann entropy. We use our result to provide operational interpretations of other quantities like the local purity and quantum deficit. Finally, we discuss in brief some instances where our interpretation is valid in the single-copy scenario.
Renz, Manuel; Kess, Martin; Diedenhofen, Michael; Klamt, Andreas; Kaupp, Martin
2012-11-13
A recently proposed quantum-chemical protocol for the description of the character of organic mixed-valence (MV) compounds, close from both sides to the localized/delocalized borderline, is evaluated and extended for a series of dinitroaryl radical anions 1-6. A combination of global hybrid functionals with exact-exchange admixtures of 35% (BLYP35) or 42% (BMK) with appropriate solvent modeling allows an essentially quantitative treatment of, for example, structural symmetry-breaking in Robin/Day class II systems, thermal electron transfer (ET) barriers, and intervalence charge-transfer (IV-CT) excitation energies, while covering also the delocalized class III cases. Global hybrid functionals with lower exact-exchange admixtures (e.g., B3LYP, M05, or M06) provide a too delocalized description, while functionals with higher exact-exchange admixtures (M05-2X, M06-2X) provide a too localized one. The B2PLYP double hybrid gives reasonable structures but far too small barriers in class II cases. The CAM-B3LYP range hybrid gives somewhat too high ET barriers and IV-CT energies, while the range hybrids ωB97X and LC-BLYP clearly exhibit too much exact exchange. Continuum solvent models describe the situation well in most aprotic solvents studied. The transition of 1,4-dinitrobenzene anion 1 from a class III behavior in aprotic solvents to a class II behavior in alcohols is not recovered by continuum solvent models. In contrast, it is treated faithfully by the novel direct conductor-like screening model for real solvents (D-COSMO-RS). The D-COSMO-RS approach, the TURBOMOLE implementation of which is reported, also describes accurately the increased ET barriers of class II systems 2 and 3 in alcohols as compared to aprotic solvents and can distinguish at least qualitatively between different aprotic solvents with identical or similar dielectric constants. The dominant role of the solvent environment for the ET character of these MV radical anions is emphasized, as in
Bidirectional Quantum States Sharing
NASA Astrophysics Data System (ADS)
Peng, Jia-Yin; Bai, Ming-qiang; Mo, Zhi-Wen
2016-05-01
With the help of the shared entanglement and LOCC, multidirectional quantum states sharing is considered. We first put forward a protocol for implementing four-party bidirectional states sharing (BQSS) by using eight-qubit cluster state as quantum channel. In order to extend BQSS, we generalize this protocol from four sharers to multi-sharers utilizing two multi-qubit GHZ-type states as channel, and propose two multi-party BQSS schemes. On the other hand, we generalize the three schemes from two senders to multi-senders with multi GHZ-type states of multi-qubit as quantum channel, and give a multidirectional quantum states sharing protocol. In our schemes, all receivers can reconstruct the original unknown single-qubit state if and only if all sharers can cooperate. Only Pauli operations, Bell-state measurement and single-qubit measurement are used in our schemes, so these schemes are easily realized in physical experiment and their successful probabilities are all one.
Quantum signatures of chimera states
NASA Astrophysics Data System (ADS)
Bastidas, V. M.; Omelchenko, I.; Zakharova, A.; Schöll, E.; Brandes, T.
2015-12-01
Chimera states are complex spatiotemporal patterns in networks of identical oscillators, characterized by the coexistence of synchronized and desynchronized dynamics. Here we propose to extend the phenomenon of chimera states to the quantum regime, and uncover intriguing quantum signatures of these states. We calculate the quantum fluctuations about semiclassical trajectories and demonstrate that chimera states in the quantum regime can be characterized by bosonic squeezing, weighted quantum correlations, and measures of mutual information. Our findings reveal the relation of chimera states to quantum information theory, and give promising directions for experimental realization of chimera states in quantum systems.
Exciton localization-delocalization transition in an extended dendrimer
Pouthier, Vincent
2013-12-21
Exciton-mediated quantum state transfer between the periphery and the core of an extended dendrimer is investigated numerically. By mapping the dynamics onto that of a linear chain, it is shown that a localization-delocalization transition arises for a critical value of the generation number G{sub c} ≈ 5. This transition originates in the quantum interferences experienced by the excitonic wave due to the multiple scatterings that arise each time the wave tunnels from one generation to another. These results suggest that only small-size dendrimers could be used for designing an efficient quantum communication protocol.
NASA Astrophysics Data System (ADS)
Kislovsky, V.; Kovaleva, M.; Jayaprakash, K. R.; Starosvetsky, Y.
2016-07-01
In the present paper, we study the mechanism of formation and bifurcations of highly nonstationary regimes manifested by different energy transport intensities, emerging in an anharmonic trimer model. The basic model under investigation comprises a chain of three coupled anharmonic oscillators subject to localized excitation, where the initial energy is imparted to the first oscillator only. We report the formation of three basic nonstationary transport states traversed by locally excited regimes. These states differ by spatial energy distribution, as well as by the intensity of energy transport along the chain. In the current study, we focus on numerical and analytical investigation of the intricate resonant mechanism governing the inter-state transitions of locally excited regimes. Results of the analytical study are in good agreement with the numerical simulations of the trimer model.
Pfaffian States: Quantum Computation
Shrivastava, Keshav N.
2009-09-14
The Pfaffian determinant is sometimes used to multiply the Laughlin's wave function at the half filled Landau level. The square of the Pfaffian gives the ordinary determinant. We find that the Pfaffian wave function leads to four times larger energies and two times faster time. By the same logic, the Pfaffian breaks the supersymmetry of the Dirac equation. By using the spin properties and the Landau levels, we correctly interpret the state with 5/2 filling. The quantum numbers which represent the state vectors are now products of n (Landau level quantum number), l(orbital angular momentum quantum number and the spin, s |n, l, s>. In a circuit, the noise measures the resistivity and hence the charge. The Pfaffian velocity is different from that of the single-particle states and hence it has important consequences in the measurement of the charge of the quasiparticles.
Realizing Controllable Quantum States
NASA Astrophysics Data System (ADS)
Takayanagi, Hideaki; Nitta, Junsaku
1. Entanglement in solid states. Orbital entanglement and violation of bell inequalities in mesoscopic conductors / M. Büttiker, P. Samuelsson and E. V. Sukhoruk. Teleportation of electron spins with normal and superconducting dots / O. Sauret, D. Feinberg and T. Martin. Entangled state analysis for one-dimensional quantum spin system: singularity at critical point / A. Kawaguchi and K. Shimizu. Detecting crossed Andreev reflection by cross-current correlations / G. Bignon et al. Current correlations and transmission probabilities for a Y-shaped diffusive conductor / S. K. Yip -- 2. Mesoscopic electronics. Quantum bistability, structural transformation, and spontaneous persistent currents in mesoscopic Aharonov-Bohm loops / I. O. Kulik. Many-body effects on tunneling of electrons in magnetic-field-induced quasi one-dimensional systems in quantum wells / T. Kubo and Y. Tokura. Electron transport in 2DEG narrow channel under gradient magnetic field / M. Hara et al. Transport properties of a quantum wire with a side-coupled quantum dot / M. Yamaguchi et al. Photoconductivity- and magneto-transport studies of single InAs quantum wires / A. Wirthmann et al. Thermoelectric transports in charge-density-wave systems / H. Yoshimoto and S. Kurihara -- 3. Mesoscopic superconductivity. Parity-restricted persistent currents in SNS nanorings / A. D. Zaikin and S. V. Sharov. Large energy dependence of current noise in superconductingh/normal metal junctions / F. Pistolesi and M. Houzet. Generation of photon number states and their superpositions using a superconducting qubit in a microcavity / Yu-Xi Liu, L. F. Wei and F. Nori. Andreev interferometry for pumped currents / F. Taddei, M. Governale and R. Fazio. Suppression of Cooper-pair breaking against high magnetic fields in carbon nanotubes / J. Haruyama et al. Impact of the transport supercurrent on the Josephson effect / S. N. Shevchenko. Josephson current through spin-polarized Luttinger liquid / N. Yokoshi and S. Kurihara
Quantum state and quantum entanglement protection using quantum measurements
NASA Astrophysics Data System (ADS)
Wang, Shuchao; Li, Ying; Wang, Xiangbin; Kwek, Leong Chuan; Yu, Zongwen; Zou, Wenjie
2015-03-01
The time evolution of some quantum states can be slowed down or even stopped under frequent measurements. This is the usual quantum Zeno effect. Here we report an operator quantum Zeno effect, in which the evolution of some physical observables is slowed down through measurements even though thequantum state changes randomly with time. Based on the operator quantum Zeno effect, we show how we can protect quantum information from decoherence with two-qubit measurements, realizable with noisy two-qubit interactions. Besides, we report the quantum entanglement protection using weak measurement and measurement reversal scheme. Exposed in the nonzero temperature environment, a quantum system can both lose and gain excitations by interacting with the environment. In this work, we show how to optimally protect quantum states and quantum entanglement in such a situation based on measurement reversal from weak measurement. In particular, we present explicit formulas of protection. We find that this scheme can circumvent the entanglement sudden death in certain conditions.
NASA Astrophysics Data System (ADS)
Engelsen, Nils; Hosten, Onur; Krishnakumar, Rajiv; Kasevich, Mark
2016-05-01
The standard quantum limit (SQL) for quantum metrology has been surpassed by as much as a factor of 100 using entangled states. However, in order to utilize these states, highly engineered, low-noise state readout is required. Here we present a new method to bypass this requirement in a wide variety of physical systems. We implement the protocol experimentally in a system using the clock states of 5 ×105 87 Rb atoms. Through a nonlinear, optical cavity-mediated interaction we generate spin squeezed states. A small microwave rotation followed by an additional optical cavity interaction stage allow us to exploit the full sensitivity of the squeezed states with a fluorescence detection system. Though the technical noise floor of our fluorescence detection is 15dB above the SQL, we show metrology at 8dB below the SQL. This is the first time squeezed states prepared in a cavity are read out by fluorescence imaging. The method described can be used in any system with a suitable nonlinear interaction.
NASA Astrophysics Data System (ADS)
Mickevičius, J.; Jurkevičius, J.; Kazlauskas, K.; Žukauskas, A.; Tamulaitis, G.; Shur, M. S.; Shatalov, M.; Yang, J.; Gaska, R.
2012-07-01
The effect of carrier localization on stimulated emission (SE) in Al0.35Ga0.65N/Al0.49Ga0.51N quantum wells (QWs) on sapphire substrate was studied under photoexcitation in the edge emission configuration in the temperature range from 8 K to 300 K. The band potential profile responsible for carrier localization was modulated by the variation of QW width and monitored using fitting the experimental temperature dependence of the spontaneous luminescence band width to that obtained by the Monte Carlo simulation of exciton hopping. A faster increase of SE threshold with increasing temperature was observed in narrow QWs and was attributed to deeper carrier localization due to the modulation of quantum confinement energy by well width fluctuations. Meanwhile, delocalized carriers were shown to contribute to the filling of states at the mobility edge, where SE occurs. These results imply that the deep ultraviolet AlGaN/AlGaN laser structures can be optimized in terms of carrier localization effect through the selection of appropriate QW width.
Su, Z C; Ning, J Q; Deng, Z; Wang, X H; Xu, S J; Wang, R X; Lu, S L; Dong, J R; Yang, H
2016-04-01
Anderson localization is a predominant phenomenon in condensed matter and materials physics. In fact, localized and delocalized states often co-exist in one material. They are separated by a boundary called the mobility edge. Mott transition may take place between these two regimes. However, it is widely recognized that an apparent demonstration of Anderson localization or Mott transition is a challenging task. In this article, we present a direct optical observation of a transition of radiative recombination dominant channels from delocalized (i.e., local extended) states to Anderson localized states in the GaInP base layer of a GaInP/GaAs single junction solar cell by the means of the variable-temperature electroluminescence (EL) technique. It is found that by increasing temperature, we can boost a remarkable transition of radiative recombination dominant channels from the delocalized states to the localized states. The delocalized states are induced by the local atomic ordering domains (InP/GaP monolayer superlattices) while the localized states are caused by random distribution of indium (gallium) content. The efficient transfer and thermal redistribution of carriers between the two kinds of electronic states was revealed to result in both a distinct EL mechanism transition and an electrical resistance evolution with temperature. Our study gives rise to a self-consistent precise picture for carrier localization and transfer in a GaInP alloy, which is an extremely technologically important energy material for fabricating high-efficiency photovoltaic devices. PMID:26960547
NASA Astrophysics Data System (ADS)
Su, Z. C.; Ning, J. Q.; Deng, Z.; Wang, X. H.; Xu, S. J.; Wang, R. X.; Lu, S. L.; Dong, J. R.; Yang, H.
2016-03-01
Anderson localization is a predominant phenomenon in condensed matter and materials physics. In fact, localized and delocalized states often co-exist in one material. They are separated by a boundary called the mobility edge. Mott transition may take place between these two regimes. However, it is widely recognized that an apparent demonstration of Anderson localization or Mott transition is a challenging task. In this article, we present a direct optical observation of a transition of radiative recombination dominant channels from delocalized (i.e., local extended) states to Anderson localized states in the GaInP base layer of a GaInP/GaAs single junction solar cell by the means of the variable-temperature electroluminescence (EL) technique. It is found that by increasing temperature, we can boost a remarkable transition of radiative recombination dominant channels from the delocalized states to the localized states. The delocalized states are induced by the local atomic ordering domains (InP/GaP monolayer superlattices) while the localized states are caused by random distribution of indium (gallium) content. The efficient transfer and thermal redistribution of carriers between the two kinds of electronic states was revealed to result in both a distinct EL mechanism transition and an electrical resistance evolution with temperature. Our study gives rise to a self-consistent precise picture for carrier localization and transfer in a GaInP alloy, which is an extremely technologically important energy material for fabricating high-efficiency photovoltaic devices.
State Ensembles and Quantum Entropy
NASA Astrophysics Data System (ADS)
Kak, Subhash
2016-06-01
This paper considers quantum communication involving an ensemble of states. Apart from the von Neumann entropy, it considers other measures one of which may be useful in obtaining information about an unknown pure state and another that may be useful in quantum games. It is shown that under certain conditions in a two-party quantum game, the receiver of the states can increase the entropy by adding another pure state.
Bhardwaj, S; Mkhitaryan, V V; Gruzberg, I A
2014-06-01
We consider a recently proposed network model of the integer quantum Hall (IQH) effect in a weak magnetic field. Using a supersymmetry approach, we reformulate the network model in terms of a superspin ladder. A subsequent analysis of the superspin ladder and the corresponding supersymmetric nonlinear sigma model allows us to establish the phase diagram of the network model, and the form of the critical line of the weak-field IQH transition. Our results confirm the universality of the IQH transition, which is described by the same sigma model in strong and weak magnetic fields. We apply the suspersymmetry method to several related network models that were introduced in the literature to describe the quantum Hall effect in graphene, the spin-degenerate Landau levels, and localization of electrons in a random magnetic field.
Entangled states in quantum mechanics
NASA Astrophysics Data System (ADS)
Ruža, Jānis
2010-01-01
In some circles of quantum physicists, a view is maintained that the nonseparability of quantum systems-i.e., the entanglement-is a characteristic feature of quantum mechanics. According to this view, the entanglement plays a crucial role in the solution of quantum measurement problem, the origin of the “classicality” from the quantum physics, the explanation of the EPR paradox by a nonlocal character of the quantum world. Besides, the entanglement is regarded as a cornerstone of such modern disciplines as quantum computation, quantum cryptography, quantum information, etc. At the same time, entangled states are well known and widely used in various physics areas. In particular, this notion is widely used in nuclear, atomic, molecular, solid state physics, in scattering and decay theories as well as in other disciplines, where one has to deal with many-body quantum systems. One of the methods, how to construct the basis states of a composite many-body quantum system, is the so-called genealogical decomposition method. Genealogical decomposition allows one to construct recurrently by particle number the basis states of a composite quantum system from the basis states of its forming subsystems. These coupled states have a structure typical for entangled states. If a composite system is stable, the internal structure of its forming basis states does not manifest itself in measurements. However, if a composite system is unstable and decays onto its forming subsystems, then the measurables are the quantum numbers, associated with these subsystems. In such a case, the entangled state has a dynamical origin, determined by the Hamiltonian of the corresponding decay process. Possible correlations between the quantum numbers of resulting subsystems are determined by the symmetries-conservation laws of corresponding dynamical variables, and not by the quantum entanglement feature.
Does chaos assist localization or delocalization?
Tan, Jintao; Luo, Yunrong; Hai, Wenhua; Lu, Gengbiao
2014-12-01
We aim at a long-standing contradiction between chaos-assisted tunneling and chaos-related localization study quantum transport of a single particle held in an amplitude-modulated and tilted optical lattice. We find some near-resonant regions crossing chaotic and regular regions in the parameter space, and demonstrate that chaos can heighten velocity of delocalization in the chaos-resonance overlapping regions, while chaos may aid localization in the other chaotic regions. The degree of localization enhances with increasing the distance between parameter points and near-resonant regions. The results could be useful for experimentally manipulating chaos-assisted transport of single particles in optical or solid-state lattices.
NASA Astrophysics Data System (ADS)
Bohnet-Waldraff, Fabian; Braun, D.; Giraud, O.
2016-01-01
We investigate quantumness of spin-1 states, defined as the Hilbert-Schmidt distance to the convex hull of spin coherent states. We derive its analytic expression in the case of pure states as a function of the smallest eigenvalue of the Bloch matrix and give explicitly the closest classical state for an arbitrary pure state. Numerical evidence is given that the exact formula for pure states provides an upper bound on the quantumness of mixed states. Due to the connection between quantumness and entanglement we obtain new insights into the geometry of symmetric entangled states.
Quantifying solvated electrons' delocalization.
Janesko, Benjamin G; Scalmani, Giovanni; Frisch, Michael J
2015-07-28
Delocalized, solvated electrons are a topic of much recent interest. We apply the electron delocalization range EDR(r;u) (J. Chem. Phys., 2014, 141, 144104) to quantify the extent to which a solvated electron at point r in a calculated wavefunction delocalizes over distance u. Calculations on electrons in one-dimensional model cavities illustrate fundamental properties of the EDR. Mean-field calculations on hydrated electrons (H2O)n(-) show that the density-matrix-based EDR reproduces existing molecular-orbital-based measures of delocalization. Correlated calculations on hydrated electrons and electrons in lithium-ammonia clusters illustrates how electron correlation tends to move surface- and cavity-bound electrons onto the cluster or cavity surface. Applications to multiple solvated electrons in lithium-ammonia clusters provide a novel perspective on the interplay of delocalization and strong correlation central to lithium-ammonia solutions' concentration-dependent insulator-to-metal transition. The results motivate continued application of the EDR to simulations of delocalized electrons. PMID:25994586
Navigation between quantum states by quantum mirrors
NASA Astrophysics Data System (ADS)
Ivanov, P. A.; Torosov, B. T.; Vitanov, N. V.
2007-01-01
We introduce a technique that allows one to connect any two arbitrary (pure or mixed) superposition states of an N -state quantum system. The proposed solution to this inverse quantum mechanical problem is analytical, exact, and very compact. The technique uses standard and generalized quantum Householder reflections (QHRs), which require external pulses of precise areas and frequencies. We show that any two pure states can be linked by just a single generalized QHR. The transfer between any two mixed states with the same dynamic invariants (e.g., the same density matrix eigenvalues) requires in general N QHRs. Moreover, we propose recipes for synthesis of arbitrary preselected mixed states using a combination of QHRs and incoherent processes (pure dephasing or spontaneous emission).
Souto, Manuel; Lloveras, Vega; Vela, Sergi; Fumanal, Maria; Ratera, Imma; Veciana, Jaume
2016-06-16
The diradical acceptor-donor-acceptor triad 1(••), based on two polychlorotriphenylmethyl (PTM) radicals connected through a tetrathiafulvalene(TTF)-vinylene bridge, has been synthesized. The generation of the mixed-valence radical anion, 1(•-), and triradical cation species, 1(•••+), obtained upon electrochemical reduction and oxidation, respectively, was monitored by optical and ESR spectroscopy. Interestingly, the modification of electron delocalization and magnetic coupling was observed when the charged species were generated and the changes have been rationalized by theoretical calculations. PMID:27231856
Lee, Minju; Zimmermann-Steffens, Saskia G; Arey, J Samuel; Fenner, Kathrin; von Gunten, Urs
2015-08-18
Second-order rate constants (kO3) for the reaction of ozone with micropollutants are essential parameters for the assessment of micropollutant elimination efficiency during ozonation in water and wastewater treatment. Prediction models for kO3 were developed for aromatic compounds, olefins, and amines by quantum chemical molecular orbital calculations employing ab initio Hartree-Fock (HF) and density functional theory (B3LYP) methods. The kO3 values for aromatic compounds correlated well with the energy of a delocalized molecular orbital first appearing on an aromatic ring (i.e., the highest occupied molecular orbital (HOMO) or HOMO-n (n ≥ 0) when the HOMO is not located on the aromatic ring); the number of compounds tested (N) was 112, and the correlation coefficient (R(2)) values were 0.82-1.00. The kO3 values for olefins and amines correlated well with the energy of a localized molecular orbital (i.e., the natural bond orbital (NBO)) energy of the carbon-carbon π bond of olefins (N = 45, R(2) values of 0.82-0.85) and the NBO energy of the nitrogen lone-pair electrons of amines (N = 59, R(2) values of 0.81-0.83), respectively. Considering the performance of the kO3 prediction model and the computational costs, the HF/6-31G method is recommended for all aromatic groups and olefins investigated herein, whereas the HF/MIDI!, HF/6-31G*, or HF/6-311++G** methods are recommended for amines. Based on their mean absolute errors, the above models could predict kO3 within a factor of 4, on average, relative to the experimentally determined values. Overall, good correlations were also observed (R(2) values of 0.77-0.96) between kO3 predictions by quantum molecular orbital descriptors in this study and by the Hammett (σ) and Taft (σ*) constants from previously developed quantitative structure-activity relationship (QSAR) models. Hence, the quantum molecular orbital descriptors are an alternative to σ and σ*-values in QSAR applications and can also be utilized to
New localized/delocalized emitting state of Eu^{2+} in orange-emitting hexagonal EuAl_{2}O_{4}
Liu, Feng; Meltzer, Richard S.; Li, Xufan; Budai, John D.; Chen, Yu -Sheng; Pan, Zhengwei
2014-11-18
Eu^{2+}-activated phosphors are being widely used in illuminations and displays. Some of these phosphors feature an extremely broad and red-shifted Eu^{2+} emission band; however, convincing explanation of this phenomenon is lacking. Here we report a new localized/delocalized emitting state of Eu^{2+} ions in a new hexagonal EuAl_{2}O_{4} phosphor whose Eu^{2+} luminescence exhibits a very large bandwidth and an extremely large Stokes shift. At 77 K, two luminescent sites responsible for 550 nm and 645 nm broadband emissions are recognized, while at room temperature only the 645 nm emission band emits. The 645 nm emission exhibits a typical radiative lifetime of 1.27 μs and an unusually large Stokes shift of 0.92 eV. We identify the 645 nm emission as originating from a new type of emitting state whose composition is predominantly that of localized 4f^{6}5d character but which also contains a complementary component with delocalized conduction-band-like character. This investigation gives new insights into a unique type of Eu^{2+} luminescence in solids whose emission exhibits both a very large bandwidth and an extremely large Stokes shift.
Levanon, H. |; Michaeli, S.; Regev, A.; Galili, T.; Cyr, M.; Sessler, J.L.
1990-01-31
Sapphyrin (Sap) and its stable dicationic form, Sap{sup 2+}, originally prepared by Woodawrd and Johnson, are large porphyrin-like systems which exhibit unique photophysical and photochemical properties. We report on the triplet diode detection, by time-resolved CW EPR, of (Sap{sup 2+}){sup T} randomly oriented in toluene (as monomers), ethanol (as dimers), and partially oriented in a nematic liquid crystal (as monomers). The substantial reduction of both zero-field splitting (ZFS) parameters (D and E) in the dimer, is interpreted in terms of spin delocalization (charge transfer) among the monomers within the dimer, (Sap{sup 2+}){sub 2}. The EPR line shape of Sap{sup 2+} in the liquid crystal suggests that, unlike other known porphyrinoid systems, the ZFS term D is associated with the in-plane alignment of the triplet spins along the C{sub 2v} symmetry axis, Z.
Continuous-variable quantum-state sharing via quantum disentanglement
Lance, Andrew M.; Symul, Thomas; Lam, Ping Koy; Bowen, Warwick P.; Sanders, Barry C.; Tyc, Tomas; Ralph, T.C.
2005-03-01
Quantum-state sharing is a protocol where perfect reconstruction of quantum states is achieved with incomplete or partial information in a multipartite quantum network. Quantum-state sharing allows for secure communication in a quantum network where partial information is lost or acquired by malicious parties. This protocol utilizes entanglement for the secret-state distribution and a class of 'quantum disentangling' protocols for the state reconstruction. We demonstrate a quantum-state sharing protocol in which a tripartite entangled state is used to encode and distribute a secret state to three players. Any two of these players can collaborate to reconstruct the secret state, while individual players obtain no information. We investigate a number of quantum disentangling processes and experimentally demonstrate quantum-state reconstruction using two of these protocols. We experimentally measure a fidelity, averaged over all reconstruction permutations, of F=0.73{+-}0.02. A result achievable only by using quantum resources.
D'Avino, Gabriele; Muccioli, Luca; Olivier, Yoann; Beljonne, David
2016-02-01
We address charge separation and recombination in polymer/fullerene solar cells with a multiscale modeling built from accurate atomistic inputs and accounting for disorder, interface electrostatics and genuine quantum effects on equal footings. Our results show that bound localized charge transfer states at the interface coexist with a large majority of thermally accessible delocalized space-separated states that can be also reached by direct photoexcitation, thanks to their strong hybridization with singlet polymer excitons. These findings reconcile the recent experimental reports of ultrafast exciton separation ("hot" process) with the evidence that high quantum yields do not require excess electronic or vibrational energy ("cold" process), and show that delocalization, by shifting the density of charge transfer states toward larger effective electron-hole radii, may reduce energy losses through charge recombination. PMID:26785294
Quantum coherence of steered states
NASA Astrophysics Data System (ADS)
Hu, Xueyuan; Milne, Antony; Zhang, Boyang; Fan, Heng
2016-01-01
Lying at the heart of quantum mechanics, coherence has recently been studied as a key resource in quantum information theory. Quantum steering, a fundamental notion originally considered by Schödinger, has also recently received much attention. When Alice and Bob share a correlated quantum system, Alice can perform a local measurement to ‘steer’ Bob’s reduced state. We introduce the maximal steered coherence as a measure describing the extent to which steering can remotely create coherence; more precisely, we find the maximal coherence of Bob’s steered state in the eigenbasis of his original reduced state, where maximization is performed over all positive-operator valued measurements for Alice. We prove that maximal steered coherence vanishes for quantum-classical states whilst reaching a maximum for pure entangled states with full Schmidt rank. Although invariant under local unitary operations, maximal steered coherence may be increased when Bob performs a channel. For a two-qubit state we find that Bob’s channel can increase maximal steered coherence if and only if it is neither unital nor semi-classical, which coincides with the condition for increasing discord. Our results show that the power of steering for coherence generation, though related to discord, is distinct from existing measures of quantum correlation.
Quantum coherence of steered states
Hu, Xueyuan; Milne, Antony; Zhang, Boyang; Fan, Heng
2016-01-01
Lying at the heart of quantum mechanics, coherence has recently been studied as a key resource in quantum information theory. Quantum steering, a fundamental notion originally considered by Schödinger, has also recently received much attention. When Alice and Bob share a correlated quantum system, Alice can perform a local measurement to ‘steer’ Bob’s reduced state. We introduce the maximal steered coherence as a measure describing the extent to which steering can remotely create coherence; more precisely, we find the maximal coherence of Bob’s steered state in the eigenbasis of his original reduced state, where maximization is performed over all positive-operator valued measurements for Alice. We prove that maximal steered coherence vanishes for quantum-classical states whilst reaching a maximum for pure entangled states with full Schmidt rank. Although invariant under local unitary operations, maximal steered coherence may be increased when Bob performs a channel. For a two-qubit state we find that Bob’s channel can increase maximal steered coherence if and only if it is neither unital nor semi-classical, which coincides with the condition for increasing discord. Our results show that the power of steering for coherence generation, though related to discord, is distinct from existing measures of quantum correlation. PMID:26781214
Canonical Thermal Pure Quantum State
NASA Astrophysics Data System (ADS)
Sugiura, Sho; Shimizu, Akira
2013-07-01
A thermal equilibrium state of a quantum many-body system can be represented by a typical pure state, which we call a thermal pure quantum (TPQ) state. We construct the canonical TPQ state, which corresponds to the canonical ensemble of the conventional statistical mechanics. It is related to the microcanonical TPQ state, which corresponds to the microcanonical ensemble, by simple analytic transformations. Both TPQ states give identical thermodynamic results, if both ensembles do, in the thermodynamic limit. The TPQ states corresponding to other ensembles can also be constructed. We have thus established the TPQ formulation of statistical mechanics, according to which all quantities of statistical-mechanical interest are obtained from a single realization of any TPQ state. We also show that it has great advantages in practical applications. As an illustration, we study the spin-1/2 kagome Heisenberg antiferromagnet.
Quantum coherent states in cosmology
NASA Astrophysics Data System (ADS)
Ziaeepour, Houri
2015-07-01
Coherent states consist of superposition of infinite number of particles and do not have a classical analogue. We study their evolution in a FLRW cosmology and show that only when full quantum corrections are considered, they may survive the expansion of the Universe and form a global condensate. This state of matter can be the origin of accelerating expansion of the Universe, generally called dark energy, and inflation in the early universe. Additionally, such a quantum pool may be the ultimate environment for decoherenceat shorter distances. If dark energy is a quantum coherent state, its dominant contribution to the total energy of the Universe at present provides a low entropy state which may be necessary as an initial condition for a new Big Bang in the framework of bouncing cosmology models.
Conclusive exclusion of quantum states
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Somshubhro; Jain, Rahul; Oppenheim, Jonathan; Perry, Christopher
2014-02-01
In the task of quantum state exclusion, we consider a quantum system prepared in a state chosen from a known set. The aim is to perform a measurement on the system which can conclusively rule that a subset of the possible preparation procedures cannot have taken place. We ask what conditions the set of states must obey in order for this to be possible and how well we can complete the task when it is not. The task of quantum state discrimination forms a subclass of this set of problems. Within this paper, we formulate the general problem as a semidefinite program (SDP), enabling us to derive sufficient and necessary conditions for a measurement to be optimal. Furthermore, we obtain a necessary condition on the set of states for exclusion to be achievable with certainty, and we give a construction for a lower bound on the probability of error. This task of conclusively excluding states has gained importance in the context of the foundations of quantum mechanics due to a result from Pusey, Barrett, and Rudolph (PBR). Motivated by this, we use our SDP to derive a bound on how well a class of hidden variable models can perform at a particular task, proving an analog of Tsirelson's bound for the PBR experiment and the optimality of a measurement given by PBR in the process. We also introduce variations of conclusive exclusion, including unambiguous state exclusion, and state exclusion with worst-case error.
Product-State Approximations to Quantum States
NASA Astrophysics Data System (ADS)
Brandão, Fernando G. S. L.; Harrow, Aram W.
2016-02-01
We show that for any many-body quantum state there exists an unentangled quantum state such that most of the two-body reduced density matrices are close to those of the original state. This is a statement about the monogamy of entanglement, which cannot be shared without limit in the same way as classical correlation. Our main application is to Hamiltonians that are sums of two-body terms. For such Hamiltonians we show that there exist product states with energy that is close to the ground-state energy whenever the interaction graph of the Hamiltonian has high degree. This proves the validity of mean-field theory and gives an explicitly bounded approximation error. If we allow states that are entangled within small clusters of systems but product across clusters then good approximations exist when the Hamiltonian satisfies one or more of the following properties: (1) high degree, (2) small expansion, or (3) a ground state where the blocks in the partition have sublinear entanglement. Previously this was known only in the case of small expansion or in the regime where the entanglement was close to zero. Our approximations allow an extensive error in energy, which is the scale considered by the quantum PCP (probabilistically checkable proof) and NLTS (no low-energy trivial-state) conjectures. Thus our results put restrictions on the possible Hamiltonians that could be used for a possible proof of the qPCP or NLTS conjectures. By contrast the classical PCP constructions are often based on constraint graphs with high degree. Likewise we show that the parallel repetition that is possible with classical constraint satisfaction problems cannot also be possible for quantum Hamiltonians, unless qPCP is false. The main technical tool behind our results is a collection of new classical and quantum de Finetti theorems which do not make any symmetry assumptions on the underlying states.
Quantum state transfer via Bloch oscillations
NASA Astrophysics Data System (ADS)
Tamascelli, Dario; Olivares, Stefano; Rossotti, Stefano; Osellame, Roberto; Paris, Matteo G. A.
2016-05-01
The realization of reliable quantum channels, able to transfer a quantum state with high fidelity, is a fundamental step in the construction of scalable quantum devices. In this paper we describe a transmission scheme based on the genuinely quantum effect known as Bloch oscillations. The proposed protocol makes it possible to carry a quantum state over different distances with a minimal engineering of the transmission medium and can be implemented and verified on current quantum technology hardware.
Quantum state transfer via Bloch oscillations.
Tamascelli, Dario; Olivares, Stefano; Rossotti, Stefano; Osellame, Roberto; Paris, Matteo G A
2016-01-01
The realization of reliable quantum channels, able to transfer a quantum state with high fidelity, is a fundamental step in the construction of scalable quantum devices. In this paper we describe a transmission scheme based on the genuinely quantum effect known as Bloch oscillations. The proposed protocol makes it possible to carry a quantum state over different distances with a minimal engineering of the transmission medium and can be implemented and verified on current quantum technology hardware. PMID:27189630
Quantum state transfer via Bloch oscillations
Tamascelli, Dario; Olivares, Stefano; Rossotti, Stefano; Osellame, Roberto; Paris, Matteo G. A.
2016-01-01
The realization of reliable quantum channels, able to transfer a quantum state with high fidelity, is a fundamental step in the construction of scalable quantum devices. In this paper we describe a transmission scheme based on the genuinely quantum effect known as Bloch oscillations. The proposed protocol makes it possible to carry a quantum state over different distances with a minimal engineering of the transmission medium and can be implemented and verified on current quantum technology hardware. PMID:27189630
Partially entangled states bridge in quantum teleportation
NASA Astrophysics Data System (ADS)
Cai, Xiao-Fei; Yu, Xu-Tao; Shi, Li-Hui; Zhang, Zai-Chen
2014-10-01
The traditional method for information transfer in a quantum communication system using partially entangled state resource is quantum distillation or direct teleportation. In order to reduce the waiting time cost in hop-by-hop transmission and execute independently in each node, we propose a quantum bridging method with partially entangled states to teleport quantum states from source node to destination node. We also prove that the designed specific quantum bridging circuit is feasible for partially entangled states teleportation across multiple intermediate nodes. Compared to two traditional ways, our partially entanglement quantum bridging method uses simpler logic gates, has better security, and can be used in less quantum resource situation.
Entanglement for All Quantum States
ERIC Educational Resources Information Center
de la Torre, A. C.; Goyeneche, D.; Leitao, L.
2010-01-01
It is shown that a state that is factorizable in the Hilbert space corresponding to some choice of degrees of freedom becomes entangled for a different choice of degrees of freedom. Therefore, entanglement is not a special case but is ubiquitous in quantum systems. Simple examples are calculated and a general proof is provided. The physical…
Entropy of quantum states: Ambiguities
NASA Astrophysics Data System (ADS)
Balachandran, A. P.; de Queiroz, A. R.; Vaidya, S.
2013-10-01
The von Neumann entropy of a generic quantum state is not unique unless the state can be uniquely decomposed as a sum of extremal or pure states. As pointed out to us by Sorkin, this happens if the GNS representation (of the algebra of observables in some quantum state) is reducible, and some representations in the decomposition occur with non-trivial degeneracy. This non-unique entropy can occur at zero temperature. We will argue elsewhere in detail that the degeneracies in the GNS representation can be interpreted as an emergent broken gauge symmetry, and play an important role in the analysis of emergent entropy due to non-Abelian anomalies. Finally, we establish the analogue of an H -theorem for this entropy by showing that its evolution is Markovian, determined by a stochastic matrix.
Quantum state of the multiverse
Robles-Perez, Salvador; Gonzalez-Diaz, Pedro F.
2010-04-15
A third quantization formalism is applied to a simplified multiverse scenario. A well-defined quantum state of the multiverse is obtained which agrees with standard boundary condition proposals. These states are found to be squeezed, and related to accelerating universes: they share similar properties to those obtained previously by Grishchuk and Siderov. We also comment on related works that have criticized the third quantization approach.
Mizel, Ari
2004-07-01
Ground-state quantum computers mimic quantum-mechanical time evolution within the amplitudes of a time-independent quantum state. We explore the principles that constrain this mimicking. A no-cloning argument is found to impose strong restrictions. It is shown, however, that there is flexibility that can be exploited using quantum teleportation methods to improve ground-state quantum computer design.
Distinguishability of generic quantum states
NASA Astrophysics Data System (ADS)
Puchała, Zbigniew; Pawela, Łukasz; Życzkowski, Karol
2016-06-01
Properties of random mixed states of dimension N distributed uniformly with respect to the Hilbert-Schmidt measure are investigated. We show that for large N , due to the concentration of measure, the trace distance between two random states tends to a fixed number D ˜=1 /4 +1 /π , which yields the Helstrom bound on their distinguishability. To arrive at this result, we apply free random calculus and derive the symmetrized Marchenko-Pastur distribution, which is shown to describe numerical data for the model of coupled quantum kicked tops. Asymptotic value for the root fidelity between two random states, √{F }=3/4 , can serve as a universal reference value for further theoretical and experimental studies. Analogous results for quantum relative entropy and Chernoff quantity provide other bounds on the distinguishablity of both states in a multiple measurement setup due to the quantum Sanov theorem. We study also mean entropy of coherence of random pure and mixed states and entanglement of a generic mixed state of a bipartite system.
NASA Astrophysics Data System (ADS)
Lu, Yongchuan; Wang, Chen
2016-07-01
We investigate the ground-state behavior of the Dicke-Hubbard model including counter-rotating terms. By generalizing an extended coherent-state approach within mean-field theory, we self-consistently obtain the ground-state energy and delocalized order parameter. Localization-delocalization quantum phase transition of photons is clearly observed by breaking the parity symmetry. Particularly, Mott lobes are fully suppressed, and the delocalized order parameter shows monotonic enhancement by increasing qubit-cavity coupling strength, in sharp contrast to the Dicke-Hubbard model under rotating-wave approximation. Moreover, the corresponding phase boundaries are stabilized by decreasing photon hopping strength, compared to the Rabi-Hubbard model.
Quantum State Engineering Via Coherent-State Superpositions
NASA Technical Reports Server (NTRS)
Janszky, Jozsef; Adam, P.; Szabo, S.; Domokos, P.
1996-01-01
The quantum interference between the two parts of the optical Schrodinger-cat state makes possible to construct a wide class of quantum states via discrete superpositions of coherent states. Even a small number of coherent states can approximate the given quantum states at a high accuracy when the distance between the coherent states is optimized, e. g. nearly perfect Fock state can be constructed by discrete superpositions of n + 1 coherent states lying in the vicinity of the vacuum state.
Entanglement for all quantum states
NASA Astrophysics Data System (ADS)
de la Torre, A. C.; Goyeneche, D.; Leitao, L.
2010-03-01
It is shown that a state that is factorizable in the Hilbert space corresponding to some choice of degrees of freedom becomes entangled for a different choice of degrees of freedom. Therefore, entanglement is not a special case but is ubiquitous in quantum systems. Simple examples are calculated and a general proof is provided. The physical relevance of the change of tensor product structure is mentioned.
Creating a Superposition of Unknown Quantum States.
Oszmaniec, Michał; Grudka, Andrzej; Horodecki, Michał; Wójcik, Antoni
2016-03-18
The superposition principle is one of the landmarks of quantum mechanics. The importance of quantum superpositions provokes questions about the limitations that quantum mechanics itself imposes on the possibility of their generation. In this work, we systematically study the problem of the creation of superpositions of unknown quantum states. First, we prove a no-go theorem that forbids the existence of a universal probabilistic quantum protocol producing a superposition of two unknown quantum states. Second, we provide an explicit probabilistic protocol generating a superposition of two unknown states, each having a fixed overlap with the known referential pure state. The protocol can be applied to generate coherent superposition of results of independent runs of subroutines in a quantum computer. Moreover, in the context of quantum optics it can be used to efficiently generate highly nonclassical states or non-Gaussian states. PMID:27035290
Creating a Superposition of Unknown Quantum States
NASA Astrophysics Data System (ADS)
Oszmaniec, Michał; Grudka, Andrzej; Horodecki, Michał; Wójcik, Antoni
2016-03-01
The superposition principle is one of the landmarks of quantum mechanics. The importance of quantum superpositions provokes questions about the limitations that quantum mechanics itself imposes on the possibility of their generation. In this work, we systematically study the problem of the creation of superpositions of unknown quantum states. First, we prove a no-go theorem that forbids the existence of a universal probabilistic quantum protocol producing a superposition of two unknown quantum states. Second, we provide an explicit probabilistic protocol generating a superposition of two unknown states, each having a fixed overlap with the known referential pure state. The protocol can be applied to generate coherent superposition of results of independent runs of subroutines in a quantum computer. Moreover, in the context of quantum optics it can be used to efficiently generate highly nonclassical states or non-Gaussian states.
Geometry of Gaussian quantum states
NASA Astrophysics Data System (ADS)
Link, Valentin; Strunz, Walter T.
2015-07-01
We study the Hilbert-Schmidt measure on the manifold of mixed Gaussian states in multi-mode continuous variable quantum systems. An analytical expression for the Hilbert-Schmidt volume element is derived. Its corresponding probability measure can be used to study typical properties of Gaussian states. It turns out that although the manifold of Gaussian states is unbounded, an ensemble of Gaussian states distributed according to this measure still has a normalizable distribution of symplectic eigenvalues, from which unitarily invariant properties can be obtained. By contrast, we find that for an ensemble of one-mode Gaussian states based on the Bures measure the corresponding distribution cannot be normalized. As important applications, we determine the distribution and the mean value of von Neumann entropy and purity for the Hilbert-Schmidt measure.
Quantum amplification and quantum optical tapping with squeezed states and correlated quantum states
NASA Technical Reports Server (NTRS)
Ou, Z. Y.; Pereira, S. F.; Kimble, H. J.
1994-01-01
Quantum fluctuations in a nondegenerate optical parametric amplifier (NOPA) are investigated experimentally with a squeezed state coupled into the internal idler mode of the NOPA. Reductions of the inherent quantum noise of the amplifier are observed with a minimum noise level 0.7 dB below the usual noise level of the amplifier with its idler mode in a vacuum state. With two correlated quantum fields as the amplifier's inputs and proper adjustment of the gain of the amplifier, it is shown that the amplifier's intrinsic quantum noise can be completely suppressed so that noise-free amplification is achieved. It is also shown that the NOPA, when coupled to either a squeezed state or a nonclassically correlated state, can realize quantum tapping of optical information.
Entangled States, Holography and Quantum Surfaces
Chapline, G F
2003-08-13
Starting with an elementary discussion of quantum holography, we show that entangled quantum states of qubits provide a ''local'' representation of the global geometry and topology of quantum Riemann surfaces. This representation may play an important role in both mathematics and physics. Indeed, the simplest way to represent the fundamental objects in a ''theory of everything'' may be as muti-qubit entangled states.
Multi-state Quantum Teleportation via One Entanglement State
NASA Astrophysics Data System (ADS)
Guo, Ying; Zeng, Gui-Hua; Moon Ho, Lee
2008-08-01
A multi-sender-controlled quantum teleportation scheme is proposed to teleport several secret quantum states from different senders to a distance receiver based on only one Einstein Podolsky Rosen (EPR) pair with controlled-NOT (CNOT) gates. In the present scheme, several secret single-qubit quantum states are encoded into a multi-qubit entangled quantum state. Two communication modes, i.e., the detecting mode and the message mode, are employed so that the eavesdropping can be detected easily and the teleported message may be recovered efficiently. It has an advantage over teleporting several different quantum states for one scheme run with more efficiency than the previous quantum teleportation schemes.
Multiple Multi-Qubit Quantum States Sharing
NASA Astrophysics Data System (ADS)
Qin, Hua-Wang; Dai, Yue-Wei
2016-04-01
A multiple multi-qubit quantum states sharing scheme is proposed, in which the dealer can share multiple multi-qubit quantum states among the participants through only one distribution and one recovery. The dealer encodes the secret quantum states into a special entangled state, and then distributes the particles of the entangled state to the participants. The participants perform the single-particle measurements on their particles, and can cooperate to recover the multiple multi-qubit quantum states. Compared to the existing schemes, our scheme is more efficient and more flexible in practice.
Huix-Rotllant, Miquel; Tamura, Hiroyuki; Burghardt, Irene
2015-05-01
Quantum-dynamical simulations are used to investigate the interplay of exciton delocalization and vibronically induced internal conversion processes in the elementary charge separation steps at regioregular donor-acceptor heterojunctions. Ultrafast internal conversion leads to efficient deexcitation within the excitonic and charge transfer manifolds, thus modifying the charge separation dynamics. We address a model donor-acceptor junction representative of regioregular P3HT-PCBM, using high-dimensional quantum dynamics simulations by multiconfigurational methods. While partial trapping into an interfacial charge separated state occurs, long-range charge-separated states are accessed as previously demonstrated in the work of Tamura and Burghardt [J. Am. Chem. Soc. 2013, 135, 16364]. For an H-aggregate type, stacked donor species, the initial bright state undergoes ultrafast internal conversion within the excitonic manifold, creating multiple charge transfer pathways before reaching the lowest-energy dark exciton, which is uncoupled from the charge transfer manifold. This process profoundly affects the charge separation mechanism and efficiency. For small energetic offsets between the interfacial excitonic and charge transfer states, a delocalized initial bright state proves less prone to electron-hole capture by the interfacial trap than a localized, vibronic wavepacket close to the interface. For both delocalized and localized initial states, a comparable yield of free carriers is obtained, which is found to be optimal for energetic offsets of the order of the Coulomb barrier to charge separation. Interfacial trapping is significantly reduced as the barrier height decreases with fullerene aggregation. Despite the high-dimensional nature of the system, charge separation is an ultrafast coherent quantum process exhibiting oscillatory features as observed in recent experiments. PMID:26263337
Li Zhenni; Jin Jiasen; Yu Changshui
2011-01-15
We present schemes for a type of one-parameter bipartite quantum state to probe quantum entanglement, quantum discord, the classical correlation, and the quantum state based on cavity QED. It is shown that our detection does not influence all these measured quantities. We also discuss how the spontaneous emission introduced by our probe atom influences our detection.
Bound states in continuum: Quantum dots in a quantum well
NASA Astrophysics Data System (ADS)
Prodanović, Nikola; Milanović, Vitomir; Ikonić, Zoran; Indjin, Dragan; Harrison, Paul
2013-11-01
We report on the existence of a bound state in the continuum (BIC) of quantum rods (QR). QRs are novel elongated InGaAs quantum dot nanostructures embedded in the shallower InGaAs quantum well. BIC appears as an excited confined dot state and energetically above the bottom of a well subband continuum. We prove that high height-to-diameter QR aspect ratio and the presence of a quantum well are indispensable conditions for accommodating the BIC. QRs are unique semiconductor nanostructures, exhibiting this mathematical curiosity predicted 83 years ago by Wigner and von Neumann.
Quantum optics. Quantum harmonic oscillator state synthesis by reservoir engineering.
Kienzler, D; Lo, H-Y; Keitch, B; de Clercq, L; Leupold, F; Lindenfelser, F; Marinelli, M; Negnevitsky, V; Home, J P
2015-01-01
The robust generation of quantum states in the presence of decoherence is a primary challenge for explorations of quantum mechanics at larger scales. Using the mechanical motion of a single trapped ion, we utilize reservoir engineering to generate squeezed, coherent, and displaced-squeezed states as steady states in the presence of noise. We verify the created state by generating two-state correlated spin-motion Rabi oscillations, resulting in high-contrast measurements. For both cooling and measurement, we use spin-oscillator couplings that provide transitions between oscillator states in an engineered Fock state basis. Our approach should facilitate studies of entanglement, quantum computation, and open-system quantum simulations in a wide range of physical systems. PMID:25525161
Gravitational quantum states of Antihydrogen
Voronin, A. Yu.; Froelich, P.; Nesvizhevsky, V. V.
2011-03-15
We present a theoretical study of the motion of the antihydrogen atom (H) in the gravitational field of Earth above a material surface. We predict that the H atom, falling in the gravitational field of Earth above a material surface, would settle into long-lived quantum states. We point out a method of measuring the difference in the energy of H in such states. The method allows for spectroscopy of gravitational levels based on atom-interferometric principles. We analyze the general feasibility of performing experiments of this kind. We point out that such experiments provide a method of measuring the gravitational force (Mg) acting on H and that they might be of interest in the context of testing the weak equivalence principle for antimatter.
Quantum secret sharing with qudit graph states
Keet, Adrian; Fortescue, Ben; Sanders, Barry C.; Markham, Damian
2010-12-15
We present a unified formalism for threshold quantum secret sharing using graph states of systems with prime dimension. We construct protocols for three varieties of secret sharing: with classical and quantum secrets shared between parties over both classical and quantum channels.
Quantum state engineering in hybrid open quantum systems
NASA Astrophysics Data System (ADS)
Joshi, Chaitanya; Larson, Jonas; Spiller, Timothy P.
2016-04-01
We investigate a possibility to generate nonclassical states in light-matter coupled noisy quantum systems, namely, the anisotropic Rabi and Dicke models. In these hybrid quantum systems, a competing influence of coherent internal dynamics and environment-induced dissipation drives the system into nonequilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model, the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state displays light-matter entanglement, we also find that the full state is entangled. Furthermore, as a natural extension of the anisotropic Rabi model to an infinite spin subsystem, we next explored the NESS of the anisotropic Dicke model. The NESS of this linearized Dicke model is also an inseparable state of light and matter. With an aim to enrich the dynamics beyond the sustainable entanglement found for the NESS of these hybrid quantum systems, we also propose to combine an all-optical feedback strategy for quantum state protection and for establishing quantum control in these systems. Our present work further elucidates the relevance of such hybrid open quantum systems for potential applications in quantum architectures.
Meylemans, Heather A; Lei, Chi-Fong; Damrauer, Niels H
2008-05-19
Synthesis, ground-, and excited-state properties are reported for two new electron donor-bridge-acceptor (D-B-A) molecules and two new photophysical model complexes. The D-B-A molecules are [Ru(bpy)2(bpy-phi-MV)](PF6)4 (3) and [Ru(tmb)2(bpy-phi-MV)](PF6)4 (4), where bpy is 2,2'-bipyridine, tmb is 4,4',5,5'-tetramethyl-2,2'-bipyridine, MV is methyl viologen, and phi is a phenylene spacer. Their model complexes are [Ru(bpy)2(p-tol-bpy)](PF6)2 (1) and [Ru(tmb)2(p-tol-bpy)](PF6)2 (2), where p-tolyl-bpy is 4-(p-tolyl)-2,2'-bipyridine. Photophysical characterization of 1 and 2 indicates that 2.17 eV and 2.12 eV are stored in their respective (3)MLCT (metal-to-ligand charge transfer) excited state. These values along with electrochemical measurements show that photoinduced electron transfer (D*-B-A-->D (+)-B-A(-)) is favorable in 3 and 4 with DeltaG degrees(ET)=-0.52 eV and -0.62 eV, respectively. The driving force for the reverse process (D(+)-B-A(-) --> D-B-A) is also reported: DeltaG degrees(BET)=-1.7 eV for 3 and -1.5 eV for 4. Transient absorption (TA) spectra for 3 and 4 in 298 K acetonitrile provide evidence that reduced methyl viologen is observable at 50 ps following excitation. Detailed TA kinetics confirm this, and the data are fit to a model to determine both forward (k(ET)) and back (k(BET)) electron transfer rate constants: k(ET)=2.6 x 10(10) s(-1) for 3 and 2.8 x 10(10) s(-1) for 4; k(BET)=0.62 x 10(10) s(-1) for 3 and 1.37 x 10(10) s(-1) for 4. The similar rate constants k ET for 3 and 4 despite a 100 meV driving force (DeltaG degrees(ET)) increase suggests that forward electron transfer in these molecules in room temperature acetonitrile is nearly barrierless as predicted by the Marcus theory. The reduction in electron transfer reorganization energy necessary for this barrierless reactivity is attributed to excited-state electron delocalization in the (3)MLCT excited states of 3 and 4, an effect that is made possible by excited-state conformational
Quantum gambling using two nonorthogonal states
NASA Astrophysics Data System (ADS)
Hwang, Won Young; Ahn, Doyeol; Hwang, Sung Woo
2001-12-01
We give a (remote) quantum-gambling scheme that makes use of the fact that quantum nonorthogonal states cannot be distinguished with certainty. In the proposed scheme, two participants Alice and Bob can be regarded as playing a game of making guesses on identities of quantum states that are in one of two given nonorthogonal states: if Bob makes a correct (an incorrect) guess on the identity of a quantum state that Alice has sent, he wins (loses). It is shown that the proposed scheme is secure against the nonentanglement attack. It can also be shown heuristically that the scheme is secure in the case of the entanglement attack.
Loss-tolerant state engineering for quantum-enhanced metrology via the reverse Hong-Ou-Mandel effect
NASA Astrophysics Data System (ADS)
Ulanov, Alexander E.; Fedorov, Ilya A.; Sychev, Demid; Grangier, Philippe; Lvovsky, A. I.
2016-06-01
Highly entangled quantum states, shared by remote parties, are vital for quantum communications and metrology. Particularly promising are the N00N states--entangled N-photon wavepackets delocalized between two different locations--which outperform coherent states in measurement sensitivity. However, these states are notoriously vulnerable to losses, making them difficult to both share them between remote locations and recombine in order to exploit interference effects. Here we address this challenge by utilizing the reverse Hong-Ou-Mandel effect to prepare a high-fidelity two-photon N00N state shared between two parties connected by a lossy optical medium. We measure the prepared state by two-mode homodyne tomography, thereby demonstrating that the enhanced phase sensitivity can be exploited without recombining the two parts of the N00N state. Finally, we demonstrate the application of our method to remotely prepare superpositions of coherent states, known as Schrödinger's cat states.
Ulanov, Alexander E; Fedorov, Ilya A; Sychev, Demid; Grangier, Philippe; Lvovsky, A I
2016-01-01
Highly entangled quantum states, shared by remote parties, are vital for quantum communications and metrology. Particularly promising are the N00N states-entangled N-photon wavepackets delocalized between two different locations-which outperform coherent states in measurement sensitivity. However, these states are notoriously vulnerable to losses, making them difficult to both share them between remote locations and recombine in order to exploit interference effects. Here we address this challenge by utilizing the reverse Hong-Ou-Mandel effect to prepare a high-fidelity two-photon N00N state shared between two parties connected by a lossy optical medium. We measure the prepared state by two-mode homodyne tomography, thereby demonstrating that the enhanced phase sensitivity can be exploited without recombining the two parts of the N00N state. Finally, we demonstrate the application of our method to remotely prepare superpositions of coherent states, known as Schrödinger's cat states. PMID:27324115
Spectral presheaves as quantum state spaces.
Döring, Andreas
2015-08-01
For each quantum system described by an operator algebra [Formula: see text] of physical quantities, we provide a (generalized) state space, notwithstanding the Kochen-Specker theorem. This quantum state space is the spectral presheaf [Formula: see text]. We formulate the time evolution of quantum systems in terms of Hamiltonian flows on this generalized space and explain how the structure of the spectral presheaf [Formula: see text] geometrically mirrors the double role played by self-adjoint operators in quantum theory, as quantum random variables and as generators of time evolution. PMID:26124247
Mapping quantum state dynamics in spontaneous emission.
Naghiloo, M; Foroozani, N; Tan, D; Jadbabaie, A; Murch, K W
2016-01-01
The evolution of a quantum state undergoing radiative decay depends on how its emission is detected. If the emission is detected in the form of energy quanta, the evolution is characterized by a quantum jump to a lower energy state. In contrast, detection of the wave nature of the emitted radiation leads to different dynamics. Here, we investigate the diffusive dynamics of a superconducting artificial atom under continuous homodyne detection of its spontaneous emission. Using quantum state tomography, we characterize the correlation between the detected homodyne signal and the emitter's state, and map out the conditional back-action of homodyne measurement. By tracking the diffusive quantum trajectories of the state as it decays, we characterize selective stochastic excitation induced by the choice of measurement basis. Our results demonstrate dramatic differences from the quantum jump evolution associated with photodetection and highlight how continuous field detection can be harnessed to control quantum evolution. PMID:27167893
Mapping quantum state dynamics in spontaneous emission
NASA Astrophysics Data System (ADS)
Naghiloo, M.; Foroozani, N.; Tan, D.; Jadbabaie, A.; Murch, K. W.
2016-05-01
The evolution of a quantum state undergoing radiative decay depends on how its emission is detected. If the emission is detected in the form of energy quanta, the evolution is characterized by a quantum jump to a lower energy state. In contrast, detection of the wave nature of the emitted radiation leads to different dynamics. Here, we investigate the diffusive dynamics of a superconducting artificial atom under continuous homodyne detection of its spontaneous emission. Using quantum state tomography, we characterize the correlation between the detected homodyne signal and the emitter's state, and map out the conditional back-action of homodyne measurement. By tracking the diffusive quantum trajectories of the state as it decays, we characterize selective stochastic excitation induced by the choice of measurement basis. Our results demonstrate dramatic differences from the quantum jump evolution associated with photodetection and highlight how continuous field detection can be harnessed to control quantum evolution.
Nonlocality of orthogonal product basis quantum states
NASA Astrophysics Data System (ADS)
Zhang, Zhi-Chao; Gao, Fei; Tian, Guo-Jing; Cao, Tian-Qing; Wen, Qiao-Yan
2014-08-01
In this paper, we mainly study the local indistinguishability of mutually orthogonal product basis quantum states in the high-dimensional quantum systems. In the Hilbert space of 3⊗3, Walgate and Hardy [Phys. Rev. Lett. 89, 147901 (2002), 10.1103/PhysRevLett.89.147901] presented a very simple proof for nonlocality of nine orthogonal product basis quantum states which are given by Bennett et al. [Phys. Rev. A 59, 1070 (1999), 10.1103/PhysRevA.59.1070]. In the quantum system of d⊗d, where d is odd, we construct d2 orthogonal product basis quantum states and prove these states are locally indistinguishable. Then we are able to construct some locally indistinguishable product basis quantum states in the multipartite systems. All these results reveal the phenomenon of "nonlocality without entanglement."
Mapping quantum state dynamics in spontaneous emission
Naghiloo, M.; Foroozani, N.; Tan, D.; Jadbabaie, A.; Murch, K. W.
2016-01-01
The evolution of a quantum state undergoing radiative decay depends on how its emission is detected. If the emission is detected in the form of energy quanta, the evolution is characterized by a quantum jump to a lower energy state. In contrast, detection of the wave nature of the emitted radiation leads to different dynamics. Here, we investigate the diffusive dynamics of a superconducting artificial atom under continuous homodyne detection of its spontaneous emission. Using quantum state tomography, we characterize the correlation between the detected homodyne signal and the emitter's state, and map out the conditional back-action of homodyne measurement. By tracking the diffusive quantum trajectories of the state as it decays, we characterize selective stochastic excitation induced by the choice of measurement basis. Our results demonstrate dramatic differences from the quantum jump evolution associated with photodetection and highlight how continuous field detection can be harnessed to control quantum evolution. PMID:27167893
Quantifying Electron Delocalization in Electrides.
Janesko, Benjamin G; Scalmani, Giovanni; Frisch, Michael J
2016-01-12
Electrides are ionic solids whose anions are electrons confined to crystal voids. We show that our electron delocalization range function EDR(r;d), which quantifies the extent to which an electron at point r in a calculated wave function delocalizes over distance d, provides useful insights into electrides. The EDR quantifies the characteristic delocalization length of electride electrons and provides a chemically intuitive real-space picture of the electrons' distribution. It also gives a potential diagnostic for whether a given formula unit will form a solid electride at ambient pressure, quantifies the effects of electron-electron correlation on confined electrons' interactions, and highlights analogies between covalent bonding and the interaction of interstitial quasi-atoms in high-pressure electrides. These results motivate adding the EDR to the toolbox of theoretical methods applied to electrides. PMID:26652208
Quantum key distribution with a reference quantum state
Molotkov, S. N.
2011-11-15
A new quantum key distribution protocol stable at arbitrary losses in a quantum communication channel has been proposed. For the stability of the protocol, it is of fundamental importance that changes in states associated with losses in the communication channel (in the absence of the eavesdropper) are included in measurements.
Loss-tolerant state engineering for quantum-enhanced metrology via the reverse Hong–Ou–Mandel effect
Ulanov, Alexander E.; Fedorov, Ilya A.; Sychev, Demid; Grangier, Philippe; Lvovsky, A. I.
2016-01-01
Highly entangled quantum states, shared by remote parties, are vital for quantum communications and metrology. Particularly promising are the N00N states—entangled N-photon wavepackets delocalized between two different locations—which outperform coherent states in measurement sensitivity. However, these states are notoriously vulnerable to losses, making them difficult to both share them between remote locations and recombine in order to exploit interference effects. Here we address this challenge by utilizing the reverse Hong–Ou–Mandel effect to prepare a high-fidelity two-photon N00N state shared between two parties connected by a lossy optical medium. We measure the prepared state by two-mode homodyne tomography, thereby demonstrating that the enhanced phase sensitivity can be exploited without recombining the two parts of the N00N state. Finally, we demonstrate the application of our method to remotely prepare superpositions of coherent states, known as Schrödinger's cat states. PMID:27324115
Disorder-enhanced exciton delocalization in an extended dendrimer.
Pouthier, Vincent
2014-08-01
The exciton dynamics in a disordered extended dendrimer is investigated numerically. Because a homogeneous dendrimer exhibits few highly degenerate energy levels, a dynamical localization arises when the exciton is initially located on the periphery. However, it is shown that the disorder lifts the degeneracy and favors a delocalization-relocalization transition. Weak disorder enhances the delocalized nature of the exciton and improves any quantum communication, whereas strong disorder prevents the exciton from propagating in accordance with the well-known Anderson theory. PMID:25215792
Quantum Conditional Mutual Information, Reconstructed States, and State Redistribution.
Brandão, Fernando G S L; Harrow, Aram W; Oppenheim, Jonathan; Strelchuk, Sergii
2015-07-31
We give two strengthenings of an inequality for the quantum conditional mutual information of a tripartite quantum state recently proved by Fawzi and Renner, connecting it with the ability to reconstruct the state from its bipartite reductions. Namely, we show that the conditional mutual information is an upper bound on the regularized relative entropy distance between the quantum state and its reconstructed version. It is also an upper bound for the measured relative entropy distance of the state to its reconstructed version. The main ingredient of the proof is the fact that the conditional mutual information is the optimal quantum communication rate in the task of state redistribution. PMID:26274402
All entangled quantum states are nonlocal.
Buscemi, Francesco
2012-05-18
Departing from the usual paradigm of local operations and classical communication adopted in entanglement theory, we study here the interconversion of quantum states by means of local operations and shared randomness. A set of necessary and sufficient conditions for the existence of such a transformation between two given quantum states is given in terms of the payoff they yield in a suitable class of nonlocal games. It is shown that, as a consequence of our result, such a class of nonlocal games is able to witness quantum entanglement, however weak, and reveal nonlocality in any entangled quantum state. An example illustrating this fact is provided. PMID:23003127
Quantum states for Heisenberg limited interferometry
NASA Astrophysics Data System (ADS)
Uys, Hermann; Meystre, Pierre
2007-06-01
An important aspect of quantum metrology is the engineering of quantum states with which to achieve Heisenberg limited measurement precision. In this limit the measurement uncertainty is inversely proportional to the number of interfering particles, N, a 1/√N improvement over the standad quantum limit. We have used numerical global optimization strategies to systematically search for quantum interferometer input states that achieve Heisenberg limited uncertainty in estimates of the interferometer phase shift. We compare the performance of candidates so obtained with that of non-classical states already known to yield Heisenberg limited uncertainty.
Robust quantum receivers for coherent state discrimination
NASA Astrophysics Data System (ADS)
Becerra, Francisco Elohim
2014-05-01
Quantum state discrimination is a central task for quantum information and is a fundamental problem in quantum mechanics. Nonorthogonal states, such as coherent states which have intrinsic quantum noise, cannot be discriminated with total certainty because of their intrinsic overlap. This nonorthogonality is at the heart of quantum key distribution for ensuring absolute secure communications between a transmitter and a receiver, and can enable many quantum information protocols based on coherent states. At the same time, while coherent states are used for communications because of their robustness to loss and simplicity of generation and detection, their nonorthogonality inherently produces errors in the process of decoding the information. The minimum error probability in the discrimination of nonorthogonal coherent states measured by an ideal lossless and noiseless conventional receiver is given by the standard quantum limit (SQL). This limit sets strict bounds on the ultimate performance of coherent communications and many coherent-state-based quantum information protocols. However, measurement strategies based on the quantum properties of these states can allow for better measurements that surpass the SQL and approach the ultimate measurement limits allowed by quantum mechanics. These measurement strategies can allow for optimally extracting information encoded in these states for coherent and quantum communications. We present the demonstration of a receiver based on adaptive measurements and single-photon counting that unconditionally discriminates multiple nonorthogonal coherent states below the SQL. We also discuss the potential of photon-number-resolving detection to provide robustness and high sensitivity under realistic conditions for an adaptive coherent receiver with detectors with finite photon-number resolution.
Finding a New Home for Quantum States
NASA Astrophysics Data System (ADS)
Fuchs, Christopher A.; Appleby, D. Marcus; Zhu, Huangjun
2015-03-01
In the Quantum Bayesian interpretation of quantum mechanics, or QBism as it has come to be called, a significant effort has been made to find a good representation of quantum states, quantum measurement operators, and quantum time-evolution maps, all directly in terms of probabilities and conditional probabilities. The proposed means for doing this has involved a particularly interesting kind of fiducial quantum measurement called a symmetric informationally complete (SIC) measurement. If such objects exist for all finite-dimensional Hilbert spaces, then QBism will have all that it wants. But this suggests a natural follow-on question: Whether one might turn the tables and take the new formalism so developed as a foundation for quantum theory to begin with? This talk with describe a few recently discovered features of quantum theory when seen from this point of view.
Improved quantum state transfer via quantum partially collapsing measurements
Man, Zhong-Xiao; Ba An, Nguyen; Xia, Yun-Jie
2014-10-15
In this work, we present a general scheme to improve quantum state transfer (QST) by taking advantage of quantum partially collapsing measurements. The scheme consists of a weak measurement performed at the initial time on the qubit encoding the state of concern and a subsequent quantum reversal measurement at a desired time on the destined qubit. We determine the strength q{sub r} of the post quantum reversal measurement as a function of the strength p of the prior weak measurement and the evolution time t so that near-perfect QST can be achieved by choosing p close enough to 1, with a finite success probability, regardless of the evolution time and the distance over which the QST takes place. The merit of our scheme is twofold: it not only improves QST, but also suppresses the energy dissipation, if any. - Highlights: • A scheme using weak/reversal measurements is devised to improve quantum state transfer. • It can suppress dissipation allowing optimal quantum state transfer in open system. • Explicit condition for achieving near-perfect quantum state transfer is established. • Applications to spin chain and cavity array are considered in detail.
Secret Sharing of a Quantum State.
Lu, He; Zhang, Zhen; Chen, Luo-Kan; Li, Zheng-Da; Liu, Chang; Li, Li; Liu, Nai-Le; Ma, Xiongfeng; Chen, Yu-Ao; Pan, Jian-Wei
2016-07-15
Secret sharing of a quantum state, or quantum secret sharing, in which a dealer wants to share a certain amount of quantum information with a few players, has wide applications in quantum information. The critical criterion in a threshold secret sharing scheme is confidentiality: with less than the designated number of players, no information can be recovered. Furthermore, in a quantum scenario, one additional critical criterion exists: the capability of sharing entangled and unknown quantum information. Here, by employing a six-photon entangled state, we demonstrate a quantum threshold scheme, where the shared quantum secrecy can be efficiently reconstructed with a state fidelity as high as 93%. By observing that any one or two parties cannot recover the secrecy, we show that our scheme meets the confidentiality criterion. Meanwhile, we also demonstrate that entangled quantum information can be shared and recovered via our setting, which shows that our implemented scheme is fully quantum. Moreover, our experimental setup can be treated as a decoding circuit of the five-qubit quantum error-correcting code with two erasure errors. PMID:27472103
Secret Sharing of a Quantum State
NASA Astrophysics Data System (ADS)
Lu, He; Zhang, Zhen; Chen, Luo-Kan; Li, Zheng-Da; Liu, Chang; Li, Li; Liu, Nai-Le; Ma, Xiongfeng; Chen, Yu-Ao; Pan, Jian-Wei
2016-07-01
Secret sharing of a quantum state, or quantum secret sharing, in which a dealer wants to share a certain amount of quantum information with a few players, has wide applications in quantum information. The critical criterion in a threshold secret sharing scheme is confidentiality: with less than the designated number of players, no information can be recovered. Furthermore, in a quantum scenario, one additional critical criterion exists: the capability of sharing entangled and unknown quantum information. Here, by employing a six-photon entangled state, we demonstrate a quantum threshold scheme, where the shared quantum secrecy can be efficiently reconstructed with a state fidelity as high as 93%. By observing that any one or two parties cannot recover the secrecy, we show that our scheme meets the confidentiality criterion. Meanwhile, we also demonstrate that entangled quantum information can be shared and recovered via our setting, which shows that our implemented scheme is fully quantum. Moreover, our experimental setup can be treated as a decoding circuit of the five-qubit quantum error-correcting code with two erasure errors.
Matrix product states for quantum metrology.
Jarzyna, Marcin; Demkowicz-Dobrzański, Rafał
2013-06-14
We demonstrate that the optimal states in lossy quantum interferometry may be efficiently simulated using low rank matrix product states. We argue that this should be expected in all realistic quantum metrological protocols with uncorrelated noise and is related to the elusive nature of the Heisenberg precision scaling in the asymptotic limit of a large number of probes. PMID:25165900
Optimal conclusive teleportation of quantum states
Roa, L.; Delgado, A.; Fuentes-Guridi, I.
2003-08-01
Quantum teleportation of qudits is revisited. In particular, we analyze the case where the quantum channel corresponds to a nonmaximally entangled state and show that the success of the protocol is directly related to the problem of distinguishing nonorthogonal quantum states. The teleportation channel can be seen as a coherent superposition of two channels, one of them being a maximally entangled state, thus leading to perfect teleportation, and the other, corresponding to a nonmaximally entangled state living in a subspace of the d-dimensional Hilbert space. The second channel leads to a teleported state with reduced fidelity. We calculate the average fidelity of the process and show its optimality.
Parametric separation of symmetric pure quantum states
NASA Astrophysics Data System (ADS)
Solís-Prosser, M. A.; Delgado, A.; Jiménez, O.; Neves, L.
2016-01-01
Quantum state separation is a probabilistic map that transforms a given set of pure states into another set of more distinguishable ones. Here we investigate such a map acting onto uniparametric families of symmetric linearly dependent or independent quantum states. We obtained analytical solutions for the success probability of the maps—which is shown to be optimal—as well as explicit constructions in terms of positive operator valued measures. Our results can be used for state discrimination strategies interpolating continuously between minimum-error and unambiguous (or maximum-confidence) discrimination, which, in turn, have many applications in quantum information protocols. As an example, we show that quantum teleportation through a nonmaximally entangled quantum channel can be accomplished with higher probability than the one provided by unambiguous (or maximum-confidence) discrimination and with higher fidelity than the one achievable by minimum-error discrimination. Finally, an optical network is proposed for implementing parametric state separation.
Quantum pump in quantum spin Hall edge states
NASA Astrophysics Data System (ADS)
Cheng, Fang
2016-09-01
We present a theory for quantum pump in a quantum spin Hall bar with two quantum point contacts (QPCs). The pump currents can be generated by applying harmonically modulating gate voltages at QPCs. The phase difference between the gate voltages introduces an effective gauge field, which breaks the time-reversal symmetry and generates pump currents. The pump currents display very different pump frequency dependence for weak and strong e-e interaction. These unique properties are induced by the helical feature of the edge states, and therefore can be used to detect and control edge state transport.
Entanglement and Coherence in Quantum State Merging.
Streltsov, A; Chitambar, E; Rana, S; Bera, M N; Winter, A; Lewenstein, M
2016-06-17
Understanding the resource consumption in distributed scenarios is one of the main goals of quantum information theory. A prominent example for such a scenario is the task of quantum state merging, where two parties aim to merge their tripartite quantum state parts. In standard quantum state merging, entanglement is considered to be an expensive resource, while local quantum operations can be performed at no additional cost. However, recent developments show that some local operations could be more expensive than others: it is reasonable to distinguish between local incoherent operations and local operations which can create coherence. This idea leads us to the task of incoherent quantum state merging, where one of the parties has free access to local incoherent operations only. In this case the resources of the process are quantified by pairs of entanglement and coherence. Here, we develop tools for studying this process and apply them to several relevant scenarios. While quantum state merging can lead to a gain of entanglement, our results imply that no merging procedure can gain entanglement and coherence at the same time. We also provide a general lower bound on the entanglement-coherence sum and show that the bound is tight for all pure states. Our results also lead to an incoherent version of Schumacher compression: in this case the compression rate is equal to the von Neumann entropy of the diagonal elements of the corresponding quantum state. PMID:27367369
Entanglement and Coherence in Quantum State Merging
NASA Astrophysics Data System (ADS)
Streltsov, A.; Chitambar, E.; Rana, S.; Bera, M. N.; Winter, A.; Lewenstein, M.
2016-06-01
Understanding the resource consumption in distributed scenarios is one of the main goals of quantum information theory. A prominent example for such a scenario is the task of quantum state merging, where two parties aim to merge their tripartite quantum state parts. In standard quantum state merging, entanglement is considered to be an expensive resource, while local quantum operations can be performed at no additional cost. However, recent developments show that some local operations could be more expensive than others: it is reasonable to distinguish between local incoherent operations and local operations which can create coherence. This idea leads us to the task of incoherent quantum state merging, where one of the parties has free access to local incoherent operations only. In this case the resources of the process are quantified by pairs of entanglement and coherence. Here, we develop tools for studying this process and apply them to several relevant scenarios. While quantum state merging can lead to a gain of entanglement, our results imply that no merging procedure can gain entanglement and coherence at the same time. We also provide a general lower bound on the entanglement-coherence sum and show that the bound is tight for all pure states. Our results also lead to an incoherent version of Schumacher compression: in this case the compression rate is equal to the von Neumann entropy of the diagonal elements of the corresponding quantum state.
Quantum states prepared by realistic entanglement swapping
Scherer, Artur; Howard, Regina B.; Sanders, Barry C.; Tittel, Wolfgang
2009-12-15
Entanglement swapping between photon pairs is a fundamental building block in schemes using quantum relays or quantum repeaters to overcome the range limits of long-distance quantum key distribution. We develop a closed-form solution for the actual quantum states prepared by realistic entanglement swapping, which takes into account experimental deficiencies due to inefficient detectors, detector dark counts, and multiphoton-pair contributions of parametric down-conversion sources. We investigate how the entanglement present in the final state of the remaining modes is affected by the real-world imperfections. To test the predictions of our theory, comparison with previously published experimental entanglement swapping is provided.
Engineering arbitrary pure and mixed quantum states
Pechen, Alexander
2011-10-15
Controlled manipulation by atomic- and molecular-scale quantum systems has attracted a lot of research attention in recent years. A fundamental problem is to provide deterministic methods for controlled engineering of arbitrary quantum states. This work proposes a deterministic method for engineering arbitrary pure and mixed states of a wide class of quantum systems. The method exploits a special combination of incoherent and coherent controls (incoherent and coherent radiation) and has two properties which are specifically important for manipulating by quantum systems: it realizes the strongest possible degree of their state control, complete density matrix controllability, meaning the ability to steer arbitrary pure and mixed initial states into any desired pure or mixed final state, and it is all-to-one, such that each particular control transfers all initial system states into one target state.
Entropy for quantum pure states and quantum H theorem.
Han, Xizhi; Wu, Biao
2015-06-01
We construct a complete set of Wannier functions that are localized at both given positions and momenta. This allows us to introduce the quantum phase space, onto which a quantum pure state can be mapped unitarily. Using its probability distribution in quantum phase space, we define an entropy for a quantum pure state. We prove an inequality regarding the long-time behavior of our entropy's fluctuation. For a typical initial state, this inequality indicates that our entropy can relax dynamically to a maximized value and stay there most of time with small fluctuations. This result echoes the quantum H theorem proved by von Neumann [Zeitschrift für Physik 57, 30 (1929)]. Our entropy is different from the standard von Neumann entropy, which is always zero for quantum pure states. According to our definition, a system always has bigger entropy than its subsystem even when the system is described by a pure state. As the construction of the Wannier basis can be implemented numerically, the dynamical evolution of our entropy is illustrated with an example. PMID:26172660
Entropy for quantum pure states and quantum H theorem
NASA Astrophysics Data System (ADS)
Han, Xizhi; Wu, Biao
2015-06-01
We construct a complete set of Wannier functions that are localized at both given positions and momenta. This allows us to introduce the quantum phase space, onto which a quantum pure state can be mapped unitarily. Using its probability distribution in quantum phase space, we define an entropy for a quantum pure state. We prove an inequality regarding the long-time behavior of our entropy's fluctuation. For a typical initial state, this inequality indicates that our entropy can relax dynamically to a maximized value and stay there most of time with small fluctuations. This result echoes the quantum H theorem proved by von Neumann [Zeitschrift für Physik 57, 30 (1929), 10.1007/BF01339852]. Our entropy is different from the standard von Neumann entropy, which is always zero for quantum pure states. According to our definition, a system always has bigger entropy than its subsystem even when the system is described by a pure state. As the construction of the Wannier basis can be implemented numerically, the dynamical evolution of our entropy is illustrated with an example.
Reliable quantum certification of photonic state preparations
Aolita, Leandro; Gogolin, Christian; Kliesch, Martin; Eisert, Jens
2015-01-01
Quantum technologies promise a variety of exciting applications. Even though impressive progress has been achieved recently, a major bottleneck currently is the lack of practical certification techniques. The challenge consists of ensuring that classically intractable quantum devices perform as expected. Here we present an experimentally friendly and reliable certification tool for photonic quantum technologies: an efficient certification test for experimental preparations of multimode pure Gaussian states, pure non-Gaussian states generated by linear-optical circuits with Fock-basis states of constant boson number as inputs, and pure states generated from the latter class by post-selecting with Fock-basis measurements on ancillary modes. Only classical computing capabilities and homodyne or hetorodyne detection are required. Minimal assumptions are made on the noise or experimental capabilities of the preparation. The method constitutes a step forward in many-body quantum certification, which is ultimately about testing quantum mechanics at large scales. PMID:26577800
Gaussian state for the bouncing quantum cosmology
NASA Astrophysics Data System (ADS)
Mielczarek, Jakub; Piechocki, Włodzimierz
2012-10-01
We present results concerning propagation of the Gaussian state across the cosmological quantum bounce. The reduced phase space quantization of loop quantum cosmology is applied to the Friedman-Robertson-Walker universe with a free massless scalar field. Evolution of quantum moments of the canonical variables is investigated. The covariance turns out to be a monotonic function so it may be used as an evolution parameter having quantum origin. We show that for the Gaussian state the Universe is least quantum at the bounce. We propose explanation of this counter-intuitive feature using the entropy of squeezing. The obtained time dependence of entropy is in agreement with qualitative predictions based on von Neumann entropy for mixed states. We show that, for the considered Gaussian state, semiclassicality is preserved across the bounce, so there is no cosmic forgetfulness.
Authentication Protocol using Quantum Superposition States
Kanamori, Yoshito; Yoo, Seong-Moo; Gregory, Don A.; Sheldon, Frederick T
2009-01-01
When it became known that quantum computers could break the RSA (named for its creators - Rivest, Shamir, and Adleman) encryption algorithm within a polynomial-time, quantum cryptography began to be actively studied. Other classical cryptographic algorithms are only secure when malicious users do not have sufficient computational power to break security within a practical amount of time. Recently, many quantum authentication protocols sharing quantum entangled particles between communicators have been proposed, providing unconditional security. An issue caused by sharing quantum entangled particles is that it may not be simple to apply these protocols to authenticate a specific user in a group of many users. An authentication protocol using quantum superposition states instead of quantum entangled particles is proposed. The random number shared between a sender and a receiver can be used for classical encryption after the authentication has succeeded. The proposed protocol can be implemented with the current technologies we introduce in this paper.
Secure quantum key distribution using squeezed states
Gottesman, Daniel; Preskill, John
2001-02-01
We prove the security of a quantum key distribution scheme based on transmission of squeezed quantum states of a harmonic oscillator. Our proof employs quantum error-correcting codes that encode a finite-dimensional quantum system in the infinite-dimensional Hilbert space of an oscillator, and protect against errors that shift the canonical variables p and q. If the noise in the quantum channel is weak, squeezing signal states by 2.51 dB (a squeeze factor e{sup r}=1.34) is sufficient in principle to ensure the security of a protocol that is suitably enhanced by classical error correction and privacy amplification. Secure key distribution can be achieved over distances comparable to the attenuation length of the quantum channel.
NASA Astrophysics Data System (ADS)
Kundu, Biswajit; Chakrabarti, Sudipto; Pal, Amlan J.
2016-03-01
Core-shell nanocrystals having a type-I band-alignment confine charge carriers to the core. In this work, we choose CdSe/CdS core-shell nano-heterostructures that evidence confinement of holes only. Such a selective confinement occurs in the core-shell nanocrystals due to a low energy-offset of conduction band (CB) edges resulting in delocalization of electrons and thus a decrease in the conduction band-edge. Since the delocalization occurs through a thermal assistance, we study temperature dependence of selective delocalization process through scanning tunneling spectroscopy. From the density of states (DOS), we observe that the electrons are confined to the core at low temperatures. Above a certain temperature, they become delocalized up to the shell leading to a decrease in the CB of the core-shell system due to widening of quantum confinement effect. With holes remaining confined to the core due to a large offset in the valence band (VB), we record the topography of the core-shell nanocrystals by probing their CB and VB edges separately. The topographies recorded at different temperatures representing wave-functions of electrons and holes corresponded to the results obtained from the DOS spectra. The results evidence temperature-dependent wave-function delocalization of one-type of carriers up to the shell layer in core-shell nano-heterostructures.
Delocalization in weakly coupled disordered wires: application to conjugated polymers.
Martens, H C F
2006-02-24
It is well known that even for minimal disorder one-dimensional wires are insulators: all 1D electron states are localized. Here, the influence of interwire coupling on delocalization of 1D states is examined. Based on perturbation theoretic arguments for the formation of 3D states in coupled wires and subsequent scaling analysis, practical expressions for the microscopic conditions of electronic delocalization and coherent conductivity of coupled 1D wires are obtained. The model quantitatively explains the temperature dependent dc conductivity in conducting polymers at both sides of the metal-insulator transition and links the experimental data to microscopic material parameters. PMID:16606118
Collective field theory for quantum Hall states
NASA Astrophysics Data System (ADS)
Laskin, M.; Can, T.; Wiegmann, P.
2015-12-01
We develop a collective field theory for fractional quantum Hall (FQH) states. We show that in the leading approximation for a large number of particles, the properties of Laughlin states are captured by a Gaussian free field theory with a background charge. Gradient corrections to the Gaussian field theory arise from the covariant ultraviolet regularization of the theory, which produces the gravitational anomaly. These corrections are described by a theory closely related to the Liouville theory of quantum gravity. The field theory simplifies the computation of correlation functions in FQH states and makes manifest the effect of quantum anomalies.
Invariant measures on multimode quantum Gaussian states
Lupo, C.; Mancini, S.; De Pasquale, A.; Facchi, P.; Florio, G.; Pascazio, S.
2012-12-15
We derive the invariant measure on the manifold of multimode quantum Gaussian states, induced by the Haar measure on the group of Gaussian unitary transformations. To this end, by introducing a bipartition of the system in two disjoint subsystems, we use a parameterization highlighting the role of nonlocal degrees of freedom-the symplectic eigenvalues-which characterize quantum entanglement across the given bipartition. A finite measure is then obtained by imposing a physically motivated energy constraint. By averaging over the local degrees of freedom we finally derive the invariant distribution of the symplectic eigenvalues in some cases of particular interest for applications in quantum optics and quantum information.
Bondar, N. V. Brodyn, M. S.
2010-07-15
From studies of two-phase systems (borosilicate matrices containing ZnSe or CdS quantum dots), it was found that the systems exhibit a specific feature associated with the percolation phase transition of charge carriers (excitons). The transition manifests itself as radical changes in the optical spectra of both ZnSe and CdS quantum dot systems and by fluctuations of the emission band intensities near the percolation threshold. These effects are due to microscopic fluctuations of the density of quantum dots. The average spacing between quantum dots is calculated taking into account their finite dimensions and the volume fraction occupied by the quantum dots at the percolation threshold. It is shown that clustering of quantum dots occurs via tunneling of charge carriers between the dots. A physical mechanism responsible for the percolation threshold for charge carriers is suggested. In the mechanism, the permittivity mismatch of the materials of the matrix and quantum dots plays an important role in delocalization of charge carriers (excitons): due to the mismatch, 'a dielectric trap' is formed at the external surface of the interface between the matrix and a quantum dot and, thus, surface exciton states are formed there. The critical concentrations of quantum dots are determined, such that the spatial overlapping of such surface states provides the percolation transition in both systems.
Individual Atoms in their Quantum Ground State
NASA Astrophysics Data System (ADS)
Schwartz, Eyal; Sompet, Pimonpan; Fung, Yin Hsien; Andersen, Mikkel F.
2016-05-01
An ultimate control of pure quantum states is an excellent platform for various quantum science and engineering. In this work, we perform quantum manipulation of individual Rubidium atoms in a tightly focus optical tweezer in order to cool them into their vibrational ground state via Raman sideband cooling. Our experimental scheme involves a combination of Raman sideband transitions and optical pumping of the atoms that couples two magnetic field sublevels indifferent to magnetic noise thus providing a much longer atomic coherence time compared to previous cooling schemes. By installing most of the atoms in their ground state, we managed to achieve two-dimensional cooling on the way to create a full nil entropy quantum state of single atoms and single molecules. We acknowledge the Marsden Fund, CORE and DWC for their support.
Fractional Quantum Hall States in a Ge Quantum Well
NASA Astrophysics Data System (ADS)
Mironov, O. A.; d'Ambrumenil, N.; Dobbie, A.; Leadley, D. R.; Suslov, A. V.; Green, E.
2016-04-01
Measurements of the Hall and dissipative conductivity of a strained Ge quantum well on a SiGe /(001 )Si substrate in the quantum Hall regime are reported. We analyze the results in terms of thermally activated quantum tunneling of carriers from one internal edge state to another across saddle points in the long-range impurity potential. This shows that the gaps for different filling fractions closely follow the dependence predicted by theory. We also find that the estimates of the separation of the edge states at the saddle are in line with the expectations of an electrostatic model in the lowest spin-polarized Landau level (LL), but not in the spin-reversed LL where the density of quasiparticle states is not high enough to accommodate the carriers required.
Fractional Quantum Hall States in a Ge Quantum Well.
Mironov, O A; d'Ambrumenil, N; Dobbie, A; Leadley, D R; Suslov, A V; Green, E
2016-04-29
Measurements of the Hall and dissipative conductivity of a strained Ge quantum well on a SiGe/(001)Si substrate in the quantum Hall regime are reported. We analyze the results in terms of thermally activated quantum tunneling of carriers from one internal edge state to another across saddle points in the long-range impurity potential. This shows that the gaps for different filling fractions closely follow the dependence predicted by theory. We also find that the estimates of the separation of the edge states at the saddle are in line with the expectations of an electrostatic model in the lowest spin-polarized Landau level (LL), but not in the spin-reversed LL where the density of quasiparticle states is not high enough to accommodate the carriers required. PMID:27176531
Intrinsic quantum correlations of weak coherent states for quantum communication
Sua Yongmeng; Scanlon, Erin; Beaulieu, Travis; Bollen, Viktor; Lee, Kim Fook
2011-03-15
Intrinsic quantum correlations of weak coherent states are observed between two parties through a novel detection scheme, which can be used as a supplement to the existence decoy-state Bennett-Brassard 1984 protocol and the differential phase-shift quantum key distribution (DPS-QKD) protocol. In a proof-of-principle experiment, we generate bipartite correlations of weak coherent states using weak local oscillator fields in two spatially separated balanced homodyne detections. We employ a nonlinearity of postmeasurement method to obtain the bipartite correlations from two single-field interferences at individual homodyne measurements. This scheme is then used to demonstrate bits correlations between two parties over a distance of 10 km through a transmission fiber. We believe that the scheme can add another physical layer of security to these protocols for quantum key distribution.
On the ground state of quantum gravity
NASA Astrophysics Data System (ADS)
Cacciatori, S.; Preparata, G.; Rovelli, S.; Spagnolatti, I.; Xue, S.-S.
1998-05-01
In order to gain insight into the possible ground state of quantized Einstein's gravity, we have devised a variational calculation of the energy of the quantum gravitational field in an open space, as measured by an asymptotic observer living in an asymptotically flat space-time. We find that for quantum gravity (QG) it is energetically favourable to perform its quantum fluctuations not upon flat space-time but around a ``gas'' of wormholes, whose size is the Planck length ap (ap~=10-33 cm). As a result, assuming such configuration to be a good approximation to the true ground state of quantum gravity, space-time, the arena of physical reality, turns out to be well described by Wheeler's Quantum Foam and adequately modeled by a space-time lattice with lattice constant ap, the Planck lattice. All rights reserved
Quantum state sharing using linear optical elements
NASA Astrophysics Data System (ADS)
Xia, Yan; Song, Jie; Song, He-Shan
2008-10-01
Motivated by protocols [G. Gordon, G. Rigolin, Phys. Rev. A 73 (2006) 062316] and [N.B. An, G. Mahler, Phys. Lett. A 365 (2007) 70], we propose a linear optical protocol for quantum state sharing of polarization entangled state in terms optical elements. Our protocol can realize a near-complete quantum state sharing of polarization entangled state with arbitrary coefficients, and it is possible to achieve unity fidelity transfer of the state if the parties collaborate. This protocol can also be generalized to the multi-party system.
LOCC indistinguishable orthogonal product quantum states
NASA Astrophysics Data System (ADS)
Zhang, Xiaoqian; Tan, Xiaoqing; Weng, Jian; Li, Yongjun
2016-07-01
We construct two families of orthogonal product quantum states that cannot be exactly distinguished by local operation and classical communication (LOCC) in the quantum system of 2k+i ⊗ 2l+j (i, j ∈ {0, 1} and i ≥ j ) and 3k+i ⊗ 3l+j (i, j ∈ {0, 1, 2}). And we also give the tiling structure of these two families of quantum product states where the quantum states are unextendible in the first family but are extendible in the second family. Our construction in the quantum system of 3k+i ⊗ 3l+j is more generalized than the other construction such as Wang et al.’s construction and Zhang et al.’s construction, because it contains the quantum system of not only 2k ⊗ 2l and 2k+1 ⊗ 2l but also 2k ⊗ 2l+1 and 2k+1 ⊗ 2l+1. We calculate the non-commutativity to quantify the quantumness of a quantum ensemble for judging the local indistinguishability. We give a general method to judge the indistinguishability of orthogonal product states for our two constructions in this paper. We also extend the dimension of the quantum system of 2k ⊗ 2l in Wang et al.’s paper. Our work is a necessary complement to understand the phenomenon of quantum nonlocality without entanglement.
LOCC indistinguishable orthogonal product quantum states
Zhang, Xiaoqian; Tan, Xiaoqing; Weng, Jian; Li, Yongjun
2016-01-01
We construct two families of orthogonal product quantum states that cannot be exactly distinguished by local operation and classical communication (LOCC) in the quantum system of 2k+i ⊗ 2l+j (i, j ∈ {0, 1} and i ≥ j ) and 3k+i ⊗ 3l+j (i, j ∈ {0, 1, 2}). And we also give the tiling structure of these two families of quantum product states where the quantum states are unextendible in the first family but are extendible in the second family. Our construction in the quantum system of 3k+i ⊗ 3l+j is more generalized than the other construction such as Wang et al.’s construction and Zhang et al.’s construction, because it contains the quantum system of not only 2k ⊗ 2l and 2k+1 ⊗ 2l but also 2k ⊗ 2l+1 and 2k+1 ⊗ 2l+1. We calculate the non-commutativity to quantify the quantumness of a quantum ensemble for judging the local indistinguishability. We give a general method to judge the indistinguishability of orthogonal product states for our two constructions in this paper. We also extend the dimension of the quantum system of 2k ⊗ 2l in Wang et al.’s paper. Our work is a necessary complement to understand the phenomenon of quantum nonlocality without entanglement. PMID:27377310
LOCC indistinguishable orthogonal product quantum states.
Zhang, Xiaoqian; Tan, Xiaoqing; Weng, Jian; Li, Yongjun
2016-01-01
We construct two families of orthogonal product quantum states that cannot be exactly distinguished by local operation and classical communication (LOCC) in the quantum system of (2k+i) ⊗ (2l+j) (i, j ∈ {0, 1} and i ≥ j ) and (3k+i) ⊗ (3l+j) (i, j ∈ {0, 1, 2}). And we also give the tiling structure of these two families of quantum product states where the quantum states are unextendible in the first family but are extendible in the second family. Our construction in the quantum system of (3k+i) ⊗ (3l+j) is more generalized than the other construction such as Wang et al.'s construction and Zhang et al.'s construction, because it contains the quantum system of not only (2k) ⊗ (2l) and (2k+1) ⊗ (2l) but also (2k) ⊗ (2l+1) and (2k+1) ⊗ (2l+1). We calculate the non-commutativity to quantify the quantumness of a quantum ensemble for judging the local indistinguishability. We give a general method to judge the indistinguishability of orthogonal product states for our two constructions in this paper. We also extend the dimension of the quantum system of (2k) ⊗ (2l) in Wang et al.'s paper. Our work is a necessary complement to understand the phenomenon of quantum nonlocality without entanglement. PMID:27377310
Quantum information. Unconditional quantum teleportation between distant solid-state quantum bits.
Pfaff, W; Hensen, B J; Bernien, H; van Dam, S B; Blok, M S; Taminiau, T H; Tiggelman, M J; Schouten, R N; Markham, M; Twitchen, D J; Hanson, R
2014-08-01
Realizing robust quantum information transfer between long-lived qubit registers is a key challenge for quantum information science and technology. Here we demonstrate unconditional teleportation of arbitrary quantum states between diamond spin qubits separated by 3 meters. We prepare the teleporter through photon-mediated heralded entanglement between two distant electron spins and subsequently encode the source qubit in a single nuclear spin. By realizing a fully deterministic Bell-state measurement combined with real-time feed-forward, quantum teleportation is achieved upon each attempt with an average state fidelity exceeding the classical limit. These results establish diamond spin qubits as a prime candidate for the realization of quantum networks for quantum communication and network-based quantum computing. PMID:25082696
Private database queries using one quantum state
NASA Astrophysics Data System (ADS)
Yang, Yu-Guang; Zhang, Ming-Ou; Yang, Rui
2015-03-01
A novel private database query protocol with only one quantum state is proposed. The database owner Bob sends only one quantum state to the user Alice. The proposed protocol combines the idea of semiquantum key distribution and private query. It can be implemented in the situation where not all the parties can afford expensive quantum resources and operations. So our proposal is more practical in use. We also prove that the proposed protocol is secure in terms of the user security and the database security.
Fidelity between Gaussian mixed states with quantum state quadrature variances
NASA Astrophysics Data System (ADS)
Hai-Long, Zhang; Chun, Zhou; Jian-Hong, Shi; Wan-Su, Bao
2016-04-01
In this paper, from the original definition of fidelity in a pure state, we first give a well-defined expansion fidelity between two Gaussian mixed states. It is related to the variances of output and input states in quantum information processing. It is convenient to quantify the quantum teleportation (quantum clone) experiment since the variances of the input (output) state are measurable. Furthermore, we also give a conclusion that the fidelity of a pure input state is smaller than the fidelity of a mixed input state in the same quantum information processing. Project supported by the National Basic Research Program of China (Grant No. 2013CB338002) and the Foundation of Science and Technology on Information Assurance Laboratory (Grant No. KJ-14-001).
Quantum state transfer in optomechanical arrays
NASA Astrophysics Data System (ADS)
de Moraes Neto, G. D.; Andrade, F. M.; Montenegro, V.; Bose, S.
2016-06-01
Quantum state transfer between distant nodes is at the heart of quantum processing and quantum networking. Stimulated by this, we propose a scheme where one can achieve quantum state transfer with a high fidelity between sites in a cavity quantum optomechanical network. In our lattice, each individual site is composed of a localized mechanical mode which interacts with a laser-driven cavity mode via radiation pressure, while photons hop between neighboring sites. After diagonalization of the Hamiltonian of each cell, we show that the system can be reduced to an effective Hamiltonian of two decoupled bosonic chains, and therefore we can apply the well-known results in quantum state transfer together with an additional condition on the transfer times. In fact, we show that our transfer protocol works for any arbitrary joint quantum state of a mechanical and an optical mode. Finally, in order to analyze a more realistic scenario we take into account the effects of independent thermal reservoirs for each site. By solving the standard master equation within the Born-Markov approximation, we reassure both the effective model and the feasibility of our protocol.
Entanglement and the shareability of quantum states
NASA Astrophysics Data System (ADS)
Doherty, Andrew C.
2014-10-01
This brief review discusses the problem of determining whether a given quantum state is separable or entangled. I describe an established approach to this problem that is based on the monogamy of entanglement, which is the observation that a pair of quantum systems that are strongly entangled must be uncorrelated with the rest of the world. Unentangled states on the other hand involve correlations that can be shared with many other parties. Checking whether a given quantum state is shareable involves constructing certain symmetric quantum state extensions and I discuss how to do this using a class of optimizations known as semidefinite programs. An attractive feature of this approach is that it generates explicit entanglement witnesses that can be measured to demonstrate the entanglement experimentally. In recent years analysis of this approach has greatly increased our understanding of the complexity of determining whether a given quantum state is entangled and this review aims to give a unified discussion of these developments. Specifically, I describe how to use finite quantum de Finetti theorems to prove that highly shareable states are nearly separable and use these results to understand the computational complexity of the problem. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘50 years of Bell’s theorem’.
Classical and Quantum-Mechanical State Reconstruction
ERIC Educational Resources Information Center
Khanna, F. C.; Mello, P. A.; Revzen, M.
2012-01-01
The aim of this paper is to present the subject of state reconstruction in classical and in quantum physics, a subject that deals with the experimentally acquired information that allows the determination of the physical state of a system. Our first purpose is to explain a method for retrieving a classical state in phase space, similar to that…
Quantum superreplication of states and gates
NASA Astrophysics Data System (ADS)
Chiribella, Giulio; Yang, Yuxiang
2016-06-01
Although the no-cloning theorem forbids perfect replication of quantum information, it is sometimes possible to produce large numbers of replicas with vanishingly small error. This phenomenon, known as quantum superreplication, can occur for both quantum states and quantum gates. The aim of this paper is to review the central features of quantum superreplication and provide a unified view of existing results. The paper also includes new results. In particular, we show that when quantum superreplication can be achieved, it can be achieved through estimation up to an error of size O(M/ N 2), where N and M are the number of input and output copies, respectively. Quantum strategies still offer an advantage for superreplication in that they allow for exponentially faster reduction of the error. Using the relation with estimation, we provide i) an alternative proof of the optimality of Heisenberg scaling in quantum metrology, ii) a strategy for estimating arbitrary unitary gates with a mean square error scaling as log N/ N 2, and iii) a protocol that generates O(N 2) nearly perfect copies of a generic pure state U |0> while using the corresponding gate U only N times. Finally, we point out that superreplication can be achieved using interactions among k systems, provided that k is large compared to M 2/ N 2.
Extracting work from quantum states of radiation
NASA Astrophysics Data System (ADS)
Kolář, M.; Ryabov, A.; Filip, R.
2016-06-01
Quantum optomechanics opens a possibility to mediate a physical connection between quantum optics and classical thermodynamics. We propose and theoretically analyze a one-way chain starting from various quantum states of radiation. In the chain, the radiation state is first ideally swapped to a sufficiently large mechanical oscillator (membrane). Then the membrane mechanically pushes a classical almost massless piston, which is pressing a gas in a small container. As a result, we observe strongly nonlinear and nonmonotonic transfer of the energy stored in classical and quantum uncertainty of radiation to mechanical work. The amount of work and even its sign depend strongly on the uncertainty of the radiation state. Our theoretical prediction would stimulate an experimental proposal for such optomechanical connection to thermodynamics.
Quantum states with strong positive partial transpose
Chruscinski, Dariusz; Jurkowski, Jacek; Kossakowski, Andrzej
2008-02-15
We construct a large class of bipartite M x N quantum states which defines a proper subset of states with positive partial transposes (PPTs). Any state from this class has PPT but the positivity of its partial transposition is recognized with respect to canonical factorization of the original density operator. We propose to call elements from this class states with strong positive partial transposes (SPPTs). We conjecture that all SPPT states are separable.
Sequential quantum teleportation of optical coherent states
Yonezawa, Hidehiro; Furusawa, Akira; Loock, Peter van
2007-09-15
We demonstrate a sequence of two quantum teleportations of optical coherent states, combining two high-fidelity teleporters for continuous variables. In our experiment, the individual teleportation fidelities are evaluated as F{sub 1}=0.70{+-}0.02 and F{sub 2}=0.75{+-}0.02, while the fidelity between the input and the sequentially teleported states is determined as F{sup (2)}=0.57{+-}0.02. This still exceeds the optimal fidelity of one half for classical teleportation of arbitrary coherent states and almost attains the value of the first (unsequential) quantum teleportation experiment with optical coherent states.
Nonclassical depth of a quantum state
NASA Technical Reports Server (NTRS)
Lee, Ching Tsung
1992-01-01
A measure is defined for how nonclassical a quantum state is, with values ranging from 0 to 1. When it is applied to the photon-number states, the calculated value is 1, the maximum possible. For squeezed states, it is a monotonically increasing function of the squeeze parameter with values varying from 0 to 1/2. The physical meaning of the nonclassical depth is found to be just the number of thermal photons necessary to ruin the nonclassical nature of the quantum state.
Quantum states for Heisenberg-limited interferometry
NASA Astrophysics Data System (ADS)
Uys, H.; Meystre, P.
2007-07-01
The phase sensitivity of interferometers is limited by the so-called Heisenberg limit, which states that the optimum phase sensitivity is inversely proportional to the number of interfering particles N , a 1/N improvement over the standard quantum limit. We have used simulated annealing, a global optimization strategy, to systematically search for quantum interferometer input states that approach the Heisenberg-limited uncertainty in estimates of the interferometer phase shift. We compare the performance of these states to that of other nonclassical states already known to yield Heisenberg-limited uncertainty.
Quantum State Transfer Using the Four-Ion Cluste State
NASA Astrophysics Data System (ADS)
Shi, Jianfei; Ge, Baojun; Wang, Dongxin
2016-06-01
We demonstrate that a four-ion cluster state can be used to realize the quantum state transfer in the ion-trap systems. The scheme does not involve Bell-state measurement and is insensitive to both the initial motional state and heating.
A direct evidence of vibrationally delocalized response at ice surface
Ishiyama, Tatsuya; Morita, Akihiro
2014-11-14
Surface-specific vibrational spectroscopic responses at isotope diluted ice and amorphous ice are investigated by molecular dynamics (MD) simulations combined with quantum mechanics/molecular mechanics calculations. The intense response specific to the ordinary crystal ice surface is predicted to be significantly suppressed in the isotopically diluted and amorphous ices, demonstrating the vibrational delocalization at the ordinary ice surface. The collective vibration at the ice surface is also analyzed with varying temperature by the MD simulation.
Bounds for state-dependent quantum cloning
Han Yongjian; Zhang Yongsheng; Guo Guangcan
2002-11-01
Due to the no-cloning theorem, the unknown quantum state can only be cloned approximately or exactly with some probability. There are two types of cloners: universal and state-dependent cloner. The optimal universal cloner has been found and can be viewed as a special state-dependent quantum cloner that has no information about the states. In this paper, we investigate the state-dependent cloning when the state set contains more than two states. We get some bounds of the global fidelity for these processes. This method is not dependent on the number of the states contained in the state set. It is also independent of the numbers of copying.
Reconstructing quantum states from local data
NASA Astrophysics Data System (ADS)
Holzaepfel, Milan; Cramer, Marcus; Datta, Nilanjana; Plenio, Martin
Quantum spin chains are systems of extreme complexity, in the sense that the number of parameters that fully characterize the state of a quantum spin chain grows exponentially with the number of spins. Yet, physically relevant subsets of all quantum states can be well-approximated by a small number of parameters using well-known methods such as Matrix Product States (MPS). The structure of such states can guarantee reconstruction of the state from the measurement of a small number of simple observables, merely growing linearly with the number of spins. We compare two classes of quantum states which admit efficient reconstruction from incomplete, local information: States which have vanishing conditional mutual information, and the recently introduced class of states with non-decreasing operator Schmidt rank under partial traces which includes generic Matrix Product Operators (MPO). It is well-known that Rényi entropies can be used to characterize the bond dimension of a pure MPS, i.e. the number of parameters required to describe the state. For mixed MPOs, no similar relation is known. Our comparison provides a first relation between the mutual information and the bond dimension of an MPO representation of a mixed state.
Quantum Fidelity for Arbitrary Gaussian States
NASA Astrophysics Data System (ADS)
Banchi, Leonardo; Braunstein, Samuel L.; Pirandola, Stefano
2015-12-01
We derive a computable analytical formula for the quantum fidelity between two arbitrary multimode Gaussian states which is simply expressed in terms of their first- and second-order statistical moments. We also show how such a formula can be written in terms of symplectic invariants and used to derive closed forms for a variety of basic quantities and tools, such as the Bures metric, the quantum Fisher information, and various fidelity-based bounds. Our result can be used to extend the study of continuous-variable protocols, such as quantum teleportation and cloning, beyond the current one-mode or two-mode analyses, and paves the way to solve general problems in quantum metrology and quantum hypothesis testing with arbitrary multimode Gaussian resources.
Quantum Fidelity for Arbitrary Gaussian States.
Banchi, Leonardo; Braunstein, Samuel L; Pirandola, Stefano
2015-12-31
We derive a computable analytical formula for the quantum fidelity between two arbitrary multimode Gaussian states which is simply expressed in terms of their first- and second-order statistical moments. We also show how such a formula can be written in terms of symplectic invariants and used to derive closed forms for a variety of basic quantities and tools, such as the Bures metric, the quantum Fisher information, and various fidelity-based bounds. Our result can be used to extend the study of continuous-variable protocols, such as quantum teleportation and cloning, beyond the current one-mode or two-mode analyses, and paves the way to solve general problems in quantum metrology and quantum hypothesis testing with arbitrary multimode Gaussian resources. PMID:26764978
Entangled exciton states in quantum dot molecules
NASA Astrophysics Data System (ADS)
Bayer, Manfred
2002-03-01
Currently there is strong interest in quantum information processing(See, for example, The Physics of Quantum Information, eds. D. Bouwmeester, A. Ekert and A. Zeilinger (Springer, Berlin, 2000).) in a solid state environment. Many approaches mimic atomic physics concepts in which semiconductor quantum dots are implemented as artificial atoms. An essential building block of a quantum processor is a gate which entangles the states of two quantum bits. Recently a pair of vertically aligned quantum dots has been suggested as optically driven quantum gate(P. Hawrylak, S. Fafard, and Z. R. Wasilewski, Cond. Matter News 7, 16 (1999).)(M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z.R. Wasilewski, O. Stern, and A. Forchel, Science 291, 451 (2001).): The quantum bits are individual carriers either on dot zero or dot one. The different dot indices play the same role as a "spin", therefore we call them "isospin". Quantum mechanical tunneling between the dots rotates the isospin and leads to superposition of these states. The quantum gate is built when two different particles, an electron and a hole, are created optically. The two particles form entangled isospin states. Here we present spectrocsopic studies of single self-assembled InAs/GaAs quantum dot molecules that support the feasibility of this proposal. The evolution of the excitonic recombination spectrum with varying separation between the dots allows us to demonstrate coherent tunneling of carriers across the separating barrier and the formation of entangled exciton states: Due to the coupling between the dots the exciton states show a splitting that increases with decreasing barrier width. For barrier widths below 5 nm it exceeds the thermal energy at room temperature. For a given barrier width, we find only small variations of the tunneling induced splitting demonstrating a good homogeneity within a molecule ensemble. The entanglement may be controlled by application of electromagnetic field. For
Effective pure states for bulk quantum computation
Knill, E.; Chuang, I.; Laflamme, R.
1997-11-01
In bulk quantum computation one can manipulate a large number of indistinguishable quantum computers by parallel unitary operations and measure expectation values of certain observables with limited sensitivity. The initial state of each computer in the ensemble is known but not pure. Methods for obtaining effective pure input states by a series of manipulations have been described by Gershenfeld and Chuang (logical labeling) and Corey et al. (spatial averaging) for the case of quantum computation with nuclear magnetic resonance. We give a different technique called temporal averaging. This method is based on classical randomization, requires no ancilla qubits and can be implemented in nuclear magnetic resonance without using gradient fields. We introduce several temporal averaging algorithms suitable for both high temperature and low temperature bulk quantum computing and analyze the signal to noise behavior of each.
Galois algebras of squeezed quantum phase states
NASA Astrophysics Data System (ADS)
Planat, Michel; Saniga, Metod
2005-12-01
Coding, transmission and recovery of quantum states with high security and efficiency, and with as low fluctuations as possible, is the main goal of quantum information protocols and their proper technical implementations. The paper deals with this topic, focusing on the quantum states related to Galois algebras. We first review the constructions of complete sets of mutually unbiased bases in a Hilbert space of dimension q = pm, with p being a prime and m a positive integer, employing the properties of Galois fields Fq (for p>2) and/or Galois rings of characteristic four R4m (for p = 2). We then discuss the Gauss sums and their role in describing quantum phase fluctuations. Finally, we examine an intricate connection between the concepts of mutual unbiasedness and maximal entanglement.
Chiral Thermoelectrics with Quantum Hall Edge States
NASA Astrophysics Data System (ADS)
Sánchez, Rafael; Sothmann, Björn; Jordan, Andrew N.
2015-04-01
The thermoelectric properties of a three-terminal quantum Hall conductor are investigated. We identify a contribution to the thermoelectric response that relies on the chirality of the carrier motion rather than on spatial asymmetries. The Onsager matrix becomes maximally asymmetric with configurations where either the Seebeck or the Peltier coefficients are zero while the other one remains finite. Reversing the magnetic field direction exchanges these effects, which originate from the chiral nature of the quantum Hall edge states. The possibility to generate spin-polarized currents in quantum spin Hall samples is discussed.
Quantum communication with macroscopically bright nonclassical states.
Usenko, Vladyslav C; Ruppert, Laszlo; Filip, Radim
2015-11-30
We analyze homodyne detection of macroscopically bright multimode nonclassical states of light and propose their application in quantum communication. We observe that the homodyne detection is sensitive to a mode-matching of the bright light to the highly intense local oscillator. Unmatched bright modes of light result in additional noise which technically limits detection of Gaussian entanglement at macroscopic level. When the mode-matching is sufficient, we show that multimode quantum key distribution with bright beams is feasible. It finally merges the quantum communication with classical optical technology of visible beams of light. PMID:26698776
Unstable states in quantum theory
NASA Astrophysics Data System (ADS)
Kuksa, V. I.
2014-05-01
Various approaches to the problem of describing unstable particles are reviewed. Fundamental problems that arise in quantum field description of these particles and the ways of their solution are considered. Among them, there is an approach related to the notion of the smeared (continuous) mass, which originates from the finite lifetime of unstable particles. The quantum field model of unstable particles with smeared mass, which is built upon two basic axiomatic elements, is considered in detail. The basic processes with unstable particles (decay and scattering) are considered within the framework of the model and the formalism for describing physical characteristics of those processes is developed. The model is successfully applied to describing the processes of pair and triple boson production at the linear collider, top quark pair production, and certain hadronic decays. Based on this model, the factorization method is developed, which allows a description of complicated and multistep scattering and decay processes with unstable particles to be considerably simplified.
Quantum state estimation with informationally overcomplete measurements
NASA Astrophysics Data System (ADS)
Zhu, Huangjun
2014-07-01
We study informationally overcomplete measurements for quantum state estimation so as to clarify their tomographic significance as compared with minimal informationally complete measurements. We show that informationally overcomplete measurements can improve the tomographic efficiency significantly over minimal measurements when the states of interest have high purities. Nevertheless, the efficiency is still too limited to be satisfactory with respect to figures of merit based on monotone Riemannian metrics, such as the Bures metric and quantum Chernoff metric. In this way, we also pinpoint the limitation of nonadaptive measurements and motivate the study of more sophisticated measurement schemes. In the course of our study, we introduce the best linear unbiased estimator and show that it is equally efficient as the maximum likelihood estimator in the large sample limit. This estimator may significantly outperform the canonical linear estimator for states with high purities. It is expected to play an important role in experimental designs and adaptive quantum state tomography besides its significance to the current study.
Quantum wormhole states and local supersymmetry
Alty, L.J.; D'Eath, P.D. ); Dowker, H.F. )
1992-11-15
The existence of quantum wormhole states is studied in a minisuperspace model with local supersymmetry, where supergravity is coupled to a massless multiplet consisting of a spin-1/2 and complex scalar field. The geometry is taken to be that of a {ital k}=+1 Friedmann universe, the other fields being subject to a suitable homogeneous ansatz. An integral expression is found for the wormhole ground state, and the other quantum wormhole states can be found from it by simple differential operations. The effective mass of the scalar-spin-1/2 multiplet remains zero when wormhole effects are included.
Quantum secret sharing using product states
Hsu, L.-Y.; Li, C.-M.
2005-02-01
This study proposes quantum secret sharing protocols using product states. The first two protocols adopt the quantum key distribution protocol using product states [Guo et al.Phys. Rev. A 64, 042301 (2001)]. In these two protocols, the sender does not reveal any information about the qutrits until confirming that each receiver has received a qutrit. This study also considers the security and some possible eavesdropping strategies. In the third proposed protocol, three-level Bell states are exploited for qutrit preparation via nonlocality swapping.
Classical codes in quantum state space
NASA Astrophysics Data System (ADS)
Howard, Mark
2015-12-01
We present a construction of Hermitian operators and quantum states labelled by strings from a finite field. The distance between these operators or states is then simply related (typically, proportional) to the Hamming distance between their corresponding strings. This allows a straightforward application of classical coding theory to find arrangements of operators or states with a given distance distribution. Using the simplex or extended Reed-Solomon code in our construction recovers the discrete Wigner function, which has important applications in quantum information theory.
Quantum state sharing against the controller's cheating
NASA Astrophysics Data System (ADS)
Shi, Run-hua; Zhong, Hong; Huang, Liu-sheng
2013-08-01
Most existing QSTS schemes are equivalent to the controlled teleportation, in which a designated agent (i.e., the recoverer) can recover the teleported state with the help of the controllers. However, the controller may attempt to cheat the recoverer during the phase of recovering the secret state. How can we detect this cheating? In this paper, we considered the problem of detecting the controller's cheating in Quantum State Sharing, and further proposed an effective Quantum State Sharing scheme against the controller's cheating. We cleverly use Quantum Secret Sharing, Multiple Quantum States Sharing and decoy-particle techniques. In our scheme, via a previously shared entanglement state Alice can teleport multiple arbitrary multi-qubit states to Bob with the help of Charlie. Furthermore, by the classical information shared previously, Alice and Bob can check whether there is any cheating of Charlie. In addition, our scheme only needs to perform Bell-state and single-particle measurements, and to apply C-NOT gate and other single-particle unitary operations. With the present techniques, it is feasible to implement these necessary measurements and operations.
Spacetime states and covariant quantum theory
NASA Astrophysics Data System (ADS)
Reisenberger, Michael; Rovelli, Carlo
2002-06-01
In its usual presentation, classical mechanics appears to give time a very special role. But it is well known that mechanics can be formulated so as to treat the time variable on the same footing as the other variables in the extended configuration space. Such covariant formulations are natural for relativistic gravitational systems, where general covariance conflicts with the notion of a preferred physical-time variable. The standard presentation of quantum mechanics, in turn, again gives time a very special role, raising well known difficulties for quantum gravity. Is there a covariant form of (canonical) quantum mechanics? We observe that the preferred role of time in quantum theory is the consequence of an idealization: that measurements are instantaneous. Canonical quantum theory can be given a covariant form by dropping this idealization. States prepared by noninstantaneous measurements are described by ``spacetime smeared states.'' The theory can be formulated in terms of these states, without making any reference to a special time variable. The quantum dynamics is expressed in terms of the propagator, an object covariantly defined on the extended configuration space.
Entanglement of multipartite quantum states and the generalized quantum search
NASA Astrophysics Data System (ADS)
Gingrich, Robert Michael
2002-09-01
In chapter 2 various parameterizations for the orbits under local unitary transformations of three-qubit pure states are analyzed. It is shown that the entanglement monotones of any multipartite pure state uniquely determine the orbit of that state. It follows that there must be an entanglement monotone for three-qubit pure states which depends on the Kempe invariant defined in [1]. A form for such an entanglement monotone is proposed. A theorem is proved that significantly reduces the number of entanglement monotones that must be looked at to find the maximal probability of transforming one multipartite state to another. In chapter 3 Grover's unstructured quantum search algorithm is generalized to use an arbitrary starting superposition and an arbitrary unitary matrix. A formula for the probability of the generalized Grover's algorithm succeeding after n iterations is derived. This formula is used to determine the optimal strategy for using the unstructured quantum search algorithm. The speedup obtained illustrates that a hybrid use of quantum computing and classical computing techniques can yield a performance that is better than either alone. The analysis is extended to the case of a society of k quantum searches acting in parallel. In chapter 4 the positive map Gamma : rho → (Trrho) - rho is introduced as a separability criterion. Any separable state is mapped by the tensor product of Gamma and the identity in to a non-negative operator, which provides a necessary condition for separability. If Gamma acts on a two-dimensional subsystem, then it is equivalent to partial transposition and therefore also sufficient for 2 x 2 and 2 x 3 systems. Finally, a connection between this map for two qubits and complex conjugation in the "magic" basis [2] is displayed.
Coin state properties in quantum walks
Andrade, R. F. S.
2013-01-01
Recent experimental advances have measured individual coin components in discrete time quantum walks, which have not received the due attention in most theoretical studies on the theme. Here is presented a detailed investigation of the properties of M, the difference between square modulus of coin states of discrete quantum walks on a linear chain. Local expectation values are obtained in terms of real and imaginary parts of the Fourier transformed wave function. A simple expression is found for the average difference between coin states in terms of an angle θ gauging the coin operator and its initial state. These results are corroborated by numerical integration of dynamical equations in real space. The local dependence is characterized both by large and short period modulations. The richness of revealed patterns suggests that the amount of information stored and retrieved from quantum walks is significantly enhanced if M is taken into account. PMID:23756358
Distillation of local purity from quantum states
Devetak, I.
2005-06-15
Recently Horodecki et al. [Phys. Rev. Lett. 90, 100402 (2003)] introduced an important quantum information processing paradigm, in which two parties sharing many copies of the same bipartite quantum state distill local pure states by means of local unitary operations assisted by a one-way (two-way) completely dephasing channel. Local pure states are a valuable resource from a thermodynamical point of view, since they allow thermal energy to be converted into work by local quantum heat engines. We give a simple information-theoretical characterization of the one-way distillable local purity, which turns out to be closely related to a previously known operational measure of classical correlations, the one-way distillable common randomness.
Theory of Nematic Fractional Quantum Hall States
NASA Astrophysics Data System (ADS)
You, Yizhi; Cho, Gil Young; Fradkin, Eduardo
2014-10-01
We derive an effective field theory for the isotropic-nematic quantum phase transition of fractional quantum Hall states. We demonstrate that for a system with an isotropic background the low-energy effective theory of the nematic order parameter has z =2 dynamical scaling exponent, due to a Berry phase term of the order parameter, which is related to the nondissipative Hall viscosity. Employing the composite fermion theory with a quadrupolar interaction between electrons, we show that a sufficiently attractive quadrupolar interaction triggers a phase transition from the isotropic fractional quantum Hall fluid into a nematic fractional quantum Hall phase. By investigating the spectrum of collective excitations, we demonstrate that the mass gap of the Girvin-MacDonald-Platzman mode collapses at the isotropic-nematic quantum phase transition. On the other hand, Laughlin quasiparticles and the Kohn collective mode remain gapped at this quantum phase transition, and Kohn's theorem is satisfied. The leading couplings between the nematic order parameter and the gauge fields include a term of the same form as the Wen-Zee term. A disclination of the nematic order parameter carries an unquantized electric charge. We also discuss the relation between nematic degrees of freedom and the geometrical response of the fractional quantum Hall fluid.
Communication: Spectroscopic consequences of proton delocalization in OCHCO+
NASA Astrophysics Data System (ADS)
Fortenberry, Ryan C.; Yu, Qi; Mancini, John S.; Bowman, Joel M.; Lee, Timothy J.; Crawford, T. Daniel; Klemperer, William F.; Francisco, Joseph S.
2015-08-01
Even though quartic force fields (QFFs) and highly accurate coupled cluster computations describe the OCHCO+ cation at equilibrium as a complex between carbon monoxide and the formyl cation, two notable and typical interstellar and atmospheric molecules, the prediction from the present study is that the equilibrium C∞v structure is less relevant to observables than the saddle-point D∞h structure. This is the conclusion from diffusion Monte Carlo and vibrational self-consistent field/virtual state configuration interaction calculations utilizing a semi-global potential energy surface. These calculations demonstrate that the proton "rattle" motion (ν6) has centrosymmetric delocalization of the proton over the D∞h barrier lying only 393.6 cm-1 above the double-well OCHCO+ C∞v minima. As a result, this molecule will likely appear D∞h, and the rotational spectrum will be significantly dimmer than the computed equilibrium 2.975 D center-of-mass dipole moment indicates. However, the proton transfer fundamental, determined to be at roughly 300 cm-1, has a very strong intensity. This prediction as well as those of other fundamentals should provide useful guides for laboratory detection of this cation. Finally, it is shown that the two highest energy QFF-determined modes are actually in good agreement with their vibrational configuration interaction counterparts. These high-level quantum chemical methods provide novel insights into this fascinating and potentially common interstellar molecule.
An Arbitrated Quantum Signature with Bell States
NASA Astrophysics Data System (ADS)
Liu, Feng; Qin, Su-Juan; Huang, Wei
2014-05-01
Entanglement is the main resource in quantum communication. The main aims of the arbitrated quantum signature (AQS) scheme are to present an application of the entanglement in cryptology and to prove the possibility of the quantum signature. More specifically, the main function of quantum entangled states in the existing AQS schemes is to assist the signatory to transfer quantum states to the receiver. However, teleportation and the Leung quantum one-time pad (L-QOTP) algorithm are not enough to design a secure AQS scheme. For example, Pauli operations commute or anticommute with each other, which makes the implementation of attacks easily from the aspects of forgery and disavowal. To conquer this shortcoming, we construct an improved AQS scheme using a new QOTP algorithm. This scheme has three advantages: it randomly uses the Hadamard operation in the new QOTP to resist attacks by using the anticommutativity of nontrivial Pauli operators and it preserves almost all merits in the existing AQS schemes; even in the process of handling disputes, no party has chance to change the message and its signature without being discovered; the receiver can verify the integrity of the signature and discover the disavow of the signatory even in the last step of verification.
Quantum Correlations in Mixed-State Metrology
NASA Astrophysics Data System (ADS)
Modi, Kavan; Cable, Hugo; Williamson, Mark; Vedral, Vlatko
2011-10-01
We analyze the effects of quantum correlations, such as entanglement and discord, on the efficiency of phase estimation by studying four quantum circuits that can be readily implemented using NMR techniques. These circuits define a standard strategy of repeated single-qubit measurements, a classical strategy where only classical correlations are allowed, and two quantum strategies where nonclassical correlations are allowed. In addition to counting space (number of qubits) and time (number of gates) requirements, we introduce mixedness as a key constraint of the experiment. We compare the efficiency of the four strategies as a function of the mixedness parameter. We find that the quantum strategy gives N enhancement over the standard strategy for the same amount of mixedness. This result applies even for highly mixed states that have nonclassical correlations but no entanglement.
Communication: Fully coherent quantum state hopping
Martens, Craig C.
2015-10-14
In this paper, we describe a new and fully coherent stochastic surface hopping method for simulating mixed quantum-classical systems. We illustrate the approach on the simple but unforgiving problem of quantum evolution of a two-state quantum system in the limit of unperturbed pure state dynamics and for dissipative evolution in the presence of both stationary and nonstationary random environments. We formulate our approach in the Liouville representation and describe the density matrix elements by ensembles of trajectories. Population dynamics are represented by stochastic surface hops for trajectories representing diagonal density matrix elements. These are combined with an unconventional coherent stochastic hopping algorithm for trajectories representing off-diagonal quantum coherences. The latter generalizes the binary (0,1) “probability” of a trajectory to be associated with a given state to allow integers that can be negative or greater than unity in magnitude. Unlike existing surface hopping methods, the dynamics of the ensembles are fully entangled, correctly capturing the coherent and nonlocal structure of quantum mechanics.
Effective pure states for bulk quantum computation
Knill, E.; Chuang, I.; Laflamme, R.
1998-05-01
In bulk quantum computation one can manipulate a large number of indistinguishable quantum computers by parallel unitary operations and measure expectation values of certain observables with limited sensitivity. The initial state of each computer in the ensemble is known but not pure. Methods for obtaining effective pure input states by a series of manipulations have been described by Gershenfeld and Chuang (logical labeling) [Science {bold 275}, 350 (1997)] and Cory {ital et al.} (spatial averaging) [Proc. Natl. Acad. Sci. USA {bold 94}, 1634 (1997)] for the case of quantum computation with nuclear magnetic resonance. We give a different technique called temporal averaging. This method is based on classical randomization, requires no ancilla quantum bits, and can be implemented in nuclear magnetic resonance without using gradient fields. We introduce several temporal averaging algorithms suitable for both high-temperature and low-temperature bulk quantum computing and analyze the signal-to-noise behavior of each. Most of these algorithms require only a constant multiple of the number of experiments needed by the other methods for creating effective pure states. {copyright} {ital 1998} {ital The American Physical Society}
Communication: Fully coherent quantum state hopping
NASA Astrophysics Data System (ADS)
Martens, Craig C.
2015-10-01
In this paper, we describe a new and fully coherent stochastic surface hopping method for simulating mixed quantum-classical systems. We illustrate the approach on the simple but unforgiving problem of quantum evolution of a two-state quantum system in the limit of unperturbed pure state dynamics and for dissipative evolution in the presence of both stationary and nonstationary random environments. We formulate our approach in the Liouville representation and describe the density matrix elements by ensembles of trajectories. Population dynamics are represented by stochastic surface hops for trajectories representing diagonal density matrix elements. These are combined with an unconventional coherent stochastic hopping algorithm for trajectories representing off-diagonal quantum coherences. The latter generalizes the binary (0,1) "probability" of a trajectory to be associated with a given state to allow integers that can be negative or greater than unity in magnitude. Unlike existing surface hopping methods, the dynamics of the ensembles are fully entangled, correctly capturing the coherent and nonlocal structure of quantum mechanics.
Entanglement purification of unknown quantum states
Brun, Todd A.; Caves, Carlton M.; Schack, Ru''diger
2001-04-01
A concern has been expressed that ''the Jaynes principle can produce fake entanglement'' [R. Horodecki , Phys. Rev. A 59, 1799 (1999)]. In this paper we discuss the general problem of distilling maximally entangled states from N copies of a bipartite quantum system about which only partial information is known, for instance, in the form of a given expectation value. We point out that there is indeed a problem with applying the Jaynes principle of maximum entropy to more than one copy of a system, but the nature of this problem is classical and was discussed extensively by Jaynes. Under the additional assumption that the state {rho}{sup (N)} of the N copies of the quantum system is exchangeable, one can write down a simple general expression for {rho}{sup (N)}. By measuring one or more of the subsystems, one can gain information and update the state estimate for the remaining subsystems with the quantum version of the Bayes rule. Using this rule, we show how to modify two standard entanglement purification protocols, one-way hashing and recurrence, so that they can be applied to exchangeable states. We thus give an explicit algorithm for distilling entanglement from an unknown or partially known quantum state.
NASA Astrophysics Data System (ADS)
Bondar, N. V.; Brodyn, M. S.
2010-03-01
In two-phase disordered media composed of borosilicate glass with ZnSe or CdS quantum dots, the formation of a phase percolation transition of carriers for near-threshold concentrations that are manifested in optical spectra has been observed. Microscopic fluctuations of the quantum-dot density near the percolation threshold were found that resembled the phenomenon of critical opalescence, where similar fluctuations of the density of a pure substance appear near to a phase transition. It is proposed that the dielectric mismatch between a matrix and ZnSe or CdS quantum dots plays a significant role in the carrier (exciton) delocalization, resulting in the appearance of a “dielectric Coulomb trap” beyond the QD border and the formation of surface states of excitons. The spatial overlapping of excitonic states at the critical density of quantum dots results in a tunneling of carriers and the formation of a phase percolation transition in such media.
Shortcut to nonadiabatic quantum state transmission
NASA Astrophysics Data System (ADS)
Wang, Zhao-Ming; Bishop, C. Allen; Jing, Jun; Gu, Yong-Jian; Garcia, Christian; Wu, Lian-Ao
2016-06-01
Techniques for accelerating the evolutionary processes associated with an adiabatic passage have recently been developed. Given that the context for which these speeding-up protocols, such as the shortcut to adiabaticity, have been formulated, their presentation rests on the assumption of the validity of the quantum adiabatic theorem. We investigate here the possibility of extending these methods to a regime in which the adiabatic theorem cannot be applied. Using a spin chain model and a typical nonadiabatic quantum communication protocol, we determine and compare certain indicative aspects of state transfer, such as the fidelity measure of quality and communication latency, associated with both normal and pulse-assisted transmission. The fidelity is found to be effectively enhanced by increasing the pulse strength or pulse duration, indicating a shortcut to nonadiabatic quantum state transmission. Numerical calculations also reveal the inherent reliability and fault tolerance of this method.
Angle states in quantum mechanics
NASA Astrophysics Data System (ADS)
de la Torre, A. C.; Iguain, J. L.
1998-12-01
Angle states and angle operators are defined for a system with arbitrary angular momentum. They provide a reasonable formalization of the concept of angle provided that we accept that the angular orientation is quantized. The angle operator is the generator of boosts in angular momentum and is, almost everywhere, linearly related to the logarithm of the shift operator. Angle states for fermions and bosons behave differently under parity transformation.
Authenticated Quantum Dialogue Based on Bell States
NASA Astrophysics Data System (ADS)
Lin, Ching-Ying; Yang, Chun-Wei; Hwang, Tzonelih
2015-03-01
This work proposes an authenticated quantum dialogue (AQD) based on Bell states, allowing two communicants to perform mutual authentication and secure bidirectional communications simultaneously via public classical channels. Compared with the other AQDs, the proposed protocol is free from information leakage and is secure under several well-known attacks.
Quantum gambling using three nonorthogonal states
NASA Astrophysics Data System (ADS)
Hwang, Won-Young; Matsumoto, Keiji
2002-11-01
We provide a quantum gambling protocol using three (symmetric) nonorthogonal states. The bias of the proposed protocol is less than that of previous ones, making it more practical. We show that the proposed scheme is secure against nonentanglement attacks. The security of the proposed scheme against entanglement attacks is shown heuristically.
Fractional quantum Hall states of Rydberg polaritons
NASA Astrophysics Data System (ADS)
Maghrebi, Mohammad F.; Yao, Norman Y.; Hafezi, Mohammad; Pohl, Thomas; Firstenberg, Ofer; Gorshkov, Alexey V.
2015-03-01
We propose a scheme for realizing fractional quantum Hall states of light. In our scheme, photons of two polarizations are coupled to different atomic Rydberg states to form two flavors of Rydberg polaritons that behave as an effective spin. An array of optical cavity modes overlapping with the atomic cloud enables the realization of an effective spin-1 /2 lattice. We show that the dipolar interaction between such polaritons, inherited from the Rydberg states, can be exploited to create a flat, topological band for a single spin-flip excitation. At half filling, this gives rise to a photonic (or polaritonic) fractional Chern insulator—a lattice-based, fractional quantum Hall state of light.
Controlled teleportation of a 3-dimensional bipartite quantum state
NASA Astrophysics Data System (ADS)
Cao, Hai-Jing; Chen, Zhong-Hua; Song, He-Shan
2008-07-01
A controlled teleportation scheme of an unknown 3-dimensional (3D) two-particle quantum state is proposed, where a 3D Bell state and 3D GHZ state function as the quantum channel. This teleportation scheme can be directly generalized to teleport an unknown d-dimensional bipartite quantum state.
Compressibility of Quantum Mixed-State Signals
Koashi, Masato; Imoto, Nobuyuki
2001-07-02
We present a formula that determines the optimal number of qubits per message that allows asymptotically faithful compression of the quantum information carried by an ensemble of mixed states. The set of mixed states determines a decomposition of the Hilbert space into the redundant part and the irreducible part. After removing the redundancy, the optimal compression rate is shown to be given by the von Neumann entropy of the reduced ensemble.
Efficient quantum optical state engineering and applications
NASA Astrophysics Data System (ADS)
McCusker, Kevin T.
Over a century after the modern prediction of the existence of individual particles of light by Albert Einstein, a reliable source of this simple quantum state of one photon does not exist. While common light sources such as a light bulb, LED, or laser can produce a pulse of light with an average of one photon, there is (currently) no way of knowing the number of photons in that pulse without first absorbing (and thereby destroying) them. Spontaneous parametric down-conversion, a process in which one high-energy photon splits into two lower-energy photons, allows us to prepare a single-photon state by detecting one of the photons, which then heralds the existence of its twin. This process has been the workhorse of quantum optics, allowing demonstrations of a myriad of quantum processes and protocols, such as entanglement, cryptography, superdense coding, teleportation, and simple quantum computing demonstrations. All of these processes would benefit from better engineering of the underlying down-conversion process, but despite significant effort (both theoretical and experimental), optimization of this process is ongoing. The focus of this work is to optimize certain aspects of a down-conversion source, and then use this tool in novel experiments not otherwise feasible. Specifically, the goal is to optimize the heralding efficiency of the down-conversion photons, i.e., the probability that if one photon is detected, the other photon is also detected. This source is then applied to two experiments (a single-photon source, and a quantum cryptography implementation), and the detailed theory of an additional application (a source of Fock states and path-entangled states, called N00N states) is discussed, along with some other possible applications.
Measuring polynomial invariants of multiparty quantum states
Leifer, M.S.; Linden, N.; Winter, A.
2004-05-01
We present networks for directly estimating the polynomial invariants of multiparty quantum states under local transformations. The structure of these networks is closely related to the structure of the invariants themselves and this lends a physical interpretation to these otherwise abstract mathematical quantities. Specifically, our networks estimate the invariants under local unitary (LU) transformations and under stochastic local operations and classical communication (SLOCC). Our networks can estimate the LU invariants for multiparty states, where each party can have a Hilbert space of arbitrary dimension and the SLOCC invariants for multiqubit states. We analyze the statistical efficiency of our networks compared to methods based on estimating the state coefficients and calculating the invariants.
Quantum state transfer in double-quantum-well devices
NASA Technical Reports Server (NTRS)
Jakumeit, Jurgen; Tutt, Marcel; Pavlidis, Dimitris
1994-01-01
A Monte Carlo simulation of double-quantum-well (DQW) devices is presented in view of analyzing the quantum state transfer (QST) effect. Different structures, based on the AlGaAs/GaAs system, were simulated at 77 and 300 K and optimized in terms of electron transfer and device speed. The analysis revealed the dominant role of the impurity scattering for the QST. Different approaches were used for the optimization of QST devices and basic physical limitations were found in the electron transfer between the QWs. The maximum transfer of electrons from a high to a low mobility well was at best 20%. Negative differential resistance is hampered by the almost linear rather than threshold dependent relation of electron transfer on electric field. By optimizing the doping profile the operation frequency limit could be extended to 260 GHz.
Quantum Random Walks with General Particle States
NASA Astrophysics Data System (ADS)
Belton, Alexander C. R.
2014-06-01
A convergence theorem is obtained for quantum random walks with particles in an arbitrary normal state. This unifies and extends previous work on repeated-interactions models, including that of Attal and Pautrat (Ann Henri Poincaré 7:59-104 2006) and Belton (J Lond Math Soc 81:412-434, 2010; Commun Math Phys 300:317-329, 2010). When the random-walk generator acts by ampliation and either multiplication or conjugation by a unitary operator, it is shown that the quantum stochastic cocycle which arises in the limit is driven by a unitary process.
Discrimination of physical states in quantum systems
NASA Astrophysics Data System (ADS)
Shingu-Yano, Mayumi; Shibata, Fumiaki
2001-04-01
Quantum mechanical relaxation and decoherence processes are studied from a view point of discrimination problem of physical states. This is based on an information statistical mechanical method, where concept of a probability density and an entropy is to be generalized. We use a quasi-probability density of Q-function (Husimi function) and the corresponding entropy (Wehrl-Lieb entropy) and apply the method to a Brownian motion of an oscillator and a non-linear spin relaxation process. Our main concern lies in obtaining a discrimination probability Pd as a function of time and temperature. Quantum mechanical fluctuation causes profound effects than the thermal fluctuation.
Quantum nondemolition measurement of the Werner state
Jin Jiasen; Yu Changshui; Pei Pei; Song Heshan
2010-10-15
We propose a theoretical scheme of quantum nondemolition measurement of two-qubit Werner state. We discuss our scheme with the two qubits restricted in a local place and then extend the scheme to the case in which two qubits are separated. We also consider the experimental realization of our scheme based on cavity quantum electrodynamics. It is very interesting that our scheme is robust against the dissipative effects introduced by the probe process. We also give a brief interpretation of our scheme finally.
Random unitary maps for quantum state reconstruction
Merkel, Seth T.; Riofrio, Carlos A.; Deutsch, Ivan H.; Flammia, Steven T.
2010-03-15
We study the possibility of performing quantum state reconstruction from a measurement record that is obtained as a sequence of expectation values of a Hermitian operator evolving under repeated application of a single random unitary map, U{sub 0}. We show that while this single-parameter orbit in operator space is not informationally complete, it can be used to yield surprisingly high-fidelity reconstruction. For a d-dimensional Hilbert space with the initial observable in su(d), the measurement record lacks information about a matrix subspace of dimension {>=}d-2 out of the total dimension d{sup 2}-1. We determine the conditions on U{sub 0} such that the bound is saturated, and show they are achieved by almost all pseudorandom unitary matrices. When we further impose the constraint that the physical density matrix must be positive, we obtain even higher fidelity than that predicted from the missing subspace. With prior knowledge that the state is pure, the reconstruction will be perfect (in the limit of vanishing noise) and for arbitrary mixed states, the fidelity is over 0.96, even for small d, and reaching F>0.99 for d>9. We also study the implementation of this protocol based on the relationship between random matrices and quantum chaos. We show that the Floquet operator of the quantum kicked top provides a means of generating the required type of measurement record, with implications on the relationship between quantum chaos and information gain.
Two electronic states in spherical quantum nanolayer
NASA Astrophysics Data System (ADS)
Aghekyan, N. G.; Kazaryan, E. M.; Kostanyan, A. A.; Sarkisyan, H. A.
2010-10-01
In this paper two electronic states in spherical quantum nanolayer are discussed. The Coulomb interaction between the electrons is discussed as perturbation. For confinement potential of the nanolayer the three-dimensional radial analog of Smorodinsky-Winternitz potential is considered. The problem is discussed within the frameworks of Russell-Saunders coupling scheme, thus, the spin-orbit interaction is considered weak. Therefore the eigenfunctions of the system is represented as a multiplication of its coordinate wave function and spin wave function. For this system the analogue of helium atom theory is represented. The eigenfunctions and energy states are obtained for one and two electron cases in the spherical quantum nanolayer. For the spherical nanolayer the dependence of perturbation energy, unperturbed system energy and the total energy for the ground state upon the inner radius is represented when the outer radius is fixed.
Probabilistic coding of quantum states
Grudka, Andrzej; Wojcik, Antoni; Czechlewski, Mikolaj
2006-07-15
We discuss the properties of probabilistic coding of two qubits to one qutrit and generalize the scheme to higher dimensions. We show that the protocol preserves the entanglement between the qubits to be encoded and the environment and can also be applied to mixed states. We present a protocol that enables encoding of n qudits to one qudit of dimension smaller than the Hilbert space of the original system and then allows probabilistic but error-free decoding of any subset of k qudits. We give a formula for the probability of successful decoding.
A geometric approach to quantum state separation
NASA Astrophysics Data System (ADS)
Bagan, E.; Yerokhin, V.; Shehu, A.; Feldman, E.; Bergou, J. A.
2015-12-01
Probabilistic quantum state transformations can be characterized by the degree of state separation they provide. This, in turn, sets limits on the success rate of these transformations. We consider optimum state separation of two known pure states in the general case where the known states have arbitrary a priori probabilities. The problem is formulated from a geometric perspective and shown to be equivalent to the problem of finding tangent curves within two families of conics that represent the unitarity constraints and the objective functions to be optimized, respectively. We present the corresponding analytical solutions in various forms. In the limit of perfect state separation, which is equivalent to unambiguous state discrimination, the solution exhibits a phenomenon analogous to a second order symmetry breaking phase transition. We also propose a linear optics implementation of separation which is based on the dual rail representation of qubits and single-photon multiport interferometry.
GENERAL: Decoy State Quantum Key Distribution with Odd Coherent State
NASA Astrophysics Data System (ADS)
Sun, Shi-Hai; Gao, Ming; Dai, Hong-Yi; Chen, Ping-Xing; Li, Cheng-Zu
2008-07-01
We propose a decoy state quantum key distribution scheme with odd coherent state which follows sub-Poissonian distributed photon count and has low probability of the multi-photon event and vacuum event in each pulse. The numerical calculations show that our scheme can improve efficiently the key generation rate and secure communication distance. Furthermore, only one decoy state is necessary to approach to the perfect asymptotic limit with infinite decoy states in our scheme, but at least two decoy states are needed in other scheme.
Sharing the Quantum State and the Classical Information Simultaneously
NASA Astrophysics Data System (ADS)
Qin, Huawang; Dai, Yuewei
2016-04-01
An efficient quantum secret sharing scheme is proposed, in which the quantum state and the classical information can be shared simultaneously through only one distribution. The dealer uses the operations of quantum-controlled-not and Hadamard gate to encode the secret quantum state and classical information, and the participants use the single-particle measurements to recover the original quantum state and classical information. Compared to the existing schemes, our scheme is more efficient when the quantum state and the classical information need to be shared simultaneously.
Sharing the Quantum State and the Classical Information Simultaneously
NASA Astrophysics Data System (ADS)
Qin, Huawang; Dai, Yuewei
2016-08-01
An efficient quantum secret sharing scheme is proposed, in which the quantum state and the classical information can be shared simultaneously through only one distribution. The dealer uses the operations of quantum-controlled-not and Hadamard gate to encode the secret quantum state and classical information, and the participants use the single-particle measurements to recover the original quantum state and classical information. Compared to the existing schemes, our scheme is more efficient when the quantum state and the classical information need to be shared simultaneously.
Remote State Preparation for Quantum Fields
NASA Astrophysics Data System (ADS)
Ber, Ran; Zohar, Erez
2016-07-01
Remote state preparation is generation of a desired state by a remote observer. In spite of causality, it is well known, according to the Reeh-Schlieder theorem, that it is possible for relativistic quantum field theories, and a "physical" process achieving this task, involving superoscillatory functions, has recently been introduced. In this work we deal with non-relativistic fields, and show that remote state preparation is also possible for them, hence obtaining a Reeh-Schlieder-like result for general fields. Interestingly, in the nonrelativistic case, the process may rely on completely different resources than the ones used in the relativistic case.
Control aspects of quantum computing using pure and mixed states
Schulte-Herbrüggen, Thomas; Marx, Raimund; Fahmy, Amr; Kauffman, Louis; Lomonaco, Samuel; Khaneja, Navin; Glaser, Steffen J.
2012-01-01
Steering quantum dynamics such that the target states solve classically hard problems is paramount to quantum simulation and computation. And beyond, quantum control is also essential to pave the way to quantum technologies. Here, important control techniques are reviewed and presented in a unified frame covering quantum computational gate synthesis and spectroscopic state transfer alike. We emphasize that it does not matter whether the quantum states of interest are pure or not. While pure states underly the design of quantum circuits, ensemble mixtures of quantum states can be exploited in a more recent class of algorithms: it is illustrated by characterizing the Jones polynomial in order to distinguish between different (classes of) knots. Further applications include Josephson elements, cavity grids, ion traps and nitrogen vacancy centres in scenarios of closed as well as open quantum systems. PMID:22946034
Experimental demonstration of graph-state quantum secret sharing.
Bell, B A; Markham, D; Herrera-Martí, D A; Marin, A; Wadsworth, W J; Rarity, J G; Tame, M S
2014-01-01
Quantum communication and computing offer many new opportunities for information processing in a connected world. Networks using quantum resources with tailor-made entanglement structures have been proposed for a variety of tasks, including distributing, sharing and processing information. Recently, a class of states known as graph states has emerged, providing versatile quantum resources for such networking tasks. Here we report an experimental demonstration of graph state-based quantum secret sharing--an important primitive for a quantum network with applications ranging from secure money transfer to multiparty quantum computation. We use an all-optical setup, encoding quantum information into photons representing a five-qubit graph state. We find that one can reliably encode, distribute and share quantum information amongst four parties, with various access structures based on the complex connectivity of the graph. Our results show that graph states are a promising approach for realising sophisticated multi-layered communication protocols in quantum networks. PMID:25413490
Experimental demonstration of graph-state quantum secret sharing
NASA Astrophysics Data System (ADS)
Bell, B. A.; Markham, D.; Herrera-Martí, D. A.; Marin, A.; Wadsworth, W. J.; Rarity, J. G.; Tame, M. S.
2014-11-01
Quantum communication and computing offer many new opportunities for information processing in a connected world. Networks using quantum resources with tailor-made entanglement structures have been proposed for a variety of tasks, including distributing, sharing and processing information. Recently, a class of states known as graph states has emerged, providing versatile quantum resources for such networking tasks. Here we report an experimental demonstration of graph state-based quantum secret sharing—an important primitive for a quantum network with applications ranging from secure money transfer to multiparty quantum computation. We use an all-optical setup, encoding quantum information into photons representing a five-qubit graph state. We find that one can reliably encode, distribute and share quantum information amongst four parties, with various access structures based on the complex connectivity of the graph. Our results show that graph states are a promising approach for realising sophisticated multi-layered communication protocols in quantum networks.
Quantum entangled supercorrelated states in the Jaynes-Cummings model
NASA Astrophysics Data System (ADS)
Rajagopal, A. K.; Jensen, K. L.; Cummings, F. W.
1999-08-01
The regions of independent quantum states, maximally classically correlated states, and purely quantum entangled (supercorrelated) states described in a recent formulation of quantum information theory by Cerf and Adami are explored here numerically in the parameter space of the well-known exactly soluble Jaynes-Cummings model for equilibrium and nonequilibrium time-dependent ensembles.
Quantum metrology with imperfect states and detectors
Datta, Animesh; Zhang Lijian; Thomas-Peter, Nicholas; Smith, Brian J.; Walmsley, Ian A.; Dorner, Uwe
2011-06-15
Quantum enhancements of precision in metrology can be compromised by system imperfections. These may be mitigated by appropriate optimization of the input state to render it robust, at the expense of making the state difficult to prepare. In this paper, we identify the major sources of imperfection of an optical sensor: input state preparation inefficiency, sensor losses, and detector inefficiency. The second of these has received much attention; we show that it is the least damaging to surpassing the standard quantum limit in a optical interferometric sensor. Further, we show that photonic states that can be prepared in the laboratory using feasible resources allow a measurement strategy using photon-number-resolving detectors that not only attain the Heisenberg limit for phase estimation in the absence of losses, but also deliver close to the maximum possible precision in realistic scenarios including losses and inefficiencies. In particular, we give bounds for the tradeoff between the three sources of imperfection that will allow true quantum-enhanced optical metrology
Quantum state of the black hole interior
NASA Astrophysics Data System (ADS)
Brustein, Ram; Medved, A. J. M.
2015-08-01
If a black hole (BH) is initially in an approximately pure state and it evaporates by a unitary process, then the emitted radiation will be in a highly quantum state. As the purifier of this radiation, the state of the BH interior must also be in some highly quantum state. So that, within the interior region, the mean-field approximation cannot be valid and the state of the BH cannot be described by some semiclassical metric. On this basis, we model the state of the BH interior as a collection of a large number of excitations that are packed into closely spaced but single-occupancy energy levels; a sort-of "Fermi sea" of all light-enough particles. This highly quantum state is surrounded by a semiclassical region that lies close to the horizon and has a non-vanishing energy density. It is shown that such a state looks like a BH from the outside and decays via gravitational pair production in the near-horizon region at a rate that agrees with the Hawking rate. We also consider the fate of a classical object that has passed through to the BH interior and show that, once it has crossed over the near-horizon threshold, the object meets its demise extremely fast. This result cannot be attributed to a "firewall", as the trauma to the in-falling object only begins after it has passed through the near-horizon region and enters a region where semiclassical spacetime ends but the energy density is still parametrically smaller than Planckian.
Extreme Violation of Local Realism in Quantum Hypergraph States
NASA Astrophysics Data System (ADS)
Gachechiladze, Mariami; Budroni, Costantino; Gühne, Otfried
2016-02-01
Hypergraph states form a family of multiparticle quantum states that generalizes the well-known concept of Greenberger-Horne-Zeilinger states, cluster states, and more broadly graph states. We study the nonlocal properties of quantum hypergraph states. We demonstrate that the correlations in hypergraph states can be used to derive various types of nonlocality proofs, including Hardy-type arguments and Bell inequalities for genuine multiparticle nonlocality. Moreover, we show that hypergraph states allow for an exponentially increasing violation of local realism which is robust against loss of particles. Our results suggest that certain classes of hypergraph states are novel resources for quantum metrology and measurement-based quantum computation.
Ancilla-approximable quantum state transformations
Blass, Andreas; Gurevich, Yuri
2015-04-15
We consider the transformations of quantum states obtainable by a process of the following sort. Combine the given input state with a specially prepared initial state of an auxiliary system. Apply a unitary transformation to the combined system. Measure the state of the auxiliary subsystem. If (and only if) it is in a specified final state, consider the process successful, and take the resulting state of the original (principal) system as the result of the process. We review known information about exact realization of transformations by such a process. Then we present results about approximate realization of finite partial transformations. We not only consider primarily the issue of approximation to within a specified positive ε, but also address the question of arbitrarily close approximation.
Growing quantum states with topological order
NASA Astrophysics Data System (ADS)
Letscher, Fabian; Grusdt, Fabian; Fleischhauer, Michael
2015-05-01
We discuss a protocol for growing states with topological order in interacting many-body systems using a sequence of flux quanta and particle insertion. We first consider a simple toy model, the superlattice Bose-Hubbard model, to explain all required ingredients. Our protocol is then applied to fractional quantum Hall systems in both, continuum and lattice. We investigate in particular how the fidelity, with which a topologically ordered state can be grown, scales with increasing particle number N . For small systems, exact diagonalization methods are used. To treat large systems with many particles, we introduce an effective model based on the composite fermion description of the fractional quantum Hall effect. This model also allows to take into account the effects of dispersive bands and edges in the system, which will be discussed in detail.
Quantum critical state in a magnetic quasicrystal.
Deguchi, Kazuhiko; Matsukawa, Shuya; Sato, Noriaki K; Hattori, Taisuke; Ishida, Kenji; Takakura, Hiroyuki; Ishimasa, Tsutomu
2012-12-01
Quasicrystals are metallic alloys that possess long-range, aperiodic structures with diffraction symmetries forbidden to conventional crystals. Since the discovery of quasicrystals by Schechtman et al. in 1984, there has been considerable progress in resolving their geometric structure. For example, it is well known that the golden ratio of mathematics and art occurs over and over again in their crystal structure. However, the characteristic properties of the electronic states--whether they are extended as in periodic crystals or localized as in amorphous materials--are still unresolved. Here we report the first observation of quantum (T = 0) critical phenomena of the Au-Al-Yb quasicrystal--the magnetic susceptibility and the electronic specific heat coefficient arising from strongly correlated 4f electrons of the Yb atoms diverge as T→0. Furthermore, we observe that this quantum critical phenomenon is robust against hydrostatic pressure. By contrast, there is no such divergence in a crystalline approximant, a phase whose composition is close to that of the quasicrystal and whose unit cell has atomic decorations (that is, icosahedral clusters of atoms) that look like the quasicrystal. These results clearly indicate that the quantum criticality is associated with the unique electronic state of the quasicrystal, that is, a spatially confined critical state. Finally we discuss the possibility that there is a general law underlying the conventional crystals and the quasicrystals. PMID:23042414
Arbitrated quantum signature scheme based on cluster states
NASA Astrophysics Data System (ADS)
Yang, Yu-Guang; Lei, He; Liu, Zhi-Chao; Zhou, Yi-Hua; Shi, Wei-Min
2016-03-01
Cluster states can be exploited for some tasks such as topological one-way computation, quantum error correction, teleportation and dense coding. In this paper, we investigate and propose an arbitrated quantum signature scheme with cluster states. The cluster states are used for quantum key distribution and quantum signature. The proposed scheme can achieve an efficiency of 100 %. Finally, we also discuss its security against various attacks.
Extremal quantum correlations: Experimental study with two-qubit states
Chiuri, A.; Mataloni, P.; Vallone, G.
2011-08-15
We explore experimentally the space of two-qubit quantum-correlated mixed states, including frontier states as defined by the use of quantum discord and von Neumann entropy. Our experimental setup is flexible enough to allow for high-quality generation of a vast variety of states. We address quantitatively the relation between quantum discord and a recently suggested alternative measure of quantum correlations.
Arbitrated quantum signature scheme based on cluster states
NASA Astrophysics Data System (ADS)
Yang, Yu-Guang; Lei, He; Liu, Zhi-Chao; Zhou, Yi-Hua; Shi, Wei-Min
2016-06-01
Cluster states can be exploited for some tasks such as topological one-way computation, quantum error correction, teleportation and dense coding. In this paper, we investigate and propose an arbitrated quantum signature scheme with cluster states. The cluster states are used for quantum key distribution and quantum signature. The proposed scheme can achieve an efficiency of 100 %. Finally, we also discuss its security against various attacks.
Quantum information processing with narrow band two-photon state
NASA Astrophysics Data System (ADS)
Lu, Yajun
Application of quantum sources in communication and information processing are believed to bring a new revolution to the on-going information age. The generation of applicable quantum sources such as single photon state and two-photon state, appears to be one of the most difficult in experimental quantum optics. Spontaneous Parametric Down-Conversion (PDC) is known to generate two-photon state, but bandwidth problem makes it less applicable in quantum information processing. The aim of this work is to generate a narrow band two-photon state and apply it to quantum information processing. We start by developing a cavity enhanced PDC device to narrow the bandwidth of the two-photon state. Direct measurement of the bandwidth of the generated state has been made and the quantum theory of such a device has been investigated. An application of this narrow band two-photon state is to generate anti-bunched photons for quantum cryptography, based on the quantum interference between the two-photon state and a coherent state. The feasibility of this scheme for pulsed pump is also investigated. When applying the concept of mode locking in lasers to a two-photon state, we have mode-locked two-photon state which exhibits a comb-like correlation function and may be used for engineering of quantum states in time domain. Other applications such as demonstration of single photon nonlocality, nonlinear sign gate in quantum computation, and direct measurement of quantum beating, will also be addressed.
4f electron delocalization and volume collapse in praseodymium metal
Bradley, Joseph A.; Moore, Kevin T.; Lipp, Magnus J.; Mattern, Brian A.; Pacold, Joseph I.; Seidler, Gerald T.; Chow, Paul; Rod, Eric; Xiao, Yuming; Evans, William J.
2012-04-17
We study the pressure evolution of the 4f electrons in elemental praseodymium metal compressed through several crystallographic phases, including the large volume-collapse transition at 20 GPa. Using resonant x-ray emission, we directly and quantitatively measure the development of multiple electronic configurations with differing 4f occupation numbers, the key quantum observable related to the delocalization of the strongly correlated 4f electrons. These results provide a high-fidelity test of prior predictions by dynamical mean-field theory, and support the hypothesis of a strong connection between electronic and structural degrees of freedom at the volume-collapse transition.
Delocalized correlations in twin light beams with orbital angular momentum.
Marino, A M; Boyer, V; Pooser, R C; Lett, P D; Lemons, K; Jones, K M
2008-08-29
We generate intensity-difference-squeezed Laguerre-Gauss twin beams of light carrying orbital angular momentum by using four-wave mixing in a hot atomic vapor. The conservation of orbital angular momentum in the four-wave mixing process is studied as well as the spatial distribution of the quantum correlations obtained with different configurations of orbital angular momentum. Intensity-difference squeezing of up to -6.7 dB is demonstrated with beams carrying orbital angular momentum. Delocalized spatial correlations between the twin beams are observed. PMID:18851611
Channel capacities versus entanglement measures in multiparty quantum states
Sen, Aditi; Sen, Ujjwal
2010-01-15
For quantum states of two subsystems, highly entangled states have a higher capacity of transmitting classical as well as quantum information, and vice versa. We show that this is no more the case in general: Quantum capacities of multiaccess channels, motivated by communication in quantum networks, do not have any relation with genuine multiparty entanglement measures. Importantly, the statement is demonstrated for arbitrary multipartite entanglement measures. Along with revealing the structural richness of multiaccess channels, this gives us a tool to classify multiparty quantum states from the perspective of its usefulness in quantum networks, which cannot be visualized by any genuine multiparty entanglement measure.
NASA Astrophysics Data System (ADS)
Verma, Vikram; Prakash, Hari
2016-04-01
We explicitly present precise and simple protocols for standard quantum teleportation and controlled quantum teleportation of an arbitrary N-qubit information state and analyse the case of perfect teleportation using general quantum channels and measurement bases. We find condition on resource quantum channel and Bell states for achieving perfect quantum teleportation. We also find the unitary transformation required to be done by Bob for perfect quantum teleportation and discuss the connection with others related works. We also discuss how perfect controlled quantum teleportation demands a correct choice of the measurement basis of additional party.
Quantum nonlocality of multipartite orthogonal product states
NASA Astrophysics Data System (ADS)
Xu, Guang-Bao; Wen, Qiao-Yan; Qin, Su-Juan; Yang, Ying-Hui; Gao, Fei
2016-03-01
Local distinguishability of orthogonal quantum states is an area of active research in quantum information theory. However, most of the relevant results are about local distinguishability in bipartite Hilbert space and very little is known about the multipartite case. In this paper we present a generic method to construct a completable n -partite (n ≥3 ) product basis with only 2 n members, which exhibits nonlocality without entanglement with n parties, each holding a system of any finite dimension. We give an effective proof of the nonlocality of the completable multipartite product basis. In addition, we construct another incomplete multipartite product basis with a smaller number of members that cannot be distinguished by local operations and classical communication in a d1⊗d2⊗⋯⊗dn quantum system, where n ≥3 and di≥2 for i =1 ,2 ,...,n . The results can lead to a better understanding of the phenomenon of nonlocality without entanglement in any multipartite quantum system.
Spontaneous recoherence of quantum states after decoherence
NASA Astrophysics Data System (ADS)
de Ponte, M. A.; Cacheffo, A.; Villas-Bôas, C. J.; Mizrahi, S. S.; Moussa, M. H. Y.
2010-09-01
In this work, we identify the set of time-dependent pure states building the statistical mixture to which a system, initially in a pure state, is driven by the reservoir. This set of time-dependent pure states, composing what we term a pure basis, are those that diagonalize the reduced density operator of the system. Next, we show that the evolution of the pure-basis states reveals an interesting phenomenon as the system, after decoherence, evolves toward the equilibrium: the spontaneous recoherence of quantum states. Around our defined recoherence time, the statistical mixture associated with a special kind of initial states termed even-symmetric, spontaneously undergoes a recoherence process, by which the initial state of the system emerges from the mixture except for its reduced excitation drained into the reservoir. This phenomenon reveals that the reservoir only shuffle the original information carried out by the initial state of the system instead of erasing it. Moreover, as the spontaneously recohered state occurs only for asymptotic time, we also present a protocol to extract it from the mixture through specific projective measurements. The password to retrieve the original information stems is the knowledge of both the initial state itself and the associated pure basis. A definition of the decoherence time of an N-state superposition is also presented.
Pajón-Suárez, Pedro; Rojas-Lorenzo, Germán A; Rubayo-Soneira, Jesús; Hernández-Lamoneda, Ramón; Larrégaray, Pascal
2009-12-31
The local relaxation of solid neon subsequent to the impulsive excitation of the NO chromophore to its A(3s sigma) Ryberg state is investigated using molecular dynamics simulations. This study makes use of empirical NO(X,A)-Ne isotropic pair potentials as well as a recently developed ab initio triatomic potential energy surface for the excited state. The role of these interaction potentials is analyzed, including many-body effects. In particular, empirical potentials, designed to reproduce correctly both the NO X-A steady-state absorption and emission bands, are shown to lead to a good description of the subpicosecond relaxation dynamics. The 600 fs expansion of the electronic bubble fairly agrees with experimental data. This relatively long time scale with respect to solid Argon, which was previously attributed to the range of the NO(A)-Ne interaction, is presumably related to the quantum nature of the medium. The time-resolved local relaxation of the Ne solid is understandably intermediate between that of classical solids (e.g., Ar) and that of quantum solids (e.g., H(2)). PMID:19754051
NASA Astrophysics Data System (ADS)
Zhao, Yi; Duan, Suqing; Zhang, Wei
2012-06-01
Correlation effects and phase transitions are central issues in current studies on disordered systems. In this paper, we study the electronic properties of a disordered double chain with long-range intrachain correlation and short-range interchain correlation. Based on detailed numerical calculations, finite size scaling analysis and empirical analytical calculations, we obtain a phase diagram containing rich physics due to the interplay among the disorder, short-range and long-range correlations. Besides the long-range correlation induced localization-delocalization transitions, we find both first-order and second-order quantum phase transitions on changing the short-range correlation. Interestingly, the localization may be suppressed by increasing the disorder strength in some parameter regime and the ‘anti-correlation’ leads to the most delocalized state. Our studies shine some light on the mechanism of the charge transport in DNA molecules, where both types of correlated disorders are present.
Quantum correlation exists in any non-product state
Guo, Yu; Wu, Shengjun
2014-01-01
Simultaneous existence of correlation in complementary bases is a fundamental feature of quantum correlation, and we show that this characteristic is present in any non-product bipartite state. We propose a measure via mutually unbiased bases to study this feature of quantum correlation, and compare it with other measures of quantum correlation for several families of bipartite states. PMID:25434458
Maximally polarized states for quantum light fields
Sanchez-Soto, Luis L.; Yustas, Eulogio C.; Bjoerk, Gunnar; Klimov, Andrei B.
2007-10-15
The degree of polarization of a quantum field can be defined as its distance to an appropriate set of states. When we take unpolarized states as this reference set, the states optimizing this degree for a fixed average number of photons N present a fairly symmetric, parabolic photon statistic, with a variance scaling as N{sup 2}. Although no standard optical process yields such a statistic, we show that, to an excellent approximation, a highly squeezed vacuum can be taken as maximally polarized. We also consider the distance of a field to the set of its SU(2) transformed, finding that certain linear superpositions of SU(2) coherent states make this degree to be unity.
Exotic Quantum States of Rashba Bosons
NASA Astrophysics Data System (ADS)
Sedrakyan, Tigran; Kamenev, Alex; Glazman, Leonid
2013-03-01
The recently discovered spin-orbit coupled boson systems are remarkable for their capacity to explore physics that may not be revealed in any other way. The spin-orbit couplings, which can be artificially engineered in cold-atom experiments, in many instances lead to single-particle dispersion relations exhibiting multiple minima or even degenerate manifold of minimal energy states. It is entirely the effect of collisions (i.e. boson-boson interactions) which lifts this degeneracy and leads to an amazing variety of completely new quantum many-body states. This talk describes a theoretical discovery of a novel phase of matter that realizes for Rashba spin-orbit coupled bosons, where, at low densities, bosons essentially redress themselves and behave as fermions. This state is a composite fermion state with a Chern-Simons gauge field and filling factor one.
Geometric Adiabatic Transport in Quantum Hall States
NASA Astrophysics Data System (ADS)
Klevtsov, S.; Wiegmann, P.
2015-08-01
We argue that in addition to the Hall conductance and the nondissipative component of the viscous tensor, there exists a third independent transport coefficient, which is precisely quantized. It takes constant values along quantum Hall plateaus. We show that the new coefficient is the Chern number of a vector bundle over moduli space of surfaces of genus 2 or higher and therefore cannot change continuously along the plateau. As such, it does not transpire on a sphere or a torus. In the linear response theory, this coefficient determines intensive forces exerted on electronic fluid by adiabatic deformations of geometry and represents the effect of the gravitational anomaly. We also present the method of computing the transport coefficients for quantum Hall states.
Geometric Adiabatic Transport in Quantum Hall States.
Klevtsov, S; Wiegmann, P
2015-08-21
We argue that in addition to the Hall conductance and the nondissipative component of the viscous tensor, there exists a third independent transport coefficient, which is precisely quantized. It takes constant values along quantum Hall plateaus. We show that the new coefficient is the Chern number of a vector bundle over moduli space of surfaces of genus 2 or higher and therefore cannot change continuously along the plateau. As such, it does not transpire on a sphere or a torus. In the linear response theory, this coefficient determines intensive forces exerted on electronic fluid by adiabatic deformations of geometry and represents the effect of the gravitational anomaly. We also present the method of computing the transport coefficients for quantum Hall states. PMID:26340197
Communication: Spectroscopic consequences of proton delocalization in OCHCO{sup +}
Fortenberry, Ryan C.; Yu, Qi; Mancini, John S.; Bowman, Joel M.; Lee, Timothy J.; Crawford, T. Daniel; Klemperer, William F.; Francisco, Joseph S.
2015-08-21
Even though quartic force fields (QFFs) and highly accurate coupled cluster computations describe the OCHCO{sup +} cation at equilibrium as a complex between carbon monoxide and the formyl cation, two notable and typical interstellar and atmospheric molecules, the prediction from the present study is that the equilibrium C{sub ∞v} structure is less relevant to observables than the saddle-point D{sub ∞h} structure. This is the conclusion from diffusion Monte Carlo and vibrational self-consistent field/virtual state configuration interaction calculations utilizing a semi-global potential energy surface. These calculations demonstrate that the proton “rattle” motion (ν{sub 6}) has centrosymmetric delocalization of the proton over the D{sub ∞h} barrier lying only 393.6 cm{sup −1} above the double-well OCHCO{sup +} C{sub ∞v} minima. As a result, this molecule will likely appear D{sub ∞h}, and the rotational spectrum will be significantly dimmer than the computed equilibrium 2.975 D center-of-mass dipole moment indicates. However, the proton transfer fundamental, determined to be at roughly 300 cm{sup −1}, has a very strong intensity. This prediction as well as those of other fundamentals should provide useful guides for laboratory detection of this cation. Finally, it is shown that the two highest energy QFF-determined modes are actually in good agreement with their vibrational configuration interaction counterparts. These high-level quantum chemical methods provide novel insights into this fascinating and potentially common interstellar molecule.
d-Dimensional quantum state sharing with adversary structure
NASA Astrophysics Data System (ADS)
Qin, Huawang; Dai, Yuewei
2016-04-01
A quantum secret sharing scheme with adversary structure is proposed. In the proposed scheme, the secret is a d-dimensional quantum state. The dealer can distribute the private keys according to the adversary structure and encode the quantum state through the d-dimensional Pauli unitary operation. The legitimate participants perform the unitary operations on the encrypted quantum state according to their private keys and recover the original quantum state. Compared to the existing QSS schemes, our scheme can be more efficient when only the adversary structure is given.
Quantum Teleportation of Three and Four-Qubit State Using Multi-qubit Cluster States
NASA Astrophysics Data System (ADS)
Li, Yuan-hua; Li, Xiao-lan; Nie, Li-ping; Sang, Ming-huang
2016-03-01
We provide various schemes for quantum teleportation by using the four and five qubit cluster states. Explicit protocols for the perfect quantum teleportation of three and four qubit states are illustrated. It is found that the four-qubit cluster state can be used for perfect quantum teleportation of a special form of three-qubit state and the five-qubit cluster state can be used for perfect quantum teleportation of a special form of four-qubit state.
Scheme for teleportation of quantum states onto a mechanical resonator.
Mancini, Stefano; Vitali, David; Tombesi, Paolo
2003-04-01
We propose an experimentally feasible scheme to teleport an unkown quantum state onto the vibrational degree of freedom of a macroscopic mirror. The quantum channel between the two parties is established by exploiting radiation pressure effects. PMID:12689325
Quasibound states in semiconductor quantum well structures
NASA Astrophysics Data System (ADS)
Rihani, Samir; Page, Hideaki; Beere, Harvey E.
2010-02-01
We present a study on quasibound states in multiple quantum well structures using a finite element model (FEM). The FEM is implemented for solving the effective mass Schrödinger equation in arbitrary layered semiconductor nanostructures with an arbitrary applied potential. The model also includes nonparabolicity effects by using an energy dependent effective mass, where the resulting nonlinear eigenvalue problem was solved using an iterative approach. We focus on quasibound/continuum states above the barrier potential and show that such states can be determined using cyclic boundary conditions. This new method enables the determination of both bound and quasibound states simultaneously, making it more efficient than other methods where different boundary conditions have to be used in extracting the relevant states. Furthermore, the new method lifted the problem of quasibound state divergence commonly seen with many other methods of calculation. Hence enabling accurate determination of dipole matrix elements involving both bound and quasibound states. Such calculations are vital in the design of intersubband optoelectronic devices and reveal the interesting properties of quasibound states above the potential barriers.
Delocalization and new phase in Americium: theory
Soderlind, P
1999-04-23
Density-functional electronic structure calculations have been used to investigate the high pressure behavior of Am. At about 80 kbar (8 GPa) calculations reveal a monoclinic phase similar to the ground state structure of plutonium ({alpha}-Pu). The experimentally suggested {alpha}-U structure is found to be substantially higher in energy. The phase transition from fcc to the low symmetry structure is shown to originate from a drastic change in the nature of the electronic structure induced by the elevated pressure. A calculated volume collapse of about 25% is associated with the transition. For the low density phase, an orbital polarization correction to the local spin density (LSD) theory was applied. Gradient terms of the electron density were included in the calculation of the exchange/correlation energy and potential, according to the generalized gradient approximation (GGA). The results are consistent with a Mott transition; the 5f electrons are delocalized and bonding on the high density side of the transition and chemically inert and non-bonding (localized) on the other. Theory compares rather well with recent experimental data which implies that electron correlation effects are reasonably modeled in our orbital polarization scheme.
A method of enciphering quantum states
NASA Astrophysics Data System (ADS)
Azuma, Hiroo; Ban, Masashi
2001-04-01
In this paper, we propose a method of enciphering quantum states of two-state systems (qubits) for sending them in secrecy without entangled qubits shared by two legitimate users (Alice and Bob). This method has the following two properties. First, even if an eavesdropper (Eve) steals qubits, she can extract information from them with only a certain probability at most. Second, Alice and Bob can confirm that the qubits are transmitted between them correctly by measuring a signature. If Eve measures m qubits one by one from n enciphered qubits and sends alternative ones (the intercept/resend attack), the probability that Alice and Bob do not notice Eve's action is equal to (3/4)m or less. Passwords for decryption and the signature are given by classical binary strings and they are disclosed through a public channel. Enciphering classical information by this method is equivalent to the one-time pad method with distributing a classical key (random binary string) by the BB84 protocol. If Eve takes away qubits, Alice and Bob lose the original quantum information. If we apply our method to a state in iteration, Eve's success probability decreases exponentially. We cannot examine security against the case that Eve makes an attack using entanglement. This remains to be solved in the future.
Witnessing Quantum Coherence: from solid-state to biological systems
Li, Che-Ming; Lambert, Neill; Chen, Yueh-Nan; Chen, Guang-Yin; Nori, Franco
2012-01-01
Quantum coherence is one of the primary non-classical features of quantum systems. While protocols such as the Leggett-Garg inequality (LGI) and quantum tomography can be used to test for the existence of quantum coherence and dynamics in a given system, unambiguously detecting inherent “quantumness” still faces serious obstacles in terms of experimental feasibility and efficiency, particularly in complex systems. Here we introduce two “quantum witnesses” to efficiently verify quantum coherence and dynamics in the time domain, without the expense and burden of non-invasive measurements or full tomographic processes. Using several physical examples, including quantum transport in solid-state nanostructures and in biological organisms, we show that these quantum witnesses are robust and have a much finer resolution in their detection window than the LGI has. These robust quantum indicators may assist in reducing the experimental overhead in unambiguously verifying quantum coherence in complex systems. PMID:23185690
Toward Practical Solid-State Based Quantum Memories
NASA Astrophysics Data System (ADS)
Heshami, Khabat
Quantum information processing promises to have transformative impacts on information and communication science and technology. Photonic implementation of quantum information processing is among successful candidates for implementation of quantum computation and is an essential part of quantum communication. Linear optical quantum computation, specifically the KLM scheme [1], and quantum repeaters [2, 3] are prominent candidates for practical photonic quantum computation and long-distance quantum communication. Quantum memories for photons are key elements for any practical implementation of these schemes. Practical quantum memories require theoretical and experimental investigations into quantum memory protocols and physical systems for implementations. The present thesis is focused on studying new approaches toward practical solid-state based quantum memories. First, I present a proposal for a new quantum memory protocol called the controllable-dipole quantum memory [4]. It represents a protocol, in a two-level system, without any optical control that is shown to be equivalent to the Raman type-quantum memory. Then I include our studies on the quantum memory based on the refractive index modulation of the host medium [5]. It is shown that it can resemble the gradient echo quantum memory without a spatial gradient in the external field. These two protocols can be implemented in rare-earth doped crystals. With regards to using new physical systems, I present a proposal based on nitrogen vacancy centers [6]. This may pave the way toward micron-scale on-chip quantum memories that may contribute to the implementation of integrated quantum photonics. Finally, I studied the precision requirements for the spin echo technique [7]. This technique is necessary to extend the storage time in solid-state quantum memories, in which the coherence times are limited by spin inhomogeneous broadening.
State-independent purity and fidelity of quantum operations
NASA Astrophysics Data System (ADS)
Kong, Fan-Zhen; Zong, Xiao-Lan; Yang, Ming; Cao, Zhuo-Liang
2016-04-01
The purity and fidelity of quantum operations are of great importance in characterizing the quality of quantum operations. The currently available definitions of the purity and fidelity of quantum operations are based on the average over all possible input pure quantum states, i.e. they are state-dependent (SD). In this paper, without resorting to quantum states, we define the state-independent (SI) purity and fidelity of a general quantum operation (evolution) in virtue of a new density matrix formalism for quantum operations, which is extended from the quantum state level to quantum operation level. The SI purity and fidelity gain more intrinsic physical properties of quantum operations than state-dependent ones, such as the purity of a one-qubit amplitude damping channel (with damping rate 1) is 1/2, which is in line with the fact that the channel is still a nonunitary operation described by two Kraus operators rather than a unitary one. But the state-dependent Haar average purity is 1 in this case. So the SI purity and fidelity proposed here can help the experimentalists to exactly quantify the implementation quality of an operation. As a byproduct, a new measure of the operator entanglement is proposed for a quantum evolution (unitary or nonunitary) in terms of the linear entropy of its density matrix on the orthonormal operator bases (OOBs) in Hilbert-Schmidt space.
Topological analysis of the electron delocalization range.
Janesko, Benjamin G
2016-08-01
The electron delocalization range function EDR( r→;d) (Janesko et al., J. Chem. Phys. 2014, 141, 144104) quantifies the extent to which an electron at point r→ in a calculated wavefunction delocalizes over distance d. This work shows how topological analysis distills chemically useful information out of the EDR. Local maxima (attractors) in the EDR occur in regions such as atomic cores, covalent bonds, and lone pairs where the wavefunction is dominated by a single orbital lobe. The EDR characterizes each attractor in terms of a delocalization length D and a normalization N≤1, which are qualitatively consistent with the size of the orbital lobe and the number of lobes in the orbital. Attractors identify the progressively more delocalized atomic shells in heavy atoms, the interplay of delocalization and strong (nondynamical) correlation in stretched and dissociating covalent bonds, the locations of valence and weakly bound electrons in anionic water clusters, and the chemistry of different reactive sites on metal clusters. Application to ammonia dissociation over silicon illustrates how this density-matrix-based analysis can give insight into realistic systems. © 2016 Wiley Periodicals, Inc. PMID:27296767
Geometric defects in quantum Hall states
NASA Astrophysics Data System (ADS)
Gromov, Andrey
2016-08-01
We describe a geometric (or gravitational) analog of the Laughlin quasiholes in fractional quantum Hall states. Analogously to the quasiholes, these defects can be constructed by an insertion of an appropriate vertex operator into the conformal block representation of a trial wave function; however, unlike the quasiholes these defects are extrinsic and do not correspond to true excitations of the quantum fluid. We construct a wave function in the presence of such defects and explain how to assign an electric charge and a spin to each defect and calculate the adiabatic, non-Abelian statistics of the defects. The defects turn out to be equivalent to the genons in that their adiabatic exchange statistics can be described in terms of representations of the mapping class group of an appropriate higher genus Riemann surface. We present a general construction that, in principle, makes it possible to calculate the statistics of Zn genons for any "parent" topological phase. We illustrate the construction on the example of the Laughlin state and perform an explicit calculation of the braiding matrices. In addition to non-Abelian statistics, geometric defects possess a universal Abelian overall phase, determined by the gravitational anomaly.
An impurity-induced gap system as a quantum data bus for quantum state transfer
Chen, Bing; Li, Yong; Song, Z.; Sun, C.-P.
2014-09-15
We introduce a tight-binding chain with a single impurity to act as a quantum data bus for perfect quantum state transfer. Our proposal is based on the weak coupling limit of the two outermost quantum dots to the data bus, which is a gapped system induced by the impurity. By connecting two quantum dots to two sites of the data bus, the system can accomplish a high-fidelity and long-distance quantum state transfer. Numerical simulations for finite system show that the numerical and analytical results of the effective coupling strength agree well with each other. Moreover, we study the robustness of this quantum communication protocol in the presence of disorder in the couplings between the nearest-neighbor quantum dots. We find that the gap of the system plays an important role in robust quantum state transfer.
Geometric Aspects of Quantum Hall States
NASA Astrophysics Data System (ADS)
Gromov, Andrey
Explanation of the quantization of the Hall conductance at low temperatures in strong magnetic field is one of the greatest accomplishments of theoretical physics of the end of the 20th century. Since the publication of the Laughlin's charge pumping argument condensed matter theorists have come a long way to topological insulators, classification of noninteracting (and sometimes interacting) topological phases of matter, non-abelian statistics, Majorana zero modes in topological superconductors and topological quantum computation---the framework for "error-free'' quantum computation. While topology was very important in these developments, geometry has largely been neglected. We explore the role of space-time symmetries in topological phases of matter. Such symmetries are responsible for the conservation of energy, momentum and angular momentum. We will show that if these symmetries are maintained (at least on average) then in addition to Hall conductance there are other, in principle, measurable transport coefficients that are quantized and sensitive to topological phase transition. Among these coefficients are non-dissipative viscosity of quantum fluids, known as Hall viscosity; thermal Hall conductance, and a recently discovered coefficient---orbital spin variance. All of these coefficients can be computed as linear responses to variations of geometry of a physical sample. We will show how to compute these coefficients for a variety of abelian and non-abelian quantum Hall states using various analytical tools: from RPA-type perturbation theory to non-abelian Chern-Simons-Witten effective topological quantum field theory. We will explain how non-Riemannian geometry known as Newton-Cartan (NC) geometry arises in the computation of momentum and energy transport in non-relativistic gapped systems. We use this geometry to derive a number of thermodynamic relations and stress the non-relativistic nature of condensed matter systems. NC geometry is also useful in the
Quantum state of wormholes and path integral
Garay, L.J. )
1991-08-15
The quantum state of a wormhole can be represented by a path integral over all asymptotically Euclidean four-geometries and all matter fields which have prescribed values, the arguments of the wave function, on a three-surface {ital S} which divides the spacetime manifold into two disconnected parts. The ground-state wave function is picked out by requiring that there be no matter excitations in the asymptotic region. Once the path integrals over the lapse and shift functions are evaluated, the requirement that the spacetime be asymptotically Euclidean can be accomplished by fixing the asymptotic gravitational momentum in the remaining path integral. It is claimed that no wave function exists which corresponds to asymptotic field configurations such that the effective gravitational constant is negative in the asymptotic region. The wormhole wave functions are worked out in minisuperspace models with massless minimal and conformal scalar fields.
Boundary Effective Action for Quantum Hall States.
Gromov, Andrey; Jensen, Kristan; Abanov, Alexander G
2016-03-25
We consider quantum Hall states on a space with boundary, focusing on the aspects of the edge physics which are completely determined by the symmetries of the problem. There are four distinct terms of Chern-Simons type that appear in the low-energy effective action of the state. Two of these protect gapless edge modes. They describe Hall conductance and, with some provisions, thermal Hall conductance. The remaining two, including the Wen-Zee term, which contributes to the Hall viscosity, do not protect gapless edge modes but are instead related to the local boundary response fixed by symmetries. We highlight some basic features of this response. It follows that the coefficient of the Wen-Zee term can change across an interface without closing a gap or breaking a symmetry. PMID:27058090
Boundary Effective Action for Quantum Hall States
NASA Astrophysics Data System (ADS)
Gromov, Andrey; Jensen, Kristan; Abanov, Alexander G.
2016-03-01
We consider quantum Hall states on a space with boundary, focusing on the aspects of the edge physics which are completely determined by the symmetries of the problem. There are four distinct terms of Chern-Simons type that appear in the low-energy effective action of the state. Two of these protect gapless edge modes. They describe Hall conductance and, with some provisions, thermal Hall conductance. The remaining two, including the Wen-Zee term, which contributes to the Hall viscosity, do not protect gapless edge modes but are instead related to the local boundary response fixed by symmetries. We highlight some basic features of this response. It follows that the coefficient of the Wen-Zee term can change across an interface without closing a gap or breaking a symmetry.
Confinement of Fractional Quantum Hall States
NASA Astrophysics Data System (ADS)
Willett, Robert; Manfra, Michael; West, Ken; Pfeiffer, Loren
2008-03-01
Confinement of small-gapped fractional quantum Hall states facilitates quasiparticle manipulation and is an important step towards quasiparticle interference measurements. Demonstrated here is conduction through top gate defined, narrow channels in high density, ultra-high mobility heterostructures. Transport evidence for the persistence of a correlated state at filling fraction 5/3 is shown in channels of 2μm length but gated to near 0.3μm in width. The methods employed to achieve this confinement hold promise for interference devices proposed for studying potential non-Abelian statistics at filling fraction 5/2. R.L. Willett, M.J. Manfra, L.N. Pfeiffer, K.W. West, Appl. Phys. Lett. 91, 052105 (2007).
Quantifying asymmetry of quantum states using entanglement
NASA Astrophysics Data System (ADS)
Toloui, Borzu
2013-03-01
For open systems, symmetric dynamics do not always lead to conservation laws. We show that, for a dynamic symmetry associated with a compact Lie group, one can derive new selection rules from entanglement theory. These selection rules apply to both closed and open systems as well as reversible and irreversible time evolutions. Our approach is based on an embedding of the system's Hilbert space into a tensor product of two Hilbert spaces allowing for the symmetric dynamics to be simulated with local operations. The entanglement of the embedded states determines which transformations are forbidden because of the symmetry. In fact, every bipartite entanglement monotone can be used to quantify the asymmetry of the initial states. Moreover, where the dynamics is reversible, each of these monotones becomes a new conserved quantity. This research has been supported by the Institute for Quantum Information Science (IQIS) at the University of Calgary, Alberta Innovates, NSERC, General Dynamics Canada, and MITACS.
Global quantum correlations in tripartite nonorthogonal states and monogamy properties
NASA Astrophysics Data System (ADS)
Daoud, M.; Ahl Laamara, R.; Essaber, R.; Kaydi, W.
2014-06-01
A global measure of quantum correlations for tripartite nonorthogonal states is presented. It is introduced as the overall average of the pairwise correlations existing in all possible partitions. The explicit expressions for the global measure are derived for squared concurrence, entanglement of formation, quantum discord and its geometric variant. As illustration, we consider even and odd three-mode Schrödinger cat states based on Glauber coherent states. We also discuss limitations to sharing quantum correlations known as monogamy relations.
Concrete Representation and Separability Criteria for Symmetric Quantum State
NASA Astrophysics Data System (ADS)
Li, Chang'e.; Tao, Yuanhong; Zhang, Jun; Li, Linsong; Nan, Hua
2014-09-01
Using the typical generators of the special unitary groups S U(2), the concrete representation of symmetric quantum state is established, then the relations satisfied by those coefficients in the representation are presented. Based on the representation of density matrix, the PPT criterion and CCNR criterion are proved to be equivalent on judging the separability of symmetric quantum states. Moreover, it is showed that the matrix Γ ρ of symmetric quantum state only has five efficient entries, thus the calculation of ∥Γ ρ ∥ is simplified. Finally, the quantitative expressions of real symmetric quantum state under the ∥Γ ρ ∥ separability criterion are obtained.
Pouthier, Vincent
2012-11-01
A communication protocol is proposed in which vibron-mediated quantum state transfer takes place in a molecular lattice. We consider two distant molecular groups grafted on each side of the lattice. These groups form two quantum computers where vibrational qubits are implemented and received. The lattice defines the communication channel along which a vibron delocalizes and interacts with a phonon bath. Using quasi-degenerate perturbation theory, vibron-phonon entanglement is taken into account through the effective Hamiltonian concept. A vibron is thus dressed by a virtual phonon cloud whereas a phonon is clothed by virtual vibronic transitions. It is shown that three quasi-degenerate dressed states define the relevant paths followed by a vibron to tunnel between the computers. When the coupling between the computers and the lattice is judiciously chosen, constructive interference takes place between these paths. Phonon-induced decoherence is minimized and a high-fidelity quantum state transfer occurs over a broad temperature range. PMID:23044492
Information Divergence and Distance Measures for Quantum States
NASA Astrophysics Data System (ADS)
Jiang, Nan; Zhang, Zhaozhi
2015-02-01
Both information divergence and distance are measures of closeness of two quantum states which are widely used in the theory of information processing and quantum cryptography. For example, the quantum relative entropy and trace distance are well known. Here we introduce a number of new quantum information divergence and distance measures into the literature and discuss their relations and properties. We also propose a method to analyze the properties and relations of various distance and pseudo-distance measures.
Quantum pattern recognition with liquid-state nuclear magnetic resonance
NASA Astrophysics Data System (ADS)
Neigovzen, Rodion; Neves, Jorge L.; Sollacher, Rudolf; Glaser, Steffen J.
2009-04-01
A quantum pattern recognition scheme is presented, which combines the idea of a classic Hopfield neural network with adiabatic quantum computation. Both the input and the memorized patterns are represented by means of the problem Hamiltonian. In contrast to classic neural networks, the algorithm can return a quantum superposition of multiple recognized patterns. A proof of principle for the algorithm for two qubits is provided using a liquid-state NMR quantum computer.
Multiple-state quantum Otto engine, 1D box system
Latifah, E.; Purwanto, A.
2014-03-24
Quantum heat engines produce work using quantum matter as their working substance. We studied adiabatic and isochoric processes and defined the general force according to quantum system. The processes and general force are used to evaluate a quantum Otto engine based on multiple-state of one dimensional box system and calculate the efficiency. As a result, the efficiency depends on the ratio of initial and final width of system under adiabatic processes.
Correlated states of a quantum oscillator acted by short pulses
NASA Technical Reports Server (NTRS)
Manko, O. V.
1993-01-01
Correlated squeezed states for a quantum oscillator are constructed based on the method of quantum integrals of motion. The quantum oscillator is acted upon by short duration pulses. Three delta-kickings of frequency are used to model the pulses' dependence upon the time aspects of the frequency of the oscillator. Additionally, the correlation coefficient and quantum variances of operations of coordinates and momenta are written in explicit form.
Quantum variance: A measure of quantum coherence and quantum correlations for many-body systems
NASA Astrophysics Data System (ADS)
Frérot, Irénée; Roscilde, Tommaso
2016-08-01
Quantum coherence is a fundamental common trait of quantum phenomena, from the interference of matter waves to quantum degeneracy of identical particles. Despite its importance, estimating and measuring quantum coherence in generic, mixed many-body quantum states remains a formidable challenge, with fundamental implications in areas as broad as quantum condensed matter, quantum information, quantum metrology, and quantum biology. Here, we provide a quantitative definition of the variance of quantum coherent fluctuations (the quantum variance) of any observable on generic quantum states. The quantum variance generalizes the concept of thermal de Broglie wavelength (for the position of a free quantum particle) to the space of eigenvalues of any observable, quantifying the degree of coherent delocalization in that space. The quantum variance is generically measurable and computable as the difference between the static fluctuations and the static susceptibility of the observable; despite its simplicity, it is found to provide a tight lower bound to most widely accepted estimators of "quantumness" of observables (both as a feature as well as a resource), such as the Wigner-Yanase skew information and the quantum Fisher information. When considering bipartite fluctuations in an extended quantum system, the quantum variance expresses genuine quantum correlations among the two parts. In the case of many-body systems, it is found to obey an area law at finite temperature, extending therefore area laws of entanglement and quantum fluctuations of pure states to the mixed-state context. Hence the quantum variance paves the way to the measurement of macroscopic quantum coherence and quantum correlations in most complex quantum systems.
Preparing ground states of quantum many-body systems on a quantum computer
NASA Astrophysics Data System (ADS)
Poulin, David
2009-03-01
The simulation of quantum many-body systems is a notoriously hard problem in condensed matter physics, but it could easily be handled by a quantum computer [4,1]. There is however one catch: while a quantum computer can naturally implement the dynamics of a quantum system --- i.e. solve Schr"odinger's equation --- there was until now no general method to initialize the computer in a low-energy state of the simulated system. We present a quantum algorithm [5] that can prepare the ground state and thermal states of a quantum many-body system in a time proportional to the square-root of its Hilbert space dimension. This is the same scaling as required by the best known algorithm to prepare the ground state of a classical many-body system on a quantum computer [3,2]. This provides strong evidence that for a quantum computer, preparing the ground state of a quantum system is in the worst case no more difficult than preparing the ground state of a classical system. 1 D. Aharonov and A. Ta-Shma, Adiabatic quantum state generation and statistical zero knowledge, Proc. 35th Annual ACM Symp. on Theo. Comp., (2003), p. 20. F. Barahona, On the computational complexity of ising spin glass models, J. Phys. A. Math. Gen., 15 (1982), p. 3241. C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, Strengths and weaknessess of quantum computing, SIAM J. Comput., 26 (1997), pp. 1510--1523, quant-ph/9701001. S. Lloyd, Universal quantum simulators, Science, 273 (1996), pp. 1073--1078. D. Poulin and P. Wocjan, Preparing ground states of quantum many-body systems on a quantum computer, 2008, arXiv:0809.2705.
Fundamental Bounds in Measurements for Estimating Quantum States
NASA Astrophysics Data System (ADS)
Lim, Hyang-Tag; Ra, Young-Sik; Hong, Kang-Hee; Lee, Seung-Woo; Kim, Yoon-Ho
2014-07-01
Quantum measurement unavoidably disturbs the state of a quantum system if any information about the system is extracted. Recently, the concept of reversing quantum measurement has been introduced and has attracted much attention. Numerous efforts have thus been devoted to understanding the fundamental relation of the amount of information obtained by measurement to either state disturbance or reversibility. Here, we experimentally prove the trade-off relations in quantum measurement with respect to both state disturbance and reversibility. By demonstrating the quantitative bound of the trade-off relations, we realize an optimal measurement for estimating quantum systems with minimum disturbance and maximum reversibility. Our results offer fundamental insights on quantum measurement and practical guidelines for implementing various quantum information protocols.
Information and entropic characteristics of photon and qudit quantum states
NASA Astrophysics Data System (ADS)
Man'ko, Margarita A.
2010-09-01
The probability distribution determining the quantum states of photons and qudits are reviewed. Shannon, Rényi and Tsallis entropies associated with the probability distributions are discussed. Shannon information associated with quantum states in the probability representation is considered. Known inequalities for the classical joint probability distributions determining quantum states of multipartite systems are discussed in detail and the relationship to the inequalities known for quantum von Neumann entropy of the states is presented. Properties of subadditivity and strong subadditivity of the von Neumann entropy of two-partite and multipartite qudit states are considered in view of the subadditivity and strong subadditivity properties of Shannon entropies associated with classical joint probability distributions determining the multiqudit quantum states. The new entropic uncertainty relationships for optical tomograms are suggested as a test for accuracy of the homodyne reconstructing the photon state.
New Formulation of Statistical Mechanics Using Thermal Pure Quantum States
NASA Astrophysics Data System (ADS)
Sugiura, Sho; Shimizu, Akira
2014-03-01
We formulate statistical mechanics based on a pure quantum state, which we call a "thermal pure quantum (TPQ) state". A single TPQ state gives not only equilibrium values of mechanical variables, such as magnetization and correlation functions, but also those of genuine thermodynamic variables and thermodynamic functions, such as entropy and free energy. Among many possible TPQ states, we discuss the canonical TPQ state, the TPQ state whose temperature is specified. In the TPQ formulation of statistical mechanics, thermal fluctuations are completely included in quantum-mechanical fluctuations. As a consequence, TPQ states have much larger quantum entanglement than the equilibrium density operators of the ensemble formulation. We also show that the TPQ formulation is very useful in practical computations, by applying the formulation to a frustrated two-dimensional quantum spin system.
Optimal error regions for quantum state estimation
NASA Astrophysics Data System (ADS)
Shang, Jiangwei; Khoon Ng, Hui; Sehrawat, Arun; Li, Xikun; Englert, Berthold-Georg
2013-12-01
An estimator is a state that represents one's best guess of the actual state of the quantum system for the given data. Such estimators are points in the state space. To be statistically meaningful, they have to be endowed with error regions, the generalization of error bars beyond one dimension. As opposed to standard ad hoc constructions of error regions, we introduce the maximum-likelihood region—the region of largest likelihood among all regions of the same size—as the natural counterpart of the popular maximum-likelihood estimator. Here, the size of a region is its prior probability. A related concept is the smallest credible region—the smallest region with pre-chosen posterior probability. In both cases, the optimal error region has constant likelihood on its boundary. This surprisingly simple characterization permits concise reporting of the error regions, even in high-dimensional problems. For illustration, we identify optimal error regions for single-qubit and two-qubit states from computer-generated data that simulate incomplete tomography with few measured copies.
Cavity State Reservoir Engineering in Circuit Quantum Electrodynamics
NASA Astrophysics Data System (ADS)
Holland, Eric T.
Engineered quantum systems are poised to revolutionize information science in the near future. A persistent challenge in applied quantum technology is creating controllable, quantum interactions while preventing information loss to the environment, decoherence. In this thesis, we realize mesoscopic superconducting circuits whose macroscopic collective degrees of freedom, such as voltages and currents, behave quantum mechanically. We couple these mesoscopic devices to microwave cavities forming a cavity quantum electrodynamics (QED) architecture comprised entirely of circuit elements. This application of cavity QED is dubbed Circuit QED and is an interdisciplinary field seated at the intersection of electrical engineering, superconductivity, quantum optics, and quantum information science. Two popular methods for taming active quantum systems in the presence of decoherence are discrete feedback conditioned on an ancillary system or quantum reservoir engineering. Quantum reservoir engineering maintains a desired subset of a Hilbert space through a combination of drives and designed entropy evacuation. Circuit QED provides a favorable platform for investigating quantum reservoir engineering proposals. A major advancement of this thesis is the development of a quantum reservoir engineering protocol which maintains the quantum state of a microwave cavity in the presence of decoherence. This thesis synthesizes strongly coupled, coherent devices whose solutions to its driven, dissipative Hamiltonian are predicted a priori. This work lays the foundation for future advancements in cavity centered quantum reservoir engineering protocols realizing hardware efficient circuit QED designs.
An Analog of electrically induced transparency via surface delocalized modes
NASA Astrophysics Data System (ADS)
Xiao, Xiao; Zhou, Bingpu; Wang, Xinke; He, Jingwen; Hou, Bo; Zhang, Yan; Wen, Weijia
2015-07-01
We demonstrate theoretically and experimentally an interesting opaque state, which is based on an analog of electromagnetically induced transparency (EIT) in mechanism, in a metal hole array of the dimer lattice. By introducing a small difference to the dimer holes of each unit cell, the surface delocalized modes launching out from the dimer holes can have destructive interferences. Consequently, a narrow opaque window in the transparent background can be observed in the transmission spectrum. This surface-mode-induced opacity (SMIO) state is very sensitive to the difference of the dimer holes, which will promise various applications.
Direct Delocalization for Calculating Electron Transfer in Fullerenes
Arntsen, Christopher D.; Reslan, Randa; Hernandez, Samuel; Gao, Yi; Neuhauser, Daniel
2013-08-05
A method is introduced for simple calculation of charge transfer between very large solvated organic dimers (fullerenes here) from isolated dimer calculations. The individual monomers in noncentrosymmetric dimers experience different chemical environments, so that the dimers do not necessarily represent bulk-like molecules. Therefore, we apply a delocalizing bias directly to the Fock matrix of the dimer system, and verify that this is almost as accurate as self-consistent solvation. As large molecules like fullerenes have a plethora of excited states, the initially excited state orbitals are thermally populated, so that the rate is obtained as a thermal average over Marcus thermal transfers.
Quantum speed limits for Bell-diagonal states
NASA Astrophysics Data System (ADS)
Han, Wei; Jiang, Ke-Xia; Zhang, Ying-Jie; Xia, Yun-Jie
2015-12-01
The lower bounds of the evolution time between two distinguishable states of a system, defined as quantum speed limit time, can characterize the maximal speed of quantum computers and communication channels. We study the quantum speed limit time between the composite quantum states and their target states in the presence of nondissipative decoherence. For the initial states with maximally mixed marginals, we obtain the exact expressions of the quantum speed limit time which mainly depend on the parameters of the initial states and the decoherence channels. Furthermore, by calculating the quantum speed limit time for the time-dependent states started from a class of initial states, we discover that the quantum speed limit time gradually decreases in time, and the decay rate of the quantum speed limit time would show a sudden change at a certain critical time. Interestingly, at the same critical time, the composite system dynamics would exhibit a sudden transition from classical decoherence to quantum decoherence. Project supported by the National Natural Science Foundation of China (Grant Nos. 61178012 and 11304179), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20123705120002 and 20133705110001), the Natural Science Foundation of Shandong Province of China (Grant No. ZR2014AP009), and the Scientific Research Foundation of Qufu Normal University.
A fuzzy-atom analysis of electron delocalization on hydrogen bonds.
Guillaumes, L; Salvador, P; Simon, S
2014-02-13
The extent of electron delocalization is quantified for set of cyclic complexes exhibiting two or more hydrogen bonds (HBs). In particular, the delocalization index (DI) between the atoms directly involved in the HB, and the ING (a normalized n-center delocalization index) have been evaluated using several fuzzy-atom schemes, namely Becke, Becke-ρ, Hirshfeld, and Hirshfeld-Iterative. The results have been compared with the widely used Quantum Theory of Atoms in Molecules (QTAIM) atomic definition. The DI values are found to correlate very well with geometrical or topological descriptors widely used in the literature to characterize HB systems. Among all fuzzy-atom methods, the ones that can better accommodate the different partial ionic character of the bonds perform particularly well. The best performing fuzzy-atom scheme for both pairwise and n-center electron delocalization is found to be the Becke-ρ method, for which similar results to QTAIM model are obtained with a much reduced computational cost. These results open up a wide range of applications of such electron delocalization descriptors based on fuzzy-atoms for noncovalent interactions in more complex and larger systems. PMID:24444143
Quantum Steganography via Greenberger-Horne-Zeilinger GHZ4 State
NASA Astrophysics Data System (ADS)
A. El, Allati; M. B. Ould, Medeni; Hassouni, Y.
2012-04-01
A quantum steganography communication scheme via Greenberger-Horne-Zeilinger GHZ4 state is constructed to investigate the possibility of remotely transferred hidden information. Moreover, the multipartite entangled states are become a hectic topic due to its important applications and deep effects on aspects of quantum information. Then, the scheme consists of sharing the correlation of four particle GHZ4 states between the legitimate users. After insuring the security of the quantum channel, they begin to hide the secret information in the cover of message. Comparing the scheme with the previous quantum steganographies, capacity and imperceptibility of hidden message are good. The security of the present scheme against many attacks is also discussed.
Ideal fermion delocalization in Higgsless models
Chivukula, R. Sekhar; Simmons, Elizabeth H.; He, Hong-Jian; Kurachi, Masafumi; Tanabashi, Masaharu
2005-07-01
In this note we examine the properties of deconstructed Higgsless models for the case of a fermion whose SU(2) properties arise from delocalization over many sites of the deconstructed lattice. We derive expressions for the correlation functions and use these to establish a generalized consistency relation among correlation functions. We discuss the form of the W boson wavefunction and show that if the probability distribution of the delocalized fermions is appropriately related to the W wavefunction, then deviations in precision electroweak parameters are minimized. In particular, we show that this ''ideal fermion delocalization'' results in the vanishing of three of the four leading zero-momentum electroweak parameters defined by Barbieri et al. We then discuss ideal fermion delocalization in the context of two continuum Higgsless models, one in Anti-deSitter space and one in flat space. Our results may be applied to any Higgsless linear moose model with multiple SU(2) groups, including those with only a few extra vector bosons.
Quantum-classical equivalence and ground-state factorization
NASA Astrophysics Data System (ADS)
Abouie, Jahanfar; Sepehrinia, Reza
2016-02-01
We have performed an analytical study of quantum-classical equivalence for quantum XY-spin chains with arbitrary interactions to explore the classical counterpart of the factorizing magnetic fields that drive the system into a separable ground state. We demonstrate that the factorizing line in the parameter space of a quantum model is equivalent to the so-called natural boundary that emerges in mapping the quantum XY-model onto the two-dimensional classical Ising model. As a result, we show that the quantum systems with the non-factorizable ground state could not be mapped onto the classical Ising model. Based on the presented correspondence we suggest a promising method for obtaining the factorizing field of quantum systems through the commutation of the quantum Hamiltonian and the transfer matrix of the classical model.
Semiquantum-key distribution using less than four quantum states
Zou Xiangfu; Qiu Daowen; Li Lvzhou; Wu Lihua; Li Lvjun
2009-05-15
Recently Boyer et al. [Phys. Rev. Lett. 99, 140501 (2007)] suggested the idea of semiquantum key distribution (SQKD) in which Bob is classical and they also proposed a semiquantum key distribution protocol (BKM2007). To discuss the security of the BKM2007 protocol, they proved that their protocol is completely robust. This means that nonzero information acquired by Eve on the information string implies the nonzero probability that the legitimate participants can find errors on the bits tested by this protocol. The BKM2007 protocol uses four quantum states to distribute a secret key. In this paper, we simplify their protocol by using less than four quantum states. In detail, we present five different SQKD protocols in which Alice sends three quantum states, two quantum states, and one quantum state, respectively. Also, we prove that all the five protocols are completely robust. In particular, we invent two completely robust SQKD protocols in which Alice sends only one quantum state. Alice uses a register in one SQKD protocol, but she does not use any register in the other. The information bit proportion of the SQKD protocol in which Alice sends only one quantum state but uses a register is the double as that in the BKM2007 protocol. Furthermore, the information bit rate of the SQKD protocol in which Alice sends only one quantum state and does not use any register is not lower than that of the BKM2007 protocol.
The epistemic view of quantum states and the ether
NASA Astrophysics Data System (ADS)
Marchildon, L.
2006-06-01
The idea that the wave function represents information, or knowledge, rather than the state of a microscopic object has been held to solve foundational problems of quantum mechanics. Realist interpretation schemes, like Bohmian trajectories, have been compared to the ether in prerelativistic theories. I argue that the comparison is inadequate, and that the epistemic view of quantum states begs the question of interpretation.
NASA Astrophysics Data System (ADS)
Li, Jun; Lu, Dawei; Luo, Zhihuang; Laflamme, Raymond; Peng, Xinhua; Du, Jiangfeng
2016-07-01
Precisely characterizing and controlling realistic quantum systems under noises is a challenging frontier in quantum sciences and technologies. In developing reliable controls for open quantum systems, one is often confronted with the problem of the lack of knowledge on the system controllability. The purpose of this paper is to give a numerical approach to this problem, that is, to approximately compute the reachable set of states for coherently controlled quantum Markovian systems. The approximation consists of setting both upper and lower bounds for system's reachable region of states. Furthermore, we apply our reachability analysis to the control of the relaxation dynamics of a two-qubit nuclear magnetic resonance spin system. We implement some experimental tasks of quantum state engineering in this open system at a near optimal performance in view of purity: e.g., increasing polarization and preparing pseudopure states. These results demonstrate the usefulness of our theory and show interesting and promising applications of environment-assisted quantum dynamics.
Quantum Teamwork for Unconditional Multiparty Communication with Gaussian States
NASA Astrophysics Data System (ADS)
Zhang, Jing; Adesso, Gerardo; Xie, Changde; Peng, Kunchi
2009-08-01
We demonstrate the capability of continuous variable Gaussian states to communicate multipartite quantum information. A quantum teamwork protocol is presented according to which an arbitrary possibly entangled multimode state can be faithfully teleported between two teams each comprising many cooperative users. We prove that N-mode Gaussian weighted graph states exist for arbitrary N that enable unconditional quantum teamwork implementations for any arrangement of the teams. These perfect continuous variable maximally multipartite entangled resources are typical among pure Gaussian states and are unaffected by the entanglement frustration occurring in multiqubit states.
Analytic expressions of quantum correlations in qutrit Werner states
NASA Astrophysics Data System (ADS)
Ye, Biaoliang; Liu, Yimin; Chen, Jianlan; Liu, Xiansong; Zhang, Zhanjun
2013-07-01
Quantum correlations in qutrit Werner states are extensively investigated with five popular methods, namely, original quantum discord (OQD) (Ollivier and Zurek in Phys Rev Lett 88:017901, 2001), measurement-induced disturbance (MID) (Luo in Phys Rev A 77:022301, 2008), ameliorated MID (AMID) (Girolami et al. in J Phys A Math Theor 44:352002, 2011), relative entropy (RE) (Modi et al. in Phys Rev Lett 104:080501, 2010) and geometric discord (GD) (Dakić et al. in Phys Rev Lett 105:190502, 2010). Two different analytic expressions of quantum correlations are derived. Quantum correlations captured by the former four methods are same and bigger than those obtained via the GD method. Nonetheless, they all qualitatively characterize quantum correlations in the concerned states. Moreover, as same as the qubit case, there exist quantum correlations in separable qutrit Werner states, too.
Experimental Implementation of a Quantum Optical State Comparison Amplifier
NASA Astrophysics Data System (ADS)
Donaldson, Ross J.; Collins, Robert J.; Eleftheriadou, Electra; Barnett, Stephen M.; Jeffers, John; Buller, Gerald S.
2015-03-01
We present an experimental demonstration of a practical nondeterministic quantum optical amplification scheme that employs two mature technologies, state comparison and photon subtraction, to achieve amplification of known sets of coherent states with high fidelity. The amplifier uses coherent states as a resource rather than single photons, which allows for a relatively simple light source, such as a diode laser, providing an increased rate of amplification. The amplifier is not restricted to low amplitude states. With respect to the two key parameters, fidelity and the amplified state production rate, we demonstrate significant improvements over previous experimental implementations, without the requirement of complex photonic components. Such a system may form the basis of trusted quantum repeaters in nonentanglement-based quantum communications systems with known phase alphabets, such as quantum key distribution or quantum digital signatures.
The impact of quantum dot filling on dual-band optical transitions via intermediate quantum states
Wu, Jiang; Passmore, Brandon; Manasreh, M. O.
2015-08-28
InAs/GaAs quantum dot infrared photodetectors with different doping levels were investigated to understand the effect of quantum dot filling on both intraband and interband optical transitions. The electron filling of self-assembled InAs quantum dots was varied by direct doping of quantum dots with different concentrations. Photoresponse in the near infrared and middle wavelength infrared spectral region was observed from samples with low quantum dot filling. Although undoped quantum dots were favored for interband transitions with the absence of a second optical excitation in the near infrared region, doped quantum dots were preferred to improve intraband transitions in the middle wavelength infrared region. As a result, partial filling of quantum dot was required, to the extent of maintaining a low dark current, to enhance the dual-band photoresponse through the confined electron states.
NASA Astrophysics Data System (ADS)
Peřinová, Vlasta; Lukš, Antonín
2015-06-01
The SU(2) group is used in two different fields of quantum optics, the quantum polarization and quantum interferometry. Quantum degrees of polarization may be based on distances of a polarization state from the set of unpolarized states. The maximum polarization is achieved in the case where the state is pure and then the distribution of the photon-number sums is optimized. In quantum interferometry, the SU(2) intelligent states have also the property that the Fisher measure of information is equal to the inverse minimum detectable phase shift on the usual simplifying condition. Previously, the optimization of the Fisher information under a constraint was studied. Now, in the framework of constraint optimization, states similar to the SU(2) intelligent states are treated.
Faithful conditional quantum state transfer between weakly coupled qubits
Miková, M.; Straka, I.; Mičuda, M.; Krčmarský, V.; Dušek, M.; Ježek, M.; Fiurášek, J.; Filip, R.
2016-01-01
One of the strengths of quantum information theory is that it can treat quantum states without referring to their particular physical representation. In principle, quantum states can be therefore fully swapped between various quantum systems by their mutual interaction and this quantum state transfer is crucial for many quantum communication and information processing tasks. In practice, however, the achievable interaction time and strength are often limited by decoherence. Here we propose and experimentally demonstrate a procedure for faithful quantum state transfer between two weakly interacting qubits. Our scheme enables a probabilistic yet perfect unidirectional transfer of an arbitrary unknown state of a source qubit onto a target qubit prepared initially in a known state. The transfer is achieved by a combination of a suitable measurement of the source qubit and quantum filtering on the target qubit depending on the outcome of measurement on the source qubit. We experimentally verify feasibility and robustness of the transfer using a linear optical setup with qubits encoded into polarization states of single photons. PMID:27562544
Faithful conditional quantum state transfer between weakly coupled qubits.
Miková, M; Straka, I; Mičuda, M; Krčmarský, V; Dušek, M; Ježek, M; Fiurášek, J; Filip, R
2016-01-01
One of the strengths of quantum information theory is that it can treat quantum states without referring to their particular physical representation. In principle, quantum states can be therefore fully swapped between various quantum systems by their mutual interaction and this quantum state transfer is crucial for many quantum communication and information processing tasks. In practice, however, the achievable interaction time and strength are often limited by decoherence. Here we propose and experimentally demonstrate a procedure for faithful quantum state transfer between two weakly interacting qubits. Our scheme enables a probabilistic yet perfect unidirectional transfer of an arbitrary unknown state of a source qubit onto a target qubit prepared initially in a known state. The transfer is achieved by a combination of a suitable measurement of the source qubit and quantum filtering on the target qubit depending on the outcome of measurement on the source qubit. We experimentally verify feasibility and robustness of the transfer using a linear optical setup with qubits encoded into polarization states of single photons. PMID:27562544
Ligand-Mediated Control of the Confinement Potential in Semiconductor Quantum Dots
NASA Astrophysics Data System (ADS)
Amin, Victor
This thesis describes the mechanisms by which organic surfactants, particularly thiophenols and phenyldithiocarbamates, reduce the confinement potential experienced by the exciton of semiconductor quantum dots (QDs). The reduction of the confinement potential is enabled by the creation of interfacial electronic states near the band edge of the QD upon ligand adsorption. In the case of thiophenols, we find that this ligand adsorbs in two distinct binding modes, (i) a tightly bound mode capable of exciton delocalization, and (ii) a more weakly bound mode that has no discernable effect on exciton confinement. Both the adsorption constant and reduction in confinement potential are tunable by para substitution and are generally anticorrelated. For tightly bound thiophenols and other moderately delocalizing ligands, the degree of delocalization induced in the QD is approximately linearly proportional to the fractional surface area occupied by the ligand for all sizes of QDs. In the case of phenyldithiocarbamates, the reduction in the confinement potential is much greater, and ligand adjacency must be accounted for to model exciton delocalization. We find that at high surface coverages, exciton delocalization by phenyldithiocarbamates and other highly delocalizing ligands is dominated by ligand packing effects. Finally, we construct a database of electronic structure calculations on organic molecules and propose an algorithm that combines experimental and computational screening to find novel delocalizing ligands.
Computational modeling of electrophotonics nanomaterials: Tunneling in double quantum dots
Vlahovic, Branislav Filikhin, Igor
2014-10-06
Single electron localization and tunneling in double quantum dots (DQD) and rings (DQR) and in particular the localized-delocalized states and their spectral distributions are considered in dependence on the geometry of the DQDs (DQRs). The effect of violation of symmetry of DQDs geometry on the tunneling is studied in details. The cases of regular and chaotic geometries are considered. It will be shown that a small violation of symmetry drastically affects localization of electron and that anti-crossing of the levels is the mechanism of tunneling between the localized and delocalized states in DQRs.
Complex Wavelet Transform of the Two-mode Quantum States
NASA Astrophysics Data System (ADS)
Song, Jun; Zhou, Jun; Yuan, Hao; He, Rui; Fan, Hong-Yi
2016-08-01
By employing the bipartite entangled state representation and the technique of integration within an ordered product of operators, the classical complex wavelet transform of a complex signal function can be recast to a matrix element of the squeezing-displacing operator U 2( μ, σ) between the mother wavelet vector < ψ| and the two-mode quantum state vector | f> to be transformed. < ψ| U 2( μ, σ)| f> can be considered as the spectrum for analyzing the two-mode quantum state | f>. In this way, for some typical two-mode quantum states, such as two-mode coherent state and two-mode Fock state, we derive the complex wavelet transform spectrum and carry out the numerical calculation. This kind of wavelet-transform spectrum can be used to recognize quantum states.
Cheat sensitive quantum bit commitment via pre- and post-selected quantum states
NASA Astrophysics Data System (ADS)
Li, Yan-Bing; Wen, Qiao-Yan; Li, Zi-Chen; Qin, Su-Juan; Yang, Ya-Tao
2014-01-01
Cheat sensitive quantum bit commitment is a most important and realizable quantum bit commitment (QBC) protocol. By taking advantage of quantum mechanism, it can achieve higher security than classical bit commitment. In this paper, we propose a QBC schemes based on pre- and post-selected quantum states. The analysis indicates that both of the two participants' cheat strategies will be detected with non-zero probability. And the protocol can be implemented with today's technology as a long-term quantum memory is not needed.
Optimal dynamics for quantum-state and entanglement transfer through homogeneous quantum systems
Banchi, L.; Apollaro, T. J. G.; Cuccoli, A.; Vaia, R.; Verrucchi, P.
2010-11-15
The capability of faithfully transmit quantum states and entanglement through quantum channels is one of the key requirements for the development of quantum devices. Different solutions have been proposed to accomplish such a challenging task, which, however, require either an ad hoc engineering of the internal interactions of the physical system acting as the channel or specific initialization procedures. Here we show that optimal dynamics for efficient quantum-state and entanglement transfer can be attained in generic quantum systems with homogeneous interactions by tuning the coupling between the system and the two attached qubits. We devise a general procedure to determine the optimal coupling, and we explicitly implement it in the case of a channel consisting of a spin-(1/2)XY chain. The quality of quantum-state and entanglement transfer is found to be very good and, remarkably, almost independent of the channel length.
NASA Astrophysics Data System (ADS)
Zhang, KeJia; Zhang, Long; Song, TingTing; Yang, YingHui
2016-06-01
In this paper, we propose certain different design ideas on a novel topic in quantum cryptography — quantum operation sharing (QOS). Following these unique ideas, three QOS schemes, the "HIEC" (The scheme whose messages are hidden in the entanglement correlation), "HIAO" (The scheme whose messages are hidden with the assistant operations) and "HIMB" (The scheme whose messages are hidden in the selected measurement basis), have been presented to share the single-qubit operations determinately on target states in a remote node. These schemes only require Bell states as quantum resources. Therefore, they can be directly applied in quantum networks, since Bell states are considered the basic quantum channels in quantum networks. Furthermore, after analyse on the security and resource consumptions, the task of QOS can be achieved securely and effectively in these schemes.
Tripartite Quantum Controlled Teleportation via Seven-Qubit Cluster State
NASA Astrophysics Data System (ADS)
Li, Wei; Zha, Xin-Wei; Qi, Jian-Xia
2016-09-01
In this paper, a theoretical scheme for tripartite quantum controlled teleportation is presented using the entanglement property of seven-qubit cluster state. This means that Alice wants to transmit a entangled state of particle a to Bob, Charlie wants to transmit a entangled state of particle b to David and Edison wants to transmit a entangled state of particle c to Ford via the control of the supervisor. In the end, we compared the aspects of quantum resource consumption, operation complexity, classical resource consumption, quantum information bits transmitted, success probability and efficiency with other schemes.
Quantum teleportation of composite systems via mixed entangled states
Bandyopadhyay, Somshubhro; Sanders, Barry C.
2006-09-15
We analyze quantum teleportation for composite systems, specifically for concatenated teleporation (decomposing a large composite state into smaller states of dimension commensurate with the channel) and partial teleportation (teleporting one component of a larger quantum state). We obtain an exact expression for teleportation fidelity that depends solely on the dimension and singlet fraction for the entanglement channel and entanglement (measures by I concurrence) for the state; in fact quantum teleportation for composite systems provides an operational interpretation for I concurrence. In addition we obtain tight bounds on teleportation fidelity and prove that the average fidelity approaches the lower bound of teleportation fidelity in the high-dimension limit.
Tripartite Quantum Controlled Teleportation via Seven-Qubit Cluster State
NASA Astrophysics Data System (ADS)
Li, Wei; Zha, Xin-Wei; Qi, Jian-Xia
2016-04-01
In this paper, a theoretical scheme for tripartite quantum controlled teleportation is presented using the entanglement property of seven-qubit cluster state. This means that Alice wants to transmit a entangled state of particle a to Bob, Charlie wants to transmit a entangled state of particle b to David and Edison wants to transmit a entangled state of particle c to Ford via the control of the supervisor. In the end, we compared the aspects of quantum resource consumption, operation complexity, classical resource consumption, quantum information bits transmitted, success probability and efficiency with other schemes.
Quantum uncertainty of mixed states based on skew information
Luo Shunlong
2006-02-15
The uncertainty of a mixed state has two quite different origins: classical mixing and quantum randomness. While the classical aspect (mixedness) is significantly quantified by the von Neumann entropy, it seems that we still do not have a well accepted measure of quantum uncertainty. In terms of the skew information introduced by Wigner and Yanase in 1963 in the context of quantum measurements, we will propose an intrinsic measure for synthesizing quantum uncertainty of a mixed state and investigate its fundamental properties. We illustrate how it arises naturally from a naive hidden-variable approach to entanglement and how it exhibits a simple relation to the notion of negativity, which is an entanglement monotone introduced quite recently. We further show that it has a dramatic nonextensive feature resembling the probability law relating operations of two events. This measure of quantum uncertainty provides an alternative quantity complementary to the von Neumann entropy for studying mixedness and quantum correlations.
Nonclassical properties and quantum resources of hierarchical photonic superposition states
Volkoff, T. J.
2015-11-15
We motivate and introduce a class of “hierarchical” quantum superposition states of N coupled quantum oscillators. Unlike other well-known multimode photonic Schrödinger-cat states such as entangled coherent states, the hierarchical superposition states are characterized as two-branch superpositions of tensor products of single-mode Schrödinger-cat states. In addition to analyzing the photon statistics and quasiprobability distributions of prominent examples of these nonclassical states, we consider their usefulness for highprecision quantum metrology of nonlinear optical Hamiltonians and quantify their mode entanglement. We propose two methods for generating hierarchical superpositions in N = 2 coupled microwave cavities, exploiting currently existing quantum optical technology for generating entanglement between spatially separated electromagnetic field modes.
Quantum metrology with spin cat states under dissipation
Huang, Jiahao; Qin, Xizhou; Zhong, Honghua; Ke, Yongguan; Lee, Chaohong
2015-01-01
Quantum metrology aims to yield higher measurement precisions via quantum techniques such as entanglement. It is of great importance for both fundamental sciences and practical technologies, from testing equivalence principle to designing high-precision atomic clocks. However, due to environment effects, highly entangled states become fragile and the achieved precisions may even be worse than the standard quantum limit (SQL). Here we present a high-precision measurement scheme via spin cat states (a kind of non-Gaussian entangled states in superposition of two quasi-orthogonal spin coherent states) under dissipation. In comparison to maximally entangled states, spin cat states with modest entanglement are more robust against losses and their achievable precisions may still beat the SQL. Even if the detector is imperfect, the achieved precisions of the parity measurement are higher than the ones of the population measurement. Our scheme provides a realizable way to achieve high-precision measurements via dissipative quantum systems of Bose atoms. PMID:26647821
Quantum metrology with spin cat states under dissipation.
Huang, Jiahao; Qin, Xizhou; Zhong, Honghua; Ke, Yongguan; Lee, Chaohong
2015-01-01
Quantum metrology aims to yield higher measurement precisions via quantum techniques such as entanglement. It is of great importance for both fundamental sciences and practical technologies, from testing equivalence principle to designing high-precision atomic clocks. However, due to environment effects, highly entangled states become fragile and the achieved precisions may even be worse than the standard quantum limit (SQL). Here we present a high-precision measurement scheme via spin cat states (a kind of non-Gaussian entangled states in superposition of two quasi-orthogonal spin coherent states) under dissipation. In comparison to maximally entangled states, spin cat states with modest entanglement are more robust against losses and their achievable precisions may still beat the SQL. Even if the detector is imperfect, the achieved precisions of the parity measurement are higher than the ones of the population measurement. Our scheme provides a realizable way to achieve high-precision measurements via dissipative quantum systems of Bose atoms. PMID:26647821
Cluster State Quantum Computation and the Repeat-Until Scheme
NASA Astrophysics Data System (ADS)
Kwek, L. C.
Cluster state computation or the one way quantum computation (1WQC) relies on an initially highly entangled state (called a cluster state) and an appropriate sequence of single qubit measurements along different directions, together with feed-forward based on the measurement results, to realize a quantum computation process. The final result of the computation is obtained by measuring the last remaining qubits in the computational basis. In this short tutorial on cluster state quantum computation, we will also describe the basic ideas of a cluster state and proceed to describe how a single qubit operation can be done on a cluster state. Recently, we proposed a repeat-until-success (RUS) scheme that could effectively be used to realize one-way quantum computer on a hybrid system of photons and atoms. We will briefly describe this RUS scheme and show how it can be used to entangled two distant stationary qubits.
Quantum metrology with spin cat states under dissipation
NASA Astrophysics Data System (ADS)
Huang, Jiahao; Qin, Xizhou; Zhong, Honghua; Ke, Yongguan; Lee, Chaohong
2015-12-01
Quantum metrology aims to yield higher measurement precisions via quantum techniques such as entanglement. It is of great importance for both fundamental sciences and practical technologies, from testing equivalence principle to designing high-precision atomic clocks. However, due to environment effects, highly entangled states become fragile and the achieved precisions may even be worse than the standard quantum limit (SQL). Here we present a high-precision measurement scheme via spin cat states (a kind of non-Gaussian entangled states in superposition of two quasi-orthogonal spin coherent states) under dissipation. In comparison to maximally entangled states, spin cat states with modest entanglement are more robust against losses and their achievable precisions may still beat the SQL. Even if the detector is imperfect, the achieved precisions of the parity measurement are higher than the ones of the population measurement. Our scheme provides a realizable way to achieve high-precision measurements via dissipative quantum systems of Bose atoms.
Symmetry-protected topologically ordered states for universal quantum computation
NASA Astrophysics Data System (ADS)
Poulsen Nautrup, Hendrik; Wei, Tzu-Chieh
Measurement-based quantum computation (MBQC) is a model for quantum information processing utilizing only local measurements on suitably entangled resource states for the implementation of quantum gates. A complete characterization for universal resource states is still missing. It has been shown that symmetry-protected topological order (SPTO) in one dimension can be exploited for the protection of certain quantum gates in MBQC. Here we investigate whether any 2D nontrivial SPTO states can serve as resource for MBQC. In particular, we show that the nontrivial SPTO ground state of the CZX model on the square lattice by Chen et al. [Phys. Rev. B 84, 235141 (2011)] can be reduced to a 2D cluster state by local measurement, hence a universal resource state. Such ground states have been generalized to qudits with symmetry action described by three cocycles of a finite group G of order d and shown to exhibit nontrivial SPTO. We also extend these to arbitary lattices and show that the generalized two-dimensional plaquette states on arbitrary lattices exhibit nontrivial SPTO in terms of symmetry fractionalization and that they are universal resource states for quantum computation. SPTO states therefore can provide a new playground for measurement-based quantum computation. This work was supported in part by the National Science Foundation.
Dynamics of open bosonic quantum systems in coherent state representation
Dalvit, D. A. R.; Berman, G. P.; Vishik, M.
2006-01-15
We consider the problem of decoherence and relaxation of open bosonic quantum systems from a perspective alternative to the standard master equation or quantum trajectories approaches. Our method is based on the dynamics of expectation values of observables evaluated in a coherent state representation. We examine a model of a quantum nonlinear oscillator with a density-density interaction with a collection of environmental oscillators at finite temperature. We derive the exact solution for dynamics of observables and demonstrate a consistent perturbation approach.
Geometric Phase for Adiabatic Evolutions of General Quantum States
Wu, Biao; Liu, Jie; Niu, Qian; Singh, David J
2005-01-01
The concept of a geometric phase (Berry's phase) is generalized to the case of noneigenstates, which is applicable to both linear and nonlinear quantum systems. This is particularly important to nonlinear quantum systems, where, due to the lack of the superposition principle, the adiabatic evolution of a general state cannot be described in terms of eigenstates. For linear quantum systems, our new geometric phase reduces to a statistical average of Berry's phases. Our results are demonstrated with a nonlinear two-level model.
Understanding squeezing of quantum states with the Wigner function
NASA Technical Reports Server (NTRS)
Royer, Antoine
1994-01-01
The Wigner function is argued to be the only natural phase space function evolving classically under quadratic Hamiltonians with time-dependent bilinear part. This is used to understand graphically how certain quadratic time-dependent Hamiltonians induce squeezing of quantum states. The Wigner representation is also used to generalize Ehrenfest's theorem to the quantum uncertainties. This makes it possible to deduce features of the quantum evolution, such as squeezing, from the classical evolution, whatever the Hamiltonian.
Efficient quantum state transfer in an engineered chain of quantum bits
NASA Astrophysics Data System (ADS)
Sandberg, Martin; Knill, Emanuel; Kapit, Eliot; Vissers, Michael R.; Pappas, David P.
2016-03-01
We present a method of performing quantum state transfer in a chain of superconducting quantum bits. Our protocol is based on engineering the energy levels of the qubits in the chain and tuning them all simultaneously with an external flux bias. The system is designed to allow sequential adiabatic state transfers, resulting in on-demand quantum state transfer from one end of the chain to the other. Numerical simulations of the master equation using realistic parameters for capacitive nearest-neighbor coupling, energy relaxation, and dephasing show that fast, high-fidelity state transfer should be feasible using this method.
Ground state of the universe in quantum cosmology
NASA Astrophysics Data System (ADS)
Gorobey, Natalia; Lukyanenko, Alexander
2016-01-01
We find a physical state of a closed universe with the minimal excitation of the universe expansion energy in quantum gravity. It is an analog of the vacuum state of the ordinary quantum field theory in the Minkowsky space, but in our approach an energy of space of a closed universe together with the energy of its matter content are minimized. This ground state is chosen among an enlarged set of physical states, compared with the ordinary covariant quantum gravity. In our approach, physical states are determined by weak constraints: quantum mechanical averages of gravitational constraint operators equal zero. As a result, they appear to be non-static in such a modification of quantum gravity. Quantum dynamics of the universe is described by Schrödinger equation with a cosmic time determined by weak gravitational constraints. In order to obtain the observed megascopic universe with the inflation stage just after its quantum beginning, a lot of the energy in the form of the inflaton scalar field condensate is prescribed to the initial state. Parameters of the initial state for a homogeneous model of the universe are calculated.
Long-Range Spin Transfer in Triple Quantum Dots
NASA Astrophysics Data System (ADS)
Sánchez, R.; Granger, G.; Gaudreau, L.; Kam, A.; Pioro-Ladrière, M.; Studenikin, S. A.; Zawadzki, P.; Sachrajda, A. S.; Platero, G.
2014-05-01
Tunneling in a quantum coherent structure is not restricted to only nearest neighbors. Hopping between distant sites is possible via the virtual occupation of otherwise avoided intermediate states. Here we report the observation of long-range transitions in the transport through three quantum dots coupled in series. A single electron is delocalized between the left and right quantum dots, while the center one remains always empty. Superpositions are formed, and both charge and spin are exchanged between the outermost dots. The delocalized electron acts as a quantum bus transferring the spin state from one end to the other. Spin selection is enabled by spin correlations. The process is detected via the observation of narrow resonances which are insensitive to Pauli spin blockade.
Long-range spin transfer in triple quantum dots.
Sánchez, R; Granger, G; Gaudreau, L; Kam, A; Pioro-Ladrière, M; Studenikin, S A; Zawadzki, P; Sachrajda, A S; Platero, G
2014-05-01
Tunneling in a quantum coherent structure is not restricted to only nearest neighbors. Hopping between distant sites is possible via the virtual occupation of otherwise avoided intermediate states. Here we report the observation of long-range transitions in the transport through three quantum dots coupled in series. A single electron is delocalized between the left and right quantum dots, while the center one remains always empty. Superpositions are formed, and both charge and spin are exchanged between the outermost dots. The delocalized electron acts as a quantum bus transferring the spin state from one end to the other. Spin selection is enabled by spin correlations. The process is detected via the observation of narrow resonances which are insensitive to Pauli spin blockade. PMID:24836266
Spin Charge Separation in the Quantum Spin Hall State
Qi, Xiao-Liang; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.
2010-03-19
The quantum spin Hall state is a topologically non-trivial insulator state protected by the time reversal symmetry. We show that such a state always leads to spin-charge separation in the presence of a {pi} flux. Our result is generally valid for any interacting system. We present a proposal to experimentally observe the phenomenon of spin-charge separation in the recently discovered quantum spin Hall system.
Quantum Teleportation of High-dimensional Atomic Momenta State
NASA Astrophysics Data System (ADS)
Qurban, Misbah; Abbas, Tasawar; Rameez-ul-Islam; Ikram, Manzoor
2016-06-01
Atomic momenta states of the neutral atoms are known to be decoherence resistant and therefore present a viable solution for most of the quantum information tasks including the quantum teleportation. We present a systematic protocol for the teleportation of high-dimensional quantized momenta atomic states to the field state inside the cavities by applying standard cavity QED techniques. The proposal can be executed under prevailing experimental scenario.
Steady state quantum discord for circularly accelerated atoms
NASA Astrophysics Data System (ADS)
Hu, Jiawei; Yu, Hongwei
2015-12-01
We study, in the framework of open quantum systems, the dynamics of quantum entanglement and quantum discord of two mutually independent circularly accelerated two-level atoms in interaction with a bath of fluctuating massless scalar fields in the Minkowski vacuum. We assume that the two atoms rotate synchronically with their separation perpendicular to the rotating plane. The time evolution of the quantum entanglement and quantum discord of the two-atom system is investigated. For a maximally entangled initial state, the entanglement measured by concurrence diminishes to zero within a finite time, while the quantum discord can either decrease monotonically to an asymptotic value or diminish to zero at first and then followed by a revival depending on whether the initial state is antisymmetric or symmetric. When both of the two atoms are initially excited, the generation of quantum entanglement shows a delayed feature, while quantum discord is created immediately. Remarkably, the quantum discord for such a circularly accelerated two-atom system takes a nonvanishing value in the steady state, and this is distinct from what happens in both the linear acceleration case and the case of static atoms immersed in a thermal bath.
Ideal fermion delocalization in Higgsless models
NASA Astrophysics Data System (ADS)
Chivukula, R. Sekhar; Simmons, Elizabeth H.; He, Hong-Jian; Kurachi, Masafumi; Tanabashi, Masaharu
2005-07-01
In this note we examine the properties of deconstructed Higgsless models for the case of a fermion whose SU(2) properties arise from delocalization over many sites of the deconstructed lattice. We derive expressions for the correlation functions and use these to establish a generalized consistency relation among correlation functions. We discuss the form of the W boson wavefunction and show that if the probability distribution of the delocalized fermions is appropriately related to the W wavefunction, then deviations in precision electroweak parameters are minimized. In particular, we show that this “ideal fermion delocalization” results in the vanishing of three of the four leading zero-momentum electroweak parameters defined by Barbieri et al. We then discuss ideal fermion delocalization in the context of two continuum Higgsless models, one in Anti-deSitter space and one in flat space. Our results may be applied to any Higgsless linear moose model with multiple SU(2) groups, including those with only a few extra vector bosons.
The collapse of quantum states: A new interpretation
NASA Astrophysics Data System (ADS)
Malin, Shimon
1993-06-01
The collapse of quantum states is analyzed in terms of a breakdown into two generic phases: Phase I, in which the field of potentialities that the quantum state represents undergoes a discontinuous and unpredictable change into one of the base states which corresponds to the measurement performed, and phase II, in which a transition from the level of potentialities to the level of actualities takes place. Phase I is discussed in relation to a comment about collapse, made by Dirac in conversation with the author, “Nature makes a choice.” An analysis of phase II leads to the suggestion that it occurs only through and as an act of experience. This postulate is shown to elucidate basic questions regarding the interpretation of quantum mechanics, such as the elusive demarcation line between the classical and quantum domains, and the controversy of the ontological vs. epistemological interpretation of quantum mechanics.
Quantum communication with coherent states and linear optics
NASA Astrophysics Data System (ADS)
Arrazola, Juan Miguel; Lütkenhaus, Norbert
2014-10-01
We introduce a general mapping for encoding quantum communication protocols involving pure states of multiple qubits, unitary transformations, and projective measurements into another set of protocols that employ a coherent state of light in a linear combination of optical modes, linear-optics transformations, and measurements with single-photon threshold detectors. This provides a general framework for transforming protocols in quantum communication into a form in which they can be implemented with current technology. We explore the similarity between properties of the original qubit protocols and the coherent-state protocols obtained from the mapping and make use of the mapping to construct additional protocols in the context of quantum communication complexity and quantum digital signatures. Our results have the potential of bringing a wide class of quantum communication protocols closer to their experimental demonstration.
Robust quantum state recovery from amplitude damping within a mixed states framework
NASA Astrophysics Data System (ADS)
Shahrokh Esfahani, Saeideh; Liao, Zeyang; Zubairy, M. Suhail
2016-08-01
Due to interaction with the environment, a quantum state is subjected to decoherence which becomes one of the major problems in many quantum systems. Amplitude damping is one of the most important decoherence processes. Here, we show that general two-qubit mixed states undergoing amplitude damping can be almost completely restored using a reversal procedure. This reversal procedure through CNOT and Hadamard gates could also protect the entanglement of two-qubit mixed states from general amplitude damping. We also propose a robust recovery scheme to protect the quantum states when the decay parameters or the input quantum states are not completely known.
Distinct quantum states can be compatible with a single state of reality.
Lewis, Peter G; Jennings, David; Barrett, Jonathan; Rudolph, Terry
2012-10-12
Perhaps the quantum state represents information about reality, and not reality directly. Wave function collapse is then possibly no more mysterious than a Bayesian update of a probability distribution given new data. We consider models for quantum systems with measurement outcomes determined by an underlying physical state of the system but where several quantum states are consistent with a single underlying state-i.e., probability distributions for distinct quantum states overlap. Significantly, we demonstrate by example that additional assumptions are always necessary to rule out such a model. PMID:23102280
Measuring bipartite quantum correlations of an unknown state.
Silva, I A; Girolami, D; Auccaise, R; Sarthour, R S; Oliveira, I S; Bonagamba, T J; deAzevedo, E R; Soares-Pinto, D O; Adesso, G
2013-04-01
We report the experimental measurement of bipartite quantum correlations of an unknown two-qubit state. Using a liquid state Nuclear Magnetic Resonance setup and employing geometric discord, we evaluate the quantum correlations of a state without resorting to prior knowledge of its density matrix. The method is applicable to any 2 ⊗ d system and provides, in terms of number of measurements required, an advantage over full state tomography scaling with the dimension d of the unmeasured subsystem. The negativity of quantumness is measured as well for reference. We also observe the phenomenon of sudden transition of quantum correlations when local phase and amplitude damping channels are applied to the state. PMID:25166969
Quantum Interference in Graphene Nanoconstrictions.
Gehring, Pascal; Sadeghi, Hatef; Sangtarash, Sara; Lau, Chit Siong; Liu, Junjie; Ardavan, Arzhang; Warner, Jamie H; Lambert, Colin J; Briggs, G Andrew D; Mol, Jan A
2016-07-13
We report quantum interference effects in the electrical conductance of chemical vapor deposited graphene nanoconstrictions fabricated using feedback controlled electroburning. The observed multimode Fabry-Pérot interferences can be attributed to reflections at potential steps inside the channel. Sharp antiresonance features with a Fano line shape are observed. Theoretical modeling reveals that these Fano resonances are due to localized states inside the constriction, which couple to the delocalized states that also give rise to the Fabry-Pérot interference patterns. This study provides new insight into the interplay between two fundamental forms of quantum interference in graphene nanoconstrictions. PMID:27295198
Statistical distance and the geometry of quantum states
Braunstein, S.L.; Caves, C.M. )
1994-05-30
By finding measurements that optimally resolve neighboring quantum states, we use statistical distinguishability to define a natural Riemannian metric on the space of quantum-mechanical density operators and to formulate uncertainty principles that are more general and more stringent than standard uncertainty principles.
Photodissociation of ultracold diatomic strontium molecules with quantum state control
NASA Astrophysics Data System (ADS)
McDonald, M.; McGuyer, B. H.; Apfelbeck, F.; Lee, C.-H.; Majewska, I.; Moszynski, R.; Zelevinsky, T.
2016-07-01
Chemical reactions at ultracold temperatures are expected to be dominated by quantum mechanical effects. Although progress towards ultracold chemistry has been made through atomic photoassociation, Feshbach resonances and bimolecular collisions, these approaches have been limited by imperfect quantum state selectivity. In particular, attaining complete control of the ground or excited continuum quantum states has remained a challenge. Here we achieve this control using photodissociation, an approach that encodes a wealth of information in the angular distribution of outgoing fragments. By photodissociating ultracold 88Sr2 molecules with full control of the low-energy continuum, we access the quantum regime of ultracold chemistry, observing resonant and nonresonant barrier tunnelling, matter–wave interference of reaction products and forbidden reaction pathways. Our results illustrate the failure of the traditional quasiclassical model of photodissociation and instead are accurately described by a quantum mechanical model. The experimental ability to produce well-defined quantum continuum states at low energies will enable high-precision studies of long-range molecular potentials for which accurate quantum chemistry models are unavailable, and may serve as a source of entangled states and coherent matter waves for a wide range of experiments in quantum optics.
Photodissociation of ultracold diatomic strontium molecules with quantum state control.
McDonald, M; McGuyer, B H; Apfelbeck, F; Lee, C-H; Majewska, I; Moszynski, R; Zelevinsky, T
2016-07-01
Chemical reactions at ultracold temperatures are expected to be dominated by quantum mechanical effects. Although progress towards ultracold chemistry has been made through atomic photoassociation, Feshbach resonances and bimolecular collisions, these approaches have been limited by imperfect quantum state selectivity. In particular, attaining complete control of the ground or excited continuum quantum states has remained a challenge. Here we achieve this control using photodissociation, an approach that encodes a wealth of information in the angular distribution of outgoing fragments. By photodissociating ultracold (88)Sr2 molecules with full control of the low-energy continuum, we access the quantum regime of ultracold chemistry, observing resonant and nonresonant barrier tunnelling, matter-wave interference of reaction products and forbidden reaction pathways. Our results illustrate the failure of the traditional quasiclassical model of photodissociation and instead are accurately described by a quantum mechanical model. The experimental ability to produce well-defined quantum continuum states at low energies will enable high-precision studies of long-range molecular potentials for which accurate quantum chemistry models are unavailable, and may serve as a source of entangled states and coherent matter waves for a wide range of experiments in quantum optics. PMID:27383945
Quantum Discord of 2 n -Dimensional Bell-Diagonal States
NASA Astrophysics Data System (ADS)
Jafarizadeh, M. A.; Karimi, N.; Amidi, D.; Zahir Olyaei, H.
2016-03-01
In this study, using the concept of relative entropy as a distance measure of correlations we investigate the important issue of evaluating quantum correlations such as entanglement, dissonance and classical correlations for 2 n -dimensional Bell-diagonal states. We provide an analytical technique, which describes how we find the closest classical states(CCS) and the closest separable states(CSS) for these states. Then analytical results are obtained for quantum discord of 2 n -dimensional Bell-diagonal states. As illustration, some special cases are examined. Finally, we investigate the additivity relation between the different correlations for the separable generalized Bloch sphere states.
Charge state hysteresis in semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Yang, C. H.; Rossi, A.; Lai, N. S.; Leon, R.; Lim, W. H.; Dzurak, A. S.
2014-11-01
Semiconductor quantum dots provide a two-dimensional analogy for real atoms and show promise for the implementation of scalable quantum computers. Here, we investigate the charge configurations in a silicon metal-oxide-semiconductor double quantum dot tunnel coupled to a single reservoir of electrons. By operating the system in the few-electron regime, the stability diagram shows hysteretic tunnelling events that depend on the history of the dots charge occupancy. We present a model which accounts for the observed hysteretic behaviour by extending the established description for transport in double dots coupled to two reservoirs. We demonstrate that this type of device operates like a single-electron memory latch.
Charge state hysteresis in semiconductor quantum dots
Yang, C. H.; Rossi, A. Lai, N. S.; Leon, R.; Lim, W. H.; Dzurak, A. S.
2014-11-03
Semiconductor quantum dots provide a two-dimensional analogy for real atoms and show promise for the implementation of scalable quantum computers. Here, we investigate the charge configurations in a silicon metal-oxide-semiconductor double quantum dot tunnel coupled to a single reservoir of electrons. By operating the system in the few-electron regime, the stability diagram shows hysteretic tunnelling events that depend on the history of the dots charge occupancy. We present a model which accounts for the observed hysteretic behaviour by extending the established description for transport in double dots coupled to two reservoirs. We demonstrate that this type of device operates like a single-electron memory latch.
Quantum probabilities of composite events in quantum measurements with multimode states
NASA Astrophysics Data System (ADS)
Yukalov, V. I.; Sornette, D.
2013-10-01
The problem of defining quantum probabilities of composite events is considered. This problem is of great importance for the theory of quantum measurements and for quantum decision theory, which is a part of measurement theory. We show that the Lüders probability of consecutive measurements is a transition probability between two quantum states and that this probability cannot be treated as a quantum extension of the classical conditional probability. The Wigner distribution is shown to be a weighted transition probability that cannot be accepted as a quantum extension of the classical joint probability. We suggest the definition of quantum joint probabilities by introducing composite events in multichannel measurements. The notion of measurements under uncertainty is defined. We demonstrate that the necessary condition for mode interference is the entanglement of the composite prospect together with the entanglement of the composite statistical state. As an illustration, we consider an example of a quantum game. Special attention is paid to the application of the approach to systems with multimode states, such as atoms, molecules, quantum dots, or trapped Bose-condensed atoms with several coherent modes.
Quantum-classical correspondence in steady states of nonadiabatic systems
Fujii, Mikiya; Yamashita, Koichi
2015-12-31
We first present nonadiabatic path integral which is exact formulation of quantum dynamics in nonadiabatic systems. Then, by applying the stationary phase approximations to the nonadiabatic path integral, a semiclassical quantization condition, i.e., quantum-classical correspondence, for steady states of nonadiabatic systems is presented as a nonadiabatic trace formula. The present quantum-classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow degree of freedom, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels.
Two-state vector formalism and quantum interference
NASA Astrophysics Data System (ADS)
Hashmi, F. A.; Li, Fu; Zhu, Shi-Yao; Zubairy, M. Suhail
2016-08-01
We show that two-state vector formalism (TSVF), applied to quantum systems that make use of delicate interference effects, can lead to paradoxes. We consider a few schemes of nested Mach–Zehnder interferometers that make use of destructive interference. A particular interpretation of TSVF applied to these schemes makes predictions that are contradictory to quantum theory and can not always be verified. Our results suggest that TSVF might not be a suitable tool to describe quantum systems that make use of delicate quantum interference effects.
Information complementarity in multipartite quantum states and security in cryptography
NASA Astrophysics Data System (ADS)
Bera, Anindita; Kumar, Asutosh; Rakshit, Debraj; Prabhu, R.; SenDe, Aditi; Sen, Ujjwal
2016-03-01
We derive complementarity relations for arbitrary quantum states of multiparty systems of any number of parties and dimensions between the purity of a part of the system and several correlation quantities, including entanglement and other quantum correlations as well as classical and total correlations, of that part with the remainder of the system. We subsequently use such a complementarity relation between purity and quantum mutual information in the tripartite scenario to provide a bound on the secret key rate for individual attacks on a quantum key distribution protocol.
A secure quantum group signature scheme based on Bell states
NASA Astrophysics Data System (ADS)
Zhang, Kejia; Song, Tingting; Zuo, Huijuan; Zhang, Weiwei
2013-04-01
In this paper, we propose a new secure quantum group signature with Bell states, which may have applications in e-payment system, e-government, e-business, etc. Compared with the recent quantum group signature protocols, our scheme is focused on the most general situation in practice, i.e. only the arbitrator is trusted and no intermediate information needs to be stored in the signing phase to ensure the security. Furthermore, our scheme has achieved all the characteristics of group signature—anonymity, verifiability, traceability, unforgetability and undeniability, by using some current developed quantum and classical technologies. Finally, a feasible security analysis model for quantum group signature is presented.
Manipulation of Entangled States for Quantum Information Processing
NASA Astrophysics Data System (ADS)
Bose, S.; Huelga, S. F.; Jonathan, D.; Knight, P. L.; Murao, M.; Plenio, M. B.; Vedral, V.
Entanglement manipulation, and especially Entanglement Swapping is at the heart of current work on quantum information processing, purification and quantum teleportation. We will discuss how it may be generalized to multiparticle systems and how this enables multi-user quantum cryptographic protocols to be developed. Our scheme allows us to establish multiparticle entanglement between particles which belong to distant users in a communication network through a prior distribution of Bell state singlets followed by local measurements. We compare our method for generating entanglement with existing schemes using simple quantum networks, and highlight the advantages and applications in cryptographic conferencing and in reading messages from more than one source through a single quantum measurement. We also discuss how entanglement leads to the idea of `telecloning', in which a teleportation-like protocol can be found which reproduces the output of an optimal quantum cloning machine.
Quantum state control of ultracold plasma fission
NASA Astrophysics Data System (ADS)
Schulz-Weiling, M.; Grant, E. R.
2016-03-01
Double-resonant transitions excite nitric oxide in a seeded supersonic molecular beam, yielding a state-selected Rydberg gas that evolves to form an ultracold plasma. This plasma propagates in z with the molecular beam over a variable distance as great as 600 mm to strike an imaging detector, which records the charge distribution in the dimensions, x and y. The laser-crossed molecular beam excitation geometry convolutes an axial Gaussian distribution of NO about z with the Gaussian intensity distribution of the laser beam about x to create an ellipsoidal volume of Rydberg gas. Plasma images provide evidence for the relaxation of this Rydberg gas volume in an electron impact avalanche that breaks the ellipsoidal symmetry in x to form repelling plasma volumes. We find that the energy deposited in the recoil velocity of mass transport, V x depends systematically on the initially selected Rydberg gas principal quantum number, n 0, and the initial density of the Rydberg gas, ρ 0. These quantities combine to determine ρ e, the initial density of electrons formed by the prompt Penning ionization of closely spaced pairs of Rydberg molecules. Above a threshold density of Penning electrons, we find that V x depends linearly on ρ e. We argue that this bifurcation occurs as a consequence of the initial geometry of the Rydberg gas. Ambipolar electron expansion accelerates initially formed core ions. Resonant charge transfer redistributes this ion energy to the column of Rydberg molecules on the long axis of the ellipsoid. The equalized velocities in each direction give rise to a ±x streaming motion that concentrates density in opposing plasma volumes, causing the symmetric gas volume to split like a rotating liquid drop. Significantly, these dynamics reduce electron temperature with little decrease in the ion density or increase in the ion temperature. This appears to facilitate the formation of a strongly coupled plasma.
Quantum Entanglement and the Topological Order of Fractional Hall States
NASA Astrophysics Data System (ADS)
Rezayi, Edward
2015-03-01
Fractional quantum Hall states or, more generally, topological phases of matter defy Landau classification based on order parameter and broken symmetry. Instead they have been characterized by their topological order. Quantum information concepts, such as quantum entanglement, appear to provide the most efficient method of detecting topological order solely from the knowledge of the ground state wave function. This talk will focus on real-space bi-partitioning of quantum Hall states and will present both exact diagonalization and quantum Monte Carlo studies of topological entanglement entropy in various geometries. Results on the torus for non-contractible cuts are quite rich and, through the use of minimum entropy states, yield the modular S-matrix and hence uniquely determine the topological order, as shown in recent literature. Concrete examples of minimum entropy states from known quantum Hall wave functions and their corresponding quantum numbers, used in exact diagonalizations, will be given. In collaboration with Clare Abreu and Raul Herrera. Supported by DOE Grant DE-SC0002140.
Trapping phenomenon of the parameter estimation in asymptotic quantum states
NASA Astrophysics Data System (ADS)
Berrada, K.
2016-09-01
In this paper, we study in detail the behavior of the precision of the parameter estimation in open quantum systems using the quantum Fisher information (QFI). In particular, we study the sensitivity of the estimation on a two-qubit system evolving under Kossakowski-type quantum dynamical semigroups of completely positive maps. In such an environment, the precision of the estimation can even persist asymptotically for different effects of the initial parameters. We find that the QFI can be resistant to the action of the environment with respect to the initial asymptotic states, and it can persist even in the asymptotic long-time regime. In addition, our results provide further evidence that the initial pure and separable mixed states of the input state may enhance quantum metrology. These features make quantum states in this kind of environment a good candidate for the implementation of different schemes of quantum optics and information with high precision. Finally, we show that this quantity may be proposed to detect the amount of the total quantum information that the whole state contains with respect to projective measurements.
Quantum Teleportation of A Four-qubit State by Using Six-qubit Cluster State
NASA Astrophysics Data System (ADS)
Li, Yuan-hua; Sang, Ming-huang; Wang, Xian-ping; Nie, Yi-you
2016-08-01
We propose a scheme for perfect quantum teleportation of a special form of four-qubit state by using a six-qubit cluster state as quantum channel. In our scheme, the sender only needs six-qubit von-Neumann projective measurements, and the receiver can reconstruct the original four-qubit state by applying the appropriate unitary operation.
Quantum Teleportation of A Four-qubit State by Using Six-qubit Cluster State
NASA Astrophysics Data System (ADS)
Li, Yuan-hua; Sang, Ming-huang; Wang, Xian-ping; Nie, Yi-you
2016-03-01
We propose a scheme for perfect quantum teleportation of a special form of four-qubit state by using a six-qubit cluster state as quantum channel. In our scheme, the sender only needs six-qubit von-Neumann projective measurements, and the receiver can reconstruct the original four-qubit state by applying the appropriate unitary operation.
Quantum correlations in Gaussian states via Gaussian channels: steering, entanglement, and discord
NASA Astrophysics Data System (ADS)
Wang, Zhong-Xiao; Wang, Shuhao; Li, Qiting; Wang, Tie-Jun; Wang, Chuan
2016-06-01
Here we study the quantum steering, quantum entanglement, and quantum discord for Gaussian Einstein-Podolsky-Rosen states via Gaussian channels. And the sudden death phenomena for Gaussian steering and Gaussian entanglement are theoretically observed. We find that some Gaussian states have only one-way steering, which confirms the asymmetry of quantum steering. Also we investigate that the entangled Gaussian states without Gaussian steering and correlated Gaussian states own no Gaussian entanglement. Meanwhile, our results support the assumption that quantum entanglement is intermediate between quantum discord and quantum steering. Furthermore, we give experimental recipes for preparing quantum states with desired types of quantum correlations.
Device-independent tomography of multipartite quantum states
NASA Astrophysics Data System (ADS)
Pál, Károly F.; Vértesi, Tamás; Navascués, Miguel
2014-10-01
In the usual tomography of multipartite entangled quantum states one assumes that the measurement devices used in the laboratory are under perfect control of the experimenter. In this paper, using the so-called swap concept introduced recently, we show how one can remove this assumption in realistic experimental conditions and nevertheless be able to characterize the produced multipartite state based only on observed statistics. Such a black-box tomography of quantum states is termed self-testing. As a function of the magnitude of the Bell violation, we are able to self-test emblematic multipartite quantum states such as the three-qubit W state, the three- and four-qubit Greenberger-Horne-Zeilinger states, and the four-qubit linear cluster state.
Quantum benchmarks for pure single-mode Gaussian states.
Chiribella, Giulio; Adesso, Gerardo
2014-01-10
Teleportation and storage of continuous variable states of light and atoms are essential building blocks for the realization of large-scale quantum networks. Rigorous validation of these implementations require identifying, and surpassing, benchmarks set by the most effective strategies attainable without the use of quantum resources. Such benchmarks have been established for special families of input states, like coherent states and particular subclasses of squeezed states. Here we solve the longstanding problem of defining quantum benchmarks for general pure Gaussian single-mode states with arbitrary phase, displacement, and squeezing, randomly sampled according to a realistic prior distribution. As a special case, we show that the fidelity benchmark for teleporting squeezed states with totally random phase and squeezing degree is 1/2, equal to the corresponding one for coherent states. We discuss the use of entangled resources to beat the benchmarks in experiments. PMID:24483875
Distinct Quantum States Can Be Compatible with a Single State of Reality
NASA Astrophysics Data System (ADS)
Lewis, Peter; Jennings, David; Barrett, Jonathan; Rudolph, Terry
2013-03-01
Perhaps the quantum state represents information available to some agent or experimenter about reality, and not reality directly. This view is attractive because if quantum states represent only information, then wave function collapse is possibly no more mysterious than a Bayesian update of a probability distribution given new data. Several other ``puzzling'' features of quantum theory also follow naturally given this view. In order to explore this idea rigorously, we consider models for quantum systems with probabilities for measurement outcomes determined by some underlying physical state of the system, where the underlying state is not necessarily described by quantum theory. In our model, quantum states correspond to probability distributions over the underlying states so that the Born rule is recovered. More specifically, we consider models for quantum systems where several quantum states are consistent with a single underlying state-i.e., probability distributions for distinct quantum states overlap. Recent work shows that such a model is impossible (e.g. the PBR theorem (Nat. Phys. 8, p.474)). Significantly, our example demonstrates that non-trivial assumptions (beyond those required for a well-defined realistic model) are necessary for the PBR theorem and those like it. This work was supported by the Engineering and Physical Sciences Research Council, Leverhulme Foundation and The Royal Commission for the Exhibition of 1851
Quantum state transfer by time reversal in the continuum
NASA Astrophysics Data System (ADS)
Longhi, S.
2016-03-01
A method for high-fidelity quantum state transfer in a quantum network coupled to a continuum, based on time reversal in the continuum after decay, is theoretically suggested. Provided that the energy spectrum of the network is symmetric around a reference energy and symmetric energy states are coupled the same way to the common continuum, ideal perfect state transfer can be obtained after time reversal. In particular, it is shown that in a linear tight-binding chain a quantum state can be transformed into its mirror image with respect to the center of the chain after a controllable time. As compared to a quantum mirror image based on coherent transport in a static chain with properly tailored inhomogeneous hopping rates, our method does not require hopping rate engineering and is less sensitive to disorder for long transfer times.
Quantum key distribution session with 16-dimensional photonic states
Etcheverry, S.; Cañas, G.; Gómez, E. S.; Nogueira, W. A. T.; Saavedra, C.; Xavier, G. B.; Lima, G.
2013-01-01
The secure transfer of information is an important problem in modern telecommunications. Quantum key distribution (QKD) provides a solution to this problem by using individual quantum systems to generate correlated bits between remote parties, that can be used to extract a secret key. QKD with D-dimensional quantum channels provides security advantages that grow with increasing D. However, the vast majority of QKD implementations has been restricted to two dimensions. Here we demonstrate the feasibility of using higher dimensions for real-world quantum cryptography by performing, for the first time, a fully automated QKD session based on the BB84 protocol with 16-dimensional quantum states. Information is encoded in the single-photon transverse momentum and the required states are dynamically generated with programmable spatial light modulators. Our setup paves the way for future developments in the field of experimental high-dimensional QKD. PMID:23897033
Quantum key distribution session with 16-dimensional photonic states
NASA Astrophysics Data System (ADS)
Etcheverry, S.; Cañas, G.; Gómez, E. S.; Nogueira, W. A. T.; Saavedra, C.; Xavier, G. B.; Lima, G.
2013-07-01
The secure transfer of information is an important problem in modern telecommunications. Quantum key distribution (QKD) provides a solution to this problem by using individual quantum systems to generate correlated bits between remote parties, that can be used to extract a secret key. QKD with D-dimensional quantum channels provides security advantages that grow with increasing D. However, the vast majority of QKD implementations has been restricted to two dimensions. Here we demonstrate the feasibility of using higher dimensions for real-world quantum cryptography by performing, for the first time, a fully automated QKD session based on the BB84 protocol with 16-dimensional quantum states. Information is encoded in the single-photon transverse momentum and the required states are dynamically generated with programmable spatial light modulators. Our setup paves the way for future developments in the field of experimental high-dimensional QKD.
Quantum key distribution session with 16-dimensional photonic states.
Etcheverry, S; Cañas, G; Gómez, E S; Nogueira, W A T; Saavedra, C; Xavier, G B; Lima, G
2013-01-01
The secure transfer of information is an important problem in modern telecommunications. Quantum key distribution (QKD) provides a solution to this problem by using individual quantum systems to generate correlated bits between remote parties, that can be used to extract a secret key. QKD with D-dimensional quantum channels provides security advantages that grow with increasing D. However, the vast majority of QKD implementations has been restricted to two dimensions. Here we demonstrate the feasibility of using higher dimensions for real-world quantum cryptography by performing, for the first time, a fully automated QKD session based on the BB84 protocol with 16-dimensional quantum states. Information is encoded in the single-photon transverse momentum and the required states are dynamically generated with programmable spatial light modulators. Our setup paves the way for future developments in the field of experimental high-dimensional QKD. PMID:23897033
Experimental verification of quantum discord in continuous-variable states
NASA Astrophysics Data System (ADS)
Hosseini, S.; Rahimi-Keshari, S.; Haw, J. Y.; Assad, S. M.; Chrzanowski, H. M.; Janousek, J.; Symul, T.; Ralph, T. C.; Lam, P. K.
2014-01-01
We introduce a simple and efficient technique to verify quantum discord in unknown Gaussian states and a certain class of non-Gaussian states. We show that any separation in the peaks of the marginal distributions of one subsystem conditioned on two different outcomes of homodyne measurements performed on the other subsystem indicates correlation between the corresponding quadratures, and hence nonzero discord. We also apply this method to non-Gaussian states that are prepared by overlapping a statistical mixture of coherent and vacuum states on a beam splitter. We experimentally demonstrate this technique by verifying nonzero quantum discord in a bipartite Gaussian and certain non-Gaussian states.
Minimum-error discrimination of entangled quantum states
Lu, Y.; Coish, N.; Kaltenbaek, R.; Hamel, D. R.; Resch, K. J.; Croke, S.
2010-10-15
Strategies to optimally discriminate between quantum states are critical in quantum technologies. We present an experimental demonstration of minimum-error discrimination between entangled states, encoded in the polarization of pairs of photons. Although the optimal measurement involves projection onto entangled states, we use a result of J. Walgate et al. [Phys. Rev. Lett. 85, 4972 (2000)] to design an optical implementation employing only local polarization measurements and feed-forward, which performs at the Helstrom bound. Our scheme can achieve perfect discrimination of orthogonal states and minimum-error discrimination of nonorthogonal states. Our experimental results show a definite advantage over schemes not using feed-forward.
Deterministic controlled remote state preparation using partially entangled quantum channel
NASA Astrophysics Data System (ADS)
Chen, Na; Quan, Dong Xiao; Yang, Hong; Pei, Chang Xing
2016-04-01
In this paper, we propose a novel scheme for deterministic controlled remote state preparation (CRSP) of arbitrary two-qubit states. Suitably chosen partially entangled state is used as the quantum channel. With proper projective measurements carried out by the sender and controller, the receiver can reconstruct the target state by means of appropriate unitary operation. Unit success probability can be achieved for arbitrary two-qubit states. Different from some previous CRSP schemes utilizing partially entangled channels, auxiliary qubit is not required in our scheme. We also show that the success probability is independent of the parameters of the partially entangled quantum channel.
Flexible quantum circuits using scalable continuous-variable cluster states
NASA Astrophysics Data System (ADS)
Alexander, Rafael N.; Menicucci, Nicolas C.
2016-06-01
We show that measurement-based quantum computation on scalable continuous-variable (CV) cluster states admits more quantum-circuit flexibility and compactness than similar protocols for standard square-lattice CV cluster states. This advantage is a direct result of the macronode structure of these states—that is, a lattice structure in which each graph node actually consists of several physical modes. These extra modes provide additional measurement degrees of freedom at each graph location, which can be used to manipulate the flow and processing of quantum information more robustly and with additional flexibility that is not available on an ordinary lattice.
Bell operator and Gaussian squeezed states in noncommutative quantum mechanics
NASA Astrophysics Data System (ADS)
Bastos, Catarina; Bernardini, Alex E.; Bertolami, Orfeu; Dias, Nuno Costa; Prata, João Nuno
2016-05-01
We examine putative corrections to the Bell operator due to the noncommutativity in the phase space. Starting from a Gaussian squeezed envelope whose time evolution is driven by commutative (standard quantum mechanics) and noncommutative dynamics, respectively, we conclude that although the time-evolving covariance matrix in the noncommutative case is different from the standard case, the squeezing parameter dominates and there are no noticeable noncommutative corrections to the Bell operator. This indicates that, at least for squeezed states, the privileged states to test Bell correlations, noncommutativity versions of quantum mechanics remain as nonlocal as quantum mechanics itself.
NASA Astrophysics Data System (ADS)
Terrabuio, Luiz Alberto; Haiduke, Roberto Luiz Andrade; Matta, Chérif F.
2016-07-01
3,3‧-Difluorodiazirine is a precursor of difluorocarbene radical (:CF2) which is used in organic synthesis and photo affinity labelling. This molecule possesses no dipole moment in the ground electronic state (S0) but has a significant dipole moment (of magnitude ~0.97 D) in both its first (triplet, T1) and second (singlet S1) excited states. These equal dipole moments are shown to originate from widely differing atomic polarization and inter-atomic charge transfer terms (defined by the Quantum Theory of Atoms in Molecules (QTAIM)). The calculated vertical/adiabatic excitation energies for the T1 and S1 states are 2.81/2.63 and 3.99/3.78 eV, respectively. Geometries, vibrational frequencies, atomic charges and spin populations, and the localization-delocalization matrices (LDMs) (Matta, J. Comput. Chem. 35 (2014) 1165) of the excited states are compared with those of the ground state. All calculations have been conducted at the (U)QCISD/aug-cc-pVTZ level of theory.
Bidirectional Quantum Teleportation by Using Five-qubit Cluster State
NASA Astrophysics Data System (ADS)
Sang, Ming-huang
2016-03-01
We propose a scheme for bidirectional quantum teleportation by using a five-qubit cluster state. In our scheme, Alice can transmit an arbitrary two-qubit entangled state to Bob and at the same time Bob can teleport an arbitrary single-qubit state to Alice.
Salini, K.; Prabhu, R.; Sen, Aditi; Sen, Ujjwal
2014-09-15
Monogamy of quantum correlation measures puts restrictions on the sharability of quantum correlations in multiparty quantum states. Multiparty quantum states can satisfy or violate monogamy relations with respect to given quantum correlations. We show that all multiparty quantum states can be made monogamous with respect to all measures. More precisely, given any quantum correlation measure that is non-monogamic for a multiparty quantum state, it is always possible to find a monotonically increasing function of the measure that is monogamous for the same state. The statement holds for all quantum states, whether pure or mixed, in all finite dimensions and for an arbitrary number of parties. The monotonically increasing function of the quantum correlation measure satisfies all the properties that are expected for quantum correlations to follow. We illustrate the concepts by considering a thermodynamic measure of quantum correlation, called the quantum work deficit.
NASA Astrophysics Data System (ADS)
Salini, K.; Prabhu, R.; Sen(De), Aditi; Sen, Ujjwal
2014-09-01
Monogamy of quantum correlation measures puts restrictions on the sharability of quantum correlations in multiparty quantum states. Multiparty quantum states can satisfy or violate monogamy relations with respect to given quantum correlations. We show that all multiparty quantum states can be made monogamous with respect to all measures. More precisely, given any quantum correlation measure that is non-monogamic for a multiparty quantum state, it is always possible to find a monotonically increasing function of the measure that is monogamous for the same state. The statement holds for all quantum states, whether pure or mixed, in all finite dimensions and for an arbitrary number of parties. The monotonically increasing function of the quantum correlation measure satisfies all the properties that are expected for quantum correlations to follow. We illustrate the concepts by considering a thermodynamic measure of quantum correlation, called the quantum work deficit.
Generation of cluster states in optomechanical quantum systems
NASA Astrophysics Data System (ADS)
Houhou, Oussama; Aissaoui, Habib; Ferraro, Alessandro
2015-12-01
We consider an optomechanical quantum system composed of a single cavity mode interacting with N mechanical resonators. We propose a scheme for generating continuous-variable graph states of arbitrary size and shape, including the so-called cluster states for universal quantum computation. The main feature of this scheme is that, differently from previous approaches, the graph states are hosted in the mechanical degrees of freedom rather than in the radiative ones. Specifically, via a 2 N -tone drive, we engineer a linear Hamiltonian which is instrumental to dissipatively drive the system to the desired target state. The robustness of this scheme is assessed against finite interaction times and mechanical noise, confirming it as a valuable approach towards quantum state engineering for continuous-variable computation in a solid-state platform.
NASA Astrophysics Data System (ADS)
He, Zhi; Yao, Chunmei; Zou, Jian
2013-10-01
Using the weak measurement (WM) and quantum measurement reversal (QMR) approach, robust state transfer and entanglement distribution can be realized in the spin-(1)/(2) Heisenberg chain. We find that the ultrahigh fidelity and long distance of quantum state transfer with certain success probability can be obtained using proper WM and QMR, i.e., the average fidelity of a general pure state from 80% to almost 100%, which is almost size independent. We also find that the distance and quality of entanglement distribution for the Bell state and the general Werner mixed state can be obviously improved by the WM and QMR approach.
Optimal state discrimination and unstructured search in nonlinear quantum mechanics
NASA Astrophysics Data System (ADS)
Childs, Andrew M.; Young, Joshua
2016-02-01
Nonlinear variants of quantum mechanics can solve tasks that are impossible in standard quantum theory, such as perfectly distinguishing nonorthogonal states. Here we derive the optimal protocol for distinguishing two states of a qubit using the Gross-Pitaevskii equation, a model of nonlinear quantum mechanics that arises as an effective description of Bose-Einstein condensates. Using this protocol, we present an algorithm for unstructured search in the Gross-Pitaevskii model, obtaining an exponential improvement over a previous algorithm of Meyer and Wong. This result establishes a limitation on the effectiveness of the Gross-Pitaevskii approximation. More generally, we demonstrate similar behavior under a family of related nonlinearities, giving evidence that the ability to quickly discriminate nonorthogonal states and thereby solve unstructured search is a generic feature of nonlinear quantum mechanics.
Student ability to distinguish between superposition states and mixed states in quantum mechanics
NASA Astrophysics Data System (ADS)
Passante, Gina; Emigh, Paul J.; Shaffer, Peter S.
2015-12-01
Superposition gives rise to the probabilistic nature of quantum mechanics and is therefore one of the concepts at the heart of quantum mechanics. Although we have found that many students can successfully use the idea of superposition to calculate the probabilities of different measurement outcomes, they are often unable to identify the experimental implications of a superposition state. In particular, they fail to recognize how a superposition state and a mixed state (sometimes called a "lack of knowledge" state) can produce different experimental results. We present data that suggest that superposition in quantum mechanics is a difficult concept for students enrolled in sophomore-, junior-, and graduate-level quantum mechanics courses. We illustrate how an interactive lecture tutorial can improve student understanding of quantum mechanical superposition. A longitudinal study suggests that the impact persists after an additional quarter of quantum mechanics instruction that does not specifically address these ideas.
Measuring the quantum state of a single system with minimum state disturbance
NASA Astrophysics Data System (ADS)
Schlosshauer, Maximilian
2016-01-01
Conventionally, unknown quantum states are characterized using quantum-state tomography based on strong or weak measurements carried out on an ensemble of identically prepared systems. By contrast, the use of protective measurements offers the possibility of determining quantum states from a series of weak, long measurements performed on a single system. Because the fidelity of a protectively measured quantum state is determined by the amount of state disturbance incurred during each protective measurement, it is crucial that the initial quantum state of the system is disturbed as little as possible. Here we show how to systematically minimize the state disturbance in the course of a protective measurement, thus enabling the maximization of the fidelity of the quantum-state measurement. Our approach is based on a careful tuning of the time dependence of the measurement interaction and is shown to be dramatically more effective in reducing the state disturbance than the previously considered strategy of weakening the measurement strength and increasing the measurement time. We describe a method for designing the measurement interaction such that the state disturbance exhibits polynomial decay to arbitrary order in the inverse measurement time 1 /T . We also show how one can achieve even faster, subexponential decay, and we find that it represents the smallest possible state disturbance in a protective measurement. In this way, our results show how to optimally measure the state of a single quantum system using protective measurements.
Efficient computations of quantum canonical Gibbs state in phase space
NASA Astrophysics Data System (ADS)
Bondar, Denys I.; Campos, Andre G.; Cabrera, Renan; Rabitz, Herschel A.
2016-06-01
The Gibbs canonical state, as a maximum entropy density matrix, represents a quantum system in equilibrium with a thermostat. This state plays an essential role in thermodynamics and serves as the initial condition for nonequilibrium dynamical simulations. We solve a long standing problem for computing the Gibbs state Wigner function with nearly machine accuracy by solving the Bloch equation directly in the phase space. Furthermore, the algorithms are provided yielding high quality Wigner distributions for pure stationary states as well as for Thomas-Fermi and Bose-Einstein distributions. The developed numerical methods furnish a long-sought efficient computation framework for nonequilibrium quantum simulations directly in the Wigner representation.
Parameter estimation using NOON states over a relativistic quantum channel
NASA Astrophysics Data System (ADS)
Hosler, Dominic; Kok, Pieter
2013-11-01
We study the effect of the acceleration of the observer on a parameter estimation protocol using NOON states. An inertial observer, Alice, prepares a NOON state in Unruh modes of the quantum field, and sends it to an accelerated observer, Rob. We calculate the quantum Fisher information of the state received by Rob. We find the counterintuitive result that the single-rail encoding outperforms the dual rail. The NOON states have an optimal N for the maximum information extractable by Rob, given his acceleration. This optimal N decreases with increasing acceleration.
Engineering squeezed states of microwave radiation with circuit quantum electrodynamics
Li Pengbo; Li Fuli
2011-03-15
We introduce a squeezed state source for microwave radiation with tunable parameters in circuit quantum electrodynamics. We show that when a superconducting artificial multilevel atom interacting with a transmission line resonator is suitably driven by external classical fields, two-mode squeezed states of the cavity modes can be engineered in a controllable fashion from the vacuum state via adiabatic following of the ground state of the system. This scheme appears to be robust against decoherence and is realizable with present techniques in circuit quantum electrodynamics.
Minimized state complexity of quantum-encoded cryptic processes
NASA Astrophysics Data System (ADS)
Riechers, Paul M.; Mahoney, John R.; Aghamohammadi, Cina; Crutchfield, James P.
2016-05-01
The predictive information required for proper trajectory sampling of a stochastic process can be more efficiently transmitted via a quantum channel than a classical one. This recent discovery allows quantum information processing to drastically reduce the memory necessary to simulate complex classical stochastic processes. It also points to a new perspective on the intrinsic complexity that nature must employ in generating the processes we observe. The quantum advantage increases with codeword length: the length of process sequences used in constructing the quantum communication scheme. In analogy with the classical complexity measure, statistical complexity, we use this reduced communication cost as an entropic measure of state complexity in the quantum representation. Previously difficult to compute, the quantum advantage is expressed here in closed form using spectral decomposition. This allows for efficient numerical computation of the quantum-reduced state complexity at all encoding lengths, including infinite. Additionally, it makes clear how finite-codeword reduction in state complexity is controlled by the classical process's cryptic order, and it allows asymptotic analysis of infinite-cryptic-order processes.
Can different quantum state vectors correspond to the same physical state? An experimental test
NASA Astrophysics Data System (ADS)
Nigg, Daniel; Monz, Thomas; Schindler, Philipp; Martinez, Esteban A.; Hennrich, Markus; Blatt, Rainer; Pusey, Matthew F.; Rudolph, Terry; Barrett, Jonathan
2016-01-01
A century after the development of quantum theory, the interpretation of a quantum state is still discussed. If a physicist claims to have produced a system with a particular quantum state vector, does this represent directly a physical property of the system, or is the state vector merely a summary of the physicist’s information about the system? Assume that a state vector corresponds to a probability distribution over possible values of an unknown physical or ‘ontic’ state. Then, a recent no-go theorem shows that distinct state vectors with overlapping distributions lead to predictions different from quantum theory. We report an experimental test of these predictions using trapped ions. Within experimental error, the results confirm quantum theory. We analyse which kinds of models are ruled out.
Gaussian private quantum channel with squeezed coherent states.
Jeong, Kabgyun; Kim, Jaewan; Lee, Su-Yong
2015-01-01
While the objective of conventional quantum key distribution (QKD) is to secretly generate and share the classical bits concealed in the form of maximally mixed quantum states, that of private quantum channel (PQC) is to secretly transmit individual quantum states concealed in the form of maximally mixed states using shared one-time pad and it is called Gaussian private quantum channel (GPQC) when the scheme is in the regime of continuous variables. We propose a GPQC enhanced with squeezed coherent states (GPQCwSC), which is a generalization of GPQC with coherent states only (GPQCo) [Phys. Rev. A 72, 042313 (2005)]. We show that GPQCwSC beats the GPQCo for the upper bound on accessible information. As a subsidiary example, it is shown that the squeezed states take an advantage over the coherent states against a beam splitting attack in a continuous variable QKD. It is also shown that a squeezing operation can be approximated as a superposition of two different displacement operations in the small squeezing regime. PMID:26364893
Gaussian private quantum channel with squeezed coherent states
Jeong, Kabgyun; Kim, Jaewan; Lee, Su-Yong
2015-01-01
While the objective of conventional quantum key distribution (QKD) is to secretly generate and share the classical bits concealed in the form of maximally mixed quantum states, that of private quantum channel (PQC) is to secretly transmit individual quantum states concealed in the form of maximally mixed states using shared one-time pad and it is called Gaussian private quantum channel (GPQC) when the scheme is in the regime of continuous variables. We propose a GPQC enhanced with squeezed coherent states (GPQCwSC), which is a generalization of GPQC with coherent states only (GPQCo) [Phys. Rev. A 72, 042313 (2005)]. We show that GPQCwSC beats the GPQCo for the upper bound on accessible information. As a subsidiary example, it is shown that the squeezed states take an advantage over the coherent states against a beam splitting attack in a continuous variable QKD. It is also shown that a squeezing operation can be approximated as a superposition of two different displacement operations in the small squeezing regime. PMID:26364893
Gaussian private quantum channel with squeezed coherent states
NASA Astrophysics Data System (ADS)
Jeong, Kabgyun; Kim, Jaewan; Lee, Su-Yong
2015-09-01
While the objective of conventional quantum key distribution (QKD) is to secretly generate and share the classical bits concealed in the form of maximally mixed quantum states, that of private quantum channel (PQC) is to secretly transmit individual quantum states concealed in the form of maximally mixed states using shared one-time pad and it is called Gaussian private quantum channel (GPQC) when the scheme is in the regime of continuous variables. We propose a GPQC enhanced with squeezed coherent states (GPQCwSC), which is a generalization of GPQC with coherent states only (GPQCo) [Phys. Rev. A 72, 042313 (2005)]. We show that GPQCwSC beats the GPQCo for the upper bound on accessible information. As a subsidiary example, it is shown that the squeezed states take an advantage over the coherent states against a beam splitting attack in a continuous variable QKD. It is also shown that a squeezing operation can be approximated as a superposition of two different displacement operations in the small squeezing regime.
Single-Atom Gating of Quantum State Superpositions
Moon, Christopher
2010-04-28
The ultimate miniaturization of electronic devices will likely require local and coherent control of single electronic wavefunctions. Wavefunctions exist within both physical real space and an abstract state space with a simple geometric interpretation: this state space - or Hilbert space - is spanned by mutually orthogonal state vectors corresponding to the quantized degrees of freedom of the real-space system. Measurement of superpositions is akin to accessing the direction of a vector in Hilbert space, determining an angle of rotation equivalent to quantum phase. Here we show that an individual atom inside a designed quantum corral1 can control this angle, producing arbitrary coherent superpositions of spatial quantum states. Using scanning tunnelling microscopy and nanostructures assembled atom-by-atom we demonstrate how single spins and quantum mirages can be harnessed to image the superposition of two electronic states. We also present a straightforward method to determine the atom path enacting phase rotations between any desired state vectors. A single atom thus becomes a real-space handle for an abstract Hilbert space, providing a simple technique for coherent quantum state manipulation at the spatial limit of condensed matter.
Experimental demonstration of quantum teleportation of a squeezed state
Takei, Nobuyuki; Aoki, Takao; Yonezawa, Hidehiro; Furusawa, Akira; Koike, Satoshi; Yoshino, Ken-ichiro; Hiraoka, Takuji; Wakui, Kentaro; Mizuno, Jun; Takeoka, Masahiro; Ban, Masashi
2005-10-15
Quantum teleportation of a squeezed state is demonstrated experimentally. Due to some inevitable losses in experiments, a squeezed vacuum necessarily becomes a mixed state which is no longer a minimum uncertainty state. We establish an operational method of evaluation for quantum teleportation of such a state using fidelity and discuss the classical limit for the state. The measured fidelity for the input state is 0.85{+-}0.05, which is higher than the classical case of 0.73{+-}0.04. We also verify that the teleportation process operates properly for the nonclassical state input and its squeezed variance is certainly transferred through the process. We observe the smaller variance of the teleported squeezed state than that for the vacuum state input.
Quantum entanglement in states generated by bilocal group algebras
Hamma, Alioscia; Ionicioiu, Radu; Zanardi, Paolo
2005-07-15
Given a finite group G with a bilocal representation, we investigate the bipartite entanglement in the state constructed from the group algebra of G acting on a separable reference state. We find an upper bound for the von Neumann entropy for a bipartition (A,B) of a quantum system and conditions to saturate it. We show that these states can be interpreted as ground states of generic Hamiltonians or as the physical states in a quantum gauge theory and that under specific conditions their geometric entropy satisfies the entropic area law. If G is a group of spin flips acting on a set of qubits, these states are locally equivalent to 2-colorable (i.e., bipartite) graph states and they include Greenberger-Horne-Zeilinger, cluster states, etc. Examples include an application to qudits and a calculation of the n-tangle for 2-colorable graph states.
Reducing collective quantum state rotation errors with reversible dephasing
Cox, Kevin C.; Norcia, Matthew A.; Weiner, Joshua M.; Bohnet, Justin G.; Thompson, James K.
2014-12-29
We demonstrate that reversible dephasing via inhomogeneous broadening can greatly reduce collective quantum state rotation errors, and observe the suppression of rotation errors by more than 21 dB in the context of collective population measurements of the spin states of an ensemble of 2.1×10{sup 5} laser cooled and trapped {sup 87}Rb atoms. The large reduction in rotation noise enables direct resolution of spin state populations 13(1) dB below the fundamental quantum projection noise limit. Further, the spin state measurement projects the system into an entangled state with 9.5(5) dB of directly observed spectroscopic enhancement (squeezing) relative to the standard quantum limit, whereas no enhancement would have been obtained without the suppression of rotation errors.
Discrete-time quantum walk approach to state transfer
Kurzynski, Pawel; Wojcik, Antoni
2011-06-15
We show that a quantum-state transfer, previously studied as a continuous-time process in networks of interacting spins, can be achieved within the model of discrete-time quantum walks with a position-dependent coin. We argue that, due to additional degrees of freedom, discrete-time quantum walks allow one to observe effects which cannot be observed in the corresponding continuous-time case. First, we study a discrete-time version of the engineered coupling protocol due to Christandl et al. [Phys. Rev. Lett. 92, 187902 (2004)] and then we discuss the general idea of conversion between continuous-time quantum walks and discrete-time quantum walks.
Delocalization error and "functional tuning" in Kohn-Sham calculations of molecular properties.
Autschbach, Jochen; Srebro, Monika
2014-08-19
Kohn-Sham theory (KST) is the "workhorse" of numerical quantum chemistry. This is particularly true for first-principles calculations of ground- and excited-state properties for larger systems, including electronic spectra, electronic dynamic and static linear and higher order response properties (including nonlinear optical (NLO) properties), conformational or dynamic averaging of spectra and response properties, or properties that are affected by the coupling of electron and nuclear motion. This Account explores the sometimes dramatic impact of the delocalization error (DE) and possible benefits from the use of long-range corrections (LC) and "tuning" of functionals in KST calculations of molecular ground-state and response properties. Tuning refers to a nonempirical molecule-specific determination of adjustable parameters in functionals to satisfy known exact conditions, for instance, that the energy of the highest occupied molecular orbital (HOMO) should be equal to the negative vertical ionization potential (IP) or that the energy as a function of fractional electron numbers should afford straight-line segments. The presentation is given from the viewpoint of a chemist interested in computations of a variety of molecular optical and spectroscopic properties and of a theoretician developing methods for computing such properties with KST. In recent years, the use of LC functionals, functional tuning, and quantifying the DE explicitly have provided valuable insight regarding the performance of KST for molecular properties. We discuss a number of different molecular properties, with examples from recent studies from our laboratory and related literature. The selected properties probe different aspects of molecular electronic structure. Electric field gradients and hyperfine coupling constants can be exquisitely sensitive to the DE because it affects the ground-state electron density and spin density distributions. For π-conjugated molecules, it is shown how the
Monogamy of quantum correlations in three-qubit pure states
NASA Astrophysics Data System (ADS)
Sudha; Devi, A. R. Usha; Rajagopal, A. K.
2012-01-01
The limitation on the shareability of quantum entanglement over several parties, the so-called monogamy of entanglement, is an issue that has received considerable attention from the quantum information community over the last decade. A natural question of interest in this connection is whether monogamy of correlations is true for correlations other than entanglement. This issue is examined here by choosing quantum deficit, proposed by A. K. Rajagopal and R. W. Rendell [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.66.022104 66, 022104 (2002)], an operational measure of correlations. In addition to establishing the polygamous nature of the class of three-qubit symmetric pure states characterized by two distinct Majorana spinors (to which the W states belong), those with three distinct Majorana spinors [to which Greenberger-Horne-Zeilinger (GHZ) states belong] are shown to either obey or violate monogamy relations. While the generalized W states can be monogamous or polygamous, the generalized GHZ states exhibit monogamy with respect to quantum deficit. The issue of using monogamy conditions based on quantum deficit to witness the states belonging to stochastic local operations and classical communication (SLOCC) inequivalent classes is discussed in light of these results.
Complete hyperentangled-Bell-state analysis for quantum communication
Sheng Yubo; Deng Fuguo; Long Guilu
2010-09-15
It is impossible to unambiguously distinguish the four Bell states in polarization, resorting to linear optical elements only. Recently, the hyperentangled Bell state, the simultaneous entanglement in more than one degree of freedom, has been used to assist in the complete Bell-state analysis of the four Bell states. However, if the additional degree of freedom is qubitlike, one can only distinguish 7 from the group of 16 states. Here we present a way to distinguish the hyperentangled Bell states completely with the help of cross-Kerr nonlinearity. Also, we discuss its application in the quantum teleportation of a particle in an unknown state in two different degrees of freedom and in the entanglement swapping of hyperentangled states. These applications will increase the channel capacity of long-distance quantum communication.
NASA Astrophysics Data System (ADS)
Tang, Jing-Wu; Zhao, Guan-Xiang; He, Xiong-Hui
2011-05-01
Recently, Peng et al. [2010 Eur. Phys. J. D 58 403] proposed to teleport an arbitrary two-qubit state with a family of four-qubit entangled states, which simultaneously include the tensor product of two Bell states, linear cluster state and Dicke-class state. This paper proposes to implement their scheme in cavity quantum electrodynamics and then presents a new family of four-qubit entangled state |Ω4>1234. It simultaneously includes all the well-known four-qubit entangled states which can be used to teleport an arbitrary two-qubit state. The distinct advantage of the scheme is that it only needs a single setup to prepare the whole family of four-qubit entangled states, which will be very convenient for experimental realization. After discussing the experimental condition in detail, we show the scheme may be feasible based on present technology in cavity quantum electrodynamics.
Absorbing State Phase Transition with Competing Quantum and Classical Fluctuations.
Marcuzzi, Matteo; Buchhold, Michael; Diehl, Sebastian; Lesanovsky, Igor
2016-06-17
Stochastic processes with absorbing states feature examples of nonequilibrium universal phenomena. While the classical regime has been thoroughly investigated in the past, relatively little is known about the behavior of these nonequilibrium systems in the presence of quantum fluctuations. Here, we theoretically address such a scenario in an open quantum spin model which, in its classical limit, undergoes a directed percolation phase transition. By mapping the problem to a nonequilibrium field theory, we show that the introduction of quantum fluctuations stemming from coherent, rather than statistical, spin flips alters the nature of the transition such that it becomes first order. In the intermediate regime, where classical and quantum dynamics compete on equal terms, we highlight the presence of a bicritical point with universal features different from the directed percolation class in a low dimension. We finally propose how this physics could be explored within gases of interacting atoms excited to Rydberg states. PMID:27367395
Absorbing State Phase Transition with Competing Quantum and Classical Fluctuations
NASA Astrophysics Data System (ADS)
Marcuzzi, Matteo; Buchhold, Michael; Diehl, Sebastian; Lesanovsky, Igor
2016-06-01
Stochastic processes with absorbing states feature examples of nonequilibrium universal phenomena. While the classical regime has been thoroughly investigated in the past, relatively little is known about the behavior of these nonequilibrium systems in the presence of quantum fluctuations. Here, we theoretically address such a scenario in an open quantum spin model which, in its classical limit, undergoes a directed percolation phase transition. By mapping the problem to a nonequilibrium field theory, we show that the introduction of quantum fluctuations stemming from coherent, rather than statistical, spin flips alters the nature of the transition such that it becomes first order. In the intermediate regime, where classical and quantum dynamics compete on equal terms, we highlight the presence of a bicritical point with universal features different from the directed percolation class in a low dimension. We finally propose how this physics could be explored within gases of interacting atoms excited to Rydberg states.
Enhanced arbitrated quantum signature scheme using Bell states
NASA Astrophysics Data System (ADS)
Wang, Chao; Liu, Jian-Wei; Shang, Tao
2014-06-01
We investigate the existing arbitrated quantum signature schemes as well as their cryptanalysis, including intercept-resend attack and denial-of-service attack. By exploring the loopholes of these schemes, a malicious signatory may successfully disavow signed messages, or the receiver may actively negate the signature from the signatory without being detected. By modifying the existing schemes, we develop counter-measures to these attacks using Bell states. The newly proposed scheme puts forward the security of arbitrated quantum signature. Furthermore, several valuable topics are also presented for further research of the quantum signature scheme.
Electron states in semiconductor quantum dots
Dhayal, Suman S.; Ramaniah, Lavanya M.; Ruda, Harry E.; Nair, Selvakumar V.
2014-11-28
In this work, the electronic structures of quantum dots (QDs) of nine direct band gap semiconductor materials belonging to the group II-VI and III-V families are investigated, within the empirical tight-binding framework, in the effective bond orbital model. This methodology is shown to accurately describe these systems, yielding, at the same time, qualitative insights into their electronic properties. Various features of the bulk band structure such as band-gaps, band curvature, and band widths around symmetry points affect the quantum confinement of electrons and holes. These effects are identified and quantified. A comparison with experimental data yields good agreement with the calculations. These theoretical results would help quantify the optical response of QDs of these materials and provide useful input for applications.
Quantum Conditional Cloning of Continuous Variable Entangled States
NASA Astrophysics Data System (ADS)
Liu, K.; Gao, J. R.
2014-12-01
We extend the technique of conditional preparation to a quantum cloning machine, and present a protocol of 1 -> 2 conditional cloning of squeezed state and entanglement states. It is shown that the entanglement degree of the cloned entangled states can be well preserved even when the fidelity between the input and output states is beyond the limit of 4/9. This scheme is practicable since only the linear elements of beam splitters, homodyne detections, optical modulations and electrical trigger system, are involved.
Deterministic nonclassicality for quantum-mechanical oscillators in thermal states
NASA Astrophysics Data System (ADS)
Marek, Petr; Lachman, Lukáš; Slodička, Lukáš; Filip, Radim
2016-07-01
Quantum nonclassicality is the basic building stone for the vast majority of quantum information applications and methods of its generation are at the forefront of research. One of the obstacles any method needs to clear is the looming presence of decoherence and noise which act against the nonclassicality and often erase it completely. In this paper we show that nonclassical states of a quantum harmonic oscillator initially in thermal equilibrium states can be deterministically created by coupling it to a single two-level system. This can be achieved even in the absorption regime in which the two-level system is initially in the ground state. The method is resilient to noise and it may actually benefit from it, as witnessed by the systems with higher thermal energy producing more nonclassical states.
Quantum state engineering with circuit electromechanical three-body interactions.
Abdi, Mehdi; Pernpeintner, Matthias; Gross, Rudolf; Huebl, Hans; Hartmann, Michael J
2015-05-01
We propose a hybrid system with quantum mechanical three-body interactions between photons, phonons, and qubit excitations. These interactions take place in a circuit quantum electrodynamical architecture with a superconducting microwave resonator coupled to a transmon qubit whose shunt capacitance is free to mechanically oscillate. We show that this system design features a three-mode polariton-mechanical mode and a nonlinear transmon-mechanical mode interaction in the strong coupling regime. Together with the strong resonator-transmon interaction, these properties provide intriguing opportunities for manipulations of this hybrid quantum system. We show, in particular, the feasibility of cooling the mechanical motion down to its ground state and preparing various nonclassical states including mechanical Fock and cat states and hybrid tripartite entangled states. PMID:25978232
Quantum State Engineering with Circuit Electromechanical Three-Body Interactions
NASA Astrophysics Data System (ADS)
Abdi, Mehdi; Pernpeintner, Matthias; Gross, Rudolf; Huebl, Hans; Hartmann, Michael J.
2015-05-01
We propose a hybrid system with quantum mechanical three-body interactions between photons, phonons, and qubit excitations. These interactions take place in a circuit quantum electrodynamical architecture with a superconducting microwave resonator coupled to a transmon qubit whose shunt capacitance is free to mechanically oscillate. We show that this system design features a three-mode polariton-mechanical mode and a nonlinear transmon-mechanical mode interaction in the strong coupling regime. Together with the strong resonator-transmon interaction, these properties provide intriguing opportunities for manipulations of this hybrid quantum system. We show, in particular, the feasibility of cooling the mechanical motion down to its ground state and preparing various nonclassical states including mechanical Fock and cat states and hybrid tripartite entangled states.
Dissipative Optomechanical Preparation of Macroscopic Quantum Superposition States.
Abdi, M; Degenfeld-Schonburg, P; Sameti, M; Navarrete-Benlloch, C; Hartmann, M J
2016-06-10
The transition from quantum to classical physics remains an intensely debated question even though it has been investigated for more than a century. Further clarifications could be obtained by preparing macroscopic objects in spatial quantum superpositions and proposals for generating such states for nanomechanical devices either in a transient or a probabilistic fashion have been put forward. Here, we introduce a method to deterministically obtain spatial superpositions of arbitrary lifetime via dissipative state preparation. In our approach, we engineer a double-well potential for the motion of the mechanical element and drive it towards the ground state, which shows the desired spatial superposition, via optomechanical sideband cooling. We propose a specific implementation based on a superconducting circuit coupled to the mechanical motion of a lithium-decorated monolayer graphene sheet, introduce a method to verify the mechanical state by coupling it to a superconducting qubit, and discuss its prospects for testing collapse models for the quantum to classical transition. PMID:27341233
Dissipative Optomechanical Preparation of Macroscopic Quantum Superposition States
NASA Astrophysics Data System (ADS)
Abdi, M.; Degenfeld-Schonburg, P.; Sameti, M.; Navarrete-Benlloch, C.; Hartmann, M. J.
2016-06-01
The transition from quantum to classical physics remains an intensely debated question even though it has been investigated for more than a century. Further clarifications could be obtained by preparing macroscopic objects in spatial quantum superpositions and proposals for generating such states for nanomechanical devices either in a transient or a probabilistic fashion have been put forward. Here, we introduce a method to deterministically obtain spatial superpositions of arbitrary lifetime via dissipative state preparation. In our approach, we engineer a double-well potential for the motion of the mechanical element and drive it towards the ground state, which shows the desired spatial superposition, via optomechanical sideband cooling. We propose a specific implementation based on a superconducting circuit coupled to the mechanical motion of a lithium-decorated monolayer graphene sheet, introduce a method to verify the mechanical state by coupling it to a superconducting qubit, and discuss its prospects for testing collapse models for the quantum to classical transition.
Control of Spin States in Triple Quantum Dots
NASA Astrophysics Data System (ADS)
Sachrajda, Andrew
2015-03-01
A brief review will be given on coherent behaviour in serial triple quantum dots in AlGaAs/GaAs heterostructure related to multi-spin states. One series of experiments involves the application of coherent superpositions of multi-electron states to the transfer of single spins and two-spin states non-locally between edge quantum dots while maintaining the center quantum dot occupation fixed at one or zero electrons. A second series of experiments involves the identification of coherent leakage mechanisms away from targeted encoded three-spin states qubits. Finally, results will be shown which reveal an unexpected control of the gap at the S-T + anticrossing by taking advantage of different nuclear dynamic polarization pumping rates.
Autonomous quantum thermal machine for generating steady-state entanglement
NASA Astrophysics Data System (ADS)
Bohr Brask, Jonatan; Haack, Géraldine; Brunner, Nicolas; Huber, Marcus
2015-11-01
We discuss a simple quantum thermal machine for the generation of steady-state entanglement between two interacting qubits. The machine is autonomous in the sense that it uses only incoherent interactions with thermal baths, but no source of coherence or external control. By weakly coupling the qubits to thermal baths at different temperatures, inducing a heat current through the system, steady-state entanglement is generated far from thermal equilibrium. Finally, we discuss two possible implementations, using superconducting flux qubits or a semiconductor double quantum dot. Experimental prospects for steady-state entanglement are promising in both systems.
Universal nonequilibrium states at the fractional quantum Hall edge
NASA Astrophysics Data System (ADS)
Levkivskyi, Ivan P.
2016-04-01
Integrability of electron dynamics in one dimension is manifested by the nonequilibrium stationary states. They emerge near a point contact coupling two quantum Hall edges with different chemical potentials. I use the nonequilibrium bosonization technique to show that the effective temperature of such states at the fractional quantum Hall edges has a universal linear dependence on the current through the contact. In contrast, the temperature at eventual equilibrium scales as the square root of the power dissipating at the point contact. I propose to use this distinction to detect these intriguing nonequilibrium states.
Irreducible Decompositions and Stationary States of Quantum Channels
NASA Astrophysics Data System (ADS)
Carbone, Raffaella; Pautrat, Yan
2016-06-01
For a quantum channel (completely positive, trace-preserving map), we prove a generalization to the infinite-dimensional case of a result by Baumgartner and Narnhofer [3]: this result is, in a probabilistic language, a decomposition of a general quantum channel into its irreducible recurrent components. More precisely, we prove that the positive recurrent subspace (i.e. the space supporting the invariant states) can be decomposed as the direct sum of supports of extremal invariant states; this decomposition is not unique, in general, but we can determine all the possible decompositions. This allows us to describe the full structure of invariant states.
Coherent States of Quantum Free Particle on the Spherical Space
NASA Astrophysics Data System (ADS)
Dehdashti, Shahram; Roknizadeh, Rasoul; Mahdifar, Ali; Chen, Hongsheng
2016-01-01
In this paper, we study the quantum free particle on the spherical space by applying da costa approach for quantum particle on the curved space. We obtain the discrete energy eigenvalues and associated normalized eigenfunctions of the free particle on the sphere. In addition, we introduce the Gazeau-Klauder coherent states of free particle on the sphere. Then, the Gaussian coherent states is defined, which is used to describe the localized particle on the spherical space. Finally, we study the relation between the f-deformed coherent states and Gazeau-Klauder ones for this system.
Two Electron States in a Quantum Ring on a Sphere
NASA Astrophysics Data System (ADS)
Kazaryan, Eduard M.; Shahnazaryan, Vanik A.; Sarkisyan, Hayk A.
2014-02-01
Two electron states in a quantum ring on a spherical surface are discussed. The problem is discussed within the frameworks of Russell-Saunders coupling scheme, that is, the spin-orbit coupling is neglected. Treating Coulomb interaction as a perturbation, the energy correction for different states is calculated. The dependence of the Coulomb interaction energy on external polar boundary angle of quantum ring is obtained. In analogue with the helium atom the concept of states exchange time is introduced, and its dependence on geometrical parameters of the ring is shown.
Quantum state tomography with noninstantaneous measurements, imperfections, and decoherence
NASA Astrophysics Data System (ADS)
Six, P.; Campagne-Ibarcq, Ph.; Dotsenko, I.; Sarlette, A.; Huard, B.; Rouchon, P.
2016-01-01
Tomography of a quantum state is usually based on a positive-operator-valued measure (POVM) and on their experimental statistics. Among the available reconstructions, the maximum-likelihood (MaxLike) technique is an efficient one. We propose an extension of this technique when the measurement process cannot be simply described by an instantaneous POVM. Instead, the tomography relies on a set of quantum trajectories and their measurement records. This model includes the fact that, in practice, each measurement could be corrupted by imperfections and decoherence, and could also be associated with the record of continuous-time signals over a finite amount of time. The goal is then to retrieve the quantum state that was present at the start of this measurement process. The proposed extension relies on an explicit expression of the likelihood function via the effective matrices appearing in quantum smoothing and solutions of the adjoint quantum filter. It allows us to retrieve the initial quantum state as in standard MaxLike tomography, but where the traditional POVM operators are replaced by more general ones that depend on the measurement record of each trajectory. It also provides, aside from the MaxLike estimate of the quantum state, confidence intervals for any observable. Such confidence intervals are derived, as the MaxLike estimate, from an asymptotic expansion of multidimensional Laplace integrals appearing in Bayesian mean estimation. A validation is performed on two sets of experimental data: photon(s) trapped in a microwave cavity subject to quantum nondemolition measurements relying on Rydberg atoms, and heterodyne fluorescence measurements of a superconducting qubit.
Quantum State Sharing in the Driven CQED Systems
NASA Astrophysics Data System (ADS)
Yan, Li; Shao, Qing
2016-04-01
An experimentally feasible scheme to securely distribute and reconstruct a single-atom quantum state between two parties via a tripartite entangled state in cavity QED has been proposed. If they collaborate, both users can reconstruct and read the distributed secret information.
Optimal amount of entanglement to distinguish quantum states instantaneously
NASA Astrophysics Data System (ADS)
Groisman, Berry; Strelchuk, Sergii
2015-11-01
We introduce an aspect of nonlocality which arises when the task of quantum states distinguishability is considered under local operations and shared entanglement in the absence of classical communication. We find the optimal amount of entanglement required to accomplish the task perfectly for sets of orthogonal states and argue that it quantifies information nonlocality.
Predictability sieve, pointer states, and the classicality of quantum trajectories
Dalvit, D. A. R.; Zurek, W. H.; Dziarmaga, J.
2005-12-15
We study various measures of classicality of the states of open quantum systems subject to decoherence. Classical states are expected to be stable in spite of decoherence, and are thought to leave conspicuous imprints on the environment. Here these expected features of environment-induced superselection are quantified using four different criteria: predictability sieve (which selects states that produce least entropy), purification time (which looks for states that are the easiest to find out from the imprint they leave on the environment), efficiency threshold (which finds states that can be deduced from measurements on a smallest fraction of the environment), and purity loss time (that looks for states for which it takes the longest to lose a set fraction of their initial purity). We show that when pointer states--the most predictable states of an open quantum system selected by the predictability sieve--are well defined, all four criteria agree that they are indeed the most classical states. We illustrate this with two examples: an underdamped harmonic oscillator, for which coherent states are unanimously chosen by all criteria, and a free particle undergoing quantum Brownian motion, for which most criteria select almost identical Gaussian states (although, in this case, the predictability sieve does not select well defined pointer states)
NASA Astrophysics Data System (ADS)
Dolgounitcheva, O.; Zakrzewski, V. G.; Ortiz, J. V.
2013-04-01
Ab initio electron propagator calculations in various self-energy approximations provide accurate assignments of peaks observed in the photoelectron spectra of complexes that comprise a fluoride or chloride anion and two or three water molecules. More than one minimum structure is found in all four cases. When the halide anion is Cl-, the first three final states may be described as quasi-degenerate 2P chlorine atoms coordinated to water molecules. Higher final states consist of a chloride anion juxtaposed to a positive charge that is delocalized over the water molecules. For the clusters with fluoride anions, most of the final states correspond to Dyson orbitals that are delocalized over the F and O nuclei. A variety of F-O σ and π bonding and antibonding patterns are evident in the Dyson orbitals. The assignment of low-lying spectral peaks to halide p orbital vacancies or to delocalized solvent orbitals is more valid for the chloride clusters than for the fluoride clusters, where a delocalized picture arises from strong bonding interactions between F 2p and H2O 1b1 orbitals.
1D quantum simulation using a solid state platform
NASA Astrophysics Data System (ADS)
Kirkendall, Megan; Irvin, Patrick; Huang, Mengchen; Levy, Jeremy; Lee, Hyungwoo; Eom, Chang-Beom
Understanding the properties of large quantum systems can be challenging both theoretically and numerically. One experimental approach-quantum simulation-involves mapping a quantum system of interest onto a physical system that is programmable and experimentally accessible. A tremendous amount of work has been performed with quantum simulators formed from optical lattices; by contrast, solid-state platforms have had only limited success. Our experimental approach to quantum simulation takes advantage of nanoscale control of a metal-insulator transition at the interface between two insulating complex oxide materials. This system naturally exhibits a wide variety of ground states (e.g., ferromagnetic, superconducting) and can be configured into a variety of complex geometries. We will describe initial experiments that explore the magnetotransport properties of one-dimensional superlattices with spatial periods as small as 4 nm, comparable to the Fermi wavelength. The results demonstrate the potential of this solid-state quantum simulation approach, and also provide empirical constraints for physical models that describe the underlying oxide material properties. We gratefully acknowledge financial support from AFOSR (FA9550-12-1- 0057 (JL), FA9550-10-1-0524 (JL) and FA9550-12-1-0342 (CBE)), ONR N00014-15-1-2847 (JL), and NSF DMR-1234096 (CBE).
Graphene quantum dots: localized states, edges and bilayer systems
NASA Astrophysics Data System (ADS)
Ensslin, Klaus
2014-03-01
Graphene quantum dots show Coulomb blockade, excited states and their orbital and spin properties have been investigated in high magnetic fields. Most quantum dots fabricated to date are fabricated with electron beam lithography and dry etching which generally leads to uncontrolled and probably rough edges. We demonstrate that devices with reduced bulk disorder fabricated on BN substrates display similar localized states as those fabricated on the more standard SiO2 substrates. For a highly symmetric quantum dot with short tunnel barriers the experimentally detected transport features can be explained by three localized states, 1 in the dot and 2 in the constrictions. A way to overcome edge roughness and the localized states related to this are bilayer devices where a band gap can be induced by suitable top and back gate voltages. By placing bilayer graphene between two BN layers high electronic quality can be achieved as documented by the observation of broken symmetry states in the quantum Hall regime. We discuss how this method can be exploited to achieve smoother and better tunable graphene quantum devices. This work was done in collaboration with D. Bischoff, P. Simonet, A. Varlet, Y. Tian, and T. Ihn.
Solving quantum ground-state problems with nuclear magnetic resonance.
Li, Zhaokai; Yung, Man-Hong; Chen, Hongwei; Lu, Dawei; Whitfield, James D; Peng, Xinhua; Aspuru-Guzik, Alán; Du, Jiangfeng
2011-01-01
Quantum ground-state problems are computationally hard problems for general many-body Hamiltonians; there is no classical or quantum algorithm known to be able to solve them efficiently. Nevertheless, if a trial wavefunction approximating the ground state is available, as often happens for many problems in physics and chemistry, a quantum computer could employ this trial wavefunction to project the ground state by means of the phase estimation algorithm (PEA). We performed an experimental realization of this idea by implementing a variational-wavefunction approach to solve the ground-state problem of the Heisenberg spin model with an NMR quantum simulator. Our iterative phase estimation procedure yields a high accuracy for the eigenenergies (to the 10⁻⁵ decimal digit). The ground-state fidelity was distilled to be more than 80%, and the singlet-to-triplet switching near the critical field is reliably captured. This result shows that quantum simulators can better leverage classical trial wave functions than classical computers. PMID:22355607
Imaging of Condensed Quantum States in the Quantum Hall Effect Regime
NASA Astrophysics Data System (ADS)
Oswald, Josef; Römer, Rudolf A.
It has been proposed already some time ago that Wigner crystallization in the tails of the Landau levels may play an important role in the quantum Hall regime. Here we use numerical simulations for modelling condensed quantum states and propose real space imaging of such highly correlated electron states by scanning gate microscopy (SGM). The ingredients for our modelling are a many particle model that combines a self-consistent Hartree-Fock calculation for the steady state with a non-equilibrium network model for the electron transport. If there exist condensed many particle quantum states in our electronic model system, our simulations demonstrate that the response pattern of the total sample current as a function of the SGM tip position delivers detailed information about the geometry of the underlying quantum state. For the case of a ring shaped dot potential in the few electron limit it is possible to find regimes with a rigid (condensed) charge distribution in the ring, where the SGM pattern corresponds to the probability density of the quantum states. The existence of the SGM image can be interpreted as the manifestation of an electron solid, since the pattern generation of the charge distribution requires certain stability against the moving tip potential.
Realization of Reliable Solid-State Quantum Memory for Photonic Polarization Qubit
NASA Astrophysics Data System (ADS)
Zhou, Zong-Quan; Lin, Wei-Bin; Yang, Ming; Li, Chuan-Feng; Guo, Guang-Can
2012-05-01
Faithfully storing an unknown quantum light state is essential to advanced quantum communication and distributed quantum computation applications. The required quantum memory must have high fidelity to improve the performance of a quantum network. Here we report the reversible transfer of photonic polarization states into collective atomic excitation in a compact solid-state device. The quantum memory is based on an atomic frequency comb (AFC) in rare-earth ion-doped crystals. We obtain up to 0.999 process fidelity for the storage and retrieval process of single-photon-level coherent pulse. This reliable quantum memory is a crucial step toward quantum networks based on solid-state devices.
Quantum state tomography with incomplete data: Maximum entropy and variational quantum tomography
NASA Astrophysics Data System (ADS)
Gonçalves, D. S.; Lavor, C.; Gomes-Ruggiero, M. A.; Cesário, A. T.; Vianna, R. O.; Maciel, T. O.
2013-05-01
Whenever we do not have an informationally complete set of measurements, the estimate of a quantum state cannot be uniquely determined. In this case, among the density matrices compatible with the available data, the one commonly preferred is the one which is the most uncommitted to the missing information. This is the purpose of the maximum entropy estimation (MaxEnt) and the variational quantum tomography (VQT). Here, we propose a variant of VQT and show its relationship with MaxEnt methods in quantum tomographies with an incomplete set of measurements. We prove their equivalence in the case of eigenbasis measurements, and through numerical simulations we stress their similar behavior. Hence, in the modified VQT formulation we have an estimate of a quantum state as unbiased as in MaxEnt and with the benefit that VQT can be more efficiently solved by means of linear semidefinite programs.
Quantum paradox of choice: More freedom makes summoning a quantum state harder
NASA Astrophysics Data System (ADS)
Adlam, Emily; Kent, Adrian
2016-06-01
The properties of quantum information in space-time can be investigated by studying operational tasks, such as "summoning," in which an unknown quantum state is supplied at one point and a call is made at another for it to be returned at a third. Hayden and May [arXiv:1210.0913] recently proved necessary and sufficient conditions for guaranteeing successful return of a summoned state for finite sets of call and return points when there is a guarantee of at most one summons. We prove necessary and sufficient conditions when there may be several possible summonses and complying with any one constitutes success, and we demonstrate the existence of an apparent paradox: The extra freedom makes it strictly harder to complete the summoning task. This result has practical applications for distributed quantum computing and cryptography and implications for our understanding of relativistic quantum information and its localization in space-time.
High-efficiency tomographic reconstruction of quantum states by quantum nondemolition measurements
Huang, J. S.; Wei, L. F.; Oh, C. H.
2011-03-15
We propose a high-efficiency scheme to tomographically reconstruct an unknown quantum state by using a series of quantum nondemolition (QND) measurements. The proposed QND measurements of the qubits are implemented by probing the stationary transmissions through a driven dispersively coupled resonator. It is shown that only one kind of QND measurement is sufficient to determine all the diagonal elements of the density matrix of the detected quantum state. The remaining nondiagonal elements can be similarly determined by transferring them to the diagonal locations after a series of unitary operations. Compared with the tomographic reconstructions based on the usual destructive projective measurements (wherein one such measurement can determine only one diagonal element of the density matrix), the present reconstructive approach exhibits significantly high efficiency. Specifically, our generic proposal is demonstrated by the experimental circuit quantum electrodynamics systems with a few Josephson charge qubits.
Complementarity of quantum correlations in cloning and deleting of quantum states
NASA Astrophysics Data System (ADS)
Sazim, Sk; Chakrabarty, Indranil; Datta, Annwesha; Pati, Arun K.
2015-06-01
We quantify the amount of correlation generated between two different output modes in imperfect cloning and deletion processes. We use three different measures of quantum correlations and investigate their role in determining the fidelity of cloning and deletion. We obtain a bound on the total correlation generated in the successive processes of cloning and deleting operations. This bound displays a different kind of complementary relationship between the quantum correlations required in generating a copy of a quantum state and the amount of correlation required to bring it back to the original state by deleting and vice versa. Our result shows that the better we clone (delete) a state, the more difficult it will be to bring the state back to its original form by the process of deleting (cloning).
Komnik, A; Saleur, H
2011-09-01
We verify the validity of the Cohen-Gallavotti fluctuation theorem for the strongly correlated problem of charge transfer through an impurity in a chiral Luttinger liquid, which is realizable experimentally as a quantum point contact in a fractional quantum Hall edge state device. This is accomplished via the development of an analytical method to calculate the full counting statistics of the problem in all the parameter regimes involving the temperature, the Hall voltage, and the gate voltage. PMID:21981487
Quantum gloves: Quantum states that encode as much as possible chirality and nothing else
Collins, D.; Diosi, L.; Gisin, N.; Massar, S.; Popescu, S.
2005-08-15
Communicating a physical quantity cannot be done using information only - i.e., using abstract cbits and/or qubits. Rather one needs appropriate physical realizations of cbits and/or qubits. We illustrate this by considering the problem of communicating chirality. We discuss in detail the physical resources this necessitates and introduce the natural concept of quantum gloves - i.e., rotationally invariant quantum states that encode as much as possible the concept of chirality and nothing more.
Generalized coherent states under deformed quantum mechanics with maximum momentum
NASA Astrophysics Data System (ADS)
Ching, Chee Leong; Ng, Wei Khim
2013-10-01
Following the Gazeau-Klauder approach, we construct generalized coherent states (GCS) as the quantum simulator to examine the deformed quantum mechanics, which exhibits an intrinsic maximum momentum. We study deformed harmonic oscillators and compute their probability distribution and entropy of states exactly. Also, a particle in an infinite potential box is studied perturbatively. In particular, unlike usual quantum mechanics, the present deformed case increases the entropy of the Planck scale quantum optical system. Furthermore, for simplicity, we obtain the modified uncertainty principle (MUP) with the perturbative treatment up to leading order. MUP turns out to increase generally. However, for certain values of γ (a parameter of GCS), it is possible that the MUP will vanish and hence will exhibit the classical characteristic. This is interpreted as the manifestation of the intrinsic high-momentum cutoff at lower momentum in a perturbative treatment. Although the GCS saturates the minimal uncertainty in a simultaneous measurement of physical position and momentum operators, thus constituting the squeezed states, complete coherency is impossible in quantum gravitational physics. The Mandel Q number is calculated, and it is shown that the statistics can be Poissonian and super-/sub-Poissonian depending on γ. The equation of motion is studied, and both Ehrenfest’s theorem and the correspondence principle are recovered. Fractional revival times are obtained through the autocorrelation, and they indicate that the superposition of a classical-like subwave packet is natural in GCS. We also contrast our results with the string-motivated (Snyder) type of deformed quantum mechanics, which incorporates a minimum position uncertainty rather than a maximum momentum. With the advances of quantum optics technology, it might be possible to realize some of these distinguishing quantum-gravitational features within the domain of future experiments.
Improving ancilla states for quantum computation
NASA Astrophysics Data System (ADS)
Weinstein, Yaakov S.; Chai, Daniel; Xie, Newton
2016-04-01
We analyze the improvement in output state fidelity upon improving the construction accuracy of ancilla states. Specifically, we simulate gates and syndrome measurements on a single qubit of information encoded into the [[7,1,3
NASA Astrophysics Data System (ADS)
Coelho, A. S.; Barbosa, F. A. S.; Cassemiro, K. N.; Martinelli, M.; Villar, A. S.; Nussenzveig, P.
2015-07-01
Gaussian quantum states hold special importance in the continuous variable regime. In quantum information science, the understanding and characterization of central resources such as entanglement may strongly rely on the knowledge of the Gaussian or non-Gaussian character of the quantum state. However, the quantum measurement associated with the spectral photocurrent of light modes consists of a mixture of quadrature observables. Within the framework of two recent papers [Phys. Rev. A 88, 052113 (2013), 10.1103/PhysRevA.88.052113 and Phys. Rev. Lett. 111, 200402 (2013), 10.1103/PhysRevLett.111.200402], we address here how the statistics of the spectral photocurrent relates to the character of the Wigner function describing those modes. We show that a Gaussian state can be misidentified as non-Gaussian and vice versa, a conclusion that forces the adoption of tacit a priori assumptions to perform quantum state reconstruction. We experimentally analyze the light beams generated by the optical parametric oscillator operating above threshold to show that the data strongly supports the generation of Gaussian states of the field, validating the use of necessary and sufficient criteria to characterize entanglement in this system.
Quantum Discord and Entanglement of Quasi-Werner States Based on Bipartite Entangled Coherent States
NASA Astrophysics Data System (ADS)
Mishra, Manoj K.; Maurya, Ajay K.; Prakash, Hari
2016-06-01
Present work is an attempt to compare quantum discord and quantum entanglement of quasi-Werner states formed with the four bipartite entangled coherent states (ECS) used recently for quantum teleportation of a qubit encoded in superposed coherent state. Out of these, the quasi-Werner states based on maximally ECS due to its invariant nature under local operation is independent of measurement basis and mean photon numbers, while for quasi-Werner states based on non-maximally ECS, it depends upon measurement basis as well as on mean photon number. However, for large mean photon numbers since non-maximally ECS becomes almost maximally entangled therefore dependence of quantum discord for non-maximally ECS based quasi-Werner states on the measurement basis disappears.
Local density of states in parabolic quantum corrals
NASA Astrophysics Data System (ADS)
Trallero-Giner, C.; Ulloa, S. E.; López-Richard, V.
2004-03-01
Atomic manipulation and scanning tunnel microscope experiments on metal surfaces have shown that electronic states in a “quantum corral” can be locally monitored and used to analyze the nonlocal effects of perturbations. We study new corral geometries defined by families of confocal parabolas. General solutions of the Schrödinger equation for the interior problem with Dirichlet (hard wall) boundary conditions are found exactly in terms of zeroes of hypergeometric functions. We show that the Hilbert space of solutions is separated in subspaces with odd and even symmetry. We perform numerical evaluation of the zeroes and study the effects of the parabolic curvatures on the eigenvalues and eigenfunctions of the parabolic quantum corral. The evolution of the local density of states with energy as a function of parabolic corral geometry is also analyzed. We find that under suitable conditions, the distribution of state antinodes can be described as directed intensity beams, which could be used as “quantum beacons” in future generations of “quantum mirage” experiments or optical and acoustic analogs of quantum corrals for the state node distribution.
Robustness of asymmetry and coherence of quantum states
NASA Astrophysics Data System (ADS)
Piani, Marco; Cianciaruso, Marco; Bromley, Thomas R.; Napoli, Carmine; Johnston, Nathaniel; Adesso, Gerardo
2016-04-01
Quantum states may exhibit asymmetry with respect to the action of a given group. Such an asymmetry of states can be considered a resource in applications such as quantum metrology, and it is a concept that encompasses quantum coherence as a special case. We introduce explicitly and study the robustness of asymmetry, a quantifier of asymmetry of states that we prove to have many attractive properties, including efficient numerical computability via semidefinite programming and an operational interpretation in a channel discrimination context. We also introduce the notion of asymmetry witnesses, whose measurement in a laboratory detects the presence of asymmetry. We prove that properly constrained asymmetry witnesses provide lower bounds to the robustness of asymmetry, which is shown to be a directly measurable quantity itself. We then focus our attention on coherence witnesses and the robustness of coherence, for which we prove a number of additional results; these include an analysis of its specific relevance in phase discrimination and quantum metrology, an analytical calculation of its value for a relevant class of quantum states, and tight bounds that relate it to another previously defined coherence monotone.
Quantum error correction against photon loss using NOON states
NASA Astrophysics Data System (ADS)
Bergmann, Marcel; van Loock, Peter
2016-07-01
The so-called NOON states are quantum optical resources known to be useful especially for quantum lithography and metrology. At the same time, they are known to be very sensitive to photon losses and rather hard to produce experimentally. Concerning the former, here we present a scheme where NOON states are the elementary resources for building quantum error-correction codes against photon losses, thus demonstrating that such resources can also be useful to suppress the effect of loss. Our NOON code is an exact code that can be systematically extended from one-photon to higher-number losses. Its loss scaling depending on the codeword photon number is the same as for some existing, exact loss codes such as bosonic and quantum parity codes, but its codeword mode number is intermediate between that of the other codes. Another generalization of the NOON code is given for arbitrary logical qudits instead of logical qubits. While, in general, the final codewords are always obtainable from multimode NOON states through application of beam splitters, both codewords for the one-photon-loss qubit NOON code can be simply created from single-photon states with beam splitters. We give various examples and also discuss a potential application of our qudit code for quantum communication.
Observation of Dressed Excitonic States in a Single Quantum Dot
NASA Astrophysics Data System (ADS)
Jundt, Gregor; Robledo, Lucio; Högele, Alexander; Fält, Stefan; Imamoǧlu, Atac
2008-05-01
We report the observation of dressed states of a quantum dot. The optically excited exciton and biexciton states of the quantum dot are coupled by a strong laser field and the resulting spectral signatures are measured using differential transmission of a probe field. We demonstrate that the anisotropic electron-hole exchange interaction induced splitting between the x- and y-polarized excitonic states can be completely erased by using the ac-Stark effect induced by the coupling field, without causing any appreciable broadening of the spectral lines. We also show that by varying the polarization and strength of a resonant coupling field, we can effectively change the polarization axis of the quantum dot.
Direct measurement of general quantum states using strong measurement
NASA Astrophysics Data System (ADS)
Zou, Ping; Zhang, Zhi-Ming; Song, Wei
2015-05-01
The direct state measurement (DSM) based on the weak measurement has the advantage of simplicity, versatility, and directness. However, the weak measurement will introduce an unavoidable error in the reconstructed quantum state. We modify the DSM by replacing the weak coupling between the system and the pointer by a strong one, and present two procedures for measuring quantum states, one of which can give the wave function or the density matrix directly. We can also measure the Dirac distribution of a discrete system directly. Furthermore, we propose quantum circuits for realizing these procedures, and the main body of the circuits consists of Toffoli gates. By numerical simulation, we find that our scheme can eliminate the biased error effectively.
Bell states and entanglement dynamics on two coupled quantum molecules
Oliveira, P.A.; Sanz, L.
2015-05-15
This work provides a complete description of entanglement properties between electrons inside coupled quantum molecules, nanoestructures which consist of two quantum dots. Each electron can tunnel between the two quantum dots inside the molecule, being also coupled by Coulomb interaction. First, it is shown that Bell states act as a natural basis for the description of this physical system, defining the characteristics of the energy spectrum and the eigenstates. Then, the entanglement properties of the eigenstates are discussed, shedding light on the roles of each physical parameters on experimental setup. Finally, a detailed analysis of the dynamics shows the path to generate states with a high degree of entanglement, as well as physical conditions associated with coherent oscillations between separable and Bell states.
Valley-orbit hybrid states in Si quantum dots
NASA Astrophysics Data System (ADS)
Gamble, John; Friesen, Mark; Coppersmith, S. N.
2013-03-01
The conduction band for electrons in layered Si nanostructures oriented along (001) has two low-lying valleys. Most theoretical treatments assume that these valleys are decoupled from the long-wavelength physics of electron confinement. In this work, we show that even a minimal amount of disorder (a single atomic step at the quantum well interface) is sufficient to mix valley states and electron orbitals, causing a significant distortion of the long-wavelength electron envelope. For physically realistic electric fields and dot sizes, this valley-orbit coupling impacts all electronic states in Si quantum dots, implying that one must always consider valley-orbit hybrid states, rather than distinct valley and orbital degrees of freedom. We discuss the ramifications of our results on silicon quantum dot qubits. This work was supported in part by ARO (W911NF-08-1-0482) and NSF (DMR-0805045).
Physical realization of quantum teleportation for a nonmaximal entangled state
Tanaka, Yoshiharu; Asano, Masanari; Ohya, Masanori
2010-08-15
Recently, Kossakowski and Ohya (K-O) proposed a new teleportation scheme which enables perfect teleportation even for a nonmaximal entangled state [A. Kossakowski and M. Ohya, Infinite Dimensional Analysis Quantum Probability and Related Topics 10, 411 (2007)]. To discuss a physical realization of the K-O scheme, we propose a model based on quantum optics. In our model, we take a superposition of Schroedinger's cat states as an input state being sent from Alice to Bob, and their entangled state is generated by a photon number state through a beam splitter. When the average photon number for our input states is equal to half the number of photons into the beam splitter, our model has high fidelity.
Entanglement of quantum circular states of light
NASA Astrophysics Data System (ADS)
Horoshko, D. B.; De Bièvre, S.; Kolobov, M. I.; Patera, G.
2016-06-01
We present a general approach to calculating the entanglement of formation for superpositions of two-mode coherent states, placed equidistantly on a circle in phase space. We show that in the particular case of rotationally invariant circular states the Schmidt decomposition of two modes, and therefore the value of their entanglement, are given by analytical expressions. We analyze the dependence of the entanglement on the radius of the circle and number of components in the superposition. We also show that the set of rotationally invariant circular states creates an orthonormal basis in the state space of the harmonic oscillator, and this basis is advantageous for representation of other circular states of light.
Grover's quantum search algorithm for an arbitrary initial mixed state
Biham, Eli; Kenigsberg, Dan
2002-12-01
The Grover quantum search algorithm is generalized to deal with an arbitrary mixed initial state. The probability to measure a marked state as a function of time is calculated, and found to depend strongly on the specific initial state. The form of the function, though, remains as it is in the case of initial pure state. We study the role of the von Neumann entropy of the initial state, and show that the entropy cannot be a measure for the usefulness of the algorithm. We give few examples and show that for some extremely mixed initial states (carrying high entropy), the generalized Grover algorithm is considerably faster than any classical algorithm.
Entanglement and quantum teleportation via decohered tripartite entangled states
Metwally, N.
2014-12-15
The entanglement behavior of two classes of multi-qubit system, GHZ and GHZ like states passing through a generalized amplitude damping channel is discussed. Despite this channel causes degradation of the entangled properties and consequently their abilities to perform quantum teleportation, one can always improve the lower values of the entanglement and the fidelity of the teleported state by controlling on Bell measurements, analyzer angle and channel’s strength. Using GHZ-like state within a generalized amplitude damping channel is much better than using the normal GHZ-state, where the decay rate of entanglement and the fidelity of the teleported states are smaller than those depicted for GHZ state.
NASA Astrophysics Data System (ADS)
Thapliyal, Kishore; Verma, Amit; Pathak, Anirban
2015-12-01
Recently, a large number of protocols for bidirectional controlled state teleportation (BCST) have been proposed using n-qubit entangled states (nin {5,6,7}) as quantum channel. Here, we propose a general method of selecting multiqubit (n>4) quantum channels suitable for BCST and show that all the channels used in the existing protocols of BCST can be obtained using the proposed method. Further, it is shown that the quantum channels used in the existing protocols of BCST form only a negligibly small subset of the set of all the quantum channels that can be constructed using the proposed method to implement BCST. It is also noted that all these quantum channels are also suitable for controlled bidirectional remote state preparation. Following the same logic, methods for selecting quantum channels for other controlled quantum communication tasks, such as controlled bidirectional joint remote state preparation and controlled quantum dialogue, are also provided.
Quantum secret sharing with continuous-variable cluster states
NASA Astrophysics Data System (ADS)
Lau, Hoi-Kwan; Weedbrook, Christian
2013-10-01
We extend the formalism of cluster-state quantum secret sharing, as presented by Markham and Sanders [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.78.042309 78, 042309 (2008)] and Keet [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.82.062315 82, 062315 (2010)], to the continuous-variable regime. We show that both classical and quantum information can be shared by distributing continuous-variable cluster states through either public or private channels. We find that the adversary structure is completely denied from the secret if the cluster state is infinitely squeezed, but some secret information would be leaked if a realistic finitely squeezed state is employed. We suggest benchmarks to evaluate the security in the finitely squeezed cases. For the sharing of classical secrets, we borrow techniques from the continuous-variable quantum key distribution to compute the secret-sharing rate. For the sharing of quantum states, we estimate the amount of entanglement distilled for teleportation from each cluster state.
Fisher symmetry and the geometry of quantum states
NASA Astrophysics Data System (ADS)
Gross, Jonathan A.; Barnum, Howard; Caves, Carlton M.
The quantum Fisher information (QFI) is a valuable tool on account of the achievable lower bound it provides for single-parameter estimation. Due to the existence of incompatible quantum observables, however, the lower bound provided by the QFI cannot be saturated in the general multi-parameter case. A bound demonstrated by Gill and Massar (GM) captures some of the limitations that incompatibility imposes in the multi-parameter case. We further explore the structure of measurements allowed by quantum mechanics, identifying restrictions beyond those given by the QFI and GM bound. These additional restrictions give insight into the geometry of quantum state space and notions of measurement symmetry related to the QFI.
Playing Quantum Games with Disentanglement-Free State
NASA Astrophysics Data System (ADS)
Weng, Guo-Fu; Yu, Yang
2016-01-01
We use a kind of disentanglement-free state to serve as the initial state shared by players and referee in quantum games. It is found that when two players choose some strategies the payoffs of the quantum games will not be affected by the external single-mode vacuum field and the various interactions present in the process. Furthermore, we show that for some games our scheme can be used to remove the dilemma in its corresponding classical game even with the presence of noises; meanwhile, one can find the solution to those games without disturbing the players’ payoffs.
Coherent state quantum key distribution based on entanglement sudden death
NASA Astrophysics Data System (ADS)
Jaeger, Gregg; Simon, David; Sergienko, Alexander V.
2016-03-01
A method for quantum key distribution (QKD) using entangled coherent states is discussed which is designed to provide key distribution rates and transmission distances surpassing those of traditional entangled photon pair QKD by exploiting entanglement sudden death. The method uses entangled electromagnetic signal states of `macroscopic' average photon numbers rather than single photon or entangled photon pairs, which have inherently limited rate and distance performance as bearers of quantum key data. Accordingly, rather than relying specifically on Bell inequalities as do entangled photon pair-based methods, the security of this method is based on entanglement witnesses and related functions.
Evidence for an anomalous quantum state of protons in nanoconfined water
Reiter, George F; Kolesnikov, Alexander I; Paddison, Stephen J; Platzman, P. M.; Moravsky, Alexander P.; Adams, Mark A.; Mayers, Dr. Jerry
2012-01-01
Deep inelastic neutron scattering provides a means of directly and accurately measuring the momentum distribution of protons in water, which is determined primarily by the proton ground-state wave function.We find that in water confined on scales of 20 A, this wave function responds to the details of the confinement, corresponds to a strongly anharmonic local potential, shows evidence in some cases of coherent delocalization in double wells, and involves changes in zero-point kinetic energy of the protons from 40 to +120 meV difference from that of bulk water at room temperature. This behavior appears to be a generic feature of nanoscale confinement. It is exhibited here in 16 A inner diameter carbon nanotubes, two different hydrated proton exchange membranes (PEMs), Nafion 1120 and Dow 858, and has been seen earlier in xerogel and 14 A diameter carbon nanotubes. The proton conductivity in the PEM samples correlates with the degree of coherent delocalization of the proton.
NASA Astrophysics Data System (ADS)
Chen, Bing; Li, Yong
2016-04-01
Quantum state transfer (QST) is an important task in quantum information processing. In this study, we describe two approaches for the high-fidelity transfer of a quantum state between two opposite quantum dots attached to a multi-channel quantum network. First, we demonstrate that a high-efficiency QST can be achieved with the coherent time evolution of a quantum system without any external control. Second, we present an approach that uses an alternative mechanism for a high-fidelity QST. By adiabatically varying tunnel couplings, it is possible to implement the complete transmission of a quantum state based on this quantum mechanical mechanism.
Quantum Teleportation of a Three-qubit State using a Five-qubit Cluster State
NASA Astrophysics Data System (ADS)
Liu, Zhong-min; Zhou, Lin
2014-12-01
Recently Muralidharan and Panigrahi (Phys. Rev. A 78, 062333 2008) had shown that using a five-qubit cluster state as quantum channel, it is possible to teleport an arbitrary single-qubit state and an arbitrary two-qubit state. In this paper, we investigate this channel for the teleportation of a special form of three-qubit state.
NASA Astrophysics Data System (ADS)
Greca, Ileana Maria; Freire, Olival
Teaching physics implies making choices. In the case of teaching quantum physics, besides an educational choice - the didactic strategy - another choice must be made, an epistemological one, concerning the interpretation of quantum theory itself. These two choices are closely connected. We have chosen a didactic strategy that privileges the phenomenological-conceptual approach, with emphasis upon quantum features of the systems, instead of searching for classical analogies. This choice has led us to present quantum theory associated with an orthodox, yet realistic, interpretation of the concept of quantum state, considered as the key concept of quantum theory, representing the physical reality of a system, independent of measurement processes. The results of the mplementation of this strategy, with three groups of engineering students, showed that more than a half of them attained a reasonable understanding of the basics of quantum mechanics (QM) for this level. In addition, a high degree of satisfaction was attained with the classes as 80% of the students of the experimental groups claimed to have liked it and to be interested in learning more about QM.
Quantum Information Splitting of Arbitrary Three-Qubit State by Using Seven-Qubit Entangled State
NASA Astrophysics Data System (ADS)
Li, Dong-fen; Wang, Rui-jin; Zhang, Feng-li; Deng, Fu-hu
2015-06-01
In this paper, we propose a scheme of quantum information splitting arbitrary three-qubit state by using seven-qubit entangled as quantum channel. The sender Alice first performs Bell-state measurements (BSMs) on her qubits pairs respectively and tells her measurement outcome to authorizers Bob to reconstruct the original state, then Charlie should carries out single-qubit measurement (SQM) on his qubits. According to the results from Alice and Charlie, Bob can reconstruct the original state by applying an appropriate unitary operation. After analyzing, the method achieved the desired effect of quantum information splitting (QIS). We also realize the QIS of arbitrary three-qubit state in cavity quantum electrodynamics (QED).
Realizing quantum advantage without entanglement in single-photon states
NASA Astrophysics Data System (ADS)
Maldonado Trapp, Alejandra; Solano, Pablo; Hu, Anzi; Clark, Charles W.
2016-05-01
Quantum discord expresses quantum correlations beyond those associated with entanglement. Although it has been extensively studied theoretically, quantum discord has yet to become a standard tool in experimental studies of correlation. We propose a class of experiments in which quantum correlations are present in the absence of entanglement, and are best understood in terms of quantum discord.. These utilize X-states of two qubits, which correspond to the polarization and the optical path of a single photon within a Mach-Zehnder interferometer. We show how to produce states with diverse measures of discord and entanglement, including the case of discord without entanglement. With these states we show how a classical random variable K can be encoded by Alice and decoded by Bob. Using our previous results we analytically study the correlations between the spin and path qubits and its relation with the information about K that can be decoded by Bob using local measurements with or without two-qubit gate operations.
Matrix model for non-Abelian quantum Hall states
NASA Astrophysics Data System (ADS)
Dorey, Nick; Tong, David; Turner, Carl
2016-08-01
We propose a matrix quantum mechanics for a class of non-Abelian quantum Hall states. The model describes electrons which carry an internal SU(p ) spin. The ground states of the matrix model include spin-singlet generalizations of the Moore-Read and Read-Rezayi states and, in general, lie in a class previously introduced by Blok and Wen. The effective action for these states is a U(p ) Chern-Simons theory. We show how the matrix model can be derived from quantization of the vortices in this Chern-Simons theory and how the matrix model ground states can be reconstructed as correlation functions in the boundary WZW model.
Perfect transfer of arbitrary states in quantum spin networks
Christandl, Matthias; Kay, Alastair; Datta, Nilanjana; Dorlas, Tony C.; Ekert, Artur; Landahl, Andrew J.
2005-03-01
We propose a class of qubit networks that admit perfect state transfer of any two-dimensional quantum state in a fixed period of time. We further show that such networks can distribute arbitrary entangled states between two distant parties, and can, by using such systems in parallel, transmit the higher-dimensional systems states across the network. Unlike many other schemes for quantum computation and communication, these networks do not require qubit couplings to be switched on and off. When restricted to N-qubit spin networks of identical qubit couplings, we show that 2 log{sub 3}N is the maximal perfect communication distance for hypercube geometries. Moreover, if one allows fixed but different couplings between the qubits then perfect state transfer can be achieved over arbitrarily long distances in a linear chain. This paper expands and extends the work done by Christandl et al., Phys. Rev. Lett. 92, 187902 (2004)
Experimental quantum cryptography scheme based on orthogonal states: preliminary results
NASA Astrophysics Data System (ADS)
Avella, Alessio; Brida, Giorgio; Degiovanni, Ivo P.; Genovese, Marco; Gramegna, Marco; Traina, Paolo
2010-04-01
Since, in general, non-orthogonal states cannot be cloned, any eavesdropping attempt in a Quantum Communication scheme using non-orthogonal states as carriers of information introduces some errors in the transmission, leading to the possibility of detecting the spy. Usually, orthogonal states are not used in Quantum Cryptography schemes since they can be faithfully cloned without altering the transmitted data. Nevertheless, L. Goldberg and L. Vaidman [Phys. Rev. Lett. 75 (7), pp. 12391243, 1995] proposed a protocol in which, even if the data exchange is realized using two orthogonal states, any attempt to eavesdrop is detectable by the legal users. In this scheme the orthogonal states are superpositions of two localized wave packets which travel along separate channels, i.e. two different paths inside a balanced Mach-Zehnder interferometer. Here we present an experiment realizing this scheme.
Experimental quantum-cryptography scheme based on orthogonal states
NASA Astrophysics Data System (ADS)
Avella, Alessio; Brida, Giorgio; Degiovanni, Ivo Pietro; Genovese, Marco; Gramegna, Marco; Traina, Paolo
2010-12-01
Since, in general, nonorthogonal states cannot be cloned, any eavesdropping attempt in a quantum-communication scheme using nonorthogonal states as carriers of information introduces some errors in the transmission, leading to the possibility of detecting the spy. Usually, orthogonal states are not used in quantum-cryptography schemes since they can be faithfully cloned without altering the transmitted data. Nevertheless, L. Goldberg and L. Vaidman [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.75.1239 75, 1239 (1995)] proposed a protocol in which, even if the data exchange is realized using two orthogonal states, any attempt to eavesdrop is detectable by the legal users. In this scheme the orthogonal states are superpositions of two localized wave packets traveling along separate channels. Here we present an experiment realizing this scheme.
Sequential state discrimination and requirement of quantum dissonance
NASA Astrophysics Data System (ADS)
Pang, Chao-Qian; Zhang, Fu-Lin; Xu, Li-Fang; Liang, Mai-Lin; Chen, Jing-Ling
2013-11-01
We study the procedure for sequential unambiguous state discrimination. A qubit is prepared in one of two possible states and measured by two observers Bob and Charlie sequentially. A necessary condition for the state to be unambiguously discriminated by Charlie is the absence of entanglement between the principal qubit, prepared by Alice, and Bob's auxiliary system. In general, the procedure for both Bob and Charlie to recognize between two nonorthogonal states conclusively relies on the availability of quantum discord which is precisely the quantum dissonance when the entanglement is absent. In Bob's measurement, the left discord is positively correlated with the information extracted by Bob, and the right discord enhances the information left to Charlie. When their product achieves its maximum the probability for both Bob and Charlie to identify the state achieves its optimal value.
A search algorithm for quantum state engineering and metrology
NASA Astrophysics Data System (ADS)
Knott, P. A.
2016-07-01
In this paper we present a search algorithm that finds useful optical quantum states which can be created with current technology. We apply the algorithm to the field of quantum metrology with the goal of finding states that can measure a phase shift to a high precision. Our algorithm efficiently produces a number of novel solutions: we find experimentally ready schemes to produce states that show significant improvements over the state-of-the-art, and can measure with a precision that beats the shot noise limit by over a factor of 4. Furthermore, these states demonstrate a robustness to moderate/high photon losses, and we present a conceptually simple measurement scheme that saturates the Cramér–Rao bound.
Experimental quantum-cryptography scheme based on orthogonal states
Avella, Alessio; Brida, Giorgio; Degiovanni, Ivo Pietro; Genovese, Marco; Gramegna, Marco; Traina, Paolo
2010-12-15
Since, in general, nonorthogonal states cannot be cloned, any eavesdropping attempt in a quantum-communication scheme using nonorthogonal states as carriers of information introduces some errors in the transmission, leading to the possibility of detecting the spy. Usually, orthogonal states are not used in quantum-cryptography schemes since they can be faithfully cloned without altering the transmitted data. Nevertheless, L. Goldberg and L. Vaidman [Phys. Rev. Lett. 75, 1239 (1995)] proposed a protocol in which, even if the data exchange is realized using two orthogonal states, any attempt to eavesdrop is detectable by the legal users. In this scheme the orthogonal states are superpositions of two localized wave packets traveling along separate channels. Here we present an experiment realizing this scheme.
Typical pure nonequilibrium steady states and irreversibility for quantum transport.
Monnai, Takaaki; Yuasa, Kazuya
2016-07-01
It is known that each single typical pure state in an energy shell of a large isolated quantum system well represents a thermal equilibrium state of the system. We show that such typicality holds also for nonequilibrium steady states (NESS's). We consider a small quantum system coupled to multiple infinite reservoirs. In the long run, the total system reaches a unique NESS. We identify a large Hilbert space from which pure states of the system are to be sampled randomly and show that the typical pure states well describe the NESS. We also point out that the irreversible relaxation to the unique NESS is important to the typicality of the pure NESS's. PMID:27575115
Quantum state discrimination bounds for finite sample size
Audenaert, Koenraad M. R.; Mosonyi, Milan; Verstraete, Frank
2012-12-15
In the problem of quantum state discrimination, one has to determine by measurements the state of a quantum system, based on the a priori side information that the true state is one of the two given and completely known states, {rho} or {sigma}. In general, it is not possible to decide the identity of the true state with certainty, and the optimal measurement strategy depends on whether the two possible errors (mistaking {rho} for {sigma}, or the other way around) are treated as of equal importance or not. Results on the quantum Chernoff and Hoeffding bounds and the quantum Stein's lemma show that, if several copies of the system are available then the optimal error probabilities decay exponentially in the number of copies, and the decay rate is given by a certain statistical distance between {rho} and {sigma} (the Chernoff distance, the Hoeffding distances, and the relative entropy, respectively). While these results provide a complete solution to the asymptotic problem, they are not completely satisfying from a practical point of view. Indeed, in realistic scenarios one has access only to finitely many copies of a system, and therefore it is desirable to have bounds on the error probabilities for finite sample size. In this paper we provide finite-size bounds on the so-called Stein errors, the Chernoff errors, the Hoeffding errors, and the mixed error probabilities related to the Chernoff and the Hoeffding errors.
Quantum State Cloning Using Deutschian Closed Timelike Curves
NASA Astrophysics Data System (ADS)
Brun, Todd A.; Wilde, Mark M.; Winter, Andreas
2013-11-01
We show that it is possible to clone quantum states to arbitrary accuracy in the presence of a Deutschian closed timelike curve (D-CTC), with a fidelity converging to one in the limit as the dimension of the CTC system becomes large—thus resolving an open conjecture [Brun et al., Phys. Rev. Lett. 102, 210402 (2009)]. This result follows from a D-CTC-assisted scheme for producing perfect clones of a quantum state prepared in a known eigenbasis, and the fact that one can reconstruct an approximation of a quantum state from empirical estimates of the probabilities of an informationally complete measurement. Our results imply more generally that every continuous, but otherwise arbitrarily nonlinear map from states to states, can be implemented to arbitrary accuracy with D-CTCs. Furthermore, our results show that Deutsch’s model for closed timelike curves is in fact a classical model, in the sense that two arbitrary, distinct density operators are perfectly distinguishable (in the limit of a large closed timelike curve system); hence, in this model quantum mechanics becomes a classical theory in which each density operator is a distinct point in a classical phase space.
Analysis of optimal unambiguous discrimination of three pure quantum states
NASA Astrophysics Data System (ADS)
Ha, Donghoon; Kwon, Younghun
2015-06-01
We consider unambiguous discrimination of three pure quantum states. Necessary and sufficient conditions to decide which states should be detected for optimal measurement of unambiguous discrimination are provided in terms of inner products and the geometric phase Φ . We get the optimal measurement and the optimal failure probability when the optimal unambiguous discrimination does not require the detection of every given quantum state. When at least two quantum states are orthogonal to each other, we supply the optimal measurement and optimal failure probability in analytic form. When all three quantum states are not orthogonal to each other and Φ ≠0 , we find an analytic condition to determine the zero and nonzero elements for an optimal positive operator valued measure. We explain how to determine the solution in a geometric manner. Using the known solution of a case where the mutual inner products are real, we check the necessary and sufficient conditions when Φ =π and analyze the property of the singular point when Φ =0 and the relation between the optimal points.
Quantum tunneling between Chern states in a Topological Insulator
NASA Astrophysics Data System (ADS)
Liu, Minhao; Wang, Wudi; Richardella, Anthony R.; Kandala, Abhinav; Li, Jian; Yazdani, Ali; Samarth, Nitin; Ong, N. P.
The tunneling of a macroscopic object through a barrier is a quintessentially quantum phenomenon important in field theory, low-temperature physics and quantum computing. Progress has been achieved in experiments on Josephson junctions, molecular magnets, and domain wall dynamics. However, a key feature - rapid expansion of the true vacuum triggered by a tunneling event is virtually unexplored. Here we report the detection of large jumps in the Hall resistance Ryx in a magnetized topological insulator which result from tunneling out of a metastable topological state. In the TI, the conducting electrons are confined to surface Dirac states. When magnetized, the TI enters the quantum anomalous Hall insulator state in which Ryx is strictly quantized. If the magnetic field is reversed, the sample is trapped in a metastable state. We find that, below 145 mK, Ryx exhibits abrupt jumps as large as one quantum unit on time-scales under 1 ms. If the temperature is raised, the escape rate is suppressed consistent with tunneling in the presence of dissipation. The jumps involve expansion of the thermodynamically stable state bubble over macroscopic lengths, but dissipation limits the final size. The results uncover novel effects of dissipation on macroscopic tunneling. We acknowledge support from DARPA SPAWAR (N66001-11-1-4110) and the Gordon and Betty Moore Foundations (GBMF4539).
Discovery of competing 5/2 fractional quantum Hall states
NASA Astrophysics Data System (ADS)
Lin, Xi; Fu, Hailong; Wang, Pengjie; Shan, Pujia; Xiong, Lin; Pfeiffer, Loren; West, Ken; Kastner, Marc
With an even denominator, ν = 5 / 2 fractional quantum Hall state (FQH) is different from most of the other FQH states. Some of its proposed wave functions may exhibit novel non-Abelian statistics, which is related to topological quantum computation. We carried out tunneling measurements within a quantum point contact (QPC) at the 5/2 state and we were able to match the QPC's density to the two-dimensional electron gas bulk density. Such a density match guarantees the uniform filling factor inside and outside the QPC. The interaction parameter g and the effective charge e* can be extracted through the weak tunneling theory. We found g and e* similar to what people believed to be the Abelian 331 state. By tuning the confinement, we observed another region where the experimental data agree well with the weak tunneling theory, which leads to e* =0.25 and g =0.52, implying non-Abelian wavefunctions such as anti-Pfaffian or U(1)×SU2(2). Our discovery suggests that there are competing 5/2 fractional quantum Hall ground states depending on the confinement. The work at PKU was funded by NSFC and NBRPC. The work at Princeton University was funded by the Gordon and Betty Moore Foundation through the EPiQS initiative Grant GBMF4420, and by the National Science Foundation MRSEC Grant DMR-1420541.
Schmatz, Stefan
2005-06-15
The vibrational resonance states of the complexes formed in the nucleophilic bimolecular substitution (S{sub N}2) reaction Cl{sup -}+CH{sub 3}Br{yields}ClCH{sub 3}+Br{sup -} were calculated by means of the filter diagonalization method employing a coupled-cluster potential-energy surface and a Hamiltonian that incorporates an optical potential and is formulated in Radau coordinates for the carbon-halogen stretching modes. The four-dimensional model also includes the totally symmetric vibrations of the methyl group (C-H stretch and umbrella bend). The vast majority of bound states and many resonance states up to the first overtone of the symmetric stretching vibration in the exit channel complex have been calculated, analyzed, and assigned four quantum numbers. The resonances are classified into entrance channel, exit channel, and delocalized states. The resonance widths fluctuate over six orders of magnitude. In addition to a majority of Feshbach-type resonances there are also exceedingly long-lived shape resonances, which are associated with the entrance channel and can only decay by tunneling. The state-selective decay of the resonances was studied in detail. The linewidths of the resonances, and thus the coupling to the energetic continuum, increase with excitation in any mode. Due to the strong mixing of the many progressions in the intermolecular stretching modes of the intermediate complexes, this increase as a function of the corresponding quantum numbers is not monotonic, but exhibits pronounced fluctuations.
Speedup of quantum evolution of multiqubit entanglement states
NASA Astrophysics Data System (ADS)
Zhang, Ying-Jie; Han, Wei; Xia, Yun-Jie; Tian, Jian-Xiang; Fan, Heng
2016-06-01
As is well known, quantum speed limit time (QSLT) can be used to characterize the maximal speed of evolution of quantum systems. We mainly investigate the QSLT of generalized N-qubit GHZ-type states and W-type states in the amplitude-damping channels. It is shown that, in the case N qubits coupled with independent noise channels, the QSLT of the entangled GHZ-type state is closely related to the number of qubits in the small-scale system. And the larger entanglement of GHZ-type states can lead to the shorter QSLT of the evolution process. However, the QSLT of the W-type states are independent of the number of qubits and the initial entanglement. Furthermore, by considering only M qubits among the N-qubit system respectively interacting with their own noise channels, QSLTs for these two types states are shorter than in the case N qubits coupled with independent noise channels. We therefore reach the interesting result that the potential speedup of quantum evolution of a given N-qubit GHZ-type state or W-type state can be realized in the case the number of the applied noise channels satisfying M < N.
Speedup of quantum evolution of multiqubit entanglement states.
Zhang, Ying-Jie; Han, Wei; Xia, Yun-Jie; Tian, Jian-Xiang; Fan, Heng
2016-01-01
As is well known, quantum speed limit time (QSLT) can be used to characterize the maximal speed of evolution of quantum systems. We mainly investigate the QSLT of generalized N-qubit GHZ-type states and W-type states in the amplitude-damping channels. It is shown that, in the case N qubits coupled with independent noise channels, the QSLT of the entangled GHZ-type state is closely related to the number of qubits in the small-scale system. And the larger entanglement of GHZ-type states can lead to the shorter QSLT of the evolution process. However, the QSLT of the W-type states are independent of the number of qubits and the initial entanglement. Furthermore, by considering only M qubits among the N-qubit system respectively interacting with their own noise channels, QSLTs for these two types states are shorter than in the case N qubits coupled with independent noise channels. We therefore reach the interesting result that the potential speedup of quantum evolution of a given N-qubit GHZ-type state or W-type state can be realized in the case the number of the applied noise channels satisfying M < N. PMID:27283757
Speedup of quantum evolution of multiqubit entanglement states
Zhang, Ying-Jie; Han, Wei; Xia, Yun-Jie; Tian, Jian-Xiang; Fan, Heng
2016-01-01
As is well known, quantum speed limit time (QSLT) can be used to characterize the maximal speed of evolution of quantum systems. We mainly investigate the QSLT of generalized N-qubit GHZ-type states and W-type states in the amplitude-damping channels. It is shown that, in the case N qubits coupled with independent noise channels, the QSLT of the entangled GHZ-type state is closely related to the number of qubits in the small-scale system. And the larger entanglement of GHZ-type states can lead to the shorter QSLT of the evolution process. However, the QSLT of the W-type states are independent of the number of qubits and the initial entanglement. Furthermore, by considering only M qubits among the N-qubit system respectively interacting with their own noise channels, QSLTs for these two types states are shorter than in the case N qubits coupled with independent noise channels. We therefore reach the interesting result that the potential speedup of quantum evolution of a given N-qubit GHZ-type state or W-type state can be realized in the case the number of the applied noise channels satisfying M < N. PMID:27283757
Quantum nonlocality of four-qubit entangled states
Wu, Chunfeng; Yeo, Ye; Oh, C. H.; Kwek, L. C.
2007-03-15
We derive a Bell inequality for testing violation of local realism. Quantum nonlocality of several four-qubit states is investigated. These include the Greenberger-Zeilinger-Horne (GHZ) state, W state, linear cluster state, and the state |{chi}> that has recently been proposed in [Phys. Rev. Lett. 96, 060502 (2006)]. The Bell inequality is optimally violated by |{chi}> but not violated by the GHZ state. The linear cluster state also violates the Bell inequality though not optimally. The state |{chi}> can thus be discriminated from the linear cluster state by using the inequality. Different aspects of four-partite entanglement are also studied by considering the usefulness of a family of four-qubit mixed states as resources for two-qubit teleportation. Our results generalize those in [Phys. Rev. Lett. 72, 797 (1994)].
Nonadiabatic quantum state engineering driven by fast quench dynamics
NASA Astrophysics Data System (ADS)
Herrera, Marcela; Sarandy, Marcelo S.; Duzzioni, Eduardo I.; Serra, Roberto M.
2014-02-01
There are a number of tasks in quantum information science that exploit nontransitional adiabatic dynamics. Such a dynamics is bounded by the adiabatic theorem, which naturally imposes a speed limit in the evolution of quantum systems. Here, we investigate an approach for quantum state engineering exploiting a shortcut to the adiabatic evolution, which is based on rapid quenches in a continuous-time Hamiltonian evolution. In particular, this procedure is able to provide state preparation faster than the adiabatic brachistochrone. Remarkably, the evolution time in this approach is shown to be ultimately limited by its "thermodynamical cost," provided in terms of the average work rate (average power) of the quench process. We illustrate this result in a scenario that can be experimentally implemented in a nuclear magnetic resonance setup.
Quantum Bound States in a C-C60 System
NASA Astrophysics Data System (ADS)
Adam, R. M.; Sofianos, S. A.
2015-03-01
We investigate the quantum mechanical system of a carbon "test atom" in the proximity of a C60 molecule, both inside and outside the fullerene "cage". Two sets of bound states are found to exist, a deeply bound set inside the cage and another weakly bound set outside it. Tunnelling between these regions is highly unlikely to happen because of the extreme height and width of the potential barrier. However, we predict that a layer of atoms could be adsorbed onto C60 by forming a quantum mechanical bound state, with the adsorbed atoms being concentrated above the "panels" of the buckyball, consistent with "bucky onions" observed experimentally. Until now analysis of such fullerene systems has been via classical mechanics, but a quantum approach reveals new insights.
Polarization State of Light Scattered from Quantum Plasmonic Dimer Antennas.
Yang, Longkun; Wang, Hancong; Fang, Yan; Li, Zhipeng
2016-01-26
Plasmonic antennas are able to concentrate and re-emit light in a controllable manner through strong coupling between metallic nanostructures. Only recently has it found that quantum mechanical effects can drastically change the coupling strength as the feature size approaches atomic scales. Here, we present a comprehensive experimental and theoretical study of the evolution of the resonance peak and its polarization state as the dimer-antenna gap narrows to subnanometer scale. We clearly can identify the classical plasmonic regime, a crossover regime where nonlocal screening plays an important role, and the quantum regime where a charge transfer plasmon appears due to interparticle electron tunneling. Moreover, as the gap decreases from tens of to a few nanometers, the bonding dipole mode tends to emit photons with increasing polarizability. When the gap narrows to quantum regime, a significant depolarization of the mode emission is observed due to the reduction of the charge density of coupled quantum plasmons. These results would be beneficial for the understanding of quantum effects on emitting-polarization of nanoantennas and the development of quantum-based photonic nanodevices. PMID:26700823
Arbitrated Quantum Signature Scheme with Continuous-Variable Coherent States
NASA Astrophysics Data System (ADS)
Guo, Ying; Feng, Yanyan; Huang, Dazu; Shi, Jinjing
2016-04-01
Motivated by the revealing features of the continuous-variable (CV) quantum cryptography, we suggest an arbitrated quantum signature (AQS) protocol with CV coherent states. It involves three participants, i.e., the signer Alice, the verifier Bob and the arbitrator Charlie who is trustworthy by Alice and Bob. Three phases initializing phase, signing phase and verifying phase are included in our protocol. The security of the signature scheme is guaranteed by the generation of the shared keys via the CV-based quantum key distribution (CV-QKD) and the implementation process of the CV-based quantum teleportation as well. Security analysis demonstrates that the signature can be neither forged by anyone nor disavowed by the receiver and signer. Moreover, the authenticity and integrality of the transmitted messages can be ensured. The paper shows that a potential high-speed quantum signature scheme with high detection efficiency and repetition rate can be realized when compared to the discrete-variable (DV) quantum signature scheme attributing to the well characteristics of CV-QKD.
Quantum state control of trapped Holmium atoms
NASA Astrophysics Data System (ADS)
Hostetter, James; Yip, Christopher; Milner, William; Booth, Donald; Collett, Jeffrey; Saffman, Mark
2016-05-01
Neutral Holmium with its large number of hyperfine ground states provides a promising approach for collective encoding of a multi-qubit register. A prerequisite for collective encoding is the ability to prepare different states in the 128 state hyperfine ground manifold. We report progress towards optical pumping and control of the hyperfine Zeeman state of trapped Ho atoms. Atoms are transferred from a 410.5 nm MOT into a 455 nm optical dipole trap. The atoms can be optically pumped using light driving the ground 6s2 , F = 11 to 6 s 6 p ,F' = 11 transition together with a F = 10 to F' = 11 repumper. Microwave fields are then used to drive transitions to hyperfine levels with 4 <= F <= 11 . Work supported by NSF award PHY-1404357.
Vibrational memory in quantum localized states
NASA Astrophysics Data System (ADS)
Ajili, Y.; Trabelsi, T.; Denis-Alpizar, O.; Stoecklin, T.; Császár, A. G.; Mogren Al-Mogren, M.; Francisco, J. S.; Hochlaf, M.
2016-05-01
The rovibrational eigenenergy set of molecular systems is a key feature needed to understand and model elementary chemical reactions. A unique class of molecular systems, represented by an 4A'' excited electronic state of the [H,S ,N ] - system comprising several distinct dipole-bound isomers, is found to contain both bent and linear minima separated by relatively small barriers. Full-dimensional nuclear-motion computations performed in Jacobi coordinates using three-dimensional potential energy surfaces describing the stable isomers and the related transition states yield rovibrational eigenstates located both below and above the barriers. The rovibrational wave functions are well localized, regardless of whether the state's energy is below or above the barriers. We also show that the states preserve the memory of the isomeric forms they "originate from," which is signature of a strong vibrational memory effect above isomerization barriers.
Dynamics and statistics of unstable quantum states
NASA Astrophysics Data System (ADS)
Sokolov, V. V.; Zelevinsky, V. G.
1989-11-01
The statistical theory of spectra formulated in terms of random matrices is extended to unstable states. The energies and widths of these states are treated as real and imaginary parts of complex eigenvalues for an effective non-hermitian hamiltonian. Eigenvalue statistics are investigated under simple assumptions. If the coupling through common decay channels is weak we obtain a Wigner distribution for the level spacings and a Porter-Thomas one for the widths, with the only exception for spacings less than widths where level repulsion fades out. Meanwhile in the complex energy plane the repulsion of eigenvalues is quadratic in accordance with the T-noninvariant character of decaying systems. In the opposite case of strong coupling with the continuum, k short-lived states are formed ( k is the number of open decay channels). These states accumulate almost the whole total width, the rest of the states becoming long-lived. Such a perestroika corresponds to separation of direct processes (a nuclear analogue of Dicke coherent superradiance). At small channel number, Ericson fluctuations of the cross sections are found to be suppressed. The one-channel case is considered in detail. The joint distribution of energies and widths is obtained. The average cross sections and density of unstable states are calculated.
Multilevel distillation of magic states for quantum computing
NASA Astrophysics Data System (ADS)
Jones, Cody
2013-04-01
We develop a procedure for distilling magic states used in universal quantum computing that requires substantially fewer initial resources than prior schemes. Our distillation circuit is based on a family of concatenated quantum codes that possess a transversal Hadamard operation, enabling each of these codes to distill the eigenstate of the Hadamard operator. A crucial result of this design is that low-fidelity magic states can be consumed to purify other high-fidelity magic states to even higher fidelity, which we call multilevel distillation. When distilling in the asymptotic regime of infidelity ɛ→0 for each input magic state, the number of input magic states consumed on average to yield an output state with infidelity O(ɛ2r) approaches 2r+1, which comes close to saturating the conjectured bound in another investigation [Bravyi and Haah, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.86.052329 86, 052329 (2012)]. We show numerically that there exist multilevel protocols such that the average number of magic states consumed to distill from error rate ɛin=0.01 to ɛout in the range 10-5-10-40 is about 14log10(1/ɛout)-40; the efficiency of multilevel distillation dominates all other reported protocols when distilling Hadamard magic states from initial infidelity 0.01 to any final infidelity below 10-7. These methods are an important advance for magic-state distillation circuits in high-performance quantum computing and provide insight into the limitations of nearly resource-optimal quantum error correction.
Test-state approach to the quantum search problem
Sehrawat, Arun; Nguyen, Le Huy; Englert, Berthold-Georg
2011-05-15
The search for 'a quantum needle in a quantum haystack' is a metaphor for the problem of finding out which one of a permissible set of unitary mappings - the oracles - is implemented by a given black box. Grover's algorithm solves this problem with quadratic speedup as compared with the analogous search for 'a classical needle in a classical haystack'. Since the outcome of Grover's algorithm is probabilistic - it gives the correct answer with high probability, not with certainty - the answer requires verification. For this purpose we introduce specific test states, one for each oracle. These test states can also be used to realize 'a classical search for the quantum needle' which is deterministic - it always gives a definite answer after a finite number of steps - and 3.41 times as fast as the purely classical search. Since the test-state search and Grover's algorithm look for the same quantum needle, the average number of oracle queries of the test-state search is the classical benchmark for Grover's algorithm.
Bond Length Dependence on Quantum States as Shown by Spectroscopy
ERIC Educational Resources Information Center
Lim, Kieran F.
2005-01-01
A discussion on how a spreadsheet simulation of linear-molecular spectra could be used to explore the dependence of rotational band spacing and contours on average bond lengths in the initial and final quantum states is presented. The simulation of hydrogen chloride IR, iodine UV-vis, and nitrogen UV-vis spectra clearly show whether the average…
Arbitrary unitary transformations on optical states using a quantum memory
Campbell, Geoff T.; Pinel, Olivier; Hosseini, Mahdi; Buchler, Ben C.; Lam, Ping Koy
2014-12-04
We show that optical memories arranged along an optical path can perform arbitrary unitary transformations on frequency domain optical states. The protocol offers favourable scaling and can be used with any quantum memory that uses an off-resonant Raman transition to reversibly transfer optical information to an atomic spin coherence.
The conditional entropy power inequality for Gaussian quantum states
Koenig, Robert
2015-02-15
We propose a generalization of the quantum entropy power inequality involving conditional entropies. For the special case of Gaussian states, we give a proof based on perturbation theory for symplectic spectra. We discuss some implications for entanglement-assisted classical communication over additive bosonic noise channels.
Local mapping of detector response for reliable quantum state estimation.
Cooper, Merlin; Karpiński, Michał; Smith, Brian J
2014-01-01
Improved measurement techniques are central to technological development and foundational scientific exploration. Quantum physics relies on detectors sensitive to non-classical features of systems, enabling precise tests of physical laws and quantum-enhanced technologies including precision measurement and secure communications. Accurate detector response calibration for quantum-scale inputs is key to future research and development in these cognate areas. To address this requirement, quantum detector tomography has been recently introduced. However, this technique becomes increasingly challenging as the complexity of the detector response and input space grow in a number of measurement outcomes and required probe states, leading to further demands on experiments and data analysis. Here we present an experimental implementation of a versatile, alternative characterization technique to address many-outcome quantum detectors that limits the input calibration region and does not involve numerical post processing. To demonstrate the applicability of this approach, the calibrated detector is subsequently used to estimate non-classical photon number states. PMID:25019300
Bilayer quantum Hall phase transitions and the orbifold non-Abelian fractional quantum Hall states
Barkeshli, Maissam; Wen Xiaogang
2011-09-15
We study continuous quantum phase transitions that can occur in bilayer fractional quantum Hall (FQH) systems as the interlayer tunneling and interlayer repulsion are tuned. We introduce a slave-particle gauge theory description of a series of continuous transitions from the (ppq) Abelian bilayer states to a set of non-Abelian FQH states, which we dub orbifold FQH states, of which the Z{sub 4} parafermion (Read-Rezayi) state is a special case. This provides an example in which Z{sub 2} electron fractionalization leads to non-Abelian topological phases. The naive ''ideal'' wave functions and ideal Hamiltonians associated with these orbifold states do not in general correspond to incompressible phases but, instead, lie at a nearby critical point. We discuss this unusual situation from the perspective of the pattern-of-zeros/vertex algebra frameworks and discuss implications for the conceptual foundations of these approaches. Due to the proximity in the phase diagram of these non-Abelian states to the (ppq) bilayer states, they may be experimentally relevant, both as candidates for describing the plateaus in single-layer systems at filling fractions 8/3 and 12/5 and as a way to tune to non-Abelian states in double-layer or wide quantum wells.
Conditions for compatibility of quantum-state assignments
Caves, Carlton M.; Fuchs, Christopher A.; Schack, Ruediger
2002-12-01
Suppose N parties describe the state of a quantum system by N possibly different density operators. These N state assignments represent the beliefs of the parties about the system. We examine conditions for determining whether the N state assignments are compatible. We distinguish two kinds of procedures for assessing compatibility, the first based on the compatibility of the prior beliefs on which the N state assignments are based and the second based on the compatibility of predictive measurement probabilities they define. The first procedure leads to a compatibility criterion proposed by Brun, Finkelstein, and Mermin [BFM, Phys. Rev. A 65, 032315 (2002)]. The second procedure leads to a hierarchy of measurement-based compatibility criteria which is fundamentally different from the corresponding classical situation. Quantum mechanically none of the measurement-based compatibility criteria is equivalent to the BFM criterion.
Robust Multiple-Range Coherent Quantum State Transfer
NASA Astrophysics Data System (ADS)
Chen, Bing; Peng, Yan-Dong; Li, Yong; Qian, Xiao-Feng
2016-07-01
We propose a multiple-range quantum communication channel to realize coherent two-way quantum state transport with high fidelity. In our scheme, an information carrier (a qubit) and its remote partner are both adiabatically coupled to the same data bus, i.e., an N-site tight-binding chain that has a single defect at the center. At the weak interaction regime, our system is effectively equivalent to a three level system of which a coherent superposition of the two carrier states constitutes a dark state. The adiabatic coupling allows a well controllable information exchange timing via the dark state between the two carriers. Numerical results show that our scheme is robust and efficient under practically inevitable perturbative defects of the data bus as well as environmental dephasing noise.
Using interference for high fidelity quantum state transfer in optomechanics
NASA Astrophysics Data System (ADS)
Wang, Ying-Dan; Clerk, Aashish A.
2012-02-01
We present a theoretical study of a two-cavity optomechanical system (e.g. a single mechanical resonator coupled to both a microwave and an optical cavity), investigating how interference can be used to perform mechanically-mediated quantum state transfer between the two cavities. We show that this optomechanical system possesses an effective ``mechanically-dark'' mode which is immune to mechanical dissipation; utilizing this feature allows highly efficient transfer of intra-cavity states, as well as of itinerant photon states. Simple analytic expressions for the fidelity of transferring both Gaussian and non-Gaussian states are provided. Our work has relevance to ongoing experimental efforts in quantum optomechanics (e.g., C. A. Regal and K. W. Lehnert, J. Phys.: Conf. Ser. 264, 012025 (2011); A. H. Safavi-Naeini and O. Painter, New J. Phys. 13, 013017 (2011)).
Robust Multiple-Range Coherent Quantum State Transfer.
Chen, Bing; Peng, Yan-Dong; Li, Yong; Qian, Xiao-Feng
2016-01-01
We propose a multiple-range quantum communication channel to realize coherent two-way quantum state transport with high fidelity. In our scheme, an information carrier (a qubit) and its remote partner are both adiabatically coupled to the same data bus, i.e., an N-site tight-binding chain that has a single defect at the center. At the weak interaction regime, our system is effectively equivalent to a three level system of which a coherent superposition of the two carrier states constitutes a dark state. The adiabatic coupling allows a well controllable information exchange timing via the dark state between the two carriers. Numerical results show that our scheme is robust and efficient under practically inevitable perturbative defects of the data bus as well as environmental dephasing noise. PMID:27364891
Robust Multiple-Range Coherent Quantum State Transfer
Chen, Bing; Peng, Yan-Dong; Li, Yong; Qian, Xiao-Feng
2016-01-01
We propose a multiple-range quantum communication channel to realize coherent two-way quantum state transport with high fidelity. In our scheme, an information carrier (a qubit) and its remote partner are both adiabatically coupled to the same data bus, i.e., an N-site tight-binding chain that has a single defect at the center. At the weak interaction regime, our system is effectively equivalent to a three level system of which a coherent superposition of the two carrier states constitutes a dark state. The adiabatic coupling allows a well controllable information exchange timing via the dark state between the two carriers. Numerical results show that our scheme is robust and efficient under practically inevitable perturbative defects of the data bus as well as environmental dephasing noise. PMID:27364891
Quantum Monte Carlo simulations with tensor-network states
NASA Astrophysics Data System (ADS)
Song, Jeong Pil; Clay, R. T.
2011-03-01
Matrix-product states, generated by the density-matrix renormalization group method, are among the most powerful methods for simulation of quasi-one dimensional quantum systems. Direct application of a matrix-product state representation fails for two dimensional systems, although a number of tensor-network states have been proposed to generalize the concept for two dimensions. We introduce a useful approximate method replacing a 4-index tensor by two matrices in order to contract tensors in two dimensions. We use this formalism as a basis for variational quantum Monte Carlo, optimizing the matrix elements stochastically. We present results on a two dimensional spinless fermion model including nearest- neighbor Coulomb interactions, and determine the critical Coulomb interaction for the charge density wave state by finite size scaling. This work was supported by the Department of Energy grant DE-FG02-06ER46315.
Protecting quantum entanglement and nonlocality for tripartite states under decoherence
NASA Astrophysics Data System (ADS)
Zhang, Rui; Yin, Yu Hao; Ma, Wen Chao; Ye, Liu
2016-06-01
Quantum entanglement and nonlocality will suffer inevitable harm from decoherence environment. Based on GHZ state, we study the harm of the generalized amplitude damping (GAD) operation and the protection by the single local filtering (SLF) operation in this paper. We verify that the SLF functions to depress the loss of entanglement and nonlocality from GAD. This conclusion will guide us to select the best method to protect the GHZ state from GAD decoherence.
Contrasting energy scales of reentrant integer quantum Hall states
NASA Astrophysics Data System (ADS)
Deng, Nianpei; Watson, J. D.; Rokhinson, L. P.; Manfra, M. J.; Csáthy, G. A.
2012-11-01
We report drastically different onset temperatures of the reentrant integer quantum Hall states in the second and third Landau level. This finding is in quantitative disagreement with the Hartree-Fock theory of the bubble phases which is thought to describe these reentrant states. Our results indicate that the number of electrons per bubble in either the second or the third Landau level is likely different than predicted.
Theory of ground state factorization in quantum cooperative systems.
Giampaolo, Salvatore M; Adesso, Gerardo; Illuminati, Fabrizio
2008-05-16
We introduce a general analytic approach to the study of factorization points and factorized ground states in quantum cooperative systems. The method allows us to determine rigorously the existence, location, and exact form of separable ground states in a large variety of, generally nonexactly solvable, spin models belonging to different universality classes. The theory applies to translationally invariant systems, irrespective of spatial dimensionality, and for spin-spin interactions of arbitrary range. PMID:18518481
Transitional steady states of exchange dynamics between finite quantum systems.
Jeon, Euijin; Yi, Juyeon; Kim, Yong Woon
2016-08-01
We examine energy and particle exchange between finite-sized quantum systems and find a new form of nonequilibrium state. The exchange rate undergoes stepwise evolution in time, and its magnitude and sign dramatically change according to system size differences. The origin lies in interference effects contributed by multiply scattered waves at system boundaries. Although such characteristics are utterly different from those of true steady state for infinite systems, Onsager's reciprocal relation remains universally valid. PMID:27627275
Charge-transfer-state photoluminescence in asymmetric coupled quantum wells
NASA Astrophysics Data System (ADS)
Norris, T. B.; Vodjdani, N.; Vinter, B.; Weisbuch, C.; Mourou, G. A.
1989-07-01
We have performed continuous and time-resolved photoluminescence experiments on novel double-quantum-well structures in Schottky diodes. We have directly observed the buildup of a charge-transfer (CT) state in which the electrons and holes are in separate wells because of the fact that they tunnel in opposite directions. We have studied the effect of an electric field on the CT state formation, and have observed a strong, linear Stark shift of the CT luminescence.
Quantum decoherence and interlevel relations
NASA Astrophysics Data System (ADS)
Crull, Elise M.
Quantum decoherence is a dynamical process whereby a system's phase relations become delocalized due to interaction and subsequent entanglement with its environment. This delocalization, or decoherence, forces the quantum system into a state that is apparently classical (or apparently an eigenstate) by prodigiously suppressing features that typically give rise to so-called quantum behavior. Thus it has been frequently proposed by physicists and philosophers alike that decoherence explains the dynamical transition from quantum behavior to classical behavior. Statements like this assume the existence of distinct realms, however, and the present thesis is an exploration of the metaphysical consequences of quantum decoherence motivated by the question of the quantum-to-classical transition and interlevel relations: if there are in-principle "classical" and "quantum" levels, what are the relations between them? And if there are no such levels, what follows? Importantly, the following philosophical investigations are carried out by intentionally leaving aside the measurement problem and concerns about particular interpretations of quantum mechanics. Good philosophical work, it is argued, can be done without adopting a specific interpretational framework and without recourse to the measurement problem. After introducing the physics of decoherence and exploring the four canonical models applied to system-environment interactions, it is argued that, ontologically speaking, there exist no levels. This claim---called the "nontological thesis"---exposes as ill-posed questions regarding the transition from the quantum regime to the classical regime and reveals the inappropriateness of interlevel relations (like reduction, supervenience and emergence) operating within metaphysical frameworks. The nontological thesis has further important consequences regarding intralevel relations: not only are there no meaningful ways to carve the world into levels, but there are no meaningful
Memory-built-in quantum cloning in a hybrid solid-state spin register
Wang, W.-B.; Zu, C.; He, L.; Zhang, W.-G.; Duan, L.-M.
2015-01-01
As a way to circumvent the quantum no-cloning theorem, approximate quantum cloning protocols have received wide attention with remarkable applications. Copying of quantum states to memory qubits provides an important strategy for eavesdropping in quantum cryptography. We report an experiment that realizes cloning of quantum states from an electron spin to a nuclear spin in a hybrid solid-state spin register with near-optimal fidelity. The nuclear spin provides an ideal memory qubit at room temperature, which stores the cloned quantum states for a millisecond under ambient conditions, exceeding the lifetime of the original quantum state carried by the electron spin by orders of magnitude. The realization of a cloning machine with built-in quantum memory provides a key step for application of quantum cloning in quantum information science. PMID:26178617
Memory-built-in quantum cloning in a hybrid solid-state spin register
NASA Astrophysics Data System (ADS)
Wang, W.-B.; Zu, C.; He, L.; Zhang, W.-G.; Duan, L.-M.
2015-07-01
As a way to circumvent the quantum no-cloning theorem, approximate quantum cloning protocols have received wide attention with remarkable applications. Copying of quantum states to memory qubits provides an important strategy for eavesdropping in quantum cryptography. We report an experiment that realizes cloning of quantum states from an electron spin to a nuclear spin in a hybrid solid-state spin register with near-optimal fidelity. The nuclear spin provides an ideal memory qubit at room temperature, which stores the cloned quantum states for a millisecond under ambient conditions, exceeding the lifetime of the original quantum state carried by the electron spin by orders of magnitude. The realization of a cloning machine with built-in quantum memory provides a key step for application of quantum cloning in quantum information science.
Memory-built-in quantum cloning in a hybrid solid-state spin register.
Wang, W-B; Zu, C; He, L; Zhang, W-G; Duan, L-M
2015-01-01
As a way to circumvent the quantum no-cloning theorem, approximate quantum cloning protocols have received wide attention with remarkable applications. Copying of quantum states to memory qubits provides an important strategy for eavesdropping in quantum cryptography. We report an experiment that realizes cloning of quantum states from an electron spin to a nuclear spin in a hybrid solid-state spin register with near-optimal fidelity. The nuclear spin provides an ideal memory qubit at room temperature, which stores the cloned quantum states for a millisecond under ambient conditions, exceeding the lifetime of the original quantum state carried by the electron spin by orders of magnitude. The realization of a cloning machine with built-in quantum memory provides a key step for application of quantum cloning in quantum information science. PMID:26178617
Continuous Measurement Quantum State Tomography of Atomic Ensembles
NASA Astrophysics Data System (ADS)
Riofrio Almeida, Carlos A.
Quantum state tomography is a fundamental tool in quantum information processing tasks. It allows us to estimate the state of a quantum system by measuring different observables on many identically prepared copies of the system. Usually, one makes projective measurements of an "informationally complete" set of observables and repeats them enough times so that good estimates of their expectation values are obtained. This is, in general, a very time-consuming task that requires a large number of measurements. There are, however, systems in which the data acquisition can be done more efficiently. In fact, an ensemble of quantum systems can be prepared and manipulated by external fields while being continuously probed collectively, producing enough information to estimate its state. This provides a basis for continuous measurement quantum tomography, and is the main topic of this dissertation. This method, based on weak continuous measurement, has the advantage of being fast, accurate, and almost nonperturbative. In this work, we present a extensive discussion and a generalization of the protocol proposed in [1], which was experimentally achieved in [2] using cold cesium atoms. In this protocol, an ensemble of identically prepared systems is collectively probed and controlled in a time-dependent manner so as to create an informationally complete continuous measurement record. The measurement history is then inverted to determine the state at the initial time. To achieve this, we use two different estimation methods: the widely used maximum likelihood and the novel compressed sensing algorithms. The general formalism is applied to the case of reconstruction of the quantum state encoded in the magnetic sub-levels of a large-spin alkali atom, 133Cs. We extend the applicability of the protocol in [1] to the more ambitious case of reconstruction of states in the full 16-dimensional electronic-ground subspace ( F = 3, F = 4), controlled by microwaves and radio
Nonequilibrium steady states of ideal bosonic and fermionic quantum gases
NASA Astrophysics Data System (ADS)
Vorberg, Daniel; Wustmann, Waltraut; Schomerus, Henning; Ketzmerick, Roland; Eckardt, André
2015-12-01
We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling to several heat baths of different temperature or by time-periodic driving in combination with the coupling to a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett. 111, 240405 (2013), 10.1103/PhysRevLett.111.240405]. In this context, among others, we provide a theory for transitions where the set of selected states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field effects, and identify the dominant mechanisms for heat transport in the Bose-selected state.
Quantum steering of Gaussian states via non-Gaussian measurements
Ji, Se-Wan; Lee, Jaehak; Park, Jiyong; Nha, Hyunchul
2016-01-01
Quantum steering—a strong correlation to be verified even when one party or its measuring device is fully untrusted—not only provides a profound insight into quantum physics but also offers a crucial basis for practical applications. For continuous-variable (CV) systems, Gaussian states among others have been extensively studied, however, mostly confined to Gaussian measurements. While the fulfilment of Gaussian criterion is sufficient to detect CV steering, whether it is also necessary for Gaussian states is a question of fundamental importance in many contexts. This critically questions the validity of characterizations established only under Gaussian measurements like the quantification of steering and the monogamy relations. Here, we introduce a formalism based on local uncertainty relations of non-Gaussian measurements, which is shown to manifest quantum steering of some Gaussian states that Gaussian criterion fails to detect. To this aim, we look into Gaussian states of practical relevance, i.e. two-mode squeezed states under a lossy and an amplifying Gaussian channel. Our finding significantly modifies the characteristics of Gaussian-state steering so far established such as monogamy relations and one-way steering under Gaussian measurements, thus opening a new direction for critical studies beyond Gaussian regime. PMID:27411853
Quantum steering of Gaussian states via non-Gaussian measurements
NASA Astrophysics Data System (ADS)
Ji, Se-Wan; Lee, Jaehak; Park, Jiyong; Nha, Hyunchul
2016-07-01
Quantum steering—a strong correlation to be verified even when one party or its measuring device is fully untrusted—not only provides a profound insight into quantum physics but also offers a crucial basis for practical applications. For continuous-variable (CV) systems, Gaussian states among others have been extensively studied, however, mostly confined to Gaussian measurements. While the fulfilment of Gaussian criterion is sufficient to detect CV steering, whether it is also necessary for Gaussian states is a question of fundamental importance in many contexts. This critically questions the validity of characterizations established only under Gaussian measurements like the quantification of steering and the monogamy relations. Here, we introduce a formalism based on local uncertainty relations of non-Gaussian measurements, which is shown to manifest quantum steering of some Gaussian states that Gaussian criterion fails to detect. To this aim, we look into Gaussian states of practical relevance, i.e. two-mode squeezed states under a lossy and an amplifying Gaussian channel. Our finding significantly modifies the characteristics of Gaussian-state steering so far established such as monogamy relations and one-way steering under Gaussian measurements, thus opening a new direction for critical studies beyond Gaussian regime.
Nonequilibrium steady states of ideal bosonic and fermionic quantum gases.
Vorberg, Daniel; Wustmann, Waltraut; Schomerus, Henning; Ketzmerick, Roland; Eckardt, André
2015-12-01
We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling to several heat baths of different temperature or by time-periodic driving in combination with the coupling to a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett. 111, 240405 (2013)]. In this context, among others, we provide a theory for transitions where the set of selected states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field effects, and identify the dominant mechanisms for heat transport in the Bose-selected state. PMID:26764644
Selective interactions in trapped ions: State reconstruction and quantum logic
NASA Astrophysics Data System (ADS)
Solano, E.
2005-01-01
We propose the implementation of selective interactions of atom-motion subspaces in trapped ions. These interactions yield resonant exchange of population inside a selected subspace, leaving the others in a highly dispersive regime. Selectivity allows us to generate motional Fock (and other nonclassical) states with high purity out of a wide class of initial states, and becomes an unconventional cooling mechanism when the ground state is chosen. Individual population of number states can be distinctively measured, as well as the motional Wigner function. Furthermore, a protocol for implementing quantum logic through a suitable control of selective subspaces is presented.
Quantum-enhanced spectroscopy with entangled multiphoton states
NASA Astrophysics Data System (ADS)
Dinani, Hossein T.; Gupta, Manish K.; Dowling, Jonathan P.; Berry, Dominic W.
2016-06-01
Traditionally, spectroscopy is performed by examining the position of absorption lines. However, at frequencies near the transition frequency, additional information can be obtained from the phase shift. In this work we consider the information about the transition frequency obtained from both the absorption and the phase shift, as quantified by the Fisher information in an interferometric measurement. We examine the use of multiple single-photon states, NOON states, and numerically optimized states that are entangled and have multiple photons. We find the optimized states that improve over the standard quantum limit set by independent single photons for some atom number densities.
Groverian entanglement measure of pure quantum states with arbitrary partitions
Shimoni, Yishai; Biham, Ofer
2007-02-15
The Groverian entanglement measure of pure quantum states of n qubits is generalized to the case in which the qubits are divided into any p{<=}n parties. The entanglement between these parties is evaluated numerically using an efficient parametrization. To demonstrate this measure we apply it to symmetric states such as the Greenberg-Horne-Zeiliner state and the W state. Interestingly, this measure is equivalent to an entanglement measure introduced earlier [H. Barnum and N. Linden, J. Phys. A 34, 6787 (2001)], using different considerations.
Multiconfigurational quantum propagation with trajectory-guided generalized coherent states
NASA Astrophysics Data System (ADS)
Grigolo, Adriano; Viscondi, Thiago F.; de Aguiar, Marcus A. M.
2016-03-01
A generalized version of the coupled coherent states method for coherent states of arbitrary Lie groups is developed. In contrast to the original formulation, which is restricted to frozen-Gaussian basis sets, the extended method is suitable for propagating quantum states of systems featuring diversified physical properties, such as spin degrees of freedom or particle indistinguishability. The approach is illustrated with simple models for interacting bosons trapped in double- and triple-well potentials, most adequately described in terms of SU(2) and SU(3) bosonic coherent states, respectively.
Quantum error correction for state transfer in noisy spin chains
NASA Astrophysics Data System (ADS)
Kay, Alastair
2016-04-01
Can robustness against experimental imperfections and noise be embedded into a quantum simulation? In this paper, we report on a special case in which this is possible. A spin chain can be engineered such that, in the absence of imperfections and noise, an unknown quantum state is transported from one end of the chain to the other, due only to the intrinsic dynamics of the system. We show that an encoding into a standard error-correcting code (a Calderbank-Shor-Steane code) can be embedded into this simulation task such that a modified error-correction procedure on readout can recover from sufficiently low rates of noise during transport.
Hydrogenic states of monopoles in diluted quantum spin ice
NASA Astrophysics Data System (ADS)
Petrova, Olga; Moessner, Roderich; Sondhi, S. L.
2015-09-01
We consider the effect of adding quantum dynamics to a classical topological spin liquid, with a particular view of how to best detect its presence in experiment. For the Coulomb phase of spin ice, we find quantum effects to be most visible in the gauge-charged monopole excitations. In the presence of weak dilution with nonmagnetic ions we find a particularly crisp phenomenon, namely, the emergence of hydrogenic excited states in which a magnetic monopole is bound to a vacancy at various distances. Via a mapping to an analytically tractable single particle problem on the Bethe lattice, we obtain an approximate expression for the dynamic neutron scattering structure factor.
Quantum-state reconstruction by maximizing likelihood and entropy.
Teo, Yong Siah; Zhu, Huangjun; Englert, Berthold-Georg; Řeháček, Jaroslav; Hradil, Zdeněk
2011-07-01
Quantum-state reconstruction on a finite number of copies of a quantum system with informationally incomplete measurements, as a rule, does not yield a unique result. We derive a reconstruction scheme where both the likelihood and the von Neumann entropy functionals are maximized in order to systematically select the most-likely estimator with the largest entropy, that is, the least-bias estimator, consistent with a given set of measurement data. This is equivalent to the joint consideration of our partial knowledge and ignorance about the ensemble to reconstruct its identity. An interesting structure of such estimators will also be explored. PMID:21797584
Emergence of canonical ensembles from pure quantum states.
Cho, Jaeyoon; Kim, M S
2010-04-30
We consider a system weakly interacting with a bath as a thermodynamic setting to establish a quantum foundation of statistical physics. It is shown that even if the composite system is initially in an arbitrary nonequilibrium pure quantum state, the unitary dynamics of a generic weak interaction almost always drives the subsystem into the canonical ensemble, in the usual sense of typicality. A crucial step is taken by assuming that the matrix elements of the interaction Hamiltonian have random phases, while their amplitudes are left unrestricted. PMID:20482093
On the reduction criterion for random quantum states
Jivulescu, Maria Anastasia Lupa, Nicolae; Nechita, Ion
2014-11-15
In this paper, we study the reduction criterion for detecting entanglement of large dimensional bipartite quantum systems. We first obtain an explicit formula for the moments of a random quantum state to which the reduction criterion has been applied. We show that the empirical eigenvalue distribution of this random matrix converges strongly to a limit that we compute, in three different asymptotic regimes. We then employ tools from free probability theory to study the asymptotic positivity of the reduction operators. Finally, we compare the reduction criterion with other entanglement criteria, via thresholds.
Topology and quantum states: The electron-monopole system
NASA Astrophysics Data System (ADS)
Di Cosmo, F.; Marmo, G.; Zampini, A.
2016-09-01
This paper starts by describing the dynamics of the electron-monopole system at both classical and quantum level by a suitable reduction procedure. This suggests, in order to realise the space of states for quantum systems which are classically described on topologically non-trivial configuration spaces, to consider Hilbert spaces of exterior differential forms. Among the advantages of this formulation, we present--in the case of the group SU(2) , how it is possible to obtain all unitary irreducible representations on such a Hilbert space, and how it is possible to write scalar Dirac-type operators, following an idea by Kähler.