Science.gov

Sample records for delta frequency bursting

  1. LTP in Hippocampal Area CA1 Is Induced by Burst Stimulation over a Broad Frequency Range Centered around Delta

    ERIC Educational Resources Information Center

    Grover, Lawrence M.; Kim, Eunyoung; Cooke, Jennifer D.; Holmes, William R.

    2009-01-01

    Long-term potentiation (LTP) is typically studied using either continuous high-frequency stimulation or theta burst stimulation. Previous studies emphasized the physiological relevance of theta frequency; however, synchronized hippocampal activity occurs over a broader frequency range. We therefore tested burst stimulation at intervals from 100…

  2. Burst-by-burst laser frequency monitor

    NASA Technical Reports Server (NTRS)

    Esproles, Carlos (Inventor)

    1994-01-01

    The invention is a system for real-time frequency monitoring and display of an RF burst where the burst frequency is analyzed and displayed on a burst-by-burst basis in order to allow for frequency control. Although the invention was made for monitoring the laser frequency of a LIDAR system, it has other applications where realtime monitoring is required. The novelty of the invention resides in the use of a counter that is reset at the beginning of each unit time of monitoring and then gated for a unit of time. The invention also has an LED bar graph for displaying the measure of frequency at the end of each unit time in either a bar length mode or a moving dot mode. In the latter mode, the operator makes necessary adjustments to maintain the dot at the center of the bar graph.

  3. CMEs and frequency cutoff of solar bursts

    NASA Astrophysics Data System (ADS)

    Stanislavsky, Al.; Konovalenko, Al.; Koval, Ar.; Volvach, Y.; Zarka, P.

    2016-05-01

    Radio observations of solar bursts with high-frequency cutoff by the radio telescope UTR-2 (near Kharkiv, Ukraine) at 8-33 MHz on 17-19 August 2012 are presented. Such cutoff may be attributed to the emergence of the burst sources behind limb of the Sun with respect to an observer on the Earth. The events are strongly associated with solar eruptions occurred in a new active region. Ray tracing simulations show that the CMEs play a constructive role for the behind-limb bursts to be detected in ground-based observations. Likely, due to tunnel-like cavities with low density in CMEs, the radio emission of behind-limb solar bursts can be directed towards the Earth.

  4. Bursting frequency prediction in turbulent boundary layers

    SciTech Connect

    LIOU,WILLIAM W.; FANG,YICHUNG

    2000-02-01

    The frequencies of the bursting events associated with the streamwise coherent structures of spatially developing incompressible turbulent boundary layers were predicted using global numerical solution of the Orr-Sommerfeld and the vertical vorticity equations of hydrodynamic stability problems. The structures were modeled as wavelike disturbances associated with the turbulent mean flow. The global method developed here involves the use of second and fourth order accurate finite difference formula for the differential equations as well as the boundary conditions. An automated prediction tool, BURFIT, was developed. The predicted resonance frequencies were found to agree very well with previous results using a local shooting technique and measured data.

  5. Transcriptional burst frequency and burst size are equally modulated across the human genome

    SciTech Connect

    Dar, Roy D.; Simpson, Michael L; Weinberger, Leor S.; Razooky, B; Cox, Chris D.; McCollum, James M.; Trimeloni, Tom; Singh, A

    2012-01-01

    Gene expression occurs either as an episodic process, characterized by pulsatile bursts or as a constitutive, Poisson-like accumulation of gene products. It is not clear which mode of gene expression (constitutive versus bursty) predominates across a genome or how transcriptional dynamics are influenced by genomic position and promoter sequence. Here, we use time-lapse fluorescence microscopy, building off of theoretical studies that exploit the time-resolved structure of stochastic fluctuations in gene expression, to develop a three-dimensional method for mapping underlying gene-regulatory mechanisms. Over 8,000 individual human genomic loci were analyzed, and at virtually all loci, episodic bursting as opposed to constitutive expression was found to be the predominant mode of expression. Quantitative analysis of the expression dynamics at these 8,000 loci indicates that both frequency and size of transcriptional bursts vary equally across the human genome independent of promoter sequence. Strikingly, weaker expression loci modulate burst frequency to increase activity, while stronger expression loci modulate burst size to increase activity. Transcriptional activators, such as TNF, generate similar patterns of change in burst frequency and burst size. In summary, transcriptional bursting dominates across the human genome, both burst frequency and burst size vary by chromosomal location, and transcriptional activators alter burst frequency and burst size, depending on the expression level of the locus.

  6. Solar S-bursts at Frequencies of 10 - 30 MHz

    NASA Astrophysics Data System (ADS)

    Melnik, V. N.; Konovalenko, A. A.; Rucker, H. O.; Dorovskyy, V. V.; Abranin, E. P.; Lecacheux, A.; Lonskaya, A. S.

    2010-06-01

    Solar S-bursts observed by the radio telescope UTR-2 in the period 2001 - 2002 are studied. The bursts chosen for a detailed analysis occurred in the periods 23 - 26 May 2001, 13 - 16 and 27 - 39 July 2002 during three solar radio storms. More than 800 S-bursts were registered in these days. Properties of S-bursts are studied in the frequency band 10 - 30 MHz. All bursts were always observed against a background of other solar radio activity such as type III and IIIb bursts, type III-like bursts, drift pairs and spikes. Moreover, S-bursts were observed during days when the active region was situated near the central meridian. Characteristic durations of S-bursts were about 0.35 and 0.4 - 0.6 s for the May and July storms, respectively. For the first time, we found that the instantaneous frequency width of S-bursts increased with frequency linearly. The dependence of drift rates on frequency followed the McConnell dependence derived for higher frequencies. We propose a model of S-bursts based on the assumption that these bursts are generated due to the confluence of Langmuir waves with fast magnetosonic waves, whose phase and group velocities are equal.

  7. Comparison of Medium Frequency Burst Generation Theories

    NASA Astrophysics Data System (ADS)

    Bunch, N. L.; Labelle, J. W.; Weatherwax, A. T.; Yoon, P. H.

    2009-12-01

    Auroral Medium Frequency (MF) burst is a naturally occurring spontaneous impulsive radio emission observed at ground level between 800 and 4500 kHz. MF burst has been shown to be associated with auroral substorm onset, commonly observed coincidentally with auroral roar and hiss, with typical durations of a few minutes, amplitudes of ~10-14 V^2 /m^2 Hz, and measured to be left hand polarized. Despite several suggested theories, the exact generation mechanism for MF burst still remains a mystery. Recent experimental findings combined with a discussion of normal wave modes available in the auroral ionosphere allow us to constrain potential modes of generation. Normal modes available in the auroral ionosphere (Omega_ce = ~800-1600 kHz, omega_pe = ~100-6000 kHz between 100 and 1000 km altitude) include R-X, L-O, Z (L-X), Langmuir-upper hybrid, electron cyclotron, electron acoustic, and electron cyclotron sound. Each mode is considered in light of experimental evidence, including accessibility to the L-O mode for propagation to ground with left hand polarization, and requirements for excitation by an auroral electron beam (100-10s of keV). A linear mode conversion process is also preferred over non-linear due to their inefficiency. Specific scenarios include: mode conversion of Langmuir waves at a range of altitudes on either the top or bottom side F-region, short wavelength (thermal branch) Langmuir waves, electron acoustic waves, electron cyclotron sound waves, direct generation of the L mode, and refraction and conversion of Z / upper hybrid waves - similar to that of auroral roar.

  8. Directivity of low frequency solar type III radio bursts

    NASA Technical Reports Server (NTRS)

    Fitzenreiter, R. J.; Fainberg, J.; Bundy, R. B.

    1976-01-01

    The occurrence rate of type III solar bursts in the frequency range 4.9 MHz to 30 kHz is analyzed as a function of burst intensity and burst arrival direction. We find that (1) the occurrence rate of bursts varies inversely with the 1.5 power of the flux, and (2) the distribution of burst arrival directions at each frequency shows a significantly larger number of bursts observed west of the earth-sun line than east of it. This western excess in occurrence rate appears to be correlated with the direction of the average interplanetary magnetic field, and is interpreted as beaming of the observed burst radiation along the magnetic field direction.

  9. Frequency-domain order parameters for the burst and spike synchronization transitions of bursting neurons.

    PubMed

    Kim, Sang-Yoon; Lim, Woochang

    2015-08-01

    We are interested in characterization of synchronization transitions of bursting neurons in the frequency domain. Instantaneous population firing rate (IPFR) [Formula: see text], which is directly obtained from the raster plot of neural spikes, is often used as a realistic collective quantity describing population activities in both the computational and the experimental neuroscience. For the case of spiking neurons, a realistic time-domain order parameter, based on [Formula: see text], was introduced in our recent work to characterize the spike synchronization transition. Unlike the case of spiking neurons, the IPFR [Formula: see text] of bursting neurons exhibits population behaviors with both the slow bursting and the fast spiking timescales. For our aim, we decompose the IPFR [Formula: see text] into the instantaneous population bursting rate [Formula: see text] (describing the bursting behavior) and the instantaneous population spike rate [Formula: see text] (describing the spiking behavior) via frequency filtering, and extend the realistic order parameter to the case of bursting neurons. Thus, we develop the frequency-domain bursting and spiking order parameters which are just the bursting and spiking "coherence factors" [Formula: see text] and [Formula: see text] of the bursting and spiking peaks in the power spectral densities of [Formula: see text] and [Formula: see text] (i.e., "signal to noise" ratio of the spectral peak height and its relative width). Through calculation of [Formula: see text] and [Formula: see text], we obtain the bursting and spiking thresholds beyond which the burst and spike synchronizations break up, respectively. Consequently, it is shown in explicit examples that the frequency-domain bursting and spiking order parameters may be usefully used for characterization of the bursting and the spiking transitions, respectively.

  10. Imaging Observations of a Very High Frequency Type II Burst

    NASA Astrophysics Data System (ADS)

    White, S. M.; Mercier, C.; Bradley, R.; Bastian, T.; Kerdraon, A.; Pick, M.

    2006-05-01

    A remarkable Type II burst was detected by the high-frequency system of the Green Bank Solar Radio Burst Spectrometer on 2005 November 14. The harmonic branch of the Type II extended up to 800 MHz, making it one of the highest frequency Type II bursts ever detected, but it failed to propagate to heights corresponding to frequencies below 100 MHz. At such high frequencies, it implies the formation of a shock relatively low in the corona. No coronal mass ejection was evident in the LASCO data for this east limb event. It is one of the few Type II bursts to be observable at every frequency of observation of the Nancay Radio Heliograph (164-432 MHz). Here we present analysis of images of the event, including simultaneous imaging of the fundamental and harmonic branches.

  11. Type IIIb bursts and their fine structure in frequency band 18-30 MHz

    NASA Astrophysics Data System (ADS)

    Melnik, V. N.; Rucker, H. O.; Konovalenko, A. A.; Shevchuk, N. V.; Abranin, E. P.; Dorovskyy, V. V.; Lecacheux, A.

    2010-01-01

    This paper deals with Type IIIb bursts, which were observed in the frequency band from 18 to 30 MHz. These bursts have fine frequency structures contrary to usual Type III bursts. The main properties of Type IIIb bursts such as number of striae in a burst, their frequency drift rates, durations, frequency widths of stria, emission fluxes are presented. It is also shown that parameters of stria bursts depend on the position of active areas on the solar disk.

  12. High-Frequency Cutoff in Type III Bursts

    NASA Astrophysics Data System (ADS)

    Stanislavsky, A. A.; Konovalenko, A. A.; Volvach, Ya. S.; Koval, A. A.

    In this article we report about a group of solar bursts with high-frequency cutoff, observed on 19 August of 2012 near 8:23 UT, simultaneously by three different radio telescopes: the Ukrainian decameter radio telescope (8-33 MHz), the French Nancay Decametric Array (10-70 MHz) and the Italian San Vito Solar Observatory of RSTN (25-180 MHz). Morphologically the bursts are very similar to the type III bursts. The solar activity is connected with the emergency of a new group of solar spots on the far side of the Sun with respect to observers on Earth. The solar bursts accompany many moderate flares over eastern limb. The refraction of the behind-limb radio bursts towards the Earth is favorable, if CMEs generate low-density cavities in solar corona.

  13. Radio frequency interference affecting type III solar burst observations

    NASA Astrophysics Data System (ADS)

    Anim, N. M.; Hamidi, Z. S.; Abidin, Z. Z.; Monstein, C.; Rohizat, N. S.

    2013-05-01

    The solar burst extinguish from the Sun's corona atmosphere and it dynamical structure of the magnetic field in radio wavelength are studied. Observation of solar radio burst with Compact Astronomical Low cost Low frequency Instrument for Spectroscopy and Transportable Observatory (CALLISTO) from ETH, Zurich in frequency range of 45 until 870 MHz. Observation done at Pusat Angkasa Negara, Banting, Selangor and successfully detected the solar burst type III on 9th March 2012 from 4:22:00 UT until 4:28:00 UT. The solar burst emission is associated with M6.3 solar flare which occurred at sunspot AR1429 at 03:58UT were observed by NOAA. Frequency ranges chosen as the best ranges for solar monitoring in Malaysia is 150 MHz until 400 MHz. The highest signal amplitude within this frequency ranges is 1.7619 dB at 153.188 MHz (Government Use) have potential to influence the detection of solar radio burst type III within 20 until 400 MHz.

  14. Low frequency spectra of type III solar radio bursts

    NASA Technical Reports Server (NTRS)

    Weber, R. R.

    1978-01-01

    Flux density spectra have been determined for 91 simple type III solar bursts observed by the Goddard Space Flight Center radio astronomy experiment on the IMP-6 spacecraft during 1971 and 1972. Spectral peaks were found to occur at frequencies ranging from 44 kHz up to 2500 kHz. Half of the bursts peaked between 250 kHz and 900 kHz, corresponding to emission at solar distances of about 0.3 to 0.1 AU. Maximum burst flux density sometimes exceeds 10 to the -14th W/sq m/Hz. The primary factor controlling the spectral peak frequency of these bursts appears to be a variation in intrinsic power radiated by the source as the exciter moves outward from the sun, rather than radio propagation effects between the source and IMP-6. Thus, a burst spectrum strongly reflects the evolution of the properties of the exciting electron beam, and according to current theory, beam deceleration could help account for the observations.

  15. Liquid density effect on burst frequency in centrifugal microfluidic platforms.

    PubMed

    Al-Faqheri, Wisam; Ibrahim, Fatimah; Thio, Tzer Hwai Gilbert; Joseph, Karunan; Mohktar, Mas S; Madou, Marc

    2015-01-01

    Centrifugal microfluidic platforms are widely used in various advanced processes such as biomedical diagnostics, chemical analysis and drug screening. This paper investigates the effect of liquid density on the burst frequency of the centrifugal microfluidic platform. This effect is experimentally investigated and compared to theoretical values. It is found that increasing the liquid density results in lower burst frequency and it is in agreement with theoretical calculations. Moreover, in this study we proposed the use of the microfluidic CD platform as an inexpensive and simple sensor for liquid density measurements. The proposed liquid sensor requires much less liquid volume (in the range of microliters) compared to conventional density meters. This study presents fundamental work which allows for future advance studies with the aim of designing and fabricating centrifugal microfluidic platforms for more complex tasks such as blood analysis.

  16. Low-Frequency Radio Bursts and Space Weather

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.

    2016-01-01

    Low-frequency radio phenomena are due to the presence of nonthermal electrons in the interplanetary (IP) medium. Understanding these phenomena is important in characterizing the space environment near Earth and other destinations in the solar system. Substantial progress has been made in the past two decades, because of the continuous and uniform data sets available from space-based radio and white-light instrumentation. This paper highlights some recent results obtained on IP radio phenomena. In particular, the source of type IV radio bursts, the behavior of type III storms, shock propagation in the IP medium, and the solar-cycle variation of type II radio bursts are considered. All these phenomena are closely related to solar eruptions and active region evolution. The results presented were obtained by combining data from the Wind and SOHO missions.

  17. Advanced waveforms and frequency with spinal cord stimulation: burst and high-frequency energy delivery.

    PubMed

    Pope, Jason E; Falowski, Steven; Deer, Tim R

    2015-07-01

    In recent years, software development has been key to the next generation of neuromodulation devices. In this review, we will describe the new strategies for electrical waveform delivery for spinal cord stimulation. A systematic literature review was performed using bibliographic databases, limited to the English language and human data, between 2010 and 2014. The literature search yielded three articles on burst stimulation and four articles on high-frequency stimulation. High-frequency and burst stimulation may offer advantages over tonic stimulation, as data suggest improved patient tolerance, comparable increase in function and possible success with a subset of patients refractory to tonic spinal cord stimulation. High-frequency and burst stimulation are new ways to deliver energy to the spinal cord that may offer advantages over tonic stimulation. These may offer new salvage strategies to mitigate spinal cord stimulation failure and improve cost-effectiveness by reducing explant rate.

  18. Solar U- and J- Bursts at the Frequencies 10-30MHz

    NASA Astrophysics Data System (ADS)

    Dorovskyy, V. V.; Melnik, V. N.; Konovalenko, A. A.; Abranin, E. P.; Rucker, H. O.; Lecacheux, A.

    2006-08-01

    In the present report we discuss the results of observations of solar U- and J- bursts over the frequency range 10-30MHz, which have been obtained within the framework of an international observational campaign in June - August, 2004 at the radio telescope UTR-2 (Kharkov, Ukraine). We succeed to observe these types of bursts for the first time at such a low frequencies due to combination of large effective area of the radio telescope and high sensitivity of the new back-end. During June - August, 2004 about 30 U- and J- bursts were registered, and only 5 of them were confidently identified as U-bursts that may speak about the relative sparsity of the latter at mentioned frequencies. Both the isolated bursts and their sequences were observed. On average the turning frequencies lay in the range 10-22 MHz that corresponds to the arches heliocentric heights of 1.6-2.2 solar radii. In some sequences the bursts turning frequency was stable that may indicate the arch stability, while in others the turning frequency had tendency to vary from burst to burst. Durations of U- and J- bursts did not differ from those of usual Type III bursts (3-7s), while the drift rates of an ascending arm (on the average -1MHz/ s) was a little bit lower, than those of ordinary Type III bursts in this range. The harmonic structure of U- and J- bursts, and also Jb-J pairs (analogous to IIIb-III pairs) were registered. Also L-shaped bursts (Leblanc and Hoyos, 1985) were recorded. A specific feature of L-shaped bursts is prolonged zero-drift region on their dynamic spectra. The sizes and configurations of the arches were estimated on the base of obtained data. Possible explanations of the observed properties of U- and J- bursts are discussed.

  19. Features of the duration frequency dependence for type III solar radio bursts

    NASA Astrophysics Data System (ADS)

    Tsybko, Y. G.

    1989-11-01

    Averaged data on type III solar radio bursts at fixed frequencies in the 12.5-25 MHz range and beyond are examined, showing that there are two branches of the burst duration dependence on frequency. This splitting is used to distinguish between bursts occurring at the fundamental and the second harmonics of the plasma frequency. Type IIIb radiation is characterized by a diagram of the mean duration vs frequency of the stria bursts at the fundamental harmonic. Type III bursts at meter and decameter wavelengths are compared, showing a change in the behavior of the duration frequency dependence. It is suggested that this change may be associated with the initial acceleration and the subsequent expansion of the source along its path in the lower and intermediate corona.

  20. Low-Frequency Type III Bursts and Solar Energetic Particle Events

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat; Makela, Pertti

    2010-01-01

    We analyzed the coronal mass ejections (CMEs), flares, and type 11 radio bursts associated with a set of six low frequency (<14 MHz) extended type III bursts from active region 10588. The durations were measured at 1 and 14 MHz using high resolution data from Wind/WAVES and were within the range (>15 min) normally used to define these bursts. All but one of the type III bursts was not associated with a type 11 burst in the metric or longer wavelength domains. The burst without type 11 burst also lacked a solar energetic particle (SEP) event at energies >25 MeV. The 1-MHz duration of the type III burst (28 min) is near the median value of type III durations found for gradual SEP events and ground level enhancement (GLE) events. Yet, there was no sign of SEP events. On the other hand, two other type III bursts from the same active region had similar duration but accompanied by WAVES type 11 bursts; these bursts were also accompanied by SEP events detected by SOHO/ERNE. The CMEs were of similar speeds and the flares are also of similar size and duration. This study suggests that the type III burst duration may not be a good indicator of an SEP event.

  1. LONG-DURATION LOW-FREQUENCY TYPE III BURSTS AND SOLAR ENERGETIC PARTICLE EVENTS

    SciTech Connect

    Gopalswamy, Nat; Maekelae, Pertti

    2010-09-20

    We analyzed the coronal mass ejections (CMEs), flares, and type II radio bursts associated with a set of three complex, long-duration, low-frequency (<14 MHz) type III bursts from active region 10588 in 2004 April. The durations were measured at 1 and 14 MHz using data from Wind/WAVES and were well above the threshold value (>15 minutes) normally used to define these bursts. One of the three type III bursts was not associated with a type II burst, which also lacked a solar energetic particle (SEP) event at energies >25 MeV. The 1 MHz duration of the type III burst (28 minutes) for this event was near the median value of type III durations found for gradual SEP events and ground level enhancement events. Yet, there was no sign of an SEP event. On the other hand, the other two type III bursts from the same active region had similar duration but were accompanied by WAVES type II bursts; these bursts were also accompanied by SEP events detected by SOHO/ERNE. The CMEs for the three events had similar speeds, and the flares also had similar size and duration. This study suggests that the occurrence of a complex, long-duration, low-frequency type III burst is not a good indicator of an SEP event.

  2. Spatial-temporal variation of low-frequency earthquake bursts near Parkfield, California

    USGS Publications Warehouse

    Wu, Chunquan; Guyer, Robert; Shelly, David R.; Trugman, D.; Frank, William; Gomberg, Joan S.; Johnson, P.

    2015-01-01

    Tectonic tremor (TT) and low-frequency earthquakes (LFEs) have been found in the deeper crust of various tectonic environments globally in the last decade. The spatial-temporal behaviour of LFEs provides insight into deep fault zone processes. In this study, we examine recurrence times from a 12-yr catalogue of 88 LFE families with ∼730 000 LFEs in the vicinity of the Parkfield section of the San Andreas Fault (SAF) in central California. We apply an automatic burst detection algorithm to the LFE recurrence times to identify the clustering behaviour of LFEs (LFE bursts) in each family. We find that the burst behaviours in the northern and southern LFE groups differ. Generally, the northern group has longer burst duration but fewer LFEs per burst, while the southern group has shorter burst duration but more LFEs per burst. The southern group LFE bursts are generally more correlated than the northern group, suggesting more coherent deep fault slip and relatively simpler deep fault structure beneath the locked section of SAF. We also found that the 2004 Parkfield earthquake clearly increased the number of LFEs per burst and average burst duration for both the northern and the southern groups, with a relatively larger effect on the northern group. This could be due to the weakness of northern part of the fault, or the northwesterly rupture direction of the Parkfield earthquake.

  3. The transmission of low frequency medical data using delta modulation techniques.

    NASA Technical Reports Server (NTRS)

    Arndt, G. D.; Dawson, C. T.

    1972-01-01

    The transmission of low-frequency medical data using delta modulation techniques is described. The delta modulators are used to distribute the low-frequency data into the passband of the telephone lines. Both adaptive and linear delta modulators are considered. Optimum bit rates to minimize distortion and intersymbol interference are discussed. Vibrocardiographic waves are analyzed as a function of bit rate and delta modulator configuration to determine their reproducibility for medical evaluation.

  4. On the Directivity of Low-Frequency Type IV Radio Bursts

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Akiyama, S.; Makela, P.; Yashiro, S.; Cairns, I. H.

    2016-01-01

    An intense type IV radio burst was observed by the STEREO Behind (STB) spacecraft located about 144 deg. behind Earth. The burst was associated with a large solar eruption that occurred on the backside of the Sun (N05E151) close to the disk center in the STB view. The eruption was also observed by the STEREO Ahead (STA) spacecraft (located at 149 deg. ahead of Earth) as an eruption close to the west limb (N05W60) in that view. The type IV burst was complete in STB observations in that the envelope reached the lowest frequency and then receded to higher frequencies. The burst was partial viewed from STA, revealing only the edge coming down to the lowest frequency. The type IV burst was not observed at all near Earth because the source was 61 deg. behind the east limb. The eruption was associated with a low-frequency type II burst observed in all three views, although it was not very intense. Solar energetic particles were also observed at both STEREOs and at SOHO, suggesting that the shock was much extended, consistent with the very high speed of the CME (2048 km/s). These observations suggest that the type IV emission is directed along a narrow cone above the flare site. We confirm this result statistically using the type IV bursts of solar cycle 23.

  5. Phase-locking of bursting neuronal firing to dominant LFP frequency components.

    PubMed

    Constantinou, Maria; Elijah, Daniel H; Squirrell, Daniel; Gigg, John; Montemurro, Marcelo A

    2015-10-01

    Neuronal firing in the hippocampal formation relative to the phase of local field potentials (LFP) has a key role in memory processing and spatial navigation. Firing can be in either tonic or burst mode. Although bursting neurons are common in the hippocampal formation, the characteristics of their locking to LFP phase are not completely understood. We investigated phase-locking properties of bursting neurons using simulations generated by a dual compartmental model of a pyramidal neuron adapted to match the bursting activity in the subiculum of a rat. The model was driven with stochastic input signals containing a power spectral profile consistent with physiologically relevant frequencies observed in LFP. The single spikes and spike bursts fired by the model were locked to a preferred phase of the predominant frequency band where there was a peak in the power of the driving signal. Moreover, the preferred phase of locking shifted with increasing burst size, providing evidence that LFP phase can be encoded by burst size. We also provide initial support for the model results by analysing example data of spontaneous LFP and spiking activity recorded from the subiculum of a single urethane-anaesthetised rat. Subicular neurons fired single spikes, two-spike bursts and larger bursts that locked to a preferred phase of either dominant slow oscillations or theta rhythms within the LFP, according to the model prediction. Both power-modulated phase-locking and gradual shift in the preferred phase of locking as a function of burst size suggest that neurons can use bursts to encode timing information contained in LFP phase into a spike-count code.

  6. Interaction between pulsed discharge and radio frequency discharge burst at atmospheric pressure

    SciTech Connect

    Zhang, Jie; Guo, Ying; Shi, Yuncheng; Zhang, Jing; Shi, J. J.

    2015-08-15

    The atmospheric pressure glow discharges (APGD) with dual excitations in terms of pulsed voltage and pulse-modulation radio frequency (rf) power are studied experimentally between two parallel plates electrodes. Pulse-modulation applied in rf APGD temporally separates the discharge into repetitive discharge bursts, between which the high voltage pulses are introduced to ignite sub-microsecond pulsed discharge. The discharge characteristics and spatio-temporal evolution are investigated by means of current voltage characteristics and time resolved imaging, which suggests that the introduced pulsed discharge assists the ignition of rf discharge burst and reduces the maintain voltage of rf discharge burst. Furtherly, the time instant of pulsed discharge between rf discharge bursts is manipulated to study the ignition dynamics of rf discharge burst.

  7. Experimental tests of the generation mechanism of auroral medium frequency burst radio emissions

    NASA Astrophysics Data System (ADS)

    Bunch, N. L.; Labelle, J.; Weatherwax, A. T.; Hughes, J. M.; Lummerzheim, D.

    2009-09-01

    Medium frequency (MF) burst is an impulsive auroral radio emission at 1.3-4.5 MHz commonly detected by ground-based instruments for a few minutes at substorm onsets. It is thought to arise from mode conversion radiation. The Dartmouth College MF radio interferometer at Toolik Field Station, Alaska (68.51° invariant latitude), measured spectra, amplitudes, and directions of arrival (DOA) of 47 MF burst events during 2006-2007 and 49 events during 2007-2008. Statistical analysis of these events shows that they come predominantly from the south and east of Toolik, as expected because propagation conditions are more favorable poleward and westward of the active auroral arcs than equatorward or eastward during premidnight (westward moving) substorm onset activity. Case studies of a selected MF burst event on 20 November 2007 show that motions of the radio emissions qualitatively track the motions of auroral arcs simultaneously observed with all-sky camera. Case studies of DOA data of selected MF burst events on 31 January and 20 November 2007 show that higher-frequency components of MF burst arrive at higher elevation angles than lower-frequency components. Statistical studies confirm this trend. Ray-tracing analysis shows that this trend implies that sources of the higher-frequency components of the MF burst are at higher altitudes than those of the lower-frequency components. The analysis also shows that the MF burst comes from the bottomside F region ionosphere. These observations are consistent with a mechanism of MF burst emission whereby the emissions originate from mode conversion of Langmuir or upper hybrid waves excited over a range of altitudes in the bottomside F region.

  8. Theoretical development and critical analysis of burst frequency equations for passive valves on centrifugal microfluidic platforms

    PubMed Central

    Thio, Tzer Hwai Gilbert; Soroori, Salar; Al-Faqheri, Wisam; Soin, Norhayati; Kulinsky, Lawrence; Madou, Marc

    2013-01-01

    This paper presents a theoretical development and critical analysis of the burst frequency equations for capillary valves on a microfluidic compact disc (CD) platform. This analysis includes background on passive capillary valves and the governing models/equations that have been developed to date. The implicit assumptions and limitations of these models are discussed. The fluid meniscus dynamics before bursting is broken up into a multi-stage model and a more accurate version of the burst frequency equation for the capillary valves is proposed. The modified equations are used to evaluate the effects of various CD design parameters such as the hydraulic diameter, the height to width aspect ratio, and the opening wedge angle of the channel on the burst pressure. PMID:23292292

  9. Turnover Frequency in Solar Microwave Bursts with an Extremely Flat Optically Thin Spectrum

    NASA Astrophysics Data System (ADS)

    Song, Q. W.; Nakajima, H.; Huang, G. L.; Tan, B. L.; Huang, Y.; Wu, Z.

    2016-10-01

    Four microwave bursts have been selected from the Nobeyama Radio Polarimeter (NoRP) observations with an extremely flat spectrum in the optically thin part and a very hard spectral index between 0 and -1 in the maximum phase of all bursts. It is found that the time evolution of the turnover frequency is inversely proportional to the time profiles of the radio flux in all bursts. Based on the nonthermal gyrosynchrotron theory of Ramaty (Astrophys. J. 158, 753, 1969), the local magnetic field strength and the electron spectral index are calculated uniquely from the observed radio spectral index and the turnover frequency. We found that the electron energy spectrum is very hard (spectral index 1 - 2), and the time variation of the magnetic field strength is also inversely proportional to the radio flux as a function of time in all bursts. Hence, the time evolution of the turnover frequency can be explained directly by its dependence on the local magnetic field strength. The high turnover frequency (several tens of GHz) is mainly caused by a strong magnetic field of up to several hundred gauss, and probably by the Razin effect under a high plasma density over 10^{10} cm^{-3} in the maximum phase of these bursts. Therefore, the extremely flat microwave spectrum can be well understood by the observed high turnover frequency and the calculated hard electron spectral index.

  10. Decameter Type III Bursts with Changing Frequency Drift-Rate Signs

    NASA Astrophysics Data System (ADS)

    Melnik, V. N.; Brazhenko, A. I.; Konovalenko, A. A.; Briand, C.; Dorovskyy, V. V.; Zarka, P.; Frantsuzenko, A. V.; Rucker, H. O.; Rutkevych, B. P.; Panchenko, M.; Denis, L.; Zaqarashvili, T.; Shergelashvili, B.

    2015-01-01

    We discuss properties of type III bursts that change the sign of their drift rate from negative to positive and vice versa. Moreover, these bursts may change the sign of their drift rates more than once. These particular type III bursts were observed simultaneously by the radio telescopes UTR-2 ( Ukrainian T-shaped Radio telescope, Kharkov, Ukraine), URAN-2 ( Ukrainian Radio telescope of the Academy of Sciences, Poltava, Ukraine), and by the NDA ( Nançay Decametric Array, Nancay, France) in the frequency range 8 - 41 MHz. The negative drift rates of these bursts are similar to those of previously reported decameter type III bursts and vary from -0.7 MHz s-1 to -1.7 MHz s-1, but their positive drift rates vary in a wider range from 0.44 MHz s-1 to 6 MHz s-1. Unlike inverted U-bursts, the tracks of these type III bursts have C- or inverted C-shapes.

  11. Dynamic spectra of radio frequency bursts associated with edge-localized modes

    NASA Astrophysics Data System (ADS)

    Thatipamula, Shekar G.; Yun, G. S.; Leem, J.; Park, H. K.; Kim, K. W.; Akiyama, T.; Lee, S. G.

    2016-06-01

    Electromagnetic emissions in the radio frequency (RF) range are detected in the high-confinement-mode (H-mode) plasma using a fast RF spectrometer on the KSTAR tokamak. The emissions at the crash events of edge-localized modes (ELMs) are found to occur as strong RF bursts with dynamic features in intensity and spectrum. The RF burst spectra (obtained with frequency resolution better than 10 MHz) exhibit diverse spectral features and evolve in multiple steps before the onset and through the ELM crash: (1) a narrow-band spectral line around 200 MHz persistent for extended duration in the pre-ELM crash times, (2) harmonic spectral lines with spacing comparable to deuterium or hydrogen ion cyclotron frequency at the pedestal, (3) rapid onset (faster than ~1 μs) of intense RF burst with wide-band continuum in frequency which coincides with the onset of ELM crash, and (4) a few additional intense RF bursts with chirping-down narrow-band spectrum during the crash. These observations indicate plasma waves are excited in the pedestal region and strongly correlated with the ELM dynamics such as the onset of the explosive crash. Thus the investigation of RF burst occurrence and their dynamic spectral features potentially offers the possibility of exploring H-mode physics in great detail.

  12. DELTAE

    SciTech Connect

    Ward, W.C. )

    1993-11-01

    In thermoacoustic engines and refrigerators, and in many simple acoustic systems, a one dimensional wave equation determines the spatial dependence of the acoustic pressure and velocity. DELTAE numerically integrates such wave equations in the acoustic approximation, in gases or liquids, in user-defined geometries. Boundary conditions can include conventional acoustic boundary conditions of geometry and impedance, as well as temperature and thermal power in thermoacoustic systems. DELTAE can be used easily for apparatus ranging from simple duct networks and resonators to thermoacoustic engines refrigerators and combinations thereof. It can predict how a given apparatus will perform, or can allow the user to design an apparatus to achieve desired performance. DELTAE views systems as a series of segments; twenty segment types are supported. The purely acoustic segments include ducts and cones, and lumped impedances including compliances, series impedances, and endcaps. Electroacoustics tranducer segments can be defined using either frequency-independent coefficients or the conventional parameters of loudspeaker-style drivers: mass, spring constant, magnetic field strength, etc. Tranducers can be current driven, voltage driven, or connected to an electrical load impedance. Thermoacoustic segment geometries include parallel plates, circular and rectangular pores, and pin arrays. Side branches can be defined with fixed impedances, frequency-dependent radiation impedances, or as an auxiliary series of segments of any types. The user can select working fluids from among air, helium, neon, argon, hydrogen, deuterium, carbon dioxide, nitrogen, helium-argon mixtures, helium-xenon mixtures, liquid sodium, and eutectic sodium-potassium. Additional fluids and solids can be defined by the user.

  13. Cassini observations of low-frequency drifting radio bursts in Saturn's magnetosphere

    NASA Astrophysics Data System (ADS)

    Taubenschuss, U.; Leisner, J. S.; Fischer, G.; Gurnett, D. A.; Nemec, F.

    2010-12-01

    This study presents an analysis of a new type of Saturnian radio emission observed between 3 and 50 kHz by Cassini’s RPWS instrument. These emissions comprise radio bursts which last for several minutes and exhibit a characteristic drift in the time-frequency spectrograms. Spectral features (such as frequency range, bandwidth, and drift rate) and the spatial distribution of observations are subject to statistical analysis. Furthermore, this study uses the goniopolarimetric (“direction-finding”) mode to study the polarization. We discuss the obtained results in the context of possible source mechanisms and correlations between the radio bursts and the moons in Saturn’s inner magnetosphere.

  14. The stability of decametric type III burst parameters over the 11-year solar activity cycle - The frequency drift rate of radio bursts

    NASA Astrophysics Data System (ADS)

    Abranin, E. P.; Bazelyan, L. L.; Tsybko, Y. G.

    1990-02-01

    Results are presented from measurements of the frequency drift rates for the maximum of the solar type III and IIIb-III bursts in the 25-12.5 MHz range during the period from 1973 to 1984. In the decameter wavelength range, the frequency drift rate is proportional to the value of observational frequency and has a weak dependence on the type of phase within the 11-yr solar cycle. The results are compared with results for the hectometer range, showing that the hectometer type II burst generation process generally occurs at the first harmonic. Data on the frequency dependence of the drift rates at hectometer and decameter wavelengths are consistent with the generation of type II bursts in the streamer at a burst source speed of about 0.3 s.

  15. Satellite observations of type 3 solar radio bursts at low frequencies

    NASA Technical Reports Server (NTRS)

    Fainberg, J.; Stone, R. G.

    1973-01-01

    Type III solar radio bursts were observed from 10 MHz to 10 KHz by satellite experiments above the terrestrial plasmasphere. Solar radio emission in this frequency range results from excitation of the interplanetary plasma by energetic particles propagating outward along open field lines over distances from 5 solar radii to at least 1 AU from the sun. This review summarizes the morphology, characteristics and analysis of individual as well as storms of bursts. Burst rise times are interpreted in terms of exciter length and dispersion while decay times refer to the radiation damping process. The combination of radio observations at the lower frequencies and in-situ measurements on nonrelativistic electrons at 1 AU provide data on the energy range and efficiency of the wave-particle interactions responsible for the radio emission.

  16. A wide range sigma—delta fractional-N frequency synthesizer with adaptive frequency calibration

    NASA Astrophysics Data System (ADS)

    Jianjun, Wei; Hanjun, Jiang; Lingwei, Zhang; Jingjing, Dong; Fule, Li; Zhihua, Wang; Chun, Zhang

    2013-06-01

    A wide range fractional-N frequency synthesizer in 0.18 μm RF CMOS technology is implemented. A switched-capacitors bank LC-tank VCO and an adaptive frequency calibration technique are used to expand the frequency range. A 16-bit third-order sigma—delta modulator with dither is used to randomize the fractional spur. The active area is 0.6 mm2. The experimental results show the proposed frequency synthesizer consumes 4.3 mA from a single 1.8 V supply voltage except for buffers. The frequency range is 1.44-2.11 GHz and the frequency resolution is less than 0.4 kHz. The phase noise is -94 dBc/Hz @ 100 kHz and -121 dBc/Hz @ 1 MHz at the output of the prescaler with a loop bandwidth of approximately 120 kHz. The performance meets the requirements for the multi-band and multi-mode transceiver applications.

  17. Temporal Intraspeech Masking of Plosive Bursts: Effects of Hearing Loss and Frequency Shaping

    ERIC Educational Resources Information Center

    Mackersie, Carol L.

    2007-01-01

    Purpose: The purposes were (a) to compare masking of consonant bursts by adjacent vowels for listeners with and without hearing loss and (b) to determine the extent to which the temporal intraspeech masking can be reduced by a simulated hearing-aid frequency-response shaping. Method: Fourteen adults with sensorineural hearing loss and 10 with…

  18. Frequency of delta F508 in a Mexican sample of cystic fibrosis patients.

    PubMed Central

    Orozco, L; Salcedo, M; Lezana, J L; Chávez, M; Valdez, H; Moreno, M; Carnevale, A

    1993-01-01

    This paper reports the frequency of the delta F508 mutation in a cohort of 50 Mexican patients with cystic fibrosis (CF). The mutation was detected by PCR mediated site directed mutagenesis. delta F508 was found in 39% of CF chromosomes, a frequency lower than that reported in Argentina and Spain. The high rate of CF cases who die undiagnosed, the ethnic origin of Mexican populations, and the limited number of cases studied could account for the low frequency of the delta F508 mutation found in this preliminary report. Images PMID:8326494

  19. On the spectra of type-III solar radio bursts observed at low frequencies

    NASA Technical Reports Server (NTRS)

    Alvarez, H.

    1982-01-01

    The spectra of strong bursts observed at low frequencies by OGO-5 during 1968-1970 are presented. They usually exhibit an intense main peak between 100 kHz and 1 MHz, and sometimes a less intense secondary peak between 1 and 3.5 MHz. Main peaks of 10 to the -12th W per sq m per Hz or more were obtained in very strong events, but because of antenna calibration problems those could be one or two orders of magnitude too high. Recently published work supports the finding that type III bursts at low frequencies can be at least four orders of magnitude more intense than at ground-based frequencies of observation. It is found that the energy received at the earth increases with decreasing frequency approximately as f to the -n, where n is between 3 and 4.

  20. Auroral Radio Emission Direction of Arrival Studies of Simultaneous Medium Frequency Burst and Auroral Hiss

    NASA Astrophysics Data System (ADS)

    Broughton, M.; Labelle, J. W.

    2010-12-01

    The auroral zone is the source of multiple kinds of radio emissions that can be observed on the ground. The study of radio emissions offers a way to remotely sense space plasma processes and, in the case of auroral emissions, to use the auroral ionosphere as a large-scale plasma physics laboratory. Medium frequency (MF) burst is an impulsive radio emission at 1.5-4.5 MHz observed on the ground. Its generation mechanism is unknown, and it is often associated with the onset of substorms. Auroral hiss is an impulsive emission observed on the ground at frequencies up to 1 MHz and is also associated with substorm onset. LaBelle et al. [1997] reported a temporal relationship between MF burst and auroral hiss. Multiple impulses of both MF burst and auroral hiss occurred simultaneously over a time period that in certain cases lasted tens of minutes. While the temporal relationship on the timescale of seconds is well established, the spatial relationship between MF burst and auroral hiss has yet to be investigated. Dartmouth College currently operates a broadband (0-5 MHz) four-element radio interferometer at Toolik Field Station in Alaska (68° 38' N, 149° 36' W, 68.5° magnetic latitude) in order to study the direction of arrival (DOA) of radio emissions. Since the antenna spacing is 50 meters, the interferometer is optimized for DOA measurements of MF bursts. However, in certain cases, it can provide the DOA for the high-frequency portion of impulsive auroral hiss. We present two case studies that represent the first simultaneous DOA measurements of impulsive auroral hiss and MF burst. On March 4, 2010, the DOA of MF burst was predominantly from 30 degrees south of east, an observation consistent with the statistical work performed by Bunch et al. [2009]. Simultaneous DOA measurements of the high-frequency portion of auroral hiss also showed the DOA as approximately 30 degrees south of east but with greater scatter in the data. The second case study, which involved an

  1. Wavelength tunable coherent burst-mode receiver design under transient frequency offset.

    PubMed

    Xu, Bo; Qiu, Kun

    2013-08-26

    Wavelength tunable optical coherent burst-mode receivers (BMR) can offer flexibility and sub-wavelength granularity for dynamic WDM networks. A new BMR design with dispersion equalizer plus frequency offset estimator is proposed for simultaneous dispersion compensation and frequency offset estimation. Its good performance is verified by simulations. A training sequence as short as 4 K symbols, corresponding to an initialization time of 160 ns, is found to be enough to support 200 km transmission distance plus over ± 5 GHz frequency offset. The new BMR design can also work under the case when transient frequency offset from wavelength tuning exists in the system.

  2. FIRST VERY LOW FREQUENCY DETECTION OF SHORT REPEATED BURSTS FROM MAGNETAR SGR J1550-5418

    SciTech Connect

    Tanaka, Y. T.; Takahashi, T.; Raulin, Jean-Pierre; Bertoni, Fernando C. P.; Fagundes, P. R.; Chau, J.; Schuch, N. J.; Hayakawa, M.; Hobara, Y.; Terasawa, T.

    2010-09-20

    We report on the first detection of ionospheric disturbances caused by short repeated gamma-ray bursts from the magnetar SGR J1550-5418. Very low frequency (VLF) radio wave data obtained in South America clearly show sudden amplitude and phase changes at the corresponding times of eight soft gamma-ray repeater bursts. Maximum amplitude and phase changes of the VLF signals appear to be correlated with the gamma-ray fluence. On the other hand, VLF recovery timescales do not show any significant correlation with the fluence, possibly suggesting that the bursts' spectra are not similar to each other. In summary, Earth's ionosphere can be used as a very large gamma-ray detector and the VLF observations provide us with a new method to monitor high-energy astrophysical phenomena without interruption such as Earth occultation.

  3. Stopping frequency of type III solar radio bursts in expanding magnetic flux tubes

    NASA Astrophysics Data System (ADS)

    Reid, Hamish A. S.; Kontar, Eduard P.

    2015-05-01

    Aims: Understanding the properties of type III radio bursts in the solar corona and interplanetary space is one of the best ways to remotely deduce the characteristics of solar accelerated electron beams and the solar wind plasma. One feature of all type III bursts is the lowest frequency they reach (or stopping frequency). This feature reflects the distance from the Sun that an electron beam can drive the observable plasma emission mechanism. The stopping frequency has never been systematically studied before from a theoretical perspective. Methods: Using numerical kinetic simulations, we explore the different parameters that dictate how far an electron beam can travel before it stops inducing a significant level of Langmuir waves, responsible for plasma radio emission. We use the quasilinear approach to model the resonant interaction between electrons and Langmuir waves self-consistently in inhomogeneous plasma, and take into consideration the expansion of the guiding magnetic flux tube and the turbulent density of the interplanetary medium. Results: We find that the rate of radial expansion has a significant effect on the distance an electron beam travels before enhanced levels of Langmuir waves, hence radio waves, cease. Radial expansion of the guiding magnetic flux tube rarefies the electron stream to the extent that the density of non-thermal electrons is too low to drive Langmuir wave production. The initial conditions of the electron beam have a significant effect, where decreasing the beam density or increasing the spectral index of injected electrons would cause higher type III stopping frequencies. We also demonstrate how the intensity of large-scale density fluctuations increases the highest frequency to which Langmuir waves can be driven by the beam and how the magnetic field geometry can be the cause of type III bursts that are only observed at high coronal frequencies.

  4. Effect of spanwise blowing on leading-edge vortex bursting of a highly swept aspect ratio 1.18 delta wing

    NASA Technical Reports Server (NTRS)

    Scantling, W. L.; Gloss, B. B.

    1974-01-01

    An investigation was conducted in the Langley 1/8-scale V/STOL model tunnel on a semispan delta wing with a leading-edge sweep of 74 deg, to determine the effectiveness of various locations of upper surface and reflection plane blowing on leading-edge vortex bursting. Constant area nozzles were located on the wing upper surface along a ray swept 79 deg, which was beneath the leading-edge vortex core. The bursting and reformation of the leading-edge vortex was viewed by injecting helium into the vortex core, and employing a schlieren system.

  5. Indication of radio frequency interference (RFI) sources for solar burst monitoring in Malaysia

    NASA Astrophysics Data System (ADS)

    Hamidi, Z. S.; Abidin, Z. Z.; Ibrahim, Z. A.; Shariff, N. N. M.

    2012-06-01

    Apart of monitoring the Sun project, the Radio Frequency Interference (RFI) surveying in the region of (1-1200) MHz has been conducted. The main objective of this surveying is to test and qualify the potential of monitoring a continuous radio emission of Solar in Malaysia. This work is also an initiative of International Space Weather Initiative (ISWI) project where Malaysia is one of the country that participate a e-Callisto Spectrometer network in order to study the behavior of Solar radio burst in frequency of (45-800) MHz region which will be install in this October. Detail results will indicate the potential of monitoring a solar in Malaysia.

  6. Satellite observations of type III solar radio bursts at low frequencies

    NASA Technical Reports Server (NTRS)

    Fainberg, J.; Stone, R. G.

    1974-01-01

    Type III solar radio bursts have been observed from 10 MHz to 10 kHz by satellite experiments above the terrestrial plasmasphere. Solar radio emission in this frequency range results from excitation of the interplanetary plasma by energetic particles propagating outward along open field lines over distances from 5 earth radii to at least 1 AU from the sun. This review summarizes the morphology, characteristics, and analysis of individual as well as storms of bursts. Substantial evidence is available to show that the radio emission is observed at the second harmonic instead of the fundamental of the plasma frequency. This brings the density scale derived by radio observations into better agreement with direct solar wind density measurements at 1 AU and relaxes the requirement for type III propagation along large density-enhanced regions. This density scale with the measured direction of arrival of the radio burst allows the trajectory of the exciter path to be determined from 10 earth radii to 1 AU.

  7. Abnormal High-Frequency Burst Firing of Cerebellar Neurons in Rapid-Onset Dystonia-Parkinsonism

    PubMed Central

    Fremont, Rachel; Calderon, D. Paola; Maleki, Sara

    2014-01-01

    Loss-of-function mutations in the α3 isoform of the Na+/K+ ATPase (sodium pump) are responsible for rapid-onset dystonia parkinsonism (DYT12). Recently, a pharmacological model of DYT12 was generated implicating both the cerebellum and basal ganglia in the disorder. Notably, partially blocking sodium pumps in the cerebellum was necessary and sufficient for induction of dystonia. Thus, a key question that remains is how partially blocking sodium pumps in the cerebellum induces dystonia. In vivo recordings from dystonic mice revealed abnormal high-frequency bursting activity in neurons of the deep cerebellar nuclei (DCN), which comprise the bulk of cerebellar output. In the same mice, Purkinje cells, which provide strong inhibitory drive to DCN cells, also fired in a similarly erratic manner. In vitro studies demonstrated that Purkinje cells are highly sensitive to sodium pump dysfunction that alters the intrinsic pacemaking of these neurons, resulting in erratic burst firing similar to that identified in vivo. This abnormal firing abates when sodium pump function is restored and dystonia caused by partial block of sodium pumps can be similarly alleviated. These findings suggest that persistent high-frequency burst firing of cerebellar neurons caused by sodium pump dysfunction underlies dystonia in this model of DYT12. PMID:25164667

  8. Lysogen stability is determined by the frequency of activity bursts from the fate-determining gene.

    PubMed

    Zong, Chenghang; So, Lok-hang; Sepúlveda, Leonardo A; Skinner, Samuel O; Golding, Ido

    2010-11-30

    The ability of living cells to maintain an inheritable memory of their gene-expression state is key to cellular differentiation. Bacterial lysogeny serves as a simple paradigm for long-term cellular memory. In this study, we address the following question: in the absence of external perturbation, how long will a cell stay in the lysogenic state before spontaneously switching away from that state? We show by direct measurement that lysogen stability exhibits a simple exponential dependence on the frequency of activity bursts from the fate-determining gene, cI. We quantify these gene-activity bursts using single-molecule-resolution mRNA measurements in individual cells, analyzed using a stochastic mathematical model of the gene-network kinetics. The quantitative relation between stability and gene activity is independent of the fine details of gene regulation, suggesting that a quantitative prediction of cell-state stability may also be possible in more complex systems. PMID:21119634

  9. Jamming effects on code synchronization of burst-mode frequency-hop spread-spectrum

    NASA Astrophysics Data System (ADS)

    van Grouw, Mike G.; Wicker, Mark A.

    The authors characterize the performance of a multiple-dwell FHSS (frequency-hopping spread-spectrum) code synchronization scheme in the presence of channel dynamics. Random hop jamming is assumed. The coarse acquisition system uses both passive and active correlation to implement a serial search of the code-uncertainty region. The in-lock monitoring is accomplished using a two-dwell active correlator with a relatively long integration time. Both burst- and continuous-mode communications links are considered. Appropriate performance parameters are developed, and design considerations are discussed. Performance curves are given for the various cases considered. Although a fixed-threshold multiple-dwell synchronization scheme adequately mitigates the effects of dynamic jamming in a continuous-mode communications link, it is shown to be inadequate for a burst-mode communications link.

  10. Direction of Arrival Studies of Medium Frequency Burst Radio Emissions at Toolik Lake, AK

    NASA Astrophysics Data System (ADS)

    Bunch, N.; Labelle, J.; Weatherwax, A.; Lummerzheim, D.; Stenbaek-Nielsen, H.

    2008-05-01

    MF burst is an impulsive radio emission of auroral origin, which can be detected by ground-based instruments at frequencies between 1,300 and 4,500kHz. MF burst has been shown to be associated with substorm onset, but its exact generation mechanism remains unknown, although it is thought to arise from mode conversion radiation [see review by LaBelle and Treumann, 2002] . In search of the generation mechanism of this emission, Dartmouth College has deployed radio interferometers in Alaska, Northern Canada, Greenland, and Antarctica, including a three-element interferometer deployed to Toolik Field Station in Alaska during the summer of 2006. This instrument measured spectra, amplitudes and directions of arrival (DOA's) of over 47 MF burst events between November 30, 2006 and May 26, 2007. These data represent the first DOA measurements of impulsive MF burst, of which selected case studies were presented at the Fall 2007 AGU conference. Here we present a statistical survey of all 47 events as well as detailed analysis of three events occurring on: Mar 5, Mar 23, and Nov 20, 2007. For the statistical survey, we present distributions of DOA as a function of local time and frequency. In each case study we analyze the direction of arrival of the emissions as a function of both time and frequency within each event. The time variations will be compared with the time variations of optical auroral forms simultaneously measured with all-sky cameras. The dependence of the arrival direction on frequency enables a significant test of the generation mechanism whereby the waves are emitted at the local plasma or upper hybrid frequency in the topside ionosphere, predicting that higher frequencies should originate at lower altitudes. These three events have been selected because All-Sky camera data are available at these times from Toolik Lake and Fort Yukon, Alaska. These are critical both for identifying which optical features are associated with the radio emissions as well as for

  11. Analysis and modeling of time-variant amplitude-frequency couplings of and between oscillations of EEG bursts.

    PubMed

    Witte, Herbert; Putsche, Peter; Hemmelmann, Claudia; Schelenz, Christoph; Leistritz, Lutz

    2008-08-01

    Low-frequency (0.5-2.5 Hz) and individually defined high-frequency (7-11 or 8-12 Hz; 11-15 or 14-18 Hz) oscillatory components of the electroencephalogram (EEG) burst activity derived from thiopental-induced burst-suppression patterns (BSP) were investigated in seven sedated patients (17-26 years old) with severe head injury. The predominant high-frequency burst oscillations (>7 Hz) were detected for each patient by means of time-variant amplitude spectrum analysis. Thereafter, the instantaneous envelope (IE) and the instantaneous frequency (IF) were computed for these low- and high-frequency bands to quantify amplitude-frequency dependencies (envelope-envelope, envelope-frequency, and frequency-frequency correlations). Time-variant phase-locking, phase synchronization, and quadratic phase couplings are associated with the observed amplitude-frequency characteristics. Additionally, these time-variant analyses were carried out for modeled burst patterns. Coupled Duffing oscillators were adapted to each EEG burst and by means of these models data-based burst simulations were generated. Results are: (1) strong envelope-envelope correlations (IE courses) can be demonstrated; (2) it can be shown that a rise of the IE is associated with an increase of the IF (only for the frequency bands 0.5-2.5 and 7-11 or 8-12 Hz); (3) the rise characteristics of all individually averaged envelope-frequency courses (IE-IF) are strongly correlated; (4) for the 7-11 or 8-12 Hz oscillation these associations are weaker and the variation between the time courses of the patients is higher; (5) for both frequency ranges a quantitative amplitude-frequency dependency can be shown because higher IE peak maxima are accompanied by stronger IF changes; (6) the time range of significant phase-locking within the 7-11 or 8-12 Hz frequency bands and of the strongest quadratic phase couplings (between 0.5-2.5 and 7-11 or 8-12 Hz) is between 0 and 1,000 ms; (7) all phase coupling characteristics of the

  12. A stepped-frequency Delta-K microwave radar for oceanographic studies

    NASA Technical Reports Server (NTRS)

    Popstefanija, Ivan; Mcqueen, David S.; Mcintosh, Robert E.

    1993-01-01

    A stepped-frequency Delta-K (SFDK) radar was developed to remotely sense ocean surface characteristics. This C-band radar uses frequency diversity and real-time signal processing for improved Delta-K measurements. In this paper, we show how frequency diversity can be implemented to enhance the energy of the resonant peak of the cross-product spectrum relative to the background energy. This feature is essential for making real-time measurements of resonant peak frequency over extended time periods. The SFDK was used in a month-long field experiment at N. Truro (Massachusetts). The results presented show that the phase velocity of ocean surface waves could be precisely measured 87 percent of the time.

  13. Energetic electrons from solar flares and associated type 3 radio bursts from metric to hectometric wave frequencies

    NASA Technical Reports Server (NTRS)

    Sakurai, K.

    1972-01-01

    Distinct Kev electron events as observed by satellites near the earth are, in general, associated with solar flares which are accompained by the emission of both metric and hectometric type 3 radio bursts. The positions of these flares are mainly on the western hemisphere of the sun. These results show that Kev electrons propagate under the control of the magnetic field in the interplanetary space and that, while propagating through this space, these electrons excite type 3 radio bursts from metric to hectometric wave frequencies. Emission characteristics of hectometric type 3 bursts are briefly considered in relation to the positions of associated flares.

  14. Relationship between low and high frequencies in the \\delta Scuti star KIC 9764965

    NASA Astrophysics Data System (ADS)

    Rostopchina, A.; Breger, M.

    2014-10-01

    Two years of Kepler spacecraft data of the \\delta Sct/\\gamma Dor star KIC 9764965 revealed 67 statistically significant frequencies from 0.45 to 59.17 c d-1 (0.005 to 0.685 mHz). The 19 low frequencies do not show equidistant period spacing predicted for gravity modes of successive radial order. We note a favored frequency spacing of 2.053 c d-1 that appears in both the low-frequency (gravity mode) region and high-frequency (pressure mode) regions. The value of this frequency spacing also occurs as a dominant low frequency and in a high-frequency triplet. A peak at exactly twice the value of the 2.053 c d-1 mode is shown not to be a Fourier harmonic of the low-frequency peak due to a different amplitude variability. This behavior is also seen in other \\delta Sct stars. The test for resonant mode coupling between low and high frequencies could not be carried out due to the small amplitudes of the peaks, making it difficult to separate the parent and child modes.

  15. Bursting frequency versus phase synchronization in time-delayed neuron networks

    NASA Astrophysics Data System (ADS)

    Nordenfelt, Anders; Used, Javier; Sanjuán, Miguel A. F.

    2013-05-01

    We investigate the dependence of the average bursting frequency on time delay for neuron networks with randomly distributed time-delayed chemical synapses. The result is compared with the corresponding curve for the phase synchronization and it turns out that, in some intervals, these have a very similar shape and appear as almost mirror images of each other. We have analyzed both the map-based chaotic Rulkov model and the continuous Hindmarsh-Rose model, yielding the same conclusions. In order to gain further insight, we also analyzed time-delayed Kuramoto models displaying an overall behavior similar to that observed on the neuron network models. For the Kuramoto models, we were able to derive analytical formulas providing an implicit functional relationship between the mean frequency and the phase synchronization. These formulas suggest a strong dependence between those two measures, which could explain the similarities in shape between the curves.

  16. Cosine Directional Tuning of Theta Cell Burst Frequencies: Evidence for Spatial Coding by Oscillatory Interference

    PubMed Central

    Welday, Adam C.; Shlifer, I. Gary; Bloom, Matthew L.; Zhang, Kechen

    2011-01-01

    The rodent septohippocampal system contains “theta cells,” which burst rhythmically at 4–12 Hz, but the functional significance of this rhythm remains poorly understood (Buzsáki, 2006). Theta rhythm commonly modulates the spike trains of spatially tuned neurons such as place (O'Keefe and Dostrovsky, 1971), head direction (Tsanov et al., 2011a), grid (Hafting et al., 2005), and border cells (Savelli et al., 2008; Solstad et al., 2008). An “oscillatory interference” theory has hypothesized that some of these spatially tuned neurons may derive their positional firing from phase interference among theta oscillations with frequencies that are modulated by the speed and direction of translational movements (Burgess et al., 2005, 2007). This theory is supported by studies reporting modulation of theta frequency by movement speed (Rivas et al., 1996; Geisler et al., 2007; Jeewajee et al., 2008a), but modulation of theta frequency by movement direction has never been observed. Here we recorded theta cells from hippocampus, medial septum, and anterior thalamus of freely behaving rats. Theta cell burst frequencies varied as the cosine of the rat's movement direction, and this directional tuning was influenced by landmark cues, in agreement with predictions of the oscillatory interference theory. Computer simulations and mathematical analysis demonstrated how a postsynaptic neuron can detect location-dependent synchrony among inputs from such theta cells, and thereby mimic the spatial tuning properties of place, grid, or border cells. These results suggest that theta cells may serve a high-level computational function by encoding a basis set of oscillatory signals that interfere with one another to synthesize spatial memory representations. PMID:22072668

  17. HIV Promoter Integration Site Primarily Modulates Transcriptional Burst Size Rather Than Frequency

    PubMed Central

    Skupsky, Ron; Burnett, John C.; Foley, Jonathan E.; Schaffer, David V.; Arkin, Adam P.

    2010-01-01

    Mammalian gene expression patterns, and their variability across populations of cells, are regulated by factors specific to each gene in concert with its surrounding cellular and genomic environment. Lentiviruses such as HIV integrate their genomes into semi-random genomic locations in the cells they infect, and the resulting viral gene expression provides a natural system to dissect the contributions of genomic environment to transcriptional regulation. Previously, we showed that expression heterogeneity and its modulation by specific host factors at HIV integration sites are key determinants of infected-cell fate and a possible source of latent infections. Here, we assess the integration context dependence of expression heterogeneity from diverse single integrations of a HIV-promoter/GFP-reporter cassette in Jurkat T-cells. Systematically fitting a stochastic model of gene expression to our data reveals an underlying transcriptional dynamic, by which multiple transcripts are produced during short, infrequent bursts, that quantitatively accounts for the wide, highly skewed protein expression distributions observed in each of our clonal cell populations. Interestingly, we find that the size of transcriptional bursts is the primary systematic covariate over integration sites, varying from a few to tens of transcripts across integration sites, and correlating well with mean expression. In contrast, burst frequencies are scattered about a typical value of several per cell-division time and demonstrate little correlation with the clonal means. This pattern of modulation generates consistently noisy distributions over the sampled integration positions, with large expression variability relative to the mean maintained even for the most productive integrations, and could contribute to specifying heterogeneous, integration-site-dependent viral production patterns in HIV-infected cells. Genomic environment thus emerges as a significant control parameter for gene expression

  18. Ion Acoustic Wave Frequencies and Onset Times During Type 3 Solar Radio Bursts

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Robinson, P. A.

    1995-01-01

    Conflicting interpretations exist for the low-frequency ion acoustic (S) waves often observed by ISEE 3 in association with intense Langmuir (L) waves in the source regions of type III solar radio bursts near 1 AU. Two indirect lines of observational evidence, as well as plasma theory, suggest they are produced by the electrostatic (ES) decay L yields L(PRIME) + S. However, contrary to theoretical predictions, an existing analysis of the wave frequencies instead favors the electromagnetic (EM) decays L yields T + S, where T denotes an EM wave near the plasma frequency. This conflict is addressed here by comparing the observed wave frequencies and onset times with theoretical predictions for the ES and EM decays, calculated using the time-variable electron beam and magnetic field orientation data, rather than the nominal values used previously. Field orientation effects and beam speed variations are shown analytically to produce factor-of-three effects, greater than the difference in wave frequencies predicted for the ES and EM decays; effects of similar magnitude occur in the events analyzed here. The S-wave signals are extracted by hand from a sawtooth noise background, greatly improving the association between S waves and intense L waves. Very good agreement exists between the time-varying predictions for the ES decay and the frequencies of most (but not all) wave bursts. The waves occur only after the ES decay becomes kinematically allowed, which is consistent with the ES decay proceeding and producing most of the observed signals. Good agreement exists between the EM decay's predictions and a significant fraction of the S-wave observations while the EM decay is kinematically allowed. The wave data are not consistent, however, with the EM decay being the dominant nonlinear process. Often the observed waves are sufficiently broadband to overlap simultaneously the frequency ranges predicted for the ES and EM decays. Coupling the dominance of the ES decay with this

  19. FREQUENCY DEPENDENCE OF POLARIZATION OF ZEBRA PATTERN IN TYPE-IV SOLAR RADIO BURSTS

    SciTech Connect

    Kaneda, Kazutaka; Misawa, H.; Tsuchiya, F.; Obara, T.; Iwai, K.

    2015-08-01

    We investigated the polarization characteristics of a zebra pattern (ZP) in a type-IV solar radio burst observed with AMATERAS on 2011 June 21 for the purpose of evaluating the generation processes of ZPs. Analyzing highly resolved spectral and polarization data revealed the frequency dependence of the degree of circular polarization and the delay between two polarized components for the first time. The degree of circular polarization was 50%–70% right-handed and it varied little as a function of frequency. Cross-correlation analysis determined that the left-handed circularly polarized component was delayed by 50–70 ms relative to the right-handed component over the entire frequency range of the ZP and this delay increased with the frequency. We examined the obtained polarization characteristics by using pre-existing ZP models and concluded that the ZP was generated by the double-plasma-resonance process. Our results suggest that the ZP emission was originally generated in a completely polarized state in the O-mode and was partly converted into the X-mode near the source. Subsequently, the difference between the group velocities of the O-mode and X-mode caused the temporal delay.

  20. Bursts of high-frequency synchronized electrical activity in the dog neocortex during food-related operant conditioning.

    PubMed

    Dumenko, V N; Kozlov, M K

    1998-01-01

    Bursts of high-frequency (HF, 80-90 Hz, 70-80 microV) oscillations in the electrical activity (EA, 1-200 Hz) of the dog neocortex were studied during operant conditioning. These bursts of HF oscillations appeared in the EA of interstimulus intervals at the generalization stage on a background of dominant oscillations of lower frequency and amplitude (10-40 microV). Use of a new strategy for primary analysis of EA production (specifically, a coefficient of inhomogeneity) allowed amplitude-frequency inhomogeneity of the EA to be estimated, with isolation of bursts of HF oscillations. Use of an original nonharmonic analysis, consisting of expansion of EA waves into a system of half-waves which were used to construct distribution maps, revealed the regional properties of bursts of HF oscillations. The results of these investigations supplement previous data obtained using other methodological approaches (Fourier transformation and spectral density factor analysis). The properties of bursts of HF oscillations observed here provide evidence for the differential involvement of cortical areas (even close-lying areas separated by distances of 3-5 mm) in the spatial-temporal organization of potentials typical of this conditioning paradigm.

  1. Mitigation of impedance changes due to electroporation therapy using bursts of high-frequency bipolar pulses

    PubMed Central

    2015-01-01

    Background For electroporation-based therapies, accurate modeling of the electric field distribution within the target tissue is important for predicting the treatment volume. In response to conventional, unipolar pulses, the electrical impedance of a tissue varies as a function of the local electric field, leading to a redistribution of the field. These dynamic impedance changes, which depend on the tissue type and the applied electric field, need to be quantified a priori, making mathematical modeling complicated. Here, it is shown that the impedance changes during high-frequency, bipolar electroporation therapy are reduced, and the electric field distribution can be approximated using the analytical solution to Laplace's equation that is valid for a homogeneous medium of constant conductivity. Methods Two methods were used to examine the agreement between the analytical solution to Laplace's equation and the electric fields generated by 100 µs unipolar pulses and bursts of 1 µs bipolar pulses. First, pulses were applied to potato tuber tissue while an infrared camera was used to monitor the temperature distribution in real-time as a corollary to the electric field distribution. The analytical solution was overlaid on the thermal images for a qualitative assessment of the electric fields. Second, potato ablations were performed and the lesion size was measured along the x- and y-axes. These values were compared to the analytical solution to quantify its ability to predict treatment outcomes. To analyze the dynamic impedance changes due to electroporation at different frequencies, electrical impedance measurements (1 Hz to 1 MHz) were made before and after the treatment of potato tissue. Results For high-frequency bipolar burst treatment, the thermal images closely mirrored the constant electric field contours. The potato tissue lesions differed from the analytical solution by 39.7 ± 1.3 % (x-axis) and 6.87 ± 6.26 % (y-axis) for conventional unipolar pulses

  2. Low-frequency analog signal distribution on digital photonic networks by optical delta-sigma modulation

    NASA Astrophysics Data System (ADS)

    Kanno, Atsushi; Kawanishi, Tetsuya

    2013-12-01

    We propose a delta-sigma modulation scheme for low- and medium-frequency signal transmission in a digital photonic network system. A 10-Gb/s-class optical transceiver with a delta-sigma modulator utilized as a high-speed analog-to-digital converter (ADC) provides a binary optical signal. On the signal reception side, a low-cost and slow-speed photonic receiver directly converts the binary signal into an analog signal at frequencies from several hundreds of kilohertz several tens of megahertz. Further, by using a clock and data recovery circuit at the receiver to reduce jitters, the single-sideband phase noise of the generated signals can be significantly reduced.

  3. Improved dichotomous search frequency offset estimator for burst-mode continuous phase modulation

    NASA Astrophysics Data System (ADS)

    Zhai, Wen-Chao; Li, Zan; Si, Jiang-Bo; Bai, Jun

    2015-11-01

    A data-aided technique for carrier frequency offset estimation with continuous phase modulation (CPM) in burst-mode transmission is presented. The proposed technique first exploits a special pilot sequence, or training sequence, to form a sinusoidal waveform. Then, an improved dichotomous search frequency offset estimator is introduced to determine the frequency offset using the sinusoid. Theoretical analysis and simulation results indicate that our estimator is noteworthy in the following aspects. First, the estimator can operate independently of timing recovery. Second, it has relatively low outlier, i.e., the minimum signal-to-noise ratio (SNR) required to guarantee estimation accuracy. Finally, the most important property is that our estimator is complexity-reduced compared to the existing dichotomous search methods: it eliminates the need for fast Fourier transform (FFT) and modulation removal, and exhibits faster convergence rate without accuracy degradation. Project supported by the National Natural Science Foundation of China (Grant No. 61301179), the Doctorial Programs Foundation of the Ministry of Education, China (Grant No. 20110203110011), and the Programme of Introducing Talents of Discipline to Universities, China (Grant No. B08038).

  4. Two-frequency /Delta k/ microwave scatterometer measurements of ocean wave spectra from an aircraft

    NASA Technical Reports Server (NTRS)

    Johnson, J. W.; Jones, W. L.; Weissman, D. E.

    1981-01-01

    A technique for remotely sensing the large-scale gravity wave spectrum on the ocean surface using a two frequency (Delta k) microwave scatterometer has been demonstrated from stationary platforms and proposed from moving platforms. This measurement takes advantage of Bragg type resonance matching between the electromagnetic wavelength at the difference frequency and the length of the large-scale surface waves. A prominent resonance appears in the cross product power spectral density (PSD) of the two backscattered signals. Ku-Band aircraft scatterometer measurements were conducted by NASA in the North Sea during the 1979 Maritime Remote Sensing (MARSEN) experiment. Typical examples of cross product PSD's computed from the MARSEN data are presented. They demonstrate strong resonances whose frequency and bandwidth agree with the surface characteristics and the theory. Directional modulation spectra of the surface reflectivity are compared to the gravity wave spectrum derived from surface truth measurements.

  5. "Burst-like" Characteristics of the delta/alpha-prime Phase Transformation in Pu-Ga Alloys

    SciTech Connect

    Blobaum, K; Krenn, C; Haslam, J; Wall, M; Schwartz, A

    2003-11-10

    The {delta} to {alpha}' phase transformation in Pu-Ga alloys is intriguing for both scientific and technological reasons. On cooling, the ductile fcc d-phase transforms martensitically to the brittle monoclinic {alpha}'-phase at approximately -120 C (depending on composition). This exothermic transformation involves a 20% volume contraction and a significant increase in resistivity. The reversion of {alpha}' to {delta} involves a large temperature hysteresis beginning just above room temperature. In an attempt to better understand the underlying thermodynamics and kinetics responsible for these unusual features, we examined the {delta}/{alpha}' transformations in a 0.6 wt% Pu-Ga alloy using differential scanning calorimetry (DSC) and resistometry. Both techniques indicate that the martensite start temperature is -120 C and the austenite start temperature is 35 C. The heat of transformation is approximately 3 kJ/mole. During the {alpha}' {yields} {delta} reversion, ''spikes'' and ''steps'' are observed in DSC and resistometry scans, respectively. These spikes and steps are periodic, and their periodicity with respect to temperature does not vary with heating rate. With an appropriate annealing cycle, including a ''rest'' at room temperature, these spikes and steps can be reproduced through many thermal cycles of a single sample.

  6. A HIGH-FREQUENCY TYPE II SOLAR RADIO BURST ASSOCIATED WITH THE 2011 FEBRUARY 13 CORONAL MASS EJECTION

    SciTech Connect

    Cho, K.-S.; Kim, R.-S.; Gopalswamy, N.; Kwon, R.-Y.; Yashiro, S.

    2013-03-10

    We examine the relationship between the high-frequency (425 MHz) type II radio burst and the associated white-light coronal mass ejection (CME) that occurred on 2011 February 13. The radio burst had a drift rate of 2.5 MHz s{sup -1}, indicating a relatively high shock speed. From SDO/AIA observations we find that a loop-like erupting front sweeps across high-density coronal loops near the start time of the burst (17:34:17 UT). The deduced distance of shock formation (0.06 Rs) from the flare center and speed of the shock (1100 km s{sup -1}) using the measured density from SDO/AIA observations are comparable to the height (0.05 Rs, from the solar surface) and speed (700 km s{sup -1}) of the CME leading edge observed by STEREO/EUVI. We conclude that the type II burst originates even in the low corona (<59 Mm or 0.08 Rs, above the solar surface) due to the fast CME shock passing through high-density loops.

  7. Delta-sarcoglycan gene polymorphism frequency in Amerindian and Mestizo populations of Mexico.

    PubMed

    Ordoñez-Razo, Rosa María; Canizales-Quinteros, Samuel; Rodríguez-Cruz, Maricela; Peñaloza, Rosenda; Minauro-Sanmiguel, Fernando; Canto-Cetina, Thelma; Canto, Patricia; Coral-Vázquez, Ramón; Salamanca-Gómez, Fabio

    2010-04-01

    Mutations on the delta-sarcoglycan gene have been associated with the development of both hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy. Recently, the polymorphism c.-94C>G was associated with HCM in Japanese patients. The aim of our study was to evaluate the frequency of c.-94C>G polymorphism in Mexican-Amerindian and Mexican-Mestizo populations. We analyzed the frequency of this polymorphism in 165 Mexican-Amerindian individuals (23 Triquis, 25 Zapotecos, 24 Mayas, 41 Nahuas, and 52 Mixtecos) and 100 unrelated Mexican-Mestizos. Allele frequencies were similar in all Amerindian groups (0.33 Triquis, 0.54 Zapotecos, 0.54 Mayas, 0.46 Nahuas, and 0.49 Mixtecos). When compared with Mexican-Mestizos, only Triquis were different (p = 0.00742). However, when comparing the total sample of the Amerindian population with the Mestizos, the difference was not significant (p = 0.12225). Allele frequencies of Mexican populations were higher than in Asians and less than African and European populations (p < 0.05). These data show that the distribution of the C allele is higher in Mexican populations studied and consequently it is necessary to define if this may be associated with genetic susceptibility for HCM in the Mexican patients.

  8. The low-high-low trend of type III radio burst starting frequencies and solar flare hard X-rays

    NASA Astrophysics Data System (ADS)

    Reid, Hamish A. S.; Vilmer, Nicole; Kontar, Eduard P.

    2014-07-01

    Aims: Using simultaneous X-ray and radio observations from solar flares, we investigate the link between the type III radio burst starting frequency and hard X-ray spectral index. For a proportion of events the relation derived between the starting height (frequency) of type III radio bursts and the electron beam velocity spectral index (deduced from X-rays) is used to infer the spatial properties (height and size) of the electron beam acceleration region. Both quantities can be related to the distance travelled before an electron beam becomes unstable to Langmuir waves. Methods: To obtain a list of suitable events we considered the RHESSI catalogue of X-ray flares and the Phoenix 2 catalogue of type III radio bursts. From the 200 events that showed both type III and X-ray signatures, we selected 30 events which had simultaneous emission in both wavelengths, good signal to noise in the X-ray domain and >20 s duration. Results: We find that >50% of the selected events show a good correlation between the starting frequencies of the groups of type III bursts and the hard X-ray spectral indices. A low-high-low trend for the starting frequency of type III bursts is frequently observed. Assuming a background electron density model and the thick target approximation for X-ray observations, this leads to a correlation between starting heights of the type III emission and the beam electron spectral index. Using this correlation we infer the altitude and vertical extents of the flare acceleration regions. We find heights from 183 Mm down to 25 Mm while the sizes range from 13 Mm to 2 Mm. These values agree with previous work that places an extended flare acceleration region high in the corona. We also analyse the assumptions that are required to obtain our estimates and explore possible extensions to our assumed model. We discuss these results with respect to the acceleration heights and sizes derived from X-ray observations alone. Appendices are available in electronic form

  9. Light Echos in Kerr Geometry: A Source of High Frequency QPOs from Random X-ray Bursts

    NASA Technical Reports Server (NTRS)

    Fukumura, K.; Kazanas, D.

    2008-01-01

    We propose that high frequency quasi-periodic oscillations (HFQPOs) can be produced from randomly-formed X-ray bursts (flashes) by plasma interior to the ergosphere of a rapidly-rotating black hole. We show by direct computation of their orbits that the photons comprising the observed X-ray light curves, if due to a multitude of such flashes, are affected significantly by the black hole's dragging of inertial frames; the photons of each such burst arrive to an observer at infinity in multiple (double or triple), distinct 'bunches' separated by a roughly constant time lag of t/M approximately equal to 14, regardless of the bursts' azimuthal position. We argue that every other such 'bunch' represents photons that follow trajectories with an additional orbit around the black hole at the photon circular orbit radius (a photon 'echo'). The presence of this constant lag in the response function of the system leads to a QPO feature in its power density spectra, even though the corresponding light curve consists of a totally stochastic signal. This effect is by and large due to the black hole spin and is shown to gradually diminish as the spin parameter a decreases or the radial position of the burst moves outside the static limit surface (ergosphere). Our calculations indicate that for a black hole with Kerr parameter of a/M=0.99 and mass of M=10*Msun the QPO is expected at a frequency of approximately 1.3-1.4 kHz. We discuss the plausibility and observational implications of our model/results as well as its limitations.

  10. Latency of tone-burst-evoked auditory brain stem responses and otoacoustic emissions: Level, frequency, and rise-time effects

    PubMed Central

    Rasetshwane, Daniel M.; Argenyi, Michael; Neely, Stephen T.; Kopun, Judy G.; Gorga, Michael P.

    2013-01-01

    Simultaneous measurement of auditory brain stem response (ABR) and otoacoustic emission (OAE) delays may provide insights into effects of level, frequency, and stimulus rise-time on cochlear delay. Tone-burst-evoked ABRs and OAEs (TBOAEs) were measured simultaneously in normal-hearing human subjects. Stimuli included a wide range of frequencies (0.5–8 kHz), levels (20–90 dB SPL), and tone-burst rise times. ABR latencies have orderly dependence on these three parameters, similar to previously reported data by Gorga et al. [J. Speech Hear. Res. 31, 87–97 (1988)]. Level dependence of ABR and TBOAE latencies was similar across a wide range of stimulus conditions. At mid-frequencies, frequency dependence of ABR and TBOAE latencies were similar. The dependence of ABR latency on both rise time and level was significant; however, the interaction was not significant, suggesting independent effects. Comparison between ABR and TBOAE latencies reveals that the ratio of TBOAE latency to ABR forward latency (the level-dependent component of ABR total latency) is close to one below 1.5 kHz, but greater than two above 1.5 kHz. Despite the fact that the current experiment was designed to test compatibility with models of reverse-wave propagation, existing models do not completely explain the current data. PMID:23654387

  11. Evidence for Harmonic Content and Frequency Evolution of Oscillations During the Rising Phase of X-ray Bursts From 4U 1636-536

    NASA Technical Reports Server (NTRS)

    Bgattacharyya, Sudip; Strohmayer, E.

    2005-01-01

    We report on a study of the evolution of burst oscillation properties during the rising phase of X-ray bursts from 4U 1636-536 observed with the proportional counter array (PCA) on board the Rossi X-Ray Timing Explorer (RXTE) . We present evidence for significant harmonic structure of burst oscillation pulses during the early rising phases of bursts. This is the first such detection in burst rise oscillations, and is very important for constraining neutron star structure parameters and the equation of state models of matter at the core of a neutron star. The detection of harmonic content only during the initial portions of the burst rise is consistent with the theoretical expectation that with time the thermonuclear burning region becomes larger, and hence the fundamental and harmonic amplitudes both diminish. We also find, for the first time from this source, strong evidence of oscillation frequency increase during the burst rise. The timing behavior of harmonic content, amplitude, and frequency of burst rise oscillations may be important in understanding the spreading of thermonuclear flames under the extreme physical conditions on neutron star surfaces.

  12. Direction of Arrival Measurements of Auroral Medium Frequency Burst Radio Emissions at Toolik Lake, AK

    NASA Astrophysics Data System (ADS)

    Bunch, N. L.; Labelle, J. W.; Hughes, J. M.; Weatherwax, A. T.; Ye, S.; Lummerzheim, D.

    2007-12-01

    MF burst is an impulsive radio emission of auroral origin detected by ground-based instruments approximately between 1,300 and 3,700 kHz, and associated with substorm onsets. Its exact generation mechanism is unknown, though it has been speculated that it arises from mode conversion radiation. To discover the generation mechanism and the relation of MF burst to auroral processes, Dartmouth has deployed radio interferometers in Alaska, Northern Canada, Greenland, and Antarctica, including a three-element interferometer deployed at Toolik Lake Field Station in Alaska in 2006. This instrument measured spectra, amplitudes, and directions of arrival (DOA's) of over 47 MF burst events occurring between November 30, 2006 and May 26, 2007. These represent the first DOA measurements ever reported for the impulsive MF burst phenomenon. Preliminary analysis shows that the events originated from a wide range of directions in the sky, with all azimuths represented in the distribution of DOA's. The DOA of each individual event is well-defined, however. Many events show apparent motion, with southward motions more common than northward among the subset of events analyzed so far. Some of the events were detected simultaneously on an interferometer deployed at Kaktovik, Alaska, 400 km away. The all-sky imager at Toolik Lake was also operational for some events. Further analysis of these data promises to reveal first information about the locations and motions of MF burst sources, a first step towards discovering the generation mechanism of this mysterious radio emission and its relation to auroral processes.

  13. Frequency of the CCR5-delta32 allele in Brazilian populations: A systematic literature review and meta-analysis.

    PubMed

    Silva-Carvalho, Wlisses Henrique Veloso; de Moura, Ronald Rodrigues; Coelho, Antonio Victor Campos; Crovella, Sergio; Guimarães, Rafael Lima

    2016-09-01

    The CCR5 is a chemokine receptor widely expressed by several immune cells that are engaged in inflammatory responses. Some populations have individuals exhibiting a 32bp deletion in the CCR5 gene (CCR5-delta32) that produces a truncated non-functional protein not expressed on the cell surface. This polymorphism, known to be associated with susceptibility to infectious and inflammatory diseases, such as osteomyelitis, pre-eclampsia, systemic lupus erythematous, juvenile idiopathic arthritis, rheumatoid arthritis and HIV/AIDS, is more commonly found in European populations with average frequency of 10%. However, it is also possible to observe a significant frequency in other world populations, such as the Brazilian one. We performed a systematic review and meta-analysis of CCR5-delta32 genetic association studies in Brazilian populations throughout the country to estimate the frequency of this polymorphism. We also compared CCR5-delta32 frequencies across Brazilian regions. The systematic literature reviewed studies involving delta32 allele in Brazilian populations published from 1995 to 2015. Among the reviewed literature, 25 studies including 30 Brazilian populations distributed between the North, Northeast, South and Southeast regions were included in our meta-analysis. We observed an overall allelic frequency of 4% (95%-CI, 0.03-0.05), that was considered moderate and, notably, higher than some European populations, such as Cyprus (2.8%), Italy (3%) and Greece (2.4%). Regarding the regional frequency comparisons between North-Northeast (N-NE) and South-Southeast (S-SE) regions, we observed an allelic frequency of 3% (95%-CI, 0.02-0.04) and 4% (95%-CI, 0.03-0.05), respectively. The populations from S-SE regions had a slightly higher CCR5-delta32 frequency than N-NE regions (OR=1.41, p=0.002). Although there are several studies about the CCR5-delta32 polymorphism and its effect on the immune response of some infectious diseases, this report is the first meta

  14. A combined quality-control methodology in Ebro Delta (NE Spain) high frequency radar system

    NASA Astrophysics Data System (ADS)

    Lorente, P.; Piedracoba, S.; Soto-Navarro, J.; Alvarez-Fanjul, E.

    2015-08-01

    Ebro River Delta is a relevant marine protected area in the western Mediterranean. In order to promote the conservation of its ecosystem and support operational decision making in this sensitive area, a three site standard-range (13.5 MHz) CODAR SeaSonde High Frequency (HF) radar was deployed in 2013. Since there is a growing demand for reliable HF radar surface current measurements, the main goal of this work is to present a combined quality control methodology. Firstly, one year-long (2014) real-time web monitoring of nonvelocity-based diagnostic parameters is conducted in order to infer both radar site status and HF radar system performance. Signal-to-noise ratio at the monopole exhibited a consistent monthly evolution although some abrupt decreases (below 10 dB), occasionally detected in June for one of the radar sites, impacted negatively on the spatiotemporal coverage of total current vectors. It seemed to be a sporadic episode since radar site overall performance was found to be robust during 2014. Secondly, a validation of HF radar data with independent in situ observations from a moored current meter was attempted for May-October 2014. The accuracy assessment of radial and total vectors revealed a consistently high agreement. The directional accuracy of the HF radar was rated at better than 8°. The correlation coefficient and RMSE values emerged in the ranges 0.58-0.83 and 4.02-18.31 cm s-1, respectively. The analysis of the monthly averaged current maps for 2014 showed that the HF radar properly represented basic oceanographic features previously reported, namely: the predominant southwestward flow, the coastal clockwise eddy confined south of Ebro Delta mouth or the Ebro River impulsive-type freshwater discharge. Future works should include the use of verified HF radar data for the rigorous skill assessment of operational ocean circulation systems currently running in Ebro estuarine region like MyOcean IBI.

  15. A new class of solar burst with MM-wave emission but only at the highest frequency (90 GHz)

    NASA Technical Reports Server (NTRS)

    Kaufmann, P.; Correia, E.; Costa, J. E. R.; Vaz, A. M. Z.; Dennis, B. R.

    1984-01-01

    High sensitivity and high time resolution solar observations at 90 GHz (lambda = 3.3 mm) have identified a unique impulsive burst on May 21, 1984 with emission that was more intense at this frequency than at lower frequencies. The first major time structure of the burst was over 10 times more intense at 90 GHz than at 30 GHz, 7 GHz, or 2.8 GHz.Only 6 seconds later, the 30 GHz impulsive structures started to be observed but still with lower intensity than at 90 GHz. Hard X-ray time structures at energies above 25 keV were almost identical to the 90 GHZ structures (to better than one second). All 90 GHz major time structures consisted of trains of multiple subsecond pulses with rise times as short as 0.03 sec and amplitudes large compared to the mean flux. When detectable, the 30 GHz subsecond pulses had smaller relative amplitude and were in phase with the corresponding 90 GHz pulses.

  16. The effect of signal-temporal uncertainty on detection in bursts of noise or a random-frequency complex

    PubMed Central

    Bonino, Angela Yarnell; Leibold, Lori J.

    2008-01-01

    This study examined the effect of signal-temporal uncertainty on detection of a 120-ms, 1-kHz tone in the presence of a continuous sequence of 120-ms bursts of either a broadband noise or a random-frequency, two-tone complex. Using the method of constant stimuli, signal-temporal uncertainty was defined as the difference in threshold across temporally uncertain and temporally defined listening conditions. Results indicted an average effect of signal-temporal uncertainty of 2 dB for the noise masker compared to 9 dB for the random-frequency, two-tone masker. These results suggest that signal-temporal uncertainty may be more detrimental for conditions in which informational masking dominates performance. PMID:19045685

  17. High frequency burst firing of granule cells ensures transmission at the parallel fiber to purkinje cell synapse at the cost of temporal coding.

    PubMed

    van Beugen, Boeke J; Gao, Zhenyu; Boele, Henk-Jan; Hoebeek, Freek; De Zeeuw, Chris I

    2013-01-01

    Cerebellar granule cells (GrCs) convey information from mossy fibers (MFs) to Purkinje cells (PCs) via their parallel fibers (PFs). MF to GrC signaling allows transmission of frequencies up to 1 kHz and GrCs themselves can also fire bursts of action potentials with instantaneous frequencies up to 1 kHz. So far, in the scientific literature no evidence has been shown that these high-frequency bursts also exist in awake, behaving animals. More so, it remains to be shown whether such high-frequency bursts can transmit temporally coded information from MFs to PCs and/or whether these patterns of activity contribute to the spatiotemporal filtering properties of the GrC layer. Here, we show that, upon sensory stimulation in both un-anesthetized rabbits and mice, GrCs can show bursts that consist of tens of spikes at instantaneous frequencies over 800 Hz. In vitro recordings from individual GrC-PC pairs following high-frequency stimulation revealed an overall low initial release probability of ~0.17. Nevertheless, high-frequency burst activity induced a short-lived facilitation to ensure signaling within the first few spikes, which was rapidly followed by a reduction in transmitter release. The facilitation rate among individual GrC-PC pairs was heterogeneously distributed and could be classified as either "reluctant" or "responsive" according to their release characteristics. Despite the variety of efficacy at individual connections, grouped activity in GrCs resulted in a linear relationship between PC response and PF burst duration at frequencies up to 300 Hz allowing rate coding to persist at the network level. Together, these findings support the hypothesis that the cerebellar granular layer acts as a spatiotemporal filter between MF input and PC output (D'Angelo and De Zeeuw, 2009). PMID:23734102

  18. High frequency burst firing of granule cells ensures transmission at the parallel fiber to purkinje cell synapse at the cost of temporal coding.

    PubMed

    van Beugen, Boeke J; Gao, Zhenyu; Boele, Henk-Jan; Hoebeek, Freek; De Zeeuw, Chris I

    2013-01-01

    Cerebellar granule cells (GrCs) convey information from mossy fibers (MFs) to Purkinje cells (PCs) via their parallel fibers (PFs). MF to GrC signaling allows transmission of frequencies up to 1 kHz and GrCs themselves can also fire bursts of action potentials with instantaneous frequencies up to 1 kHz. So far, in the scientific literature no evidence has been shown that these high-frequency bursts also exist in awake, behaving animals. More so, it remains to be shown whether such high-frequency bursts can transmit temporally coded information from MFs to PCs and/or whether these patterns of activity contribute to the spatiotemporal filtering properties of the GrC layer. Here, we show that, upon sensory stimulation in both un-anesthetized rabbits and mice, GrCs can show bursts that consist of tens of spikes at instantaneous frequencies over 800 Hz. In vitro recordings from individual GrC-PC pairs following high-frequency stimulation revealed an overall low initial release probability of ~0.17. Nevertheless, high-frequency burst activity induced a short-lived facilitation to ensure signaling within the first few spikes, which was rapidly followed by a reduction in transmitter release. The facilitation rate among individual GrC-PC pairs was heterogeneously distributed and could be classified as either "reluctant" or "responsive" according to their release characteristics. Despite the variety of efficacy at individual connections, grouped activity in GrCs resulted in a linear relationship between PC response and PF burst duration at frequencies up to 300 Hz allowing rate coding to persist at the network level. Together, these findings support the hypothesis that the cerebellar granular layer acts as a spatiotemporal filter between MF input and PC output (D'Angelo and De Zeeuw, 2009).

  19. Gamma-ray burst constraints on the galactic frequency of extrasolar Oort Clouds

    NASA Technical Reports Server (NTRS)

    Shull, J. Michael; Stern, S. Alan

    1995-01-01

    With the strong Compton Gamma-Ray Observatory/Burst and Transient Source Experiment (CGRO/BATSE) evidence that most gamma-ray bursts do not come from galactic neutron stars, models involving the accretion of a comet onto a neutron star (NS) no longer appear to be strong contenders for explaining the majority of bursts. If this is the case, then it is worth asking whether the lack of an observed galactic gamma-ray burst population provides a useful constraint on the number of comets and comet clouds in the galaxy. Owing to the previously unrecognized structural weakness of cometary nuclei, we find the capture cross sections for comet-NS events to be much higher than previously published estimates, with tidal breakup at distances R(sub b) approx. equals 4 x 10(exp 10) cm from the NS. As a result, impacts of comets onto field NSs penetrating the Oort Clouds of other stars are found to dominate all other galactic NS-comet capture rates by a factor of 100. This in turn predicts that if comet clouds are common, there should be a significant population of repeater sources with (1) a galactic distribution, (2) space-correlated repetition, and (3) a wide range of peak luminosities and luminosity time histories. If all main sequence stars have Oort Clouds like our own, we predict approximately 4000 such repeater sources in the Milky Way at any time, each repeating on time scales of months to years. Based on estimates of the sensitivity of the CGRO/BATSE instrument and assuming isotropic gamma-ray beaming from such events, we estimate that a population of approximately 20-200 of these galactic NS-Oort Cloud gamma-ray repeater sources should be detectable by CGRO. In addition, if giant planet formation is common in the galaxy, we estimate that the accretion of isolated comets injected to the interstellar medium by giant planet formation should produce an additional source of galactic, nonrepeating, events. Comparing these estimates to the 3-4 soft gamma-ray repeater sources

  20. GEOTAIL and POLAR Observations of Auroral Kilometric Radiation and Terrestrial Low Frequency Bursts and their Relationship to Energetic Particles, Auroras, and Other Substorm Phenomena

    NASA Technical Reports Server (NTRS)

    Anderson, R . R.; Gurnett, D. A.; Frank, L. A.; Thomsen, Michelle F.; Parks, G. K.; Brittnacher, M. J.; Spann, James F., Jr.; Imhoff, W. L.; Mobilia, J. H.

    1999-01-01

    Terrestrial low frequency (LF) bursts are plasma wave phenomena that appear to be a part of the low frequency end of the auroral kilometric radiation (AKR) spectrum and are observed during strong substorms, GEOTAIL and POLAR plasma wave observations from within the magnetosphere show that the AKR increases in intensity and its lower frequency limits decrease when LF bursts are observed. The first is expected as it is shows substorm onset and the latter indicates that the AKR source region is expanding to higher altitudes. Images from the POLAR VIS Earth Camera operating in the far-UV range and the POLAR UVI experiment usually feature an auroral brightening and an expansion of the aurora to higher latitudes at the time of the LF bursts. Enhanced fluxes of X-rays from precipitating electrons have also been observed by POLAR PIXIE. High resolution ground Abstract: magnetometer data from the CANOPUS and IMAGE networks show that the LF bursts occur when the expansive phase onset signatures are most intense. The ground magnetometer data and the CANOPUS meridian scanning photometer data sometimes show that during the LF burst events the expansive phase onset starts at unusually low latitudes and moves poleward. Large injections of energetic protons and electrons have also been detected by the GOES and LANL geosynchronous satellites during LF burst events. While most of the auroral brightenings and energetic particle injections associated with the LF bursts occur near local midnight, several have been observed as early as mid-afternoon. From these various measurements, we are achieving a better understanding of the plasma and particle motions during substorms that are associated with the generation and propagation of terrestrial LF bursts

  1. Gamma-ray burst constraints on the galactic frequency of extra-solar Oort clouds

    NASA Technical Reports Server (NTRS)

    Shull, J. Michael; Stern, S. Alan

    1994-01-01

    With the strong CGRO/BATSE evidence that most gamma-ray bursts do not come from galactic neutron stars, models involving the accretion of a comet onto a neutron star (NS) no longer appear to be strong contenders for explaining the majority of bursts. If this is the case, then it is worth asking whether the lack of an observed galactic gamma-ray burst population provides a useful constraint on the number of comets and comet clouds in the galaxy. Owing to the previously unrecognized structural weakness of cometary nuclei, we find the capture cross sections for comet-NS events to be much higher than previously published estimates, with tidal breakup at distances R(sub b) approximately equals to 4 x 10(exp 10) cm from the NS. As a result, impacts of comets onto field NS's penetrating the Oort Clouds of other stars are found to dominate all other galactic NS-comet capture rates by a factor of 100. This in turn predicts that if comet clouds are common, there should be a significant population of repeater sources with (1) a galactic distribution, (2) space-correlated repetition, and (3) a wide range of peak luminosities and luminosity time histories. If all main sequences stars have Oort Clouds like our own, we predict approximately 4000 such repeater sources in the Milky Way at any time, each repeating on timescales of months to years. Based on estimates of the sensitivity of the CGRO/BATSE instrument and assuming isotropic gamma-ray beaming from such events, we estimate that a population of approximately 20-200 of these galactic NS-Oort Cloud gamma-ray repeater sources should be detectable by CGRO. In addition, if giant planet formation is common in the galaxy, we estimate that the accretion of isolated comets injected to the interstellar medium by giant planet formation should produce an additional source of galactic, nonrepeating events. Comparing these estimates to the three to four soft gamma-ray repeater sources detected by BATSE, one is forced to conclude that (1

  2. Time-Frequency Theta and Delta Measures Index Separable Components of Feedback Processing in a Gambling Task

    PubMed Central

    Bernat, Edward M.; Nelson, Lindsay D.; Baskin-Sommers, Arielle R.

    2014-01-01

    Previous work using gambling tasks indicate that the feedback negativity (FN) reflects primary or salient stimulus attributes (often gain vs. loss), whereas the feedback-P300 appears sensitive to secondary stimulus information. A recent time-frequency approach has characterized separable theta (3–7 Hz) and delta (0–3 Hz) feedback processes, independently sensitive to primary feedback attributes, specifically loss and gain outcomes respectively (Bernat et al., 2011). The current study extends this time-frequency work to evaluate both primary and secondary (relative outcome and outcome magnitude) feedback attributes. Consistent with previous reports, theta indexed an initial, lower-level response sensitive to the primary (most salient) feedback attributes (specifically losses), while delta was sensitive to both primary attributes (specifically gains) and assessed secondary stimulus features. PMID:25581491

  3. A search for Fermi bursts associated with supernovae and their frequency of occurrence

    NASA Astrophysics Data System (ADS)

    Kovacevic, M.; Izzo, L.; Wang, Y.; Muccino, M.; Della Valle, M.; Amati, L.; Barbarino, C.; Enderli, M.; Pisani, G. B.; Li, L.

    2014-09-01

    Context. Observations suggest that most long duration gamma-ray bursts (GRBs) are connected with broad-line supernovae Ib/c, (SNe-Ibc). The presence of GRB-SNe is revealed by rebrightenings emerging from the optical GRB afterglow 10-15 days, in the rest-frame of the source, after the prompt GRB emission. Aims: Fermi/GBM has a field of view (FoV) about 6.5 times larger than the FoV of Swift, therefore we expect that a number of GRB-SN connections have been missed because of lack of optical and X-ray instruments on board of Fermi, which are essential for revealing SNe associated with GRBs. This has motivated our search in the Fermi catalog for possible GRB-SN events. Methods: The search for possible GRB-SN associations follows two requirements: (1) SNe should fall inside the Fermi/GBM error box of the considered long GRB, and (2) this GRB should occur within 20 days before the SN event. Results: We have found five cases within z< 0.2 fulfilling the above reported requirements. One of them, GRB 130702A-SN 2013dx, was already known to have a GRB-SN association. We have analyzed the remaining four cases and we have concluded that three of them are, very likely, just random coincidences due to the Fermi/GBM large error box associated with each GRB detection. We found one GRB possibly associated with a SN 1998bw-like source, GRB 120121B/SN 2012ba. Conclusions: The very low redshift of GRB 120121B/SN 2012ba (z = 0.017) implies a low isotropic energy of this burst (Eiso = 1.39 × 1048) erg. We then compute the rate of Fermi low-luminosity GRBs connected with SNe to be ρ0,b ≤ 770 Gpc-3 yr-1. We estimate that Fermi/GBM could detect 1-4 GRBs-SNe within z ≤ 0.2 in the next 4 years.

  4. Frequencies of 32 base pair deletion of the (Delta 32) allele of the CCR5 HIV-1 co-receptor gene in Caucasians: a comparative analysis.

    PubMed

    Lucotte, Gérard

    2002-05-01

    The CCR5 gene encodes for the co-receptor for the major macrophage-tropics strains of human immunodeficiency virus (HIV-1), and a mutant allele of this gene (Delta 32) provide to homozygotes a strong resistance against infection by HIV. The frequency of the Delta 32 allele was investigated in 40 populations of 8842 non-infected subjects coming from Europe, the Middle-East and North Africa. A clear north-south decreasing gradient was evident for Delta 32 frequencies, with a significant correlation coefficient (r=0.83). The main frequency value of Delta 32 for Sweden, Norway, Denmark, Finland and Iceland (0.134) is significantly (chi(2)=63.818, P<0.001) highest than the Delta 32 mean value, indicating that probably the Vikings might have been instrumental in disseminating the Delta 32 allele during the eighth to the tenth centuries during historical times. Possibly variola virus has discriminated the Delta 32 carriers in Europe since the eighth century AD, explaining the high frequency of the Delta 32 allele in Europe today.

  5. Sawtooth bursts: observations and model

    NASA Astrophysics Data System (ADS)

    Karlický, M.; Bárta, M.; Klassen, A.; Aurass, H.; Mann, G.

    2002-12-01

    An example of the sawtooth burst observed during the November 3, 1997 flare is shown. Basic parameters of the sawtooth bursts are summarized and compared with those of fibers, fiber chains, zebras, EEL bursts and lace bursts. The sawtooth bursts are found to be most similar to the lace bursts, therefore the lace bursts model is proposed also for them. Then using this model the dynamic spectrum with the sawtooth burst is modelled. The model considers accelerated electrons with an unstable distribution function on the double resonance frequency and quasi-periodic variations of the electron plasma density and/or magnetic field in the radio source.

  6. Burst Detector Sensitivity: Past, Present and Future

    NASA Technical Reports Server (NTRS)

    Band, David L.

    2005-01-01

    I compare the burst detection sensitivity of CGRO's BATSE, Swift's BAT, the GLAST Burst Monitor (GBM) and EXIST as a function of a burst s spectrum and duration. A detector's overall burst sensitivity depends on its energy sensitivity and set of accumulations times (Delta)t; these two factors shape the detected burst population. For example, relative to BATSE, the BAT s softer energy band decreases the detection rate of short, hard bursts, while the BAT s longer accumulation times increase the detection rate of long, soft bursts. Consequently, Swift is detecting long, low fluence bursts (2-3 x fainter than BATSE).

  7. Land subsidence in the Yangtze River Delta, China revealed from multi-frequency SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Li, Zhenhong; Motagh, Mahdi; Yu, Jun; Gong, Xulong; Wu, Jianqiang; Zhu, Yefei; Chen, Huogen; Zhang, Dengming; Xu, Yulin

    2014-05-01

    Land subsidence is a major worldwide hazard, and its principal causes are subsurface fluid withdrawal, drainage of organic soils, sinkholes, underground mining, hydrocompaction, thawing permafrost, and natural consolidation. Land subsidence causes many problems including: damage to public facilities such as bridges, roads, railroads, electric power lines, underground pipes; damage to private and public buildings; and in some cases of low-lying land, can increase the risk of coastal flooding from storm surges and rising sea-levels. In China, approximately 48600 km2 of land, an area roughly 30 times of the size of the Greater London, has subsided (nearly 50 cities across 16 provinces), and the annual direct economic loss is estimated to be more than RMB 100 million (~12 million). It is believed that the Suzhou-Wuxi-Changzhou region within the Yangtze River Delta is the most severely affected area for subsidence hazards in China. With its global coverage and all-weather imaging capability, Interferometric SAR (InSAR) is revolutionizing our ability to image the Earth's surface and the evolution of its shape over time. In this paper, an advanced InSAR time series technique, InSAR TS + AEM, has been employed to analysed ERS (C-band), Envisat (C-band) and TerraSAR-X (X-band) data collected over the Suzhou-Wuxi-Changzhou region during the period from 1992 to 2013. Validation with precise levelling and GPS data suggest: (1) the accuracy of the InSAR-derived mean velocity measurements is 1-3 mm/yr; (2) InSAR-derived displacements agreed with precise levelling with root mean square errors around 5 mm. It is evident that InSAR TS + AEM can be used to image the evolution of deformation patterns in the Suzhou-Wuxi-Changzhou region over time: the maximum mean velocity decreased from ~12 cm/yr during the period of 1992-1993 to ~2 cm/yr in 2003-2013. This is believed to be a result of the prohibition of groundwater use carried out by Jiangsu provincial government. The combination

  8. Frequency Fine Structures of Type III Bursts Due to Localized Medium-Scale Density Structures Along Paths of Type III Beams

    NASA Astrophysics Data System (ADS)

    Li, B.; Cairns, Iver H.; Robinson, P. A.

    2012-07-01

    Predictions from large-scale kinetic simulations are presented for the effects on coronal type III bursts of localized, medium-scale, enhanced density structures superposed on the coronal background along the paths of type III beams. The simulations show that these density structures can produce pronounced frequency fine structures in type III spectra. Flux intensifications and reductions of f p and 2 f p emission relative to those for the unperturbed background corona occur at frequencies corresponding to the density structures, where f p is the local electron plasma frequency. Frequency fine structures that are intense, slowly drifting, and narrowband, and thus resemble the characteristics of stria bursts, are predicted for the 2 f p emission. The 2 f p results are consistent with the qualitative proposal of Takakura and Yousef ( Solar Phys. 40, 421, 1975) for the interpretation of stria/type IIIb bursts. However, the predicted f p emission is much weaker than the 2 f p emission and generally below observable levels, and the predicted frequency fine structures do not always show stria characteristics. The predictions are thus inconsistent with the qualitative suggestion of Takakura and Yousef and the interpretations of many observers that stria bursts occur more often in f p than in 2 f p emission. The significant discrepancies for f p emission between our numerical calculations and the qualitative proposition of Takakura and Yousef (1975) are mainly caused by: i) differences in the detailed emission processes, ii) neglect of scattering of f p emission off small-scale density fluctuations by Takakura and Yousef (1975), and iii) other simplifications made in both works. Possible improvements to the simulations are discussed, including improvements to the emission processes and the coronal and beam conditions ( e.g., beam speed), in order to produce realistic stria/type IIIb bursts in f p emission.

  9. Saturnian Low-Frequency Drifting Radio Bursts: Statistical Properties and Polarization

    NASA Astrophysics Data System (ADS)

    Taubenschuss, U.; Leisner, J. S.; Fischer, G.; Gurnett, D. A.; Nemec, F.

    After Cassini's arrival at planet Saturn, its Radio and Plasma Wave Science (RPWS) experiment has performed numerous observations of a new type of planetary radio emissions in the lower kHz frequency range (< 50 kHz). These bursty emissions have time scales of a few to 15 minutes and occur as slowly drifting events in the time-frequency spectrogram. They have neither been detected by the Voyager spacecraft nor by Ulysses. As a first approach to this new phenomenon, results of a statistical study with regard to the observer's position, i.e. Cassini's orbital position, will be presented. Furthermore, aspects of polarization will be highlighted as far as appropriate goniopolarimetric (3-antenna) observations are available.

  10. Attitudes and beliefs affect frequency of eating out in the Lower Mississippi Delta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Attitudes and beliefs reflecting cultural values can have a positive or negative influence on eating behaviors. Eating out may negatively affect diet quality through increased fat intake and larger portion sizes. In a representative sample of the Lower Mississippi Delta (LMD) consisting of 1601 Af...

  11. Beyond Word Frequency: Bursts, Lulls, and Scaling in the Temporal Distributions of Words

    PubMed Central

    Altmann, Eduardo G.; Pierrehumbert, Janet B.; Motter, Adilson E.

    2009-01-01

    Background Zipf's discovery that word frequency distributions obey a power law established parallels between biological and physical processes, and language, laying the groundwork for a complex systems perspective on human communication. More recent research has also identified scaling regularities in the dynamics underlying the successive occurrences of events, suggesting the possibility of similar findings for language as well. Methodology/Principal Findings By considering frequent words in USENET discussion groups and in disparate databases where the language has different levels of formality, here we show that the distributions of distances between successive occurrences of the same word display bursty deviations from a Poisson process and are well characterized by a stretched exponential (Weibull) scaling. The extent of this deviation depends strongly on semantic type – a measure of the logicality of each word – and less strongly on frequency. We develop a generative model of this behavior that fully determines the dynamics of word usage. Conclusions/Significance Recurrence patterns of words are well described by a stretched exponential distribution of recurrence times, an empirical scaling that cannot be anticipated from Zipf's law. Because the use of words provides a uniquely precise and powerful lens on human thought and activity, our findings also have implications for other overt manifestations of collective human dynamics. PMID:19907645

  12. A Comparative Study of the Impact of Theta-Burst and High-Frequency Stimulation on Memory Performance

    PubMed Central

    Zhu, Yating; Wang, Rubin; Wang, Yihong

    2016-01-01

    The transformation of the information stored in the working memory into the system of long-term memory depends on the physiological mechanism, long-term potential (LTP). In a large number of experimental studies, theta-burst stimulation (TBS) and high-frequency stimulation (HFS) are LTP induction protocols. However, they have not been adapted to the model related to memory. In this paper, the improved Camperi–Wang (C–W) model with Ca2+ subsystem-induced bi-stability was adopted, and TBS and HFS were simulated to act as the initial stimuli of this working memory model. Evaluating the influence of stimuli properties (cycle, amplitude, duty ration) on memory mechanism of the model, it is found that both TBS and HFS can be adopted to activate working memory model and produce long-term memory. Moreover, the different impacts of two types of stimuli on the formation of long-term memory were analyzed as well. Thus, the importance of this study lies firstly in describing the link and interaction between working memory and long-term memory from the quantitative view, which provides a theoretical basis for the study of neural dynamics mechanism of long-term memory formation in the future. PMID:26869903

  13. A Search for Fast Radio Bursts at Low Frequencies with Murchison Widefield Array High Time Resolution Imaging

    NASA Astrophysics Data System (ADS)

    Tingay, S. J.; Trott, C. M.; Wayth, R. B.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Deshpande, A. A.; Feng, L.; Gaensler, B. M.; Greenhill, L. J.; Hancock, P. J.; Hazelton, B. J.; Johnston-Hollitt, M.; Kaplan, D. L.; Lonsdale, C. J.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Murphy, T.; Oberoi, D.; Prabu, T.; Udaya Shankar, N.; Srivani, K. S.; Subrahmanyan, R.; Webster, R. L.; Williams, A.; Williams, C. L.

    2015-12-01

    We present the results of a pilot study search for fast radio bursts (FRBs) using the Murchison Widefield Array (MWA) at low frequencies (139-170 MHz). We utilized MWA data obtained in a routine imaging mode from observations where the primary target was a field being studied for Epoch of Reionization detection. We formed images with 2 s time resolution and 1.28 MHz frequency resolution for 10.5 hr of observations, over 400 square degrees of the sky. We de-dispersed the dynamic spectrum in each of 372,100 resolution elements of 2 × 2 arcmin2, between dispersion measures of 170 and 675 pc cm-3. Based on the event rate calculations in Trott et al., which assume a standard candle luminosity of 8 × 1037 Js-1, we predict that with this choice of observational parameters, the MWA should detect (˜10, ˜2, ˜0) FRBs with spectral indices corresponding to (-2, -1, 0), based on a 7σ detection threshold. We find no FRB candidates above this threshold from our search, placing an event rate limit of \\lt 700 above 700 Jy ms per day per sky and providing evidence against spectral indices α \\lt -1.2 (S\\propto {ν }α ). We compare our event rate and spectral index limits with others from the literature. We briefly discuss these limits in light of recent suggestions that supergiant pulses from young neutron stars could explain FRBs. We find that such supergiant pulses would have to have much flatter spectra between 150 and 1400 MHz than have been observed from Crab giant pulses to be consistent with the FRB spectral index limit we derive.

  14. Increased frequency of {gamma}{delta} T cells in cerebrospinal fluid and peripheral blood of patients with multiple sclerosis: Reactivity, cytotoxicity, and T cell receptor V gene rearrangements

    SciTech Connect

    Stinissen, P.; Vandevyver, C.; Medaer, R.

    1995-05-01

    Infiltrating {gamma}{delta} T cells are potentially involved in the central nervous system demyelination in multiple sclerosis (MS). To further study this hypothesis, we analyzed the frequency and functional properties of {gamma}{delta} T cells in peripheral blood (PB) and paired cerebrospinal fluid (CSF) of patients with MS and control subjects, including patients with other neurologic diseases (OND) and healthy individuals. The frequency analysis was performed under limiting dilution condition using rIL-2 and PHA. After PHA stimulation, a significantly increased frequency of {gamma}{delta} T cells was observed in PB and in CSF of MS patients as compared with PB and CSF of patients with OND. The frequency was represented equally in OND patients and normal individuals. Similarly, the IL-2-responsive {gamma}{delta} T cells occurred at a higher frequency in PB of MS than of control subjects. Forty-three percent of the {gamma}{delta} T cell clones isolates from PB and CSF of MS patients responded to heat shock protein (HSP70) but not HSP65, whereas only 2 of 30 control {gamma}{delta} T cell clones reacted to the HSP. The majority of the {gamma}{delta} T cell clones were able to induce non-MHC-restricted cytolysis of Daudi cells. All clones displayed a substantial reactivity to bacterial superantigens staphylococcal enterotoxin B and toxic shock syndrome toxin-1, irrespective of their {gamma}{delta} V gene usage. Furthermore, the {gamma}{delta} T cell clones expressed predominantly TCRDV2 and GV2 genes, whereas the clones derived from CSF of MS patients expressed either DV1 or DV2 genes. The obtained {gamma}{delta} clones, in general, represented rather heterogeneous clonal origins, even though a predominant clonal origin was found in a set of 10 {gamma}{delta} clones derived from one patient with MS. The present study provides new evidence supporting a possible role of {gamma}{delta} T cells in the secondary inflammatory processes in MS. 39 refs., 5 figs., 4 tabs.

  15. Energetic Particle Propagation in the Inner Heliosphere as Deduced from Low Frequency (less than 100 kHz) Observations of Type III Radio Bursts

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Erickson, W. C.

    2003-01-01

    Solar energetic particle (SEP) events are well-associated with solar flares. It is observed that the delay between the time of the flare and the first-arriving particles at a spacecraft increases with increasing difference between the flare longitude and the footpoint of the field line on which the spacecraft is located. This difference we call the "connection angle" and can be as large as approximately 120 deg. Recently it has been found that all SEP events are preceded by type III radio bursts. These bursts are plasma emission caused by the propagation of 2-50 keV flare electrons through the solar corona and into the solar wind. The drift of these type III radio bursts to lower and lower frequencies enables the propagation of the flare electrons to be traced from the Sun to about 1 AU. We have made an extensive analysis of the type III bursts associated with greater than 20 MeV proton events and find that, in most cases, the radio emission extends to the local plasma frequency when the energetic particles arrive within a few hours of the flare. We conclude that this emission at the lowest possible frequency is generated close to the spacecraft. We then use the time from when the burst started at the Sun to when it reached the local plasma frequency to infer the time it took the radio producing electrons to travel to the spacecraft. We find that these delay times are organized by the connection angle and correlate with the proton delay times. We also find that the differences between the radio delays at Wind and Ulysses are matched by differences in the relative arrival times of the energetic particles at the two spacecraft. The consistent timing between the relative arrival times of energetic electrons and protons and the start of the lowest frequency radio emissions suggests that the first arriving particles of both species are accelerated as part of the flare process and that they propagate to the spacecraft along trajectories similar to those of the lower

  16. Noxious stimulation in children receiving general anaesthesia evokes an increase in delta frequency brain activity

    PubMed Central

    Hartley, Caroline; Poorun, Ravi; Goksan, Sezgi; Worley, Alan; Boyd, Stewart; Rogers, Richard; Ali, Tariq; Slater, Rebeccah

    2014-01-01

    More than 235,000 children/year in the UK receive general anaesthesia, but it is unknown whether nociceptive stimuli alter cortical brain activity in anaesthetised children. Time-locked electroencephalogram (EEG) responses to experimental tactile stimuli, experimental noxious stimuli, and clinically required cannulation were examined in 51 children (ages 1–12 years) under sevoflurane monoanaesthesia. Based on a pilot study (n = 12), we hypothesised that noxious stimulation in children receiving sevoflurane monoanaesthesia would evoke an increase in delta activity. This was tested in an independent sample of children (n = 39), where a subset (n = 11) had topical local anaesthetic applied prior to stimulation. A novel method of time-locking the stimuli to the EEG recording was developed using an event detection interface and high-speed camera. Clinical cannulation evoked a significant increase (34.2 ± 8.3%) in delta activity (P = 0.042), without concomitant changes in heart rate or reflex withdrawal, which was not observed when local anaesthetic was applied (P = 0.30). Experimental tactile (P = 0.012) and noxious (P = 0.0099) stimulation also evoked significant increases in delta activity, but the magnitude of the response was graded with stimulus intensity, with the greatest increase evoked by cannulation. We demonstrate that experimental and clinically essential noxious procedures, undertaken in anaesthetised children, alter the pattern of EEG activity, that this response can be inhibited by local anaesthetic, and that this measure is more sensitive than other physiological indicators of nociception. This technique provides the possibility that sensitivity to noxious stimuli during anaesthesia could be investigated in other clinical populations. PMID:25218826

  17. Preliminary results on the apparent size of the sources of type III bursts observed at low frequencies

    NASA Technical Reports Server (NTRS)

    Alvarez, H.

    1976-01-01

    We present preliminary results on the apparent angular size of the sources of four type III bursts observed between 3500 and 50 kHz from the IMP-6 spacecraft. The observations were made with a dipole rotating in the plane of the ecliptic where the sources are assumed to be. The apparent angular sizes obtained are unexpectedly large. We discuss different explanations for the results. It seems that the scattering of radio waves by electron density inhomogeneities is the most likely cause. We report a temporal increase of the apparent angular size of the source during the burst lifetime for some bursts. From its characteristics it appears to be a real effect.

  18. The Effect of Contact Angles and Capillary Dimensions on the Burst Frequency of Super Hydrophilic and Hydrophilic Centrifugal Microfluidic Platforms, a CFD Study

    PubMed Central

    Kazemzadeh, Amin; Ganesan, Poo; Ibrahim, Fatimah; He, Shuisheng; Madou, Marc J.

    2013-01-01

    This paper employs the volume of fluid (VOF) method to numerically investigate the effect of the width, height, and contact angles on burst frequencies of super hydrophilic and hydrophilic capillary valves in centrifugal microfluidic systems. Existing experimental results in the literature have been used to validate the implementation of the numerical method. The performance of capillary valves in the rectangular and the circular microfluidic structures on super hydrophilic centrifugal microfluidic platforms is studied. The numerical results are also compared with the existing theoretical models and the differences are discussed. Our experimental and computed results show a minimum burst frequency occurring at square capillaries and this result is useful for designing and developing more sophisticated networks of capillary valves. It also predicts that in super hydrophilic microfluidics, the fluid leaks consistently from the capillary valve at low pressures which can disrupt the biomedical procedures in centrifugal microfluidic platforms. PMID:24069169

  19. An evolutionary approach to the high frequency of the Delta F508 CFTR mutation in European populations.

    PubMed

    Alfonso-Sánchez, Miguel A; Pérez-Miranda, Ana M; García-Obregón, Susana; Peña, José A

    2010-06-01

    The diffusion of the cattle pastoralism across Europe during the Neolithic period was probably accompanied by the emergence and spread of diverse contagious diseases that were unknown in the Paleolithic and that would have affected the frequency of genes directly or indirectly associated with differential susceptibility and/or resistance to infectious pathogens. We therefore propose that the high frequency of the CFTR gene, and in particular, the common Delta F508 allele mutation in current European and European-derived populations might be a consequence of the impact of selective pressures generated by the transmission of pathogenic agents from domesticated animals, mainly bovine cattle, to the man. Intestinal infectious diseases were probably a major health problem for Neolithic peoples. In such a context, a gene mutation that conferred an increased resistance to the diseases caused by pathogens transmitted by dairy cattle would have constituted a definite selective advantage, particularly in those human groups where cow's milk became an essential component of the diet. This selective advantage would be determined by an increased resistance to Cl(-)-secreting diarrheas of those individuals carrying a single copy of the Delta F508 CFTR mutation (heterozygote resistance). This hypothesis is supported by the strong association between the geography of the diffusion of cattle pastoralism (assessed indirectly by the lactase persistence distribution), the geographic distribution of a sizeable number of HLA alleles (as indicative of potential selective pressures generated by epidemic mortality) and the geographic distribution of the most common mutation causing cystic fibrosis (Delta F508). The systematic interaction of humans with infectious pathogens would have begun in northern Europe, among the carriers of the Funnel Beaker Culture, the first farmers of the North European plain, moving progressively to the south with the dissemination of the cattle pastoralism. This

  20. Regularities in the frequency spacings of Delta Scuti stars and the s-f Diagram

    NASA Astrophysics Data System (ADS)

    Breger, M.; Lenz, P.; Pamyatnykh, A. A.

    2008-12-01

    Statistical analyses of several δ Scuti stars (FG Vir, 44 Tau, BL Cam and others) show that the photometrically observed frequencies cluster around the frequencies of the radial modes over many radial orders. The observed regularities can be partly explained by modes trapped in the stellar envelope. This mode selection mechanism was already proposed by Dziembowski & Krolikowska (1990) and was shown to be efficient for ℓ = 1 modes. New pulsation model calculations confirm the observed regularities. We present the s-f diagram, which compares the average separation of the radial frequen- cies (s) with the frequency of the lowest unstable radial mode (f ). The diagram provides an estimate for the log g value of the observed star, if we assume that the centers of the observed frequency clusters correspond to the radial mode frequencies. This assumption is confirmed by examples of well-studied δ Scuti variables in which radial modes were definitely identified.

  1. High Frequency Time-series of the Dynamic Sedimentation Processes on the Western Shelf of the Mississippi River Delta

    NASA Astrophysics Data System (ADS)

    Dail, M. B.; Corbett, D. R.; McKee, B.; Duncan, D.

    2004-12-01

    Rivers annually transport billions of tons of organic and inorganic sediment to coastal environments, making them an extremely important part of global biogeochemical cycles. However, the majority of the freshwater and suspended materials are delivered to the coastal ocean by only a few rivers. In these river-dominated ocean margins (RiOMar), sediments are deposited and re-suspended repeatedly before stable deposition. This sediment cycling is poorly understood and is critical to understanding how deltas and continental shelves, considered to be major repositories of organic carbon in marine sediments, manipulate the global carbon cycle and biogeochemical processes affecting coastal environments. During six cruises in the fall of 2003 (October, November, and December) and spring of 2004 (March, April, and May), on the shelf west of the Mississippi River Delta, sediment samples collected from cores were analyzed for particle reactive radionuclides (210Pb, 137Cs, and 234Th) to create a quantitative high frequency time-series of sediment deposition and erosion processes and evaluate the transport and fate of material on the shelf. Based on previous work completed by Corbett et al. (2004), seasonal variations in short-lived tracers could be explained by river flow and weather conditions. Inventories of the tracers collected during the fall cruises suggest increased deposition during the late summer months and that most sediment reworking and export occurs during the winter months, typically a period of low/increasing river discharge and increased weather forcing.

  2. Experimental Determination of Effects of Frequency and Amplitude on the Lateral Stability Derivatives for a Delta, a Swept, and Unswept Wing Oscillating in Yaw

    NASA Technical Reports Server (NTRS)

    Fisher, Lewis R

    1958-01-01

    Three wing models were oscillated in yaw about their vertical axes to determine the effects of systematic variations of frequency and amplitude of oscillation on the in-phase and out-of-phase combination lateral stability derivatives resulting from this motion. The tests were made at low speeds for a 60 degree delta wing, a 45 degree swept wing, and an unswept wing; the swept and unswept wings had aspect ratios of 4. The results indicate that large changes in the magnitude of the stability derivatives due to the variation of frequency occur at high angles of attack, particularly for the delta wing. The greatest variations of the derivatives with frequency take place for the lowest frequencies of oscillation; at the higher frequencies, the effects of frequency are smaller and the derivatives become more linear with angle of attack. Effects of amplitude of oscillation on the stability derivatives for delta wings were evident for certain high angles of attack and for the lowest frequencies of oscillation. As the frequency became high, the amplitude effects tended to disappear.

  3. RELATIONSHIP BETWEEN LOW AND HIGH FREQUENCIES IN {delta} SCUTI STARS: PHOTOMETRIC KEPLER AND SPECTROSCOPIC ANALYSES OF THE RAPID ROTATOR KIC 8054146

    SciTech Connect

    Breger, M.; Robertson, P.; Fossati, L.; Balona, L.; Kurtz, D. W.; Bohlender, D.; Lenz, P.; Mueller, I.; Lueftinger, Th.; Clarke, Bruce D.

    2012-11-01

    Two years of Kepler data of KIC 8054146 ({delta} Sct/{gamma} Dor hybrid) revealed 349 statistically significant frequencies between 0.54 and 191.36 cycles day{sup -1} (6.3 {mu}Hz to 2.21 mHz). The 117 low frequencies cluster in specific frequency bands, but do not show the equidistant period spacings predicted for gravity modes of successive radial order, n, and reported for at least one other hybrid pulsator. The four dominant low frequencies in the 2.8-3.0 cycles day{sup -1} (32-35 {mu}Hz) range show strong amplitude variability with timescales of months and years. These four low frequencies also determine the spacing of the higher frequencies in and beyond the {delta} Sct pressure-mode frequency domain. In fact, most of the higher frequencies belong to one of three families with spacings linked to a specific dominant low frequency. In the Fourier spectrum, these family regularities show up as triplets, high-frequency sequences with absolutely equidistant frequency spacings, side lobes (amplitude modulations), and other regularities in frequency spacings. Furthermore, within two families the amplitude variations between the low and high frequencies are related. We conclude that the low frequencies (gravity modes, rotation) and observed high frequencies (mostly pressure modes) are physically connected. This unusual behavior may be related to the very rapid rotation of the star: from a combination of high- and low-resolution spectroscopy we determined that KIC 8054146 is a very fast rotator ({upsilon} sin i = 300 {+-} 20 km s{sup -1}) with an effective temperature of 7600 {+-} 200 K and a surface gravity log g of 3.9 {+-} 0.3. Several astrophysical ideas explaining the origin of the relationship between the low and high frequencies are explored.

  4. The Millimeter-Wave Spectrum and Rest Frequencies of FeF (X 6 Delta i)

    NASA Astrophysics Data System (ADS)

    Allen, M. D.; Ziurys, L. M.

    1996-10-01

    The pure rotational spectrum of the FeF radical (X6Δi ) has been measured in the laboratory using millimeter/submillimeter direct absorption techniques. FeF was created by the reaction of iron vapor, produced in a high-temperature Broida-type oven, and F2. Eleven rotational transitions in the frequency range 121-374 GHz were recorded in all six spin-orbit components. Lambda-type doubling was resolved in the Ω = 3/2, 1/2, and -1/2 sublevels, and hyperfine structure, arising from the fluorine nuclear spin, was observed in all spin-orbit ladders. The data were successfully analyzed using a 6Δ Hamiltonian and rotational, spin-orbit, spin-spin, lambda-doubling, and hyperfine parameters were determined. The observation of AlF in the circumstellar shell of IRC +10216 suggests that other fluoride molecules such as FeF may be present in this object.

  5. Theta-burst LTP.

    PubMed

    Larson, John; Munkácsy, Erin

    2015-09-24

    This review covers the spatial and temporal rules governing induction of hippocampal long-term potentiation (LTP) by theta-burst stimulation. Induction of LTP in field CA1 by high frequency stimulation bursts that resemble the burst discharges (complex-spikes) of hippocampal pyramidal neurons involves a multiple-step mechanism. A single burst is insufficient for LTP induction because it evokes both excitatory and inhibitory currents that partially cancel and limit postsynaptic depolarization. Bursts repeated at the frequency (~5 Hz) of the endogenous theta rhythm induce maximal LTP, primarily because this frequency disables feed-forward inhibition and allows sufficient postsynaptic depolarization to activate voltage-sensitive NMDA receptors. The disinhibitory process, referred to as "priming", involves presynaptic GABA autoreceptors that inhibit GABA release. Activation of NMDA receptors allows a calcium flux into dendritic spines that serves as the proximal trigger for LTP. We include new data showing that theta-burst stimulation is more efficient than other forms of stimulation for LTP induction. In addition, we demonstrate that associative interactions between synapses activated during theta-bursts are limited to major dendritic domains since such interactions occur within apical or basal dendritic trees but not between them. We review evidence that recordings of electrophysiological responses during theta burst stimulation can help to determine if experimental manipulations that affect LTP do so by affecting events antecedent to the induction process, such as NMDA receptor activation, or downstream signaling cascades that result from postsynaptic calcium fluxes. Finally, we argue that theta-burst LTP represents a minimal model for stable, non-decremental LTP that is more sensitive to a variety of experimental manipulations than is LTP induced by other stimulation paradigms. This article is part of a Special Issue entitled SI: Brain and Memory.

  6. Theta-Burst LTP

    PubMed Central

    Larson, John; Munkácsy, Erin

    2014-01-01

    This review covers the spatial and temporal rules governing induction of hippocampal long-term potentiation (LTP) by theta-burst stimulation. Induction of LTP in field CA1 by high frequency stimulation bursts that resemble the burst discharges (complex-spikes) of hippocampal pyramidal neurons involves a multiple-step mechanism. A single burst is insufficient for LTP induction because it evokes both excitatory and inhibitory currents that partially cancel and limit postsynaptic depolarization. Bursts repeated at the frequency (~5 Hz) of the endogenous theta rhythm induce maximal LTP, primarily because this frequency disables feed-forward inhibition and allows sufficient postsynaptic depolarization to activate voltage-sensitive NMDA receptors. The disinhibitory process, referred to as “priming”, involves presynaptic GABA autoreceptors that inhibit GABA release. Activation of NMDA receptors allows a calcium flux into dendritic spines that serves as the proximal trigger for LTP. We include new data showing that theta-burst stimulation is more efficient than other forms of stimulation for LTP induction. In addityion, we demonstrate that associative interactions between synapses activated during theta-bursts are limited to major dendritic domains since such interactions occur within apical or basal dendritic trees but not between them. We review evidence that recordings of electrophysiological responses during theta burst stimulation can help to determine if experimental manipulations that affect LTP do so by affecting events antecedent to the induction process, such as NMDA receptor activation, or downstream signaling cascades that result from postsynaptic calcium fluxes. Finally, we argue that theta-burst LTP represents a minimal model for stable, non-decremental LTP that is more sensitive to a variety of experimental manipulations than is LTP induced by other stimulation paradigms. PMID:25452022

  7. Magnetar Bursts

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa

    2014-01-01

    The Fermi/Gamma-ray Burst Monitor (GBM) was launched in June 2008. During the last five years the instrument has observed several hundreds of bursts from 8 confirmed magnetars and 19 events from unconfirmed sources. I will discuss the results of the GBM magnetar burst catalog, expand on the different properties of their diverse source population, and compare these results with the bursting activity of past sources. I will then conclude with thoughts of how these properties fit the magnetar theoretical models.

  8. Evaluating the surface circulation in the Ebro delta (northeastern Spain) with quality-controlled high-frequency radar measurements

    NASA Astrophysics Data System (ADS)

    Lorente, P.; Piedracoba, S.; Soto-Navarro, J.; Alvarez-Fanjul, E.

    2015-11-01

    The Ebro River delta is a relevant marine protected area in the western Mediterranean. In order to promote the conservation of its ecosystem and support operational decision making in this sensitive area, a three-site standard-range (13.5 MHz) CODAR SeaSonde high-frequency (HF) radar was deployed in December 2013. The main goal of this work is to explore basic features of the sea surface circulation in the Ebro deltaic region as derived from reliable HF radar surface current measurements. For this aim, a combined quality control methodology was applied: firstly, 1-year long (2014) real-time web monitoring of nonvelocity-based diagnostic parameters was conducted to infer both radar site status and HF radar system performance. The signal-to-noise ratio at the monopole exhibited a consistent monthly evolution, although some abrupt decreases (below 10 dB), occasionally detected in June for one of the radar sites, impacted negatively on the spatiotemporal coverage of total current vectors. It seemed to be sporadic episodes since radar site overall performance was found to be robust during 2014. Secondly, a validation of HF radar data with independent in situ observations from a moored current meter was attempted for May-October 2014. The accuracy assessment of radial and total vectors revealed a consistently high agreement. The directional accuracy of the HF radar was rated at better than 8°. The correlation coefficient and root mean square error (RMSE) values emerged in the ranges [0.58-0.83] and [4.02-18.31] cm s-1, respectively. The analysis of the monthly averaged current maps for 2014 showed that the HF radar properly represented basic oceanographic features previously reported, namely, the predominant southwestward flow, the coastal clockwise eddy confined south of the Ebro delta mouth, or the Ebro River impulsive-type freshwater discharge. The EOF analysis related the flow response to local wind forcing and confirmed that the surface current field evolved in

  9. Corticostriatal Field Potentials Are Modulated at Delta and Theta Frequencies during Interval-Timing Task in Rodents

    PubMed Central

    Emmons, Eric B.; Ruggiero, Rafael N.; Kelley, Ryan M.; Parker, Krystal L.; Narayanan, Nandakumar S.

    2016-01-01

    Organizing movements in time is a critical and highly conserved feature of mammalian behavior. Temporal control of action requires corticostriatal networks. We investigate these networks in rodents using a two-interval timing task while recording LFPs in medial frontal cortex (MFC) or dorsomedial striatum. Consistent with prior work, we found cue-triggered delta (1–4 Hz) and theta activity (4–8 Hz) primarily in rodent MFC. We observed delta activity across temporal intervals in MFC and dorsomedial striatum. Rewarded responses were associated with increased delta activity in MFC. Activity in theta bands in MFC and delta bands in the striatum was linked with the timing of responses. These data suggest both delta and theta activity in frontostriatal networks are modulated during interval timing and that activity in these bands may be involved in the temporal control of action. PMID:27092091

  10. Response to best-frequency tone bursts in the ventral cochlear nucleus is governed by ordered inter-spike interval statistics.

    PubMed

    Wright, M C M; Winter, I M; Forster, J J; Bleeck, S

    2014-11-01

    The spike trains generated by short constant-amplitude constant-frequency tone bursts in the ventral cochlear nucleus of the anaesthetised guinea pig are examined. Spikes are grouped according to the order in which they occur following the onset of the stimulus. It is found that successive inter-spike intervals have low statistical dependence according to information-theoretic measures. This is in contrast to previous observations with long-duration tone bursts in the cat dorsal and posteroventral cochlear nuclei and lateral superior olive, where it was found that long intervals tended to be followed by shorter ones and vice versa. The interval distributions can also be reasonably modelled by a shifted Gamma distribution parameterised by the dead-time and the mean and coefficient of variation of the dead-time corrected ISI distribution. Knowledge of those three parameters for each interval is sufficient to determine the peri-stimulus time histogram and the regularity measures used to classify these neurons. PMID:25261771

  11. V(D)J recombination generates a high frequency of nonstandard TCR D[delta]-associated rearrangements in thymocytes

    SciTech Connect

    Carroll, A.M.; Slack, J.K.; Mu, Xiaochun )

    1993-03-15

    The standard products of V(D)J recombination are coding junctions, which encode Ag receptor polypeptide, and their commonly excised reciprocal products, signal junctions. Additional nonstandard products also have been detected, mostly in artificial recombination substrate studies. The occurrence of nonstandard products, including pseudonormal, hybrid, and open/shut junctions, indicates significant indeterminacy of the V(D)J recombinase. However, the incidence of nonstandard products of endogenous Ag receptor genes in vivo has not been specifically addressed. The data presented here show that for the TCR-[delta] locus, D element-associated recombination in mouse thymocytes results in a high incidence of nonstandard recombination products. D[delta]1-D[delta]2 rearrangements, both chromosome retained and excised episomal products, were studied by polymerase chain reaction amplification, cloning, and sequence analysis. The proximity of D[delta]1 and D[delta]2 elements, and the fact that both are flanked by 5[prime] and 3[prime] recombination signal sequences with 12-bp and 23-bp spacers, respectively, results in frequent pseudonormal joining. The resulting products are signal junctions retained on the chromosome. Excised episomal products include coding junctions, hybrid junctions formed in apparent violation of the 12/23 spacer rule, and standard signal junctions; some signal junctions show evidence of imprecise cleavage. Evidence for open/shut and/or oligonucleotide capture events was also seen. Similar rearrangements were detectable in thymocytes of mutant scid mice. These findings indicate a high degree of indeterminancy of V(D)J recombinase-mediated D[delta]1-D[delta]2 rearrangement in both wild-type and scid thymocytes. This indeterminacy affects the productive potential of TCR-[delta] loci. 45 refs., 4 figs.

  12. Modelling the increased frequency of extreme sea levels in the Ganges-Brahmaputra-Meghna delta due to sea level rise and other effects of climate change.

    PubMed

    Kay, S; Caesar, J; Wolf, J; Bricheno, L; Nicholls, R J; Saiful Islam, A K M; Haque, A; Pardaens, A; Lowe, J A

    2015-07-01

    Coastal flooding due to storm surge and high tides is a serious risk for inhabitants of the Ganges-Brahmaputra-Meghna (GBM) delta, as much of the land is close to sea level. Climate change could lead to large areas of land being subject to increased flooding, salinization and ultimate abandonment in West Bengal, India, and Bangladesh. IPCC 5th assessment modelling of sea level rise and estimates of subsidence rates from the EU IMPACT2C project suggest that sea level in the GBM delta region may rise by 0.63 to 0.88 m by 2090, with some studies suggesting this could be up to 0.5 m higher if potential substantial melting of the West Antarctic ice sheet is included. These sea level rise scenarios lead to increased frequency of high water coastal events. Any effect of climate change on the frequency and severity of storms can also have an effect on extreme sea levels. A shelf-sea model of the Bay of Bengal has been used to investigate how the combined effect of sea level rise and changes in other environmental conditions under climate change may alter the frequency of extreme sea level events for the period 1971 to 2099. The model was forced using atmospheric and oceanic boundary conditions derived from climate model projections and the future scenario increase in sea level was applied at its ocean boundary. The model results show an increased likelihood of extreme sea level events through the 21st century, with the frequency of events increasing greatly in the second half of the century: water levels that occurred at decadal time intervals under present-day model conditions occurred in most years by the middle of the 21st century and 3-15 times per year by 2100. The heights of the most extreme events tend to increase more in the first half of the century than the second. The modelled scenarios provide a case study of how sea level rise and other effects of climate change may combine to produce a greatly increased threat to life and property in the GBM delta by the end

  13. Modelling the increased frequency of extreme sea levels in the Ganges-Brahmaputra-Meghna delta due to sea level rise and other effects of climate change.

    PubMed

    Kay, S; Caesar, J; Wolf, J; Bricheno, L; Nicholls, R J; Saiful Islam, A K M; Haque, A; Pardaens, A; Lowe, J A

    2015-07-01

    Coastal flooding due to storm surge and high tides is a serious risk for inhabitants of the Ganges-Brahmaputra-Meghna (GBM) delta, as much of the land is close to sea level. Climate change could lead to large areas of land being subject to increased flooding, salinization and ultimate abandonment in West Bengal, India, and Bangladesh. IPCC 5th assessment modelling of sea level rise and estimates of subsidence rates from the EU IMPACT2C project suggest that sea level in the GBM delta region may rise by 0.63 to 0.88 m by 2090, with some studies suggesting this could be up to 0.5 m higher if potential substantial melting of the West Antarctic ice sheet is included. These sea level rise scenarios lead to increased frequency of high water coastal events. Any effect of climate change on the frequency and severity of storms can also have an effect on extreme sea levels. A shelf-sea model of the Bay of Bengal has been used to investigate how the combined effect of sea level rise and changes in other environmental conditions under climate change may alter the frequency of extreme sea level events for the period 1971 to 2099. The model was forced using atmospheric and oceanic boundary conditions derived from climate model projections and the future scenario increase in sea level was applied at its ocean boundary. The model results show an increased likelihood of extreme sea level events through the 21st century, with the frequency of events increasing greatly in the second half of the century: water levels that occurred at decadal time intervals under present-day model conditions occurred in most years by the middle of the 21st century and 3-15 times per year by 2100. The heights of the most extreme events tend to increase more in the first half of the century than the second. The modelled scenarios provide a case study of how sea level rise and other effects of climate change may combine to produce a greatly increased threat to life and property in the GBM delta by the end

  14. Millimeter wave transmission studies of YBa2Cu3O7-delta thin films in the 26.5 to 40.0 GHz frequency range

    NASA Technical Reports Server (NTRS)

    Miranda, F. A.; Gordon, W. L.; Bhasin, K. B.; Heinen, V. O.; Warner, J. D.; Valco, G. J.

    1989-01-01

    Millimeter wave transmission measurements through YBa2Cu3O(7-delta) thin films on MgO, ZrO2 and LaAlO3 substrates, are reported. The films (approx. 1 micron) were deposited by sequential evaporation and laser ablation techniques. Transition temperatures T sub c, ranging from 89.7 K for the Laser Ablated film on LaAlO3 to approximately 72 K for the sequentially evaporated film on MgO, were obtained. The values of the real and imaginary parts of the complex conductivity, sigma 1 and sigma 2, are obtained from the transmission data, assuming a two fluid model. The BCS approach is used to calculate values for an effective energy gap from the obtained values of sigma sub 1. A range of gap values from 2 DELTA o/K sub B T sub c = 4.19 to 4.35 was obtained. The magnetic penetration depth is evaluated from the deduced values of sigma 2. These results are discussed together with the frequency dependence of the normalized transmission amplitude, P/P sub c, below and above T sub c.

  15. Kilometric type III radio bursts and interplanetary transients

    SciTech Connect

    MacDowall, R.J.

    1988-01-01

    The first detailed observations and analysis of interplanetary (IP) type III bursts which undergo sudden intensity changes are presented. Two major even categories are studied: cutoffs in which the type III intensity is abruptly reduced (by a factor of 10 or more) at some frequency and remains at the reduced level for all lower frequencies, and narrowband intensifications which frequently occur on the high-frequency edge of a cutoff. Based on their apparent radial velocities as well as their occurrence at the same frequencies as kilometric type II emission, a subset of the sudden intensity change events are demonstrated to be associated with IP shocks. Consequently, they provide a new tool for shock detection in the inner heliosphere. Two causes proposed for the shock associated type III burst cutoffs are enhanced levels of background electrons and pitch-angle scattering. In the vicinities of IP shocks, the observed background levels of electrons with energies greater than 2 keV are frequently enhanced by up to 2 orders of magnitude over ambient levels. The magnetic field fluctuations observed downstream of many shocks are effective in pitch-angle scattering type III electrons. Either of these mechanisms may reduce the effective height of the bump-on-tail distribution, and thereby influence the Langmuir wave growth and evolution. The pre-cutoff intensifications are shown to arise in regions of radial extent {Delta}R/R {approx} 0.1. Consequently, they are not the result of processes local to the shock.

  16. High-frequency depositional sequences and stratal stacking patterns in lower pliocene coastal deltas, mid-Norwegian continental shelf

    SciTech Connect

    Henriksen, S.; Weimer, P.

    1996-12-01

    Extensive deltaic and coastal progradation occurred along the mid-Norwegian continental shelf during the early Pliocene. Thirty-eight well-developed, high-frequency (fourth-order) sequences are identified within the deltaic complex on multifold seismic data. The fourth-order sequences are arranged in four oblique progradational and two sigmoid progradational sequence sets. Deposition of the high-frequency sequences and their stacking patterns probably were in response to high-frequency cycles of relative changes in sea level cycles produced by variable rates of subsidence and uplift, superimposed on ;high-frequency eustatic cycles within a lower frequency eustatic system. The mixed aggrading/prograding sequence sets are interpreted to represent increased space-added accommodation rates and deposition within third-order highstand systems tracts. Conversely, the progradational sequence sets are interpreted to represent decreasing space-added accommodation rates and deposition within the third-order low-stand systems tracts. The recognition of multiple sequence sets likely reflects the effect of long-term relative fall in sea level (tectonic uplift?) super-imposed on high-frequency eustatic cycles.

  17. Interplanetary Type IV Bursts

    NASA Astrophysics Data System (ADS)

    Hillaris, A.; Bouratzis, C.; Nindos, A.

    2016-08-01

    We study the characteristics of moving type IV radio bursts that extend to hectometric wavelengths (interplanetary type IV or type {IV}_{{IP}} bursts) and their relationship with energetic phenomena on the Sun. Our dataset comprises 48 interplanetary type IV bursts observed with the Radio and Plasma Wave Investigation (WAVES) instrument onboard Wind in the 13.825 MHz - 20 kHz frequency range. The dynamic spectra of the Radio Solar Telescope Network (RSTN), the Nançay Decametric Array (DAM), the Appareil de Routine pour le Traitement et l' Enregistrement Magnetique de l' Information Spectral (ARTEMIS-IV), the Culgoora, Hiraso, and the Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN) Radio Spectrographs were used to track the evolution of the events in the low corona. These were supplemented with soft X-ray (SXR) flux-measurements from the Geostationary Operational Environmental Satellite (GOES) and coronal mass ejections (CME) data from the Large Angle and Spectroscopic Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO). Positional information of the coronal bursts was obtained by the Nançay Radioheliograph (NRH). We examined the relationship of the type IV events with coronal radio bursts, CMEs, and SXR flares. The majority of the events (45) were characterized as compact, their duration was on average 106 minutes. This type of events was, mostly, associated with M- and X-class flares (40 out of 45) and fast CMEs, 32 of these events had CMEs faster than 1000 km s^{-1}. Furthermore, in 43 compact events the CME was possibly subjected to reduced aerodynamic drag as it was propagating in the wake of a previous CME. A minority (three) of long-lived type {IV}_{{IP}} bursts was detected, with durations from 960 minutes to 115 hours. These events are referred to as extended or long duration and appear to replenish their energetic electron content, possibly from electrons escaping from the corresponding coronal

  18. Nile Delta

    Atmospheric Science Data Center

    2013-04-15

    article title:  The Nile River Delta     View Larger Image ... of eastern Africa. At the apex of the fertile Nile River Delta is the Egyptian capital city of Cairo. To the west are the Great Pyramids ...

  19. Mississippi Delta

    Atmospheric Science Data Center

    2014-05-15

    article title:  The Mississippi Delta     Left: True Color Image ... Imaging SpectroRadiometer (MISR) images of the Mississippi delta were acquired on April 26, 2000. The true color image displays the ...

  20. Delta Scuti stars: Theory

    SciTech Connect

    Guzik, J.A.

    1998-03-01

    The purpose of asteroseismology is not only to derive the internal structure of individual stars from their observed oscillation frequencies, but also to test and extend one`s understanding of the physics of matter under the extremes of temperature, density, and pressure found in stellar interiors. In this review, the author hopes to point out what one can learn about the Sun by studying {delta} Scuti stars, as well as what one can learn about stars more massive or evolved than the Sun. He discusses some of the difficulties in theoretical approaches to asteroseismology for {delta} Scuti stars, using FG Vir, {delta} Scuti, and CD-24{degree} 7599 as examples.

  1. Volga Delta

    Atmospheric Science Data Center

    2013-04-17

    article title:  Volga Delta and the Caspian Sea     View ... appear reddish. A small cloud near the center of the delta separates into red, green, and blue components due to geometric parallax ... include several linear features located near the Volga Delta shoreline. These long, thin lines are artificially maintained shipping ...

  2. Differential Regulation of Action Potential Shape and Burst-Frequency Firing by BK and Kv2 Channels in Substantia Nigra Dopaminergic Neurons

    PubMed Central

    Kimm, Tilia; Khaliq, Zayd M.

    2015-01-01

    pars compacta. Although both channel types participate in action potential repolarization about equally, they have contrasting and partially opposite effects in regulating neuronal firing at frequencies typical of bursting. Our analysis shows that this results from their different kinetic properties, with fast-activating BK channels serving to short-circuit activation of Kv2 channels, which tend to slow firing by producing a deep afterhyperpolarization. The cross-regulation of BK and Kv2 activation illustrates that the functional role of a channel cannot be defined in isolation but depends critically on the context of the other conductances in the cell. PMID:26674866

  3. Solar Radio Bursts and Space Weather

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk,

    2012-01-01

    Radio bursts from the Sun are produced by electron accelerated to relativistic energies by physical processes on the Sun such as solar flares and coronal mass ejections (CMEs). The radio bursts are thus good indicators of solar eruptions. Three types of nonthermal radio bursts are generally associated with CMEs. Type III bursts due to accelerated electrons propagating along open magnetic field lines. The electrons are thought to be accelerated at the reconnection region beneath the erupting CME, although there is another view that the electrons may be accelerated at the CME-driven shock. Type II bursts are due to electrons accelerated at the shock front. Type II bursts are also excellent indicators of solar energetic particle (SEP) events because the same shock is supposed accelerate electrons and ions. There is a hierarchical relationship between the wavelength range of type /I bursts and the CME kinetic energy. Finally, Type IV bursts are due to electrons trapped in moving or stationary structures. The low frequency stationary type IV bursts are observed occasionally in association with very fast CMEs. These bursts originate from flare loops behind the erupting CME and hence indicate tall loops. This paper presents a summary of radio bursts and their relation to CMEs and how they can be useful for space weather predictions.

  4. Analysis of Q burst waveforms

    NASA Astrophysics Data System (ADS)

    Ogawa, Toshio; Komatsu, Masayuki

    2007-04-01

    The electric field changes in ELF to VLF were observed with a ball antenna in fair weather at Kochi (latitude 33.3°N, longitude 133.4°E) during 2003-2004. Some 376 Q bursts were obtained, seven examples of which are analyzed in the present study. The continuous frequency spectra of the Q bursts and the background noises from 1.0 Hz to 11 kHz are compared, and it was found that the Q bursts prevail over the background in the frequency range from 1 to 300 Hz. The surplus is 20 dB (in amplitude) near the fundamental mode frequency. The "W"-type changes found in the initial portion of the Q burst waveforms are interpreted as the combined electromagnetic waveform of direct and antipodal waves from the causative lightning strokes. From the time intervals between the two waves, the source-receiver distances are estimated as far as 19 Mm. The pulses to excite the Schumann resonances in the Q bursts are clearly identified.

  5. Gravitational wave bursts from cosmic strings

    PubMed

    Damour; Vilenkin

    2000-10-30

    Cusps of cosmic strings emit strong beams of high-frequency gravitational waves (GW). As a consequence of these beams, the stochastic ensemble of gravitational waves generated by a cosmological network of oscillating loops is strongly non-Gaussian, and includes occasional sharp bursts that stand above the rms GW background. These bursts might be detectable by the planned GW detectors LIGO/VIRGO and LISA for string tensions as small as G&mgr; approximately 10(-13). The GW bursts discussed here might be accompanied by gamma ray bursts. PMID:11041921

  6. High-frequency time-series of the dynamic sedimentation processes on the western shelf of the Mississippi River Delta

    NASA Astrophysics Data System (ADS)

    Reide Corbett, D.; Dail, Michael; McKee, Brent

    2007-06-01

    Multiple box cores were collected on the continental shelf in the Mississippi Deltaic Region adjacent to Southwest Pass and analyzed for particle reactive radionuclides 234Th and 7Be to examine seasonal sediment dynamics associated with variations of river discharge and hydrodynamics. Three stations located along a line west of Southwest Pass were cored and reoccupied in October, November, and December of 2003 and March, April, and May of 2004. High-frequency sampling (˜monthly) comparable to the short half-life of the radiotracers ( 234Th t1/2=24.1 d; 7Be t1/2=53.3) enabled us to isolate the relative influence that various forcing agents (river discharge, waves, currents) had on sediment inventories of 7Be and 234Th. In addition, the primary source of 7Be (fluvial) differs from 234Th (marine), providing further insight into processes affecting sediment transport and supply. Monthly 7Be inventories showed a significant positive relationship to river discharge ( P=0.03) proximal to Southwest Pass. Sites further from Southwest Pass exhibited little to no relationship between 7Be inventories and river flow. At these sites, monthly 7Be inventories demonstrated a significant positive relationship with average wave orbital velocity ( P<0.01). During our sampling period, the transport of 7Be-rich sediments to sites located on the middle to outer shelf were dependent on sea conditions not river discharge. Relatively high wave orbital velocities potentially allow particles to remain in suspension longer and travel further distances before initial deposition. In addition, 234Th inventories showed evidence of sediment focusing during periods of high wave orbital velocities.

  7. High-frequency cyclicity in quaternary fan-delta deposits of the Andean fore-arc: Relative sea level changes and aseismic ridge subduction

    SciTech Connect

    Flint, S. ); Jolley, E.J.; Turner, P.; Williams, G.D.; Buddin, T. )

    1990-05-01

    The coast of northern Chile comprises Mesozoic magmatic rocks and Cenozoic-Holocene shallow-marine and alluvial fan/fan-delta sediments. The structure, landform development, and sedimentary response of the coast between Antofagasta in the south and Arica (600 km to the north) have been investigated to evaluate the influence of Nazca plate subduction on sea level changes over Quaternary to Holocene times. At Arica the coastal range is in net extension characterized by extensional normal faulting and subsidence, similar to much of Chile. South of Arica, uplift is recorded by marine terrace development and incision of alluvial fan surfaces; uplift reaches a maximum south of Iquiqui. The boundary between regions in net subsidence and net uplift is marked by north-facing neotectonic normal fault scarps. Variations in apparent uplift and subsidence are consistent with recently published oceanographic records on relative sea level changes over a 30 yr period. The authors data suggest that these regionally variable patterns of coastal uplift along the north Chilean coast are controlled by the subduction of an aseismic ridge, which overprints the effect of eustatic sea level fluctuations. Subduction of oceanic plate heterogeneities may provide a mechanism for producing cyclicity in sedimentary sequences at a frequency equal to or higher than glacio-eustacy in fore-arc and possibly back-arc sedimentary basins. These sequences will be neither of global extent nor of global synchroneity.

  8. Bursts of Type III and Type V

    NASA Astrophysics Data System (ADS)

    Suzuki, S.; Dulk, G. A.

    The observational database on Types III and V solar radio bursts is summarized and used as a basis for developing analytical models of the observed phenomena. Type III events are characterized by a rapid drift from high to low frequencies, a harmonic structure consisting of F-H pairs, and circular polarization. Type V events last longer than Type III bursts and have a broader bandwidth. Both bursts are thought to arise from the same mechanism. Probable sources of the F-H pairs are characterized, along with the brightness temperature, time profiles, and polarization features typical of Type III and IIIb, structureless Type III and storm Type III bursts. Attention is also given to the interaction between Type III bursts and the coronal magnetic field and to similarities between Type III events and inverted-U and J bursts.

  9. Hardness/intensity correlations among BATSE bursts

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.; Pendleton, Geoffrey N.; Kouveliotou, Chryssa; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.

    1992-01-01

    Conclusions about the nature of gamma-ray bursts derived from the size-frequency distribution may be altered if a significant correlation exists between burst intensity and spectral shape. Moreover, if gamma-ray bursts have a cosmological origin, such a correlation may be expected to result from the expansion of the universe. We have performed a rudimentary search of the BATSE bursts for hardness/intensity correlations. The range of spectral shapes was determined for each burst by computing the ratio of the intensity in the range 100-300 keV to that in 55-300 keV. We find weak evidence for the existence of a correlation, the strongest effect being present when comparing the maximum hardness ratio for each burst with its maximum rate.

  10. Harmonic components of decametric solar radio bursts

    NASA Astrophysics Data System (ADS)

    Tsybko, Ia. G.

    1984-05-01

    Type IIIb, IIId, and III solar decametric radio bursts distinguished by the typical negative drift rate of their dynamic spectra are compared and noted to fall into two groups: the type IIIb chains of simple stria bursts and normal type III storm bursts observed at central regions constitute a group of events with a fast drifting spectrum, while type III bursts from type IIIb-III pairs and the limb variant of normal III bursts, as well as peculiar type IIId chains of diffuse striae and related chains with an echo component, constitute a second group of events with comparatively slow drift rates. The first group is associated with the fundamental F frequency; the second group is associated with the harmonic H of the coronal plasma frequency.

  11. Frequency of the CCR5-delta32 mutation in the Atlantic island populations of Madeira, the Azores, Cabo Verde, and São Tomé e Príncipe.

    PubMed

    Freitas, Tamira; Brehm, António; Fernandes, Ana Teresa

    2006-12-01

    There is evidence that the CCR5-delta32 mutation confers protection against HIV-1 infection to homozygous individuals. It is believed that this mutation spread through Europe with the Vikings and that it has been subjected to positive selection, leading to a high frequency in Europe (approximately 10%). We carried out the present study to determine the 32-bp deletion allele and genotype frequencies of the CCR5 gene (CCR5-delta32) in the Atlantic island populations of Madeira, the Azores, Cabo Verde, and São Tomé e Principe. These Atlantic archipelagos were all colonized by the Portuguese in the 15th and 16th centuries, but the latter two received most of their settlers from the West African coast. The frequency of the CCR5-delta32 mutation varies between 0% in São Tomé e Príncipe and 16.5% in the Azores. The Azores Islands have one of the highest frequencies of homozygotes found in Europe (4.8%). There are significant differences (P < 0.05) between some of these populations, for example, between São Tomé e Príncipe and Cabo Verde, and even within populations (e.g., Portugal, Madeira, and the Azores).

  12. EEG delta oscillations index inhibitory control of contextual novelty to both irrelevant distracters and relevant task-switch cues.

    PubMed

    Prada, Laura; Barceló, Francisco; Herrmann, Christoph S; Escera, Carles

    2014-07-01

    Delta oscillations contribute to the human P300 event-related potential evoked by oddball targets, although it is unclear whether they index contextual novelty (event oddballness, novelty P3, nP3), or target-related processes (event targetness, target P3b). To examine this question, the electroencephalogram (EEG) was recorded during a cued task-switching version of the Wisconsin card-sorting test. Each target card was announced by a tone cueing either to switch or repeat the task. Novel sound distracters were interspersed among trials. Time-frequency EEG analyses revealed bursts of delta (2-4 Hz) power associated with enhanced nP3 amplitudes to both task-switch cues and novel distracters-but no association with target P3b. These findings indicate that the P300-delta response indexes contextual novelty regardless of whether novelty emanates from endogenous (new task rules) or exogenous (novel distracters) sources of information.

  13. A Model-based Interpretation of Low-frequency Changes in the Carbon Cycle during the Last 120,000 years and its Implications for the Reconstruction of Atmospheric (delta) 14-C

    NASA Technical Reports Server (NTRS)

    Koehler, Peter; Muscheler, Raimund; Fischer, Hubertus

    2006-01-01

    A main caveat in the interpretation of observed changes in atmospheric (Delta)C-l4 during the last 50,000 years is the unknown variability of the carbon cycle, which together with changes in the C-14 production rates determines the C-14 dynamics. A plausible scenario explaining glacial/interglacial dynamics seen in atmospheric CO2 and (delta)C-13 was proposed recently (Kohler et al., 2005a). A similar approach that expands its interpretation to the C-14 cycle is an important step toward a deeper understanding of (Delta)C-14 variability. This approach is based on an ocean/atmosphere/biosphere box model of the global carbon cycle (BICYCLE) to reproduce low-frequency changes in atmospheric CO2 as seen in Antarctic ice cores. The model is forced forward in time by various paleoclimatic records derived from ice and sediment cores. The simulation results of our proposed scenario match a compiled CO2 record from various ice cores during the last 120,000 years with high accuracy (r(sup 2) = 0.89). We analyze scenarios with different C-14 production rates, which are either constant or based on Be-10 measured in Greenland ice cores or the recent high-resolution geomagnetic field reconstruction GLOPIS-75 and compare them with the available (Delta)C-14 data covering the last 50,000 years. Our results suggest that during the last glacial cycle in general less than 110%0o f the increased atmospheric (Delta)C-14 is based on variations in the carbon cycle, while the largest part (5/6) of the variations has to be explained by other factors. Glacial atmospheric (Delta)C-14 larger than 700% cannot not be explained within our framework, neither through carbon cycle-based changes nor through variable C-14 production. Superimposed on these general trends might lie positive anomalies in atmospheric (Delta)C-14 of approx. 50% caused by millennial-scale variability of the northern deep water production during Heinrich events and Dansgaard/Oeschger climate fluctuations. According to our

  14. Second sound in bursting freely suspended smectic-A films.

    PubMed

    Müller, Frank; Bohley, Christian; Stannarius, Ralf

    2009-04-01

    We describe the bursting of macroscopic spherical bubbles formed by smectic liquid crystals. During rupture, strong light scattering is observed. It is suggested here that peristaltic undulations of the films are responsible for this scattering. This phenomenon distinguishes bursting smectic films from bursting soap films. The dynamics of these mechanical waves are strongly influenced by the internal layered structure of the smectic films, viz. by the elasticity of the molecular layers, expressed by the smectic layer compression modulus B. We study experimentally the optical properties of bursting smectic films by means of optical transmission measurements and laser scattering. The typical wavelength range of the propagating peristaltic waves is in the micrometer range. The wavelength spectrum rather is independent of the initial film thickness delta, but the scattering intensity strongly depends on delta. PMID:19518341

  15. Gamma and Beta Bursts Underlie Working Memory.

    PubMed

    Lundqvist, Mikael; Rose, Jonas; Herman, Pawel; Brincat, Scott L; Buschman, Timothy J; Miller, Earl K

    2016-04-01

    Working memory is thought to result from sustained neuron spiking. However, computational models suggest complex dynamics with discrete oscillatory bursts. We analyzed local field potential (LFP) and spiking from the prefrontal cortex (PFC) of monkeys performing a working memory task. There were brief bursts of narrow-band gamma oscillations (45-100 Hz), varied in time and frequency, accompanying encoding and re-activation of sensory information. They appeared at a minority of recording sites associated with spiking reflecting the to-be-remembered items. Beta oscillations (20-35 Hz) also occurred in brief, variable bursts but reflected a default state interrupted by encoding and decoding. Only activity of neurons reflecting encoding/decoding correlated with changes in gamma burst rate. Thus, gamma bursts could gate access to, and prevent sensory interference with, working memory. This supports the hypothesis that working memory is manifested by discrete oscillatory dynamics and spiking, not sustained activity. PMID:26996084

  16. Method and apparatus for coherent burst ranging

    DOEpatents

    Wachter, Eric A.; Fisher, Walter G.

    1998-01-01

    A high resolution ranging method is described utilizing a novel modulated waveform, hereafter referred to as coherent burst modulation. In the coherent burst method, high frequency modulation of an acoustic or electromagnetic transmitter, such as a laser, is performed at a modulation frequency. This modulation frequency is transmitted quasi-continuously in the form of interrupted bursts of radiation. Energy from the transmitter is directed onto a target, interacts with the target, and the returning energy is collected. The encoded burst pattern contained in the collected return signal is detected coherently by a receiver that is tuned so as to be principally sensitive to the modulation frequency. The receiver signal is processed to determine target range using both time-of-flight of the burst envelope and phase shift of the high frequency modulation. This approach effectively decouples the maximum unambiguous range and range resolution relationship of earlier methods, thereby allowing high precision ranging to be conducted at arbitrarily long distances using at least one burst of encoded energy. The use of a receiver tuned to the high frequency modulation contained within the coherent burst vastly improves both sensitivity in the detection of the target return signal and rejection of background interferences, such as ambient acoustic or electromagnetic noise. Simultaneous transmission at several energies (or wavelengths) is possible by encoding each energy with a separate modulation frequency or pattern; electronic demodulation at the receiver allows the return pattern for each energy to be monitored independently. Radial velocity of a target can also be determined by monitoring change in phase shift of the return signal as a function of time.

  17. Method and apparatus for coherent burst ranging

    DOEpatents

    Wachter, E.A.; Fisher, W.G.

    1998-04-28

    A high resolution ranging method is described utilizing a novel modulated waveform, hereafter referred to as coherent burst modulation. In the coherent burst method, high frequency modulation of an acoustic or electromagnetic transmitter, such as a laser, is performed at a modulation frequency. This modulation frequency is transmitted quasi-continuously in the form of interrupted bursts of radiation. Energy from the transmitter is directed onto a target, interacts with the target, and the returning energy is collected. The encoded burst pattern contained in the collected return signal is detected coherently by a receiver that is tuned so as to be principally sensitive to the modulation frequency. The receiver signal is processed to determine target range using both time-of-flight of the burst envelope and phase shift of the high frequency modulation. This approach effectively decouples the maximum unambiguous range and range resolution relationship of earlier methods, thereby allowing high precision ranging to be conducted at arbitrarily long distances using at least one burst of encoded energy. The use of a receiver tuned to the high frequency modulation contained within the coherent burst vastly improves both sensitivity in the detection of the target return signal and rejection of background interferences, such as ambient acoustic or electromagnetic noise. Simultaneous transmission at several energies (or wavelengths) is possible by encoding each energy with a separate modulation frequency or pattern; electronic demodulation at the receiver allows the return pattern for each energy to be monitored independently. Radial velocity of a target can also be determined by monitoring change in phase shift of the return signal as a function of time. 12 figs.

  18. Burst Oscillations: Watching Neutron Stars Spin

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2010-01-01

    It is now almost 15 years since the first detection of rotationally modulated emission from X-ray bursting neutron stars, "burst oscillations," This phenomenon enables us to see neutron stars spin, as the X-ray burst flux asymmetrically lights up the surface. It has enabled a new way to probe the neutron star spin frequency distribution, as well as to elucidate the multidimensional nature of nuclear burning on neutron stars. I will review our current observational understanding of the phenomenon, with an eye toward highlighting some of the interesting remaining puzzles, of which there is no shortage.

  19. UWB multi-burst transmit driver for averaging receivers

    DOEpatents

    Dallum, Gregory E

    2012-11-20

    A multi-burst transmitter for ultra-wideband (UWB) communication systems generates a sequence of precisely spaced RF bursts from a single trigger event. There are two oscillators in the transmitter circuit, a gated burst rate oscillator and a gated RF burst or RF power output oscillator. The burst rate oscillator produces a relatively low frequency, i.e., MHz, square wave output for a selected transmit cycle, and drives the RF burst oscillator, which produces RF bursts of much higher frequency, i.e., GHz, during the transmit cycle. The frequency of the burst rate oscillator sets the spacing of the RF burst packets. The first oscillator output passes through a bias driver to the second oscillator. The bias driver conditions, e.g., level shifts, the signal from the first oscillator for input into the second oscillator, and also controls the length of each RF burst. A trigger pulse actuates a timing circuit, formed of a flip-flop and associated reset time delay circuit, that controls the operation of the first oscillator, i.e., how long it oscillates (which defines the transmit cycle).

  20. Characterizing Oscillatory Bursts in Single-Trial EEG Data

    NASA Technical Reports Server (NTRS)

    Knuth, K. H.; Shah, A. S.; Lakatos, P.; Schroeder, C. E.

    2004-01-01

    Oscillatory bursts in numerous bands ranging from low (theta) to high frequencies (e.g., gamma) undoubtedly play an important role in cortical dynamics. Largely because of the inadequacy of existing analytic techniques. however, oscillatory bursts and their role in cortical processing remains poorly understood. To study oscillatory bursts effectively one must be able to isolate them and characterize them in the single trial. We describe a series of straightforward analysis techniques that produce useful indices of burst characteristics. First, stimulus-evoked responses are estimated using Differentially Variable Component Analysis (dVCA), and are subtracted from the single-trial. The single-trial characteristics of the evoked responses are stored to identify possible correlations with burst activity. Time-frequency (T-F), or wavelet, analyses are then applied to the single trial residuals. While T-F plots have been used in recent studies to identify and isolate bursts, we go further by fitting each burst in the T-F plot with a two-dimensional Gaussian. This provides a set of burst characteristics, such as, center time. burst duration, center frequency. frequency dispersion. and amplitude, all of which contribute to the accurate characterization of the individual burst. The burst phase can also be estimated. Burst characteristics can be quantified with several standard techniques (e.g.. histogramming and clustering), as well as Bayesian techniques (e.g., blocking) to allow a more parametric description analysis of the characteristics of oscillatory bursts, and the relationships of specific parameters to cortical excitability and stimulus integration.

  1. Bursting Neurons and Ultrasound Avoidance in Crickets

    PubMed Central

    Marsat, Gary; Pollack, Gerald S.

    2012-01-01

    Decision making in invertebrates often relies on simple neural circuits composed of only a few identified neurons. The relative simplicity of these circuits makes it possible to identify the key computation and neural properties underlying decisions. In this review, we summarize recent research on the neural basis of ultrasound avoidance in crickets, a response that allows escape from echolocating bats. The key neural property shaping behavioral output is high-frequency bursting of an identified interneuron, AN2, which carries information about ultrasound stimuli from receptor neurons to the brain. AN2’s spike train consists of clusters of spikes – bursts – that may be interspersed with isolated, non-burst spikes. AN2 firing is necessary and sufficient to trigger avoidance steering but only high-rate firing, such as occurs in bursts, evokes this response. AN2 bursts are therefore at the core of the computation involved in deciding whether or not to steer away from ultrasound. Bursts in AN2 are triggered by synaptic input from nearly synchronous bursts in ultrasound receptors. Thus the population response at the very first stage of sensory processing – the auditory receptor – already differentiates the features of the stimulus that will trigger a behavioral response from those that will not. Adaptation, both intrinsic to AN2 and within ultrasound receptors, scales the burst-generating features according to the stimulus statistics, thus filtering out background noise and ensuring that bursts occur selectively in response to salient peaks in ultrasound intensity. Furthermore AN2’s sensitivity to ultrasound varies adaptively with predation pressure, through both developmental and evolutionary mechanisms. We discuss how this key relationship between bursting and the triggering of avoidance behavior is also observed in other invertebrate systems such as the avoidance of looming visual stimuli in locusts or heat avoidance in beetles. PMID:22783158

  2. Bursting neurons and ultrasound avoidance in crickets.

    PubMed

    Marsat, Gary; Pollack, Gerald S

    2012-01-01

    Decision making in invertebrates often relies on simple neural circuits composed of only a few identified neurons. The relative simplicity of these circuits makes it possible to identify the key computation and neural properties underlying decisions. In this review, we summarize recent research on the neural basis of ultrasound avoidance in crickets, a response that allows escape from echolocating bats. The key neural property shaping behavioral output is high-frequency bursting of an identified interneuron, AN2, which carries information about ultrasound stimuli from receptor neurons to the brain. AN2's spike train consists of clusters of spikes - bursts - that may be interspersed with isolated, non-burst spikes. AN2 firing is necessary and sufficient to trigger avoidance steering but only high-rate firing, such as occurs in bursts, evokes this response. AN2 bursts are therefore at the core of the computation involved in deciding whether or not to steer away from ultrasound. Bursts in AN2 are triggered by synaptic input from nearly synchronous bursts in ultrasound receptors. Thus the population response at the very first stage of sensory processing - the auditory receptor - already differentiates the features of the stimulus that will trigger a behavioral response from those that will not. Adaptation, both intrinsic to AN2 and within ultrasound receptors, scales the burst-generating features according to the stimulus statistics, thus filtering out background noise and ensuring that bursts occur selectively in response to salient peaks in ultrasound intensity. Furthermore AN2's sensitivity to ultrasound varies adaptively with predation pressure, through both developmental and evolutionary mechanisms. We discuss how this key relationship between bursting and the triggering of avoidance behavior is also observed in other invertebrate systems such as the avoidance of looming visual stimuli in locusts or heat avoidance in beetles.

  3. Mechanisms subserving the physiological nocturnal relative hypoprolactinemia of healthy older men: dual decline in prolactin secretory burst mass and basal release with preservation of pulse duration, frequency, and interpulse interval--a General Clinical Research Center study.

    PubMed

    Iranmanesh, A; Mulligan, T; Veldhuis, J D

    1999-03-01

    Increasing age is accompanied by decrements in randomly obtained, fasting, or frequently sampled serum PRL concentrations. The precise neuroendocrine mechanisms underlying such relative hypoprolactinemia in aging are incompletely understood. In the present study, we sampled blood at 2.5-min intervals overnight in 11 young (aged 21-34 yr) and 8 older (aged 62-72 yr) healthy men for subsequent chemiluminescence-based assay of serum PRL concentrations. The mean (+/- SEM) serum PRL concentration was significantly reduced at 4.3 +/- 0.78 microg/L in older men compared with 9.5 +/- 1.2 microg/L in young volunteers (P = 0.0049). PRL concentrations correlated with serum testosterone (r = 0.473; P = 0.041), dehydroepiandrosteroen sulfate (r = +0.455, P = 0.05), and insulin-like growth factor I (r = 0.494; P = 0.032) levels. Deconvolution analysis was used to evaluate combined pulsatile and basal modes of PRL secretion. In older men, discrete PRL secretory bursts were marked by a significantly (2.4-fold) attenuated mass of hormone secreted per burst (amount of PRL secreted per unit distribution volume), viz. 1.6 +/- 0.23 (older) vs. 3.9 +/- 0.57 microg/L (young; P < 0.01). In contrast, PRL secretory burst frequency, interpulse interval, and pulse duration were invariant of age. Concomitantly, basal PRL secretion was reduced by 2-fold in older subjects, namely to 0.00030 +/- 0.00027 (older) vs. 0.00065 +/- 0.0002 microg/L/min (young; P < 0.01). The amount of total PRL secretion that was pulsatile averaged 82 +/- 5.3% in young and 99 +/- 0.13% in older men (P = 0.012), indicating preferential loss of the basal mode of PRL release in aging. Assuming that basal PRL secretion mirrors functional pituitary lactotroph cell secretory mass, whereas pulsatile PRL release reflects effective (net) intermittent hypothalamic drive to responsive lactotroph cells, then our results suggest both an attrition in lactotroph cell mass and an impoverishment of net positive hypothalamic (agonistic

  4. Delta wing vortex manipulation using pulsed and steady blowing during ramp pitching

    NASA Technical Reports Server (NTRS)

    Moreira, J.; Johari, H.

    1995-01-01

    The effectiveness of steady and pulsed blowing as a method of controlling delta wing vortices during ramp pitching has been investigated in flow visualization experiments conducted in a water tunnel. The recessed angled spanwise blowing technique was utilized for vortex manipulation. This technique was implemented on a beveled 60 delta wing using a pair of blowing ports located beneath the vortex core at 40% chord. The flow was injected primarily in the spanwise direction but was also composed of a component normal to the wing surface. The location of vortex burst was measured as a function of blowing intensity and pulsing frequency under static conditions, and the optimum blowing case was applied at three different wing pitching rates. Experimental results have shown that, when the burst location is upstream of the blowing port, pulsed blowing delays vortex breakdown in static and dynamic cases. Dynamic tests verified the existence of a hysteresis effect and demonstrated the improvements offered by pulsed blowing over both steady blowing and no-blowing scenarios. The application of blowing, at the optimum pulsing frequency, made the vortex breakdown location comparable in static and ramp pitch-up conditions.

  5. Neural heterogeneities and stimulus properties affect burst coding in vivo.

    PubMed

    Avila-Akerberg, O; Krahe, R; Chacron, M J

    2010-06-16

    Many neurons tend to fire clusters of action potentials called bursts followed by quiescence in response to sensory input. While the mechanisms that underlie burst firing are generally well understood in vitro, the functional role of these bursts in generating behavioral responses to sensory input in vivo are less clear. Pyramidal cells within the electrosensory lateral line lobe (ELL) of weakly electric fish offer an attractive model system for studying the coding properties of burst firing, because the anatomy and physiology of the electrosensory circuitry are well understood, and the burst mechanism of ELL pyramidal cells has been thoroughly characterized in vitro. We investigated the coding properties of bursts generated by these cells in vivo in response to mimics of behaviorally relevant sensory input. We found that heterogeneities within the pyramidal cell population had quantitative but not qualitative effects on burst coding for the low frequency components of broadband time varying input. Moreover, spatially localized stimuli mimicking, for example, prey tended to elicit more bursts than spatially global stimuli mimicking conspecific-related stimuli. We also found small but significant correlations between burst attributes such as the number of spikes per burst or the interspike interval during the burst and stimulus attributes such as stimulus amplitude or slope. These correlations were much weaker in magnitude than those observed in vitro. More surprisingly, our results show that correlations between burst and stimulus attributes actually decreased in magnitude when we used low frequency stimuli that are expected to promote burst firing. We propose that this discrepancy is attributable to differences between ELL pyramidal cell burst firing under in vivo and in vitro conditions.

  6. How long does a burst burst?

    SciTech Connect

    Zhang, Bin-Bin; Connaughton, Valerie; Briggs, Michael S.; Zhang, Bing; Murase, Kohta

    2014-05-20

    Several gamma-ray bursts (GRBs) last much longer (∼hours) in γ-rays than typical long GRBs (∼minutes), and it has recently been proposed that these 'ultra-long GRBs' may form a distinct population, probably with a different (e.g., blue supergiant) progenitor than typical GRBs. However, Swift observations suggest that many GRBs have extended central engine activities manifested as flares and internal plateaus in X-rays. We perform a comprehensive study on a large sample of Swift GRBs with X-Ray Telescope observations to investigate GRB central engine activity duration and to determine whether ultra-long GRBs are unusual events. We define burst duration t {sub burst} based on both γ-ray and X-ray light curves rather than using γ-ray observations alone. We find that t {sub burst} can be reliably measured in 343 GRBs. Within this 'good' sample, 21.9% GRBs have t {sub burst} ≳ 10{sup 3} s and 11.5% GRBs have t {sub burst} ≳ 10{sup 4} s. There is an apparent bimodal distribution of t {sub burst} in this sample. However, when we consider an 'undetermined' sample (304 GRBs) with t {sub burst} possibly falling in the gap between GRB duration T {sub 90} and the first X-ray observational time, as well as a selection effect against t {sub burst} falling into the first Swift orbital 'dead zone' due to observation constraints, the intrinsic underlying t {sub burst} distribution is consistent with being a single component distribution. We found that the existing evidence for a separate ultra-long GRB population is inconclusive, and further multi-wavelength observations are needed to draw a firmer conclusion. We also discuss the theoretical implications of our results. In particular, the central engine activity duration of GRBs is generally much longer than the γ-ray T {sub 90} duration and it does not even correlate with T {sub 90}. It would be premature to make a direct connection between T {sub 90} and the size of the progenitor star.

  7. The GLAST Burst Monitor

    NASA Technical Reports Server (NTRS)

    Meegan, Charles; Bhat, Narayana; Connaughton, Valerie; Briggs, Michael; Diehl, Roland; Fishman, Gerald; Greiner, Jochen; Kippen, R. Marc; vonKienlin, Andreas; Kouveliotou, Chryssa; Lichti, Giselher; Paciesas, William; Preece, Robert; Steinle, Helmut; Wilson-Hodge, Colleen

    2007-01-01

    The GLAST Burst Monitor (GBM) comprises an array of NaI and BGO scintillation detectors designed to enhance the scientific return from GLAST in the study of gamma-ray bursts (GRBs). By observing in the 10 keV to 30 MeV energy range, GBM extends the spectral coverage of GRBs more than 3 decades below the LAT energy threshold. GBM computes burst locations on-board, allowing repointing of the GLAST Observatory to place strong bursts within the LAT field-of-view to observe delayed high-energy emission.

  8. Similitude relations for buffet and wing rock on delta wings

    NASA Astrophysics Data System (ADS)

    Mabey, D. G.

    1997-08-01

    Vortex flow phenomena at high angles of incidence are of great interest to the designers of advanced combat aircraft. The steady phenomena (such as steady lift and pitching moments) are understood fairly well, whereas the unsteady phenomena are still uncertain. This paper addresses two important unsteady phenomena on delta wings. With regard to the frequency parameter of the quasi-periodic excitation caused by vortex bursting, a new correlation is established covering a range of sweep back from 60 to 75°. With regard to the much lower frequency parameter of limit-cycle rigid-body wing-rock, a new experiment shows conclusively that although the motion is non-linear, the frequency parameter can be predicted by quasi-steady theory. As a consequence, for a given sweep angle, the frequency parameter is inversely proportional to the square root of the inertia in roll. This is an important observation when attempting to extrapolate from model tests in wind tunnels to predict the wing-rock characteristics of aircraft.

  9. Mississippi Delta

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The streamers of clouds draped over the Gulf of Mexico in this true-color MODIS image from February 27, 2002, suggest that a cold, dry wind was blowing southward over the United States and began to pick up moisture over the Gulf, causing these strips of clouds. That the clouds didn't pick up until some distance from the coastline allowed MODIS to get a perfect view of the dynamic Gulf Coast environment spanning (left to right) Texas, Louisiana, Mississippi, Alabama, and Florida's Western Panhandle. The Mississippi River runs roughly down the center of the image, and is joined in Louisiana by the Red River coming in from the northwest. Over the past 7000 years, the actual delta, where the main river channel empties into the Gulf, has wandered around what we now think of as the Louisiana coast. Considering all the sediment visible in this image, it's not hard to imagine that the river carries about 2.4 billion kilograms of sediment into the Gulf each year. Deposition of some of this sediment has been building up the current delta, called the Birdfoot Delta, for obvious reasons, for about 700 years. The coastal waters are alive with microscopic organisms called phytoplankton, which contain colorful pigments, including chlorophyll, for harvesting sunlight. Beyond the sediment plume off Louisiana, the waters are very dark, which could indicate that a large amount of chlorophyll is present, absorbing lots of sunlight and causing the water to appear dark. Farther south, the waters appear bright blue, which could be a signature of coccolithophores, which use highly reflective calcium carbonate to build scaly coverings for themselves. The brighter offshore waters could also be caused by a blue-green algae called Trichodesmium, an organism that can not only harness carbon dioxide for photosynthesis, but can also take nitrogen from the air and turn it into a form that can be used by living organisms. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  10. Analysis of the role of the low threshold currents IT and Ih in intrinsic delta oscillations of thalamocortical neurons

    PubMed Central

    Amarillo, Yimy; Mato, Germán; Nadal, Marcela S.

    2015-01-01

    Thalamocortical neurons are involved in the generation and maintenance of brain rhythms associated with global functional states. The repetitive burst firing of TC neurons at delta frequencies (1–4 Hz) has been linked to the oscillations recorded during deep sleep and during episodes of absence seizures. To get insight into the biophysical properties that are the basis for intrinsic delta oscillations in these neurons, we performed a bifurcation analysis of a minimal conductance-based thalamocortical neuron model including only the IT channel and the sodium and potassium leak channels. This analysis unveils the dynamics of repetitive burst firing of TC neurons, and describes how the interplay between the amplifying variable mT and the recovering variable hT of the calcium channel IT is sufficient to generate low threshold oscillations in the delta band. We also explored the role of the hyperpolarization activated cationic current Ih in this reduced model and determine that, albeit not required, Ih amplifies and stabilizes the oscillation. PMID:25999847

  11. Analysis of the role of the low threshold currents IT and Ih in intrinsic delta oscillations of thalamocortical neurons.

    PubMed

    Amarillo, Yimy; Mato, Germán; Nadal, Marcela S

    2015-01-01

    Thalamocortical neurons are involved in the generation and maintenance of brain rhythms associated with global functional states. The repetitive burst firing of TC neurons at delta frequencies (1-4 Hz) has been linked to the oscillations recorded during deep sleep and during episodes of absence seizures. To get insight into the biophysical properties that are the basis for intrinsic delta oscillations in these neurons, we performed a bifurcation analysis of a minimal conductance-based thalamocortical neuron model including only the IT channel and the sodium and potassium leak channels. This analysis unveils the dynamics of repetitive burst firing of TC neurons, and describes how the interplay between the amplifying variable mT and the recovering variable hT of the calcium channel IT is sufficient to generate low threshold oscillations in the delta band. We also explored the role of the hyperpolarization activated cationic current Ih in this reduced model and determine that, albeit not required, Ih amplifies and stabilizes the oscillation.

  12. Q-bursts from various distances on the Earth

    NASA Astrophysics Data System (ADS)

    Ogawa, Toshio; Komatsu, Masayuki

    2009-02-01

    The mechanism of the Q-burst is investigated in the time and frequency domains. Electric fields in the ELF (extremely low frequency) to VLF (very low frequency) range have been observed with a ball antenna since 2003 in Kochi City, Japan (latitude 33.3°north, longitude 133.4°east). Source-to-observer distances (SODs) of Q-bursts are estimated by analyzing the waveforms. It is found as a result that the Q-burst is produced by combination of direct and antipodal pulses from a source lightning stroke occurring all over the world.

  13. Unusual Type III Bursts at the Decametre Wavelengths

    NASA Astrophysics Data System (ADS)

    Dorovskyy, V. V.; Melnik, V. N.; Konovalenko, A. A.; Rucker, H. O.; Abranin, E. P.; Lecacheux, A.

    It is currently accepted that the dependences of frequency drift rate and instant duration of type III bursts on frequency follow a monotonic function. The observations carried out during summer months of 2002-2006 by the world largest decameter wavelength radio telescope UTR-2 in frequency band 10-30 MHz show that sometimes these dependences may have a jump at some frequency, when the steepness of the dependence changes step-wise. In this paper the results of observations of such unusual type III bursts are given. Since the dynamic spectrum of such bursts resembles a dog's leg we call them "dog-leg" type III bursts. More than a hundred of these "dog-leg" bursts were observed during 5 years. The parameters of the 41 bursts observed in 2002 were defined and statistically analyzed. The fact that "dog-leg" type III bursts are observed on the background of standard type III bursts allows to exclude any instrumental component of the observed phenomena.

  14. 34 First Callisto solar burst spectrometer station in Greenland

    NASA Astrophysics Data System (ADS)

    Monstein, Christian

    2016-04-01

    In mid of March 2016 a new long wavelength station in Greenland was set into operation. It is a dual circular polarization, frequency agile solar radio burst spectrometer based on two Callisto spectrometers and the Long Wavelength Array antenna. During the commissioning phase several nice radio burst observations proved that the system works as expected.

  15. Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Kouveliotou, Chryssa; Wijers, Ralph A. M. J.; Woosley, Stan

    2012-11-01

    Prologue C. Kouveliotou, R. A . M. J. Wijers and S. E. Woosley; 1. The discovery of the gamma-ray burst phenomenon R. W. Klebesadel; 2. Instrumental principles E. E. Fenimore; 3. The BATSE era G. J. Fishman and C. A. Meegan; 4. The cosmological era L. Piro and K. Hurley; 5. The Swift era N. Gehrels and D. N. Burrows; 6. Discoveries enabled by multi-wavelength afterglow observations of gamma-ray bursts J. Greiner; 7. Prompt emission from gamma-ray bursts T. Piran, R. Sari and R. Mochkovitch; 8. Basic gamma-ray burst afterglows P. Mészáros and R. A. M. J. Wijers; 9. The GRB-supernova connection J. Hjorth and J. S. Bloom; 10. Models for gamma-ray burst progenitors and central engines S. E. Woosley; 11. Jets and gamma-ray burst unification schemes J. Granot and E. Ramirez-Ruiz; 12. High-energy cosmic rays and neutrinos E. Waxman; 13. Long gamma-ray burst host galaxies and their environments J. P. U. Fynbo, D. Malesani and P. Jakobsson; 14. Gamma-ray burst cosmology V. Bromm and A. Loeb; 15. Epilogue R. D. Blandford; Index.

  16. Gamma Ray Bursts - Observations

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Cannizzo, J. K.

    2010-01-01

    We are in an exciting period of discovery for gamma-ray bursts. The Swift observatory is detecting 100 bursts per year, providing arcsecond localizations and sensitive observations of the prompt and afterglow emission. The Fermi observatory is observing 250 bursts per year with its medium-energy GRB instrument and about 10 bursts per year with its high-energy LAT instrument. In addition, rapid-response telescopes on the ground are providing new capabilities to study optical emission during the prompt phase and spectral signatures of the host galaxies. The combined data set is enabling great advances in our understanding of GRBs including afterglow physics, short burst origin, and high energy emission.

  17. A behavioral role for feature detection by sensory bursts.

    PubMed

    Marsat, Gary; Pollack, Gerald S

    2006-10-11

    Brief episodes of high-frequency firing of sensory neurons, or bursts, occur in many systems, including mammalian auditory and visual systems, and are believed to signal the occurrence of particularly important stimulus features, i.e., to function as feature detectors. However, the behavioral relevance of sensory bursts has not been established in any system. Here, we show that bursts in an identified auditory interneuron of crickets reliably signal salient stimulus features and reliably predict behavioral responses. Our results thus demonstrate the close link between sensory bursts and behavior.

  18. CME-Associated Radio Bursts from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2012-01-01

    Coronal mass ejections (CMEs) are closely associated with various types of radio bursts from the Sun. All radio bursts are due to nonthermal electrons, which are accelerated during the eruption of CMEs. Radio bursts at frequencies below about 15 MHz are of particular interest because they are associated with energetic CMEs that contribute to severe space weather. The low-frequency bursts need to be observed primarily from space because of the ionospheric cutoff. The main CME-related radio bursts are associated are: type III bursts due to accelerated electrons propagating along open magnetic field lines, type II bursts due to electrons accelerated in shocks, and type IV bursts due to electrons trapped in post-eruption arcades behind CMEs. This paper presents a summary of results obtained during solar cycle 23 primarily using the white-light coronagraphic observations from the Solar Heliospheric Observatory (SOHO) and the WAVES experiment on board Wind. Particular emphasis will be placed on what we can learn about particle acceleration in the coronal and interplanetary medium by analyzing the CMEs and the associated radio bursts.

  19. Decametric and hectometric Solar Type III bursts at Saturn's orbit

    NASA Astrophysics Data System (ADS)

    Boudjada, Mohammed Y.; Sawas, Sami; Galopeau, Patrick H. M.; Maksimovic, Milan

    2015-04-01

    We report on solar radio bursts observed by RPWS experiment onboard Cassini spacecraft. We consider Type III solar bursts observed in the frequency range from 1 MHz to 16 MHz. Those bursts are probably generated in the solar corona and the interplanetary medium. We show that the Type III burst occurrence is depending on the solar activity. We attempt to localize the regions where the Type III burst is probably emitted. We consider that the electrons at the origin of the Solar Type III bursts follow the interplanetary magnetic field. The trajectory is an Archimedean spiral contained in the ecliptic plane. We discuss our results taking into consideration on the one hand the spacecraft positions with regards to the source location, and on the other hand the temporal and spectral radio beam variation when combining Cassini and Wind observations.

  20. Observations of cosmic gamma ray bursts with WATCH on EURECA

    NASA Astrophysics Data System (ADS)

    Brandt, S.; Lund, N.; Castro-Tirado, A. J.

    19 Cosmic Gamma-Ray Bursts were detected by the Wide Angle Telescope for Cosmic Hard X-rays (WATCH) instruments during the 11 months flight of the European Retrievable Carrier (EURECA). The identification of the bursts was complicated by a high frequency of background of events caused by a high energy cosmic ray interactions in the detector and by low energy, trapped particle streams. These background events may simulate the count rate increases characteristic of cosmic gamma bursts. For 12 of the detected events, their true cosmic nature have been confirmed through consistent localizations of the burst sources based on several independent WATCH data sets. The derived positions of the bursts are reported. Additionally, most of the events have been confirmed by coincident detections with instruments on other spacecraft. The features of two of the bursts and the results of searches for related events in the optical are described.

  1. Implications of fast radio bursts for superconducting cosmic strings

    SciTech Connect

    Yu, Yun-Wei; Cheng, Kwong-Sang; Shiu, Gary; Tye, Henry E-mail: hrspksc@hku.hk E-mail: iastye@ust.hk

    2014-11-01

    Highly beamed, short-duration electromagnetic bursts could be produced by superconducting cosmic string (SCS) loops oscillating in cosmic magnetic fields. We demonstrated that the basic characteristics of SCS bursts such as the electromagnetic frequency and the energy release could be consistently exhibited in the recently discovered fast radio bursts (FRBs). Moreover, it is first showed that the redshift distribution of the FRBs can also be well accounted for by the SCS burst model. Such agreements between the FRBs and SCS bursts suggest that the FRBs could originate from SCS bursts and thus they could provide an effective probe to study SCSs. The obtained values of model parameters indicate that the loops generating the FRBs have a small length scale and they are mostly formed in the radiation-dominated cosmological epoch.

  2. Solar Type III Radio Bursts: Directivity Characteristics

    NASA Astrophysics Data System (ADS)

    Thejappa, G.; MacDowall, R. J.

    2015-09-01

    Type III radio bursts are a group of fast drifting radio emissions associated with solar flares. These radio emissions are believed to be excited at the fundamental and second harmonic of the electron plasma frequency, fpe by the electron beam excited Langmuir waves through a mechanism called the plasma mechanism. This mechanism attributes the dipole and quadrupole beam patterns for the fundamental and harmonic emissions. To verify these predictions, we analyze the simultaneous observations of type III radio bursts by the STEREO A, B and Wind spacecraft located at different vantage points in the ecliptic plane, and determine their normalized peak intensities (directivity factors) at each spacecraft using their time profiles. Assuming that the sources of these bursts are located on the Parker spiral magnetic field lines emerging from the associated active regions, we estimate the angles between the magnetic field directions and the lines connecting the sources to the spacecraft (viewing angles). Based on the plots of the directivity factors versus the viewing angles, one can divide these bursts into (1) intense bursts emitted into a narrow cone centered around the tangent to the magnetic field, and (2) relatively weaker bursts emitting into a wider cone centered around the tangent to the magnetic field. We compute the distributions of ray trajectories emitted by an isotropic point source and show that the refraction focuses the fundamental and harmonic emissions into narrow and wider cones, respectively. The comparison of these distributions with observations indicates that the intense bursts visible to a narrow range of angles around the tangent to the magnetic field probably correspond to the fundamental, and the relatively weaker bursts visible to a wide range of angles probably are the harmonic emissions.

  3. Mississippi Delta

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Mississippi River delta teems with sediment deposited by the river as it flows into the Gulf of Mexico in this true-color image captured by MODIS on October 15, 2001. The sediment, which is marked by brown swirls in the Gulf, provides nutrients for the bloom of phytoplankton visible as blue-green swirls off the coastline. In the high-resolution image the city of Memphis can be seen in the southwest corner of Tennessee, which is just to left of center at the top of the image. The brown coloration that encompasses Memphis and either side of the river, as flows north to south along the left side of the image, is the river's flood plain. Also visible, in the upper-right hand corner of the image is the southern end of the Appalachian Mountains.

  4. Sources of type III solar microwave bursts

    NASA Astrophysics Data System (ADS)

    Zhdanov, Dmitriy; Lesovoi, Sergey; Tokhchukova, Susanna

    2016-06-01

    Microwave fine structures allow us to study plasma evolution in an energy release region. The Siberian Solar Radio Telescope (SSRT) is a unique instrument designed to examine fine structures at 5.7 GHz. A complex analysis of data from RATAN-600, 4-8 GHz spectropolarimeter, and SSRT, simultaneously with extreme UV data, made it possible to localize sources of III type microwave drift bursts in August 10, 2011 event within the entire frequency band of burst occurrences, as well as to determine the most probable region of primary energy release. To localize sources of III type bursts from RATAN-600 data, an original method for data processing has been worked out. At 5.7 GHz, the source of bursts was determined along two coordinates whereas at 4.5, 4.7, 4.9, 5.1, 5.3, 5.5 and 6.0 GHz, their locations were identified along one coordinate. The size of the burst source at 5.1 GHz was found to be maximum as compared to source sizes at other frequencies.

  5. Gamma-Ray Bursts

    SciTech Connect

    Paciesas, W.S. ); Fishman, G.J. )

    1992-01-01

    This proceedings represents the works presented at the Gamma-Ray Bursts Workshop -- 1991 which was held on the campus of theUniversity of Alabama in Huntsville, October 16-18. The emphasis ofthe Workshop was to present and discuss new observations of gamma-ray bursts made recently by experiments on the Compton Gamma-RayObservatory (CGRO), Granat, Ginga, Pioneer Venus Orbiter, Prognozand Phobos. These presentations were complemented by some groundbased observations, reanalysis of older data, descriptions offuture gamma-ray burst experiments and a wide-ranging list oftheoretical discussions. Over seventy papers are included in theproceedings. Eleven of them are abstracted for the database. (AIP)

  6. The Green Bank Solar Radio Burst Spectrometer

    NASA Astrophysics Data System (ADS)

    Bastian, T. S.; Bradley, R.; White, S.; Mastrantonio, E.

    2005-05-01

    The Solar Radio Burst Spectrometer (SRBS) is a project designed to 1) provide high quality radio dynamic spectra to the wider solar, heliospheric, and space weather communities; 2) serve as a development platform for ultra-wideband feeds and receivers. Dynamic spectroscopy is a powerful tool for observing radio bursts in the Sun's corona. These bursts are associated with solar flares and/or coronal mass ejections and result from coronal shocks (type II radio bursts), electron beams (type III radio bursts), and other forms of energy release in the corona. The community has been hampered by a lack of readily available dynamic spectra in the 12-24 hr UT time range, a shortcoming that has now been remedied. The instrument is located at the Green Bank Site of the National Radio Astronomy Observatory in the National Radio Quiet Zone, where the effects of radio frequency interference are much reduced compared with unprotected sites. The spectrometer is composed of two swept-frequency systems that together support observations from 18 MHz to 2 GHz with a time resolution of approximately 1 sec. The low frequency system, operating from 18-70 MHz, is a standalone dipole antenna. The high frequency system is fed by an antenna mounted at the vertex of a 13.7 m telescope and operates from 70-300 MHz; a broadband feed at the prime focus of the telescope provides frequency coverage from 300-2500 MHz. The data are available daily through a web-based interface. Both raw and background-subtracted data are available in a variety of formats. Users are encouraged to view and download selected data for research or forecasting purposes.

  7. Solar longitude dependence of some characteristics of type III radio bursts from metric to hectometric wavelengths

    NASA Technical Reports Server (NTRS)

    Sakurai, K.

    1974-01-01

    Using the observed data for metric and hectometric type III radio bursts, the dependence of burst characteristics on the solar longitude has been examined over a wide frequency range. It is found that there exists and east-west asymmetry for the extension of metric type III bursts into the hectometric wavelength range. In particular, hectometric bursts are rarely observed for solar flares associated with metric bursts east of 60 E solar longitude. Furthermore, for east longitudes, the low-frequency radio observations show a large dispersion in drift time interval.

  8. Could FIV zoonosis responsible of the breakdown of the pathocenosis which has reduced the European CCR5-Delta32 allele frequencies?

    PubMed Central

    Faure, Eric

    2008-01-01

    Background In Europe, the north-south downhill cline frequency of the chemokine receptor CCR5 allele with a 32-bp deletion (CCR5-Δ32) raises interesting questions for evolutionary biologists. We had suggested first that, in the past, the European colonizers, principally Romans, might have been instrumental of a progressively decrease of the frequencies southwards. Indeed, statistical analyses suggested strong negative correlations between the allele frequency and historical parameters including the colonization dates by Mediterranean civilisations. The gene flows from colonizers to native populations were extremely low but colonizers are responsible of the spread of several diseases suggesting that the dissemination of parasites in naive populations could have induced a breakdown rupture of the fragile pathocenosis changing the balance among diseases. The new equilibrium state has been reached through a negative selection of the null allele. Results Most of the human diseases are zoonoses and cat might have been instrumental in the decrease of the allele frequency, because its diffusion through Europe was a gradual process, due principally to Romans; and that several cat zoonoses could be transmitted to man. The possible implication of a feline lentivirus (FIV) which does not use CCR5 as co-receptor is discussed. This virus can infect primate cells in vitro and induces clinical signs in macaque. Moreover, most of the historical regions with null or low frequency of CCR5-Δ32 allele coincide with historical range of the wild felid species which harbor species-specific FIVs. Conclusion We proposed the hypothesis that the actual European CCR5 allelic frequencies are the result of a negative selection due to a disease spreading. A cat zoonosis, could be the most plausible hypothesis. Future studies could provide if CCR5 can play an antimicrobial role in FIV pathogenesis. Moreover, studies of ancient DNA could provide more evidences regarding the implications of

  9. Burst diaphragm leak detector

    NASA Technical Reports Server (NTRS)

    Pascolla, J. A.

    1969-01-01

    New method replaces flowmeter approach with readily available burst diaphragm leak detector assembly mounted to all drain ports. This allows simultaneous leak detection of all flange seals under operating conditions.

  10. INTEGRAL burst alert service

    NASA Technical Reports Server (NTRS)

    Pedersen, H.; Jennings, D.; Mereghetti, S.; Teegarden, B.

    1997-01-01

    The detection, accurate positioning, and spectral analysis of cosmic gamma ray bursts is an objective of the International Gamma Ray Astrophysics Laboratory (INTEGRAL) mission. Due to their unpredictable nature, gamma ray bursts can only be observed in serendipity mode. In order to allow and promote multiwavelength follow-up observations of such events, it is desirable to make the information available to the astrophysics community with a minimum delay through the use of Internet. Ideally, the data dissemination should occur within a few seconds of the start of the burst event so that follow up observations can proceed while gamma rays are still being emitted. The technical feasibility of building such a system to disseminate INTEGRAL burst alerts in real time is currently under consideration, the preliminary results of which are presented. It is concluded that such an alert service is technically feasible.

  11. Delta III—an evolutionary delta growth

    NASA Astrophysics Data System (ADS)

    Arvesen, R. J.; Simpson, J. S.

    1996-03-01

    In order to remain competitive in the future and expand the McDonnell Douglas Aerospace market share, MDA has developed an expendable launch system strategy that devices cost-effective launch systems from the Delta II with a growth vehicle configuration called Delta III. The Delta III evolves from the Delta II launch system through development of a larger payload fairing (4-meter diameter), new cryogenically propelled upper stage, new first stage fuel tank, and larger strap-on solid rocket motors. We are developing the Delta III using Integrated Product Development Teams that capitalize on the experience base that has led us to a world record breaking mission success of 49 consecutive Delta II missions. The Delta III first-launch capability is currently planned for the spring of 1998 in support of our first spacecraft customer, Hughes Space and Communications International.

  12. Parameters for burst detection

    PubMed Central

    Bakkum, Douglas J.; Radivojevic, Milos; Frey, Urs; Franke, Felix; Hierlemann, Andreas; Takahashi, Hirokazu

    2014-01-01

    Bursts of action potentials within neurons and throughout networks are believed to serve roles in how neurons handle and store information, both in vivo and in vitro. Accurate detection of burst occurrences and durations are therefore crucial for many studies. A number of algorithms have been proposed to do so, but a standard method has not been adopted. This is due, in part, to many algorithms requiring the adjustment of multiple ad-hoc parameters and further post-hoc criteria in order to produce satisfactory results. Here, we broadly catalog existing approaches and present a new approach requiring the selection of only a single parameter: the number of spikes N comprising the smallest burst to consider. A burst was identified if N spikes occurred in less than T ms, where the threshold T was automatically determined from observing a probability distribution of inter-spike-intervals. Performance was compared vs. different classes of detectors on data gathered from in vitro neuronal networks grown over microelectrode arrays. Our approach offered a number of useful features including: a simple implementation, no need for ad-hoc or post-hoc criteria, and precise assignment of burst boundary time points. Unlike existing approaches, detection was not biased toward larger bursts, allowing identification and analysis of a greater range of neuronal and network dynamics. PMID:24567714

  13. Far infrared video detection and difference frequency mixing with tilted c-axis epitaxial YBa2Cu3O7 - delta thin films

    NASA Astrophysics Data System (ADS)

    Huber, W. M.; Berr, M.; Kalbeck, A.; Prettl, W.; Huggard, P. G.

    1996-06-01

    Epitaxial YBa2Cu3O7-δ thin films, grown with a controllable misalignment between c-axis and surface normal, exhibit a sensitive photoresponse to far infrared laser radiation at temperatures below Tc. While no photoresponse was observed in c-axis normal films, a sensitivity of 0.2 V/W was measured at a wavelength of 432 μm for a film with a 20° c-axis tilt. Difference frequency mixing of two laser modes has also been demonstrated at intermediate frequencies between 200 kHz and 6 MHz. Both mixing and video detection are believed to originate in the ac Josephson effect: the effect of the tilted growth is to allow a component of the radiation field to be applied along the c-axis, thus modulating the relatively weak Josephson coupling in this direction.

  14. The Delta 2 launcher

    NASA Astrophysics Data System (ADS)

    Ousley, Gilbert W., Sr.

    1991-12-01

    The utilization of the Delta 2 as the vehicle for launching Aristoteles into its near Sun synchronous orbit is addressed. Delta is NASA's most reliable launch vehicle and is well suited for placing the present Aristoteles spacecraft into a 400 m circular orbit. A summary of some of the Delta 2 flight parameters is presented. Diagrams of a typical Delta 2 two stage separation are included along with statistics on delta reliability and launch plans.

  15. Automatic recognition of type III solar radio bursts: Automated Radio Burst Identification System method and first observations

    NASA Astrophysics Data System (ADS)

    Lobzin, Vasili V.; Cairns, Iver H.; Robinson, Peter A.; Steward, Graham; Patterson, Garth

    2009-04-01

    Because of the rapidly increasing role of technology, including complicated electronic systems, spacecraft, etc., modern society has become more vulnerable to a set of extraterrestrial influences (space weather) and requires continuous observation and forecasts of space weather. The major space weather events like solar flares and coronal mass ejections are usually accompanied by solar radio bursts, which can be used for a real-time space weather forecast. Coronal type III radio bursts are produced near the local electron plasma frequency and near its harmonic by fast electrons ejected from the solar active regions and moving through the corona and solar wind. These bursts have dynamic spectra with frequency rapidly falling with time, the typical duration of the coronal burst being about 1-3 s. This paper presents a new method developed to detect coronal type III bursts automatically and its implementation in a new Automated Radio Burst Identification System. The central idea of the implementation is to use the Radon transform for more objective detection of the bursts as approximately straight lines in dynamic spectra. Preliminary tests of the method with the use of the spectra obtained during 13 days show that the performance of the current implementation is quite high, ˜84%, while no false positives are observed and 23 events not listed previously are found. Prospects for improvements are discussed. The first automatically detected coronal type III radio bursts are presented.

  16. Positional characteristics of meter-decameter wavelength bursts associated with hard X-ray bursts

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.; Gergely, T. E.; Kane, S. R.

    1982-01-01

    Isolated and grouped type III bursts have been observed in temporal association with impulsive hard X-ray bursts in the 26-154 keV range, down to frequencies as low as 30 MHz and out to a distance of 3.1 solar radii from the disk center. The bursts occurred in regions whose electron density may have been as much as 20 times higher than that of the Newkirk-Saito model. The present observations indicate that electron acceleration/injection occurs over a region covering a wide range of magnetic field lines. It is noted that, of the two gradual hard X-ray bursts observed in association with type IV bursts, one was accompanied by a type II event, while the other was not, although both exhibited the same characteristics. It is suggested that the gradual burst associated with a type IV only involved electrons which are trapped in the plasmoid which produces the meter-decameter emission, while another fraction of the population is trapped in the low-lying loops which produce the hard X-ray and centimeter radiation.

  17. Coronal type II bursts and interplanetary type II bursts: Distinct shock drivers

    NASA Astrophysics Data System (ADS)

    Suryanarayana, G. S.

    2012-02-01

    We study solar radio type II bursts combining with Wind/WAVES type II bursts and coronal mass ejections (CMEs). The aim of the present work is to investigate the effectiveness of shocks to cause type II bursts in the solar corona and the interplanetary space. We consider the following findings. The distribution of the cessation heights of type II emission is confined to a rather narrow range of height than the distribution of the heights of start frequencies. This is suggestive of the presence of a gradient for the Alfvén speed from the heliocentric height of ˜1.4 solar radii. The range of the kinetic energy of CMEs associated with coronal type II emission taken together with the suggested computation method and the Alfvén speed gradient, indicates the limit to the height up to which type II emission could be expected. This height is ˜2 solar radii from the center of the Sun. Further, the large time gap between the cessation time and heights of coronal type II emission and the commencement time and heights of most of the IP type II bursts do not account for the difference between the two heights and the average shock speed. Also, there is clear difference in the magnitude of the kinetic energies and the distinct characteristics of the CMEs associated with coronal and IP type II bursts. Hence, we suggest that in most instances the coronal type II bursts and IP type II bursts occur due to distinct shocks. We also address the question of the origin of type II bursts and discuss the possible explanation of observed results.

  18. Fan deltas and braid deltas: conceptual problems

    SciTech Connect

    McPherson, J.G.; Shanmugam, G.; Moiola, R.J.

    1986-05-01

    The concept of fan deltas has been widely misinterpreted in the geologic literature. A true fan delta is defined as an alluvial fan deposited into a standing body of water. Such sequences are of limited areal extent and are, as expected, uncommon in the rock record. By contrast, braid deltas (herein defined), formed by progradation of a braided fluvial system into a standing body of water, are a common geomorphic feature in many modern settings, and their deposits are common in the geologic record. Braid-delta sequences are often identified as fan deltas, on the false premise that coarse-grained deposits in a deltaic setting are always part of an alluvial fan complex. The authors find that most published examples of so called fan deltas contain no direct evidence for the presence of an alluvial fan. Even in examples where an alluvial fan could be documented, the authors found that, in many cases, the alluvial fan complex was far removed from the shoreline, separated by an extensive braid plain. The authors suggest that such systems are better classified as braid deltas. They consider that it is essential to distinguish the environmental setting of true fan deltas from that of braid deltas. Misclassification will lead to incorrect interpretations of expected facies, sandstone geometry, reservoir quality, and tectonic settings. Criteria based on geometry, vertical and lateral lithofacies associations, and paleocurrent patterns should be used to correctly identify and distinguish these depositional systems.

  19. Imprints of coronal temperature disturbances on type III bursts

    NASA Astrophysics Data System (ADS)

    Li, Bo; Robinson, Peter

    The electron temperature Te and ion temperature Ti in the corona vary with time and loca-tion, due to transient and persistent activity on the Sun. The effects of spatially localized disturbances in Te and Ti on coronal type III radio bursts are simulated. The disturbances are superimposed on monotonically varying temperature backgrounds and arise from spatially confined solar activity. Qualitatively and quantitatively different imprints are found on the curve of the maximum flux versus frequency of type III bursts, because of the disturbances in Te and Ti . The results indicate that nonthermal coronal type III bursts offer a new tool to probe and distinguish between spatially localized structures of Te and Ti along the paths of type III beams. Furthermore, localized temperature disturbances may be responsible for some fine structures in type III bursts, e.g., striae in type IIIb bursts in the presence of multiple, localized temperature disturbances.

  20. A Burst to See

    NASA Astrophysics Data System (ADS)

    2008-04-01

    On 19 March, Nature was particularly generous and provided astronomers with the wealth of four gamma-ray bursts on the same day. But that was not all: one of them is the most luminous object ever observed in the Universe. Despite being located in a distant galaxy, billions of light years away, it was so bright that it could have been seen, for a brief while, with the unaided eye. ESO PR Photo 08a/08 ESO PR Photo 08a/08 The REM Telescope and TORTORA Camera Gamma-ray bursts (GRBs) are short flashes of energetic gamma-rays lasting from less than a second to several minutes. They release a tremendous quantity of energy in this short time making them the most powerful events since the Big Bang. It is now widely accepted that the majority of the gamma-ray bursts signal the explosion of very massive, highly evolved stars that collapse into black holes. Gamma-ray bursts, which are invisible to our eyes, are discovered by telescopes in space. After releasing their intense burst of high-energy radiation, they become detectable for a short while in the optical and in the near-infrared. This 'afterglow' fades very rapidly, making detailed analysis possible for only a few hours after the gamma-ray detection. This analysis is important in particular in order to determine the GRB's distance and, hence, intrinsic brightness. The gamma-ray burst GRB 080319B was detected by the NASA/STFC/ASI Swift satellite. "It was so bright that it almost blinded the Swift instruments for a while," says Guido Chincarini, Italian principal investigator of the mission. A bright optical counterpart was soon identified in the Boötes Constellation (the "Bear Driver" or "Herdsman"). A host of ground-based telescopes reacted promptly to study this new object in the sky. In particular, the optical emission was detected by a few wide-field cameras on telescopes that constantly monitor a large fraction of the sky, including the TORTORA camera in symbiosis with the 0.6-m REM telescope located at La Silla

  1. ARBIS 3: A Software Package for Automated Radio Burst Identification

    NASA Astrophysics Data System (ADS)

    Lobzin, V.; Cairns, I. H.; Robinson, P. A.; Steward, G.; Patterson, G.

    2010-12-01

    The major drivers of space weather are closely related to complicated explosion-like events on the Sun, i.e., solar flares and coronal mass ejections (CME). They are usually accompanied by type II and III solar radio bursts. Both type II and III solar radio bursts are assumed to be generated by fast electrons, the emission being at the local plasma frequency and/or its second harmonic. Type II radio bursts are associated with shock waves moving through the corona and solar wind with a typical speed of ~1000 km/s. These bursts have dynamic spectra with frequency gradually falling with time (~0.25 MHz/s), the duration of the coronal burst being several minutes. The speed of electrons responsible for type III bursts is much higher, ~c/3, where c is the speed of light, and typical duration of coronal type III events is 1-3 s. This paper describes an implementation of ARBIS 3, an extended version of Automated Radio Burst Identification System. ARBIS 3 detects coronal type II and type III radio bursts in near-real-time radio spectra from two observatories: Learmonth and Culgoora. The performance of the current implementation is quite high: ~84% for type III events observed at Learmonth and ~80% for type II bursts for both observatories. The probability of false type II events is reasonably low, 0.004-0.010 false positives per hour. The speeds of shocks associated with detected type II bursts are automatically estimated from radio data. For comparison, ARBIS 3 also shows information about CMEs detected by CACTUS in images from LASCO, as well as X-ray fluxes measured by GOES. Comparison of radio-derived results with information about CMEs and X-ray flares facilitates interpretation of radio data and space weather forecasting. Prospects for further improvements are discussed.

  2. delta-Hexachlorocyclohexane (delta-HCH)

    Integrated Risk Information System (IRIS)

    delta - Hexachlorocyclohexane ( delta - HCH ) ; CASRN 319 - 86 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Ass

  3. Intrinsic noise temperatures of YBa2Cu3O7 - delta Josephson devices on bicrystal substrates and the upper frequency limit for their operation

    NASA Astrophysics Data System (ADS)

    Chen, J.; Myoren, H.; Nakajima, K.; Yamashita, T.; Wu, P. H.

    1996-12-01

    Following a method proposed by Divin and Modovets [Sov. Tech. Phys. Lett. 9, 108 (1983)], we have measured at millimeter waveband the intrinsic noise temperatures TN of YBa2Cu3O7-δ Josephson junctions or dc superconducting quantum interference devices (SQUIDs) fabricated on SrTiO3, yttria-stabilized ZrO2, or Si bicrystal substrates. Over wide ranges of physical temperatures TP and the junction's normal resistance RN, it was found that TN follows TP pretty well. This indicates that the intrinsic noise in the devices is dominated by Johnson noise. TN was also measured in cases where there is external magnetic field applied, or where there is another microwave radiation like the local oscillator in a mixer. The magnetic field or microwave radiation does not seem to affect TN in any appreciable way. To estimate the high frequency performance of the junctions on Si bicrystal substrates, direct irradiation by a far infrared laser at 1.81 THz is carried out and the clear first Shapiro step is observed.

  4. Periodic bursts of Jovian non-Io decametric radio emission.

    PubMed

    Panchenko, M; Rucker, H O; Farrell, W M

    2013-03-01

    During the years 2000-2011 the radio instruments onboard Cassini, Wind and STEREO spacecraft have recorded a large amount of the Jovian decametric radio emission (DAM). In this paper we report on the analysis of the new type of Jovian periodic radio bursts recently revealed in the decametric frequency range. These bursts, which are non-Io component of DAM, are characterized by a strong periodic reoccurrence over several Jovian days with a period [Formula: see text] longer than the rotation rate of the planet's magnetosphere (System III). The bursts are typically observed between 4 and 12 MHz and their occurrence probability has been found to be significantly higher in the sector of Jovian Central Meridian Longitude between 300° and 60° (via 360°). The stereoscopic multispacecraft observations have shown that the radio sources of the periodic bursts radiate in a non-axisymmetric hollow cone-like pattern and sub-corotate with Jupiter remaining active during several planet's rotations. The occurrence of the periodic non-Io DAM bursts is strongly correlated with pulses of the solar wind ram pressure at Jupiter. Moreover the periodic bursts exhibit a tendency to occur in groups every [Formula: see text] days. The polarization measurements have shown that the periodic bursts are right hand polarized radio emission associated with the Northern magnetic hemisphere of Jupiter. We suggest that periodic non-Io DAM bursts may be connected with the interchange instability in Io plasma torus triggered by the solar wind. PMID:23585696

  5. Periodic bursts of Jovian non-Io decametric radio emission

    PubMed Central

    Panchenko, M.; Rucker, H.O.; Farrell, W.M.

    2013-01-01

    During the years 2000–2011 the radio instruments onboard Cassini, Wind and STEREO spacecraft have recorded a large amount of the Jovian decametric radio emission (DAM). In this paper we report on the analysis of the new type of Jovian periodic radio bursts recently revealed in the decametric frequency range. These bursts, which are non-Io component of DAM, are characterized by a strong periodic reoccurrence over several Jovian days with a period ≈1.5% longer than the rotation rate of the planet's magnetosphere (System III). The bursts are typically observed between 4 and 12 MHz and their occurrence probability has been found to be significantly higher in the sector of Jovian Central Meridian Longitude between 300° and 60° (via 360°). The stereoscopic multispacecraft observations have shown that the radio sources of the periodic bursts radiate in a non-axisymmetric hollow cone-like pattern and sub-corotate with Jupiter remaining active during several planet's rotations. The occurrence of the periodic non-Io DAM bursts is strongly correlated with pulses of the solar wind ram pressure at Jupiter. Moreover the periodic bursts exhibit a tendency to occur in groups every ∼25 days. The polarization measurements have shown that the periodic bursts are right hand polarized radio emission associated with the Northern magnetic hemisphere of Jupiter. We suggest that periodic non-Io DAM bursts may be connected with the interchange instability in Io plasma torus triggered by the solar wind. PMID:23585696

  6. Periodic Bursts of Jovian Non-Io Decametric Radio Emission

    NASA Technical Reports Server (NTRS)

    Panchenko, M.; Rucker, H O.; Farrell, W. M.

    2013-01-01

    During the years 2000-2011 the radio instruments onboard Cassini, Wind and STEREO spacecraft have Recorded a large amount of the Jovian decametric radio emission (DAM). In this paper we report on the analysis of the new type of Jovian periodic radio bursts recently revealed in the decametric frequency range. These bursts, which are non-Io component of DAM, are characterized by a strong periodic reoccurrence over several Jovian days with a period approx. = 1:5% longer than the rotation rate of the planet's magnetosphere (System III). The bursts are typically observed between 4 and 12 MHz and their occurrence probability has been found to be significantly higher in the sector of Jovian Central Meridian Longitude between 300 deg. and 60 deg. (via 360 deg.). The stereoscopic multispacecraft observations have shown that the radio sources of the periodic bursts radiate in a non-axisymmetric hollow cone-like pattern and sub-corotate with Jupiter remaining active during several planet's rotations. The occurrence of the periodic non-Io DAM bursts is strongly correlated with pulses of the solar wind ram pressure at Jupiter. Moreover the periodic bursts exhibit a tendency to occur in groups every approx. 25 days. The polarization measurements have shown that the periodic bursts are right hand polarized radio emission associated with the Northern magnetic hemisphere of Jupiter. We suggest that periodic non-Io DAM bursts may be connected with the interchange instability in Io plasma torus triggered by the solar wind.

  7. Periodic bursts of Jovian non-Io decametric radio emission.

    PubMed

    Panchenko, M; Rucker, H O; Farrell, W M

    2013-03-01

    During the years 2000-2011 the radio instruments onboard Cassini, Wind and STEREO spacecraft have recorded a large amount of the Jovian decametric radio emission (DAM). In this paper we report on the analysis of the new type of Jovian periodic radio bursts recently revealed in the decametric frequency range. These bursts, which are non-Io component of DAM, are characterized by a strong periodic reoccurrence over several Jovian days with a period [Formula: see text] longer than the rotation rate of the planet's magnetosphere (System III). The bursts are typically observed between 4 and 12 MHz and their occurrence probability has been found to be significantly higher in the sector of Jovian Central Meridian Longitude between 300° and 60° (via 360°). The stereoscopic multispacecraft observations have shown that the radio sources of the periodic bursts radiate in a non-axisymmetric hollow cone-like pattern and sub-corotate with Jupiter remaining active during several planet's rotations. The occurrence of the periodic non-Io DAM bursts is strongly correlated with pulses of the solar wind ram pressure at Jupiter. Moreover the periodic bursts exhibit a tendency to occur in groups every [Formula: see text] days. The polarization measurements have shown that the periodic bursts are right hand polarized radio emission associated with the Northern magnetic hemisphere of Jupiter. We suggest that periodic non-Io DAM bursts may be connected with the interchange instability in Io plasma torus triggered by the solar wind.

  8. Type 2 solar radio bursts recorded at Weissenau, 1966-1987

    NASA Astrophysics Data System (ADS)

    Urbarz, H. W.

    1990-02-01

    The type 2 solar radio bursts are an improved list of the Weissenau Observatory Bulletin data. The list was obtained by carefully reinspecting the film records. A list of solar cycle 20 type 2 bursts was by Krivsky and Lukac (1980). A list containing the events of solar cycle 21 was published by Robinson et. al. (1983). The shock velocities were derived from the frequency drift assuming a proper density law. Included are the list of type 2 radio bursts and associated bursts and a list of supplementary type 2 bursts.

  9. Noise-induced burst and spike synchronizations in an inhibitory small-world network of subthreshold bursting neurons.

    PubMed

    Kim, Sang-Yoon; Lim, Woochang

    2015-04-01

    We are interested in noise-induced firings of subthreshold neurons which may be used for encoding environmental stimuli. Noise-induced population synchronization was previously studied only for the case of global coupling, unlike the case of subthreshold spiking neurons. Hence, we investigate the effect of complex network architecture on noise-induced synchronization in an inhibitory population of subthreshold bursting Hindmarsh-Rose neurons. For modeling complex synaptic connectivity, we consider the Watts-Strogatz small-world network which interpolates between regular lattice and random network via rewiring, and investigate the effect of small-world connectivity on emergence of noise-induced population synchronization. Thus, noise-induced burst synchronization (synchrony on the slow bursting time scale) and spike synchronization (synchrony on the fast spike time scale) are found to appear in a synchronized region of the [Formula: see text]-[Formula: see text] plane ([Formula: see text]: synaptic inhibition strength and [Formula: see text]: noise intensity). As the rewiring probability [Formula: see text] is decreased from 1 (random network) to 0 (regular lattice), the region of spike synchronization shrinks rapidly in the [Formula: see text]-[Formula: see text] plane, while the region of the burst synchronization decreases slowly. We separate the slow bursting and the fast spiking time scales via frequency filtering, and characterize the noise-induced burst and spike synchronizations by employing realistic order parameters and statistical-mechanical measures introduced in our recent work. Thus, the bursting and spiking thresholds for the burst and spike synchronization transitions are determined in terms of the bursting and spiking order parameters, respectively. Furthermore, we also measure the degrees of burst and spike synchronizations in terms of the statistical-mechanical bursting and spiking measures, respectively.

  10. The GLAST Burst Monitor

    NASA Technical Reports Server (NTRS)

    Meegan, Charles A.

    2004-01-01

    The Gamma Ray Large Area Space Telescope (GLAST) observatory, scheduled for launch in 2007, comprises the Large Area Telescope (LAT) and the GLAST Burst Monitor (GBM). spectral changes that are known to occur within GRBs. between the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and the Max Planck Institute for Extraterrestrial Physics. It consists of an array of NaI and BGO scintillation detectors operating in the 10 kev to 25 MeV range. The field of view includes the entire unocculted sky when the observatory is pointing close to the zenith. The GBM will enhance LAT observations of GRBs by extending the spectral coverage into the range of current GRB databases, and will provide a trigger for reorienting the spacecraft to observe delayed emission from bursts outside the LAT field of view. GBM is expected to trigger on about 200 bursts per year, and will provide on-board locations of strong bursts accurate to better than 10 degrees.

  11. Feasibility of generating an artificial burst in a turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Gad-El-hak, M.

    1986-01-01

    Artificial bursts were generated in laminar and turbulent boundary layers. The burst-like events were produced by withdrawing near-wall fluid from two minute holes separated in the spanwise direction or by pitching a miniature delta wing that was flush-mounted to the wall. Either of these actions generated streamwise vorticity and a low-speed streak that resembled a naturally occurring one. The resulting sequence of events occurred at a given location and at controlled times, allowing detailed examination and comparison with natural, random bursts by means of flow visualization and fast-response probe measurement techniques.

  12. Quasi-periodic oscillations in short recurring bursts of the soft gamma repeater J1550–5418

    SciTech Connect

    Huppenkothen, D.; D'Angelo, C.; Watts, A. L.; Heil, L.; Van der Klis, M.; Van der Horst, A. J.; Kouveliotou, C.; Baring, M. G.; Göğüş, E.; Kaneko, Y.; Granot, J.; Lin, L.; Von Kienlin, A.; Younes, G.

    2014-06-01

    The discovery of quasi-periodic oscillations (QPOs) in magnetar giant flares has opened up prospects for neutron star asteroseismology. The scarcity of giant flares makes a search for QPOs in the shorter, far more numerous bursts from soft gamma repeaters (SGRs) desirable. In Huppenkothen et al., we developed a Bayesian method for searching for QPOs in short magnetar bursts, taking into account the effects of the complicated burst structure, and have shown its feasibility on a small sample of bursts. Here we apply the same method to a much larger sample from a burst storm of 286 bursts from SGR J1550–5418. We report a candidate signal at 260 Hz in a search of the individual bursts, which is fairly broad. We also find two QPOs at ∼93 Hz, and one at 127 Hz, when averaging periodograms from a number of bursts in individual triggers, at frequencies close to QPOs previously observed in magnetar giant flares. Finally, for the first time, we explore the overall burst variability in the sample and report a weak anti-correlation between the power-law index of the broadband model characterizing aperiodic burst variability and the burst duration: shorter bursts have steeper power-law indices than longer bursts. This indicates that longer bursts vary over a broader range of timescales and are not simply longer versions of the short bursts.

  13. Quasi-periodic Oscillations in Short Recurring Bursts of the Soft Gamma Repeater J1550-5418

    NASA Astrophysics Data System (ADS)

    Huppenkothen, D.; D'Angelo, C.; Watts, A. L.; Heil, L.; van der Klis, M.; van der Horst, A. J.; Kouveliotou, C.; Baring, M. G.; Göğüş, E.; Granot, J.; Kaneko, Y.; Lin, L.; von Kienlin, A.; Younes, G.

    2014-06-01

    The discovery of quasi-periodic oscillations (QPOs) in magnetar giant flares has opened up prospects for neutron star asteroseismology. The scarcity of giant flares makes a search for QPOs in the shorter, far more numerous bursts from soft gamma repeaters (SGRs) desirable. In Huppenkothen et al., we developed a Bayesian method for searching for QPOs in short magnetar bursts, taking into account the effects of the complicated burst structure, and have shown its feasibility on a small sample of bursts. Here we apply the same method to a much larger sample from a burst storm of 286 bursts from SGR J1550-5418. We report a candidate signal at 260 Hz in a search of the individual bursts, which is fairly broad. We also find two QPOs at ~93 Hz, and one at 127 Hz, when averaging periodograms from a number of bursts in individual triggers, at frequencies close to QPOs previously observed in magnetar giant flares. Finally, for the first time, we explore the overall burst variability in the sample and report a weak anti-correlation between the power-law index of the broadband model characterizing aperiodic burst variability and the burst duration: shorter bursts have steeper power-law indices than longer bursts. This indicates that longer bursts vary over a broader range of timescales and are not simply longer versions of the short bursts.

  14. Radio Flares from Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Kopač, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J.; Harrison, R.; Japelj, J.; Guidorzi, C.; Melandri, A.; Gomboc, A.

    2015-06-01

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1-1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time.

  15. RADIO FLARES FROM GAMMA-RAY BURSTS

    SciTech Connect

    Kopač, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J.; Harrison, R.; Japelj, J.; Gomboc, A.; Guidorzi, C.; Melandri, A.

    2015-06-20

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1–1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time.

  16. The Double Firing Burst

    NASA Astrophysics Data System (ADS)

    2008-09-01

    Astronomers from around the world combined data from ground- and space-based telescopes to paint a detailed portrait of the brightest explosion ever seen. The observations reveal that the jets of the gamma-ray burst called GRB 080319B were aimed almost directly at the Earth. Uncovering the disc ESO PR Photo 28/08 A Gamma-Ray Burst with Two Jets Read more on this illuminating blast in the additional story. GRB 080319B was so intense that, despite happening halfway across the Universe, it could have been seen briefly with the unaided eye (ESO 08/08). In a paper to appear in the 11 September issue of Nature, Judith Racusin of Penn State University, Pennsylvania (USA), and a team of 92 co-authors report observations across the electromagnetic spectrum that began 30 minutes before the explosion and followed it for months afterwards. "We conclude that the burst's extraordinary brightness arose from a jet that shot material almost directly towards Earth at almost the speed of light - the difference is only 1 part in 20 000," says Guido Chincarini, a member of the team. Gamma-ray bursts are the Universe's most luminous explosions. Most occur when massive stars run out of fuel. As a star collapses, it creates a black hole or neutron star that, through processes not fully understood, drives powerful gas jets outward. As the jets shoot into space, they strike gas previously shed by the star and heat it, thereby generating bright afterglows. The team believes the jet directed toward Earth contained an ultra-fast component just 0.4 degrees across (this is slightly smaller than the apparent size of the Full Moon). This jet is contained within another slightly less energetic jet about 20 times wider. The broad component is more typical of other bursts. "Perhaps every gamma-ray burst has a narrow jet, but astronomers miss it most of the time," says team member Stefano Covino. "We happened to view this monster down the barrel of the very narrow and energetic jet, and the chance for

  17. PHYSICAL CONSTRAINTS ON FAST RADIO BURSTS

    SciTech Connect

    Luan, Jing; Goldreich, Peter

    2014-04-20

    Fast radio bursts (FRBs) are isolated, ms radio pulses with dispersion measure (DM) of order 10{sup 3} pc cm{sup –3}. Galactic candidates for the DM of high latitude bursts detected at GHz frequencies are easily dismissed. DM from bursts emitted in stellar coronas are limited by free-free absorption and those from H II regions are bounded by the nondetection of associated free-free emission at radio wavelengths. Thus, if astronomical, FRBs are probably extragalactic. FRB 110220 has a scattering tail of ∼5.6 ± 0.1 ms. If the electron density fluctuations arise from a turbulent cascade, the scattering is unlikely to be due to propagation through the diffuse intergalactic plasma. A more plausible explanation is that this burst sits in the central region of its host galaxy. Pulse durations of order ms constrain the sizes of FRB sources implying high brightness temperatures that indicates coherent emission. Electric fields near FRBs at cosmological distances would be so strong that they could accelerate free electrons from rest to relativistic energies in a single wave period.

  18. A repeating fast radio burst.

    PubMed

    Spitler, L G; Scholz, P; Hessels, J W T; Bogdanov, S; Brazier, A; Camilo, F; Chatterjee, S; Cordes, J M; Crawford, F; Deneva, J; Ferdman, R D; Freire, P C C; Kaspi, V M; Lazarus, P; Lynch, R; Madsen, E C; McLaughlin, M A; Patel, C; Ransom, S M; Seymour, A; Stairs, I H; Stappers, B W; van Leeuwen, J; Zhu, W W

    2016-03-10

    Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star. PMID:26934226

  19. A repeating fast radio burst.

    PubMed

    Spitler, L G; Scholz, P; Hessels, J W T; Bogdanov, S; Brazier, A; Camilo, F; Chatterjee, S; Cordes, J M; Crawford, F; Deneva, J; Ferdman, R D; Freire, P C C; Kaspi, V M; Lazarus, P; Lynch, R; Madsen, E C; McLaughlin, M A; Patel, C; Ransom, S M; Seymour, A; Stairs, I H; Stappers, B W; van Leeuwen, J; Zhu, W W

    2016-03-10

    Fast radio bursts are millisecond-duration astronomical radio pulses of unknown physical origin that appear to come from extragalactic distances. Previous follow-up observations have failed to find additional bursts at the same dispersion measure (that is, the integrated column density of free electrons between source and telescope) and sky position as the original detections. The apparent non-repeating nature of these bursts has led to the suggestion that they originate in cataclysmic events. Here we report observations of ten additional bursts from the direction of the fast radio burst FRB 121102. These bursts have dispersion measures and sky positions consistent with the original burst. This unambiguously identifies FRB 121102 as repeating and demonstrates that its source survives the energetic events that cause the bursts. Additionally, the bursts from FRB 121102 show a wide range of spectral shapes that appear to be predominantly intrinsic to the source and which vary on timescales of minutes or less. Although there may be multiple physical origins for the population of fast radio bursts, these repeat bursts with high dispersion measure and variable spectra specifically seen from the direction of FRB 121102 support an origin in a young, highly magnetized, extragalactic neutron star.

  20. X-ray Bursts and Oscillations: Prospects with NICER

    NASA Astrophysics Data System (ADS)

    Strohmayer, Tod E.; Mahmoodifar, Simin

    2016-04-01

    X-ray bursts (Type I) are produced by thermonuclear flashes in the accreted surface layers of some neutron stars in Low Mass X-ray Binaries (LMXBs). High frequency oscillations are observed during some of these bursts. These "burst oscillations" result from rotational modulation of an inhomogeneous temperature distribution on the neutron star surface induced by ignition and subsequent spreading of the thermonuclear flash. They provide a means to measure the spin rates of accreting neutron stars and since the burst emission arises from the neutron star surface, a unique probe of neutron star structure. To date, virtually all observations of such oscillations have been made with NASA's Rossi X-ray Timing Explorer (RXTE). We have developed a burst model employing the Schwarzschild + Doppler approximation for surface emission coupled with realistic flame spreading geometries and burst cooling to compute light curves and oscillation amplitudes for both the rising and cooling phases of X-ray bursts. We use this model to explore the capabilities for the Neutron star Interior Composition ExploreR (NICER) to detect and study burst oscillations, particularly in the energy band below 3 keV. NICER is an International Space Station attached payload (X-ray telescope) with capabilities optimized for fast timing of neutron stars in the 0.2-10 keV band. It has large collecting area (twice that of the XMM-Newton EPIC-pn camera), CCD-quality spectral resolution, and high-precision time tagging referenced to UTC through an onboard GPS receiver. NICER will begin its 18-month prime mission around the end of 2016. We will present results of simulated X-ray bursts with NICER that explore its burst oscillation detection capabilities and prospects for inferring neutron star properties from phase-resolved spectra.

  1. Burst size distributions in the digitized data of the ion chambers t Mt. Norikura and sea level stations

    NASA Technical Reports Server (NTRS)

    Kusunose, M.; Wada, M.; Kudo, S.; Chuang, L. S.

    1985-01-01

    A practical and simple method for burst rejection is applied to the digitized data of cosmic ray ion chambers at Mt. Norikura, Tokyo and Kochi. As a result of burst rejection, the burst size frequency distributions in the digitized data at mountain altitude and sea level ion chambers is obtained. Results show that there are no significant differences between the digital and analog data processing in burst rejection.

  2. Powerful Radio Burst Indicates New Astronomical Phenomenon

    NASA Astrophysics Data System (ADS)

    2007-09-01

    . "It was a bit of luck that the survey included some observations of the sky surrounding the clouds," Narkevic said. It was from those "flanking" observations that the mysterious radio burst appeared in the data. The burst of radio waves was strong by astronomical standards, but lasted less than five milliseconds. The signal was spread out, with higher frequencies arriving at the telescope before the lower frequencies. This effect, called dispersion, is caused by the signal passing through ionized gas in interstellar and intergalactic space. The amount of this dispersion, the astronomers said, indicates that the signal likely originated about three billion light-years from Earth. No previously-detected cosmic radio burst has the same set of characteristics. "This burst represents an entirely new astronomical phenomenon," Bailes said. The astronomers estimate on the basis of their results that hundreds of similar events should occur over the sky each day. "Few radio surveys have the necessary sensitivity to such short-duration bursts, which makes them notoriously difficult to detect with current instruments," added Crawford. The next generation of radio telescopes currently under development should be able to detect many of these bursts across the sky. Although the nature of the mysterious new object is unclear, the astronomers have some ideas of what may cause such a burst. One idea is that it may be part of the energy released when a pair of superdense neutron stars collide and merge. Such an event is thought by some scientists to be the cause of one type of gamma-ray burst, but the only radio emission seen so far from these has been from the long-lived "afterglow" that follows the original burst. Another, more exotic, candidate is a burst of energy from an evaporating black hole. Black holes, concentrations of mass so dense that not even light can escape their powerful gravity, can lose mass and energy through a process proposed by famed British physicist Stephen

  3. On the three harmonics of solar type III bursts at the decameter wavelengths

    NASA Astrophysics Data System (ADS)

    Brazhenko, Anatolii; Pylaev, Oleg; Melnik, Valentin; Konovalenko, Alexandr; Zaqarashvili, Teimuraz; Rucker, Helmut; Frantsuzenko, Anatolii; Dorovskyy, Vladimir

    2014-05-01

    Harmonic structure of type III bursts are explained in terms of plasma emission mechanism. The second harmonic emission is well known. But there are theoretical papers about the third harmonic of type III bursts. And there were observations of the third harmonic of such types of bursts as U, J, V, II. We observed triple type III bursts where frequency ratio is close to 1:2:3. They are structures where type III emission is repeated at the double and triple frequencies. Incidentally, components of triple type III bursts are not only standard type III but also type IIIb bursts. We registered 30 triple bursts during 2011 and 2012 years. Observations were made by radio telescope URAN-2, Poltava, Ukraine. It enables polarization measurements at the frequencies 8 - 32 MHz. URAN-2 allows registration of radio emission with time and frequency resolution 10 ms and 4 kHz correspondingly. We analyze properties of the components of triple bursts and their dependencies on frequency, type of burst and on the position of the component within the triplet. The main properties of the components of triple bursts such as duration and drift rate are similar to those of standard type III and IIIb bursts. We find usual for type III bursts dependencies such as follow: duration decreases with frequency, the type IIIb bursts have always smaller duration at the same frequencies, all bursts drift from high to low frequencies. But we also find the linear dependence of drift rate on frequency. All components of a trio have the same sign of polarization. Polarization of the first component is always the highest in triple bursts. It corresponds to the generally accepted viewpoint about the first harmonic emission. The second and the third components of trio have low polarization. It is typical for the second and the third harmonics according to the plasma radiation mechanism. We discuss possible emission mechanisms and theoretical aspects of observed dependencies. The most of detected regularities

  4. Another clue about particle acceleration in impulsive hard X-ray/microwave bursts

    NASA Technical Reports Server (NTRS)

    Batchelor, David

    1994-01-01

    In a sample of impulsive bursts with rise times less than 30 s, a correlation between burst rise times and the frequency of maximum microwave emission has been found. The immplications for source structure and dynamics are discussed. Previously evidence was found that such bursts are caused by some propagating disturbance such as a shock wave or thermal conduction front. Combining that evidence with the microwave and hard X-ray spectral information suggests that the most rapid bursts are emitted from the most compact and intensely magnetized sources. The most rapid bursts also exhibited the hardest X-ray spectra, as published previously. These facts are important clues to understanding the physical process responsible for impulsive bursts. A model for the bursts is suggested, based on the observations and inferences described.

  5. Observation of a Metric Type N Solar Radio Burst

    NASA Astrophysics Data System (ADS)

    Kong, Xiangliang; Chen, Yao; Feng, Shiwei; Du, Guohui; Li, Chuanyang; Koval, Artem; Vasanth, V.; Wang, Bing; Guo, Fan; Li, Gang

    2016-10-01

    Type III and type-III-like radio bursts are produced by energetic electron beams guided along coronal magnetic fields. As a variant of type III bursts, Type N bursts appear as the letter “N” in the radio dynamic spectrum and reveal a magnetic mirror effect in coronal loops. Here, we report a well-observed N-shaped burst consisting of three successive branches at metric wavelength with both fundamental and harmonic components and a high brightness temperature (>109 K). We verify the burst as a true type N burst generated by the same electron beam from three aspects of the data. First, durations of the three branches at a given frequency increase gradually and may be due to the dispersion of the beam along its path. Second, the flare site, as the only possible source of non-thermal electrons, is near the western feet of large-scale closed loops. Third, the first branch and the following two branches are localized at different legs of the loops with opposite senses of polarization. We also find that the sense of polarization of the radio burst is in contradiction to the O-mode and there exists a fairly large time delay (∼3–5 s) between the fundamental and harmonic components. Possible explanations accounting for these observations are presented. Assuming the classical plasma emission mechanism, we can infer coronal parameters such as electron density and magnetic field near the radio source and make diagnostics on the magnetic mirror process.

  6. Behaviorally relevant burst coding in primary sensory neurons.

    PubMed

    Sabourin, Patrick; Pollack, Gerald S

    2009-08-01

    Bursts of action potentials in sensory interneurons are believed to signal the occurrence of particularly salient stimulus features. Previous work showed that bursts in an identified, ultrasound-tuned interneuron (AN2) of the cricket Teleogryllus oceanicus code for conspicuous increases in amplitude of an ultrasound stimulus, resulting in behavioral responses that are interpreted as avoidance of echolocating bats. We show that the primary sensory neurons that inform AN2 about high-frequency acoustic stimuli also produce bursts. As is the case for AN2, bursts in sensory neurons perform better as feature detectors than isolated, nonburst, spikes. Bursting is temporally correlated between sensory neurons, suggesting that on occurrence of a salient stimulus feature, AN2 will receive strong synaptic input in the form of coincident bursts, from several sensory neurons, and that this might result in bursting in AN2. Our results show that an important feature of the temporal structure of interneuron spike trains can be established at the earliest possible level of sensory processing, i.e., that of the primary sensory neuron.

  7. EEG delta oscillations index inhibitory control of contextual novelty to both irrelevant distracters and relevant task-switch cues.

    PubMed

    Prada, Laura; Barceló, Francisco; Herrmann, Christoph S; Escera, Carles

    2014-07-01

    Delta oscillations contribute to the human P300 event-related potential evoked by oddball targets, although it is unclear whether they index contextual novelty (event oddballness, novelty P3, nP3), or target-related processes (event targetness, target P3b). To examine this question, the electroencephalogram (EEG) was recorded during a cued task-switching version of the Wisconsin card-sorting test. Each target card was announced by a tone cueing either to switch or repeat the task. Novel sound distracters were interspersed among trials. Time-frequency EEG analyses revealed bursts of delta (2-4 Hz) power associated with enhanced nP3 amplitudes to both task-switch cues and novel distracters-but no association with target P3b. These findings indicate that the P300-delta response indexes contextual novelty regardless of whether novelty emanates from endogenous (new task rules) or exogenous (novel distracters) sources of information. PMID:24673586

  8. PEAK FLUX DISTRIBUTIONS OF SOLAR RADIO TYPE-I BURSTS FROM HIGHLY RESOLVED SPECTRAL OBSERVATIONS

    SciTech Connect

    Iwai, K.; Masuda, S.; Miyoshi, Y.; Tsuchiya, F.; Morioka, A.; Misawa, H.

    2013-05-01

    Solar radio type-I bursts were observed on 2011 January 26 by high resolution observations with the radio telescope AMATERAS in order to derive their peak flux distributions. We have developed a two-dimensional auto burst detection algorithm that can distinguish each type-I burst element from complex noise storm spectra that include numerous instances of radio frequency interference (RFI). This algorithm removes RFI from the observed radio spectra by applying a moving median filter along the frequency axis. Burst and continuum components are distinguished by a two-dimensional maximum and minimum search of the radio dynamic spectra. The analysis result shows that each type-I burst element has one peak flux without double counts or missed counts. The peak flux distribution of type-I bursts derived using this algorithm follows a power law with a spectral index between 4 and 5.

  9. Analysis of variability in the burst oscillations of the accreting millisecond pulsar XTE J1814-338

    NASA Technical Reports Server (NTRS)

    Watts, Anna L.; Strohmayer, Tod E.; Markwardt, Craig B.

    2005-01-01

    The accreting millisecond pulsar XTE J1814-338 exhibits oscillations at the known spin frequency during Type I X-ray bursts. The properties of the burst oscillations reflect the nature of the thermal asymmetry on the stellar surface. We present an analysis of the variability of the burst oscillations of this source, focusing on three characteristics: fractional amplitude, harmonic content and frequency. Fractional amplitude and harmonic content constrain the size, shape and position of the emitting region, whilst variations in frequency indicate motion of the emitting region on the neutron star surface. We examine both long-term variability over the course of the outburst, and short-term variability during the bursts. For most of the bursts, fractional amplitude is consistent with that of the accretion pulsations, implying a low degree of fuel spread. There is however a population of bursts whose fractional amplitudes are substantially lower, implying a higher degree of fuel spread, possibly forced by the explosive burning front of a precursor burst. For the first harmonic, substantial differences between the burst and accretion pulsations suggest that hotspot geometry is not the only mechanism giving rise to harmonic content in the latter. Fractional amplitude variability during the bursts is low; we can only rule out the hypothesis that the fractional amplitude remains constant at the l(sigma) level for bursts that do not exhibit photospheric radius expansion (PRE). There are no significant variations in frequency in any of the bursts except for the one burst that exhibits PRE. This burst exhibits a highly significant but small (= 0.1Hz) drop in frequency in the burst rise. The timescale of the frequency shift is slower than simple burning layer expansion models predict, suggesting that other mechanisms may be at work.

  10. Ionic factors governing rebound burst phenotype in rat deep cerebellar neurons.

    PubMed

    Molineux, Michael L; Mehaffey, W Hamish; Tadayonnejad, Reza; Anderson, Dustin; Tennent, Adrien F; Turner, Ray W

    2008-11-01

    Large diameter cells in rat deep cerebellar nuclei (DCN) can be distinguished according to the generation of a transient or weak rebound burst and the expression of T-type Ca(2+) channel isoforms. We studied the ionic basis for the distinction in burst phenotypes in rat DCN cells in vitro. Following a hyperpolarization, transient burst cells generated a high-frequency spike burst of < or = 450 Hz, whereas weak burst cells generated a lower-frequency increase (<140 Hz). Both cell types expressed a low voltage-activated (LVA) Ca(2+) current near threshold for rebound burst discharge (-50 mV) that was consistent with T-type Ca(2+) current, but on average 7 times more current was recorded in transient burst cells. The number and frequency of spikes in rebound bursts was tightly correlated with the peak Ca(2+) current at -50 mV, showing a direct relationship between the availability of LVA Ca(2+) current and spike output. Transient burst cells exhibited a larger spike depolarizing afterpotential that was insensitive to blockers of voltage-gated Na(+) or Ca(2+) channels. In comparison, weak burst cells exhibited larger afterhyperpolarizations (AHPs) that reduced cell excitability and rebound spike output. The sensitivity of AHPs to Ca(2+) channel blockers suggests that both LVA and high voltage-activated (HVA) Ca(2+) channels trigger AHPs in weak burst compared with only HVA Ca(2+) channels in transient burst cells. The two burst phenotypes in rat DCN cells thus derive in part from a difference in the availability of LVA Ca(2+) current following a hyperpolarization and a differential activation of AHPs that establish distinct levels of membrane excitability.

  11. Delta launcher enhanced

    NASA Astrophysics Data System (ADS)

    1987-08-01

    The next-generation, 'Delta II' version of the Delta expendable launch vehicle will be able to launch over 4000 lbs into geosynchronous transfer orbit (GTO), as required by the USAF's Navstar GPS; the current Delta 3920 configuration can loft only 2800 lbs into GEO. Three distinct growth configurations of the Delta II are planned: the 6925, whose booster propellant tanks will be extended by 12 ft; the 7925, whose improved booster engine will increase nozzle expansion ratio from 8:1 to 12:1; and the 'enhanced ' Delta II, with stretched graphite-epoxy solid rocket motor cases. In this final form, Delta II will boost 4010 lbs into GTO, or 11,110 lbs into LEO.

  12. Burst Mode ASIC-Based Modem

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NASA Lewis Research Center is sponsoring the Advanced Communication Technology Insertion (ACTION) for Commercial Space Applications program. The goal of the program is to expedite the development of new technology with a clear path towards productization and enhancing the competitiveness of U.S. manufacturers. The industry has made significant investment in developing ASIC-based modem technology for continuous-mode applications and has made investigations into East, reliable acquisition of burst-mode digital communication signals. With rapid advances in analog and digital communications ICs, it is expected that more functions will be integrated onto these parts in the near future. In addition custom ASIC's can also be developed to address the areas not covered by the other IC's. Using the commercial chips and custom ASIC's, lower-cost, compact, reliable, and high-performance modems can be built for demanding satellite communication application. This report outlines a frequency-hop burst modem design based on commercially available chips.

  13. Microwave Type III Pair Bursts in Solar Flares

    NASA Astrophysics Data System (ADS)

    Tan, Baolin; Mészárosová, Hana; Karlický, Marian; Huang, Guangli; Tan, Chengming

    2016-03-01

    A solar microwave type III pair burst is composed of normal and reverse-sloped (RS) burst branches with oppositely fast frequency drifts. It is the most sensitive signature of the primary energy release and electron accelerations in flares. This work reports 11 microwave type III pair events in 9 flares observed by radio spectrometers in China and the Czech Republic at a frequency of 0.80-7.60 GHz during 1994-2014. These type III pairs occurred in flare impulsive and postflare phases with separate frequencies in the range of 1.08-3.42 GHz and a frequency gap of 10-1700 MHz. The frequency drift increases with the separate frequency (fx), the lifetime of each burst is anti-correlated to fx, while the frequency gap is independent of fx. In most events, the normal branches are drifting obviously faster than the RS branches. The type III pairs occurring in flare impulsive phase have lower separate frequencies, longer lifetimes, wider frequency gaps, and slower frequency drifts than that occurring in postflare phase. Also, the latter always has strong circular polarization. Further analysis indicates that near the flare energy release sites the plasma density is about {10}10{--}{10}11 cm-3 and the temperature is higher than 107 K. These results provide new constraints to the acceleration mechanism in solar flares.

  14. Burst mode trigger of STEREO in situ measurements

    NASA Astrophysics Data System (ADS)

    Jian, L. K.; Russell, C. T.; Luhmann, J. G.; Curtis, D.; Schroeder, P.

    2013-06-01

    Since the launch of the STEREO spacecraft, the in situ instrument suites have continued to modify their burst mode trigger in order to optimize the collection of high-cadence magnetic field, solar wind, and suprathermal electron data. This report reviews the criteria used for the burst mode trigger and their evolution with time. From 2007 to 2011, the twin STEREO spacecraft observed 236 interplanetary shocks, and 54% of them were captured by the burst mode trigger. The capture rate increased remarkably with time, from 30% in 2007 to 69% in 2011. We evaluate the performance of multiple trigger criteria and investigate why some of the shocks were missed by the trigger. Lessons learned from STEREO are useful for future missions, because the telemetry bandwidth needed to capture the waveforms of high frequency but infrequent events would be unaffordable without an effective burst mode trigger.

  15. Comparative analysis of decametre "drift pair" bursts observed in 2002 and 2015

    NASA Astrophysics Data System (ADS)

    Volvach, Ya. S.; Stanislavsky, A. A.; Konovalenko, A. A.; Koval, A. A.; Dorovskyy, V. V.

    2016-09-01

    We report about new observations of solar "drift pair" (DP) bursts by means of the UTR-2 radio telescope at frequencies 10-30 MHz. Our experimental data include both "forward" and "reverse" bursts with high frequency and time resolution. The records of 301 bursts, observed in 10-12 July of 2015, are investigated. The main properties of these bursts (frequency bandwidth, central frequency and others) have been analysed. In this report our main attention is paid to the comparison of our observations with the similar observations of decametre DPs performed earlier during 13-15 July of 2002 in the same frequency range. Common features of DPs in the two different pieces of data samples have been found. This may indicate the possible presence of stability in the frequency-time properties of decametre DPs from one cycle of solar activity to another.

  16. Self-Organization on Social Media: Endo-Exo Bursts and Baseline Fluctuations

    PubMed Central

    Oka, Mizuki; Hashimoto, Yasuhiro; Ikegami, Takashi

    2014-01-01

    A salient dynamic property of social media is bursting behavior. In this paper, we study bursting behavior in terms of the temporal relation between a preceding baseline fluctuation and the successive burst response using a frequency time series of 3,000 keywords on Twitter. We found that there is a fluctuation threshold up to which the burst size increases as the fluctuation increases and that above the threshold, there appears a variety of burst sizes. We call this threshold the critical threshold. Investigating this threshold in relation to endogenous bursts and exogenous bursts based on peak ratio and burst size reveals that the bursts below this threshold are endogenously caused and above this threshold, exogenous bursts emerge. Analysis of the 3,000 keywords shows that all the nouns have both endogenous and exogenous origins of bursts and that each keyword has a critical threshold in the baseline fluctuation value to distinguish between the two. Having a threshold for an input value for activating the system implies that Twitter is an excitable medium. These findings are useful for characterizing how excitable a keyword is on Twitter and could be used, for example, to predict the response to particular information on social media. PMID:25329610

  17. Burst Firing is a Neural Code in an Insect Auditory System

    PubMed Central

    Eyherabide, Hugo G.; Rokem, Ariel; Herz, Andreas V. M.; Samengo, Inés

    2008-01-01

    Various classes of neurons alternate between high-frequency discharges and silent intervals. This phenomenon is called burst firing. To analyze burst activity in an insect system, grasshopper auditory receptor neurons were recorded in vivo for several distinct stimulus types. The experimental data show that both burst probability and burst characteristics are strongly influenced by temporal modulations of the acoustic stimulus. The tendency to burst, hence, is not only determined by cell-intrinsic processes, but also by their interaction with the stimulus time course. We study this interaction quantitatively and observe that bursts containing a certain number of spikes occur shortly after stimulus deflections of specific intensity and duration. Our findings suggest a sparse neural code where information about the stimulus is represented by the number of spikes per burst, irrespective of the detailed interspike-interval structure within a burst. This compact representation cannot be interpreted as a firing-rate code. An information-theoretical analysis reveals that the number of spikes per burst reliably conveys information about the amplitude and duration of sound transients, whereas their time of occurrence is reflected by the burst onset time. The investigated neurons encode almost half of the total transmitted information in burst activity. PMID:18946533

  18. Self-organization on social media: endo-exo bursts and baseline fluctuations.

    PubMed

    Oka, Mizuki; Hashimoto, Yasuhiro; Ikegami, Takashi

    2014-01-01

    A salient dynamic property of social media is bursting behavior. In this paper, we study bursting behavior in terms of the temporal relation between a preceding baseline fluctuation and the successive burst response using a frequency time series of 3,000 keywords on Twitter. We found that there is a fluctuation threshold up to which the burst size increases as the fluctuation increases and that above the threshold, there appears a variety of burst sizes. We call this threshold the critical threshold. Investigating this threshold in relation to endogenous bursts and exogenous bursts based on peak ratio and burst size reveals that the bursts below this threshold are endogenously caused and above this threshold, exogenous bursts emerge. Analysis of the 3,000 keywords shows that all the nouns have both endogenous and exogenous origins of bursts and that each keyword has a critical threshold in the baseline fluctuation value to distinguish between the two. Having a threshold for an input value for activating the system implies that Twitter is an excitable medium. These findings are useful for characterizing how excitable a keyword is on Twitter and could be used, for example, to predict the response to particular information on social media.

  19. X-ray burst sources

    NASA Technical Reports Server (NTRS)

    Lewin, W. H. G.

    1986-01-01

    There are about 100 bright X-ray sources in the Galaxy that are accretion-driven systems composed of a neutron star and a low mass companion that fills its critical Roche lobe. Many of these systems generate recurring X-ray bursts that are the result of thermonuclear flashes in the neutron star's surface layers, and are accompanied by a somewhat delayed optical burst due to X-ray heating of accretion disk. The Rapid Burster discovered in 1976 exhibits an interval between bursts that is strongly correlated with the energy in the preceding burst. There is no optical identification for this object.

  20. UWB dual burst transmit driver

    SciTech Connect

    Dallum, Gregory E.; Pratt, Garth C.; Haugen, Peter C.; Zumstein, James M.; Vigars, Mark L.; Romero, Carlos E.

    2012-04-17

    A dual burst transmitter for ultra-wideband (UWB) communication systems generates a pair of precisely spaced RF bursts from a single trigger event. An input trigger pulse produces two oscillator trigger pulses, an initial pulse and a delayed pulse, in a dual trigger generator. The two oscillator trigger pulses drive a gated RF burst (power output) oscillator. A bias driver circuit gates the RF output oscillator on and off and sets the RF burst packet width. The bias driver also level shifts the drive signal to the level that is required for the RF output device.

  1. Gamma-ray burst spectra

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.

    1982-01-01

    A review of recent results in gamma-ray burst spectroscopy is given. Particular attention is paid to the recent discovery of emission and absorption features in the burst spectra. These lines represent the strongest evidence to date that gamma-ray bursts originate on or near neutron stars. Line parameters give information on the temperature, magnetic field and possibly the gravitational potential of the neutron star. The behavior of the continuum spectrum is also discussed. A remarkably good fit to nearly all bursts is obtained with a thermal-bremsstrahlung-like continuum. Significant evolution is observed of both the continuum and line features within most events.

  2. Emission Patterns of Solar Type III Radio Bursts: Stereoscopic Observations

    NASA Technical Reports Server (NTRS)

    Thejappa, G.; MacDowall, R.; Bergamo, M.

    2012-01-01

    Simultaneous observations of solar type III radio bursts obtained by the STEREO A, B, and WIND spacecraft at low frequencies from different vantage points in the ecliptic plane are used to determine their directivity. The heliolongitudes of the sources of these bursts, estimated at different frequencies by assuming that they are located on the Parker spiral magnetic field lines emerging from the associated active regions into the spherically symmetric solar atmosphere, and the heliolongitudes of the spacecraft are used to estimate the viewing angle, which is the angle between the direction of the magnetic field at the source and the line connecting the source to the spacecraft. The normalized peak intensities at each spacecraft Rj = Ij /[Sigma]Ij (the subscript j corresponds to the spacecraft STEREO A, B, and WIND), which are defined as the directivity factors are determined using the time profiles of the type III bursts. It is shown that the distribution of the viewing angles divides the type III bursts into: (1) bursts emitting into a very narrow cone centered around the tangent to the magnetic field with angular width of approximately 2 deg and (2) bursts emitting into a wider cone with angular width spanning from [approx] -100 deg to approximately 100 deg. The plots of the directivity factors versus the viewing angles of the sources from all three spacecraft indicate that the type III emissions are very intense along the tangent to the spiral magnetic field lines at the source, and steadily fall as the viewing angles increase to higher values. The comparison of these emission patterns with the computed distributions of the ray trajectories indicate that the intense bursts visible in a narrow range of angles around the magnetic field directions probably are emitted in the fundamental mode, whereas the relatively weaker bursts visible to a wide range of angles are probably emitted in the harmonic mode.

  3. Gamma-ray bursts.

    PubMed

    Gehrels, Neil; Mészáros, Péter

    2012-08-24

    Gamma-ray bursts (GRBs) are bright flashes of gamma rays coming from the cosmos. They occur roughly once per day, typically last for tens of seconds, and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this Review, we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglow. PMID:22923573

  4. Powerful Radio Burst Indicates New Astronomical Phenomenon

    NASA Astrophysics Data System (ADS)

    2007-09-01

    . "It was a bit of luck that the survey included some observations of the sky surrounding the clouds," Narkevic said. It was from those "flanking" observations that the mysterious radio burst appeared in the data. The burst of radio waves was strong by astronomical standards, but lasted less than five milliseconds. The signal was spread out, with higher frequencies arriving at the telescope before the lower frequencies. This effect, called dispersion, is caused by the signal passing through ionized gas in interstellar and intergalactic space. The amount of this dispersion, the astronomers said, indicates that the signal likely originated about three billion light-years from Earth. No previously-detected cosmic radio burst has the same set of characteristics. "This burst represents an entirely new astronomical phenomenon," Bailes said. The astronomers estimate on the basis of their results that hundreds of similar events should occur over the sky each day. "Few radio surveys have the necessary sensitivity to such short-duration bursts, which makes them notoriously difficult to detect with current instruments," added Crawford. The next generation of radio telescopes currently under development should be able to detect many of these bursts across the sky. Although the nature of the mysterious new object is unclear, the astronomers have some ideas of what may cause such a burst. One idea is that it may be part of the energy released when a pair of superdense neutron stars collide and merge. Such an event is thought by some scientists to be the cause of one type of gamma-ray burst, but the only radio emission seen so far from these has been from the long-lived "afterglow" that follows the original burst. Another, more exotic, candidate is a burst of energy from an evaporating black hole. Black holes, concentrations of mass so dense that not even light can escape their powerful gravity, can lose mass and energy through a process proposed by famed British physicist Stephen

  5. Type III solar radio bursts and the fundamental-harmonic hypothesis

    NASA Technical Reports Server (NTRS)

    Rosenberg, H.

    1975-01-01

    The observational evidence is reviewed for the occurrence of type III solar radio bursts in pairs with frequency ratio two to one. We show that the observations can be explained under the hypothesis that there is a tendency for a type III burst to be followed by a second burst within approximately one second. This explanation leads to fewer difficulties than the hypothesis that type III bursts occur in pairs, one member being emitted at the fundamental of the local coronal plasma frequency, the other at its second harmonic. We conclude that in general, type III bursts are emitted at the second harmonic of the plasma frequency and that type III theories should account for this and only under very special circumstances (which are rare) for the emission at the fundamental and the second harmonic.

  6. Swift's 500th Gamma Ray Burst

    NASA Video Gallery

    On April 13, 2010, NASA's Swift Gamma-ray Burst Explorer satellite discovered its 500th burst. Swift's main job is to quickly localize each gamma-ray burst (GRB), report its position so that others...

  7. Pen Branch delta expansion

    SciTech Connect

    Nelson, E.A.; Christensen, E.J.; Mackey, H.E.; Sharitz, R.R.; Jensen, J.R.; Hodgson, M.E.

    1984-02-01

    Since 1954, cooling water discharges from K Reactor ({anti X} = 370 cfs {at} 59 C) to Pen Branch have altered vegetation and deposited sediment in the Savannah River Swamp forming the Pen Branch delta. Currently, the delta covers over 300 acres and continues to expand at a rate of about 16 acres/yr. Examination of delta expansion can provide important information on environmental impacts to wetlands exposed to elevated temperature and flow conditions. To assess the current status and predict future expansion of the Pen Branch delta, historic aerial photographs were analyzed using both basic photo interpretation and computer techniques to provide the following information: (1) past and current expansion rates; (2) location and changes of impacted areas; (3) total acreage presently affected. Delta acreage changes were then compared to historic reactor discharge temperature and flow data to see if expansion rate variations could be related to reactor operations.

  8. Burst propagation in Texas Helimak

    NASA Astrophysics Data System (ADS)

    Pereira, F. A. C.; Toufen, D. L.; Guimarães-Filho, Z. O.; Caldas, I. L.; Gentle, K. W.

    2016-05-01

    We present investigations of extreme events (bursts) propagating in the Texas Helimak, a toroidal plasma device in which the radial electric field can be changed by application of bias. In the experiments analyzed, a large grid of Langmuir probes measuring ion saturation current fluctuations is used to study the burst propagation and its dependence on the applied bias voltage. We confirm previous results reported on the turbulence intermittency in the Texas Helimak, extending them to a larger radial interval with a density ranging from a uniform decay to an almost uniform value. For our analysis, we introduce an improved procedure, based on a multiprobe bidimensional conditional averaging method, to assure precise determination of burst statistical properties and their spatial profiles. We verify that intermittent bursts have properties that vary in the radial direction. The number of bursts depends on the radial position and on the applied bias voltage. On the other hand, the burst characteristic time and size do not depend on the applied bias voltage. The bias voltage modifies the vertical and radial burst velocity profiles differently. The burst velocity is smaller than the turbulence phase velocity in almost all the analyzed region.

  9. Detection of possible burst transmissions in a dense signal environment

    NASA Astrophysics Data System (ADS)

    Gustavsson, R.

    1993-12-01

    The report presents an algorithm for detection of possible narrowband burst transmissions in the HF band. The algorithm searches a time-frequency matrix containing 10 seconds of magnitude spectrums ranging over 250 kHz momentary bandwidth and is to be used as a preselection to an automatic classifier. The detection algorithm uses, among other things, a two dimensional convolution and analysis of the power spectrums of narrowband signals to extract continuous transmissions with durations of 0.5 to 4 seconds and bandwidths ranging from 100 to 3000 Hz. Initial tests using simulated burst transmissions indicate that the signal to interference ratio should be from 12 to 23 dB (depending on the duration of the burst transmission) to ensure a probability of detection of 50%. The frequency of alarms due to ordinary shortwave traffic is approximately one per second over 250 kHz momentary bandwidth.

  10. Cosmology with Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Ghisellini, G.; Ghirlanda, G.; Firmani, C.; Lazzati, D.; Avila-Reese, V.

    2005-07-01

    Apparently, Gamma-Ray Bursts (GRBs) are all but standard candles. Their emission is collimated into a cone and the received flux depends on the cone aperture angle. Fortunately we can derive the aperture angle through an achromatic steepening of the lightcurve of the afterglow, and thus we can measure the “true” energetics of the prompt emission. Ghirlanda et al. (2004a) found that this collimation-corrected energy correlates tightly with the frequency at which most of the radiation of the prompt is emitted. Through this correlation we can infer the burst energy accurately enough for a cosmological use. Using the best known 15 GRBs we find very encouraging results that emphasize the cosmological GRB role. Probing the universe with high accuracy up to high redshifts, GRBs establish a new insight on the cosmic expanding acceleration history and accomplish the role of “missing link” between the Cosmic Microwave Background and type Ia supernovae, motivating the most optimistic hopes for what can be obtained from the bursts detected by SWIFT.

  11. Source location of the narrowbanded radio bursts at Uranus - Evidence of a cusp source

    NASA Astrophysics Data System (ADS)

    Farrell, W. M.; Desch, M. D.; Kaiser, M. L.; Kurth, W. S.

    1990-03-01

    While Voyager 2 was inbound to Uranus, radio bursts of narrow bandwidth (less than 5 kHz) were detected between 17-116 kHz. These R-X mode bursts, designated n-bursts, were of short duration, tended to occur when the north magnetic pole tipped toward the spacecraft, and increased in occurrence with increasing solar wind density. An explicit determination of the burst source location is presented, based upon fitting the region of detection at high and low frequencies to field-aligned, symmetric cones. The region of good fits was located between the north magnetic pole and the rotational pole, corresponding approximately to the northern polar cusp.

  12. Galactic dual population models of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Higdon, J. C.; Lingenfelter, R. E.

    1994-01-01

    We investigate in more detail the properties of two-population models for gamma-ray bursts in the galactic disk and halo. We calculate the gamma-ray burst statistical properties, mean value of (V/V(sub max)), mean value of cos Theta, and mean value of (sin(exp 2) b), as functions of the detection flux threshold for bursts coming from both Galactic disk and massive halo populations. We consider halo models inferred from the observational constraints on the large-scale Galactic structure and we compare the expected values of mean value of (V/V(sub max)), mean value of cos Theta, and mean value of (sin(exp 2) b), with those measured by Burst and Transient Source Experiment (BATSE) and other detectors. We find that the measured values are consistent with solely Galactic populations having a range of halo distributions, mixed with local disk distributions, which can account for as much as approximately 25% of the observed BATSE bursts. M31 does not contribute to these modeled bursts. We also demonstrate, contrary to recent arguments, that the size-frequency distributions of dual population models are quite consistent with the BATSE observations.

  13. Interplanetary baseline observations of type III solar radio bursts

    NASA Technical Reports Server (NTRS)

    Weber, R. R.; Fitzenreiter, R. J.; Novaco, J. C.; Fainberg, J.

    1977-01-01

    Simultaneous observations of type III radio bursts from spacecraft separated by 0.43 AU have been made using the solar orbiters Helios-A and Helios-B. The burst beginning at 19:22 UT on March 28, 1976, has been located from the intersection of the source directions measured at each spacecraft and from burst arrival-time differences. The source positions range from 0.03 AU from the sun at 3000 kHz to 0.08 AU at 585 kHz. The electron density along the burst trajectory and the exciter velocity (0.13c) were determined directly without the need to assume a density model, as has been done with single-spacecraft observations. The separation of Helios-A and -B has also provided measurements of burst directivity at low frequencies. For the March 28 burst the intensity observed from near the source longitude (Helios-B) was 3-10dB greater than that from 60 deg west of the source (Helios-A)

  14. Quantum Key Based Burst Confidentiality in Optical Burst Switched Networks

    PubMed Central

    Balamurugan, A. M.; Sivasubramanian, A.

    2014-01-01

    The optical burst switching (OBS) is an emergent result to the technology concern that could achieve a feasible network in future. They are endowed with the ability to meet the bandwidth requirement of those applications that require intensive bandwidth. There are more domains opening up in the OBS that evidently shows their advantages and their capability to face the future network traffic. However, the concept of OBS is still far from perfection facing issues in case of security threat. The transfer of optical switching paradigm to optical burst switching faces serious downfall in the fields of burst aggregation, routing, authentication, dispute resolution, and quality of service (QoS). This paper deals with employing RC4 (stream cipher) to encrypt and decrypt bursts thereby ensuring the confidentiality of the burst. Although the use of AES algorithm has already been proposed for the same issue, by contrasting the two algorithms under the parameters of burst encryption and decryption time, end-to-end delay, it was found that RC4 provided better results. This paper looks to provide a better solution for the confidentiality of the burst in OBS networks. PMID:24578663

  15. Quantum key based burst confidentiality in optical burst switched networks.

    PubMed

    Balamurugan, A M; Sivasubramanian, A

    2014-01-01

    The optical burst switching (OBS) is an emergent result to the technology concern that could achieve a feasible network in future. They are endowed with the ability to meet the bandwidth requirement of those applications that require intensive bandwidth. There are more domains opening up in the OBS that evidently shows their advantages and their capability to face the future network traffic. However, the concept of OBS is still far from perfection facing issues in case of security threat. The transfer of optical switching paradigm to optical burst switching faces serious downfall in the fields of burst aggregation, routing, authentication, dispute resolution, and quality of service (QoS). This paper deals with employing RC4 (stream cipher) to encrypt and decrypt bursts thereby ensuring the confidentiality of the burst. Although the use of AES algorithm has already been proposed for the same issue, by contrasting the two algorithms under the parameters of burst encryption and decryption time, end-to-end delay, it was found that RC4 provided better results. This paper looks to provide a better solution for the confidentiality of the burst in OBS networks. PMID:24578663

  16. Identifying Crucial Parameter Correlations Maintaining Bursting Activity

    PubMed Central

    Doloc-Mihu, Anca; Calabrese, Ronald L.

    2014-01-01

    Recent experimental and computational studies suggest that linearly correlated sets of parameters (intrinsic and synaptic properties of neurons) allow central pattern-generating networks to produce and maintain their rhythmic activity regardless of changing internal and external conditions. To determine the role of correlated conductances in the robust maintenance of functional bursting activity, we used our existing database of half-center oscillator (HCO) model instances of the leech heartbeat CPG. From the database, we identified functional activity groups of burster (isolated neuron) and half-center oscillator model instances and realistic subgroups of each that showed burst characteristics (principally period and spike frequency) similar to the animal. To find linear correlations among the conductance parameters maintaining functional leech bursting activity, we applied Principal Component Analysis (PCA) to each of these four groups. PCA identified a set of three maximal conductances (leak current, Leak; a persistent K current, K2; and of a persistent Na+ current, P) that correlate linearly for the two groups of burster instances but not for the HCO groups. Visualizations of HCO instances in a reduced space suggested that there might be non-linear relationships between these parameters for these instances. Experimental studies have shown that period is a key attribute influenced by modulatory inputs and temperature variations in heart interneurons. Thus, we explored the sensitivity of period to changes in maximal conductances of Leak, K2, and P, and we found that for our realistic bursters the effect of these parameters on period could not be assessed because when varied individually bursting activity was not maintained. PMID:24945358

  17. Bursts de raios gama

    NASA Astrophysics Data System (ADS)

    Braga, J.

    2003-02-01

    Nos últimos anos, graças principalmente aos dados obtidos pelo Compton Gamma-Ray Observatory e pelo satélite ítalo-holandês BeppoSAX, grandes avanços foram obtidos no nosso conhecimento sobre os fascinantes e enigmáticos fenômenos conhecidos por "bursts"de raios gama. Neste trabalho é feita uma revisão sobre a fenomenologia desses misteriosos objetos e são apresentados os desenvolvimentos recentes nessa área palpitante da astrofísica moderna, ressaltando tanto os resultados observacionais obtidos até o momento quanto os modelos teóricos propostos para explixá-los.

  18. A New Class of Weak Radio Bursts: Nanoflares and Coronal Heating?

    NASA Astrophysics Data System (ADS)

    Lonsdale, C.; Oberoi, D.; S, A.; Timar, B.; Pankratius, V.

    2014-12-01

    The newly commissioned Murchison Widefield Array (MWA) has revealed the presence of a numerous weak and short lived low frequency radio solar bursts. These emission features have duration of order a second, have relatively narrow spectral widths and are surprisingly numerous even during quiet solar conditions. Their appearance in the time-frequency plane is unlike that of the any of the known classes of radio bursts, and they at least an order of magnitude weaker than the weakest type III bursts routinely monitored and reported (e.g. by Automated Radio Burst Identification System operational at the Learmonth Radioheliograph in Australia). For the few bursts which have been studied in detail, we have not found a counterpart at X-Ray or EUV bands. There is an exciting possibility that these bursts are associated with the widely hypothesized "nanoflares" thought to play a role in coronal heating through magnetic reconnection on small scales in coronal loops. A systematic and detailed characterization of the statistical properties of these bursts over large temporal and spectral spans is necessary for investigating the role these bursts might play in coronal heating. To enable this, we have developed a novel system using region-growing, wavelet decompositions, and thresholding techniques for event recognition and parameter extraction in an automated manner for the voluminous MWA interferometric data. We will present and describe the statistical properties of these weak radio bursts based on a large number of events detected and parameterized by these automated methods.

  19. Adaptation to visual stimulation modifies the burst firing property of V1 neurons.

    PubMed

    Liu, Rui-Long; Wang, Ke; Meng, Jian-Jun; Hua, Tian-Miao; Liang, Zhen; Xi, Min-Min

    2013-06-01

    The mean firing rate of visual cortical neurons is reduced after prolonged visual stimulation, but the underlying process by which this occurs as well as the biological significance of this phenomenon remains unknown. Computational neuroscience studies indicate that high-frequency bursts in stimulus-driven responses can be transmitted across synapses more reliably than isolated spikes, and thus may carry accurate stimulus-related information. Our research examined whether or not adaptation affects the burst firing property of visual cortical neurons by examining changes in the burst firing changes of V1 neurons during adaptation to the preferred visual stimulus. The results show that adaptation to prolonged visual stimulation significantly decreased burst frequency (bursts/s) and burst length (spikes/burst), but increased burst duration and the interspike interval within bursts. These results suggest that the adaptation of V1 neurons to visual stimulation may result in a decrease of feedforward response gain but an increase of functional activities from lateral and/or feedback connections, which could lead to a reduction in the effectiveness of adapted neurons in transmitting information to its driven neurons.

  20. Delta hepatitis in Malaysia.

    PubMed

    Sinniah, M; Dimitrakakis, M; Tan, D S

    1986-06-01

    Sera from one hundred and fifty nine Malaysian individuals were screened for the prevalence of delta markers. These included 15 HBsAg positive homosexuals, 16 acute hepatitis B cases, 9 chronic hepatitis B patients, 13 healthy HBsAg carriers and 106 intravenous (i.v.) drug abusers, of whom 27 were positive for HBsAg only and the rest were anti-HBc IgG positive but HBsAg negative. The prevalence of delta markers in the homosexuals was found to be 6.7%, in the HBsAg positive drug abusers 17.8%, in acute hepatitis B cases 12.5%. No evidence of delta infection was detected in healthy HBsAg carriers, chronic hepatitis B cases and HBsAg negative i.v. drug abusers. With reference to i.v. drug abusers, the prevalence of delta markers was higher in Malays (23%) than in Chinese (7%) although the latter had a higher HBsAg carrier rate. Although the HBsAg carrier rate in the homosexuals was high, their delta prevalence rate was low as compared to drug abusers. In Malaysia, as in other non-endemic regions, hepatitis delta virus transmission appeared to occur mainly via the parenteral and sexual routes. This is the first time in Malaysia that a reservoir of delta infection has been demonstrated in certain groups of the population at high risk for hepatitis B. PMID:3787309

  1. Thermodynamic order parameters and statistical-mechanical measures for characterization of the burst and spike synchronizations of bursting neurons

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Yoon; Lim, Woochang

    2015-11-01

    We are interested in characterization of population synchronization of bursting neurons which exhibit both the slow bursting and the fast spiking timescales, in contrast to spiking neurons. Population synchronization may be well visualized in the raster plot of neural spikes which can be obtained in experiments. The instantaneous population firing rate (IPFR) R(t) , which may be directly obtained from the raster plot of spikes, is often used as a realistic collective quantity describing population behaviors in both the computational and the experimental neuroscience. For the case of spiking neurons, realistic thermodynamic order parameter and statistical-mechanical spiking measure, based on R(t) , were introduced in our recent work to make practical characterization of spike synchronization. Here, we separate the slow bursting and the fast spiking timescales via frequency filtering, and extend the thermodynamic order parameter and the statistical-mechanical measure to the case of bursting neurons. Consequently, it is shown in explicit examples that both the order parameters and the statistical-mechanical measures may be effectively used to characterize the burst and spike synchronizations of bursting neurons.

  2. Nile Delta, Egypt

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Nile Delta of Egypt (30.0N, 31.0E) irrigated by the Nile River and its many distributaries, is some of the richest farm land in the world and home to some 45 million people, over half of Egypt's population of 57 million. The capital city of Cairo is at the apex of the delta in the middle of the scene. Across the river from Cairo can be seen the three big pyramids and sphinx at Giza and the Suez Canal is just to the right of the delta.

  3. Nile River Delta, Egypt

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The Nile River Delta of Egypt (30.0N, 31.0E) irrigated by the Nile River and its many distributaries, is some of the richest farm land in the world and home to some 45 million people, over half of Egypt's population. The capital city of Cairo is at the apex of the delta. Just across the river from Cairo can be seen the ancient three big pyramids and sphinx at Giza and the Suez Canal is just to the right of the delta.

  4. Modeling river delta formation.

    PubMed

    Seybold, Hansjörg; Andrade, José S; Herrmann, Hans J

    2007-10-23

    A model to simulate the time evolution of river delta formation process is presented. It is based on the continuity equation for water and sediment flow and a phenomenological sedimentation/erosion law. Different delta types are reproduced by using different parameters and erosion rules. The structures of the calculated patterns are analyzed in space and time and compared with real data patterns. Furthermore, our model is capable of simulating the rich dynamics related to the switching of the mouth of the river delta. The simulation results are then compared with geological records for the Mississippi River. PMID:17940031

  5. TYPE III RADIO BURSTS PERTURBED BY WEAK CORONAL SHOCKS

    SciTech Connect

    Li, B.; Cairns, Iver H.

    2012-07-10

    Some type III bursts are observed to undergo sudden flux modifications, e.g., reductions and intensifications, when type III beams cross shocks in the upper corona or solar wind. First simulations are presented for type III bursts perturbed by weak coronal shocks, which type III beams traverse. The simulations incorporate spatially localized jumps in plasma density and electron and ion temperatures downstream of a shock. A shock is predicted to produce significant modulations to a type III burst: (1) a broadband flux reduction or frequency gap caused by the shock's density jump, (2) a narrowband flux intensification originating from where the downstream plasma density locally has a small gradient, (3) a possible intensification from the shock front or just upstream, and (4) changes in the frequency drift rate profile and the temporal evolution of radiation flux at frequencies corresponding to the shocked plasma. The modulations are caused primarily by fundamental modifications to the radiation processes in response to the shocked density and temperatures. The predicted intensifications and reductions appear qualitatively consistent with the available small number of reported observations, although it is unclear how representative these observations are. It is demonstrated that a weak shock can cause an otherwise radio-quiet type III beam to produce observable levels of narrowband radio emission. The simulations suggest that type III bursts with frequency-time fine structures may provide a tool to probe shocks in the corona and solar wind, especially for weak shocks that do not radiate by themselves.

  6. Detection of GW bursts with chirplet-like template families

    NASA Astrophysics Data System (ADS)

    Chassande Mottin, Éric; Miele, Miriam; Mohapatra, Satya; Cadonati, Laura

    2010-10-01

    Gravitational wave (GW) burst detection algorithms typically rely on the hypothesis that the burst signal is 'locally stationary', that is with slow variations of its frequency. Under this assumption, the signal can be decomposed into a small number of wavelets with constant frequency. This justifies the use of a family of sine-Gaussian wavelets in the Omega pipeline, one of the algorithms used in LIGO-Virgo burst searches. However, there are plausible scenarios where the burst frequency evolves rapidly, such as in the merger phase of a binary black-hole and/or neutron-star coalescence. In those cases, the local stationarity of sine Gaussians induces performance losses, due to the mismatch between the template and the actual signal. We propose an extension of the Omega pipeline based on chirplet-like templates. Chirplets incorporate an additional parameter, the chirp rate, to control the frequency variation. In this paper, we show that the Omega pipeline can easily be extended to include a chirplet template bank. We illustrate the method on a simulated data set, with a family of phenomenological binary black-hole coalescence waveforms embedded into Gaussian LIGO/Virgo-like noise. Chirplet-like templates result in an enhancement of the measured signal-to-noise ratio.

  7. GRB 090727 AND GAMMA-RAY BURSTS WITH EARLY-TIME OPTICAL EMISSION

    SciTech Connect

    Kopac, D.; Gomboc, A.; Japelj, J.; Kobayashi, S.; Mundell, C. G.; Bersier, D.; Cano, Z.; Smith, R. J.; Steele, I. A.; Virgili, F. J.; Guidorzi, C.; Melandri, A.

    2013-07-20

    We present a multi-wavelength analysis of Swift gamma-ray burst GRB 090727, for which optical emission was detected during the prompt gamma-ray emission by the 2 m autonomous robotic Liverpool Telescope and subsequently monitored for a further two days with the Liverpool and Faulkes Telescopes. Within the context of the standard fireball model, we rule out a reverse shock origin for the early-time optical emission in GRB 090727 and instead conclude that the early-time optical flash likely corresponds to emission from an internal dissipation process. Putting GRB 090727 into a broader observational and theoretical context, we build a sample of 36 gamma-ray bursts (GRBs) with contemporaneous early-time optical and gamma-ray detections. From these GRBs, we extract a sub-sample of 18 GRBs, which show optical peaks during prompt gamma-ray emission, and perform detailed temporal and spectral analysis in gamma-ray, X-ray, and optical bands. We find that in most cases early-time optical emission shows sharp and steep behavior, and notice a rich diversity of spectral properties. Using a simple internal shock dissipation model, we show that the emission during prompt GRB phase can occur at very different frequencies via synchrotron radiation. Based on the results obtained from observations and simulation, we conclude that the standard external shock interpretation for early-time optical emission is disfavored in most cases due to sharp peaks ({Delta}t/t < 1) and steep rise/decay indices, and that internal dissipation can explain the properties of GRBs with optical peaks during gamma-ray emission.

  8. Cosmological gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Paczynski, Bohdan

    1991-01-01

    The distribution in angle and flux of gamma-ray bursts indicates that the majority of gamma-ray bursters are at cosmological distances, i.e., at z of about 1. The rate is then about 10 exp -8/yr in a galaxy like the Milky Way, i.e., orders of magnitude lower than the estimated rate for collisions between neutron stars in close binary systems. The energy per burst is about 10 exp 51 ergs, assuming isotropic emission. The events appear to be less energetic and more frequent if their emission is strongly beamed. Some tests for the distance scale are discussed: a correlation between the burst's strength and its spectrum; the absorption by the Galactic gas below about 2 keV; the X-ray tails caused by forward scattering by the Galactic dust; about 1 month recurrence of some bursts caused by gravitational lensing by foreground galaxies; and a search for gamma-ray bursts in M31. The bursts appear to be a manifestation of something exotic, but conventional compact objects can provide an explanation. The best possibility is offered by a decay of a bindary composed of a spinning-stellar-mass black-hole primary and a neutron or a strange-quark star secondary. In the final phase the secondary is tidally disrupted, forms an accretion disk, and up to 10 exp 54 ergs are released. A very small fraction of this energy powers the gamma-ray burst.

  9. All optical binary delta-sigma modulator

    NASA Astrophysics Data System (ADS)

    Sayeh, Mohammad R.; Siahmakoun, Azad

    2005-09-01

    This paper describes a novel A/D converter called "Binary Delta-Sigma Modulator" (BDSM) which operates only with nonnegative signal with positive feedback and binary threshold. This important modification to the conventional delta-sigma modulator makes the high-speed (>100GHz) all-optical implementation possible. It has also the capability to modify its own sampling frequency as well as its input dynamic range. This adaptive feature helps designers to optimize the system performance under highly noisy environment and also manage the power consumption of the A/D converters.

  10. Directivity Patterns of Complex Solar Type III Radio Bursts: Stereoscopic Observations

    NASA Astrophysics Data System (ADS)

    Golla, T.; MacDowall, R. J.

    2014-12-01

    Complex solar type III-like radio bursts are a group of type III bursts that occur in association with slowly drifting type II radio bursts excited by coronal mass ejection (CME) driven shock waves. We presentsimultaneous observations of these radio bursts from the STEREO A, B and WIND spacecraft at low frequencies, located at different vantage points in the ecliptic plane. Using these stereoscopic observations, wedetermine the directivity of these complex radio bursts. We estimate the angles between the directions of the magnetic field at the sources and the lines connecting the source to the spacecraft (viewing angles) by assuming that the sources are located on the Parker spiral magnetic field lines emerging from the associated active regions into the spherically symmetric solar atmosphere. We estimate the normalized peak intensities of these bursts (directivity factors) at each spacecraft using their time profiles at each spacecraft. These observations indicate that the complex type III bursts can be divided into two groups: (1) bursts emitting into a very narrow cone centered around the tangent to the magnetic field, and (2) bursts emitting into a wider cone. We show that the bursts , which are emitted along the tangent to the spiral magnetic field lines at the source are very intense, and their intensities steadily fall as the viewing angles increase to higher values. We have developed a ray tracing code and computed the distributions of the trajectories of rays emitted at the fundamental and second harmonic of the electron plasma frequency. The comparison of the observed emission patterns with the computed distributions of the ray trajectories indicate that the intense bursts visible in a narrow range of angles around the magnetic field directions probably are emitted in the fundamental mode, whereas the relativelyweaker bursts visible to a wide range of angles are probably emitted in the harmonic mode.

  11. Burst Oscillation Probes of Neutron Stars and Nuclear Burning with LOFT

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2012-01-01

    X-ray brightness oscillations during thermonuclear X-ray bursts--burst oscillations--have provided a new probe of neutron star spins as well as of the dependent nuclear burning processes. The frequency drift and amplitude evolution of the oscillations observed during bursts can in principle place constraints on the physics of thermonuclear flame spreading and the dynamics of the burning atmosphere. I use simulations appropriate to LOFT to explore the precision with which the time dependence of the oscillation frequency can be inferred. This can test, for example, different models for the frequency drift, such as up-lift versus geostrophic drift. I also explore the precision with which asymptotic frequencies can be constrained in order to estimate the capability for LOFT to detect the Doppler shifts induced by orbital motion of the neutron star from a sample of bursts at different orbital phases.

  12. Man made deltas

    PubMed Central

    Maselli, Vittorio; Trincardi, Fabio

    2013-01-01

    The review of geochronological and historical data documents that the largest southern European deltas formed almost synchronously during two short intervals of enhanced anthropic pressure on landscapes, respectively during the Roman Empire and the Little Ice Age. These growth phases, that occurred under contrasting climatic regimes, were both followed by generalized delta retreat, driven by two markedly different reasons: after the Romans, the fall of the population and new afforestation let soil erosion in river catchments return to natural background levels; since the industrial revolution, instead, flow regulation through river dams overkill a still increasing sediment production in catchment basins. In this second case, furthermore, the effect of a reduced sediment flux to the coasts is amplified by the sinking of modern deltas, due to land subsidence and sea level rise, that hampers delta outbuilding and increases the vulnerability of coastal zone to marine erosion and flooding. PMID:23722597

  13. Man made deltas.

    PubMed

    Maselli, Vittorio; Trincardi, Fabio

    2013-01-01

    The review of geochronological and historical data documents that the largest southern European deltas formed almost synchronously during two short intervals of enhanced anthropic pressure on landscapes, respectively during the Roman Empire and the Little Ice Age. These growth phases, that occurred under contrasting climatic regimes, were both followed by generalized delta retreat, driven by two markedly different reasons: after the Romans, the fall of the population and new afforestation let soil erosion in river catchments return to natural background levels; since the industrial revolution, instead, flow regulation through river dams overkill a still increasing sediment production in catchment basins. In this second case, furthermore, the effect of a reduced sediment flux to the coasts is amplified by the sinking of modern deltas, due to land subsidence and sea level rise, that hampers delta outbuilding and increases the vulnerability of coastal zone to marine erosion and flooding. PMID:23722597

  14. Chronic sodium salicylate administration enhances population spike long-term potentiation following a combination of theta frequency primed-burst stimulation and the transient application of pentylenetetrazol in rat CA1 hippocampal neurons.

    PubMed

    Gholami, Masoumeh; Moradpour, Farshad; Semnanian, Saeed; Naghdi, Nasser; Fathollahi, Yaghoub

    2015-11-15

    The effect of chronic administration of sodium salicylate (NaSal) on the excitability and synaptic plasticity of the rodent hippocampus was investigated. Repeated systemic treatment with NaSal reliably induced tolerance to the anti-nociceptive effect of NaSal (one i.p. injection per day for 6 consecutive days). Following chronic NaSal or vehicle treatment, a series of electrophysiological experiments on acute hippocampal slices (focusing on the CA1 circuitry) were tested whether tolerance to NaSal would augment pentylenetetrazol (PTZ)-induced long-term potentiation (LTP) and /or epileptic activity, and whether the augmentation was the same after priming activity with a natural stimulus pattern prior to PTZ. We noted an altered synaptic input-to-spike transformation, such that neuronal firing increased after a given synaptic drive. Population spike-LTP (PS-LTP) was increased in the NaSal-tolerant animals, but only when it was induced via a combination of electrical stimulation (theta pattern primed-burst stimulation) and the transient application of PTZ. Identifying and understanding these changes in neuronal excitability and synaptic plasticity following chronic salicylate treatment could prove useful in the clinical diagnosis or treatment of chronic aspirin-induced, or even idiopathic, seizure activity.

  15. Evidence of Transformation Bursts During Thermal Cycling of a Pu-Ga Alloy

    SciTech Connect

    Blobaum, K M; Krenn, C R; Mitchell, J N; Haslam, J J; Wall, M A; Massalski, T B; Schwartz, A J

    2005-02-09

    The thermodynamics and kinetics of the fcc (delta) to monoclinic (alpha-prime) phase transformation and its reversion in a plutonium-gallium alloy have been studied using differential scanning calorimetry, resistometry, and dilatometry. Under ambient conditions, the delta phase is metastable in a Pu-2.0 at% Ga alloy. Thermal cycling to below the ambient temperature results in a partial transformation to the alpha-prime phase; this transformation is composition-invariant and exhibits martensitic behavior. Because this transformation results in an unusually invariant large 25% volume contraction that cannot be fully accommodated by purely elastic adjustments, the transformation mode is expected to involve burst formation of individual alpha-prime particles. However, upon cooling, these individual bursts were not resolved by the above techniques, although signals corresponding to the overall accumulation of many alpha-prime particles were observed. On the other hand, upon heating, signals from differential scanning calorimetry, resistometry, and dilatometry showed a series of discrete changes occurring in periodic increments beginning at approximately 32 C. These features correspond to the cooperative reversion of many alpha-prime particles to the delta phase; they appear to be the result of an interplay between the autocatalytically driven reversion of a cascade of individual martensite units, and self-quenching caused by small changes of temperature and/or stress accompanying each individual transformation burst. The heat of the delta/alpha-prime transformation is estimated to be about + 4 kJ/mole.

  16. 30 CFR 57.3461 - Rock bursts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons...

  17. 30 CFR 57.3461 - Rock bursts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons...

  18. 30 CFR 57.3461 - Rock bursts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons...

  19. 30 CFR 57.3461 - Rock bursts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons...

  20. 30 CFR 57.3461 - Rock bursts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Rock bursts. 57.3461 Section 57.3461 Mineral...-Underground Only § 57.3461 Rock bursts. (a) Operators of mines which have experienced a rock burst shall— (1) Within twenty four hours report to the nearest MSHA office each rock burst which: (i) Causes persons...

  1. LOFAR tied-array imaging and spectroscopy of solar S bursts

    NASA Astrophysics Data System (ADS)

    Morosan, D. E.; Gallagher, P. T.; Zucca, P.; O'Flannagain, A.; Fallows, R.; Reid, H.; Magdalenić, J.; Mann, G.; Bisi, M. M.; Kerdraon, A.; Konovalenko, A. A.; MacKinnon, A. L.; Rucker, H. O.; Thidé, B.; Vocks, C.; Alexov, A.; Anderson, J.; Asgekar, A.; Avruch, I. M.; Bentum, M. J.; Bernardi, G.; Bonafede, A.; Breitling, F.; Broderick, J. W.; Brouw, W. N.; Butcher, H. R.; Ciardi, B.; de Geus, E.; Eislöffel, J.; Falcke, H.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J.; Gunst, A. W.; Hessels, J. W. T.; Hoeft, M.; Karastergiou, A.; Kondratiev, V. I.; Kuper, G.; van Leeuwen, J.; McKay-Bukowski, D.; McKean, J. P.; Munk, H.; Orru, E.; Paas, H.; Pizzo, R.; Polatidis, A. G.; Scaife, A. M. M.; Sluman, J.; Tasse, C.; Toribio, M. C.; Vermeulen, R.; Zarka, P.

    2015-08-01

    Context. The Sun is an active source of radio emission that is often associated with energetic phenomena ranging from nanoflares to coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), numerous millisecond duration radio bursts have been reported, such as radio spikes or solar S bursts (where S stands for short). To date, these have neither been studied extensively nor imaged because of the instrumental limitations of previous radio telescopes. Aims: Here, LOw Frequency ARray (LOFAR) observations were used to study the spectral and spatial characteristics of a multitude of S bursts, as well as their origin and possible emission mechanisms. Methods: We used 170 simultaneous tied-array beams for spectroscopy and imaging of S bursts. Since S bursts have short timescales and fine frequency structures, high cadence (~50 ms) tied-array images were used instead of standard interferometric imaging, that is currently limited to one image per second. Results: On 9 July 2013, over 3000 S bursts were observed over a time period of ~8 h. S bursts were found to appear as groups of short-lived (<1 s) and narrow-bandwidth (~2.5 MHz) features, the majority drifting at ~3.5 MHz s-1 and a wide range of circular polarisation degrees (2-8 times more polarised than the accompanying Type III bursts). Extrapolation of the photospheric magnetic field using the potential field source surface (PFSS) model suggests that S bursts are associated with a trans-equatorial loop system that connects an active region in the southern hemisphere to a bipolar region of plage in the northern hemisphere. Conclusions: We have identified polarised, short-lived solar radio bursts that have never been imaged before. They are observed at a height and frequency range where plasma emission is the dominant emission mechanism, however, they possess some of the characteristics of electron-cyclotron maser emission. A movie associated to Fig. 3 is available in electronic form at http://www.aanda.org

  2. Stabilization of electron streams in type III solar radio bursts

    NASA Technical Reports Server (NTRS)

    Papadopoulos, K.; Goldstein, M. L.; Smith, R. A.

    1974-01-01

    We show that the electron streams that give rise to type III solar radio bursts are stable and will not be decelerated while propagating out of the solar corona. The stabilization mechanism depends on the parametric oscillating two-stream instability. Radiation is produced near the fundamental and second harmonic of the local electron plasma frequency. Estimates of the emission at the second harmonic indicate that the wave spectra created by the oscillating two-stream instability can account for the observed intensities of type III bursts.

  3. Do gamma-ray burst sources repeat?

    NASA Technical Reports Server (NTRS)

    Meegan, C. A.; Hartmann, D. H.; Brainerd, J. J.; Briggs, M.; Paciesas, W. S.; Pendleton, G.; Kouveliotou, C.; Fishman, G.; Blumenthal, G.; Brock, M.

    1994-01-01

    The demonstration of repeated gamma-ray bursts from an individual source would severely constrain burst source models. Recent reports of evidence for repetition in the first BATSE burst catalog have generated renewed interest in this issue. Here, we analyze the angular distribution of 585 bursts of the second BATSE catalog (Meegan et al. 1994). We search for evidence of burst recurrence using the nearest and farthest neighbor statistic ad the two-point angular correlation function. We find the data to be consistent with the hypothesis that burst sources do not repeat; however, a repeater fraction of up to about 20% of the bursts cannot be excluded.

  4. Source mechanism of Saturn drifting bursts

    NASA Astrophysics Data System (ADS)

    Taubenschuss, U.; Schippers, P.; Leisner, J. S.; Fischer, G.; Gurnett, D. A.; Persoon, A. M.; Faden, J. B.

    2011-12-01

    Saturn drifting bursts (SDBs) are a new class of Kronian radio emission detected by the Cassini spacecraft in the lower kHz frequency range (< 50 kHz). Their bursty nature and slow drift in the time-frequency spectrogram clearly distinguish them from other types of radio emissions which are observed around Saturn. A statistical analysis of more than 5 years of data (mid 2004 - 2010) constrains source regions to the middle magnetosphere (6 - 15 Rs; 1 Rs = 60268 km). For this region, we show observational evidence of mode conversion, i.e. a conversion from electrostatic upper hybrid resonance oscillations to the electromagnetic O-mode and/or Z-mode. Mode conversion is suggested to be the source for SDBs. Furthermore, the special beaming pattern of the radiation is investigated with ray-tracing studies in the frame of the cold plasma theory.

  5. Cosmological gamma-ray bursts

    SciTech Connect

    Fenimore, E.; Epstein, R.; Ho, C.; Intzand, J.

    1996-04-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Gamma-ray bursts are brief events that dominate the emission from all other gamma-ray objects in the sky, flicker for tens of seconds, and then turn off. Their nature remains uncertain despite years of efforts to understand them. One hypothesis is that the bursts arise within our galaxy albeit in an extended halo of neutron stars. Another hypothesis uses the isotropic distribution of gamma-ray bursts to argue that they come from nearly the edge of the universe. If gamma-ray bursts originate from cosmological distances, then the expansion of the universe should cause the dimmer (and presumably further) bursts to last longer. The authors have developed methods for measuring this time stretching, related the time stretching to the distance to the bursts, determined how the detailed physics causes temporal variations, and found the amount of total energy and peak luminosity that the events must be producing.

  6. Whistler wave bursts upstream of the Uranian bow shock

    NASA Technical Reports Server (NTRS)

    Smith, Charles W.; Goldstein, Melvyn L.; Wong, Hung K.

    1989-01-01

    Observations of magnetic field wave bursts upstream of the Uranian bow shock are reported which were recorded prior to the inbound shock crossing. Three wave types are identified. One exhibits a broad spectral enhancement from a few millihertz to about 50 mHz and is seen from 17 to 10 hr prior to the inbound shock crossing. It is argued that these waves are whistler waves that have propagated upstream from the shock. A second wave type has a spacecraft frame frequency between 20 and 40 mHz, is seen only within or immediately upstream of the shock pedestal, is right-hand polarized in the spacecraft frame, and has a typical burst duration of 90 s. The third wave type has a spacecraft frame frequency of about 0.15 Hz, is seen exclusively within the shock pedestal, is left-hand polarized in the spacecraft frame, and has a burst duration lasting up to 4 min. It is argued that the low-frequency bursts are whistler waves with phase speed comparable to, but in excess of, the solar wind speed.

  7. X-ray bursts: Observation versus theory

    NASA Technical Reports Server (NTRS)

    Lewin, W. H. G.

    1981-01-01

    Results of various observations of common type I X-ray bursts are discussed with respect to the theory of thermonuclear flashes in the surface layers of accreting neutron stars. Topics covered include burst profiles; irregular burst intervals; rise and decay times and the role of hydrogen; the accuracy of source distances; accuracy in radii determination; radius increase early in the burst; the super Eddington limit; temperatures at burst maximum; and the role of the magnetic field.

  8. Coherent delta-band oscillations between cortical areas correlate with decision making.

    PubMed

    Nácher, Verónica; Ledberg, Anders; Deco, Gustavo; Romo, Ranulfo

    2013-09-10

    Coherent oscillations in the theta-to-gamma frequency range have been proposed as a mechanism that coordinates neural activity in large-scale cortical networks in sensory, motor, and cognitive tasks. Whether this mechanism also involves coherent oscillations at delta frequencies (1-4 Hz) is not known. Rather, delta oscillations have been associated with slow-wave sleep. Here, we show coherent oscillations in the delta frequency band between parietal and frontal cortices during the decision-making component of a somatosensory discrimination task. Importantly, the magnitude of this delta-band coherence is modulated by the different decision alternatives. Furthermore, during control conditions not requiring decision making, delta-band coherences are typically much reduced. Our work indicates an important role for synchronous activity in the delta frequency band when large-scale, distant cortical networks coordinate their neural activity during decision making.

  9. SHORT-LIVED RADIO BURSTS FROM THE CRAB PULSAR

    SciTech Connect

    Crossley, J. H.; Eilek, J. A.; Hankins, T. H.; Kern, J. S.

    2010-10-20

    Our high-time-resolution observations reveal that individual main pulses from the Crab pulsar contain one or more short-lived microbursts. Both the energy and duration of bursts measured above 1 GHz can vary dramatically in less than a millisecond. These fluctuations are too rapid to be caused by propagation through turbulence in the Crab Nebula or in the interstellar medium; they must be intrinsic to the radio emission process in the pulsar. The mean duration of a burst varies with frequency as {nu}{sup -2}, significantly different from the broadening caused by interstellar scattering. We compare the properties of the bursts to some simple models of microstructure in the radio emission region.

  10. A TYPE II RADIO BURST WITHOUT A CORONAL MASS EJECTION

    SciTech Connect

    Su, W.; Cheng, X.; Ding, M. D.; Chen, P. F.; Sun, J. Q. E-mail: dmd@nju.edu.cn

    2015-05-10

    Type II radio bursts are thought to be a signature of coronal shocks. In this paper, we analyze a short-lived type II burst that started at 07:40 UT on 2011 February 28. By carefully checking white-light images, we find that the type II radio burst is not accompanied by a coronal mass ejection, only by a C2.4 class flare and narrow jet. However, in the EUV images provided by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, we find a wave-like structure that propagated at a speed of ∼600 km s{sup −1} during the burst. The relationship between the type II radio burst and the wave-like structure is, in particular, explored. For this purpose, we first derive the density distribution under the wave by the differential emission measure method, which is used to restrict the empirical density model. We then use the restricted density model to invert the speed of the shock that produces the observed frequency drift rate in the dynamic spectrum. The inverted shock speed is similar to the speed of the wave-like structure. This implies that the wave-like structure is most likely a coronal shock that produces the type II radio burst. We also examine the evolution of the magnetic field in the flare-associated active region and find continuous flux emergence and cancellation taking place near the flare site. Based on these facts, we propose a new mechanism for the formation of the type II radio burst, i.e., the expansion of the strongly inclined magnetic loops after reconnecting with a nearby emerging flux acts as a piston to generate the shock wave.

  11. A Type II Radio Burst without a Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Su, W.; Cheng, X.; Ding, M. D.; Chen, P. F.; Sun, J. Q.

    2015-05-01

    Type II radio bursts are thought to be a signature of coronal shocks. In this paper, we analyze a short-lived type II burst that started at 07:40 UT on 2011 February 28. By carefully checking white-light images, we find that the type II radio burst is not accompanied by a coronal mass ejection, only by a C2.4 class flare and narrow jet. However, in the EUV images provided by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, we find a wave-like structure that propagated at a speed of ˜600 km s-1 during the burst. The relationship between the type II radio burst and the wave-like structure is, in particular, explored. For this purpose, we first derive the density distribution under the wave by the differential emission measure method, which is used to restrict the empirical density model. We then use the restricted density model to invert the speed of the shock that produces the observed frequency drift rate in the dynamic spectrum. The inverted shock speed is similar to the speed of the wave-like structure. This implies that the wave-like structure is most likely a coronal shock that produces the type II radio burst. We also examine the evolution of the magnetic field in the flare-associated active region and find continuous flux emergence and cancellation taking place near the flare site. Based on these facts, we propose a new mechanism for the formation of the type II radio burst, i.e., the expansion of the strongly inclined magnetic loops after reconnecting with a nearby emerging flux acts as a piston to generate the shock wave.

  12. Energetic electrons, Type III radio bursts, and impulsive solar flare X-rays

    NASA Technical Reports Server (NTRS)

    Kane, S. R.

    1981-01-01

    Observations of impulsive hard X-ray and type III radio bursts made during the maximum of the last solar activity cycle are analyzed. Spectral measurements of 10-68 keV X-rays were made with the University of California (Berkeley) experiment aboard the OGO 5 satellite. About 20% of impulsive hard X-ray bursts are correlated with type III radio bursts, whereas only about 3% of the reported type III radio bursts are correlated with impulsive X-ray bursts. The location of the associated H gamma flare on the solar disk has little effect on the X-ray-type III burst correlation. The magnitude of the X-ray-type III burst correlation increases systematically with an increase in the intensity and starting frequency of the radio burst, the peak energy and hardness of the X-ray burst, and the peak nonthermal emission measure and spectral hardness of the electron spectrum not less than 20 keV inside the X-ray source. Observations are consistent with the electron populations responsible for both the X-ray and type III emissions accelerated in a single acceleration process; they also suggest a flare model where the primary instability causing electron acceleration during the impulsive phase occurs in the corona.

  13. Turbulent heat exchanger {Delta}T and {Delta}P

    SciTech Connect

    Steinmeyer, D.

    1996-12-31

    Optimum pressure drop ({Delta}P) and temperature difference ({Delta}T) in turbulent flow heat exchangers are presented in three frameworks: as quantitatively defined by fluid properties, the value of energy and the cost of heat exchange surface (with a little help from a relationship between [power/mass] and heat transfer); as the energy cost for heat recovery (with the {Delta}T cost being about equal to the heat exchanger cost and the {Delta}P cost being about 1/3 as great); and as the second law lost work inherent in heat exchange (with the {Delta}T loss being {approximately}3 times the {Delta}T loss).

  14. Comet Bursting Through Relaxation

    NASA Astrophysics Data System (ADS)

    Jacobson, Seth A.; Scheeres, D. J.

    2012-10-01

    Comets may be excited and occupy non-principal axis (complex) rotation states for a large fraction of their lifetimes. Many comet nuclei have been identified or are suspected to occupy non-principal axis (complex) rotation [Belton 2005, etc.] as well as have evolving rotation rates [Belton 2011, etc.]. Comet orbits drive these rotation states through cycles of excitation due to surface jets and relaxation due to time variable internal stresses that dissipate energy in the anelastic comet interior. Furthermore, relaxation from complex rotation can increase the loads along the symmetry axis of prolate comets. These loads stretch the body along the symmetry axis and may be the cause of the characteristic ``bowling pin’’ shape and eventually may lead to failure. This is an alternative model for comet bursting. Each cycle deposits only a small amount of energy and stress along the axis, but this process is repeated every orbit during which jets are activated. Our model for the evolution of comet nuclei includes torques due to a number of discrete jets located on the surface based on Neishtadt et al. [2002]. The model also includes internal dissipation using an approach developed by Sharma et al. [2005] and Vokrouhlicky et al. [2009]. These equations are averaged over the instantaneous spin state and the heliocentric orbit so the long-term evolution of the comet can be determined. We determine that even after the inclusion of internal dissipation there still exist non-principal axis equilibrium states for certain jet geometries. For ranges of dissipation factors and jet geometries, prolate comets are found to occupy states that have time variable internal loads over long time periods. These periodic loadings along the symmetry axis may lead to ``necking’’ as the body extends along the axis to release the stress and eventually disruption.

  15. LOCALIZATION OF A TYPE III RADIO BURST OBSERVED BY THE STEREO SPACECRAFT

    SciTech Connect

    Thejappa, G.; MacDowall, R. J. E-mail: Robert.MacDowall@nasa.go

    2010-09-10

    Ray tracing calculations show that (1) emissions from a localized source escape as direct and reflected waves along different paths, (2) the reflected waves experience higher attenuation and group delay because they travel longer path lengths in regions of reduced refractive index, and (3) widely separated spacecraft 'A' and 'B' can detect the direct as well as reflected emissions escaping along different directions. It is proposed that the source of a radio burst observed by twin spacecraft 'A' and 'B' can be localized if at a given frequency the emission at one of them is identified as the direct emission and is identified at the other as the reflected emission by comparing the observed time delays {Delta}T, as well as intensity ratios I{sub B} /I{sub A} with the corresponding values of the direct and reflected emissions obtained for a given coronal model. A type III event observed by the STEREO spacecraft 'A' and 'B' shows that its characteristics are consistent with direct and reflected emissions by being less intense and delayed at 'A' in comparison to that at 'B'. By applying the proposed technique to this event, the location of its source is found to lie between the turning point of the ray and the harmonic layer corresponding to f {sub pe} = f/2, where f and f {sub pe} are the frequency of the emission and the electron plasma frequency, respectively. The comparisons of the widths of the fundamental and harmonic emission cones with the angular separation of spacecraft 'A' and 'B' indicate that the mode of the observed emission is probably the harmonic.

  16. HETEROGENEITY IN SHORT GAMMA-RAY BURSTS

    SciTech Connect

    Norris, Jay P.; Gehrels, Neil

    2011-07-01

    We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts' initial pulse complexes (IPCs). The sample is comprised of 12 and 41 bursts with and without extended emission (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales-durations, pulse structure widths, and peak intervals-for EE bursts are factors of {approx}2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts-the anti-correlation of pulse intensity and width-continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition, we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/X-Ray Telescope (XRT). The median flux of the initial XRT detections for EE bursts ({approx}6x10{sup -10} erg cm{sup -2} s{sup -1}) is {approx}>20x brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts ({approx}60,000 s) is {approx}30x longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into denser environments than non-EE bursts, or that the sometimes-dominant EE component efficiently powers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts.

  17. Heterogeneity in Short Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Norris, Jay P.; Gehrels Neil; Scargle, Jeffrey D.

    2011-01-01

    We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts' initial pulse complexes (IPCs). The sample comprises 12 and 41 bursts with and without extended emission (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales - durations, pulse structure widths, and peak intervals - for EE bursts are factors of approx 2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts - the anti-correlation of pulse intensity and width - continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/XRT. The median flux of the initial XRT detections for EE bursts (approx 6 X 10(exp -10) erg / sq cm/ s) is approx > 20 x brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts (approx 60,000 s) is approx 30 x longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into more dense environments than non-EE bursts, or that the sometimes-dominant EE component efficiently p()wers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts.

  18. Solar Flares, Type III Radio Bursts, Coronal Mass Ejections, and Energetic Particles

    NASA Technical Reports Server (NTRS)

    Cane, Hilary V.; Erickson, W. C.; Prestage, N. P.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    In this correlative study between greater than 20 MeV solar proton events, coronal mass ejections (CMEs), flares, and radio bursts it is found that essentially all of the proton events are preceded by groups of type III bursts and all are preceded by CMEs. These type III bursts (that are a flare phenomenon) usually are long-lasting, intense bursts seen in the low-frequency observations made from space. They are caused by streams of electrons traveling from close to the solar surface out to 1 AU. In most events the type III emissions extend into, or originate at, the time when type II and type IV bursts are reported (some 5 to 10 minutes after the start of the associated soft X-ray flare) and have starting frequencies in the 500 to approximately 100 MHz range that often get lower as a function of time. These later type III emissions are often not reported by ground-based observers, probably because of undue attention to type II bursts. It is suggested to call them type III-1. Type III-1 bursts have previously been called shock accelerated (SA) events, but an examination of radio dynamic spectra over an extended frequency range shows that the type III-1 bursts usually start at frequencies above any type II burst that may be present. The bursts sometimes continue beyond the time when type II emission is seen and, furthermore, sometimes occur in the absence of any type II emission. Thus the causative electrons are unlikely to be shock accelerated and probably originate in the reconnection regions below fast CMEs. A search did not find any type III-1 bursts that were not associated with CMEs. The existence of low-frequency type III bursts proves that open field lines extend from within 0.5 radius of the Sun into the interplanetary medium (the bursts start above 100 MHz, and such emission originates within 0.5 solar radius of the solar surface). Thus it is not valid to assume that only closed field lines exist in the flaring regions associated with CMEs and some

  19. 2800 MHz Solar Radio Bursts: A Statistical Analysis of 40 years of Data

    NASA Astrophysics Data System (ADS)

    Balachandran, B.; Lanzerotti, L. J.; Gary, D. E.

    2001-12-01

    The daily values of solar flux and radio bursts at 2800 MHz (10.7 cm wavelength) are known to be closely related to various manifestations of solar activity. The flux values, which vary slowly with time, have long been used as indicators of solar activity. Also, the number of radio bursts shows a variation with the phase of the solar cycle. The close relationships between the 2800 MHz bursts, the associated flares and geophysical phenomena such as shortwave fadeouts have been studied extensively and were established as early as the 1960s. Therefore, a constant monitoring of the Sun at this frequency would enable us to forecast the terrestrial disturbances following the solar activity. Moreover, a detailed study based on past data would help understand solar activity phenomena as well as the origin of these burst events. In the present analysis, we are revisiting some of these points by carrying out an analysis of 40 year data of solar radio bursts with special emphasis on 2800 MHz bursts. A scatter plot of the intensity vs duration shows that the distribution is not completely random but is double--pronged. This result is consistent with earlier works (e.g., Covington, 1959). The two-pronged distribution suggests the existence of two distinct types of burst events: impulsive and gradual rise and fall. The mechanisms that cause the emission of the two types of bursts are also different: the former due to nonthermal processes and the latter due to thermal processes. Our present analysis shows that the intensity--duration plot has a significant variation with the phase of the solar cycle. In addition to this, we present the behaviour of risetime vs duration as well as the frequency distribution of peak flux of these events. The analysis has also been extended to high frequency (> 10 GHz) bursts and the behaviour is contrasted to that of 2800 MHz bursts.

  20. Burst topic discovery and trend tracing based on Storm

    NASA Astrophysics Data System (ADS)

    Huang, Shihang; Liu, Ying; Dang, Depeng

    2014-12-01

    With the rapid development of the Internet and the promotion of mobile Internet, microblogs have become a major source and route of transmission for public opinion, including burst topics that are caused by emergencies. To facilitate real time mining of a large range of burst topics, in this paper, we proposed a method to discover burst topics in real time and trace their trends based on the variation trends of word frequencies. First, for the variation trend of the words in microblogs, we adopt a non-homogeneous Poisson process model to fit the data. To represent the heat and trend of the words, we introduce heat degree factor and trend degree factor and realise the real time discovery and trend tracing of the burst topics based on these two factors. Second, to improve the computing performance, this paper was based on the Storm stream computing framework for real time computing. Finally, the experimental results indicate that by adjusting the observation window size and trend degree threshold, topics with different cycles and different burst strengths can be discovered.

  1. Imprints of coronal temperature disturbances on type III bursts

    NASA Astrophysics Data System (ADS)

    Li, B.; Cairns, I. H.; Robinson, P. A.

    2010-02-01

    The electron temperature T_e and ion temperature T_i in the corona vary with time and location, due to transient and persistent activity on the Sun. The effects of spatially localized disturbances in T_e and T_i on coronal type III radio bursts are simulated. The disturbances are superimposed on monotonically varying temperature backgrounds and arise from spatially confined solar activity, Qualitatively and quantitatively different imprints are found on the curve of the maximum flux versus frequency of type III bursts, because of the disturbances in T_e and T_i. The results indicate that nonthermal coronal type III bursts offer a new tool to probe and distinguish between spatially localized structures of T_e and T_i along the paths of type III beams. Furthermore, localized temperature disturbances may be responsible for some fine structures in type III bursts, e.g., striae in type IIIb bursts in the presence of multiple, localized temperature disturbances.

  2. Ganges River Delta

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Ganges River forms an extensive delta where it empties into the Bay of Bengal. The delta is largely covered with a swamp forest known as the Sunderbans, which is home to the Royal Bengal Tiger. It is also home to most of Bangladesh, one of the world's most densely populated countries. Roughly 120 million people live on the Ganges Delta under threat of repeated catastrophic floods due to heavy runoff of meltwater from the Himalayas, and due to the intense rainfall during the monsoon season. This image was acquired by Landsat 7's Enhanced Thematic Mapper plus (ETM+) sensor on February 28, 2000. This is a false-color composite image made using green, infrared, and blue wavelengths. Image provided by the USGS EROS Data Center Satellite Systems Branch

  3. Broadband Spectral Study of Magnetar Bursts

    NASA Astrophysics Data System (ADS)

    Kirmizibayrak, Demet; Gogus, Ersin; Sasmaz Mus, Sinem; Kaneko, Yuki

    2016-07-01

    Magnetar bursts occur sporadically on random occasions, and every burst-active episode carries unique information about the bursting magnetar. Therefore, in-depth spectral and temporal analyses of each of the magnetar bursts provide new insights into the bursting and radiation mechanisms. There have been a number of studies over the last decade, investigating the spectral and temporal properties of magnetar bursts. The spectra of typical magnetar bursts were generally described with the Comptonized model or the sum of two blackbody functions. However, it was recently shown that the actual spectral nature of these bursts can be conclusively determined if the spectral analysis is performed on a wide energy coverage. We present the results of in-depth systematic broadband (2 - 250 keV) spectral analysis of a large number of bursts originated from three magnetars: SGR 1806-20, SGR 1900+14, and SGR J1550-5418, observed with the Rossi X-ray Timing Explorer.

  4. Release from informational masking in children: Effect of multiple signal bursts

    PubMed Central

    Leibold, Lori J.; Bonino, Angela Yarnell

    2009-01-01

    This study examined the degree to which increasing the number of signal presentations provides children with a release from informational masking. Listeners were younger children (5–7 years), older children (8–10 years), and adults. Detection thresholds were measured for a sequence of repeating 50-ms bursts of a 1000-Hz pure-tone signal embedded in a sequence of 10- and 50-ms bursts of a random-frequency, two-tone masker. Masker bursts were played at an overall level of 60-dB sound pressure level in each interval of a two-interval, forced choice adaptive procedure. Performance was examined for conditions with two, four, five, and six signal bursts. Regardless of the number of signal bursts, thresholds for most children were higher than thresholds for most adults. Despite developmental effects in informational masking, however, masked threshold decreased with additional signal bursts by a similar amount for younger children, older children, and adults. The magnitude of masking release for both groups of children and for adults was inconsistent with absolute energy detection. Instead, increasing the number of signal bursts appears to aid children in the perceptual segregation of the fixed-frequency signal from the random-frequency masker as has been previously reported for adults [Kidd, G., et al. (2003). J. Acoust. Soc. Am. 114, 2835–2845]. PMID:19354396

  5. DECIMETRIC TYPE III BURSTS: GENERATION AND PROPAGATION

    SciTech Connect

    Li, B.; Cairns, Iver H.; Robinson, P. A.; Yan, Y. H.

    2011-09-01

    Simulations are presented for decimetric type III radio bursts at 2f{sub p} , where f{sub p} is the local electron plasma frequency. The simulations show that 2f{sub p} radiation can be observed at Earth in two scenarios for the radiation's generation and propagation. In Scenario A, radiation is produced and propagates in warm plasmas in the lower corona that are caused by previous magnetic reconnection outflows and/or chromospheric evaporation. In Scenario B radiation is generated in normal plasmas, then due to its natural directivity pattern and refraction, radiation partly propagates into nearby regions, which are hot because of previous reconnection/evaporation. The profiles of plasma density n{sub e} (r) and electron temperature T{sub e} (r) in the lower corona (r - R{sub sun} {approx}< 100 Mm) are found to be crucial to whether radiation can be produced and escape at observable levels against the effects of free-free absorption, where r is the heliocentric distance. Significantly, the observed wide ranges of radiation properties (e.g., drift rates) require n{sub e} (r) with a large range of scale heights h{sub s} , consistent nonetheless for Scenario B with short observed EUV loops. This is relevant to problems with large h{sub s} inferred from tall EUV loops. The simulations suggest: (1) n{sub e} (r) with small h{sub s} , such as n{sub e} (r){proportional_to}(r - R{sub sun}){sup -2.38} for flaring regions, are unexpectedly common deep in the corona. This result is consistent with recent work on n{sub e} (r) for r {approx} (1.05-2)R{sub sun} extracted from observed metric type IIIs. (2) The dominance of reverse-slope bursts over normal bursts sometimes observed may originate from asymmetric reconnection/acceleration, which favors downgoing beams.

  6. Delta rhythm in wakefulness: evidence from intracranial recordings in human beings.

    PubMed

    Sachdev, Robert N S; Gaspard, Nicolas; Gerrard, Jason L; Hirsch, Lawrence J; Spencer, Dennis D; Zaveri, Hitten P

    2015-08-01

    A widely accepted view is that wakefulness is a state in which the entire cortical mantle is persistently activated, and therefore desynchronized. Consequently, the EEG is dominated by low-amplitude, high-frequency fluctuations. This view is currently under revision because the 1-4 Hz delta rhythm is often evident during "quiet" wakefulness in rodents and nonhuman primates. Here we used intracranial EEG recordings to assess the occurrence of delta rhythm in 18 awake human beings. Our recordings reveal rhythmic delta during wakefulness at 10% of all recording sites. Delta rhythm could be observed in a single cortical lobe or in multiple lobes. Sites with high delta could flip between high and low delta power or could be in a persistently high delta state. Finally, these sites were rarely identified as the sites of seizure onset. Thus rhythmic delta can dominate the background operation and activity of some neocortical circuits in awake human beings.

  7. Delta II Mars Pathfinder

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Final preparations for lift off of the DELTA II Mars Pathfinder Rocket are shown. Activities include loading the liquid oxygen, completing the construction of the Rover, and placing the Rover into the Lander. After the countdown, important visual events include the launch of the Delta Rocket, burnout and separation of the three Solid Rocket Boosters, and the main engine cutoff. The cutoff of the main engine marks the beginning of the second stage engine. After the completion of the second stage, the third stage engine ignites and then cuts off. Once the third stage engine cuts off spacecraft separation occurs.

  8. Interplanetary density models as inferred from solar Type III bursts

    NASA Astrophysics Data System (ADS)

    Oppeneiger, Lucas; Boudjada, Mohammed Y.; Lammer, Helmut; Lichtenegger, Herbert

    2016-04-01

    We report on the density models derived from spectral features of solar Type III bursts. They are generated by beams of electrons travelling outward from the Sun along open magnetic field lines. Electrons generate Langmuir waves at the plasma frequency along their ray paths through the corona and the interplanetary medium. A large frequency band is covered by the Type III bursts from several MHz down to few kHz. In this analysis, we consider the previous empirical density models proposed to describe the electron density in the interplanetary medium. We show that those models are mainly based on the analysis of Type III bursts generated in the interplanetary medium and observed by satellites (e.g. RAE, HELIOS, VOYAGER, ULYSSES,WIND). Those models are confronted to stereoscopic observations of Type III bursts recorded by WIND, ULYSSES and CASSINI spacecraft. We discuss the spatial evolution of the electron beam along the interplanetary medium where the trajectory is an Archimedean spiral. We show that the electron beams and the source locations are depending on the choose of the empirical density models.

  9. Instruments, methods, statistics, plasmaphysical interpretation of type IIIb bursts

    NASA Astrophysics Data System (ADS)

    Urbarz, H. W.

    Type-IIIb solar bursts in the m-dkm band and the methods used to study them are characterized in a review of recent research. The value of high-resolution spectrographs (with effective apertures of 1000-100,000 sq m, frequency resolution 20 kHz, and time resolution 100 msec) in detecting and investigating type-IIIb bursts is emphasized, and the parameters of the most important instruments are listed in a table. Burst spectra, sources, polarization, flux, occurrence, and association with other types are discussed and illustrated with sample spectra, tables, and histograms. The statistics of observations made at Weissenau Observatory (Tuebingen, FRG) from August, 1978, through December, 1979, are considered in detail. Theories proposed to explain type-III and type-IIIb bursts are summarized, including frequency splitting (FS) of the Langmuir spectrum, FS during the transverse-wave conversion process, FS during propagation-effect transverse-wave escape, and discrete source regions with different f(p) values.

  10. Solar Radio Bursts and Their Effects on Wireless Systems

    NASA Astrophysics Data System (ADS)

    Gary, D. E.; Lanzerotti, L. J.; Nita, G. M.; Thomson, D. J.

    2002-05-01

    We review the state of current understanding of the potential for interference and interruption of service of wireless communications systems due to solar radio bursts. There have been several reported instances of an enhanced rate of dropped cell-phone calls during solar bursts, and the design of current base station systems make them vulnerable to problems near sunrise and sunset for antennas facing in the direction of the Sun during outbursts. It is likely that many cases of interference have gone unreported and perhaps unrecognized. We determine the level of radio noise that can cause potential problems, and then discuss how often bursts of the required magnitude might happen. We find that bursts that can cause potential problems occur on average once every 3.5 days at solar maximum, but also occur at a reduced rate of 18.5 days between events at solar minimum. We investigate the rate of occurrence as a function of frequency, which is relevant for future wireless systems that will operate at higher frequencies than the present systems. This work is supported by NSF grant ATM-0077273 to New Jersey Institute of Technology.

  11. Burst Mode Receiver for 112 Gb/s DP-QPSK with parallel DSP.

    PubMed

    Thomsen, Benn C; Maher, Robert; Millar, David S; Savory, Seb J

    2011-12-12

    A burst mode 112 Gb/s DP-QPSK digital coherent optical receiver with parallel DSP suitable for implementation in a CMOS ASIC with a 218.75 MHz clock speed is presented. The receiver performance is validated in a five channel 50 GHz grid WDM burst switching experiment using a commercially available wavelength tunable laser as the local oscillator. A new equalizer initialization scheme that overcomes the degenerate convergence problem and ensures rapid convergence is introduced. We show that the performance of the tunable local oscillator is commensurate with burst mode coherent reception when differential decoding in employed and that required parallel DSP implementation does not seriously impair the polarization and frequency tracking performance of a digital coherent receiver under burst mode operation. We report a burst acquisition time of less than 200 ns.

  12. A SCENARIO FOR THE FINE STRUCTURES OF SOLAR TYPE IIIb RADIO BURSTS BASED ON ELECTRON CYCLOTRON MASER EMISSION

    SciTech Connect

    Wang, C. B.

    2015-06-10

    A scenario based on electron cyclotron maser (ECM) emission is proposed for the fine structures of solar radio emission. It is suggested that under certain conditions modulation of the ratio between the plasma frequency and electron gyro frequency by ultra-low-frequency waves, which is a key parameter for excitation of ECM instability, may lead to the intermittent emission of radio waves. As an example, the explanation for the observed fine-structure components in the solar Type IIIb bursts is discussed in detail. Three primary issues of Type IIIb bursts are addressed: (1) the physical mechanism that results in intermittent emission elements that form a chain in the dynamic spectrum of Type IIIb bursts, (2) the cause of split pairs (or double stria) and triple stria, and (3) why only IIIb–III bursts are observed in the events of fundamental harmonic pair emission whereas IIIb–IIIb or III–IIIb bursts are very rarely observed.

  13. A Scenario for the Fine Structures of Solar Type IIIb Radio Bursts Based on Electron Cyclotron Maser Emission

    NASA Astrophysics Data System (ADS)

    Wang, C. B.

    2015-06-01

    A scenario based on electron cyclotron maser (ECM) emission is proposed for the fine structures of solar radio emission. It is suggested that under certain conditions modulation of the ratio between the plasma frequency and electron gyro frequency by ultra-low-frequency waves, which is a key parameter for excitation of ECM instability, may lead to the intermittent emission of radio waves. As an example, the explanation for the observed fine-structure components in the solar Type IIIb bursts is discussed in detail. Three primary issues of Type IIIb bursts are addressed: (1) the physical mechanism that results in intermittent emission elements that form a chain in the dynamic spectrum of Type IIIb bursts, (2) the cause of split pairs (or double stria) and triple stria, and (3) why only IIIb-III bursts are observed in the events of fundamental harmonic pair emission whereas IIIb-IIIb or III-IIIb bursts are very rarely observed.

  14. Bursts in discontinuous Aeolian saltation

    PubMed Central

    Carneiro, M. V.; Rasmussen, K. R.; Herrmann, H. J.

    2015-01-01

    Close to the onset of Aeolian particle transport through saltation we find in wind tunnel experiments a regime of discontinuous flux characterized by bursts of activity. Scaling laws are observed in the time delay between each burst and in the measurements of the wind fluctuations at the fluid threshold Shields number θc. The time delay between each burst decreases on average with the increase of the Shields number until sand flux becomes continuous. A numerical model for saltation including the wind-entrainment from the turbulent fluctuations can reproduce these observations and gives insight about their origin. We present here also for the first time measurements showing that with feeding it becomes possible to sustain discontinuous flux even below the fluid threshold. PMID:26073305

  15. Chimera states in bursting neurons.

    PubMed

    Bera, Bidesh K; Ghosh, Dibakar; Lakshmanan, M

    2016-01-01

    We study the existence of chimera states in pulse-coupled networks of bursting Hindmarsh-Rose neurons with nonlocal, global, and local (nearest neighbor) couplings. Through a linear stability analysis, we discuss the behavior of the stability function in the incoherent (i.e., disorder), coherent, chimera, and multichimera states. Surprisingly, we find that chimera and multichimera states occur even using local nearest neighbor interaction in a network of identical bursting neurons alone. This is in contrast with the existence of chimera states in populations of nonlocally or globally coupled oscillators. A chemical synaptic coupling function is used which plays a key role in the emergence of chimera states in bursting neurons. The existence of chimera, multichimera, coherent, and disordered states is confirmed by means of the recently introduced statistical measures and mean phase velocity.

  16. Chimera states in bursting neurons

    NASA Astrophysics Data System (ADS)

    Bera, Bidesh K.; Ghosh, Dibakar; Lakshmanan, M.

    2016-01-01

    We study the existence of chimera states in pulse-coupled networks of bursting Hindmarsh-Rose neurons with nonlocal, global, and local (nearest neighbor) couplings. Through a linear stability analysis, we discuss the behavior of the stability function in the incoherent (i.e., disorder), coherent, chimera, and multichimera states. Surprisingly, we find that chimera and multichimera states occur even using local nearest neighbor interaction in a network of identical bursting neurons alone. This is in contrast with the existence of chimera states in populations of nonlocally or globally coupled oscillators. A chemical synaptic coupling function is used which plays a key role in the emergence of chimera states in bursting neurons. The existence of chimera, multichimera, coherent, and disordered states is confirmed by means of the recently introduced statistical measures and mean phase velocity.

  17. Detection of artifacts from high energy bursts in neonatal EEG.

    PubMed

    Bhattacharyya, Sourya; Biswas, Arunava; Mukherjee, Jayanta; Majumdar, Arun Kumar; Majumdar, Bandana; Mukherjee, Suchandra; Singh, Arun Kumar

    2013-11-01

    Detection of non-cerebral activities or artifacts, intermixed within the background EEG, is essential to discard them from subsequent pattern analysis. The problem is much harder in neonatal EEG, where the background EEG contains spikes, waves, and rapid fluctuations in amplitude and frequency. Existing artifact detection methods are mostly limited to detect only a subset of artifacts such as ocular, muscle or power line artifacts. Few methods integrate different modules, each for detection of one specific category of artifact. Furthermore, most of the reference approaches are implemented and tested on adult EEG recordings. Direct application of those methods on neonatal EEG causes performance deterioration, due to greater pattern variation and inherent complexity. A method for detection of a wide range of artifact categories in neonatal EEG is thus required. At the same time, the method should be specific enough to preserve the background EEG information. The current study describes a feature based classification approach to detect both repetitive (generated from ECG, EMG, pulse, respiration, etc.) and transient (generated from eye blinking, eye movement, patient movement, etc.) artifacts. It focuses on artifact detection within high energy burst patterns, instead of detecting artifacts within the complete background EEG with wide pattern variation. The objective is to find true burst patterns, which can later be used to identify the Burst-Suppression (BS) pattern, which is commonly observed during newborn seizure. Such selective artifact detection is proven to be more sensitive to artifacts and specific to bursts, compared to the existing artifact detection approaches applied on the complete background EEG. Several time domain, frequency domain, statistical features, and features generated by wavelet decomposition are analyzed to model the proposed bi-classification between burst and artifact segments. A feature selection method is also applied to select the

  18. DELTA PHASE PLUTONIUM ALLOYS

    DOEpatents

    Cramer, E.M.; Ellinger, F.H.; Land. C.C.

    1960-03-22

    Delta-phase plutonium alloys were developed suitable for use as reactor fuels. The alloys consist of from 1 to 4 at.% zinc and the balance plutonium. The alloys have good neutronic, corrosion, and fabrication characteristics snd possess good dimensional characteristics throughout an operating temperature range from 300 to 490 deg C.

  19. High Redshift Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2012-01-01

    The Swift Observatory has been detecting 100 gamma-ray bursts per year for 7 years and has greatly stimulated the field with new findings. Observations are made of the X-ray and optical afterglow from 1 minute after the burst, continuing for days. GRBs are providing a new tool to study the high redshift universe. Swift has detected several events at z>5 and one at z=9.4 giving information on metallicity, star formation rate and reionization. The talk will present the latest results.

  20. The Devil's in the Delta

    ERIC Educational Resources Information Center

    Luyben, William L.

    2007-01-01

    Students frequently confuse and incorrectly apply the several "deltas" that are used in chemical engineering. The deltas come in three different flavors: "out minus in", "big minus little" and "now versus then." The first applies to a change in a stream property as the stream flows through a process. For example, the "[delta]H" in an energy…

  1. Delta-ALA urine test

    MedlinePlus

    Delta-aminolevulinic acid ... This test looks for an increased level of delta-ALA. It may be used to help diagnose ... An increased level of urinary delta-ALA may indicate: Lead poisoning ... level may occur with chronic (long-term) liver disease .

  2. Burst firing in gonadotrophin-releasing hormone neurones does not require ionotrophic GABA or glutamate receptor activation.

    PubMed

    Lee, K; Liu, X; Herbison, A E

    2012-12-01

    Burst firing is a feature of many neuroendocrine cell types, including the hypothalamic gonadotrophin-releasing hormone (GnRH) neurones that control fertility. The role of intrinsic and extrinsic influences in generating GnRH neurone burst firing is presently unclear. In the present study, we investigated the role of fast amino acid transmission in burst firing by examining the effects of receptor antagonists on bursting displayed by green fluorescent protein GnRH neurones in sagittal brain slices prepared from adult male mice. Blockade of AMPA and NMDA glutamate receptors with a cocktail of CNQX and AP5 was found to have no effects on burst firing in GnRH neurones. The frequency of bursts, dynamics of individual bursts, or percentage of firing clustered in bursts was not altered. Similarly, GABA(A) receptor antagonists bicuculline and picrotoxin had no effects upon burst firing in GnRH neurones. To examine the importance of both glutamate and GABA ionotrophic signalling, a cocktail including picrotoxin, CNQX and AP5 was used but, again, this was found to have no effects on GnRH neurone burst firing. To further question the impact of endogenous amino acid release on burst firing, electrical activation of anteroventral periventricular nuclei GABA/glutamate inputs to GnRH neurones was undertaken and found to have no impact on burst firing. Taken together, these observations indicate that bursting in GnRH neurones is not dependent upon acute ionotrophic GABA and glutamate signalling and suggest that extrinsic inputs to GnRH neurones acting through AMPA, NMDA and GABA(A) receptors are unlikely to be required for burst initiation in these cells.

  3. Cosmology: Home of a fast radio burst

    NASA Astrophysics Data System (ADS)

    Lorimer, Duncan

    2016-02-01

    Our understanding of fast radio bursts -- intense pulses of radio waves -- and their use as cosmic probes promises to be transformed now that one burst has been associated with a galaxy of known distance from Earth. See Letter p.453

  4. Electron cyclotron maser emission in coronal arches and solar radio type V bursts

    SciTech Connect

    Tang, J. F.; Wu, D. J.; Tan, C. M.

    2013-12-10

    Solar radio type V bursts were classified as a special spectral class based on their moderately long duration, wide bandwidth, and sense of polarization opposite of associated type III bursts. However, type V bursts are also closely related to the preceding type III bursts. They have an approximately equal source height and the same dispersion of position with frequency. Electron cyclotron maser (ECM) instability driven by beam electrons has been used to explain type III bursts in recent years. We propose ECM emission as the physical process of type V solar radio bursts. According to the observed properties of type V and III bursts, we propose that energetic electrons in excited type V continuum are trapped in coronal loops, which are adjacent to the open field lines traced by type III electrons. With the proposed magnetic field configuration and the ECM emission mechanism, the observed properties of type V bursts, such as long duration, wide bandwidth, and opposite sense of polarization can be reasonably explained by our model.

  5. Optimal Intrinsic Dynamics for Bursting in a Three-Cell Network

    NASA Astrophysics Data System (ADS)

    Dunmyre, Justin R.; Rubin, Jonathan E.

    2010-01-01

    Previous numerical and analytical work has shown that synaptic coupling can allow a network of model neurons to synchronize despite heterogeneity in intrinsic parameter values. In particular, synchronous bursting oscillations can arise in a network with excitatory synaptic coupling, even in the absence of intrinsically bursting neurons. In this work, we explore how the intrinsic dynamics of neurons within a reduced three-cell network influence its ability to exhibit synchronous bursting and the frequency range over which such activity can occur. We establish necessary and sufficient conditions for the existence of synchronous bursting solutions and perform related numerical experiments in three-cell networks that include a quiescent cell, a tonically active cell, and a third added cell. Our results show that, in most cases, the addition of a quiescent cell is optimal for synchronous network bursting, in a variety of ways, and that intrinsically bursting cells can be detrimental to synchronous bursting, and we explain the mechanisms underlying these effects. These findings may help explain how robust synchronous oscillations arise in neuronal central pattern generators, such as the mammalian inspiratory network, despite the presence of significant cellular heterogeneity. They also support the idea that intrinsic burst capabilities of individual cells need not be central to these networks' rhythms.

  6. Automatic Recognition of Type III Solar Radio Bursts in STEREO/WAVES Data

    NASA Astrophysics Data System (ADS)

    Lobzin, V. V.; Cairns, I. H.; Zaslavsky, A.

    2014-12-01

    Type III radio bursts are produced near the local electron plasma frequency and/or near its harmonic by fast electrons ejected from the solar active regions and moving through the corona and solar wind. These bursts have dynamic spectra with frequency rapidly falling with time. This paper presents two new methods developed to detect type III bursts automatically in the data from High Frequency Receiver (HFR) of the STEREO/WAVES radio instrument onboard the STEREO spacecraft. The first technique is applicable to the low-frequency band (HFR-1: 125 kHz to 1.975 MHz) only. This technique can possibly be implemented in onboard satellite software aimed at preliminary detection of bursts and identification of time intervals with relatively high solar activity. In the second technique the bursts are detected in both the low-frequency band and the high-frequency band (HFR-2: 2.025 MHz to 16.025 MHz), with the computational burden being higher by 1 order of magnitude as compared with that for the first technique. Preliminary tests of the method show that for the first technique the pobability to detect is quite high, Pd L = 72% ± 3%. The performance of the second technique is considerably higher, Pd L+H = 81%±1%, while the number of false alarms does not exceed 10% for one daily spectrum.

  7. DELTAS: A new Global Delta Sustainability Initiative (Invited)

    NASA Astrophysics Data System (ADS)

    Foufoula-Georgiou, E.

    2013-12-01

    Deltas are economic and environmental hotspots, food baskets for many nations, home to a large part of the world population, and hosts of exceptional biodiversity and rich ecosystems. Deltas, being at the land-water interface, are international, regional, and local transport hubs, thus providing the basis for intense economic activities. Yet, deltas are deteriorating at an alarming rate as 'victims' of human actions (e.g. water and sediment reduction due to upstream basin development), climatic impacts (e.g. sea level rise and flooding from rivers and intense tropical storms), and local exploration (e.g. sand or aggregates, groundwater and hydrocarbon extraction). Although many efforts exist on individual deltas around the world, a comprehensive global delta sustainability initiative that promotes awareness, science integration, data and knowledge sharing, and development of decision support tools for an effective dialogue between scientists, managers and policy makers is lacking. Recently, the international scientific community proposed to establish the International Year of Deltas (IYD) to serve as the beginning of such a Global Delta Sustainability Initiative. The IYD was proposed as a year to: (1) increase awareness and attention to the value and vulnerability of deltas worldwide; (2) promote and enhance international and regional cooperation at the scientific, policy, and stakeholder level; and (3) serve as a launching pad for a 10-year committed effort to understand deltas as complex socio-ecological systems and ensure preparedness in protecting and restoring them in a rapidly changing environment. In this talk, the vision for such an international coordinated effort on delta sustainability will be presented as developed by a large number of international experts and recently funded through the Belmont Forum International Opportunities Fund. Participating countries include: U.S., France, Germany, U.K., India, Japan, Netherlands, Norway, Brazil, Bangladesh

  8. Properties of Langmuir wave bursts associated with magnetic holes

    NASA Technical Reports Server (NTRS)

    MacDowall, R. J.; Lin, N.; Kellogg, P. J.; Phillips, J. L.; Neugebauer, M.; Balogh, A.; Forsyth, R. J.

    1995-01-01

    The radio and plasma wave receivers on the Ulysses spacecraft have detected thousands of short-duration bursts of waves at approximately the electron plasma frequency. These wave events believed to be Langmuir waves are usually less than approximately 5 minutes in duration. They occur in or at the boundaries of depletions in the magnetic field amplitude known as magnetic holes. Using the 16 sec time resolution provided by the plasma frequency receiver, it is possible to examine the density structure inside of magnetic holes. Even higher time resolutions are sometimes available from the radio receiver data. The Ulysses observations show that these wave bursts occur more frequently at high heliographic latitudes; the occurrence rates depend on both latitude and distance from the Sun. We review the statistics for the wave events, compare them to magnetic and plasma parameters, and review the reasons for the more frequent occurrence at high heliographic latitudes.

  9. Mixed-mode oscillations and population bursting in the pre-Bötzinger complex

    PubMed Central

    Bacak, Bartholomew J; Kim, Taegyo; Smith, Jeffrey C; Rubin, Jonathan E; Rybak, Ilya A

    2016-01-01

    This study focuses on computational and theoretical investigations of neuronal activity arising in the pre-Bötzinger complex (pre-BötC), a medullary region generating the inspiratory phase of breathing in mammals. A progressive increase of neuronal excitability in medullary slices containing the pre-BötC produces mixed-mode oscillations (MMOs) characterized by large amplitude population bursts alternating with a series of small amplitude bursts. Using two different computational models, we demonstrate that MMOs emerge within a heterogeneous excitatory neural network because of progressive neuronal recruitment and synchronization. The MMO pattern depends on the distributed neuronal excitability, the density and weights of network interconnections, and the cellular properties underlying endogenous bursting. Critically, the latter should provide a reduction of spiking frequency within neuronal bursts with increasing burst frequency and a dependence of the after-burst recovery period on burst amplitude. Our study highlights a novel mechanism by which heterogeneity naturally leads to complex dynamics in rhythmic neuronal populations. DOI: http://dx.doi.org/10.7554/eLife.13403.001 PMID:26974345

  10. Mixed-mode oscillations and population bursting in the pre-Bötzinger complex.

    PubMed

    Bacak, Bartholomew J; Kim, Taegyo; Smith, Jeffrey C; Rubin, Jonathan E; Rybak, Ilya A

    2016-01-01

    This study focuses on computational and theoretical investigations of neuronal activity arising in the pre-Bötzinger complex (pre-BötC), a medullary region generating the inspiratory phase of breathing in mammals. A progressive increase of neuronal excitability in medullary slices containing the pre-BötC produces mixed-mode oscillations (MMOs) characterized by large amplitude population bursts alternating with a series of small amplitude bursts. Using two different computational models, we demonstrate that MMOs emerge within a heterogeneous excitatory neural network because of progressive neuronal recruitment and synchronization. The MMO pattern depends on the distributed neuronal excitability, the density and weights of network interconnections, and the cellular properties underlying endogenous bursting. Critically, the latter should provide a reduction of spiking frequency within neuronal bursts with increasing burst frequency and a dependence of the after-burst recovery period on burst amplitude. Our study highlights a novel mechanism by which heterogeneity naturally leads to complex dynamics in rhythmic neuronal populations. PMID:26974345

  11. Kilometer-wave type III burst - Harmonic emission revealed by direction and time of arrival

    NASA Technical Reports Server (NTRS)

    Alvarez, H.; Haddock, F. T.; Potter, W. H.

    1974-01-01

    A type III solar burst was observed at seven frequencies between 3.5 MHz and 80 kHz by the Michigan experiment aboard the IMP-6 satellite. From the data burst direction of arrival as well as time of arrival can be determined. These quantities are predicted, using simple models whose parameters are varied to obtain a good fit to the observations. It is found that between 3.5 MHz and 230 kHz the observed radiation was emitted at the fundamental of the local plasma frequency, while below 230 kHz it was emitted at the second harmonic. The exciter particles that produced the burst onset and burst peak have velocities of 0.27 and 0.12, respectively, in units of the velocity of light.

  12. The stimulation of auroral kilometric radiation by type III solar radio bursts

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1981-01-01

    It has been found that the onset of auroral kilometric radiation (AKR) frequently coincides with the arrival of type III solar radio bursts. Although the AKR onsets are usually abrupt and appear to be spontaneous, they sometimes develop from a discrete frequency near the leading edge of a type III burst or sometimes occur at progressively lower frequencies following that edge. From this, and the absence of the related solar electrons in specific cases, it was concluded that the incoming type III waves were sometimes responsible for stimulating auroral kilometric radiation. It was estimated that intense, isolated type III bursts were capable of stimulating AKR roughly one third of the time, and that at least ten percent of the observed AKR onsets could be attributed to these and weaker bursts, including some barely detectable by the ISEE plasma wave receivers.

  13. Stimulation of auroral kilometric radiation by type III solar radio bursts

    SciTech Connect

    Calvert, W.

    1981-10-01

    It has been found that the onset of auroral kilometric radiation (AKR) frequently coincides with the arrival of type III solar radio bursts. Although the AKR onsets are usually abrupt and appear to be spontaneous, they sometimes develop from a discrete frequency near the leading edge of a type III burst or sometimes occur at progressively lower frequencies following that edge. From this, and the absence of the related solar electrons in specific cases, it was concluded that the incoming type III waves were sometimes responsible for stimulating auroral kilometric radiation. It was estimated that intense, isolated type III bursts were capable of stimulating AKR roughly one third of the time, and that at least ten percent of the observed AKR onsets could be attributed to these and weaker bursts, including some barely detectable by the ISEE plasma wave receivers.

  14. Bursting noise in gene expression dynamics: linking microscopic and mesoscopic models

    PubMed Central

    2016-01-01

    The dynamics of short-lived mRNA results in bursts of protein production in gene regulatory networks. We investigate the propagation of bursting noise between different levels of mathematical modelling and demonstrate that conventional approaches based on diffusion approximations can fail to capture bursting noise. An alternative coarse-grained model, the so-called piecewise deterministic Markov process (PDMP), is seen to outperform the diffusion approximation in biologically relevant parameter regimes. We provide a systematic embedding of the PDMP model into the landscape of existing approaches, and we present analytical methods to calculate its stationary distribution and switching frequencies. PMID:26763330

  15. Development of a Pulse-Burst Laser System for Fast Thomson Scattering on the MST RFP

    NASA Astrophysics Data System (ADS)

    den Hartog, D. J.

    2006-10-01

    A ``pulse-burst'' laser system is being developed for addition to the Thomson scattering diagnostic on the MST RFP. This laser will produce a burst of up to 200 approximately 1 J Q-switched pulses at repetition frequencies 5-250 kHz. The planned laser system will operate at 1064 nm and is based on existing Nd:YAG systems used to study fluid dynamics [Brian Thurow et al., Appl. Opt. 43, 5064 (2004)]. The burst train of laser pulses will enable the study of Te and ne dynamics in a single MST shot, and with ensembling, will enable correlation of Te and ne fluctuations with other fluctuating quantities.

  16. Hotspot or Heatwave? Getting to Grips with Neutron Star Burst Oscillations

    NASA Technical Reports Server (NTRS)

    Watts, A.

    2005-01-01

    Many accreting neutron stars, including two of the millisecond pulsars, exhibit high frequency oscillations during Type I X-ray bursts. The properties of the burst oscillations reflect the nature of the thermal asymmetry on the stellar surface. The mechanism that gives rise to the aspzetry, however , remains unclear: possibilities include a hotspot due to uneven fuel distribution, modes of oscillation in the surface layers of the neutron star, or vortices driven by the Coriolis force. I will review some of the latest theory and observations, and present the results of a recent study of variability in the burst oscillations of the millisecond pulsar 51814-338.

  17. Terrestrial Myriametric Radio Burst Observed by IMAGE and Geotail Satellites

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.; Hashimoto, Kozo; Boardsen, Scott A.; Garcia, Leonard N.; Green, James L.; Matsumoto, Hiroshi; Reinisch, Bodo W.

    2010-01-01

    We report IMAGE and Geotail simultaneous observations of a terrestrial myriametric radio burst (TMRB) detected on August 19, 2001. The TMRB was confined in time (0830-1006 UT) and frequency (12-50 kHz), suggesting a fan beam-like emission pattern from a single discrete source. Analysis and comparisons with existing TMR radiations strongly suggest that the TMRB is a distinct emission perhaps resulting from dayside magnetic reconnection instigated by northward interplanetary field condition.

  18. Understanding pesticides in California's Delta

    USGS Publications Warehouse

    Kuivila, Kathryn M.; Orlando, James L.

    2012-01-01

    The Sacramento-San Joaquin River Delta (Delta) is the hub of California’s water system and also an important habitat for imperiled fish and wildlife. Aquatic organisms are exposed to mixtures of pesticides that flow through the maze of Delta water channels from sources including agricultural, landscape, and urban pest-control applications. While we do not know all of the effects pesticides have on the ecosystem, there is evidence that they cause some damage to organisms in the Delta. Decades of USGS research have provided a good understanding of when, where, and how pesticides enter the Delta. However, pesticide use is continually changing. New field studies and methods are needed so that scientists can analyze which pesticides are present in the Delta, and at what concentrations, enabling them to estimate exposure and ultimate effects on organisms. Continuing research will provide resource managers and stakeholders with crucial information to manage the Delta wisely.

  19. Narrowband Gyrosynchrotron Bursts: Probing Electron Acceleration in Solar Flares

    NASA Astrophysics Data System (ADS)

    Fleishman, Gregory D.; Nita, Gelu M.; Kontar, Eduard P.; Gary, Dale E.

    2016-07-01

    Recently, in a few case studies we demonstrated that gyrosynchrotron microwave emission can be detected directly from the acceleration region when the trapped electron component is insignificant. For the statistical study reported here, we have identified events with steep (narrowband) microwave spectra that do not show a significant trapped component and, at the same time, show evidence of source uniformity, which simplifies the data analysis greatly. Initially, we identified a subset of more than 20 radio bursts with such narrow spectra, having low- and high-frequency spectral indices larger than three in absolute value. A steep low-frequency spectrum implies that the emission is nonthermal (for optically thick thermal emission, the spectral index cannot be steeper than two), and the source is reasonably dense and uniform. A steep high-frequency spectrum implies that no significant electron trapping occurs, otherwise a progressive spectral flattening would be observed. Roughly half of these radio bursts have RHESSI data, which allow for detailed, joint diagnostics of the source parameters and evolution. Based on an analysis of radio-to-X-ray spatial relationships, timing, and spectral fits, we conclude that the microwave emission in these narrowband bursts originates directly from the acceleration regions, which have a relatively strong magnetic field, high density, and low temperature. In contrast, the thermal X-ray emission comes from a distinct loop with a smaller magnetic field, lower density, but higher temperature. Therefore, these flares likely occurred due to interaction between two (or more) magnetic loops.

  20. Delta: Data Reduction for Integrated Application Workflows.

    SciTech Connect

    Lofstead, Gerald Fredrick; Jean-Baptiste, Gregory; Oldfield, Ron A.

    2015-06-01

    Integrated Application Workflows (IAWs) run multiple simulation workflow components con- currently on an HPC resource connecting these components using compute area resources and compensating for any performance or data processing rate mismatches. These IAWs require high frequency and high volume data transfers between compute nodes and staging area nodes during the lifetime of a large parallel computation. The available network band- width between the two areas may not be enough to efficiently support the data movement. As the processing power available to compute resources increases, the requirements for this data transfer will become more difficult to satisfy and perhaps will not be satisfiable at all since network capabilities are not expanding at a comparable rate. Furthermore, energy consumption in HPC environments is expected to grow by an order of magnitude as exas- cale systems become a reality. The energy cost of moving large amounts of data frequently will contribute to this issue. It is necessary to reduce the volume of data without reducing the quality of data when it is being processed and analyzed. Delta resolves the issue by addressing the lifetime data transfer operations. Delta removes subsequent identical copies of already transmitted data during transfers and restores those copies once the data has reached the destination. Delta is able to identify duplicated information and determine the most space efficient way to represent it. Initial tests show about 50% reduction in data movement while maintaining the same data quality and transmission frequency.

  1. Frequency modulation drive for a piezoelectric motor

    DOEpatents

    Mittas, Anthony

    2001-01-01

    A piezoelectric motor has peak performance at a specific frequency f.sub.1 that may vary over a range of frequencies. A drive system is disclosed for operating such a motor at peak performance without feedback. The drive system consists of the motor and an ac source connected to power the motor, the ac source repeatedly generating a frequency over a range from f.sub.1 -.DELTA.x to f.sub.1 +.DELTA.y.

  2. Analysis of bursting responses of oxytocin neurones in the rat in late pregnancy, lactation and after weaning.

    PubMed Central

    Jiang, Q B; Wakerley, J B

    1995-01-01

    1. Electrophysiological recordings were undertaken to compare bursting characteristics of oxytocin (OT) neurones at four reproductive stages: day 20 pregnancy, day 22 of pregnancy (expected day of parturition), day 7-11 of lactation, and day 5-6 after weaning. 2. Each OT neurone was recorded for 1 h of suckling, combined with cervico-vaginal probing at 5 min intervals as an additional stimulus for bursting. Intracerebroventricular (I.C.V.) oxytocin (2.2 ng) was given after 30 min to facilitate bursting responses. Bursts observed during suckling were classified as 'spontaneous' or 'probe-evoked'. 3. The percentage of cells displaying spontaneous and/or probe-evoked bursts during the recording was low in day 20 pregnant animals, high in lactators and intermediate in day 20 pregnant and weaner groups. These differences may relate to variation in the proportion of animals with a responsive milk-ejection reflex, as well as the relative size of the population of bursting OT neurones. 4. In the period before I.C.V. OT, overall burst frequency (including both spontaneous and probe-evoked bursts) was similar across groups. After I.C.V. OT, overall burst frequency was much higher in lactators compared with other groups. Similar results were obtained when spontaneous bursts were analysed separately. 5. Burst amplitude (action potentials per burst, including both spontaneous and probe-evoked bursts) prior to I.C.V. OT was similar between the day 20 pregnant, day 22 pregnant and lactating groups, but was lower in weaners. All groups showed an increase in burst amplitude after I.C.V. OT, but values in weaners remained lower than in other groups. In a separate analysis of spontaneous bursts, burst amplitude after I.C.V. OT was higher in lactators, and lower in weaners, than in pregnant animals. 6. Background firing rates of OT cells were higher in the day 20 and day 22 pregnant groups compared with lactators, and lower in weaners. Only OT cells in lactators showed a significant

  3. Quasi-periodic Oscillations and Broadband Variability in Short Magnetar Bursts

    NASA Astrophysics Data System (ADS)

    Huppenkothen, Daniela; Watts, Anna L.; Uttley, Phil; van der Horst, Alexander J.; van der Klis, Michiel; Kouveliotou, Chryssa; Göǧüş, Ersin; Granot, Jonathan; Vaughan, Simon; Finger, Mark H.

    2013-05-01

    The discovery of quasi-periodic oscillations (QPOs) in magnetar giant flares has opened up prospects for neutron star asteroseismology. However, with only three giant flares ever recorded, and only two with data of sufficient quality to search for QPOs, such analysis is seriously data limited. We set out a procedure for doing QPO searches in the far more numerous, short, less energetic magnetar bursts. The short, transient nature of these bursts requires the implementation of sophisticated statistical techniques to make reliable inferences. Using Bayesian statistics, we model the periodogram as a combination of red noise at low frequencies and white noise at high frequencies, which we show is a conservative approach to the problem. We use empirical models to make inferences about the potential signature of periodic and QPOs at these frequencies. We compare our method with previously used techniques and find that although it is on the whole more conservative, it is also more reliable in ruling out false positives. We illustrate our Bayesian method by applying it to a sample of 27 bursts from the magnetar SGR J0501+4516 observed by the Fermi Gamma-ray Burst Monitor, and we find no evidence for the presence of QPOs in any of the bursts in the unbinned spectra, but do find a candidate detection in the binned spectra of one burst. However, whether this signal is due to a genuine quasi-periodic process, or can be attributed to unmodeled effects in the noise is at this point a matter of interpretation.

  4. Mississippi River Delta

    NASA Technical Reports Server (NTRS)

    2002-01-01

    As the Mississippi River enters the Gulf of Mexico, it loses energy and dumps its load of sediment that it has carried on its journey through the mid continent. This pile of sediment, or mud, accumulates over the years building up the delta front. As one part of the delta becomes clogged with sediment, the delta front will migrate in search of new areas to grow. The area shown on this image is the currently active delta front of the Mississippi. The migratory nature of the delta forms natural traps for oil. Most of the land in the image consists of mud flats and marsh lands. There is little human settlement in this area due to the instability of the sediments. The main shipping channel of the Mississippi River is the broad stripe running northwest to southeast.

    This image was acquired on May 24, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping

  5. The duration distribution of Swift Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Horváth, I.; Tóth, B. G.

    2016-05-01

    Decades ago two classes of gamma-ray bursts were identified and delineated as having durations shorter and longer than about 2 s. Subsequently indications also supported the existence of a third class. Using maximum likelihood estimation we analyze the duration distribution of 888 Swift BAT bursts observed before October 2015. Fitting three log-normal functions to the duration distribution of the bursts provides a better fit than two log-normal distributions, with 99.9999% significance. Similarly to earlier results, we found that a fourth component is not needed. The relative frequencies of the distribution of the groups are 8% for short, 35% for intermediate and 57% for long bursts which correspond to our previous results. We analyse the redshift distribution for the 269 GRBs of the 888 GRBs with known redshift. We find no evidence for the previously suggested difference between the long and intermediate GRBs' redshift distribution. The observed redshift distribution of the 20 short GRBs differs with high significance from the distributions of the other groups.

  6. Time profile of type 3 bursts in decameter and hectometer range

    NASA Technical Reports Server (NTRS)

    Takakura, T.; Naito, Y.; Ohki, K.

    1973-01-01

    The following new hypothesis is proposed. The decay time of plasma waves is much shorter than the time scale of type 3 bursts especially at low frequencies. Accordingly, the time variation of radio flux at a given frequency merely corresponds to the flux of fast electrons passing through the corresponding plasma layer.

  7. Observations of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.

    1995-01-01

    Some basic observed properties of gamma-ray bursts are reviewed. Although some properties were known 25 years ago, new and more detailed observations have been made by the Compton Observatory in the past three years. The new observation with the greatest impact has been the observed isotropic distribution of bursts along with a deficiency of weak bursts which would be expected from a homogeneous burst distribution. This is not compatible with any known Galactic population of objects. Gamma-ray bursts show an enormous variety of burst morphologies and a wide spread in burst durations. The spectra of gamma-ray bursts are characterized by rapid variations and peak power which is almost entirely in the gamma-ray energy range. Delayed gamma-ray burst photons extending to GeV energies have been detected for the first time. A time dilation effect has also been reported to be observed in gamma-ray, bursts. The observation of a gamma-ray burst counterpart in another wavelength region has yet to be made.

  8. Spindle Bursts in Neonatal Rat Cerebral Cortex

    PubMed Central

    Yang, Jenq-Wei; Reyes-Puerta, Vicente; Kilb, Werner; Luhmann, Heiko J.

    2016-01-01

    Spontaneous and sensory evoked spindle bursts represent a functional hallmark of the developing cerebral cortex in vitro and in vivo. They have been observed in various neocortical areas of numerous species, including newborn rodents and preterm human infants. Spindle bursts are generated in complex neocortical-subcortical circuits involving in many cases the participation of motor brain regions. Together with early gamma oscillations, spindle bursts synchronize the activity of a local neuronal network organized in a cortical column. Disturbances in spindle burst activity during corticogenesis may contribute to disorders in cortical architecture and in the activity-dependent control of programmed cell death. In this review we discuss (i) the functional properties of spindle bursts, (ii) the mechanisms underlying their generation, (iii) the synchronous patterns and cortical networks associated with spindle bursts, and (iv) the physiological and pathophysiological role of spindle bursts during early cortical development. PMID:27034844

  9. Spindle Bursts in Neonatal Rat Cerebral Cortex.

    PubMed

    Yang, Jenq-Wei; Reyes-Puerta, Vicente; Kilb, Werner; Luhmann, Heiko J

    2016-01-01

    Spontaneous and sensory evoked spindle bursts represent a functional hallmark of the developing cerebral cortex in vitro and in vivo. They have been observed in various neocortical areas of numerous species, including newborn rodents and preterm human infants. Spindle bursts are generated in complex neocortical-subcortical circuits involving in many cases the participation of motor brain regions. Together with early gamma oscillations, spindle bursts synchronize the activity of a local neuronal network organized in a cortical column. Disturbances in spindle burst activity during corticogenesis may contribute to disorders in cortical architecture and in the activity-dependent control of programmed cell death. In this review we discuss (i) the functional properties of spindle bursts, (ii) the mechanisms underlying their generation, (iii) the synchronous patterns and cortical networks associated with spindle bursts, and (iv) the physiological and pathophysiological role of spindle bursts during early cortical development.

  10. Do gamma-ray burst sources repeat?

    NASA Technical Reports Server (NTRS)

    Meegan, Charles A.; Hartmann, Dieter H.; Brainerd, J. J.; Briggs, Michael S.; Paciesas, William S.; Pendleton, Geoffrey; Kouveliotou, Chryssa; Fishman, Gerald; Blumenthal, George; Brock, Martin

    1995-01-01

    The demonstration of repeated gamma-ray bursts from an individual source would severely constrain burst source models. Recent reports (Quashnock and Lamb, 1993; Wang and Lingenfelter, 1993) of evidence for repetition in the first BATSE burst catalog have generated renewed interest in this issue. Here, we analyze the angular distribution of 585 bursts of the second BATSE catalog (Meegan et al., 1994). We search for evidence of burst recurrence using the nearest and farthest neighbor statistic and the two-point angular correlation function. We find the data to be consistent with the hypothesis that burst sources do not repeat; however, a repeater fraction of up to about 20% of the observed bursts cannot be excluded.

  11. Thermonuclear X-ray bursts from the 401-Hz accreting pulsar IGR J17498-2921: indication of burning in confined regions

    NASA Astrophysics Data System (ADS)

    Chakraborty, Manoneeta; Bhattacharyya, Sudip

    2012-05-01

    We use the 2011 Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) data of the 401-Hz accreting pulsar and burster IGR J17498-2921 to perform timing analysis and time-resolved spectroscopy of 12 thermonuclear X-ray bursts. We confirm previously reported burst oscillations from this source with a much higher significance (8.8σ). We note that the bursts can be divided into three groups: big photospheric radius expansion (PRE) bursts are about 10 times more luminous than medium bursts, while the latter are about 10 times more luminous than small bursts. The PCA field of view of these observations contains several known bursters, and hence some of the observed bursts might not be from IGR J17498-2921. The oscillations during big bursts at the known pulsar frequency show that these bursts were definitely from IGR J17498-2921. We find that at least several of the other bursts were also likely originated from IGR J17498-2921. Spectral analysis reveals that the luminosity differences among various bursts are primarily due to differences in normalizations, and not temperatures, even when we consider the effects of colour factor. This shows burning on a fraction of the stellar surface for those small and medium bursts, which originated from IGR J17498-2921. The low values of the upper limits of burst oscillation amplitude for these bursts suggest a small angle between the spin axis and the magnetic axis. We find indications of the PRE nature of a medium burst, which likely originated from IGR J17498-2921. If true, then, to the best of our knowledge, this is the first time that two PRE bursts with a peak count rate ratio of as high as ≈12 have been detected from the same source.

  12. Natural processes in delta restoration: application to the Mississippi Delta.

    PubMed

    Paola, Chris; Twilley, Robert R; Edmonds, Douglas A; Kim, Wonsuck; Mohrig, David; Parker, Gary; Viparelli, Enrica; Voller, Vaughan R

    2011-01-01

    Restoration of river deltas involves diverting sediment and water from major channels into adjoining drowned areas, where the sediment can build new land and provide a platform for regenerating wetland ecosystems. Except for local engineered structures at the points of diversion, restoration mainly relies on natural delta-building processes. Present understanding of such processes is sufficient to provide a basis for determining the feasibility of restoration projects through quantitative estimates of land-building rates and sustainable wetland area under different scenarios of sediment supply, subsidence, and sea-level rise. We are not yet to the point of being able to predict the evolution of a restored delta in detail. Predictions of delta evolution are based on field studies of active deltas, deltas in mine-tailings ponds, experimental deltas, and countless natural experiments contained in the stratigraphic record. These studies provide input for a variety of mechanistic delta models, ranging from radially averaged formulations to more detailed models that can resolve channels, topography, and ecosystem processes. Especially exciting areas for future research include understanding the mechanisms by which deltaic channel networks self-organize, grow, and distribute sediment and nutrients over the delta surface and coupling these to ecosystem processes, especially the interplay of topography, network geometry, and ecosystem dynamics. PMID:21329199

  13. Predicting rock bursts in mines

    USGS Publications Warehouse

    Spall, H.

    1979-01-01

    The microseismic method relies on observational data, amply demonstrated in laboratory experiments, that acoustic noise occurs in rocks subjected to high differential stresses. Acoustic emission becomes most pronounced as the breaking strength of the rock is reached. Laboratory studies have shown that the acoustic emission is linked with the release of stored strain energy as the rock mass undergoes small-scale adjustments such as the formation of cracks. Studies in actual mines have shown that acoustic noises often precede failure of rock masses in rock bursts or in coal bumps. Seismologists are, therefore, very interested in whether these results can be applied to large-scale failures; that is, earthquakes. An active research program in predicting rock bursts in mines is being conducted by Brian T. Brady and his colleagues at the U.S Bureau of Mines, Denver Colo.  

  14. Pioneer Launch on Delta Vehicle

    NASA Technical Reports Server (NTRS)

    1969-01-01

    NASA launches the last in the series of interplanetary Pioneer spacecraft, Pioneer 10 from Cape Kennedy, Florida. The long-tank Delta launch vehicle placed the spacecraft in a solar orbit along the path of Earth's orbit. The spacecraft then passed inside and outside Earth's orbit, alternately speeding up and slowing down relative to Earth. The Delta launch vehicle family started development in 1959. The Delta was composed of parts from the Thor, an intermediate-range ballistic missile, as its first stage, and the Vanguard as its second. The first Delta was launched from Cape Canaveral on May 13, 1960 and was powerful enough to deliver a 100-pound spacecraft into geostationary transfer orbit. Delta has been used to launch civil, commercial, and military satellites into orbit. For more information about Delta, please see Chapter 3 in Roger Launius and Dennis Jenkins' book To Reach the High Frontier published by The University Press of Kentucky in 2002.

  15. Delta in Eberswalde

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This HiRISE image covers a portion of a delta that partially fills Eberswalde crater in Margaritifer Sinus. The delta was first recognized and mapped using MOC images that revealed various features whose presence required sustained flow and deposition into a lake that once occupied the crater. The HiRISE image resolves meter-scale features that record the migration of channels and delta distributaries as the delta grew over time. Differences in grain-size of sediments within the environments on the delta enable differential erosion of the deposits. As a result, coarser channel deposits are slightly more resistant and stand in relief relative to finer-grained over-bank and more easily eroded distal delta deposits. Close examination of the relict channel deposits confirms the presence of some meter-size blocks that were likely too coarse to have been transported by water flowing within the channels. These blocks may be formed of the sand and gravel that more likely moved along the channels that was lithified and eroded. Numerous meter-scale polygonal structures are common on many surfaces, but mostly those associated with more quiescent depositional environments removed from the channels. The polygons could be the result of deposition of fine-grained sediments that were either exposed and desiccated (dried out), rich in clays that shrunk when the water was removed, turned into rock and then fractured and eroded, or some combination of these processes.

    Image PSP_001336_1560 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on November 8, 2006. The complete image is centered at -23.8 degrees latitude, 326.4 degrees East longitude. The range to the target site was 256.3 km (160.2 miles). At this distance the image scale is 25.6 cm/pixel (with 1 x 1 binning) so objects 77 cm across are resolved. The image shown here has been map-projected to 25 cm/pixel and north is up. The image was

  16. Space Radar Image of Mississippi Delta

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a radar image of the Mississippi River Delta where the river enters into the Gulf of Mexico along the coast of Louisiana. This multi-frequency image demonstrates the capability of the radar to distinguish different types of wetlands surfaces in river deltas. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on October 2, 1995. The image is centered on latitude 29.3 degrees North latitude and 89.28 degrees West longitude. The area shown is approximately 63 kilometers by 43 kilometers (39 miles by 26 miles). North is towards the upper right of the image. As the river enters the Gulf of Mexico, it loses energy and dumps its load of sediment that it has carried on its journey through the mid-continent. This pile of sediment, or mud, accumulates over the years building up the delta front. As one part of the delta becomes clogged with sediment, the delta front will migrate in search of new areas to grow. The area shown on this image is the currently active delta front of the Mississippi. The migratory nature of the delta forms natural traps for oil and the numerous bright spots along the outside of the delta are drilling platforms. Most of the land in the image consists of mud flats and marsh lands. There is little human settlement in this area due to the instability of the sediments. The main shipping channel of the Mississippi River is the broad red stripe running northwest to southeast down the left side of the image. The bright spots within the channel are ships. The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band vertically transmitted, vertically received; green is C-band vertically transmitted, vertically received; blue is X-band vertically transmitted, vertically received. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars

  17. Delta II commercial space transportation

    NASA Astrophysics Data System (ADS)

    Meyers, J. F.

    1988-07-01

    Delta II is an upgraded variant of the Delta family of launch vehicles that has been in use by NASA since 1960. Among the design improvements incorporated by Delta II is a cryogenic-propellant second stage, a 2.89-m diameter satellite-protecting nose fairing, graphite/epoxy solid rocket motor cases, and 12:1 main engine expansion nozzle. The manufacturer/operator offers Delta II customers a dedicated, single satellite launch capability fully tailored to the given spacecraft's unique mission requirements.

  18. Fast radio burst discovered in the Arecibo pulsar ALFA survey

    SciTech Connect

    Spitler, L. G.; Freire, P. C. C.; Lazarus, P.; Lee, K. J.; Cordes, J. M.; Chatterjee, S.; Wharton, R. S.; Brazier, A.; Hessels, J. W. T.; Lorimer, D. R.; McLaughlin, M. A.; Crawford, F.; Deneva, J. S.; Kaspi, V. M.; Karako-Argaman, C.; Allen, B.; Bogdanov, S.; Camilo, F.; Jenet, F. A.; Knispel, B.; and others

    2014-08-01

    Recent work has exploited pulsar survey data to identify temporally isolated, millisecond-duration radio bursts with large dispersion measures (DMs). These bursts have been interpreted as arising from a population of extragalactic sources, in which case they would provide unprecedented opportunities for probing the intergalactic medium; they may also be linked to new source classes. Until now, however, all so-called fast radio bursts (FRBs) have been detected with the Parkes radio telescope and its 13-beam receiver, casting some concern about the astrophysical nature of these signals. Here we present FRB 121102, the first FRB discovery from a geographic location other than Parkes. FRB 121102 was found in the Galactic anti-center region in the 1.4 GHz Pulsar Arecibo L-band Feed Array (ALFA) survey with the Arecibo Observatory with a DM = 557.4 ± 2.0 pc cm{sup –3}, pulse width of 3.0 ± 0.5 ms, and no evidence of interstellar scattering. The observed delay of the signal arrival time with frequency agrees precisely with the expectation of dispersion through an ionized medium. Despite its low Galactic latitude (b = –0.°2), the burst has three times the maximum Galactic DM expected along this particular line of sight, suggesting an extragalactic origin. A peculiar aspect of the signal is an inverted spectrum; we interpret this as a consequence of being detected in a sidelobe of the ALFA receiver. FRB 121102's brightness, duration, and the inferred event rate are all consistent with the properties of the previously detected Parkes bursts.

  19. Radio Bursts as Diagnostics of Relative Abundances in Solar Particles

    NASA Astrophysics Data System (ADS)

    Cane, H. V.; Richardson, I. G.; von Rosenvinge, T. T.

    2008-05-01

    Based solely on the presence of associated low frequency type III radio bursts with specific characteristics, Cane et al. (2002) suggested that large solar energetic particle events are likely to include contributions from particles accelerated in the associated flares. Studies using ACE/SIS observations of O and Fe intensity-time profiles have supported this suggestion. Nevertheless, some researchers have argued that particles cannot be flare accelerated if the relative abundances differ from those in the small particle events that are widely accepted to be composed of flare particles. However, based on the radio data, the flare particles in large events are not released at the time of the flare soft X-ray onset but are delayed, either because they are accelerated later or released later. These changed conditions are expected to alter the relative abundances (electrons to protons, heavy to light ions) compared to those associated with small flares. From a comprehensive analysis of the characteristics of the coronal mass ejections (CMEs), flares and radio bursts (at metric and longer wavelengths) associated with the ~340 proton events at >25 MeV that occurred during solar cycle 23, we confirm earlier results (Cane et al. 1986) that the timing of the type III bursts is a reasonable discriminator for the relative abundances at the start of solar particle events. In contrast, the speeds of the associated CMEs do not discriminate events, nor does the presence of meter wavelength type II bursts. Cane, H. V., R. E. McGuire, and T. T. von Rosenvinge (1986), Two classes of solar energetic particle events associated with impulsive and long-duration soft X-ray flares, Astrophys. J., 301, 448. Cane, H. V., W. C. Erickson, and N. P. Prestage (2002), Solar flares, type III radio bursts, coronal mass ejections, and energetic particles, J. Geophys. Res., 107(A10), 1315, doi:10.1029/2001JA000320.

  20. First Radio Burst Imaging Observation From Mingantu Ultrawide Spectral Radioheliograph

    NASA Astrophysics Data System (ADS)

    Yan, Yihua; Chen, Linjie; Yu, Sijie; CSRH Team

    2015-08-01

    Radio imaging spectroscopy over wide range wavelength in dm/cm-bands will open new windows on solar flares and coronal mass ejections by tracing the radio emissions from accelerated electrons. The Chinese Spectral Radioheliograph (CSRH) with two arrays in 400MHz-2GHz /2-15GHz ranges with 64/532 frequency channels have been established in Mingantu Observing Station, Inner Mongolia of China, since 2013 and is in test observations now. CSRH is renamed as MUSER (Mingantu Ultrawide SpEctral Radioheliograph) after it's accomplishment We will introduce the progress and current status of CSRH. Some preliminary results of CSRH will be presented.On 11 Nov2014, the first burst event was registered by MUSER-I array at 400MHz-2GHz waveband. According to SGD event list there was a C-class flare peaked at 04:49UT in the disk center and the radio bursts around 04:22-04:24UT was attributed to this flare. However, MUSER-I image observation of the burst indicates that the radio burst peaked around 04:22UT was due to the eruption at the east limb of the Sun and connected to a CME appeared in that direction about 1 hour later. This demonstrate the importance of the spectroscopy observation of the solar radio burst.Acknowledgement: The CSRH team includes Wei Wang, Zhijun Chen, Fei Liu, Lihong Geng and Jian Zhang and CSRH project is supported by National Major Scientific Equipment R&D Project ZDYZ2009-3. The research was also supported by NSFC grants (11433006, 11221063), MOST grant (MOST2011CB811401), CAS Pilot-B Project (XDB09000000) and Marie Curie PIRSES- GA-295272-RADIOSUN.

  1. Parametrized post-Einsteinian framework for gravitational wave bursts

    NASA Astrophysics Data System (ADS)

    Loutrel, Nicholas; Yunes, Nicolás; Pretorius, Frans

    2014-11-01

    The population of stellar-mass, compact object binaries that merge with non-negligible eccentricity may be large enough to motivate searches with ground-based gravitational wave detectors. Such events could be exceptional laboratories to test General Relativity in the dynamical, strong-field regime, as a larger fraction of the energy is emitted at high velocities, compared to quasicircular inspirals. A serious obstacle here, however, is the challenge of computing theoretical waveforms for eccentric systems with the requisite accuracy for use in a matched-filter search. The corresponding waveforms are more a sequence of concentrated bursts of energy emitted near periapse than a continuous waveform. Based on this, an alternative approach, stacking excess power over the set of time-frequency tiles coincident with the bursts, was recently suggested as a more practical (though suboptimal) detection strategy. The leading-order "observable" that would be inferred from such a detection would be a sequence of discrete numbers characterizing the position and size of each time-frequency tile. In General Relativity, this (possibly large) sequence of numbers is uniquely determined by the small set of parameters describing the binary at formation. In this paper, following the spirit of the parametrized post-Einsteinian framework developed for quasicircular inspiral, we propose a simple, parametrized deformation of the baseline general relativistic burst algorithm for eccentric inspiral events that would allow for model-independent tests of Einstein's theory in this high-velocity, strong-field regime.

  2. Solar Flares, Type III Radio Bursts, CMEs, and Energetic Particles

    NASA Technical Reports Server (NTRS)

    Cane, H. V.

    2004-01-01

    Despite the fact that it has been well known since the earliest observations that solar energetic particle events are well associated with solar flares it is often considered that the association is not physically significant. Instead, in large events, the particles are considered to be only accelerated at a shock driven by the coronal mass ejection (CME) that is also always present. If particles are accelerated in the associated flare, it is claimed that such particles do not find access to open field lines and therefore do not escape from the low corona. However recent work has established that long lasting type III radio bursts extending to low frequencies are associated with all prompt solar particle events. Such bursts establish the presence of open field lines. Furthermore, tracing the radio bursts to the lowest frequencies, generated near the observer, shows that the radio producing electrons gain access to a region of large angular extent. It is likely that the electrons undergo cross field transport and it seems reasonable that ions do also. Such observations indicate that particle propagation in the inner heliosphere is not yet fully understood. They also imply that the contribution of flare particles in major particle events needs to be properly addressed.

  3. SOLAR RADIO BURSTS WITH SPECTRAL FINE STRUCTURES IN PREFLARES

    SciTech Connect

    Zhang, Yin; Tan, Baolin; Huang, Jing; Tan, Chengming; Karlický, Marian; Mészárosová, Hana; Simões, Paulo J.A.

    2015-01-20

    Good observations of preflare activities are important for us to understand the origin and triggering mechanism of solar flares, and to predict the occurrence of solar flares. This work presents the characteristics of microwave spectral fine structures as preflare activities of four solar flares observed by the Ondřejov radio spectrograph in the frequency range of 0.8-2.0 GHz. We found that these microwave bursts which occurred 1-4 minutes before the onset of flares have spectral fine structures with relatively weak intensities and very short timescales. They include microwave quasi-periodic pulsations with very short periods of 0.1-0.3 s and dot bursts with millisecond timescales and narrow frequency bandwidths. Accompanying these microwave bursts are filament motions, plasma ejection or loop brightening in the EUV imaging observations, and non-thermal hard X-ray emission enhancements observed by RHESSI. These facts may reveal certain independent, non-thermal energy releasing processes and particle acceleration before the onset of solar flares. They may help us to understand the nature of solar flares and to predict their occurrence.

  4. Analysis of Chains of Metric Solar Type I Bursts

    NASA Astrophysics Data System (ADS)

    Sodré, Z. A. L.; Cunha-Silva, R. D.; Fernandes, F. C. R.

    2015-01-01

    Type I radio noise storms are believed to provide a diagnostic of electron acceleration in the corona. Most type I bursts appear in chains of five or more individual bursts. An analysis of the chain properties may indicate electron density, height of emission source, and magnetic-field intensity. We studied 255 chains of solar type I solar bursts recorded by the Compact Astronomical Low-cost Low-frequency Instrument for Spectroscopy and Transportable Observatory (CALLISTO-BLEN) spectrograph from 30 July to 9 August 2011 in the frequency range 170 - 870 MHz. Based on the morphological characteristics identified in the dynamic spectra, we determined the physical parameters for the events. The source electron density was found to be in the range 0.5 - 1.6×109 cm-3, the radial velocity of the emitting plasma varied from -1600 - 1500 km s-1, the magnetic-field strength was in the range 2.2 - 3.3 G, and the height of the source ranged from 0.95 to 1.15 solar radii. The results are consistent with previously reported values.

  5. TEMPORAL SPECTRAL SHIFT AND POLARIZATION OF A BAND-SPLITTING SOLAR TYPE II RADIO BURST

    SciTech Connect

    Du, Guohui; Chen, Yao; Lv, Maoshui; Kong, Xiangliang; Feng, Shiwei; Guo, Fan; Li, Gang

    2014-10-01

    In many type II solar radio bursts, the fundamental and/or the harmonic branches of the bursts can split into two almost parallel bands with similar spectral shapes and frequency drifts. However, the mechanisms accounting for this intriguing phenomenon remain elusive. In this study, we report a special band-splitting type II event in which spectral features appear systematically earlier on the upper band (with higher frequencies) than on the lower band (with lower frequencies) by several seconds. Furthermore, the emissions carried by the splitting band are moderately polarized with the left-hand polarized signals stronger than the right-hand ones. The polarization degree varies in a range of –0.3 to –0.6. These novel observational findings provide important constraints on the underlying physical mechanisms of band-splitting of type II radio bursts.

  6. The 2006-2007 Active Phase Of Anomalous X-Ray Pulsar 4U 0142+61: Radiative and Timing Changes, Bursts, and Burst Spectral Features

    NASA Technical Reports Server (NTRS)

    Gavril, Fotis P.; Dib, Rim; Kaspi, Victoria M.

    2009-01-01

    After at least 6 years of quiescence, Anomalous X-ray Pulsar (AXP) 4U 0142+61 entered an active phase in 2006 March that lasted several months and included six X-ray bursts as well as many changes in the persistent X-ray emission. The bursts, the first seen from this AXP in >11 years of Rossi X-ray Timing Explorer monitoring, all occurred in the interval between 2006 April 6 and 2007 February 7. The burst durations ranged from 8-3x10(exp 3)s. The first five burst spectra are well modeled by blackbodies, with temperatures kT approx. 2 - 6 keV. However, the sixth burst had a complicated spectrum that is well characterized by a blackbody plus three emission features whose amplitude varied throughout the burst. The most prominent feature was at 14.0 keV. Upon entry into the active phase the pulsar showed a significant change in pulse morphology and a likely timing glitch. The glitch had a total frequency jump of (1.9+/-0.4)x10(exp -7) Hz, which recovered with a decay time of 17+/-2 days by more than the initial jump, implying a net spin-down of the pulsar. We discuss these events in the context of the magnetar model.

  7. GAMMA-RAY BURST FLARES: ULTRAVIOLET/OPTICAL FLARING. I

    SciTech Connect

    Swenson, C. A.; Roming, P. W. A.; De Pasquale, M.; Oates, S. R.

    2013-09-01

    We present a previously unused method for the detection of flares in gamma-ray burst (GRB) light curves and use this method to detect flares in the ultraviolet/optical. The algorithm makes use of the Bayesian Information Criterion to analyze the residuals of the fitted light curve, removing all major features, and to determine the statistically best fit to the data by iteratively adding additional ''breaks'' to the light curve. These additional breaks represent the individual components of the detected flares: T{sub start}, T{sub stop}, and T{sub peak}. We present the detection of 119 unique flaring periods detected by applying this algorithm to light curves taken from the Second Swift Ultraviolet/Optical Telescope (UVOT) GRB Afterglow Catalog. We analyzed 201 UVOT GRB light curves and found episodes of flaring in 68 of the light curves. For those light curves with flares, we find an average number of {approx}2 flares per GRB. Flaring is generally restricted to the first 1000 s of the afterglow, but can be observed and detected beyond 10{sup 5} s. More than 80% of the flares detected are short in duration with {Delta}t/t of <0.5. Flares were observed with flux ratios relative to the underlying light curve of between 0.04 and 55.42. Many of the strongest flares were also seen at greater than 1000 s after the burst.

  8. Shanghai Delta Complex

    SciTech Connect

    Hart, R.E.; Hoffman, P.F.; Parker, R.W.

    1988-01-01

    The upper Eocene Yegua Formation expands dramatically across a regional system of growth faults into an area generally 12-15 km wide, extending at least from the western edge of the Houston sale dome basin to the San Marcos arch. Within this area, the expanded Yegua trend has yielded, since 1982, at least seven noteworthy discoveries: Toro Grande and Lost Bridge fields in Jackson County, and Black Owl, Shanghai, Shanghai East, El Campo, and Phase Four fields in Wharton County. During each of several postulated Yegua sea level drops, this flexure became a focal point for deltaic deposition of excellent reservoir-quality sands. Shanghai, Shanghai East, and El Campo fields are located within what the writers have labeled the ''Shanghai delta complex.'' Integration of seismic and well data in this vicinity shows a marked increase in the expansion indices of growth faults, and moderately thick progradational sand sequences have accumulated immediately downthrow. This structural-stratigraphic pattern, as well as internal bedding characteristics and other lithologic data observed, is believed typical of deltas deposited along the Yegua shelf margin.

  9. Holden Crater Delta

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03694 Holden Crater Delta

    This fan-shaped delta deposit is located in Holden Crater.

    Image information: VIS instrument. Latitude -27.3N, Longitude 324.5E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  10. Coronal magnetic fields from multiple type II bursts

    NASA Astrophysics Data System (ADS)

    Honnappa, Vijayakumar; Raveesha, K. H.; Subramanian, K. R.

    Coronal magnetic fields from multiple type II bursts Vijayakumar H Doddamani1*, Raveesha K H2 and Subramanian3 1Bangalore University, Bangalore, Karnataka state, India 2CMR Institute of Technology, Bangalore, Karnataka state, India 3 Retd, Indian Institute of Astrophysics, Bangalore, Karnataka state, India Abstract Magnetic fields play an important role in the astrophysical processes occurring in solar corona. In the solar atmosphere, magnetic field interacts with the plasma, producing abundant eruptive activities. They are considered to be the main factors for coronal heating, particle acceleration and the formation of structures like prominences, flares and Coronal Mass Ejections. The magnetic field in solar atmosphere in the range of 1.1-3 Rsun is especially important as an interface between the photospheric magnetic field and the solar wind. Its structure and time dependent change affects space weather by modifying solar wind conditions, Cho (2000). Type II doublet bursts can be used for the estimation of the strength of the magnetic field at two different heights. Two type II bursts occur sometimes in sequence. By relating the speed of the type II radio burst to Alfven Mach Number, the Alfven speed of the shock wave generating type II radio burst can be calculated. Using the relation between the Alfven speed and the mean frequency of emission, the magnetic field strength can be determined at a particular height. We have used the relative bandwidth and drift rate properties of multiple type II radio bursts to derive magnetic field strengths at two different heights and also the gradient of the magnetic field in the outer corona. The magnetic field strength has been derived for different density factors. It varied from 1.2 to 2.5 gauss at a solar height of 1.4 Rsun. The empirical relation of the variation of the magnetic field with height is found to be of the form B(R) = In the present case the power law index ‘γ’ varied from -3 to -2 for variation of

  11. The LOFT burst alert system and its burst onboard trigger

    NASA Astrophysics Data System (ADS)

    Schanne, Stéphane; Götz, Diego; Le Provost, Hervé; Château, Frédéric; Bozzo, Enrico; Brandt, Søren

    2014-07-01

    The ESA M3 candidate mission LOFT (Large Observatory For x-ray Timing) has been designed to study strong gravitational fields by observing compact objects, such as black-hole binaries or neutron-star systems and supermassive black-holes, based on the temporal analysis of photons collected by the primary instrument LAD (Large Area Detector), sensitive to X-rays from 2 to 50 keV, offering a very large effective area (>10 m2), but a small field of view (ø<1°). Simultaneously the second instrument WFM (Wide Field Monitor), composed of 5 coded-mask camera pairs (2-50 keV), monitors a large part of the sky, in order to detect and localize eruptive sources, to be observed with the LAD after ground-commanded satellite repointing. With its large field of view (>π sr), the WFM actually detects all types of transient sources, including Gamma-Ray Bursts (GRBs), which are of primary interest for a world-wide observers community. However, observing the quickly decaying GRB afterglows with ground-based telescopes needs the rapid knowledge of their precise localization. The task of the Loft Burst Alert System (LBAS) is therefore to detect in near-real- time GRBs (about 120 detections expected per year) and other transient sources, and to deliver their localization in less than 30 seconds to the observers, via a VHF antenna network. Real-time full resolution data download to ground being impossible, the real-time data processing is performed onboard by the LBOT (LOFT Burst On-board Trigger system). In this article we present the LBAS and its components, the LBOT and the associated ground-segment.

  12. Observations of optical counterparts of Gamma-Ray bursts

    NASA Technical Reports Server (NTRS)

    Knight, Frederick K.

    1992-01-01

    This is a final report for a contract begun in Dec. 1987 and ended in Mar. 1989 to use the existing Lincoln Laboratory Experimental Test Site in Socorro, NM to search for optical counterparts to gamma-ray bursts. The objective was to develop an autonomous staring system to search for stationary, transient optical flashes. The search was to use an existing 31-inch telescope equipped with a sensitive video detector. The approach for the search was to develop real-time processing software to monitor the video signal from the detector and to record any transient, point-like flashes that occurred in the field of view. The system would have been able to detect fainter flashes (B is approximately 15(sup m) in 1/30 s, delta(m(sub v)) = 0.25(sup m)) than other systems but lacked a large field of view (only 1.2 deg diameter) necessary to give a high probability of detecting a random flash on the sky. As such, the plan was to monitor known gamma-ray burst error boxes and wait for a repetition of an earlier event. The high payoff of good sensitivity with high angular resolution (1 pixel = 10sec) and good time resolution (30 s) to allow post-burst searches warranted funding if the cost was not prohibitive. The contract began in the middle of the three-year cycle for High Energy Astrophysics Gamma-Ray Astronomy Research and Analysis Program. This final report briefly describes the portion of the plan completed under the original contract.

  13. Pattern Specificity in the Effect of Prior [delta]f on Auditory Stream Segregation

    ERIC Educational Resources Information Center

    Snyder, Joel S.; Weintraub, David M.

    2011-01-01

    During repeating sequences of low (A) and high (B) tones, perception of two separate streams ("streaming") increases with greater frequency separation ([delta]f) between the A and B tones; in contrast, a prior context with large [delta]f results in less streaming during a subsequent test pattern. The purpose of the present study was to investigate…

  14. SOLAR MICRO-TYPE III BURST STORMS AND LONG DIPOLAR MAGNETIC FIELD IN THE OUTER CORONA

    SciTech Connect

    Morioka, A.; Misawa, H.; Obara, T.; Miyoshi, Y.; Masuda, S.; Iwai, K.; Kasaba, Y.

    2015-08-01

    Solar micro-type III radio bursts are elements of the so-called type III storms and are characterized by short-lived, continuous, and weak emissions. Their frequency of occurrence with respect to radiation power is quite different from that of ordinary type III bursts, suggesting that the generation process is not flare-related, but due to some recurrent acceleration processes around the active region. We examine the relationship of micro-type III radio bursts with coronal streamers. We also explore the propagation channel of bursts in the outer corona, the acceleration process, and the escape route of electron beams. It is observationally confirmed that micro-type III bursts occur near the edge of coronal streamers. The magnetic field line of the escaping electron beams is tracked on the basis of the frequency drift rate of micro-type III bursts and the electron density distribution model. The results demonstrate that electron beams are trapped along closed dipolar field lines in the outer coronal region, which arise from the interface region between the active region and the coronal hole. A 22 year statistical study reveals that the apex altitude of the magnetic loop ranges from 15 to 50 R{sub S}. The distribution of the apex altitude has a sharp upper limit around 50 R{sub S} suggesting that an unknown but universal condition regulates the upper boundary of the streamer dipolar field.

  15. Solar Micro-Type III Burst Storms and Long Dipolar Magnetic Field in the Outer Corona

    NASA Astrophysics Data System (ADS)

    Morioka, A.; Miyoshi, Y.; Iwai, K.; Kasaba, Y.; Masuda, S.; Misawa, H.; Obara, T.

    2015-08-01

    Solar micro-type III radio bursts are elements of the so-called type III storms and are characterized by short-lived, continuous, and weak emissions. Their frequency of occurrence with respect to radiation power is quite different from that of ordinary type III bursts, suggesting that the generation process is not flare-related, but due to some recurrent acceleration processes around the active region. We examine the relationship of micro-type III radio bursts with coronal streamers. We also explore the propagation channel of bursts in the outer corona, the acceleration process, and the escape route of electron beams. It is observationally confirmed that micro-type III bursts occur near the edge of coronal streamers. The magnetic field line of the escaping electron beams is tracked on the basis of the frequency drift rate of micro-type III bursts and the electron density distribution model. The results demonstrate that electron beams are trapped along closed dipolar field lines in the outer coronal region, which arise from the interface region between the active region and the coronal hole. A 22 year statistical study reveals that the apex altitude of the magnetic loop ranges from 15 to 50 RS. The distribution of the apex altitude has a sharp upper limit around 50 RS suggesting that an unknown but universal condition regulates the upper boundary of the streamer dipolar field.

  16. Spontaneous EEG spikes in the normal hippocampus. II. Relations to synchronous burst discharges.

    PubMed

    Suzuki, S S; Smith, G K

    1988-06-01

    Spontaneous EEG spikes (SPKs) were recorded from the CA1 region of the dorsal hippocampus in normal rats during awake immobility and slow wave sleep. These SPKs were accompanied by synchronous burst discharges in the pyramidal cell layer. These discharges are called 'population bursts (PBs)' in that they seem to require a population of synchronously bursting neurons. PBs were classified into 2 forms on the basis of their morphologies. One form (mixed burst or MB) consisted of a mixture or superimposition of action potential bursts from a relatively small number of neurons. The other form (ripple) was a series of 3-13 (typically 5-8) high frequency (125-250 Hz) waves, usually waxing and waning. Unit action potentials were superimposed mainly on negative portions of these high frequency waves. The ripple was considered to represent summed activity of highly synchronized complex spike bursts from a relatively large number of pyramidal cells. The similarity in wave structure between these non-pathological ripples and multipeaked, epileptiform (interictal) field potentials recorded from the penicillin-treated hippocampus suggests that they may share some common underlying mechanisms.

  17. Physics of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Lamb, D. Q.

    1984-01-01

    Attention is given to the accumulating evidence for the view that gamma-ray bursts come from strongly magnetic neutron stars, discussing the physical properties of the emission region and the radiation processes expected in strong magnetic fields, and emphasizing that the observed burst spectra require that the emission region be optically thin. This entails that the energy of the emitting plasma and/or the plasma itself be continuously replenished during a burst, and that the cooling time scale of the emitting plasma be much shorter than the observed duration of the bursts. This characteristic of the cooling time scale implies that the burst intensity and spectrum can vary on extremely short time scales, and that the burst duration must have a separate explanation. It is emphasized that synchrotron emission is favored as the gamma-ray production mechanism; it is the only mechanism capable of satisfying the optical thinness constraint while producing the observed luminosity.

  18. Phase synchronization of coupled bursting neurons and the generalized Kuramoto model.

    PubMed

    Ferrari, F A S; Viana, R L; Lopes, S R; Stoop, R

    2015-06-01

    Bursting neurons fire rapid sequences of action potential spikes followed by a quiescent period. The basic dynamical mechanism of bursting is the slow currents that modulate a fast spiking activity caused by rapid ionic currents. Minimal models of bursting neurons must include both effects. We considered one of these models and its relation with a generalized Kuramoto model, thanks to the definition of a geometrical phase for bursting and a corresponding frequency. We considered neuronal networks with different connection topologies and investigated the transition from a non-synchronized to a partially phase-synchronized state as the coupling strength is varied. The numerically determined critical coupling strength value for this transition to occur is compared with theoretical results valid for the generalized Kuramoto model.

  19. Source location of the narrowbanded radio bursts at Uranus: Evidence of a cusp source

    SciTech Connect

    Farrell, W.M.; Desch, M.D.; Kaiser, M.L. ); Kurth, W.S. )

    1990-03-01

    While Voyager 2 was inbound to Uranus, radio bursts of narrow bandwidth (< 5 kHz) were detected between 17-116 kHz by both the Planetary Radio Astronomy (PRA) and Plasma Wave (PWS) experiments. These R-X mode bursts, designated n-bursts, were of short duration (about 250 msec), tended to occur when the north magnetic pole tipped toward the spacecraft, and increased in occurrence with increasing solar wind density. In this report, the authors present an explicit determination of the burst source location based upon fitting the region of detection at high and low frequencies to field-aligned, symmetric cones. The region of good fits was located between the north magnetic pole an the rotational pole, corresponding approximately to the northern polar cusp. Based upon the emission power, it is suspected that at certain times large amounts of auroral input power may originate in this cusp.

  20. Gravitational-wave bursts from the nuclei of distant galaxies and quasars: Proposal for detection using Doppler tracking of interplanetary spacecraft

    NASA Technical Reports Server (NTRS)

    Thorne, K. S.; Braginsky, V. B.

    1974-01-01

    Supermassive black holes which exist in the nuclei of many quasars and galaxies are examined along with the collapse which forms these holes and subsequent collisions between them which produce strong, broad-band bursts of gravitational waves. Such bursts might arrive at earth as often as 50 times per year--or as rarely as once each 300 years. The detection of such bursts with dual-frequency Doppler tracking of interplanetary spacecraft is considered.

  1. On modelling the Fast Radio Burst population and event rate predictions

    NASA Astrophysics Data System (ADS)

    Bera, Apurba; Bhattacharyya, Siddhartha; Bharadwaj, Somnath; Bhat, N. D. Ramesh; Chengalur, Jayaram N.

    2016-04-01

    Assuming that Fast Radio Bursts (FRBs) are of extragalactic origin, we have developed a formalism to predict the FRB detection rate and the redshift distribution of the detected events for a telescope with given parameters. We have adopted FRB 110220, for which the emitted pulse energy is estimated to be E0 = 5.4 × 1033 J, as the reference event. The formalism requires us to assume models for (a) pulse broadening due to scattering in the ionized intergalactic medium - we consider two different models for this, (b) the frequency spectrum of the emitted pulse - we consider a power-law model Eν ∝ ν-α with -5 ≤ α ≤ 5, and (c) the comoving number density of the FRB occurrence rate n(E, wi, z) - we ignore the z dependence and assume a fixed intrinsic pulse width wi = 1 ms for all the FRBs. The distribution of the emitted pulse energy E is modelled through (a) a delta function where all the FRBs have the same energy E = E0, and (b) a Schechter luminosity function where the energies have a spread around E0. The models are all normalized using the four FRBs detected by Thornton et al. Our model predictions for the Parkes telescope are all consistent with the inferred redshift distribution of the 14 FRBs detected there to date. We also find that scattering places an upper limit on the redshift of the FRBs detectable by a given telescope; for the Parkes telescope, this is z ˜ 2. Considering the upcoming Ooty Wide Field Array, we predict an FRB detection rate of ˜0.01 to ˜103 d-1.

  2. Low frequency entrainment of oscillatory bursts in hair cells.

    PubMed

    Shlomovitz, Roie; Fredrickson-Hemsing, Lea; Kao, Albert; Meenderink, Sebastiaan W F; Bruinsma, Robijn; Bozovic, Dolores

    2013-04-16

    Sensitivity of mechanical detection by the inner ear is dependent upon a highly nonlinear response to the applied stimulus. Here we show that a system of differential equations that support a subcritical Hopf bifurcation, with a feedback mechanism that tunes an internal control parameter, captures a wide range of experimental results. The proposed model reproduces the regime in which spontaneous hair bundle oscillations are bistable, with sporadic transitions between the oscillatory and the quiescent state. Furthermore, it is shown, both experimentally and theoretically, that the application of a high-amplitude stimulus to the bistable system can temporarily render it quiescent before recovery of the limit cycle oscillations. Finally, we demonstrate that the application of low-amplitude stimuli can entrain bundle motility either by mode-locking to the spontaneous oscillation or by mode-locking the transition between the quiescent and oscillatory states. PMID:23601313

  3. Low Frequency Entrainment of Oscillatory Bursts in Hair Cells

    PubMed Central

    Shlomovitz, Roie; Fredrickson-Hemsing, Lea; Kao, Albert; Meenderink, Sebastiaan W.F.; Bruinsma, Robijn; Bozovic, Dolores

    2013-01-01

    Sensitivity of mechanical detection by the inner ear is dependent upon a highly nonlinear response to the applied stimulus. Here we show that a system of differential equations that support a subcritical Hopf bifurcation, with a feedback mechanism that tunes an internal control parameter, captures a wide range of experimental results. The proposed model reproduces the regime in which spontaneous hair bundle oscillations are bistable, with sporadic transitions between the oscillatory and the quiescent state. Furthermore, it is shown, both experimentally and theoretically, that the application of a high-amplitude stimulus to the bistable system can temporarily render it quiescent before recovery of the limit cycle oscillations. Finally, we demonstrate that the application of low-amplitude stimuli can entrain bundle motility either by mode-locking to the spontaneous oscillation or by mode-locking the transition between the quiescent and oscillatory states. PMID:23601313

  4. Ballerina - pirouettes in search of gamma bursts

    NASA Astrophysics Data System (ADS)

    Brandt, S.; Lund, N.; Pedersen, H.; Hjorth, J.; BALLERINA Collaboration

    1999-09-01

    The cosmological origin of gamma ray bursts has now been established with reasonable certainty. Many more bursts will need to be studied to establish the typical distance scale, and to map out the large diversity in properties which have been indicated by the first handful of events. We are proposing Ballerina, a small satellite to provide accurate positions and new data on the gamma-ray bursts. We anticipate a detection rate an order of magnitude larger than obtained from Beppo-SAX.

  5. Ceramic Matrix Composite Vane Subelement Burst Testing

    NASA Technical Reports Server (NTRS)

    Brewer, David N.; Verrilli, Michael; Calomino, Anthony

    2006-01-01

    Burst tests were performed on Ceramic Matrix Composite (CMC) vane specimens, manufactured by two vendors, under the Ultra Efficient Engine Technology (UEET) project. Burst specimens were machined from the ends of 76mm long vane sub-elements blanks and from High Pressure Burner Rig (HPBR) tested specimens. The results of burst tests will be used to compare virgin specimens with specimens that have had an Environmental Barrier Coating (EBC) applied, both HPBR tested and untested, as well as a comparison between vendors.

  6. Near-Relativistic Solar Electrons and Type III Radio Bursts

    NASA Technical Reports Server (NTRS)

    Cane, H. V.

    2003-01-01

    Recently it has been found that the inferred injection times of greater than 25 keV electrons are up to 30 minutes later than the start times of the associated type III radio bursts at the Sun. Thus it has been suggested that the electrons that produce type III bursts do not belong to the same population as those observed above 25 keV. This paper examines the characteristics and circumstances of 79 solar electron beam events measured on the ACE spacecraft. Particular attention is paid to the very low frequency emissions of the associated radio bursts and the ambient conditions at the arrival times of the electrons at the spacecraft. It is found that the inferred greater than 25 keV electron injection delays are correlated with the times required for the associated radio bursts to drift to the lowest frequencies. This suggests that the electrons responsible for the radio emission and those observed above 25 keV are part of a single population, and that the electrons both above and below 25 keV are delayed in the interplanetary medium. Further evidence for a single population is the general correspondence between electron and local radio intensities and temporal profiles. It is found that the delays increase with the ambient solar wind density consistent with the propagation times of the electrons being determined by the characteristics of the interplanetary medium. However it is known that particle arrival times at 1 AU are a linear function of inverse particle speed. Conventionally such a relationship is taken to indicate scatter-free propagation when inferred path lengths lie close to 1.2 AU, as they do for the electron events studied here. These conflicting interpretations require further investigation.

  7. Delta Electroproduction in 12-C

    SciTech Connect

    Steven McLauchlan

    2003-01-31

    The Delta-nucleus potential is a crucial element in the understanding of the nuclear system. Previous electroexcitation measurements in the delta region reported a Q2 dependence of the delta mass indicating that this potential is dependent on the momentum of the delta. Such a dependence is not observed for protons and neutrons in the nuclear medium. This thesis presents the experimental study of the electroexcitation of the delta resonance in 12C, performed using the high energy electron beam at the Thomas Jefferson National Accelerator Facility, and the near 4(pie) acceptance detector CLAS that enables the detection of the full reaction final state. Inclusive, semi inclusive, and exclusive cross sections were measured with an incident electron beam energy of 1.162GeV over the Q2 range 0.175-0.475 (GeV/c)2. A Q2 dependence of the delta mass was only observed in the exclusive measurements indicating that the delta-nucleus potential is affected by the momentum of the delta.

  8. Solar wind density model from km-wave type III bursts.

    NASA Technical Reports Server (NTRS)

    Alvarez, H.; Haddock, F. T.

    1973-01-01

    The analysis of type III bursts observed from the OGO-5 satellite between 3.5 MHz and 50 kHz gives an empirical expression for the frequency drift rate as a function of frequency that is valid from 75 kHz to 550 MHz. Using this expression and some simplifying assumptions we obtain indirectly an empirical formula for the electron density distribution of the solar wind to 1 AU which is consistent with published values of electron density and with observed type III burst drift rates.

  9. ENERGY-DEPENDENT GAMMA-RAY BURST PULSE WIDTH DUE TO THE CURVATURE EFFECT AND INTRINSIC BAND SPECTRUM

    SciTech Connect

    Peng, Z. Y.; Ma, L.; Zhao, X. H.; Yin, Y.; Bao, Y. Y.

    2012-06-20

    Previous studies have found that the width of the gamma-ray burst (GRB) pulse is energy dependent and that it decreases as a power-law function with increasing photon energy. In this work we have investigated the relation between the energy dependence of the pulse and the so-called Band spectrum by using a sample including 51 well-separated fast rise and exponential decay long-duration GRB pulses observed by BATSE (Burst and Transient Source Experiment on the Compton Gamma Ray Observatory). We first decompose these pulses into rise and decay phases and find that the rise widths and the decay widths also behave as a power-law function with photon energy. Then we investigate statistically the relations between the three power-law indices of the rise, decay, and total width of the pulse (denoted as {delta}{sub r}, {delta}{sub d}, and {delta}{sub w}, respectively) and the three Band spectral parameters, high-energy index ({alpha}), low-energy index ({beta}), and peak energy (E{sub p} ). It is found that (1) {alpha} is strongly correlated with {delta}{sub w} and {delta}{sub d} but seems uncorrelated with {delta}{sub r}; (2) {beta} is weakly correlated with the three power-law indices, and (3) E{sub p} does not show evident correlations with the three power-law indices. We further investigate the origin of {delta}{sub d}-{alpha} and {delta}{sub w}-{alpha}. We show that the curvature effect and the intrinsic Band spectrum could naturally lead to the energy dependence of the GRB pulse width and also the {delta}{sub d}-{alpha} and {delta}{sub w}-{alpha} correlations. Our results hold so long as the shell emitting gamma rays has a curved surface and the intrinsic spectrum is a Band spectrum or broken power law. The strong {delta}{sub d}-{alpha} correlation and inapparent correlations between {delta}{sub r} and the three Band spectral parameters also suggest that the rise and decay phases of the GRB pulses have different origins.

  10. Topological and phenomenological classification of bursting oscillations.

    PubMed

    Bertram, R; Butte, M J; Kiemel, T; Sherman, A

    1995-05-01

    We describe a classification scheme for bursting oscillations which encompasses many of those found in the literature on bursting in excitable media. This is an extension of the scheme of Rinzel (in Mathematical Topics in Population Biology, Springer, Berlin, 1987), put in the context of a sequence of horizontal cuts through a two-parameter bifurcation diagram. We use this to describe the phenomenological character of different types of bursting, addressing the issue of how well the bursting can be characterized given the limited amount of information often available in experimental settings. PMID:7728115

  11. Neutron Stars and Thermonuclear X-ray Bursts

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, Supid

    2007-01-01

    This viewgraph presentation describes neutron stars and thermonuclear x ray bursts. The contents include: 1) Neutron Stars: why do we care?; 2) Thermonuclear Bursts: why do we care?; 3) Neutron Stars: Mass, Radius and Spin: a. Continuum Spectroscopy of Bursts b. Spectral Lines from Bursts c. Timing Properties of Bursts; 4) Neutron Star Atmosphere: Thermonuclear Flame Spreading; and 5) Future Prospects and Conclusions.

  12. Baroreflex physiology studied in healthy subjects with very infrequent muscle sympathetic bursts.

    PubMed

    Diedrich, André; Crossman, Alexandra A; Beightol, Larry A; Tahvanainen, Kari U O; Kuusela, Tom A; Ertl, Andrew C; Eckberg, Dwain L

    2013-01-15

    Because it is likely that, in healthy human subjects, baroreflex mechanisms operate continuously, independent of experimental interventions, we asked the question, In what ways might study of unprovoked, very infrequent muscle sympathetic bursts inform baroreflex physiology? We closely examined arterial pressure and R-R interval responses of 11 supine healthy young subjects to arterial pressure ramps triggered by large isolated muscle sympathetic bursts. We triggered data collection sweeps on the beginnings of sympathetic bursts and plotted changes of arterial pressure (finger volume clamp or intra-arterial) and R-R intervals occurring before as well as after the sympathetic triggers. We estimated baroreflex gain from regression of R-R intervals on systolic pressures after sympathetic bursts and from the transfer function between cross-spectra of systolic pressure and R-R intervals at low frequencies. Isolated muscle sympathetic bursts were preceded by arterial pressure reductions. Baroreflex gain, calculated with linear regression of R-R intervals on systolic pressures after bursts, was virtually identical to baroreflex gain, calculated with the cross-spectral modulus [mean and (range): 24 (7-43) vs. 24 (8-45) ms/mmHg], and highly significant, according to linear regression (r(2) = 0.91, P = 0.001). Our results indicate that 1) since infrequent human muscle sympathetic bursts are almost deterministically preceded by arterial pressure reductions, their occurrence likely reflects simple baroreflex physiology, and 2) the noninvasive low-frequency modulus reliably reproduces gains derived from R-R interval responses to arterial pressure ramps triggered by infrequent muscle sympathetic bursts.

  13. A Stochastic Burst Follows the Periodic Morning Peak in Individual Drosophila Locomotion

    PubMed Central

    Lazopulo, Stanislav; Lopez, Juan A.; Levy, Paul; Syed, Sheyum

    2015-01-01

    Coupling between cyclically varying external light and an endogenous biochemical oscillator known as the circadian clock, modulates a rhythmic pattern with two prominent peaks in the locomotion of Drosophila melanogaster. A morning peak appears around the time lights turn on and an evening peak appears just before lights turn off. The close association between the peaks and the external 12:12 hour light/dark photoperiod means that respective morning and evening peaks of individual flies are well-synchronized in time and, consequently, feature prominently in population-averaged data. Here, we report on a brief but strong stochastic burst in fly activity that, in contrast to morning and evening peaks, is detectable only in single fly recordings. This burst was observed across 3 wild-type strains of Drosophila melanogaster. In a single fly recording, the burst is likely to appear once randomly within 0.5–5 hours after lights turn on, last for only 2–3 minutes and yet show 5 times greater activity compared to the maximum of morning peak with data binned in 3 minutes. Owing to its variable timing and short duration, the burst is virtually undetectable in population-averaged data. We use a locally-built illumination system to study the burst and find that its incidence in a population correlates with light intensity, with ~85% of control flies showing the behavior at 8000 lux (1942 μW/cm2). Consistent with that finding, several mutant flies with impaired vision show substantially reduced frequency of the burst. Additionally, we find that genetic ablation of the clock has insignificant effect on burst frequency. Together, these data suggest that the pronounced burst is likely generated by a light-activated circuit that is independent of the circadian clock. PMID:26528813

  14. Helium bubble bursting in tungsten

    SciTech Connect

    Sefta, Faiza; Juslin, Niklas; Wirth, Brian D.

    2013-12-28

    Molecular dynamics simulations have been used to systematically study the pressure evolution and bursting behavior of sub-surface helium bubbles and the resulting tungsten surface morphology. This study specifically investigates how bubble shape and size, temperature, tungsten surface orientation, and ligament thickness above the bubble influence bubble stability and surface evolution. The tungsten surface is roughened by a combination of adatom “islands,” craters, and pinholes. The present study provides insight into the mechanisms and conditions leading to various tungsten topology changes, which we believe are the initial stages of surface evolution leading to the formation of nanoscale fuzz.

  15. Bursts in inclined layer convection

    NASA Astrophysics Data System (ADS)

    Busse, F. H.; Clever, R. M.

    2000-08-01

    A new instability of longitudinal rolls in an inclined fluid layer heated from below is analyzed in the case of the Prandtl number P=0.71. The instability assumes the form of subharmonic undulations and evolves into a spatially chaotic pattern when the angle of inclination is of the order of 20°. The chaotic state rapidly decays and longitudinal rolls recover until the next burst of chaotic convection occurs. The theoretical findings closely correspond to recent experimental observations by Daniels et al. [Phys. Rev. Lett. (to be published)].

  16. Flutter analysis of highly swept delta wings by conventional methods

    NASA Technical Reports Server (NTRS)

    Gibbons, M. D.; Soistmann, D. L.; Bennett, R. M.

    1988-01-01

    The flutter boundaries of six thin highly-swept delta-platform wings have been calculated. Comparisons are made between experimental data and results using several aerodynamic methods. The aerodynamic methods used include a subsonic and supersonic kernel function, second order piston theory, and a transonic small disturbance code. The dynamic equations of motion are solved using analytically calculated mode shapes and frequencies.

  17. Mackenzie River Delta, Canada

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Mackenzie River in the Northwest Territories, Canada, with its headstreams the Peace and Finley, is the longest river in North America at 4241 km, and drains an area of 1,805,000 square km. The large marshy delta provides habitat for migrating Snow Geese, Tundra Swans, Brant, and other waterfowl. The estuary is a calving area for Beluga whales. The Mackenzie (previously the Disappointment River) was named after Alexander Mackenzie who travelled the river while trying to reach the Pacific in 1789.

    The image was acquired on August 4, 2005, covers an area of 55.8 x 55.8 km, and is located at 68.6 degrees north latitude, 134.7 degrees west longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  18. Review of evoked and event-related delta responses in the human brain.

    PubMed

    Güntekin, Bahar; Başar, Erol

    2016-05-01

    In the last decade, the brain's oscillatory responses have invaded the literature. The studies on delta (0.5-3.5Hz) oscillatory responses in humans upon application of cognitive paradigms showed that delta oscillations are related to cognitive processes, mainly in decision making and attentional processes. The present manuscript comprehensively reviews the studies on delta oscillatory responses upon cognitive stimulation in healthy subjects and in different pathologies, namely Alzheimer's disease, Mild Cognitive Impairment (MCI), bipolar disorder, schizophrenia and alcoholism. Further delta oscillatory response upon presentation of faces, facial expressions, and affective pictures are reviewed. The relationship between pre-stimulus delta activity and post-stimulus evoked and event-related responses and/or oscillations is discussed. Cross-frequency couplings of delta oscillations with higher frequency windows are also included in the review. The conclusion of this review includes several important remarks, including that delta oscillatory responses are involved in cognitive and emotional processes. A decrease of delta oscillatory responses could be a general electrophysiological marker for cognitive dysfunction (Alzheimer's disease, MCI, bipolar disorder, schizophrenia and alcoholism). The pre-stimulus activity (phase or amplitude changes in delta activity) has an effect on post-stimulus EEG responses.

  19. DISCOVERY OF QUASI-PERIODIC OSCILLATIONS IN THE RECURRENT BURST EMISSION FROM SGR 1806-20

    SciTech Connect

    El-Mezeini, Ahmed M.; Ibrahim, Alaa I. E-mail: ai@aucegypt.ed E-mail: ai@space.mit.ed

    2010-10-01

    We present evidence for quasi-periodic oscillations (QPOs) in the recurrent outburst emission from the soft gamma repeater SGR 1806-20 using NASA's Rossi X-ray Timing Explorer (RXTE) observations. By searching a sample of 30 bursts for timing signals at the frequencies of the QPOs discovered in the 2004 December 27 giant flare from the source, we find three QPOs at 84, 103, and 648 Hz in three different bursts. The first two QPOs lie within {approx}1{sigma} from the 92 Hz QPO detected in the giant flare. The third QPO lies within {approx}9{sigma} from the 625 Hz QPO also detected in the same flare. The detected QPOs are found in bursts with different durations, morphologies, and brightness, and are vindicated by Monte Carlo simulations, which set a lower limit confidence interval {>=}4.3{sigma}. We also find evidence for candidate QPOs at higher frequencies in other bursts with lower statistical significance. The fact that we can find evidence for QPOs in the recurrent bursts at frequencies relatively close to those found in the giant flare is intriguing and can offer insight about the origin of the oscillations. We confront our finding against the available theoretical models and discuss the connection between the QPOs we report and those detected in the giant flares. The implications to the neutron star properties are also discussed.

  20. Radiation from Electron Phase Space Holes as a Possible Source of Jovian S-bursts

    NASA Astrophysics Data System (ADS)

    Goodrich, Katherine; Ergun, Robert; Holmes, Justin

    2016-04-01

    Radio-frequency short burst emissions (10-40 MHz), known as Jovian S-bursts, have been observed from the Jovian aurora for over fifty years. These emissions, associated with Io's motion, have a rapidly declining frequency and an exceptionally narrow bandwidth. While it is widely believed that S-bursts are generated by the electron cyclotron maser instability, the mechanism responsible for the rapidly declining frequency and narrow bandwidth currently is not well established. We explore a hypothesis that electron phase space holes radiate or stimulate radiation in the Jovian aurora plasma environment as a possible source of S-burst emissions. Electron phase-space holes (EHs) are ubiquitous in an auroral environment and travel at the implied speeds (˜20,000 km/s) of the structures creating the Jovian S-bursts. Furthermore, EHs have the proper physical size to create the observed bandwidth, have sufficient energy content, and can create an environment whereby X mode emissions can be excited. If verified, these findings imply that EHs may be an important source of radiation from strongly magnetized or relativistic astrophysical plasmas.

  1. Squeaking and microcracks in a delta-delta ceramic coupling: pin-on-disc study.

    PubMed

    Fukui, Kiyokazu; Kaneuji, Ayumi; Matsumoto, Tadami; Shintani, Kazuhiro

    2016-04-01

    There is a rising concern about squeaking in ceramic-on-ceramic total hip arthroplasty (THA). In pin-on-disc testing of a delta-delta coupling, we reproduced squeaking and observed microcracks on worn surfaces. We used a pin-on-disc machine and made discs and pins by cutting delta ceramic to a diameter of 40 mm (D-D). Cross-linked polyethylene was used for a comparison disc (D-P). We performed the same test using another D-D coupling specimen to confirm reproducibility. Squeaking in the D-D specimen was reproduced in wet conditions, though it was not found in the D-P specimen. Fast Fourier transform analysis showed a peak frequency for squeaking of 2794 Hz. The noise occurred at about 6.6 km of sliding distance. Scanning electron microscopy revealed that the worn surface of the pin in D-D at 10.8 km of sliding distance had some microcracks. However, there was no obvious damage to the worn surface of the pin in D-P at the same sliding distance. We confirmed the reproducibility of these findings, obtaining similar results, including squeaking, from another D-D coupling specimen. Our findings show that squeaking may occur in THA using delta ceramic bearings even if implants are placed to avoid extra-articular impingement of the femoral neck. Although the clinical relevance of microcracks is unknown, they may affect long-term outcomes in THA using delta ceramic bearings.

  2. Coupling and noise induced spiking-bursting transition in a parabolic bursting model.

    PubMed

    Ji, Lin; Zhang, Jia; Lang, Xiufeng; Zhang, Xiuhui

    2013-03-01

    The transition from tonic spiking to bursting is an important dynamic process that carry physiologically relevant information. In this work, coupling and noise induced spiking-bursting transition is investigated in a parabolic bursting model with specific discussion on their cooperation effects. Fast/slow analysis shows that weak coupling may help to induce the bursting by changing the geometric property of the fast subsystem so that the original unstable periodical solution are stabilized. It turned out that noise can play the similar stabilization role and induce bursting at appropriate moderate intensity. However, their cooperation may either strengthen or weaken the overall effect depending on the choice of noise level.

  3. Forecasting SEP Events with Solar Radio Bursts

    NASA Astrophysics Data System (ADS)

    Coffey, J. R.; Winter, L. M.

    2015-12-01

    Solar Energetic Particle (SEP) events from the Sun occur when particles associated with solar bursts like CMEs and flares are propelled into space. These events can cause substantial damage to objects in their paths, like satellites, by penetrating into them and causing radiation. In a related recent study a method was devised to forecast the occurrence of an SEP event using properties of the type II and type III radio bursts measured from WIND/WAVES (Winter & Ledbetter 2015). This study analyzed 27 SEP events from 2010 to 2013. We now present an analysis of type II and type III bursts in solar cycle 23, associated with the 63 SEP events from 2000-2003. Parameters including the peak flux of type II bursts, integral flux of type II and II bursts, and the duration of type III bursts are used to create a radio index. This index is used to predict whether or not an SEP event will occur. Cycle 23 was more active than cycle 24, with significantly more radio bursts and SEP events. Our results show that the radio index successfully predicts the occurrence of SEPs for the events in the more active solar cycle 23. We also find that, in general, the higher the radio index the higher the peak proton flux will be following the burst.

  4. Air bubble bursting effect of lotus leaf.

    PubMed

    Wang, Jingming; Zheng, Yongmei; Nie, Fu-Qiang; Zhai, Jin; Jiang, Lei

    2009-12-15

    In this paper, a phenomenon of air bubbles quickly bursting within several milliseconds on a "self-cleaning" lotus leaf was described. This observation prompted the synthesis of artificial surfaces similar to that of the lotus leaf. The artificial leaf surfaces, prepared by photolithography and wet etching, showed a similar air bubble bursting effect. Smooth and rough silicon surfaces with an ordered nanostructure or patterned microstructure were utilized to study the contribution of the micro/nano hierarchical structures to this phenomenon of air bubble bursting. Air bubbles were found to burst on some superhydrophobic surfaces with microstructure (within 220 ms). However, air bubbles burst much more rapidly (within 13 ms) on similar surfaces with micro/nanostructure. The height, width, and spacing of hierarchical structures could also affect air bubble bursting, and the effect of the height was more obvious. When the height of hierarchical structures was around the height found in natural lotus papillae, the width and spacing were significant for air bubble bursting. An original model was proposed to further evaluate the reason why the micro/nano hierarchical rough structures had an excellent air bubble bursting effect, and the validity of the model was theoretically demonstrated.

  5. Burst Firing in a Motion-Sensitive Neural Pathway Correlates with Expansion Properties of Looming Objects that Evoke Avoidance Behaviors

    PubMed Central

    McMillan, Glyn A.; Gray, John R.

    2015-01-01

    The locust visual system contains a well-defined motion-sensitive pathway that transfers visual input to motor centers involved in predator evasion and collision avoidance. One interneuron in this pathway, the descending contralateral movement detector (DCMD), is typically described as using rate coding; edge expansion of approaching objects causes an increased rate of neuronal firing that peaks after a certain retinal threshold angle is exceeded. However, evidence of intrinsic DCMD bursting properties combined with observable oscillations in mean firing rates and tight clustering of spikes in raw traces, suggest that bursting may be important for motion detection. Sensory neuron bursting provides important timing information about dynamic stimuli in many model systems, yet no studies have rigorously investigated if bursting occurs in the locust DCMD during object approach. We presented repetitions of 30 looming stimuli known to generate behavioral responses to each of 20 locusts in order to identify and quantify putative bursting activity in the DCMD. Overall, we found a bimodal distribution of inter-spike intervals (ISI) with peaks of more frequent and shorter ISIs occurring from 1–8 ms and longer less frequent ISIs occurring from 40–50 ms. Subsequent analysis identified bursts and isolated single spikes from the responses. Bursting frequency increased in the latter phase of an approach and peaked at the time of collision, while isolated spiking was predominant during the beginning of stimulus approach. We also found that the majority of inter-burst intervals (IBIs) occurred at 40–50 ms (or 20–25 bursts/s). Bursting also occurred across varied stimulus parameters and suggests that burst timing may be a key component of looming detection. Our findings suggest that the DCMD uses two modes of coding to transmit information about looming stimuli and that these modes change dynamically with a changing stimulus at a behaviorally-relevant time. PMID:26696845

  6. Artificial delta growth

    NASA Astrophysics Data System (ADS)

    Mikeš, Daniel

    2010-05-01

    A deltaic sedimentary system has a point source; sediment is carried over the delta plain by distributary channels away from the point source and deposited at the delta front by distributary mouth bars. The established methods to describe such a sedimentary system are "bedding analysis", "facies analysis", and "basin analysis". We shall call the ambient conditions "input" and the rock record "output". There exist a number of methods to deduce input from output, e.g. "Sequence stratigraphy" (a.o. Vail et al. 1977, Catuneanu et al. 2009), "Shoreline trajectory" (a.o. Helland-Hansen & Martinsen 1996, Helland-Hansen & Hampson 2009) on the one hand and the complex use of established techniques on the other (a.o. Miall & Miall 2001, Miall & Miall 2002). None of these deductive methods seems to be sufficient. I claim that the common errors in all these attempts are the following: (1) a sedimentary system is four-dimensional (3+1) and a lesser dimensional analysis is insufficient; (2) a sedimentary system is complex and any empirical/deductive analysis is non-unique. The proper approach to the problem is therefore the theoretical/inductive analysis. To that end we performed six scenarios of a scaled version of a passive margin delta in a flume tank. The scenarios have identical stepwise tectonic subsidence and semi-cyclic sealevel, but different supply curves, i.e. supply is: constant, highly-frequent, proportional to sealevel, inversely proportional to sealevel, lagging to sealevel, ahead of sealevel. The preliminary results are indicative. Lobe-switching occurs frequently and hence locally sedimentation occurs shortly and hiatuses are substantial; therefore events in 2D (+1) cross-sections don't correlate temporally. The number of sedimentary cycles disequals the number of sealevel cycles. Lobe-switching and stepwise tectonic subsidence cause onlap/transgression. Erosional unconformities are local diachronous events, whereas maximum flooding surfaces are regional

  7. Burst suppression probability algorithms: state-space methods for tracking EEG burst suppression

    NASA Astrophysics Data System (ADS)

    Chemali, Jessica; Ching, ShiNung; Purdon, Patrick L.; Solt, Ken; Brown, Emery N.

    2013-10-01

    Objective. Burst suppression is an electroencephalogram pattern in which bursts of electrical activity alternate with an isoelectric state. This pattern is commonly seen in states of severely reduced brain activity such as profound general anesthesia, anoxic brain injuries, hypothermia and certain developmental disorders. Devising accurate, reliable ways to quantify burst suppression is an important clinical and research problem. Although thresholding and segmentation algorithms readily identify burst suppression periods, analysis algorithms require long intervals of data to characterize burst suppression at a given time and provide no framework for statistical inference. Approach. We introduce the concept of the burst suppression probability (BSP) to define the brain's instantaneous propensity of being in the suppressed state. To conduct dynamic analyses of burst suppression we propose a state-space model in which the observation process is a binomial model and the state equation is a Gaussian random walk. We estimate the model using an approximate expectation maximization algorithm and illustrate its application in the analysis of rodent burst suppression recordings under general anesthesia and a patient during induction of controlled hypothermia. Main result. The BSP algorithms track burst suppression on a second-to-second time scale, and make possible formal statistical comparisons of burst suppression at different times. Significance. The state-space approach suggests a principled and informative way to analyze burst suppression that can be used to monitor, and eventually to control, the brain states of patients in the operating room and in the intensive care unit.

  8. Intravenous clonidine decreases minimum end-tidal isoflurane for induction of electroencephalographic burst suppression.

    PubMed

    Entholzner, E K; Mielke, L L; Hargasser, S R; Droese, D; Plötz, W; Hipp, R

    1997-07-01

    The aim of this study was to determine the individual end-tidal isoflurane (ET ISO) threshold concentration for the induction of electroencephalographic (EEG) burst suppression with and without intravenous (I.V.) clonidine and to evaluate the EEG and cardiovascular response to skin incision during isoflurane/N2O anesthesia. Thirty-nine patients (ASA physical status I or II, 20-68 yr of age) undergoing orthopedic surgery were randomly assigned to receive I.V. saline (n = 20) or I.V. clonidine (3 microg/kg, n = 19). After detection of isoflurane-induced burst suppression, ET ISO was decreased in 0.1% ET steps until burst suppression diminished. Median minimum ET ISO for induction of burst suppression was 1.4% in the saline group and 0.9% in the clonidine group (P < 0.05). Before skin incision, EEG alpha 2 activity was significantly higher in the clonidine group compared with saline group. Fourteen patients (70%) in the saline group and 12 patients (63%) in the clonidine group showed a cardiovascular response to skin incision. After skin incision, EEG alpha 2 power was significantly decreased in both groups. A significant increase of delta activity was only found in the saline group. We conclude that the known minimum alveolar anesthetic concentration reduction of clonidine seems to be due to a direct cerebral action.

  9. Quark nova model for fast radio bursts

    NASA Astrophysics Data System (ADS)

    Shand, Zachary; Ouyed, Amir; Koning, Nico; Ouyed, Rachid

    2016-05-01

    Fast radio bursts (FRBs) are puzzling, millisecond, energetic radio transients with no discernible source; observations show no counterparts in other frequency bands. The birth of a quark star from a parent neutron star experiencing a quark nova - previously thought undetectable when born in isolation - provides a natural explanation for the emission characteristics of FRBs. The generation of unstable r-process elements in the quark nova ejecta provides millisecond exponential injection of electrons into the surrounding strong magnetic field at the parent neutron star's light cylinder via β-decay. This radio synchrotron emission has a total duration of hundreds of milliseconds and matches the observed spectrum while reducing the inferred dispersion measure by approximately 200 cm‑3 pc. The model allows indirect measurement of neutron star magnetic fields and periods in addition to providing astronomical measurements of β-decay chains of unstable neutron rich nuclei. Using this model, we can calculate expected FRB average energies (˜ 1041 erg) and spectral shapes, and provide a theoretical framework for determining distances.

  10. Quark nova model for fast radio bursts

    NASA Astrophysics Data System (ADS)

    Shand, Zachary; Ouyed, Amir; Koning, Nico; Ouyed, Rachid

    2016-05-01

    Fast radio bursts (FRBs) are puzzling, millisecond, energetic radio transients with no discernible source; observations show no counterparts in other frequency bands. The birth of a quark star from a parent neutron star experiencing a quark nova - previously thought undetectable when born in isolation - provides a natural explanation for the emission characteristics of FRBs. The generation of unstable r-process elements in the quark nova ejecta provides millisecond exponential injection of electrons into the surrounding strong magnetic field at the parent neutron star's light cylinder via β-decay. This radio synchrotron emission has a total duration of hundreds of milliseconds and matches the observed spectrum while reducing the inferred dispersion measure by approximately 200 cm‑3 pc. The model allows indirect measurement of neutron star magnetic fields and periods in addition to providing astronomical measurements of β-decay chains of unstable neutron rich nuclei. Using this model, we can calculate expected FRB average energies (∼ 1041 erg) and spectral shapes, and provide a theoretical framework for determining distances.

  11. The heliocentric radial variation of plasma oscillations associated with type III radio bursts

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Anderson, R. R.; Scarf, F. L.; Kurth, W. S.

    1978-01-01

    A survey is presented of all of the electron plasma oscillation events found to date in association with low-frequency type III solar radio bursts using approximately 9 years of observations from the Imp 6 and 8, Helios 1 and 2, and Voyager 1 and 2 spacecraft. Plasma oscillation events associated with type III radio bursts show a pronounced increase in both the intensity and the frequency of occurrence with decreasing heliocentric radial distance. This radial dependence explains why intense electron plasma oscillations are seldon observed in association with type III radio bursts at the orbit of the earth. Possible interpretations of the observed radial variation in the plasma oscillation intensity are considered.

  12. Tracking Type III Radio Burst Sources in the Solar Corona by Heliographic Means

    NASA Astrophysics Data System (ADS)

    Koval, A. A.; Stanislavsky, A. A.; Konovalenko, A. A.; Volvach, Ya. S.

    We present the preliminary results of heliographic measurements of solar type III radio bursts in the low-frequency range (16.5-33 MHz) using the UTR-2 radio heliograph. The radio astronomy tools permit us to obtain two-dimensional spatial structures of burst sources in dependence of frequency and time. Each heliogram consists of 40 pixels (beams) as a result of the serial sweep in UV-plane wherein signals of each beam are recorded in a dynamic spectrum with both high temporal (˜ 2.482 ms) and top spectral (˜ 4 kHz) resolutions. The rate of output heliograph is one image per 3 seconds. Over a session in April, 2013 many type III radio and IIIb-III bursts were observed. On the heliograms the source motion direction in the upper corona is clearly detectable. The heliogram features are discussed.

  13. Backstreaming Electrons Associated With Solar Electron Bursts

    NASA Astrophysics Data System (ADS)

    Skoug, R. M.; Steinberg, J. T.; de Koning, C. A.; Gosling, J. T.; McComas, D. J.

    2007-12-01

    Solar electron bursts are frequently observed in the ACE/SWEPAM suprathermal electron measurements at energies below 1.4 keV. A significant fraction of such events show backscattered electrons, beginning after the burst onset and traveling back towards the Sun along the magnetic field direction. Such backscattered particles imply a scattering mechanism beyond the spacecraft location. Some bursts also show backstreaming conic distributions, implying mirroring at magnetic field enhancements beyond the spacecraft. Here we present a study of these backstreaming particles during solar electron events. We examine the occurrence of backstreaming electrons and their relationship to other burst characteristics such as pitch angle width, duration, and energy range. We also investigate the time delay between burst onset and the appearance of backscattered electrons, including energy and pitch-angle dispersion. We examine the pitch angle distribution and energy dependence of backstreaming electrons, and consider possible origins of these electron distributions and their relationship to solar wind structure beyond the spacecraft.

  14. Gamma ray bursts: a 1983 overview

    SciTech Connect

    Cline, T.L.

    1983-10-01

    Gamma ray burst observations are reviewed with mention of new gamma-ray and optical transient measurements and with discussions of the controversial, contradictory and unresolved issues that have recently emerged: burst spectra appear to fluctuate in time as rapidly as they are measured, implying that any one spectrum may be incorrect. Energy spectra can be obligingly fitted to practically any desired shape, implying, in effect, that no objective spectral resolution exists at all. Burst fluxes and temporal quantities, including the total event energy, are characterized very differently with differing instruments, implying that even elementary knowledge of their properties is instrumentally subjective. Finally, the log N-log S determinations are deficient in the weak bursts, while there is no detection of a source direction anisotropy, implying that Ptolemy was right or that burst source distance estimates are basically guesswork. These issues may remain unsolved until vastly improved instruments are flown.

  15. Gamma Ray Bursts: a 1983 Overview

    NASA Technical Reports Server (NTRS)

    Cline, T. L.

    1983-01-01

    Gamma ray burst observations are reviewed with mention of new gamma-ray and optical transient measurements and with discussions of the controversial, contradictory and unresolved issues that have recently emerged: burst spectra appear to fluctuate in time as rapidly as they are measured, implying that any one spectrum may be incorrect; energy spectra can be obligingly fitted to practically any desired shape, implying, in effect, that no objective spectral resolution exists at all; burst fluxes and temporal quantities, including the total event energy, are characterized very differently with differing instruments, implying that even elementary knowledge of their properties is instrumentally subjective; finally, the log N-log S determinations are deficient in the weak bursts, while there is no detection of a source direction anisotropy, implying that Ptolemy was right or that burst source distance estimates are basically guesswork. These issues may remain unsolved until vastly improved instruments are flown.

  16. FRBCAT: The Fast Radio Burst Catalogue

    NASA Astrophysics Data System (ADS)

    Petroff, E.; Barr, E. D.; Jameson, A.; Keane, E. F.; Bailes, M.; Kramer, M.; Morello, V.; Tabbara, D.; van Straten, W.

    2016-09-01

    Here, we present a catalogue of known Fast Radio Burst sources in the form of an online catalogue, FRBCAT. The catalogue includes information about the instrumentation used for the observations for each detected burst, the measured quantities from each observation, and model-dependent quantities derived from observed quantities. To aid in consistent comparisons of burst properties such as width and signal-to-noise ratios, we have re-processed all the bursts for which we have access to the raw data, with software which we make available. The originally derived properties are also listed for comparison. The catalogue is hosted online as a Mysql database which can also be downloaded in tabular or plain text format for off-line use. This database will be maintained for use by the community for studies of the Fast Radio Burst population as it grows.

  17. Microsecond flares in gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.; Cohen, Justin; Teegarden, Bonnard J.; Cline, Thomas L.; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.; Paciesas, William S.; Pendleton, Geoffrey N.; Matteson, James L.

    1993-01-01

    It has been suggested that gamma-ray burst light curves may consist of many superposed flares with a duration shorter than 30/microsec. If true, the implications for the interpretation of burst data are enormous. With the launch of the Compton Gamma-Ray Observatory, four predictions of Mitrofanov's (1989) suggestion can be tested. Our results which contradict this suggestion are (1) the photon arrival times are not correlated between independent detectors, (2) the spectral hardness and intensity does not depend on the detector area, (3) the bursts seen by detectors which measure photon positions do not see microsecond flares, and (4) burst positions deduced from detectors with different projected areas are close to the positions deduced from time-of-flight differences between separated spacecraft. We conclude, therefore, that gamma-ray bursts are not composed of microsecond flares.

  18. A novel digital burst demodulator for TDMA satellite communication systems

    NASA Astrophysics Data System (ADS)

    Sakata, Tetsu; Morikura, Masahiro; Kato, Shuzo

    A baseband reverse modulation carrier revovery scheme with phase compensated carrier filters is proposed as a high performance digital burst demodulator for TDMA (Time Division Multiple Access) satellite communication systems. Computer simulations show that the phase acquisition time of the proposed scheme is 90% less than that of the conventional Costas loop scheme, assuming that they have the same carrier cycle slipping rate at an Eb/No of 2dB. Moreover, a novel carrier AFC (Automatic Frequency Control) circuit is proposed to realize simple and digitalized AFC. The proposed AFC circuit reduces the hardware size to 25% of that of a conventional cross product frequency discriminator, and computer simulations show good AFC performance to countermeasure common carrier frequency error.

  19. An Unusual Precursor Burst with Oscillations from SAX J1808.4-3658

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, Sudip; Strohmayer, E.

    2006-01-01

    We report the finding of an unusual, weak precursor to a thermonuclear X-ray burst from the accreting millisecond pulsar SAX 51808.4-3658. The burst in question was observed on Oct. 19, 2002 with the Rossi X-Ray Timing Explorer (RXTE) proportional counter array (PCA). The precursor began approx. equal to 1 s prior to the onset of a strong radius expansion burst, lasted for about 0.4 s, and exhibited strong oscillations at the 401 Hz spin frequency. Oscillations are not detected in the approx. equal to 0.5 s interval between the precursor and the main burst. The estimated peak photon flux and energy fluence of the precursor are about 1/25, and 1/500 that of the main burst, respectively. From joint spectral and temporal modeling, we find that an expanding burning region with a relatively low temperature on the spinning neutron star surface can explain the oscillations, as well as the faintness of the precursor with respect to the main part of the burst. We discuss some of the implications of our findings for the ignition and spreading of thermonuclear flames on neutron stars.

  20. Statistical study of solar type III bursts and auroral kilometric radiation onsets

    SciTech Connect

    Farrell, W.M.; Gurnett, D.A.

    1985-10-01

    Simultaneous occurrences of type III solar radio bursts and auroral kilometric radiation were observed by Calvert using ISEE 1 spectrograms. He presented evidence suggesting that the incoming type III burst stimulates the onset of auroral kilometric radiation (AKR). This paper presents a statistical study of the correlation between type III bursts and auroral kilometric radiation. A superposed epoch analysis was performed on as many as 186 type III events. The type III bursts were detected by the ISEE 3 spacecraft on the sunward side of the earth. At the same time the IMP 8 spacecraft was used to detect onsets of kilometric radiation on the nightside of the earth. For each event the intensities measured by ISEE 3(type III intensities) were subtracted from the intensities measured by IMP 8 (type III and possible AKR intensities). The resulting intensities for each event were then added to determine if kilometric radiation was preferentially observed following a type III burst. This analysis was performed at frequencies of 100, 178, and 500 kHz. The results of this study show that a statistically significant correlation exists between incoming type III bursts from the sun and kilometric radiation from the earth.

  1. Phenomenology of intense electron cyclotron emission bursts during high power neutral beam heating on TFTR (abstract)

    NASA Astrophysics Data System (ADS)

    Taylor, G.; Bush, C. E.; Fredrickson, E.; Park, H. K.; Ramsey, A. T.

    1992-10-01

    A 20-channel grating polychromator has been used to study intense bursts of electron cyclotron emission (ECE) from TFTR deuterium plasmas predominantly heated by 90-110-keV neutral beams (Pinj/Poh≳30). The ECE bursts have a duration of 20-150 μs and are usually seen 300-500 ms after the start of neutral beam injection, when the stored energy and neutron production are collapsing or rolling over. In most cases the ECE bursts have Δf/f˜0.2-0.5, if this frequency spread is due entirely to relativistic broadening it implies an electron energy of 10-100 keV (Core electron temperatures in these plasmas are typically 7-12 keV). The ECE bursts are often correlated with ELM activity during limiter H modes and appear to occur at the beginning of the rise in the Dα signal. In some instances the spectral width of the ECE burst is narrow enough (Δf/f˜0.1) to allow identification of the origin of the emission, in these cases the source appears to be within 0.2 m of the plasma edge and the ECE burst exhibits a delay characteristic of an outwardly directed velocity of 2-3×103 m/s. This work is supported by U.S. Department of Energy Contract No. DE-AC02-76-CHO-3073.

  2. Bursts of non-deglutitive simultaneous contractions may be a normal oesophageal motility pattern.

    PubMed Central

    Janssens, J; Annese, V; Vantrappen, G

    1993-01-01

    The frequency and characteristics of non-deglutitive motor activity of the human oesophagus and its relation to motility patterns in the antrum and upper small intestine were studied in 25 fasted healthy subjects. Motility of the oesophagus, antrum, and upper small intestine was recorded by means of a manometric perfused catheter system. The most striking non-deglutitive motility pattern consisted of repetitive bursts of non-sequential pressure peaks occurring in the smooth muscle portion of the oesophagus. The mean number of pressure peaks per burst was 2.7 (SD 2) waves with a mean amplitude of 19.5 (SD 9.9) mm Hg and a duration of 3.09 (SD 0.22) seconds. The highest amplitude was 80 mm Hg and the longest burst consisted of 13 repetitive waves. The bursts were recorded up to a distance of 15-20 cm above the lower oesophageal sphincter. Ninety five per cent of the bursts occurred during a 15 minute period before the onset of phase 3 of the migrating motor complex in the antral or upper small intestinal area, or during the lower oesophageal sphincter component of the migrating motor complex. In conclusion, spontaneous bursts of non-sequential pressure peaks occurred in the smooth muscle part of the human oesophagus in relation to phase 3 of the migrating motor complex. They represent the oesophageal body component of phase 3 of the migrating motor complex and are not a sign of oesophageal motor abnormalities. PMID:8174946

  3. A search for the radio counterpart to the 1994 March 1 gamma-ray burst

    NASA Technical Reports Server (NTRS)

    Frail, D. A.; Kulkarni, S. R.; Hurley, K. C.; Fishman, G. J.; Kouveliotou, C.; Meegan, C. A.; Sommer, M.; Boer, M.; Niel, M.; Cline, T.

    1994-01-01

    We report on the results of a search for the radio counterpart to the bright gamma-ray burst of 1994 March 1. Using the Dominion Radio Astrophysical Observatory Synthesis Telescope sensitive, wide-field radio images at 1.4 GHz and 0.4 GHz were made of a region around GRB 940301. A total of 15 separate radio images were obtained at each frequency, sampling a near-continuous range of post-burst timescales between 3 and 15 days, as well as 26, 47, and 99 days. We place an upper limit of 3.5 mJy on a fading/flaring radio counterpart at 1.4 GHz and 55 mJy at 0.4 GHz. Unlike past efforts our counterpart search maintains high sensitivity over two decades of post-burst time durations. Time-variable radio emission after the initial gamma-ray burst is a prediction of all fireball models, currently the most popular model for gamma-ray bursts. Our observations allow us to put significant constraints on the fireball parameters for cosmological models of gamma-ray bursts.

  4. Characterization of Asymmetry in Magnetoacoustic Emission Burst by Numerical Processes

    NASA Technical Reports Server (NTRS)

    Namkung, M.; Fulton, J. P.; Wincheski, B.; DeNale, R.

    1991-01-01

    It has been well known that the pattern of the magnetoacoustic emission (MAE) burst observed during the sweep over one half-cycle of the hysteresis loop becomes asymmetric depending on the strength of the magnetic domain wall-defect interaction and the state of residual stresses in a ferromagnet. The ascending asymmetry due to the former has been observed at a very low frequency (.7 Hz) of applied AC magnetic field at a given amplitude. The descending asymmetry due to uniaxial compressive stress has been typically observed at the AC applied magnetic field frequency of 20 Hz. The physical interpretation of both types of asymmetry has been well established. It is, however, necessary to perform investigations of the dependence of asymmetry on externally controlled parameters such as the amplitude and frequency of the AC applied magnetic fields. The purpose of the present study is therefore to devise a mathematical means that describes the degree of asymmetry of the MAE burst and apply this scheme to investigate the AC magnetic field amplitude dependence of the asymmetry.

  5. Wave-wave interactions in solar type III radio bursts

    SciTech Connect

    Thejappa, G.; MacDowall, R. J.

    2014-02-11

    The high time resolution observations from the STEREO/WAVES experiment show that in type III radio bursts, the Langmuir waves often occur as localized magnetic field aligned coherent wave packets with durations of a few ms and with peak intensities well exceeding the strong turbulence thresholds. Some of these wave packets show spectral signatures of beam-resonant Langmuir waves, down- and up-shifted sidebands, and ion sound waves, with frequencies, wave numbers, and tricoherences satisfying the resonance conditions of the oscillating two stream instability (four wave interaction). The spectra of a few of these wave packets also contain peaks at f{sub pe}, 2f{sub pe} and 3 f{sub pe} (f{sub pe} is the electron plasma frequency), with frequencies, wave numbers and bicoherences (computed using the wavelet based bispectral analysis techniques) satisfying the resonance conditions of three wave interactions: (1) excitation of second harmonic electromagnetic waves as a result of coalescence of two oppositely propagating Langmuir waves, and (2) excitation of third harmonic electromagnetic waves as a result of coalescence of Langmuir waves with second harmonic electromagnetic waves. The implication of these findings is that the strong turbulence processes play major roles in beam stabilization as well as conversion of Langmuir waves into escaping radiation in type III radio bursts.

  6. The 2006-2007 Active Phase of Anomalous X-Ray Pulsar 4U 0142+61: Radiative and Timing Changes, Bursts,and Burst Spectral Features

    NASA Technical Reports Server (NTRS)

    Gavriil, Fotis P.; Dib, Rim; Kaspi, Victoria M.

    2011-01-01

    After at least 6 years of quiescence, Anomalous X-ray Pulsar (AXP) 4U 0142+61 entered an active phase in 2006 March that lasted several months and included six X-ray bursts as well as many changes in the persistent X-ray emission. The bursts, the first seen from this AXP in > 11 years of Rossi X-ray Timing Explorer monitoring, all occurred in the interval between 2006 April 6 and 2007 February 7. The burst durations ranged from 0.4 - 1.8 x 10(exp 3) s. The first five burst spectra are well modeled by blackbodies, with temperatures kT approx 2 - 9 keV. However, the sixth burst had a complicated spectrum that is well characterized by a blackbody plus two emission features whose amplitude varied throughout the burst. The most prominent feature was at 14.0 keV. Upon entry into the active phase the pulsar showed a significant change in pulse morphology and a likely timing glitch. The glitch had a total frequency jump of (1.9+/-0.4) x 10(exp -7) Hz, which recovered with a decay time of 17+/-2 days by more than the initial jump, implying a net spin-down of the pulsar. Within the framework of the magnetar model, the net spin-down of the star could be explained by regions of the superfluid that rotate. slower than the rest. The bursts, flux enhancements, and pulse morphology changes can be explained as arising from crustal deformations due to stresses imposed by the highly twisted internal magnetic field. However, unlike other AXP outbursts, we cannot account for a major twist being implanted in the magnetosphere.

  7. Unveiling the population of orphan γ-ray bursts

    NASA Astrophysics Data System (ADS)

    Ghirlanda, G.; Salvaterra, R.; Campana, S.; Vergani, S. D.; Japelj, J.; Bernardini, M. G.; Burlon, D.; D'Avanzo, P.; Melandri, A.; Gomboc, A.; Nappo, F.; Paladini, R.; Pescalli, A.; Salafia, O. S.; Tagliaferri, G.

    2015-06-01

    Gamma-ray bursts (GRBs) are detectable in the γ-ray band if their jets are oriented toward the observer. However, for each GRB with a typical θjet, there should be ~2/θ2jet bursts whose emission cone is oriented elsewhere in space. These off-axis bursts can eventually be detected when, due to the deceleration of their relativistic jets, the beaming angle becomes comparable to the viewing angle. Orphan afterglows (OAs) should outnumber the current population of bursts detected in the γ-ray band even if they have not been conclusively observed so far at any frequency. We compute the expected flux of the population of orphan afterglows in the mm, optical, and X-ray bands through a population synthesis code of GRBs and the standard afterglow emission model. We estimate the detection rate of OAs with ongoing and forthcoming surveys. The average duration of OAs as transients above a given limiting flux is derived and described with analytical expressions: in general OAs should appear as daily transients in optical surveys and as monthly/yearly transients in the mm/radio band. We find that ~2 OA yr-1 could already be detected by Gaia and up to 20 OA yr-1 could be observed by the ZTF survey. A larger number of 50 OA yr-1 should be detected by LSST in the optical band. For the X-ray band, ~26 OA yr-1 could be detected by the eROSITA. For the large population of OA detectable by LSST, the X-ray and optical follow up of the light curve (for the brightest cases) and/or the extensive follow up of their emission in the mm and radio band could be the key to disentangling their GRB nature from other extragalactic transients of comparable flux density.

  8. Cloaked Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Eichler, David

    2014-06-01

    It is suggested that many gamma-ray bursts (GRBs) are cloaked by an ultrarelativistic baryonic shell that has high optical depth when the photons are manufactured. Such a shell would not fully block photons reflected or emitted from its inner surface, because the radial velocity of the photons can be less than that of the shell. This avoids the standard problem associated with GRBs that the thermal component should be produced where the flow is still obscured by high optical depth. The radiation that escapes high optical depth obeys the Amati relation. Observational implications may include (1) anomalously high ratios of afterglow to prompt emission, such as may have been the case in the recently discovered PTF 11agg, and (2) ultrahigh-energy neutrino pulses that are non-coincident with detectable GRB. It is suggested that GRB 090510, a short, very hard GRB with very little afterglow, was an exposed GRB, in contrast to those cloaked by baryonic shells.

  9. CLOAKED GAMMA-RAY BURSTS

    SciTech Connect

    Eichler, David

    2014-06-01

    It is suggested that many gamma-ray bursts (GRBs) are cloaked by an ultrarelativistic baryonic shell that has high optical depth when the photons are manufactured. Such a shell would not fully block photons reflected or emitted from its inner surface, because the radial velocity of the photons can be less than that of the shell. This avoids the standard problem associated with GRBs that the thermal component should be produced where the flow is still obscured by high optical depth. The radiation that escapes high optical depth obeys the Amati relation. Observational implications may include (1) anomalously high ratios of afterglow to prompt emission, such as may have been the case in the recently discovered PTF 11agg, and (2) ultrahigh-energy neutrino pulses that are non-coincident with detectable GRB. It is suggested that GRB 090510, a short, very hard GRB with very little afterglow, was an exposed GRB, in contrast to those cloaked by baryonic shells.

  10. Spatiotemporal chaos from bursting dynamics

    SciTech Connect

    Berenstein, Igal; De Decker, Yannick

    2015-08-14

    In this paper, we study the emergence of spatiotemporal chaos from mixed-mode oscillations, by using an extended Oregonator model. We show that bursting dynamics consisting of fast/slow mixed mode oscillations along a single attractor can lead to spatiotemporal chaotic dynamics, although the spatially homogeneous solution is itself non-chaotic. This behavior is observed far from the Hopf bifurcation and takes the form of a spatiotemporal intermittency where the system locally alternates between the fast and the slow phases of the mixed mode oscillations. We expect this form of spatiotemporal chaos to be generic for models in which one or several slow variables are coupled to activator-inhibitor type of oscillators.

  11. Gaze shift duration, independent of amplitude, influences the number of spikes in the burst for medium-lead burst neurons in pontine reticular formation

    PubMed Central

    Freedman, Edward G.

    2013-01-01

    Abstract Changes in the direction of the line of sight (gaze) allow successive sampling of the visual environment. Saccadic eye movements accomplish this goal when the head does not move. Medium-lead burst neurons (MLBs) in the paramedian pontine reticular formation (PPRF) discharge a high frequency burst of action potentials starting ~12 ms before the saccade begins. A subgroup of MLBs rostral of abducens nucleus monosynaptically excites oculomotor neurons. The number of spikes in the presaccadic burst is correlated with the amplitude of the horizontal component of the saccade, and the peak discharge rate is correlated with peak eye velocity. During head-unrestrained gaze shifts, a linear relationship between the number of action potentials in MLB bursts and gaze (but not eye) amplitude has been reported. The anatomical connection of MLBs to motor neurons and the similarity between the phasic motor neuron burst and MLB discharge have raised questions about the usefulness of counting spikes in MLBs to determine their role in eye-head coordination. We investigated this issue using a behavioral technique that permits a dissociation of eye movement amplitude and duration during constant vector gaze shifts. Surprisingly, during gaze shifts of constant amplitude and direction, we observe a nearly linear, positive correlation between saccade duration and spike number associated with a negative correlation between spike number and saccade amplitude. These data constrain models of the oculomotor controller and may further define the time-dependence of hypothesized neural integration in this system. PMID:21842410

  12. Observing a Burst with Sunglasses

    NASA Astrophysics Data System (ADS)

    2003-11-01

    Unique Five-Week VLT Study of the Polarisation of a Gamma-Ray Burst Afterglow "Gamma-ray bursts (GRBs)" are certainly amongst the most dramatic events known in astrophysics. These short flashes of energetic gamma-rays, first detected in the late 1960's by military satellites, last from less than one second to several minutes. GRBs have been found to be situated at extremely large ("cosmological") distances. The energy released in a few seconds during such an event is larger than that of the Sun during its entire lifetime of more than 10,000 million years. The GRBs are indeed the most powerful events since the Big Bang known in the Universe, cf. ESO PR 08/99 and ESO PR 20/00. During the past years circumstantial evidence has mounted that GRBs signal the collapse of extremely massive stars, the so-called hypernovae. This was finally demonstrated some months ago when astronomers, using the FORS instrument on ESO's Very Large Telescope (VLT), documented in unprecedented detail the changes in the spectrum of the light source ("the optical afterglow") of the gamma-ray burst GRB 030329 (cf. ESO PR 16/03). A conclusive and direct link between cosmological gamma-ray bursts and explosions of very massive stars was provided on this occasion. Gamma-Ray Burst GRB 030329 was discovered on March 29, 2003 by NASA's High Energy Transient Explorer spacecraft. Follow-up observations with the UVES spectrograph at the 8.2-m VLT KUEYEN telescope at the Paranal Observatory (Chile) showed the burst to have a redshift of 0.1685 [1]. This corresponds to a distance of about 2,650 million light-years, making GRB 030329 the second-nearest long-duration GRB ever detected. The proximity of GRB 030329 resulted in very bright afterglow emission, permitting the most extensive follow-up observations of any afterglow to date. A team of astronomers [2] led by Jochen Greiner of the Max-Planck-Institut für extraterrestrische Physik (Germany) decided to make use of this unique opportunity to study the

  13. Testing for lightning as a source of radio bursts observed on the nightside of Venus

    NASA Technical Reports Server (NTRS)

    Sonwalkar, Vikas S.; Carpenter, D. L.; Strangeway, R. J.

    1990-01-01

    In certain previous studies of radio burst events recorded by the Pioneer Venus Orbiting Electric Field Detector (OEFD), data were sorted for statistical purposes according to occurrence at filter band frequencies smaller than or greater than typical values of the ambient electron gyrofrequency. The expectation in making this distinction was that the lowest frequency signals, at 100 Hz, were candidates for propagation through the ionosphere to the spacecraft in the whistler mode, and that the higher frequency signals, if of subionospheric origin, would require some different ionospheric penetration mechanism. On the basis of certain assumptions about the homogeneity and horizontal stratification of the Venusian nightside ionosphere, methods were developed for case-by-case testing of the hypothesis that any particular burst event originated in subionospheric lightning. The tests, which are capable of refinement, allow prediction of the resonance cone angle, refractive index, wave dispersion, and wave polarization. The tests have been applied to data from 11 periods along 7 orbits, and are believed to represent an improved way of categorizing OEFD burst data for purposes of investigating source/propagation mechanisms. Four of the five burst events that were not found consistent with the lightning hypothesis involved receptions at multiple OEFD filter band frequencies.

  14. Transcriptional bursting explains the noise–versus–mean relationship in mRNA and protein levels

    DOE PAGES

    Dar, Roy; Shaffer, Sydney M.; Singh, Abhyudai; Razooky, Brandon S.; Simpson, Michael L.; Raj, Arjun; Weinberger, Leor S.

    2016-07-28

    Recent analysis demonstrates that the HIV-1 Long Terminal Repeat (HIV LTR) promoter exhibits a range of possible transcriptional burst sizes and frequencies for any mean-expression level. However, these results have also been interpreted as demonstrating that cell-tocell expression variability (noise) and mean are uncorrelated, a significant deviation from previous results. Here, we re-examine the available mRNA and protein abundance data for the HIV LTR and find that noise in mRNA and protein expression scales inversely with the mean along analytically predicted transcriptional burst-size manifolds. We then experimentally perturb transcriptional activity to test a prediction of the multiple burst-size model: thatmore » increasing burst frequency will cause mRNA noise to decrease along given burst-size lines as mRNA levels increase. In conclusion, the data show that mRNA and protein noise decrease as mean expression increases, supporting the canonical inverse correlation between noise and mean.« less

  15. Fanning the Flames: X-ray Burst Probes of Nuclear Burning

    NASA Astrophysics Data System (ADS)

    Mahmoodifar, Simin; Strohmayer, Tod

    2015-04-01

    Type I X-ray bursts are thermonuclear explosions observed in many accreting neutron stars (NSs) that result from rapid unstable burning of hydrogen and helium accreted onto the surface of the star. During an X-ray burst the X-ray flux rapidly rises by a factor of 10-20 in a couple of seconds and then decays on a longer timescale as the surface of the star cools. Oscillations have been detected during the rise and/or decay of some of these X-ray bursts that have frequencies within a few Hz of the stellar spin frequency and must be due to nonuniform emission from the stellar surface. Here I discuss the results of simulations of the rise and decay of a typical X-ray burst light curve and the evolution of their fractional oscillation amplitudes. We generate light curves using a physical model for a spreading hot spot, taking into account the effect of the Coriolis force (latitude-dependent flame spreading speed), as well as relativistic effects. I will explain how the combination of the light curve and fractional amplitude evolution can constrain the properties of the flame spreading, such as ignition latitude, which would be important for measuring NSs masses and radii using X-ray burst oscillations. I discuss the prospects for future X-ray missions such as ESA's LOFT in this area.

  16. Chaotic phase synchronization in small-world networks of bursting neurons.

    PubMed

    Yu, Haitao; Wang, Jiang; Deng, Bin; Wei, Xile; Wong, Y K; Chan, W L; Tsang, K M; Yu, Ziqi

    2011-03-01

    We investigate the chaotic phase synchronization in a system of coupled bursting neurons in small-world networks. A transition to mutual phase synchronization takes place on the bursting time scale of coupled oscillators, while on the spiking time scale, they behave asynchronously. It is shown that phase synchronization is largely facilitated by a large fraction of shortcuts, but saturates when it exceeds a critical value. We also study the external chaotic phase synchronization of bursting oscillators in the small-world network by a periodic driving signal applied to a single neuron. It is demonstrated that there exists an optimal small-world topology, resulting in the largest peak value of frequency locking interval in the parameter plane, where bursting synchronization is maintained, even with the external driving. The width of this interval increases with the driving amplitude, but decrease rapidly with the network size. We infer that the externally applied driving parameters outside the frequency locking region can effectively suppress pathologically synchronized rhythms of bursting neurons in the brain.

  17. Transcriptional Bursting Explains the Noise–Versus–Mean Relationship in mRNA and Protein Levels

    PubMed Central

    Dar, Roy D.; Shaffer, Sydney M.; Singh, Abhyudai; Razooky, Brandon S.; Simpson, Michael L.; Raj, Arjun; Weinberger, Leor S.

    2016-01-01

    Recent analysis demonstrates that the HIV-1 Long Terminal Repeat (HIV LTR) promoter exhibits a range of possible transcriptional burst sizes and frequencies for any mean-expression level. However, these results have also been interpreted as demonstrating that cell-to-cell expression variability (noise) and mean are uncorrelated, a significant deviation from previous results. Here, we re-examine the available mRNA and protein abundance data for the HIV LTR and find that noise in mRNA and protein expression scales inversely with the mean along analytically predicted transcriptional burst-size manifolds. We then experimentally perturb transcriptional activity to test a prediction of the multiple burst-size model: that increasing burst frequency will cause mRNA noise to decrease along given burst-size lines as mRNA levels increase. The data show that mRNA and protein noise decrease as mean expression increases, supporting the canonical inverse correlation between noise and mean. PMID:27467384

  18. Chaotic phase synchronization in small-world networks of bursting neurons

    NASA Astrophysics Data System (ADS)

    Yu, Haitao; Wang, Jiang; Deng, Bin; Wei, Xile; Wong, Y. K.; Chan, W. L.; Tsang, K. M.; Yu, Ziqi

    2011-03-01

    We investigate the chaotic phase synchronization in a system of coupled bursting neurons in small-world networks. A transition to mutual phase synchronization takes place on the bursting time scale of coupled oscillators, while on the spiking time scale, they behave asynchronously. It is shown that phase synchronization is largely facilitated by a large fraction of shortcuts, but saturates when it exceeds a critical value. We also study the external chaotic phase synchronization of bursting oscillators in the small-world network by a periodic driving signal applied to a single neuron. It is demonstrated that there exists an optimal small-world topology, resulting in the largest peak value of frequency locking interval in the parameter plane, where bursting synchronization is maintained, even with the external driving. The width of this interval increases with the driving amplitude, but decrease rapidly with the network size. We infer that the externally applied driving parameters outside the frequency locking region can effectively suppress pathologically synchronized rhythms of bursting neurons in the brain.

  19. The Case of the Disappearing Spindle Burst

    PubMed Central

    Tiriac, Alexandre; Blumberg, Mark S.

    2016-01-01

    Sleep spindles are brief cortical oscillations at 10–15 Hz that occur predominantly during non-REM (quiet) sleep in adult mammals and are thought to contribute to learning and memory. Spindle bursts are phenomenologically similar to sleep spindles, but they occur predominantly in early infancy and are triggered by peripheral sensory activity (e.g., by retinal waves); accordingly, spindle bursts are thought to organize neural networks in the developing brain and establish functional links with the sensory periphery. Whereas the spontaneous retinal waves that trigger spindle bursts in visual cortex are a transient feature of early development, the myoclonic twitches that drive spindle bursts in sensorimotor cortex persist into adulthood. Moreover, twitches—and their associated spindle bursts—occur exclusively during REM (active) sleep. Curiously, despite the persistence of twitching into adulthood, twitch-related spindle bursts have not been reported in adult sensorimotor cortex. This raises the question of whether such spindle burst activity does not occur in adulthood or, alternatively, occurs but has yet to be discovered. If twitch-related spindle bursts do occur in adults, they could contribute to the calibration, maintenance, and repair of sensorimotor systems. PMID:27119028

  20. Development report for dual-burst disks

    SciTech Connect

    Fusco, A.M.

    1996-11-01

    Burst disks, commonly used in pressure relief applications, were studied as single-use valves. A dual-burst disk design was chosen for primary investigation for systems involving separation of gases of two significantly different pressures. The two disks are used to seal either end of a piston cavity that has a different cross-sectional area on each side. Different piston surface areas are used to maintain hydrostatic equilibrium, P{sub 1}A{sub 1} = P{sub 2}A{sub 2}. The single-use valve functions when the downstream pressure is reduced to approximately atmospheric pressure, creating a pressure differential that causes the burst disks to fail. Several parameters were studied to determine the optimum design of the burst disk. These parameters include thickness, diameter, area/pressure ratio, scoring, and disk geometry. The disk material was limited to 304L stainless steel. Factors that were considered essential to the optimization of the design were robustness, manufacturability, and burst pressure variability. The thicknesses of the disks that were studied range from 0.003 in. to 0.010 in. A model for predicting burst pressures of the burst disks was derived. The model combines membrane stress theory with force/displacement data to predict the burst pressure of various designs to within {+-}10%. This model results from studies that characterize the behavior of individual small and large disks. Welding techniques used to join the dual-disk assembly are discussed. Laser welds are used to join and seal the disks to the bulkhead. These welds were optimized for repeatability and robustness. Resistance upset welding is suggested for joining the dual-disk assembly to the pressure vessel body. Resistance upset weld parameters were developed for this particular design so as to minimize the side effects on the burst-disk performance and to provide high-quality welds.

  1. Correlation of magnetoelectric and delta-E effects in ferromagnetic-piezoelectric layered composites

    NASA Astrophysics Data System (ADS)

    Laletin, V. M.; Srinivasan, G.; Bichurin, M. I.

    2005-03-01

    Magnetoelectric (ME) coupling and its dependence on delta-E-effect have been studied in trilayers of ferromagnetic metals and lead zirconate titanate (PZT). Measurements on samples with PZT and Fe, Co, Ni or permendur (an alloy of Co-Fe-V) show evidence for strong ME interactions. Our theoretical model for bias magnetic field H dependence of ME effect predicts contributions due to two mechanisms: variation of piezomagnetic and compliance coefficients with H. The individual contributions from the two sources can be measured in the electromechanical resonance (EMR) region for the composite. Data on frequency dependence of ME coefficient reveal a giant coupling at electromechanical resonance (EMR), at 200-300 kHz for radial modes and at ˜2.7 MHz for thickness modes. Variation of compliance coefficients with H (delta-E-effect) results in a frequency shift of peak ME voltage coefficient. Theoretical profiles of ME coefficient vs. frequency agree with the data. These results are of importance for the design of signal processing devices that requires fine tuning. 1. M. I. Bichurin, D.A. Filippov, V. M. Petrov, V. M. Laletin, N. Paddubnaya, and G. Srinivasan, Phys. Rev. B 68, 132408 (2003). - supported by grants from the Russian Ministry of Education (Å02-3.4-278), the Universities of Russia Foundation (UNR 01.01.026) and the National Science Foundation (DMR-0302254).

  2. Eddy current technique for predicting burst pressure

    DOEpatents

    Petri, Mark C.; Kupperman, David S.; Morman, James A.; Reifman, Jaques; Wei, Thomas Y. C.

    2003-01-01

    A signal processing technique which correlates eddy current inspection data from a tube having a critical tubing defect with a range of predicted burst pressures for the tube is provided. The method can directly correlate the raw eddy current inspection data representing the critical tubing defect with the range of burst pressures using a regression technique, preferably an artificial neural network. Alternatively, the technique deconvolves the raw eddy current inspection data into a set of undistorted signals, each of which represents a separate defect of the tube. The undistorted defect signal which represents the critical tubing defect is related to a range of burst pressures utilizing a regression technique.

  3. Deltas of the Lake Malawi rift, east Africa: Seismic expression and exploration implications

    SciTech Connect

    Scholz, C.A.

    1995-11-01

    High-resolution, air-gun-sourced seismic reflection surveys over the offshore regions of five river deltas in Lake Malawi in the East African rift system reveal considerable variability in acoustic facies and stratigraphic architecture. This variability can largely be attributed to the influences of different structural settings, and to a lesser degree to high-amplitude (100-400 m) and high-frequency (1000 to 100,000 yr) fluctuations in lake level. Deltas on flexural and axial margins in the rift lake show well-developed progradational geometries. In contrast, a delta on a steep, accommodation zone margin distributes coarse sediments over a broad depositional apron, rather than concentrating sediment in discrete progradational lobes as on the other deltas. A large border fault margin river delta displays the most complex tectonic and stratigraphic architecture of all the deltas studied. It contains several delta-associated facies, including prograding clinoform packages, fan deltas stacked against a boundary fault, and extensive subaqueous fans. Flexural margin lowstand deltas may be the most prospective for hydrocarbon exploration due to their large, internally well-organized, progradational lobes and their close proximity to deep-water, high total organic carbon lacustrine source facies.

  4. Calcium-activated afterhyperpolarizations regulate synchronization and timing of epileptiform bursts in hippocampal CA3 pyramidal neurons.

    PubMed

    Fernández de Sevilla, David; Garduño, Julieta; Galván, Emilio; Buño, Washington

    2006-12-01

    Calcium-activated potassium conductances regulate neuronal excitability, but their role in epileptogenesis remains elusive. We investigated in rat CA3 pyramidal neurons the contribution of the Ca(2+)-activated K(+)-mediated afterhyperpolarizations (AHPs) in the genesis and regulation of epileptiform activity induced in vitro by 4-aminopyridine (4-AP) in Mg(2+)-free Ringer. Recurring spike bursts terminated by prolonged AHPs were generated. Burst synchronization between CA3 pyramidal neurons in paired recordings typified this interictal-like activity. A downregulation of the medium afterhyperpolarization (mAHP) paralleled the emergence of the interictal-like activity. When the mAHP was reduced or enhanced by apamin and EBIO bursts induced by 4-AP were increased or blocked, respectively. Inhibition of the slow afterhyperpolarization (sAHP) with carbachol, t-ACPD, or isoproterenol increased bursting frequency and disrupted burst regularity and synchronization between pyramidal neuron pairs. In contrast, enhancing the sAHP by intracellular dialysis with KMeSO(4) reduced burst frequency. Block of GABA(A-B) inhibitions did not modify the abnormal activity. We describe novel cellular mechanisms where 1) the inhibition of the mAHP plays an essential role in the genesis and regulation of the bursting activity by reducing negative feedback, 2) the sAHP sets the interburst interval by decreasing excitability, and 3) bursting was synchronized by excitatory synaptic interactions that increased in advance and during bursts and decreased throughout the subsequent sAHP. These cellular mechanisms are active in the CA3 region, where epileptiform activity is initiated, and cooperatively regulate the timing of the synchronized rhythmic interictal-like network activity. PMID:16971683

  5. Burst ArcSecond Imaging & Spectroscopy (BASIS): A Gamma-Ray Burst Mission Concept

    NASA Astrophysics Data System (ADS)

    Gehrels, N.; Teegarden, B.; Barbier, L.; Cline, T.; Parsons, A.; Tueller, J.; Barthelmy, S.; Palmer, D.; Krizmanic, J.; Fenimore, E.; Fishman, G.; Kouveliotou, C.; Hurley, K.; Paciesas, W.; van Paradijs, J.; Woosley, S.; Leventhal, M.; McCammon, D.; Sanders, W.; Schaefer, B.

    1996-12-01

    We are studying a gamma-ray burst mission concept called Burst ArcSecond Imaging and Spectroscopy (BASIS) as part of NASA's New Mission Concepts for Astrophysics program. The scientific objectives are to accurately locate bursts, determine their distance scale, and measure the physical characteristics of the emission region. Arcsecond burst positions (angular resolution ~ 30 arcsec, source positions ~ 3 arcsec for >10(-6) erg/cm(2) bursts) would be obtained for ~ 100 bursts per year using the 10-100 keV emission. This would allow the first deep, unconfused counterpart searches at other wavelengths. The key technological breakthrough that makes such measurements possible is the development of CdZnTe room-temperature semiconductor detectors with fine ( ~ 100 micron) spatial resolution. A secondary scientific objective is to perform a sensitive hard x-ray all-sky survey. A description of the mission concept and its scientific objectives will be presented.

  6. The Long Wavelength Array: Imaging Solar Bursts and CMEs

    NASA Astrophysics Data System (ADS)

    Gopalswamy, N.; Lazio, T. J. W.; Kassim, N. E.; Erickson, W. C.

    1999-05-01

    Almost all of the transient disturbances in the Sun-Earth connected space are amenable to probing by metric and decametric radio wavelengths (150 MHz down to ionospheric cut-off at 15 MHz). The long wavelength radio imaging with polarization capability is virtually the only way of measuring magnetic fields in the outer corona and hence an important tool in the study of long-term evolution of the Sun as it sheds its magnetic field through coronal mass ejections (CMEs). Shocks generated during the CMEs are detected as type II radio bursts; some of the energetic electrons are detected as type III bursts; ejected plasmoids are observed as type IV bursts. Ionospheric effects used to pose a major problem for long wavelength imaging. We now know that most of the shortcomings due to ionospheric effects can be virtually eliminated, thanks to the development in image restoration such as self-calibration (Kassim and Erickson, 1998). Low frequency technologies are relatively cheap and well proven. A synergistic combination of a ground based Long Wavelength Array (LWA) and the space-borne coronagraphs such as on board the STEREO mission could prove to be an extremely powerful tool to understand the interplanetary propagation of solar disturbances. Passive imaging of solar emissions can also be combined with radar imaging to increase the scientific return of the LWA (see poster by Lazio et al). The low frequency regime has also the advantage of combining solar physics with non-solar radio astronomy: Sun in the day time and the rest of the universe at night (see poster by Kassim et al). NG is an NAS/NRC Senior Research Associate at NASA/GSFC on leave from the Catholic University. Basic research in radio astronomy at the Naval Research Laboratory is supported by the Office of Naval Research.

  7. Review of delta wing space shuttle vehicle dynamics

    NASA Technical Reports Server (NTRS)

    Reding, J. P.; Ericsson, L. E.

    1972-01-01

    The unsteady aerodynamics of the delta planform, high cross range, shuttle orbiter were investigated. It has been found that these vehicles are subject to five unsteady flow phenomena that could compromise the flight dynamics. They are: (1) leeside shock induced separation, (2) sudden leading edge stall, (3) vortex burst, (4) bow shock-flap shock interaction, (5) forebody vorticity. Trajectory shaping is seen as the most powerful means of avoiding the detrimental effects of the stall phenomena. However, stall must be fixed or controlled when traversing the stall region. The other phenomena may be controlled by carefully programmed control deflections and some configuration modification. Ways to alter the occurrence of the various flow conditions are explored.

  8. Review of delta wing space shuttle vehicle dynamics

    NASA Technical Reports Server (NTRS)

    Reding, J. P.; Ericsson, L. E.

    1971-01-01

    The unsteady aerodynamics of the proposed delta planform, high cross range, shuttle orbiters, are investigated. It is found that these vehicles are subject to five unsteady-flow phenomena that could compromise the flight dynamics. The phenomena are as follows: (1) leeside shock-induced separation, (2) sudden leading-edge stall, (3) vortex burst, (4)bow shock-flap shock interaction, and (5) forebody vorticity. Trajectory shaping is seen as the most powerful means of avoiding deterimental effects of the stall phenomena; however, stall must be fixed or controlled when traversing the stall region. Other phenomana may be controlled by carefully programmed control deflections and some configuration modifications. Ways to alter the occurrence of the various flow conditions are explored.

  9. High resolution observations with Artemis-IV and the NRH. I. Type IV associated narrow-band bursts

    NASA Astrophysics Data System (ADS)

    Bouratzis, C.; Hillaris, A.; Alissandrakis, C. E.; Preka-Papadema, P.; Moussas, X.; Caroubalos, C.; Tsitsipis, P.; Kontogeorgos, A.

    2016-02-01

    Context. Narrow-band bursts appear on dynamic spectra from microwave to decametric frequencies as fine structures with very small duration and bandwidth. They are believed to be manifestations of small scale energy release through magnetic reconnection. Aims: We analyzed 27 metric type IV events with embedded narrow-band bursts, which were observed by the ARTEMIS-IV radio spectrograph from 30 June 1999 to 1 August 2010. We examined the morphological characteristics of isolated narrow-band structures (mostly spikes) and groups or chains of structures. Methods: The events were recorded with the SAO high resolution (10 ms cadence) receiver of ARTEMIS-IV in the 270-450 MHz range. We measured the duration, spectral width, and frequency drift of ~12 000 individual narrow-band bursts, groups, and chains. Spike sources were imaged with the Nançay radioheliograph (NRH) for the event of 21 April 2003. Results: The mean duration of individual bursts at fixed frequency was ~100 ms, while the instantaneous relative bandwidth was ~2%. Some bursts had measurable frequency drift, either positive or negative. Quite often spikes appeared in chains, which were closely spaced in time (column chains) or in frequency (row chains). Column chains had frequency drifts similar to type-IIId bursts, while most of the row chains exhibited negative frequently drifts with a rate close to that of fiber bursts. From the analysis of NRH data, we found that spikes were superimposed on a larger, slowly varying, background component. They were polarized in the same sense as the background source, with a slightly higher degree of polarization of ~65%, and their size was about 60% of their size in total intensity. Conclusions: The duration and bandwidth distributions did not show any clear separation in groups. Some chains tended to assume the form of zebra, lace stripes, fiber bursts, or bursts of the type-III family, suggesting that such bursts might be resolved in spikes when viewed with high

  10. Complex transitions between spike, burst or chaos synchronization states in coupled neurons with coexisting bursting patterns

    NASA Astrophysics Data System (ADS)

    Gu, Hua-Guang; Chen, Sheng-Gen; Li, Yu-Ye

    2015-05-01

    We investigated the synchronization dynamics of a coupled neuronal system composed of two identical Chay model neurons. The Chay model showed coexisting period-1 and period-2 bursting patterns as a parameter and initial values are varied. We simulated multiple periodic and chaotic bursting patterns with non-(NS), burst phase (BS), spike phase (SS), complete (CS), and lag synchronization states. When the coexisting behavior is near period-2 bursting, the transitions of synchronization states of the coupled system follows very complex transitions that begins with transitions between BS and SS, moves to transitions between CS and SS, and to CS. Most initial values lead to the CS state of period-2 bursting while only a few lead to the CS state of period-1 bursting. When the coexisting behavior is near period-1 bursting, the transitions begin with NS, move to transitions between SS and BS, to transitions between SS and CS, and then to CS. Most initial values lead to the CS state of period-1 bursting but a few lead to the CS state of period-2 bursting. The BS was identified as chaos synchronization. The patterns for NS and transitions between BS and SS are insensitive to initial values. The patterns for transitions between CS and SS and the CS state are sensitive to them. The number of spikes per burst of non-CS bursting increases with increasing coupling strength. These results not only reveal the initial value- and parameter-dependent synchronization transitions of coupled systems with coexisting behaviors, but also facilitate interpretation of various bursting patterns and synchronization transitions generated in the nervous system with weak coupling strength. Project supported by the National Natural Science Foundation of China (Grant Nos. 11372224 and 11402039) and the Fundamental Research Funds for Central Universities designated to Tongji University (Grant No. 1330219127).

  11. Spatially resolved observations of a split-band coronal type II radio burst

    NASA Astrophysics Data System (ADS)

    Zimovets, I.; Vilmer, N.; Chian, A. C.-L.; Sharykin, I.; Struminsky, A.

    2012-11-01

    Context. The origin of coronal type II radio bursts and the nature of their band splitting are still not fully understood, though a number of scenarios have been proposed to explain them. This is largely due to the lack of detailed spatially resolved observations of type II burst sources and of their relations to magnetoplasma structure dynamics in parental active regions. Aims: To make progress in solving this problem on the basis of one extremely well observed solar eruptive event. Methods: The relative dynamics of multithermal eruptive plasmas, observed in detail by the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory, and of harmonic type II burst sources, observed by the Nançay Radioheliograph at ten frequencies from 445 to 151 MHz, was studied for the 3 November 2010 event arising from an active region behind the east solar limb. Special attention was given to the band splitting of the burst. Analysis was supplemented by investigation of coronal hard X-ray (HXR) sources observed by the Reuven Ramaty High-Energy Solar Spectroscopic Imager. Results: We found that the flare impulsive phase was accompanied by the formation of a double coronal HXR source, whose upper part coincided with the hot (T ≈ 10 MK) eruptive plasma blob. The leading edge (LE) of the eruptive plasmas (T ≈ 1-2 MK) moved upward from the flare region with a speed of v ≈ 900-1400 km s-1. The type II burst source initially appeared just above the LE apex and moved with the same speed and in the same direction. After ≈ 20 s, it started to move about twice as fast, but still in the same direction. At any given moment, the low-frequency component (LFC) source of the splitted type II burst was situated above the high-frequency component (HFC) source, which in turn was situated above the LE. We also found that at a given frequency the HFC source was located slightly closer to the photosphere than the LFC source. Conclusions: Based on the set of established observational

  12. Observational clues to the energy release process in impulsive solar bursts

    NASA Technical Reports Server (NTRS)

    Batchelor, David

    1990-01-01

    The nature of the energy release process that produces impulsive bursts of hard X-rays and microwaves during solar flares is discussed, based on new evidence obtained using the method of Crannell et al. (1978). It is shown that the hard X-ray spectral index gamma is negatively correlated with the microwave peak frequency, suggesting a common source for the microwaves and X-rays. The thermal and nonthermal models are compared. It is found that the most straightforward explanations for burst time behavior are shock-wave particle acceleration in the nonthermal model and thermal conduction fronts in the thermal model.

  13. Overview Animation of Gamma-ray Burst

    NASA Video Gallery

    Gamma-ray bursts are the most luminous explosions in the cosmos. Astronomers think most occur when the core of a massive star runs out of nuclear fuel, collapses under its own weight, and forms a b...

  14. GLAST Burst Monitor Trigger Classification Algorithm

    NASA Technical Reports Server (NTRS)

    Perrin, D. J.; Sidman, E. D.; Meegan, C. A.; Briggs, M. S.; Connaughton, V.

    2004-01-01

    The Gamma Ray Large Area Space Telescope (GLAST), currently set for launch in the first quarter of 2007, will consist of two instruments, the GLAST Burst Monitor (GBM) and the Large Area Telescope (LAT). One of the goals of the GBM is to identify and locate gamma-ray bursts using on-board software. The GLAST observatory can then be re-oriented to allow observations by the LAT. A Bayesian analysis will be used to distinguish gamma-ray bursts from other triggering events, such as solar flares, magnetospheric particle precipitation, soft gamma repeaters (SGRs), and Cygnus X-1 flaring. The trigger parameters used in the analysis are the burst celestial coordinates, angle from the Earth's horizon, spectral hardness, and the spacecraft geomagnetic latitude. The algorithm will be described and the results of testing will be presented.

  15. Spectral evolution in gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Norris, J. P.; Share, G. H.; Messina, D. C.; Matz, M.; Kouveliotou, C.; Dennis, B. R.; Desai, U. D.; Cline, T. L.

    1986-01-01

    The Hard X-ray Burst Spectrometer (HXRBS) and the Gamma-Ray Spectrometer (GRS) on NASA's Solar Maximum Mission satellite have independently monitored cosmic gamma-ray bursts since launch in February 1980. Several bursts with relatively simple pulse structure and sufficient intensity have been analyzed for evidence of spectral variability on time scales shorter than the pulse durations. In many of these bursts pulse structures are found, ranging in duration from 1 to 10 seconds, which exhibit a trend of hard-to-soft spectral evolution. No significant evidence for soft-to-hard evolution has been found. The HXRBS data above 100 keV and the GRS data above 1 MeV indicate that the spectral evolution generally is not due to time-varying absorption features at energies below 100 keV.

  16. Transverse Bursts in Inclined Layer Convection: Experiment

    NASA Astrophysics Data System (ADS)

    Daniels, Karen; Wiener, Richard; Bodenschatz, Eberhard

    2002-03-01

    We report experimental results on inclined layer convection in a fluid of Prandtl number σ ≈ 1. A codimension-two point divides regions of buoyancy-driven convection (longitudinal rolls) at lower angles from shear-driven convection (transverse rolls) at higher angles (Daniels et al. PRL 84: 5320, 2000). In the region of buoyancy-driven convection, near the codimension-two point, we observe longitudinal rolls with intermittent, localized, subharmonic transverse bursts. The patterns are spatiotemporally chaotic. With increasing temperature difference the bursts increase in duration and number. We examine the details of the bursting process (e.g. the energy of longitudinal, transverse, and mixed modes) and compare our results to bursting processes in other systems. This work is supported by the National Science Foundation under grant DMR-0072077 and the IGERT program in nonlinear systems, grant DGE-9870631.

  17. Impulsive solar X-ray bursts

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Frost, K. J.; Maetzler, C.; Ohki, K.; Saba, J. L.

    1977-01-01

    A set of 22 simple, impulsive solar flares, identified in the OSO-5 hard X-ray data, were analyzed together with coincident microwave and meterwave radio observations. The rise times and fall times of the X-ray bursts are found to be highly correlated and effectively equal, strongly suggesting a flare energizing mechanism that is reversible. The good time resolution available for these observations reveals that the microwave emission is influenced by an additional process, evident in the tendency of the microwave emission to peak later and decay more slowly than the symmetric X-ray bursts. Meterwave emission is observed in coincidence with the 5 events which show the strongest time correlation between the X-ray and microwave burst structure. This meterwave emission is characterized by U-burst radiation, indicating confinement of the flare source.

  18. POPULATION SYNTHESIS AND GAMMA RAY BURST PROGENITORS

    SciTech Connect

    C. L. FREYER

    2000-12-11

    Population synthesis studies of binaries are always limited by a myriad of uncertainties from the poorly understood effects of binary mass transfer and common envelope evolution to the many uncertainties that still remain in stellar evolution. But the importance of these uncertainties depends both upon the objects being studied and the questions asked about these objects. Here I review the most critical uncertainties in the population synthesis of gamma-ray burst progenitors. With a better understanding of these uncertainties, binary population synthesis can become a powerful tool in understanding, and constraining, gamma-ray burst models. In turn, as gamma-ray bursts become more important as cosmological probes, binary population synthesis of gamma-ray burst progenitors becomes an important tool in cosmology.

  19. Astrophysics: Burst of support for relativity

    NASA Astrophysics Data System (ADS)

    Amelino-Camelia, Giovanni

    2009-11-01

    Light from a distant γ-ray burst backs up a key prediction of Albert Einstein's theory of relativity - that photon speed is the same regardless of energy. But it might set the stage for evolution of the theory.

  20. Bursts of intermediate ions in atmospheric air

    NASA Astrophysics Data System (ADS)

    Hõrrak, U.; Salm, J.; Tammet, H.

    1998-06-01

    The mobility spectrum of air ions has been measured at Tahkuse Observatory in Estonia for several years. The average concentration of intermediate ions with mobilities of 0.05-0.5 cm2 V-1 s-1 in atmospheric air is about 50 cm-3. On the level of this low background, high concentration bursts of intermediate air ions occur occasionally. A burst can be followed by subsequent evolution of intermediate ions into larger ones. To explain the bursts of intermediate air ions, two hypotheses can be advanced: (1)A burst of neutral particles occurs due to homogeneous nucleation, and the particles are charged by the attachment of cluster ions. (2) The cluster ions grow by ion-induced nucleation in proper environmental conditions.

  1. NASA's Swift Sees 'Dual Personality' Burst

    NASA Video Gallery

    These animations illustrate two wildly different explanations for GRB 101225A, better known as the "Christmas burst." First, a solitary neutron star in our own galaxy shreds and accretes an approac...

  2. QoS-guaranteed burst transmission for VoIP service over optical burst switching networks

    NASA Astrophysics Data System (ADS)

    Tachibana, Takuji; Kasahara, Shoji

    2007-08-01

    We propose a burst transmission method that guarantees the voice over Internet protocol (VoIP) service. The proposed method consists of three techniques: round-robin burst assembly with slotted scheduling, priority control with void filling, and hop-based preemption. Each technique is utilized so that the burst loss probability and the burst transmission delay satisfy VoIP quality of service (QoS). We evaluate by simulation the performance of the proposed method in NSFNET with 14 nodes. Numerical examples show that our proposed method is effective for guaranteeing the VoIP QoS while accommodating a large number of VoIP users.

  3. A Non-Triggered Burst Supplement to the BATSE Gamma-Ray Burst Catalogs

    NASA Technical Reports Server (NTRS)

    Kommers, J.; Lewin, W. H.; Kouveliotou, C.; vanParadijs, J.; Pendleton, G. N.; Meegan, C. A.; Fishman, G. J.

    1998-01-01

    The Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory detects gamma-ray bursts (GRBs) with a real-time burst detection (or "trigger") system running onboard the spacecraft. Under some circumstances, however, a GRB may not activate the onboard burst trigger. For example, the burst may be too faint to exceed the onboard detection threshold, or it may occur while the onboard burst trigger is disabled for technical reasons. This paper is a catalog of such "non-triggered" GRBs that were detected in a search of the archival continuous data from BATSE. It lists 873 non-triggered bursts that were recorded between 1991 December 9.0 and 1997 December 17.0. For each burst, the catalog gives an estimated source direction, duration, peak flux, and fluence. Similar data are presented for 50 additional bursts of unknown origin that were detected in the 25-50 keV range; these events may represent the low-energy "tail" of the GRB spectral distribution. This catalog increases the number of GRBs detected with BATSE by 48% during the time period covered by the search.

  4. Gamma-ray burst locations from the Burst and Transient Source Experiment

    NASA Technical Reports Server (NTRS)

    Brock, M. N.; Meegan, C. A.; Roberts, F. E.; Fishman, G. J.; Wilson, R. B.; Paciesas, W. S.; Pendleton, G. N.

    1992-01-01

    The Burst and Transient Source Experiment (BATSE) consists of eight anisotropic gamma-ray spectrometers at the corners of the Compton Gamma Ray Observatory. BATSE monitors the full sky from a fixed orientation and determines the direction of gamma-ray bursts with an accuracy appropriate for studying the bursts' celestial distribution. We describe the calculation of gamma-ray burst directions from measurements made by BATSE. We present a sample of calculated directions from BATSE's measurement of solar flaxes and compare the calculated directions with the solar direction. We describe the systematic errors apparent in these data and discuss ongoing efforts to correct them.

  5. Microsat and Lunar-Based Imaging of Radio Bursts

    NASA Technical Reports Server (NTRS)

    MacDowall, R. J.; Gopalswamy, N.; Kaiser, M. L.; Demaio, L. D.; Bale, S. D.; Kasper, J. C.; Lazarus, A. J.; Howard, R. E.; Jones, D. L.; Reiner, M. J.; Weiler, K. W.

    2005-01-01

    No present or approved spacecraft mission has the capability to provide high angular resolution imaging of solar or magnetospheric radio bursts or of the celestial sphere at frequencies below the ionospheric cutoff. Here, we describe a MIDEX-class mission to perform such imaging in the frequency range approx. 30 kHz to 15 MHz. This mission, the Solar Imaging Radio Array (SIRA), is solar and exploration-oriented, with emphasis on improved understanding and application of radio bursts associated with solar energetic particle (SEP) events and on tracking shocks and other components of coronal mass ejections (CMEs). SIRA will require 12 to 16 micro-satellites to establish a sufficient number of baselines with separations on the order of kilometers. The constellation consists of microsats located quasi-randomly on a spherical shell, initially of approx. 10 km diameter. The baseline microsat is 3-axis stabilized with body-mounted solar arrays and an articulated, earth pointing high gain antenna. The constellation will likely be placed at L1, which is the preferred location for full-time solar observations. We also discuss briefly follow-on missions that would be lunar-based with of order 10,000 dipole antennas.

  6. A study of eruptive solar events with negative radio bursts

    NASA Astrophysics Data System (ADS)

    Kuz'menko, I. V.; Grechnev, V. V.; Uralov, A. M.

    2009-11-01

    Solar events of June 15/16, 2000, June 1/2, 2002, February 6, 2002, and February 7, 2002, have been studied. These events probably belong to a poorly studied class of explosive eruptions. In such events disintegration of the magnetic structure of an eruptive filament and dispersing of its fragments as a cloud over a considerable part of the solar surface are possible. The analysis of SOHO/EIT extreme ultraviolet images obtained in the 195 Å and 304 Å channels has revealed the appearance of dimmings of various shapes and propagation of a coronal wave for June 1/2, 2002. In all the events the Nobeyama, Learmonth, and Ussuriysk observatories recorded negative radio bursts at several frequencies in the 1-10 GHz range. Most likely, these bursts were due to absorption of solar radio emission in clouds produced by fragments of filaments. Absorption of the solar background radiation can be observed as a depression of the emission in the 304 Å channel. A model has been developed, which permits one to estimate parameters of absorbing plasma such as temperature, optical thickness, area of the absorbing cloud, and its height above the chromosphere from the radio absorption observed at several frequencies. The obtained values of the temperature, 8000-9000 K, demonstrate that the absorber was the material of an erupted cool filament. The model estimate of the masses of the ejecta in the considered events were ˜1015 g, which is comparable to masses of typical filaments and coronal mass ejections.

  7. Propofol and sevoflurane induce distinct burst suppression patterns in rats

    PubMed Central

    Kenny, Jonathan D.; Westover, M. Brandon; Ching, ShiNung; Brown, Emery N.; Solt, Ken

    2014-01-01

    Burst suppression is an EEG pattern characterized by alternating periods of high-amplitude activity (bursts) and relatively low amplitude activity (suppressions). Burst suppression can arise from several different pathological conditions, as well as from general anesthesia. Here we review current algorithms that are used to quantify burst suppression, its various etiologies, and possible underlying mechanisms. We then review clinical applications of anesthetic-induced burst suppression. Finally, we report the results of our new study showing clear electrophysiological differences in burst suppression patterns induced by two common general anesthetics, sevoflurane and propofol. Our data suggest that the circuit mechanisms that generate burst suppression activity may differ among general anesthetics. PMID:25565990

  8. Optimal Codes for the Burst Erasure Channel

    NASA Technical Reports Server (NTRS)

    Hamkins, Jon

    2010-01-01

    Deep space communications over noisy channels lead to certain packets that are not decodable. These packets leave gaps, or bursts of erasures, in the data stream. Burst erasure correcting codes overcome this problem. These are forward erasure correcting codes that allow one to recover the missing gaps of data. Much of the recent work on this topic concentrated on Low-Density Parity-Check (LDPC) codes. These are more complicated to encode and decode than Single Parity Check (SPC) codes or Reed-Solomon (RS) codes, and so far have not been able to achieve the theoretical limit for burst erasure protection. A block interleaved maximum distance separable (MDS) code (e.g., an SPC or RS code) offers near-optimal burst erasure protection, in the sense that no other scheme of equal total transmission length and code rate could improve the guaranteed correctible burst erasure length by more than one symbol. The optimality does not depend on the length of the code, i.e., a short MDS code block interleaved to a given length would perform as well as a longer MDS code interleaved to the same overall length. As a result, this approach offers lower decoding complexity with better burst erasure protection compared to other recent designs for the burst erasure channel (e.g., LDPC codes). A limitation of the design is its lack of robustness to channels that have impairments other than burst erasures (e.g., additive white Gaussian noise), making its application best suited for correcting data erasures in layers above the physical layer. The efficiency of a burst erasure code is the length of its burst erasure correction capability divided by the theoretical upper limit on this length. The inefficiency is one minus the efficiency. The illustration compares the inefficiency of interleaved RS codes to Quasi-Cyclic (QC) LDPC codes, Euclidean Geometry (EG) LDPC codes, extended Irregular Repeat Accumulate (eIRA) codes, array codes, and random LDPC codes previously proposed for burst erasure

  9. The DELTA Synchrotron Light Interferometer

    SciTech Connect

    Berges, U.

    2004-05-12

    Synchrotron radiation sources like DELTA, the Dortmund Electron Accelerator, a third generation synchrotron light source, need an optical monitoring system to measure the beam size at different points of the ring with high resolution and accuracy. These measurements also allow an investigation of the emittance of the storage ring, an important working parameter for the efficiency of working beamlines with experiments using the synchrotron radiation. The resolution limits of the different types of optical synchrotron light monitors at DELTA are investigated. The minimum measurable beamsize with the normal synchrotron light monitor using visible light at DELTA is about 80 {mu}m. Due to this a synchrotron light interferometer was built up and tested at DELTA. The interferometer uses the same beamline in the visible range. The minimum measurable beamsize is with about 8 {mu}m one order of magnitude smaller. This resolution is sufficient for the expected small vertical beamsizes at DELTA. The electron beamsize and emittance were measured with both systems at different electron beam energies of the storage ring. The theoretical values of the present optics are smaller than the measured emittance. So possible reasons for beam movements are investigated.

  10. Human high frequency somatosensory evoked potential components are refractory to circadian modulations of tonic alertness.

    PubMed

    Gobbelé, René; Waberski, Till D; Thyerlei, Dinah; Thissen, Melanie; Fimm, Bruno; Klostermann, Fabian; Curio, Gabriel; Buchner, Helmut

    2007-02-01

    The impact of vigilance states, such as sleep or arousal changes, on the high-frequency (600 Hz) components (HFOs) of somatosensory evoked potentials (SEPs) is known. The present study sought to characterize the effects of circadian fluctuations of tonic alertness on HFOs in awake humans. Median nerve SEPs were recorded at four times during a 24-hour waking period. In parallel to the SEP recordings, a reaction-time (RT) task was performed to assess tonic alertness. Additionally, the spontaneous EEG was monitored. The low-frequency SEP component N20 and the early and late HFO parts did not change across the measurement sessions. In contrast, RTs were clearly prolonged at night and on the second morning. EEG also showed increased delta power at night. HFOs are sensitive to pronounced vigilance changes, such as sleep, but are refractory to fluctuations of tonic alertness. Tonic alertness is regarded to be the top-down cognitive control mechanism of wakefulness, whereas sleep is mediated by overwhelming bottom-up regulation, which seems apparently more relevant for, at least in part, subcortically triggered high-frequency burst generation in the ascending somatosensory system. PMID:17277574

  11. Gamma-ray burst cosmology

    NASA Astrophysics Data System (ADS)

    Wang, F. Y.; Dai, Z. G.; Liang, E. W.

    2015-08-01

    Gamma-ray bursts (GRBs) are the most luminous electromagnetic explosions in the Universe, which emit up to 8.8 × 1054 erg isotropic equivalent energy in the hard X-ray band. The high luminosity makes them detectable out to the largest distances yet explored in the Universe. GRBs, as bright beacons in the deep Universe, would be the ideal tool to probe the properties of high-redshift universe: including the cosmic expansion and dark energy, star formation rate, the reionization epoch and the metal enrichment history of the Universe. In this article, we review the luminosity correlations of GRBs, and implications for constraining the cosmological parameters and dark energy. Observations show that the progenitors of long GRBs are massive stars. So it is expected that long GRBs are tracers of star formation rate. We also review the high-redshift star formation rate derived from GRBs, and implications for the cosmic reionization history. The afterglows of GRBs generally have broken power-law spectra, so it is possible to extract intergalactic medium (IGM) absorption features. We also present the capability of high-redshift GRBs to probe the pre-galactic metal enrichment and the first stars.

  12. Bursting the Taylor cone bubble

    NASA Astrophysics Data System (ADS)

    Pan, Zhao; Truscott, Tadd

    2014-11-01

    A soap bubble fixed on a surface and placed in an electric field will take on the shape of a cone rather than constant curvature (dome) when the electrical field is not present. The phenomenon was introduced by J. Zeleny (1917) and studied extensively by C.T. Wilson & G.I. Taylor (1925). We revisit the Taylor cone problem by studying the deformation and bursting of soap bubbles in a point charge electric field. A single bubble takes on the shape of a cone in the electric field and a high-speed camera equipped with a micro-lens is used to observe the unsteady dynamics at the tip. Rupture occurs as a very small piece of the tip is torn away from the bubble toward the point charge. Based on experiments, a theoretical model is developed that predicts when rupture should occur. This study may help in the design of foam-removal techniques in engineering and provide a better understanding of an electrified air-liquid interface.

  13. Supernovae and gamma-ray bursts connection

    NASA Astrophysics Data System (ADS)

    Valle, Massimo Della

    2015-12-01

    I'll review the status of the Supernova/Gamma-Ray Burst connection. Several pieces of evidence suggest that long duration Gamma-ray Bursts are associated with bright SNe-Ic. However recent works suggest that GRBs might be produced in tight binary systems composed of a massive carbon-oxygen cores and a neutron star companion. Current estimates of the SN and GRB rates yield a ratio GRB/SNe-Ibc in the range ˜ 0.4% - 3%.

  14. Supernovae and gamma-ray bursts connection

    SciTech Connect

    Valle, Massimo Della

    2015-12-17

    I’ll review the status of the Supernova/Gamma-Ray Burst connection. Several pieces of evidence suggest that long duration Gamma-ray Bursts are associated with bright SNe-Ic. However recent works suggest that GRBs might be produced in tight binary systems composed of a massive carbon-oxygen cores and a neutron star companion. Current estimates of the SN and GRB rates yield a ratio GRB/SNe-Ibc in the range ∼ 0.4% − 3%.

  15. Search for absorption edges in superexpansion bursts

    NASA Astrophysics Data System (ADS)

    in't Zand, Jean

    2013-09-01

    Our goal is to measure with the LETGS a series of bright type-I X-ray bursts with strong photospheric radius expansion ('superexpansion') to search for absorption edges due to the ashes of nuclear burning. We request a quick TOO, to be triggered by ISS-MAXI and Swift-BAT, with a total exposure time of 100 ks to obtain the detection of about 10 bursts.

  16. Photospheric Radius Expansion During Magnetar Bursts

    NASA Astrophysics Data System (ADS)

    Watts, Anna L.; Kouveliotou, Chryssa; van der Horst, Alexander J.; Göǧüş, Ersin; Kaneko, Yuki; van der Klis, Michiel; Wijers, Ralph A. M. J.; Harding, Alice K.; Baring, Matthew G.

    2010-08-01

    On 2008 August 24 the new magnetar SGR 0501+4516 (discovered by Swift) emitted a bright burst with a pronounced double-peaked structure in hard X-rays, reminiscent of the double-peaked temporal structure seen in some bright thermonuclear bursts on accreting neutron stars. In the latter case this is due to Photospheric Radius Expansion (PRE): when the flux reaches the Eddington limit, the photosphere expands and cools so that emission becomes softer and drops temporarily out of the X-ray band, re-appearing as the photosphere settles back down. We consider the factors necessary to generate double-peaked PRE events, and show that such a mechanism could plausibly operate in magnetar bursts despite the vastly different emission process. Identification of the magnetic Eddington limit in a magnetar would constrain magnetic field and distance and could, in principle, enable a measurement of gravitational redshift. It would also locate the emitting region at the neutron star surface, constraining the burst trigger mechanism. Conclusive confirmation of PRE events will require more detailed radiative models for bursts. However, for SGR 0501+4516 the predicted critical flux (using the magnetic field strength inferred from timing and the distance suggested by its probable location in the Perseus arm of our Galaxy) is consistent with that observed in the August 24 burst.

  17. Visibility of Type III burst source location as inferred from stereoscopic space observations

    NASA Astrophysics Data System (ADS)

    Boudjada, M. Y.; Galopeau, P. H. M.; Maksimovic, M.; Rucker, H. O.

    2014-11-01

    We study solar Type III radio bursts simultaneously observed by RPWS/Cassini, URAP/Ulysses and WAVES/Wind experiments. The observations allows us to cover a large frequency bandwidth from 16MHz down to a few kHz. We consider the onset time of each burst, and estimate the corresponding intensity level. Also we measure the Langmuir frequency as observed on the dynamic spectra recorded by the Ulysses spacecraft. The distances of Wind, Ulysses and Cassini spacecraft, with regard to the Sun, were in the order of 1AU, 2.4AU and 4.5AU, respectively. The spacecraft trajectories were localized in the ecliptic plane in the case of Wind and Cassini, and for Ulysses in the southern hemisphere (i.e. heliocentric latitude higher than -50). Despite the different locations, the spectral patterns of the selected solar bursts are found to be similar between 10MHz and 2MHz but unalike at lower frequency. We discuss the variation of the intensity level as recorded by the three spacecraft. We show that the reception system of each experiment affected the way the Type III burst intensity is measured. Also we attempt to estimate the electron beam along the interplanetary magnetic field where the trajectory is an Archimedean spiral. This leads us to infer on the visibility of the source location with regard to the spacecraft position.

  18. Bursting phenomena as well as the bifurcation mechanism in a coupled BVP oscillator with periodic excitation

    NASA Astrophysics Data System (ADS)

    Xiaofang, Zhang; Lei, Wu; Qinsheng, Bi

    2016-07-01

    We explore the complicated bursting oscillations as well as the mechanism in a high-dimensional dynamical system. By introducing a periodically changed electrical power source in a coupled BVP oscillator, a fifth-order vector field with two scales in frequency domain is established when an order gap exists between the natural frequency and the exciting frequency. Upon the analysis of the generalized autonomous system, bifurcation sets are derived, which divide the parameter space into several regions associated with different types of dynamical behaviors. Two typical cases are focused on as examples, in which different types of bursting oscillations such as subHopf/subHopf burster, subHopf/fold-cycle burster, and double-fold/fold burster can be observed. By employing the transformed phase portraits, the bifurcation mechanism of the bursting oscillations is presented, which reveals that different bifurcations occurring at the transition between the quiescent states (QSs) and the repetitive spiking states (SPs) may result in different forms of bursting oscillations. Furthermore, because of the inertia of the movement, delay may exist between the locations of the bifurcation points on the trajectory and the bifurcation points obtained theoretically. Project supported by the National Natural Science Foundation of China (Grant No. 21276115).

  19. Fast radio bursts — A brief review: Some questions, fewer answers

    NASA Astrophysics Data System (ADS)

    Katz, J. I.

    2016-04-01

    Fast radio bursts (FRBs) are millisecond bursts of radio radiation at frequencies of about 1 GHz, recently discovered in pulsar surveys. They have not yet been definitively identified with any other astronomical object or phenomenon. The bursts are strongly dispersed, indicating passage through a high column density of low density plasma. The most economical interpretation is that this is the intergalactic medium, indicating that FRB are at “cosmological” distances with redshifts in the range 0.3-1.3. Their inferred brightness temperatures are as high as 1037 K, implying coherent emission by “bunched” charges, as in radio pulsars. I review the astronomical sites, objects and emission processes that have been proposed as the origin of FRB, with particular attention to soft gamma repeaters (SGRs) and giant pulsar pulses.

  20. Ginga observations of quasi-periodic oscillations in type II bursts from the Rapid Burster

    NASA Technical Reports Server (NTRS)

    Dotani, T.; Mitsuda, K.; Inoue, H.; Tanaka, Y.; Kawai, N.

    1990-01-01

    During Ginga observations of the 'Rapid Burster' in August 1988, strong quasi-periodic oscillations (QPOs) were detected in its X-ray intensity. The QPOs had centroid frequencies of 5 and 2 Hz during type II X-ray bursts which lasted for 10 and 30 s, respectively. The presence of the QPOs is correlated with the time scale-invariant burst profile. They are very strong during the initial peak in the burst, absent in the second peak, and strong again at the onset of the third peak. From an analysis of the X-ray spectrum as observed during the maxima and minima of the oscillations, it is found that the oscillations can be described by changes of the temperature of a blackbody emitter of constant apparent area.

  1. Evidence for nonlinear wave-wave interactions in solar type III radio bursts

    NASA Technical Reports Server (NTRS)

    Lin, R. P.; Levedahl, W. K.; Lotko, W.; Gurnett, D. A.; Scarf, F. L.

    1986-01-01

    Evidence is presented that nonlinear wave-wave interactions occur in type III solar radio bursts. Intense, spiky Langmuir waves are observed to be driven by electron beams associated with type III solar radio bursts in the interplanetary medium. Bursts of 30-300 Hz (in the spacecraft frame) waves are often observed coincident in time with the most intense spikes of the Langmuir waves. These low-frequency waves appear to be long-wavelength ion acoustic waves, with wavenumber approximately equal to the beam resonant Langmuir wavenumber. Three possible interpretations of these observations are considered: modulational instability, parametric decay of the parent Langmuir waves to daughter ion acoustic and Langmuir waves, and decay to daughter electromagnetic waves and ion acoustic waves.

  2. Characterization of Intense Bursts of mm-wave Emission Using New RF Spectrometer on the DIII-D Tokamak

    NASA Astrophysics Data System (ADS)

    Yu, L.; Dormier, C. W.; Luhmann, N. C., Jr.; Tobias, B. J.; Austin, M. E.

    2012-10-01

    Intense bursts of mm-wave emission with duration of 5-10,s have been observed by both Electron Cyclotron Emission (ECE) radiometer [1] and Electron Cyclotron Emission Imaging (ECEI) systems during edge localized modes. Both the ECE radiometer system and the ECEI system employ heterodyne detection methods and have overlapping intermediate frequency (IF) bands. A new RF spectrometer, spanning this IF frequency range of approximately 2-10 GHz, has been installed on the DIII-D tokamak in order to more fully characterize the frequency, intensity, and localization of these bursts. This data has been used to better understand the generation mechanism for these bursts that are believed to relate to runaway electrons maser radiation [2]. Various consequences for diagnostic development will also be addressed. 6pt [1] Ch. Fuches et al., Phys. Plasmas 8, 1594 (2001). [2] B. Kurzan et al., Phys. Rev. E 55, 4608 (1997).

  3. A Decameter Stationary Type IV Burst in Imaging Observations on 2014 September 6

    NASA Astrophysics Data System (ADS)

    Koval, Artem; Stanislavsky, Aleksander; Chen, Yao; Feng, Shiwei; Konovalenko, Aleksander; Volvach, Yaroslav

    2016-08-01

    First-of-its-kind radio imaging of a decameter solar stationary type IV radio burst has been presented in this paper. On 2014 September 6 the observations of type IV burst radio emission were carried out with the two-dimensional heliograph based on the Ukrainian T-shaped radio telescope (UTR-2), together with other telescope arrays. Starting at ˜09:55 UT and for ˜3 hr, the radio emission was kept within the observational session of UTR-2. The interesting observation covered the full evolution of this burst, “from birth to death.” During the event lifetime, two C-class solar X-ray flares with peak times 11:29 UT and 12:24 UT took place. The time profile of this burst in radio has a double-humped shape that can be explained by injection of energetic electrons, accelerated by the two flares, into the burst source. According to the heliographic observations, we suggest that the burst source was confined within a high coronal loop, which was part of a relatively slow coronal mass ejection. The latter has been developed for several hours before the onset of the event. Through analysis of about 1.5 × 106 heliograms (3700 temporal frames with 4096 images in each frame that correspond to the number of frequency channels), the radio burst source imaging shows a fascinating dynamical evolution. Both space-based (GOES, SDO, SOHO, STEREO) data and various ground-based instrumentation (ORFEES, NDA, RSTO, NRH) records have been used for this study.

  4. Effects of Spatial Variations in Coronal Electron and Ion Temperatures on Type III Bursts. II. Variations in Ion Temperature

    NASA Astrophysics Data System (ADS)

    Li, B.; Cairns, Iver H.; Robinson, P. A.

    2011-03-01

    Quasilinear-based simulations are presented for the effects on coronal type III bursts of spatially varying ion temperature Ti in the corona. The simulations use a newly developed method for integrating spatial variations of coronal temperatures into our previous simulations for constant temperatures. The effects are simulated for monotonic Ti variations and/or for spatially localized enhancements in Ti . Generally, a localized enhancement in Ti has stronger effects on type III bursts than a corresponding monotonic variation in Ti . A localized Ti enhancement causes modulations to the dynamic spectra of fp and 2fp emission at frequencies corresponding to the disturbance: a narrowband slowly drifting intensification for both fp and 2fp emission and a narrowband suppression for 2fp emission. The fp emission may become observable due to the disturbance, although still much weaker than the 2fp emission. Signatures of the Ti enhancement are found in the 2fp spectral characteristics, e.g., the maximum flux and frequency drift rate. Importantly, these signatures are distinct from those of localized disturbances in electron temperature Te . The results indicate that coronal type III bursts provide a new tool to probe and distinguish localized disturbances in Ti or Te in the corona. Additionally, the presence of multiple spatially confined Ti enhancements at different heights may produce some observed fine structures in type III bursts; e.g., stria bursts and associated flux modulations in type IIIb bursts, and flux modulations in type IIIs whose beams traverse coronal shocks.

  5. Phase modulated magnetoelectric delta-E effect sensor for sub-nano tesla magnetic fields

    NASA Astrophysics Data System (ADS)

    Zabel, S.; Kirchhof, C.; Yarar, E.; Meyners, D.; Quandt, E.; Faupel, F.

    2015-10-01

    We present a resonant micromechanical magnetic field sensor, which utilizes the magnetically induced change in elastic modulus, i.e., the delta-E effect. The sensor is based on magnetoelectric thin film composites, resulting in high sensitivity at room temperature and at low frequencies. The cantilever is electrically excited and read out by a 2 μm AlN piezoelectric layer. Depending on its magnetization, the 2 μm thin film of amorphous (Fe90Co10)78Si12B10 changes its elasticity, which results in a shift of the cantilever's resonance frequency. The sensor is operated in the first or second transversal bending mode at 7.6 kHz or 47.4 kHz. With a limit of detection of 140 pTHz-0.5 at 20 Hz under a magnetic bias field and 1 nTHz-0.5 without external bias field, this sensor exceeds all comparable designs by one order of magnitude.

  6. Modeling gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Maxham, Amanda

    Discovered serendipitously in the late 1960s, gamma-ray bursts (GRBs) are huge explosions of energy that happen at cosmological distances. They provide a grand physical playground to those who study them, from relativistic effects such as beaming, jets, shocks and blastwaves to radiation mechanisms such as synchrotron radiation to galatic and stellar populations and history. Through the Swift and Fermi space telescopes dedicated to observing GRBs over a wide range of energies (from keV to GeV), combined with accurate pinpointing that allows ground based follow-up observations in the optical, infrared and radio, a rich tapestry of GRB observations has emerged. The general picture is of a mysterious central engine (CE) probably composed of a black hole or neutron star that ejects relativistic shells of matter into intense magnetic fields. These shells collide and combine, releasing energy in "internal shocks" accounting for the prompt emission and flaring we see and the "external shock" or plowing of the first blastwave into the ambient surrounding medium has well-explained the afterglow radiation. We have developed a shell model code to address the question of how X-ray flares are produced within the framework of the internal shock model. The shell model creates randomized GRB explosions from a central engine with multiple shells and follows those shells as they collide, merge and spread, producing prompt emission and X-ray flares. We have also included a blastwave model, which can constrain X-ray flares and explain the origin of high energy (GeV) emission seen by the Fermi telescope. Evidence suggests that gamma-ray prompt emission and X-ray flares share a common origin and that at least some flares can only be explained by long-lasting central engine activity. We pay special attention to the time history of central engine activity, internal shocks, and observed flares. We calculate the gamma-ray (Swift/BAT band) and X-ray (Swift/XRT band) lightcurves for arbitrary

  7. DEMETER observations of bursty MF emissions and their relation to ground-level auroral MF burst

    NASA Astrophysics Data System (ADS)

    Broughton, M. C.; LaBelle, J.; Parrot, M.

    2014-12-01

    A survey of medium frequency (MF) electric field data from selected orbits of the Detection of Electro-Magnetic Emissions Transmitted from Earthquakes (DEMETER) spacecraft reveals 68 examples of a new type of bursty MF emissions occurring at high latitudes associated with auroral phenomena. These resemble auroral MF burst, a natural radio emission observed at ground level near local substorm onsets. Similar to MF burst, the bursty MF waves observed by DEMETER have broadband, impulsive frequency structure covering 1.5-3.0 MHz, amplitudes of 50-100 μV/m, an overall occurrence rate of ˜0.76% with higher occurrence during active times, and strong correlation with auroral hiss. The magnetic local time distribution of the MF waves observed by DEMETER shows peak occurrence rate near 18 MLT, somewhat earlier than the equivalent peak in the occurrence rate of ground level MF burst, though propagation effects and differences in the latitudes sampled by the two techniques may explain this discrepancy. Analysis of solar wind and SuperMAG data suggests that while the bursty MF waves observed by DEMETER are associated with enhanced auroral activity, their coincidence with substorm onset may not be as exact as that of ground level MF burst. One conjunction occurs in which MF burst is observed at Churchill, Manitoba, within 8 min of MF emissions detected by DEMETER on field lines approximately 1000 km southeast of Churchill. These observations may plausibly be associated with the same auroral event detected by ground level magnetometers at several Canadian observatories. Although it is uncertain, the balance of the evidence suggests that the bursty MF waves observed with DEMETER are the same phenomenon as the ground level MF burst. Hence, theories of MF burst generation in the ionosphere, such as beam-generated Langmuir waves excited over a range of altitudes or strong Langmuir turbulence generating a range of frequencies within a narrow altitude range, need to be revisited to

  8. Dynamical structure of solar radio burst type III as evidence of energy of solar flares

    NASA Astrophysics Data System (ADS)

    Hamidi, Zety Sharizat Binti

    2013-11-01

    Observations of low frequency solar type III radio bursts associated with the ejection of plasma oscillations localized disturbance is due to excitation atoms in the plasma frequency incoherent radiations play a dominant role at the meter and decimeter wavelengths. Here, we report the results of the dynamical structure of solar flare type III that occurred on 9th March 2012 at National Space Centre, Sg Lang, Selangor, Malaysia by using the CALLISTO system. These bursts are associated with solar flare type M6 which suddenly ejected in the active region AR 1429 starting at 03:32 UT and ending at 05:00 UT with the peak at 04:12 UT. The observation showed an initial strong burst occurred due to strong signal at the beginning of the phase. We also found that both solar burst and flares tend to be a numerous on the same day and probability of chance coincidence is high. It is clearly seen that an impulsive lace burst was detected at 4:24 UT and it is more plausible that the energies are confined to the top of the loop when we compared with X-ray results. Associated with this event was type II with velocities 1285 km/s and type IV radio sweeps along with a full halo Coronal Mass Ejections (CMEs) first seen in SOHO/LASCO C2 imagery at 09/0426 Z. We concluded that the significance of study solar burst type III lies in the fact that the emission at decimetric wavelength comes from the role of magnetic field in active region that may provide the key to the energy release mechanism in a flare.

  9. Directional properties of bottlenose dolphin (Tursiops truncatus) clicks, burst-pulse, and whistle sounds.

    PubMed

    Branstetter, Brian K; Moore, Patrick W; Finneran, James J; Tormey, Megan N; Aihara, Hitomi

    2012-02-01

    The directional properties of bottlenose dolphin clicks, burst-pulse, and whistle signals were measured using a five element array, at horizontal angles of 0°, 45°, 90°, 135°, and 180° relative to a dolphin stationed on an underwater biteplate. Clicks and burst-pulse signals were highly directional with directivity indices of ~11 dB for both signal types. Higher frequencies and higher amplitudes dominated the forward, on-axis sound field. A similar result was found with whistles, where higher frequency harmonics had greater directivity indices than lower frequency harmonics. The results suggest the directional properties of these signals not only provide enhanced information to the sound producer (as in echolocation) but can provide valuable information to conspecific listeners during group coordination and socialization.

  10. Type II Radio Bursts as an Indicator of CME Location

    NASA Astrophysics Data System (ADS)

    Quirk, C. A.; St Cyr, O. C.; Henning, C.; Xie, H.; Gilbert, H. R.; Orlove, M.; Gopalswamy, N.; Odstrcil, D.

    2011-12-01

    We examined a subset of nine low-frequency radio events with type II radio bursts that drifted below 2 megahertz and were detected by the WAVES investigation on the WIND spacecraft. For each event, we identified the associated coronal mass ejection (CME) and derived the electron density using a model of solar wind plasma frequency (fp ≈ 9 * ne1/2, where fp is plasma frequency in kHz and ne is electron density in cm-3) . We also used the pb_inverter program in SolarSoft developed by Howard and Hayes to examine the electron density structure. Expanding on the Van De Hulst process of inverting polarized brightness measurements, the program inverts total brightness measurements from SOHO LASCO images to extract electron density information. From the electron density inferred from radio spectra, we derived the location of the CME using five standard electron density to height models (Leblanc, 1996; Saito, 1977; Bougeret, 1984; Alvarez, 1973; and Fainberg, 1971). Using images from the LASCO instrument on SOHO and the SECCHI instrument on STEREO, we extracted locations of the leading edge of the CME and compared the heights and velocities to those found using the frequency data. For the lowest frequency events, we also compared our results to the outputs of ENLIL, a time-dependent, three-dimensional, MHD model of the heliosphere hosted by the Community Coordinated Modeling Center (CCMC) at NASA Goddard Space Flight Center.

  11. Burst train generator of high energy femtosecond laser pulses for driving heat accumulation effect during micromachining.

    PubMed

    Rezaei, Saeid; Li, Jianzhao; Herman, Peter R

    2015-05-01

    A new method for generating high-repetition-rate (12.7-38.2 MHz) burst trains of femtosecond laser pulses has been demonstrated for the purpose of tailoring ultrashort laser interactions in material processing that can harness the heat accumulation effect among pulses separated by a short interval (i.e., 26 ns). Computer-controlled time delays were applied to synchronously trigger the high frequency switching of a high voltage Pockels cell to specify distinctive values of polarization rotation for each round-trip of a laser pulse cycling within a passive resonator. Polarization dependent output coupling facilitated the flexible shaping of the burst envelope profile to provide burst trains of up to ∼1  mJ of burst energy divided over a selectable number (1 to 25) of pulses. Individual pulses of variable energy up to 150 μJ and with pulse duration tunable over 70 fs to 2 ps, were applied in burst trains to generate deep and high aspect ratio holes that could not form with low-repetition-rate laser pulses. PMID:25927785

  12. Efficient inhibition of bursts by bursts in the auditory system of crickets.

    PubMed

    Marsat, G; Pollack, G S

    2007-06-01

    In crickets, auditory information about ultrasound is carried bilaterally to the brain by the AN2 neurons. The ON1 neuron provides contralateral inhibitory input to AN2, thereby enhancing bilateral contrast between the left and right AN2s, an important cue for sound localization. We examine how the structures of the spike trains of these neurons affect this inhibitory interaction. As previously shown for AN2, ON1 responds to salient peaks in stimulus amplitude with bursts of spikes. Spike bursts, but not isolated spikes, reliably signal the occurrence of specific features of the stimulus. ON1 and AN2 burst at similar times relative to the amplitude envelope of the stimulus, and bursts are more tightly time-locked to stimulus feature than the isolated spikes. As a consequence, spikes that, in the absence of contralateral inhibition, would occur within AN2 bursts are more likely to be preceded by spikes in ON1 (mainly also in bursts) than are isolated AN2 spikes. This leads to a large decrease in the burst rate of the inhibited AN2. We conclude that the match in coding properties of ON1 and AN2 allows contralateral inhibition to be most efficient for those portions of the response that carry the behaviourally relevant information, i.e. for bursts.

  13. A Nontriggered Burst Supplement to the BATSE Gamma-Ray Burst Catalogs

    NASA Technical Reports Server (NTRS)

    Kommers, Jefferson M.; Lewin, Walter H. G.; Kouveliotou, Chryssa; vanParadijs, Jan; Pendleton, Geoffrey N.; Meegan, Charles A.; Fishman, Gerald J.

    2001-01-01

    The Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory detects gamma-ray bursts (GRBs) with a real-time burst detection (or "trigger") system running onboard the spacecraft. Under some circumstances, however, a GRB may not activate the on-board burst trigger. For example, the burst may be too faint to exceed the on-board detection threshold, or it may occur while the on-board burst trigger is disabled for technical reasons. This paper describes a catalog of 873 "nontriggered" GRBs that were detected in a search of the archival continuous data from BATSE recorded between 1991 December 9.0 and 1997 December 17.0. For each burst, the catalog gives an estimated source direction, duration, peak flux, and fluence. Similar data are presented for 50 additional bursts of unknown origin that were detected in the 25-50 keV range; these events may represent the low-energy "tail" of the GRB spectral distribution. This catalog increases the number of GRBs detected with BATSE by 48% during the time period covered by the search.

  14. Swept Frequency Laser Metrology System

    NASA Technical Reports Server (NTRS)

    Zhao, Feng (Inventor)

    2010-01-01

    A swept frequency laser ranging system having sub-micron accuracy that employs multiple common-path heterodyne interferometers, one coupled to a calibrated delay-line for use as an absolute reference for the ranging system. An exemplary embodiment uses two laser heterodyne interferometers to create two laser beams at two different frequencies to measure distance and motions of target(s). Heterodyne fringes generated from reflections off a reference fiducial X(sub R) and measurement (or target) fiducial X(sub M) are reflected back and are then detected by photodiodes. The measured phase changes Delta phi(sub R) and Delta phi (sub m) resulting from the laser frequency swept gives target position. The reference delay-line is the only absolute reference needed in the metrology system and this provides an ultra-stable reference and simple/economical system.

  15. Coronal plasma-frequency radio echoes?

    NASA Astrophysics Data System (ADS)

    Eremin, A. B.

    1986-06-01

    In the frame of the mechanism of generation of the fundamental mode of type III solar radio bursts suggested by Eremin and Zajtsev (1985) the formation of an echo event in the corona at plasma frequency is shown to be possible. Examples of events are given which were observed during the type IIIb-III radio storm in July, 1974 and may be identified as radio echos. A regular "violet" (in comparison with the primary burst) frequency shift of the echo burst has been detected that results from the radiation reflection from moving inhomogeneities of the solar wind. An estimate of the mean velocity of the solar wind of VSW ≅ 107cm/s at the distance R_sun; from the photosphere is obtained.

  16. Delta launch vehicle inertial guidance system (DIGS)

    NASA Technical Reports Server (NTRS)

    Duck, K. I.

    1973-01-01

    The Delta inertial guidance system, part of the Delta launch vehicle improvement effort, has been flown on three launches and was found to perform as expected for a variety of mission profiles and vehicle configurations.

  17. The functional significance of delta oscillations in cognitive processing.

    PubMed

    Harmony, Thalía

    2013-01-01

    Ample evidence suggests that electroencephalographic (EEG) oscillatory activity is linked to a broad variety of perceptual, sensorimotor, and cognitive operations. However, few studies have investigated the delta band (0.5-3.5 Hz) during different cognitive processes. The aim of this review is to present data and propose the hypothesis that sustained delta oscillations inhibit interferences that may affect the performance of mental tasks, possibly by modulating the activity of those networks that should be inactive to accomplish the task. It is clear that two functionally distinct and potentially competing brain networks can be broadly distinguished by their contrasting roles in attention to the external world vs. the internally directed mentation or concentration. During concentration, EEG delta (1-3.5 Hz) activity increases mainly in frontal leads in different tasks: mental calculation, semantic tasks, and the Sternberg paradigm. This last task is considered a working memory task, but in neural, as well as phenomenological, terms, working memory can be best understood as attention focused on an internal representation. In the Sternberg task, increases in power in the frequencies from 1 to 3.90 Hz in frontal regions are reported. In a Go/No-Go task, power increases at 1 Hz in both conditions were observed during 100-300 ms in central, parietal and temporal regions. However, in the No-Go condition, power increases were also observed in frontal regions, suggesting its participation in the inhibition of the motor response. Increases in delta power were also reported during semantic tasks in children. In conclusion, the results suggest that power increases of delta frequencies during mental tasks are associated with functional cortical deafferentation, or inhibition of the sensory afferences that interfere with internal concentration. These inhibitory oscillations would modulate the activity of those networks that should be inactive to accomplish the task. PMID

  18. Delta nitrogen tetroxide fueling operations

    NASA Technical Reports Server (NTRS)

    Grigsby, R. B.; Cross, T. M.; Rucci, T. D.

    1978-01-01

    The development of the Delta second stage nitrogen tetroxide fueling system is briefly summarized. The nitrogen tetroxide fueling system and the equipment used to protect the spacecraft environment from the toxic nitrogen tetroxide fumes are described. Topics covered include: the nitrogen tetroxide transfer system; loading operations; safety precautions; and chemical treatment of all toxic vapors.

  19. Spongeplant Spreading in the Delta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasive, exotic aquatic plants impact a range of important economic and ecological functions in the Sacramento-San Joaquin Delta of California, and the state now spends over $5 million to control water hyacinth and Brazilian waterweed. In 2007, a new exotic floating plant South American Spongeplan...

  20. Delta launch vehicle accident investigation

    NASA Astrophysics Data System (ADS)

    1986-03-01

    The text of the testimony given by several witnesses during the House hearings on the Delta launch vehicle accident of May 3, 1986 is given. Pre-launch procedures, failure analysis, the possibility of sabotage, and design and testing are among the topics discussed.

  1. N-{Delta} weak transition

    SciTech Connect

    Graczyk, Krzysztof M.

    2011-11-23

    A short review of the Rein-Sehgal and isobar models is presented. The attention is focused on the nucleon-{Delta}(1232) weak transition form-factors. The results of the recent re-analyses of the ANL and BNL bubble chamber neutrino-deuteron scattering data are discussed.

  2. Phytoplankton fuels Delta food web

    USGS Publications Warehouse

    Jassby, Alan D.; Cloern, James E.; Muller-Solger, A. B.

    2003-01-01

    Populations of certain fishes and invertebrates in the Sacramento-San Joaquin Delta have declined in abundance in recent decades and there is evidence that food supply is partly responsible. While many sources of organic matter in the Delta could be supporting fish populations indirectly through the food web (including aquatic vegetation and decaying organic matter from agricultural drainage), a careful accounting shows that phytoplankton is the dominant food source. Phytoplankton, communities of microscopic free-floating algae, are the most important food source on a Delta-wide scale when both food quantity and quality are taken into account. These microscopic algae have declined since the late 1960s. Fertilizer and pesticide runoff do not appear to be playing a direct role in long-term phytoplankton changes; rather, species invasions, increasing water transparency and fluctuations in water transport are responsible. Although the potential toxicity of herbicides and pesticides to plank- ton in the Delta is well documented, the ecological significance remains speculative. Nutrient inputs from agricultural runoff at current levels, in combination with increasing transparency, could result in harmful al- gal blooms. 

  3. Revisiting double Dirac delta potential

    NASA Astrophysics Data System (ADS)

    Ahmed, Zafar; Kumar, Sachin; Sharma, Mayank; Sharma, Vibhu

    2016-07-01

    We study a general double Dirac delta potential to show that this is the simplest yet still versatile solvable potential to introduce double wells, avoided crossings, resonances and perfect transmission (T = 1). Perfect transmission energies turn out to be the critical property of symmetric and anti-symmetric cases wherein these discrete energies are found to correspond to the eigenvalues of a Dirac delta potential placed symmetrically between two rigid walls. For well(s) or barrier(s), perfect transmission (or zero reflectivity, R(E)) at energy E=0 is non-intuitive. However, this has been found earlier and called the ‘threshold anomaly’. Here we show that it is a critical phenomenon and we can have 0≤slant R(0)\\lt 1 when the parameters of the double delta potential satisfy an interesting condition. We also invoke a zero-energy and zero curvature eigenstate (\\psi (x)={Ax}+B) of the delta well between two symmetric rigid walls for R(0)=0. We resolve that the resonant energies and the perfect transmission energies are different and they arise differently.

  4. High-precision source location of the 1978 November 19 gamma-ray burst

    NASA Technical Reports Server (NTRS)

    Cline, T. L.; Desai, U. D.; Teegarden, B. J.; Pizzichini, G.; Evans, W. D.; Klebesadel, R. W.; Laros, J. G.; Barat, C.; Hurley, K.; Niel, M.

    1981-01-01

    The celestial source location of the November 19, 1978, intense gamma ray burst has been determined from data obtained with the interplanetary gamma-ray sensor network by means of long-baseline wave front timing instruments. Each of the instruments was designed for studying events with observable spectra of approximately greater than 100 keV, and each provides accurate event profile timing in the several millisecond range. The data analysis includes the following: the triangulated region is centered at (gamma, delta) 1950 = (1h16m32s, -28 deg 53 arcmin), at -84 deg galactic latitude, where the star density is very low and the obscuration negligible. The gamma-ray burst source region, consistent with that of a highly polarized radio source described by Hjellming and Ewald (1981), may assist in the source modeling and may facilitate the understanding of the source process. A marginally identifiable X-ray source was also found by an Einstein Observatory investigation. It is concluded that the burst contains redshifted positron annihilation and nuclear first-excited iron lines, which is consistent with a neutron star origin.

  5. Importance of Kappa Background Electron Distributions to Solar Radio Bursts

    NASA Astrophysics Data System (ADS)

    Cairns, I. H.; Schmidt, J. M.; Li, B.

    2015-12-01

    The Sun produces intense radio emissions by collective processes and by incoherent single-particle processes, both of which depend sensitively on the electron distribution function present. Examples of the former include metric type II and III bursts produced by the so-called plasma emission processes, while examples of the latter include decametric and metric continua produced by the bremstrahlung and gyrosynchrotron processes. Kappa electron distributions, which appear power-law at high energies, qualitatively alter the spectral shape for the incoherent processes and increase the total flux (due to the increased number of high energy electrons). Kappa distributions are also vital for collective processes, due to the increased number of fast electrons (and so energy available) again and also due to the greatly ncreased level of the nonthermal background distribution onto which is superposed the distribution function of fast particles responsible for the collectively-produced waves and radio emissions. Two examples are presented, one for each reason. For type II bursts the level and frequency-time structures (above background) of predicted radio emission change qualitatively when kappa rather than Maxwellian background electrons are assumed, due to the increased numbers of fast electrons reflected by the type II shock. While this effect is also important for type III bursts produced by fast electron beams, our simulations show that the crucial qualitative change is that beam speeds above 0.3 c only develop in the simulations when kappa background electrons are present, due to the high level of the kappa tail preventing quasilinear relaxation of the beam electrons to smaller speeds.

  6. Maintenance of large deltas through channelization

    NASA Astrophysics Data System (ADS)

    Giosan, L.; Constatinescu, S.; Filip, F.

    2013-12-01

    A new paradigm for delta restoration is currently taking shape using primarily Mississippi delta examples. Here we propose an alternative for delta maintenance primarily envisioned for wave-influenced deltas based on Danube delta experiences. Over the last half century, while the total sediment load of the Danube dramatically decreased due to dam construction on tributaries and its mainstem, a grand experiment was inadvertently run in the Danube delta: the construction of a dense network of canals, which almost tripled the water discharge toward the interior of the delta plain. We use core-based and chart-based sedimentation rates and patterns to explore the delta transition from the natural to an anthropogenic regime, to understand the effects of far-field damming and near-field channelization, and to construct a conceptual model for delta development as a function sediment partition between the delta plain and the delta coastal fringe. We show that sediment fluxes increased to the delta plain due to channelization, counteracting sea level rise. In turn, the delta coastal fringe was most impacted by the Danube's sediment load collapse. Furthermore, we show that morphodynamic feedbacks at the river mouth are crucial in trapping sediment near the coast and constructing wave-dominated deltas or lobes or delaying their destruction. As a general conclusion, we suggest that increased channelization that mimics and enhances natural processes may provide a simple solution for keeping delta plains above sea level and that abandonment of wave-dominated lobes may be the most long term efficient solution for protecting the internal fluvial regions of deltas and provide new coastal growth downcoast.

  7. Burst X-ray detection using RMSAFE

    NASA Astrophysics Data System (ADS)

    Yamanishi, Hirokuni; Miyake, Hitoshi; Kodaira, Jun-ichi; Obayashi, Haruo; Isobe, Mitsutaka; Matsuoka, Keisuke

    2003-04-01

    The function of the radiation monitoring system Radiation Monitoring System Applicable to Fusion Experiments (RMSAFE) is well verified to detect burst radiation, that is, radiation generated suddenly and explosively. When an increase in 50 ms integrated count from a radiation monitor, which is recorded and updated every 10 ms in the system CPU, is encountered to exceed a pre-set level, RMSAFE recognizes it as an outbreak of burst radiation and alters its recording mode so that the burst event data is saved in a specified file. In this study, we detected X-rays arising from Compact Helical System (CHS), a high-temperature plasma experimental device, in order to verify that RMSAFE is able to detect radiation bursts successfully and accurately. Increases in the dose of radiation due to X-rays from CHS were observed concurrently at various observation points in several plasma shots. The weekly accumulated values of radiation dose observed by RMSAFE in the CHS torus hall were consistent with the results of integrated dose measurements by thermoluminescent dosimeter (TLD) and by radiophotoluminescent dosimeter (RPLD), and furthermore, the general decreasing tendency of the observed dose with the distance from the CHS torus was clearly seen, though detailed radiation patterns might be dependent on source plasma and other conditions. These results support our conclusion that RMSAFE is able to successfully detect burst X-rays.

  8. THE FERMI GAMMA-RAY BURST MONITOR

    SciTech Connect

    Meegan, Charles; Lichti, Giselher; Bissaldi, Elisabetta; Diehl, Roland; Greiner, Jochen; Von Kienlin, Andreas; Steinle, Helmut; Bhat, P. N.; Briggs, Michael S.; Connaughton, Valerie; Paciesas, W. S.; Preece, Robert; Wilson, Robert B.; Fishman, Gerald; Kouveliotou, Chryssa; Van der Horst, Alexander J.; McBreen, Sheila

    2009-09-01

    The Gamma-Ray Burst Monitor (GBM) will significantly augment the science return from the Fermi Observatory in the study of gamma-ray bursts (GRBs). The primary objective of GBM is to extend the energy range over which bursts are observed downward from the energy range of the Large Area Telescope (LAT) on Fermi into the hard X-ray range where extensive previous data sets exist. A secondary objective is to compute burst locations onboard to allow re-orienting the spacecraft so that the LAT can observe delayed emission from bright bursts. GBM uses an array of 12 sodium iodide scintillators and two bismuth germanate scintillators to detect gamma rays from {approx}8 keV to {approx}40 MeV over the full unocculted sky. The onboard trigger threshold is {approx}0.7 photons cm{sup -2} s{sup -1} (50-300 keV, 1 s peak). GBM generates onboard triggers for {approx}250 GRBs per year.

  9. Transverse Bursts in Inclined Layer Convection: Theory

    NASA Astrophysics Data System (ADS)

    Bodenschatz, Eberhard; Brink, Jeandrew; Pesch, Werner

    2002-03-01

    We report theoretical and computational results on thermally driven inclined layer convection. For small Prandtl number fluids, experiments have reported bursting phenomena at both small angles, strong driving and high angles, weak driving (Daniels et al. PRL 84: 5320, 2000). Theoretically, the small angle, strong driving case was described by Clever and Busse (Physics of Fluids 12: 2137, 2000) and was connected to a subharmonic instability. At large angles, close to the codimension-two point, intermittent, localized, transverse subharmonic bursts occur at weak driving. Qualitatively, the bursts draw energy from the roll modes, exhaust them while growing, and die out when they are unable to find a new attractor. We investigate a connection between the small- and large-angle bursts. Using Galerkin methods and direct simulations of the underlying Boussinesq equations, we examine the extent to which they are related to a linear instability of the roll pattern. We address a possible connection to the shear flow turbulent bursts observed in Taylor-Couette flow. In addition, we present a theoretical analysis of the small Prandtl number case, for which the codimension-two point moves to zero angle. This work is supported by a Cornell Graduate Student Fellowship and by the National Science Foundation under grant DMR-0072077.

  10. Olivary subthreshold oscillations and burst activity revisited

    PubMed Central

    Bazzigaluppi, Paolo; De Gruijl, Jornt R.; van der Giessen, Ruben S.; Khosrovani, Sara; De Zeeuw, Chris I.; de Jeu, Marcel T. G.

    2012-01-01

    The inferior olive (IO) forms one of the major gateways for information that travels to the cerebellar cortex. Olivary neurons process sensory and motor signals that are subsequently relayed to Purkinje cells. The intrinsic subthreshold membrane potential oscillations of the olivary neurons are thought to be important for gating this flow of information. In vitro studies have revealed that the phase of the subthreshold oscillation determines the size of the olivary burst and may gate the information flow or encode the temporal state of the olivary network. Here, we investigated whether the same phenomenon occurred in murine olivary cells in an intact olivocerebellar system using the in vivo whole-cell recording technique. Our in vivo findings revealed that the number of wavelets within the olivary burst did not encode the timing of the spike relative to the phase of the oscillation but was related to the amplitude of the oscillation. Manipulating the oscillation amplitude by applying Harmaline confirmed the inverse relationship between the amplitude of oscillation and the number of wavelets within the olivary burst. Furthermore, we demonstrated that electrotonic coupling between olivary neurons affect this modulation of the olivary burst size. Based on these results, we suggest that the olivary burst size might reflect the “expectancy” of a spike to occur rather than the spike timing, and that this process requires the presence of gap junction coupling. PMID:23189043

  11. GRB Catalog: Bursts from Vela to Swift

    NASA Technical Reports Server (NTRS)

    Angelini, L.

    2008-01-01

    Gamma ray burst (GRB) astronomy started when the first event was recorded on July 2, 1967 by Vela 4a and 4b. Since then many missions have flown experiments capable of detecting GRBs. The events collected by these older experiments are mostly available in paper copy, each containing a few ten to a few hundred bursts. No systematic effort in cataloging of these bursts has been available. In some cases the information is unpublished and in others difficult to retrieve. The first major GRB catalog was obtained by GRO with the BATSE experiment. It contains more than 2000 bursts and includes homogeneous information for each of the bursts. With the launch of Swift, the first Gamma-ray/X-ray mission dedicated to the study of GRBs and their afterglows, a wealth of information is collected by the Swift instrument as well as from ground-based telescopes. This talk will describe the efforts to create a comprehensive GRBCAT and its current status and future prospective.

  12. Unsteady aerodynamic loading of delta wings for low and high angles of attack

    NASA Technical Reports Server (NTRS)

    Ashley, H.; Vaneck, T.; Jarrah, M. A. M.; Katz, J.

    1990-01-01

    Experimental and theoretical investigations dealing with unsteady flow phenomena are surveyed, with the emphasis on the pattern of vortices which originate from flow separation at sharp leading edges. It is concluded that these vortices exhibit quasi-steady behavior when the alpha-vibrations are such that bursting instability does not occur above the wing surface. A selection of test results from Jarrah (1988) is presented and discussed. For sharp-edged delta models at low speeds, the aerodynamic loads which are plotted quantify the role of parameters AR and K for three ranges of alpha-variation. An extremely approximate and empirical 'theory' is offered, with data on crossflow drag and burst location, to reproduce the behavior of these airloads up to 90 deg. Recent attempts to apply the more sophisticated tools of computational fluid dynamics to the combination of unsteadiness and very high alpha are shown to be deficient.

  13. 27 CFR 9.96 - Mississippi Delta.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Mississippi Delta. 9.96... Mississippi Delta. (a) Name. The name of the viticultural area described in this section is “Mississippi Delta.” (b) Approved maps. The appropriate maps for determining the boundaries of the Mississippi...

  14. 27 CFR 9.96 - Mississippi Delta.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Mississippi Delta. 9.96... Mississippi Delta. (a) Name. The name of the viticultural area described in this section is “Mississippi Delta.” (b) Approved maps. The appropriate maps for determining the boundaries of the Mississippi...

  15. 27 CFR 9.96 - Mississippi Delta.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Mississippi Delta. 9.96... Mississippi Delta. (a) Name. The name of the viticultural area described in this section is “Mississippi Delta.” (b) Approved maps. The appropriate maps for determining the boundaries of the Mississippi...

  16. 27 CFR 9.96 - Mississippi Delta.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Mississippi Delta. 9.96... Mississippi Delta. (a) Name. The name of the viticultural area described in this section is “Mississippi Delta.” (b) Approved maps. The appropriate maps for determining the boundaries of the Mississippi...

  17. 27 CFR 9.96 - Mississippi Delta.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Mississippi Delta. 9.96... Mississippi Delta. (a) Name. The name of the viticultural area described in this section is “Mississippi Delta.” (b) Approved maps. The appropriate maps for determining the boundaries of the Mississippi...

  18. Time-varying correlations between delta EEG power and heart rate variability in midlife women: The SWAN Sleep Study

    PubMed Central

    Rothenberger, Scott D.; Krafty, Robert T.; Taylor, Briana J.; Cribbet, Matthew R.; Thayer, Julian F.; Buysse, Daniel J.; Kravitz, Howard M.; Buysse, Evan D.; Hall, Martica H.

    2014-01-01

    No studies have evaluated the dynamic, time-varying, relationship between delta electroencephalographic (EEG) sleep and high frequency heart rate variability (HF-HRV) in women. Delta EEG and HF-HRV were measured during sleep in 197 midlife women (Mage =52.1, SD =2.2). Delta EEG-HF-HRV correlations in Non-Rapid Eye Movement (NREM) sleep were modeled as whole night averages and as continuous functions of time. The whole-night delta EEG-HF-HRV correlation was positive. Strongest correlations were observed during the first NREM sleep period preceding and following peak delta power. Time-varying correlations between delta EEG-HF-HRV were stronger in participants with sleep-disordered breathing and self-reported insomnia compared to healthy controls. The dynamic interplay between sleep and autonomic activity can be modeled across the night to examine within- and between-participant differences including individuals with and without sleep disorders. PMID:25431173

  19. Advances in generation of high-repetition-rate burst mode laser output.

    PubMed

    Jiang, Naibo; Webster, Matthew C; Lempert, Walter R

    2009-02-01

    It is demonstrated that the incorporation of variable pulse duration flashlamp power supplies into an Nd:YAG burst mode laser system results in very substantial increases in the realizable energy per pulse, the total pulse train length, and uniformity of the intensity envelope. As an example, trains of 20 pulses at burst frequencies of 50 and 20 kHz are demonstrated with individual pulse energy at 1064 nm of 220 and 400 mJ, respectively. Conversion efficiency to the second- (532 nm) and third- (355 nm) harmonic wavelengths of approximately 50% and 35-40%, respectively, is also achieved. Use of the third-harmonic output of the burst mode laser as a pump source for a simple, home built optical parametric oscillator (OPO) produces pulse trains of broadly wavelength tunable output. Sum-frequency mixing of OPO signal output at 622 nm with residual output from the 355 nm pump beam is shown to produce uniform bursts of tunable output at approximately 226 nm, with individual pulse energy of approximately 0.5 mJ. Time-correlated NO planar laser induced fluorescence (PLIF) image sequences are obtained in a Mach 3 wind tunnel at 500 kHz, representing, to our knowledge, the first demonstration of NO PLIF imaging at repetition rates exceeding tens of hertz.

  20. Cannabinoid Receptor Activation Reverses Kainate-Induced Synchronized Population Burst Firing in Rat Hippocampus

    PubMed Central

    Mason, Rob; Cheer, Joseph F.

    2009-01-01

    Cannabinoids have been shown to possess anticonvulsant properties in whole animal models of epilepsy. The present investigation sought to examine the effects of cannabinoid receptor activation on kainic acid (KA)-induced epileptiform neuronal excitability. Under urethane anesthesia, acute KA treatment (10 mg kg−1, i.p.) entrained the spiking mode of simultaneously recorded neurons from random firing to synchronous bursting (% change in burst rate). Injection of the high-affinity cannabinoid agonist (-)-11-hydroxy-8-tetrahydrocannabinol-dimethyl-heptyl (HU210, 100 μg kg−1, i.p.) following KA markedly reduced the burst frequency (% decrease in burst frequency) and reversed synchronized firing patterns back to baseline levels. Pre-treatment with the central cannabinoid receptor (CB1) antagonist N-piperidino-5-(4-clorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyrazole-carboxamide (rimonabant, SR141716A 3 mg kg−1, i.p.) completely prevented the actions of HU210. The present results indicate that cannabinoids exert their antiepileptic effects by impeding pathological synchronization of neuronal networks in the hippocampus. PMID:19562087