DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferraudi, G.; Muralidharan, S.
1983-04-01
The ultraviolet photochemistry of the rhodium(II) phthalocyanines Rh(ph)(CH/sub 3/OH)X with X = Cl/sup -/, Br/sup -/, and I/sup -/ was investigated at different wavelengths. The same action spectrum for the photoinduced hydrogen abstraction was obtained for the three compounds. The photonic energy of the excitation is degraded in part by emission at short wavelengths, e.g. lambda/sub max/ approx. = 420 nm. Such a violet emission, observed with phthalocyanines of Al(III), Rh(III), Co(III), and Ru(II), has been attributed to the relaxation of an upper /sup 3/par. deltapar. delta* excited state. The emissions spectra at 77 K exhibited vibronic components with amore » separation between successive peaks ..delta nu.. approx. = 1.3 x 10/sup 3/ cm/sup -1/. A comparison between the excitation and action spectra shows the difference in the paths that populate the reactive npar. delta* and upper emissive par. deltapar. delta* states. An investigation of the time dependence of the upper /sup 3/par. deltapar. delta* emission and lowest /sup 3/par. deltapar. delta* absorptions reveals the participation of triplet sublevels in the degradation of the excitation energy. The relationship between photoemissive and photoreactive states is discussed.« less
1998-09-17
A booster is raised off a truck bed and prepared for lifting to the Boeing Delta 7326 rocket that will launch Deep Space 1 at Launch Pad 17A, Cape Canaveral Air Station. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches. The Delta 7236 has three solid rocket boosters and a Star 37 upper stage. Delta IIs are manufactured in Huntington Beach, Calif. Rocketdyne, a division of The Boeing Company, builds Delta II's main engine in Canoga Park, Calif. Deep Space 1, the first flight in NASA's New Millennium Program, is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999
1998-09-17
A booster is lifted for installation onto the Boeing Delta 7326 rocket that will launch Deep Space 1 at Launch Pad 17A, Cape Canaveral Air Station. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches. The Delta 7236 has three solid rocket boosters and a Star 37 upper stage. Delta IIs are manufactured in Huntington Beach, Calif. Rocketdyne, a division of The Boeing Company, builds Delta II's main engine in Canoga Park, Calif. Deep Space 1, the first flight in NASA's New Millennium Program, is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999
1998-09-17
Three boosters are lifted into place at Launch Pad 17A, Cape Canaveral Air Station, for installation onto the Boeing Delta 7326 rocket that will launch Deep Space 1. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches. The Delta 7236 has three solid rocket boosters and a Star 37 upper stage. Delta IIs are manufactured in Huntington Beach, Calif. Rocketdyne, a division of The Boeing Company, builds Delta II's main engine in Canoga Park, Calif. Deep Space 1, the first flight in NASA's New Millennium Program, is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999
1998-09-17
A booster is lifted off a truck for installation onto the Boeing Delta 7326 rocket that will launch Deep Space 1 at Launch Pad 17A, Cape Canaveral Air Station. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches. The Delta 7236 has three solid rocket boosters and a Star 37 upper stage. Delta IIs are manufactured in Huntington Beach, Calif. Rocketdyne, a division of The Boeing Company, builds Delta II's main engine in Canoga Park, Calif. Deep Space 1, the first flight in NASA's New Millennium Program, is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999
1998-09-17
Two boosters are lifted into place, while a third waits on the ground, for installation onto the Boeing Delta 7326 rocket that will launch Deep Space 1 at Launch Pad 17A, Cape Canaveral Air Station. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches. The Delta 7236 has three solid rocket boosters and a Star 37 upper stage. Delta IIs are manufactured in Huntington Beach, Calif. Rocketdyne, a division of The Boeing Company, builds Delta II's main engine in Canoga Park, Calif. Deep Space 1, the first flight in NASA's New Millennium Program, is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999
1998-09-17
A solid rocket booster (left) is raised for installation onto the Boeing Delta 7326 rocket that will launch Deep Space 1 at Launch Pad 17A, Cape Canaveral Air Station. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches. Delta's origins go back to the Thor intermediate-range ballistic missile, which was developed in the mid-1950s for the U.S. Air Force. The Thor a single-stage, liquid-fueled rocket later was modified to become the Delta launch vehicle. The Delta 7236 has three solid rocket boosters and a Star 37 upper stage. Delta IIs are manufactured in Huntington Beach, Calif. Rocketdyne, a division of The Boeing Company, builds Delta II's main engine in Canoga Park, Calif. Final assembly takes place at the Boeing facility in Pueblo, Colo. Deep Space 1, the first flight in NASA's New Millennium Program, is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999
1998-09-17
A solid rocket booster is maneuvered into place for installation on the Boeing Delta 7326 rocket that will launch Deep Space 1 at Launch Pad 17A, Cape Canaveral Air Station. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches. Delta's origins go back to the Thor intermediate-range ballistic missile, which was developed in the mid-1950s for the U.S. Air Force. The Thor a single-stage, liquid-fueled rocket later was modified to become the Delta launch vehicle. The Delta 7236 has three solid rocket boosters and a Star 37 upper stage. Delta IIs are manufactured in Huntington Beach, Calif. Rocketdyne, a division of The Boeing Company, builds Delta II's main engine in Canoga Park, Calif. Final assembly takes place at the Boeing facility in Pueblo, Colo. Deep Space 1, the first flight in NASA's New Millennium Program, is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999
1998-09-17
A Boeing Delta 7326 rocket with two solid rocket boosters attached sits on Launch Pad 17A, Cape Canaveral Air Station. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches. Delta's origins go back to the Thor intermediate-range ballistic missile, which was developed in the mid-1950s for the U.S. Air Force. The Thor a single-stage, liquid-fueled rocket later was modified to become the Delta launch vehicle. Delta IIs are manufactured in Huntington Beach, Calif. Rocketdyne, a division of The Boeing Company, builds Delta II's main engine in Canoga Park, Calif. Final assembly takes place at the Boeing facility in Pueblo, Colo. The Delta 7236, which has three solid rocket boosters and a Star 37 upper stage, will launch Deep Space 1, the first flight in NASA's New Millennium Program. It is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999
1998-09-17
(Left) A solid rocket booster is lifted for installation onto the Boeing Delta 7326 rocket that will launch Deep Space 1 at Launch Pad 17A, Cape Canaveral Air Station. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches. Delta's origins go back to the Thor intermediate-range ballistic missile, which was developed in the mid-1950s for the U.S. Air Force. The Thor a single-stage, liquid-fueled rocket later was modified to become the Delta launch vehicle. The Delta 7236 has three solid rocket boosters and a Star 37 upper stage. Delta IIs are manufactured in Huntington Beach, Calif. Rocketdyne, a division of The Boeing Company, builds Delta II's main engine in Canoga Park, Calif. Final assembly takes place at the Boeing facility in Pueblo, Colo. Deep Space 1, the first flight in NASA's New Millennium Program, is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but may also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999
The fairing for the Delta II rocket carrying the Mars Polar Lander arrives on Pad 17B, CCAS
NASA Technical Reports Server (NTRS)
1998-01-01
The fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander arrives at Pad 17B, Cape Canaveral Air Station. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern- most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998.
The fairing for the Delta II rocket carrying the Mars Polar Lander arrives on Pad 17B, CCAS
NASA Technical Reports Server (NTRS)
1998-01-01
On Pad 17B, Cape Canaveral Air Station, the fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander is lowered toward the rocket waiting below. The lander, which will be launched on Jan. 3, 1999, is a solar-powered spacecraft designed to touch down on the Martian surface near the northern- most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998.
The fairing for the Delta II rocket carrying the Mars Polar Lander arrives on Pad 17B, CCAS
NASA Technical Reports Server (NTRS)
1998-01-01
On Pad 17B, Cape Canaveral Air Station, the fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander is prepared for lowering toward the rocket below. The lander, which will be launched on Jan. 3, 1999, is a solar-powered spacecraft designed to touch down on the Martian surface near the northern- most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998.
The fairing for the Delta II rocket carrying the Mars Polar Lander arrives on Pad 17B, CCAS
NASA Technical Reports Server (NTRS)
1998-01-01
The fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander is lifted to a vertical position on Pad 17B, Cape Canaveral Air Station. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998.
The fairing for the Delta II rocket carrying the Mars Polar Lander arrives on Pad 17B, CCAS
NASA Technical Reports Server (NTRS)
1998-01-01
The fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander is lifted to the top of the gantry on Pad 17B, Cape Canaveral Air Station. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998.
2004-07-19
KENNEDY SPACE CENTER, FLA. - After bagging the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) spacecraft, Boeing workers at Astrotech Space Operations in Titusville, Fla., place the first part of a transportation canister around the Delta II upper stage booster. MESSENGER will be transferred to Launch Pad 17-B at Cape Canaveral Air Force Station, Fla. Liftoff of MESSENGER aboard a Boeing Delta II Heavy rocket is scheduled for Aug. 2. The spacecraft is expected to reach orbit around the planet in March 2011. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
2007-06-15
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station, the second stage of the Delta II launch vehicle for the Dawn spacecraft arrives at the upper level of the mobile service tower. It will be moved inside the tower and mated with the first stage already in the tower. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy is the strongest rocket in the Delta II class. It will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/Jack Pfaller
2007-06-27
KENNEDY SPACE CENTER, FLA. -- NASA's Dawn spacecraft, mated to the Delta II upper stage booster, arrives at Launch Pad 17-B at Cape Canaveral Air Force Station. It will be lifted into the mobile service tower for mating to the Delta II launch vehicle. Launch is scheduled for July 7. Dawn is the ninth mission in NASA's Discovery Program. The spacecraft will be the first to orbit two planetary bodies, asteroid Vesta and dwarf planet Ceres, during a single mission. Vesta and Ceres lie in the asteroid belt between Mars and Jupiter. It is also NASA's first purely scientific mission powered by three solar electric ion propulsion engines. Photo credit: NASA/Troy Cryder.
2007-06-27
KENNEDY SPACE CENTER, FLA. -- At Launch Pad 17-B, at Cape Canaveral Air Force Station, workers prepare NASA's Dawn spacecraft mated to the Delta II upper stage booster, for hoisting up into the mobile service tower. Dawn will be mated with the Delta II launch vehicle. Dawn is the ninth mission in NASA's Discovery Program. The spacecraft will be the first to orbit two planetary bodies, asteroid Vesta and dwarf planet Ceres, during a single mission. Vesta and Ceres lie in the asteroid belt between Mars and Jupiter. It is also NASA's first purely scientific mission powered by three solar electric ion propulsion engines. Photo credit: NASA/Troy Cryder.
2007-06-27
KENNEDY SPACE CENTER, FLA. -- At Launch Pad 17-B, at Cape Canaveral Air Force Station, workers attach a crane to NASA's Dawn spacecraft mated to the Delta II upper stage booster, in preparation for stacking with the Delta II launch vehicle. Launch is scheduled for July 7. Dawn is the ninth mission in NASA's Discovery Program. The spacecraft will be the first to orbit two planetary bodies, asteroid Vesta and dwarf planet Ceres, during a single mission. Vesta and Ceres lie in the asteroid belt between Mars and Jupiter. It is also NASA's first purely scientific mission powered by three solar electric ion propulsion engines. Photo credit: NASA/Troy Cryder.
Chen, Y J; Kao, C H; Lin, S J; Tai, C C; Kwan, K S
2000-01-24
A homogeneous series of heterobimetallic complexes of [R-Fc(4-py)Ru(NH3)5](PF6)2 (R = H, Et, Br, acetyl; Fc(4-py) = 4-ferrocenylpyridine) have been prepared and characterized. The mixed-valence species generated in situ using ferrocenium hexafluorophosphate as the oxidant show class II behavior, and the oxidized sites are ruthenium centered. deltaE(1/2), E(1/2)(Fe(III)/Fe(II)) - E(1/2)(Ru(III)/Ru(II)), an upper limit for deltaGo that is an energetic difference between the donor and acceptor sites, changes sharply and linearly with Gutmann solvent donor number (DN) and Hammett substituent constants (sigma). The solvent-dependent and substituent-dependent intervalence transfer bands were found to vary almost exclusively with deltaE(1/2). The activation energy for the optical electron transfer versus deltaE(1/2) plot yields a common nuclear reorganization energy (lambda) of 0.74 +/- 0.04 eV for this series. The equation that allows one to incorporate the effect of both solvent donicity and substituents on optical electron transfer is Eop = lambda + deltaGo, where deltaGo = (deltaGo)intrinsic + (deltaGo)solvent donicity + (deltaGo)substituent effect (deltaGo )intinnsic with a numerical value of 0.083 +/- 0.045 eV was obtained from the intercept of the deltaE(1/2) of [H-Fc(4-py)Ru(NH3)5]2+,3+,4+ versus DN plot. (deltaGo)solvent donicity was obtained from the average slopes of the deltaE(1/2) of [R-Fc-(4-py)Ru(NH3)5]2+,3+,4+ versus DN plot, and (deltaGo)substituent effect was obtained from the average slopes of the corresponding deltaE(1/2) versus sigma plot. The empirical equation allows one to finely tune Eop of this series to Eop = 0.82 + 0.019(DN) + 0.44sigma eV at 298 K, and the discrepancy between the calculated and experimental data is less than 6%.
2007-06-26
KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians lower the upper canister over the Dawn spacecraft. After enclosure, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton
2007-06-26
KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians secure the upper canister over the Dawn spacecraft. Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton
2007-06-26
KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians begin lowering the upper canister over the Dawn spacecraft. After enclosure, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton
The fairing for the Delta II rocket carrying the Mars Polar Lander arrives on Pad 17B, CCAS
NASA Technical Reports Server (NTRS)
1998-01-01
Inside the gantry on Pad 17B, Cape Canaveral Air Station, the fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander waits to be lowered into the white room. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998.
2004-07-27
KENNEDY SPACE CENTER, FLA. - On Launch Pad 17-B at Cape Canaveral Air Force Station, the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) spacecraft is seen atop the Delta II upper stage booster (middle) and the Delta II launch vehicle below. The spacecraft is ready for installation of the fairing, a molded structure that fits flush with the outside surface of the upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. Seen on the right is one of the solar panels on the spacecraft. On the left is the heat-resistant, ceramic-cloth sunshade that will protect the spacecraft’s instruments as MESSENGER orbits the Mercury where the surface reaches a high temperature near 840 degrees Fahrenheit and the solar intensity can be 11 times greater than on Earth. MESSENGER is scheduled to launch Aug. 2 and is expected to enter Mercury orbit in March 2011. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
1992-07-18
CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Launch Complex 17, Pad A, technicians encapsulate the Geotail spacecraft upper and attached Payload Assist Module-D upper stage lower in the protective payload fairing. Geotail and secondary payload Diffuse Ultraviolet Experiment DUVE are scheduled for launch about the Delta II rocket on July 24. The GEOTAIL mission is a collaborative project undertaken by the Institute of Space and Astronautical Science ISAS, Japan Aerospace Exploration Agency JAXA and NASA. Photo Credit: NASA
2007-06-26
KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians move the first segment of the lower canister around the upper stage booster below the Dawn spacecraft. When enclosed in the canister, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton
2007-06-26
KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians place another segment of the canister around the upper stage booster below the Dawn spacecraft. When enclosed in the canister, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton
2007-06-26
KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians move the first segment of the lower canister around the upper stage booster below the Dawn spacecraft. When enclosed in the canister, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton
Upper critical field of high temperature Y(1.2)Ba(0.8)CuO(4-delta) superconductor
NASA Technical Reports Server (NTRS)
Hor, P. H.; Meng, R. L.; Huang, J. Z.; Chu, C. W.; Huang, C. Y.
1987-01-01
A 20-T high-field magnet is used to measure electrical resistance as a function of temperature in the Y(1.2)Ba(0.8)CuO(4-delta) superconductor. The temperature dependence of the critical field, Hc2(T), is obtained from the superconduction transition. A Hc2(O) value of 166T is determined which is the highest critical field yet reported. Results show Y(1.2)Ba(0.8)CuO(4-delta) to be a 90K Type-II superconductor, with a lower critical field Hc1(O) of about 0.2T and a penetration depth of about 290 A.
2004-10-08
KENNEDY SPACE CENTER, FLA. - In the mobile service tower at Launch Pad 17-A on Cape Canaveral Air Force Station, workers attach the upper second stage to the lower first stage of the Boeing Delta II launch vehicle. The rocket is the launch vehicle for the Swift spacecraft and its Gamma-Ray Burst Mission, now scheduled for liftoff Nov. 8. Swift is a medium-class Explorer mission managed by NASA’s Goddard Space Flight Center in Greenbelt, Md. It is a first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science. Its three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. KSC is responsible for Swift’s integration with the Boeing Delta II rocket and the countdown management on launch day.
2006-08-09
KENNEDY SPACE CENTER, FLA. - At Astrotech Space Operations in Titusville, Fla., workers look at the Delta third stage, or upper stage booster. In the background are the recently mated STEREO observatories, which is the launch configuration. STEREO, which stands for Solar Terrestrial Relations Observatory, is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. STEREO is expected to lift off aboard a Boeing Delta II rocket from Launch Pad 17-B at Cape Canaveral Air Force Station on Aug. 31. Photo credit: NASA/George Shelton
2014-07-14
VANDENBERG AIR FORCE BASE, Calif. – The second stage, or upper stage, of a United Launch Alliance Delta II rocket arrives at the Building 836 hangar on south Vandenberg Air Force Base in California. The Delta II rocket will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit from Vandenberg's Space Launch Complex 2. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
1998-12-02
KENNEDY SPACE CENTER, FLA. -- The fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander arrives at Pad 17B, Cape Canaveral Air Station. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998
1998-12-02
KENNEDY SPACE CENTER, FLA. -- On Pad 17B, Cape Canaveral Air Station, the fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander is lowered toward the rocket waiting below. The lander, which will be launched on Jan. 3, 1999, is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998
1998-12-02
KENNEDY SPACE CENTER, FLA. -- On Pad 17B, Cape Canaveral Air Station, the fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander is prepared for lowering toward the rocket below. The lander, which will be launched on Jan. 3, 1999, is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998
2007-07-27
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A at Cape Canaveral Air Force Station, the first half of the fairing is moved toward the Phoenix Mars Lander for installation. Phoenix is targeted for launch on Aug. 3 aboard a Delta II rocket. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/George Shelton
2007-07-27
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A at Cape Canaveral Air Force Station, the second half of the fairing (in the foreground) moves toward the Phoenix Mars Lander for installation. Phoenix is targeted for launch on Aug. 3 aboard a Delta II rocket. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/George Shelton
2007-07-27
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A at Cape Canaveral Air Force Station, the first half of the fairing is moved into place around the Phoenix Mars Lander for installation. Phoenix is targeted for launch on Aug. 3 aboard a Delta II rocket. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/George Shelton
1961-01-01
A Dyna-Soar (Dynamic Soaring) vehicle clears the launch tower atop an Air Force Titan II launch vehicle in this 1961 artist's concept. Originally conceived by the U.S. Air Force in 1957 as a marned, rocket-propelled glider in a delta-winged configuration, the Dyna-Soar was considered by Marshall Space Flight Center planners as an upper stage for the Saturn C-2 launch vehicle.
2014-07-14
VANDENBERG AIR FORCE BASE, Calif. – The transportation trailer carrying the second stage, or upper stage, of a United Launch Alliance Delta II rocket backs into the Building 836 hangar on south Vandenberg Air Force Base in California. The Delta II rocket will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit from Vandenberg's Space Launch Complex 2. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-07-14
VANDENBERG AIR FORCE BASE, Calif. – Preparations are underway to lift the second stage, or upper stage, of a United Launch Alliance Delta II rocket from its transportation trailer in the Building 836 hangar on south Vandenberg Air Force Base in California. The Delta II rocket will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit from Vandenberg's Space Launch Complex 2. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-07-14
VANDENBERG AIR FORCE BASE, Calif. – The second stage, or upper stage, of a United Launch Alliance Delta II rocket winds its way along the roads from Building 836 to the Horizontal Processing Facility at Space Launch Complex 2 on Vandenberg Air Force Base in California. The Delta II rocket will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-07-14
VANDENBERG AIR FORCE BASE, Calif. – The second stage, or upper stage, of a United Launch Alliance Delta II rocket arrives at the Horizontal Processing Facility near the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. The Delta II rocket will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-07-14
VANDENBERG AIR FORCE BASE, Calif. – The second stage, or upper stage, of a United Launch Alliance Delta II rocket arrives at Space Launch Complex 2 on Vandenberg Air Force Base in California where it will undergo preparations for launch in the Horizontal Processing Facility. The Delta II rocket will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-07-14
VANDENBERG AIR FORCE BASE, Calif. – The second stage, or upper stage, of a United Launch Alliance Delta II rocket is on its way from Building 836 on south Vandenberg Air Force Base in California to the Horizontal Processing Facility at Space Launch Complex 2. The Delta II rocket will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-07-14
VANDENBERG AIR FORCE BASE, Calif. – The second stage, or upper stage, of a United Launch Alliance Delta II rocket is towed along the roadway from Building 836 to the Horizontal Processing Facility at Space Launch Complex 2 on Vandenberg Air Force Base in California. The Delta II rocket will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-07-14
VANDENBERG AIR FORCE BASE, Calif. – A security detail accompanies the second stage, or upper stage, of a United Launch Alliance Delta II rocket on its move from Building 836 to the Horizontal Processing Facility at Space Launch Complex 2 on Vandenberg Air Force Base in California. The Delta II rocket will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-07-14
VANDENBERG AIR FORCE BASE, Calif. – The second stage, or upper stage, of a United Launch Alliance Delta II rocket begins its journey from Building 836 on south Vandenberg Air Force Base in California to the Horizontal Processing Facility at Space Launch Complex 2. The Delta II rocket will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2004-07-27
KENNEDY SPACE CENTER, FLA. - On Launch Pad 17-B at Cape Canaveral Air Force Station, the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) spacecraft is ready for installation of the fairing, a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. Seen on the left is one of the solar panels on the spacecraft. On the right is part of the heat-resistant, ceramic-cloth sunshade that will protect the spacecraft’s instruments as MESSENGER orbits the Mercury where the surface reaches a high temperature near 840 degrees Fahrenheit and the solar intensity can be 11 times greater than on Earth. MESSENGER is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket and is expected to enter Mercury orbit in March 2011. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
1998-12-02
KENNEDY SPACE CENTER, FLA. -- Inside the gantry on Pad 17B, Cape Canaveral Air Station, the fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander waits to be lowered into the white room. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998
1998-12-02
KENNEDY SPACE CENTER, FLA. -- The fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander is lifted to the top of the gantry on Pad 17B, Cape Canaveral Air Station. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998
1998-12-02
KENNEDY SPACE CENTER, FLA. -- Inside the gantry on Pad 17B, Cape Canaveral Air Station, the fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander waits to be lowered into the white room. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998
1998-12-02
KENNEDY SPACE CENTER, FLA. -- The fairing for the upper stages of the Delta II rocket carrying the Mars Polar Lander is lifted to a vertical position on Pad 17B, Cape Canaveral Air Station. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998
2014-07-14
VANDENBERG AIR FORCE BASE, Calif. – The lid is removed from the transportation trailer containing the second stage, or upper stage, of a United Launch Alliance Delta II rocket in the Building 836 hangar on south Vandenberg Air Force Base in California. The Delta II rocket will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit from Vandenberg's Space Launch Complex 2. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2007-07-27
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A at Cape Canaveral Air Force Station, the second half of the fairing (in the foreground) moves closer to the Phoenix Mars Lander for installation toward the first half. Phoenix is targeted for launch on Aug. 3 aboard a Delta II rocket. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/George Shelton
2009-01-13
VANDENBERG AIR FORCE BASE, Calif. -- In Bldg. 1610 at Vandenberg Air Force Base in California, workers guide an upper segment of the transportation canister toward the NOAA-N Prime spacecraft. NOAA-N Prime is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. The satellite is scheduled to launch Feb. 4 aboard a Delta II rocket from Vandenberg Air Force Base. Photo credit: NASA/ Daniel Liberotti, VAFB
2003-08-07
KENNEDY SPACE CENTER, FLA. - In Hangar A&E, Cape Canaveral Air Force Station, the upper canister is lowered toward the Space Infrared Telescope Facility (SIRTF) below. After encapsulation is complete, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2003-08-07
KENNEDY SPACE CENTER, FLA. - Working from a stand, technicians fasten the upper portion of the canister to the middle panels around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2003-08-07
KENNEDY SPACE CENTER, FLA. - Workers at Hangar A&E, Cape Canaveral Air Force Station, help guide the upper canister toward the Space Infrared Telescope Facility (SIRTF) at left. After encapsulation is complete, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2003-08-07
KENNEDY SPACE CENTER, FLA. - Workers at Hangar A&E, Cape Canaveral Air Force Station, lift the upper canister to move it to the Space Infrared Telescope Facility (SIRTF) at right. After encapsulation, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2003-08-07
KENNEDY SPACE CENTER, FLA. - In Hangar A&E, Cape Canaveral Air Force Station, the upper canister is mated to the middle panels around the Space Infrared Telescope Facility (SIRTF). The spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2003-08-07
KENNEDY SPACE CENTER, FLA. - Workers at Hangar A&E, Cape Canaveral Air Force Station, lower the upper canister toward the Space Infrared Telescope Facility (SIRTF) below. After encapsulation is complete, the spacecraft will be transported to Launch Complex 17-B for mating with its launch vehicle, the Delta II rocket. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
The 3 micron spectrum of the classical Be star Beta Monocerotis A
NASA Technical Reports Server (NTRS)
Sellgren, K.; Smith, R. G.
1992-01-01
A 3.1-3.7-micron spectrum of the classical Be star Beta Mon A is presented at a resolution of lambda/Delta-lambda of 700-800. The spectrum shows strong hydrogen recombination lines, including Pf-delta and a series of Humphreys lines from Hu 19 to Hu 28. The relative recombination line strengths suggest that Pf-delta has a large optical depth. The Humphreys lines have relative strengths consistent with case B and may be optically thin. The line widths observed are broader than the Balmer lines and similar in width to Fe II lines, consistent with a disk model in which optically thinner lines arise primarily from a faster rotating inner disk, while optically thicker lines come mainly from a slower rotating outer disk. The apparent lack of Stark broadening of the Humphreys lines is used to place an upper limit on the circumstellar electron density of about 10 exp 12/cu cm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, A.; Gruszczynski, M.; Malkowski, K.
1991-05-01
The phenomena of (i) inverse correlation between the oceanic carbon and sulfur isotopic curves, and (ii) covariation between the oceanic carbon and oxygen isotopic curves at all their major excursions appear as paradoxes in the current paradigm of global biogeochemical cycles. These phenomena, however, are fully explicable by a model proposing that the ocean alternates between two general modes: stagnant, stratified, and net autotrophic (overfed) ocean, on the one hand, and vigorously mixed and net heterotrophic (hungry) ocean, on the other. This model is in fact strongly supported by the carbon isotopic evidence. The directions of change in the isotopicmore » ratios of carbon, oxygen, and sulfur should be different in the lower, anoxic box of a stratified ocean than in the upper, oxic box; whereas ocean destratification and mixing of the two boxes should lead to coeval shifts in the oceanic isotopic curves of these elements. The model has far-reaching implications for (i) the causal explanation of both secular trends and major shifts in the oceanic isotopic curves, and (ii) for the application of oxygen isotopic data for paleotemperature and paleoenvironment determinations.« less
NASA Astrophysics Data System (ADS)
York, Carly C.
The Sego Sandstone located in western Colorado is a member of the Upper Cretaceous Mesaverde Group and is considered an analogue of the Canadian heavy oil sands. Deposition of the Sego Sandstone occurred during the Upper Campanian (~78 Ma) at the end of the Sevier Orogeny and the beginning of the Laramide Orogeny on the western edge of the Cretaceous Interior Seaway. Although regional studies have detailed time equivalent deposits in the Book Cliffs, UT, the tidally influenced and marginal marine lithofacies observed north of Rangely, CO are distinctly different from the dominately fluvial and tidally-influenced delta facies of Book Cliff outcrops to the southwest. This study characterized flood-tidal delta deposits within the Sego Sandstone, the subsidence history of the Upper Cretaceous sedimentary rocks within the present day Piceance Creek Basin in NW Colorado, and the detrital zircon signal and oldest depositional age of the Sego Sandstone. The goals of this study are to (i) identify relative controls on reservoir characteristics of marginal marine deposits, specifically in flood-tidal delta deposits; (ii) identify the possible mechanisms responsible for subsidence within the present day Piceance Creek Basin during the Late Cretaceous; and (iii) better constrain the provenance and maximum depositional age of the Sego Sandstone. In this study I compared grain size diameter, grain and cement composition, and the ratio of pore space/cement from thin sections collected in tidal, shoreface, and flood-tidal delta facies recognized along detailed measured stratigraphic sections. This analysis provides a detailed comparison between different depositional environments and resultant data showed that grain size diameter is different between tidal, shoreface, and flood-tidal delta facies. Identifying the subsidence mechanisms affecting the Piceance Creek Basin and sediment source of the Late Cretaceous sediments, on the other hand, is important for evaluation of controls on basin filling. Additionally, U-Pb analysis better constrains youngest depositional age for the Sego Sandstone in northwestern Colorado to 76 Ma years old, where previously constraints have been based on stratigraphic relationships and biostratigraphy in eastern Utah and southeastern Colorado.
2014-07-14
VANDENBERG AIR FORCE BASE, Calif. – The second stage, or upper stage, of a United Launch Alliance Delta II rocket and the transporter to which it is attached are lifted out of a transportation trailer in the Building 836 hangar on south Vandenberg Air Force Base in California. The stage will be moved to the Horizontal Integration Facility at Space Launch Complex 2 for further processing. The Delta II rocket will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2007-05-28
KENNEDY SPACE CENTER, FLA. -- In the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, the Delta II first stage is ready to receive the upper stages and solid rocket boosters for launch. The rocket is the launch vehicle for the Dawn spacecraft, targeted for liftoff on June 30. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Amanda Diller
Orbiting Carbon Observatory-2 (OCO-2)
2014-06-29
The upper levels of the launch gantry, surrounding the United Launch Alliance Delta II rocket with the Orbiting Carbon Observatory-2 (OCO-2) satellite onboard, are seen at the Space Launch Complex 2, Sunday, June 29, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set for a July 1, 2014 launch. Photo Credit: (NASA/Bill Ingalls)
Assessment and Verification of SLS Block 1-B Exploration Upper Stage and Stage Disposal Performance
NASA Technical Reports Server (NTRS)
Patrick, Sean; Oliver, T. Emerson; Anzalone, Evan J.
2018-01-01
Delta-v allocation to correct for insertion errors caused by state uncertainty is one of the key performance requirements imposed on the SLS Navigation System. Additionally, SLS mission requirements include the need for the Exploration Up-per Stage (EUS) to be disposed of successfully. To assess these requirements, the SLS navigation team has developed and implemented a series of analysis methods. Here the authors detail the Delta-Delta-V approach to assessing delta-v allocation as well as the EUS disposal optimization approach.
NASA Astrophysics Data System (ADS)
Podgorski, Joel E.; Green, Alan G.; Kalscheuer, Thomas; Kinzelbach, Wolfgang K. H.; Horstmeyer, Heinrich; Maurer, Hansruedi; Rabenstein, Lasse; Doetsch, Joseph; Auken, Esben; Ngwisanyi, Tiyapo; Tshoso, Gomotsang; Jaba, Bashali Charles; Ntibinyane, Onkgopotse; Laletsang, Kebabonye
2015-03-01
Integration of information from the following sources has been used to produce a much better constrained and more complete four-unit geological/hydrological model of the Okavango Delta than previously available: (i) a 3D resistivity model determined from helicopter time-domain electromagnetic (HTEM) data recorded across most of the delta, (ii) 2D models and images derived from ground-based electrical resistance tomographic, transient electromagnetic, and high resolution seismic reflection/refraction tomographic data acquired at four selected sites in western and north-central regions of the delta, and (iii) geological details extracted from boreholes in northeastern and southeastern parts of the delta. The upper heterogeneous unit is the modern delta, which comprises extensive dry and freshwater-saturated sand and lesser amounts of clay and salt. It is characterized by moderate to high electrical resistivities and very low to low P-wave velocities. Except for images of several buried abandoned river channels, it is non-reflective. The laterally extensive underlying unit of low resistivities, low P-wave velocity, and subhorizontal reflectors very likely contains saline-water-saturated sands and clays deposited in the huge Paleo Lake Makgadikgadi (PLM), which once covered a 90,000 km2 area that encompassed the delta, Lake Ngami, the Mababe Depression, and the Makgadikgadi Basin. Examples of PLM sediments are intersected in many boreholes. Low permeability clay within the PLM unit seems to be a barrier to the downward flow of the saline water. Below the PLM unit, freshwater-saturated sand of the Paleo Okavango Megafan (POM) unit is distinguished by moderate to high resistivities, low P-wave velocity, and numerous subhorizontal reflectors. The POM unit is interpreted to be the remnants of a megafan based on the arcuate nature of its front and the semi-conical shape of its upper surface in the HTEM resistivity model. Moderate to high resistivity subhorizontal layers are consistent with this interpretation. The deepest unit is the basement with very high resistivity, high P-wave velocity, and low or complex reflectivity. The interface between the POM unit and basement is a prominent seismic reflector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hyo Jung; Ham, Sun Ah; Paek, Kyung Shin
2011-03-25
Research highlights: {yields} Activation of PPAR{delta} by GW501516 significantly inhibited Ang II-induced premature senescence in hVSMCs. {yields} Agonist-activated PPAR{delta} suppressed generation of Ang II-triggered ROS with a concomitant reduction in DNA damage. {yields} GW501516 up-regulated expression of antioxidant genes, such as GPx1, Trx1, Mn-SOD and HO-1. {yields} Knock-down of these antioxidant genes abolished the effects of GW501516 on ROS production and premature senescence. -- Abstract: This study evaluated peroxisome proliferator-activated receptor (PPAR) {delta} as a potential target for therapeutic intervention in Ang II-induced senescence in human vascular smooth muscle cells (hVSMCs). Activation of PPAR{delta} by GW501516, a specific agonist ofmore » PPAR{delta}, significantly inhibited the Ang II-induced premature senescence of hVSMCs. Agonist-activated PPAR{delta} suppressed the generation of Ang II-triggered reactive oxygen species (ROS) with a concomitant reduction in DNA damage. Notably, GW501516 up-regulated the expression of antioxidant genes, such as glutathione peroxidase 1, thioredoxin 1, manganese superoxide dismutase and heme oxygenase 1. siRNA-mediated down-regulation of these antioxidant genes almost completely abolished the effects of GW501516 on ROS production and premature senescence in hVSMCs treated with Ang II. Taken together, the enhanced transcription of antioxidant genes is responsible for the PPAR{delta}-mediated inhibition of premature senescence through sequestration of ROS in hVSMCs treated with Ang II.« less
Baughman, Richard J.
1992-01-01
A process for growing single crystals from an amorphous substance that can undergo phase transformation to the crystalline state in an appropriate solvent. The process is carried out in an autoclave having a lower dissolution zone and an upper crystallization zone between which a temperature differential (.DELTA.T) is maintained at all times. The apparatus loaded with the substance, solvent, and seed crystals is heated slowly maintaining a very low .DELTA.T between the warmer lower zone and cooler upper zone until the amorphous substance is transformed to the crystalline state in the lower zone. The heating rate is then increased to maintain a large .DELTA.T sufficient to increase material transport between the zones and rapid crystallization. .alpha.-Quartz single crystal can thus be made from fused quartz in caustic solvent by heating to 350.degree. C. stepwise with a .DELTA.T of 0.25.degree.-3.degree. C., increasing the .DELTA.T to about 50.degree. C. after the fused quartz has crystallized, and maintaining these conditions until crystal growth in the upper zone is completed.
NASA Astrophysics Data System (ADS)
Alvarez, Philippe; Maurin, Jean-Christophe; Vicat, Jean-Paul
1995-02-01
The Inkisi Formation (West Congolian Supergroup) corresponds to a large deltaic body, which extends through Congo, Lower Zaire and Angola. In the Congo and Lower Zaire areas, the lower part of this formation is characterized by a fluvial conglomerate with elliptic pebbles. The red arkosic, channelized series from the Brazzaville-Kinshasa area involves delta plain distributary channels and delta front sequences. The transport direction of continental material is from north to south and the source area is the Chaillu basement. Glacial quartzitic pebbles are probably reworked from the fluvio-lacustrine Upper Diamictite Formation. The classical subdivisions of the Inkisi Formation - basal conglomerate (I 0), Lower part (I 1) and Upper part (I 2) - are not used. These subdivisions correspond to a fluvial conglomerate and to delta front and delta plain facies. The coastal onlap progressively covered the conglomerate and the distributary channels in the delta plain was prograding onto the delta front. The prodelta sequence could correspond to the Upper level of the Mpioka molassic Formation. The Inkisi delta was on the northern edge of an extensional basin controlled by NE-SW normal faults. The extension phase is dearly post Pan-African and occurred during the Palaeozoic, probably in relation to the Permian Karoo phase, and is also known in Angola.
2015-01-29
VANDENBERG AIR FORCE BASE, Calif. – The mobile service tower rolls toward the United Launch Alliance Delta II rocket at Space Launch Complex 2 on Vandenberg Air Force Base in California. Aboard the rocket is NOAA's Soil Moisture Active Passive satellite, or SMAP, designed to produce the highest-resolution maps of soil moisture ever obtained from space. Launch was postponed today due to violation of upper-level wind shear constraints. Launch now is targeted for Jan. 31. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Randy Beaudoin
2015-01-29
VANDENBERG AIR FORCE BASE, Calif. – Operations are underway at Space Launch Complex 2 on Vandenberg Air Force Base in California to enclose the United Launch Alliance Delta II rocket in the launch gantry. Aboard the rocket is NOAA's Soil Moisture Active Passive satellite, or SMAP, designed to produce the highest-resolution maps of soil moisture ever obtained from space. Launch was postponed today due to violation of upper-level wind shear constraints. Launch now is targeted for Jan. 31. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Randy Beaudoin
2015-01-29
VANDENBERG AIR FORCE BASE, Calif. – The mobile service tower rolls toward the United Launch Alliance Delta II rocket at Space Launch Complex 2 on Vandenberg Air Force Base in California. Aboard the rocket is NOAA's Soil Moisture Active Passive satellite, or SMAP, designed to produce the highest-resolution maps of soil moisture ever obtained from space. Launch was postponed today due to violation of upper-level wind shear constraints. Launch now is targeted for Jan. 31. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Randy Beaudoin
2015-01-29
VANDENBERG AIR FORCE BASE, Calif. – Operations are underway at Space Launch Complex 2 on Vandenberg Air Force Base in California to enclose the United Launch Alliance Delta II rocket in the launch gantry. Aboard the rocket is NOAA's Soil Moisture Active Passive satellite, or SMAP, designed to produce the highest-resolution maps of soil moisture ever obtained from space. Launch was postponed today due to violation of upper-level wind shear constraints. Launch now is targeted for Jan. 31. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/Randy Beaudoin
[The significance of the interaural latency difference of VEMP].
Wu, Ziming; Zhang, Suzhen; Ji, Fei; Zhou, Na; Guo, Weiwei; Yang, Weiyan; Han, Dongyi
2005-05-01
To investigate the significance of the interaural latency (IAL) difference of the latency of VEMP and to raise the sensitivity of the test. Vestibular evoked myogenic potentials (VEMP) were tested in 20 healthy subjects; 13 patients with acoustic neuromaor cerebellopontile angle occupying lesions and 1 patient with multiple sclerosis. IAL differences of the wave p13,n23 and p13-n23 (abbreviatd as /delta p13/, /delta n23/ and /delta p13-n23/, respectively) were analysed to determine the normal range and the upper limit of the norm data. Four illustrative cases with the abnormality of the IAL difference were given as examples. The upper limit of the IAL of /delta p13/ was 1.13 ms; that of the /delta n23/ was 1.38 ms and that of /delta p13-n23/ was 1.54 ms. The /p13-n23/ latency between the right and left side had no significant difference (P > 0.05). /delta p13/, /delta n23/ and /delta p13-n23/, especially /delta p13/ of VEMP can suggest abnormality in the neural pathway and it may be applicable in practice.
THEMIS payload encapsulation at complex 17B
2007-02-08
In the mobile service tower on Pad 17-B at Cape Canaveral Air Force Station, workers observe and help guide the second half of the fairing toward the THEMIS spacecraft. The first half has already been put in place. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. THEMIS is an acronym for Time History of Events and Macroscale Interactions during Substorms. THEMIS consists of five identical probes that will track violent, colorful eruptions near the North Pole. This will be the largest number of scientific satellites NASA ever launched into orbit aboard a single rocket. The THEMIS mission aims to unravel the tantalizing mystery behind auroral substorms, an avalanche of magnetic energy powered by the solar wind that intensifies the northern and southern lights. The mission will investigate what causes auroras in the Earth’s atmosphere to dramatically change from slowly shimmering waves of light to wildly shifting streaks of bright color. Launch of THEMIS is scheduled for Feb. 15 aboard a Delta II rocket, with the launch service being conducted by the United Launch Alliance.
THEMIS payload encapsulation at complex 17B
2007-02-08
In the mobile service tower on Pad 17-B at Cape Canaveral Air Force Station, the second half of the fairing, at right, moves toward the waiting THEMIS spacecraft. The first half has already been put in place. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. THEMIS is an acronym for Time History of Events and Macroscale Interactions during Substorms. THEMIS consists of five identical probes that will track violent, colorful eruptions near the North Pole. This will be the largest number of scientific satellites NASA ever launched into orbit aboard a single rocket. The THEMIS mission aims to unravel the tantalizing mystery behind auroral substorms, an avalanche of magnetic energy powered by the solar wind that intensifies the northern and southern lights. The mission will investigate what causes auroras in the Earth’s atmosphere to dramatically change from slowly shimmering waves of light to wildly shifting streaks of bright color. Launch of THEMIS is scheduled for Feb. 15 aboard a Delta II rocket, with the launch service being conducted by the United Launch Alliance.
2007-02-08
KENNEDY SPACE CENTER, FLA. -- In the mobile service tower on Pad 17-B at Cape Canaveral Air Force Station, workers prepare to install the fairing around the THEMIS spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. THEMIS is an acronym for Time History of Events and Macroscale Interactions during Substorms. THEMIS consists of five identical probes that will track violent, colorful eruptions near the North Pole. This will be the largest number of scientific satellites NASA ever launched into orbit aboard a single rocket. The THEMIS mission aims to unravel the tantalizing mystery behind auroral substorms, an avalanche of magnetic energy powered by the solar wind that intensifies the northern and southern lights. The mission will investigate what causes auroras in the Earth’s atmosphere to dramatically change from slowly shimmering waves of light to wildly shifting streaks of bright color. Launch of THEMIS is scheduled for Feb. 15 aboard a Delta II rocket, with the launch service being conducted by the United Launch Alliance. Photo credit: NASA/Jim Grossmann
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. The Deep Impact spacecraft is lifted from its transporter into the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, Fla. the spacecraft will be attached to the second stage of the Boeing Delta II rocket. Next the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. The Deep Impact spacecraft arrives before dawn at the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, Fla. The spacecraft will be attached to the second stage of the Boeing Delta II rocket. Next the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. In the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, Fla., workers begin lowering the Deep Impact spacecraft toward the second stage of the Boeing Delta II launch vehicle below for mating. Next the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. In the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, Fla., workers attach the third stage motor, connected to the Deep Impact spacecraft, to the spin table on the second stage of the Boeing Delta II launch vehicle below. Next the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. The Deep Impact spacecraft is lifted into the top of the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, Fla. the spacecraft will be attached to the second stage of the Boeing Delta II rocket. Next the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
Propulsive Small Expendable Deployer System (ProSEDS)
NASA Technical Reports Server (NTRS)
Ballance, Judy; Johnson, Les; Rogacki, John R. (Technical Monitor)
2000-01-01
The Propulsive Small Expendable Deployer System (ProSEDS) space experiment will demonstrate the use of an electrodynamic tether propulsion system to generate thrust in space by decreasing the orbital altitude of a Delta II Expendable Launch Vehicle (ELV) second stage. ProSEDS, which is planned to fly in 2001, will use the flight proven Small Expendable Deployer System (SEDS) to deploy a tether (5km bare wire plus 10 km spectra or dyneema) from a Delta II second stage to achieve approximately 0.4N drag thrust. ProSEDS will utilize the tether-generated current to provide limited spacecraft power. The ProSEDs instrumentation includes a Langmuir probe and Differential Ion Flux Probe, which will determine the characteristics of the ambient ionospheric plasma. Two Global Positioning System (GPS) receivers will be used (one on the Delta and one on the endmass) to help determine tether dynamics and to limit transmitter operations to occasions when the spacecraft is over selected ground stations, The flight experiment is a precursor to the more ambitious electrodynamic tether upper stage demonstration mission, which will be capable of orbit raising, lowering and inclination changes-all using electrodynamic thrust. An immediate application of ProSEDS technology is for the deorbit of spent satellites for orbital debris mitigation. In addition to the use of this technology to provide orbit transfer and debris mitigation it may also be an attractive option for future missions to Jupiter and any other planetary body with a magnetosphere.
Aono, Yuri; Kiguchi, Yuri; Watanabe, Yuriko; Waddington, John L; Saigusa, Tadashi
2017-11-15
The nucleus accumbens contains delta-opioid receptors that may reduce inhibitory neurotransmission. Reduction in GABA A receptor-mediated inhibition of accumbal dopamine release due to delta-opioid receptor activation should be suppressed by stimulating accumbal GABA A receptors. As delta-opioid receptors are divided into delta2- and delta1-opioid receptors, we analysed the effects of the GABA A receptor agonist muscimol on delta2- and delta1-opioid receptor-mediated accumbal dopamine efflux in freely moving rats using in vivo microdialysis. Drugs were administered intracerebrally through the dialysis probe. Doses of compounds indicate total amount administered (mol) during 25-50min infusions. The delta2-opioid receptor agonist deltorphin II (25.0nmol)- and delta1-opioid receptor agonist DPDPE (5.0nmol)-induced increases in dopamine efflux were inhibited by the delta2-opioid receptor antagonist naltriben (1.5nmol) and the delta1-opioid receptor antagonist BNTX (150.0pmol), respectively. Muscimol (250.0pmol) inhibited deltorphin II (25.0nmol)-induced dopamine efflux. The GABA A receptor antagonist bicuculline (50.0pmol), which failed to affect deltorphin II (25.0nmol)-induced dopamine efflux, counteracted the inhibitory effect of muscimol on deltorphin II-induced dopamine efflux. Neither muscimol (250.0pmol) nor bicuculline (50.0 and 500.0pmol) altered DPDPE (5.0nmol)-induced dopamine efflux. The present results show that reduction in accumbal GABA A receptor-mediated inhibition of dopaminergic activity is necessary to produce delta2-opioid receptor-induced increase in accumbal dopamine efflux. This study indicates that activation of delta2- but not delta1-opioid receptors on the cell bodies and/or terminals of accumbal GABAergic interneurons inhibits GABA release and, accordingly, decreases GABA A receptor-mediated inhibition of dopaminergic terminals, resulting in enhanced accumbal dopamine efflux. Copyright © 2017 Elsevier B.V. All rights reserved.
[Can the scattering of differences from the target refraction be avoided?].
Janknecht, P
2008-10-01
We wanted to check how the stochastic error is affected by two lens formulae. The power of the intraocular lens was calculated using the SRK-II formula and the Haigis formula after eye length measurement with ultrasound and the IOL Master. Both lens formulae were partially derived and Gauss error analysis was used for examination of the propagated error. 61 patients with a mean age of 73.8 years were analysed. The postoperative refraction differed from the calculated refraction after ultrasound biometry using the SRK-II formula by 0.05 D (-1.56 to + 1.31, S. D.: 0.59 D; 92 % within +/- 1.0 D), after IOL Master biometry using the SRK-II formula by -0.15 D (-1.18 to + 1.25, S. D.: 0.52 D; 97 % within +/- 1.0 D), and after IOL Master biometry using the Haigis formula by -0.11 D (-1.14 to + 1.14, S. D.: 0.48 D; 95 % within +/- 1.0 D). The results did not differ from one another. The propagated error of the Haigis formula can be calculated according to DeltaP = square root (deltaL x (-4.206))(2) + (deltaVK x 0.9496)(2) + (DeltaDC x (-1.4950))(2). (DeltaL: error measuring axial length, DeltaVK error measuring anterior chamber depth, DeltaDC error measuring corneal power), the propagated error of the SRK-II formula according to DeltaP = square root (DeltaL x (-2.5))(2) + (DeltaDC x (-0.9))(2). The propagated error of the Haigis formula is always larger than the propagated error of the SRK-II formula. Scattering of the postoperative difference from the expected refraction cannot be avoided completely. It is possible to limit the systematic error by developing complicated formulae like the Haigis formula. However, increasing the number of parameters which need to be measured increases the dispersion of the calculated postoperative refraction. A compromise has to be found, and therefore the SRK-II formula is not outdated.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. On Launch Pad 17-B at Cape Canaveral Air Force Station, Boeing workers complete the installation of the fairing around the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) spacecraft. The fairing is a molded structure that fits flush with the outside surface of the upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. MESSENGER is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket and is expected to enter Mercury orbit in March 2011. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
Delta II JPSS-1 SRM Installation onto Booster
2017-04-06
The United Launch Alliance/Orbital ATK Delta II solid rocket motor arrives at Space Launch Complex 2 at Vandenberg Air Force Base in California. The rocket motor will be mated to the Delta II first stage in preparation for launch of the Joint Polar Satellite System-1 (JPSS-1) later this year. JPSS, a next-generation environmental satellite system, is a collaborative program between the National Oceanic and Atmospheric Administration (NOAA) and NASA.
Delta II JPSS-1 SRM Installation onto Booster
2017-04-04
The United Launch Alliance/Orbital ATK Delta II solid rocket motor arrives at Space Launch Complex 2 at Vandenberg Air Force Base in California. The rocket motor will be mated to the Delta II first stage in preparation for launch of the Joint Polar Satellite System-1 (JPSS-1) later this year. JPSS, a next-generation environmental satellite system, is a collaborative program between the National Oceanic and Atmospheric Administration (NOAA) and NASA.
Delta II JPSS-1 SRM Installation onto Booster
2017-04-04
The United Launch Alliance/Orbital ATK Delta II solid rocket motor is towed to Space Launch Complex 2 at Vandenberg Air Force Base in California. The rocket motor will be mated to the Delta II first stage in preparation for launch of the Joint Polar Satellite System-1 (JPSS-1) later this year. JPSS, a next-generation environmental satellite system, is a collaborative program between the National Oceanic and Atmospheric Administration (NOAA) and NASA.
Tuttle, Michele L.W.; Charpentier, Ronald R.; Brownfield, Michael E.
1999-01-01
In the Niger Delta province, we have identified one petroleum system--the Tertiary Niger Delta (Akata-Agbada) petroleum system. The delta formed at the site of a rift triple junction related to the opening of the southern Atlantic starting in the Late Jurassic and continuing into the Cretaceous. The delta proper began developing in the Eocene, accumulating sediments that now are over 10 kilometers thick. The primary source rock is the upper Akata Formation, the marine-shale facies of the delta, with possibly contribution from interbedded marine shale of the lowermost Agbada Formation. Oil is produced from sandstone facies within the Agbada Formation, however, turbidite sand in the upper Akata Formation is a potential target in deep water offshore and possibly beneath currently producing intervals onshore. Known oil and gas resources of the Niger Delta rank the province as the twelfth largest in the world. To date, 34.5 billion barrels of recoverable oil and 93.8 trillion cubic feet of recoverable gas have been discovered. In 1997, Nigeria was the fifth largest crude oil supplier to the United States, supplying 689,000 barrels/day of crude.
Wu, Yin; Ren, Jianan; Wang, Gefei; Zhou, Bo; Ding, Chao; Gu, Guosheng; Chen, Jun; Liu, Song; Li, Jieshou
2014-01-01
Background. We aimed to determine the efficacy of fistuloclysis in patients with high-output upper enteric fistula (EF). Methods. Patients were assigned into the fistuloclysis group (n = 35, receiving fistuloclysis plus total enteral nutrition (TEN)) and the control group (n = 60, receiving TEN). Laboratory variables were measured during the four-week treatment. Results. At baseline, variables were similar between the two groups. Delta value was defined as the changes from baseline to day 28. Compared with the control group, the fistuloclysis group showed greater improvements in liver function (Delta total bilirubin (TB): 20.3 ± 9.7 in the fistuloclysis group versus 15.6 ± 6.3 in the control group, P = 0.040; Delta direct bilirubin (DB): 12.5 ± 3.4 versus 10.0 ± 3.6, P = 0.011; Delta alkaline phosphatase (ALP): 98.4 ± 33.5 versus 57.6 ± 20.9, P < 0.001); nutritional status (Delta total protein: 21.8 ± 8.7 versus 10.7 ± 2.1, P < 0.001; Delta albumin: 11.3 ± 2.5 versus 4.2 ± 1.3, P < 0.001). In the fistuloclysis subgroups, biliary fistula patients had the maximum number of variables with the greatest improvements. Conclusions. Fistuloclysis improved hepatic and nutritional parameters in patients with high-output upper EF, particularly in biliary fistula patients. PMID:24719613
Wu, Yin; Ren, Jianan; Wang, Gefei; Zhou, Bo; Ding, Chao; Gu, Guosheng; Chen, Jun; Liu, Song; Li, Jieshou
2014-01-01
Background. We aimed to determine the efficacy of fistuloclysis in patients with high-output upper enteric fistula (EF). Methods. Patients were assigned into the fistuloclysis group (n = 35, receiving fistuloclysis plus total enteral nutrition (TEN)) and the control group (n = 60, receiving TEN). Laboratory variables were measured during the four-week treatment. Results. At baseline, variables were similar between the two groups. Delta value was defined as the changes from baseline to day 28. Compared with the control group, the fistuloclysis group showed greater improvements in liver function (Delta total bilirubin (TB): 20.3 ± 9.7 in the fistuloclysis group versus 15.6 ± 6.3 in the control group, P = 0.040; Delta direct bilirubin (DB): 12.5 ± 3.4 versus 10.0 ± 3.6, P = 0.011; Delta alkaline phosphatase (ALP): 98.4 ± 33.5 versus 57.6 ± 20.9, P < 0.001); nutritional status (Delta total protein: 21.8 ± 8.7 versus 10.7 ± 2.1, P < 0.001; Delta albumin: 11.3 ± 2.5 versus 4.2 ± 1.3, P < 0.001). In the fistuloclysis subgroups, biliary fistula patients had the maximum number of variables with the greatest improvements. Conclusions. Fistuloclysis improved hepatic and nutritional parameters in patients with high-output upper EF, particularly in biliary fistula patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fracasso, M.A.
The Travis Peak Formation (Lower Cretaceous) in the eastern East Texas basin represents a sand-rich, fluvial-deltaic depositional system. This lobate, high-constructive deltaic system prograded radially to the southeast from an Upshur County locus. Regional studies of the Travis Peak established a threefold internal stratigraphic framework: a middle sand-rich fluvial and delta-plain sequence is gradationally overlain and underlain by a marine-influenced delta-fringe zone with a higher mud content. The entire Travis Peak succession thins over the Bethany dome on the western flank of the Sabine uplift. However, the delta-fringe sequences are relatively thicker over the structure because of a disproportionately greatermore » thinning of the middle sandy fluvial-deltaic sequence. Lesser sand deposition over the Bethany dome reflects an active structural control over facies distribution. Gas production in the Bethany field and surrounding area is concentrated in thin zones (5-15 ft) of the upper delta-fringe sequence. This distribution probably reflects the increased abundance of mudstone beds in the upper delta-fringe interval, which may have served as source rocks or barriers to upward gas migration, or as both. The predominant trapping mechanism in this region is stratigraphic sand pinch-out in a structurally updip direction on the flanks of major structures. Studies of core and closely spaced electric logs west of the Bethany dome help define the depositional systems in the upper delta-fringe producing interval. This sequence comprises a complex mosaic of continental and marine facies, and exhibits an overall upward trend of increasing marine influence that spans a gradual transition into transgressive carbonates of the Sligo Formation.« less
Delta II JPSS-1 Solid Rocket Motor Hoist and Mate
2016-07-19
The United Launch Alliance/Orbital ATK Delta II solid rocket motor arrives at Space Launch Complex 2 at Vandenberg Air Force Base in California. Technicians and engineers lift and mate the solid rocket motor to a Delta II rocket in preparation for launch of the Joint Polar Satellite System-1 (JPSS-1) later this year. JPSS, a next-generation environmental satellite system, is a collaborative program between the National Oceanic and Atmospheric Administration (NOAA) and NASA.
Delta II JPSS-1 Solid Rocket Motor (SRM) Installation
2017-04-04
The United Launch Alliance/Orbital ATK Delta II solid rocket motor arrives at Space Launch Complex 2 at Vandenberg Air Force Base in California. Technicians and engineers lift and mate the solid rocket motor to a Delta II rocket in preparation for launch of the Joint Polar Satellite System-1 (JPSS-1) later this year. JPSS, a next-generation environmental satellite system, is a collaborative program between the National Oceanic and Atmospheric Administration (NOAA) and NASA.
Upper-Division Student Difficulties with the Dirac Delta Function
ERIC Educational Resources Information Center
Wilcox, Bethany R.; Pollock, Steven J.
2015-01-01
The Dirac delta function is a standard mathematical tool that appears repeatedly in the undergraduate physics curriculum in multiple topical areas including electrostatics, and quantum mechanics. While Dirac delta functions are often introduced in order to simplify a problem mathematically, students still struggle to manipulate and interpret them.…
Improta, G; Broccardo, M
1992-01-01
Pharmacological assays in isolated tissues and binding tests have recently shown that two peptides, with the sequence Tyr-D-Ala-Phe-Asp-(or Glu)- Val-Val-Gly-NH2, isolated from skin extracts of Phyllomedusa bicolor and named [D-Ala2]deltorphin I and II, respectively, possess a higher affinity and selectivity for delta-opioid receptors than any other known natural compound. Since much evidence supports the role of spinal delta-opioid sites in producing antinociceptive effects, we investigated whether analgesia might be detected by direct spinal cord administration of [D-Ala2]deltorphin II (DADELT II) in the rat. The thermal antinociceptive effects of intrathecal DADELT II and dermorphin, a potent mu-selective agonist, were compared at different postinjection times by means of the tail-flick test. The DADELT II produced a dose-related inhibition of the tail-flick response, which lasted 10-60 min depending on the dose and appeared to be of shorter duration than the analgesia produced in rats after intrathecal injection of dermorphin (20-120 min). The analgesic effect of infused or injected DADELT II was completely abolished by naltrindole, the highly selective delta antagonist. These results confirm the involvement of delta receptors in spinal analgesic activity in the rat.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-18
... Delta LLC; Mountain View Solar, LLC; Pheasant Run Wind, LLC; Pheasant Run Wind II, LLC; Tuscola Wind II, LLC; Mountain Wind Power, LLC; Mountain Wind Power II, LLC; Summerhaven Wind, LP; Notice of...
Chen, Zhimin; Wu, Yiqun; Gu, Donghong; Gan, Fuxi
2007-11-01
A new chelating ligand, 2-(2-(5-tert-butylisoxazol-3-yl)hydrazono)-N-(2,4-dimethylphenyl)-3-oxobutanamide (HL), and its four binuclear transition metal complexes, M(2)(L)(2) (micro-OCH(3))(2) [M=Ni(II), Co(II), Cu(II), Zn(II)], were synthesized using the procedure of diazotization, coupling and metallization. Their structures were postulated based on elemental analysis, (1)H NMR, MALDI-MS, FT-IR spectra and UV-vis electronic absorption spectra. Smooth films of these complexes on K9 glass substrates were prepared using the spin-coating method and their absorption properties were evaluated. The thermal properties of the metal(II) complexes were investigated by thermogravimetry (TG) and differential scanning calorimetry (DSC). Different thermodynamic and kinetic parameters namely activation energy (E*), enthalpy of activation (DeltaH*), entropy of activation (DeltaS*) and free energy change of activation (DeltaG*) are calculated using Coats-Redfern (CR) equation.
75 FR 51748 - GMUG Resource Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-23
... II Project funding within Garfield, Mesa, Delta, Gunnison and Montrose Counties, Colorado. DATES: The... funding/ approval of those projects to utilize Title II funds within Garfield, Mesa, Delta, Gunnison and...
Coal depositional models in some Tertiary and Cretaceous coal fields in the U.S. Western Interior
Flores, R.M.
1979-01-01
Detailed stratigraphic and sedimentological studies of the Tertiary Tongue River Member of the Fort Union Formation in the Powder River Basin, Wyoming, and the Cretaceous Blackhawk Formation and Star Point Sandstone in the Wasatch Plateau, Utah, indicate that the depositional environments of coal played a major role in controlling coal thickness, lateral continuity, potential minability, and type of floor and roof rocks. The potentially minable, thick coal beds of the Tongue River Member were primarily formed in long-lived floodbasin backswamps of upper alluvial plain environment. Avulsion of meandering fluvial channels contributed to the erratic lateral extent of coals in this environment. Laterally extensive coals formed in floodbasin backswamps of a lower alluvial plain environment; however, interruption by overbank and crevasse-splay sedimentation produced highly split and merging coal beds. Lacustrine sedimentation common to the lower alluvial plain, similar to the lake-covered lower alluvial valley of the Atchafalaya River Basin, is related to a high-constructive delta. In contrast to these alluvial coals are the deltaic coal deposits of the Blackhawk Formation. The formation consists of three coal populations: upper delta plain, lower delta plain, and 'back-barrier'. Coals of the lower delta plain are thick and laterally extensive, in contrast to those of the upper delta plain and 'back-barrier', which contain abundant, very thin and laterally discontinuous carbonaceous shale partings. The reworking of the delta-front sediments of the Star Point Sandstone suggests that the Blackhawk-Star Point delta was a high-destructive system. ?? 1979.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katz, B.G.; Davis, J.H.; Coplen, T.B.
1997-11-01
In the mantled karst terrane of northern Florida, the water quality of the Upper Floridan aquifer is influenced by the degree of connectivity between the aquifer and the surface. Chemical and isotopic analyses [{sup 18}O/{sup 16}O ({delta}{sup 18}O), {sup 2}H/{sup 1}H ({delta}D), {sup 13}C/{sup 12}C ({delta}{sup 13}C), tritium ({sup 3}H), and strontium-87/strontium-86 ({sup 87}Sr/{sup 86}Sr)] along with geochemical mass-balance modeling were used to identify the dominant hydrochemical processes that control the composition of ground water as it evolves downgradient in two systems. In one system, surface water enters the Upper Florida aquifer through a sinkhole located in the Northern Highlandsmore » physiographic unit. In the other system, surface water enters the aquifer through a sinkhole lake (Lake Bradford) in the Woodville Karst Plain. Differences in the composition of water isotopes ({delta}{sup 18}O and {delta}D) in rainfall, ground water, and surface water were used to develop mixing models of surface water (leakage of water to the Upper Floridan aquifer from a sinkhole lake and a sinkhole) and ground water. Using mass-balance calculations, based on differences in {delta}{sup 18}O and {delta}D, the proportion of lake water that mixed with meteoric water ranged from 7 to 86% in water from wells located in close proximity to lake Bradford. In deeper parts of the Upper Floridan aquifer, water enriched in {sup 18}O and D from five of 12 samples municipal wells indicated that recharge from a sinkhole (1 to 24%) and surface water with an evaporated isotopic signature (2 to 32%) was mixing with ground water. The solute isotopes, {delta}{sup 13}C and {sup 87}Sr/{sup 86}Sr, were used to test the sensitivity of binary and ternary mixing models, and to estimate the amount of mass transfer of carbon and other dissolved species in geochemical reactions.« less
California Data Exchange Center
Historical Strong El Nino Years (PDF): 8-Station | 5-Station | 6-Station River Forecast Delta Tide Forecast year has been monitoring water quality in the Sacramento-San Joaquin Delta and upper San Francisco Delta and San Francisco Bay. http://www.water.ca.gov/news/newsreleases/2016/121916.pdf 12/12/2016
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. The Deep Impact spacecraft leaves Astrotech Space Operations in Titusville, Fla., in the pre-dawn hours on a journey to Launch Pad 17-B at Cape Canaveral Air Force Station, Fla. There the spacecraft will be attached to the second stage of the Boeing Delta II rocket. Next the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch and ascent. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
Anatomy of anomalously thick sandstone units in the Brent Delta of the northern North Sea
NASA Astrophysics Data System (ADS)
Wei, Xiaojie; Steel, Ronald J.; Ravnås, Rodmar; Jiang, Zaixing; Olariu, Cornel; Ma, Yinsheng
2018-05-01
Some potentially attractive reservoirs, containing anomalously thick (10s to a few 100 m), cross-stratified sandstone, have been locally encountered within both the classic regressive (lower Brent) and the transgressive (upper Brent) segments of the Brent Delta. Three documented cases of these sandstone bodies are re-examined. They are internally dominated by simple or compound dunes, and typified by two types of deepening-upward succession, recording a retrogradational or transgressive shoreline history. Type I is expressed as a single estuarine succession changing upwards from erosive, coarse-grained channelized deposits into outer estuary tidal bar deposits. The estuary is underlain and overlain by deltaic deposits. Type II lacks significant basal river deposits but is composed by stacked mixed-energy and tide-dominated estuarine deposits. It is underlain by deltaic deposits and overlain by open marine sediments. Considering the structural evolution in the northern North Sea basin, we suggest (as did some earlier researchers) that these sandstone bodies were local, but sometimes broad transgressive estuaries, formed at any time during large-scale Brent Delta growth and decay. The estuary generation was likely triggered by fluvial incision coupled with active faulting, producing variable accommodation embayments, where tidal currents became focused and deposition became transgressive. The spatial variations of the interpreted estuary deposits were linked with variable, fault-generated accommodation. The relatively simple, lower Brent estuarine units were created by short-lived, fault activity in places, whereas the complex, stacked upper-Brent estuarine units were likely a result of more long-lived, punctuated fault-induced subsidence leading into the northern North Sea main rifting stage. The thick cross-stratified units potentially accumulated in the hangingwall of large bounding faults.
Fundamental aerodynamic characteristics of delta wings with leading-edge vortex flows
NASA Technical Reports Server (NTRS)
Wood, R. M.; Miller, D. S.
1985-01-01
An investigation of the aerodynamics of sharp leading-edge delta wings at supersonic speeds has been conducted. The supporting experimental data for this investigation were taken from published force, pressure, and flow-visualization data in which the Mach number normal to the wing leading edge is always less than 1.0. The individual upper- and lower-surface nonlinear characteristics for uncambered delta wings are determined and presented in three charts. The upper-surface data show that both the normal-force coefficient and minimum pressure coefficient increase nonlinearly with a decreasing slope with increasing angle of attack. The lower-surface normal-force coefficient was shown to be independent of Mach number and to increase nonlinearly, with an increasing slope, with increasing angle of attack. These charts are then used to define a wing-design space for sharp leading-edge delta wings.
1999-01-11
Bright white light (left) and blue light (upper right) appear on the solar panels of the Stardust spacecraft during lighting tests in the Payload Hazardous Servicing Facility. Stardust is scheduled to be launched aboard a Boeing Delta II rocket from Launch Pad 17A, Cape Canaveral Air Station, on Feb. 6, 1999, for a rendezvous with the comet Wild 2 in January 2004. Stardust will use a substance called aerogel to capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule to be jettisoned as it swings by Earth in January 2006
2007-07-01
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, workers complete encapsulation of the fairing around NASA's Dawn spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch 4.5 billion years ago by investigating in detail two of the largest asteroids, Ceres and Vesta. They reside between Mars and Jupiter in the asteroid belt. Launch is scheduled for July 8. Photo credit: NASA/Amanda Diller
2006-08-16
KENNEDY SPACE CENTER, FLA. - At Astrotech Space Operations in Titusville, Fla., workers begin mating the STEREO spacecraft onto the upper stage booster below. After the mating, they will be transported to Launch Pad 17-B at Cape Canaveral Air Force Station for integration with the Delta II already on the pad. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. STEREO is expected to lift off Aug. 31. Photo credit: NASA/George Shelton
NASA Technical Reports Server (NTRS)
Engelke, K. A.; Doerr, D. F.; Convertino, V. A.
1995-01-01
We tested the hypothesis that one bout of maximal exercise performed 24 h before reambulation from 16 days of 6 degrees head-down tilt (HDT) could increase integrated baroreflex sensitivity. Isolated carotid-cardiac and integrated baroreflex function was assessed in seven subjects before and after two periods of HDT separated by 11 mo. On the last day of one HDT period, subjects performed a single bout of maximal cycle ergometry (exercise). Subjects did not exercise after the other HDT period (control). Carotid-cardiac baroreflex sensitivity was evaluated using a neck collar device. Integrated baroreflex function was assessed by recording heart rate (HR) and blood pressure (MAP) during a 15-s Valsalva maneuver (VM) at a controlled expiratory pressure of 30 mmHg. The ratio of change in HR to change in MAP (delta HR/ delta MAP) during phases II and IV of the VM was used as an index of cardiac baroreflex sensitivity. Baroreflex-mediated vasoconstriction was assessed by measuring the late phase II rise in MAP. Following HDT, carotid-cardiac baroreflex sensitivity was reduced (2.8 to 2.0 ms/mmHg; P = 0.05) as was delta HR/ delta MAP during phase II (-1.5 to -0.8 beats/mmHg; P = 0.002). After exercise, isolated carotid baroreflex activity and phase II delta HR/ delta MAP returned to pre-HDT levels but remained attenuated in the control condition. Phase IV delta HR/ delta MAP was not altered by HDT or exercise. The late phase II increase of MAP was 71% greater after exercise compared with control (7 vs. 2 mmHg; P = 0.041).(ABSTRACT TRUNCATED AT 250 WORDS).
Tong, Henry H Y; Shekunov, Boris Yu; York, Peter; Chow, Albert H L
2002-05-01
To characterize the surface thermodynamic properties of two polymorphic forms (I and II) of salmeterol xinafoate (SX) prepared from supercritical fluids and a commercial micronized SX (form 1) sample (MSX). Inverse gas chromatographic analysis was conducted on the SX samples at 30, 40, 50, and 60 degrees C using the following probes at infinite dilution: nonpolar probes (NPs; alkane C5-C9 series); and polar probes (PPs; i.e., dichloromethane, chloroform, acetone, ethyl acetate, diethyl ether, and tetrahydrofuran). Surface thermodynamic parameters of adsorption and Hansen solubility parameters were calculated from the retention times of the probes. The free energies of adsorption (- deltaG(A)) of the three samples obtained at various temperatures follow this order: SX-II > MSX approximately/= SX-I for the NPs; and SX-II > MSX > SX-I for the PPs. For both NPs and PPs, SX-II exhibits a less negative enthalpy of adsorption (deltaH(A)) and a much less negative entropy of adsorption (ASA) than MSX and SX-I, suggesting that the high -AGA of SX-II is contributed by a considerably reduced entropy loss. The dispersive component of surface free energy (gammas(D)) is the highest for MSX but the lowest for SX-II at all temperatures studied, whereas the specific component of surface free energy of adsorption (-deltaG(A)SP) is higher for SX-II than for SX-I. That SX-II displays the highest -deltaG(A) for the NP but the lowest gammasD of all the SX samples may be explained by the additional -AGA change associated with an increased mobility of the probe molecules on the less stable and more disordered SX-II surface. The acid and base parameters, K(A) and K(D) that were derived from deltaH(A)SP reveal significant differences in the relative acid and base properties among the samples. The calculated Hansen solubility parameters (deltaD, deltap, and deltaH) indicate that the surface of SX-II is the most polar and most energetic of all the three samples in terms of specific interactions (mostly hydrogen bonding). The metastable SX-II polymorph possesses a higher surface free energy, higher surface entropy, and a more polar surface than the stable SX-I polymorph.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-23
... Delta II, which is being withdrawn from service. The U.S. Air Force reports that sound pressures of the Delta II were slightly less than those from the Taurus I (Castor 120) as measured from the same point... conducted after one Delta IV launch in 2006. During this launch the digital audio tape (DAT) recorder was...
Protein osmotic pressure gradients and microvascular reflection coefficients.
Drake, R E; Dhother, S; Teague, R A; Gabel, J C
1997-08-01
Microvascular membranes are heteroporous, so the mean osmotic reflection coefficient for a microvascular membrane (sigma d) is a function of the reflection coefficient for each pore. Investigators have derived equations for sigma d based on the assumption that the protein osmotic pressure gradient across the membrane (delta II) does not vary from pore to pore. However, for most microvascular membranes, delta II probably does vary from pore to pore. In this study, we derived a new equation for sigma d. According to our equation, pore-to-pore differences in delta II increase the effect of small pores and decrease the effect of large pores on the overall membrane osmotic reflection coefficient. Thus sigma d for a heteroporous membrane may be much higher than previously derived equations indicate. Furthermore, pore-to-pore delta II differences increase the effect of plasma protein osmotic pressure to oppose microvascular fluid filtration.
2007-06-15
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station, the second stage of the Delta II launch vehicle for the Dawn spacecraft is lowered into the hole toward the Delta first stage below. The two stages will be mated. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy is the strongest rocket in the Delta II class. It will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/Jack Pfaller
Re-entry survivability and risk
NASA Astrophysics Data System (ADS)
Fudge, Michael L.
1998-11-01
This paper is the culmination of the research effort which was reported on last year while still in-progress. As previously reported, statistical methods for expressing the impact risk posed to space systems in general [and the International Space Station (ISS) in particular] by other resident space objects have been examined. One of the findings of this investigation is that there are legitimate physical modeling reasons for the common statistical expression of the collision risk. A combination of statistical methods and physical modeling is also used to express the impact risk posed by reentering space systems to objects of interest (e.g., people and property) on Earth. One of the largest uncertainties in the expressing of this risk is the estimation of survivable material which survives reentry to impact Earth's surface. This point was demonstrated in dramatic fashion in January 1997 by the impact of an intact expendable launch vehicle (ELV) upper stage near a private residence in the continental United States. Since approximately half of the missions supporting ISS will utilize ELVs, it is appropriate to examine the methods used to estimate the amount and physical characteristics of ELV debris surviving reentry to impact Earth's surface. This report details reentry survivability estimation methodology, including the specific methodology used by ITT Systems' (formerly Kaman Sciences) 'SURVIVE' model. The major change to the model in the last twelve months has been the increase in the fidelity with which upper- atmospheric aerodynamics has been modeled. This has resulted in an adjustment in the factor relating the amount of kinetic energy loss to the amount of heating entering and reentering body, and also validated and removed the necessity for certain empirically-based adjustments made to the theoretical heating expressions. Comparisons between empirical results (observations of objects which have been recovered on Earth after surviving reentry) and SURVIVE estimates are presented for selected generic upper stage or spacecraft components, a Soyuz launch vehicle second stage, and for a Delta II launch vehicle second stage and its significant components. Significant similarity is demonstrated between the type and dispersion pattern of the recovered debris from the January 1997 Delta II 2nd stage event and the simulation of that reentry and breakup.
Lifting of NASA OCO-2 Delta II Launch Vehicle
2014-04-15
The Delta II second stage for NASA Orbiting Carbon Observatory-2 mission, or OCO-2, is lifted to the top of the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California.
Langmuir Probe Spacecraft Potential End Item Specification Document
NASA Technical Reports Server (NTRS)
Gilchrist, Brian; Curtis, Leslie (Technical Monitor)
2001-01-01
This document describes the Langmuir Probe Spacecraft Potential (LPSP) investigation of the plasma environment in the vicinity of the ProSEDS Delta II spacecraft. This investigation will employ a group of three (3) Langmuir Probe Assemblies, LPAs, mounted on the Delta II second stage to measure the electron density and temperature (n(sub e) and T(sub e)), the ion density (n(sub i)), and the spacecraft potential (V(sub s)) relative to the surrounding ionospheric plasma. This document is also intended to define the technical requirements and flight-vehicle installation interfaces for the design, development, assembly, testing, qualification, and operation of the LPSP subsystem for the Propulsive Small Expendable Deployer System (ProSEDS) and its associated Ground Support Equipment (GSE). This document also defines the interfaces between the LPSP instrument and the ProSEDS Delta II spacecraft, as well as the design, fabrication, operation, and other requirements established to meet the mission objectives. The LPSP is the primary measurement instrument designed to characterize the background plasma environment and is a supporting instrument for measuring spacecraft potential of the Delta II vehicle used for the ProSEDS mission. Specifically, the LPSP will use the three LPAs equally spaced around the Delta II body to make measurements of the ambient ionospheric plasma during passive operations to aid in validating existing models of electrodynamic-tether propulsion. These same probes will also be used to measure Delta II spacecraft potential when active operations occur. When the electron emitting plasma contractor is on, dense neutral plasma is emitted. Effective operation of the plasma contactor (PC) will mean a low potential difference between the Delta II second stage and the surrounding plasma and represents one of the voltage parameters needed to fully characterize the electrodynamic-tether closed circuit. Given that the LP already needs to be well away from any near-field disturbances around the Delta II, it is possible to use the same probe with a simple reconfiguration of the electronics to measure potential with respect to the ambient plasma. The LP measurement techniques are outlined in the following text and discussed in detail in the Appendix. The scientific goals of the investigation, the physical and electrical characteristics of the instrument, and the on-orbit measurement requirements are also discussed in this document.
New insights into ETS-10 and titanate quantum wire: a comprehensive characterization.
Jeong, Nak Cheon; Lee, Young Ju; Park, Jung-Hyun; Lim, Hyunjin; Shin, Chae-Ho; Cheong, Hyeonsik; Yoon, Kyung Byung
2009-09-16
The titanate quantum wires in ETS-10 crystals remain intact during ion exchange of the pristine cations (Na(+)(0.47) + K(+)(0.53)) with M(n+) ions (M(n+) = Na(+), K(+), Mg(2+), Ca(2+), Sr(2+), Ba(2+), Pb(2+), Cd(2+), Zn(2+)) and during reverse exchange of the newly exchanged cations with Na(+). The binding energies of O(1s) and Ti(2p) decrease as the electronegativity of the cation decreases, and they are inversely proportional to the negative partial charge of the framework oxygen [-delta(O(f))]. At least five different oxygen species were identified, and their binding energies (526.1-531.9 eV) indicate that the titanate-forming oxides are much more basic than those of aluminosilicate zeolites (530.2-533.3 eV), which explains the vulnerability of the quantum wire to acids and oxidants. The chemical shifts of the five NMR-spectroscopically nonequivalent Si sites, delta(I(A)), delta(I(B)), delta(II(A)), delta(II(B)), and delta(III), shift downfield as -delta(O(f)) increases, with slopes of 2.5, 18.6, 133.5, 216.3, and 93.8 ppm/[-delta(O(f))], respectively. The nonuniform responses of the chemical shifts to -delta(O(f)) arise from the phenomenon that the cations in the 12-membered-ring channels shift to the interiors of the cages surrounded by four seven-membered-ring windows. On the basis of the above, we assign delta(I(A)), delta(I(B)), delta(II(A)), and delta(II(B)) to the chemical shifts arising from Si(12,12), Si(12,7), Si(7,12), and Si(7,7) atoms, respectively. The frequency of the longitudinal stretching vibration of the titanate quantum wire increases linearly and the bandwidth decreases nonlinearly with increasing -delta(O(f)), indicating that the titanate quantum wire resembles a metallic carbon nanotube. As the degree of hydration increases, the vibrational frequency shifts linearly to higher frequencies while the bandwidth decreases. We identified another normal mode of vibration of the quantum wire, which vibrates in the region of 274-280 cm(-1). In the dehydrated state, the band-gap energy and the first absorption maximum shift to lower energies as -delta(O(f)) increases, indicating the oxide-to-titanium(IV) charge-transfer nature of the transitions.
Bräuer, A; English, M J M; Steinmetz, N; Lorenz, N; Perl, T; Braun, U; Weyland, W
2002-09-01
Forced-air warming with upper body blankets has gained high acceptance as a measure for the prevention of intraoperative hypothermia. However, data on heat transfer with upper body blankets are not yet available. This study was conducted to determine the heat transfer efficacy of eight complete upper body warming systems and to gain more insight into the principles of forced-air warming. Heat transfer of forced-air warmers can be described as follows: Qdot;=h. DeltaT. A, where Qdot;= heat flux [W], h=heat exchange coefficient [W m-2 degrees C-1], DeltaT=temperature gradient between the blanket and surface [ degrees C], and A=covered area [m2]. We tested eight different forced-air warming systems: (1) Bair Hugger and upper body blanket (Augustine Medical Inc. Eden Prairie, MN); (2) Thermacare and upper body blanket (Gaymar Industries, Orchard Park, NY); (3) Thermacare (Gaymar Industries) with reusable Optisan upper body blanket (Willy Rüsch AG, Kernen, Germany); (4) WarmAir and upper body blanket (Cincinnati Sub-Zero Products, Cincinnati, OH); (5) Warm-Gard and single use upper body blanket (Luis Gibeck AB, Upplands Väsby, Sweden); (6) Warm-Gard and reusable upper body blanket (Luis Gibeck AB); (7) WarmTouch and CareDrape upper body blanket (Mallinckrodt Medical Inc., St. Luis, MO); and (8) WarmTouch and reusable MultiCover trade mark upper body blanket (Mallinckrodt Medical Inc.) on a previously validated copper manikin of the human body. Heat flux and surface temperature were measured with 11 calibrated heat flux transducers. Blanket temperature was measured using 11 thermocouples. The temperature gradient between the blanket and surface (DeltaT) was varied between -8 and +8 degrees C, and h was determined by linear regression analysis as the slope of DeltaT vs. heat flux. Mean DeltaT was determined for surface temperatures between 36 and 38 degrees C, as similar mean skin surface temperatures have been found in volunteers. The covered area was estimated to be 0.35 m2. Total heat flow from the blanket to the manikin was different for surface temperatures between 36 and 38 degrees C. At a surface temperature of 36 degrees C the heat flows were higher (4-26.6 W) than at surface temperatures of 38 degrees C (2.6-18.1 W). The highest total heat flow was delivered by the WarmTouch trade mark system with the CareDrape trade mark upper body blanket (18.1-26.6 W). The lowest total heat flow was delivered by the Warm-Gard system with the single use upper body blanket (2.6-4 W). The heat exchange coefficient varied between 15.1 and 36.2 W m-2 degrees C-1, and mean DeltaT varied between 0.5 and 3.3 degrees C. We found total heat flows of 2.6-26.6 W by forced-air warming systems with upper body blankets. However, the changes in heat balance by forced-air warming systems with upper body blankets are larger, as these systems are not only transferring heat to the body but are also reducing heat losses from the covered area to zero. Converting heat losses of approximately 37.8 W to heat gain, results in a 40.4-64.4 W change in heat balance. The differences between the systems result from different heat exchange coefficients and different mean temperature gradients. However, the combination of a high heat exchange coefficient with a high mean temperature gradient is rare. This fact offers some possibility to improve these systems.
NASA Technical Reports Server (NTRS)
Wood, Richard M.; Byrd, James E.; Wesselmann, Gary F.
1992-01-01
An assessment of the influence of airfoil geometry on delta wing leading edge vortex flow and vortex induced aerodynamics at supersonic speeds is discussed. A series of delta wing wind tunnel models were tested over a Mach number range from 1.7 to 2.0. The model geometric variables included leading edge sweep and airfoil shape. Surface pressure data, vapor screen, and oil flow photograph data were taken to evaluate the complex structure of the vortices and shocks on the family of wings tested. The data show that airfoil shape has a significant impact on the wing upper surface flow structure and pressure distribution, but has a minimal impact on the integrated upper surface pressure increments.
Delta II JPSS-1 First Stage Transport to SLC-1 for Processing
2016-04-05
The first stage of United Launch Alliance Delta II rocket for the Joint Polar Satellite System, or JPSS-1, is transported from NASA Hangar 836 to the Horizontal Processing Facility, located at Vandenberg Air Force Base in California.
2007-07-01
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, the first half of the fairing is lifted into the mobile service tower for encapsulation around NASA's Dawn spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch 4.5 billion years ago by investigating in detail two of the largest asteroids, Ceres and Vesta. They reside between Mars and Jupiter in the asteroid belt. Launch is scheduled for July 8. Photo credit: NASA/Amanda Diller
2007-07-01
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, workers prepare the first half of the fairing for encapsulation around NASA's Dawn spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch 4.5 billion years ago by investigating in detail two of the largest asteroids, Ceres and Vesta. They reside between Mars and Jupiter in the asteroid belt. Launch is scheduled for July 8. Photo credit: NASA/Amanda Diller
2007-07-01
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, a worker oversees the movement of the first half of the fairing toward NASA's Dawn spacecraft for encapsulation. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch 4.5 billion years ago by investigating in detail two of the largest asteroids, Ceres and Vesta. They reside between Mars and Jupiter in the asteroid belt. Launch is scheduled for July 8. Photo credit: NASA/Amanda Diller
2007-07-01
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, the second half of the fairing moves toward NASA's Dawn spacecraft to complete encapsulation. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch 4.5 billion years ago by investigating in detail two of the largest asteroids, Ceres and Vesta. They reside between Mars and Jupiter in the asteroid belt. Launch is scheduled for July 8. Photo credit: NASA/Amanda Diller
2007-07-01
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, workers supervise the movement of the first half of the fairing toward NASA's Dawn spacecraft for encapsulation. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch 4.5 billion years ago by investigating in detail two of the largest asteroids, Ceres and Vesta. They reside between Mars and Jupiter in the asteroid belt. Launch is scheduled for July 8. Photo credit: NASA/Amanda Diller
2007-07-01
KENNEDY SPACE CENTER, FLA. -- NASA's Dawn spacecraft waits for fairing encapsulation in the mobile service tower of Launch Pad 17-B at Cape Canaveral Air Force Station in Florida. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch 4.5 billion years ago by investigating in detail two of the largest asteroids, Ceres and Vesta. They reside between Mars and Jupiter in the asteroid belt. Launch is scheduled for July 8. Photo credit: NASA/Amanda Diller
2007-07-01
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, the first half of the fairing moves toward NASA's Dawn spacecraft for encapsulation. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch 4.5 billion years ago by investigating in detail two of the largest asteroids, Ceres and Vesta. They reside between Mars and Jupiter in the asteroid belt. Launch is scheduled for July 8. Photo credit: NASA/Amanda Diller
2007-07-01
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, workers supervise the movement of the first half of the fairing toward NASA's Dawn spacecraft for encapsulation. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch 4.5 billion years ago by investigating in detail two of the largest asteroids, Ceres and Vesta. They reside between Mars and Jupiter in the asteroid belt. Launch is scheduled for July 8. Photo credit: NASA/Amanda Diller
2006-08-16
KENNEDY SPACE CENTER, FLA. - At Astrotech Space Operations in Titusville, Fla., the STEREO payload is ready for mating to the upper stage booster. Here, a crane is being attached to the spacecraft to lift it. After the mating, all will be transported to Launch Pad 17-B at Cape Canaveral Air Force Station for integration with the Delta II already on the pad. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. STEREO is expected to lift off Aug. 31. Photo credit: NASA/George Shelton
1998-12-29
KENNEDY SPACE CENTER, FLA. -- At Launch Complex 17B, Cape Canaveral Air Station, sections of the fairing near closure around the upper stages of the Boeing Delta II rocket and Mars Polar Lander. The rocket is scheduled to launch Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars Surveyor '98 missions
1998-12-29
KENNEDY SPACE CENTER, FLA. -- At Launch Complex 17B, Cape Canaveral Air Station, workers begin fitting the fairing around the upper stages of the Boeing Delta II rocket and Mars Polar Lander. The rocket is scheduled to launch Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars Surveyor '98 missions
1998-12-29
KENNEDY SPACE CENTER, FLA. -- At Launch Complex 17B, Cape Canaveral Air Station, workers check the closure of the fairing around the upper stages of the Boeing Delta II rocket and Mars Polar Lander. The rocket is scheduled to launch Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars Surveyor '98 missions
2007-06-15
KENNEDY SPACE CENTER, FLA. -- The second stage of the Delta II launch vehicle for the Dawn spacecraft is lifted alongside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station. At right can be seen the solid rocket boosters surrounding Delta's first stage. The second stage will be mated with the first stage. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy is the strongest rocket in the Delta II class. It will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/Jack Pfaller
2007-06-15
KENNEDY SPACE CENTER, FLA. -- The second stage of the Delta II launch vehicle for the Dawn spacecraft arrives on Launch Pad 17-B at Cape Canaveral Air Force Station where it will be mated with the first stage. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy is the strongest rocket in the Delta II class. It will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/Jack Pfaller
2007-06-15
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station, workers maneuver the second stage of the Delta II launch vehicle onto the first stage for mating. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy is the strongest rocket in the Delta II class. It will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/Jack Pfaller
Hepatitis delta genotypes in chronic delta infection in the northeast of Spain (Catalonia).
Cotrina, M; Buti, M; Jardi, R; Quer, J; Rodriguez, F; Pascual, C; Esteban, R; Guardia, J
1998-06-01
Based on genetic analysis of variants obtained around the world, three genotypes of the hepatitis delta virus have been defined. Hepatitis delta virus variants have been associated with different disease patterns and geographic distributions. To determine the prevalence of hepatitis delta virus genotypes in the northeast of Spain (Catalonia) and the correlation with transmission routes and clinical disease, we studied the nucleotide divergence of the consensus sequence of HDV RNA obtained from 33 patients with chronic delta hepatitis (24 were intravenous drug users and nine had no risk factors), and four patients with acute self-limited delta infection. Serum HDV RNA was amplified by the polymerase chain reaction technique and a fragment of 350 nucleotides (nt 910 to 1259) was directly sequenced. Genetic analysis of the nucleotide consensus sequence obtained showed a high degree of conservation among sequences (93% of mean). Comparison of these sequences with those derived from different geographic areas and pertaining to genotypes I, II and III, showed a mean sequence identity of 92% with genotype I, 73% with genotype II and 61% with genotype III. At the amino acid level (aa 115 to 214), the mean identity was 87% with genotype I, 63% with genotype II and 56% with genotype III. Conserved regions included the RNA editing domain, the carboxyl terminal 19 amino acids of the hepatitis delta antigen and the polyadenylation signal of the viral mRNA. Hepatitis delta virus isolates in the northeast of Spain are exclusively genotype I, independently of the transmission route and the type of infection. No hepatitis delta virus subgenotypes were found, suggesting that the origin of hepatitis delta virus infection in our geographical area is homogeneous.
2017-03-23
On July 1, 2016, the U.S. Food and Drug Administration (FDA) approved a new drug application for Syndros, a drug product consisting of dronabinol [(-)-delta-9-trans-tetrahydrocannabinol (delta-9-THC)] oral solution. Thereafter, the Department of Health and Human Services (HHS) provided the Drug Enforcement Administration (DEA) with a scheduling recommendation that would result in Syndros (and other oral solutions containing dronabinol) being placed in schedule II of the Controlled Substances Act (CSA). In accordance with the CSA, as revised by the Improving Regulatory Transparency for New Medical Therapies Act, DEA is hereby issuing an interim final rule placing FDA-approved products of oral solutions containing dronabinol in schedule II of the CSA.
2004-07-06
KENNEDY SPACE CENTER, FLA. - The Boeing Delta II Heavy second-stage engine, the Aerojet AJ10-118K, is lifted up the mobile service tower on Pad 17-B, Cape Canaveral Air Force Station. At right can be seen the first stage of the Delta II and the nine Solid Rocket Boosters surrounding it. The Delta II is the launch vehicle for the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) spacecraft, scheduled to lift off Aug. 2. Bound for Mercury, the spacecraft is expected to reach orbit around the planet in March 2011. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
NASA Technical Reports Server (NTRS)
Cameron, Kenneth D.; Kichak, Robert A.; Piascik, Robert S.; Leidecker, Henning W.; Wilson, Timmy R.
2009-01-01
The Deep Impact spacecraft was launched on a Boeing Delta II rocket from Cape Canaveral Air Force Station (CCAFS) on January 12, 2005. Prior to the launch, the Director of the Office of Safety and Mission Assurance (OS&MA) requested the NASA Engineering and Safety Center (NESC) lead a team to render an independent opinion on the rationale for flight and the risk code assignments for the hazard of cracked Thick Film Assemblies (TFAs) in the E-packages of the Delta II launch vehicle for the Deep Impact Mission. The results of the evaluation are contained in this report.
Smith, Jayden A; Collins, J Grant; Patterson, Bradley T; Keene, F Richard
2004-05-07
The binding of the three stereoisomers (DeltaDelta-, LambdaLambda- and DeltaLambda-) of the dinuclear ruthenium(II) complex [[Ru(Me2bpy)2]2(mu-bpm)]4+ [Me2bpy = 4,4'-dimethyl-2,2'-bipyridine; bpm = 2,2'-bipyrimidine] to a tridecanucleotide containing a single adenine bulge has been studied by 1H NMR spectroscopy. The addition of the DeltaDelta-isomer to d(CCGAGAATTCCGG)2 induced significant chemical shift changes for the base and sugar resonances of the residues at the bulge site (G3A4G5/C11C10), whereas small shifts were observed upon addition of the enantiomeric LambdaLambda-form. NOESY spectra of the tridecanucleotide bound with the DeltaDelta-isomer revealed intermolecular NOE's between the metal complex and the nucleotide residues at the bulge site, while only weak NOE's were observed to terminal residues to the LambdaLambda-form. Competitive binding studies were performed where both enantiomers were simultaneously added to the tridecanucleotide, and for all ratios of the two stereoisomers the DeltaDelta-isomer remained selectively bound at the bulge site with the LambdaLambda-enantiomer localised at the terminal regions of the tridecanucleotide. The meso-diastereoisomer (DeltaLambda) was found to bind to the tridecanucleotide with characteristics intermediate between the DeltaDelta- and LambdaLambda-enantiomers of the rac form. Two distinct sets of metal complex resonances were observed, with one set having essentially the same shift as the free metal complex, whilst the other set of resonances exhibited significant shifts. The NOE data indicated that the meso-diastereoisomer does not bind as selectively as the DeltaDelta-isomer, with NOE's observed to a greater number of nucleotide residues compared to the DeltaDelta-form. This study provides a rare example of total enantioselectivity in the binding of an inert transition metal complex to DNA, produced by the shape recognition of both ruthenium(II) centres.
Okavango Delta, Botswana as seen from STS-66 shuttle Atlantis
NASA Technical Reports Server (NTRS)
1994-01-01
This November 1994 view looking south-southeast shows clouds over the Okavango Delta area of northern Botswana. The Okavango is one of the wilder, less spoiled regions of Africa. The Okavango River (lower left of view) brings water from the high, wet plateaus of Angola into the Kalahari Dessert, and enormous inland basin. As a result of a series of small faults (upper center of the view) related to the African Rift System, the river is dammed up in the form of a swampy inland delta. The visual patterns of the area are strongly linear: straight sand dunes occur in many places and can be seen across the bottom portion of the photograph. Numerous brush-fire scars produce a complex, straight-edged pattern over much of the lower portion of this view. Lake Ngami (upper right of view) was once permanently full as late as the middle 1800s. Changes in the climate of the area over the last 100 years has changed the size and shape of the inland delta.
NASA Technical Reports Server (NTRS)
Corcoran, Michael F.; Nichols, Joy; Naze, Yael; Rauw, Gregor; Pollock, Andrew; Moffat, Anthony; Richardson, Noel; Evans, Nancy; Hamaguchi, Kenji; Oskinova, Lida;
2013-01-01
Delta Ori is the nearest massive, single-lined eclipsing binary (O9.5 II + B0.5III). As such it serves as a fundamental calibrator of the mass-radius-luminosity relation in the upper HR diagram. It is also the only eclipsing O-type binary system which is bright enough to be observable with the CHANDRA gratings in a reasonable exposure. Studies of resolved X-ray line complexes provide tracers of wind mass loss rate and clumpiness; occultation by the X-ray dark companion of the line emitting region can provide direct spatial information on the location of the X-ray emitting gas produced by shocks embedded in the wind of the primary star. We obtained phase-resolved spectra with Chandra in order to determine the level of phase-dependent vs. secular variability in the shocked wind. Along with the Chandra observations we obtained simultaneous photometry from space with the Canadian MOST satellite to help understand the relation between X-ray and photospheric variability.
tetrahydrocannabinol (delta-9-THC)] in Schedule II. Final rule.
2017-11-22
This final rule adopts without changes an interim final rule with request for comments published in the Federal Register on March 23, 2017. On July 1, 2016, the U.S. Food and Drug Administration (FDA) approved a new drug application for Syndros, a drug product consisting of dronabinol [(-)-delta-9-trans-tetrahydrocannabinol (delta-9-THC)] oral solution. The Drug Enforcement Administration (DEA) maintains FDA-approved products of oral solutions containing dronabinol in schedule II of the Controlled Substances Act.
Kirschbaum, M.A.
1986-01-01
This deltaic Upper Cretaceous Rock Springs Formation of the Mesaverde Group was deposited during early Campanian time near the end of the regressive phase of the Niobrara cyclothem. On the southwest end of the Uplift, part of the delta system is exposed near the seaward edge of a series of transgressive/regressive sequences, which consist of intertonguing prodelta, delta-front, and delta-plain deposits. Eight major delta-front sandstones are vertically stacked and laterally continuous throughout the main study area.-from Author
Equilibrium and thermodynamic studies on biosorption of Pb(II) onto Candida albicans biomass.
Baysal, Zübeyde; Cinar, Ercan; Bulut, Yasemin; Alkan, Hüseyin; Dogru, Mehmet
2009-01-15
Biosorption of Pb(II) ions from aqueous solutions was studied in a batch system by using Candida albicans. The optimum conditions of biosorption were determined by investigating the initial metal ion concentration, contact time, temperature, biosorbent dose and pH. The extent of metal ion removed increased with increasing contact time, initial metal ion concentration and temperature. Biosorption equilibrium time was observed in 30min. The Freundlich and Langmuir adsorption models were used for the mathematical description of biosorption equilibrium and isotherm constants were also evaluated. The maximum biosorption capacity of Pb(II) on C. albicans was determined as 828.50+/-1.05, 831.26+/-1.30 and 833.33+/-1.12mgg(-1), respectively, at different temperatures (25, 35 and 45 degrees C). Biosorption showed pseudo second-order rate kinetics at different initial concentration of Pb(II) and different temperatures. The activation energy of the biosorption (Ea) was estimated as 59.04kJmol(-1) from Arrhenius equation. Using the equilibrium constant value obtained at different temperatures, the thermodynamic properties of the biosorption (DeltaG degrees , DeltaH degrees and DeltaS degrees ) were also determined. The results showed that biosorption of Pb(II) ions on C. albicans were endothermic and spontaneous. The optimum initial pH for Pb(II) was determined as pH 5.0. FTIR spectral analysis of Pb(II) adsorbed and unadsorbed C. albicans biomass was also discussed.
2007-06-15
KENNEDY SPACE CENTER, FLA. -- The second stage of the Delta II launch vehicle for the Dawn spacecraft is lifted alongside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station. It will be mated with the first stage already in the tower. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy is the strongest rocket in the Delta II class. It will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/Jack Pfaller
2007-06-15
KENNEDY SPACE CENTER, FLA. -- The second stage of the Delta II launch vehicle for the Dawn spacecraft is lifted alongside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station. It will be mated with the first stage already in the tower. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy is the strongest rocket in the Delta II class. It will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/Jack Pfaller
El-Sherif, Ahmed A; Shoukry, Mohamed M
2007-03-01
The formation equilibria of copper(II) complexes and the ternary complexes Cu(PDC)L (PDC=2,6-bis-(hydroxymethyl)-pyridine, HL=amino acid, amides or DNA constituents) have been investigated. Ternary complexes are formed by a simultaneous mechanism. The results showed the formation of Cu(PDC)L, Cu(PDC, H(-1))(L) and Cu(PDC, H(-2))(L) complexes. The concentration distribution of the complexes in solution is evaluated as a function of pH. The effect of dioxane as a solvent on the protonation constant of PDC and the formation constants of Cu(II) complexes are discussed. The thermodynamic parameters DeltaH degrees and DeltaS degrees calculated from the temperature dependence of the equilibrium constants are investigated.
Trace-fossil and storm-deposit relationships of San Carlos formation, west Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metz, C.L.; Bednarski, S.P.
1986-05-01
Two distinct assemblages of trace fossils are preserved in the storm deposits in delta-front facies of the Upper Cretaceous San Carlos Formation, west Texas. The assemblages represent two widely differing responses to storm deposition and sediment-trace-fossil relationships, indicating that other environmental parameters, probably water depth and oxygen levels, influenced trace-fossil distribution within the San Carlos delta front. Evidence of the storm-deposited nature of the sandstones includes a scoured basal contact, planar to hummocky cross-stratification, and a upper contact that is either ripple marked or is gradational with overlying shales.
Burdick, Summer M.; Brown, Daniel T.
2010-01-01
Federally endangered Lost River sucker (Deltistes luxatus) and shortnose sucker (Chasmistes brevirostris) were once abundant throughout their range but populations have declined. They were extirpated from several lakes in the 1920s and may no longer reproduce in others. Poor recruitment to the adult spawning populations is one of several reasons cited for the decline and lack of recovery of these species and may be the consequence of high mortality during juvenile life stages. High larval and juvenile sucker mortality may be exacerbated by an insufficient quantity of suitable or high quality rearing habitat. In addition, larval suckers may be swept downstream from suitable rearing areas in Upper Klamath Lake into Keno Reservoir, which is seasonally anoxic. The Nature Conservancy flooded about 3,600 acres (1,456 hectares) to the north of the Williamson River mouth (Tulana Unit) in October 2007 and about 1,400 acres (567 hectares) to the south and east of the Williamson River mouth (Goose Bay Unit) a year later to retain larval suckers in Upper Klamath Lake, create nursery habitat, and improve water quality. The U.S. Geological Survey joined a long-term research and monitoring program in collaboration with The Nature Conservancy, the Bureau of Reclamation, and Oregon State University in 2008 to assess the effects of the Williamson River Delta restoration on the early life-history stages of Lost River and shortnose suckers. The primary objectives of the research were to describe habitat colonization and use by larval and juvenile suckers and non-sucker fishes and to evaluate the effects of the restored habitat on the health and condition of juvenile suckers. This report summarizes data collected in 2009 by the U.S. Geological Survey as a part of this monitoring effort. The Williamson River Delta appeared to provide suitable rearing habitat for endangered larval Lost River and shortnose suckers in 2008 and 2009. Larval suckers captured in this delta typically were larger than those captured in the adjacent lake habitat in 2008, but the opposite was true for larval shortnose suckers in 2009. Mean sample density was greater for both species in the Williamson River Delta than adjacent lake habitats in both years. Larval suckers captured in the restoration area, however, had less food in their guts compared to those captured in Upper Klamath or Agency Lakes. Differential distribution among sucker species within the Williamson River Delta and between the delta and adjacent lakes indicated that shortnose suckers likely benefited more from the restored Williamson River Delta than Lost River or Klamath largescale suckers (Catostomus snyderi). Catch rates in shallow-water habitats with vegetation within the delta were higher for shortnose and Klamath largescale suckers than for larval Lost River suckers in 2008 and 2009.However, catch rates at the mouth of the Williamson River in 2008 and in Upper Klamath Lake in 2009 were higher for larval Lost River suckers than for larvae identified as either shortnose or Klamath largescale suckers. Shortnose suckers also comprised the greatest portion of age-0 suckers captured in the Williamson River Delta in 2008 and 2009. The relative abundance of age-1 shortnose suckers was high in our catches compared to age-1 Lost River suckers in 2009 in the delta and adjacent lakes, which may or may not indicate shortnose suckers experienced better survival than Lost River suckers in 2008. Age-0 and age-1 suckers were similarly distributed throughout the Williamson River Delta in 2008 and 2009. Age-0 suckers used shallow vegetated and unvegetated habitats primarily in mid- to late July in both years. A comparison of catch rates between our study and a concurrent study in Upper Klamath Lake indicated that Goose Bay was the most used habitat in 2009 and the Tulana Unit was the one of the least used habitats in 2008 and 2009 by age-0 suckers. Catch rates for age-1 suckers, however, indicated that bo
2008-05-17
CAPE CANAVERAL, Fla. -- At pad 17-B at Cape Canaveral Air Force Station, the GLAST spacecraft continues its rise toward the upper level of the mobile service tower. In the tower, GLAST will be mated with the Delta II second stage. GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. The launch date is targeted no earlier than June 3. Photo credit: NASA/Kim Shiflett
Dege, M.; Brown, L.R.
2004-01-01
We analyzed data on spring and summertime larval and juvenile fish distribution and abundance in the upper San Francisco Estuary (SFE), California between 1995 and 2001. The upper SFE includes the tidal freshwater areas of the Sacramento-San Joaquin Delta downstream to the euryhaline environment of San Pablo Bay. The sampling period included years with a variety of outflow conditions. Fifty taxa were collected using a larval tow net. Two common native species, delta smelt Hypomesus transpacifucus and longfin smelt Spirinchus thaleichthys, and four common alien taxa, striped bass Morone saxatilis, threadfin shad Dorosoma petenense, gobies of the genus Tridentiger, and yellowfin goby Acanthogobins flavimanus, were selected for detailed analysis. Outflow conditions had a strong influence on the geographic distribution of most of the species, but distribution with respect to the 2 psu isohaline (X2) was not affected. The distribution patterns of delta smelt, longfin smelt, and striped bass were consistent with larvae moving from upstream freshwater spawning areas to down-stream estuarine rearing areas. There were no obvious relationships of outflow with annual abundance indices. Our results support the idea of using X2 as an organizing principle in understanding the ecology of larval fishes in the upper SFE. Additional years of sampling will likely lead to additional insights into the early life history of upper SFE fishes. ?? Copyright by the American Fisheries Society 2004.
Ozdes, Duygu; Gundogdu, Ali; Kemer, Baris; Duran, Celal; Senturk, Hasan Basri; Soylak, Mustafa
2009-07-30
The objective of this study was to assess the adsorption potential of a waste mud (WM) for the removal of lead (Pb(II)) ions from aqueous solutions. The WM was activated with NaOH in order to increase its adsorption capacity. Adsorption studies were conducted in a batch system as a function of solution pH, contact time, initial Pb(II) concentration, activated-waste mud (a-WM) concentration, temperature, etc. Optimum pH was specified as 4.0. The adsorption kinetic studies indicated that the overall adsorption process was best described by pseudo-second-order kinetics. The equilibrium adsorption capacity of a-WM was obtained by using Langmuir and Freundlich isotherm models and both models fitted well. Adsorption capacity for Pb(II) was found to be 24.4 mg g(-1) for 10 g L(-1) of a-WM concentration. Thermodynamic parameters including the Gibbs free energy (Delta G degrees), enthalpy (Delta H degrees), and entropy (DeltaS degrees) indicated that the adsorption of Pb(II) ions on the a-WM was feasible, spontaneous and endothermic, at temperature range of 0-40 degrees C. Desorption studies were carried out successfully with diluted HCl solutions. The results indicate that a-WM can be used as an effective and no-cost adsorbent for the treatment of industrial wastewaters contaminated with Pb(II) ions.
Force Measurement on the GLAST Delta II Flight
NASA Technical Reports Server (NTRS)
Gordon, Scott; Kaufman, Daniel
2009-01-01
This viewgraph presentation reviews the interface force measurement at spacecraft separation of GLAST Delta II. The contents include: 1) Flight Force Measurement (FFM) Background; 2) Team Members; 3) GLAST Mission Overview; 4) Methodology Development; 5) Ground Test Validation; 6) Flight Data; 7) Coupled Loads Simulation (VCLA & Reconstruction); 8) Basedrive Simulation; 9) Findings; and 10) Summary and Conclusions.
2009-05-05
VANDENBERG AIR FORCE BASE, Calif. – A United Launch Alliance Delta II rocket blasts off from Space Launch Complex-2 launch pad at Vandenberg AFB, Calif., at 1:24 p.m. PDT. The Delta II successfully carried the Missile Defense Agency's Space Tracking and Surveillance System (STSS) Advanced Technology Risk Reduction (ATRR) payload into orbit. Photo by Carleton Bailie, United Launch Alliance.
Delta II JPSS-1 Launch Vehicle on Stand
2016-07-12
The first stage of the United Launch Alliance Delta II rocket that will launch the Joint Polar Satellite System-1 (JPSS-1) is raised at Space Launch Complex 2 on Vandenberg Air Force Base in California. JPSS, a next-generation environmental satellite system, is a collaborative program between the National Oceanic and Atmospheric Administration (NOAA) and NASA.
NASA Astrophysics Data System (ADS)
Niwa, Y.; Sugai, T.; Matsuzaki, H.
2012-12-01
The Kuwana fault is located on coastal area situated on inner part of the Ise Bay, central Japan, which opens to the Nankai Trough. This reverse fault displaces a late Pleistocene terrace surface with 1 to 2 mm/yr of average vertical slip rate, and a topset of delta at several meters, respectively. And, this fault is estimated to have generated two historical earthquakes (the AD 745 Tempyo and the AD 1586 Tensho earthquakes). We identified two event sand layers from upper Holocene sequence on the upthrown side of the Kuwana fault. Upper Holocene deposits in this study area show prograding delta sequence; prodelta mud, delta front sandy silt to sand, and flood plain sand/mud, respectively, from lower to upper. Two sand layers intervene in delta front sandy silt layer, respectively. Lower sand layer (S1) shows upward-coarsening succession, whereas upper sand layer (S2) upward-fining succession. These sand layers contain sharp contact, rip-up crust, and shell fragment, indicating strong stream flow. Radiocarbon ages show that these strong stream flow events occurred between 3000 and 1600 years ago. Decreasing of salinity is estimated from decreasing trend of electrical conductivity (EC) across S1. Based on the possibility that decreasing of salinity can be occurred by shallowing of water depth caused by coseismic uplift, and that S1 can be correlated with previously known faulting event on the Kuwana fault, S1 is considered to be tsunami deposits caused by faulting on the Kuwana fault. On the other hand, S2, which cannot be correlated with previously known faulting events on the Kuwana fault, may be tsunami deposits by ocean-trench earthquake or storm deposits. In the presentation, we will discuss more detail correlation of these sand deposits not only in the upthrown side of the Kuwana fault, but also downthrown side of the fault.
A Michigan Monarch Recovered in Mexico
Robert G. Haight
2000-01-01
The Monarch Butterfly Project is a cooperative project between the Hiawatha National Forest of the US Forest Service and Wildlife Unlimited of Delta County, Michigan. In 1999, 58 volunteers contributed over 450 hours to monitor monarch reproduction and migation and to improve habitat for monarch butterflies near Penninsula Point, Delta County, in Michigan's upper...
Biologic lung volume reduction in advanced upper lobe emphysema: phase 2 results.
Criner, Gerard J; Pinto-Plata, Victor; Strange, Charlie; Dransfield, Mark; Gotfried, Mark; Leeds, William; McLennan, Geoffrey; Refaely, Yael; Tewari, Sanjiv; Krasna, Mark; Celli, Bartolome
2009-05-01
Biologic lung volume reduction (BioLVR) is a new endobronchial treatment for advanced emphysema that reduces lung volume through tissue remodeling. Assess the safety and therapeutic dose of BioLVR hydrogel in upper lobe predominant emphysema. Open-labeled, multicenter phase 2 dose-ranging studies were performed with BioLVR hydrogel administered to eight subsegmental sites (four in each upper lobe) involving: (1) low-dose treatment (n = 28) with 10 ml per site (LD); and (2) high-dose treatment (n = 22) with 20 ml per site (HD). Safety was assessed by the incidence of serious medical complications. Efficacy was assessed by change from baseline in pulmonary function tests, dyspnea score, 6-minute walk distance, and health-related quality of life. After treatment there were no deaths and four serious treatment-related complications. A reduction in residual volume to TLC ratio at 12 weeks (primary efficacy outcome) was achieved with both LD (-6.4 +/- 9.3%; P = 0.002) and HD (-5.5 +/- 9.4%; P = 0.028) treatments. Improvements in pulmonary function in HD (6 mo: DeltaFEV(1) = +15.6%; P = 0.002; DeltaFVC = +9.1%; P = 0.034) were greater than in LD patients (6 mo: DeltaFEV(1) = +6.7%; P = 0.021; DeltaFVC = +5.1%; P = 0.139). LD- and HD-treated groups both demonstrated improved symptom scores and health-related quality of life. BioLVR improves physiology and functional outcomes up to 6 months with an acceptable safety profile in upper lobe predominant emphysema. Overall improvement was greater and responses more durable with 20 ml per site than 10 ml per site dosing. Clinical trial registered with www.clinicaltrials.gov (NCT 00435253 and NCT 00515164).
Fang, Linchuan; Huang, Qiaoyun; Wei, Xing; Liang, Wei; Rong, Xinming; Chen, Wenli; Cai, Peng
2010-08-01
Equilibrium adsorption experiments, isothermal titration calorimetry and potentiometric titration techniques were employed to investigate the adsorption of Cu(II) by extracellular polymeric substances (EPS) extracted from Pseudomonas putida X4, minerals (montmorillonite and goethite) and their composites. Compared with predicted values of Cu(II) adsorption on composites, the measured values of Cu(II) on EPS-montmorillonite composite increased, however, those on EPS-goethite composite decreased. Potentiometric titration results also showed that more surface sites were observed on EPS-montmorillonite composite and less reactive sites were found on EPS-goethite composite. The adsorption of Cu(II) on EPS molecules and their composites with minerals was an endothermic reaction, while that on minerals was exothermic. The positive values of enthalpy change (Delta H) and entropy change (DeltaS) for Cu(II) adsorption on EPS and mineral-EPS composites indicated that Cu(II) mainly interacts with carboxyl and phosphoryl groups as inner-sphere complexes on EPS molecules and their composites with minerals. (c) 2010 Elsevier Ltd. All rights reserved.
Evidence That Nitric Acid Increases Relative Humidity in Low-Temperature Cirrus Clouds
NASA Technical Reports Server (NTRS)
Gao, R. S.; Popp, P. J.; Fahey, D. W.; Marcy, T. P.; Herman, R. L.; Weinstock, E. M.; Baumgardner, D. G.; Garrett, T. J.; Rosenlof, K. H.; Thompson, T. L.
2004-01-01
In situ measurements of the relative humidity with respect to ice (RH(sub(i)) and of nitric acid (HNO3) were made in both natural and contrail cirrus clouds in the upper troposphere. At temperatures lower than 202 kelvin, RH(sub i) values show a sharp increase to average values of over 130% in both cloud types. These enhanced RH(sub i) values are attributed to the presence of a new class of NHO3- containing ice particles (Delta-ice). We propose that surface HNO3 molecules prevent the ice/vapor system from reaching equilibrium by a mechanism similar to that of freezing point depression by antifreeze proteins. Delta-ice represents a new link between global climate and natural and anthropogenic nitrogen oxide emissions. Including Delta-ice in climate models will alter simulated cirrus properties and the distribution of upper tropospheric water vapor.
Delta II JPSS-1 Spacecraft Arrival
2017-09-01
The Joint Polar Satellite System-1, or JPSS-1, arrives at the Astrotech Processing Facility at Vandenberg Air Force Base in California. JPSS is the first in a series four next-generation environmental satellites in a collaborative program between the National Oceanic and Atmospheric Administration (NOAA) and NASA. The satellite is scheduled to liftoff Nov. 10, 2017 atop a United Launch Alliance Delta II rocket.
2003-07-22
KENNEDY SPACE CENTER, FLA. - A solid rocket booster (SRB) for the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF) arrives at Launch Complex 17-B, Cape Canaveral Air Force Station. The Delta II Heavy features nine 46-inch-diameter, stretched SRBs. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
NASA Astrophysics Data System (ADS)
Brenn, Gregory Randall
Stretching 3,500 km across Antarctica, with peak elevations up to 4,500 m, the Transantarctic Mountains (TAMs) are the largest non-compressional continental mountain range on Earth and represent a tectonic boundary between the East Antarctica (EA) craton and the West Antarctic Rift System. The origin and uplift mechanism associated with the TAMs is controversial, and multiple models have been proposed. Seismic investigations of the TAM's subsurface structure can provide key constraints to help evaluate these models, but previous studies have been primarily focused only on the central TAMs near Ross Island. Using data from the new 15-station Transantarctic Mountain Northern Network as well as data from several smaller networks, this study investigates the upper mantle velocity structure beneath a previously unexplored portion of the northern TAMs through regional body wave tomography. Relative travel-times were calculated for 11,182 P-wave and 8,285 S-wave arrivals from 790 and 581 Mw ≥ 5.5 events, respectively, using multi-channel cross correlation, and these data were then inverted for models of the upper mantle seismic structure. Resulting P- and S-wave tomography images reveal two focused low velocity anomalies beneath Ross Island (RI; deltaVP ≈ -2.0%; deltaV S ≈ -1.5% to -4.0%) and Terra Nova Bay (TNB; deltaVP ≈ -1.5% to -2.0%; deltaVS ≈ -1.0% to -4.0%) that extend to depths of 200 and 150 km, respectively. The RI and TNB slow anomalies also extend 50-100 km laterally beneath the TAMs front and sharply abut fast velocities beneath the EA craton (deltaVP ≈ 0.5% to 2%; deltaV S ≈ 1.5% to 4.0%). A low velocity region (deltaVP ≈ -1.5%), centered at 150 km depth beneath the Terror Rift (TR) and primarily constrained within the Victoria Land Basin, connects the RI and TNB anomalies. The focused low velocities are interpreted as regions of partial melt and buoyancy-driven upwelling, connected by a broad region of slow (presumably warm) upper mantle associated with Cenozoic extension along the TR. Dynamic topography estimates based on the imaged S-wave velocity perturbations are consistent with observed surface topography in the central and northern TAMs, thereby providing support for uplift models that advocate for thermal loading and a flexural origin for the mountain range.
Delta Blues Scholarship and Imperialist Nostalgia.
ERIC Educational Resources Information Center
Nye, William P.
When Delta blues are considered to be "folk music," the genre is inextricably tied to the neocolonial, sharecropping system of cotton production characteristic of the Mississippi Delta region between the Civil War and World War II. "Imperialist nostalgia," then, arises in accounts which pay primary and positive tribute to blues…
NASA Technical Reports Server (NTRS)
1998-01-01
Final preparations for lift off of the DELTA II Mars Pathfinder Rocket are shown. Activities include loading the liquid oxygen, completing the construction of the Rover, and placing the Rover into the Lander. After the countdown, important visual events include the launch of the Delta Rocket, burnout and separation of the three Solid Rocket Boosters, and the main engine cutoff. The cutoff of the main engine marks the beginning of the second stage engine. After the completion of the second stage, the third stage engine ignites and then cuts off. Once the third stage engine cuts off spacecraft separation occurs.
NASA Technical Reports Server (NTRS)
Patrick, Sean; Oliver, Emerson
2018-01-01
One of the SLS Navigation System's key performance requirements is a constraint on the payload system's delta-v allocation to correct for insertion errors due to vehicle state uncertainty at payload separation. The SLS navigation team has developed a Delta-Delta-V analysis approach to assess the effect on trajectory correction maneuver (TCM) design needed to correct for navigation errors. This approach differs from traditional covariance analysis based methods and makes no assumptions with regard to the propagation of the state dynamics. This allows for consideration of non-linearity in the propagation of state uncertainties. The Delta-Delta-V analysis approach re-optimizes perturbed SLS mission trajectories by varying key mission states in accordance with an assumed state error. The state error is developed from detailed vehicle 6-DOF Monte Carlo analysis or generated using covariance analysis. These perturbed trajectories are compared to a nominal trajectory to determine necessary TCM design. To implement this analysis approach, a tool set was developed which combines the functionality of a 3-DOF trajectory optimization tool, Copernicus, and a detailed 6-DOF vehicle simulation tool, Marshall Aerospace Vehicle Representation in C (MAVERIC). In addition to delta-v allocation constraints on SLS navigation performance, SLS mission requirement dictate successful upper stage disposal. Due to engine and propellant constraints, the SLS Exploration Upper Stage (EUS) must dispose into heliocentric space by means of a lunar fly-by maneuver. As with payload delta-v allocation, upper stage disposal maneuvers must place the EUS on a trajectory that maximizes the probability of achieving a heliocentric orbit post Lunar fly-by considering all sources of vehicle state uncertainty prior to the maneuver. To ensure disposal, the SLS navigation team has developed an analysis approach to derive optimal disposal guidance targets. This approach maximizes the state error covariance prior to the maneuver to develop and re-optimize a nominal disposal maneuver (DM) target that, if achieved, would maximize the potential for successful upper stage disposal. For EUS disposal analysis, a set of two tools was developed. The first considers only the nominal pre-disposal maneuver state, vehicle constraints, and an a priori estimate of the state error covariance. In the analysis, the optimal nominal disposal target is determined. This is performed by re-formulating the trajectory optimization to consider constraints on the eigenvectors of the error ellipse applied to the nominal trajectory. A bisection search methodology is implemented in the tool to refine these dispersions resulting in the maximum dispersion feasible for successful disposal via lunar fly-by. Success is defined based on the probability that the vehicle will not impact the lunar surface and will achieve a characteristic energy (C3) relative to the Earth such that it is no longer in the Earth-Moon system. The second tool propagates post-disposal maneuver states to determine the success of disposal for provided trajectory achieved states. This is performed using the optimized nominal target within the 6-DOF vehicle simulation. This paper will discuss the application of the Delta-Delta-V analysis approach for performance evaluation as well as trajectory re-optimization so as to demonstrate the system's capability in meeting performance constraints. Additionally, further discussion of the implementation of assessing disposal analysis will be provided.
NASA Technical Reports Server (NTRS)
Scantling, W. L.; Gloss, B. B.
1974-01-01
An investigation was conducted in the Langley 1/8-scale V/STOL model tunnel on a semispan delta wing with a leading-edge sweep of 74 deg, to determine the effectiveness of various locations of upper surface and reflection plane blowing on leading-edge vortex bursting. Constant area nozzles were located on the wing upper surface along a ray swept 79 deg, which was beneath the leading-edge vortex core. The bursting and reformation of the leading-edge vortex was viewed by injecting helium into the vortex core, and employing a schlieren system.
From the Delta Banks to the Upper Ranks: An Evaluation of KIPP Charter Schools in Rural Arkansas
ERIC Educational Resources Information Center
Rose, Caleb P.; Maranto, Robert; Ritter, Gary W.
2017-01-01
Knowledge is Power Program Delta College Preparatory School (KIPP DCPS), an open-enrollment charter school,1 opened in 2002 in Helena, Arkansas. KIPP DCPS students have consistently outperformed their peers from neighboring districts on year-end student achievement scores, and KIPP's national reputation led Arkansas lawmakers to exempt KIPP from…
AT1 receptors mediate angiotensin II-induced release of nitric oxide in afferent arterioles.
Patzak, Andreas; Lai, En Y; Mrowka, Ralf; Steege, Andreas; Persson, Pontus B; Persson, A Erik G
2004-11-01
Recent studies have indicated that angiotensin II (Ang II) possibly activates the nitric oxide (NO) system. We investigated the role of AT receptor subtypes (AT-R) in mediating the Ang II-induced NO release in afferent arterioles (Af) of mice. Isolated Af of mice were perfused, and the isotonic contraction measured. Further, NO release was determined using DAF-FM, a fluorescence indicator for NO. Moreover, we qualitatively assessed the expression of AT-R at the mRNA level using reverse transcription-polymerase chain reaction (RT-PCR). Ang II reduced luminal diameters dose dependently (67.3 +/- 6.3% at 10(-6) mol/L). Inhibition of AT2-R with PD123.319 did not change the Ang II contractile response. AT1-R blockade with ZD7155 inhibited contraction. Stimulation of AT2-R during AT1-R inhibition with ZD7155, and preconstriction with norepinephrine (NE) had no influence on the diameter. Drug application via the perfusion pipette changed flow and pressure, and enhanced NO fluorescence by DeltaF = 4.0 +/- 0.4% (N= 14, background). Luminal application of Ang II (10(-7) mol/L) increased the NO fluorescence by DeltaF = 9.9 +/- 1.2% (N= 8). AT1-R blockade blunted the increase to background levels (DeltaF to 4.0 +/- 0.3%, N= 6, P < 0.05), but AT2-R blockade did not (8.1 +/- 0.9%, N= 9). L-NAME nearly abolished the Ang II effect on the NO fluorescence (DeltaF = 1.6 +/- 0.5% (N= 8). NE did not increase NO release beyond the background levels. RT-PCR showed expression of both AT1-R and AT2-R. The results indicate an Ang II-induced NO release in Af of mice, which is mediated by AT1-R. Thus, Ang II balances its own constrictor action in Af. This control mechanism is very important in view of high renin and angiotensin II concentration in the juxtaglomerular apparatus.
Okavango Delta, Botswana as seen from STS-66 shuttle Atlantis
1994-11-14
STS066-122-091 (3-14 Nov. 1994) --- This November 1994 view looking south-southeast shows clouds over the Okavango Delta area of northern Botswana. The Okavango is one of the wilder, less spoiled regions of Africa. The area still supports great herds of wild animals such as elephant, zebra and the cape buffalo. Despite conservation efforts from the stable government of Botswana, delta habitats are pressured. The Okavango River (lower left of view) brings water from the high, wet plateaus of Angola into the Kalahari Desert, and enormous inland basin. As a result of a series of small faults (upper center of the view) related to the African Rift System, the river is dammed up in the form of swampy inland delta. Here, water is consumed by evaporation, infiltration, and the swamp forests. Late summer floods take six months to slowly penetrate the 160 kilometer (95 miles) to the other end of the Delta. The visual patterns of the area are strongly linear: straight sand dunes occur in many places and can be seen across the bottom portion of the photograph. Numerous brush-fire scars produce a complex, straight-edged pattern over much of the lower portion of this view. Lake Ngami (upper right of view) was once permanently full as late as the middle 1800's. Changes in the climate of the area over the last 100 years has changed the size and shape of the inland delta.
Phosphorylation and nuclear localization of the varicella-zoster virus gene 63 protein.
Stevenson, D; Xue, M; Hay, J; Ruyechan, W T
1996-01-01
The protein encoded by varicella-zoster virus open reading frame 63 and carboxy-terminal deletions of the same were expressed either as fusion proteins at the carboxy terminus of the maltose-binding protein in Escherichia coli or independently in transfected mammalian cells. The truncations contained amino acids 1 to 142 (63 delta N) or 1 to 210 (63 delta K) of the complete 278-amino-acid primary sequence. Recombinant casein kinase II phosphorylated the 63F and 63 delta KF fusion proteins in vitro but did not phosphorylate the 63 delta NF fusion protein, implying that phosphorylation occurred between amino acids 142 and 210. Immunoprecipitation of 35S- or 32P-labelled extracts of cells transfected with plasmids expressing 63, 63 delta N, or 63 delta K also indicated that in situ phosphorylation most likely occurred between amino acids 142 and 210. These combined results suggest that casein kinase II plays a significant role in the phosphorylation of the varicella-zoster virus 63 protein. Indirect immunofluorescence of transfected cells indicated nuclear localization of the 63 protein and cytoplasmic localization of 63 delta K and 63 delta N, implying a requirement for sequences between amino acids 210 and 278 for efficient nuclear localization. PMID:8523589
Güzel, Fuat; Yakut, Hakan; Topal, Giray
2008-05-30
In this study, the effect of temperature on the adsorption of Mn(II), Ni(II), Co(II) and Cu(II) from aqueous solution by modified carrot residues (MCR) was investigated. The equilibrium contact times of adsorption process for each heavy metals-MCR systems were determined. Kinetic data obtained for each heavy metal by MCR at different temperatures were applied to the Lagergren equation, and adsorption rate constants (kads) at these temperatures were determined. These rate constants related to the adsorption of heavy metal by MCR were applied to the Arrhenius equation, and activation energies (Ea) were determined. In addition, the isotherms for adsorption of each heavy metal by MCR at different temperatures were also determined. These isothermal data were applied to linear forms of isotherm equations that they fit the Langmuir adsorption isotherm, and the Langmuir constants (qm and b) were calculated. b constants determined at different temperatures were applied to thermodynamic equations, and thermodynamic parameters such as enthalpy (Delta H), free energy (Delta G), and entropy (Delta S) were calculated and these values show that adsorption of heavy metal on MCR was an endothermic process and process of adsorption was favoured at high temperatures.
Adsorption of divalent metals to metal oxide nanoparicles: Competitive and temperature effects
NASA Astrophysics Data System (ADS)
Grover, Valerie Ann
The presence of metals in natural waters is becoming a critical environmental and public health concern. Emerging nanotechnology and the use of metal oxide nanoparticles has been identified as a potential remediation technique in removing metals from water. However, practical applications are still being explored to determine how to apply their unique chemical and physical properties for full scale remediation projects. This thesis investigates the sorption properties of Cd(II), Cu(II), Pb(II) and Zn(II) to hematite (alpha-Fe2O3) and titanium dioxide (TiO2) nanoparticles in single- and binary-adsorbate systems. Competitive sorption was evaluated in 1L batch binary-metal systems with 0.05g/L nano-hematite at pH 8.0 and pH 6.0. Results indicate that the presence of a secondary metal can affect the sorption process depending upon the molar ratios, such as increased or reduced adsorption. Thermodynamic properties were also studied in order to better understand the effects of temperature on equilibrium and kinetic adsorption capabilities. Understanding the thermodynamic properties can also give insight to determine if the sorption process is a physical, chemical or ion exchange reaction. Thermodynamic parameters such as enthalpy (DeltaH), entropy (DeltaS), and Gibbs free energy (DeltaG) were evaluated as a function of temperature, pH, and metal concentration. Results indicate that Pb(II) and Cu(II) adsorption to nano-hematite was an endothermic and physical adsorption process, while Zn(II) and Cd(II) adsorption was dependent upon the adsorbed concentration evaluated. However, metal adsorptions to nano-titanium dioxide were all found to be endothermic and physical adsorption processes; the spontaneity of metal adsorption was temperature dependent for both metal oxide nanoparticles.
Assembly of 5.5-Meter Diameter Developmental Barrel Segments for the Ares I Upper Stage
NASA Technical Reports Server (NTRS)
Carter, Robert W.
2011-01-01
Full scale assembly welding of Ares I Upper Stage 5.5-Meter diameter cryogenic tank barrel segments has been performed at the Marshall Space Flight Center (MSFC). One full-scale developmental article produced under the Ares 1 Upper Stage project is the Manufacturing Demonstration Article (MDA) Barrel. This presentation will focus on the welded assembly of this barrel section, and associated lessons learned. Among the MDA articles planned on the Ares 1 Program, the Barrel was the first to be completed, primarily because the process of manufacture from piece parts (barrel panels) utilized the most mature friction stir process planned for use on the Ares US program: Conventional fixed pin Friction Stir Welding (FSW). This process is in use on other space launch systems, including the Shuttle s External Tank, the Delta IV common booster core, the Delta II, and the Atlas V rockets. The goals for the MDA Barrel development were several fold: 1) to prove out Marshall Space Flight Center s new Vertical Weld Tool for use in manufacture of cylindrical barrel sections, 2) to serve as a first run for weld qualification to a new weld specification, and 3) to provide a full size cylindrical section for downstream use in precision cleaning and Spray-on Foam Insulation development. The progression leading into the welding of the full size barrel included sub scale panel welding, subscale cylinder welding, a full length confidence weld, and finally, the 3 seamed MDA barrel processing. Lessons learned on this MDA program have been carried forward into the production tooling for the Ares 1 US Program, and in the use of the MSFC VWT in processing other large scale hardware, including two 8.4 meter diameter Shuttle External Tank barrel sections that are currently being used in structural analysis to validate shell buckling models.
Delta II JPSS-1 Solid Rocket Motor (SRM) Hoist and Mate
2016-07-19
At Vandenberg Air Force Base in California, a United Launch Alliance Delta II rocket stands at Space Launch Complex 2 as preparations are continuing for launch of the Joint Polar Satellite System (JPSS-1) spacecraft on March 27, 2017. JPSS-1 is part of the next-generation environmental satellite system, a collaborative program between the National Oceanic and Atmospheric Administration (NOAA) and NASA.
Delta II JPSS-1 Interstage Lift & Mate
2016-07-13
The interstage of the United Launch Alliance Delta II rocket that will launch the Joint Polar Satellite System-1 (JPSS-1) is lifted at Space Launch Complex 2 on Vandenberg Air Force Base in California. JPSS, a next-generation environmental satellite system, is a collaborative program between the National Oceanic and Atmospheric Administration (NOAA) and NASA. To learn more about JPSS-1, visit www.jpss.noaa.gov.
Delta II Geotail -- 1st Stage and Solid Motor Booster Erection
NASA Technical Reports Server (NTRS)
1992-01-01
The Geotail mission's goal was to investigate the structure and dynamics of the geomagnetic tail that extends on the nightside of the Earth. The launch date was July 24, 1992. This video shows the Delta II on the pad, being prepared for the launch. The first stage and the solid motor booster are shown being moved into place on the rocket.
75 FR 28543 - GMUG Resource Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-21
... to accept project proposals for Title II funds within Garfield, Mesa, Delta, Gunnison and Montrose... funds within Garfield, Mesa, Delta, Gunnison and Montrose Counties, Colorado. Persons who wish to bring...
41. Upper level, electronic racks, left to rightprogrammer group, status ...
41. Upper level, electronic racks, left to right--programmer group, status command message processing group, UHF radio, impss rack security - Ellsworth Air Force Base, Delta Flight, Launch Facility, On County Road T512, south of Exit 116 off I-90, Interior, Jackson County, SD
43. Upper level, left to rightground missile guidance system liquid ...
43. Upper level, left to right--ground missile guidance system liquid cooling equipment, guidance and control coupler rack, programmer group - Ellsworth Air Force Base, Delta Flight, Launch Facility, On County Road T512, south of Exit 116 off I-90, Interior, Jackson County, SD
NASA Astrophysics Data System (ADS)
Nehyba, Slavomír
2018-02-01
Two coarse-grained Gilbert-type deltas in the Lower Badenian deposits along the southern margin of the Western Carpathian Foredeep (peripheral foreland basin) were newly interpreted. Facies characterizing a range of depositional processes are assigned to four facies associations — topset, foreset, bottomset and offshore marine pelagic deposits. The evidence of Gilbert deltas within open marine deposits reflects the formation of a basin with relatively steep margins connected with a relative sea level fall, erosion and incision. Formation, progradation and aggradation of the thick coarse-grained Gilbert delta piles generally indicate a dramatic increase of sediment supply from the hinterland, followed by both relatively continuous sediment delivery and an increase in accommodation space. Deltaic deposition is terminated by relatively rapid and extended drowning and is explained as a transgressive event. The lower Gilbert delta was significantly larger, more areally extended and reveals a more complicated stratigraphic architecture than the upper one. Its basal surface represents a sequence boundary and occurs around the Karpatian/Badenian stratigraphic limit. Two coeval deltaic branches were recognized in the lower delta with partly different stratigraphic arrangements. This different stratigraphic architecture is mostly explained by variations in the sediment delivery and /or predisposed paleotopography and paleobathymetry of the basin floor. The upper delta was recognized only in a restricted area. Its basal surface represents a sequence boundary probably reflecting a higher order cycle of a relative sea level rise and fall within the Lower Badenian. Evidence of two laterally and stratigraphically separated coarse-grained Gilbert deltas indicates two regional/basin wide transgressive/regressive cycles, but not necessarily of the same order. Provenance analysis reveals similar sources of both deltas. Several partial source areas were identified (Mesozoic carbonates of the Northern Calcareous Alps and the Western Carpathians, crystalline rocks of the eastern margin of the Bohemian Massif, older sedimentary infill of the Carpathian Foredeep and/or the North Alpine Foreland Basin, sedimentary rocks of the Western Carpathian/Alpine Flysch Zone).
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. Workers attach an overhead crane to the Mars Exploration Rover 1 (MER-1) inside the upper backshell. The backshell will be moved and attached to the lower heat shield. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. In the Payload Hazardous Servicing Facility, workers move the heat shield (foreground) toward the upper backshell/ Mars Exploration Rover 1 (MER-1), in the background. The backshell and heat shield will be mated. NASA's twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-1 is scheduled to launch June 25 as MER-B aboard a Delta II rocket from Cape Canaveral Air Force Station.
2003-03-06
In the Payload Hazardous Servicing Facility resides one of the Mars Exploration Rovers, MER-2. MER-1 and MER-2, their aeroshells and landers will undergo a full mission simulation before being integrated. After spin balance testing, each spacecraft will be mated to a solid propellant upper stage booster that will propel the spacecraft out of Earth orbit. Approximately 10 days before launch they will be transported to the launch pad for mating with their respective Boeing Delta II rockets. The rovers will serve as robotic geologists to seek answers about the evolution of Mars, particularly for a history of water. The rovers are identical to each other, but will land at different regions of Mars. Launch of the first rover is scheduled for May 30 from Cape Canaveral Air Force Station. The second will follow June 25.
2003-03-06
Technicians in the Payload Hazardous Servicing Facility look over the Mars Exploration Rover -2. MER-1 and MER-2, their aeroshells and landers will undergo a full mission simulation before being integrated. After spin balance testing, each spacecraft will be mated to a solid propellant upper stage booster that will propel the spacecraft out of Earth orbit. Approximately 10 days before launch they will be transported to the launch pad for mating with their respective Boeing Delta II rockets. The rovers will serve as robotic geologists to seek answers about the evolution of Mars, particularly for a history of water. The rovers are identical to each other, but will land at different regions of Mars. Launch of the first rover is scheduled for May 30 from Cape Canaveral Air Force Station. The second will follow June 25.
2001-06-15
KENNEDY SPACE CENTER, Fla. -- The Microwave Anisotropy Probe (MAP) is lowered onto the upper stage of the Boeing Delta II rocket. The rocket is scheduled to launch the MAP instrument June 30 into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. MAP will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferraudi, G.; Muralidharan, S.
1983-01-01
The ultraviolet photochemistry of the rhodium(III) phthalocyanines Rh(ph)(CH/sub 3/OH)X with X = Cl/sup -/, Br/sup -/, and I/sup -/ was investigated at different wavelengths. The same action spectrum for the photoinduced hydrogen abstraction was obtained for the three compounds. The photonic energy of the excitation is degraded in part by emission at short wavelengths, e.g. lambda/sub max/ approx. = 420 nm. Such a violet emission, observed with phthalocyanines of Al(III), Rh(III), Co(III), and Ru(II), has been attributed to the relaxation of an upper /sup 3/pipi* excited state. The emission spectra at 77 K exhibited vibronic components with a separation betweenmore » successive peaks ..delta..v approx. = 1.3 x 10/sup 3/ cm/sup -1/. A comparison between the excitation and action spectra shows the difference in the paths that populate the reactive npi* and upper emissive pipi* states. An investigation of the time dependence of the upper /sup 3/pipi* emission and lowest /sup 3/pipi* absorptions reveals the participation of triplet sublevels in the degradation of the excitation energy. The relationship between photoemissive and photoreactive states is discussed. 40 references, 6 figures, 2 tables.« less
Delta II ICESat-2 Booster Arrival
2018-03-09
A United Launch Alliance Delta II booster arrives at NASA's Building 836, the Spacecraft Labs Telemetry Station at Vandenberg Air Force Base in California. It will be offloaded and begin preliminary checkouts and preflight processing for launch of the agency's Ice, Cloud and land Elevation Satellite-2, or ICESat-2. Liftoff from Space Launch Complex-2 at Vandenberg is scheduled for Sept. 12, 2018, and will be the last for the venerable Delta II rocket. Once in orbit, the satellite is designed to measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. The satellite will carry a single instrument, the Advanced Topographic Laser Altimeter System. ICESat-2 will help scientists investigate why, and how much, Earth's frozen and icy areas are changing. These area make up Earth's the cryosphere.
Delta II ICESat-2 Booster Offload onto Transporter
2018-04-16
At NASA's Building 836, the Spacecraft Labs Telemetry Station at Vandenberg Air Force Base in California, a United Launch Alliance Delta II booster has been removed from its shipping container. Preliminary checkouts and preflight processing will begin leading to launch of the agency's Ice, Cloud and land Elevation Satellite-2, or ICESat-2. Liftoff from Space Launch Complex-2 at Vandenberg is scheduled for Sept. 12, 2018, and will be the last for the venerable Delta II rocket. Once in orbit, the satellite is designed to measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. The satellite will carry a single instrument, the Advanced Topographic Laser Altimeter System. ICESat-2 will help scientists investigate why, and how much, Earth's frozen and icy areas are changing. These area make up Earth's the cryosphere.
Delta II ICESat-2 Booster Offload onto Transporter
2018-04-16
A United Launch Alliance Delta II booster arrives at NASA's Building 836, the Spacecraft Labs Telemetry Station at Vandenberg Air Force Base in California. It will be offloaded and begin preliminary checkouts and preflight processing for launch of the agency's Ice, Cloud and land Elevation Satellite-2, or ICESat-2. Liftoff from Space Launch Complex-2 at Vandenberg is scheduled for Sept. 12, 2018, and will be the last for the venerable Delta II rocket. Once in orbit, the satellite is designed to measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. The satellite will carry a single instrument, the Advanced Topographic Laser Altimeter System. ICESat-2 will help scientists investigate why, and how much, Earth's frozen and icy areas are changing. These area make up Earth's the cryosphere.
40. Upper level, electronic racks, left to rightstatus command message ...
40. Upper level, electronic racks, left to right--status command message processing group, UHF radio, impss rack security, power supply group rack - Ellsworth Air Force Base, Delta Flight, Launch Facility, On County Road T512, south of Exit 116 off I-90, Interior, Jackson County, SD
42. Upper level, electronic racks, left to rightguidance and control ...
42. Upper level, electronic racks, left to right--guidance and control coupler rack, programmer group, status command message processing group, UHF radio - Ellsworth Air Force Base, Delta Flight, Launch Facility, On County Road T512, south of Exit 116 off I-90, Interior, Jackson County, SD
Earth Observations taken by the Expedition 27 Crew
2011-04-25
ISS027-E-016922 (25 April 2011) --- River deltas and Lake Ayakum in China (Tibet) are featured in this image photographed by an Expedition 27 crew member on the International Space Station. The Tibetan Plateau contains numerous lakes that dot an otherwise arid landscape. Lake Ayakum is located near the northern boundary of the Plateau to the southeast of the Kunlun Mountains. While many of the small glacier- and snowmelt-fed streams that cross the Tibetan Plateau eventually give rise to major Southeast Asian rivers including the Mekong and Yangtze, some empty into saline lakes such as Lake Ayakum. This detailed photograph highlights two river deltas (upper left and lower right) formed along the southwestern shoreline of the lake. When sediments build up to the point that a river can no longer flow over them, it will jump to a new channel position and begin the process anew. Scientists have noted that, over geologic time, the channels tend to sweep back and forth ? similar to the motion of an automobile windshield wiper ? to form the typical semi-circular or fan shape of the delta. Gray to tan surfaces of both deltas indicate prior positions of their respective river channels; the uniform coloration and smooth texture suggest that they are relatively old and are now inactive. In contrast, the younger and currently active delta surfaces can be recognized by reddish-brown sediment and clearly visible river channels. Lateral channel migration is particularly evident in the approximately eight-kilometer-wide active delta area at upper left. The reddish coloration of the actively depositing sediment may indicate a change from the sources that formed the older parts of the deltas (or indicate weathering and soil formation on the older deposits), or an episodic input of dust or other material to the river catchments.
Delta II JPSS-1 Solid Rocket Motor (SRM) Hoist and Mate
2016-07-19
At Vandenberg Air Force Base in California, a solid rocket motor is attached to a United Launch Alliance Delta II rocket at Space Launch Complex 2. Preparations are continuing for launch of the Joint Polar Satellite System (JPSS-1) spacecraft on March 27, 2017. JPSS-1 is part of the next-generation environmental satellite system, a collaborative program between the National Oceanic and Atmospheric Administration (NOAA) and NASA.
Delta II JPSS-1 Spacecraft Arrival
2017-09-01
Technicians at Vandenberg Air Force Base in California inspect the shipping container for the Joint Polar Satellite System-1, or JPSS-1, as it arrives at the Astrotech Processing Facility. JPSS is the first in a series four next-generation environmental satellites in a collaborative program between the National Oceanic and Atmospheric Administration (NOAA) and NASA. The satellite is scheduled to liftoff Nov. 10, 2017 atop a United Launch Alliance Delta II rocket.
Delta II JPSS-1 Spacecraft Shipment to VAFB to Ball Aerospace Fa
2017-08-31
The Joint Polar Satellite System-1, or JPSS-1, arrives at the Astrotech Processing Facility at Vandenberg Air Force Base in California. JPSS is the first in a series four next-generation environmental satellites in a collaborative program between the National Oceanic and Atmospheric Administration (NOAA) and NASA. The satellite is scheduled to liftoff Nov. 10, 2017 atop a United Launch Alliance Delta II rocket.
2003-07-22
KENNEDY SPACE CENTER, FLA. - A solid rocket booster (SRB) is lifted to vertical on Launch Complex 17-B, Cape Canaveral Air Force Station. The SRB will be attached to the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF). The Delta II Heavy features nine 46-inch-diameter, stretched SRBs. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
Geometry, Heat Equation and Path Integrals on the Poincaré Upper Half-Plane
NASA Astrophysics Data System (ADS)
Kubo, R.
1988-01-01
Geometry, heat equation and Feynman's path integrals are studied on the Poincaré upper half-plane. The fundamental solution to the heat equation partial f/partial t = Delta_{H} f is expressed in terms of a path integral defined on the upper half-plane. It is shown that Kac's statement that Feynman's path integral satisfies the Schrödinger equation is also valid for our case.
NASA Astrophysics Data System (ADS)
Sebesvari, Z.; Renaud, F. G.
2014-12-01
The Mekong Delta (Vietnam) is highly vulnerable to the many impacts of global environmental change as well as to the accelerating anthropogenic changes in the catchment and in the delta itself. Today the delta is an agricultural landscape controlled by engineering structures such as channels, dykes, embankments, and sluice gates. These structures have been constructed gradually over the last 200 years mainly for irrigation and flood control in the upper part of the delta and to control saline intrusion in the coastal areas. Recent changes in the hydrology mainly driven by upstream hydropower development on the mainstream and the tributaries of the Mekong will likely have far reaching impacts on the delta´s social-ecological systems through changes in e.g. sedimentation processes, nutrient transport as well as the health of aquatic ecosystems. Further threats to the delta include sea level rise and an increase in seasonal rainfall variability leading to an increase in flood variability. These changes affect the lives of millions of low-income inhabitants who depend on the ecosystem services provided by the Mekong for their livelihoods and sustenance. Since the changes in ecosystem service provision are occurring relatively fast while the resource dependency of the delta population is very high, adaptation becomes a challenge. An assessment of livelihood dependencies on ecosystem services requires an understanding of ecosystem services affected by different drivers of change, as well as of the types of livelihoods likely to be jeopardized as a result of these changes. We will present main ecosystem services supporting specific livelihoods, discuss how they are threatened, and analyse the merits of potential solutions. Options based solely on grey infrastructure might be problematic on the long term while an integration of ecosystem based solution such as a (re)adaptation of agricultural production systems to floods in the upper delta might be a more sustainable option. As the importance of policy interventions was demonstrated for the region, we argue that adaptation to climate change needs to be facilitated by policies embedded in a more flexible and adaptive agricultural development plan for the delta also considering no regret ecosystem based solutions with additional benefits for livelihoods.
Kiguchi, Yuri; Aono, Yuri; Watanabe, Yuriko; Yamamoto-Nemoto, Seiko; Shimizu, Kunihiko; Shimizu, Takehiko; Kosuge, Yasuhiro; Waddington, John L; Ishige, Kumiko; Ito, Yoshihisa; Saigusa, Tadashi
2016-10-15
Cholinergic neurons in the nucleus accumbens express delta- and mu-opioid receptors that are thought to inhibit neural activity. Delta- and mu-opioid receptors are divided into delta1- and delta2-opioid receptors and mu1- and mu2-opioid receptors, respectively. We analysed the roles of delta- and mu-opioid receptor subtypes in regulating accumbal acetylcholine efflux of freely moving rats using in vivo microdialysis. Other than naloxonazine, given intraperitoneally, delta- and mu-opioid receptor ligands were administered intracerebrally through the dialysis probe. Doses of these compounds indicate total amount (mol) over an infusion time of 30-60min. To monitor basal acetylcholine, a low concentration of physostigmine (50nM) was added to the perfusate. The delta1-opioid receptor agonist DPDPE (3 and 300pmol) and delta2-opioid receptor agonist deltorphin II (3 and 30pmol) decreased accumbal acetylcholine in a dose-related manner. DPDPE (300pmol)- and deltorphin II (3pmol)-induced reductions in acetylcholine were each inhibited by the delta1-opioid receptor antagonist BNTX (0.3pmol) and delta2-opioid receptor antagonist naltriben (15pmol), respectively. The mu-opioid receptor agonists endomorphin-1 and endomorphin-2 (6 and 30nmol) decreased acetylcholine in a dose-related manner. Endomorphin-1- and endomorphin-2 (30nmol)-induced reductions in acetylcholine were prevented by the mu-opioid receptor antagonist CTOP (3nmol). The mu1-opioid receptor antagonist naloxonazine (15mg/kg ip), which inhibits endomorphin-1 (15nmol)-induced accumbal dopamine efflux, did not alter endomorphin-1- or endomorphin-2 (30nmol)-induced reductions in acetylcholine efflux. This study provides in vivo evidence for delta1-, delta2- and mu2-opioid receptors, but not mu1-opioid receptors, that inhibit accumbal cholinergic neural activity. Copyright © 2016 Elsevier B.V. All rights reserved.
Sr isotopic variations in Upper Proterozoic carbonates from Svalbard and East Greenland.
Derry, L A; Keto, L S; Jacobsen, S B; Knoll, A H; Swett, K
1989-01-01
We report initial 87Sr/86Sr values from an Upper Proterozoic carbonate succession from Svalbard and East Greenland. This succession, now tectonically separated into three sequences, is thick, relatively continuous, and well preserved. The relative ages of the samples from within the basin are well constrained by litho-, bio-, and chemostratigraphic techniques. The data from this study and related data from the literature are used to construct a curve of 87Sr/86Sr for Upper Proterozoic seawater. The new data reported in this study substantially improve the isotopic record of Sr in seawater for the period between 650 and 800 Ma. The data indicate that delta 87Sr values of seawater were variable but low (delta 87Sr approximately -500 to -250) between 900 and 650 Ma, and rose rapidly to approximately +30 by 600 Ma. The range of variation of delta 87Sr in seawater during the Riphean-Vendian exceeds the entire range of delta 87Sr in seawater during the Phanerozoic. While variation in the average isotopic composition of Sr delivered to the oceans by rivers can account for some of the observed range, changes in the ratio of submarine hydrothermal flux to river water (continental) flux are responsible for the large variation in seawater Sr isotopic composition. Changes in the continental flux of Sr to the oceans can be related to tectonic factors. Large changes in the hydrothermal flux to river water flux ratio indicated by the data could have significant consequences for the chemistry of the ocean-atmosphere system.
Delta II JPSS-1 Solid Rocket Motor (SRM) Hoist and Mate
2016-07-19
At Vandenberg Air Force Base in California, a solid rocket motor is lifted at Space Launch Complex 2 to be attached to a United Launch Alliance Delta II rocket. Preparations are continuing for launch of the Joint Polar Satellite System (JPSS-1) spacecraft on March 27, 2017. JPSS-1 is part of the next-generation environmental satellite system, a collaborative program between the National Oceanic and Atmospheric Administration (NOAA) and NASA.
Delta II JPSS-1 Solid Rocket Motor (SRM) Hoist and Mate
2016-07-19
At Vandenberg Air Force Base in California, technicians inspect a solid rocket motor at Space Launch Complex 2 as it is attached to a United Launch Alliance Delta II rocket. Preparations are continuing for launch of the Joint Polar Satellite System (JPSS-1) spacecraft on March 27, 2017. JPSS-1 is part of the next-generation environmental satellite system, a collaborative program between the National Oceanic and Atmospheric Administration (NOAA) and NASA.
Delta II JPSS-1 Spacecraft Arrival
2017-09-01
A technician at Vandenberg Air Force Base in California inspects the shipping container for the Joint Polar Satellite System-1, or JPSS-1, as it arrives at the Astrotech Processing Facility. JPSS is the first in a series four next-generation environmental satellites in a collaborative program between the National Oceanic and Atmospheric Administration (NOAA) and NASA. The satellite is scheduled to liftoff Nov. 10, 2017 atop a United Launch Alliance Delta II rocket.
2009-05-05
VANDENBERG AIR FORCE BASE, Calif. -- A United Launch Alliance Delta II rocket, on behalf of the NASA Launch Services Program, is poised on its Space Launch Complex-2 launch pad at Vandenberg AFB, Calif., ready for launch. The Delta II will carry the Missile Defense Agency's Space Tracking and Surveillance System (STSS) Advanced Technology Risk Reduction (ATRR) payload into orbit. The launch is scheduled for 1:24 p.m. PDT. Photo by Carleton Bailie, United Launch Alliance.
Delta II JPSS-1 Spacecraft Shipment to VAFB to Ball Aerospace Fa
2017-08-31
Inside the Astrotech Processing Facility at Vandenberg Air Force Base in California, technicians and engineers remove protective wrapping from the Joint Polar Satellite System-1, or JPSS-1. JPSS is the first in a series four next-generation environmental satellites in a collaborative program between the National Oceanic and Atmospheric Administration (NOAA) and NASA. The satellite is scheduled to liftoff Nov. 10, 2017 atop a United Launch Alliance Delta II rocket.
Delta II JPSS-1 Final Fueling Configuration
2017-09-25
Equipment is set up for the processing of NOAA's Joint Polar Satellite System-1, or JPSS-1, inside the Astrotech Processing Facility at Vandenberg Air Force Base in California. The spacecraft is being prepared for its upcoming liftoff aboard a United Launch Alliance Delta II rocket from Vandenberg's Space Launch Complex-2W. JPSS-1 is the first in a series four next-generation environmental satellites in a collaborative program between NOAA and NASA.
2006-08-01
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B, the second stage segment is lifted away from the Delta II rocket below. At the Boeing plant in Alabama, a leak was observed in the second-stage oxidizer tank for another Delta II that had been scheduled to launch in November; therefore, all identical tanks scheduled for launch in the near future are being checked. The second stage for the Delta II that will launch STEREO cannot be effectively tested while atop the first stage at Pad 17-B. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. STEREO is expected to lift off in late August 2006. Photo credit: NASA/Jim Grossmann
2008-06-12
VANDENBERG AIR FORCE BASE, Calif. – The Ocean Surface Topography Mission, or OSTM/Jason-2, spacecraft is getting final checkouts after mating to the Delta II rocket on the Space Launch Complex 2 at Vandenberg Air Force Base in California. The launch of the OSTM/Jason 2 aboard the Delta II rocket is scheduled for June 20. The launch window extends from 12:46 a.m. to 12:55 a.m. PDT. The satellite will be placed in an 830-mile-high orbit at an inclination of 66 degrees after separating from the Delta II 55 minutes after liftoff. The five primary science instruments of the Ocean Surface Topography Mission aboard the Jason 2 spacecraft are dedicated to measuring ocean surface height. These measurements will be used to evaluate and forecast climate changes and improve weather forecasting. The results also are expected to help forecasters better predict hurricane intensity.
OCO-2 - Delta II Install 2nd Stage Nozzle
2014-02-26
VANDENBERG AIR FORCE BASE, Calif. – In the Horizontal Processing Facility at Space Launch Complex 2 on Vandenberg Air Force Base in California, the engine bell is installed around the second-stage nozzle of the Delta II rocket for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2. OCO-2 is scheduled to launch aboard a United Launch Alliance Delta II rocket from Space Launch Complex 2 in July. The rocket's second stage will insert OCO-2 into a polar Earth orbit. OCO-2 will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2006-08-01
KENNEDY SPACE CENTER, FLA. - On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, the second stage segment of the Delta II rocket is lowered from the mobile service tower. At the Boeing plant in Alabama, a leak was observed in the second-stage oxidizer tank for another Delta II that had been scheduled to launch in November; therefore, all identical tanks scheduled for launch in the near future are being checked. The second stage for the Delta II that will launch STEREO cannot be effectively tested while atop the first stage at Pad 17-B. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. STEREO is expected to lift off in late August 2006. Photo credit: NASA/Jim Grossmann
2006-08-01
KENNEDY SPACE CENTER, FLA. - On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, workers remove the protective covers from the engine nozzle on the second stage segment removed from the Delta II rocket. At the Boeing plant in Alabama, a leak was observed in the second-stage oxidizer tank for another Delta II that had been scheduled to launch in November; therefore, all identical tanks scheduled for launch in the near future are being checked. The second stage for the Delta II that will launch STEREO cannot be effectively tested while atop the first stage at Pad 17-B. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. STEREO is expected to lift off in late August 2006. Photo credit: NASA/Jim Grossmann
2006-08-01
KENNEDY SPACE CENTER, FLA. - On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, the second stage segment of the Delta II rocket is lowered from the mobile service tower. At the Boeing plant in Alabama, a leak was observed in the second-stage oxidizer tank for another Delta II that had been scheduled to launch in November; therefore, all identical tanks scheduled for launch in the near future are being checked. The second stage for the Delta II that will launch STEREO cannot be effectively tested while atop the first stage at Pad 17-B. STEREO stands for Solar Terrestrial Relations Observatory and comprises two spacecraft. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. STEREO is expected to lift off in late August 2006. Photo credit: NASA/Jim Grossmann
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. -- On Space Launch Complex 2 at Vandenberg Air Force Base in California, the second solid rocket motor, or SRM, is moved into place alongside the Delta II first stage. The Delta II is the launch vehicle for the OSTM/Jason-2 spacecraft. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Dan Liberotti
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. -- The first solid rocket motor arrives on Space Launch Complex 2 at Vandenberg Air Force Base in California. It will be attached to the Delta II first stage inside the mobile service tower. The Delta II is the launch vehicle for the OSTM/Jason-2 spacecraft. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Dan Liberotti
2008-04-25
VANDENBERG AIR FORCE BASE, Calif. -- On Space Launch Complex 2 at Vandenberg Air Force Base in California, the mobile service tower with the Delta II first stage moves closer to the umbilical tower/launcher at right. The Delta II is the launch vehicle for the OSTM/Jason-2 spacecraft. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Dan Liberotti
2008-04-25
VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base in California, the Delta II first stage is ready to be lifted into the mobile service tower on Space Launch Complex 2. The Delta II is the launch vehicle for the OSTM/Jason-2 spacecraft. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Dan Liberotti
The SRBs for the Delta II rocket carrying the Mars Polar Lander arrive on Pad 17B, CCAS
NASA Technical Reports Server (NTRS)
1998-01-01
On Pad 17B, Cape Canaveral Air Station, a solid rocket booster is raised to a vertical position for mating with the Delta II rocket carrying the Mars Polar Lander. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar- powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998.
Mars Polar Lander is mated with Boeing Delta II rocket
NASA Technical Reports Server (NTRS)
1998-01-01
At Launch Complex 17B, Cape Canaveral Air Station, workers get ready to remove the protective wrapping on the Mars Polar Lander to be launched aboard a Boeing Delta II rocket on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars Surveyor'98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.
Mars Polar Lander is mated with Boeing Delta II rocket
NASA Technical Reports Server (NTRS)
1998-01-01
Inside the gantry at Launch Complex 17B, Cape Canaveral Air Station, the Mars Polar Lander spacecraft is lowered to mate it with the Boeing Delta II rocket that will launch it on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars Surveyor'98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.
The SRBs for the Delta II rocket carrying the Mars Polar Lander arrive on Pad 17B, CCAS
NASA Technical Reports Server (NTRS)
1998-01-01
On Pad 17B, Cape Canaveral Air Station, a solid rocket booster waits for mating with the Delta II rocket (in background) carrying the Mars Polar Lander. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar- powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998.
The SRBs for the Delta II rocket carrying the Mars Polar Lander arrive on Pad 17B, CCAS
NASA Technical Reports Server (NTRS)
1998-01-01
On Pad 17B, Cape Canaveral Air Station, workers monitor the solid rocket booster before its being lifted to mate with the Delta II rocket carrying the Mars Polar Lander. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998.
Mars Polar Lander is mated with Boeing Delta II rocket
NASA Technical Reports Server (NTRS)
1998-01-01
Workers mate the Mars Polar Lander (top) to the Boeing Delta II rocket at Launch Complex 17B, Cape Canaveral Air Station. The rocket is scheduled to launch Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern- most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars Surveyor '98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.
The SRBs for the Delta II rocket carrying the Mars Polar Lander arrive on Pad 17B, CCAS
NASA Technical Reports Server (NTRS)
1998-01-01
On Pad 17B, Cape Canaveral Air Station, a solid rocket booster hangs in place between two other rocket boosters waiting to be mated with the Delta II rocket carrying the Mars Polar Lander. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998.
The SRBs for the Delta II rocket carrying the Mars Polar Lander arrive on Pad 17B, CCAS
NASA Technical Reports Server (NTRS)
1998-01-01
On Pad 17B, Cape Canaveral Air Station, the gantry holding the solid rocket boosters is moved into place next to the Delta II rocket carrying the Mars Polar Lander. The rocket will be used to launch the Mars Polar Lander on Jan. 3, 1999. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars '98 missions. The first is the Mars Climate Orbiter, to be launched aboard a Delta II rocket from Launch Complex 17A in December 1998.
Delta II ICESat-2 Booster Transport
2018-04-17
At Vandenberg Air Force Base in California, on Tuesday, April 17, 2018, a United Launch Alliance (ULA) Delta II booster is transported to Space Launch Complex-2 where it will launch NASA's Ice, Cloud and land Elevation Satellite-2, or ICESat-2, satellite. This will be the last flight for the venerable Delta II rocket. ICESat-2, which is being built and tested by Orbital ATK in Gilbert, Arizona, will carry a single instrument called the Advanced Topographic Laser Altimeter System, or ATLAS. The ATLAS instrument is being built and tested at NASA’s Goddard Space Flight Center in Greenbelt Maryland. Once in orbit, the satellite is designed to measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. ICESat-2 will help scientists investigate why, and how much, Earth’s frozen and icy areas, called the cryosphere, are changing.
Delta II ICESat-2 Booster Transport
2018-04-17
At NASA's Building 836, the Spacecraft Labs Telemetry Station at Vandenberg Air Force Base in California, on Tuesday, April 17, 2018, a United Launch Alliance (ULA) Delta II booster is transported to Space Launch Complex-2 where it will launch NASA's Ice, Cloud and land Elevation Satellite-2, or ICESat-2, satellite. This will be the last flight for the venerable Delta II rocket. ICESat-2, which is being built and tested by Orbital ATK in Gilbert, Arizona, will carry a single instrument called the Advanced Topographic Laser Altimeter System, or ATLAS. The ATLAS instrument is being built and tested at NASA’s Goddard Space Flight Center in Greenbelt Maryland. Once in orbit, the satellite is designed to measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. ICESat-2 will help scientists investigate why, and how much, Earth’s frozen and icy areas, called the cryosphere, are changing.
Delta II ICESat-2 Booster Transport
2018-04-17
At Vandenberg Air Force Base in California, on Tuesday, April 17, 2018, a United Launch Alliance (ULA) Delta II booster arrives at Space Launch Complex-2 where it will launch NASA's Ice, Cloud and land Elevation Satellite-2, or ICESat-2, satellite. This will be the last flight for the venerable Delta II rocket. ICESat-2, which is being built and tested by Orbital ATK in Gilbert, Arizona, will carry a single instrument called the Advanced Topographic Laser Altimeter System, or ATLAS. The ATLAS instrument is being built and tested at NASA’s Goddard Space Flight Center in Greenbelt Maryland. Once in orbit, the satellite is designed to measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. ICESat-2 will help scientists investigate why, and how much, Earth’s frozen and icy areas, called the cryosphere, are changing.
Delta II ICESat-2 Booster Offload onto Transporter
2018-04-16
At NASA's Building 836, the Spacecraft Labs Telemetry Station at Vandenberg Air Force Base in California, a United Launch Alliance Delta II booster is removed from its shipping container. After it is offloaded, preliminary checkouts and preflight processing will begin leading to launch of the agency's Ice, Cloud and land Elevation Satellite-2, or ICESat-2. Liftoff from Space Launch Complex-2 at Vandenberg is scheduled for Sept. 12, 2018, and will be the last for the venerable Delta II rocket. Once in orbit, the satellite is designed to measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. The satellite will carry a single instrument, the Advanced Topographic Laser Altimeter System. ICESat-2 will help scientists investigate why, and how much, Earth's frozen and icy areas are changing. These area make up Earth's the cryosphere.
ElSohly, M A; Harland, E C; Benigni, D A; Waller, C W
1984-06-01
Thirty-two different cannabinoids were tested for their ability to reduce intraocular pressure (IOP) in the rabbit. These included many of delta 9- and delta 8-THC derivatives and metabolites along with other natural and synthetic cannabinoids. In addition, some non-cannabinoid constituents of Cannabis were screened using the same model. All compounds were administered intravenously, while only a few were tested topically in mineral oil. Water soluble derivatives of delta 9- and delta 8-THC were prepared and tested topically in aqueous solution. The data revealed that certain derivatives of delta 9-and delta 8-THC were more active in lowering IOP than the parent cannabinoids. In addition, compounds other than delta 9- and delta 8-THC and their derivatives were shown to have activity.
NASA Astrophysics Data System (ADS)
Yamamura, Daigo
The Western Interior Basin of the North America preserves one of the best sedimentary and paleontological records of the Cretaceous in the world. The Upper Cretaceous Kaiparowits Formation is a rapidly deposited fluvial sequence and preserves one of the most complete terrestrial fossil record of the North America. Such a unique deposit provides an opportunity to investigate the interaction between the physical environment and ecology. In an effort to decipher such interaction, stable isotope composition of cements in sedimentary rocks, concretions and vertebrate fossils were analyzed. Despite the difference in facies and sedimentary architecture, the isotope composition does not change significantly at 110 m from the base of the formation. Among the well-preserved cement samples, stable isotope composition indicates a significant hydrologic change within the informal Middle unit; a 6.37‰ depletion in delta13C and 3.30‰ enrichment in delta 18O occurs at 300 m above the base of the formation. The isotope values indicate that the sandstone cements below 300 m were precipitated in a mixing zone between marine and terrestrial groundwater, whereas the cements in upper units were precipitated in a terrestrial groundwater. Despite the difference in physical appearance (i.e. color and shape), the isotopic compositions of cements in concretions are similar to well-cemented sandstone bodies in similar stratigraphic positions. Isotope compositions of the host rock are similar to that of mudrock and weathered sandstone, suggesting the origin of cementing fluids for the sandstone and concretions were the same indicating that: 1) the concretions were formed in shallow groundwater and not related to the groundwater migration, or 2) all cements in upper Kaiparowits Formation are precipitated or altered during later stage groundwater migration. Average delta18Oc from each taxon show the same trend as the delta18Op stratigraphic change, suggesting delta18Oc is still useful as a paleoclimatic proxy. Compared to other Campanian formations, fossil delta18O p are depleted for their paleolatitude, suggesting the Kaiparowits Plateau had higher input from high-elevation runoff, consistent with other paleoclimatic studies. Estimated delta18Ow ranged between vadose influenced dry season values of -8.88‰ to high elevation runoff values of -13.76‰ suggesting dynamic hydrologic interactions.
61. Upper panel in cornerpower panel lcpa lower panel in ...
61. Upper panel in corner-power panel lcpa lower panel in corner-oxygen regeneration unit, at right-air conditioner control panel, on floor-bio-pack 45 for emergency breathing, looking northwest - Ellsworth Air Force Base, Delta Flight, Launch Control Facility, County Road CS23A, North of Exit 127, Interior, Jackson County, SD
Path Integration on the Upper Half-Plane
NASA Astrophysics Data System (ADS)
Kubo, R.
1987-10-01
Feynman's path integral is considered on the Poincaré upper half-plane. It is shown that the fundermental solution to the heat equation partial f/partial t=Delta_{H}f can be expressed in terms of a path integral. A simple relation between the path integral and the Selberg trace formula is discussed briefly.
Bimetallo-radical carbon-hydrogen bond activation of methanol and methane.
Cui, Weihong; Zhang, X Peter; Wayland, Bradford B
2003-04-30
Carbon-hydrogen bond cleavage reactions of CH3OH and CH4 by a dirhodium(II) diporphyrin complex with a m-xylyl tether (.Rh(m-xylyl)Rh.(1)) are reported. Kinetic-mechanistic studies show that the substrate reactions are bimolecular and occur through the use of two Rh(II) centers in the molecular unit of 1. Second-order rate constants (T = 296 K) for the reactions of 1 with methanol (k(CH3OH) = 1.45 x 10-2 M-1 s-1) and methane (k(CH4) = 0.105 M-1 s-1) show a clear kinetic preference for the methane activation process. The methanol and methane reactions with 1 have large kinetic isotope effects (k(CH3OH)/k(CD3OD) = 9.7 +/- 0.8, k(CH4)/k(CD4) = 10.8 +/- 1.0, T = 296 K), consistent with a rate-limiting step of C-H bond homolysis through a linear transition state. Activation parameters for reaction of 1 with methanol (DeltaH = 15.6 +/- 1.0 kcal mol-1; DeltaS = -14 +/- 5 cal K-1 mol-1) and methane (DeltaH = 9.8 +/- 0.5 kcal mol-1; DeltaS = -30 +/- 3 cal K-1 mol-1) are reported.
The Delta II with ACE aboard is prepared for liftoff from Pad 17A, CCAS
NASA Technical Reports Server (NTRS)
1997-01-01
The Boeing Delta II expendable launch vehicle carrying the Advanced Composition Explorer (ACE) undergoes final preparations for liftoff in the predawn hours of Aug. 25, 1997, at Launch Complex 17A, Cape Canaveral Air Station. This is the second Delta launch under the Boeing name and the first from Cape Canaveral. The first launch attempt on Aug. 24 was scrubbed by Air Force range safety personnel because two commercial fishing vessels were within the Delta's launch danger area. ACE with its combination of nine sensors and instruments will investigate the origin and evolution of solar phenomenon, the formation of solar corona, solar flares and acceleration of the solar wind. ACE was built for NASA by the Johns Hopkins Applied Physics Laboratory and is managed by the Explorer Project Office at NASA's Goddard Space Flight Center. The lead scientific institution is the California Institute of Technology.
1998-09-29
KENNEDY SPACE CENTER, FLA. -- Workers in the Payload Hazardous Servicing Facility get ready to attach a second solar panel to Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century. Onboard experiments include an ion propulsion engine and software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta II rocket from Launch Pad 17A, Cape Canaveral Air Station, in October. Delta II rockets are medium capacity expendable launch vehicles derived from the Delta family of rockets built and launched since 1960. Since then there have been more than 245 Delta launches
Fujii, Roger; Ranalli, Anthony J.; Aiken, George R.; Bergamaschi, Brian A.
1998-01-01
Water exported from the Sacramento-San Joaquin River delta (Delta) is an important drinking-water source for more than 20 million people in California. At times, this water contains elevated concentrations of dissolved organic carbon and bromide, and exceeds the U.S. Environmental Protection Agency's maximum contaminant level for trihalomethanes of 0.100 milligrams per liter if chlorinated for drinking water. About 20 to 50 percent of the trihalomethane precursors to Delta waters originates from drainage water from peat soils on Delta islands. This report elucidates some of the factors and processes controlling and affecting the concentration and quality of dissolved organic carbon released from peat soils and relates the propensity of dissolved organic carbon to form trihalomethanes to its chemical composition.Soil water was sampled from near-surface, oxidized, well-decomposed peat soil (upper soil zone) and deeper, reduced, fibrous peat soil (lower soil zone) from one agricultural field in the west central Delta over 1 year. Concentrations of dissolved organic carbon in the upper soil zone were highly variable, with median concentrations ranging from 46.4 to 83.2 milligrams per liter. Concentrations of dissolved organic carbon in samples from the lower soil zone were much less variable and generally slightly higher than samples from the upper soil zone, with median concentrations ranging from 49.3 to 82.3 milligrams per liter. The dissolved organic carbon from the lower soil zone had significantly higher aromaticity (as measured by specific ultraviolet absorbance) and contained significantly greater amounts of aromatic humic substances (as measured by XAD resin fractionation and carbon-13 nuclear magnetic resonance analysis of XAD isolates) than the dissolved organic carbon from the upper soil zone. These results support the conclusion that more aromatic forms of dissolved organic carbon are produced under anaerobic conditions compared to aerobic conditions. Dissolved organic carbon concentration, trihalomethane formation potential, and ultraviolet absorbance were all highly correlated, showing that trihalomethane precursors increased with increasing dissolved organic carbon and ultraviolet absorbance for whole water samples. Contrary to the generally accepted conceptual model for trihalomethane formation that assumes that aromatic forms of carbon are primary precursors to trihalomethanes, results from this study indicate that dissolved organic carbon aromaticity appears unrelated to trihalomethane formation on a carbon-normalized basis. Thus, dissolved organic carbon aromaticity alone cannot fully explain or predict trihalomethane precursor content, and further investigation of aromatic and nonaromatic forms of carbon will be needed to better identify trihalomethane precursors.
Eigenvalues of the Laplacian of a graph
NASA Technical Reports Server (NTRS)
Anderson, W. N., Jr.; Morley, T. D.
1971-01-01
Let G be a finite undirected graph with no loops or multiple edges. The Laplacian matrix of G, Delta(G), is defined by Delta sub ii = degree of vertex i and Delta sub ij = -1 if there is an edge between vertex i and vertex j. The structure of the graph G is related to the eigenvalues of Delta(G); in particular, it is proved that all the eigenvalues of Delta(G) are nonnegative, less than or equal to the number of vertices, and less than or equal to twice the maximum vertex degree. Precise conditions for equality are given.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Ted Hartka, MESSENGER lead mechanical engineer, with The Johns Hopkins University Applied Physics Laboratory (APL), talks about the MESSENGER spacecrafts mission to Mercury for the media at a special presentation at Astrotech Space Operations in Titusville, Fla. The spacecraft, mated to the Delta II third stage Payload Assist Module, is in the background. MESSENGER is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket from Pad 17-B, Cape Canaveral Air Force Station, Fla.
2004-07-14
KENNEDY SPACE CENTER, FLA. - Ted Hartka, MESSENGER lead mechanical engineer, with The Johns Hopkins University Applied Physics Laboratory (APL), talks about the MESSENGER spacecraft’s mission to Mercury for the media at a special presentation at Astrotech Space Operations in Titusville, Fla. The spacecraft, mated to the Delta II third stage Payload Assist Module, is in the background. MESSENGER is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket from Pad 17-B, Cape Canaveral Air Force Station, Fla.
Delta II JPSS-1 Spacecraft Shipment to VAFB to Ball Aerospace Fa
2017-08-31
Still packed inside its shipping container, the Joint Polar Satellite System-1, or JPSS-1, has just arrived at the Astrotech Processing Facility at Vandenberg Air Force Base in California. JPSS is the first in a series four next-generation environmental satellites in a collaborative program between the National Oceanic and Atmospheric Administration (NOAA) and NASA. The satellite is scheduled to liftoff Nov. 10, 2017 atop a United Launch Alliance Delta II rocket.
Delta II JPSS-1 Final Fueling Configuration
2017-09-25
NOAA's Joint Polar Satellite System-1, or JPSS-1, remains wrapped in a protective covering after removal from its shipping container at the Astrotech Processing Facility at Vandenberg Air Force Base in California. The spacecraft is being prepared for its upcoming liftoff aboard a United Launch Alliance Delta II rocket from Vandenberg's Space Launch Complex-2W. JPSS-1 is the first in a series four next-generation environmental satellites in a collaborative program between NOAA and NASA.
The Advanced Composition Explorer is placed atop its Delta II launcher at Pad 17A, CCAS
NASA Technical Reports Server (NTRS)
1997-01-01
The Advanced Composition Explorer (ACE) spacecraft is placed atop its launch vehicle at Launch Complex 17A. Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 24, ACE will study low-energy particles of solar origin and high-energy galactic particles. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA.
Delta II JPSS-1 Spacecraft Arrival and Ofload
2017-09-01
The Joint Polar Satellite System-1, or JPSS-1, arrives at the Astrotech Processing Facility at Vandenberg Air Force Base in California. Technicians and engineers remove the the spacecraft from it shipping container. JPSS is the first in a series four next-generation environmental satellites in a collaborative program between the National Oceanic and Atmospheric Administration (NOAA) and NASA. The satellite is scheduled to liftoff later this year atop a United Launch Alliance Delta II rocket.
ERIC Educational Resources Information Center
Delta Sigma Theta Sorority, Inc., Washington, DC.
The proceedings of 34 workshops held to consider ways of solving the problems of black single mothers, held in 1984 in different cities, are collected in this report. All of the workshops were part of Delta Sigma Theta Sorority's pilot program, "Summit II: A Call to Action in Suppprt of Black Single Mothers," an effort to strengthen the…
2003-07-22
KENNEDY SPACE CENTER, FLA. - A solid rocket booster (SRB) for the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF) is lifted off its transporter on Launch Complex 17-B, Cape Canaveral Air Force Station. The SRB will be added to the launch vehicle in the background. The Delta II Heavy features nine 46-inch-diameter, stretched SRBs. SIRTF, consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2003-07-22
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy rocket (background) is framed by the solid rocket boosters (foreground) suspended in the mobile service tower. The SRBs will be added to those already attached to the rocket. The Delta II Heavy will launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
Rakhshaee, Roohan; Khosravi, Morteza; Ganji, Masoud Taghi
2006-06-30
Dead Azolla filiculoides can remove Pb(2+),Cd(2+), Ni(2+) and Zn(2+) corresponding to second-order kinetic model. The maximum adsorption capacity (Q(max)) to remove these metal ions by the alkali and CaCl(2)/MgCl(2)/NaCl (2:1:1, molar ratio) activated Azolla from 283 to 313K was 1.431-1.272, 1.173-0.990, 1.365-1.198 and 1.291-0.981mmol/g dry biomass, respectively. Q(max) to remove these heavy metals by the non-activated Azolla at the mentioned temperature range was obtained 1.131-0.977, 1.092-0.921, 1.212-0.931 and 1.103-0.923mmol/g dry biomass, respectively. In order to remove these metal ions by the activated Azolla, the enthalpy change (DeltaH) was -4.403, -4.495, -4.557 and -4.365kcal/mol and the entropy change (DeltaS) was 2.290, 1.268, 1.745 and 1.006cal/molK, respectively. While, to remove these metal ions by the non-activated Azolla, DeltaH was -3.685, -3.766, -3.967 and -3.731kcal/mol and DeltaS was 2.440, 1.265, 1.036 and 0.933cal/molK, respectively. On the other hand, the living Azolla removed these heavy metals corresponding to first-order kinetic model. It was also shown that pH, temperature and photoperiod were effective both on the rate of Azolla growth and the rate of heavy metals uptake during 10 days. It was appeared the use of Ca(NO(3))(2) increased both Azolla growth rate and the rate of heavy metals uptake while the using KNO(3) although increased Azolla growth rate but decreased the rate of heavy metals uptake.
2009-02-21
CAPE CANAVERAL, Fla. – In the mobile service tower on Launch pad 17-B at Cape Canaveral Air Force Station in Florida, the upper part of the metal transportation canister is removed from around NASA's Kepler spacecraft. The spacecraft was mated with the Delta II rocket for launch. The liftoff of Kepler is currently scheduled for 10:48 p.m. EST March 5. Kepler is designed to survey more than 100,000 stars in our galaxy to determine the number of sun-like stars that have Earth-size and larger planets, including those that lie in a star's "habitable zone," a region where liquid water, and perhaps life, could exist. If these Earth-size worlds do exist around stars like our sun, Kepler is expected to be the first to find them and the first to measure how common they are. Photo credit: NASA/Jack Pfaller
2014-03-28
VANDENBERG AIR FORCE BASE, Calif. – Work platforms are moved into place around the upper end of the United Launch Alliance Delta II rocket for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, in the environmental enclosure, or clean room, at the top of the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. Launch is scheduled for July 2014. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-03-28
VANDENBERG AIR FORCE BASE, Calif. – Workers in the environmental enclosure, or clean room, at the top of the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California steady the upper end of the United Launch Alliance Delta II rocket for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, as work platforms move into position around it. Launch is scheduled for July 2014. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-03-28
VANDENBERG AIR FORCE BASE, Calif. – Workers in the environmental enclosure, or clean room, at the top of the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California prepare to release the upper end of the United Launch Alliance Delta II rocket for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, from the lifting device. Launch is scheduled for July 2014. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-03-28
VANDENBERG AIR FORCE BASE, Calif. – The lifting device detached and moved away from the upper end of the United Launch Alliance Delta II rocket for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, in the environmental enclosure, or clean room, at the top of the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. Launch is scheduled for July 2014. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2008-03-27
CAPE CANAVERAL, Fla. --- Under a waning moon (upper right) at Cape Canaveral Air Force Station, the Delta II rocket to launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft is poised to receive the first of the solid rocket boosters. A series of nine strap-on solid rocket motors will help power the first stage. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Dimitri Gerondidakis
2007-06-13
KENNEDY SPACE CENTER, FLA. -- Technicians at Astrotech are preparing the Dawn spacecraft for spin-balance testing. After the test, Dawn will then be mated to the upper stage booster, installed into a spacecraft transportation canister for the trip to Cape Canaveral Air Force Station and mated to the Delta II rocket at Launch Pad 17-B. The Dawn spacecraft will employ ion propulsion to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail these largest protoplanets that have remained intact since their formations. Ceres and Vesta reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/Jack Pfaller
2007-06-13
KENNEDY SPACE CENTER, FLA. -- At Astrotech, the Dawn spacecraft is ready for spin-balance testing. After the test, Dawn will then be mated to the upper stage booster, installed into a spacecraft transportation canister for the trip to Cape Canaveral Air Force Station and mated to the Delta II rocket at Launch Pad 17-B. The Dawn spacecraft will employ ion propulsion to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail these largest protoplanets that have remained intact since their formations. Ceres and Vesta reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/Jack Pfaller
2007-06-13
KENNEDY SPACE CENTER, FLA. -- Technicians at Astrotech check the Dawn spacecraft before spin-balance testing. After the test, Dawn will then be mated to the upper stage booster, installed into a spacecraft transportation canister for the trip to Cape Canaveral Air Force Station and mated to the Delta II rocket at Launch Pad 17-B.The Dawn spacecraft will employ ion propulsion to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail these largest protoplanets that have remained intact since their formations. Ceres and Vesta reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/Jack Pfaller
2007-06-13
KENNEDY SPACE CENTER, FLA. -- Technicians at Astrotech prepare the Dawn spacecraft for spin-balance testing. After the test, Dawn will then be mated to the upper stage booster, installed into a spacecraft transportation canister for the trip to Cape Canaveral Air Force Station and mated to the Delta II rocket at Launch Pad 17-B. The Dawn spacecraft will employ ion propulsion to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail these largest protoplanets that have remained intact since their formations. Ceres and Vesta reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/Jack Pfaller
2003-03-06
Technicians in the Payload Hazardous Servicing Facility work on components of the Mars Exploration Rovers. In the center is a lander. MER-1 and MER-2, their aeroshells and landers will undergo a full mission simulation before being integrated. After spin balance testing, each spacecraft will be mated to a solid propellant upper stage booster that will propel the spacecraft out of Earth orbit. Approximately 10 days before launch they will be transported to the launch pad for mating with their respective Boeing Delta II rockets. The rovers will serve as robotic geologists to seek answers about the evolution of Mars, particularly for a history of water. The rovers are identical to each other, but will land at different regions of Mars. Launch of the first rover is scheduled for May 30 from Cape Canaveral Air Force Station. The second will follow June 25.
2001-06-15
KENNEDY SPACE CENTER, Fla. -- In the Spacecraft Assembly and Encapsulation Facility -2, the Microwave Anisotropy Probe (MAP) is lifted for moving to the upper stage of the Boeing Delta II rocket. The rocket is scheduled to launch the MAP instrument June 30 into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. MAP will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University
Kang, Sung Koo; Kim, Dae Kyong; Damron, Derek S; Baek, Kwang Jin; Im, Mie-Jae
2002-04-26
We characterized the alpha(1B)-adrenoreceptor (alpha(1B)-AR)-mediated intracellular Ca(2+) signaling involving G alpha(h) (transglutaminase II, TGII) and phospholipase C (PLC)-delta 1 using DDT1-MF2 cell. Expression of wild-type TGII and a TGII mutant lacking transglutaminase activity resulted in significant increases in a rapid peak and a sustained level of intracellular Ca(2+) concentration ([Ca(2+)](i)) in response to activation of the alpha(1B)-AR. Expression of a TGII mutant lacking the interaction with the receptor or PLC-delta 1 substantially reduced both the peak and sustained levels of [Ca(2+)](i). Expression of TGII mutants lacking the interaction with PLC-delta 1 resulted in a reduced capacitative Ca(2+) entry. Reduced expression of PLC-delta 1 displayed a transient elevation of [Ca(2+)](i) and a reduction in capacitative Ca(2+) entry. Expression of the C2-domain of PLC-delta 1, which contains the TGII interaction site, resulted in reduction of the alpha(1B)-AR-evoked peak increase in [Ca(2+)](i), while the sustained elevation in [Ca(2+)](i) and capacitative Ca(2+) entry remained unchanged. These findings demonstrate that stimulation of PLC-delta 1 via coupling of the alpha(1B)-AR with TGII evokes both Ca(2+) release and capacitative Ca(2+) entry and that capacitative Ca(2+) entry is mediated by the interaction of TGII with PLC-delta 1.
Dispersal of larval suckers at the Williamson River Delta, Upper Klamath Lake, Oregon, 2006-09
Wood, Tamara M.; Hendrixson, Heather A.; Markle, Douglas F.; Erdman, Charles S.; Burdick, Summer M.; Ellsworth, Craig M.; Buccola, Norman L.
2012-01-01
An advection/diffusion modeling approach was used to simulate the transport of larval suckers from spawning areas in the Williamson River, through the newly restored Williamson River Delta, to Upper Klamath Lake. The density simulations spanned the years of phased restoration, from 2006/2007 prior to any levee breaching, to 2008 when the northern part of the delta was reconnected to the lake, and 2009 when levees on both sides of the delta had been breached. Model simulation results from all four years were compared to field data using rank correlation. Spearman ρ correlation coefficients were usually significant and in the range 0.30 to 0.60, providing moderately strong validation of the model. The correlation coefficients varied with fish size class in a way that suggested that the model best described the distribution of smaller fish near the Williamson River channel, and larger fish away from the channel. When Lost River and shortnose/Klamath largescale suckers were simulated independently, the correlation results suggested that the model better described the transport and dispersal of the latter species. The incorporation of night-time-only drift behavior in the Williamson River channel neither improved nor degraded correlations with field data. The model showed that advection by currents is an important factor in larval dispersal.
Mohamed, Gehad G; Omar, M M; Hindy, Ahmed M M
2005-12-01
Metal complexes of Schiff base derived from 2-thiophene carboxaldehyde and 2-aminobenzoic acid (HL) are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance and thermal analysis (TGA). The ligand dissociation as well as the metal-ligand stability constants were calculated pH metrically at 25 degrees C and ionic strength mu=0.1 (1M NaCl). The complexes are found to have the formulae [M(HL)2](X)n.yH2O (where M=Fe(III) (X=Cl, n=3, y=3), Co(II) (X=Cl, n=2, y=1.5), Ni(II) (X=Cl, n=2, y=1) and UO2(II) (X=NO3, n=2, y=0)) and [M(L)2] (where M=Cu(II) (X=Cl) and Zn(II) (X=AcO)). The molar conductance data reveal that Fe(III) and Co(II), Ni(II) and UO2(II) chelates are ionic in nature and are of the type 3:1 and 2:1 electrolytes, respectively, while Cu(II) and Zn(II) complexes are non-electrolytes. IR spectra show that HL is coordinated to the metal ions in a terdentate manner with ONS donor sites of the carboxylate O, azomethine N and thiophene S. From the magnetic and solid reflectance spectra, it is found that the geometrical structure of these complexes are octahedral. The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, DeltaH*, DeltaS* and DeltaG* are calculated from the DrTG curves using Coats-Redfern method. The synthesized ligands, in comparison to their metal complexes also were screened for their antibacterial activity against bacterial species, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus pyogones and Fungi (Candida). The activity data show that the metal complexes to be more potent/antibacterial than the parent Schiff base ligand against one or more bacterial species.
NASA Astrophysics Data System (ADS)
Kebede, Abiy S.; Nicholls, Robert J.; Allan, Andrew; Arto, Inaki; Cazcarro, Ignacio; Fernandes, Jose A.; Hill, Chris T.; Hutton, Craig W.; Kay, Susan; Lawn, Jon; Lazar, Attila N.; Whitehead, Paul W.
2017-04-01
Coastal deltas are home for over 500 million people globally, and they have been identified as one of the most vulnerable coastal environments during the 21st century. They are susceptible to multiple climatic (e.g., sea-level rise, storm surges, change in temperature and precipitation) and socio-economic (e.g., human-induced subsidence, population and urbanisation changes, GDP growth) drivers of change. These drivers also operate at multiple scales, ranging from local to global and short- to long-term. This highlights the complex challenges deltas face in terms of both their long-term sustainability as well as the well-being of their residents and the health of ecosystems that support the livelihood of large (often very poor) population under uncertain changing conditions. A holistic understanding of these challenges and the potential impacts of future climate and socio-economic changes is central for devising robust adaptation policies. Scenario analysis has long been identified as a strategic management tool to explore future climate change and its impacts for supporting robust decision-making under uncertainty. This work presents the overall scenario framework, methodology, and processes adopted for the development of scenarios in the DECCMA* project. DECCMA is analysing the future of three deltas in South Asia and West Africa: (i) the Ganges-Brahmaputra-Meghna (GBM) delta (Bangladesh/India), (ii) the Mahanadi delta (India), and (iii) the Volta delta (Ghana). This includes comparisons between these three deltas. Hence, the scenario framework comprises a multi-scale hybrid approach, with six levels of scenario considerations: (i) global (climate change, e.g., sea-level rise, temperature change; and socio-economic assumptions, e.g., population and urbanisation changes, GDP growth); (ii) regional catchments (e.g., river flow modelling), (iii) regional seas (e.g., fisheries modelling), (iv) regional politics (e.g., transboundary disputes), (v) national (e.g., socio-economic factors), and (vi) delta-scale (e.g., future adaptation and migration policies) scenarios. The framework includes and combines expert-based and participatory approaches and provides improved specification of the role of scenarios to analyse the future state of adaptation and migration across the three deltas. It facilitates the development of appropriate and consistent endogenous and exogenous scenario futures: (i) at the delta-scale, (ii) across all deltas, and (iii) with wider climate change, environmental change, and adaptation & migration research. Key words: Coastal deltas, sea-level rise, migration and adaptation, multi-scale scenarios, participatory approach *DECCMA (Deltas, Vulnerability & Climate Change: Migration & Adaptation) project is part of the Collaborative ADAPTATION Research Initiative in Africa and Asia (CARIAA), with financial support from the UK Government's Department for International Development (DFID) and the International Development Research Centre (IDRC), Canada.
77 FR 24835 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-26
... inspections must be used for that wing for that visit and for all subsequent repeat inspections. Delta stated... Company Model 767 airplanes. This AD was prompted by reports of cracking in the upper wing skin at the... in the loss of the strut-to-wing upper link load path and possible separation of a strut and engine...
Belt, Edward S.; Flores, Romeo M.; Warwick, Peter D.; Conway, Kevin M.; Johnson, Kirk R.; Waskowitz, Robert S.; Rahmani, R.A.; Flores, Romeo M.
1984-01-01
Facies analysis of the Ludlow and Tongue River Members of the Palaeocene Fort Union Formation provides an understanding of the relationship between fluviodeltaic environments and associated coal deposition in the south-western Williston Basin. The Ludlow Member consists of high-constructive delta facies that interfinger with brackish-water tongues of the Cannonball Member of the Fort Union Formation. The lower part of the Ludlow Member was deposited on a lower delta plain that consisted of interdistributary crevasse and subdelta lobes. The upper part of the Ludlow Member was deposited in meander belts of the upper delta plain. The delta plain facies of the Ludlow Member is overlain by alluvial plain facies consisting of swamp, crevasse-lobe, lacustrine, and trunk meander belt deposits of the Tongue River Member. The Ludlow delta is believed to have been fed by fluvial systems that probably flowed from the Powder River Basin to the Williston Basin undeterred by the Cedar Creek Anticline. However, the evidence indicates that the Cedar Creek Anticline was prominent enough, during early Tongue River Member deposition, to cause the obstruction of the regional fluvial system flowing from the SW, and the formation of local drainage.The Ludlow Member contains 18 coal beds in the area studied, of which the T-Cross and Yule coals are as thick as 4 m (12 ft). Abandoned delta lobes served as platforms where coals formed, which in turn, were drowned by mainly fresh water and subordinate brackish water. Repetition of deltaic sedimentation, abandonment, and occupation by swamp led to preservation of the T-Cross and Oyster coals in areas as extensive as 260 km2 (< 100 miles2).
Understanding Differences in Chemistry Climate Model Projections of Stratospheric Ozone
NASA Technical Reports Server (NTRS)
Douglass, A. R.; Strahan, S. E.; Oman, L. D.; Stolarski, R. S.
2014-01-01
Chemistry climate models (CCMs) are used to project future evolution of stratospheric ozone as concentrations of ozone-depleting substances (ODSs) decrease and greenhouse gases increase, cooling the stratosphere. CCM projections exhibit not only many common features but also a broad range of values for quantities such as year of ozone return to 1980 and global ozone level at the end of the 21st century. Multiple linear regression is applied to each of 14 CCMs to separate ozone response to ODS concentration change from that due to climate change. We show that the sensitivity of lower stratospheric ozone to chlorine change Delta Ozone/Delta inorganic chlorine is a near-linear function of partitioning of total inorganic chlorine into its reservoirs; both inorganic chlorine and its partitioning are largely controlled by lower stratospheric transport. CCMs with best performance on transport diagnostics agree with observations for chlorine reservoirs and produce similar ozone responses to chlorine change. After 2035, differences in Delta Ozone/Delta inorganic chlorine contribute little to the spread in CCM projections as the anthropogenic contribution to inorganic chlorine becomes unimportant. Differences among upper stratospheric ozone increases due to temperature decreases are explained by differences in ozone sensitivity to temperature change Delta Ozone/Delta T due to different contributions from various ozone loss processes, each with its own temperature dependence. Ozone decrease in the tropical lower stratosphere caused by a projected speedup in the Brewer-Dobson circulation may or may not be balanced by ozone increases in the middle- and high-latitude lower stratosphere and upper troposphere. This balance, or lack thereof, contributes most to the spread in late 21st century projections.
NASA Astrophysics Data System (ADS)
Aarons, A.; Twilley, R.; Bentley, S. J.
2017-12-01
Coastal deltaic floodplains are responsible for 40-50% of global coastal and marine carbon (C) burial and yet are often excluded from blue carbon literature. The Wax Lake Delta (WLD) is an unplanned Atchafalaya bayhead delta formation resulting from the dredging of the Wax Lake Outlet in 1942 to reduce downstream flooding of Morgan City. Twelve 4-5 m Vibracores were taken throughout the delta chronosequence to investigate ecological succession and C storage during the entirety of WLD's development. An oyster shell bed that can be found throughout the delta delineates the beginning of the WLD facies in 1952. As a young active delta its sediments are dominated by fine sand. However, the upper 0.4-0.7 m demonstrate a distinct transition to increased organic matter (OM) inputs, and in the upper half of this layer >90% of the C is organic. Spikes in organic matter and C content correspond to decreases in bulk density through the record. Notably, at 2.5 m depth there is a low bulk density layer corresponding to an increase in organic matter and C that is found throughout the older subaerial delta. This layer formed in 1970, a few years before WLD became subaerial in 1973 and therefore likely represents the point at which vegetation colonization began. Atomic N:P ratios, which are ecological indicators of biological influence, also demonstrate trends similar to OM and C further supporting this interpretation. With over 40 years of continuous subaerial land building, WLD provides a stark contrast to most of Louisiana's retrograding coastline and is considered a model for future sediment diversions.
Modifiable Risk Factors for Increased Arterial Stiffness in Outpatient Nephrology
Elewa, Usama; Fernandez-Fernandez, Beatriz; Alegre, Raquel; Sanchez-Niño, Maria D.; Mahillo-Fernández, Ignacio; Perez-Gomez, Maria Vanessa; El-Fishawy, Hussein; Belal, Dawlat; Ortiz, Alberto
2015-01-01
Arterial stiffness, as measured by pulse wave velocity (PWV), is an independent predictor of cardiovascular events and mortality. Arterial stiffness increases with age. However, modifiable risk factors such as smoking, BP and salt intake also impact on PWV. The finding of modifiable risk factors may lead to the identification of treatable factors, and, thus, is of interest to practicing nephrologist. We have now studied the prevalence and correlates of arterial stiffness, assessed by PWV, in 191 patients from nephrology outpatient clinics in order to identify modifiable risk factors for arterial stiffness that may in the future guide therapeutic decision-making. PWV was above normal levels for age in 85/191 (44.5%) patients. Multivariate analysis showed that advanced age, systolic BP, diabetes mellitus, serum uric acid and calcium polystyrene sulfonate therapy or calcium-containing medication were independent predictors of PWV. A new parameter, Delta above upper limit of normal PWV (Delta PWV) was defined to decrease the weight of age on PWV values. Delta PWV was calculated as (measured PWV) - (upper limit of the age-adjusted PWV values for the general population). Mean±SD Delta PWV was 0.76±1.60 m/sec. In multivariate analysis, systolic blood pressure, active smoking and calcium polystyrene sulfonate therapy remained independent predictors of higher delta PWV, while age, urinary potassium and beta blocker therapy were independent predictors of lower delta PWV. In conclusion, arterial stiffness was frequent in nephrology outpatients. Systolic blood pressure, smoking, serum uric acid, calcium-containing medications, potassium metabolism and non-use of beta blockers are modifiable factors associated with increased arterial stiffness in Nephrology outpatients. PMID:25880081
Sr isotopic variations in Upper Proterozoic carbonates from Svalbard and East Greenland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derry, L.A.; Keto, L.S.; Jacobsen, S.B.
1989-09-01
The authors report initial {sup 87}Sr/{sup 86}Sr values from an Upper Proterozoic carbonate succession from Svalbard and East Greenland. This succession, now tectonically separated into three sequences, is thick, relatively continuous, and well preserved. The relative ages of the samples from within the basin are well constrained by litho-, bio-, and chemostratigraphic techniques. The data from this study and related data from the literature are used to construct a curve of {sup 87}Sr/{sup 86}Sr for Upper Proterozoic seawater. The new data reported in this study substantially improve the isotopic record of Sr in seawater for the period between 650 andmore » 800 Ma. The data indicate that {Delta}{sup 87}Sr values of seawater were variable but low ({Delta}{sup 87}Sr {approximately}{minus}500 to {minus}250) between 900 and 650 Ma, and rose rapidly to {approximately} +30 by 600 Ma. The range of variation of {Delta}{sup 87}Sr in seawater during the Riphean-Vendian exceeds the entire range of {Delta}{sup 87}Sr in seawater during the Phanerozoic. While variation in the average isotopic composition of Sr delivered to the oceans by rivers can account for some of the observed range, changes in the ratio of submarine hydrothermal flux to river water (continental) flux are responsible for the large variation in seawater Sr isotopic composition. Changes in the continental flux of Sr to the oceans can be related to tectonic factors. Large changes in the hydrothermal flux to river water flux ratio indicated by the data could have significant consequences for the chemistry of the ocean-atmosphere system.« less
Population genetics of the Schistosoma snail host Bulinus truncatus in Egypt.
Zein-Eddine, Rima; Djuikwo-Teukeng, Félicité F; Dar, Yasser; Dreyfuss, Gilles; Van den Broeck, Frederik
2017-08-01
The tropical freshwater snail Bulinus truncatus serves as an important intermediate host of several human and cattle Schistosoma species in many African regions. Despite some ecological and malacological studies, there is no information on the genetic diversity of B. truncatus in Egypt. Here, we sampled 70-100 snails in ten localities in Upper Egypt and the Nile Delta. Per locality, we sequenced 10 snails at a partial fragment of the cytochrome c oxidase subunit 1 gene (cox1) and we genotyped 25-30 snails at six microsatellite markers. A total of nine mitochondrial haplotypes were detected, of which five were unique to the Nile Delta and three were unique to Upper Egypt, indicating that snail populations may have evolved independently in both regions. Bayesian clustering and hierarchical F-statistics using microsatellite markers further revealed strong population genetic structure at the level of locality. Observed heterozygosity was much lower compared to what is expected under random mating, which could be explained by high selfing rates, population size reductions and to a lesser extent by the Wahlund effect. Despite these observations, we found signatures of gene flow and cross-fertilization, even between snails from the Nile Delta and Upper Egypt, indicating that B. truncatus can travel across large distances in Egypt. These observations could have serious consequences for disease epidemiology, as it means that infected snails from one region could rapidly and unexpectedly spark a new epidemic in another distant region. This could be one of the factors explaining the rebound of human Schistosoma infections in the Nile Delta, despite decades of sustained schistosomiasis control. Copyright © 2017 Elsevier B.V. All rights reserved.
2004-07-14
KENNEDY SPACE CENTER, FLA. - At Astrotech Space Operations in Titusville, Fla., members of the media, wearing clean room suits, gather around Ted Hartka, MESSENGER lead mechanical engineer, with The Johns Hopkins University Applied Physics Laboratory (APL). Hartka is talking about the MESSENGER spacecraft’s mission to Mercury. The spacecraft, mated to the Delta II third stage Payload Assist Module, is in the background. MESSENGER is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket from Pad 17-B, Cape Canaveral Air Force Station, Fla.
2004-07-06
KENNEDY SPACE CENTER, FLA. - The Boeing Delta II Heavy second-stage engine, the Aerojet AJ10-118K, is lifted up the mobile service tower at Pad 17-B, Cape Canaveral Air Force Station. The Delta II is the launch vehicle for the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) spacecraft, scheduled to lift off Aug. 2. Bound for Mercury, the spacecraft is expected to reach orbit around the planet in March 2011. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
2004-07-14
KENNEDY SPACE CENTER, FLA. - The MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) spacecraft, mated to the Delta II third stage Payload Assist Module, is ready for presentation to the media at Astrotech Space Operations in Titusville, Fla. Spokespersons for the event are Dr. Robert Gold, MESSENGER payload manager with The Johns Hopkins University Applied Physics Laboratory (APL); and Ted Hartka, MESSENGER lead mechanical engineer, APL. MESSENGER is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket from Pad 17-B, Cape Canaveral Air Force Station, Fla.
2004-07-14
KENNEDY SPACE CENTER, FLA. - The MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) spacecraft, mated to the Delta II third stage Payload Assist Module, is on display at Astrotech Space Operations in Titusville, Fla., for the media. Spokespersons for the event are Dr. Robert Gold, MESSENGER payload manager with The Johns Hopkins University Applied Physics Laboratory (APL); and Ted Hartka, MESSENGER lead mechanical engineer, APL. MESSENGER is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket from Pad 17-B, Cape Canaveral Air Force Station, Fla.
Delta II JPSS-1 Final Fueling Configuration and Control Room Setup
2017-09-25
NOAA's Joint Polar Satellite System-1, or JPSS-1, remains wrapped in a protective covering after removal from its shipping container at the Astrotech Processing Facility at Vandenberg Air Force Base in California. The spacecraft is being prepared for its upcoming liftoff aboard a United Launch Alliance Delta II rocket from Vandenberg's Space Launch Complex-2W. JPSS-1 is the first in a series four next-generation environmental satellites in a collaborative program between NOAA and NASA.
JPSS-1 Delta II Interstage Hoisted from Horizontal and Rotated to Vertical for Transport
2016-07-06
The interstage section of the United Launch Alliance Delta II rocket that will launch the Joint Polar Satellite System-1 (JPSS-1) is hoisted to vertical in Building 836 on Vandenberg Air Force Base in California. JPSS, a next-generation environmental satellite system, is a collaborative program between the National Oceanic and Atmospheric Administration (NOAA) and NASA. Launch is targeted for March 27, 2017. To learn more about JPSS-1, visit www.jpss.noaa.gov.
NASA Technical Reports Server (NTRS)
Horne, Keith; Marsh, T. R.; Cheng, F. H.; Hubeny, Ivan; Lanz, Theirry
1994-01-01
Hubble Space Telescope (HST) observations of the eclipsing dwarf nova OY Car in its quiescent state are used to isolate the ultraviolet spectrum (1150-2500 A at 9.2 A Full Width at Half Maximum (FWHM) resolution) of the white dwarf, the accretion disk, and the bright spot. The white dwarf spectrum has a Stark-broadened photospheric L(alpha) absorption, but is veiled by a forest of blended Fe II features that we attribute to absorption by intervening disk material. A fit gives T(sub w) approx. = 16.5 x 10(exp 3) K for the white dwarf with a solar-abundance, log g = 8 model atmosphere, and T approx. = 10(exp 4) K, n(sub e) approx. = 10(exp 13)/cu cm, N(sub H) approx. = 10(exp 22) sq cm, and velocity dispersion delta V approx. = 60 km/s for the veil of homogeneous solar-abundance local thermodynamic equilibrium (LTE) gas. The veil parameters probably measure characteristic physical conditions in the quiescent accretion disk or its chromosphere. The large velocity dispersion is essential for a good fit; it lowers (chi square)/778 from 22 to 4. Keplerian shear can produce the velocity dispersion if the veiling gas is located at R approx. = 5 R(sub W) with (delta R)/R approx. = 0.3, but this model leaves an unobscured view to the upper hemisphere of the white dwarf, incompatible with absorptions that are up to 80% deep. The veiling gas may be in the upper atmosphere of the disk near its outer rim, but we then require supersonic (Mach approx. = 6) but sub-Keplerian (delta V/V(sub Kep) approx. = 0.07) velocity disturbances in this region to produce both the observed radial velocity dispersion and vertical motions sufficient to elevate the gas to z/R = cos i = 0.12. Such motions might be driven by the gas stream, since it may take several Kepler periods to reestablish the disk's vertical hydrostatic equilibrium. The temperature and column density of the gas we see as Fe II absorption in the ultraviolet are similar to what is required to produce the strong Balmer jump and line emissions seen in optical spectra of OY Car and similar quiescent dwarf novae. The outer accretion disk is detected at mid-eclipse with a spectrum that rises from 0.05 to 0.3 mJy between 2000 and 2500 A, consistent with combinations of cool blackbodies, blended Fe II emission lines, and Balmer continuum emission. The total disk flux density is 0.5 mJy at 2500 A, and this shallow disk eclipse implies a roughly flat surface brightness distribution. The bright spot, somewhat bluer than the disk, has a flux density rising from 0.05 to 0.15 mJy between 1600 and 2500 A. The C IV emission line has a broad shallow eclipse, but the radial velocity variations observed during the eclipse do not clearly distinguish between a disk or wind origin. The only possible indications of boundary layer emission are fast UV flares that appear to arise from near the central object -- not from the bright spot.
Non-variceal upper gastrointestinal bleeding in cirrhotic patients in Nile Delta.
Gabr, Mamdouh Ahmed; Tawfik, Mohamed Abd El-Raouf; El-Sawy, Abd Allah Ahmed
2016-01-01
Acute upper gastrointestinal bleeding (AUGIB) in cirrhotic patients occurs mainly from esophageal and gastric varices; however, quite a large number of cirrhotic patients bleed from other sources as well. The aim of the present work is to determine the prevalence of non-variceal UGIB as well as its different causes among the cirrhotic portal hypertensive patients in Nile Delta. Emergency upper gastrointestinal (UGI) endoscopy for AUGIB was done in 650 patients. Out of these patients, 550 (84.6%) patients who were proved to have cirrhosis were the subject of the present study. From all cirrhotic portal hypertensive patients, 415 (75.5%) bled from variceal sources (esophageal and gastric) while 135 (24.5%) of them bled from non-variceal sources. Among variceal sources of bleeding, esophageal varices were much more common than gastric varices. Peptic ulcer was the most common non-variceal source of bleeding. Non-variceal bleeding in cirrhosis was not frequent, and sources included peptic ulcer, portal hypertensive gastropathy, and erosive disease of the stomach and duodenum.
Near-infrared oxygen airglow from the Venus nightside
NASA Technical Reports Server (NTRS)
Crisp, D.; Meadows, V. S.; Allen, D. A.; Bezard, B.; Debergh, C.; Maillard, J.-P.
1992-01-01
Groundbased imaging and spectroscopic observations of Venus reveal intense near-infrared oxygen airglow emission from the upper atmosphere and provide new constraints on the oxygen photochemistry and dynamics near the mesopause (approximately 100 km). Atomic oxygen is produced by the Photolysis of CO2 on the dayside of Venus. These atoms are transported by the general circulation, and eventually recombine to form molecular oxygen. Because this recombination reaction is exothermic, many of these molecules are created in an excited state known as O2(delta-1). The airglow is produced as these molecules emit a photon and return to their ground state. New imaging and spectroscopic observations acquired during the summer and fall of 1991 show unexpected spatial and temporal variations in the O2(delta-1) airglow. The implications of these observations for the composition and general circulation of the upper venusian atmosphere are not yet understood but they provide important new constraints on comprehensive dynamical and chemical models of the upper mesosphere and lower thermosphere of Venus.
DOT National Transportation Integrated Search
1977-05-04
Technology was developed for determining delta sup 9-tetrahydrocannabinol (I) and its major metabolite 11-nor-delta sup 9-tetrahydrocannabinol-9-carboxylic acid (II) in human blood plasma utilizing high pressure liquid chromatography (hplc)-ultraviol...
Balaban, M O; Aparicio, J; Zotarelli, M; Sims, C
2008-11-01
The average colors of mangos and apples were measured using machine vision. A method to quantify the perception of nonhomogeneous colors by sensory panelists was developed. Three colors out of several reference colors and their perceived percentage of the total sample area were selected by untrained panelists. Differences between the average colors perceived by panelists and those from the machine vision were reported as DeltaE values (color difference error). Effects of nonhomogeneity of color, and using real samples or their images in the sensory panels on DeltaE were evaluated. In general, samples with more nonuniform colors had higher DeltaE values, suggesting that panelists had more difficulty in evaluating more nonhomogeneous colors. There was no significant difference in DeltaE values between the real fruits and their screen image, therefore images can be used to evaluate color instead of the real samples.
STS-57 Earth observation of the Eastern Mediterranean, Nile River, Asia Minor
1993-07-01
STS057-73-075 (21 June-1 July 1993) --- Eastern Mediterranean from an unusually high vantage point over the Nile River, this north-looking view shows not only the eastern Mediterranean but also the entire landmass of Asia Minor, with the Black Sea dimly visible at the horizon. Many of the Greek islands can be seen in the Aegean Sea (top left), off the coast of Asia Minor. Cyprus is visible under atmospheric dust in the northeast corner of the Mediterranean. The dust cloud covers the east end of the Mediterranean, its western edge demarcated by a line that cuts the center of the Nile Delta. This dust cloud originated far to the west, in Algeria, and moved northeast over Sicily, southern Italy, and Greece. Part of the cloud then moved on over the Black Sea, but another part swerved southward back towards Egypt. A gyre of clouds in the southeast corner of the Mediterranean indicates a complementary counterclockwise (cyclonic) circulation of air. The Euphrates River appears as a thin green line (upper right) in the yellow Syrian Desert just south of the blue-green mountains of Turkey. The Dead Sea (lower right) lies in a rift valley which extends north into Turkey and south thousands of miles down the Gulf of Aqaba, the Red Sea, and on through East Africa. The straight international boundary between Israel and Egypt (where the coastline angles) is particularly clear in this view, marked by the thicker vegetation on the Israeli side of the border. The green delta of the Nile River appears in the foreground, with the great conurbation of Cairo seen as a gray area at the apex of the triangle. Most of Egypt's 52 million inhabitants live in the delta. On the east side of the delta, the Suez Canal is visible. On the western corner of the delta lies the ancient city of Alexandria, beside the orange and white salt pans. The World War II battlesite El Alamein lies on the coast.
High-resolution Fourier transform spectroscopy of the Meinel system of OH
NASA Technical Reports Server (NTRS)
Abrams, Mark C.; Davis, Sumner P.; Rao, M. L. P.; Engleman, Rolf, Jr.; Brault, James W.
1994-01-01
The infrared spectrum of the hydroxyl radical OH, between 1850 and 9000/cm has been measured with a Fourier transform spectrometer. The source, a hydrogen-ozone diffusion flame, was designed to study the excitation of rotation-vibration levels of the OH Meinel bands under conditions similar to those in the upper atmosphere which produce the nighttime OH airglow emission. Twenty-three bands were observed: nine bands in the Delta upsilon = 1 sequence, nine bands in the Delta upsilon = 2 sequence, and five bands in the Delta upsilon = 3 sequence. A global nonlinear least-squares fit of 1696 lines yielded molecular parameters with a standard deviation of 0.003/cm. Term values are computed, and transition frequencies in the Delta upsilon = 3, 4, 5, 6 sequences in the near-infrared are predicted.
Arsenic Concentrations in Rice and Associated Health Risks Along the Upper Mekong Delta, Cambodia
NASA Astrophysics Data System (ADS)
Barragan, L.; Seyfferth, A.; Fendorf, S.
2011-12-01
The consumption of arsenic contaminated food, such as rice, can be a significant portion of daily arsenic exposure, even for populations already exposed through drinking water. While arsenic contamination of rice grains has been documented in parts of Southern Asia, (e.g. Bangladesh), little research has been conducted on arsenic contamination of Cambodian-grown rice. We collected rice plant samples at various locations within the upper Mekong River Delta near Phnom Penh, Cambodia, and we analyzed total arsenic concentrations in plant digests of grains, husk, and straw. In addition, we used CaCl2-, DTPA-, and oxalate-extractable arsenic to define plant-available soil pools. We found variability of arsenic concentration in the plants, with grain arsenic ranging from 0.046 to 0.214 μg g-1; other researchers have shown that concentrations higher than 0.1 μg g-1 could be a concern for human health. Although more extensive sampling is needed to assess the risk of arsenic exposure from rice consumption on a country-wide basis, our work clearly illustrates the risk within regions of the Mekong Delta.
2014-07-31
VANDENBERG AIR FORCE BASE, Calif. – The Delta II interstage adapter, or ISA, for NASA's Soil Moisture Active Passive mission, or SMAP, is lowered onto the flatbed of the truck that will transport it from the Building 836 hangar on south Vandenberg Air Force Base in California to the pad. A United Launch Alliance Delta II rocket will loft SMAP into orbit from Vandenberg's Space Launch Complex 2. The ISA connects the Delta II first and second stages and encloses the second stage engine and thrust section. The spacecraft will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. The data returned also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-07-31
VANDENBERG AIR FORCE BASE, Calif. – The Delta II interstage adapter, or ISA, for NASA's Soil Moisture Active Passive mission, or SMAP, glides in a vertical position across the Building 836 hangar on south Vandenberg Air Force Base in California toward the truck that will transport it to the pad. A United Launch Alliance Delta II rocket will loft SMAP into orbit from Vandenberg's Space Launch Complex 2. The ISA connects the Delta II first and second stages and encloses the second stage engine and thrust section. The spacecraft will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. The data returned also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-07-31
VANDENBERG AIR FORCE BASE, Calif. – Workers secure the Delta II interstage adapter, or ISA, for NASA's Soil Moisture Active Passive mission, or SMAP, onto the flatbed of the truck that will transport it to the pad from the Building 836 hangar on south Vandenberg Air Force Base in California. A United Launch Alliance Delta II rocket will loft SMAP into orbit from Vandenberg's Space Launch Complex 2. The ISA connects the Delta II first and second stages and encloses the second stage engine and thrust section. The spacecraft will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. The data returned also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-08-04
VANDENBERG AIR FORCE BASE, Calif. – The Delta II interstage adapter, or ISA, for NASA's Soil Moisture Active Passive mission, or SMAP, is transferred into the environmental enclosure in the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. Processing of the United Launch Alliance Delta II rocket that will loft SMAP into orbit is underway at the pad. The ISA connects the Delta II first and second stages and encloses the second stage engine and thrust section. The spacecraft will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. The data returned also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2007-06-26
KENNEDY SPACE CENTER, FLA. -- At Astrotech, the Dawn spacecraft has been wrapped with a protective cover before it is enclosed in a canister. Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton
2014-08-04
VANDENBERG AIR FORCE BASE, Calif. – The Delta II interstage adapter, or ISA, for NASA's Soil Moisture Active Passive mission, or SMAP, is ready to be lifted into the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. A United Launch Alliance Delta II rocket will loft SMAP into orbit. The ISA connects the Delta II first and second stages and encloses the second stage engine and thrust section. The spacecraft will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. The data returned also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-04-07
VANDENBERG AIR FORCE BASE, Calif. – The interstage adapter, or ISA, for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, is connected to the Delta II first stage in the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California and ready for delivery of the rocket's second stage. OCO-2 is scheduled to launch into a polar Earth orbit aboard a United Launch Alliance Delta II 7320-10C rocket in July. The ISA is the interface between the Delta II first and second stages. The second stage engine fits within the ISA. Once in orbit, OCO-2 will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
Mars Polar Lander is mated with Boeing Delta II rocket
NASA Technical Reports Server (NTRS)
1998-01-01
At Launch Complex 17B, Cape Canaveral Air Station, the protective covering on the Mars Polar Lander is lifted up and out of the way. The lander, in the opening below, is being mated to the Boeing Delta II rocket that will launch it on Jan. 3, 1999. The lander is a solar- powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars Surveyor'98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.
Delta II ICESat-2 Fairing Cleaning and Sampling
2018-04-06
On Friday, April 6, 2018, in NASA’s Building 8337 at Vandenberg Air Force Base in California, a technician cleans and takes samples from the payload fairing the will protect NASA's Ice, Cloud and land Elevation Satellite-2, or ICESat-2, satellite during launch. Liftoff atop a United Launch Alliance Delta II rocket is scheduled for Sept. 12, 2018, from Space Launch Complex-2 at Vandenberg. It will be the last for the venerable Delta II rocket. ICESat-2, which is being built and tested by Orbital ATK in Gilbert, Arizona, will carry a single instrument called the Advanced Topographic Laser Altimeter System, or ATLAS. The ATLAS instrument is being built and tested at NASA’s Goddard Space Flight Center in Greenbelt Maryland. Once in orbit, the satellite is designed to measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. ICESat-2 will help scientists investigate why, and how much, Earth’s frozen and icy areas, called the cryosphere, are changing.
Delta II ICESat-2 Fairing Cleaning and Sampling
2018-04-06
On Friday, April 6, 2018, in NASA’s Building 8337 at Vandenberg Air Force Base in California, technicians and engineers clean and take samples from the payload fairing the will protect NASA's Ice, Cloud and land Elevation Satellite-2, or ICESat-2, satellite during launch. Liftoff atop a United Launch Alliance Delta II rocket is scheduled for Sept. 12, 2018, from Space Launch Complex-2 at Vandenberg. It will be the last for the venerable Delta II rocket. ICESat-2, which is being built and tested by Orbital ATK in Gilbert, Arizona, will carry a single instrument called the Advanced Topographic Laser Altimeter System, or ATLAS. The ATLAS instrument is being built and tested at NASA’s Goddard Space Flight Center in Greenbelt Maryland. Once in orbit, the satellite is designed to measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. ICESat-2 will help scientists investigate why, and how much, Earth’s frozen and icy areas, called the cryosphere, are changing.
Delta II ICESat-2 Fairing Cleaning and Sampling
2018-04-06
On Friday, April 6, 2018, in NASA’s Building 8337 at Vandenberg Air Force Base in California, technicians and engineers check samples during cleaning of the payload fairing that will protect NASA's Ice, Cloud and land Elevation Satellite-2, or ICESat-2, satellite during launch. Liftoff atop a United Launch Alliance Delta II rocket is scheduled for Sept. 12, 2018, from Space Launch Complex-2 at Vandenberg. It will be the last for the venerable Delta II rocket. ICESat-2, which is being built and tested by Orbital ATK in Gilbert, Arizona, will carry a single instrument called the Advanced Topographic Laser Altimeter System, or ATLAS. The ATLAS instrument is being built and tested at NASA’s Goddard Space Flight Center in Greenbelt Maryland. Once in orbit, the satellite is designed to measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. ICESat-2 will help scientists investigate why, and how much, Earth’s frozen and icy areas, called the cryosphere, are changing.
2008-04-25
VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base in California, the Delta II first stage is being raised to a vertical position in front of the mobile service tower on Space Launch Complex 2. Once it is vertical, the first stage will be transferred into the tower. The Delta II is the launch vehicle for the OSTM/Jason-2 spacecraft. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Dan Liberotti
2008-04-30
VANDENBERG AIR FORCE BASE, Calif. -- On Space Launch Complex 2 at Vandenberg Air Force Base in California, the second solid rocket motor, or SRM, is being raised to a vertical position. Once vertical, the SRM will be lifted into the mobile service tower and attached to the Delta II first stage inside. The Delta II is the launch vehicle for the OSTM/Jason-2 spacecraft. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Dan Liberotti
2008-04-25
VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base in California, the Delta II first stage has been raised to a vertical position in front of the mobile service tower on Space Launch Complex 2. Next, the first stage will be transferred into the tower. The Delta II is the launch vehicle for the OSTM/Jason-2 spacecraft. The OSTM, or Ocean Topography Mission, on the Jason-2 satellite is a follow-on to Jason-1. It will take oceanographic studies of sea surface height into an operational mode for continued climate forecasting research and science and industrial applications. This satellite altimetry data will help determine ocean circulation, climate change and sea-level rise. OSTM is a joint effort by the National Oceanic and Atmospheric Administration, NASA, France’s Centre National d’Etudes Spatiales and the European Meteorological Satellite Organisation. OSTM/Jason-2 will be launched aboard a United Launch Alliance Delta II 7320 from Vandenberg on June 15. Photo credit: NASA/Dan Liberotti
Ruegg, H; Yu, W Z; Bodnar, R J
1997-07-01
Selective mu ([D-Ala2, N-Me-Phe4, Gly-ol5]-enkephalin (DAMGO)), delta1 ([D-Pen2, D-Pen5]-enkephalin (DPDPE)), delta2 ([D-Ala2, Glu4]-Deltorphin (Delt II)), kappa1 (U50488H) and kappa3 (naloxone benzoylhydrazone (NalBzOH)) opioid agonists each stimulate food intake in rats. Whereas studies with selective opioid antagonists implicate mu and kappa1 receptors in the mediation of sucrose intake, studies with selective opioid agonists implicate mu and delta receptors in the mediation of saccharin intake. The present study determined if specific delta1, delta2, kappa1, kappa3 and mu opioid-receptor subtype agonists produced similar alterations in sucrose intake as a function of sucrose concentration (0.5%, 2.5%, 10%) across a 1-h time-course. Each of these agonists significantly increased sucrose intake with variations in pattern, magnitude, and consistency as a function of sucrose concentration. Whereas the mu opioid agonist, DAMGO, and the delta1 opioid agonist, DPDPE, each enhanced sucrose intake at higher (2.5%, 10%), but not lower (0.5%), concentrations, the delta2 opioid agonist, Delt II, increased sucrose intake at lower (0.5%, 2.5%), but not higher (10%), concentrations. Kappa opioid agonists produced less consistent effects. The kappa1 opioid agonist, U50488H, increased sucrose intake at high (10%) concentrations and decreased sucrose intake at low (0.5%) concentrations, and the kappa3 opioid agonist, NalBzOH, inconsistently increased sucrose intake at the 0.5% (20 microg) and 10% (1 microg) concentrations. Thus, these data further implicate mu, delta1, and delta2 opioid mediation of palatable intake, particularly of its orosensory characteristics.
NASA Technical Reports Server (NTRS)
2002-01-01
Extremely high sediment loads are delivered to the Arabian Sea along the coast of Pakistan (upper left) and western India. In the case of the Indus River (far upper left) this sedimentation, containing large quantities of desert sand, combines with wave action to create a large sand-bar like delta. In the arid environment, the delta lacks much vegetation, but contains numerous mangrove-lined channels. This true-color image from May 2001 shows the transition from India's arid northwest to the wetter regions farther south along the coast. The increase in vegetation along the coast is brought about by the moisture trapping effect of the Western Ghats Mountain Range that runs north-south along the coast. Heavy sediment is visible in the Gulf of Kachchh (north) and the Gulf of Khambhat(south), which surround the Gujarat Peninsula.
Fuchs, G; Drechsler, S-L; Kozlova, N; Behr, G; Köhler, A; Werner, J; Nenkov, K; Klingeler, R; Hamann-Borrero, J; Hess, C; Kondrat, A; Grobosch, M; Narduzzo, A; Knupfer, M; Freudenberger, J; Büchner, B; Schultz, L
2008-12-05
We report upper critical field Bc2(T) data for disordered (arsenic-deficient) LaO0.9F0.1FeAs1-delta in a wide temperature and magnetic field range up to 47 T. Because of the large linear slope of Bc2 approximately -5.4 to -6.6 T/K near Tc approximately 28.5 K, the T dependence of the in-plane Bc2(T) shows a flattening near 23 K above 30 T which points to Pauli-limited behavior with Bc2(0) approximately 63-68 T. Our results are discussed in terms of disorder effects within [corrected] unconventional superconducting pairings.
2003-07-07
KENNEDY SPACE CENTER, FLA. - From a burst of fire and smoke, the Delta II launch vehicle races into the sky carrying the second Mars Exploration Rover, Opportunity. The bright glare briefly illuminated Florida Space Coast beaches. Opportunity’s dash to Mars began with liftoff at 11:18:15 p.m. Eastern Daylight Time from Cape Canaveral Air Force Station, Fla. The spacecraft separated successfully from the Delta's third stage 83 minutes later, after it had been boosted out of Earth orbit and onto a course toward Mars.
Gorka, Maciej; Jedrysek, Mariusz-Orion; Strapoc, Dariusz
2008-06-01
This paper describes the results of isotopic analyses of (i) hydrogen and oxygen in water (delta DH2O and delta18OH2O ) and (ii) sulphur and oxygen in sulphates (delta34Ssulphate and delta18Osulphate) from atmospheric precipitation collected within a one-year period between 25 May 2004 and 25 May 2005 in Wrocław (SW Poland). The resulting equation of Local Meteoric Water Line for Wrocław is delta D=6.373xdelta18O-0.047, (r2=0.97, n=32). The delta34Ssulphate varies from 1.1 to 4.2 per thousand (with an average of 2.5 per thousand), delta18Osulphate varies from 9.0 to 16.7 per thousand (with an average of 13.8 per thousand) and delta18OH2O varies from-0.8 to-16.3 per thousand (with an average of-8.2 per thousand). The above results indicate two main sources of sulphates in Wrocław precipitation: (i) low-temperature secondary sulphates forming in situ in Wrocław from the atmospheric SO2 as well as precipitation water (heterogeneous and homogeneous pathways oxidation) and (ii) high-temperature primary sulphates forming in rapid high-temperature hydratation of SO3- in an immediate proximity of industrial chimneys. We hypothesise that the secondary low-temperature type of sulphates is probably formed from the local sulphur and oxygen reservoirs, whereas the primary high-temperature type is allochthonous and it is probably transported from industrial areas located outside of Wrocław.
Hata, Utako; Sadamitsu, Kenichiro; Yamamura, Osamu; Kawauchi, Daisuke; Fujii, Teruhisa
2004-12-01
In recent years,aesthetic appearance and function are called for and all-ceramic crowns are spreading. By choosing an all-ceramic crown the problem of metal ceramics is avoided. There are difficulties of color tone reproducibility of cervical margin and darkness of gingival margin. We examined IPS Empress also in various all-ceramic crowns. IPS Empress has high permeability a ceramic ingot of various color tones and excellent color tone reproducibility of natural teeth. Generally a layering technique is used for an anterior tooth and the staining technique is used for a molar. However the details are unknown We examined how differences of manufacturing method and cement affect the color tone of all ceramics clinically. Two kinds of Empress crown were fabricated for a 27 year-old woman's upper left-side central incisors:the staining technique of IPS Empress and the layering technique of IPS Empress II. Various try-in pastes(transparent opaque white white and yellow) of VariolinkII of the IPS Empress System were used for cementing. Color was measured using a spectrophotometer CMS 35FS. The L*a*b* color system was used for showing a color. The right-side central incisors on the opposite side of the same name teeth were used for comparison. We analyzed the color difference (DeltaE* ab)with a natural tooth. Consequently when it had no cement of staining technique and was tranceparent small values were obtained. It is considered that the color tone can be adjusted by color cement. It is effective to use the staining technique for an anterior tooth crown depending on the case. The crown manufactured using the layering technique is not easily influenced by cement. The crown manufactured by the staining technique tends to be influenced by cement.
Basha, Shaik; Jaiswar, Santlal; Jha, Bhavanath
2010-09-01
The biosorption equilibrium isotherms of Ni(II) onto marine brown algae Lobophora variegata, which was chemically-modified by CaCl(2) were studied and modeled. To predict the biosorption isotherms and to determine the characteristic parameters for process design, twenty-three one-, two-, three-, four- and five-parameter isotherm models were applied to experimental data. The interaction among biosorbed molecules is attractive and biosorption is carried out on energetically different sites and is an endothermic process. The five-parameter Fritz-Schluender model gives the most accurate fit with high regression coefficient, R (2) (0.9911-0.9975) and F-ratio (118.03-179.96), and low standard error, SE (0.0902-0.0.1556) and the residual or sum of square error, SSE (0.0012-0.1789) values to all experimental data in comparison to other models. The biosorption isotherm models fitted the experimental data in the order: Fritz-Schluender (five-parameter) > Freundlich (two-parameter) > Langmuir (two-parameter) > Khan (three-parameter) > Fritz-Schluender (four-parameter). The thermodynamic parameters such as DeltaG (0), DeltaH (0) and DeltaS (0) have been determined, which indicates the sorption of Ni(II) onto L. variegata was spontaneous and endothermic in nature.
The Delta II with ACE aboard is prepared for liftoff from Pad 17A, CCAS
NASA Technical Reports Server (NTRS)
1997-01-01
After launch tower retraction, the Boeing Delta II expendable launch vehicle carrying the Advanced Composition Explorer (ACE) undergoes final preparations for liftoff in the predawn hours of Aug. 24, 1997, at Launch Complex 17A, Cape Canaveral Air Station. This is the second Delta launch under the Boeing name and the first from Cape Canaveral. ACE with its combination of nine sensors and instruments will investigate the origin and evolution of solar phenomenon, the formation of solar corona, solar flares and acceleration of the solar wind. ACE was built for NASA by the Johns Hopkins Applied Physics Laboratory and is managed by the Explorer Project Office at NASA's Goddard Space Flight Center. The lead scientific institution is the California Institute of Technology.
Depositional history of Louisiana-Mississippi outer continental shelf
Kindinger, J.L.; Miller, R.J.; Stelting, C.E.
1982-01-01
A geological study was undertaken in 1981 in the Louisiana-Mississippi outer continental shelf for the Bureau of Land Management. The study included a high-resolution seismic reflection survey, surficial sediment sampling and surface current drifter sampling. Approximately 7100 sq km of the Louisiana-Mississippi shelf and upper slope were surveyed. The sea floor of the entire area is relatively smooth except for occasional areas of uplift produced by diapiric intrusion along the upper slope. Characteristics of the topography and subsurface shelf sediments are the result of depositional sequences due to delta outbuilding over transgressive sediments with intervening periods of erosion during low sea level stands. Little evidence of structural deformation such as faults, diapirs, and shallow gas is present on the shelf and only a few minor faults and scarps are found on the slope. Minisparker seismic records in combination with air gun (40 and 5 cu in) and 3.5-kHz subbottom profile records reveal that seven major stages of shelf development have occurred since the middle Pleistocene. The shelf development has been controlled by the rise and fall of sea level. These stages are defined by four major unconformities, several depositions of transgressive sediments, sequences of river channeling and progradational delta deposits. Surficial sediment sample and seismic records indicate tat the last major depositional event was the progradation of the St. Bernard Delta lobe. This delta lobe covered the northwestern and central regions. Surficial sediments in most of the study area are the product of the reworking of the San Bernard Delta lobe and previous progradations.
Torres, J R; Mondolfi, A
1991-01-01
In an investigation of a 21-year-old epidemic of severe hepatitis, 80 serum samples were studied from two isolated Yanomami Amerindian populations of the Upper Orinoco basin in Venezuela. Of the assayed samples, 30.6% were positive for hepatitis B surface antigen (HBsAg), 53.7% were considered to reflect immunity to infection with hepatitis B virus (HBV), and only 16.2% were believed to reflect susceptibility to HBV infection; 82.5% of the samples tested positive for any marker of HBV infection. Thirty-one (39.7%) of 78 samples were also positive for antibody to delta antigen, including 91.6% of those positive for HBsAg and 20.9% of those immune to HBV. Our findings provide evidence of a high prevalence of HBV infection in this population. Furthermore, the high prevalence of antibody to delta antigen strongly suggests that coinfections with HBV or superinfections with hepatitis delta virus (HDV) in HBV carriers may be an important factor in the occurrence of an unusually high number of cases of fulminant hepatitis and of chronic liver disease. Serum samples obtained at the beginning of the outbreak 13 years earlier from 36 selected cases in the same population revealed a high rate of HBV infection (96.5%). All six HBsAg carriers from whom enough serum remained to be assayed were positive for antibody to delta antigen. Our findings indicate that the outbreak coincided with the introduction of HDV into a population with an already-high prevalence of HBV infection.
EMG and oxygen uptake responses during slow and fast ramp exercise in humans.
Scheuermann, Barry W; Tripse McConnell, Joyce H; Barstow, Thomas J
2002-01-01
This study examined the relationship between muscle recruitment patterns using surface electromyography (EMG) and the excess O(2) uptake (Ex.V(O(2))) that accompanies slow (SR, 8 W min(-1)) but not fast (FR, 64 W min(-1)) ramp increases in work rate (WR) during exercise on a cycle ergometer. Nine subjects (2 females) participated in this study (25 +/- 2 years, +/- S.E.M.). EMG was obtained from the vastus lateralis and medialis and analysed in the time (root mean square, RMS) and frequency (median power frequency, MDPF) domain. Results for each muscle were averaged to provide an overall response and expressed relative to a maximal voluntary contraction (%MVC). Delta.V(O(2))/DeltaWR was calculated for exercise below (S(1)) and above (S(2)) the lactate threshold (LT) using linear regression. The increase in RMS relative to the increase in WR for exercise below the LT (DeltaRMS/DeltaWR-S(1)) was determined using linear regression. Due to non-linearities in RMS above the LT, DeltaRMS/DeltaWR-S(2) is reported as the difference in RMS (DeltaRMS) and the difference in WR (DeltaWR) at end-exercise and the LT. SR was associated with a higher (P < 0.05) Delta.V(O(2))/DeltaWR (S(1), 9.3 +/- 0.3 ml min(-1) W(-1); S(2), 12.5 +/- 0.6 ml min(-1) W(-1)) than FR (S(1), 8.5 +/- 0.4 ml min(-1) W(-1); S(2), 7.9 +/- 0.4 ml min(-1) W(-1)) but a similar DeltaRMS/DeltaWR-S(1) (SR, 0.11 +/- 0.01% W(-1); FR, 0.10 +/- 0.01 % W(-1)). Ex.V(O(2)) was greater (P < 0.05) in SR (3.6 +/- 0.7 l) than FR (-0.7 +/- 0.4 l) but was not associated with a difference in either DeltaRMS/DeltaWR-S(2) (SR, 0.14 +/- 0.01% W(-1); FR, 15 +/- 0.02 % W(-1)) or MDPF (SR, 2.6 +/- 5.9 %; FR, -15.4 +/- 4.5 %). The close matching between power output and RMS during SR and FR suggests that the Ex.V(O(2)) of heavy exercise is not associated with the recruitment of additional motor units since Ex.V(O(2)) was observed during SR only. Compared to the progressive decrease in MDPF observed during FR, the MDPF remained relatively constant during SR suggesting that either (i) there was no appreciable recruitment of the less efficient type II muscle fibres, at least in addition to those recruited initially at the onset of exercise, or (ii) the decrease in MDPF associated with fatigue was offset by the addition of a higher frequency of type II fibres recruited to replace the fatigued motor units.
2007-02-16
KENNEDY SPACE CENTER, FLA. -- At Cape Canaveral Air Force Station, the Delta II rocket with the THEMIS spacecraft atop awaits launch on Pad 17-B. Friday's launch attempt was scrubbed due to upper-level wind violation. The launch window is 6:01 p.m. to 6:19 p.m. EST on Saturday. THEMIS, an acronym for Time History of Events and Macroscale Interactions during Substorms, consists of five identical probes that will track violent, colorful eruptions near the North Pole. This will be the largest number of scientific satellites NASA has ever launched into orbit aboard a single rocket. The THEMIS mission aims to unravel the mystery behind auroral substorms, an avalanche of magnetic energy powered by the solar wind that intensifies the northern and southern lights. The mission will investigate what causes auroras in the Earth’s atmosphere to dramatically change from slowly shimmering waves of light to wildly shifting streaks of bright color. Photo credit: NASA/Kim Shiflett
The Mars Climate Orbiter is lifted up the Pad 17A gantry
NASA Technical Reports Server (NTRS)
1998-01-01
Wrapped in a protective covering, the Mars Climate Orbiter with its upper stage booster is lifted up at Launch Complex 17, Pad A, Cape Canaveral Air Station, in preparation for mating to the second stage of a Boeing Delta II (7425) rocket. Targeted for liftoff on Dec. 10, 1998, the orbiter will be the first spacecraft to be launched in the pair of Mars '98 missions. After its arrival at the red planet, the Mars Climate Orbiter will be used primarily to support its companion Mars Polar Lander spacecraft, scheduled for launch on Jan. 3, 1999. The orbiter will then monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year, the equivalent of about two Earth years. The spacecraft will observe the appearance and movement of atmospheric dust and water vapor, and characterize seasonal changes on the planet's surface.
The Mars Climate Orbiter is lifted up the Pad 17A gantry
NASA Technical Reports Server (NTRS)
1998-01-01
The Mars Climate Orbiter with its upper stage booster, wrapped in a protective covering, is mated to the second stage of a Boeing Delta II (7425) rocket at Launch Complex 17, Pad A, Cape Canaveral Air Station. Targeted for liftoff on Dec. 10, 1998, the orbiter will be the first spacecraft to be launched in the pair of Mars '98 missions. After its arrival at the red planet, the Mars Climate Orbiter will be used primarily to support its companion Mars Polar Lander spacecraft, scheduled for launch on Jan. 3, 1999. The orbiter will then monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year, the equivalent of about two Earth years. The spacecraft will observe the appearance and movement of atmospheric dust and water vapor, and characterize seasonal changes on the planet's surface.
The Mars Climate Orbiter is lifted up the Pad 17A gantry
NASA Technical Reports Server (NTRS)
1998-01-01
Wrapped in a protective covering, the Mars Climate Orbiter with its upper stage booster is lowered in preparation for mating to the second stage of a Boeing Delta II (7425) rocket at Launch Complex 17, Pad A, Cape Canaveral Air Station. Targeted for liftoff on Dec. 10, 1998, the orbiter will be the first spacecraft to be launched in the pair of Mars '98 missions. After its arrival at the red planet, the Mars Climate Orbiter will be used primarily to support its companion Mars Polar Lander spacecraft, scheduled for launch on Jan. 3, 1999. The orbiter will then monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year, the equivalent of about two Earth years. The spacecraft will observe the appearance and movement of atmospheric dust and water vapor, and characterize seasonal changes on the planet's surface.
2008-05-27
CAPE CANAVERAL, Fla. -- Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, NASA's Gamma-Ray Large Area Space Telescope, or GLAST, is ready for encapsulation in the payload fairing. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. The launch date is targeted no earlier than June 3. Photo credit: NASA/Jim Grossmann
2008-05-27
CAPE CANAVERAL, Fla. -- Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, NASA's Gamma-Ray Large Area Space Telescope, or GLAST, is ready for encapsulation in the payload fairing. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. The launch date is targeted no earlier than June 3. Photo credit: NASA/Jim Grossmann
2003-03-06
Components of the two Mars Exploration Rovers (MER) reside in the Payload Hazardous Servicing Facility. At right MER-2. At left is a lander. In the background is one of the aeroshells. MER-1 and MER-2, their aeroshells and landers will undergo a full mission simulation before being integrated. After spin balance testing, each spacecraft will be mated to a solid propellant upper stage booster that will propel the spacecraft out of Earth orbit. Approximately 10 days before launch they will be transported to the launch pad for mating with their respective Boeing Delta II rockets. The rovers will serve as robotic geologists to seek answers about the evolution of Mars, particularly for a history of water. The rovers are identical to each other, but will land at different regions of Mars. Launch of the first rover is scheduled for May 30 from Cape Canaveral Air Force Station. The second will follow June 25.
1998-12-03
KENNEDY SPACE CENTER, FLA. -- Wrapped in a protective covering, the Mars Climate Orbiter with its upper stage booster is lowered in preparation for mating to the second stage of a Boeing Delta II (7425) rocket at Launch Complex 17, Pad A, Cape Canaveral Air Station. Targeted for liftoff on Dec. 10, 1998, the orbiter will be the first spacecraft to be launched in the pair of Mars ’98 missions. After its arrival at the red planet, the Mars Climate Orbiter will be used primarily to support its companion Mars Polar Lander spacecraft, scheduled for launch on Jan. 3, 1999. The orbiter will then monitor the Martian atmosphere and image the planet’s surface on a daily basis for one Martian year, the equivalent of about two Earth years. The spacecraft will observe the appearance and movement of atmospheric dust and water vapor, and characterize seasonal changes on the planet’s surface
1998-12-03
KENNEDY SPACE CENTER, FLA. -- Wrapped in a protective covering, the Mars Climate Orbiter with its upper stage booster is lifted up at Launch Complex 17, Pad A, Cape Canaveral Air Station, in preparation for mating to the second stage of a Boeing Delta II (7425) rocket. Targeted for liftoff on Dec. 10, 1998, the orbiter will be the first spacecraft to be launched in the pair of Mars ’98 missions. After its arrival at the red planet, the Mars Climate Orbiter will be used primarily to support its companion Mars Polar Lander spacecraft, scheduled for launch on Jan. 3, 1999. The orbiter will then monitor the Martian atmosphere and image the planet’s surface on a daily basis for one Martian year, the equivalent of about two Earth years. The spacecraft will observe the appearance and movement of atmospheric dust and water vapor, and characterize seasonal changes on the planet’s surface
1998-12-03
KENNEDY SPACE CENTER, FLA. -- Wrapped in a protective covering, the Mars Climate Orbiter with its upper stage booster is lifted up at Launch Complex 17, Pad A, Cape Canaveral Air Station, in preparation for mating to the second stage of a Boeing Delta II (7425) rocket. Targeted for liftoff on Dec. 10, 1998, the orbiter will be the first spacecraft to be launched in the pair of Mars ’98 missions. After its arrival at the red planet, the Mars Climate Orbiter will be used primarily to support its companion Mars Polar Lander spacecraft, scheduled for launch on Jan. 3, 1999. The orbiter will then monitor the Martian atmosphere and image the planet’s surface on a daily basis for one Martian year, the equivalent of about two Earth years. The spacecraft will observe the appearance and movement of atmospheric dust and water vapor, and characterize seasonal changes on the planet’s surface
2001-06-15
KENNEDY SPACE CENTER, Fla. -- In the Spacecraft Assembly and Encapsulation Facility -2, the Microwave Anisotropy Probe (MAP), suspended by a crane, crosses the facility to the upper stage of the Boeing Delta II rocket. The rocket is scheduled to launch the MAP instrument June 30 into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. MAP will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University
2001-06-15
KENNEDY SPACE CENTER, Fla. -- Photographers gather in the Spacecraft Assembly and Encapsulation Facility -2 for a media showing of the Microwave Anisotropy Probe (MAP). The MAP is mated to the upper stage of the Boeing Delta II rocket. The rocket is scheduled to launch the MAP instrument June 30 into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. MAP will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University
2001-06-15
KENNEDY SPACE CENTER, Fla. -- Workers in the Spacecraft Assembly and Encapsulation Facility -2 prepare the Microwave Anisotropy Probe (MAP) for a media showing. The MAP is mated to the upper stage of the Boeing Delta II rocket. The rocket is scheduled to launch the MAP instrument June 30 into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. MAP will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University
2001-06-15
KENNEDY SPACE CENTER, Fla. -- Workers in the Spacecraft Assembly and Encapsulation Facility -2 prepare the Microwave Anisotropy Probe (MAP) for a media showing. The MAP is mated to the upper stage of the Boeing Delta II rocket. The rocket is scheduled to launch the MAP instrument June 30 into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. MAP will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures. The MAP instrument will be continuously shaded from the Sun, Earth, and Moon by the spacecraft. It is a product of Goddard Space Flight Center in partnership with Princeton University
Wood, Tamara M.
2012-01-01
The hydrodynamic model of Upper Klamath and Agency Lakes, Oregon, was used to run 384 realizations of a numerical tracer experiment in order to understand the relative effects of wind, lake elevation, and Williamson River inflow on flow and transport (the movement of water and passively transported constituents) through the Williamson River Delta. Significant findings from this study include: * The replacement rate of water increased in Tulana and Goose Bay with increasing lake elevation, Williamson River inflow, and wind speed. * The fraction of Williamson River inflow passing through either side of the Delta increased with lake elevation and Williamson River inflow. * The partial replacement rate of water in Goose Bay with water from the Williamson River increased with wind speed. * The partial replacement rate of water in Tulana with water from the Williamson River decreased with wind speed. * Strong wind forcing at the water surface caused more of the Williamson River inflow to pass through Goose Bay than through Tulana. * Westerly to northwesterly winds result in more of the Williamson River inflow passing through the Goose Bay side of the Delta than through the Tulana side. * Regression models developed from the tracer experiments can be used to quantify the dependencies between transport and the independent variables to obtain rough estimates of useful quantities such as residence time and steady-state solute concentrations.
Delta smelt: Life history and decline of a once abundant species in the San Francisco Estuary
Moyle, Peter B.; Brown, Larry R.; Durand, John R; Hobbs, James A.
2016-01-01
This paper reviews what has been learned about Delta Smelt and its status since the publication of The State of Bay-Delta Science, 2008 (Healey et al. 2008). The Delta Smelt is endemic to the upper San Francisco Estuary. Much of its historic habitat is no longer available and remaining habitat is increasingly unable to sustain the population. As a listed species living in the central node of California’s water supply system, Delta Smelt has been the focus of a large research effort to understand causes of decline and identify ways to recover the species. Since 2008, a remarkable record of innovative research on Delta Smelt has been achieved, which is summarized here. Unfortunately, research has not prevented the smelt’s continued decline, which is the result of multiple, interacting factors. A major driver of decline is change to the Delta ecosystem from water exports, resulting in reduced outflows and high levels of entrainment in the large pumps of the South Delta. Invasions of alien species, encouraged by environmental change, have also played a contributing role in the decline. Severe drought effects have pushed Delta Smelt to record low levels in 2014–2015. The rapid decline of the species and failure of recovery efforts demonstrate an inability to manage the Delta for the “co-equal goals” of maintaining a healthy ecosystem and providing a reliable water supply for Californians. Diverse and substantial management actions are needed to preserve Delta Smelt.
2013-12-19
VANDENBERG AIR FORCE BASE, Calif. -- A convoy of trucks delivers solid rocket motors for a United Launch Alliance Delta II rocket to Vandenberg Air Force Base in California. The Delta II is slated to launch NASA's Orbiting Carbon Observatory-2, or OCO-2 spacecraft in July 2014. OCO-2 will collect precise global measurements of carbon dioxide in the Earth's atmosphere. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. Photo credit: NASA/Randy Beaudoin
Delta II - SIRTF Lift and Mate
2003-07-28
Workers help guide the second stage of the Delta II Heavy rocket onto the first stage, below. The rocket will launch the Space Infrared Telescope Facility (SIRTF), currently scheduled for mid-August. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
Delta II - SIRTF Lift and Mate
2003-07-28
The second stage of the Delta II Heavy rocket is ready for mating onto the first stage, below. The rocket will launch the Space Infrared Telescope Facility (SIRTF), currently scheduled for mid-August. SIRTF consists of three cryogenically cooled science instruments and an 0.85-meter telescope, and is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
2004-07-06
KENNEDY SPACE CENTER, FLA. - The Boeing Delta II Heavy second-stage engine, the Aerojet AJ10-118K, is ready for lifting up the mobile service tower at Pad 17-B, Cape Canaveral Air Force Station. The Delta II is the launch vehicle for the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) spacecraft, scheduled to lift off Aug. 2. Bound for Mercury, the spacecraft is expected to reach orbit around the planet in March 2011. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
Improved phase-ellipse method for in-situ geophone calibration.
Liu, Huaibao P.; Peselnick, L.
1986-01-01
For amplitude and phase response calibration of moving-coil electromagnetic geophones 2 parameters are needed, namely the geophone natural frequency, fo, and the geophone upper resonance frequency fu. The phase-ellipse method is commonly used for the in situ determination of these parameters. For a given signal-to-noise ratio, the precision of the measurement of fo and fu depends on the phase sensitivity, f(delta PHI/delta PHIf). For some commercial geophones (f(delta PHI/delta PHI) at fu can be an order of magnitude less than the sensitivity at fo. Presents an improved phase-ellipse method with increased precision. Compared to measurements made with the existing phase-ellipse methods, the method shows a 6- and 3-fold improvement in the precision, respectively, on measurements of fo and fu on a commercial geophone.-from Authors
Einstein observations of three classical Cepheids
NASA Technical Reports Server (NTRS)
Bohm-Vitense, E.; Parsons, S. B.
1983-01-01
We have looked for X-ray emission from the classical Cepheids delta Cep, beta Dor, and zeta Gem during phases when the latter two stars show emission in low excitation chromospheric lines. No X-ray flux was detected except possibly from zeta Gem at phase 0.26. Derived upper limits are in line with emission flux or upper limits obtained for other F and G supergiants.
Burdick, Summer M.
2012-01-01
Federally endangered Lost River sucker (Deltistes luxatus) and shortnose sucker (Chasmistes brevirostris) were once abundant throughout their range but populations have declined. They were extirpated from several lakes in the 1920s and may no longer reproduce in other lakes. Poor recruitment to the adult spawning populations is one of several reasons cited for the decline and lack of recovery of these species and may be the consequence of high mortality during juvenile life stages. High larval and juvenile sucker mortality may be exacerbated by an insufficient quantity of suitable or high-quality rearing habitat. In addition, larval suckers may be swept downstream from suitable rearing areas in Upper Klamath Lake into Keno Reservoir, where they are assumed lost to Upper Klamath Lake populations. The Nature Conservancy flooded about 3,600 acres (1,456 hectares) to the north of the Williamson River mouth (Tulana) in October 2007, and about 1,400 acres (567 hectares) to the south and east of the Williamson River mouth (Goose Bay Farms) in October 2008, in order to retain larval suckers in Upper Klamath Lake, create nursery habitat, and improve water quality. The U.S. Geological Survey joined a long-term research and monitoring program in collaboration with The Nature Conservancy, the Bureau of Reclamation, and Oregon State University in 2008 to assess the effects of the Williamson River Delta restoration on the early life-history stages of Lost River and shortnose suckers. The primary objectives of the research were to describe habitat colonization and use by larval and juvenile suckers and non-sucker fishes and to evaluate the effects of the restored habitat on the health and condition of juvenile suckers. This report summarizes data collected in 2010 by the U.S. Geological Survey as a part of this monitoring effort and follows two annual reports on data collected in 2008 and 2009. Restoration modifications made to the Williamson River Delta appeared to provide additional suitable rearing habitat for endangered Lost River and shortnose suckers from 2008 to 2010 based on sucker catches. Mean larval sample density was greater for both species in the Williamson River Delta than adjacent lake habitats in all 3 years. In addition to larval suckers, at least three age classes of juvenile suckers were captured in the delta. The shallow Goose Bay Farms and Tulana Emergent were among the most used habitats by age-0 suckers in 2009. Both of these environments became inaccessible due to low water in 2010, however, and were not sampled after July 19, 2010. In contrast, age-1 sucker catches shifted from the shallow water (about 0.5-1.5 m deep) on the eastern side of the Williamson River Delta in May, to deeper water environments (greater than 2 m) by the end of June or early July in all 3 years. Differential distribution among sucker species within the Williamson River Delta and between the delta and adjacent lakes indicated that shortnose suckers likely benefited more from the restored Williamson River Delta than Lost River or Klamath largescale suckers (Catostomus snyderi). Catch rates in shallow-water habitats within the delta were higher for shortnose and Klamath largescale sucker larvae than for larval Lost River suckers in 2008, 2009, and 2010. Shortnose suckers also comprised the greatest portion of age-0 suckers captured in the Williamson River Delta in all 3 years of the study. The relative abundance of age-1 shortnose suckers was high in our catches compared to age-1 Lost River suckers in 2009 and 2010. The restored delta also created habitat for several piscivorous fishes, but only two appeared to pose a meaningful threat of predation to suckers - fathead minnows (Pimephales promelas) and yellow perch (Perca flavescens). Fathead minnows that prey on larval but not juvenile suckers dominated catches in all sampling areas. Yellow perch also were abundant throughout the study area, but based on their gape size and co-occurrence with suckers, most were only capable of preying on larvae. Low May lake-surface elevation, below average snow pack, and anticipated irrigation demands indicated late summer water levels in Upper Klamath Lake would be unusually low in 2010. In response to concerns by the Fish and Wildlife Service and The Nature Conservancy that low-water conditions might strand fish on the delta, low water seine surveys were implemented. Eleven fishes, including both endangered suckers, were captured in seine surveys, including both species of suckers, which continued to use shallow water less than 0.4 m deep through September 21. Lake elevation declined to 1,261.54 m (4,138.9 feet) in mid-September 2010, but did not appear to strand fish or cause large-scale fish mortality.
Bly, S H; Vlahovich, S; Mabee, P R; Hussey, R G
1992-01-01
Measured characteristics of ultrasonic fields were obtained in submissions from manufacturers of diagnostic ultrasound equipment for devices operating in pulsed Doppler mode. Simple formulae were used with these data to generate upper limits to fetal temperature elevations, delta Tlim, during a transabdominal pulsed Doppler examination. A total of 236 items were analyzed, each item being a console/transducer/operating-mode/intended-use combination, for which the spatial-peak temporal-average intensity, ISPTA, was greater than 500 mW cm-2. The largest calculated delta Tlim values were approximately 1.5, 7.1 and 8.7 degrees C for first-, second- and third-trimester examinations, respectively. The vast majority of items yielded delta Tlim values which were less than 1 degree C in the first trimester. For second- and third-trimester examinations, where heating of fetal bone determines delta Tlim, most delta Tlim values were less than 4 degrees C. The clinical significance of the results is discussed.
NASA Astrophysics Data System (ADS)
Bhattacharya, Biplab; Bhattacharjee, Joyeeta; Bandyopadhyay, Sandip; Banerjee, Sudipto; Adhikari, Kalyan
2018-03-01
The present research is an attempt to assess the Barakar Formation of the Raniganj Gondwana Basin, India, in the frame of fluvio-marine (estuarine) depositional systems using sequence stratigraphic elements. Analysis of predominant facies associations signify deposition in three sub-environments: (i) a river-dominated bay-head delta zone in the inner estuary, with transition from braided fluvial channels (FA-B1) to tide-affected meandering fluvial channels and flood plains (FA-B2) in the basal part of the succession; (ii) a mixed energy central basin zone, which consists of transitional fluvio-tidal channels (FA-B2), tidal flats, associated with tidal channels and bars (FA-B3) in the middle-upper part of the succession; and (iii) a wave-dominated outer estuary (coastal) zone (FA-B4 with FA-B3) in the upper part of the succession. Stacked progradational (P1, P2)-retrogradational (R1, R2) successions attest to one major base level fluctuation, leading to distinct transgressive-regressive (T-R) cycles with development of initial falling stage systems tract (FSST), followed by lowstand systems tract (LST) and successive transgressive systems tracts (TST-1 and TST-2). Shift in the depositional regime from regressive to transgressive estuarine system in the early Permian Barakar Formation is attributed to change in accommodation space caused by mutual interactions of (i) base level fluctuations in response to climatic amelioration and (ii) basinal tectonisms (exhumation/sagging) related to post-glacial isostatic adjustments in the riftogenic Gondwana basins.
2011-08-23
CAPE CANAVERAL, Fla. -- At Space Launch Complex 17B on Cape Canaveral Air Force Station in Florida, NASA's twin Gravity Recovery and Interior Laboratory spacecraft are secured atop a Delta II rocket awaiting enclosure in the Delta payload fairing. The fairing will protect the spacecraft from the impact of aerodynamic pressure and heating during ascent and will be jettisoned once the spacecraft is outside the Earth's atmosphere. Launch aboard a United Launch Alliance Delta II rocket from Pad 17B is scheduled for Sept. 8. The spacecraft will fly in tandem orbits around the moon for several months to measure its gravity field. GRAIL's primary science objectives are to determine the structure of the lunar interior, from crust to core, and to advance understanding of the thermal evolution of the moon. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Jim Grossmann
Feltus, F Alex; Kovacs, William J; Nicholson, Wendell; Silva, Corrine M; Nagdas, Subir K; Ducharme, Nicole A; Melner, Michael H
2003-05-01
We tested the ability of epidermal growth factor (EGF) to regulate a key enzyme in the adrenal synthesis of glucocorticoids: human type II 3beta-hydroxysteroid dehydrogenase/Delta(5)-Delta(4)-isomerase (3 beta HSD). EGF treatment (25 ng/ml) of human adrenocortical carcinoma cells (H295R) resulted in a 5-fold increase in cortisol production and a corresponding 2-fold increase in 3 beta HSD mRNA. Experiments were performed to determine whether EGF is acting through a previously identified signal transducer and activator of transcription 5 (Stat5)-responsive element located from -110 to -118 in the human type II 3 beta HSD promoter. A Stat5 expression construct was cotransfected with a 3 beta HSD-chloramphenol acetyltransferase (CAT) reporter construct comprised of nucleotides -301-->+45 of the human type II 3 beta HSD promoter linked to the CAT reporter gene sequence. The addition of EGF at doses as low as 10 ng/ml resulted in an 11- to 15-fold increase in CAT activity. The introduction of 3-bp point mutations into critical nucleotides in the Stat5 response element obviated the EGF response. Either Stat5a or Stat5b isoforms induced CAT reporter expression upon treatment with EGF. These results demonstrate the ability of EGF to regulate the expression of a critical enzyme (3 beta HSD) in the production of cortisol and suggest a molecular mechanism by which this regulation occurs.
Panoramic Sinai Peninsula, Red Sea
1984-10-13
An excellent panoramic view of the entire Sinai Peninsula (29.0N, 34.0E) and the nearby Nile River Delta and eastern Mediterranean coastal region. The Suez Canal, at the top of the scene just to the right of the Delta, connects the Mediterranean Sea with the Gulf of Suez on the west side of the Sinai Peninsula and the Gulf of Aqaba is on the west where they both flow into the Red Sea. At upper right, is the Dead Sea, Jordan River and Lake Tiberius.
Mechanisms of heat and mass transfer across a double-diffusive interface
NASA Astrophysics Data System (ADS)
Ko, B. H.; Smith, K. A.
1984-06-01
Flux measurements in an aqueous two-layer double-diffusive system using heat and NaCl confirmed the existence of a regime in which the ratio of the buoyancy fluxes (BFR) of salt and heat is independent of the stability ratio (R = beta(delta C)/alpha(delta T)). Linear analysis showed that the quiescent system can become unstable to small perturbations even when the lower layer is denser than the upper. If R is large, the most unstable mode presents as an oscillatory, antisymmetric pattern.
The Stardust spacecraft is moved in the PHSF to mate it with the 3rd stage of a Delta II rocket
NASA Technical Reports Server (NTRS)
1999-01-01
In the Payload Hazardous Servicing Facility, workers help guide the overhead crane lifting the Stardust spacecraft. Stardust is being moved in order to mate it with the third stage of a Boeing Delta II rocket. Targeted for launch Feb. 6 from Launch Pad 17-A, Cape Canaveral Air Station, aboard the Delta II rocket, the spacecraft is destined for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre- solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006.
2007-06-26
KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians move another segment of the lower canister onto the workstand holding the Dawn spacecraft. When enclosed in the canister, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton
2007-06-26
KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians move the partially enclosed Dawn spacecraft into another room to complete the canning. When enclosed in the canister, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton
2007-06-26
KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians examine the lower canister they placed around the bottom of the Dawn spacecraft. When enclosed in the canister, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton
2007-06-26
KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians move the first segment of the lower canister toward the stand holding the Dawn spacecraft. When enclosed in the canister, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton
Site Response and Basin Waves in the Sacramento–San Joaquin Delta, California
Fletcher, Jon Peter B.; Boatwright, John
2013-01-01
The Sacramento–San Joaquin Delta is an inland delta at the western extent of the Central Valley. Levees were built around swampy islands starting after the Civil War to reclaim these lands for farming. Various studies show that these levees could fail in concert from shaking from a major local or regional earthquake resulting in salty water from the San Francisco Bay contaminating the water in the Delta. We installed seismographs around the Delta and on levees to assess the contribution of site response to the seismic hazard of the levees. Cone penetrometer testing shows that the upper 10 s of meters of soil in the Delta have shear‐wave velocities of about 200 m/s, which would give a strong site response. Seismographs were sited following two strategies: pairs of stations to compare the response of the levees to nearby sites, and a more regional deployment in the Delta. Site response was determined in two different ways: a traditional spectral ratio (TSR) approach of S waves using station BDM of the Berkeley Digital Seismic Net as a reference site, and using SH/SV ratios of noise (or Nakamura’s method). Both estimates usually agree in spectral character for stations whose response is dominated by a resonant peak, but the most obvious peaks in the SH/SV ratios usually are about two‐thirds as large as the main peaks in the TSRs. Levee sites typically have large narrow resonances in the site response function compared to sites in the farmland of the Delta. These resonances, at a frequency of about 1–3 Hz, have amplitudes of about 15 with TSR and 10–12 with Nakamura’s method. Sites on farmland in the Delta also have amplifications, but these are typically broader and not as resonant in appearance. Late (slow) Rayleigh waves were recorded at stations in the Delta, have a dominant period of about one second, and are highly monochromatic. Results from a three‐station array at the Holland Marina suggest that they have a phase velocity of about 600 m/s and arrive at about the same azimuth as the straight‐line back azimuth to the source. A dispersion curve determined for the basin or valley waves yields a shallow velocity profile that increases from about 350 m/s in the upper 0.2 km to about 1.1 km/s at a depth of about 2 km.
Wood, Tamara M.; Hendrixson, Heather A.; Markle, Douglas F.; Erdman, Charles S.; Burdick, Summer M.; Ellsworth, Craig M.
2014-01-01
A hydrodynamic model with particle tracking was used to create individual-based simulations to describe larval fish dispersal through the restored Williamson River Delta and into Upper Klamath Lake, Oregon. The model was verified by converting particle ages to larval lengths and comparing these lengths to lengths of larvae in net catches. Correlations of simulated lengths with field data were moderate and suggested a species-specific difference in model performance. Particle trajectories through the delta were affected by wind speed and direction, lake elevation, and shoreline configuration. Once particles entered the lake, transport was a function of current speed and whether behavior enhanced transport (swimming aligned with currents) or countered transport through greater dispersal (faster random swimming). We tested sensitivity to swim speed (higher speeds led to greater dispersal and more retention), shoreline configuration (restoration increased retention relative to pre-restoration conditions), and lake elevation (retention was maximized at an intermediate elevation). The simulations also highlight additional biological questions, such as the extent to which spatially heterogeneous mortality or fish behavior and environmental cues could interact with wind-driven currents and contribute to patterns of dispersal.
NASA Astrophysics Data System (ADS)
Kohút, Milan; Hofmann, Mandy; Havrila, Milan; Linnemann, Ulf; Havrila, Jakub
2018-01-01
The Late Triassic timescale, especially the Carnian-Norian boundary, is poorly constrained mainly due to a paucity of high-precision radio-isotopic ages that can be related accurately to contradictions between the biostratigraphic and magnetostratigraphic correlations. LA ICP-MS dating of detrital zircons from five samples of the Lunz Formation—the Upper Triassic siliciclastic sediments from the Western Carpathians (Slovakia)—provided a wide spectrum of ages that vary from Late Archaean (ca. 2582 Ma) to Triassic (ca. 216 Ma). These marine delta sediments represent a typical product of the "Carnian Crisis"—a major climate change and biotic turnover that occurred during the Carnian stage in the Tethys Ocean within the carbonate shelf and intrashelf basins in the Northern Calcareous Alps and the Western Carpathians. The supply of clastic material in the studied Lunz Formation was derived from several sources, especially: (i) from the recycled Variscan orogen; (ii) from the remote East European Platform; and (iii) from the contemporaneous Triassic volcanic sources. Syn-sedimentary volcanic zircons with a concordia age of 221.2 ± 1.6 Ma (calculated from 12 single analyses) represent the maximum age of deposition of the Lunz Formation, and demonstrate that the upper limit of the "Carnian Crisis" and/or the Carnian stage in the Alpine-Carpathians realm is younger than the current age of the Carnian-Norian boundary at ca. 227 Ma listed on the International Chronostratigraphic Chart (International Commission on Stratigraphy 2016/12 Edition).
Wang, Man-Ying; Salem, George J
2004-06-01
The relations among the reaction forces engendered during an upper-extremity dynamic impact-loading exercise (DILE) program and bone mineral density adaptations (DeltaBMD) in the radius were investigated in 24 healthy premenopausal women (mean age = 29 +/- 6 years). Subjects performed DILE 36 cycles/day, 3 days/week for 24 weeks. The exercised arm was allocated randomly to either the dominant or the nondominant limb. In addition, subjects were assigned randomly into either damped or nondamped treatment arms to examine the effects of both higher- and lower-magnitude loading prescriptions. Measurements including anthropometrics, self-reported physical activity levels, hand-grip strength, radial BMD (DEXA, Hologic QDR1500, MA) at the ultradistal radius (UD), distal 1/3 radius (DR), and total distal radius (TOTAL), and exercise-related loading characteristics (impact load, loading rate, and impulse) were recorded at baseline and at 6 months. Simple linear regression models were used to fit the regional BMD changes to the reaction force, changes in hand-grip strength (DeltaGRIP), and changes in body weight (DeltaBW). Findings demonstrated that the damping condition utilized during DILE influenced the relations between loading events and BMD changes. Specifically, none of the reaction-force characteristics significantly predicted changes in BMD in participants performing DILE using the damped condition, whereas, in the nondamped condition, impact load accounted for 58% of the variance in BMD change at DR and 66% of the variance in BMD change at TOTAL. Thresholds of 345 and 285 N of impact force to promote BMD increases at DR and TOTAL, respectively, were obtained from the regression models in the nondamped group. Impulse was also an independent predictor of BMD changes at TOTAL, accounting for 56% of the variance. Neither DeltaGRIP nor DeltaBW significantly predicted DeltaBMD at any radial site. These findings, in young adult women, parallel previous reports identifying significant, regionally specific relations among external loading events and BMD changes in both animal and human models.
An exploratory study of apex fence flaps on a 74 deg delta wing
NASA Technical Reports Server (NTRS)
Wahls, R. A.; Vess, R. J.
1985-01-01
An exploratory wind tunnel investigation was performed to observe the flow field effects produced by vertically deployed apex fences on a planar 74 degree delta wing. The delta shaped fences, each comprising approximately 3.375 percent of the wing area, were affixed along the first 25 percent of the wing leading edge in symmetric as well as asymmetric (i.e., fence on one side only) arrangements. The vortex flow field was visualized at angles of attack from 0 to 20 degrees using helium bubble and oil flow techniques; upper surface pressures were also measured along spanwise rows. The results were used to construct a preliminary description of the vortex patterns and induced pressures associated with vertical apex fence deployment. The objective was to obtain an initial evaluation of the potential of apex fences as vortex devices for subsonic lift modulation as well as lateral directional control of delta wing aircraft.
Delta II JPSS-1 Mission Science Briefing
2017-11-12
At Vandenberg Air Force Base in California, Steve Cole of NASA Communications, speaks to members of the media during a briefing focused on research planned for the Joint Polar Satellite System-1, or JPSS-1. Built by Ball Aerospace and Technologies Corp. of Boulder, Colorado, JPSS is the first in a series four next-generation environmental satellites in a collaborative program between the NOAA and NASA. Liftoff atop a United Launch Alliance Delta II rocket is scheduled to take place from Vandenberg's Space Launch Complex 2 at 1:47 a.m. PST (4:47 a.m. EST), on Nov. 14, 2017.
2011-03-21
VANDENBERG AIR FORCE BASE, Calif. -- Workers attach cables from an overhead crane to the United Launch Alliance Delta II second stage motor for mating to the first stage at NASA's Space Launch Complex-2 (SLC-2) at Vandenberg Air Force Base in California. Following final tests, the Aquarius/SAC-D spacecraft will be integrated to the Delta II launch vehicle in preparation for the targeted June liftoff. Aquarius, the NASA-built instrument on the SAC-D spacecraft will provide new insights into how variations in ocean surface salinity relate to fundamental climate processes on its three-year mission. Photo credit: NASA/VAFB
2004-07-06
KENNEDY SPACE CENTER, FLA. - On Pad 17-B, Cape Canaveral Air Force Station, workers move the Boeing Delta II Heavy second-stage engine, the Aerojet AJ10-118K, inside the mobile service tower. The engine will be mated with the first stage of the Delta II, which is the launch vehicle for the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) spacecraft, scheduled to lift off Aug. 2. Bound for Mercury, the spacecraft is expected to reach orbit around the planet in March 2011. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
2004-07-06
KENNEDY SPACE CENTER, FLA. - - The Boeing Delta II Heavy second-stage engine, the Aerojet AJ10-118K, approaches the top of the mobile service tower on Pad 17-B, Cape Canaveral Air Force Station. The engine will be mated with the first stage of the Delta II, which is the launch vehicle for the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) spacecraft, scheduled to lift off Aug. 2. Bound for Mercury, the spacecraft is expected to reach orbit around the planet in March 2011. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
2017-11-13
At Vandenberg Air Force Base in California, the gantry rolls back at Space Launch Complex 2 in preparation for the liftoff of the Joint Polar Satellite System-1, or JPSS-1, spacecraft. The United Launch Alliance Delta II rocket now is poised to boost the satellite to a polar orbit. Built by Ball Aerospace and Technologies Corp. of Boulder, Colorado, JPSS is the first in a series four next-generation environmental satellites in a collaborative program between NOAA and NASA. The satellite is scheduled to liftoff at 1:47 a.m. PST (4:47 a.m. EST), on Nov. 14, 2017.
Dynamic controls on shallow clinoform geometry: Mekong Delta, Vietnam
NASA Astrophysics Data System (ADS)
Eidam, E. F.; Nittrouer, C. A.; Ogston, A. S.; DeMaster, D. J.; Liu, J. P.; Nguyen, T. T.; Nguyen, T. N.
2017-09-01
Compound deltas, composed of a subaerial delta plain and subaqueous clinoform, are common termini of large rivers. The transition between clinoform topset and foreset, or subaqueous rollover point, is located at 25-40-m water depth for many large tide-dominated deltas; this depth is controlled by removal of sediment from the topset by waves, currents, and gravity flows. However, the Mekong Delta, which has been classified as a mixed-energy system, has a relatively shallow subaqueous rollover at 4-6-m depth. This study evaluates dynamical measurements and seabed cores collected in Sep 2014 and Mar 2015 to understand processes of sediment transfer across the subaqueous delta, and evaluate possible linkages to geometry. During the southwest rainy monsoon (Sep 2014), high river discharge, landward return flow under the river plume, and regional circulation patterns facilitated limited sediment flux to the topset and foreset, and promoted alongshore flux to the northeast. Net observed sediment fluxes in Sep 2014 were landward, however, consistent with hypotheses about seasonal storage on the topset. During the northeast rainy monsoon, low river discharge and wind-driven currents facilitated intense landward and southwestward fluxes of sediment. In both seasons, bed shear velocities frequently exceeded the 0.01-0.02 m/s threshold of motion for sand, even in the absence of strong wave energy. Most sediment transport occurred at water depths <14 m, as expected from observed cross-shelf gradients of sedimentation. Sediment accumulation rates were highest on the upper and lower foreset beds (>4 cm/yr at <10 m depth, and 3-8 cm/yr at 10-20 m depth) and lowest on the bottomset beds. Physically laminated sediments transitioned into mottled sediments between the upper foreset and bottomset regions. Application of a simple wave-stress model to the Mekong and several other clinoforms illustrates that shallow systems are not necessarily energy-limited, and thus rollover depths cannot be predicted solely by bed-stress distributions. In systems like the subaqueous Mekong Delta, direction of transport may have a key impact on morphology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, T M; Spero, H J; Guilderson, T P
Deep-sea bamboo corals hold promise as long-term climatic archives, yet little information exists linking bamboo coral geochemistry to measured environmental parameters. This study focuses on a suite of 10 bamboo corals collected from the Pacific and Atlantic basins (250-2136 m water depth) to investigate coral longevity, growth rates, and isotopic signatures. Calcite samples for stable isotopes and radiocarbon were collected from the base the corals, where the entire history of growth is recorded. In three of the coral specimens, samples were also taken from an upper branch for comparison. Radiocarbon and growth band width analyses indicate that the skeletal calcitemore » precipitates from ambient dissolved inorganic carbon and that the corals live for 150-300 years, with extension rates of 9-128 {micro}m/yr. A linear relationship between coral calcite {delta}{sup 18}O and {delta}{sup 13}C indicates that the isotopic composition is influenced by vital effects ({delta}{sup 18}O:{delta}{sup 13}C slope of 0.17-0.47). As with scleractinian deep-sea corals, the intercept from a linear regression of {delta}{sup 18}O versus {delta}{sup 13}C is a function of temperature, such that a reliable paleotemperature proxy can be obtained, using the 'lines method.' Although the coral calcite {delta}{sup 18}O:{delta}{sup 13}C slope is maintained throughout the coral base ontogeny, the branches and central cores of the bases exhibit {delta}{sup 18}O:{delta}{sup 13}C values that are shifted far from equilibrium. We find that a reliable intercept value can be derived from the {delta}{sup 18}O:{delta}{sup 13}C regression of multiple samples distributed throughout one specimen or from multiple samples within individual growth bands.« less
Michán, C; Delgado, A; Haïdour, A; Lucchesi, G; Ramos, J L
1997-01-01
Pseudomonas fluorescens 410PR grows on 4-nitrobenzoate but does not metabolize 4-nitrotoluene. The TOL pWW0 delta pm plasmid converts 4-nitrotoluene into 4-nitrobenzoate through its upper pathway, but it does not metabolize 4-nitrobenzoate. P. fluorescens 410PR(pWW0 delta pm) transconjugants were isolated and found to be able to grow on 4-nitrotoluene. This phenotype was stable after growth for at least 300 generations without any selective pressure. P. fluorescens 410PR(pWW0 delta pm) converted 4-nitrotoluene into 4-nitrobenzoate via 4-nitrobenzylalcohol and 4-nitrobenzaldehyde. 4-Nitrobenzoate was metabolized via 4-hydroxylaminobenzoate and finally yielded NH4+ and 3,4-dihydroxybenzoate, which was mineralized. PMID:9139924
NASA Technical Reports Server (NTRS)
Jones, J. H.; Franz, H. B.
2015-01-01
Compared to terrestrial basalts, the Martian shergottite meteorites have an extraordinary range of Sr and Nd isotopic signatures. In addition, the S isotopic compositions of many shergottites show evidence of interaction with the Martian surface/ atmosphere through mass-independent isotopic fractionations (MIF, positive, non-zero delta(exp 33)S) that must have originated in the Martian atmosphere, yet ultimately were incorporated into igneous sulfides (AVS - acid-volatile sulfur). These positive delta(exp 33)S signatures are thought to be governed by solar UV photochemical processes. And to the extent that S is bound to Mars and not lost to space from the upper atmosphere, a positive delta(exp 33)S reservoir must be mass balanced by a complementary negative reservoir.
Infrared emission from desorbed NO2(*) and NO(*)
NASA Technical Reports Server (NTRS)
Kofsky, I. L.; Barrett, J. L.
1985-01-01
Infrared photons from the radiative cascade accompany both the gas phase NO2 continuum chemiluminescence (which originates from its 2B2 and 2B1 states) and the NO beta bands. When these upper electronic states are excited by recombination/desorption at surfaces of low Earth orbiting spacecraft, similar IR emission spectrums will be observed. The principal NO2 features (other than the long wavelength tail of its electronic transitions) are the nu sub 3 fundamental sequence near 6.2 microns and nu sub 1 + nu sub 3 intercombination bands near 3.6 microns; NO would emit the delta v=1 and delta v=2 systems above 5.3 and 2.7 microns. Because of the long radiative lifetimes of the upper vibrational states, the infrared radiances in projections parallel to the vehicle surface (which we estimate) are substantially less than those of the visible and ultraviolet glows.
Coupled hydrologic and hydraulic modeling of Upper Niger River Basin
NASA Astrophysics Data System (ADS)
Fleischmann, Ayan; Siqueira, Vinícius; Paris, Adrien; Collischonn, Walter; Paiva, Rodrigo; Gossett, Marielle; Pontes, Paulo; Calmant, Stephane; Biancamaria, Sylvain; Crétaux, Jean-François; Tanimoune, Bachir
2017-04-01
The Upper Niger Basin is located in Western Africa, flowing from Guinea Highlands towards the Sahel region. In this area lies the seasonally inundated Niger Inland Delta, which supports important environmental services such as habitats for wildlife, climate and flood regulation, as well as large fishery and agricultural areas. In this study, we present the application of MGB-IPH large scale hydrologic and hydrodynamic model for the Upper Niger Basin, totaling c.a. 650,000 km2 and set up until the city of Niamey in Niger. The model couples hydrological vertical balance and runoff generation with hydrodynamic flood wave propagation, by allowing infiltration from floodplains into soil column as well as representing backwater effects and floodplain storage throughout flat areas such as the Inland Delta. The model is forced with TRMM 3B42 daily precipitation and Climate Research Unit (CRU) climatology for the period 2000-2010, and was calibrated against in-situ discharge gauges and validated with in-situ water level, remotely sensed estimations of flooded areas (classification of MODIS imagery) and satellite altimetry (JASON-2 mission). Model results show good predictions for calibrated daily discharge and validated water level and altimetry at stations both upstream and downstream of the delta (Nash-Sutcliffe Efficiency>0.7 for all stations), as well as for flooded areas within the delta region (ENS=0.5; r2=0.8), allowing a good representation of flooding dynamics basinwide and simulation of flooding behavior of both perennial (e.g., Niger main stem) and ephemeral rivers (e.g., Niger Red Flood tributaries in Sahel). Coupling between hydrology and hydrodynamic processes indicates an important feedback between floodplain and soil water storage that allows high evapotranspiration rates even after the flood passage around the inner delta area. Also, representation of water retention in floodplain channels and distributaries in the inner delta (e.g., Diaka river distributary) is fundamental for the correct representation of the flood wave attenuation in Niger main stem. Improvements could be made in terms of floods propagation across the basin -through parameters such as Manning's roughness and section depth and width-using the comparison with satellite altimetry data, for instance. Finally, such coupled hydrologic and hydrodynamic models prove to be an important tool for integrated evaluation of hydrological processes in such ungauged, large scale floodplain areas. Possible uses of the model involve the assessment of different scenarios of anthropic alteration, e.g., the effects of reservoirs implementation and climate and land use changes.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., technicians lower the upper canister toward the Deep Impact spacecraft. It will be attached to the lower segments already surrounding the spacecraft. Once the spacecraft is completely covered, it will be transferred to Launch Pad 17-B on Cape Canaveral Air Force Station, Fla. Then, in the mobile service tower, the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., Boeing technicians roll the Deep Impact spacecraft into another area where the upper canister can be lowered around it. Once the spacecraft is completely covered, it will be transferred to Launch Pad 17-B on Cape Canaveral Air Force Station, Fla. Then, in the mobile service tower, the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., technicians install a crane onto the upper canister before lifting it to install around the Deep Impact spacecraft. Once the spacecraft is completely covered, it will be transferred to Launch Pad 17-B on Cape Canaveral Air Force Station, Fla. Then, in the mobile service tower, the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., Boeing technicians attach the upper canister with the lower segments surrounding the Deep Impact spacecraft. Once the spacecraft is completely covered, it will be transferred to Launch Pad 17-B on Cape Canaveral Air Force Station, Fla. Then, in the mobile service tower, the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
NASA Technical Reports Server (NTRS)
2005-01-01
KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., technicians lower the upper canister toward the Deep Impact spacecraft. It will be attached to the lower segments already surrounding the spacecraft. Once the spacecraft is completely covered, it will be transferred to Launch Pad 17-B on Cape Canaveral Air Force Station, Fla. Then, in the mobile service tower, the fairing will be installed around the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. Scheduled for liftoff Jan. 12, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth. After releasing a 3- by 3-foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will reveal the secrets of its interior by collecting pictures and data of how the crater forms, measuring the craters depth and diameter as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. Deep Impact is a NASA Discovery mission.
Xiao, Rong; Bai, Junhong; Huang, Laibin; Zhang, Honggang; Cui, Baoshan; Liu, Xinhui
2013-12-01
Sediments were collected from the upper, middle and lower reaches of both urban and rural rivers in a typical urbanization zone of the Pearl River delta. Six heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) were analyzed in all sediment samples, and their spatial distribution, pollution levels, toxicity and ecological risk levels were evaluated to compare the characteristics of heavy metal pollution between the two rivers. Our results indicated that the total contents of the six metals in all samples exceeded the soil background value in Guangdong province. Based on the soil quality thresholds of the China SEPA, Cd levels at all sites exceeded class III criteria, and other metals exhibited pollution levels exceeding class II or III criteria at both river sites. According to the sediment quality guidelines of the US EPA, all samples were moderately to heavily polluted by Cr, Cu, Ni, Pb and Zn. Compared to rural river sites, urban river sites exhibited heavier pollution. Almost all sediment samples from both rivers exhibited moderate to serious toxicity to the environment, with higher contributions from Cr and Ni. A "hot area" of heavy metal pollution being observed in the upper and middle reaches of the urban river area, whereas a "hot spot" was identified at a specific site in the middle reach of the rural river. Contrary metal distribution patterns were also observed along typical sediment profiles from urban and rural rivers. However, the potential ecological risk indices of rural river sediments in this study were equal to those of urban river sediments, implying that the ecological health issues of the rivers in the undeveloped rural area should also be addressed. Sediment organic matter and grain size might be important factors influencing the distribution profiles of these heavy metals.
Feltus, F Alex; Cote, Stephanie; Simard, Jacques; Gingras, Sebastien; Kovacs, William J; Nicholson, Wendell E; Clark, Barbara J; Melner, Michael H
2002-09-01
Glucocorticoids indirectly alter adrenocortical steroid output through the inhibition of ACTH secretion by the anterior pituitary. However, previous studies suggest that glucocorticoids can directly affect adrenocortical steroid production. Therefore, we have investigated the ability of glucocorticoids to affect transcription of adrenocortical steroid biosynthetic enzymes. One potential target of glucocorticoid action in the adrenal is an enzyme critical for adrenocortical steroid production: 3beta-hydroxysteroid dehydrogenase/Delta5-Delta4 isomerase (3beta-HSD). Treatment of the adrenocortical cell line (H295R) with the glucocorticoid agonist dexamethasone (DEX) increased cortisol production and 3beta-HSD mRNA levels alone or in conjunction with phorbol ester. This increase in 3beta-HSD mRNA was paralleled by increases in Steroidogenic Acute Regulatory Protein (StAR) mRNA levels. The human type II 3beta-HSD promoter lacks a consensus palindromic glucocorticoid response element (GRE) but does contain a Stat5 response element (Stat5RE) suggesting that glucocorticoids could affect type II 3beta-HSD transcription via interaction with Stat5. Transfection experiments show enhancement of human type II 3beta-HSD promoter activity by coexpression of the glucocorticoid receptor (GR) and Stat5A and treatment with 100nM dexamethasone. Furthermore, removal of the Stat5RE either by truncation of the 5' flanking sequence in the promoter or introduction of point mutations to the Stat5RE abolished the ability of DEX to enhance 3beta-HSD promoter activity. These studies demonstrate the ability of glucocorticoids to directly enhance the expression of an adrenal steroidogenic enzyme gene albeit independent of a consensus palindromic glucocorticoid response element.
2003-09-18
VANDENBERG AFB, CALIF. - The second stage of the Delta II launch vehicle for the Gravity Probe B experiment is moved into the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. Behind it can be seen the first stage of the Delta II. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.
2003-09-18
VANDENBERG AFB, CALIF. - Workers on the mobile service tower at Space Launch Complex 2, Vandenberg Air Force Base, Calif., check the Delta II rocket’s second stage as it is mated with the first stage. The Delta II is the launch vehicle for the Gravity Probe B experiment, developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The targeted launch date is Dec. 6, 2003.
2003-09-18
VANDENBERG AFB, CALIF. - Viewed from inside, the second stage of the Delta II launch vehicle for the Gravity Probe B experiment is lifted up the mobile service tower on Space Launch Complex 2, Vandenberg Air Force Base, Calif. Behind it is the first stage of the Delta II. The Gravity Probe B will launch a payload of four gyroscopes into low-Earth polar orbit to test two extraordinary predictions of Albert Einstein’s general theory of relativity: the geodetic effect (how space and time are warped by the presence of the Earth) and frame dragging (how Earth’s rotation drags space and time around with it). Once in orbit, for 18 months each gyroscope’s spin axis will be monitored as it travels through local spacetime, observing and measuring these effects. The experiment was developed by Stanford University, Lockheed Martin and NASA’s Marshall Space Flight Center. The targeted launch date is Dec. 6, 2003.
Torok, Kathryn S; Baker, Nancy A; Lucas, Mary; Domsic, Robyn T; Boudreau, Robert; Medsger, Thomas A
2010-01-01
To determine the reliability and validity of a new measure of finger motion in patients with systemic sclerosis (SSc), the 'delta finger-topalm' (delta FTP) and compare its psychometric properties to the traditional measure of finger motion, the finger-topalm (FTP). Phase 1: The reliability of the delta FTP and FTP were examined in 39 patients with SSc. Phase 2: Criterion and convergent construct validity of both measures were examined in 17 patients with SSc by comparing them to other clinical measures: Total Active Range of Motion (TAROM), Hand Mobility in Scleroderma (HAMIS), the Duruoz Hand Index (DHI), Health Assessment Questionnaire (HAQ), and modified Rodnan skin score (mRSS). Phase 3: Sensitivity to change of the delta FTP was investigated in 24 patients with early diffuse cutaneous SSc. Both measures had excellent intra-rater and inter-rater reliability (ICC 0.92 to 0.99). Fair to strong correlations (rs=0.49-0.94) were observed between the delta FTP and TAROM, HAMIS, and DHI. Fair to moderate correlations were observed between delta FTP and HAQ components related to hand function and upper extremity mRSS. Correlations of the traditional FTP with these measures were fair to strong, but most often the delta FTP outperformed the FTP. The effect size and standardised response mean for the mean delta FTP were 0.50 and 1.10 respectively, over a 2-8 month period. The delta FTP is a valid and reliable measure of finger motion in patients with SSc which outperforms the FTP.
Huner, N P; Williams, J P; Maissan, E E; Myscich, E G; Krol, M; Laroche, A; Singh, J
1989-01-01
The effect of growth at 5 degrees C on the trans-Delta(3)-hexadecenoic acid content of phosphatidyl(d)glycerol was examined in a total of eight cultivars of rye (Secale cereale L.) and what (Triticum aestivum L.) of varying freezing tolerance. In these monocots, low temperature growth caused decreases in the trans-Delta(3)-hexadecenoic acid content of between 0 and 74% with concomitant increases in the palmitic acid content of phosphatidyl(d)glycerol. These trends were observed for whole leaf extracts as well as isolated thylakoids. The low growth temperature-induced decrease in the trans-Delta(3)-hexadecenoic acid content was shown to be a linear function (r(2) = 0.954) of freezing tolerance in these cultivars. Of the six cold tolerant dicotyledonous species examined, only Brassica and Arabidopsis thaliana L. cv Columbia exhibited a 42% and 65% decrease, respectively, in trans-Delta(3)-hexadecenoic acid content. Thus, the relationship between the change in trans-Delta(3)-hexadecenoic acid content of phosphatidyl(d)glycerol and freezing tolerance cannot be considered a general one for all cold tolerant plant species. However, species which exhibited a low growth temperature-induced decrease in trans-Delta(3)-hexadecenoic acid also exhibited a concomitant shift in the in vitro organization of the light harvesting complex II from a predominantly oligomeric form to the monomeric form. We conclude that the proposed role of phosphatidyl(d)glycerol in modulating the organization of light harvesting complex II as a function of growth temperature manifests itself to varying degrees in different plant species. A possible physiological role for this phenomenon with respect to low temperature acclimation and freezing tolerance in cereals is discussed.
Earth Observations taken by Expedition 30 crewmember
2011-12-03
ISS030-E-009186 (3 Dec. 2011) --- The Menindee Lakes, New South Wales, Australia are featured in this image photographed by an Expedition 30 crew member on the International Space Station. The Menindee Lakes comprise a system of ephemeral, freshwater lakes fed by the Darling River when it floods. The lakes lie in the far west of New South Wales, Australia, near the town of Menindee. The longest is Lake Tandou (18.6 kilometers north?south dimension), visible at the upper right of this photograph. The lakes appear to have a small amount of water flooding them. The Darling River itself was flowing, as indicated by the dark water and blackened mud along its course (left). The Darling River flows southwest in tortuous fashion (bottom left to upper right). In the flat landscapes of this part of Australia, the river has created several inland deltas in its course to the sea, with characteristic diverging channel patterns, marked by younger sediments, which appear grayer than the surrounding ancient red soils and rocks. One such inland delta appears at right where minor channels wind across the countryside. The apex of another inland delta appears at upper right. Some of the Menindee Lakes have been incorporated in an artificially regulated overflow system providing for flood control, water storage for domestic use and livestock, as well as downstream irrigation. The lakes are also important as wetlands supporting a rich diversity of birds. The floor of one lake, Lake Tandou, is also used as prime agricultural land, as can be seen by its patchwork of irrigated fields, and is protected from flooding.
NASA Astrophysics Data System (ADS)
Chang, P.; Chang, L.; Chen, W.; Chiang, C.
2012-12-01
In the study we used the resistivity measurements across the Choushuichi Fan-delta to establish a three-dimensional hydrogeological model. The resistivity measurements includes the half-Schlumberger surveys conducted during the year of 1990-2000 across the entire fan-delta area, and the two-dimensional resistivity data collected recently for the purpose of characterizing the recharge zone boundaries between the upper-fan gravels and the lower-fan clayey sediments. Core records from the monitoring wells in the area were used for the training data to help determining the resistivity ranges of the gavel, sand, and muddy sediments in the fan-delta. The resistivity measurements were inverted and converted into 1-D data form and interpolated for rendering a three dimensional resistivity volume that represents the general resistivity distribution in the Choushuichi fan-delta. We categorize the hydrogeological materials into gravels, sands, and clayey sediments with the resistivity ranges from the previous statistical analysis. Hence we are able to quickly construct a three-dimensional hydrogeological model with simple three materials.
Mississippi River delta as seen from the Gemini 9-A spacecraft
NASA Technical Reports Server (NTRS)
1966-01-01
The Mississippi River delta, and Gulf coasts of Louisiana, Mississippi, Alabama and Florida as seen from the Gemini 9-A spacecraft during its first revolution of the earth. Florida peninsula is seen at upper right corner of picture. lake Pontchartrain is at lower left. new orleans is located between the lake and the U-shaped bend in the river. Large bay at top left center is Mobile Bay. Apalachicola, Florida, is the point of land at top center of picture. Note alluvial deposit at mouths of Mississippi.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuster, Paul F.; White, David E.; Naftz, David L.
2000-02-27
The potential to use ice cores from alpine glaciers in the midlatitudes to reconstruct paleoclimatic records has not been widely recognized. Although excellent paleoclimatic records exist for the polar regions, paleoclimatic ice core records are not common from midlatitude locations. An ice core removed from the Upper Fremont Glacier in Wyoming provides evidence for abrupt climate change during the mid-1800s. Volcanic events (Krakatau and Tambora) identified from electrical conductivity measurements (ECM) and isotopic and chemical data from the Upper Fremont Glacier were reexamined to confirm and refine previous chronological estimates of the ice core. At a depth of 152 mmore » the refined age-depth profile shows good agreement (1736{+-}10 A.D.) with the {sup 14}C age date (1729{+-}95 A.D.). The {delta}{sup 18}O profile of the Upper Fremont Glacier (UFG) ice core indicates a change in climate known as the Little Ice Age (LIA). However, the sampling interval for {delta}{sup 18}O is sufficiently large (20 cm) such that it is difficult to pinpoint the LIA termination on the basis of {delta}{sup 18}O data alone. Other research has shown that changes in the {delta}{sup 18}O variance are generally coincident with changes in ECM variance. The ECM data set contains over 125,000 data points at a resolution of 1 data point per millimeter of ice core. A 999-point running average of the ECM data set and results from f tests indicates that the variance of the ECM data decreases significantly at about 108 m. At this depth, the age-depth profile predicts an age of 1845 A.D. Results indicate the termination of the LIA was abrupt with a major climatic shift to warmer temperatures around 1845 A.D. and continuing to present day. Prediction limits (error bars) calculated for the profile ages are {+-}10 years (90% confidence level). Thus a conservative estimate for the time taken to complete the LIA climatic shift to present-day climate is about 10 years, suggesting the LIA termination in alpine regions of central North America may have occurred on a relatively short (decadal) timescale. (c) 2000 American Geophysical Union.« less
Dharmaraja, Jeyaprakash; Subbaraj, Paramasivam; Esakkidurai, Thirugnanasamy; Shobana, Sutha; Raji, Saravanan
2014-01-01
Mixed ligand complexation of 2-aminobenzamide (2AB) as ligand [L] with Zn(II) in the presence of some bio-relevant amino acid constituents like glycine (gly), L-alanine (ala), L-valine (val) and L-phenylalanine (phe) as ligand [B] have been investigated using pH-metric measurements with a combined pH electrode at different temperatures (300, 310, 320 and 330 ± 0.1 K) in 50% (v/v) ethanol-water mixture containing I = 0.15 M NaClO(4) as supporting electrolyte. Computer assisted analysis of the experimental titration data showed the presence of ZnLB and ZnLB2 species as mixed ligand complexes in addition to various binary species. In ZnLB/ZnLB(2) species, both primary and secondary ligands act as bidentate to form a stable six, five membered chelate ring. The calculated stabilization parameter Deltalog K, log X, log X' and % R.S. values clearly show the mixed ligand complexes have higher stabilities than their binary. Thermodynamic parameters DeltaG, DeltaH and DeltaS have been derived from the temperature dependence of the stability constants. The complexation behavior of ZnLB species has been studied by means of electronic spectra. The percentage distribution of various binary and mixed ligand species of each type of the complexes in solution depending on pH and the ratio of Zn(II) to 2-aminobenzamide/amino acid of the systems.
2007-06-27
KENNEDY SPACE CENTER, FLA. -- At Launch Pad 17-B, at Cape Canaveral Air Force Station, the Delta II launch vehicle with NASA’s Dawn spacecraft mission logo can be seen as it is moved into position for stacking with the Delta II launch vehicle. Launch is scheduled for July 7. Dawn is the ninth mission in NASA's Discovery Program. The spacecraft will be the first to orbit two planetary bodies, asteroid Vesta and dwarf planet Ceres, during a single mission. Vesta and Ceres lie in the asteroid belt between Mars and Jupiter. It is also NASA’s first purely scientific mission powered by three solar electric ion propulsion engines. Photo credit: NASA/Troy Cryder.
2009-04-16
CAPE CANAVERAL, Fla. – On Launch Complex 17-B at Cape Canaveral Air Force Station, the first stage of the Delta II rocket in the background waits for the mobile service tower and the solid rocket boosters (top foreground) that will be attached. The Delta II is the launch vehicle for the STSS Demonstrator spacecraft. The STSS Demonstrators is a midcourse tracking technology demonstrator and is part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency on July 29. Photo credit: NASA/Kim Shiflett
2003-05-02
KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is being dismantled from atop the Delta II rocket. It will be taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.
2003-05-02
KENNEDY SPACE CENTER, FLA. - Workers on Launch Complex 17-B, Cape Canaveral Air Force Station, start dismantling the Space Infrared Telescope Facility (SIRTF) observatory from atop the Delta II rocket. It will be taken back to NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.
Delta II JPSS-1 Mission Science Briefing
2017-11-12
At Vandenberg Air Force Base in California, Jana Luis, division chief Predictive Services at the California Department of Forestry and Fire Protection, speaks to members of the media during a briefing focused on research planned for the Joint Polar Satellite System-1, or JPSS-1. Built by Ball Aerospace and Technologies Corp. of Boulder, Colorado, JPSS is the first in a series four next-generation environmental satellites in a collaborative program between the NOAA and NASA. Liftoff atop a United Launch Alliance Delta II rocket is scheduled to take place from Vandenberg's Space Launch Complex 2 at 1:47 a.m. PST (4:47 a.m. EST), on Nov. 14, 2017.
Central projections and entries of capsaicin-sensitive muscle afferents.
Della Torre, G; Lucchi, M L; Brunetti, O; Pettorossi, V E; Clavenzani, P; Bortolami, R
1996-03-25
The entry pathway and central distribution of A delta and C muscle afferents within the central nervous system (CNS) were investigated by combining electron microscopy and electrophysiological analysis after intramuscular injection of capsaicin. The drug was injected into the rat lateral gastrocnemius (LG) and extraocular (EO) muscles. The compound action potentials of LG nerve and the evoked field potentials recorded in semilunar ganglion showed an immediate and permanent reduction in A delta and C components. The morphological data revealed degenerating unmyelinated axons and terminals in the inner sublamina II and in the border of laminae I-II of the dorsal horn at L4-L5 and C1-C2 (subnucleus caudalis trigemini) spinal cord segments. Most degenerating terminals were the central bouton (C) of type I and II synaptic glomeruli. Furthermore, degenerating peripheral axonal endings (V2) presynaptic to normal C were found. Since V2 were previously found degenerated after cutting the oculomotor nerve (ON) or L4 ventral root, we conclude that some A delta and C afferents from LG and EO muscles entering the CNS by ON or ventral roots make axoaxonic synapses on other primary afferents to promote an afferent control of sensory input.
Thermometric studies on the Fe(III)-EDTA chelate.
Dot, K
1978-02-01
A DeltaH of -11.5 +/- 0.5 kJ/mole has been determined for the formation of the Fe(III)-EDTA chelate at 25.0 degrees and mu = 0.1(= [HClO(4)] + [NaClO(4)]) by a direct thermometric titration procedure. The entropy change, DeltaS, has been calculated to be 440 J.mole(-1) .deg(-1) by combining the result of the heat measurements with the free energy change obtained from the stability constant previously determined. A relationship between the DeltaS values and the standard partial molal entropies of the tervalent metal ions is discussed. In addition, conditions for the thermometric titration of Fe(III) with NA(4)EDTA at room temperature have been investigated. Iron(III) can be determined in the presence of fairly large amounts of phosphate, Cr(III), Mn(II) and Al(III).
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-01
... hereby given that a letter of authorization (LOA) has been issued to the 30th Space Wing, U.S. Air Force... vehicle programs use VAFB to launch satellites into polar orbit: Delta II, Taurus, Atlas V, Delta IV..., and fixed-wing aircrafts are launched from VAFB. The activities under these regulations create two...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-04
..., notification is hereby given that a letter of authorization (LOA) has been issued to the 30th Space Wing, U.S... launch satellites into polar orbit: Delta II; Taurus; Atlas V; Delta IV; Falcon; and Minotaur. Also a variety of small missiles, several types of interceptor and target vehicles, and fixed-wing aircrafts are...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-05
... hereby given that a letter of authorization (LOA) has been issued to the 30th Space Wing, U.S. Air Force...). Currently, six space launch vehicle programs use VAFB to launch satellites into polar orbit: Delta II; Taurus; Atlas V; Delta IV; Falcon; and Minotaur. Also a variety of small missiles, several types of...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-07
... hereby given that a letter of authorization (LOA) has been issued to the 30th Space Wing, U.S. Air Force...). Currently, six space launch vehicle programs use VAFB to launch satellites into polar orbit: Delta II; Taurus; Atlas V; Delta IV; Falcon; and Minotaur. Also a variety of small missiles, several types of...
Ozone Temperature Correlations in the Upper Stratosphere as a Measure of Chlorine Content
NASA Technical Reports Server (NTRS)
Stolarski, Richard S.; Douglass, Ann R.; Remsberg, Ellis E.; Livesey, Nathaniel J.; Gille, John C.
2012-01-01
We use data from the Nimbus-7 Limb Infrared Monitor of the Stratosphere (LIMS) for the 1978-1979 period together with data from the Upper Atmosphere Research Satellite Microwave Limb Sounder (UARS MLS) for the years 1993 to 1999, the Aura MLS for the years 2004 to 2011, and the Aura High Resolution Infrared Limb Sounder (HIRDLS) for the years 2005 to 2007 to examine ozone-temperature correlations in the upper stratosphere. Our model simulations indicate that the sensitivity coefficient of the ozone response to temperature (Delta ln(O3)/Delta.(l/T)) decreases as chlorine has increased in the stratosphere and should increase in the future as chlorine decreases. The data are in agreement with our simulation of the past. We also find that the sensitivity coefficient does not change in a constant-chlorine simulation. Thus the change in the sensitivity coefficient depends on the change in chlorine, but not on the change in greenhouse gases. We suggest that these and future data can be used to track the impact of chlorine added to the stratosphere and also to track the recovery of the stratosphere as chlorine is removed under the provisions of the Montreal Protocol.
NASA Astrophysics Data System (ADS)
Scarelli, Frederico M.; Cantelli, Luigi; Barboza, Eduardo G.; Gabbianelli, Giovanni
2017-05-01
This paper focuses on the Ural Delta in the northern zone of the Caspian Sea, an area with particular characteristics, where intense influence from anthropogenic and natural factors exists, which acts on the fragile delta system. We built a database to integrate the data from the published sources, bathymetric survey, and recent images in the geographical information system (GIS) environment. The results were linked to the Caspian Sea level (CSL) curve, which had many variations, changing the Ural Delta system's dynamics and in its architecture. In addition, the anthropogenic changes contribute to shaping the actual Ural Delta architecture. Through the link between the results and CSL, we reconstructed an evolution model for the Ural Delta system for the last century and identified three different architectures for the Ural Delta, determined by the energy that acted on the system in the last century and by the anthropogenic changes. This work identifies six different delta phases, which are shaped by CSL changes during the last 70 years and by anthropogenic changes. The delta phases recognized are: i) a Lobate Delta phase, shaped during high CSL before 1935; ii) Natural Elongate Delta 1935-1950 formed during rapid CSL fall; iii) Anthropogenic Elongate Delta 1950-1966, formed during rapid CSL fall and after the Ural-Caspian Sea canal construction, which modified the sedimentary deposition on the delta; iv) Anthropogenic Elongate Delta 1966-1982 shaped during low CSL phase; v) Anthropogenic Elongate Delta 1982-1996 formed during a rapid CSL rise phase; and vi) Anthropogenic Elongate Delta 1996-2009 shaped during high CSL that represent the last phase and actual Ural Delta architecture.
Crew Earth Observations (CEO) taken during Expedition 9
2004-06-03
ISS009-E-09985 (3 June 2004) --- The Ebro River Delta, located along the eastern coast of Spain, is featured in this image photographed by an Expedition 9 crewmember on the International Space Station (ISS). Taken in partial sun glint, this view defines the Ebros fresh water lens the water density boundary between the upper layer of fresh water issuing from the Ebro River mouth and the saltier, denser Mediterranean Sea water. According to NASA geologists studying the ISS imagery, diversion and impoundment of the Ebro River upstream has led to a decrease in water and sediment delivery to the delta. This decrease has led to increased erosion in some areas to the northeast of El Fangar Bay and along the southwestern shoreline of the delta. The Ebro River Delta is one of the largest wetland areas in the western Mediterranean region. The Ebro delta has grown rapidlythe historical rate of growth of the delta is demonstrated by the city of Amposta. This city was a seaport in the 4th Century, and is now located well inland from the current Ebro river mouth. The rounded form of the delta attests to the balance between sediment deposition by the Ebro River and removal of this material by wave erosion. The modern delta is in intensive agricultural use for rice, fruit, and vegetables. White polygonal areas to the north and south of the Ebro River are paddy fields. The Ebro delta also hosts numerous beaches, marshes, and saltpans that provide habitat for over 300 species of birds. A large part of the delta was designated as Parc Natural del Delta de l'Ebre (Ebre Delta National Park) in 1983. A network of canals and irrigation ditches constructed by both agricultural and conservation groups are helping to maintain the ecologic and economic resources of the Ebro Delta.
Isotopic evidence for methane-based chemosynthesis in the Upper Floridan aquifer food web.
Opsahl, Stephen P; Chanton, Jeffrey P
2006-11-01
Anecdotal observations of the Dougherty plain cave crayfish (Cambarus cryptodytes), the Georgia blind cave salamander (Haideotriton wallacei), and albinistic isopods (Caecidotea sp.) at great depths below the land surface and distant from river corridors suggest that obligate aquifer-dwelling (troglobitic) organisms are widely distributed throughout the limestone Upper Floridan aquifer (UFA). One mechanism by which subterranean life can proliferate in an environment void of plant productivity is through a microbial food web that includes chemosynthesis. We examined this possibility in the UFA by measuring the isotopic composition ((13)C, (14)C, and (15)N) of tissues from troglobitic macrofauna. Organisms that were captured by cave divers entering into spring conduits had delta(13)C values that suggested plant matter as a primary food resource (cave crayfish, -24.6 +/- 2.7 per thousand, n = 9). In contrast, delta(13)C values were significantly depleted in organisms retrieved from wells drilled into areas of the UFA remote from spring and sinkhole conduits (cave crayfish -34.7 +/- 9.8 per thousand, n = 10). Depleted (13)C values in crayfish were correlated with radiocarbon (Delta(14)C) depletion relative to modern values. The results suggest that methane-based microbial chemosynthetic pathways support organisms living in the remote interior of the aquifer, at least in part.
Subsize specimen testing of nuclear reactor pressure vessel material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, A.S.; Rosinski, S.T.; Cannon, N.S.
1991-01-01
A new methodology is proposed to correlate the upper shelf energy (USE) of full size and subsize Charpy specimens of a nuclear reactor pressure vessel plate material, A533B. The methodology appears to be more satisfactory than the methodologies proposed earlier. USE of a notched-only specimen is partitioned into macro-crack initiation and crack propagation energies. USE of a notched and precracked specimen provides the crack propagation energy. [Delta]USE, the difference between the USE's of notched-only and precracked specimens, is an estimate of the crack initiation energy. [Delta]USE was normalized by a factor involving the dimensions of the Charpy specimen and themore » stress concentration factor at the notch root. The normalized values of the [Delta]USE were found to be invariant with specimen size.« less
NASA Astrophysics Data System (ADS)
Wei, Xiaojie; Steel, Ronald J.; Ravnås, Rodmar; Jiang, Zaixing; Olariu, Cornel; Li, Zhiyang
2016-04-01
Detailed observations on the Rannoch Formation in several deep Viking Graben wells indicate that the 'classical' wave-dominated Brent delta-front shows coupled storm-tide processes. The tidal signals are of three types: I): alternations of thick cross-laminated sandstone and thin mud-draped sandstone, whereby double mud drapes are prominent but discretely distributed, II): a few tidal bundles within bottomsets and foresets of up to 10 cm-thick sets cross-strata, and III): dm-thick heterolithic lamination showing multiple, well-organized sand-mud couplets. During progradation of the Brent Delta, the Rannoch shoreline system passed upward from 1) a succession dominated by clean-water, storm-event sets and cosets frequently and preferentially interbedded with type I tidal beds, and occasional types II and III tidal deposits, toward 2) very clean storm-event beds less frequently separated by types II and III tidal beds, and then into 3) a thin interval showing muddier storm-event beds mainly alternating with type II tidal beds. It is likely that those variations in preservation bias of storm and tidal beds in each facies succession result from combined effects of 1) the frequency and duration of storms; 2) river discharge; and 3) the absolute and relative strength of tides. Tidal deposits are interpreted as inter-storm, fair-weather deposits, occurred preferentially in longer intermittent fair-weather condition and periods of lower river discharge, and well-pronounced in the distal-reach of delta-front. The formation and preservation of tidal signals between storm beds, indicate that the studied Rannoch Formation was most likely a storm-dominated, tide-influenced delta front 1) near the mouth of a large Brent river, where a significant tidal prism and high tidal range might be expected, and 2) in a setting where there were relatively high sedimentation rates associated with high local subsidence rates, so that the storm waves did not completely rework the inter-storm deposits. The documentation of the unconventional Rannoch Formation contributes to our understanding of mixed-energy coastal systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fracasso, M.A.; Dutton, S.P.; Finley, R.J.
The Travis Peak formation (lower Cretaceous) in the eastern East Texas basin is a fluvio-deltaic depositional system divided into large-scale facies packages: a middle sandstone-rich fluvial and delta-plain sequence that is gradationally overlain and underlain by a marine-influenced delta-fringe zone with a higher mudstone content. Domes and structural terraces on the west flank of the Sabine Uplift influenced deposition of Travis Peak sediments, and most Travis Peak gas production in this area is from thin sandstones (<25 ft(<7.6 m) thick) in the upper delta-fringe facies. The trapping mechanism is stratigraphic pinch-out of sandstones or porosity zones within sandstone, or both,more » on the flanks of structures. Detailed mapping of producing sandstone sequences in the uppermost upper delta-fringe on the western flank of the Bethany structure has delineated fluvial channelways, distributary or tidal channels, and barrier of distributary-mouth bars. Most Travis Peak gas production in the Bethany West area is from the bases of channel sandstones in a marine-influenced facies belt. Travis Peak sandstones in the eastern East Texas basin have undergone a complex series of diagenetic modifications. Precipitation of authigenic quartz, ankerite, dolomite, illite, and chlorite and the introduction of reservoir bitumen were the most important causes of occlusion of primary porosity and reduction of permeability. Permeability decreases with depth in the Travis Peak, which suggests that the diagenetic processes that caused extensive cementation and resultant low permeability throughout most of the formation operated less completely on sediments deposited near the top of the succession.« less
Torok, Kathryn S.; Baker, Nancy A.; Lucas, Mary; Domsic, Robyn T.; Boudreau, Robert; Medsger, Thomas A.
2010-01-01
Objectives To determine the reliability and validity of a new measure of finger motion in patients with systemic sclerosis (SSc), the ‘delta finger-to-palm’ (delta FTP) and compare its psychometric properties to the traditional measure of finger motion, the finger-to-palm (FTP). Methods Phase 1: The reliability of the delta FTP and FTP were examined in 39 patients with SSc. Phase 2: Criterion and convergent construct validity of both measures were examined in 17 patients with SSc by comparing them to other clinical measures: Total Active Range of Motion (TAROM), Hand Mobility in Scleroderma (HAMIS), the Duruoz Hand Index (DHI), Health Assessment Questionnaire (HAQ), and modified Rodnan skin score (mRSS). Phase 3: Sensitivity to change of the delta FTP was investigated in 24 patients with early diffuse cutaneous SSc. Results Both measures had excellent intra-rater and inter-rater reliability (ICC 0.92 to 0.99). Fair to strong correlations (rs=0.49–0.94) were observed between the delta FTP and TAROM, HAMIS, and DHI. Fair to moderate correlations were observed between delta FTP and HAQ components related to hand function and upper extremity mRSS. Correlations of the traditional FTP with these measures were fair to strong, but most often the delta FTP outperformed the FTP. The effect size and standardised response mean for the mean delta FTP were 0.50 and 1.10 respectively, over a 2–8 month period. Conclusion The delta FTP is a valid and reliable measure of finger motion in patients with SSc which outperforms the FTP. PMID:20576211
2006-10-19
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers secure the two halves of the fairing that enclose the STEREO spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The STEREO (Solar Terrestrial Relations Observatory) mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. Designed and built by the Applied Physics Laboratory (APL) , the STEREO mission is being managed by NASA Goddard Space Flight Center. APL will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-19
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers maneuver the second half of the fairing into place around the STEREO spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The STEREO (Solar Terrestrial Relations Observatory) mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. Designed and built by the Applied Physics Laboratory (APL) , the STEREO mission is being managed by NASA Goddard Space Flight Center. APL will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-19
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, the two fairing segments close in around the STEREO spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The STEREO (Solar Terrestrial Relations Observatory) mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. Designed and built by the Applied Physics Laboratory (APL) , the STEREO mission is being managed by NASA Goddard Space Flight Center. APL will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-19
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, the first half of the fairing is moved into place around the STEREO spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The STEREO (Solar Terrestrial Relations Observatory) mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. Designed and built by the Applied Physics Laboratory (APL) , the STEREO mission is being managed by NASA Goddard Space Flight Center. APL will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-19
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers help maneuver one segment of the fairing around the STEREO spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The STEREO (Solar Terrestrial Relations Observatory) mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. Designed and built by the Applied Physics Laboratory (APL) , the STEREO mission is being managed by NASA Goddard Space Flight Center. APL will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-19
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers check the placement of the first half of the fairing around the STEREO spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The STEREO (Solar Terrestrial Relations Observatory) mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. Designed and built by the Applied Physics Laboratory (APL) , the STEREO mission is being managed by NASA Goddard Space Flight Center. APL will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-19
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers (background) observe the lifting of the two fairing segments that will encapsulate the STEREO spacecraft (foreground). The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The STEREO (Solar Terrestrial Relations Observatory) mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. Designed and built by the Applied Physics Laboratory (APL) , the STEREO mission is being managed by NASA Goddard Space Flight Center. APL will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-19
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers prepare the twin observatories known as STEREO for encapsulation in the fairing. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The STEREO (Solar Terrestrial Relations Observatory) mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. Designed and built by the Applied Physics Laboratory (APL) , the STEREO mission is being managed by NASA Goddard Space Flight Center. APL will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-19
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers prepare the twin observatories known as STEREO for encapsulation in the fairing. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The STEREO (Solar Terrestrial Relations Observatory) mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. Designed and built by the Applied Physics Laboratory (APL) , the STEREO mission is being managed by NASA Goddard Space Flight Center. APL will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-19
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, one segment of the fairing is lifted toward the STEREO spacecraft in the foreground. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The STEREO (Solar Terrestrial Relations Observatory) mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. Designed and built by the Applied Physics Laboratory (APL) , the STEREO mission is being managed by NASA Goddard Space Flight Center. APL will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-19
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers help maneuver one segment of the fairing around the STEREO spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The STEREO (Solar Terrestrial Relations Observatory) mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. Designed and built by the Applied Physics Laboratory (APL) , the STEREO mission is being managed by NASA Goddard Space Flight Center. APL will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-19
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers prepare the twin observatories known as STEREO for encapsulation in the fairing. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The STEREO (Solar Terrestrial Relations Observatory) mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. Designed and built by the Applied Physics Laboratory (APL) , the STEREO mission is being managed by NASA Goddard Space Flight Center. APL will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2003-02-24
KENNEDY SPACE CENTER, FLA. -- The cruise stage, aeroshell and lander for the Mars Exploration Rover-1 mission and the MER-2 rover arrive at KSC. The same flight hardware for the MER-2 rover arrived Jan. 27; however, the MER-2 rover is scheduled to arrive at KSC in March. While at KSC, each of the two rovers, the aeroshells and the landers will undergo a full mission simulation. All of these flight elements will then be integrated together. After spin balance testing, each spacecraft will be mated to a solid propellant upper stage booster that will propel the spacecraft out of Earth orbit. Approximately 10 days before launch they will be transported to the launch pad for mating with their respective Boeing Delta II rockets. The rovers will serve as robotic geologists to seek answers about the evolution of Mars, particularly for a history of water. The rovers will be identical to each other, but will land at different regions of Mars. Launch of the MER-1 is scheduled for May 30. MER-2 will follow June 25.
2014-06-05
ISS040-E-008209 (6 June 2014) --- Okavango inland delta in northern Botswana is featured in this image photographed by an Expedition 40 crew member on the International Space Station. The great Okavango delta in the Kalahari Desert is illuminated in the sun?s reflection point in this panorama. Using this sun glint technique, crew members can image fine detail of water bodies. Here the bright line of the Okavango River shows the annual summer flood advancing from the well-watered Angolan Highlands (upper margin) to the delta. Then the flood water slowly seeps across the 150 kilometer-long delta, supplying forests and wetlands, finally reaching the fault-bounded lower margin of the delta in the middle of winter. Most of the water of this large river is used up by the forests, or evaporates in the dry air. Only two percent of the river?s water actually exits the delta. The wetland supports high biodiversity in the middle of the otherwise semiarid Kalahari Desert, and is now one of the most famous tourist sites in Africa. This view also shows the small quantity of water in the Boteti River. Okavango water only reaches the dry lake floors (lower right) in the wettest years. Part of one of the station?s solar arrays is visible at right.
Seismic stratigraphy of the Mississippi-Alabama shelf and upper continental slope
Kindinger, J.L.
1988-01-01
The Mississippi-Alabama shelf and upper continental slope contain relatively thin Upper Pleistocene and Holocene deposits. Five stages of shelf evolution can be identified from the early Wisconsinan to present. The stages were controlled by glacioeustatic or relative sea-level changes and are defined by the stratigraphic position of depositional and erosional episodes. The stratigraphy was identified on seismic profiles by means of geomorphic pattern, high-angle clinoform progradational deposits, buried stream entrenchments, planar conformities, and erosional unconformities. The oldest stage (stage 1) of evolution occurred during the early Wisconsinan lowstand; the subaerially exposed shelf was eroded to a smooth seaward-sloping surface. This paleosurface is overlain by a thin (< 10 m) drape of transgressive deposits (stage 2). Stage 3 occurred in three phases as the late Wisconsinan sea retreated: (1) fluvial channel systems eroded across the shelf, (2) deposited a thick (90 m) shelf-margin delta, and (3) contemporaneously deposited sediments on the upper slope. Stage 4 included the rapid Holocene sea-level rise that deposited a relatively thin transgressive facies over parts of the shelf. The last major depositional episode (stage 5) was the progradation of the St. Bernard delta over the northwestern and central parts of the area. A depositional hiatus has occurred since the St. Bernard progradation. These Upper Quaternary shelf and slope deposits provide models for analogous deposits in the geologic record. Primarily, they are examples of cyclic sedimentation caused by changes in sea level and may be useful in describing short-term, sandy depositional episodes in prograding shelf and slope sequences. ?? 1988.
Zajac, M
1977-01-01
General, k, and specific, k1 and k2, first-order rate constants for the parallel reaction of hydrolysis catalized by H+ ions were estimated for sulfadiazine (I), sulfamerazine (II), sulfadimidine (III), sulfaperine (IV) and sulfamethoxydiazine (V), hydrolyzed in 1 mole/dm3 HCl at 333, 343, 355 and 363 K. General first-order rate constants for the spontaneous hydrolysis of I--V in borate buffer pH 9.20 at 403, 411 and 418 K were also determined. Thermodynamic parameters of the reaction (delta Ha, deltaH not equal to, deltaS not equal to, deltaG not equal to and log A) were calculated. The effect of substituents in positions 4, 5 and 6 of the pyrimidine ring on the rate of hydrolysis was interpreted in terms of Hammett equation.
Boron content and isotopic composition of ocean basalts: Geochemical and cosmochemical implications
NASA Astrophysics Data System (ADS)
Chaussidon, Marc; Jambon, Albert
1994-02-01
Ion microprobe determination of boron content and delta B-11 values has been performed for a set of 40 oceanic basalt glasses (N-MORB, E-MORB, BABB and OIB) whose chemical characteristics (major and trace elements and isotopic ratios) are well documented. Boron contents, determined at +/- 10% relative, range from 0.34 to 0.74 ppm in N-MORB, whereas E-MORB, BABB and OIB extend to higher concentrations (0.5-2.4 ppm). After correction for crystal fractionation, this range is reduced to 0.5-1.3 ppm. N-MORB and E-MORB also exhibit different B/K ratios, 1.0 +/- 0.3 x 10(exp -3) and 0.2 to 1.4 x 10(exp -3) respectively. This can be interpreted as resulting from the incorporation into the upper mantle of a K-rich and B-poor component (e.g., subducted oceanic crust having lost most of its initial boron). Delta B-11 values range between -7.40 +/- 2 and +0.6 +/- 2 per mill, with no significant difference between N-MORB, E-MORB, OIB or BABB. The Hawaiian samples define a strong linear correlation between boron contents, delta B-11 values, MgO and water contents and delta D values. This is interpreted as resulting from assimilation-fractionation processes which occurred within a water-rich oceanic crust, and which produced high delta B-11 values associated with high delta D values. The low level of B-11 enrichment in the upper mantle constraints the amount of boron reinjected by subduction to a maximum of about 2% of the boron present in the subducted slab. This in turn corresponds to a maximum net Boron transfer of about 3 x 10(exp 10) g/a towards the surface reservoirs. Finally, a boron content of 0.25 +/- 0.1 ppm is estimated for the bulk silicate Earth (i.e., primitive mantle), corresponding to a depletion factor relative to C1 chondrites of about 0.15 and suggesting that B was moderately volatile upon terrestrial accretion.
2008-03-27
CAPE CANAVERAL, Fla. --- On Pad 17-B on Cape Canaveral Air Force Station, the Delta II rocket, at right, that will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft is poised to receive the solid rocket boosters in the mobile service tower, at left. A series of nine strap-on solid rocket motors will help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann
2008-03-27
CAPE CANAVERAL, Fla. --- On Pad 17-B on Cape Canaveral Air Force Station, three solid rocket boosters are in the mobile service tower. They will be mated with the Delta II rocket, at left, that will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann
2008-03-27
CAPE CANAVERAL, Fla. --- On Pad 17-B on Cape Canaveral Air Force Station, three solid rocket boosters are in the mobile service tower. They will be mated with the Delta II rocket, at left, that will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann
2008-03-27
CAPE CANAVERAL, Fla. --- At Pad 17-B on Cape Canaveral Air Force Station, a second solid rocket booster joins the first booster lifted into the mobile service tower for mating with the Delta II rocket that will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann
2008-03-27
CAPE CANAVERAL, Fla. --- A third solid rocket booster arrives on Pad 17-B on Cape Canaveral Air Force Station for mating with the Delta II rocket that will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann
2008-03-27
CAPE CANAVERAL, Fla. --- On Pad 17-B on Cape Canaveral Air Force Station, the third solid rocket booster joins two others in the mobile service tower. They will be mated with the Delta II rocket that will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann
2008-03-27
CAPE CANAVERAL, Fla. --- On Pad 17-B on Cape Canaveral Air Force Station, the third solid rocket booster joins two others in the mobile service tower. They will be mated with the Delta II rocket that will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann
Boeing Delta II rocket for FUSE launch arrives at CCAS
NASA Technical Reports Server (NTRS)
1999-01-01
At Launch Pad 17A, Cape Canaveral Air Station (CCAS), the first stage of a Boeing Delta II rocket is moved into the tower. The rocket is targeted to launch NASA's Far Ultraviolet Spectroscopic Explorer (FUSE), developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md. FUSE will investigate the origin and evolution of the lightest elements in the universe, hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum. FUSE is scheduled to be launched June 23 at CCAS.
Boeing Delta II rocket for FUSE launch arrives at CCAS
NASA Technical Reports Server (NTRS)
1999-01-01
After its arrival at Launch Pad 17A, Cape Canaveral Air Station (CCAS), the first stage of a Boeing Delta II rocket is raised to a vertical position. The rocket is targeted to launch NASA's Far Ultraviolet Spectroscopic Explorer (FUSE), developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md. FUSE will investigate the origin and evolution of the lightest elements in the universe, hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum. FUSE is scheduled to be launched June 23 at CCAS.
Boeing Delta II rocket for FUSE launch arrives at CCAS
NASA Technical Reports Server (NTRS)
1999-01-01
At Launch Pad 17A, Cape Canaveral Air Station (CCAS), the first stage of a Boeing Delta II rocket is raised for its journey up the launch tower. The rocket is targeted to launch NASA's Far Ultraviolet Spectroscopic Explorer (FUSE), developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md. FUSE will investigate the origin and evolution of the lightest elements in the universe, hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum. FUSE is scheduled to be launched June 23 at CCAS.
Boeing Delta II rocket for FUSE launch arrives at CCAS
NASA Technical Reports Server (NTRS)
1999-01-01
At Launch Pad 17A, Cape Canaveral Air Station (CCAS), the first stage of a Boeing Delta II rocket is ready to be lifted into the tower. The rocket is targeted to launch NASA's Far Ultraviolet Spectroscopic Explorer (FUSE), developed by The Johns Hopkins University under contract to Goddard Space Flight Center, Greenbelt, Md. FUSE will investigate the origin and evolution of the lightest elements in the universe,hydrogen and deuterium. In addition, the FUSE satellite will examine the forces and process involved in the evolution of the galaxies, stars and planetary systems by investigating light in the far ultraviolet portion of the electromagnetic spectrum. FUSE is scheduled to be launched June 23 at CCAS.
Sources of suspended sediment in the Lower Roanoke River, NC
NASA Astrophysics Data System (ADS)
Jalowska, A. M.; McKee, B. A.; Rodriguez, A. B.; Laceby, J. P.
2015-12-01
The Lower Roanoke River, NC, extends 220 km from the fall line to the bayhead delta front in the Albemarle Sound. The Lower Roanoke is almost completely disconnected from the upper reaches by a series of dams, with the furthest downstream dam located at the fall line. The dams effectively restrict the suspended sediment delivery from headwaters, making soils and sediments from the Lower Roanoke River basin, the sole source of suspended sediment. In flow-regulated rivers, bank erosion, especially mass wasting, is the major contributor to the suspended matter. Additional sources of the suspended sediment considered in this study are river channel, surface soils, floodplain surface sediments, and erosion of the delta front and prodelta. Here, we examine spatial and temporal variations in those sources. This study combined the use of flow and grain size data with a sediment fingerprinting method, to examine the contribution of surface and subsurface sediments to the observed suspended sediment load along the Lower Roanoke River. The fingerprinting method utilized radionuclide tracers 210Pb (natural atmospheric fallout), and 137Cs (produced by thermonuclear bomb testing). The contributions of surface and subsurface sources to the suspended sediment were calculated with 95% confidence intervals using a Monte-Carlo numerical mixing model. Our results show that with decreasing river slope and changing hydrography along the river, the contribution of surface sediments increases and becomes a main source of sediments in the Roanoke bayhead delta. At the river mouth, the surface sediment contribution decreases and is replaced by sediments eroded from the delta front and prodelta. The area of high surface sediment contribution is within the middle and upper parts of the delta, which are considered net depositional. Our study demonstrates that floodplains, often regarded to be a sediment sink, are also a sediment source, and they should be factored into sediment, carbon and nutrient budgets.
NASA Technical Reports Server (NTRS)
Holman, gordon; Dennis Brian R.; Tolbert, Anne K.; Schwartz, Richard
2010-01-01
Solar nonthermal hard X-ray (HXR) flare spectra often cannot be fitted by a single power law, but rather require a downward break in the photon spectrum. A possible explanation for this spectral break is nonuniform ionization in the emission region. We have developed a computer code to calculate the photon spectrum from electrons with a power-law distribution injected into a thick-target in which the ionization decreases linearly from 100% to zero. We use the bremsstrahlung cross-section from Haug (1997), which closely approximates the full relativistic Bethe-Heitler cross-section, and compare photon spectra computed from this model with those obtained by Kontar, Brown and McArthur (2002), who used a step-function ionization model and the Kramers approximation to the cross-section. We find that for HXR spectra from a target with nonuniform ionization, the difference (Delta-gamma) between the power-law indexes above and below the break has an upper limit between approx.0.2 and 0.7 that depends on the power-law index delta of the injected electron distribution. A broken power-law spectrum with a. higher value of Delta-gamma cannot result from nonuniform ionization alone. The model is applied to spectra obtained around the peak times of 20 flares observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI from 2002 to 2004 to determine whether thick-target nonuniform ionization can explain the measured spectral breaks. A Monte Carlo method is used to determine the uncertainties of the best-fit parameters, especially on Delta-gamma. We find that 15 of the 20 flare spectra require a downward spectral break and that at least 6 of these could not be explained by nonuniform ionization alone because they had values of Delta-gamma with less than a 2.5% probability of being consistent with the computed upper limits from the model. The remaining 9 flare spectra, based on this criterion, are consistent with the nonuniform ionization model.
Telephoto lens view of Silver Spur in the Hadley Delta region from Apollo 15
NASA Technical Reports Server (NTRS)
1971-01-01
A telephoto lens view of the prominent feature called Silver Spur in the Hadley Delta region, photographed during the Apollo 15 lunar surface extravehicular activity at the Hadley-Apennine landing site. The distance from the camera to the spur is about 10 miles. The field of view across the bottom is about one mile. Structural formations in the mountain are clearly visible. There are two major units. The upper unit is characterized by massive subunits, each one of which is approximately 200 feet deep. The lower major unit is characterized by thinner bedding and cross bedding.
Overpressure Prediction From Seismic Data: Implications on Drilling Safety
NASA Astrophysics Data System (ADS)
Osinowo, O. O.; Oladunjoye, M. A.; Olayinka, A. I.
2007-12-01
High rate of sediment influx into the Niger Delta via river Niger coupled with high rate of basin subsidence, very thick clayey members of Agbada and Akata Formations as well as prevailing presence of growth faults had been identified as the main factors responsible for overpressure generation and preservation in the Niger Delta basin. Analysis of porosity dependent parameters such as interval transit times and interval velocities derived from the seismic records of a field in the Western Niger Delta revealed the presence of overpressured formation at depth of 8670 feet, which is the top of the overpressured zone. The plot of interval transit times against depth gave a positive deflection from normal at the region of overpressure while interval velocity plot gave negative deflection; the ratio of this deviation in both cases is as high as 1.52. Pressure gradient in the upper, normally pressured part of the field was determined to be 0.465 psi/ft., which is within the established normal pressure gradient range in Niger Delta, while the abnormal formation pressure gradient in the overpressured region was determined to be 0.96 psi/ft., and this is also within the published abnormal pressure gradient range of 0.71 to 1.1 psi/ft. in Niger Delta. Formation fracture pressure gradients were determined from the formation pressure information to be 0.66psi/ft. in the upper part of the field and 1.2psi/ft. in the overpressured horizon. Mud weight window (MWW); mud density range necessary to prevent formation kick without initiating hydraulic fracturing was determined to be 10.2 to 12.5lbm/gal in the upper part of the field and 22.1 to 22.63lbm/gal in the overpressured horizon. MWW is indispensable for the selection of the mud pump type, capacity, pumping rate and mud densities at different formation pressure regimes. Overpressure prediction is also requisite for drilling program design, casing design as well as rig capacity choice before spudding. It is necessary to reduce well construction risk, save drilling hour as well as cut down drilling cost. If adequate predictions are not taken however, drilling hazards known as blowout may occur. Blowout, an uncontrollable flow of formation fluid into the well has made oil exploration and exploitation activities in Niger Delta, Southern Nigeria, a curse for the people rather than a blessing because considerable numbers of wells blew out during well construction activities, hence the characteristic oil spill which had degraded the environment, making fishing operation, a source of livelihood of the people difficult. Therefore the need for overpressure prediction as a guide for safe drilling, especially in unfamiliar exploration environments.
NASA Astrophysics Data System (ADS)
Liu, Z.; Yim, Steve H. L.; Wang, C.; Lau, N. C.
2018-05-01
Literature has reported the remarkable aerosol impact on low-level cloud by direct radiative forcing (DRF). Impacts on middle-upper troposphere cloud are not yet fully understood, even though this knowledge is important for regions with a large spatial heterogeneity of emissions and aerosol concentration. We assess the aerosol DRF and its cloud response in June (with strong convection) in Pearl River Delta region for 2008-2012 at cloud-resolving scale using an air quality-climate coupled model. Aerosols suppress deep convection by increasing atmospheric stability leading to less evaporation from the ground. The relative humidity is reduced in middle-upper troposphere due to induced reduction in both evaporation from the ground and upward motion. The cloud reduction offsets 20% of the aerosol DRF. The weaker vertical mixing further increases surface aerosol concentration by up to 2.90 μg/m3. These findings indicate the aerosol DRF impact on deep convection and in turn regional air quality.
Mackay, Murray; Hassan, Ahamedali M.
2000-01-01
Field accident data from NASS/CDS in the US and CCIS in the UK are compared. The UK sample is deliberately weighted to conform to the same AIS proportions (within AIS 2 – 6) as the weighted NASS data so that crash severity distributions can be compared for various selected outcomes. Age and gender have a significant effect on the deltaV distributions and median deltaV values. These differences are documented both for overall AIS 2 - 6, 3 - 6, and 4 - 6, and also for body regions of the head, neck, chest, abdomen and upper and lower extremities. Anomalies between the two samples are profound which raises doubts about the recording of belt use in NASS and the calculation of deltaV at lower crash severities. PMID:11558104
Subsize specimen testing of nuclear reactor pressure vessel material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, A.S.; Rosinski, S.T.; Cannon, N.S.
1991-12-31
A new methodology is proposed to correlate the upper shelf energy (USE) of full size and subsize Charpy specimens of a nuclear reactor pressure vessel plate material, A533B. The methodology appears to be more satisfactory than the methodologies proposed earlier. USE of a notched-only specimen is partitioned into macro-crack initiation and crack propagation energies. USE of a notched and precracked specimen provides the crack propagation energy. {Delta}USE, the difference between the USE`s of notched-only and precracked specimens, is an estimate of the crack initiation energy. {Delta}USE was normalized by a factor involving the dimensions of the Charpy specimen and themore » stress concentration factor at the notch root. The normalized values of the {Delta}USE were found to be invariant with specimen size.« less
Geomorphology of the Chippewa River delta of Glacial Lake Saginaw, central Lower Michigan, USA
NASA Astrophysics Data System (ADS)
Connallon, Christopher B.; Schaetzl, Randall J.
2017-08-01
We introduce, characterize, and interpret the geomorphic history of a relict, Pleistocene-aged delta of the Chippewa River in central Lower Michigan. The broad, sandy Chippewa delta developed into various stages of Glacial Lake Saginaw, between ca. ≈ 17 and 15 ka·BP (calibrated ages). Although the delta was first identified in 1955 on a statewide glacial geology map, neither its extent nor its Pleistocene history had been previously determined. The delta is typically forested, owing to its wet, sandy soils, which stand out against the agricultural fields of the surrounding, loamy lake plain sediments. The delta heads near the city of Mt Pleasant and extends eastward onto the Saginaw Lowlands, i.e., the plain of Glacial Lake Saginaw. Data from 3285 water well logs, 180 hand augered sites, and 185 points randomly located in a GIS on two-storied (sand over loam) soils were used to determine the extent, textural properties, and thickness of the delta. The delta is ≈ 18 km wide and ≈ 38 km long and is sandy throughout. Deltaic sediments from neighboring rivers that also drained into Glacial Lake Saginaw merge with the lower Chippewa delta, obscuring its boundary there. The delta is thickest near the delta's head and in the center, but thins to 1-2 m or less on its eastern margins. Mean thicknesses are 2.3-2.9 m, suggestive of a thin sediment body, frequently impacted by the waves and fluctuating waters of the lakes. Although beach ridges are only weakly expressed across the delta because of the sandy sediment, the coarsest parts of the delta are generally coincident with some of these inferred former shorezones and have a broad, incised channel that formed while lake levels were low. The thick upper delta generally lies above the relict shorelines of Glacial Lakes Saginaw and Arkona (≈ 17.1 to ≈ 16 ka·BP), whereas most of the thin, distal delta is associated with Glacial Lake Warren (≈ 15 ka·BP). Together, these data suggest that the Chippewa delta formed and prograded as lake levels in the Saginaw Lowlands alternated and episodically fell. The result is a delta that is comparatively thin, expansive, and sandy. In some places, these sands have subsequently been reworked into fields of small parabolic dunes.
NASA Astrophysics Data System (ADS)
Stingl, K.
1994-12-01
The Eibiswald Bucht is a small subbasin of the Western Styrian Basin exposing sediments of Lower Miocene age. In the past the entire sequence exposed in the Eibiswalder Bucht has been interpreted as being of fluvial/lacustrine origin; here, results are presented of detailed sedimentological investigations that lead to a revision of this concept. The lowermost siliciclastic sedimentary unit of the Eibiswalder Bucht sequence is the Radl Formation. It is overlain by the Eibiswald Beds, which are subdivided into the Lower, Middle and Upper Eibiswald Beds. The Radl Formation and the Lower Eibiswald Beds are interpreted as a fan delta complex deposited along NNW-SSE striking faults. Based on the sedimentary facies this fan delta can be subdivided into a subaerial alluvial fan facies group, a proximal delta facies group and a distal delta/prodelta facies group. The Radl Formation comprises the alluvial fan and proximal delta facies groups, the Lower Eibiswald Beds the distal delta/prodelta facies group. The alluvial fan and the proximal delta consist of diverse deposits of gravelly flows. The distal delta/prodelta consists of wave-reworked, bioturbated, low density turbidites intercalated with minor gravelly mass flows. The prodelta can be regarded as as the basin facies of the small and shallow Eibiswalder Bucht, where marine conditions prevailed. The basin was probably in part connected with the Eastern Styrian Basin, the contemporary depositional environment of the Styrian Schlier (mainly turbiditic marine offshore sediments in the Eastern Styrian Basin). Analysis of the clast composition, in conjunction with the paleotransport direction of the coarse delta mass flows of the Radl Formation, shows that the source rocks were exclusively crystalline rocks ranging from greenschists to eclogites.
Assessing impacts of dike construction on the flood dynamics of the Mekong Delta
NASA Astrophysics Data System (ADS)
Tran, Dung Duc; van Halsema, Gerardo; Hellegers, Petra J. G. J.; Phi Hoang, Long; Quang Tran, Tho; Kummu, Matti; Ludwig, Fulco
2018-03-01
Recent flood dynamics of the Mekong Delta have raised concerns about an increased flood risk downstream in the Vietnamese Mekong Delta. Accelerated high dike building on the floodplains of the upper delta to allow triple cropping of rice has been linked to higher river water levels in the downstream city of Can Tho. This paper assesses the hydraulic impacts of upstream dike construction on the flood hazard downstream in the Vietnamese Mekong Delta. We combined the existing one-dimensional (1-D) Mekong Delta hydrodynamic model with a quasi-two-dimensional (2-D) approach. First we calibrated and validated the model using flood data from 2011 and 2013. We then applied the model to explore the downstream water dynamics under various scenarios of high dike construction in An Giang Province and the Long Xuyen Quadrangle. Calculations of water balances allowed us to trace the propagation and distribution of flood volumes over the delta under the different scenarios. Model results indicate that extensive construction of high dikes on the upstream floodplains has had limited effect on peak river water levels downstream in Can Tho. Instead, the model shows that the impacts of dike construction, in terms of peak river water levels, are concentrated and amplified in the upstream reaches of the delta. According to our water balance analysis, river water levels in Can Tho have remained relatively stable, as greater volumes of floodwater have been diverted away from the Long Xuyen Quadrangle than the retention volume lost due to dike construction. Our findings expand on previous work on the impacts of water control infrastructure on flood risk and floodwater regimes across the delta.
Sedimentary facies and Holocene progradation rates of the Changjiang (Yangtze) delta, China
NASA Astrophysics Data System (ADS)
Hori, Kazuaki; Saito, Yoshiki; Zhao, Quanhong; Cheng, Xinrong; Wang, Pinxian; Sato, Yoshio; Li, Congxian
2001-11-01
The Changjiang (Yangtze) River, one of the largest rivers in the world, has formed a broad tide-dominated delta at its mouth during the Holocene sea-level highstand. Three boreholes (CM97, JS98, and HQ98) were obtained from the Changjiang delta plain in 1997-1998 to clarify the characteristics of tide-dominated delta sediments and architecture. Based on sediment composition and texture, and faunal content, core sediments were divided into six depositional units. In ascending order, they were interpreted as tidal sand ridge, prodelta, delta-front, subtidal to lower intertidal flat, upper intertidal flat, and surface soil deposits. The deltaic sequence from the prodelta deposits to the delta front deposits showed an upward-coarsening succession, overlain by an upward-fining succession from the uppermost part of the delta front deposits to the surface soil. Thinly interlaminated to thinly interbedded sand and mud (sand-mud couplets), and bidirectional cross laminations in these deposits show that tide is the key factor affecting the formation of Changjiang deltaic facies. Sediment facies and their succession combined with AMS 14C dating revealed that isochron lines cross unit boundaries clearly, and delta progradation has occurred since about 6000 to 7000 years BP, when the rising sea level neared or reached its present position. The average progradation rate of the delta front was approximately 50 km/kyear over the last 5000 years. The progradation rate, however, increased abruptly ca. 2000 years BP, going from 38 to 80 km/kyear. The possible causes for this active progradation could have been an increase in sediment production in the drainage basin due to widespread human interference and/or decrease in deposition in the middle reaches related to the channel stability caused by human activity and climatic cooling after the mid-Holocene.
The Boeing Delta II rocket with Mars Polar Lander aboard lifts off at Pad 17B, CCAS
NASA Technical Reports Server (NTRS)
1999-01-01
Amid clouds of exhaust, a Boeing Delta II expendable launch vehicle with NASA's Mars Polar Lander clears Launch Complex 17B, Cape Canaveral Air Station, after launch at 3:21:10 p.m. EST. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south polar cap, which consists of carbon dioxide ice. The lander will study the polar water cycle, frosts, water vapor, condensates and dust in the Martian atmosphere. It is equipped with a robotic arm to dig beneath the layered terrain at the polar cap. In addition, Deep Space 2 microprobes, developed by NASA's New Millennium Program, are installed on the lander's cruise stage. After crashing into the planet's surface, they will conduct two days of soil and water experiments up to 1 meter (3 feet) below the Martian surface, testing new technologies for future planetary descent probes. The lander is the second spacecraft to be launched in a pair of Mars Surveyor '98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.
The Boeing Delta II rocket with Mars Polar Lander aboard lifts off at Pad 17B, CCAS
NASA Technical Reports Server (NTRS)
1999-01-01
Silhouetted against the gray sky, a Boeing Delta II expendable launch vehicle with NASA's Mars Polar Lander lifts off from Launch Complex 17B, Cape Canaveral Air Station, at 3:21:10 p.m. EST. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south polar cap, which consists of carbon dioxide ice. The lander will study the polar water cycle, frosts, water vapor, condensates and dust in the Martian atmosphere. It is equipped with a robotic arm to dig beneath the layered terrain at the polar cap. In addition, Deep Space 2 microprobes, developed by NASA's New Millennium Program, are installed on the lander's cruise stage. After crashing into the planet's surface, they will conduct two days of soil and water experiments up to 1 meter (3 feet) below the Martian surface, testing new technologies for future planetary descent probes. The lander is the second spacecraft to be launched in a pair of Mars Surveyor '98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.
The Boeing Delta II rocket with Mars Polar Lander aboard lifts off at Pad 17B, CCAS
NASA Technical Reports Server (NTRS)
1999-01-01
Amid clouds of exhaust and into a gray-clouded sky , a Boeing Delta II expendable launch vehicle lifts off with NASA's Mars Polar Lander at 3:21:10 p.m. EST from Launch Complex 17B, Cape Canaveral Air Station. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern- most boundary of the south polar cap, which consists of carbon dioxide ice. The lander will study the polar water cycle, frosts, water vapor, condensates and dust in the Martian atmosphere. It is equipped with a robotic arm to dig beneath the layered terrain at the polar cap. In addition, Deep Space 2 microprobes, developed by NASA's New Millennium Program, are installed on the lander's cruise stage. After crashing into the planet's surface, they will conduct two days of soil and water experiments up to 1 meter (3 feet) below the Martian surface, testing new technologies for future planetary descent probes. The lander is the second spacecraft to be launched in a pair of Mars Surveyor '98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.
The Boeing Delta II rocket with Mars Polar Lander aboard lifts off at Pad 17B, CCAS
NASA Technical Reports Server (NTRS)
1999-01-01
A Boeing Delta II expendable launch vehicle lifts off with NASA's Mars Polar Lander into a cloud-covered sky at 3:21:10 p.m. EST from Launch Complex 17B, Cape Canaveral Air Station. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south polar cap, which consists of carbon dioxide ice. The lander will study the polar water cycle, frosts, water vapor, condensates and dust in the Martian atmosphere. It is equipped with a robotic arm to dig beneath the layered terrain at the polar cap. In addition, Deep Space 2 microprobes, developed by NASA's New Millennium Program, are installed on the lander's cruise stage. After crashing into the planet's surface, they will conduct two days of soil and water experiments up to 1 meter (3 feet) below the Martian surface, testing new technologies for future planetary descent probes. The lander is the second spacecraft to be launched in a pair of Mars Surveyor '98missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.
Factors of soil diversity in the Batumi delta (Georgia)
NASA Astrophysics Data System (ADS)
Turgut, Bülent; Ateş, Merve
2017-01-01
The aim of this study was to determine certain basic properties of soils in the Batumi delta (southwestern Georgia) to determine the relationships of studied properties and to identify differences with regards to these properties between different sampling sites in the delta that were selected based on the delta morphology. In this context, a total of 125 soil samples were collected from five different sampling sites, and the clay, silt and sand content of the samples were determined along with their mean weight diameter (MWD) values, aggregate stability (AS) values, amount of water retained under -33 (FC) and -1500 kPa (WP) pressure and organic matter (OM) content. Correlation analysis indicated that clay content and OM were positively correlated with MWD, and OM was positively correlated with AS. However, the sand content was found to be negatively correlated with MWD. In addition, clay, silt and OM content were positive correlated with FC and WP. Variance analysis results determined statistically significant differences between the sampling sites with respect to all of the evaluated properties. The active delta section of the study area was characterized by high sand content, while the lower delta plain was characterized by high OM and AS values, and the upper delta plain was characterized by high MWD values, high FC and WP moisture content levels and high clay and silt content. In conclusion, it was demonstrated that the examined properties were significantly affected by the different morphological positions and usages of these different areas. These results may help with the management of agricultural lands in the Batumi delta, which has never been studied before.
2007-05-16
KENNEDY SPACE CENTER, FLA. -- In Hangar M on Cape Canaveral Air Force Station, a worker guides a transporter into place to receive the Delta II first stage. The Delta will be moved to the launch pad. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/Jack Pfaller
Evaluation of the Sony GDM-FW900 16:10 Aspect Ratio, 24-Inch Diagonal Flat Face CRT Color Monitor
2001-09-06
Color Gamut ....................................................................................... 46 II. 23 Color Tracking...daylight color imagery. Other color features include: variable RGB gain/bias, the sRGB color display system. Adjusting the color temperature somewhat...delta u’v’ Pass Color Tracking Not specified Less than 0.013 delta u’v’ between Lmin to Lmax Color Gamut Area Not specified 27% Pixel aspect
El-Ayaan, Usama; El-Metwally, Nashwa M; Youssef, Magdy M; El Bialy, Serry A A
2007-12-31
The present work carried out a study on perchlorate mixed-ligand copper(II) complexes which have been synthesized from ethylenediamine derivatives (3a-c) and beta-diketones. These complexes, namely [Cu(DA-Cl)(acac)H(2)O]ClO(4)4, [Cu(DA-Cl)(bzac)H(2)O]H(2)O.ClO(4)5, [Cu(DA-OMe)(acac)H(2)O]ClO(4)6, [Cu(DA-OMe)(bzac)H(2)O]ClO(4)7, [Cu(DA-H)(acac)H(2)O]2H(2)O.ClO(4)8 and [Cu(DA-H)(bzac)H(2)O]ClO(4)9 (where acac, acetylacetonate and bzac, benzoylacetonate) were characterized by elemental analysis, spectral (IR and UV-vis) and magnetic moment measurements. Thermal properties and decomposition kinetics of all complexes are investigated. The interpretation, mathematical analysis and evaluation of kinetic parameters (E, A, DeltaH, DeltaS and DeltaG) of all thermal decomposition stages have been evaluated using Coats-Redfern equation. The biochemical studies showed that, the diamines 3a-c have powerful effects on degradation of DNA and protein. The antibacterial screening demonstrated that, the diamine (DA-Cl), 3b has the maximum and broad activities against Gram +ve and Gram -ve bacterial strains.
Electric propulsion options for 10 kW class earth space missions
NASA Technical Reports Server (NTRS)
Patterson, M. J.; Curran, Francis M.
1989-01-01
Five and 10 kW ion and arcjet propulsion system options for a near-term space demonstration experiment have been evaluated. Analyses were conducted to determine first-order propulsion system performance and system component mass estimates. Overall mission performance of the electric propulsion systems was quantified in terms of the maximum thrusting time, total impulse, and velocity increment capability available when integrated onto a generic spacecraft under fixed mission model assumptions. Maximum available thrusting times for the ion-propelled spacecraft options, launched on a DELTA II 6920 vehicle, range from approximately 8,600 hours for a 4-engine 10 kW system to more than 29,600 hours for a single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 1.2x10(7) to 2.1x10(7) N-s, and 3550 to 6200 m/s, respectively. Maximum available thrusting times for the arcjet propelled spacecraft launched on the DELTA II 6920 vehicle range from approximately 528 hours for the 6-engine 10 kW hydrazine system to 2328 hours for the single-engine 5 kW system. Maximum total impulse values and maximum delta-v's range from 2.2x10(6) to 3.6x10(6) N-s, and approximately 662 to 1072 m/s, respectively.
Vallano, M L; Beaman-Hall, C M; Mathur, A; Chen, Q
2000-04-01
Multiple isoforms of type II Ca(2+)-calmodulin-dependent kinase (CaM KII) are composed of two major neuron-specific subunits, designated alpha and beta, and two less well-characterized subunits that are also expressed in non-neuronal tissues, designated delta and gamma. Regulated expression of these 4 gene products, and several variants produced by alternative splicing, shows temporal and regional specificity and influences intracellular targeting. We used immunoblotting and RT-PCR to analyze subunit and variant expression and distribution in cultured cerebellar astrocytes and neurons, and whole cerebellar cortex from rodent brain. The data indicate that: (i) astrocytes express a single splice variant of delta, namely delta(2); (ii) like neurons, astrocytes express two forms of CaM KII gamma; gamma(B) and gamma(A); (iii) these CaM KII variants are enriched in the supernate fraction in astrocytes, and the particulate fraction in neurons; (iv) unlike neurons, astrocytes do not express detectable levels of alpha or beta subunits or their respective splice variants. The results indicate that neurons and astrocytes express distinct CaM KII subunits and variants that localize to distinct subcellular compartments and, by inference, exert distinct cellular functions. Copyright 2000 Wiley-Liss, Inc.
Activation of PPARbeta/delta induces endothelial cell proliferation and angiogenesis.
Piqueras, Laura; Reynolds, Andrew R; Hodivala-Dilke, Kairbaan M; Alfranca, Arántzazu; Redondo, Juan M; Hatae, Toshihisa; Tanabe, Tadashi; Warner, Timothy D; Bishop-Bailey, David
2007-01-01
The role of the nuclear receptor peroxisome-proliferator activated receptor (PPAR)-beta/delta in endothelial cells remains unclear. Interestingly, the selective PPARbeta/delta ligand GW501516 is in phase II clinical trials for dyslipidemia. Here, using GW501516, we have assessed the involvement of PPARbeta/delta in endothelial cell proliferation and angiogenesis. Western blot analysis indicated PPARbeta/delta was expressed in primary human umbilical and aortic endothelial cells, and in the endothelial cell line, EAHy926. Treatment with GW501516 increased human endothelial cell proliferation and morphogenesis in cultures in vitro, endothelial cell outgrowth from murine aortic vessels in vitro, and angiogenesis in a murine matrigel plug assay in vivo. GW501516 induced vascular endothelial cell growth factor mRNA and peptide release, as well as adipose differentiation-related protein (ADRP), a PPARbeta/delta target gene. GW501516-induced proliferation, morphogenesis, vascular endothelial growth factor (VEGF), and ADRP were absent in endothelial cells transfected with dominant-negative PPARbeta/delta. Furthermore, treatment of cells with cyclo-VEGFI, a VEGF receptor1/2 antagonist, abolished GW501516-induced endothelial cell proliferation and tube formation. PPARbeta/delta is a novel regulator of endothelial cell proliferation and angiogenesis through VEGF. The use of GW501516 to treat dyslipidemia may need to be carefully monitored in patients susceptible to angiogenic disorders.
Late Cretaceous and Paleogene sedimentation along east side of San Joaquin basin, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reid, S.A.
1986-04-01
Depositional systems of the Late Cretaceous contrast with those of the Paleogene in the subsurface along the east side of the San Joaquin basin between Bakersfield and Fresno, California. Upper Cretaceous deposits include thick fan-delta and submarine fan facies of the Moreno and Panoche Formations, whereas the paleogene contains extensive nearshore, shelf, slope, and submarine fan deposits of the Lodo, Domengine, and Kreyenhagen Formations. These sediments were deposited on a basement surface having several west-trending ridges and valleys. West-flowing streams draining an ancestral Sierra Nevada of moderate relief formed prograding fan deltas that filled the valleys with thick wedges ofmore » nonmarine channel deposits, creating a bajada along the shoreline. Detrital material moved rapidly from the shoreline through a narrow shelf, into a complex of submarine fans in the subduction trough. During the early Eocene, a low sea level stand plus an end of Sierra Nevada uplift resulted in the erosion of the range to a peneplain. Stream-fed fan deltas were replaced by a major river system, which flowed west on about the present course of the Kern River. Following a rapid sea level increase, sand from the river system was deposited on the now broad shelf along a wide belt roughly coincident with California Highway 99. The river was also the point source for sand in a submarine fan northwest of Bakersfield. Both Upper Cretaceous and Paleogene depositional systems probably continue north along the east edge of the Great Valley. This proposed scenario for the east side of the San Joaquin is analogous to forearc deposits in the San Diego area, including the Cretaceous Rosario fan-delta and submarine fan system and the Eocene La Jolla and Poway nearshore, shelf, and submarine fan systems.« less
NASA Astrophysics Data System (ADS)
Syme, Caitlin E.; Salisbury, Steven W.
2018-03-01
Taphonomic analysis of fossil material can benefit from including the results of actualistic decay experiments. This is crucial in determining the autochthony or allochthony of fossils of juvenile and adult Isisfordia duncani, a basal eusuchian from the Lower Cretaceous (upper Albian) distal-fluvial-deltaic lower Winton Formation near Isisford. The taphonomic characteristics of the I. duncani fossils were documented using a combination of traditional taphonomic analysis alongside already published actualistic decay data from juvenile Crocodylus porosus carcasses. We found that the I. duncani holotype, paratypes and referred specimens show little signs of weathering and no signs of abrasion. Disarticulated skeletal elements are often found in close proximity to the rest of the otherwise articulated skeleton. The isolated and disarticulated skeletal elements identified, commonly cranial, maxillary and mandibular elements, are typical of lag deposits. The holotype QM F36211 and paratype QM F34642 were classified as autochthonous, and the remaining I. duncani paratypes and referred specimens are parautochthonous. We propose that I. duncani inhabited upper and lower delta plains near the Eromanga Sea in life. Their carcasses were buried in sediment-laden floodwaters in delta plain overbank and distributary channel deposits. Future studies should refer to I. duncani as a brackish water tolerant species.
Salisbury, Steven W.
2018-01-01
Taphonomic analysis of fossil material can benefit from including the results of actualistic decay experiments. This is crucial in determining the autochthony or allochthony of fossils of juvenile and adult Isisfordia duncani, a basal eusuchian from the Lower Cretaceous (upper Albian) distal-fluvial-deltaic lower Winton Formation near Isisford. The taphonomic characteristics of the I. duncani fossils were documented using a combination of traditional taphonomic analysis alongside already published actualistic decay data from juvenile Crocodylus porosus carcasses. We found that the I. duncani holotype, paratypes and referred specimens show little signs of weathering and no signs of abrasion. Disarticulated skeletal elements are often found in close proximity to the rest of the otherwise articulated skeleton. The isolated and disarticulated skeletal elements identified, commonly cranial, maxillary and mandibular elements, are typical of lag deposits. The holotype QM F36211 and paratype QM F34642 were classified as autochthonous, and the remaining I. duncani paratypes and referred specimens are parautochthonous. We propose that I. duncani inhabited upper and lower delta plains near the Eromanga Sea in life. Their carcasses were buried in sediment-laden floodwaters in delta plain overbank and distributary channel deposits. Future studies should refer to I. duncani as a brackish water tolerant species. PMID:29657771
NASA Astrophysics Data System (ADS)
Shaaban, H.; El-Qady, G.; Al-Sayed, E.; Ghazala, H.; Taha, A. I.
2016-12-01
The Nile Delta is one of the oldest known ancient delta, largest and most important depositional complex in the Mediterranean sedimentary basin. Furthermore, it is a unique site in Egypt that is suitable for accumulation and preservation of the Quaternary sediments. In this work we applied time-domain electromagnetic (TEM) method to investigate the Quaternary sediments sequence as well as detecting the groundwater aquifer in the area of study. A suite of 232 TEM sounding at 43 stations were carried out using a ;SIROTEM MK-3; time-domain electromagnetic system. A simple coincident loop configuration, in which the same loop transmits and receives signals, was employed with loop side length of 25 m. The 1-D modeling technique was applied to estimate the depth and the apparent resistivity of the interpreted geoelectrical data. Based on the interpretation of the acquired geophysical data, four geoelectric cross-sections were constructed. These sections show that the Upper Quaternary sequence consists of three geoelectric layers. The Holocene Nile mud is separated into two layers: the agricultural root zone (Layer 1) and thick water saturated mud (Layer 2). The Upper Pleistocene sandy aquifer (Layer 3) is very complicated non-linear boundary. This aquifer is the most important unit since it is considered as the main water bearing unit in the study area.
NASA Astrophysics Data System (ADS)
Astakhova, Anna; Khardikov, Aleksandr
2013-04-01
Sedimentation conditions of upper Permian volcano-clastic rocks of Ayan-Yurakhsky anticlinorium are the reason of discussions between researchers. It is important to correctly solve this problem. Investigation allows us to conclude that upper Permian sediments was formed due to high rate deltaic sedimentation on shelf and continental slope of epicontinental sea basin. More than 45 outcrops of upper Permian sediments were described within Ayan-Yurakhsky anticlinorium. Termochemical and X-ray phase, lithological facies, stadial, paleogeographic and others were applied. Investigation allows to classify following types: tuffs, tuffites of andesites, andesi-dacites, sandstone tuffs, siltstone tuffs and claystone tuffs. Two facies were deliniated in the research area: 1) delta channel facies 2) epicontinental sea shelf edge and continental slope. Delta channel facies are located on the south-west part of Aian-Yrahskiy anticlinorium. It is composed of silty packsand and psammitic tuff-siltstone alternation and gravel-psammitic andesi-dacitic tuffute and tuff-breccia bands. Sediments have cross-bedding, through cross-bedding, curvilinear lamination structures. Facies occurred during high rate deltaic sedimentation on the shelf of epicontinental sea. Epicontinental sea shelf edge and continental slope facies are located on the south-west part. Sediments are represented by large thickness tuff-siltstone with tuff-sandstone, tuff-madstone, tuff, tuffite bands and lenses. Large number of submarine landslides sediments provide evidence that there was high angle sea floore environment. 30-50 m diametr eruption centers were described by authors during geological traverses. They are located in Kulu river basin. Their locations are limited by deep-seated pre-ore fault which extended along Ayan-Yurakhsky anticlinorium. U-Pb SHRIMP method showed that the average age of circons, taken from eruption centers, is Permian (256,3±3,7 ma). This fact confirms our emphasis that eruption centers were the centre of underwater effusive explosions which had been occurred in late Permian time. Gold ore deposits mainly localized in the south of Ayan-Yurakhsky anticlinorium and associated with upper Permian deltaic facies sediments. Taking into account lithological facies feature and volcanoclastic origin of sediments it is reasonable to suggest expelled-catagenesis model of gold mineralization. Gold was entered in sedimentary basin with piroclastic material. During catagenesis stage gold migrated from complex of shelf edge and continental slope to fan delta front complex in conjunction with expelled water. The emplacement of ore gold deposits related with upper Permian sediments can be successfully predicted, using this model and associated techniques.
Johnson, Edward A.; Warwick, Peter D.; Roberts, Stephen B.; Khan, Intizar H.
1999-01-01
The coal-bearing, lower Eocene Ghazij Formation is exposed intermittently over a distance of 750 kilometers along the western margin of the Axial Belt in north-central Pakistan. Underlying the formation are Jurassic to Paleocene carbonates that were deposited on a marine shelf along the pre- and post-rift northern margin of the Indian subcontinent. Overlying the formation are middle Eocene to Miocene marine and nonmarine deposits capped by Pliocene to Pleistocene collision molasse.The lower part of the Ghazij comprises mostly dark gray calcareous mudrock containing foraminifers and rare tabular to lenticular bodies of very fine grained to finegrained calcareous sandstone. We interpret the lower portion of this part of the Ghazij as outer-shelf deposits, and the upper portion as prodelta deposits. The middle part of the formation conformably overlies the lower part. It comprises medium-gray calcareous mudrock containing nonmarine bivalves, fine- to medium-grained calcareous sandstone, and rare intervals of carbonaceous shale and coal. Sandstone bodies in the middle part, in ascending stratigraphic order, are classified as Type I (coarsening-upward grain size, contain the trace fossil Ophiomorpha, and are commonly overlain by carbonaceous shale or coal), Type II (mixed grain size, display wedge-planar cross stratification, and contain fossil oyster shells and Ophiomorpha), and Type III (finingupward grain size, lenticular shape, erosional bases, and display trough cross stratification). These three types of bodies represent shoreface deposits, tidal channels, and fluvial channels, respectively. Mudrock intervals in the lower portion of this part of the formation contain fossil plant debris and represent estuarine deposits, and mudrock intervals in the upper portion contain fossil root traces and represent overbank deposits. We interpret the middle part of the Ghazij as a lower delta plain sequence. Overlying the middle part of the Ghazij, possibly unconformably, is the upper part of the formation, which comprises calcareous, nonfossiliferous, light-gray, brown, and red-banded mudrock, and rare Type III sandstone bodies. Much of the mudrock in this part of the formation represents multiple paleosol horizons. Locally, a limestone-pebble conglomerate is present in the upper part of the formation, either at the base or occupying most of the sequence. We interpret all but the uppermost portion of the upper part of the Ghazij as an upper delta plain deposit.Thin sections of Ghazij sandstones show mostly fragments of limestone, and heavy-liquid separations reveal the presence of chromite. Paleocurrent data and other evidence indicate a northwestern source area.During earliest Eocene time, the outer edge of the marine shelf off the Indian subcontinent collided with a terrestrial fragment positioned adjacent to, but detached from, the Asian mainland. This collision caused distal carbonateplatform deposits to be uplifted, and an intervening intracratonic sea, the Indus Foreland Basin, was created. Thus for the first time, the depositional slope switched from northwest facing to southeast facing, and a northwestern source for detritus was provided. We conclude that the Ghazij was deposited as a prograding clastic wedge along the northwestern shore of this sea, and that the formation contains sedimentologic evidence of a collisional event that predates the main impact between India and Asia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granier, Sébastien; Manglik, Aashish; Kruse, Andrew C.
The opioid receptor family comprises three members, the {mu}-, {delta}- and {kappa}-opioid receptors, which respond to classical opioid alkaloids such as morphine and heroin as well as to endogenous peptide ligands like endorphins. They belong to the G-protein-coupled receptor (GPCR) superfamily, and are excellent therapeutic targets for pain control. The {delta}-opioid receptor ({delta}-OR) has a role in analgesia, as well as in other neurological functions that remain poorly understood. The structures of the {mu}-OR and {kappa}-OR have recently been solved. Here we report the crystal structure of the mouse {delta}-OR, bound to the subtype-selective antagonist naltrindole. Together with the structuresmore » of the {mu}-OR and {kappa}-OR, the {delta}-OR structure provides insights into conserved elements of opioid ligand recognition while also revealing structural features associated with ligand-subtype selectivity. The binding pocket of opioid receptors can be divided into two distinct regions. Whereas the lower part of this pocket is highly conserved among opioid receptors, the upper part contains divergent residues that confer subtype selectivity. This provides a structural explanation and validation for the 'message-address' model of opioid receptor pharmacology, in which distinct 'message' (efficacy) and 'address' (selectivity) determinants are contained within a single ligand. Comparison of the address region of the {delta}-OR with other GPCRs reveals that this structural organization may be a more general phenomenon, extending to other GPCR families as well.« less
After tower rollback, the Boeing Delta II rocket with Mars Polar Lander aboard is ready for liftoff
NASA Technical Reports Server (NTRS)
1999-01-01
After launch tower retraction, the Boeing Delta II rocket carrying NASA's Mars Polar lander waits for liftoff, scheduled for 3:21 p.m. EST, at Launch Complex 17B, Cape Canaveral Air Station. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south pole in order to study the water cycle there. The lander also will help scientists learn more about climate change and current resources on Mars, studying such things as frost, dust, water vapor and condensates in the Martian atmosphere. It is the second spacecraft to be launched in a pair of Mars Surveyor 98 missions.
2008-05-17
CAPE CANAVERAL, Fla. -- At pad 17-B at Cape Canaveral Air Force Station, workers begin lowering the GLAST spacecraft into the opening above the Delta II second stage in the mobile service tower. GLAST will be mated with the Delta II second stage. GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. The launch date is targeted no earlier than June 3. Photo credit: NASA/Kim Shiflett
2008-05-17
CAPE CANAVERAL, Fla. -- At pad 17-B at Cape Canaveral Air Force Station, workers help maneuver the GLAST spacecraft toward the opening above the Delta II second stage in the mobile service tower. GLAST will be mated with the Delta II second stage. GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. The launch date is targeted no earlier than June 3. Photo credit: NASA/Kim Shiflett
2008-05-17
CAPE CANAVERAL, Fla. -- At pad 17-B at Cape Canaveral Air Force Station, the GLAST spacecraft is lowered onto the Delta II second stage in the mobile service tower. GLAST will be mated with the Delta II second stage. GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. The launch date is targeted no earlier than June 3. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. In the mobile service tower on Launch Pad 17-A, Cape Canaveral Air Force Station, Boeing technicians help guide the Swift spacecraft as it is lowered toward the Boeing Delta II launch vehicle for mating. Swift is scheduled to launch Nov. 17. The liftoff aboard a Boeing Delta II rocket is targeted at the opening of a one-hour launch window beginning at 12:09 p.m. EST. A first-of-its-kind multi-wavelength observatory dedicated to the study of gamma-ray burst (GRB) science, Swifts three instruments will work together to observe GRBs and afterglows in the gamma ray, X-ray, ultraviolet and optical wavebands. Gamma-ray bursts are distant, yet fleeting explosions that appear to signal the births of black holes.
2001-06-19
KENNEDY SPACE CENTER, Fla. -- At Launch Complex 17-B, Cape Canaveral Air Force Station, workers keep watch while the Microwave Anisotropy Probe (MAP) is lowered into position on the Delta II rocket below. Launch of MAP via a Boeing Delta II rocket is scheduled for June 30. The launch will place MAP into a lunar-assisted trajectory to the Sun-Earth for a 27-month mission. The probe will measure small fluctuations in the temperature of the cosmic microwave background radiation to an accuracy of one millionth of a degree. These measurements should reveal the size, matter content, age, geometry and fate of the universe. They will also reveal the primordial structure that grew to form galaxies and will test ideas about the origins of these primordial structures
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. NASA launches its second Mars Exploration Rover, Opportunity, aboard a Delta II launch vehicle. The bright glare briefly illuminated Florida Space Coast beaches. Opportunitys dash to Mars began with liftoff at 11:18:15 p.m. Eastern Daylight Time from Cape Canaveral Air Force Station, Fla. The spacecraft separated successfully from the Delta's third stage 83 minutes later, after it had been boosted out of Earth orbit and onto a course toward Mars.
2007-05-16
KENNEDY SPACE CENTER, FLA. -- With the transporter in place inside Hangar M on Cape Canaveral Air Force Station, the suspended Delta II first stage can be placed on it. The Delta will be moved to the launch pad. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/Jack Pfaller
1997-08-05
The Advanced Composition Explorer (ACE) spacecraft undergoes a spin test in KSC’s Spacecraft Assembly and Encapsulation Facility-II (SAEF-II). Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 25, ACE will study low-energy particles of solar origin and high-energy galactic particles. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA
1997-08-05
The Advanced Composition Explorer (ACE) spacecraft undergoes a spin test in KSC’s Spacecraft Assembly and Encapsulation Facility-II (SAEF-II). Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 25, ACE will study low-energy particles of solar origin and high-energy galactic particles. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA
Feltus, F A; Groner, B; Melner, M H
1999-07-01
Altered PRL levels are associated with infertility in women. Molecular targets at which PRL elicits these effects have yet to be determined. These studies demonstrate transcriptional regulation by PRL of the gene encoding the final enzymatic step in progesterone biosynthesis: 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase (3beta-HSD). A 9/9 match with the consensus Stat5 response element was identified at -110 to -118 in the human Type II 3beta-HSD promoter. 3beta-HSD chloramphenicol acetyltransferase (CAT) reporter constructs containing either an intact or mutated Stat5 element were tested for PRL activation. Expression vectors for Stat5 and the PRL receptor were cotransfected with a -300 --> +45 3beta-HSD CAT reporter construct into HeLa cells, which resulted in a 21-fold increase in reporter activity in the presence of PRL. Promoter activity showed an increased response with a stepwise elevation of transfected Stat5 expression or by treatment with increasing concentrations of PRL (max, 250 ng/ml). This effect was dramatically reduced when the putative Stat5 response element was removed by 5'-deletion of the promoter or by the introduction of a 3-bp mutation into critical nucleotides in the element. Furthermore, 32P-labeled promoter fragments containing the Stat5 element were shifted in electrophoretic mobility shift assay experiments using nuclear extracts from cells treated with PRL, and this complex was supershifted with antibodies to Stat5. These results demonstrate that PRL has the ability to regulate expression of a key human enzyme gene (type II 3beta-HSD) in the progesterone biosynthetic pathway, which is essential for maintaining pregnancy.
Subtropical subsidence and surface deposition of oxidized mercury produced in the free troposphere
NASA Astrophysics Data System (ADS)
Shah, Viral; Jaeglé, Lyatt
2017-07-01
Oxidized mercury (Hg(II)) is chemically produced in the atmosphere by oxidation of elemental mercury and is directly emitted by anthropogenic activities. We use the GEOS-Chem global chemical transport model with gaseous oxidation driven by Br atoms to quantify how surface deposition of Hg(II) is influenced by Hg(II) production at different atmospheric heights. We tag Hg(II) chemically produced in the lower (surface-750 hPa), middle (750-400 hPa), and upper troposphere (400 hPa-tropopause), in the stratosphere, as well as directly emitted Hg(II). We evaluate our 2-year simulation (2013-2014) against observations of Hg(II) wet deposition as well as surface and free-tropospheric observations of Hg(II), finding reasonable agreement. We find that Hg(II) produced in the upper and middle troposphere constitutes 91 % of the tropospheric mass of Hg(II) and 91 % of the annual Hg(II) wet deposition flux. This large global influence from the upper and middle troposphere is the result of strong chemical production coupled with a long lifetime of Hg(II) in these regions. Annually, 77-84 % of surface-level Hg(II) over the western US, South America, South Africa, and Australia is produced in the upper and middle troposphere, whereas 26-66 % of surface Hg(II) over the eastern US, Europe, and East Asia, and South Asia is directly emitted. The influence of directly emitted Hg(II) near emission sources is likely higher but cannot be quantified by our coarse-resolution global model (2° latitude × 2.5° longitude). Over the oceans, 72 % of surface Hg(II) is produced in the lower troposphere because of higher Br concentrations in the marine boundary layer. The global contribution of the upper and middle troposphere to the Hg(II) dry deposition flux is 52 %. It is lower compared to the contribution to wet deposition because dry deposition of Hg(II) produced aloft requires its entrainment into the boundary layer, while rain can scavenge Hg(II) from higher altitudes more readily. We find that 55 % of the spatial variation of Hg wet deposition flux observed at the Mercury Deposition Network sites is explained by the combined variation of precipitation and Hg(II) produced in the upper and middle troposphere. Our simulation points to a large role of the dry subtropical subsidence regions. Hg(II) present in these regions accounts for 74 % of Hg(II) at 500 hPa over the continental US and more than 60 % of the surface Hg(II) over high-altitude areas of the western US. Globally, it accounts for 78 % of the tropospheric Hg(II) mass and 61 % of the total Hg(II) deposition. During the Nitrogen, Oxidants, Mercury, and Aerosol Distributions, Sources, and Sinks (NOMADSS) aircraft campaign, the contribution of Hg(II) from the dry subtropical regions was found to be 75 % when measured Hg(II) exceeded 250 pg m-3. Hg(II) produced in the upper and middle troposphere subsides in the anticyclones, where the dry conditions inhibit the loss of Hg(II). Our results highlight the importance the subtropical anticyclones as the primary conduits for the production and export of Hg(II) to the global atmosphere.
Spectral measurement of nonequilibrium arc-jet free-stream flow
NASA Technical Reports Server (NTRS)
Gopaul, Nigel K. J. M.
1993-01-01
Spectra of radiation emitted by the free-stream flow of air in an arcjet wind tunnel at NASA-Ames Research Center were studied experimentally. The arcjet produces a high energy gaseous flow that is expanded to low density and low temperature to produce high velocities in the free-stream for simulating atmospheric entry conditions. The gamma and the delta band systems of nitric oxide emitted by the free stream were measured in the second order. The NO-beta band system, which is in the same spectral region as the NO-gamma and NO-delta band systems, was not present in the data. Only transitions from the lowest vibrational level of the upper state of both the NO-gamma and NO-delta band systems were observed. The rotational temperature determined from these band systems was 660 +/- 50 deg K. The maximum possible vibrational temperature was determined to be less than 850 +/- 50 deg K. The electronic temperature determined from the ratio of the intensities of the NO-gamma and NO-delta band systems was 7560 +/- 340 K. The results indicate that the arcjet free-stream flow is in thermal nonequilibrium.
NASA Technical Reports Server (NTRS)
Langel, R. A.
1974-01-01
A complete survey of the near-earth magnetic field magnitude was carried out by the Polar Orbiting Geophysical Observatories (Ogo 2, 4, and 6). The average properties of variations in total magnetic field strength at invariant latitudes greater than 55 deg are given. Data from all degrees of magnetic disturbance are included, the emphasis being on periods when Kp = 2- to 3+. Although individual satellite passes at low altitudes confirm the existence of electrojet currents, neither individual satellite passes nor contours of average delta B are consistent with latitudinally narrow electrojet currents as the principal source of delta B at the satellite. The total field variations at the satellite form a region of positive delta B between about 2200 and 1000 MLT and a region of negative delta B between about 1000 and 2200 MLT. The ratio of delta B magnitudes in these positive and negative regions is variable.
Extension of the ACE solar panels is tested in SAEF-II
NASA Technical Reports Server (NTRS)
1997-01-01
Extension of the solar panels is tested on the Advanced Composition Explorer (ACE) spacecraft in KSC's Spacecraft Assembly and Encapsulation Facility-II (SAEF-II). Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 25, ACE will study low-energy particles of solar origin and high-energy galactic particles. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, R.J.; Johnson, C.A.; Gilreath, J.A.
Depositional systems in the Medina Group (Lower Silurian) of western New York have been studied using stratigraphic dipmeter data. Results of this study indicate a nearshore-deltaic-interdeltaic depositional environment. Only minor deltaic episodes are preserved in the study area. This fits the generally arid climate with seasonal wet periods suggested by C.D. Laughrey. Facies recognized include: longshore-current sand waves in a shoreface environment, distributary mouth bars, distributary channels, tidal inlets, flood deltas, beaches, sandy tidal flats on which beach ridges were formed, and possible upper delta-plain sediments. Once the depositional sequences are recognized, paleocurrents within key sand units can be interpretedmore » to determine favorable directions for successfully locating offset wells.« less
The dynamic behaviour of data-driven Δ-M and ΔΣ-M in sliding mode control
NASA Astrophysics Data System (ADS)
Almakhles, Dhafer; Swain, Akshya K.; Nasiri, Alireza
2017-11-01
In recent years, delta (Δ-M) and delta-sigma modulators (ΔΣ-M) are increasingly being used as efficient data converters due to numerous advantages they offer. This paper investigates various dynamical features of these modulators/systems (both in continuous and discrete time domain) and derives their stability conditions using the theory of sliding mode. The upper bound of the hitting time (step) has been estimated. The equivalent mode conditions, i.e. where the outputs of the modulators are equivalent to the inputs, are established. The results of the analysis are validated through simulations considering a numerical example.
2008-03-27
CAPE CANAVERAL, Fla. --- On Pad 17-B on Cape Canaveral Air Force Station, a worker attaches the crane to a solid rocket booster. The crane will raise the booster to a vertical position. When it has been raised, the booster will be lifted into the mobile service tower for mating with the Delta II rocket that will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann
2008-03-27
CAPE CANAVERAL, Fla. --- On Pad 17-B on Cape Canaveral Air Force Station, the solid rocket booster is raised from its transporter toward a vertical position. When it has been raised, the booster will be lifted into the mobile service tower for mating with the Delta II rocket that will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. Two other boosters are already in place. A series of nine strap-on solid rocket motors will help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann
2008-03-27
CAPE CANAVERAL, Fla. --- On Pad 17-B on Cape Canaveral Air Force Station, the mobile service tower at left approaches the Delta II rocket at right. The solid rocket boosters in the tower will be mated with the rocket, which will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will be mated with the rocket to help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann
2008-03-27
CAPE CANAVERAL, Fla. --- On Pad 17-B on Cape Canaveral Air Force Station, the mobile service tower at left approaches the Delta II rocket at right. The solid rocket boosters in the tower will be mated with the rocket, which will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will be mated with the rocket to help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann
2008-03-27
CAPE CANAVERAL, Fla. --- On Pad 17-B on Cape Canaveral Air Force Station, the solid rocket booster is raised from its transporter toward a vertical position. When it has been raised, the booster will be lifted into the mobile service tower for mating with the Delta II rocket that will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. Two other boosters are already in place. A series of nine strap-on solid rocket motors will help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann
2008-03-27
CAPE CANAVERAL, Fla. --- On Pad 17-B on Cape Canaveral Air Force Station, the third solid rocket booster is lifted into the mobile service tower for mating with the Delta II rocket that will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. It joins the first two boosters already in place. A series of nine strap-on solid rocket motors will help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann
2008-03-27
CAPE CANAVERAL, Fla. --- On Pad 17-B on Cape Canaveral Air Force Station, workers prepare to raise the solid rocket booster to a vertical position. When it has been raised, the booster will be lifted into the mobile service tower for mating with the Delta II rocket that will launch NASA's Gamma-ray Large Area Space Telescope, or GLAST, spacecraft. A series of nine strap-on solid rocket motors will help power the first stage. Because the Delta rocket is configured as a Delta II 7920 Heavy, the boosters are larger than those used on the standard configuration. The GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is currently planned for May 16 from Pad 17-B. Photo credit: NASA/Jim Grossmann
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, D.E.; Meyers, W.J.
1985-02-01
The Lower Carboniferous Waulsortian Limestones, eastern Midlands, Republic of Ireland, contain 7 distinct luminescent zones in clear calcite cements that overlie inclusion-rich, marine cements in cavities and also fill fractures and aragonite-skeleton molds. The luminescent sequence, which records precipitation from increasingly reducing pore waters, is regionally and stratigraphically consistent over an interval more than 1200 ft thick. Zone 1 cements are nonluminescent; zone 2 cements are brightly luminescent; and zones 3-7 cements are ferroan with a moderate to dull luminescence. Zone 1 cements (mean -2.6% delta/sup 18/O/ +3.3% delta/sup 13/C PDB) are slightly depleted in oxygen relative to radiaxial-fibrous cementsmore » (mean -1.8% delta/sup 18/O/ +3.5% delta/sup 13/C PDB) which have a composition that reflects Lower Carboniferous seawater. Zone 4 cements (mean -4.1% delta/sup 18/O/ +3.1% delta/sup 13/C PDB) are depleted in oxygen relative to zone 1, whereas zone 5 cements (mean -11.8% delta/sup 18/O/ +1.1 delta/sup 13/C PDB) are extremely depleted in oxygen and somewhat in carbon. Locally intense dolomitization includes 2 regionally extensive generations of ferroan saddle dolomite. Petrographic relationships demonstrate these dolomite generations were replaced by zone 5 cement. Sulfide mineralization, principally pyrite and sphalerite, occurred after the precipitation of zone 5 cement. Much of diagenesis occurred during a brief period in the Lower Carboniferous. Zones 1-6 and saddle dolomites are contained in Chadian (upper Osagean), shallow-marine facies overlying the Waulsortian. Fractures filled by zone 5 cements are truncated at the margins of Waulsortian clasts contained in a conglomerate overlying an early Arundian (early Meramecian) unconformity.« less
Takigawa, Hirofumi; Nakagawa, Hidemi; Kuzukawa, Michiya; Mori, Hajime; Imokawa, Genji
2005-01-01
As one of the major skin fatty acids, cis-6-hexadecenoic acid (C16:1Delta6) exhibits a specific antibacterial activity and might play a specific role in the defense mechanism against Staphylococcus aureus, in healthy subjects whereas S. aureus frequently colonizes the skin of patients with atopic dermatitis (AD). Fatty acid composition of sebum at the recovery level was analyzed by gas chromatography and S. aureus colonizing the skin was assessed by the 'cup-scrub' method (9 patients and 10 healthy controls). To evaluate in vivo effect of C16:1Delta6 on colonization, C16:1Delta6 was applied for 2 weeks on the upper arm skin of another group of AD patients (11 patients). Analysis of sebum lipids revealed that there is a significant lower free C16:1Delta6 content in nonlesional skin from AD patients compared with healthy controls. This lower content is also accompanied by a significantly lower level of C16:1Delta6 in the total fatty acid composition of sebum (analyzed following hydrolysis). The lower level of free C16:1Delta6 correlated significantly (R(2) = 0.41, p < 0.01) with the numbers of S. aureus colonizing nonlesional skin. Topical application of free C16:1Delta6 on the skin of AD patients for 2 weeks abolished the markedly increased bacterial count in 6 out of the 8 AD patients tested. Free C16:1Delta6 may be involved in the defense mechanism against S. aureus in healthy skin and this deficit triggers the susceptibility of the skin to colonization by S. aureus in AD. Copyright 2005 S. Karger AG, Basel.
Fang, Zhan-Qiang; Cheung, R Y H; Wong, M H
2003-01-01
Concentrations of 8 heavy metals: cadmium (Cd), copper (Cu), zinc (Zn), lead (Pb), nickel (Ni), chromium (Cr), antimony (Sb) and tin (Sn) were examined in 3 species of bivalves ( Perna viridis, Crassostrea rivularis and Ruditapes philippinarum) collected from 25 sites along the Pearl River Delta coastal waters in the South China Sea from July to August 1996. In general, Cd, Cu, Zn and Sn concentrations in the three bivalve species collected from the Estuarine Zone were significantly higher than those collected from the Western and Eastern Zones of the Pearl River Delta, which are related to the existence of various anthropogenic activities in the catchment of the Pearl River Delta. The Western Estuarine Zone is mainly impacted hy Cr, Ni and Cu contamination. In Victoria Harbor, heavy metal contamination is mainly due to Cu and Pb, Cd, Cu and Zn concentrations in oysters were significantly higher than those in mussels and clams. This could be explained by the fact that oysters live mainly in the Estuarine Zone of the Pearl River Delta which receives most of the polluting discharges from the catchment of the Delta. During turbid condition, heavy metals( soluble or adsorbed on suspended particulates) discharged from the Delta are filtered from the water column and subsequently accumulated into the soft body tissues of oysters. Heavy metal concentrations in the three bivalve species were compared with the maximum permissible levels of heavy metals in seafood regulated by the Public Health and Municipal Services Ordinance, Laws of Hong Kong, and it was revealed that Cd and Cr concentrations in the three bivalve species exceeded the upper limits. At certain hotspots in the Delta, the maximum acceptable daily load for Cd was also exceeded.
NASA Astrophysics Data System (ADS)
Yang, R.; Liu, J. T.; Fan, D.; Burr, G.; Lin, H. L.; Chen, T.
2016-02-01
Taiwan is located in the collision zone of two tectonic plates, and receives impacts from the monsoons and typhoons. They contribute to the high sediment load delivered to the sea by small mountainous rivers on this island. The disproportionally large sediment load and the rising sea level constitute a favorable receiving-basin condition for the formation of river deltas. In this study, FATES-HYPERS team drilled two bore-holes on both sides of the Zhuoshui River mouth in central Taiwan. The length of each core was 104m (JRD-S) and 98m (JRD-N). Through AMS 14C dating from over 70 samples in each core a reliable age model was established to reconstruct the paleoenvironment of at the Zhuoshui River mouth during late Quaternary. These transitions indicate that the paleo-river mouth began to develop a transgressive-estuarine system at 10,000 yr BP, when the paleo-river mouth was inundated by the rising sea. The sediments that were come from Zhuoshui River accumulated slower than the sea-level rise. This resulted in gradually deeper environment. The evidence of maximum flooding surface (MFS) suggests transgression progressed until 5700 yr BP. Combined with findings from previous studies the position of MFS display a shallowing trend from the south to north. This implies that the deposition rate in the north was higher than that in the south. Therefore it is reasonable to assume that the paleo-river mouth was located north to the present position. After the sea level became stable, because of large terrestrial sediments discharge the paleo-river mouth was soon switched from a transgressive system to an aggradational delta system. The Zhuoshui River delta, unlike many well-known river delta systems, is limited by the depth of the Taiwan Strait. Shallow water depth and energetic hydrodynamics result in the non-deposition of muddy sediments near the river mouth. This caused the absence of thick muddy prodelta deposits in the upper part of the JRD cores. This caused the absence of thick muddy prodelta deposits in the upper part of the JRD cores. Moreover, the offshore morphology influenced the tidal current that become parallel to the shoreline in a short distance from the shore. The currents enabled the delta to develop a parallel coast tidal ridge at the delta front. This creates a unique depositional model for the Zhuoshui River delta.
NASA Astrophysics Data System (ADS)
Lin, Chengfa; Liu, Shaofeng; Zhuang, Qitian; Steel, Ronald J.
2018-06-01
Mesozoic thrusting within the Yanshan fold-and-thrust belt of North China resulted in a series of fault-bounded intramontane basins whose infill and evolution remain poorly understood. In particular, the bounding faults and adjacent sediment accumulations along the western segments of the belt are almost unstudied. A sedimentological and provenance analysis of the Lower Jurassic Xiahuayuan Formation and the Upper Jurassic Jiulongshan Formation have been mapped to show two distinctive clastic wedges: an early Jurassic wedge representing a mass-flow-dominated, Gilbert-type fan delta with a classic tripartite architecture, and an late Jurassic shoal-water fan delta without steeply inclined strata. The basinward migration of the fan-delta wedges, together with the analysis of their conglomerate clast compositions, paleocurrent data and detrital zircon U-Pb age spectra, strongly suggest that the northern-bounding Xuanhuan thrust fault controlled their growth during accumulation of the Jiulongshan Formation. Previous studies have suggested that the fan-delta wedge of the Xiahuayuan Formation was also syntectonic, related to movement on the Xuanhua thrust fault. Two stages of thrusting therefore exerted an influence on the formation and evolution of the Xiahuayuan basin during the early-late Jurassic.
NASA Astrophysics Data System (ADS)
Liu, Jie; Feng, Xiuli; Liu, Xiao
2017-05-01
One of the most important factors controlling the morphology of the modern Huanghe (Yellow) River delta is consolidation settlement, which is impacted by fast deposition, high water content, and low density of seafloor sediment. Consolidation settlement of the Huanghe River subaqueous delta was studied based on field data, laboratory experiments on 12 drill holes, and the one-dimensional consolidation theory. Results show that vertical sediment characteristics varied greatly in the rapidly forming sedimentary bodies of the modern Huanghe River subaqueous delta. Sediments in the upper parts of drill holes were coarser than those in the deeper parts, and other physical and mechanical properties changed accordingly. On the basis of the one-dimensional consolidation theory and drilling depth, the final consolidation settlement of drill holes was between 0.6 m and 2.8 m, and the mean settlement of unit depth was at 1.5-3.5 cm/m. It takes about 15-20 years for the consolidation degree to reach 90% and the average sedimentation rate within the overlying 50 m strata was at 5 cm/a to 12 cm/a. This study helps to forecast the final consolidation settlement and settlement rate of the modern Huanghe River subaqueous delta, which provides key geotechnical information for marine engineers.
Siegel, John H; Smith, Joyce A; Siddiqi, Shabana Q
2004-10-01
To examine the effect of change in velocity (MV) and energy dissipation (IE) on impact, above and below the test levels for federal motor vehicle crash (MVC) safety standards, on the incidence of aortic injury (AI) and its mortality and associated injury patterns in frontal (F) and lateral (L) MVCs. Comparison of 80 AI and 796 non-AI patients of AIS=3. Eight hundred seventy-six MVC adult drivers or front-seat passengers (552 F and 324 L) evaluated by 10 Level I CIREN study Trauma Centers together with vehicle and crash scene engineering reconstruction. Patient seatbelt and/or airbag use correlated with clinical or autopsy findings. In AI, 63% of cases were dead at the scene and only 16% survived to leave hospital. The relation between IE dissipated in the MVC and the DeltaV on impact was exponential as DeltaV increased, but the rise in IE for a given DeltaV was greater in LMVC than in FMVC (p <0.05). A more rapid rise in IE/DeltaV occurred above the mean DeltaV of 48 +/- 19.7 kph (30 mph) in FMVC and above the mean DeltaV of 36 +/- 16.2 kph (23 mph) in LMVC. As DeltaV increased above these means, 65% of 46 FMVC aortic injuries (AIs) and 64% of 34 LMVC AIs occurred. In AI patients there was evidence of focusing of the point of IE impact on the upper chest with a higher incidence of rib1-4 fractures than in non-AI (p <0.01) and more brain, heart, lung and spleen injuries (p <0.01) consequent to lower seatbelt use (p <0.01), but LMVC also had more pelvic fx (p <0.05). Airbags + seatbelts in FMVC and seatbelts in LMVC reduced mortality (p <0.05) Comparison of AI incidence in three successive 4-year vehicle model year periods showed a progressive decrease as new safety devices were introduced (p < 0.05). The implications for AI of the focused IE at the upper chest suggest a probable mechanism for MVC AI with the pressurized aortic arch acting as the long arm of a lever system with the fulcrum at the subclavian artery, producing maximum torsional strain at the short arm of the isthmus where 75% of the AIs occurred. AI mortality is also influenced by the associated injuries. To develop more effective safety systems to prevent AI, MVC safety testing with airbags and seatbelts should be carried out at DeltaVs of 1 SD above means for FMVC and LMVC.
The Boeing Delta II rocket with Mars Polar Lander aboard lifts off at Pad 17B, CCAS
NASA Technical Reports Server (NTRS)
1999-01-01
Looking like a Roman candle, the exhaust from the Boeing Delta II rocket with the Mars Polar Lander aboard lights up the clouds as it hurtles skyward. The rocket was launched at 3:21:10 p.m. EST from Launch Complex 17B, Cape Canaveral Air Station. The lander is a solar-powered spacecraft designed to touch down on the Martian surface near the northern-most boundary of the south polar cap, which consists of carbon dioxide ice. The lander will study the polar water cycle, frosts, water vapor, condensates and dust in the Martian atmosphere. It is equipped with a robotic arm to dig beneath the layered terrain. In addition, Deep Space 2 microprobes, developed by NASA's New Millennium Program, are installed on the lander's cruise stage. After crashing into the planet's surface, they will conduct two days of soil and water experiments up to 1 meter (3 feet) below the Martian surface, testing new technologies for future planetary descent probes. The lander is the second spacecraft to be launched in a pair of Mars Surveyor '98 missions. The first is the Mars Climate Orbiter, which was launched aboard a Delta II rocket from Launch Complex 17A on Dec. 11, 1998.
Carbon Dynamics Along a Temperate Fjord-Head Delta: Linkages With Carbon Burial in Fjords
NASA Astrophysics Data System (ADS)
Cui, Xingqian; Bianchi, Thomas S.; Kenney, William F.; Wang, Jiaze; Curtis, Jason H.; Xu, Kehui; Savage, Candida
2017-12-01
We used seven 210Pb-dated sediment cores from the Gaer Arm in the Doubtful Sound fjord complex, Fiordland, New Zealand to evaluate organic carbon (OC) dynamics in a temperate fjord-head delta. The highly dynamic spatial features of this delta were clearly evident in the observed sediment properties such as mass accumulation rates that varied by a factor of 14, sediment grain size by a factor 5, and sedimentary OC content by a factor 6. Low lignin concentrations (e.g., 2.95 mg (100 mg OC)-1) and syringic/vanillic ratios of lignin phenols (S/V; e.g., 0.44) at the upper deltaic stations were representative of substantial autochthonous OC contributions to delta sediments. Significantly higher acid/aldehyde ratios of vanillic phenols [(Ad/Al)v] at the deltaic stations (0.45-0.82) than the surface grabs (0.26-0.30) indicated rapid degradation of OC within the delta. Despite being a "hot spot" for OC oxidation, the delta likely improves OC preservation in the adjacent fjord by filtering out coarse-grained particles and exporting fine-grained particles to fjord sediments. Our results showed that fjord-head deltas can influence sedimentation and OC dynamics in select regions of fjords and thus warrant more examination of fjord-head processes, particularly in areas where they are expanding. In particular, as Earth warms and glaciers retreat, the newly exposed fjord-head platforms in high-latitude environments may evolve into similar "hot spots" of OC oxidation, thereby altering the dynamics of OC burial in these systems.
1992-07-24
A Delta II rocket carrying the Geomagnetic Tail Lab (GEOTAIL) spacecraft lifts off at Launch Complex 17, Kennedy Space Center (KSC) into a cloud-dappled sky. This liftoff marks the first Delta launch under the medium expendable launch vehicle services contract between NASA and McDonnell Douglas Space Systems Co. The GEOTAIL mission, a joint US/Japanese project, is the first in a series of five satellites to study the interactions between the Sun, the Earth's magnetic field, and the Van Allen radiation belts.
ERIC Educational Resources Information Center
Commission of the European Communities, Brussels (Belgium).
This report, the second volume in a three volume set, summarizes the results of a study performed by the DELTA (Developing European Learning through Technological Advance) unit in parallel with the projects underway in the research and development Exploratory Action. The report identifies the key issues, associated requirements and options, and…
Redshifts for fainter galaxies in the first CfA survey slice. II
NASA Technical Reports Server (NTRS)
Wegner, Gary; Thorstensen, John R.; Kurtz, Michael J.; Geller, Margaret J.; Huchra, John P.
1990-01-01
Redshifts were measured for 96 galaxies in right ascension alpha between 8h and 17h declination delta between 30 and 31 deg, and with m(Zwicky) in the range 15.6-15.7. These correspond to 94 of the 96 entries in the Zwicky-Nilson merged catalog. The declination range delta between 29 deg and 31 deg is now complete to m(Zwicky) = 15.7. The structures in the first 6-deg-wide slice of the Center for Astrophysics redshift survey slice (delta between 26.5 and 32.5 deg are clearly defined in the 2-deg-wide slightly deeper sample; the fainter galaxies trace the structures defined by the brighter ones.
Further studies on lead compounds containing the opioid pharmacophore Dmt-Tic.
Balboni, Gianfranco; Fiorini, Stella; Baldisserotto, Anna; Trapella, Claudio; Sasaki, Yusuke; Ambo, Akihiro; Marczak, Ewa D; Lazarus, Lawrence H; Salvadori, Severo
2008-08-28
Some reference opioids containing the Dmt-Tic pharmacophore, especially the delta agonists H-Dmt-Tic-Gly-NH-Ph (1) and H-Dmt-Tic-NH-(S)CH(CH2-COOH)-Bid (4) (UFP-512) were evaluated for the influence of the substitution of Gly with aspartic acid, its chirality, and the importance of the -NH-Ph and N(1)H-Bid hydrogens in the inductions of delta agonism. The results provide the following conclusions: (i) Asp increases delta selectivity by lowering the mu affinity; (ii) -NH-Ph and N(1)H-Bid nitrogens methylation transforms the delta agonists into delta antagonists; (iii) the substitution of Gly with L-Asp/D-Asp in the delta agonist H-Dmt-Tic-Gly-NH-Ph gave delta antagonists; the same substitution in the delta agonist H-Dmt-Tic-NH-CH2-Bid yielded more selective agonists, H-Dmt-Tic-NH-(S)CH(CH2-COOH)-Bid and H-Dmt-Tic-NH-(R)CH(CH2-COOH)-Bid; (iv) L-Asp seems important only in functional bioactivity, not in receptor affinity; (v) H-Dmt-Tic-NH-(S)CH(CH2-COOH)-Bid(N(1)-Me) (10) evidenced analgesia similar to 4, which was reversed by naltrindole only in the tail flick. 4 and 10 had opposite behaviours in mice; 4 caused agitation, 10 gave sedation and convulsions.
1997-08-11
Extension of the solar panels is tested on the Advanced Composition Explorer (ACE) spacecraft in KSC’s Spacecraft Assembly and Encapsulation Facility-II (SAEF-II). Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 25, ACE will study low-energy particles of solar origin and high-energy galactic particles. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA
Delta ribozyme has the ability to cleave in transan mRNA.
Roy, G; Ananvoranich, S; Perreault, J P
1999-01-01
We report here the first demonstration of the cleavage of an mRNA in trans by delta ribozyme derived from the antigenomic version of the human hepatitis delta virus (HDV). We characterized potential delta ribozyme cleavage sites within HDV mRNA sequence (i.e. C/UGN6), using oligonucleotide binding shift assays and ribonuclease H hydrolysis. Ribozymes were synthesized based on the structural data and then tested for their ability to cleave the mRNA. Of the nine ribozymes examined, three specifically cleaved a derivative HDV mRNA. All three active ribozymes gave consistent indications that they cleaved single-stranded regions. Kinetic characterization of the ability of ribozymes to cleave both the full-length mRNA and either wild-type or mutant small model substrate suggests: (i) delta ribozyme has turnovers, that is to say, several mRNA molecules can be successively cleaved by one ribozyme molecule; and (ii) the substrate specificity of delta ribozyme cleavage is not restricted to C/UGN6. Specifically, substrates with a higher guanosine residue content upstream of the cleavage site (i.e. positions -4 to -2) were always cleaved more efficiently than wild-type substrate. This work shows that delta ribozyme constitutes a potential catalytic RNA for further gene-inactivation therapy. PMID:9927724