Science.gov

Sample records for delta scuti pulsators

  1. Non-linear hydrodynamical simulations of delta Scuti star pulsations

    NASA Astrophysics Data System (ADS)

    Templeton, M. R.; Guzik, J. A.; McNamara, B. J.

    1998-12-01

    We present the initial results of non-linear hydrodynamic simulations of the pulsation modes of delta Scuti stars. These models use the Ostlie and Cox (1993) Lagrangian hydrodynamic code, adapted to use the most recent OPAL (1996) opacities, the Stellingwerf (1974) periodic relaxation method of obtaining stable limit cycle pulsations, and time-dependent convection. Initial tests of first- and second-overtone pulsation models are consistent with the models of Bono, et al (1997) showing asymmetric lightcurves for first overtone rather than fundamental pulsations. Future modeling work will test several stellar models with varying masses, ages, metal and helium abundances and envelope abundance gradients. Ultimately, we hope to determine the role that abundances and, more specifically, helium abundance gradients in delta Scuti envelopes play in light curve shape. This work will be applied to a test sample of known radially-pulsating delta Scuti field stars and the newly-discovered delta Scuti/SX Phoenicis variables in the Galactic Bulge.

  2. Numerical Simulations of High-Amplitude Delta Scuti Star Pulsations

    NASA Astrophysics Data System (ADS)

    Templeton, M. R.

    1999-12-01

    We present the results of a theoretical program to model high-amplitude delta Scuti (HADS) stars. We base this study on field HADS, and on the MACHO Project delta Scuti stars. We have generated a grid of evolution models with (X,Y,Z) = (0.76,0.24,0.0001) to (0.58,0.36,0.06) covering the delta Scuti/SX Phoenicis region of the instability strip. Linear pulsation tests were done to make theoretical Petersen diagrams for the double-mode pulsators, and to make period-luminosity relations. Petersen diagrams are consistent with previous observational and theoretical work, with all fundamental-first overtone pulsators having period ratios around 0.77. For a single metallicity, stars with masses separated by 0.1 Msun have distinct tracks in the Petersen diagram, which permits mass and age estimates for stars of known abundance. We also find that period ratios drop rapidly as these stars evolve toward the red giant branch. The two MACHO delta Scuti stars with period ratios around 0.75 may be highly evolved, cool (T = 6700 K) delta Scuti stars. Period-luminosity relations for stars of different masses but the same abundances have a large intrinsic scatter, indicating that a color term must be included in the P-L relation for delta Scuti stars. Hydrodynamic models of HADS have also been tested, using a variant of the Los Alamos DYNSTAR code (Ostlie and Cox, 1993, Astrophys. Space Sci 210, 311), modified to include the OPAL96 tabular opacities. We have obtained light curves that are similar to those of observed HADS, over a range of temperatures and masses. Our results are consistent with those of Bono et al. (1997; ApJ 477, 346) in that the light curves of fundamental mode pulsators are more sinusoidal than those of overtone pulsators. Work on the hydrodynamic models is being expanded to test the effects of helium enrichment on light curve shape, and to include convection in cooler HADS to better model the red edge of the instability strip.

  3. An AD HOC hypothesis on the pulsation of Delta Scuti stars

    NASA Astrophysics Data System (ADS)

    Antonello, E.

    It is proposed that the stars in the lower part of the instability strip are pulsating if they have sufficiently high rotational velocity and/or if they are in an appropriate binary system that provides some sort of nonradial hard excitation to pulsate. This should be valid at least for the low amplitude variables. The results of various studies on the Delta Scuti stars do not show a clear confirmation or rejection of this hypothesis, but for the stars in the well-studied Hyades cluster, the rotational velocity has some importance for the discrimination between variable and nonvariable stars in the sense of the hypothesis. The different incidence of spectroscopid binaries among variable and nonvariable stars also supports the hypothesis, at least for dwarfs.

  4. Delta Scuti stars: Theory

    NASA Technical Reports Server (NTRS)

    Guzik, J. A.

    1998-01-01

    The purpose of asteroseismology is not only to derive the internal structure of individual stars from their observed oscillation frequencies, but also to test and extend one's understanding of the physics of matter under the extremes of temperature, density, and pressure found in stellar interiors. In this review, the author hopes to point out what one can learn about the Sun by studying (delta) Scuti stars, as well as what one can learn about stars more massive or evolved than the Sun. He discusses some of the difficulties in theoretical approaches to asteroseismology for (delta) Scuti stars, using FG Vir, (delta) Scuti, and CD-24(degree) 7599 as examples.

  5. HYBRID {gamma} DORADUS-{delta} SCUTI PULSATORS: NEW INSIGHTS INTO THE PHYSICS OF THE OSCILLATIONS FROM KEPLER OBSERVATIONS

    SciTech Connect

    Grigahcene, A.; Monteiro, M. J. P. F. G.; Antoci, V.; Handler, G.; Houdek, G.; Balona, L.; Catanzaro, G.; Daszynska-Daszkiewicz, J.; Guzik, J. A.; Kurtz, D. W.; Marconi, M.; Ripepi, V.; Moya, A.; Suarez, J.-C.; Uytterhoeven, K.; Brown, T. M.; Christensen-Dalsgaard, J.; Gilliland, R. L.; Jenkins, J. M.

    2010-04-20

    Observations of the pulsations of stars can be used to infer their interior structure and test theoretical models. The main-sequence {gamma} Doradus (Dor) and {delta} Scuti (Sct) stars with masses 1.2-2.5 M {sub sun} are particularly useful for these studies. The {gamma} Dor stars pulsate in high-order g-modes with periods of order 1 day, driven by convective blocking at the base of their envelope convection zone. The {delta} Sct stars pulsate in low-order g- and p-modes with periods of order 2 hr, driven by the {kappa} mechanism operating in the He II ionization zone. Theory predicts an overlap region in the Hertzsprung-Russell diagram between instability regions, where 'hybrid' stars pulsating in both types of modes should exist. The two types of modes with properties governed by different portions of the stellar interior provide complementary model constraints. Among the known {gamma} Dor and {delta} Sct stars, only four have been confirmed as hybrids. Now, analysis of combined Quarter 0 and Quarter 1 Kepler data for hundreds of variable stars shows that the frequency spectra are so rich that there are practically no pure {delta} Sct or {gamma} Dor pulsators, i.e., essentially all of the stars show frequencies in both the {delta} Sct and the {gamma} Dor frequency range. A new observational classification scheme is proposed that takes into account the amplitude as well as the frequency and is applied to categorize 234 stars as {delta} Sct, {gamma} Dor, {delta} Sct/{gamma} Dor or {gamma} Dor/{delta} Sct hybrids.

  6. Kepler Eclipsing Binaries with Delta Scuti/Gamma Doradus Pulsating Components I: KIC 9851944

    NASA Astrophysics Data System (ADS)

    Guo, Zhao; Gies, Douglas R.; Matson, Rachel A.; García Hernández, Antonio

    2016-07-01

    KIC 9851944 is a short-period (P = 2.16 days) eclipsing binary in the Kepler field of view. By combining the analysis of Kepler photometry and phase-resolved spectra from Kitt Peak National Observatory and Lowell Observatory, we determine the atmospheric and physical parameters of both stars. The two components have very different radii (2.27 R ⊙, 3.19 R ⊙) but close masses (1.76 M ⊙, 1.79 M ⊙) and effective temperatures (7026, 6902 K), indicating different evolutionary stages. The hotter primary is still on the main sequence (MS), while the cooler and larger secondary star has evolved to the post-MS, burning hydrogen in a shell. A comparison with coeval evolutionary models shows that it requires solar metallicity and a higher mass ratio to fit the radii and temperatures of both stars simultaneously. Both components show δ Scuti-type pulsations, which we interpret as p-modes and p and g mixed modes. After a close examination of the evolution of δ Scuti pulsational frequencies, we make a comparison of the observed frequencies with those calculated from MESA/GYRE.

  7. Spectroscopic Survey Of Delta Scuti Stars

    NASA Astrophysics Data System (ADS)

    Kahraman Alicavus, Filiz; Niemczura, Ewa; Polinska, Magdalena; Helminiak, Krzysztof G.; Lampens, Patricia; Molenda-Zakowicz, Joanna; Ukita, Nobuharu; Kambe, Eiji

    2016-07-01

    We present the results of a spectroscopic study of pulsating stars of Delta Scuti type. The spectral types and luminosity classes, fundamental atmospheric parameters (the effective temperature, surface gravity, microturbulent velocity), detailed chemical composition and projected rotational velocities of a significant number of Delta Scuti-type stars were derived. The spectral classification was performed by comparing the spectra of our targets with the spectra of standard stars. The atmospheric parameters were determined by using different methods. The initial atmospheric parameters were derived from the analysis of photometric indices, the spectral energy distribution and the hydrogen lines, while the final atmospheric parameters were obtained from the analysis of iron lines. The spectrum synthesis method was used to determine chemical compositions of the investigated stars. As a result, we derived accurate atmospheric parameters, the projected rotational velocities and the abundance patterns of analysed sample. These results allow us to examine the position of Delta Scuti-type stars in the H-R diagram, and to investigate the effect of the rotational velocity on pulsation properties and a chemical difference between the Delta Scuti-type stars and the Gamma Doradus and A-F type hybrid stars.

  8. A nonradial pulsation model for the rapidly rotating Delta Scuti star Kappa(2) Bootis

    NASA Technical Reports Server (NTRS)

    Kennelly, E. J.; Walker, G. A. H.; Hubeny, I.

    1991-01-01

    A sectorial nonradial pulsation model is used to construct theoretical line profiles which mimic the variations for Kappa(2) Boo. Synthetic spectra generated with the appropriate Teff and log g are used as input. It is found that the data can be reproduced by the combination of a high-degree l is approximately equal to 12 mode with P(osc) aproximately equal to 0.071 d, and a low-degree mode, l is approximately equal to 0-2 with P(osc) approximately equal to 0.071-0.079 d. The projected rotational velocity (v sin i - 115 +/-5 km/s) was determined by fitting synthetic line profiles to the observed spectra. The velocity amplitude of the high-degree oscillations is estimated to be about 3.5 km/s. It is found that the ratio of the horizontal and radial pulsation amplitudes is small (about 0.02) and consistent with p-mode oscillations. Comparisons are made with models invoking starspots, and it is impossible to fit the observations of Kappa(2) Boo by a starspot model without assuming unrealistic values of radius or equatorial velocity.

  9. Light curves and Fourier coefficients for a subsample of the MACHO Delta Scuti stars

    NASA Astrophysics Data System (ADS)

    Templeton, M.; McNamara, B.

    1998-07-01

    We have compiled a sample of Delta Scuti candidates from the MACHO catalog of variable stars in the direction of the Galactic Bulge, and a detailed spectral analysis of this time series data is in progress. The MACHO project (see Alcock et al. 1997) has collected a massive amount of photometry on millions of stars in the directions of the Galactic Bulge and the Large and Small Magellanic Clouds. Many thousands of variable stars have been detected, among them Delta Scuti stars (towards the Galactic Bulge only; Delta Scuti stars in the LMC and SMC are below the detection limits of MACHO). See the discovery paper of Minniti et al. (1997) for more background and sample light curves. Of our initial sample of 136 stars showing variability on timescales less than 0.3d and with (V-R) colors similar to those of Delta Scuti stars, we find that sim 90 are likely Delta Scuti stars, with the remainder being either eclipsing binaries of W Ursa Majoris type ``A'' or which require more detailed observations for classification. The ultimate goal of our study is to determine as accurately as possible the pulsation spectra and pulsation mode types of the candidate Delta Scuti stars. In the present paper, we discuss the general light curve shapes of these objects by analyzing the Fourier harmonics of observed pulsation modes. This technique has been explored in some detail for Cepheids (Simon & Lee 1981) and for Delta Scuti stars (Antonello et al. 1987; Poretti et al. 1990). Recent non-linear modeling work by Bono et al. (1997) suggests that the light curve shape is a strong indicator of the radial overtone number for radially pulsating Delta Scuti stars. Therefore, Fourier analysis of pulsation frequencies and their Fourier harmonics may indicate which overtone a given star is pulsating in. Here, we present the initial results for a subsample of the MACHO Delta Scuti stars.

  10. STATISTICAL PROPERTIES OF GALACTIC {delta} SCUTI STARS: REVISITED

    SciTech Connect

    Chang, S.-W.; Kim, D.-W.; Byun, Y.-I.; Protopapas, P. E-mail: kim@mpia-hd.mpg.de

    2013-05-15

    We present statistical characteristics of 1578 {delta} Scuti stars including nearby field stars and cluster member stars within the Milky Way. We obtained 46% of these stars (718 stars) from work by Rodriguez and collected the remaining 54% of stars (860 stars) from other literature. We updated the entries with the latest information of sky coordinates, color, rotational velocity, spectral type, period, amplitude, and binarity. The majority of our sample is well characterized in terms of typical period range (0.02-0.25 days), pulsation amplitudes (<0.5 mag), and spectral types (A-F type). Given this list of {delta} Scuti stars, we examined relations between their physical properties (i.e., periods, amplitudes, spectral types, and rotational velocities) for field stars and cluster members, and confirmed that the correlations of properties are not significantly different from those reported in Rodriguez's work. All the {delta} Scuti stars are cross-matched with several X-ray and UV catalogs, resulting in 27 X-ray and 41 UV-only counterparts. These counterparts are interesting targets for further study because of their uniqueness in showing {delta} Scuti-type variability and X-ray/UV emission at the same time. The compiled catalog can be accessed through the Web interface http://stardb.yonsei.ac.kr/DeltaScuti.

  11. High Amplitude (delta)-Scutis in the Large Magellanic Cloud

    SciTech Connect

    Garg, A; Cook, K H; Nikolaev, S; Huber, M E; Rest, A; Becker, A C; Challis, P; Clocchiatti, A; Miknaitis, G; Minniti, D; Morelli, L; Olsen, K; Prieto, J L; Suntzeff, N B; Welch, D L; Wood-Vasey, W M

    2010-01-25

    The authors present 2323 High-Amplitude {delta}-Scutis (HADS) candidates discovered in the Large Magellanic Cloud (LMC) by the SuperMACHO survey (Rest et al. 2005). Frequency analyses of these candidates reveal that several are multimode pulsators, including 119 whose largest amplitude of pulsation is in the fundamental (F) mode and 19 whose largest amplitude of pulsation is in the first overtone (FO) mode. Using Fourier decomposition of the HADS light curves, they find that the period-luminosity (PL) relation defined by the FO pulsators does not show a clear separation from the PL-relation defined by the F pulsators. This differs from other instability strip pulsators such as type c RR Lyrae. They also present evidence for a larger amplitude, subluminous population of HADS similar to that observed in Fornax (Poretti et al. 2008).

  12. Pulsational frequencies in the delta Scuti stars V624 Tauri and HD 23194. Results of the STEPHI X campaign on the Pleiades cluster

    NASA Astrophysics Data System (ADS)

    Fox-Machado, L.; Álvarez, M.; Michel, E.; Li, Z. P.; Pérez Hernández, F.; Chevreton, M.; Barban, C.; Belmonte, J. A.; Dolez, N.; Fernandez, A.; Guo, J. P.; Haywood, M.; Liu, Y. Y.; Pau, S.; Planas, H.; Servan, B.

    2002-02-01

    The results of the tenth multi-site campaign of the STEPHI network are reported. The delta Scuti stars V624 Tau (HD 23156) and HD 23194, belonging to the Pleiades cluster, were observed photometrically for 34 days on three continents during 1999 November-December. An overall run of 343 hours of data was collected. Seven frequencies for V624 Tau and two frequencies for HD 23194 have been found above a 99% confidence level. These results greatly improve those found in previous studies with much less data. A preliminary comparison of observed and theoretical frequencies suggests that both stars may oscillate with radial and non-radial p modes of radial orders typical among delta Scuti stars.

  13. KIC 8262223: A Post-mass Transfer Eclipsing Binary Consisting of a Delta Scuti Pulsator and a Helium White Dwarf Precursor

    NASA Astrophysics Data System (ADS)

    Guo, Zhao; Gies, Douglas R.; Matson, Rachel A.; García Hernández, Antonio; Han, Zhanwen; Chen, Xuefei

    2017-03-01

    KIC 8262223 is an eclipsing binary with a short orbital period (P = 1.61 day). The Kepler light curves are of Algol-type and display deep and partial eclipses, ellipsoidal variations, and pulsations of δ Scuti type. We analyzed the Kepler photometric data, complemented by phase-resolved spectra from the R-C Spectrograph on the 4 meter Mayall telescope at the Kitt Peak National Observatory and determined the fundamental parameters of this system. The low-mass and oversized secondary ({M}2=0.20{M}ȯ , {R}2=1.31{R}ȯ ) is the remnant of the donor star that transferred most of its mass to the gainer, and now the primary star. The current primary star is thus not a normal δ Scuti star but the result of mass accretion from a lower mass progenitor. We discuss the possible evolutionary history and demonstrate with the MESA evolution code that this system and several other systems discussed in prior literature can be understood as the result of non-conservative binary evolution for the formation of EL CVn-type binaries. The pulsations of the primary star can be explained as radial and non-radial pressure modes. The equilibrium models from single star evolutionary tracks can match the observed mass and radius ({M}1=1.94{M}ȯ , {R}1=1.67{R}ȯ ) but the predicted unstable modes associated with these models differ somewhat from those observed. We discuss the need for better theoretical understanding of such post-mass transfer δ Scuti pulsators.

  14. Analysis of pre-main-sequence delta-Scuti stars

    NASA Astrophysics Data System (ADS)

    Casey, Michael Patrick

    Information on 72 confirmed or candidate pre-main-sequence delta-Scuti stars is collected and analysed to varying degree of sophistication and completeness. A systematic asteroseismic analysis of around 40 of these stars is performed, putting significant luminosity constraints on many of them simply by comparing the pulsation spectra of the stars to the fundamental and acoustic cut-off frequencies of a dense grid of stellar models. One star in particular, V1366 Ori, appears to be pulsating at or near the acoustic cut-off frequency. Many stars are found to otherwise defy proper asteroseismic analysis, in that matches between observed pulsation spectra and computed values are not able to be found. A simple test reveals that the most likely cause for these problems are the high stellar-rotation rates typically found in this class of star, with v sin i most typically between 60 and 200 km/s. The high rotation rates are found to significantly modify the pulsation spectrum of a star compared to a non-rotating star. These collective results reveal the richness and variety of phenomena within this group of stars, with stars pulsating anywhere from the lowest to the highest possible radial orders, including radial orders just below the acoustic cut-off frequency of some stars. Pulsation in non-radial orders is the normal case, not the exception to the rule, with all stars displaying low-amplitude delta-Scuti variability only.

  15. The MACHO Project Sample of Galactic Bulge High-Amplitude Scuti Stars: Pulsation Behavior and Stellar Properties

    SciTech Connect

    Bennett, D.P.; Cook, K.H.; Freeman, K.C.; Geha, M.; Griest, K.; Lehner, M.J.; Marshall, S.L.; McNamara, B.J.; Minniti, D.; Nelson, C.; Peterson, B.A.; Popowski, P.; Pratt, M.R.; Quinn, P.J.; Rodgers, A.W.; Sutherland, W.; Templeton, M.R.; Vandehei, T.; Welch, D.L.

    1999-11-16

    We have detected 90 objects with periods and lightcurve structure similar to those of field {delta} Scuti stars, using the Massive Compact Halo Object (MACHO) Project database of Galactic bulge photometry. If we assume similar extinction values for all candidates and absolute magnitudes similar to those of other field high-amplitude {delta} Scuti stars (HADS), the majority of these objects lie in or near the Galactic bulge. At least two of these objects are likely foreground {delta} Scuti stars, one of which may be an evolved nonradial pulsator, similar to other evolved, disk-population {delta} Scuti stars. We have analyzed the light curves of these objects and find that they are similar to the light curves of field {delta} Scuti stars and the {delta} Scuti stars found by the Optical Gravitational Lens Experiment (OGLE). However, the amplitude distribution of these sources lies between those of low- and high-amplitude {delta} Scuti stars, which suggests that they may be an intermediate population. We have found nine double-mode HADS with frequency ratios ranging from 0.75 to 0.79, four probable double- and multiple-mode objects, and another four objects with marginal detections of secondary modes. The low frequencies (5-14 cycles d{sup -1}) and the observed period ratios of {approx}0.77 suggest that the majority of these objects are evolved stars pulsating in fundamental or first overtone radial modes.

  16. The Brightest Delta Scuti Star

    NASA Astrophysics Data System (ADS)

    Buzasi, D.; Bruntt, H.; Preston, H.; Mandeville, J.; Bedding, T.; Retter, A.; Kjeldsen, H.

    2003-12-01

    We present an analysis of observations of the bright star Altair (α Aql) obtained using the star camera on the Wide Field Infrared Explorer (WIRE) satellite. Although Altair lies within the δ Scuti instability strip, previous observations have not revealed the presence of oscillations. However, the WIRE observations show Altair to be a low amplitude (Δ m < 500 μ mag) δ Scuti star with at least 5 modes present. We further show that the detected frequencies are compatible with models for Altair.

  17. Asteroseismology of hybrid δ Scuti-γ Doradus pulsating stars

    NASA Astrophysics Data System (ADS)

    Sánchez Arias, J. P.; Córsico, A. H.; Althaus, L. G.

    2017-01-01

    Context. Hybrid δ Scuti-γ Doradus pulsating stars show acoustic (p) oscillation modes typical of δ Scuti variable stars, and gravity (g) pulsation modes characteristic of γ Doradus variable stars simultaneously excited. Observations from space missions such as MOST, CoRoT, and Kepler have revealed a large number of hybrid δ Scuti-γ Doradus pulsators, thus paving the way for an exciting new channel of asteroseismic studies. Aims: We perform detailed asteroseismological modelling of five hybrid δ Scuti-γ Doradus stars. Methods: A grid-based modeling approach was employed to sound the internal structure of the target stars using stellar models ranging from the zero-age main sequence to the terminal-age main sequence, varying parameters such as stellar mass, effective temperature, metallicity and core overshooting. Their adiabatic radial (ℓ = 0) and non-radial (ℓ = 1,2,3) p and g mode periods were computed. Two model-fitting procedures were used to search for asteroseismological models that best reproduce the observed pulsation spectra of each target star. Results: We derive the fundamental parameters and the evolutionary status of five hybrid δ Scuti-γ Doradus variable stars recently observed by the CoRoT and Kepler space missions: CoRoT 105733033, CoRoT 100866999, KIC 11145123, KIC 9244992, and HD 49434. The asteroseismological model for each star results from different criteria of model selection, in which we take full advantage of the richness of periods that characterises the pulsation spectra for this kind of star.

  18. Multiband photometric re-classification of ROTSE-I delta Scuti type stars

    NASA Astrophysics Data System (ADS)

    Jin, H.; Kim, S.-L.; Kwon, S.-G.; Youn, J.-H.; Lee, C.-U.; Lee, D.-J.; Kim, K.-S.

    2003-06-01

    We present multi-passband CCD photometry of 20 ROTSE-I delta Scuti type pulsating stars and 1 RR Lyrae star to re-classify their variable types using the comparison of amplitudes between V and I passbands. For the re-classification, we used a criterion that pulsating stars have larger amplitude differences between passbands than eclipsing binaries because brightness changes of pulsating stars are mainly due to the temperature variations. As a result, only six stars were re-confirmed as delta Scuti variables and thirteen stars turned out to be W UMa type eclipsing binaries. The other two stars were identified as one cataclysmic variable and one non-variable, respectively. Our results suggest that a number of ROTSE-I delta Scuti type stars, which do not show typical pulsating light curves of high amplitude delta Scuti stars, are W UMa type eclipsing binaries. Table 3 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/404/621

  19. The Theta 2 Tau campaign by the Delta Scuti Network

    NASA Astrophysics Data System (ADS)

    Breger, M.

    1995-01-01

    The star Theta 2 Tau had already been studied by the Delta Scuti Network during two previous multisite campaigns (see Breger, M., Garrido, R., Huang Lin, Jiang Shi-Yang, Guo Zi-He, Frueh, M., Paparo M. Astron. Astrophys. 214, 209, 1989). The star offers a chance to study nonradial modes of different degrees and similar radial orders. The previous multisite campaigns have detected five frequencies from the photometric data. However, these data also show that there exist a number of additional, presently unidentified pulsation modes in the 10 to 15 c/d and the 25 to 30 c/d range. These new frequencies could be detected and confirmed in an additional campaign. Dziembowski and Goode (Astrophys. J.394, 670,1992) have successfully modelled the five previously identified modes, but the theoretical challenge will be provided by the frequencies of the additional modes. The star seems to differ from 4 CVn in that no variability of amplitudes could be detected so far, but the data are limited. Furthermore, during 1994 a spectroscopic MUSICOS campaign was undertaken. A new multisite photometric campaign was carried out with the Delta Scuti Network during 1994 November and December. Data has already been obtained from the McDonald, Lowell, Sierra Nevada, Xing-Long and Tien-Shan Observatories. Approximately 40 nights of photometric observations are presently being reduced.

  20. On the period variations of several low declination high amplitude delta Scuti variables

    NASA Astrophysics Data System (ADS)

    Boonyarak, Chayan; Fu, Jian-Ning; Khokhuntod, Pongsak; Jiang, Shi-Yang

    2011-05-01

    A 16-inch Schmidt-Cassegrain telescope on the campus of Naresuan University of Thailand and several similar-size telescopes in China equipped with CCD cameras were used to observe 14 high amplitude delta Scuti stars: GP And, CY Aqr, BS Aqr, YZ Boo, AD CMi, VZ Cnc, EH Lib, DY Her, V927 Her, KZ Hya, BE Lyn, V1162 Ori, DY Peg, and CW Ser, between the years 1999 and 2010. Data were also collected from scientific journals and sources on the Internet for these variable stars. Times of light maximum of these delta Scuti stars were then either determined from the observations or obtained from the literature to analyze the pulsation period variations. For the 14 delta Scuti stars we concluded that 7 stars (BS Aqr, CY Aqr, AD CMi, EH Lib, KZ Hya, BE Lyn and DY Peg) are binary or multiple systems. 10 delta Scuti stars are found with periods increasing with rates between 5.86×10-9 and 2.34×10-6 per year and the other 4 stars (BS Aqr, DY Her, BE Lyn and DY Peg) show periods decreasing with rates of about 10-9 to 10-8 per year.

  1. The High Amplitude delta Scuti Star AD Canis Minoris

    NASA Astrophysics Data System (ADS)

    Axelsen, R. A.; Napier-Munn, T.

    2016-12-01

    The high amplitude delta Scuti star AD Canis Minoris was studied by photoelectric photometry (PEP) during one night in in February 2011 and by digital single lens reflex (DSLR) photometry during seven nights in January and February 2016. Nine light curve peaks were captured, eight of them by DSLR photometry. A review of the literature enabled us to tabulate 109 times of maximum since 1959, to which we added 9 times of maximum from our data, thus creating the largest dataset to date for this star. Assuming a linear ephemeris, the period of AD CMi was calculated to be 0.122974511 (+/- 0.000000004) d, almost identical to that quoted in earlier literature. We constructed an observed minus computed (O-C) diagram which exhibited a quasi-sinusoidal shape, and fitted a weighted model characterised by combined quadratic and trigonometric functions. The fit indicates that the shape of the O-C diagram is attributable to the effects of a slow increase in the pulsation period of AD CMi at a constant rate, and the light time effect of a binary pair, confirming the results from previous authors, and updating most of the coefficients of the equation for the fitted model. The values of all of the coefficients in the function are statistically significant. The rate of increase in the pulsation period of AD CMi was calculated from the entire dataset to be dP/dt = 6.17 (+/- 0.75) x 10-9 d yr-1 or dP/Pdt = 5.01 (+/- 0.61) x 10-8 yr-1.

  2. Period variations and evolution of Delta Scuti variables

    NASA Astrophysics Data System (ADS)

    Jiang, Shi-Yang

    1993-12-01

    The Short periods of Delta Scuti Stars allow observational detection of the period changes expected from the stellar evolution within several tens years. For about 30 years we have kept this topic as a small systematic observational program with our 60 cm telescope. Here we publish the period variation of 18 stars . The data of 28 And are taken from R. Garrido et al. (1983), 211; the period variation rate of 4 CVn is given by M. Breger. Both of them are low amplitude variables.

  3. The system V389 Cas: Algol-type binary with δ -Scuti pulsations

    NASA Astrophysics Data System (ADS)

    Korda, D.; Zasche, P.; Kučáková, H.

    2015-10-01

    New CCD observations of V389 Cas were carried out in the observatories in the Czech Republic from 2010 to 2014. These new data were analysed using the program PHOEBE. V389 Cas was found to be a detached eclipsing binary system with two rather different components moving on a circular orbit. Moreover, there was discovered also a δ -Scuti-type behaviour of the secondary component. These pulsations have the period of about 0.037 day. This result is being compared with the previous findings on similar eclipsing-pulsation systems published by Zhang et al. (2013).

  4. Chromospheric activity in Delta Scuti stars - The suspected variable Tau Cygni

    NASA Technical Reports Server (NTRS)

    Fracassini, M.; Pasinetti Fracassini, L. E.; Mariani, A.; Pastori, L.; Teays, T. J.

    1991-01-01

    High-resolution IUE spectra of the suspected variable Tau Cyg were obtained to search for a possible variability of the Mg II h, k double-peaked emission. The observations, spanning an interval of about 6.3 h, have shown flux excursions within or just near 15 percent, a value suggested as the detection limit of actual variations with IUE spectra. A variability, difficult to explain, could be present in the ratios Fk2v/Fk2r. The emission fluxes seem to be higher than those of the Delta Scuti variables Rho Pup and Beta Cas. This comparison could give some insights on the possible role of the convection on the pulsational and chromospheric activities of Tau Cyg. A positive correlation between the total emission fluxes and the rotational velocities of these stars was found.

  5. HR 7920: a very bright new Delta Scuti star with possible Gamma Doradus variations

    NASA Astrophysics Data System (ADS)

    Koen, C.; van Wyk, F.; Laney, C. D.; Kilkenny, D.

    2017-04-01

    We present photometric and high-dispersion spectroscopic measurements that show HR 7920 is a periodic variable. The photometry reveals at least four frequencies higher that 10 d-1, two of which are also probably present in the radial velocity variations. The frequencies are in a range typical of δ Scuti star pulsations. A further low frequency of about 2.8 d-1 may be present in both radial velocities and photometry; if real, this points to γ Doradus variability, which would make HR 7920 a hybrid pulsator. An attempt is made to identify the modes of the δ Scuti pulsations, which include both radial and non-radial modes. A new rotational velocity of 75 km s-1 is derived from co-added spectra, contrasting with published values in the range 128-150 km s-1.

  6. Pulsational frequencies of the eclipsing δ Scuti star HD 172189. Results of the STEPHI XIII campaign

    NASA Astrophysics Data System (ADS)

    Costa, J. E. S.; Michel, E.; Peña, J.; Creevey, O.; Li, Z. P.; Chevreton, M.; Belmonte, J. A.; Alvarez, M.; Fox Machado, L.; Parrao, L.; Pérez Hernández, F.; Fernández, A.; Fremy, J. R.; Pau, S.; Alonso, R.

    2007-06-01

    Context: The eclipsing δ Scuti star HD 172189 is a probable member of the open cluster IC 4756 and a promising candidate target for the CoRoT mission. Aims: The detection of pulsation modes is the first step in the asteroseismological study of the star. Further, the calculation of the orbital parameters of the binary system allows us to make a dynamical determination of the mass of the star, which works as an important constraint to test and calibrate the asteroseismological models. Methods: We performed a detailed frequency analysis of 210 hours of photometric data of HD 172189 obtained from the STEPHI XIII campaign. Results: We have identified six pulsation frequencies with a confidence level of 99% and a seventh with a 65% confidence level of 65%, in the range between 100-300 μHz. In addiction, three eclipses were observed during the campaign, allowing us to improve the determination of the orbital period of the system. Table 1 is only available in electronic form at http://www.aanda.org

  7. Turbulent convection and pulsation stability of stars - II. Theoretical instability strip for δ Scuti and γ Doradus stars

    NASA Astrophysics Data System (ADS)

    Xiong, D. R.; Deng, L.; Zhang, C.; Wang, K.

    2016-04-01

    By using a non-local and time-dependent convection theory, we have calculated radial and low-degree non-radial oscillations for stellar evolutionary models with M = 1.4-3.0 M⊙. The results of our study predict theoretical instability strips for δ Scuti and γ Doradus stars, which overlap with each other. The strip of γ Doradus is slightly redder in colour than that of δ Scuti. We have paid great attention to the excitation and stabilization mechanisms for these two types of oscillations, and we conclude that radiative κ mechanism plays a major role in the excitation of warm δ Scuti and γ Doradus stars, while the coupling between convection and oscillations is responsible for excitation and stabilization in cool stars. Generally speaking, turbulent pressure is an excitation of oscillations, especially in cool δ Scuti and γ Doradus stars and all cool Cepheid- and Mira-like stars. Turbulent thermal convection, on the other hand, is a damping mechanism against oscillations that actually plays the major role in giving rise to the red edge of the instability strip. Our study shows that oscillations of δ Scuti and γ Doradus stars are both due to the combination of κ mechanism and the coupling between convection and oscillations, and they belong to the same class of variables at the low-luminosity part of the Cepheid instability strip. Within the δ Scuti-γ Doradus instability strip, most of the pulsating variables are very likely hybrids that are excited in both p and g modes.

  8. High azimuthal number pulsation modes in fast rotating δ Scuti stars: the case of HD 101158 = V837 Cen.

    NASA Astrophysics Data System (ADS)

    Mantegazza, L.

    1997-07-01

    The frequency analysis of the line profile variations of the fast rotating (vsini=132km/s) δ Scuti star HD 101158, observed for three consecutive nights, shows the presence of two high azimuthal number non radial pulsation modes. The star is probably seen almost equator-on and both modes (ν_i_=12.9c/d and ν_2_=18.5 c/d) are prograde with m=-10 and m=-14 or -15 respectively; their frequencies are different with respect to the three frequencies identified in photometric data (Poretti 1991), which probably owe due to low l modes. Indications of the presence of these photometric modes have been found from the frequency analysis of the first two line moments. The line profile variations also show the possible presence of further modes with frequencies of 16.2, 20.3 and 21.1c/d and small amplitudes.

  9. Discovery of multiple pulsations in the new δ Scuti star HD 92277: Asteroseismology from Dome A, Antarctica

    SciTech Connect

    Zong, Weikai; Fu, Jian-Ning; Niu, Jia-Shu; Zhu, Zonghong; Charpinet, S.; Vauclair, G.; Ashley, Michael C. B.; Lawrence, Jon S.; Luong-Van, Daniel; Cui, Xiangqun; Gong, Xuefei; Feng, Longlong; Wang, Lifan; Yuan, Xiangyan; Zhu, Zhenxi; Liu, Qiang; Wang, Lingzhi; Zhou, Xu; Pennypacker, Carl R.; York, Donald G.

    2015-02-01

    We report the discovery of low-amplitude oscillations in the star HD 92277 from long, continuous observations in the r and g bands using the CSTAR telescopes in Antarctica. A total of more than 1950 hours of high-quality light curves were used to categorize HD 92277 as a new member of the δ Scuti class. We have detected 21 (20 frequencies are independent and one is the linear combination) and 14 (13 frequencies are independent and one is the linear combination) pulsation frequencies in the r and g bands, respectively, indicating a multi-periodic pulsation behavior. The primary frequency f{sub 1} = 10.810 days{sup −1} corresponds to a period of 0.0925 days and is an l = 1 mode. We estimate a B − V index of 0.39 and derive an effective temperature of 6800 K for HD 92277. We conclude that long, continuous and uninterrupted time-series photometry can be performed from Dome A, Antarctica, and that this is especially valuable for asteroseismology where multi-color observations (often not available from space-based telescopes) assist with mode identification.

  10. Intensive Observations of Cataclysmic, RR Lyr, and High Amplitude delta Scuti (HADS) Variable Stars

    NASA Astrophysics Data System (ADS)

    Hambsch, F.-J.

    2012-06-01

    An intensive observing campaign is ongoing to study cataclysmic, RR Lyr (with and without Blazhko effect), and High Amplitude delta Scuti (HADS) variable stars. These observations are based on requests and in collaboration with different organisations (CBA, VSNET, GEOS) and individuals. Observations are taken from my private observatories in Belgium, Chile, and through shared use of an observatory belonging to the AAVSOnet in New Mexico. Examples of individual stars intensively followed-up on are: CD Ind and BW Scl, two cataclysmic variables; NU Aur, an RR Lyr star with strong Blazhko effect; and GSC0762-0110, a HADS star. Many publications in different journals including Astronomy and Astrophysics have already emerged from this research.

  11. THE TAIWAN-AMERICAN OCCULTATION SURVEY PROJECT STELLAR VARIABILITY. I. DETECTION OF LOW-AMPLITUDE {delta} SCUTI STARS

    SciTech Connect

    Kim, D.-W.; Protopapas, P.; Alcock, C.; Wright, N. J.; Bianco, F. B.; Lehner, M. J.; Byun, Y.-I.; Kyeong, J.; Lee, B.-C.; Axelrod, T.; Chen, W.-P.; Lin, H.-C.; Coehlo, N. K.; Rice, J. A.; Cook, K. H.; Marshall, S. L.; Dave, R.; King, S.-K.; Lee, T.; Porrata, R.

    2010-02-15

    We analyzed data accumulated during 2005 and 2006 by the Taiwan-American Occultation Survey (TAOS) in order to detect short-period variable stars (periods of {approx}<1 hr) such as {delta} Scuti. TAOS is designed for the detection of stellar occultation by small-size Kuiper Belt Objects and is operating four 50 cm telescopes at an effective cadence of 5 Hz. The four telescopes simultaneously monitor the same patch of the sky in order to reduce false positives. To detect short-period variables, we used the fast Fourier transform algorithm (FFT) in as much as the data points in TAOS light curves are evenly spaced. Using FFT, we found 41 short-period variables with amplitudes smaller than a few hundredths of a magnitude and periods of about an hour, which suggest that they are low-amplitude {delta} Scuti stars. The light curves of TAOS {delta} Scuti stars are accessible online at the Time Series Center Web site (http://timemachine.iic.harvard.edu)

  12. GSC 7672 2238: a new eclipsing binary system near the delta scuti star AI Vel

    NASA Astrophysics Data System (ADS)

    Santos-Júnior, J. M.; Pereira, P. C. R.; Cruz, W. S.; Andrade-Pilling, D. P.

    2003-08-01

    We report the discovery of a new eclipsing binary star in the field of the Delta Scuti variable star AI Vel. Initially used as a check star during a monitoring of AI Vel, GSC 7672: 2238 turned out to be variable as soon as we started the project. Time series CCD photometry were performed during 2002 and 2003 using the Meade LX200 (25cm) telescope of Fundação Planetário da Cidade do Rio de Janeiro. The observed times of primary minima provided an orbital period of 0.97188 day. The depth of the primary and secondary minima is about 0m.5 and 0m.2 respectively. The amount of data and the behavior of the light curve led us to interpret this modulation as related to the orbital motion of a short-period Algol. The light curves show discrepances around phases 0.1-0.2, just after the primary minimum. This behavior may be well explained in terms of mass transfer from the lobe-filling secundary star. In addition, we made spectroscopic observation at Perkin-Elmer 1.6m telescope on the Laboratório Nacional de Astrofí sica. The optical spectrum shows clearly the absorption Ha line, typical of short-period Algols with transient or absent disks.

  13. VizieR Online Data Catalog: Delta Scuti variables. II. DY Her (Milone+, 1994)

    NASA Astrophysics Data System (ADS)

    Milone, E. F.; Wilson, W. J. F.; Fry, D. J. I.; Schiller, S. J.

    1995-02-01

    This is the second paper in a series on large-amplitude delta Scuti stars intended to determine Baade-Wesselink radii and luminosities with precision. The first paper (Wilson et al., 1993PASP..105..809W) discussed our method of analysis and its application to EH Librae; in this we discuss the observations and analysis of DY Herculis. Optical and infrared photometry and cross-correlated radial-velocity data have been obtained and analyzed. Fourier representations for the UBVRIJHK light curves and for the radial-velocity curves were used to derive a value for the minimum radius for each of 60 combinations of flux and color index. From these we adopt a mean value for the minimum radius of Rmin=2.77+/-0.20R⊙. When combined with effective temperatures from Breger et al. (1978PASP...90..754B), we find a mean bolometric luminosity of =21.70L⊙ and a mean absolute magnitude of =1.41. The radial excursion is 0.149R⊙. We use the same procedure to improve our results for EH Librae, deriving Rmin for each of 42 combinations of flux and color index, and obtain mean values of Rmin=2.62+/-0.19R⊙, =24.56L⊙ and =1.27. (3 data files).

  14. DRIVING G-MODE PULSATIONS IN GAMMA DORADUS VARIABLES

    SciTech Connect

    J. GUZIK; A. KAYE; ET AL

    2000-10-10

    The {gamma} Doradus stars are a newly-discovered class of gravity-mode pulsators which lie just at or beyond the red edge of the {delta} Scuti instability strip. We present the results of calculations which predict pulsation instability of high-order g-modes with periods between 0.4 and 3 days, as observed in these stars. The pulsations are driven by the modulation of radiative flux by convection at the base of a deep envelope convection zone. Pulsation instability is predicted only for models with temperatures at the convection zone base between {approximately}200,000 and {approximately}480,000 K. The estimated shear dissipation due to turbulent viscosity within the convection zone, or in an overshoot region below the convection zone, can be comparable to or even exceed the predicted driving, and is likely to reduce the number of unstable modes, or possibly to quench the instability. Additional refinements in the pulsation modeling are required to determine the outcome. A few Doradus stars have been observed that also pulsate in {delta} Scuti-type p-modes, and at least two others have been identified as chemically peculiar. Since our calculated driving region is relatively deep, Doradus pulsations are not necessarily incompatible with surface abundance peculiarities or with {delta} Scuti p-mode pulsations driven by the H and He-ionization {kappa} effect. Such stars will provide useful observational constraints on the proposed Doradus pulsation mechanism.

  15. Recently Refined Periods for the High Amplitude delta Scuti Stars V1338 Centauri, V1430 Scorpii, and V1307 Scorpii

    NASA Astrophysics Data System (ADS)

    Axelsen, R. A.

    2015-12-01

    Digital Single Lens Reflex (DSLR) photometry of the high amplitude d Scuti stars V1338 Centauri, V1430 Scorpii, and V1307 Scorpii was taken during the southern autumn and winter of 2015. Fourier analysis revealed pulsation frequencies corresponding to periods very close to those previously reported with significant contributions from harmonics. Only in the case of V1430 Scorpii was another independent frequency detected. The oscillation periods were refined by calculating linear ephemerides based on previously published epochs for each star, and the epochs determined by the author. These periods are: V1338 Centauri, 0.13093808 d; V1430 Scorpii, 0.08377709 d; and V1307 Scorpii, 0.11703066 d.

  16. Statistical Properties of Galactic δ Scuti Stars: Revisited

    NASA Astrophysics Data System (ADS)

    Chang, S.-W.; Protopapas, P.; Kim, D.-W.; Byun, Y.-I.

    2013-05-01

    We present statistical characteristics of 1578 δ Scuti stars including nearby field stars and cluster member stars within the Milky Way. We obtained 46% of these stars (718 stars) from work by Rodríguez and collected the remaining 54% of stars (860 stars) from other literature. We updated the entries with the latest information of sky coordinates, color, rotational velocity, spectral type, period, amplitude, and binarity. The majority of our sample is well characterized in terms of typical period range (0.02-0.25 days), pulsation amplitudes (<0.5 mag), and spectral types (A-F type). Given this list of δ Scuti stars, we examined relations between their physical properties (i.e., periods, amplitudes, spectral types, and rotational velocities) for field stars and cluster members, and confirmed that the correlations of properties are not significantly different from those reported in Rodríguez's work. All the δ Scuti stars are cross-matched with several X-ray and UV catalogs, resulting in 27 X-ray and 41 UV-only counterparts. These counterparts are interesting targets for further study because of their uniqueness in showing δ Scuti-type variability and X-ray/UV emission at the same time. The compiled catalog can be accessed through the Web interface http://stardb.yonsei.ac.kr/DeltaScuti.

  17. Analysis of the Petersen Diagram of Double Mode High Amplitude delta Scuti Stars

    NASA Astrophysics Data System (ADS)

    Furgoni, R.

    2016-06-01

    I created the Petersen diagram relative to all the Double Mode High Amplitude ? Scuti stars listed in the AAVSO's International Variable Star Index (Watson et al. 2007-2015) up to date December 29, 2015. For the first time I noticed that the ratio between the two periods P1/P0 seems in evident linear relation with the duration of the period P0, a finding never explicitly described in literature regarding this topic.

  18. Pulsation spectrum of δ Scuti stars: the binary HD 50870 as seen with CoRoT and HARPS

    NASA Astrophysics Data System (ADS)

    Mantegazza, L.; Poretti, E.; Michel, E.; Rainer, M.; Baudin, F.; García Hernández, A.; Semaan, T.; Alvarez, M.; Amado, P. J.; Garrido, R.; Mathias, P.; Moya, A.; Suárez, J. C.; Auvergne, M.; Baglin, A.; Catala, C.; Samadi, R.

    2012-06-01

    Aims: We present the results obtained with the CoRoT satellite for HD 50870, a δ Sct star which was observed for 114.4 d. The aim of these observations was to evaluate the results obtained for HD 50844, the first δ Sct star monitored with CoRoT, on a longer time baseline. Methods: The 307,570 CoRoT datapoints were analysed with different techniques. The photometric observations were complemented over 15 nights of high-resolution spectroscopy with HARPS on a baseline of 25 d. These spectra were analysed to study the line profile variations and to derive the stellar physical parameters. Some uvby photometric observations were also obtained to better characterize the pulsation modes. Results: HD 50870 proved to be a low-amplitude, long-period spectroscopic binary system seen almost pole-on (i ≃ 21°). The brighter component, which also has the higher rotational velocity (vsini = 37.5 km s-1), is a δ Sct-type variable with a full light amplitude variation of about 0.04 mag. There is a dominant axisymmetric mode (17.16 d-1). Moreover, there are two groups of frequencies (about 19) in the intervals 6 - 9 and 13 - 18 d-1, with amplitudes ranging from a few mmag to 0.3 mmag. After the detection of about 250 terms (corresponding to an amplitude of about 0.045 mmag) a flat plateau appears in the power spectrum in the low-frequency region up to about 35 d-1. We were able to detect this plateau only thanks to the short cadence sampling of the CoRoT measurements (32 s). The density distribution vs. frequency of the detected frequencies seems to rule out the possibility that this plateau is the result of a process with a continuum power spectrum. The spacings of the strongest modes suggest a quasi-periodic pattern. We failed to find a satisfactory seismic model that simultaneously matches the frequency range, the position in the HR diagram, and the quasi-periodic pattern interpreted as a large separation. Nineteen modes were detected spectroscopically from the line profile

  19. New Perspectives on Stellar Pulsation and Pulsating Variable Stars

    NASA Astrophysics Data System (ADS)

    Nemec, James M.; Matthews, Jaymie M.

    The study of pulsating variable stars has undergone dramatic changes in the past decade. The use of Cepheids and RR Lyrae stars as distance indicators has been extended by the increased sensitivity afforded by CCD detectors and by infrared observations. Meanwhile, other classes of pulsators, such as Mira and SX Phe variables are providing independent checks of the distance scale. Long-standing discrepancies between "pulsational" and "evolutionary" masses are finally being resolved by the new OP and OPAL opacity calculations, as is the mystery of the β Cephei excitation mechanism. Seismology of the oscillations of the Sun, white dwarfs, Ap stars and delta Scuti stars has opened windows on internal stellar structure, while Doppler Imaging reveals an entire range of high-degree pulsations hitherto undetectable by conventional photometry or radial velocity measurements. Observations of Long Period Variables have cast a new light on the implications of mass loss for stellar evolution and the history of the interstellar medium. On other fronts, more rigorous treatments of convection and radiative diffusion are starting to bring theory and observation into closer agreement.This book, the proceedings of the International Astronomical Union's Colloquium 139 held in Victoria, British Columbia, Canada in July 1992, contains over thirty comprehensive reviews as well as summaries of over 100 contributed papers, reflecting the current scope of stellar pulsation research. It is an overview of the most recent developments in the field, and a preview of some of the advances expected in the decade to come.

  20. Period Changes and Evolution in Pulsating Variable Stars

    NASA Astrophysics Data System (ADS)

    Neilson, H. R.; Percy, J. R.; Smith, H. A.

    2016-12-01

    We review ways in which observations of the changing periods of pulsating variable stars can be used to detect and directly measure their evolution. We briefly describe the two main techniques of analysis-(O-C) analysis and wavelet analysis - and results for pulsating variable star types which are reasonably periodic: type I and II Cepheids, RR Lyrae stars, beta Cephei stars, and Mira stars. We comment briefly on delta Scuti stars and pulsating white dwarfs. For some of these variable star types, observations agree approximately with the predictions of evolutionary models, but there still exist significant areas of disagreement that challenge future models of stellar evolution. There may be a need, for instance, to include processes such as rotation, mass loss, and magnetic fields. There may also be non-evolutionary processes which are contributing to the period changes.

  1. Observations and Orbital Analysis of the High-Amplitude Delta Scuti Star SZLyncis: The Unusual Orbital Precession

    NASA Astrophysics Data System (ADS)

    Li, Lin-Jia; Qian, Sheng-Bang

    2013-12-01

    We determined forty-two new times of light maximum from our photometry observations and WASP project, and collected all times of light maximum observed between 1961 and 2013 in order to calculate the orbital elements of the SZ Lyncis system and the secular change of the pulsation period with the classical O - C method. We confirmed the decrease of the longitude of the periastron passage with a rate of (-1.˚15 ±0.˚25) yr-1 , and discussed the causative mechanism. The results show that the precession of the star's orbit might be due to a close binary system, which means that the companion of SZ Lyncis is actually a binary system. We used the Hipparcos Intermediate Astrometric Data to obtain the complete orbital elements of the SZ Lyncis system, and found that the inclination, i, and parallax, πt , are 39.˚5 ± 17.˚7 and 2.61 ± 0.98 mas (corresponds to 380 ± 140 pc), respectively. We reanalyzed the mean radial velocities of SZ Lyncis given by Bardin and Imbert (1984), and noticed a weak variation existing in the residuals from a single-Keplerian fit. We suggest that more detailed high-precision spectroscopic observations are definitely needed in the future to check this short periodic change.

  2. Photometry of ET Andromedae and pulsation of HD 219891

    NASA Astrophysics Data System (ADS)

    Weiss, W. W.; Kuschnig, R.; Mkrtichian, D. E.; Kusakin, A. V.; Kreidl, T. J.; Bus, S. J.; Osip, D. J.; Guo, Z.; Hao, J.; Huang, L.; Sareyan, J.-P.; Alvarez, M.; Bedolla, S. G.; Zverko, J.; Ziznovsky, J. \\V.; Mittermayer, P.; Zwintz, K.; Polosukhina, N.; Mironov, A. V.; Dorokhov, N. I.; Goranskij, V. P.; Dorokhova, T. N.; Schneider, H.; Hiesberger, F.

    1998-10-01

    ET And is a binary system with a B9p(Si) star as the main component. We report on the photometric observing campaigns in 1988, 1989 and 1994 which confirmed the rotation period of 1.618875 deg for ET And while refuting other published values. Furthermore, the controversial issue of pulsational stability of ET And is resolved since we have discovered pulsation for HD 219891, which was the main comparison star and sometimes exclusively used. The frequency of 10.0816 d(-1) , a semi-amplitude of 2.5 mmag, T_eff\\ and M_v suggest this comparison star to be a delta Scuti variable close to the blue border of the instability strip. The pulsational stability of ET And could be clearly established and hence no need exists to derive new driving mechanisms for stars between the classical instability strip and the region of slowly pulsating B-type (SPB) stars. Based on observations obtained at the Bulgarian National Observatory, Crimean Astrophysical Observatory (Ukraine), Lowell Observatory (USA), Mauna Kea (USA), Mt. Dushak-Erekdak (Turkmenistan), San Pedro (Mexico), Skalnate Pleso (Slovakia), Tien Shan (Kazakhstan) and Wise Observatory (Israel)

  3. VizieR Online Data Catalog: Pulsation model data for delta Cep and eta Aql (Merand+, 2015)

    NASA Astrophysics Data System (ADS)

    Merand, A.; Kervella, P.; Breitfelder, J.; Gallenne, A.; Coude du Foresto, V.; ten Brummelaar, T. A.; McAlister, H. A.; Ridgway, S.; Sturmann, L.; Sturmann, J.; Turner, N. H.

    2015-09-01

    FITS files containing the stars' (delta Cep and eta Aql) data and model presented in the paper. Each fits file has 3 HDU: 1- primary HDU: contains no data apart from the header. The header has the parameters of the model (keywords 'HIERARCH PARAM') as well as some other quantities derived from the modeling (keywords 'HIERARCH MODEL'). These quantities are aimed at people who would like to reproduce or compare their results with us. 2- 'DATA' HDU: this contains the data used for the fit. Each line is a scalar measurement described as follow: col1='MJD' (E) modified Julian date of the observations col2='OBS' (A50) description of the data point: the string before ";" defines the type, after ";" is the source. after | are anciliary data: for diam, UDdiam: [wavelengthum, interfbaseline_m] for mag: photometric band for color: photometric band1 - photometric band2 col3='MEAS' (E) the actual measurements. units are km/s for Vpuls or Vrad (which includes the p-factor correction), and mas (milli-arcseconds) for diameters (diam of UDdiam). col4='ERR' (E) the uncertainty on the measurement. col5='MODEL' (E) corresponding value predicted by the model col6='PHASE' (E) pulsation phase computed from the model ranges from 0 to 1. col7='PERIOD' (E) pulsation period computed from the model in days 3- 'MODEL' HDU: a tabulation of the pulsation model, as a function of pulsation phase. col1='PHASE' (E) phase from 0 to 1. col2='Vpuls' (E) pulsation velocity, in km/s. col3='Vrad' (E) radial velocity, in km/s. It is Vpuls/p-factor + Vgamma. col4='diam' (E) Rosseland angular diameter, in milliarcseconds (mas). col5='Teff' (E) effective temperature, in Kelvin. col6='Lum' (E) Luminosity in solar luminosities. col7='logg' (E) surface gravity, in log_10(cm/s2). col8,9,10='diamK xxxm' (E) biased angular diameters measured by an interferometer at baselines xxx (in m), for xxx=[100, 200, 300]. In milliarcseconds col>=11= 'MAG ...' or 'COLOR ...' (E) reddenned magnitudes or colors in various bands

  4. Detection of high-degree nonradial pulsations in Gamma Bootis

    NASA Technical Reports Server (NTRS)

    Kennelly, E. J.; Yang, S.; Walker, G. A. H.; Hubeny, I.

    1992-01-01

    The line-profile variations of the rapidly rotating Delta-Scuti star Gamma Bootis can be explained by high-degree nonradial pulsations (NRPs) with an apparent period approximately equal to 0.047 days. This same period was derived from two data sets taken three months apart wherein the amplitude increased by 30 percent. Such high-degree NRP cannot explain the apparent reversals previously observed by Auvergne at al. (1979) for this star in the cores of the hydrogen Balmer lines and Ca-II K line. The present radial-velocity variations can be reconciled with their 0.25-day spectroscopic period if an amplitude of about 1 km/s is adopted, an order of magnitude less than previous measurements. The presence of line-profile variations from high-degree modes probably limits the accuracy of radial-velocity measurents and can appear as bumps in the radial-velocity curve.

  5. Pulsations of B star models by an opacity mechanism

    SciTech Connect

    Cox, A.N. ); Morgan, S.M. . Dept. of Astronomy)

    1990-01-01

    The pulsation mechanism for B stars has been sought for 30 years. No proposed radial or nonradial mechanism, either deeply seated or in the surface layers, has been successful in explaining all the observational details. Perhaps the missing piece in the puzzle is the opacity of the stellar material. Many times the first author has tried to make unconventional surface compositions give instability, but none were ever found. We now propose that the sudden appearance of a tremendous number of iron lines, as the temperature rises above about 150,000 K, gives a high sensitivity of the opacity to temperature at the very low densities found in these blue giants. Opacities need to increase quickly to a factor of three or more above the Cox-Tabor (1976) values in the range around 200,000 K. These increases are the same needed to decrease theoretical period ratios of double-mode Cepheids and {delta} Scuti variables to agree better with observations for conventional yellow giant masses. The reason why not all B stars pulsate is that a slight primordial deficit in the iron abundance in the surface layer (1 {times} 10{sup {minus}6} of the mass) can reduce the opacity and its sensitivity to temperature. A slight amount of iron concentration by radiative levitation could make a star pulsate even if it did not originally have enough primordial iron to cause this opacity mechanism to operate. Then any slow slight mixing caused by the unstable nonradial pulsations could restabilize the pulsations as actually observed in {alpha} Vir and {beta} CMa. Rapid levitation and mixing for the very luminous B stars with their very low density envelopes could even explain the puzzling luminous blue variables with this standard {kappa} mechanism. Large amplitude pulsations like those seen in BW Vul would indicate a somewhat larger iron abundance compared to all other B stars.

  6. On the Role of Resonances in Nonradial Pulsators

    NASA Technical Reports Server (NTRS)

    Buchler, J. R.; Goupil, M. J.; Hansen, C. J.

    1997-01-01

    dwarfs and delta Scuti stars.

  7. The Music of the Stars : Spectroscopy of Pulsations in gamma Doradus Stars

    NASA Astrophysics Data System (ADS)

    Brunsden, Emily

    2013-05-01

    p>The mysteries of the interior structures of stars are being tackled with asteroseismology. The observable parameters of the surface pulsations of stars inform us of the interior characteristics of numerous classes of stars. The main-sequence gamma Doradus stars, just a little hotter than the Sun, offer the potential of determining stellar structure right down to the core. To determine the structural profile of a star, the observed frequencies and a full geometric description must be determined. This is only possible with long-term spectroscopic monitoring and careful analysis of the pulsation signature in spectral lines. This work seeks to identify the pulsational geometry of several gamma Doradus stars and to identify areas of improvement for current observation, analysis and modelling techniques. More than 4500 spectra were gathered on five stars for this purpose. For three stars a successful multi-frequency and mode identification solution was determined and significant progress has been made towards the understanding of a binary system involving a gamma Doradus star. A hybrid gamma Doradus/nbsp;delta Scuti pulsator was also intensely monitored and results from this work raise important questions about the classification of this type of star. Current analysis techniques were found to be fit-for-purpose for pure gamma Doradus stars, but stars with complexities such as hybrid pulsations and/or fast rotation require future development of the current models./p>

  8. Pulsation of λ Bootis stars: who wants to be a (non-)millionnaire interested in diffusion theories?

    NASA Astrophysics Data System (ADS)

    Matthews, Jaymie M.

    2002-02-01

    The lambda Bootis stars are globally 'normal' A-F stars which show abundance peculiarities for which two mechanisms have been mainly considered: diffusion combined with mass loss, and diffusion confined with accretion from the interstellar medium. The first theory implies ages for lambda Boo stars of at least 10^9 years, while the second cannot be effective if these objects are older than a few times 10^6 years. Preliminary photometric and spectroscopic variability surveys indicate that delta-Scuti-like pulsation occurs among about half of the lambda Boo class. The multiperiodic pulsators offer the prospect of applying asteroseismology to settle the age/origin debate. However, progress has been slow for the same reasons that confront attempts to model delta Scuti stars based on their eigenspectra. This frustration parallels that felt by many of us in our careers as poor astrophysicists, so I have incorporated into this paper a popular TV game show format to allow the reader to actively explore the problems while reading the Proceedings.

  9. Amplitude Variability in gamma Dor and delta Sct Stars Observed by Kepler

    SciTech Connect

    Guzik, Joyce Ann; Kosak, Mary Katherine; Bradley, Paul Andrew; Jackiewicz, Jason

    2015-08-17

    The NASA Kepler spacecraft data revealed a large number of new multimode nonradially pulsating gamma Dor and delta Sct variable stars. The Kepler high-precision long time-series photometry makes it possible to study amplitude variations of the frequencies, and recent literature on amplitude and frequency variations in nonradially pulsating variables is summarized. Several methods are applied to study amplitude variability in about a dozen gamma Doradus or delta Scuti candidate variable stars observed for several quarters as part of the Kepler Guest Observer program. The magnitude and timescale of the amplitude variations are discussed, along with the presence or absence of correlations between amplitude variations for different frequencies of a given star. Proposed causes of amplitude spectrum variability that will require further investigation are also discussed.

  10. Discovery and Photometric Analysis of the ? Scuti Variable TYC 2168-132-1

    NASA Astrophysics Data System (ADS)

    Joner, M. D.; Hintz, E. G.; Corfini, G.

    2016-12-01

    Abstract We detail the discovery of the short-period variable star presently known as TYC 2168-132-1. We have examined four nights of photometric observations of this star secured in 2015 and find it to be a delta Scuti variable with a primary period of 0.0737523 days. The star is multiperiodic with three dominant frequencies at 13.556, 7.047, and 11.757 cycles/day. Evidence from light curve morphology supports the delta Scuti classification. We estimate intrinsic values for color and luminosity that place TYC 2168-132-1 within the lower part of the instability strip.

  11. DISCOVERY OF 14 NEW SLOWLY PULSATING B STARS IN THE OPEN CLUSTER NGC 7654

    SciTech Connect

    Luo, Y. P.; Han, Z. W.

    2012-02-10

    We carried out time-series BV CCD photometric observations of the open cluster NGC 7654 (Messier 52) to search for variable stars. Eighteen slowly pulsating B (SPB) stars have been detected, among which 14 candidates are newly discovered, three known ones are confirmed, and a previously found {delta} Scuti star is also identified as an SPB candidate. Twelve SPBs are probable cluster members based on membership analysis. This makes NGC 7654 the richest galactic open cluster in terms of SPB star content. It is also a new discovery that NGC 7654 hosts three {gamma} Dor star candidates. We found that all these stars (18 SPB and 3 {gamma} Dor stars) have periods longer than their corresponding fundamental radial mode. With such a big sample of g-mode pulsators in a single cluster, it is clear that multi-mode pulsation is more common in the upper part of the main sequence than in the lower part. All the stars span a narrow strip on the period-luminosity plane, which also includes the {gamma} Dor stars at the low-luminosity extension. This result implies that there may be a single period-luminosity relation applicable to all g-mode main-sequence pulsators. As a by-product, three EA-type eclipsing binaries and an EW-type eclipsing binary are also discovered.

  12. IRAS Observations of Delta Scuti Stars

    NASA Astrophysics Data System (ADS)

    Templeton, M. R.; Harrison, T. E.

    1998-07-01

    Mid-far infrared and radio observations of A-F stars are important for constraining the level of mass loss from these stars. It was theorized by Willson et al. (1987) that mass loss could play a significant role in the evolution of these stars, and could be responsible for shifting a star in the HR diagram by as much as one spectral class. Observations of normal A-F stars at 6 cm by Brown et al. (1990) and at the IRAS 12, 25, and 60 5m bands by Patten and Willson (1991) have shown that extreme mass loss rates (on the order of 10^-8 to 10^-9 solar masses per year) are not seen in these stars, but lower mass loss rates could still have significant impact on the evolution of these stars [see Guzik and Cox (1995) for example].

  13. Asteroseismology of the δ Scuti star HD 50844

    NASA Astrophysics Data System (ADS)

    Chen, X. H.; Li, Y.; Lai, X. J.; Wu, T.

    2016-09-01

    Aims: We aim to probe the internal structure and investigate with asteroseismology for more detailed information on the δ Scuti star HD 50844. Methods: We analyse the observed frequencies of the δ Scuti star HD 50844 and search for possible multiplets, which are based on the rotational splitting law of g-mode. We tried to disentangle the frequency spectra of HD 50844 only by means of rotational splitting. We then compare these with theoretical pulsation modes, which correspond to stellar evolutionary models with various sets of initial metallicity and stellar mass, to find the best-fitting model. Results: There are three multiplets, including two complete triplets and one incomplete quintuplet, in which mode identifications for spherical harmonic degree l and azimuthal number m are unique. The corresponding rotational period of HD 50844 is found to be 2.44 days. The physical parameters of HD 50844 are well limited in a small region by three modes that have been identified as nonradial ones (f11, f22, and f29) and by the fundamental radial mode (f4). Our results show that the three nonradial modes (f11, f22, and f29) are all mixed modes, which mainly represent the property of the helium core. The fundamental radial mode (f4) mainly represents the property of the stellar envelope. To fit these four pulsation modes, both the helium core and the stellar envelope need to be matched to the actual structure of HD 50844. Finally, the mass of the helium core of HD 50844 is estimated to be 0.173 ± 0.004 M⊙ for the first time. The physical parameters of HD 50844 are determined to be M = 1.81 ± 0.01 M⊙, Z = 0.008 ± 0.001. Teff = 7508 ± 125 K, log g = 3.658 ± 0.004, R = 3.300 ± 0.023 R⊙, L = 30.98 ± 2.39 L⊙.

  14. Pulsating Stars

    NASA Astrophysics Data System (ADS)

    Catelan, M.; Smith, H. A.

    2015-03-01

    This book surveys our understanding of stars which change in brightness because they pulsate. Pulsating variable stars are keys to distance scales inside and beyond the Milky Way galaxy. They test our understanding not only of stellar pulsation theory but also of stellar structure and evolution theory. Moreover, pulsating stars are important probes of the formation and evolution of our own and neighboring galaxies. Our understanding of pulsating stars has greatly increased in recent years as large-scale surveys of pulsating stars in the Milky Way and other Local Group galaxies have provided a wealth of new observations and as space-based instruments have studied particular pulsating stars in unprecedented detail.

  15. Altair: The Brightest δ Scuti Star

    NASA Astrophysics Data System (ADS)

    Buzasi, D. L.; Bruntt, H.; Bedding, T. R.; Retter, A.; Kjeldsen, H.; Preston, H. L.; Mandeville, W. J.; Suarez, J. C.; Catanzarite, J.; Conrow, T.; Laher, R.

    2005-02-01

    We present an analysis of observations of the bright star Altair (α Aql) obtained using the star camera on the Wide Field Infrared Explorer (WIRE) satellite. Although Altair lies within the δ Scuti instability strip, previous observations have not revealed the presence of oscillations. However, the WIRE observations show Altair to be a low-amplitude (Δm<1 parts per thousand [ppt]) δ Scuti star with at least seven modes present.

  16. Moment Method and Pixel-by-Pixel Method: Complementary Mode Identification I. Testing FG Vir-like pulsation modes

    NASA Astrophysics Data System (ADS)

    Zima, W.; Kolenberg, K.; Briquet, M.; Breger, M.

    2004-06-01

    We have carried out a Hare-and-Hound test to determine the reliability of the Moment Method (Briquet & Aerts 2003) and the Pixel-by-Pixel Method (Mantegazza 2000) for the identification of pulsation modes in Delta Scuti stars. For this purpose we calculated synthetic line profiles, exhibiting six pulsation modes of low degree and with input parameters initially unknown to us. The aim was to test and increase the quality of the mode identification by applying both methods independently and by using a combined technique. Our results show that, whereas the azimuthal order m and its sign can be fixed by both methods, the degree l is not determined unambiguously. Both identification methods show a better reliability if multiple modes are fitted simultaneously. In particular, the inclination angle is better determined. We have to emphasize that the outcome of this test is only meaningful for stars having pulsational velocities below 0.2 vsini. This is the first part of a series of articles, in which we will test these spectroscopic identification methods.

  17. Why the peculiar δ Scuti star HD 187547 is a superstar

    NASA Astrophysics Data System (ADS)

    Antoci, V.; Cunha, M.; Houdek, G.

    2013-12-01

    The δ Scuti pulsators occupy a region in the Hertzsprung-Russell diagram where several physical processes occur: the subsurface convection layers change from being deep and vigorous to being shallow and ineffective to transport energy. This transition has a large impact not only on pulsational stability but also on stellar evolution, activity, transport of angular momentum, mixing processes, etc.. It is therefore of great interest to understand how exactly the stellar structure changes with increasing temperature and mass. Theoretical models (Houdek et al. 1999; Samadi et al. 2002) predicted that the convection in the outer layers of δ Scuti stars is still efficient enough to excite solar-like oscillations. The Kepler target, HD 187547 (a.k.a. Superstar), was the first δ Scuti star to suggest that solar-like oscillations are indeed present in this type of stars (Antoci et al. 2011). There were several reasons to conclude that HD 187547 is a δ Scuti/solar-like hybrid pulsator. (1) The peaks at high frequencies are modes of pulsations approximately equidistantly spaced, as expected for high radial order pressure modes; these peaks are not combination frequencies as it is sometimes observed in δ Scuti stars. (2) The opacity mechanism cannot excite a continuous frequency range as observed in HD 187547 (Pamyatnykh 2000). (3) The identification as an Am star consistent with the low v sini, makes it very unlikely to be a δ Scuti/roAp hybrid, because strong large-scale magnetic fields, a necessity for roAp pulsators, have never been detected in Am stars (Auriere et al. 2010). (4) Although a large number of Am stars are found in binary systems, we find no evidence in the observed spectra for a companion, i.e. no significant RV shift over 170 days can be detected and the absorption lines can perfectly be reproduced by assuming a slowly-rotating chemically peculiar Am star. This means that the peaks at high frequencies are unlikely to be from a companion, because such a

  18. Measuring mean densities of δ Scuti stars with asteroseismology. Theoretical properties of large separations using TOUCAN

    NASA Astrophysics Data System (ADS)

    Suárez, J. C.; García Hernández, A.; Moya, A.; Rodrigo, C.; Solano, E.; Garrido, R.; Rodón, J. R.

    2014-03-01

    Aims: We study the theoretical properties of the regular spacings found in the oscillation spectra of δ Scuti stars. Methods: We performed a multivariable analysis that covered a wide range of stellar structure, seismic properties and model parameters that are representative of intermediate-mass, main-sequence stars. The workflow was entirely performed using a new Virtual Observatory tool: TOUCAN (the VO gateway for asteroseismic models), which is presented in this paper. Results: A linear relation between the large separation and the mean density is predicted to be found in the low-frequency domain (i.e. radial orders spanning from 1 to 8, approximately) of the main-sequence, δ Scuti stars' oscillation spectrum. We found that this linear behavior remains the same whatever the mass, metallicity, mixing length, and overshooting parameters considered. The intrinsic error of the method is discussed. This includes the uncertainty in the large separation determination and the role of rotation. The validity of the relation found is only guaranteed for stars rotating up to 40% of their break-up velocity. Finally, we applied the diagnostic method presented in this work to five stars for which regular patterns have been found. Our estimates for the mean density and the frequency of the fundamental radial mode match with those given in the literature within a 20% of deviation. Conclusions: Asteroseismology has thus revealed an independent direct measure of the average density of δ Scuti stars, which is analogous to that of the Sun. This places tight constraints on the mode identification and hence on the stellar internal structure and dynamics, and allows determining the radius of planets orbiting δ Scuti stars with unprecedented precision. This opens the way for studying the evolution of regular patterns in pulsating stars, and its relation with stellar structure and evolution. Appendices A and B are available in electronic form at http://www.aanda.org

  19. AE Ursae Majoris - a δ Scuti Star in the Hertzsprung Gap

    NASA Astrophysics Data System (ADS)

    Niu, Jia-Shu; Fu, Jian-Ning; Li, Yan; Yang, Xiao-Hu; Zong, Weikai; Xue, Hui-Fang; Zhang, Yan-Ping; Liu, Nian; Du, Bing; Zuo, Fang

    2017-01-01

    We analyze the photometric data and spectroscopic data that collect on the δ Scuti star AE UMa. The fundamental and the first overtone frequencies are confirmed as f0 = 11.62560 c d-1 and f1 = 15.03124 c d-1, respectively, from the frequency content by analyzing of the 40 nights light curve spanning from 2009 to 2012. Additionally, another 37 frequencies are identified as either the harmonics or the linear combinations of the fundamental and the first overtone frequencies, among which 25 are newly detected. The rate of period change of the fundamental mode is determined as (1/P0)(dP0/dt) = 5.4( ± 1.9) × 10-9 yr-1 as revealed from the O - C diagram based on the 84 newly determined times of maximum light combined with those derived from the literature. The spectroscopic data suggests that AE UMa is a population I δ Scuti star. With these physical properties, we perform theoretical explorations based on the stellar evolution code MESA on this target, considering that the variation of pulsation period is caused by secular evolutionary effects. We finally constraint the AE UMa with the physical parameters as: the mass of 1.805 ± 0.055 M⊙, the radius of 1.647 ± 0.032 × 1011 cm, the luminosity of 1.381 ± 0.048 (log L/L⊙) and the age of 1.055 ± 0.095 × 109 yr. AE UMa can be the (Pop. I) δ Scuti star that locates just after the second turn-off of its evolutional track leaving the main sequence, a star in the phase of the Hertzsprung Gap with a helium core and a hydrogen-burning shell.

  20. LOOKING FOR A CONNECTION BETWEEN THE Am PHENOMENON AND HYBRID {delta} Sct -{gamma} Dor PULSATION: DETERMINATION OF THE FUNDAMENTAL PARAMETERS AND ABUNDANCES OF HD 114839 AND BD +18 4914

    SciTech Connect

    Hareter, M.; Weiss, W.; Fossati, L.; Suarez, J. C.; Rainer, M.; Poretti, E.

    2011-12-20

    {delta} Sct-{gamma} Dor hybrids pulsate simultaneously in p- and g-modes, which carry information on the structure of the envelope as well as to the core. Hence, they are key objects for investigating A and F type stars with asteroseismic techniques. An important requirement for seismic modeling is small errors in temperature, gravity, and chemical composition. Furthermore, we want to investigate the existence of an abundance indicator typical for hybrids, something that is well established for the roAp stars. Previous to the present investigation, the abundance pattern of only one hybrid and another hybrid candidate has been published. We obtained high-resolution spectra of HD 114839 and BD +18 4914 using the SOPHIE spectrograph of the Observatoire de Haute-Provence and the HARPS spectrograph at ESO La Silla. For each star we determined fundamental parameters and photospheric abundances of 16 chemical elements by comparing synthetic spectra with the observations. We compare our results to that of seven {delta} Sct and nine {gamma} Dor stars. For the evolved BD +18 4914 we found an abundance pattern typical for an Am star, but could not confirm this peculiarity for the less evolved star HD 114839, which is classified in the literature as uncertain Am star. Our result supports the concept of evolved Am stars being unstable. With our investigation we nearly doubled the number of spectroscopically analyzed {delta} Sct-{gamma} Dor hybrid stars, but did not yet succeed in identifying a spectroscopic signature for this group of pulsating stars. A statistically significant spectroscopic investigation of {delta} Sct- {gamma} Dor hybrid stars is still missing, but would be rewarding considering the asteroseismological potential of this group.

  1. Pulsations and metallicity of the pre-main sequence eclipsing spectroscopic binary RS Cha

    NASA Astrophysics Data System (ADS)

    Alecian, E.; Catala, C.; van't Veer-Menneret, C.; Goupil, M.-J.; Balona, L.

    2005-11-01

    We present new spectroscopic observations of the pre-main sequence eclipsing spectroscopic binary RS Cha. A sample of 174 spectra were obtained with the GIRAFFE spectrograph at the SAAO at 32 000 resolution. The radial velocity curves derived from these spectra were combined with previous observations spanning a period of about 30 years to correct the ephemeris of the system, and the result indicates that the orbital period is not constant. Residuals of the binary radial velocity curve for both components with amplitudes up to a few km s-1 and periods on the order of 1 h are clearly seen in our data, which we interpret as the signatures of delta-Scuti type pulsations. We revisited the masses of both components and determined the surface metallicity Z of both components of the RS Cha system by fitting synthetic spectra to observed spectra in a set of selected spectral regions. The synthetic spectra are calculated with the SYNTH code using stellar atmosphere models computed with the Kurucz ATLAS 9 code, along with a list of lines obtained from the VALD database. A selection of the best spectra and the most relevant spectral regions allowed us to determine Z = 0.028 ± 0.005. We also derived new values of v sin i: 64 ± 6 km s-1 and 70 ± 6 km s-1 for the primary and the secondary star, respectively. Finally, we observationally confirm that the RS Cha system is a synchronized and circularized system.

  2. DELTAE

    SciTech Connect

    Ward, W.C. ); Swift, G.W. )

    1993-11-01

    In thermoacoustic engines and refrigerators, and in many simple acoustic systems, a one dimensional wave equation determines the spatial dependence of the acoustic pressure and velocity. DELTAE numerically integrates such wave equations in the acoustic approximation, in gases or liquids, in user-defined geometries. Boundary conditions can include conventional acoustic boundary conditions of geometry and impedance, as well as temperature and thermal power in thermoacoustic systems. DELTAE can be used easily for apparatus ranging from simple duct networks and resonators to thermoacoustic engines refrigerators and combinations thereof. It can predict how a given apparatus will perform, or can allow the user to design an apparatus to achieve desired performance. DELTAE views systems as a series of segments; twenty segment types are supported. The purely acoustic segments include ducts and cones, and lumped impedances including compliances, series impedances, and endcaps. Electroacoustics tranducer segments can be defined using either frequency-independent coefficients or the conventional parameters of loudspeaker-style drivers: mass, spring constant, magnetic field strength, etc. Tranducers can be current driven, voltage driven, or connected to an electrical load impedance. Thermoacoustic segment geometries include parallel plates, circular and rectangular pores, and pin arrays. Side branches can be defined with fixed impedances, frequency-dependent radiation impedances, or as an auxiliary series of segments of any types. The user can select working fluids from among air, helium, neon, argon, hydrogen, deuterium, carbon dioxide, nitrogen, helium-argon mixtures, helium-xenon mixtures, liquid sodium, and eutectic sodium-potassium. Additional fluids and solids can be defined by the user.

  3. STEREO observations of HD90386 (RX Sex): a δ-Scuti or a hybrid star?

    NASA Astrophysics Data System (ADS)

    Ozuyar, D.; Stevens, I. R.; Whittaker, G.; Sangaralingam, V.

    2016-04-01

    HD90386 is a rarely studied bright A2V type δ Scuti star (V = 6.66 mag). It displays short-term light curve variations which are originated due to either a beating phenomenon or a non-periodic variation. In this paper, we presented high-precision photometric data of HD90386 taken by the STEREO satellite between 2007 and 2011 to shed light on its internal structure and evolution stage. From the frequency analysis of the four-year data, we detected that HD90386 had at least six different frequencies between 1 and 15 c d-1. The most dominant frequencies were found at around 10.25258 c d-1 (A ∼ 1.92 mmag) and 12.40076 c d-1 (A ∼ 0.61 mmag). Based on the ratio between these frequencies, the star was considered as an overtone pulsator. The variation in pulsation period over 35 years was calculated to be dP/Pdt = 5.39(2) x 10-3 yr-1. Other variabilities at around 1.0 c d-1 in the amplitude spectrum of HD90386 were also discussed. In order to explain these variabilities, possible rotational effects and γ Dor type variations were focused. Consequently, depending on the rotation velocity of HD90386, we speculated that these changes might be related to γ Dor type high-order g-modes shifted to the higher frequencies and that HD90386 might be a hybrid star.

  4. Learning from Pulsating Stars: Progress over the Last Century (Abstract)

    NASA Astrophysics Data System (ADS)

    Smith, H.

    2016-12-01

    (Abstract only) Scarcely more than a century has elapsed since it began to be widely accepted that pulsation plays an important role in the variability of stars. During that century pulsating stars have been used as tools to explore a variety of astrophysical questions, including the determination of distances to other galaxies, the testing of timescales of evolution through the HR diagram, and the identification of the ages and star formation histories of stellar populations. Among the significant early milestones along this investigative path are Henrietta Leavitt's discovery of a relation between the periods and luminosities of Cepheids, Harlow Shapley's proposal that all Cepheids are pulsating stars, and Arthur Stanley Eddington's use of the observed period change of d Cephei to constrain its power source. Today our explorations of pulsating stars are bolstered by long observational histories of brighter variables, surveys involving unprecedentedly large numbers of stars, and improved theoretical analyses. This talk will review aspects of the history and our current understanding of pulsating stars, paying particular attention to RR Lyrae, d Scuti, and Cepheid variables. Observations by AAVSO members have provided insight into several questions regarding the behavior of these stars.

  5. The Pulsation Spectrum of VX Hydrae

    NASA Astrophysics Data System (ADS)

    Templeton, M. R.; Samolyk, G.; Dvorak, S.; Poklar, R.; Butterworth, N.; Gerner, H.

    2009-10-01

    We present the results of a two-year, multisite observing campaign investigating the high-amplitude δ Scuti star VX Hydrae during the 2006 and 2007 observing seasons. The final data set consists of nearly 8500 V-band observations spanning HJD 2453763.6 to 2454212.7 (2006 January 28 to 2007 April 22). Separate analyses of the two individual seasons of data yield 25 confidently detected frequencies common to both data sets, of which two are pulsation modes, and the remaining 23 are Fourier harmonics or beat frequencies of these two modes. The 2006 data set had five additional frequencies with amplitudes less than 1.5 mmag, and the 2007 data had one additional frequency. Analysis of the full 2006–2007 data set yields 22 of the 25 frequencies found in the individual seasons of data. There are no significant peaks in the spectrum other than these between 0 and 60 cycles day-1. The frequencies of the two main pulsation modes derived from the 2006 and 2007 observing seasons individually do not differ at the level of 3σ, and thus we find no conclusive evidence for period change over the span of these observations. However, the amplitude of changed significantly between the two seasons, while the amplitude of remained constant; amplitudes of the Fourier harmonics and beat frequencies of f1 also changed. Similar behavior was seen in the 1950s, and it is clear that VX Hydrae undergoes significant amplitude changes over time.

  6. Unexpected series of regular frequency spacing of δ Scuti stars in the non-asymptotic regime. II. Sample-Echelle diagrams and rotation

    SciTech Connect

    Paparo, M.; Benko, J. M.; Hareter, M.; Guzik, J. A.

    2016-06-17

    A sequence search method was developed for searching for regular frequency spacing in δ Scuti stars by visual inspection (VI) and algorithmic search. The sample contains 90 δ Scuti stars observed by CoRoT. An example is given to represent the VI. The algorithm (SSA) is described in detail. The data treatment of the CoRoT light curves, the criteria for frequency filtering, and the spacings derived by two methods (i.e., three approaches: VI, SSA, and FT) are given for each target. Echelle diagrams are presented for 77 targets for which at least one sequence of regular spacing was identified. Comparing the spacing and the shifts between pairs of echelle ridges revealed that at least one pair of echelle ridges is shifted to midway between the spacing for 22 stars. The estimated rotational frequencies compared to the shifts revealed rotationally split doublets, triplets, and multiplets not only for single frequencies, but for the complete echelle ridges in 31 δ Scuti stars. Furthermore, using several possible assumptions for the origin of the spacings, we derived the large separation (${\\rm{\\Delta }}\

  7. Unexpected series of regular frequency spacing of δ Scuti stars in the non-asymptotic regime. II. Sample-Echelle diagrams and rotation

    DOE PAGES

    Paparo, M.; Benko, J. M.; Hareter, M.; ...

    2016-06-17

    A sequence search method was developed for searching for regular frequency spacing in δ Scuti stars by visual inspection (VI) and algorithmic search. The sample contains 90 δ Scuti stars observed by CoRoT. An example is given to represent the VI. The algorithm (SSA) is described in detail. The data treatment of the CoRoT light curves, the criteria for frequency filtering, and the spacings derived by two methods (i.e., three approaches: VI, SSA, and FT) are given for each target. Echelle diagrams are presented for 77 targets for which at least one sequence of regular spacing was identified. Comparing the spacing and the shifts between pairs of echelle ridges revealed that at least one pair of echelle ridges is shifted to midway between the spacing for 22 stars. The estimated rotational frequencies compared to the shifts revealed rotationally split doublets, triplets, and multiplets not only for single frequencies, but for the complete echelle ridges in 31 δ Scuti stars. Furthermore, using several possible assumptions for the origin of the spacings, we derived the large separation (more » $${\\rm{\\Delta }}\

  8. The impact of prewhitening in the characterization of pulsating stars observed by space missions

    NASA Astrophysics Data System (ADS)

    Pascual-Granado, J.; Garrido, R.; Suárez, J. C.; Verdes-Montenegro, L.; Rodón, J. R.

    2017-03-01

    Even when ultraprecise observations are performed by space missions for determining the frequency content of multiperiodic pulsating stars, gaps associated to wrong data acquisition are unavoidable. In these cases, the most extended method in asteroseismology for determining the frequency content consists of an iterative process called prewhitening. The usual assumption is that this method does not alter the original frequency content of the time series. Here we test this assumption by performing frequency analyses of a set of δ-Scuti stars from the seismofield of CoRoT satellite. The frequency analyses performed on gapped data show that only the very first frequencies are preserved. It follows from these results that the standard techniques applied in asteroseismology to infer the internal structure of pulsating stars cannot be applied if a reliable filling of the gaps is not performed previously.

  9. Characteristics of Pulsating Aurora

    NASA Astrophysics Data System (ADS)

    Humberset, B. K.; Gjerloev, J. W.; Mann, I. R.; Samara, M.; Michell, R.

    2013-12-01

    We have investigated the spatiotemporal characteristics of pulsating auroral patches observed with an all-sky imager located at Poker Flat, Alaska. Pulsating aurora often covers the entire sky with intermixed large and small-scale patches that vary in intensity or disappear and reappear on different time scales and timings. The broad definition of pulsating aurora covers patches and bands from tens to several tens of km which have a quasi-periodic temporal variation from 1 s to tens of seconds. In this paper we examine >15 patches from different events. We analyze all-sky movies (557.7 nm, 3.31 Hz) with a simple, yet robust, technique that allows us to determine the scale size dependent variability of the >15 individual patches. A spatial 2D Fourier Transform is used to separate the aurora into different horizontal scale sizes, and by correlating each patch for all image separations and available scale sizes smaller than the patch itself, we reveal what scale sizes are pulsating and their variability. The patches are found to be persistent, meaning that we can follow them for typically 5 minutes. The period of the pulsations is often remarkably variable and it seems that only certain scale sizes pulsate (typically the size of the patch). The patches drift with the background ExB plasma drift indicating that the magnetospheric source mechanism drifts with the field lines.

  10. Simultaneous intensive photometry and high resolution spectroscopy of δ Scuti stars. II. X Caeli: a star with unusual spectral features.

    NASA Astrophysics Data System (ADS)

    Mantegazza, L.; Poretti, E.

    1996-08-01

    Simultaneous photometric B, V (14 consecutive nights; 100 hours of observations) and high resolution spectroscopic observations (4 consecutive nights; 27 hours) were performed on the δ Scuti star X Caeli at La Silla Observatory in 1992. The photometric data allow the detection of 14 pulsation terms, some of which coincide in frequency with the second harmonics or the non-linear coupling terms of the lower frequency components. Possible excitation by resonance is suggested. The comparison with our previous observations of 1989 shows that while the amplitude of the strongest term (ν=7.39c/d) is very stable, a few other terms have changed their amplitudes. From the study of line profiles and their variations we derive vsin i=70km/s, 65deg<=i<=90deg, and that the dominant photometric term is a prograde mode with m=-1 and l=1 or 2. The other terms are probably non radial p modes with l=2+/-1. There is no evidence of the presence of high-degree sectorial modes with l=|m|. The stellar spectral lines have a narrow absorption core which could be due to the presence of a circumstellar shell.

  11. Catalogue and properties of δ Scuti stars in binaries

    NASA Astrophysics Data System (ADS)

    Liakos, Alexios; Niarchos, Panagiotis

    2017-02-01

    The catalogue contains 199 confirmed cases of binary systems containing at least one pulsating component of δ Sct type. The sample is divided into subgroups in order to describe the properties and characteristics of the δ Sct-type stars in binaries according to their Roche geometry. Demographics describing quantitatively our knowledge for these systems as well as the distributions of their pulsating components in the mass-radius, colour-magnitude, and evolutionary status-temperature diagrams are presented and discussed. It is shown that a threshold of ∼13 d of the orbital period regarding the influence of binarity on the pulsations is established. Finally, the correlations between the pulsation periods and the orbital periods, evolutionary status, and companion's gravity influence are updated based on the largest sample to date.

  12. Pulsating Star Mystery Solved

    NASA Astrophysics Data System (ADS)

    2010-11-01

    outcome of this work, and the team hopes to find other examples of these remarkably useful pairs of stars to exploit the method further. They also believe that from such binary systems they will eventually be able to pin down the distance to the Large Magellanic Cloud to 1%, which would mean an extremely important improvement of the cosmic distance scale. Notes [1] The first Cepheid variables were spotted in the 18th century and the brightest ones can easily be seen to vary from night to night with the unaided eye. They take their name from the star Delta Cephei in the constellation of Cepheus (the King), which was first seen to vary by John Goodricke in England in 1784. Remarkably, Goodricke was also the first to explain the light variations of another kind of variable star, eclipsing binaries. In this case two stars are in orbit around each other and pass in front of each other for part of their orbits and so the total brightness of the pair drops. The very rare object studied by the current team is both a Cepheid and an eclipsing binary. Classical Cepheids are massive stars, distinct from similar pulsating stars of lower mass that do not share the same evolutionary history. [2] The period luminosity relation for Cepheids, discovered by Henrietta Leavitt in 1908, was used by Edwin Hubble to make the first estimates of the distance to what we now know to be galaxies. More recently Cepheids have been observed with the Hubble Space Telescope and with the ESO VLT on Paranal to make highly accurate distance estimates to many nearby galaxies. [3] In particular, astronomers can determine the masses of the stars to high accuracy if both stars happen to have a similar brightness and therefore the spectral lines belonging to each of the two stars can be seen in the observed spectrum of the two stars together, as is the case for this object. This allows the accurate measurement of the motions of both stars towards and away from Earth as they orbit, using the Doppler effect. [4

  13. Pulsating Soft Corals

    NASA Astrophysics Data System (ADS)

    Khatri, Shilpa; Holzman, Roi; Miller, Laura; Samson, Julia; Shavit, Uri

    2016-11-01

    Soft corals of the family Xeniidae have a pulsating motion, a behavior not observed in many other sessile organisms. We are studying how this behavior may give these corals a competitive advantage. We will present experimental data and computational simulations of the pulsations of the coral. Video data and kinematic analysis will be shown from the lab and the field. We will present direct numerical simulations of the pulsations of the coral and the resulting fluid flow by solving the Navier-Stokes equations coupled with the immersed boundary method. Furthermore, parameter sweeps studying the resulting fluid flow will be discussed. This work is supported by NSF PoLS #1505061 (to S. Khatri) and #1504777 (to L. Miller).

  14. Hydroacoustic pulsating jet generator

    NASA Astrophysics Data System (ADS)

    Unrau, A.; Meier, G. E. A.

    1987-04-01

    A high pressure turbulent jet generator connected to a low pressure hydraulic tube is studied to investigate water hammer in tubes with fast flow variations, generating high pressure pulsating water jets. The pulsating jet generator consists of a tube, a hydraulic valve, a spring, and a water container. The jet is the effect of the combination of turbulent pipe flow with a valve for flow nozzle. The jet pressure depends on specific oscillation impedance and flow velocity variations. For inlet pressure of 0.5 to 2 bar the pressure rises to 40 bar. The described pulsating jet generator is more effective than the earlier model. A piezoelectric pressure controller is used to register pressure signals and high speed photos are made of the jet. Test results are consistent with theoretical calculation.

  15. The 1995 FG VIR campaign: will 550 hours of new data and 19 frequencies be enough to do asteroseismology?

    NASA Astrophysics Data System (ADS)

    Breger, M.

    1995-09-01

    Investigators researching Delta Scuti stars have to live with a smaller number of detected pulsation frequencies than the astronomers studying white dwarfs and PG 1159-035 stars. For example, for the star PG 1159-035 over 200 pulsation frequencies are known, while below we are pleased to report a new record for Delta Scuti stars: 19 frequencies for FG Vir. The situation, however, is not as bleak for Delta Scuti stars as it may appear. In white dwarfs, due to the high order of the excited pulsation modes in this star, the values of the frequencies obey the asymptotic limits of frequency spacing. Consequently, a certain amount of redundancy is present. This is not the case for the Delta Scuti stars, where every single newly discovered frequency provides additional, almost independent information on low-order p and g mode pulsation, allowing refinements of the models.

  16. Alleviating pulsations in turbines

    SciTech Connect

    Wedmark, A.B.

    1994-10-01

    Pressure pulsations resulting from vortices in the draft tube are a persistent problem with Francis turbines. Air injection through the turbine shaft often can solve the problem, but this approach may not be possible after the turbine unit has been manufactured. In such cases, new and innovative solutions may be required.

  17. The CoRoT star ID 100866999: a hybrid γ Doradus-δ Scuti star in an eclipsing binary system

    NASA Astrophysics Data System (ADS)

    Chapellier, E.; Mathias, P.

    2013-08-01

    Context. The presence of g- and p-modes allows testing stellar models from the core to the envelope. Moreover, binarity in an eclipsing system constrains the physical parameters of the pulsating star. Aims: CoRot ID 100866999 is a relatively large-amplitude hybrid γ Doradus-δ Scuti star with two clearly distinct frequency domains. The large number of detected frequencies allows a detailed study of the interaction between them. In addition, we can derive the fundamental parameters of both components from the study of the eclipsing light curve. Methods: After removing the eclipsing phases, we analyzed the data with the Period04 package up to a signal-to-noise ratio S/N = 4. The light curve was then prewhitened with these oscillation frequencies to derive the fundamental parameters of the two components. Results: The eclipsing light curve analysis results in a (1.8+1.1) M⊙ system, both components being main sequence stars. We detect 124 frequencies related to luminosity variations of the primary. They are present in two well-separated domains: 89 frequencies in the interval [0.30;3.64] d-1 and 35 in the interval [14.57; 33.96] d-1. There are 22 γ Doradus frequencies separated by a constant period interval ΔP = 0.03493 d. These frequencies correspond to a series of g-modes of degree ℓ = 1 with successive radial orders k. We identify 21 linear combinations between the first nine γ Doradus frequencies. The δ Scuti domain is dominated by a large-amplitude frequency F = 16.9803 d-1. The eight first γ Doradus frequencies fi are present with much lower amplitude in the δ Scuti domain as F ± fi. These interactions between g- and p-modes confirm the phenomenon we detected in another CoRoT star. The amplitude and the phase of the main frequency F shows a double-wave modulation along the orbital phase, giving rise to series of combination frequencies. Such combination frequencies are also detected, with lower amplitude, for the first γ Doradus modes. The Co

  18. Pulsations of rapidly rotating stars. II. Realistic modelling for intermediate-mass stars

    NASA Astrophysics Data System (ADS)

    Ouazzani, R.-M.; Roxburgh, I. W.; Dupret, M.-A.

    2015-07-01

    Context. Very high precision seismic space missions such as CoRoT and Kepler provide the means for testing the modelling of transport processes in stellar interiors. For some stars, such as δ Scuti, γ Doradus, and Be stars, the observed pulsation spectra are modified by rotation to such an extent that it prevents any fruitful interpretation. Aims: Our aim is to characterise acoustic pulsation spectra of realistic stellar models in order to be able to interpret asteroseismic data from such stars. Methods: The 2D oscillation code ACOR, which treats rotation in a non-perturbative manner, is used to study pulsation spectra of highly distorted evolved models of stars. Two-dimensional models of stars are obtained by a self-consistent method that distorts spherically averaged stellar models a posteriori, at any stage of evolution, and for any type of rotation law. Results: Four types of modes are calculated in a very dense frequency spectrum, among which are island modes. The regularity of the island modes spectrum is confirmed and yields a new set of quantum numbers, with which an échelle diagram can be built. Mixed gravito-acoustic modes are calculated in rapidly rotating models for the first time.

  19. Photometric studies of δ Scuti stars. I. IP Virginis

    USGS Publications Warehouse

    Joner, Michael D.; Hintz, Eric G.; Collier, Matthew W.

    1998-01-01

    We report 15 new times of maximum light for the δ Scuti star IP Virginis (formerly known as SA 106‐1024). An analysis of all times of maximum light indicates that IP Vir has been decreasing in period at a constant rate of − days day−1. Evidence is also presented that IP Vir is a double‐mode variable with a period ratio of . This period ratio predicts a [Fe/H] value of −0.3. From photometric (uvbyβ) observations, we find a foreground reddening of .008 mag and a metallicity of [Fe/H] = +0.05. It is shown that [Fe/H] = −0.3 is most likely the correct value. Intrinsic ‐ and c1‐values, plotted in a model atmosphere grid, indicate a mean effective temperature, K, and a mean surface gravity, . All of these physical parameters support Landolt's initial conclusion that IP Vir is an ordinary δ Sct star.

  20. Experimental study of large-scale pulsations of a fluidized bed

    SciTech Connect

    Glinskii, V.A.; Protod'yakonov, I.O.; Chesnokov, Yu.G.

    1980-01-01

    In experimental investigations of the hydrodynamics of fluidized beds, study of large- and small-scale pulsations of the most important characteristics of the fluidized bed: voidage, hydraulic resistance, velocities of the gaseous and solid phases, etc., is of considerable interest. The character of these pulsations is determined by the heterogeneity of the structure of the fluidized bed, due to the presence of channels, bubbles, stagnant zones, and circulation currents. The object of the present work was experimental study of fluctuations of the height h of the surface of a fluidized bed, with simultaneous recording of the corresponding fluctuations of the hydraulic resistance ..delta..P of the bed. The existence of a direct connection between large-scale pulsations of the hydraulic resistance ..delta..P of the fluidized bed and large-scale pulsations of the bed height h is demonstrated in the paper. It is proved on this basis that large-scale pulsations of h and ..delta..P can be described by equations of the same type. The coefficients of the equation are determined from experimental data on pulsations, and its solutions for different fluidization regimes are analyzed.

  1. Nonperiodic eddy pulsations

    USGS Publications Warehouse

    Rubin, David M.; McDonald, Richard R.

    1995-01-01

    Recirculating flow in lateral separation eddies is typically weaker than main stem flow and provides an effective environment for trapping sediment. Observations of recirculating flow and sedimentary structures demonstrate that eddies pulsate in size and in flow velocity even when main stem flow is steady. Time series measurements of flow velocity and location of the reattachment point indicate that these pulsations are nonperiodic. Nonperiodic flow in the lee of a channel margin constriction is grossly different from the periodic flow in the lee of a cylinder that is isolated in a flow. Our experiments demonstrate that placing a flow-parallel plate adjacent to a cylinder is sufficient to cause the leeside flow to change from a periodic sequence of vortices to a nonperiodically pulsating lateral separation eddy, even if flow conditions are otherwise unchanged. Two processes cause the leeside flow to become nonperiodic when the plate is added. First, vortices that are shed from the cylinder deform and become irregular as they impact the plate or interfere with remnants of other vortices near the reattachment point. Second, these deformed vortices and other flow structures are recirculated in the lateral separation eddy, thereby influencing the future state (pressure and momentum distribution) of the recirculating flow. The vortex deformation process was confirmed experimentally by documenting spatial differences in leeside flow; vortex shedding that is evident near the separation point is undetectable near the reattachment point. Nonlinear forecasting techniques were used in an attempt to distinguish among several possible kinds of nonperiodic flows. The computational techniques were unable to demonstrate that any of the nonperiodic flows result from low-dimensional nonlinear processes.

  2. Computational astrophysics: Pulsating stars

    NASA Astrophysics Data System (ADS)

    Davis, C. G.

    The field of computational astrophysics in pulsating star studies has grown considerably since the advent of the computer. Initially calculations were done on the IBM 704 with 32K of memory and now we use the CRAY YMP computers with considerably more memory. Our early studies were for models of pulsating stars using a 1D Lagrangian hydrodynamic code (SPEC) with radiation diffusion. The radiative transfer was treated in the equilibrium diffusion approximation and the hydrodynamics was done utilizing the approximation of artificial viscosity. The early calculations took many hours of 704 CPU time. Early in 1965 we decided to improve on the usual treatment of the radiative transfer used in our codes by utilizing the method of moments, the so-called variable Eddington approximation. In this approximation the material energy field is uncoupled from the radiation energy field and the angular dependence is introduced through the Eddington factor. A multigroup frequency dependent method may also be applied. The Eddington factor is determined by snapshots of the stars structure utilizing a y-line approximation. The full radiative transfer approximation appears necessary in order to understand the light curves for W Virginia stars and may be important for the light curves of RR Lyrae stars. A detailed radiative transfer method does not appear to be necessary for the understanding of Cepheid light curves. A recent improvement to our models for pulsating stars is in the use of an adaptive mesh scheme to resolve the sharp features in the nonlinear hydrodynamic structure. From these improved structures, better analysis of the radius, velocity, and light curves could be obtained.

  3. Pulsating slurry flow in pipelines

    NASA Astrophysics Data System (ADS)

    El Masry, O. A.; El Shobaky, K.

    1989-07-01

    An experimental study on pulsating turbulent flow of sand-water suspension was carried out. The objective was to investigate the effect of pulsating flow parameters, such as, frequency and amplitude on the critical velocity, the pressure drop per unit length of pipeline and hence the energy requirements for hydraulic transportation of a unit mass of solids. The apparatus was constructed as a closed loop of 11.4 m length and 3.3 cm inner diameter of steel tubing. Solid volumetric concentrations of up to 20% were used in turbulent flow at a mean Reynolds number of 33,000 82,000. Pulsation was generated using compressed air in a controlled pulsation unit. Frequencies of 0.1 1.0 Hz and amplitude ratios of up to 30% were used. Instantaneous pressure drop and flow rate curves were digitized to calculate the energy dissipation associated with pulsation. The critical velocity in pulsating flow was found to be less than that for the corresponding steady flow at the same volumetric concentration. Energy dissipation for pulsating flow was found to be a function of both frequency and amplitude of pulsation. A possible energy saving was indicated at frequencies of 0.4 0.8 Hz and moderate amplitudes ratios of less than 25%.

  4. Two new pulsating low-mass pre-white dwarfs or SX Phoenicis stars?

    NASA Astrophysics Data System (ADS)

    Corti, M. A.; Kanaan, A.; Córsico, A. H.; Kepler, S. O.; Althaus, L. G.; Koester, D.; Sánchez Arias, J. P.

    2016-03-01

    Context. The discovery of pulsations in low-mass stars opens an opportunity to probe their interiors and determine their evolution by employing the tools of asteroseismology. Aims: We aim to analyse high-speed photometry of SDSS J145847.02+070754.46 and SDSS J173001.94+070600.25 and discover brightness variabilities. In order to locate these stars in the Teff - log g diagram, we fit optical spectra (SDSS) with synthetic non-magnetic spectra derived from model atmospheres. Methods: To carry out this study, we used the photometric data we obtained for these stars with the 2.15 m telescope at CASLEO, Argentina. We analysed their light curves and applied the discrete Fourier transform (FT) to determine the pulsation frequencies. Finally, we compare both stars in the Teff - log g diagram, with two known pre-white dwarfs and seven pulsating pre-ELM white dwarf stars, δ Scuti, and SX Phe stars Results: We report the discovery of pulsations in SDSS J145847.02+070754.46 and SDSS J173001.94+070600.25. We determine their effective temperature and surface gravity to be Teff = 7972 ± 200 K, log g = 4.25 ± 0.5 and Teff = 7925 ± 200 K, log g = 4.25 ± 0.5, respectively. With these parameters, these new pulsating low-mass stars can be identified with either ELM white dwarfs (with ~0.17 M⊙) or more massive SX Phe stars. We identified pulsation periods of 3278.7 and 1633.9 s for SDSS J145847.02+070754.46 and a pulsation period of 3367.1 s for SDSS J173001.94+070600.25. These two new objects, together with those of Maxted et al. (2013, 2014), indicate the possible existence of a new instability domain towards the late stages of evolution of low-mass white dwarf stars, although their identification with SX Phe stars cannot be discarded. Visiting Astronomer, Complejo Astronómico El Leoncito operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.

  5. Characterizing Accreting White Dwarf Pulsators

    NASA Astrophysics Data System (ADS)

    Szkody, Paula; Mukadam, Anjum

    2014-02-01

    Understanding the population, mass distribution, and evolution of accreting white dwarfs impacts the entire realm of binary interaction, including the creation of Type Ia supernovae. We are concentrating on accreting white dwarf pulsators, as the pulsation properties allow us a view of how the accretion affects the interior of the star. Our ground- based photometry on 11 accreting pulsators with corresponding temperatures from HST UV spectra suggest a broad instability strip in the range of 10500 to 16000K. Additionally, tracking a post-outburst heated white dwarf as it cools and crosses the blue edge and resumes pulsation provides an independent method to locate the empirical instability strip. Determining a post-outburst cooling curve yields an estimate of the amount of heating and the accreted mass during the outburst. We request additional photometry of 2 objects that present unique properties: GW Lib which has not yet returned to its pre-outburst pulsation spectrum after 6 yrs, and EQ Lyn which returned to its pre- outburst pulsation after 3 yrs but is now turning on and off without ongoing outbursts. Following the pulsation spectrum changes over stretches of several nights in a row will provide specific knowledge of the stability of the observed modes.

  6. The Pulsating Pulsar Magnetosphere

    NASA Astrophysics Data System (ADS)

    Tsui, K. H.

    2015-06-01

    Following the basic principles of a charge-separated pulsar magnetosphere, we consider the magnetosphere to be stationary in space, instead of corotating, and the electric field to be uploaded from the potential distribution on the pulsar surface, set up by the unipolar induction. Consequently, the plasma of the magnetosphere undergoes guiding center drifts of the gyromotion due to the forces transverse to the magnetic field. These forces are the electric force, magnetic gradient force, and field line curvature force. Since these plasma velocities are of drift nature, there is no need to introduce an emf along the field lines, which would contradict the {{E}\\parallel }={\\boldsymbol{E}} \\cdot {\\boldsymbol{B}} =0 plasma condition. Furthermore, there is also no need to introduce the critical field line separating the electron and ion open field lines. We present a self-consistent description where the magnetosphere is described in terms of electric and magnetic fields and also in terms of plasma velocities. The fields and velocities are then connected through the space-charge densities self-consistently. We solve the pulsar equation analytically for the fields and construct the standard steady-state pulsar magnetosphere. By considering the unipolar induction inside the pulsar and the magnetosphere outside the pulsar as one coupled system, and under the condition that the unipolar pumping rate exceeds the Poynting flux in the open field lines, plasma pressure can build up in the magnetosphere, in particular, in the closed region. This could cause a periodic opening up of the closed region, leading to a pulsating magnetosphere, which could be an alternative to pulsar beacons. The closed region can also be opened periodically by the build up of toroidal magnetic field through a positive feedback cycle.

  7. Ground-satellite observation of Pc 4 pulsations by MAGDAS/CPMN and ETS-VIII geosynchronous orbit satellite

    NASA Astrophysics Data System (ADS)

    Ikeda, A.; Yumoto, K.; Koga, K.; Obara, T.; Baishev, D. G.; Shevtsov, B. M.; Uozumi, T.; Abe, S.; Shishime, A.

    2011-12-01

    Electromagnetic pulsations in ULF range have been studied extensively using ground and satellite observations. However, how Pc 4 pulsations (6.7-22.2 mHz) propagate from the magnetosphere to the ground is not fully understand. Especially the propagation to low latitudes is unclear. We examined data obtained by the ETS-VIII satellite at the geosynchronous orbit (G.M.Lat. -12 degree, G.G.Lon. 146.0 degree) (Koga et al., 2010). We also analyzed ground data of MAGDAS/CPMN (Yumoto and the MAGDAS Group, 2006). The ground data were obtained at high-latitude CHD station (G.M.Lat. 64.9 degree, G.M.Lon. 212.7 degree) and at low-latitude KUJ station (G.M.Lat. 26.1 degree, G.M.Lon. 203.0 degree). The magnetic longitudes of these ground stations are almost same as that of the ETS-VIII. Pc 4 events at ETS-VIII were selected by an automated routine using FFT method which was developed by Takahashi and Ukhorskiy (2007). These Pc 4 events were classified into 2 types. One type is a poloidal Pc 4, in which Hp (northward) component is dominant. Another type is a toroidal mode, in which Hn (eastward) component is dominant. About 10 % of the poloidal/toroidal Pc 4 pulsations, the peak frequency is identical with that of ground Pc 4 pulsations, and the coherence between pulsations observed aboard ETS-VII and on the ground stations is high at the peak frequencies. Thus, about 10 % of the poloidal/toroidal Pc 4 in the magnetosphere can be concluded to transmit to high-latitude ground stations as well as low-latitude stations. For such Pc 4 events, H (horizontal northward) and D (horizontal eastward) components at CHD showed higher amplitude (delta(H)/delta(Hn) = 6.8, delta(H)/delta(Hp) = 10.8, delta(D)/delta(Hn) = 6.8, delta(D)/delta(Hp) = 7.4) than that at the geosynchronous orbit. On the other hand, H and D components at KUJ was attenuated considerably (delta(H)/delta(Hn) = 0.66, delta(H)/delta(Hp) = 0.89, delta(D)/delta(Hn) = 0.35, delta(D)/delta(Hp) = 0.37).

  8. Pulsating aurora: The importance of the ionosphere

    SciTech Connect

    Stenbaek-Nielsen, H.C.

    1980-05-01

    A number of different, but mainly optical, observations made in pulsating auroras are presented. These observations indicate that active ionospheric processes are likely to play an important role in causing and/or modifying pulsating aurora.

  9. Pulsational mode-typing in line profile variables. I - Four Beta Cephei stars

    NASA Technical Reports Server (NTRS)

    Campos, A. J.; Smith, M. A.

    1980-01-01

    The detailed variations of line profiles in the Beta Cephei-type variable stars Gamma Pegasi, Beta Cephei, Delta Ceti and Sigma Scorpii are modeled throughout their pulsation cycles in order to classify the dominant pulsation mode as radial or nonradial. High-dispersion Reticon observations of the variables were obtained for the Si III line at 4567 A, and line profiles broadened by radial or nonradial pulsations, rotation and radial-tangential macroturbulence were calculated based on a model atmosphere. It is found that only a radial pulsation mode can reproduce the radial velocity amplitude, changes in line asymmetry and uniform line width observed in all four stars. Results are in agreement with the color-to-light arguments of Stamford and Watson (1978), and suggest that radial pulsation plays the dominant role in the observed variations in most Beta Cephei stars. Evidence for shocks or moving shells is also found in visual line data for Sigma Scorpii and an ultraviolet line of Beta Cephei, together with evidence of smooth, secular period changes in Beta Cephei and Delta Ceti.

  10. VizieR Online Data Catalog: Frequency spacing of δ Scuti stars. II. (Paparo+, 2016)

    NASA Astrophysics Data System (ADS)

    Paparo, M.; Benko, J. M.; Hareter, M.; Guzik, J. A.

    2016-07-01

    The CoRoT satellite was launched in 2006. LRa01, the first long run in the direction of anti-center, started on 2007 October 15 and finished on 2008 March 3, resulting in a ΔT=131d time span. Both chromatic and monochromatic data were obtained on the EXO field with a regular sampling of 8 minutes, although for some stars an oversampling mode (32s) was applied. We systematically searched in the CoRoT data archive all light curves in the EXO field for δ Scuti and γ Doradus light curves (Hareter M., 2013, PhD thesis Univ. Vienna). (2 data files).

  11. Chaotic pulsations in stellar models

    SciTech Connect

    Buchler, J.R. )

    1990-12-01

    The irregular behavior of large-amplitude pulsating stars undergoing radial oscillations is examined theoretically, with a focus on hydrodynamic simulations of the W Virginis population II Cepheids (stars which show both regular and RV Tau characteristics). Sequences of models are constructed as one-parameter families (with luminosity, mass, and composition fixed and Teff as the control parameter) and analyzed to derive a systematic map of the bifurcation set; i.e., of the possible types of pulsations. The results are presented graphically, and it is shown that both cascades of period doubling (via destabilization of an overtone through a half-integer-type resonance) and tangent bifurcation are possible routes to chaos in these systems, depending on the stellar parameters. The general robustness of the chaotic behavior and the existence of a 'chaotic blue edge' in stellar-parameter space are demonstrated. 55 refs.

  12. Pressure pulsations above turbomolecular pumps

    NASA Technical Reports Server (NTRS)

    Danziger, S.; Kendall, B. R. F.; Dormer, J.

    1982-01-01

    Lange and Singleton (1978) have observed pressure pulses above a turbomolecular pump. They reported that the mean pulse frequency increased with the temperature of the pump cooling water and that the evolved gas was mainly hydrogen. The present investigation takes into account tests conducted with a similar pumping system. The pumping system was equipped with additional pressure-monitoring equipment in order to study these pulsations in more detail. It was found that at least two distinct types of pressure pulsations may be present in a turbomolecular-pumped ultrahigh vacuum system. The random hydrogen pulses are easily eliminated for period of days by changing the cooling water temperature. The cyclic pulses consisting mainly of water vapor are not likely to be a problem in normal experiments.

  13. Four new subdwarf B pulsators

    NASA Astrophysics Data System (ADS)

    Østensen, R.; Heber, U.; Silvotti, R.; Solheim, J.-E.; Dreizler, S.; Edelmann, H.

    2001-11-01

    We report the detection of short period oscillations in the sdB stars HS 0039+4302, HS 0444+0408, HS 1824+5745 and HS 2151+0857 from time-series photometry made at the Nordic Optical Telescope (NOT) of a sample of 55 candidates. Hence these four hot subdwarfs are new members of the EC 14026 class of pulsating sdB stars. HS 0039+4302 is a multi-mode pulsator with at least four distinct periods in the range between 182 and 234 s, and amplitudes up to 8 mma. HS 0444+0408 shows one dominant pulsation at 137 s (A ~ 12 mma) and a second weaker pulsation at 170 s (A ~ 3 mma). For HS 1824+5745 we find a single period of 139 s with an amplitude of about 5 mma. HS 2151+0857 shows four periods in the range 129-151 s with amplitudes between 2 and 5 mma. Our NLTE model atmosphere analysis of the time-averaged optical spectra place all stars well within the theoretical sdBV instability strip. Based on observations obtained at the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. }\\fnmsep\\thanks{ Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, operated by the Max-Plank-Institute für Astronomie Heidelberg jointly with the Spanish National Commission for Astronomy. Based on observations collected at the European Southern Observatory, Chile (ESO No. 66.D-0031).

  14. Nile Delta

    Atmospheric Science Data Center

    2013-04-15

    article title:  The Nile River Delta     View Larger Image ... of eastern Africa. At the apex of the fertile Nile River Delta is the Egyptian capital city of Cairo. To the west are the Great Pyramids ...

  15. KIC 10080943: An eccentric binary system containing two pressure- and gravity-mode hybrid pulsators

    NASA Astrophysics Data System (ADS)

    Schmid, V. S.; Tkachenko, A.; Aerts, C.; Degroote, P.; Bloemen, S.; Murphy, S. J.; Van Reeth, T.; Pápics, P. I.; Bedding, T. R.; Keen, M. A.; Prša, A.; Menu, J.; Debosscher, J.; Hrudková, M.; De Smedt, K.; Lombaert, R.; Németh, P.

    2015-12-01

    Context. γ Doradus and δ Scuti pulsators cover the transition region between low mass and massive main-sequence stars, and as such, are critical for testing stellar models. When they reside in binary systems, we can combine two independent methods to derive critical information, such as precise fundamental parameters to aid asteroseismic modelling. In the Kepler light curve of KIC 10080943, clear signatures of gravity- and pressure-mode pulsations have been found. Ground-based spectroscopy revealed this target to be a double-lined binary system. Aims: We present the analysis of four years of Kepler photometry and high-resolution spectroscopy to derive observational constraints with which to evaluate theoretical predictions of the stellar structure and evolution for intermediate-mass stars. Methods: We used the method of spectral disentangling to determine atmospheric parameters for both components and derive the orbital elements. With phoebe, we modelled the ellipsoidal variation and reflection signal of the binary in the light curve and used classical Fourier techniques to analyse the pulsation modes. Results: We show that the eccentric binary system KIC 10080943 contains two hybrid pulsators with masses M1 = 2.0 ± 0.1 M⊙ and M2 = 1.9 ± 0.1 M⊙, with radii R1 = 2.9 ± 0.1 R⊙ and R2 = 2.1 ± 0.2 R⊙. We detect rotational splitting in the g and p modes for both stars and use them to determine a first rough estimate of the core-to-surface rotation rates for the two components, which will be improved by future detailed seismic modelling. Based on the data gathered with NASA's Discovery mission, Kepler, and with the HERMES spectrograph, installed at the Mercator Telescope, operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias and supported by the Fund for Scientific Research of Flanders (FWO), Belgium, the Research Council of KU Leuven, Belgium, the

  16. Volga Delta

    Atmospheric Science Data Center

    2013-04-17

    article title:  Volga Delta and the Caspian Sea     View ... appear reddish. A small cloud near the center of the delta separates into red, green, and blue components due to geometric parallax ... include several linear features located near the Volga Delta shoreline. These long, thin lines are artificially maintained shipping ...

  17. The morphology of displays of pulsating auroras.

    NASA Technical Reports Server (NTRS)

    Cresswell, G. R.

    1972-01-01

    An auroral substorm generates displays of pulsating auroras in ways which show a dependence upon both local time and latitude relative to the auroral oval. For several hours after midnight pulsating auroras can be observed in the wake of poleward expansions or within equatorward spreading diffuse envelopes of meridional extent of several hundred kilometers. As the dawn meridian is approached the displays of pulsating auroras tend increasingly to be comprised of distinct eastward drifting patches easily recorded by all-sky cameras.

  18. Transition to turbulence in pulsating pipe flow

    NASA Astrophysics Data System (ADS)

    Xu, Duo; Warnecke, Sascha; Hof, Bjoern; Avila, Marc

    2014-11-01

    We report an experimental investigation of the transition to turbulence in a pulsating pipe flow. This flow is a prototype of various pulsating flows in both nature and engineering, such as in the cardiovascular system where the onset of turbulence is often possibly related to various diseases (e.g., the formation of aneurysms). The experiments are carried out in a straight rigid pipe using water with a sinusoidal modulation of the flow rate. The governing parameters, Reynolds number, Womersley number α (dimensionless pulsating frequency) and the pulsating amplitude A, cover a wide range 3 < α < 23 and 0 < A < 1 . To characterize the transition to turbulence, we determine how the characteristic lifetime of turbulent spots (/puffs) are affected by the pulsation. While at high pulsation frequencies (α > 12) lifetimes of turbulent spots are entirely unaffected by the pulsation, at lower frequencies they are substantially affected. With decreasing frequency much larger Reynolds numbers are needed to obtain spots of the same characteristic lifetime. Hence at low frequency transition is delayed significantly. In addition the effect of the pulsation amplitude on the transition delay is quantified. Duo Xu would like to acknowledge the support from Humboldt Foundation.

  19. Nonradial Pulsations in ɛ Persei

    NASA Astrophysics Data System (ADS)

    Saio, Hideyuki; Kambe, Eiji; Lee, Umin

    2000-11-01

    We consider the question of whether all the modes detected in the line profile variations of ɛ Persei are consistent with nonradial pulsations excited by the kappa mechanism at the opacity Z-bump. We have computed massive (12.5-14 Msolar) main-sequence models, adjusting the parameters such that the evolutionary tracks pass around the approximate position of ɛ Per on the H-R diagram. A linear nonadiabatic, nonradial pulsation analysis is applied to these models. The periods in the frame corotating with the stellar surface for the observed 2.3-4.5 hr modes are found to be consistent with the Z-bump kappa mechanism. We have found, however, that the longest-period mode (8.48 hr in the observer's frame) cannot be explained by the kappa mechanism. We have examined the effect of rotation on the stability of oscillations and found that the stabilizing effect is weak, so that only a few of the shortest-period modes are stabilized for the rotation speed of ɛ Per. No significant difference is found between prograde and retrograde modes in the stability. It is a puzzle why no retrograde mode has been detected in ɛ Per, which should equally be excited by the kappa mechanism. We also discuss the observed and theoretical line profile variations of ɛ Per in the Appendix.

  20. Models of cylindrical bubble pulsation

    PubMed Central

    Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hay, Todd A.; Hamilton, Mark F.

    2012-01-01

    Three models are considered for describing the dynamics of a pulsating cylindrical bubble. A linear solution is derived for a cylindrical bubble in an infinite compressible liquid. The solution accounts for losses due to viscosity, heat conduction, and acoustic radiation. It reveals that radiation is the dominant loss mechanism, and that it is 22 times greater than for a spherical bubble of the same radius. The predicted resonance frequency provides a basis of comparison for limiting forms of other models. The second model considered is a commonly used equation in Rayleigh-Plesset form that requires an incompressible liquid to be finite in extent in order for bubble pulsation to occur. The radial extent of the liquid becomes a fitting parameter, and it is found that considerably different values of the parameter are required for modeling inertial motion versus acoustical oscillations. The third model was developed by V. K. Kedrinskii [Hydrodynamics of Explosion (Springer, New York, 2005), pp. 23–26] in the form of the Gilmore equation for compressible liquids of infinite extent. While the correct resonance frequency and loss factor are not recovered from this model in the linear approximation, it provides reasonable agreement with observations of inertial motion. PMID:22978863

  1. HUBBLE SPACE TELESCOPE Images of the Compact Nebula around RY Scuti

    NASA Astrophysics Data System (ADS)

    Smith, Nathan; Gehrz, Robert D.; Humphreys, Roberta M.; Davidson, Kris; Jones, Terry J.; Krautter, Joachim

    1999-08-01

    We present HST Wide Field Planetary Camera 2 images of the very massive eclipsing binary RY Scuti. The HST Hα image shows a very complex ionized nebula roughly 1" in size. Several interesting structures are revealed, including what appears to be a pair of concentric ionized rings above and below the equatorial plane of the system, located at the inner edge of a more extended dust torus. We reexamine some essential physical characteristics of the nebula, such as a possible magnetic field and the complicated mass-loss geometry of this near-Eddington limit contact binary. The effects of a rotating illumination source are considered to explain the brightness distribution in the rings. We suggest a model for the origin of the mass and detailed structure in the nebula. This model invokes a previous mass ejection that is shaped by nonspherical interacting winds and possibly magnetic fields.

  2. A Planet Found by Pulsations

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-10-01

    Searching for planets around very hot stars is much more challenging than looking around cool stars. For this reason, the recent discovery of a planet around a main-sequence A star is an important find both because of its unique position near the stars habitable zone, and because of the way in which the planet was discovered.Challenges in VariabilityIn the past three decades, weve discovered thousands of exoplanets yet most of them have been found around cool stars (like M dwarfs) or moderate stars (like G stars like our Sun). Very few of the planets that weve found orbit hot stars; in fact, weve only discovered ~20 planets orbiting the very hot, main-sequence A stars.The instability strip, indicated on an H-R diagram. Stellar classification types are listed across the bottom of the diagram. Many main-sequence A stars reside in the instability strip. [Rursus]Why is this? We dont expect that main-sequence A stars host fewer planets than cooler stars. Instead, its primarily because the two main techniques that we use to find planets namely, transits and radial velocity cant be used as effectively on the main-sequence A stars that are most likely to host planets, because the luminosities of these stars are often variable.These stars can lie on whats known as the classical instability strip in the Herzsprung-Russell diagram. Such variable stars pulsate due to changes in the ionization state of atoms deep in their interiors, which causes the stars to puff up and then collapse back inward. For variable main-sequence A stars, the periods for these pulsations can be several to several tens of times per day.These very pulsations that make transits and radial-velocity measurements so difficult, however, can potentially be used to detect planets in a different way. Led by Simon Murphy (University of Sydney, Australia and Aarhus University, Denmark), a team of scientists has recently detected the first planet ever to be discovered around a main-sequence A star from the timing

  3. Survey of Candidate Pulsating Eclipsing Binaries - I

    NASA Astrophysics Data System (ADS)

    Dvorak, S.

    2009-08-01

    Initial results from a photometric survey of stars selected from the list of eclipsing binaries that may contain a pulsating component by Soydugan et al. (2006) are reported. A minimum of two nights of CCD observations with V and/or B filters of each of the 35 stars from this list was collected. Of the 35 stars stud- ied, a pulsating component was detected in three of the systems. Pulsations were also serendiptiously detected in the eclipsing binary RR Leporis, which is not on the candidate list.

  4. Asteroseismology from Space: The Delta Scuti Star Theta(sup 2) Tauri Monitored by the WIRE Satellite

    NASA Technical Reports Server (NTRS)

    Poretti, E.; Buzasi, Derek; Laher, R.; Catanzarite, J.; Conrow, T.

    2002-01-01

    The bright variable star theta(sup 2) Tau was monitored with the star camera on the Wide-Field Infrared Explorer satellite. Twelve independent frequencies were detected down to the 0.5 mmag amplitude level. Their reality was investigated by searching for them using two different algorithms and by some internal checks: both procedures strengthened our confidence in the results. All the frequencies are in the range 10.8-14.6 cd(exp -1). The histogram of the frequency spacings shows that 81% are below 1.8 d; rotation may thus play a role in the mode excitation. The fundamental radial mode is not observed, although it is expected to occur in a region where the noise level is very low (55 mu mag). The rms residual is about two times lower than that usually obtained from successful groundbased multisite campaigns. The comparison of the results of previous campaigns with the new ones establishes the amplitude variability of some modes.

  5. Asteroseismology from Space: The Delta Scuti Star Theta(sup 2) Tauri Monitored by the WIRE Satellite

    NASA Technical Reports Server (NTRS)

    Poretti, E.; Buzasi, D.; Laher, R.; Catanzarite, J.; Conrow, T.

    2002-01-01

    The bright variable star (theta)(sup 2) Tau was monitored with the star camera on the Wide-Field Infrared Explorer satellite. Twelve independent frequencies were detected down to the 0.5 mmag amplitude level. Their reality was investigated by searching for them using two different algorithms and by some internal checks: both procedures strengthened our confidence in the results. All the frequencies are in the range 10.8 - 14.6 cd(exp -1). The histogram of the frequency spacings shows that 81% are below 1.8 d; rotation may thus play a role in the mode excitation. The fundamental radial mode is not observed, although it is expected to occur in a region where the noise level is very low (55 (micro)mag). The rms (root mean square) residual is about two times lower than that usually obtained from successful groundbased multisite campaigns. The comparison of the results of previous campaigns with the new ones establishes the amplitude variability of some modes.

  6. Small-Scale Features in Pulsating Aurora

    NASA Technical Reports Server (NTRS)

    Jones, Sarah; Jaynes, Allison N.; Knudsen, David J.; Trondsen, Trond; Lessard, Marc

    2011-01-01

    A field study was conducted from March 12-16, 2002 using a narrow-field intensified CCD camera installed at Churchill, Manitoba. The camera was oriented along the local magnetic zenith where small-scale black auroral forms are often visible. This analysis focuses on such forms occurring within a region of pulsating aurora. The observations show black forms with irregular shape and nonuniform drift with respect to the relatively stationary pulsating patches. The pulsating patches occur within a diffuse auroral background as a modulation of the auroral brightness in a localized region. The images analyzed show a decrease in the brightness of the diffuse background in the region of the pulsating patch at the beginning of the offphase of the modulation. Throughout the off phase the brightness of the diffuse aurora gradually increases back to the average intensity. The time constant for this increase is measured as the first step toward determining the physical process.

  7. Small-scale Features in Pulsating Aurora

    NASA Astrophysics Data System (ADS)

    Jones, S.; Jaynes, A. N.; Knudsen, D. J.; Trondsen, T.; Lessard, M.

    2011-12-01

    A field study was conducted from March 12-16, 2002 using a narrow-field intensified CCD camera installed at Churchill, Manitoba. The camera was oriented along the local magnetic zenith where small-scale black auroral forms are often visible. This analysis focuses on such forms occurring within a region of pulsating aurora. The observations show black forms with irregular shape and nonuniform drift with respect to the relatively stationary pulsating patches. The pulsating patches occur within a diffuse auroral background as a modulation of the auroral brightness in a localized region. The images analyzed show a decrease in the brightness of the diffuse background in the region of the pulsating patch at the beginning of the 'off' phase of the modulation. Throughout the off phase the brightness of the diffuse aurora gradually increases back to the average intensity. The time constant for this increase is measured as the first step toward determining the physical process.

  8. A motion picture presentation of magnetic pulsations

    NASA Technical Reports Server (NTRS)

    Suzuki, A.; Kim, J. S.; Sugura, M.; Nagano, H.

    1981-01-01

    Using the data obtained from the IMS North American magnetometer network stations at high latitudes, a motion picture was made by a computer technique, describing time changes of Pc5 and Pi3 magnetic pulsation vectors. Examples of pulsation characteristics derived from this presentation are regional polarization changes including shifts of polarization demarcation lines, changes in the extent of an active region and its movement with time.

  9. Statistical study of dayside pulsating aurora

    NASA Astrophysics Data System (ADS)

    Kanmae, T.; Kadokura, A.; Ogawa, Y.; Ebihara, Y.; Motoba, T.; Gerrard, A. J.; Weatherwax, A. T.

    2015-12-01

    Pulsating aurora normally occurs after a substorm breakup in the midnight sector, often observed to persist through the morning sector and beyond. Indeed, it has also been observed on the dayside; however, the characteristics of the dayside pulsating aurora are poorly known. A handful of observational studies have been reported, but the results are somewhat disputable because most of the studies had non-uniform sampling of the dark dayside region. Furthermore, the previous studies used photometer data, with which the spatial characteristics of the pulsating aurora cannot be examined. To determine both temporal and spatial characteristics of the pulsating aurora, we have studied three years of all-sky image data obtained at the South Pole station. Because of its unique geographical location, the station has 24 hours of darkness during the austral winter from April to August, providing an ideal platform for studying dayside aurora. In a preliminary survey of the data, we have identified the pulsating auroras in 198 days out of 365 days of observations. The magnetic local time (MLT) distribution of the occurrence peaks between 9:00 and 11:00, but shows no or little dependence on the geomagnetic activity. In many events, pulsating patches initially appear as east-west aligned arc segments and later in the afternoon sector develop into large, diffuse patches, which occasionally fill a large part of the field of view. Using the long-term data, we will statistically examine both temporal (occurrence rate, duration and pulsation period) and spatial (sizes and shapes) characteristics of the dayside pulsating aurora.

  10. Stellar pulsation and rotation in NGC 6811

    NASA Astrophysics Data System (ADS)

    Rodríguez, E.; Ocando, S.; López-González, M. J.; Martín-Ruiz, S.

    2017-03-01

    We present the results of the frequency analysis for a selected sample of pulsating δ Sct- and γ Dor-type stars in the field of the open cluster NGC 6811, which have been observed in short-cadence (SC) mode by the Kepler satellite. In all cases, the resulting frequency spectra are very complex, especially when the dominant pulsation is that of the δ Sct type, that is, short-period pulsations corresponding to excited pressure (p) modes. In all cases, the δ Sct stars are shown to be essentially δ Sct/ γ Dor hybrid pulsators. However, the opposite seems not to be true. We also find that the δ Sct-type peaks commonly are not stable in amplitude. Many of the main peaks significantly change their amplitudes over relatively short time scales. For a large percentage of pulsators in our sample we also find that the variability shown in the light curves is not produced by a single cause, but a combination of various sources: δ Sct- and γ Dor-type pulsations together with rotational modulation produced by starspots in the surfaces of these stars. This is an indication of stellar activity in the surfaces of these relatively hot stars of spectral type A(-F). Sometimes, activity dominates the luminosity variations in various pulsating stars in our sample. Eclipsing binarity is also detected in a few cases. Flares are also detected in one of the δ Sct-type pulsators. This is an indication of unusual strong activity for this kind of hot stars.

  11. Two new extremely hot pulsating white dwarfs

    NASA Technical Reports Server (NTRS)

    Bond, H. E.; Grauer, A. D.; Green, R. F.; Liebert, J. W.

    1984-01-01

    High speed photometry of the extremely hot, nearly degenerate stars PG 1707 + 427 and PG 2131 + 066 reveals that they are low-amplitude pulsating variables. Power spectral analysis shows both to be multiperiodic, with dominant periods of 7.5 and 6.4-6.9 minutes, respectively. Together with the known pulsators PG 1159 - 035 and the central star of the planetary nebula Kohoutek 1-16, these objects define a new pulsational instability strip at the hot edge of the H-R diagram. The variations of these objects closely resemble those of the much cooler pulsating ZZ Ceti DA white dwarfs; both groups are probably nonradial g-mode pulsators. Evolutionary contraction of the PG 1159 - 035 variables may lead to period changes that would be detectable in as little as 1 year. The optical and IUE spectra of the PG 1159 - 035 variables are characterized by absorption lines of C IV and other CNO ions, indicating radiative levitation of species heavier than helium. He II is also present in the spectra, but the hydrogen Balmer lines are absent. Effective temperatures near 100,000 K are required, and the He II 4686 A profiles indicate log g greater than 6. These helium-rich pulsators form the hottest known subgroup of the DO white dwarfs.

  12. Pulsational Pair-instability Supernovae

    NASA Astrophysics Data System (ADS)

    Woosley, S. E.

    2017-02-01

    The final evolution of stars in the mass range 70–140 {\\text{}}{M}ȯ is explored. Depending upon their mass loss history and rotation rates, these stars will end their lives as pulsational pair-instability supernovae (PPISN) producing a great variety of observational transients with total durations ranging from weeks to millennia and luminosities from 1041 to over 1044 erg s‑1. No nonrotating model radiates more than 5× {10}50 erg of light or has a kinetic energy exceeding 5× {10}51 erg, but greater energies are possible, in principle, in magnetar-powered explosions, which are explored. Many events resemble SNe Ibn, SNe Icn, and SNe IIn, and some potential observational counterparts are mentioned. Some PPISN can exist in a dormant state for extended periods, producing explosions millennia after their first violent pulse. These dormant supernovae contain bright Wolf–Rayet stars, possibly embedded in bright X-ray and radio sources. The relevance of PPISN to supernova impostors like Eta Carinae, to superluminous supernovae, and to sources of gravitational radiation is discussed. No black holes between 52 and 133 {\\text{}}{M}ȯ are expected from stellar evolution in close binaries.

  13. Finding binaries from phase modulation of pulsating stars with Kepler - IV. Detection limits and radial velocity verification

    NASA Astrophysics Data System (ADS)

    Murphy, Simon J.; Shibahashi, Hiromoto; Bedding, Timothy R.

    2016-10-01

    We explore the detection limits of the phase modulation (PM) method of finding binary systems among multiperiodic pulsating stars. The method is an attractive way of finding non-transiting planets in the habitable zones of intermediate-mass stars, whose rapid rotation inhibits detections via the radial velocity (RV) method. While oscillation amplitudes of a few mmag are required to find planets, many δ Scuti stars have these amplitudes. In suboptimal cases where the signal to noise of the oscillations is lower, low-mass brown dwarfs (˜13MJup) are detectable at orbital periods longer than about 1 yr, and the lowest mass main-sequence stars (0.1-0.2 M⊙) are detectable at all orbital periods where the PM method can be applied. We use purpose-written Markov chain Monte Carlo (MCMC) software for the calculation of the PM orbits, which offers robust uncertainties for comparison with RV solutions. Using Kepler data and ground-based RVs, we verify that these two methods are in agreement, even at short orbital periods where the PM method undersamples the orbit. We develop new theory to account for the undersampling of the time delays, which is also necessary for the inclusion of RVs as observational data in the MCMC software. We show that combining RVs with time delays substantially refines the orbits because of the complementarity of working in both the spatial (PM) and velocity (RV) domains simultaneously. Software outputs were tested through an extensive hare-and-hounds exercise, covering a wide range of orbital configurations including binaries containing two pulsators.

  14. High-resolution spectroscopy and mode identification in non-radially pulsating stars

    NASA Astrophysics Data System (ADS)

    Pollard, K. R.; Wright, D. J.; Zima, W.; Cottrell, P. L.; De Cat, P.

    2008-12-01

    We have obtained high-resolution spectroscopic data of a sample of non-radially pulsating stars with the HERCULES spectrograph on the 1.0-m telescope at the Mt John University Observatory in New Zealand. We have developed and used a new technique which cross- correlates stellar spectra with scaled delta function templates to obtain high signal-to-noise representative spectral line profiles for further analysis. Using these profiles, and employing the Fourier Parameter Fit method, we have been able to place constraints on the degree, ℓ, and azimuthal order, m, of the non-radial pulsation modes in one β Cephei star, V2052 Oph and two γ Doradus stars, QW Pup and HD 139095.

  15. White Dwarf Pulsational Constraints on Stellar Evolution

    NASA Astrophysics Data System (ADS)

    Dunlap, Bart H.; Clemens, J. Christopher; O'Brien, Patrick C.; Hermes, J. J.; Fuchs, Joshua T.

    2017-01-01

    The complex processes that convert a protostellar cloud into a carbon/oxygen-core white dwarf star are distilled and modeled in state of the art stellar evolution codes. Many of these processes are well-constrained, but several are uncertain or must be parameterized in the models because a complete treatment would be computationally prohibitive—turbulent motions such as convective overshoot cannot, for example, be modeled in 1D. Various free parameters in the models must therefore be calibrated. We will discuss how white dwarf pulsations can inform such calibrations. The results of all prior evolution are cemented into the interiors of white dwarf stars and, so, hidden from view. However, during certain phases of their cooling, pulsations translate the star's evolutionary history into observable surface phenomena. Because the periods of a pulsating white dwarf star depend on an internal structure assembled as it evolved to its final state, white dwarf pulsation periods can be viewed as observable endpoints of stellar evolution. For example, the thickness of the helium layer in a white dwarf directly affects its pulsations; the observed periods are, therefore, a function of the number of thermal pulses during which the star converts helium into core material on the asymptotic giant branch. Because they are also a function of several other significant evolutionary processes, several pulsation modes are necessary to tease all of these apart. Unfortunately, white dwarf pulsators typically do not display enough oscillation modes to constrain stellar evolution. To avoid this limitation, we consider the pulsations of the entire collection of hot pulsating hydrogen-atmosphere white dwarf stars (DAVs). Though any one star may not have sufficient information to place interesting constraints on its evolutionary history, taken together, the stars show a pattern of modes that allows us to test evolutionary models. For an example set of published evolutionary models, we show a

  16. Thermal Management Using Pulsating Jet Cooling Technology

    NASA Astrophysics Data System (ADS)

    Alimohammadi, S.; Dinneen, P.; Persoons, T.; Murray, D. B.

    2014-07-01

    The existing methods of heat removal from compact electronic devises are known to be deficient as the evolving technology demands more power density and accordingly better cooling techniques. Impinging jets can be used as a satisfactory method for thermal management of electronic devices with limited space and volume. Pulsating flows can produce an additional enhancement in heat transfer rate compared to steady flows. This article is part of a comprehensive experimental and numerical study performed on pulsating jet cooling technology. The experimental approach explores heat transfer performance of a pulsating air jet impinging onto a flat surface for nozzle-to-surface distances 1 <= H/D <= 6, Reynolds numbers 1,300 <= Re <= 2,800 pulsation frequency 2Hz <= f <= 65Hz, and Strouhal number 0.0012 <= Sr = fD/Um <= 0.084. The time-resolved velocity at the nozzle exit is measured to quantify the turbulence intensity profile. The numerical methodology is firstly validated using the experimental local Nusselt number distribution for the steady jet with the same geometry and boundary conditions. For a time-averaged Reynolds number of 6,000, the heat transfer enhancement using the pulsating jet for 9Hz <= f <= 55Hz and 0.017 <= Sr <= 0.102 and 1 <= H/D <= 6 are calculated. For the same range of Sr number, the numerical and experimental methods show consistent results.

  17. Modeling of pulsating heat pipes.

    SciTech Connect

    Givler, Richard C.; Martinez, Mario J.

    2009-08-01

    This report summarizes the results of a computer model that describes the behavior of pulsating heat pipes (PHP). The purpose of the project was to develop a highly efficient (as compared to the heat transfer capability of solid copper) thermal groundplane (TGP) using silicon carbide (SiC) as the substrate material and water as the working fluid. The objective of this project is to develop a multi-physics model for this complex phenomenon to assist with an understanding of how PHPs operate and to be able to understand how various parameters (geometry, fill ratio, materials, working fluid, etc.) affect its performance. The physical processes describing a PHP are highly coupled. Understanding its operation is further complicated by the non-equilibrium nature of the interplay between evaporation/condensation, bubble growth and collapse or coalescence, and the coupled response of the multiphase fluid dynamics among the different channels. A comprehensive theory of operation and design tools for PHPs is still an unrealized task. In the following we first analyze, in some detail, a simple model that has been proposed to describe PHP behavior. Although it includes fundamental features of a PHP, it also makes some assumptions to keep the model tractable. In an effort to improve on current modeling practice, we constructed a model for a PHP using some unique features available in FLOW-3D, version 9.2-3 (Flow Science, 2007). We believe that this flow modeling software retains more of the salient features of a PHP and thus, provides a closer representation of its behavior.

  18. Unexpected series of regular frequency spacing of δ Scuti stars in the non-asymptotic regime - I. The methodology

    DOE PAGES

    Paparo, M.; Benko, J. M.; Hareter, M.; ...

    2016-05-11

    In this study, a sequence search method was developed to search the regular frequency spacing in δ Scuti stars through visual inspection and an algorithmic search. We searched for sequences of quasi-equally spaced frequencies, containing at least four members per sequence, in 90 δ Scuti stars observed by CoRoT. We found an unexpectedly large number of independent series of regular frequency spacing in 77 δ Scuti stars (from one to eight sequences) in the non-asymptotic regime. We introduce the sequence search method presenting the sequences and echelle diagram of CoRoT 102675756 and the structure of the algorithmic search. Four sequencesmore » (echelle ridges) were found in the 5–21 d–1 region where the pairs of the sequences are shifted (between 0.5 and 0.59 d–1) by twice the value of the estimated rotational splitting frequency (0.269 d–1). The general conclusions for the whole sample are also presented in this paper. The statistics of the spacings derived by the sequence search method, by FT (Fourier transform of the frequencies), and the statistics of the shifts are also compared. In many stars more than one almost equally valid spacing appeared. The model frequencies of FG Vir and their rotationally split components were used to formulate the possible explanation that one spacing is the large separation while the other is the sum of the large separation and the rotational frequency. In CoRoT 102675756, the two spacings (2.249 and 1.977 d–1) are in better agreement with the sum of a possible 1.710 d–1 large separation and two or one times, respectively, the value of the rotational frequency.« less

  19. Unexpected Series of Regular Frequency Spacing of δ Scuti Stars in the Non-asymptotic Regime. I. The Methodology

    NASA Astrophysics Data System (ADS)

    Paparó, M.; Benkő, J. M.; Hareter, M.; Guzik, J. A.

    2016-05-01

    A sequence search method was developed to search the regular frequency spacing in δ Scuti stars through visual inspection and an algorithmic search. We searched for sequences of quasi-equally spaced frequencies, containing at least four members per sequence, in 90 δ Scuti stars observed by CoRoT. We found an unexpectedly large number of independent series of regular frequency spacing in 77 δ Scuti stars (from one to eight sequences) in the non-asymptotic regime. We introduce the sequence search method presenting the sequences and echelle diagram of CoRoT 102675756 and the structure of the algorithmic search. Four sequences (echelle ridges) were found in the 5-21 d-1 region where the pairs of the sequences are shifted (between 0.5 and 0.59 d-1) by twice the value of the estimated rotational splitting frequency (0.269 d-1). The general conclusions for the whole sample are also presented in this paper. The statistics of the spacings derived by the sequence search method, by FT (Fourier transform of the frequencies), and the statistics of the shifts are also compared. In many stars more than one almost equally valid spacing appeared. The model frequencies of FG Vir and their rotationally split components were used to formulate the possible explanation that one spacing is the large separation while the other is the sum of the large separation and the rotational frequency. In CoRoT 102675756, the two spacings (2.249 and 1.977 d-1) are in better agreement with the sum of a possible 1.710 d-1 large separation and two or one times, respectively, the value of the rotational frequency.

  20. Space- and ground-based observations of pulsating aurora

    NASA Astrophysics Data System (ADS)

    Jones, Sarah

    Pulsating aurora is a frequently occurring phenomenon generally believed to occur mainly in the aftermath of a substorm, resulting in widespread auroral luminosity corresponding to a significant transfer of power from the magnetosphere to the ionosphere. A handful of theories have been proposed to explain the associated precipitation mechanism, which have been shown to ineffectively explain certain aspects of pulsating aurora. Previous research into pulsating aurora has provided a wealth of observations, yet much remains unknown about this phenomenon and some previous observations are contradictory. The focus of this presentation is the analysis of ground- and space-based measurements of pulsating aurora (primarily THEMIS ASI array, Poker Flat ISR, and Rocket Observations of Pulsating Aurora) to provide information regarding the large-scale spatial and temporal evolution of pulsating aurora events and the relationship to substorms, to determine the altitude extent and precipitating electron distribution corresponding to pulsating aurora, and to understand commonly occurring features within pulsating aurora.

  1. Transition to turbulence in pulsating pipe flow

    NASA Astrophysics Data System (ADS)

    Hof, Bjorn; Warnecke, Sascha; Xu, Duo

    2013-11-01

    We report an experimental study of the transition to turbulence in a pulsating pipe flow the most important example of pulsating flows is the cardiovascular system where the onset of fluctuations and turbulence can be a possible cause for various diseases such as the formation of aneurysms. The present study is limited to a straight rigid pipe, sinusoidal modulation of the flow rate and a Newtonian fluid. The dimensionless parameters (Womersley and Reynolds numbers) were chosen to include the parameter range encountered in larger arteries. We observe that at large frequencies the critical point for the onset of turbulence remains completely unaffected by pulsation for all amplitudes investigated (up to 40%). However for smaller frequencies (Womersley numbers below 10) the critical point considerably increases. Furthermore we investigate how the transition scenario is affected for a fixed frequency and increasing amplitudes (approaching oscillatory flow).

  2. The research on flow pulsation characteristics of axial piston pump

    NASA Astrophysics Data System (ADS)

    Wang, Bingchao; Wang, Yulin

    2017-01-01

    The flow pulsation is an important factor influencing the axial piston pump performance. In this paper we implement modeling and simulation of the axial piston pump with AMESim software to explore the flow pulsation characteristics under various factors . Theory analysis shows the loading pressure, angular speed, piston numbers and the accumulator impose evident influence on the flow pulsation characteristics. This simulation and analysis can be used for reducing the flow pulsation rate via properly setting the related factors.

  3. Benefit of pulsation in soft corals.

    PubMed

    Kremien, Maya; Shavit, Uri; Mass, Tali; Genin, Amatzia

    2013-05-28

    Soft corals of the family Xeniidae exhibit a unique, rhythmic pulsation of their tentacles (Movie S1), first noted by Lamarck nearly 200 y ago. However, the adaptive benefit of this perpetual, energetically costly motion is poorly understood. Using in situ underwater particle image velocimetry, we found that the pulsation motions thrust water upward and enhance mixing across the coral-water boundary layer. The induced upward motion effectively prevents refiltration of water by neighboring polyps, while the intensification of mixing, together with the upward flow, greatly enhances the coral's photosynthesis. A series of controlled laboratory experiments with the common xeniid coral Heteroxenia fuscescens showed that the net photosynthesis rate during pulsation was up to an order of magnitude higher than during the coral's resting, nonpulsating state. This enhancement diminished when the concentration of oxygen in the ambient water was artificially raised, indicating that the enhancement of photosynthesis was due to a greater efflux of oxygen from the coral tissues. By lowering the internal oxygen concentration, pulsation alleviates the problem of reduced affinity of ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO) to CO2 under conditions of high oxygen concentrations. The photosynthesis-respiration ratio of the pulsating H. fuscescens was markedly higher than the ratios reported for nonpulsating soft and stony corals. Although pulsation is commonly used for locomotion and filtration in marine mobile animals, its occurrence in sessile (bottom-attached) species is limited to members of the ancient phylum Cnidaria, where it is used to accelerate water and enhance physiological processes.

  4. Pulsating White Dwarfs in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Kanaan, A.; Zabot, A.; Fraga, L.

    2012-09-01

    We present our current efforts to detect pulsating white dwarfs in globular clusters and analyze the future of this area when the Extremely Large Telescope (ELT), the Giant Magellan Telescope (GMT) and the Thirty-Meter Telescope (TMT) all become operational. Today we are able to detect pulsating white dwarfs in M 4, NGC 6397 and NGC 6752. When ELT comes on line we should be able to improve the quality of data for the nearby clusters and push the limit to at least 3 magnitudes further, up to NGC 6626, increasing the number of observable clusters from 3 to 20.

  5. Follow-Up Observations of Known EC 14026-TYPE Pulsators

    NASA Astrophysics Data System (ADS)

    Wolf, G. W.; Reed, M. D.; Zhou, A.-Y.; Terndrup, D. M.; Harms, S. L.; An, D.; Chen, C.-W.; Lin, H.-C.; Zola, S.; Baran, A.; Ogloza, W.; Siwak, M.; Gazeas, K. D.; Niarchos, P. G.; Kilkenny, D.

    We present follow-up observations of pulsating sdB stars as part of our efforts to resolve the pulsation spectra for use in asteroseismological analyses. This paper reports on our overall efforts, but specifically on our results for the pulsating sdB stars KPD 2109+4401 and PG 0154+182.

  6. Gas compressor with side branch absorber for pulsation control

    SciTech Connect

    Harris, Ralph E.; Scrivner, Christine M.; Broerman, III, Eugene L.

    2011-05-24

    A method and system for reducing pulsation in lateral piping associated with a gas compressor system. A tunable side branch absorber (TSBA) is installed on the lateral piping. A pulsation sensor is placed in the lateral piping, to measure pulsation within the piping. The sensor output signals are delivered to a controller, which controls actuators that change the acoustic dimensions of the SBA.

  7. Evaluation of pump pulsation in respirable size-selective sampling: part I. Pulsation measurements.

    PubMed

    Lee, Eun Gyung; Lee, Larry; Möhlmann, Carsten; Flemmer, Michael M; Kashon, Michael; Harper, Martin

    2014-01-01

    Pulsations generated by personal sampling pumps modulate the airflow through the sampling trains, thereby varying sampling efficiencies, and possibly invalidating collection or monitoring. The purpose of this study was to characterize pulsations generated by personal sampling pumps relative to a nominal flow rate at the inlet of different respirable cyclones. Experiments were conducted using a factorial combination of 13 widely used sampling pumps (11 medium and 2 high volumetric flow rate pumps having a diaphragm mechanism) and 7 cyclones [10-mm nylon also known as Dorr-Oliver (DO), Higgins-Dewell (HD), GS-1, GS-3, Aluminum, GK2.69, and FSP-10]. A hot-wire anemometer probe cemented to the inlet of each cyclone type was used to obtain pulsation readings. The three medium flow rate pump models showing the highest, a midrange, and the lowest pulsations and two high flow rate pump models for each cyclone type were tested with dust-loaded filters (0.05, 0.21, and 1.25mg) to determine the effects of filter loading on pulsations. The effects of different tubing materials and lengths on pulsations were also investigated. The fundamental frequency range was 22-110 Hz and the magnitude of pulsation as a proportion of the mean flow rate ranged from 4.4 to 73.1%. Most pump/cyclone combinations generated pulse magnitudes ≥10% (48 out of 59 combinations), while pulse shapes varied considerably. Pulsation magnitudes were not considerably different for the clean and dust-loaded filters for the DO, HD, and Aluminum cyclones, but no consistent pattern was observed for the other cyclone types. Tubing material had less effect on pulsations than tubing length; when the tubing length was 183cm, pronounced damping was observed for a pump with high pulsation (>60%) for all tested tubing materials except for the Tygon Inert tubing. The findings in this study prompted a further study to determine the possibility of shifts in cyclone sampling efficiency due to sampling pump pulsations

  8. Blackworms, Blood Vessel Pulsations and Drug Effects.

    ERIC Educational Resources Information Center

    Lesiuk, Nalena M.; Drewes, Charles D.

    1999-01-01

    Introduces the freshwater oligochaete worm, lumbriculus variegatus (common name: blackworms), an organism that is well suited for classroom study because of its closed circulatory system. Describes a set of simple, fast, noninvasive, and inexpensive methods for observing pulsations of the worm's dorsal blood vessels under baseline conditions, and…

  9. VOLUME COMPENSATING MEANS FOR PULSATING PUMPS

    DOEpatents

    Weaver, D.L.W.; MacCormack, R.S. Jr.

    1959-12-01

    A double diaphragm, two-liquid pulsating pump for remote control use, having as an improvement an apparatus for maintaining constant the volume of the liquid such as kerosene between the two diaphragms is described. Phase difficulties encountered in the operation of such pumps when the volume of the liquid is altered by changes in temperature are avoided.

  10. Pulsations in total columnar electron content

    NASA Technical Reports Server (NTRS)

    Okuzawa, T.; Davies, K.

    1981-01-01

    Radio signals from the ATS 6 beacon received at Boulder reveal small-amplitude, quasi-sinusoidal fluctuations with periods in the range of 10 to 50 s. Visual comparisons of these data (116 events for October 1974 to April 1975) shows a good correspondence with simultaneous geomagnetic pulsations at Boulder in two thirds of the cases for which Boulder magnetograms were available, but they do not necessarily correspond with magnetic pulsations on ATS 6. Spectral analyses, by the method of maximum entropy, were made on sample records. The principal results are the following: (1) The occurrence of the pulsations is higher on magnetically disturbed days. (2) The maximum likelihood of occurrence is around 2100 UT (1400 LT). (3) The dominant spectrum peaks of the radio fluctuations and geomagnetic field on the ground generally coincide. Cases are found also in which temporal characteristics of the spectra are similar. These results indicate a close association of the radio fluctuations with the Pc 3-4 type pulsations of the geomagnetic field on the ground. It is suggested that the radio fluctuations originate mainly in the F region of the ionosphere, while some of them could be due to plasmapause effects.

  11. Orbital period analysis of some classical Algols with pulsating components

    NASA Astrophysics Data System (ADS)

    Soydugan, F.; Kacar, Y.; Soydugan, E.; Bakıs, V.; Tuysuz, M.; Senyuz, T.; Donmez, A.; Bilir, S.; Erdem, A.; Cicek, C.; Demircan, C.

    2008-12-01

    The long-term orbital period variations of the Algol-type binaries with δ Scuti compo- nent(oEA) AB Cas, CT Her, and TW Dra are investigated. An upward parabola is seen in all of these systems O-C diagrams, as is expected from the evolutionary scenario of clas- sical Algols. In addition to parabolic variations, the periodic variations on the parabola were explained with light-time effect due to probable unseen components around the eclipsing pairs.

  12. Mississippi Delta

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The streamers of clouds draped over the Gulf of Mexico in this true-color MODIS image from February 27, 2002, suggest that a cold, dry wind was blowing southward over the United States and began to pick up moisture over the Gulf, causing these strips of clouds. That the clouds didn't pick up until some distance from the coastline allowed MODIS to get a perfect view of the dynamic Gulf Coast environment spanning (left to right) Texas, Louisiana, Mississippi, Alabama, and Florida's Western Panhandle. The Mississippi River runs roughly down the center of the image, and is joined in Louisiana by the Red River coming in from the northwest. Over the past 7000 years, the actual delta, where the main river channel empties into the Gulf, has wandered around what we now think of as the Louisiana coast. Considering all the sediment visible in this image, it's not hard to imagine that the river carries about 2.4 billion kilograms of sediment into the Gulf each year. Deposition of some of this sediment has been building up the current delta, called the Birdfoot Delta, for obvious reasons, for about 700 years. The coastal waters are alive with microscopic organisms called phytoplankton, which contain colorful pigments, including chlorophyll, for harvesting sunlight. Beyond the sediment plume off Louisiana, the waters are very dark, which could indicate that a large amount of chlorophyll is present, absorbing lots of sunlight and causing the water to appear dark. Farther south, the waters appear bright blue, which could be a signature of coccolithophores, which use highly reflective calcium carbonate to build scaly coverings for themselves. The brighter offshore waters could also be caused by a blue-green algae called Trichodesmium, an organism that can not only harness carbon dioxide for photosynthesis, but can also take nitrogen from the air and turn it into a form that can be used by living organisms. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  13. Pulsation tomography of rapidly oscillating Ap stars. Resolving the third dimension in peculiar pulsating stellar atmospheres

    NASA Astrophysics Data System (ADS)

    Ryabchikova, T.; Sachkov, M.; Kochukhov, O.; Lyashko, D.

    2007-10-01

    Aims:We present detailed analysis of the vertical pulsation mode cross-section in ten rapidly oscillating Ap (roAp) stars based on spectroscopic time-series observations. The aim of this analysis is to derive from observations a complete picture of how the amplitude and phase of magnetoacoustic waves depend on depth. Methods: We use the unique properties of roAp stars, in particular chemical stratification, to resolve the vertical structure of p-modes. Our approach consists of characterising pulsational behaviour of a carefully chosen, but extensive sample of spectral lines. We analyse the resulting amplitude-phase diagrams and interpret observations in terms of pulsation wave propagation. Results: We find common features in the pulsational behaviour of roAp stars. Within a sample of representative elements the lowest amplitudes are detected for Eu ii (and Fe in 33 Lib and in HD 19918), then pulsations go through the layers where Hα core, Nd, and Pr lines are formed. There RV amplitude reaches its maximum, and after that decreases in most stars. The maximum RV of the second REE ions is always delayed relative to the first ions. The largest phase shifts are detected in Tb iii and Th iii lines. Pulsational variability of the Th iii lines is detected here for the first time. The Y ii lines deviate from this picture, showing even lower amplitudes than Eu ii lines but half a period phase shift relative to other weakly pulsating lines. We measured an extra broadening, equivalent to a macroturbulent velocity from 4 to 11-12 km s-1 (where maximum values are observed for Tb iii and Th iii lines), for pulsating REE lines. The surface magnetic field strength is derived for the first time for three roAp stars: HD 9289 (2 kG), HD 12932 (1.7 kG), and HD 19918 (1.6 kG). Conclusions: The roAp stars exhibit similarity in the depth-dependence of pulsation phase and amplitude, indicating similar chemical stratification and comparable vertical mode cross-sections. In general

  14. Evaluation of hydro-mechanical pulsation for rocket injector research

    NASA Astrophysics Data System (ADS)

    Wilson, Matthew B.

    The Propulsion Research Center at the University of Alabama in Huntsville has designed and built a hydro-mechanical pulsator to simulate the pressure fluctuations created by high frequency combustion instability. The pressure response characteristics were evaluated in an atmospheric test rig using filtered de-ionized water as the working fluid. The outlet of the pulsator was connected to a swirl injector post to provide downstream flow resistance. Previous low pressure and mass flow experimental data revealed a complex relationship between the control parameters and the pulsation response. For each test, the average mass flow rates of the waste water, water lost through the seals, and injector mass flow rates are measured. A dynamic pressure transducer at the pulsator exit measures and records the pressure waveform. Pulsation magnitude, reliability, repeatability, pulsation effects, and detailed variable control are examined. The data shows the pulsator is capable of generating 30% pulsation at 1575 Hz input. The repeatability of the pulsator is questionable because the standard deviations exceeded 40% of the average. The detailed data obtained during this research provides is sufficient to develop a pulsator tuning procedure for future applications.

  15. SuperWASP discovery and SALT confirmation of a semi-detached eclipsing binary that contains a δ Scuti star

    NASA Astrophysics Data System (ADS)

    Norton, A. J.; Lohr, M. E.; Smalley, B.; Wheatley, P. J.; West, R. G.

    2016-03-01

    Aims: We searched the SuperWASP archive for objects that display multiply periodic photometric variations. Methods: Specifically we sought evidence for eclipsing binary stars that display a further non-harmonically related signal in their power spectra. Results: The object 1SWASP J050634.16-353648.4 has been identified as a relatively bright (V ~ 11.5) semi-detached eclipsing binary with a 5.104 d orbital period that displays coherent pulsations with a semi-amplitude of 65 mmag at a frequency of 13.45 d-1. Follow-up radial velocity spectroscopy with the Southern African Large Telescope confirmed the binary nature of the system. Using the phoebe code to model the radial velocity curve with the SuperWASP photometry enabled parameters of both stellar components to be determined. This yielded a primary (pulsating) star with a mass of 1.73 ± 0.11 M⊙ and a radius of 2.41 ± 0.06 R⊙, as well as a Roche-lobe filling secondary star with a mass of 0.41 ± 0.03 M⊙ and a radius of 4.21 ± 0.11 R⊙. Conclusions: 1SWASP J050634.16-353648.4 is therefore a bright δ Sct pulsator in a semi-detached eclipsing binary with one of the largest pulsation amplitudes of any such system known. The pulsation constant indicates that the mode is likely a first overtone radial pulsation.

  16. Reverse Fluid Transport Due to Boundary Pulsations

    NASA Astrophysics Data System (ADS)

    Coloma, Mikhail; Schaffer, David; Chiarot, Paul; Huang, Peter

    2016-11-01

    We investigate a reverse fluid transport mechanism consisting of peristaltic flow and boundary wave reflections. The reverse flow occurs in a rectangular conduit aligned in parallel between two cylindrical channels embedded in an elastic PDMS medium. The pulsating flow in the cylindrical channels, driven by a peristaltic pump, deform the PDMS medium and induce a pulsating flow in the rectangular conduit. Waveforms along the conduit boundaries, and their transmission and reflections, can be controlled by changing the PDMS rigidity. Our results show that while the overall wave propagation direction is in the forward direction, a reverse flow in the rectangular conduit can be preferentially induced by varying the elastic rigidity in one of the cylindrical channels. We study the overall flow velocity and direction under various PDMS rigidities. The identified set of experimental parameters that leads to a reverse flow will provide insights in understanding metabolic waste transport within the arterial walls in the brain.

  17. Pulsating White Dwarf Stars and Precision Asteroseismology

    NASA Astrophysics Data System (ADS)

    Winget, D. E.; Kepler, S. O.

    2008-09-01

    Galactic history is written in the white dwarf stars. Their surface properties hint at interiors composed of matter under extreme conditions. In the forty years since their discovery, pulsating white dwarf stars have moved from side-show curiosities to center stage as important tools for unraveling the deep mysteries of the Universe. Innovative observational techniques and theoretical modeling tools have breathed life into precision asteroseismology. We are just learning to use this powerful tool, confronting theoretical models with observed frequencies and their time rate-of-change. With this tool, we calibrate white dwarf cosmochronology; we explore equations of state; we measure stellar masses, rotation rates, and nuclear reaction rates; we explore the physics of interior crystallization; we study the structure of the progenitors of Type Ia supernovae, and we test models of dark matter. The white dwarf pulsations are at once the heartbeat of galactic history and a window into unexplored and exotic physics.

  18. Pulsating White Dwarf Star GD99

    NASA Astrophysics Data System (ADS)

    Chynoweth, K. M.; Thompson, S.; Mullally, F.; Yeates, C.

    2004-12-01

    We present 15 hours of time-series photometry of the variable white dwarf star GD99. These data were obtained at the McDonald Observatory 2.1m Otto Struve Telescope in January 2003, using the Argos CCD photometer. We achieved a noise level as low as 0.07 %, as measured from the power spectrum of our first night. Our observations confirm that GD99 is a unique pulsating white dwarf whose modes show characteristics of both the hot and cold type of DA variable stars. Additionally, GD99 has a large number of modes, making it a good candidate for asteroseismological study. Our preliminary results indicate that this star merits further study to decipher its abundant set of unusual modes. With such a rich period structure, longer continuous data sets will be required to fully resolve the pulsation spectrum.

  19. Stellar pulsations in beyond Horndeski gravity theories

    NASA Astrophysics Data System (ADS)

    Sakstein, Jeremy; Kenna-Allison, Michael; Koyama, Kazuya

    2017-03-01

    Theories of gravity in the beyond Horndeski class recover the predictions of general relativity in the solar system whilst admitting novel cosmologies, including late-time de Sitter solutions in the absence of a cosmological constant. Deviations from Newton's law are predicted inside astrophysical bodies, which allow for falsifiable, smoking-gun tests of the theory. In this work we study the pulsations of stars by deriving and solving the wave equation governing linear adiabatic oscillations to find the modified period of pulsation. Using both semi-analytic and numerical models, we perform a preliminary survey of the stellar zoo in an attempt to identify the best candidate objects for testing the theory. Brown dwarfs and Cepheid stars are found to be particularly sensitive objects and we discuss the possibility of using both to test the theory.

  20. Pulsating Radio Sources near the Crab Nebula.

    PubMed

    Staelin, D H; Reifenstein, E C

    1968-12-27

    Two new pulsating radio sources, designated NP 0527 and NP 0532, were found near the Crab Nebula and could be coincident with it. Both sources are sporadic, and no periodicities are evident. The pulse dispersions indicate that 1.58 +/- 0.03 and 1.74 +/- 0.02 x 10(20) electrons per square centimeter lie in the direction of NP 0527 and NP 0532, respectively.

  1. Mississippi Delta

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Mississippi River delta teems with sediment deposited by the river as it flows into the Gulf of Mexico in this true-color image captured by MODIS on October 15, 2001. The sediment, which is marked by brown swirls in the Gulf, provides nutrients for the bloom of phytoplankton visible as blue-green swirls off the coastline. In the high-resolution image the city of Memphis can be seen in the southwest corner of Tennessee, which is just to left of center at the top of the image. The brown coloration that encompasses Memphis and either side of the river, as flows north to south along the left side of the image, is the river's flood plain. Also visible, in the upper-right hand corner of the image is the southern end of the Appalachian Mountains.

  2. Beyond Binarity: Spots, Pulsations, and Triple Systems

    NASA Astrophysics Data System (ADS)

    Johnston, Cole; Prsa, A.

    2014-01-01

    We use the Kepler Eclipsing Binary Catalog (Prsa et al. 2011) to find and explore previously unstudied intrinsic stellar variability and stellar multiplicity. All but the highest-amplitude intrinsic variation in these systems is dominated by the eclipsing binary signature, however by fitting a physical model to the eclipsing binary signal and then subtracting this model from the lightcurve, we effectively remove binary effects and can search the residuals for other sources of variability. Using 120 stars for our sample, observed at a 1-min cadence by NASA's Kepler satellite (Borucki et al. 2009), we find low amplitude spot variation, pulsations, and background eclipsing binary stars. Frequencies derived from the spot variations and pulsations provide us with information on the rotation rates, internal structure and physical parameters of the stars that comprise each system. Using frequency and period relations derived by Tassoul (1980), we identify g-mode and p-mode pulsations from the derived signals. We apply asteroseismic methods to interpret these signals and determine the radii and masses of the system components, differential surface and interior rotation, and evolutionary state of these stars. Binary star modeling of these systems yields independent values of the masses, radii, and temperatures of both components, as well as any tidal deformation that may occur. By coupling these approaches, we aim able to construct a fully consistent model of the systems that undergo these variations. We highlight systems of particular interest and discuss frequently observed features in the power spectra.

  3. DISCOVERY OF AN ULTRAMASSIVE PULSATING WHITE DWARF

    SciTech Connect

    Hermes, J. J.; Castanheira, Barbara G.; Winget, D. E.; Montgomery, M. H.; Harrold, Samuel T.; Kepler, S. O.; Gianninas, A.; Brown, Warren R.

    2013-07-01

    We announce the discovery of the most massive pulsating hydrogen-atmosphere white dwarf (WD) ever discovered, GD 518. Model atmosphere fits to the optical spectrum of this star show it is a 12, 030 {+-} 210 K WD with a log g =9.08 {+-} 0.06, which corresponds to a mass of 1.20 {+-} 0.03 M{sub Sun }. Stellar evolution models indicate that the progenitor of such a high-mass WD endured a stable carbon-burning phase, producing an oxygen-neon-core WD. The discovery of pulsations in GD 518 thus offers the first opportunity to probe the interior of a WD with a possible oxygen-neon core. Such a massive WD should also be significantly crystallized at this temperature. The star exhibits multi-periodic luminosity variations at timescales ranging from roughly 425 to 595 s and amplitudes up to 0.7%, consistent in period and amplitude with the observed variability of typical ZZ Ceti stars, which exhibit non-radial g-mode pulsations driven by a hydrogen partial ionization zone. Successfully unraveling both the total mass and core composition of GD 518 provides a unique opportunity to investigate intermediate-mass stellar evolution, and can possibly place an upper limit to the mass of a carbon-oxygen-core WD, which in turn constrains Type Ia supernovae progenitor systems.

  4. Discovery of five new massive pulsating white dwarf stars

    NASA Astrophysics Data System (ADS)

    Castanheira, B. G.; Kepler, S. O.; Kleinman, S. J.; Nitta, A.; Fraga, L.

    2013-03-01

    Using the SOuthern Astrophysical Research telescope (SOAR) Optical Imager at the SOAR 4.1 m telescope, we report on the discovery of five new massive pulsating white dwarf stars. Our results represent an increase of about 20 per cent in the number of massive pulsators. We have detected both short and long periods, low and high amplitude pulsation modes, covering the whole range of the ZZ Ceti instability strip. In this paper, we present a first seismological study of the new massive pulsators based on the few frequencies detected. Our analysis indicates that these stars have masses higher than average, in agreement with the spectroscopic determinations. In addition, we study for the first time the ensemble properties of the pulsating white dwarf stars with masses above 0.8 M⊙. We found a bimodal distribution of the main pulsation period with the effective temperature for the massive DAVs, which indicates mode selection mechanisms.

  5. Radial pulsation stability as a function of hydrogen abundance

    NASA Astrophysics Data System (ADS)

    Jeffery, Simon; Saio, Hideyuki

    2015-08-01

    Following the discovery of pulsation in an extremely low-mass pre-white dwarf by Maxted et al. (2011, 2013), Jeffery & Saio (2013) showed that pulsations in such stars would be excited in high radial overtones provided that the driving zone was sufficiently depleted in hydrogen. Following previous work which shows that pulsations are more easily excited in stars where the damping effects of hydrogen are somehow reduced (Jeffery & Saio 2006), we have completed a survey of radial pulsation stability across a substantially larger parameter space. The object is to identify new regions of the HR diagram where stars should be unstable to radial pulsations, or where closely related p-modes might be excited. These would enable targeted surveys for new classes of pulsating variable. This poster reports the survey results and the identification of new instability regions.

  6. Bone pulsating metastasis due to renal cell carcinoma.

    PubMed

    Cınar, Murat; Derincek, Alihan; Karan, Belgin; Akpınar, Sercan; Tuncay, Cengiz

    2010-11-01

    Pulsation on the bone cortex surface is a rare condition. Pulsative palpation of the superficial-located bone tumors can be misperceived as an aneurysm. Fifty-eight-year-old man is presented with pulsating bone mass in his proximal tibia. During angiographic examination, hypervascular masses were diagnosed both at right kidney and at right proximal tibia. Renal cell carcinoma was diagnosed after abdominal CT scan. Proximal tibia biopsy was complicated with projectile bleeding.

  7. Contamination of RR Lyrae stars from Binary Evolution Pulsators

    NASA Astrophysics Data System (ADS)

    Karczmarek, Paulina; Pietrzyński, Grzegorz; Belczyński, Krzysztof; Stępień, Kazimierz; Wiktorowicz, Grzegorz; Iłkiewicz, Krystian

    2016-06-01

    Binary Evolution Pulsator (BEP) is an extremely low-mass member of a binary system, which pulsates as a result of a former mass transfer to its companion. BEP mimics RR Lyrae-type pulsations but has different internal structure and evolution history. We present possible evolution channels to produce BEPs, and evaluate the contamination value, i.e. how many objects classified as RR Lyrae stars can be undetected BEPs. In this analysis we use population synthesis code StarTrack.

  8. Large-Scale Aspects and Temporal Evolution of Pulsating Aurora

    NASA Technical Reports Server (NTRS)

    Jones, S. L.; Lessard, M. R.; Rychert, K.; Spanswick, E.; Donovan, E.

    2010-01-01

    Pulsating aurora is a common phenomenon generally believed to occur mainly in the aftermath of a, substorm, where dim long-period pulsating patches appear. The study determines the temporal and spatial evolution of pulsating events using two THEN IIIS ASI stations, at Gillam (66.18 mlat, 332.78 mlon, magnetic midnight at 0634 UT) and Fort Smith, (67.38 mlat, 306.64 mlon, magnetic midnight at, 0806 UT) along roughly the same invariant latitude. Parameters have been calculated from a database of 74 pulsating aurora events from 119 days of good optical data within the period from September 2007 through March 2008 as identified with the Gillam camera. It is shown that the source region of pulsating aurora drifts or expands eastward, away from magnetic midnight, for pre-midnight onsets and that the spatial evolution is more complicated for post midnight onsets, which has implications for the source mechanism. The most probable duration of a pulsating aurora event is roughly 1.5 hours while the distribution of possible event durations includes many long (several hours) events. This may suggest that pulsating aurora is not strictly a substorm recovery phase phenomenon but rather a persistent, long-lived phenomenon that may be temporarily disrupted by auroral substorms. Observations from the Gillam station show that in fact, pulsating aurora is quite common with the occurrence rate increasing to around 60% for morning hours, with 6910 of pulsating aurora onsets occurring after substorm breakup.

  9. Contrasting Accreting White Dwarf Pulsators with the ZZ Ceti Stars

    NASA Astrophysics Data System (ADS)

    Mukadam, A. S.; Szkody, P.; Gänsicke, B. T.; Pala, A.

    2017-03-01

    Understanding the similarities and differences between the accreting white dwarf pulsators and their non-interacting counterparts, the ZZ Ceti stars, will eventually help us deduce how accretion affects pulsations. ZZ Ceti stars pulsate in a narrow instability strip in the range 10800–12300 K due to H ionization in their pure H envelopes; their pulsation characteristics depend on their temperature and stellar mass. Models of accreting white dwarfs are found to be pulsationally unstable due to the H/HeI ionization zone, and even show a second instability strip around 15000 K due to HeII ionization. Both these strips are expected to merge for a He abundance higher than 0.48 to form a broad instability strip, which is consistent with the empirical determination of 10500–16000 K. Accreting pulsators undergo outbursts, during which the white dwarf is heated to temperatures well beyond the instability strip and is observed to cease pulsations. The white dwarf then cools to quiescence in a few years as its outer layers cool more than a million times faster than the evolutionary rate. This provides us with an exceptional opportunity to track the evolution of pulsations from the blue edge to quiescence in a few years, while ZZ Ceti stars evolve on Myr timescales. Some accreting pulsators have also been observed to cease pulsations without any apparent evidence of an outburst. This is a distinct difference between this class of pulsators and the non-interacting ZZ Ceti stars. While the ZZ Ceti instability strip is well sampled, the strip for the accreting white dwarfs is sparsely sampled and we hereby add two new potential discoveries to improve the statistics.

  10. Unexpected Series of Regular Frequency Spacing of δ Scuti Stars in the Non-asymptotic Regime. II. Sample-Echelle Diagrams and Rotation

    NASA Astrophysics Data System (ADS)

    Paparó, M.; Benkő, J. M.; Hareter, M.; Guzik, J. A.

    2016-06-01

    A sequence search method was developed for searching for regular frequency spacing in δ Scuti stars by visual inspection (VI) and algorithmic search. The sample contains 90 δ Scuti stars observed by CoRoT. An example is given to represent the VI. The algorithm (SSA) is described in detail. The data treatment of the CoRoT light curves, the criteria for frequency filtering, and the spacings derived by two methods (i.e., three approaches: VI, SSA, and FT) are given for each target. Echelle diagrams are presented for 77 targets for which at least one sequence of regular spacing was identified. Comparing the spacing and the shifts between pairs of echelle ridges revealed that at least one pair of echelle ridges is shifted to midway between the spacing for 22 stars. The estimated rotational frequencies compared to the shifts revealed rotationally split doublets, triplets, and multiplets not only for single frequencies, but for the complete echelle ridges in 31 δ Scuti stars. Using several possible assumptions for the origin of the spacings, we derived the large separation ({{Δ }}ν ) that are distributed along the mean density versus large separations relation derived from stellar models.

  11. Pulsations, interpulsations, and sea-floor spreading.

    NASA Technical Reports Server (NTRS)

    Pessagno, E. A., Jr.

    1973-01-01

    It is postulated that worldwide transgressions (pulsations) and regressions (interpulsations) through the course of geologic time are related to the elevation and subsidence of oceanic ridge systems and to sea-floor spreading. Two multiple working hypotheses are advanced to explain major transgressions and regressions and the elevation and subsidence of oceanic ridge systems. One hypothesis interrelates the sea-floor spreading hypothesis to the hypothesis of sub-Mohorovicic serpentinization. The second hypothesis relates the sea-floor spreading hypothesis to a hypothesis involving thermal expansion and contraction.

  12. Optical multichannel sensing of skin blood pulsations

    NASA Astrophysics Data System (ADS)

    Spigulis, Janis; Erts, Renars; Kukulis, Indulis; Ozols, Maris; Prieditis, Karlis

    2004-09-01

    Time resolved detection and analysis of the skin back-scattered optical signals (reflection photoplethysmography or PPG) provide information on skin blood volume pulsations and can serve for cardiovascular assessment. The multi-channel PPG concept has been developed and clinically verified in this study. Portable two- and four-channel PPG monitoring devices have been designed for real-time data acquisition and processing. The multi-channel devices were successfully applied for cardiovascular fitness tests and for early detection of arterial occlusions in extremities. The optically measured heartbeat pulse wave propagation made possible to estimate relative arterial resistances for numerous patients and healthy volunteers.

  13. Design of a Hydrogen Pulsating Heat Pipe

    NASA Astrophysics Data System (ADS)

    Liu, Yumeng; Deng, Haoren; Pfotenhauer, John; Gan, Zhihua

    In order to enhance the application of a cryocooler that provides cooling capacity at the cold head location, and effectively spread that cooling over an extended region, one requires an efficient heat transfer method. The pulsating heat pipe affords a highly effective heat transfer component that has been extensively researched at room temperature, but is recently being investigated for cryogenic applications. This paper describes the design. The experimental setup is designed to characterize the thermal performance of the PHP as a function of the applied heat, number of turns, filling ratio, inclination angle, and length of adiabatic section.

  14. The Delta 2 launcher

    NASA Astrophysics Data System (ADS)

    Ousley, Gilbert W., Sr.

    1991-12-01

    The utilization of the Delta 2 as the vehicle for launching Aristoteles into its near Sun synchronous orbit is addressed. Delta is NASA's most reliable launch vehicle and is well suited for placing the present Aristoteles spacecraft into a 400 m circular orbit. A summary of some of the Delta 2 flight parameters is presented. Diagrams of a typical Delta 2 two stage separation are included along with statistics on delta reliability and launch plans.

  15. Binaries with a δ Scuti Component: Results from a Long-Term Observational Survey, Updated Catalog, and Future Prospects

    NASA Astrophysics Data System (ADS)

    Liakos, A.; Niarchos, P.

    2015-07-01

    Results are presented from a six-year systematic observational survey of candidate eclipsing binaries with a δ Sct component. More than one hundred systems with component(s) of spectral type A-F were observed in order to check for possible pulsational behavior. Some ˜14% (13 cases) among the currently known systems of this class were confirmed. We present an updated list of all currently known δ Sct systems in eclipsing binaries based on all available information from the literature. Possible correlations between their pulsational and binary properties are discussed.

  16. Hydrodynamics and heat transfer for pulsating laminar flow in channels

    NASA Astrophysics Data System (ADS)

    Valueva, E. P.; Purdin, M. S.

    2015-09-01

    The problem about laminar pulsating flow and heat transfer with high pulsation amplitudes of average cross-section velocity in a round tube and in a flat channel is solved using the finite element method. The difference scheme's optimal parameters are determined. Data on the pulsation amplitude and phase are obtained for the hydraulic friction coefficient, tangential stress on the wall, liquid temperature, heat flux on the wall q w (at ϑw = const), and wall temperature ϑw (at q w = const) are obtained. Two characteristic modes, namely, quasi steady-state and high-frequency ones are separated based on the value of dimensionless pulsation frequency. During operation in the quasi steady-state mode, the values of all hydrodynamic and thermal quantities correspond to the values of time-average velocity at the given time instant. For operation in the high-frequency mode, it is shown that the dependences of the pulsating components of hydrodynamic and thermal quantities on the dimensionless pulsation frequency have the same pattern for rectilinear channels having different shapes of their cross section. It is found that certain nodal points exist on the distribution of thermal characteristics along the tube (liquid temperature, heat flux density on the wall at ϑw = const, and wall temperature at q w = const) in which the values of these quantities remain unchanged. The distances between the nodal points decrease with increasing the pulsation frequency. The pulsations of thermal quantities decay over the tube length.

  17. Impulsively started, steady and pulsated annular inflows

    NASA Astrophysics Data System (ADS)

    Abdel-Raouf, Emad; Sharif, Muhammad A. R.; Baker, John

    2017-04-01

    A computational investigation was carried out on low Reynolds number laminar inflow starting annular jets using multiple blocking ratios and atmospheric ambient conditions. The jet exit velocity conditions are imposed as steady, unit pulsed, and sinusoidal pulsed while the jet surroundings and the far-field jet inlet upstream conditions are left atmospheric. The reason is to examine the flow behavior in and around the jet inlet under these conditions. The pulsation mode behavior is analyzed based on the resultant of the momentum and pressure forces at the entry of the annulus, the circulation and vortex formation, and the propulsion efficiency of the inflow jets. The results show that under certain conditions, the net force of inflow jets (sinusoidal pulsed jets in particular) could point opposite to the flow direction due to the adverse pressure drops in the flow. The propulsion efficiency is also found to increase with pulsation frequency and the sinusoidal pulsed inflow jets are more efficient than the unit pulsed inflow jets. In addition, steady inflow jets did not trigger the formation of vortices, while unit and sinusoidal pulsed inflow jets triggered the formation of vortices under a certain range of frequencies.

  18. Recurrent pulsations in Saturn's high latitude magnetosphere

    NASA Astrophysics Data System (ADS)

    Mitchell, D. G.; Carbary, J. F.; Bunce, E. J.; Radioti, A.; Badman, S. V.; Pryor, W. R.; Hospodarsky, G. B.; Kurth, W. S.

    2016-01-01

    Over the course of about 6 h on Day 129, 2008, the UV imaging spectrograph (UVIS) on the Cassini spacecraft observed a repeated intensification and broadening of the high latitude auroral oval into the polar cap. This feature repeated at least 5 times with about a 1 h period, as it rotated in the direction of corotation, somewhat below the planetary rotation rate, such that it moved from noon to post-dusk, and from roughly 77° to 82° northern latitudes during the observing interval. The recurring UV observation was accompanied by pronounced ∼1 h pulsations in auroral hiss power, magnetic perturbations consistent with small-scale field aligned currents, and energetic ion conics and electrons beaming upward parallel to the local magnetic field at the spacecraft location. The magnetic field and particle events are in phase with the auroral hiss pulsation. This event, taken in the context of the more thoroughly documented auroral hiss and particle signatures (seen on many high latitude Cassini orbits), sheds light on the possible driving mechanisms, the most likely of which are magnetopause reconnection and/or Kelvin Helmholtz waves.

  19. Nonlinear pulsations of the RV Tauri stars

    NASA Astrophysics Data System (ADS)

    Fokin, A. B.

    1994-12-01

    The nonlinear pulsations of luminous 0.6 solar mass models for RV Tauri stars are studied by numerical simulation. We find typical RV Tauri behavior in a number of models within 3123 less than or equal to L/Solar Luminosity less than or equal to 7000 and a wide range of Teff below 5400 K, whereas hotter models exhibit pulsations in the first or second overtone. Fourier analysis of the alternating RV Tauri models reveals two strong peaks with 2:1 frequency ratio, but the origin of the low-frequency peak can hardly be explained by the period doubling hypothesis. As comparison with the linear results shows, those peaks are more likely due to the fundamental mode and the first overtone. This result supports the long-standing hypothesis of the 2:1 resonance between these modes in RV Tauri stars. The phase space reconstructions of RV Tauri models reveal chaotic behavior similar to that found in the semiregular W Virginis models. The principal physical processes in the envelopes of alternating models are discussed, and a possible explanation for the secondary variability of RVb stars is presented.

  20. Computational model of miniature pulsating heat pipes

    SciTech Connect

    Martinez, Mario J.; Givler, Richard C.

    2013-01-01

    The modeling work described herein represents Sandia National Laboratories (SNL) portion of a collaborative three-year project with Northrop Grumman Electronic Systems (NGES) and the University of Missouri to develop an advanced, thermal ground-plane (TGP), which is a device, of planar configuration, that delivers heat from a source to an ambient environment with high efficiency. Work at all three institutions was funded by DARPA/MTO; Sandia was funded under DARPA/MTO project number 015070924. This is the final report on this project for SNL. This report presents a numerical model of a pulsating heat pipe, a device employing a two phase (liquid and its vapor) working fluid confined in a closed loop channel etched/milled into a serpentine configuration in a solid metal plate. The device delivers heat from an evaporator (hot zone) to a condenser (cold zone). This new model includes key physical processes important to the operation of flat plate pulsating heat pipes (e.g. dynamic bubble nucleation, evaporation and condensation), together with conjugate heat transfer with the solid portion of the device. The model qualitatively and quantitatively predicts performance characteristics and metrics, which was demonstrated by favorable comparisons with experimental results on similar configurations. Application of the model also corroborated many previous performance observations with respect to key parameters such as heat load, fill ratio and orientation.

  1. Non-radially pulsating Be stars

    NASA Astrophysics Data System (ADS)

    Rivinius, Th.; Baade, D.; Štefl, S.

    2003-11-01

    Based on more than 3000 high-resolution echelle spectra of 27 early-type Be stars, taken over six years, it is shown that the short-term periodic line profile variability of these objects is due to non-radial pulsation. The appearance of the line profile variability depends mostly on the projected rotational velocity v sin i and thus, since all Be stars rotate rapidly, on the inclination i. The observed variability of the investigated stars is described, and for some of them line profile variability periods are given for the first time. For two of the investigated stars the line profile variability was successfully modeled as non-radial pulsation with l=m=+2 already in previous works. Since Be stars with similarly low v sin i share the same variability properties, these are in general explainable under the same model assumptions. The line profile variability of stars with higher v sin i is different from the one observed in low v sin i stars, but can be reproduced by the same model, if only the model inclination is modified to more equatorial values. Only for a few stars with periodic line profile variability the l=m=2 non-radial pulsation mode is not able to provide a satisfying explanation. These objects might pulsate in different modes (e.g. tesseral ones, l != |m|). Almost all stars in the sample show traces of outburst-like variability, pointing to an ephemeral nature of the mass-loss phenomenon responsible for the formation of the circumstellar disk of early-type Be stars, rather than a steady star-to-disk mass transfer. In addition to the variability due to non-radial pulsation present in most stars, several objects were found to show other periods residing in the immediate circumstellar environment. The presence of these secondary periods is enhanced in the outburst phases. Short-lived aperiodic phenomena were clearly seen in two stars. But, given the unfavourable sampling of our database to follow rapid variability of transient nature, they might be more

  2. Determination of discharge during pulsating flow

    USGS Publications Warehouse

    Thompson, T.H.

    1968-01-01

    Pulsating flow in an open channel is a manifestation of unstable-flow conditions in which a series of translatory waves of perceptible magnitude develops and moves rapidly downstream. Pulsating flow is a matter of concern in the design and operation of steep-gradient channels. If it should occur at high stages in a channel designed for stable flow, the capacity of the channel may be inadequate at a discharge that is much smaller than that for which the channel was designed. If the overriding translatory wave carries an appreciable part of the total flow, conventional stream-gaging procedures cannot be used to determine the discharge; neither the conventional instrumentation nor conventional methodology is adequate. A method of determining the discharge during pulsating flow was tested in the Santa Anita Wash flood control channel in Arcadia, Calif., April 16, 1965. Observations of the dimensions and velocities of translatory waves were made during a period of controlled reservoir releases of about 100, 200, and 300 cfs (cubic feet per second). The method of computing discharge was based on (1) computation of the discharge in the overriding waves and (2) computation of the discharge in the shallow-depth, or overrun, part of the flow. Satisfactory results were obtained by this method. However, the procedure used-separating the flow into two components and then treating the shallow-depth component as though it were steady--has no theoretical basis. It is simply an expedient for use until laboratory investigation can provide a satisfactory analytical solution to the problem of computing discharge during pulsating flow. Sixteen months prior to the test in Santa Anita Wash, a robot camera had been designed .and programmed to obtain the data needed to compute discharge by the method described above. The photographic equipment had been installed in Haines Creek flood control channel in Los Angeles, Calif., but it had not been completely tested because of the infrequency of

  3. RY Scuti: Infrared and radio observations of the mass-loss wind of a massive binary star system

    NASA Technical Reports Server (NTRS)

    Gehrz, R. D.; Hayward, T. L.; Houck, J. R.; Miles, J. W.; Hjellming, R. M.; Jones, T. J.; Woodward, Charles E.; Prentice, Ricarda; Forrest, W. J.; Libonate, S.

    1995-01-01

    We report infrared (IR) imaging, IR photometry, IR spectroscopy, optical/IR photopolarimetry, and Very Large Array (VLA) radio observations of the peculiar binary star RY Scuti. These observations provide an unprecedented view of the detailed spatial structure of the equatorial mass-loss wind of a massive, luminous, 'overcontact' binary system. The binary star (0.43 AU separation) is surrounded by a flattened equatorial disk with an outer radius of approximately = 3 x 10(exp 16) cm (2000 AU) that emits strongly in the IR and radio. The inside of the disk is ionized and emits free-free radiation from hydrogen and 12.8 micrometers forbidden-line emission from (Ne II); the outside of the disk emits thermal radiation from silicate dust. Radio continuum emission is also produced in a compact H II region surrounding the binary. The dust may have a polycyclic aromatic hydrocarbon (PAH) component. We use a rudimentary geometric model in which the thermal IR and radio emission from the disk are assumed to arise in a pair of concentric toroidal rings to estimate the physical properties of the disk. The mean radius of the ionized gas toroid is approximately = 1.3 x 10(exp 16) cm (870 AU), and the mean radius of the dust toroid is approximately = 2.2 x 10(exp 16) cm (1470 AU). RY Scuti has a small intrinsic polarization, with the electric vector perpendicular to the equatorial disk, that is probably caused by electron scattering from hot gas close to the central binary. We conclude that neon in the nebula is overabundant with respect to hydrogen and helium by a factor of between 1.6 and 10. Our IR/radio image data suggest that the circumstellar disk is part of an extensive radiation driven mass-loss outflow that is strongly confined to the equatorial plane of the binary system. The sharp spatial separation of the outer dust torous from the inner ionized gas torus confirms earlier suggestions that dust formation in the circumstellar ejecta of very hot stars must occur in

  4. Nonradial and radial period changes of the δ Scuti star 4 CVn. II. Systematic behavior over 40 years

    NASA Astrophysics Data System (ADS)

    Breger, M.; Montgomery, M. H.; Lenz, P.; Pamyatnykh, A. A.

    2017-03-01

    Aims: Radial and nonradial pulsators on and near the main sequence show period and amplitude changes that are too large to be the product of stellar evolution. The multiperiodic δ Sct stars are well suited to study this, as the period changes of different modes excited in the same star can be compared. This requires a very large amount of photometric data covering years and decades as well as mode identifications. Methods: We have examined over 800 nights of high-precision photometry of the multiperiodic pulsator 4 CVn obtained from 1966 through 2012. Because most of the data were obtained in adjacent observing seasons, it is possible to derive very accurate period values for a number of the excited pulsation modes and to study their systematic changes from 1974 to 2012. Results: Most pulsation modes show systematic significant period and amplitude changes on a timescale of decades. For the well-studied modes, around 1986 a general reversal of the directions of both the positive and negative period changes occurred. Furthermore, the period changes between the different modes are strongly correlated, although they differ in size and sign. For the modes with known values of the spherical degree and azimuthal order, we find a correlation between the direction of the period changes and the identified azimuthal order, m. The associated amplitude changes generally have similar timescales of years or decades, but show little systematic or correlated behavior from mode to mode. Conclusions: A natural explanation for the opposite behavior of the prograde and retrograde modes is that their period changes are driven by a changing rotation profile. The changes in the rotation profile could in turn be driven by processes, perhaps the pulsations themselves, that redistribute angular momentum within the star. In general, different modes have different rotation kernels, so this will produce period shifts of varying magnitude for different modes.

  5. Discovery of binarity, spectroscopic frequency analysis, and mode identification of the δ Scuti star 4 CVn

    NASA Astrophysics Data System (ADS)

    Schmid, V. S.; Themeßl, N.; Breger, M.; Degroote, P.; Aerts, C.; Beck, P. G.; Tkachenko, A.; Van Reeth, T.; Bloemen, S.; Debosscher, J.; Castanheira, B. G.; McArthur, B. E.; Pápics, P. I.; Fritz, V.; Falcon, R. E.

    2014-10-01

    More than 40 years of ground-based photometric observations of the δ Sct star 4 CVn has revealed 18 independent oscillation frequencies, including radial as well as non-radial p-modes of low spherical degree ℓ ≤ 2. From 2008 to 2011, more than 2000 spectra were obtained at the 2.1 m Otto-Struve telescope at the McDonald Observatory. We present the analysis of the line-profile variations, based on the Fourier-parameter fit method, detected in the absorption lines of 4 CVn, which carry clear signatures of the pulsations. From a non-sinusoidal, periodic variation of the radial velocities, we discover that 4 CVn is an eccentric binary system with an orbital period Porb = 124.44 ± 0.03 d and an eccentricity e = 0.311 ± 0.003. We detect 20 oscillation frequencies, 9 of which previously unseen in photometric data; attempt mode identification for the two dominant modes, f1 = 7.3764 d-1 and f2 = 5.8496 d-1; and determine the prograde or retrograde nature of 7 of the modes. The projected rotational velocity of the star, veqsini ≃ 106.7 km s-1, translates to a rotation rate of veq/vcrit ≥ 33%. This relatively high rotation rate hampers unique mode identification, since higher order effects of rotation are not included in the current methodology. We conclude that, in order to achieve unambiguous mode identification for 4 CVn, a complete description of rotation and the use of blended lines have to be included in mode-identification techniques. This paper includes data taken at The McDonald Observatory of The University of Texas at Austin.The software package FAMIAS, developed in the framework of the FP6 European Coordination Action HELAS (http://www.helas-eu.org/), has been used in this research.Appendices are available in electronic form at http://www.aanda.org

  6. delta-Hexachlorocyclohexane (delta-HCH)

    Integrated Risk Information System (IRIS)

    delta - Hexachlorocyclohexane ( delta - HCH ) ; CASRN 319 - 86 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Ass

  7. Observations and Theory of Pulsating Helium White Dwarfs

    NASA Astrophysics Data System (ADS)

    Steinfadt, Justin D.

    Average C/O-core white dwarf stars pulsate in observable normal modes of oscillation with amplitudes of a few percent and periods of 100-1,000 seconds. As of this dissertation, no WD of less than 0.5 M sun has been observed to pulsate. White dwarfs of this low mass likely possess a He core and are products of very different stellar evolution. In this dissertation, we have constructed very low mass He-core WD models and predict the parameter space in which they may be observed to pulsate. We have also observed 13 stars, most of which are He-core WDs, in a search for the first He-core WD pulsator. While we were unsuccessful in discovering a pulsator, our detection limits offer unique constraints on He-core WD pulsation parameter space. As a fortuitous result of our pulsation search, we have discovered two unique eclipsing binary systems. One of these is the first eclipsing detached double white dwarf binary system offering the first opportunity to make model independent constraints on He-core WD models and evolution.

  8. There and Back Again?: The Disappearing Pulsations of CS 1246

    NASA Astrophysics Data System (ADS)

    Vasquez Soto, Alan; Barlow, Brad

    2016-01-01

    Hot subdwarf stars were once main sequence stars, like the sun, that deviated from normal stellar evolution due to binary interactions and evolved into extreme horizontal branch stars. Several of these stars exhibit rapid pulsations driven by iron opacity instabilities. CS 1246 is a rapidly pulsating hot subdwarf discovered in 2009 that is dominated by a single 371 second pulsation. At the time of its discovery, the pulsational amplitude was one of the largest known, making CS 1246 an ideal candidate for follow up studies. Observations in 2013 implied that the pulsational amplitude had decreased significantly. Since then we have continued monitoring the star using the robotic SKYNET telescopes in Chile, in order to further characterize any changes. Our recent observations show that the pulsational amplitude has gone down by a factor of six: CS 1246 is barely a pulsator anymore. The decay in amplitude over time is reminiscent of a damped harmonic oscillator. Here we present six years of photometry for CS 1246 and discuss possible scenarios that might explain its interesting behavior.

  9. Pulsations in the free oscillations of the Earth

    NASA Astrophysics Data System (ADS)

    Sobolev, G. A.

    2015-05-01

    The records from wideband IRIS stations after a strong earthquake are analyzed. A few days after the earthquake, pulsations with a period of 128 min arise and last for about a week. They appear as a periodical variation in the amplitude of the free radial oscillation of the Earth 0S0 having a period of 20.46 min. The period of the pulsations is more than double the period of the lowest-frequency free spheroidal oscillations of the Earth (53.9 min). The pulsations are most pronounced at the mid-latitudinal and equatorial stations and less distinct near the poles. The pulsations are phase synchronous at the nearby stations and antiphase at the stations located in the western and eastern hemispheres. The pulsation amplitude does not depend on the phase of the Earth's tide. The shape and period of the pulsations are fitted by the model of beatings appearing in the Van der Pol oscillator with periodic forcing. The pulsations are hypothesized to result from asynchronous interaction between the free oscillations of the Earth.

  10. Delta agent (Hepatitis D)

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000216.htm Delta agent (Hepatitis D) To use the sharing features on this page, please enable JavaScript. Delta agent is a type of virus called hepatitis ...

  11. Multiscale temporal variations of pulsating auroras: On-off pulsation and a few Hz modulation

    NASA Astrophysics Data System (ADS)

    Nishiyama, Takanori; Sakanoi, Takeshi; Miyoshi, Yoshizumi; Hampton, Donald L.; Katoh, Yuto; Kataoka, Ryuho; Okano, Shoichi

    2014-05-01

    A statistical study on the cross-scale property on the temporal variations of pulsating aurora intensity was conducted on 53 events observed at the Poker Flat Research Range during the period from 1 December 2011 to 1 March 2012. The observed modulation frequency ranged from 1.5 to 3.3 Hz, and strong modulations were not seen in the frequency range higher than about 3 Hz. This suggests that the time of flight of electrons has a time-smoothing effect on the more rapid variations above 3 Hz. Furthermore, the frequency of modulation showed relatively strong correlation to auroral intensity (correlation coefficient of 0.58), and it can be explained with nonlinear wave growth theory, in which the modulation frequency increases with the wave amplitude of the whistler mode chorus. In contrast, the on-off pulsations showed no significant correlations with auroral intensity. This result probably implies that several different plasma processes with different time scales from nonlinear wave growth should be taken into account when determining the on-off periods. In particular, we suggest that long-term variations in the cold plasma density play a dominant role in controlling the conditions of wave-particle interactions that have temporal scale of the on-off pulsation periods.

  12. THE PULSATION MODE OF THE CEPHEID POLARIS

    SciTech Connect

    Turner, D. G.; Kovtyukh, V. V.; Usenko, I. A.; Gorlova, N. I.

    2013-01-01

    A previously derived photometric parallax of 10.10 {+-} 0.20 mas, d = 99 {+-} 2 pc, is confirmed for Polaris by a spectroscopic parallax derived using line ratios in high dispersion spectra for the Cepheid. The resulting estimates for the mean luminosity of (M{sub V} ) = -3.07 {+-} 0.01 s.e., average effective temperature of (T{sub eff}) = 6025 {+-} 1 K s.e., and intrinsic color of ((B) - (V)){sub 0} = +0.56 {+-} 0.01 s.e., which match values obtained previously from the photometric parallax for a space reddening of E{sub B-V} = 0.02 {+-} 0.01, are consistent with fundamental mode pulsation for Polaris and a first crossing of the instability strip, as also argued by its rapid rate of period increase. The systematically smaller Hipparcos parallax for Polaris appears discrepant by comparison.

  13. Optical noninvasive monitoring of skin blood pulsations.

    PubMed

    Spigulis, Janis

    2005-04-01

    Time-resolved detection and analysis of skin backscattered optical signals (remission photoplethysmography or PPG) provide rich information on skin blood volume pulsations and can serve for reliable cardiovascular assessment. Single- and multiple-channel PPG concepts are discussed. Simultaneous data flow from several locations on the human body allows us to study heartbeat pulse-wave propagation in real time and to evaluate vascular resistance. Portable single-, dual-, and four-channel PPG monitoring devices with special software have been designed for real-time data acquisition and processing. The prototype devices have been clinically studied, and their potential for monitoring heart arrhythmias, drug-efficiency tests, steady-state cardiovascular assessment, body fitness control, and express diagnostics of the arterial occlusions has been confirmed.

  14. Ambiguity of mapping the relative phase of blood pulsations

    PubMed Central

    Teplov, Victor; Nippolainen, Ervin; Makarenko, Alexander A.; Giniatullin, Rashid; Kamshilin, Alexei A.

    2014-01-01

    Blood pulsation imaging (BPI) is a non-invasive optical method based on photoplethysmography (PPG). It is used for the visualization of changes in the spatial distribution of blood in the microvascular bed. BPI specifically allows measurements of the relative phase of blood pulsations and using it we detected a novel type of PPG fast waveforms, which were observable in limited areas with asynchronous regional blood supply. In all subjects studied, these fast waveforms coexisted with traditional slow waveforms of PPG. We are therefore presenting a novel lock-in image processing technique of blood pulsation imaging, which can be used for detailed temporal characterization of peripheral microcirculation. PMID:25401026

  15. White dwarf evolution - Cradle-to-grave constraints via pulsation

    NASA Technical Reports Server (NTRS)

    Kawaler, Steven D.

    1990-01-01

    White dwarf evolution, particularly in the early phases, is not very strongly constrained by observation. Fortunately, white dwarfs undergo nonradial pulsation in three distinct regions of the H-R diagram. These pulsations provide accurate masses, surface compositional structure and rotation velocities, and help constrain other important physical properties. We demonstrate the application of the tools of stellar seismology to white dwarf evolution using the hot white dwarf star PG 1159-035 and the cool DAV (or ZZ Ceti) stars as examples. From pulsation studies, significant challenges to the theory of white dwarf evolution emerge.

  16. Multisatellite observations of a giant pulsation event

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazue; Glassmeier, Karl-Heinz; Angelopoulos, Vassilis; Bonnell, John; Nishimura, Yukitoshi; Singer, Howard J.; Russell, Christopher T.

    2011-11-01

    Giant pulsations (Pgs; frequency ˜10 mHz) were detected with ground magnetometers on the North American continent on 19 October 2008, when the GOES-10, -11, -12, and -13 geostationary satellites and the THEMIS-A probe were magnetically connected to the region of the ground pulsation activity. This unique configuration allowed us to determine the properties of magnetospheric ultra-low-frequency (ULF) waves that caused the Pgs on the ground. All spacecraft detected monochromatic ULF waves at ˜10 mHz, and the coherence between the Pg at the Gillam ground station and the ULF wave at THEMIS-A was high when the magnetic field foot point of the spacecraft came close to the ground station. The ULF waves observed by the five spacecraft had perturbations in the radial and compressional components of the magnetic field and in the azimuthal component of the electric field, which are attributed to poloidal mode standing Alfvén waves. The poloidal waves were accompanied by multiharmonic toroidal waves, and from the frequency relationship among these, it is concluded that the ˜10 mHz oscillations correspond to the fundamental (odd, or symmetric) mode. The standing wave mode also explains the amplitude variation with latitude and the phase delay between the magnetic and electric fields. Numerical models of poloidal waves incorporating finite height integrated ionospheric conductivity indicate that the fundamental mode interpretation is valid even when the damping of the standing waves is strong. Our observations are the most comprehensive to date in terms of spacecraft data, and we believe that theoretical work on the Pg generation mechanism should focus on mechanisms specific to odd mode standing waves, such as drift resonance of ring current ions.

  17. Multisatellite Observations of a Giant Pulsation Event

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Glassmeier, K.; Angelopoulos, V.; Bonnell, J. W.; Nishimura, T.; Singer, H. J.; Russell, C. T.

    2011-12-01

    Giant pulsations (Pgs; frequency ~10 mHz) were detected with ground magnetometers in the North American continent on October 2008, when the GOES-10, -11, -12, and -13 geostationary satellites and the THEMIS-A probe were magnetically connected to the region of the ground pulsation activity. This unique observational configuration allowed us to determine the properties of magnetospheric ultra-low-frequency (ULF) waves that caused the Pgs on the ground. All spacecraft detected monochromatic ULF waves at ~10 mHz, and the coherence between the Pg at the Gillam ground station and the ULF wave at THEMIS-A was high when the magnetic field foot point of the spacecraft came close to the ground station, indicating a causal relationship between the two oscillation phenomena. The ULF waves observed by the five spacecraft had perturbations in the radial and compressional components of the magnetic field and in the azimuthal component of the electric field, which are attributed to poloidal mode standing Alfvén waves. The poloidal waves were accompanied by multiharmonic toroidal waves, and from the frequency relationship among these, it is concluded that the ~10 mHz oscillations correspond to the fundamental (odd, or symmetric) mode. The standing wave mode also explains the amplitude variation with latitude and the phase delay between the magnetic and electric fields. Numerical models of poloidal waves incorporating finite ionospheric conductivity indicate that the fundamental mode interpretation is valid even when the damping of the standing waves is strong. Our observations are the most comprehensive to date in terms of spacecraft data, and we believe that theoretical work on the Pg generation mechanism should focus on mechanisms specific to odd mode standing waves, such as drift resonance of ring current ions.

  18. Pulsations of B stars: A review of observations and theories

    SciTech Connect

    Cox, A.N.

    1986-01-01

    The observational and theoretical status are discussed for several classes of variable B stars. The older classes now seem to be better understood in terms of those stars that probably have at least one radial mode and those that have only nonradial modes. The former are the ..beta.. Cephei variables, and the latter are the slowly rotating 53 Persei and the rapidly rotating zeta Ophiuchi variables. It seems that in this last class there are also some Be stars that show nonradial pulsations from the variations of the line shapes and their light. Among the nonradial pulsators, we must also include the supergiants which show pulsations with very short lifetimes. A review of the present observational and theoretical problems is given. The most persistent problem of the cause for the pulsations is briefly discussed, and many proposed mechanisms plus some new thoughts are presented. 57 refs., 4 figs.

  19. Unilateral Loss of Spontaneous Venous Pulsations in an Astronaut

    NASA Technical Reports Server (NTRS)

    Mader, Thomas H.; Gibson, C. Robert; Lee, Andrew G.; Patel, Nimesh; Hart, Steven; Pettit, Donald R.

    2014-01-01

    Spontaneous venous pulsations seen on the optic nerve head (optic disc) are presumed to be caused by fluctuations in the pressure gradient between the intraocular and retrolaminar venous systems. The disappearance of previously documented spontaneous venous pulsations is a well-recognized clinical sign usually associated with a rise in intracranial pressure and a concomitant bilateral elevation of pressure in the subarachnoid space surrounding the optic nerves. In this correspondence we report the unilateral loss of spontaneous venous pulsations in an astronaut 5 months into a long duration space flight. We documented a normal lumbar puncture opening pressure 8 days post mission. The spontaneous venous pulsations were also documented to be absent 21 months following return to Earth.. We hypothesize that these changes may have resulted from a chronic unilateral rise in optic nerve sheath pressure caused by a microgravity-induced optic nerve sheath compartment syndrome.

  20. Photometric study of the pulsating, eclipsing binary OO DRA

    SciTech Connect

    Zhang, X. B.; Deng, L. C.; Tian, J. F.; Wang, K.; Yan, Z. Z.; Luo, C. Q.; Sun, J. J.; Liu, Q. L.; Xin, H. Q.; Zhou, Q.; Luo, Z. Q.

    2014-12-01

    We present a comprehensive photometric study of the pulsating, eclipsing binary OO Dra. Simultaneous B- and V-band photometry of the star was carried out on 14 nights. A revised orbital period and a new ephemeris were derived from the data. The first photometric solution of the binary system and the physical parameters of the component stars are determined. They reveal that OO Dra could be a detached system with a less-massive secondary component nearly filling its Roche lobe. By subtracting the eclipsing light changes from the data, we obtained the intrinsic pulsating light curves of the hotter, massive primary component. A frequency analysis of the residual light yields two confident pulsation modes in both B- and V-band data with the dominant frequency detected at 41.865 c/d. A brief discussion concerning the evolutionary status and the pulsation nature of the binary system is finally given.

  1. Report of geomagnetic pulsation indices for space weather applications

    USGS Publications Warehouse

    Xu, Z.; Gannon, Jennifer L.; Rigler, Erin J.

    2013-01-01

    The phenomenon of ultra-low frequency geomagnetic pulsations was first observed in the ground-based measurements of the 1859 Carrington Event and has been studied for over 100 years. Pulsation frequency is considered to be “ultra” low when it is lower than the natural frequencies of the plasma, such as the ion gyrofrequency. Ultra-low frequency pulsations are considered a source of noise in some geophysical analysis techniques, such as aeromagnetic surveys and transient electromagnetics, so it is critical to develop near real-time space weather products to monitor these geomagnetic pulsations. The proper spectral analysis of magnetometer data, such as using wavelet analysis techniques, can also be important to Geomagnetically Induced Current risk assessment.

  2. Contamination of RR Lyrae stars from Binary Evolution Pulsators

    NASA Astrophysics Data System (ADS)

    Karczmarek, P.

    2015-09-01

    A Binary Evolution Pulsator (BEP) is a low-mass (0.26 M_⊙) member of a binary system, which pulsates as a result of a former mass transfer to its companion. The BEP mimics RR~Lyrae-type pulsations, but has completely different internal structure and evolution history. Although there is only one known BEP (OGLE-BLG-RRLYR-02792), it has been estimated that approximately 0.2% of objects classified as RR Lyrae stars can be undetected Binary Evolution Pulsators. In the present work, this contamination value is re-evaluated using the population synthesis method. The output falls inside a range of values dependent on tuning the parameters in the StarTrack code, and varies from 0.06% to 0.43%.

  3. Unsolved Problems for Main-Sequence Variable Stars Revealed by the NASA Kepler Data (Abstract)

    NASA Astrophysics Data System (ADS)

    Guzik, J. A.

    2016-12-01

    (Abstract only) The NASA Kepler spacecraft's long time-series photometric data have enabled interesting studies of g Doradus, delta Scuti, slowly-pulsating B, and beta Cephei variable stars by revealing many new variables and characterizing frequencies and amplitudes to high precision. These stars pulsate in multiple nonradial modes, with periods of hours to days.We will discuss some questions that the Kepler data have raised and are helping to solve, including: Why have so many "hybrid" g Dor/delta Sct variables been discovered? Why are there apparently "constant" non-pulsating stars within the pulsation instability regions? What are the causes of amplitude variations that occur over relatively short timescales? Can we find patterns in the frequencies and amplitude spectra that will help with mode identification and facilitate asteroseismology? Are large increases in the opacities used for stellar models needed to explain the B-type pulsators and to solve the "solar abundance problem"?

  4. Detailed Analysis of the Pulsations During and After Bursts from the Bursting Pulsar (GROJ1744-28)

    NASA Technical Reports Server (NTRS)

    Woods, Peter M.; Kouveliotou, Chryssa; vanParadijs, Jan; Koshut, Thomas M.; Finger, Mark H.; Briggs, Michael S.; Fishman, G. J.; Lewin, W. H. G.

    2000-01-01

    The hard X-ray bursts observed during both major outbursts of the Bursting Pulsar (GRO J1744-28) show pulsations near the neutron star spin frequency with an enhanced amplitude relative to that of the persistent emission. Consistent with previous work, we find that the pulsations within bursts lag behind their expected arrival times based upon the persistent pulsar ephemeris. For an ensemble of 1293 bursts recorded with the Burst and Transient Source Experiment, the average burst pulse time delay (DELTA t (sub FWHM)) is 61.0 plus or minus 0.8 ms in the 25 - 50 keV energy range and 72 plus or minus 5 ms in the 50 - 100 keV band. The residual time delay (DELTA t (sub resid)) from 10 to 240 s following the start of the burst is 18.1 plus or minus 0.7 ms (25 - 50 keV). A significant correlation of the average burst time delay with burst peak flux is found. Our results are consistent with the model of the pulse time lags presented by Miller (1996).

  5. Unexpected series of regular frequency spacing of δ Scuti stars in the non-asymptotic regime - I. The methodology

    SciTech Connect

    Paparo, M.; Benko, J. M.; Hareter, M.; Guzik, J. A.

    2016-05-11

    In this study, a sequence search method was developed to search the regular frequency spacing in δ Scuti stars through visual inspection and an algorithmic search. We searched for sequences of quasi-equally spaced frequencies, containing at least four members per sequence, in 90 δ Scuti stars observed by CoRoT. We found an unexpectedly large number of independent series of regular frequency spacing in 77 δ Scuti stars (from one to eight sequences) in the non-asymptotic regime. We introduce the sequence search method presenting the sequences and echelle diagram of CoRoT 102675756 and the structure of the algorithmic search. Four sequences (echelle ridges) were found in the 5–21 d–1 region where the pairs of the sequences are shifted (between 0.5 and 0.59 d–1) by twice the value of the estimated rotational splitting frequency (0.269 d–1). The general conclusions for the whole sample are also presented in this paper. The statistics of the spacings derived by the sequence search method, by FT (Fourier transform of the frequencies), and the statistics of the shifts are also compared. In many stars more than one almost equally valid spacing appeared. The model frequencies of FG Vir and their rotationally split components were used to formulate the possible explanation that one spacing is the large separation while the other is the sum of the large separation and the rotational frequency. In CoRoT 102675756, the two spacings (2.249 and 1.977 d–1) are in better agreement with the sum of a possible 1.710 d–1 large separation and two or one times, respectively, the value of the rotational frequency.

  6. Pulsations and Hydrodynamics of Luminous Blue Variable Stars

    NASA Astrophysics Data System (ADS)

    Guzik, Joyce Ann; Lovekin, Catherine C.

    2012-07-01

    The Luminous Blue Variable stars exhibit behavior ranging from light curve 'microvariations' on timescales of tens of days, to 'outbursts' accompanied by mass loss of ~10-3 Msun occurring decades apart, to 'giant eruptions' such as seen in Eta Carinae, ejecting one or more solar masses and recurring on timescales of centuries. Here we review the work of the Los Alamos group since 1993, to investigate pulsations and instabilities in massive stars using linear pulsation models and non-linear hydrodynamic models. The models predict pulsational variability that may be associated with the microvariations. We show using a nonlinear pulsation hydrodynamics code with a time-dependent convection treatment, that in some circumstances the Eddington limit is exceeded periodically in the pulsation driving region of the stellar envelope, accelerating the outer layers, and perhaps initiating mass loss or the LBV outbursts. We discuss how pulsations and mass loss may be responsible for the location of the Humphreys- Davidson Limit in the H-R diagram. The 'giant eruptions', however, must involve much deeper regions in the stellar core to cause such large amounts of mass to be ejected. We review and suggest some possible explanations, including mixing from gravity modes, secular instabilities, the epsilon mechanism, or the SASI instability as proposed for Type II supernovae. We outline future work and required stellar modeling capabilities to investigate these possibilities.

  7. Structure of black aurora associated with pulsating aurora

    NASA Astrophysics Data System (ADS)

    Fritz, Bruce A.; Lessard, Marc L.; Blandin, Matthew J.; Fernandes, Philip A.

    2015-11-01

    Morphological behavior of black aurora as it relates to pulsating aurora is investigated by examining a collection of ground-based observations from January 2007 in support of the Rocket Observations of Pulsating Aurora rocket campaign. Images were sampled from video recorded by a Xybion intensified camera (30 fps) at Poker Flat Research Range, AK. The primary observations of black aurora recorded during the substorm recovery phase were between separate patches of pulsating aurora as well as pulsating aurora separated from diffuse aurora. In these observations the black aurora forms an apparent firm boundary between the auroral forms in a new behavior that is in contrast with previously reported observations. Also presented for the first time are black curls in conjunction with pulsating aurora. Curl structures that indicate shear plasma flows in the ionosphere may be used as a proxy for converging/diverging electric fields in and above the ionosphere. This new subset of black auroral behavior may provide visual evidence of black aurora as an ionospheric feedback mechanism as related to pulsating aurora.

  8. Stochastic pulsations in the subdwarf-B star KIC 2991276

    NASA Astrophysics Data System (ADS)

    Østensen, R. H.; Reed, M. D.; Baran, A. S.; Telting, J. H.

    2014-04-01

    The subdwarf-B star KIC 2991276 was monitored with the Kepler spacecraft for nearly three years. Two pulsation modes with periods of 122 and 132 s are clearly detected in the Fourier spectrum, as well as a few weaker modes with periods ranging from 118 to 216 s. Unlike the other subdwarf-B pulsators with similar high-quality Kepler lightcurves, the modes in KIC 2991276 do not display long-term coherency. Rather, their pulsation amplitudes vary substantially in amplitude and phase on timescales of about a month, sometimes disappearing completely. Thus, while the pulsations are seen to have amplitudes of up to 1.4% in individual months, the amplitude spectrum of the full lightcurve shows a broad, messy peak with an amplitude of only 0.23%. Such stochastic oscillations are normal in the Sun and other cool stars with solar-like pulsations and have been suspected for V361-Hya pulsators, but thanks to the exceptional coverage of Kepler data, this is the first unambiguous case established for a hot subdwarf.

  9. Non-Invasive Measurement of Intracranial Pressure Pulsation using Ultrasound

    NASA Technical Reports Server (NTRS)

    Ueno, Toshiaki; Ballard, R. E.; Yost, W. T.; Hargens, A. R.

    1997-01-01

    Exposure to microgravity causes a cephalad fluid shift which may elevate intracranial pressure (ICP). Elevation in ICP may affect cerebral hemodynamics in astronauts during space flight. ICP is, however, a difficult parameter to measure due to the invasiveness of currently available techniques. We already reported our development of a non-invasive ultrasound device for measurement of ICP. We recently modified the device so that we might reproducibly estimate ICP changes in association with cardiac cycles. In the first experiment, we measured changes in cranial distance with the ultrasound device in cadavera while changing ICP by infusing saline into the lateral ventricle. In the second experiment, we measured changes in cranial distance in five healthy volunteers while placing them in 60 deg, 30 deg head-up tilt, supine, and 10 deg head-down tilt position. In the cadaver study, fast Fourier transformation revealed that cranial pulsation is clearly associated with ICP pulsation. The ratio of cranial distance and ICP pulsation is 1.3microns/mmHg. In the tilting study, the magnitudes of cranial pulsation are linearly correlated to tilt angles (r=0.87). The ultrasound device has sufficient sensitivity to detect cranial pulsation in association with cardiac cycles. By analyzing the magnitude of cranial pulsation, estimates of ICP during space flight are possible.

  10. An Update on the Quirks of Pulsating, Accreting White Dwarfs

    NASA Astrophysics Data System (ADS)

    Szkody, Paula; Mukadam, Anjum S.; Gänsicke, Boris T.; Hermes, J. J.; Toloza, Odette

    2015-06-01

    At the 18th European White Dwarf Workshop, we reported results for several dwarf novae containing pulsating white dwarfs that had undergone an outburst in 2006-2007. HST and optical data on the white dwarfs in GW Lib, EQ Lyn and V455 And all showed different behaviors in the years following their outbursts. We continued to follow these objects for the last 2 years, providing timescales of 6-7 years past outburst. All three reached their optical quiescent values within 4 years but pulsational stability has not returned. EQ Lyn showed its pre-outburst pulsation period after 3 years, but it continues to show photometric variability that alternates between pulsation and disk superhump periods while remaining at quiescence. V455 And has almost reached its pre-outburst pulsation period, while GW Lib still remains heated and with a different pulsation spectrum than at quiescence. These results indicate that asteroseismology provides a unique picture of the effects of outburst heating on the white dwarf.

  11. Nonradial and radial period changes in the δ Scuti star 4 CVn. I. 700+ nights of photometry

    NASA Astrophysics Data System (ADS)

    Breger, M.

    2016-08-01

    Context. The nature of period and amplitude changes in nonradial pulsators is presently unknown. Aims: It is therefore important to examine the correlations between these changes in stars with a large number of simultaneously excited pulsation modes. However, the small amplitudes require extensive high-precision photometry covering many years. Methods: We present 702 nights of high-precision photometry of the evolved δ Sct variable 4 CVn obtained from 2005-2012 with a dedicated telescope. Results: We detected 64 frequencies, of which 38 can be identified as combinations and harmonics. The relative amplitudes of the combination frequencies are similar to those found in 44 Tau and show no evidence for resonant mode coupling. Significant period and amplitude changes are detected for the dominant modes. The known prograde and retrograde modes show period changes with opposite signs, while the radial mode exhibits only small, cyclical period changes. For each mode, the period changes are constant over the eight years and range from (1 /P)dP/ dt = -16 × 10-6 to 13 × 10-6. On the other hand, the amplitude variations show no systematic behavior between different pulsation modes. Conclusions: The behavior of the prograde, axisymmetric, and retrograde modes indicate a constant decrease in the rotational splitting over the eight years.

  12. Post-main-sequence and POST red giant branch variables with pulsation periods less than one day

    NASA Astrophysics Data System (ADS)

    Eggen, Olin J.

    1994-06-01

    Post-main-sequence (mass 1 to 3 solar masses) and post-giant branch (0.5 to 1 solar mass) pulsators are discussed on the basis of four color and H beta light curves published elsewhere. The post-main-sequence variables, called ultrashort period cepheid (USPC) (delta Sct), pulsate in the fundamental and first harmonic modes of radial pulsation and, in many cases, in nonradial modes. The variables for which photometry allows accurate, luminosity estimates and are known to pulsate simultaneously in the fundamental and first harmonic or in the fundamental mode alone, define a PL relation (MV = -2.80 log P - 0.60, fundamental). It is notable that the slope of this relation is in the range of slopes found for classical cepheids. Accurate V photometry is lacking for many of the variables known as 'anomalous cepheids', but the available data divide them into low mass, pseudocepheids (BL Her and W Vir stars) and post-main-sequence USPC (delta Sct) variables. Four USPC in NGC 5053 and six in NGC 6466, for which accurate photometry is available, give remarkably consistent moduli of 16.06 +/- 0.05 and 15.98 +/- 0.08 mag, respectively, for the clusters, in which they are blue stragglers similar to SX Phe in Kapteyn's star group. The assumption that the four post-giant branch variables, called VSPC (RR Lyr), S Ari, SU Dra, and ST Leo in Kapteyn's star group and RR Lyr in the Groombridge 1830 group, are physical members of these groups and share their V-velocities, leads to a calibration of the photometry for the derivation of reddening, luminosity, and heavy element abundance of 45 field variables. The resulting reddenings are consistent with values obtained by other methods and the metallicities are consistent with the most accurately available spectroscopic determinations of delta S and of Ca II K. The luminosities of the bulk of the variables confirm Sandage's (1993) relation between MV and (Fe/H). Four or five of the field variables are probably binary, including BB Vir

  13. PULSATION FREQUENCIES AND MODES OF GIANT EXOPLANETS

    SciTech Connect

    Le Bihan, Bastien; Burrows, Adam E-mail: burrows@astro.princeton.edu

    2013-02-10

    We calculate the eigenfrequencies and eigenfunctions of the acoustic oscillations of giant exoplanets and explore the dependence of the characteristic frequency {nu}{sub 0} and the eigenfrequencies on several parameters: the planet mass, the planet radius, the core mass, and the heavy element mass fraction in the envelope. We provide the eigenvalues for degree l up to 8 and radial order n up to 12. For the selected values of l and n, we find that the pulsation eigenfrequencies depend strongly on the planet mass and radius, especially at high frequency. We quantify this dependence through the calculation of the characteristic frequency {nu}{sub 0} which gives us an estimate of the scale of the eigenvalue spectrum at high frequency. For the mass range 0.5 M{sub J} {<=} M{sub P} {<=} 15 M{sub J} , and fixing the planet radius to the Jovian value, we find that {nu}{sub 0} {approx} 164.0 Multiplication-Sign (M{sub P} /M{sub J} ){sup 0.48}{mu}Hz, where M{sub P} is the planet mass and M{sub J} is Jupiter's mass. For the radius range from 0.9 to 2.0 R{sub J} , and fixing the planet's mass to the Jovian value, we find that {nu}{sub 0} {approx} 164.0 Multiplication-Sign (R{sub P} /R{sub J} ){sup -2.09}{mu}Hz, where R{sub P} is the planet radius and R{sub J} is Jupiter's radius. We explore the influence of the presence of a dense core on the pulsation frequencies and on the characteristic frequency of giant exoplanets. We find that the presence of heavy elements in the envelope affects the eigenvalue distribution in ways similar to the presence of a dense core. Additionally, we apply our formalism to Jupiter and Saturn and find results consistent with both the observational data of Gaulme et al. and previous theoretical work.

  14. HD 50844: a new look at δ Scuti stars from CoRoT space photometry

    NASA Astrophysics Data System (ADS)

    Poretti, E.; Michel, E.; Garrido, R.; Lefèvre, L.; Mantegazza, L.; Rainer, M.; Rodríguez, E.; Uytterhoeven, K.; Amado, P. J.; Martín-Ruiz, S.; Moya, A.; Niemczura, E.; Suárez, J. C.; Zima, W.; Baglin, A.; Auvergne, M.; Baudin, F.; Catala, C.; Samadi, R.; Alvarez, M.; Mathias, P.; Paparò, M.; Pápics, P.; Plachy, E.

    2009-10-01

    Context: Aims: This work presents the results obtained by CoRoT on HD 50844, the only δ Sct star observed in the CoRoT initial run (57.6 d). The aim of these CoRoT observations was to investigate and characterize for the first time the pulsational behaviour of a δ Sct star, when observed at a level of precision and with a much better duty cycle than from the ground. Methods: The 140 016 datapoints were analysed using independent approaches (SigSpec software and different iterative sine-wave fittings) and several checks performed (splitting of the timeseries in different subsets, investigation of the residual light curves and spectra). A level of 10-5 mag was reached in the amplitude spectra of the CoRoT timeseries. The space monitoring was complemented by ground-based high-resolution spectroscopy, which allowed the mode identification of 30 terms. Results: The frequency analysis of the CoRoT timeseries revealed hundreds of terms in the frequency range 0-30 d-1. All the cross-checks confirmed this new result. The initial guess that δ Sct stars have a very rich frequency content is confirmed. The spectroscopic mode identification gives theoretical support since very high-degree modes (up to ℓ=14) are identified. We also prove that cancellation effects are not sufficient in removing the flux variations associated to these modes at the noise level of the CoRoT measurements. The ground-based observations indicate that HD 50844 is an evolved star that is slightly underabundant in heavy elements, located on the Terminal Age Main Sequence. Probably due to this unfavourable evolutionary status, no clear regular distribution is observed in the frequency set. The predominant term (f_1=6.92 d-1) has been identified as the fundamental radial mode combining ground-based photometric and spectroscopic data. Conclusions: The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria

  15. SABRE observations of Pi2 pulsations: case studies

    NASA Astrophysics Data System (ADS)

    Bradshaw, E. G.; Lester, M.

    1997-01-01

    The characteristics of substorm-associated Pi2 pulsations observed by the SABRE coherent radar system during three separate case studies are presented. The SABRE field of view is well positioned to observe the differences between the auroral zone pulsation signature and that observed at mid-latitudes. During the first case study the SABRE field of view is initially in the eastward electrojet, equatorward and to the west of the substorm-enhanced electrojet current. As the interval progresses, the western, upward field-aligned current of the substorm current wedge moves westward across the longitudes of the radar field of view. The westward motion of the wedge is apparent in the spatial and temporal signatures of the associated Pi2 pulsation spectra and polarisation sense. During the second case study, the complex field-aligned and ionospheric currents associated with the pulsation generation region move equatorward into the SABRE field of view and then poleward out of it again after the third pulsation in the series. The spectral content of the four pulsations during the interval indicate different auroral zone and mid-latitude signatures. The final case study is from a period of low magnetic activity when SABRE observes a Pi2 pulsation signature from regions equatorward of the enhanced substorm currents. There is an apparent mode change between the signature observed by SABRE in the ionosphere and that on the ground by magnetometers at latitudes slightly equatorward of the radar field of view. The observations are discussed in terms of published theories of the generation mechanisms for this type of pulsation. Different signatures are observed by SABRE depending on the level of magnetic activity and the position of the SABRE field of view relative to the pulsation generation region. A twin source model for Pi2 pulsation generation provides the clearest explanation of the signatures observed Acknowledgements. The authors are grateful to Prof. D. J. Southwood

  16. Sher 25: pulsating but apparently alone

    NASA Astrophysics Data System (ADS)

    Taylor, William D.; Evans, Christopher J.; Simón-Díaz, Sergio; Sana, Hugues; Langer, Norbert; Smith, Nathan; Smartt, Stephen J.

    2014-08-01

    The blue supergiant Sher 25 is surrounded by an asymmetric, hourglass-shaped circumstellar nebula, which shows similarities to the triple-ring structure seen around SN 1987A. From optical spectroscopy over six consecutive nights, we detect periodic radial velocity variations in the stellar spectrum of Sher 25 with a peak-to-peak amplitude of ˜12 km s-1 on a time-scale of about 6 d, confirming the tentative detection of similar variations by Hendry et al. From consideration of the amplitude and time-scale of the signal, coupled with observed line profile variations, we propose that the physical origin of these variations is related to pulsations in the stellar atmosphere, rejecting the previous hypothesis of a massive, short-period binary companion. The radial velocities of two other blue supergiants with similar bipolar nebulae, SBW1 and HD 168625, were also monitored over the course of six nights, but these did not display any significant radial velocity variations.

  17. Some simple properties of stellar pulsation modes

    NASA Technical Reports Server (NTRS)

    Wolff, C. L.

    1979-01-01

    Except for the lowest harmonics, small-amplitude stellar pulsation modes possess many simple properties whose evaluation does not require numerical integration of the fourth-order equations of motion. All antinodes tend to have the same total kinetic energy except for those lying near physical or geometric boundaries. However, when kinetic energy per unit volume is considered, order-of-magnitude enhancements are seen in antinodes lying near the center of the star, and factor-of-2 enhancements occur near the polar axis. The nodes are distributed very regularly along the radius. They follow an exponential law in g-regions, and their separation is proportional to the sound travel time in p-regions. A simple graphical procedure is described for surveying the oscillation frequencies of a new stellar model. A precise condition is derived giving the division of energy between radial and angular motion. Another condition gives the fractional contribution to the velocity field of its two sources, the divergence and the curl. Certain simplifying results of weak coupling among the linear modes are briefly described.

  18. Constraining the neutrino magnetic dipole moment from white dwarf pulsations

    SciTech Connect

    Córsico, A.H.; Althaus, L.G.; García-Berro, E. E-mail: althaus@fcaglp.unlp.edu.ar E-mail: kepler@if.ufrgs.br

    2014-08-01

    Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (μ{sub ν}) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pidot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pidot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of μ{sub ν} ∼< 10{sup -11} μ{sub B}. This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound.

  19. Ionospheric signatures of cusp latitude Pc 3 pulsations

    SciTech Connect

    Engebretson, M.J.; Anderson, B.J. ); Cahill, L.J. Jr. ); Arnoldy, R.L. ); Rosenberg, T.J. ); Carpenter, D.L. ); Gail, W.B. ); Eather, R.H. )

    1990-03-01

    The authors have compared search coil magnetometer, riometer, photometer, and ELF-VLF receiver data obtained at South Pole Station and McMurdo, Antarctica, during selected days in March and April 1986. Narrow-band magnetic pulsations in the Pc 3 period range are observed simultaneously at both stations in the dayside sector during times of low interplanetary magnetic field (IMF) cone angle, but are considerably stronger at South Pole, which is located at a latitude near the nominal foot point of the daysie cusp/cleft region. Pulsations in auroral light a 427.8 nm wavelength are often observed with magnetic pulsations at South Pole, but such optical pulsations are not observed at McMurdo. When Pc 3 pulsations are present, they exhibit nearly identical frequencies, proportional to the magnitude of the IMF, in magnetometer, photometer, and ELF-VLF receiver signals at South Pole Station and in magnetometer signals at McMurdo. Singals from the 30-MHz riometer at South Pole are modulated in concert with the magnetic and optical variations during periods of broadband pulsation activity, but no riometer variations are noted during periods of narrow-band activity. Because riometers are sensitive to electrons of auroral energies (several keV and above), while the 427.8-nm photometer is sensitive to precipitation with much lower energies, they interpret these observatons as showing that precipitating magnetosheathlike electrons (with energies {le} 1 keV) at nominal dayside cleft latitudes are at times modulated with frequencies similar to those of upstream waves. They suggest that these particles may play an important role, via modification of ionospheric currents and conductivities, in the transmission of upstream wave signals into the magnetosphere and in the generation of dayside high-latitude Pc 3 pulsations.

  20. Constraining the neutrino magnetic dipole moment from white dwarf pulsations

    NASA Astrophysics Data System (ADS)

    Córsico, A. H.; Althaus, L. G.; Miller Bertolami, M. M.; Kepler, S. O.; García-Berro, E.

    2014-08-01

    Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (μν) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pi dot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pi dot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of μν lesssim 10-11 μB. This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound.

  1. Quasi-periodic rapid motion of pulsating auroras

    NASA Astrophysics Data System (ADS)

    Fukuda, Yoko; Kataoka, Ryuho; Miyoshi, Yoshizumi; Katoh, Yuto; Nishiyama, Takanori; Shiokawa, Kazuo; Ebihara, Yusuke; Hampton, Donald; Iwagami, Naomoto

    2016-09-01

    We report rapid motion of pulsating auroras associated with so called ​3 ± 1 Hz modulations embedded in the main pulsations. During the pulsation ON phase, repetitive expansions are often observed around the edges of pulsating patches. Some events show a few detached expansions traveling away from the main deformed pulsating patch. Approximately 80% of all expansion speeds were found to be less than 70 km s-1 at ionospheric altitudes, which is less than the projected Alfvén speed from the magnetospheric equator to the ionosphere. The rapid motions with speeds of tens of km s-1 are unlikely to be explained by obliquely propagating chorus elements, which are known to cause the 3 ± 1 Hz modulation, because the perpendicular speed of the oblique chorus waves is higher than the Alfvén speed. We discuss the slow-mode Alfvén wave as a candidate modulation source to generate the rapid motions. A few non-repetitive expansion events with a speed of more than 150 km s-1 also appear at the onset of the ON phase. These non-repetitive expanding motions are characterized by a long displacement compared to the repetitive expanding motions. The differences in the expansion speeds indicate different formation mechanisms of the patch motions.

  2. Ionospheric signatures of cusp latitude Pc 3 pulsations

    NASA Technical Reports Server (NTRS)

    Engebretson, M. J.; Anderson, B. J.; Cahill, L. J., Jr.; Arnoldy, R. L.; Rosenberg, T. J.

    1990-01-01

    Search coil magnetometer, riometer, photometer, and ELF-VLF receiver data obtained at South Pole Station and McMurdo, Antarctica during selected days in March and April 1986 are compared. Narrow-band magnetic pulsations in the Pc 3 period range are observed simultaneously at both stations in the dayside sector during times of low IMF cone angle, but are considerably stronger at South Pole, which is located at a latitude near the nominal foot point of the dayside cusp/cleft region. Pulsations in auroral light at 427.8 nm wavelength are often observed with magnetic pulsations at South Pole, but such optical pulsations are not observed at McMurdo. The observations suggest that precipitating magnetosheathlike electrons at nominal dayside cleft latitudes are at times modulated with frequencies similar to those of upstream waves. These particles may play an important role, via modification of ionospheric currents and conductivities, in the transmission of upstream wave signals into the magnetosphere and in the generation of dayside high-latitude Pc 3 pulsations.

  3. Structure of Black Aurora Associated With Pulsating Aurora

    NASA Astrophysics Data System (ADS)

    Kenward, D. R.; Fritz, B.; Lessard, M.; Fernandes, P. A.; Blandin, M.

    2015-12-01

    Morphological behavior of black aurora as it relates to pulsating aurora is investigated by examining a collection of ground-based observations from January 2007 in support of the ROPA rocket campaign. Images were sampled from video recorded by a Xybion intensified camera (30 fps) at Poker Flat Research Range, AK. The primary observations of black aurora were observed during the substorm recovery phase and separate patches of pulsating aurora as well as pulsating aurora from diffuse aurora. In these observations the black aurora forms an apparent firm boundary between the auroral forms in a new behavior that is in contrast with previously reported observations. Also presented for the first time are black curls in conjunction with pulsating aurora. Curl structures that indicate shear plasma flows in the ionosphere may be used as a proxy for converging/diverging electric fields in and above the ionosphere. This new subset of black auroral behavior may provide visual evidence of black aurora as an ionospheric feedback mechanism as related to pulsating aurora.

  4. Variability of Microcirculation Detected by Blood Pulsation Imaging

    PubMed Central

    Kamshilin, Alexei A.; Teplov, Victor; Nippolainen, Ervin; Miridonov, Serguei; Giniatullin, Rashid

    2013-01-01

    The non-invasive assessment of blood flow is invaluable for the diagnostic and monitoring treatment of numerous vascular and neurological diseases. We developed a non-invasive and non-contact method of blood pulsation imaging capable of visualizing and monitoring of the two-dimensional distribution of two key parameters of peripheral blood flow: the blood pulsation amplitude and blood pulsation phase. The method is based on the photoplethysmographic imaging in the reflection mode. In contrast with previous imaging systems we use new algorithm for data processing which allows two dimensional mapping of blood pulsations in large object's areas after every cardiac cycle. In our study we carried out the occlusion test of the arm and found (i) the extensive variability of 2D-distribution of blood pulsation amplitude from one cardiac cycle to another, and (ii) existence of the adjacent spots to which the blood is asynchronously supplied. These observations show that the method can be used for studying of the multicomponent regulation of peripheral blood circulation. The proposed technique is technologically simple and cost-effective, which makes it applicable for monitoring the peripheral microcirculation in clinical settings for example, in diagnostics or testing the efficiency of new medicines. PMID:23431399

  5. The Discovery of Pulsating Hot Subdwarfs in NGC 2808

    NASA Technical Reports Server (NTRS)

    Brown, Thomas M.; Landsman, Wayne B.; Randall, Suzanna K.; Sweigert, Allen V.; Lanz, Thierry

    2013-01-01

    We present the results of a Hubble Space Telescope program to search for pulsating hot subdwarfs in the core of NGC 2808. These observations were motivated by the recent discovery of such stars in the outskirts of Omega Cen. Both NGC 2808 and ? Cen are massive globular clusters exhibiting complex stellar populations and large numbers of extreme horizontal branch stars. Our far-UV photometric monitoring of over 100 hot evolved stars has revealed six pulsating subdwarfs with periods ranging from 85 to 149 s and UV amplitudes of 2.0%-6.8%. In the UV color-magnitude diagram of NGC 2808, all six of these stars lie immediately below the canonical horizontal branch, a region populated by the subluminous "blue-hook" stars. For three of these six pulsators, we also have low-resolution far-UV spectroscopy that is sufficient to broadly constrain their atmospheric abundances and effective temperatures. Curiously, and in contrast to the ? Cen pulsators, the NGC 2808 pulsators do not exhibit the spectroscopic or photometric uniformity one might expect from a well-defined instability strip, although they all fall within a narrow band (0.2 mag) of far-UV luminosity.

  6. THE DISCOVERY OF PULSATING HOT SUBDWARFS IN NGC 2808

    SciTech Connect

    Brown, Thomas M.; Landsman, Wayne B.; Randall, Suzanna K.; Sweigart, Allen V.; Lanz, Thierry E-mail: Wayne.Landsman@nasa.gov E-mail: allen.sweigart@gmail.com

    2013-11-10

    We present the results of a Hubble Space Telescope program to search for pulsating hot subdwarfs in the core of NGC 2808. These observations were motivated by the recent discovery of such stars in the outskirts of ω Cen. Both NGC 2808 and ω Cen are massive globular clusters exhibiting complex stellar populations and large numbers of extreme horizontal branch stars. Our far-UV photometric monitoring of over 100 hot evolved stars has revealed six pulsating subdwarfs with periods ranging from 85 to 149 s and UV amplitudes of 2.0%-6.8%. In the UV color-magnitude diagram of NGC 2808, all six of these stars lie immediately below the canonical horizontal branch, a region populated by the subluminous 'blue-hook' stars. For three of these six pulsators, we also have low-resolution far-UV spectroscopy that is sufficient to broadly constrain their atmospheric abundances and effective temperatures. Curiously, and in contrast to the ω Cen pulsators, the NGC 2808 pulsators do not exhibit the spectroscopic or photometric uniformity one might expect from a well-defined instability strip, although they all fall within a narrow band (0.2 mag) of far-UV luminosity.

  7. Lattice melting and rotation in perpetually pulsating equilibria

    SciTech Connect

    Pichon, C.; Lynden-Bell, D.; Pichon, J.; Lynden-Bell, R.

    2007-01-15

    Systems whose potential energies consists of pieces that scale as r{sup -2} together with pieces that scale as r{sup 2}, show no violent relaxation to Virial equilibrium but may pulsate at considerable amplitude forever. Despite this pulsation these systems form lattices when the nonpulsational ''energy'' is low, and these disintegrate as that energy is increased. The ''specific heats'' show the expected halving as the ''solid'' is gradually replaced by the ''fluid'' of independent particles. The forms of the lattices are described here for N{<=}18 and they become hexagonal close packed for large N. In the larger N limit, a shell structure is formed. Their large N behavior is analogous to a {gamma}=5/3 polytropic fluid with a quasigravity such that every element of fluid attracts every other in proportion to their separation. For such a fluid, we study the ''rotating pulsating equilibria'' and their relaxation back to uniform but pulsating rotation. We also compare the rotating pulsating fluid to its discrete counterpart, and study the rate at which the rotating crystal redistributes angular momentum and mixes as a function of extra heat content.

  8. Pen Branch delta expansion

    SciTech Connect

    Nelson, E.A.; Christensen, E.J.; Mackey, H.E.; Sharitz, R.R.; Jensen, J.R.; Hodgson, M.E.

    1984-02-01

    Since 1954, cooling water discharges from K Reactor ({anti X} = 370 cfs {at} 59 C) to Pen Branch have altered vegetation and deposited sediment in the Savannah River Swamp forming the Pen Branch delta. Currently, the delta covers over 300 acres and continues to expand at a rate of about 16 acres/yr. Examination of delta expansion can provide important information on environmental impacts to wetlands exposed to elevated temperature and flow conditions. To assess the current status and predict future expansion of the Pen Branch delta, historic aerial photographs were analyzed using both basic photo interpretation and computer techniques to provide the following information: (1) past and current expansion rates; (2) location and changes of impacted areas; (3) total acreage presently affected. Delta acreage changes were then compared to historic reactor discharge temperature and flow data to see if expansion rate variations could be related to reactor operations.

  9. EVIDENCE FOR TEMPERATURE CHANGE AND OBLIQUE PULSATION FROM LIGHT CURVE FITS OF THE PULSATING WHITE DWARF GD 358

    SciTech Connect

    Montgomery, M. H.; Winget, D. E.; Provencal, J. L.; Thompson, S. E.; Kanaan, A.; Mukadam, Anjum S.; Dalessio, J.; Shipman, H. L.; Kepler, S. O.; Koester, D.

    2010-06-10

    Convective driving, the mechanism originally proposed by Brickhill for pulsating white dwarf stars, has gained general acceptance as the generic linear instability mechanism in DAV and DBV white dwarfs. This physical mechanism naturally leads to a nonlinear formulation, reproducing the observed light curves of many pulsating white dwarfs. This numerical model can also provide information on the average depth of a star's convection zone and the inclination angle of its pulsation axis. In this paper, we give two sets of results of nonlinear light curve fits to data on the DBV GD 358. Our first fit is based on data gathered in 2006 by the Whole Earth Telescope; this data set was multiperiodic containing at least 12 individual modes. Our second fit utilizes data obtained in 1996, when GD 358 underwent a dramatic change in excited frequencies accompanied by a rapid increase in fractional amplitude; during this event it was essentially monoperiodic. We argue that GD 358's convection zone was much thinner in 1996 than in 2006, and we interpret this as a result of a short-lived increase in its surface temperature. In addition, we find strong evidence of oblique pulsation using two sets of evenly split triplets in the 2006 data. This marks the first time that oblique pulsation has been identified in a variable white dwarf star.

  10. EPIC 211779126: a rare hybrid pulsating subdwarf B star richly pulsating in both pressure and gravity modes

    NASA Astrophysics Data System (ADS)

    Baran, A. S.; Reed, M. D.; Østensen, R. H.; Telting, J. H.; Jeffery, C. S.

    2017-01-01

    We present our analysis of EPIC 211779126, a pulsating subdwarf B star discovered with the Kepler spacecraft during K2 Campaign 5. We found 154 frequencies in the g-mode region as well as 29 frequencies in the p-mode region. This makes EPIC 211779126 a rare hybrid pulsator with a rich pulsation spectrum in both regions. We successfully identified modal degrees and relative radial orders of most of the g-modes using asymptotic period spacing, and modal degrees of some of the p-modes using rotational splitting. We detected trapped modes, which are a very important feature for constraining theoretical models. Our ground-based spectroscopic observations revealed no companion, therefore EPIC 211779126 is likely a single sdB star. Using p-mode multiplets, we derived a rotation period of approximately 16 days, making EPIC 211779126 the fastest rotating non-binary subdwarf B pulsator observed with Kepler. However, we do not find any resolved multiplets among the high-amplitude g-mode pulsations that correspond to the rotation rate inferred from the p-mode splittings. This may indicate that the star's core is rotating more slowly than its envelope.

  11. Fibre-grating sensors for the measurement of physiological pulsations

    NASA Astrophysics Data System (ADS)

    Petrović, M. D.; Daničić, A.; Atanasoski, V.; Radosavljević, S.; Prodanović, V.; Miljković, N.; Petrović, J.; Petrović, D.; Bojović, B.; Hadžievski, Lj; Allsop, T.; Lloyd, G.; Webb, D. J.

    2013-11-01

    Mechanical physiological pulsations are movements of a body surface incited by the movements of muscles in organs inside the body. Here we demonstrate the use of long-period grating sensors in the detection of cardio-vascular pulsations (CVP), in particular apex and carotid pulsations. To calibrate the sensors, we use a mechanical tool designed specifically to measure the sensor response to a localized perturbation at different grating curvatures as working points. From the data we infer the amplitude of the CVP. Together with the electrophysiological signals, the CVP signals obtained from the sensors can provide significant information on heart function which is inaccessible to the electrocardiogram. The low cost and easy handling of the fibre sensors increase their prospects to become the sensors of choice for novel diagnostic devices.

  12. Ground magnetic field fluctuations associated with pulsating aurora

    NASA Astrophysics Data System (ADS)

    Michell, R. G.; Samara, M.

    2015-10-01

    A case study of an intense pulsating auroral event is presented where the large-scale (100-200 km) optical intensity variations are anticorrelated with fluctuations in the ground magnetometer data at a frequency of 0.1 Hz. The auroral event occurred over Poker Flat, Alaska, on 1 March 2012 and was imaged optically with several different fields of view and filters. The fluctuations in the magnetometer data were most prominent in the D component and had magnitudes of 1 to 5 nT. The auroral intensity variations had amplitudes of 200 to 400 R, comprising 25% to 50% of the total auroral luminosity at 427.8 nm. The direction of the magnetometer deflections is consistent with a south-to-north ionospheric current present when each pulsation is on, thus providing closure for the field-aligned currents associated with each of the pulsating patches.

  13. Theory of auroral zone PiB pulsation spectra

    SciTech Connect

    Lysak, R.L. )

    1988-06-01

    Changes in the auroral zone current system are often accompanied by magnetic pulsations with periods of about 1 s. These so-called bursts of irregular pulsations (PiB) have been observed both on ground magnetograms and with in situ satellite observations. These pulsations can be understood as excitations of a resonant cavity in the topside ionosphere, where the Alfven speed has a strong gradient due to the exponential decrease of density above the ionosphere. These waves have a frequency which scales as the ratio of the Alfven speed at the ionosphere divided by the ionospheric scale height. For a pure exponential Alfven speed profile, the mode frequencies are related to zeros of the zeroth-order Bessel function. For other profiles of the density, and therefore Alfven speed, the frequencies are not exactly given by the simple theory, but the frequency and mode structure are similar provided the Alfven speed sharply increases above the ionosphere.

  14. Outbursts in Two New Cool Pulsating DA White Dwarfs

    NASA Astrophysics Data System (ADS)

    Bell, Keaton J.; Hermes, J. J.; Montgomery, M. H.; Gentile Fusillo, N. P.; Raddi, R.; Gänsicke, B. T.; Winget, D. E.; Dennihy, E.; Gianninas, A.; Tremblay, P.-E.; Chote, P.; Winget, K. I.

    2016-10-01

    The unprecedented extent of coverage provided by Kepler observations recently revealed outbursts in two hydrogen-atmosphere pulsating white dwarfs (DAVs) that cause hours-long increases in the overall mean flux of up to 14%. We have identified two new outbursting pulsating white dwarfs in K2, bringing the total number of known outbursting white dwarfs to four. EPIC 211629697, with {T}{eff} = 10,780 ± 140 K and {log} g = 7.94 ± 0.08, shows outbursts recurring on average every 5.0 days, increasing the overall flux by up to 15%. EPIC 229227292, with {T}{eff} = 11,190 ± 170 K and {log} g = 8.02 ± 0.05, has outbursts that recur roughly every 2.4 days with amplitudes up to 9%. We establish that only the coolest pulsating white dwarfs within a small temperature range near the cool, red edge of the DAV instability strip exhibit these outbursts.

  15. Modelling of Pc5 pulsation structure in the magnetosphere

    NASA Astrophysics Data System (ADS)

    Walker, A. D. M.

    1980-03-01

    Magnetohydrodynamic resonance theory is used to model the structure of the magnetospheric and ionospheric electric and magnetic fields associated with Pc5 geomagnetic pulsations. In this paper the variation of the fields across the invariant latitude of the resonance are computed. The results are combined with calculations of the variation along a field line to map the fields down to the ionosphere. In one case the results are compared with measurements obtained by the STARE auroral radar and show good agreement. The relationship between the width of the resonance region and ionospheric height-integrated Pedersen conductivity is computed and it is shown how auroral radar measurements of Pc5 oscillations could be used to determine ionospheric height-integrated Pedersen conductivity. It is pointed out that from these calculations it would be possible to identify the field line on which a satellite was located by comparing a Pc5 pulsation observed by the satellite, and the same pulsation observed by STARE.

  16. On the Stenbaek-Nielsen and Hallinan pulsating auroras

    SciTech Connect

    D'Angelo, N. )

    1991-02-01

    Stenbaek-Nielsen and Hallinan (1979) argued that if the pulsating auroras are caused by precipitating electrons, the data suggest that noncollisional interactions, localized in the lower E region (90-107 km), where most of the pulsations are observed, may play a dominant role in thermalizing the particles. They also stated that one type of process that comes to mind is a wave-particle interaction in the ionosphere. If, through one or more instabilities, waves grow at the expense of beam energy and, in turn, energize ambient electrons, the energized ambient electrons could ionize the background gas and, in process, produce luminosity. The exceptionally thin pulsating auroral patches observed by Stenbaek-Nielsen and Hallinan (1979) may be caused by an ionization instability occurring at the end of the range of precipitating electrons. A comparison is made to laboratory results reported by Johnson et al. (1990).

  17. γ Doradus Pulsations in the Eclipsing Binary Star KIC 6048106

    NASA Astrophysics Data System (ADS)

    Lee, Jae Woo

    2016-12-01

    We present the Kepler photometry of KIC 6048106, which is exhibiting the O’Connell effect and multiperiodic pulsations. Including a starspot on either of the components, light-curve synthesis indicates that this system is a semi-detached Algol with a mass ratio of 0.211, an orbital inclination of 73.°9, and a large temperature difference of 2534 K. To examine in detail both the spot variations and pulsations, we separately analyzed the Kepler time-series data at the interval of an orbital period in an iterative way. The results reveal that the variable asymmetries of the light maxima can be interpreted as the changes with time of a magnetic cool spot on the secondary component. Multiple frequency analyses were performed in the outside-eclipse light residuals after removal of the binarity effects from the observed Kepler data. We detected 30 frequencies with signal to noise amplitude ratios larger than 4.0, of which six (f 2-f 6 and f 10) can be identified as high-order (17 ≤ n ≤ 25) low-degree (ℓ = 2) gravity-mode pulsations that were stable during the observing run of 200 days. In contrast, the other frequencies may be harmonic and combination terms. For the six frequencies, the pulsation periods and pulsation constants are in the ranges of 0.352-0.506 days and 0.232-0.333 days, respectively. These values and the position on the Hertzsprung-Russell diagram demonstrate that the primary star is a γ Dor variable. The evolutionary status and the pulsation nature of KIC 6048106 are discussed.

  18. Model for bubble pulsation in liquid between parallel viscoelastic layers

    PubMed Central

    Hay, Todd A.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2012-01-01

    A model is presented for a pulsating spherical bubble positioned at a fixed location in a viscous, compressible liquid between parallel viscoelastic layers of finite thickness. The Green’s function for particle displacement is found and utilized to derive an expression for the radiation load imposed on the bubble by the layers. Although the radiation load is derived for linear harmonic motion it may be incorporated into an equation for the nonlinear radial dynamics of the bubble. This expression is valid if the strain magnitudes in the viscoelastic layer remain small. Dependence of bubble pulsation on the viscoelastic and geometric parameters of the layers is demonstrated through numerical simulations. PMID:22779461

  19. Cycles of self-pulsations in a photonic integrated circuit.

    PubMed

    Karsaklian Dal Bosco, Andreas; Kanno, Kazutaka; Uchida, Atsushi; Sciamanna, Marc; Harayama, Takahisa; Yoshimura, Kazuyuki

    2015-12-01

    We report experimentally on the bifurcation cascade leading to the appearance of self-pulsation in a photonic integrated circuit in which a laser diode is subjected to delayed optical feedback. We study the evolution of the self-pulsing frequency with the increase of both the feedback strength and the injection current. Experimental observations show good qualitative accordance with numerical results carried out with the Lang-Kobayashi rate equation model. We explain the mechanism underlying the self-pulsations by a phenomenon of beating between successive pairs of external cavity modes and antimodes.

  20. Resonant self-pulsations in coupled nonlinear microcavities

    SciTech Connect

    Grigoriev, Victor; Biancalana, Fabio

    2011-04-15

    A different point of view on the phenomenon of self-pulsations is presented, which shows that they are a balanced state formed by two counteracting processes: beating of modes and bistable switching. A structure based on two coupled nonlinear microcavities provides a generic example of a system with enhanced ability to support this phenomenon. The specific design of such a structure in the form of multilayered media is proposed, and the coupled-mode theory is applied to describe its dynamical properties. It is emphasized that the frequency of self-pulsations is related to the frequency splitting between resonant modes and can be adjusted over a broad range.

  1. Search for optical pulsations in PSR J0337+1715

    DOE PAGES

    Strader, M. J.; Archibald, A. M.; Meeker, S. R.; ...

    2016-03-20

    In this study, we report on a search for optical pulsations from PSR J0337+1715 at its observed radio pulse period. PSR J0337+1715 is a millisecond pulsar (2.7 ms spin period) in a triple hierarchical system with two white dwarfs, and has a known optical counterpart with g-band magnitude 18. The observations were done with the Array Camera for Optical to Near-IR Spectrophotometry (ARCONS) at the 200" Hale telescope at Palomar Observatory. No significant pulsations were found in the range 4000-11000 angstroms, and we can limit pulsed emission in g-band to be fainter than 25 mag.

  2. The Post-outburst Pulsations of GW Librae

    NASA Astrophysics Data System (ADS)

    Chote, P.; Mukadam, A. S.; Aungwerojwit, A.; Szkody, P.; Gänsicke, B. T.; Sullivan, D. J.; Poshyachinda, S.; Reichart, D. E.; Haislip, J. B.; Moore, J. P.

    2017-03-01

    We present new observations of GW Librae obtained between 2012 and 2016. GW Librae was the first accreting white dwarf to be discovered with non-radial pulsations, which were wiped out in 2007 when a dwarf nova outburst heated the surface of the WD outside the instability strip. In the years that followed, we have seen pulsations return with periods near 280 and 1200 seconds, but find that their periods and amplitudes vary on timescales longer than a few hours. Some of these changes are found to correlate with changes in the mysterious 2/3/4 hour modulation that has been seen both before and after the outburst.

  3. A New Subdwarf-OB Pulsator J23341+4622

    NASA Astrophysics Data System (ADS)

    Pakštiene, E.; Qvam, J. K. T.; Østensen, R. H.; Telting, J. H.

    2014-12-01

    A new sdOB variable star, J23341+4622 (SDSS J233406.10+462249.3), was discovered during photometric observations with the Nordic Optical Telescope (La Palma). We found its main pulsation frequency at 7422(±9) μHz with an amplitude of 4.5(±0.5) mma. The star is possibly a complex pulsator, as we found another significant peak at 7759(±11) μHz with an amplitude of 2.0(±0.3) mma and a possible subharmonic of the main frequency at 3508 μHz with an amplitude of 2.3 mma.

  4. Search for optical pulsations in PSR J0337+1715

    NASA Astrophysics Data System (ADS)

    Strader, M. J.; Archibald, A. M.; Meeker, S. R.; Szypryt, P.; Walter, A. B.; van Eyken, J. C.; Ulbricht, G.; Stoughton, C.; Bumble, B.; Kaplan, D. L.; Mazin, B. A.

    2016-06-01

    We report on a search for optical pulsations from PSR J0337+1715 at its observed radio pulse period. PSR J0337+1715 is a millisecond pulsar (2.7 ms spin period) in a triple hierarchical system with two white dwarfs, and has a known optical counterpart with g-band magnitude 18. The observations were done with the ARray Camera for Optical to Near-IR Spectrophotometry at the 200 arcsec Hale telescope at Palomar Observatory. No significant pulsations were found in the range 4000-11 000 Å, and we can limit pulsed emission in g band to be fainter than 25 mag.

  5. Mode identification from spectroscopy of gravity-mode pulsators

    NASA Astrophysics Data System (ADS)

    Pollard, K. R.; Brunsden, E.; Cottrell, P. L.; Davie, M.; Greenwood, A.; Wright, D. J.; De Cat, P.

    2014-02-01

    The gravity modes present in γ Doradus stars probe the deep stellar interiors and are thus of particular interest in asteroseismology. For the MUSICIAN programme at the University of Canterbury, we obtain extensive high-resolution echelle spectra of γ Dor stars from the Mt John University Observatory in New Zealand. We analyze these to obtain the pulsational frequencies and identify these with the multiple pulsational modes excited in the star. A summary of recent results from our spectroscopic mode-identification programme is given.

  6. Inconsistencies in the harmonic analysis applied to pulsating stars

    NASA Astrophysics Data System (ADS)

    Pascual-Granado, J.; Garrido, R.; Suárez, J. C.

    2015-05-01

    Harmonic analysis is the fundamental mathematical method used for the identification of pulsation frequencies in asteroseismology and other fields of physics. Here we introduce a test to evaluate the validity of the hypothesis in which Fourier theorem is based: the convergence of the expansion series. The huge number of difficulties found in the interpretation of the periodograms of pulsating stars observed by CoRoT and Kepler satellites lead us to test whether the function underlying these time series is analytic or not. Surprisingly, the main result is that these are originated from non-analytic functions, therefore, the condition for Parseval's theorem is not guaranteed.

  7. Delta hepatitis in Malaysia.

    PubMed

    Sinniah, M; Dimitrakakis, M; Tan, D S

    1986-06-01

    Sera from one hundred and fifty nine Malaysian individuals were screened for the prevalence of delta markers. These included 15 HBsAg positive homosexuals, 16 acute hepatitis B cases, 9 chronic hepatitis B patients, 13 healthy HBsAg carriers and 106 intravenous (i.v.) drug abusers, of whom 27 were positive for HBsAg only and the rest were anti-HBc IgG positive but HBsAg negative. The prevalence of delta markers in the homosexuals was found to be 6.7%, in the HBsAg positive drug abusers 17.8%, in acute hepatitis B cases 12.5%. No evidence of delta infection was detected in healthy HBsAg carriers, chronic hepatitis B cases and HBsAg negative i.v. drug abusers. With reference to i.v. drug abusers, the prevalence of delta markers was higher in Malays (23%) than in Chinese (7%) although the latter had a higher HBsAg carrier rate. Although the HBsAg carrier rate in the homosexuals was high, their delta prevalence rate was low as compared to drug abusers. In Malaysia, as in other non-endemic regions, hepatitis delta virus transmission appeared to occur mainly via the parenteral and sexual routes. This is the first time in Malaysia that a reservoir of delta infection has been demonstrated in certain groups of the population at high risk for hepatitis B.

  8. Nile River Delta, Egypt

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The Nile River Delta of Egypt (30.0N, 31.0E) irrigated by the Nile River and its many distributaries, is some of the richest farm land in the world and home to some 45 million people, over half of Egypt's population. The capital city of Cairo is at the apex of the delta. Just across the river from Cairo can be seen the ancient three big pyramids and sphinx at Giza and the Suez Canal is just to the right of the delta.

  9. New pulsational properties of eight `anomalous' RR Lyrae variables

    NASA Astrophysics Data System (ADS)

    Clementini, G.; Tosi, M.; Bragaglia, A.; Merighi, R.; Maceroni, C.

    1995-08-01

    CCD photometry in the V band is presented for seven field RR Lyrae stars selected from a sample of eight variables; these, according to data collected in the literature, are expected to be ab-type pulsators, to have short periods (and hence high metallicity), and to be located at a high z from the Galactic plane. New periods and epochs are derived for them. The new periods are only slightly shorter than the values published in the fourth edition of the General Catalogue of Variable Stars (GCVS4). In six cases our amplitude of the light variation is significantly smaller than that published in the GCVS4, and in at least three cases the actual pulsation appears to be in the first harmonic rather than in the fundamental mode. All the suggested c-type pulsators show variations in the amplitude and/or quite scattered light curves. Some possible explanations are given. From a spectrophotometric analysis of the sample, only DL Com is confirmed to pulsate in the fundamental mode, to have a short period, and to be located at a relatively high z. However, a single object cannot be taken as evidence for a significant metal-rich population at a large distance from the Galactic plane.

  10. Low-altitude satellite measurements of pulsating auroral electrons

    NASA Astrophysics Data System (ADS)

    Samara, M.; Michell, R. G.; Redmon, R. J.

    2015-09-01

    We present observations from the Defense Meteorological Satellite Program and Reimei satellites, where common-volume high-resolution ground-based auroral imaging data are available. These satellite overpasses of ground-based all-sky imagers reveal the specific features of the electron populations responsible for different types of pulsating aurora modulations. The energies causing the pulsating aurora mostly range from 3 keV to 20 keV but can at times extend up to 30 keV. The secondary, low-energy electrons (<1 keV) are diminished from the precipitating distribution when there are strong temporal variations in auroral intensity. There are often persistent spatial structures present inside regions of pulsating aurora, and in these regions there are secondary electrons in the precipitating populations. The reduction of secondary electrons is consistent with the strongly temporally varying pulsating aurora being associated with field-aligned currents and hence parallel potential drops of up to 1 kV.

  11. Solar Microwave and Geomagnetic Field Pulsations as Space Weather Factors

    NASA Astrophysics Data System (ADS)

    Snegirev, S. D.; Fridman, V. M.; Sheiner, O. A.

    The procedure of short-term prediction of main solar flares was created on the basis of temporal behavior of long-period microwave pulsations [Kobrin et al., 1997]. At the same time it was shown that before these flares one could observe long-period (T > 20 min) pulsations of geomagnetic field [Kobrin et al, 1985]. The resemblance between microwave and geomagnetic pulsations (duration and temporal behaviour) allows us to propose the common nature of these variations: the reflection of solar energy accumulation and instabilities in solar centers of activity. To be an important factor of Space Weather above mentioned pulsations can be useful for constructing the procedures to predict the near Earth's conditions. This work was supported by the Russian Foundation for Fundamental Research and Russian Federal Programm "Astronomy" (grant N 1.5.5.5). Kobrin M.M, Malygin V.I., Snegirev S.D. Plan. Space Sci., 33, N11, p. 1251 (1985). Kobrin M.M., Pakhomov V.V., Snegirev S.D., Fridman V.M., Sheiner O.A. Proc. Workshop `STPW-96', Tokyo: RCW, p. 200 (1997).

  12. Radar auroral observations during a burst of irregular magnetic pulsations

    SciTech Connect

    Haldoupis, C.I.; Nielsen, E.; Holtet, J.A.; Egeland, A.; Chivers, H.A.

    1982-03-01

    Micropulsation data from an auroral state are compared with concurrent STARE radar observations from the E region above the station during a substorm event. The substorm onset is marked by a strong burst of irregular pulsations, (Pi B) accompanied by abrupt intensifications in the equivalent current, the backscatter intensity, and the riometer absorption. The magnetic Px and Py pulsation components have a reasonable degree of correlation and the polarization properties of the horizontal disturbance vetor exhibit well-defined changes during the first few minutes after onset. The radio signal undergoes deep quasiperiodic fading that is closely related to simultaneous PiB amplitude variations. The radar Dopplar data, which show normal fluctuations in the electron drift velocity, exclude modulation of radio backscatter by directional variations of the electric field. It is argued that the PiB pulsations and the variations seen in the backscatter are reflecting changes of the ionospheric currents due to conductivity modifications dictated by variations in the field-aligned currents flowing in the region. The possibility exists that the Pi B is closely related to precipitation pulsations as reported by Heacock and Hunsucker (1977).

  13. Low-Altitude Satellite Measurements of Pulsating Auroral Electrons

    NASA Technical Reports Server (NTRS)

    Samara, M.; Michell, R. G.; Redmon, R. J.

    2015-01-01

    We present observations from the Defense Meteorological Satellite Program and Reimei satellites, where common-volume high-resolution ground-based auroral imaging data are available. These satellite overpasses of ground-based all-sky imagers reveal the specific features of the electron populations responsible for different types of pulsating aurora modulations. The energies causing the pulsating aurora mostly range from 3 keV to 20 keV but can at times extend up to 30 keV. The secondary, low-energy electrons (<1 keV) are diminished from the precipitating distribution when there are strong temporal variations in auroral intensity. There are often persistent spatial structures present inside regions of pulsating aurora, and in these regions there are secondary electrons in the precipitating populations. The reduction of secondary electrons is consistent with the strongly temporally varying pulsating aurora being associated with field-aligned currents and hence parallel potential drops of up to 1 kV.

  14. Discovery of X-ray pulsations from a massive star.

    PubMed

    Oskinova, Lidia M; Nazé, Yael; Todt, Helge; Huenemoerder, David P; Ignace, Richard; Hubrig, Swetlana; Hamann, Wolf-Rainer

    2014-06-03

    X-ray emission from stars much more massive than the Sun was discovered only 35 years ago. Such stars drive fast stellar winds where shocks can develop, and it is commonly assumed that the X-rays emerge from the shock-heated plasma. Many massive stars additionally pulsate. However, hitherto it was neither theoretically predicted nor observed that these pulsations would affect their X-ray emission. All X-ray pulsars known so far are associated with degenerate objects, either neutron stars or white dwarfs. Here we report the discovery of pulsating X-rays from a non-degenerate object, the massive B-type star ξ(1) CMa. This star is a variable of β Cep-type and has a strong magnetic field. Our observations with the X-ray Multi-Mirror (XMM-Newton) telescope reveal X-ray pulsations with the same period as the fundamental stellar oscillations. This discovery challenges our understanding of stellar winds from massive stars, their X-ray emission and their magnetism.

  15. Experimental and numerical study of pulsating transversal jets

    NASA Astrophysics Data System (ADS)

    Goldfeld, M. A.; Fedorova, N. N.; Fedorchenko, I. A.; Pozdnyakov, G. A.; Timofeev, K. Yu.; Zhakharova, Yu. V.

    2015-06-01

    Paper presents results of joint experimental and numerical investigation of pulsating jet penetration into still air and supersonic flow. Goal of the study is to investigate two-dimensional (2D) Hartmann generator (HG) properties and clear up its possibilities in providing better mixing between air and secondary (injected) gases.

  16. The detection of photospheric X-ray pulsations from PG 1159-035 with EXOSAT

    NASA Technical Reports Server (NTRS)

    Barstow, M. A.; Holberg, J. B.; Grauer, A. D.; Winget, D. E.

    1986-01-01

    The detection of soft X-ray pulsations from the hot, helium-rich, degenerate object, PG 1159-035 is reported. These observations, obtained with the Low Energy experiment on EXOSAT, show the presence of large-amplitude soft X-ray (44-150 A) pulsations analogous to several of the low-amplitude, nonradial, g-mode pulsations which are observed in the optical. These soft X-ray pulsations, with periods of 516 s, 524 s, and 539 s, arise from the photosphere of PG 1159-035 and constitute the first observations of stellar atmospheric pulsational phenomena in the X-ray band.

  17. Federal Funding in the Delta.

    ERIC Educational Resources Information Center

    Reeder, Richard J.; Calhoun, Samuel D.

    2002-01-01

    The Lower Mississippi Delta region, especially the rural Delta, faces many economic challenges. The rural Delta has received much federal aid in basic income support and funding for human resource development, but less for community resource programs, which are important for economic development. Federal aid to the Delta is analyzed in terms of…

  18. Kappa effect pulsational instability for hot extreme helium stars

    SciTech Connect

    Cox, A.N.

    1990-01-01

    A long standing problem for the hydrogen deficient stars has been the mechanism for the pulsation instability for the hottest members of this class. The usual {kappa} mechanism works well for stars that are in the hydrogen and helium ionization instability strip, and this strip extends to perhaps 20,000K at high luminosity. However, several stars are definitely hotter. Investigations for another ionization instability strip, such as for carbon, have always shown that there is not enough carbon to produce a rapid enough increase of opacity with temperature to give the well-known {kappa} effect. This is so even though these hydrogen deficient stars do show enhanced carbon in their spectra. A strong stellar wind can produce the observed hydrogen deficiency. Another popular mechanism is mass loss in a binary system through the Roche lobe. It now is possible that the missing pulsational instability mechanism is the rapid increase of iron lines absorption as the temperature increases above about 150,000K in the low density envelopes of these luminous stars. Recent calculations shows that the n = 3 to n = 3 transitions in iron that were assumed unimportant in the earlier Los Alamos calculations can double or triple the opacity suddenly as the iron lines appear in a very sensitive part of the spectrum of the diffusing photons. It has been proposed that these iron lines also cause the many varieties of normal B star pulsations, and the hydrogen deficient stars are merely another example of this new {kappa} effect for pulsating stars. The extreme helium star V2076 Oph at 31,900K, and 38,900 L{sub {circle dot}} for a mass of 1.4 M{sub {circle dot}} pulsates in the radial fundamental model at about 1 day period with a very large linear growth rate when the iron lines more than double the opacity, but is stable otherwise.

  19. On the Polarization Properties of Magnetar Giant Flare Pulsating Tails

    NASA Astrophysics Data System (ADS)

    Yang, Yuan-Pei; Zhang, Bing

    2015-12-01

    Three giant flares have been detected so far from soft gamma-ray repeaters, each characterized by an initial short hard spike and a pulsating tail. The observed pulsating tails are characterized by a duration of ˜100 s, an isotropic energy of ˜1044 erg, and a pulse period of a few seconds. The pulsating tail emission likely originates from the residual energy after the intense energy release during the initial spike, which forms a trapped fireball composed of a photon-pair plasma in a closed-field-line region of the magnetars. Observationally the spectra of pulsating tails can be fitted by the superposition of a thermal component and a power-law component, with the thermal component dominating the emission in the early and late stages of the pulsating-tail observations. In this paper, assuming that the trapped fireball is from a closed-field-line region in the magnetosphere, we calculate the atmospheric structure of the optically thick trapped fireball and the polarization properties of the trapped fireball. By properly treating the photon propagation in a hot, highly magnetized, electron-positron pair plasma, we tally photons in two modes (O mode and E mode) at a certain observational angle through Monte Carlo simulations. Our results suggest that the polarization degree depends on the viewing angle with respect to the magnetic axis of the magnetar, and can be as high as Π ≃ 30% in the 1-30 keV band, and Π ≃ 10% in the 30-100 keV band, if the line of sight is perpendicular to the magnetic axis.

  20. ON THE POLARIZATION PROPERTIES OF MAGNETAR GIANT FLARE PULSATING TAILS

    SciTech Connect

    Yang, Yuan-Pei; Zhang, Bing E-mail: zhang@physics.unlv.edu

    2015-12-10

    Three giant flares have been detected so far from soft gamma-ray repeaters, each characterized by an initial short hard spike and a pulsating tail. The observed pulsating tails are characterized by a duration of ∼100 s, an isotropic energy of ∼10{sup 44} erg, and a pulse period of a few seconds. The pulsating tail emission likely originates from the residual energy after the intense energy release during the initial spike, which forms a trapped fireball composed of a photon-pair plasma in a closed-field-line region of the magnetars. Observationally the spectra of pulsating tails can be fitted by the superposition of a thermal component and a power-law component, with the thermal component dominating the emission in the early and late stages of the pulsating-tail observations. In this paper, assuming that the trapped fireball is from a closed-field-line region in the magnetosphere, we calculate the atmospheric structure of the optically thick trapped fireball and the polarization properties of the trapped fireball. By properly treating the photon propagation in a hot, highly magnetized, electron–positron pair plasma, we tally photons in two modes (O mode and E mode) at a certain observational angle through Monte Carlo simulations. Our results suggest that the polarization degree depends on the viewing angle with respect to the magnetic axis of the magnetar, and can be as high as Π ≃ 30% in the 1–30 keV band, and Π ≃ 10% in the 30–100 keV band, if the line of sight is perpendicular to the magnetic axis.

  1. Fast modulations of pulsating proton aurora related to subpacket structures of Pc1 geomagnetic pulsations at subauroral latitudes

    SciTech Connect

    Ozaki, M.; Shiokawa, K.; Miyoshi, Y.; Kataoka, R.; Yagitani, S.; Inoue, T.; Ebihara, Y.; Jun, C. -W; Nomura, R.; Sakaguchi, K.; Otsuka, Y.; Shoji, M.; Schofield, I.; Connors, M.; Jordanova, V. K.

    2016-08-16

    To understand the role of electromagnetic ion cyclotron (EMIC) waves in determining the temporal features of pulsating proton aurora (PPA) via wave-particle interactions at subauroral latitudes, high-time-resolution (1/8 s) images of proton-induced N2>+ emissions were recorded using a new electron multiplying charge-coupled device camera, along with related Pc1 pulsations on the ground. The observed Pc1 pulsations consisted of successive rising-tone elements with a spacing for each element of 100 s and subpacket structures, which manifest as amplitude modulations with a period of a few tens of seconds. In accordance with the temporal features of the Pc1 pulsations, the auroral intensity showed a similar repetition period of 100 s and an unpredicted fast modulation of a few tens of seconds. Furthermore, these results indicate that PPA is generated by pitch angle scattering, nonlinearly interacting with Pc1/EMIC waves at the magnetic equator.

  2. Fast modulations of pulsating proton aurora related to subpacket structures of Pc1 geomagnetic pulsations at subauroral latitudes

    DOE PAGES

    Ozaki, M.; Shiokawa, K.; Miyoshi, Y.; ...

    2016-08-16

    To understand the role of electromagnetic ion cyclotron (EMIC) waves in determining the temporal features of pulsating proton aurora (PPA) via wave-particle interactions at subauroral latitudes, high-time-resolution (1/8 s) images of proton-induced N2>+ emissions were recorded using a new electron multiplying charge-coupled device camera, along with related Pc1 pulsations on the ground. The observed Pc1 pulsations consisted of successive rising-tone elements with a spacing for each element of 100 s and subpacket structures, which manifest as amplitude modulations with a period of a few tens of seconds. In accordance with the temporal features of the Pc1 pulsations, the auroral intensitymore » showed a similar repetition period of 100 s and an unpredicted fast modulation of a few tens of seconds. Furthermore, these results indicate that PPA is generated by pitch angle scattering, nonlinearly interacting with Pc1/EMIC waves at the magnetic equator.« less

  3. RADIAL STELLAR PULSATION AND THREE-DIMENSIONAL CONVECTION. II. TWO-DIMENSIONAL CONVECTION IN FULL AMPLITUDE RADIAL PULSATION

    SciTech Connect

    Geroux, Chris M.; Deupree, Robert G.

    2013-07-10

    We have developed a three-dimensional radiation hydrodynamics code to simulate the interaction of convection and radial pulsation in classical variable stars. One key goal is the ability to carry these simulations to full amplitude in order to compare them with observed light curves. Previous multi-dimensional calculations were prevented from reaching full amplitude because of drift in the radial coordinate system, due to the algorithm defining radial movement of the coordinate system during the pulsation cycle. We have removed this difficulty by defining our radial coordinate flow algorithm to require that the mass in a spherical shell remain constant for every time step throughout the pulsation cycle. We have used our new code to perform two-dimensional (2D) simulations of the interaction of radial pulsation and convection. We have made comparisons between light curves from our 2D convective simulations with observed light curves and find that our 2D simulated light curves are better able to match the observed light curve shape near the red edge of the RR Lyrae instability strip than light curves from previous one-dimensional time-dependent convective models.

  4. Effects of self-pulsation on the spray characteristics of gas-liquid swirl coaxial injector

    NASA Astrophysics Data System (ADS)

    Kang, Zhongtao; Li, Qinglian; Cheng, Peng; Zhang, Xinqiao; Wang, Zhen-guo

    2016-10-01

    To understand the influence of self-pulsation on the spray characteristics of gas-liquid swirl coaxial injector, a back-lighting photography technique has been employed to capture the instantaneous self-pulsated spray and stable spray images with a high speed camera. The diameter and velocity of the droplets in the spray have been characterized with a Dantec Phase Doppler Anemometry (PDA) system. The effects of self-pulsation on the spray pattern, primary breakup, spray angle, diameter and velocity distribution and mass flow rate distribution are analyzed and discussed. The results show that the spray morphology is greatly influenced by self-pulsation. The stable spray has a cone shape, while the self-pulsated spray looks like a Christmas tree. The main difference of these two sprays is the primary breakup. The liquid film of stable spray keeps stable while that of self-pulsated spray oscillates periodically. The film width of self-pulsated spray varies in a large range with 'neck' and 'shoulder' features existing. The liquid film of self-pulsated spray breaks up at the second neck, and then the second shoulder begins to breakup into ligaments. The self-pulsated spray produces droplet clusters periodically, varies horizontal spray width and mass flux periodically. From the point of spatial distribution, self-pulsation is good for the spray, it uniformizes the mass flux along radius and increases the spray angle. However, when self-pulsation occurs, the SMD distribution varies from an inverted V shape to a hollow cone shape, and SMD increases at all the measuring points. Namely, from the point of atomization performance, self-pulsation has negative effects even when the breakup length is smaller. The effects of self-pulsation on the diameter and velocity distributions of the spray are mainly in the center part of the spray. The periphery of stable and self-pulsated spray has similar diameter and velocity distribution.

  5. Features of Pc5 pulsations in the geomagnetic field, auroral luminosity, and Riometer absorption

    NASA Astrophysics Data System (ADS)

    Belakhovsky, V. B.; Pilipenko, V. A.; Samsonov, S. N.; Lorentsen, D.

    2016-01-01

    Simultaneous morning Pc5 pulsations ( f ~ 3-5 mHz) in the geomagnetic field, aurora intensities (in the 557.7 and 630.0 nm oxygen emissions and the 471.0 nm nitrogen emission), and riometer absorption, were studied based on the CARISMA, CANMOS, and NORSTAR network data for the event of January 1, 2000. According to the GOES-8 satellite observations, these Pc5 geomagnetic pulsations are observed as incompressible Alfvén waves with toroidal polarization in the magnetosphere. Although the Pc5 pulsation frequencies in auroras, the geomagnetic field, and riometer absorption are close to one another, stable phase relationships are not observed between them. Far from all trains of geomagnetic Pc5 pulsations are accompanied by corresponding auroral pulsations; consequently, geomagnetic pulsations are primary with respect to auroral pulsations. Both geomagnetic and auroral pulsations propagate poleward, and the frequency decreases with increasing geomagnetic latitude. When auroral Pc5 pulsations appear, the ratio of the 557.7/630.0 nm emission intensity sharply increases, which indicates that auroral pulsations result from not simply modulated particle precipitation but also an additional periodic acceleration of auroral electrons by the wave field. A high correlation is not observed between Pc5 pulsations in auroras and the riometer absorption, which indicates that these pulsations have a common source but different generation mechanisms. Auroral luminosity modulation is supposedly related to the interaction between Alfvén waves and the region with the field-aligned potential drop above the auroral ionosphere, and riometer absorption modulation is caused by the scattering of energetic electrons by VLF noise pulsations.

  6. Delta II Mars Pathfinder

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Final preparations for lift off of the DELTA II Mars Pathfinder Rocket are shown. Activities include loading the liquid oxygen, completing the construction of the Rover, and placing the Rover into the Lander. After the countdown, important visual events include the launch of the Delta Rocket, burnout and separation of the three Solid Rocket Boosters, and the main engine cutoff. The cutoff of the main engine marks the beginning of the second stage engine. After the completion of the second stage, the third stage engine ignites and then cuts off. Once the third stage engine cuts off spacecraft separation occurs.

  7. The occurrence of non-pulsating stars in the γ Dor and δ Sct pulsation instability regions: Results from Kepler quarter 14–17 data

    SciTech Connect

    Guzik, J. A.; Bradley, P. A.; Jackiewicz, J.; Molenda-Zakowicz, J.; Uytterhoeven, K.; Kinemuchi, K.

    2015-04-21

    In this study, the high precision long time-series photometry of the NASA Kepler spacecraft provides an excellent means to discover and characterize variability in main-sequence stars, and to make progress in interpreting the pulsations to derive stellar interior structure and test stellar models. For stars of spectral types A–F, the Kepler data revealed a number of surprises, such as more hybrid pulsating Sct and Dor pulsators than expected, pulsators lying outside of the instability regions predicted by theory, and stars that were expected to pulsate, but showed no variability. In our 2013 Astronomical Review article, we discussed the statistics of variability for 633 faint (Kepler magnitude 14–16) spectral type A–F stars observed by Kepler during Quarters 6–13 (June 2010–June 2012).

  8. The occurrence of non-pulsating stars in the γ Dor and δ Sct pulsation instability regions: Results from Kepler quarter 14–17 data

    DOE PAGES

    Guzik, J. A.; Bradley, P. A.; Jackiewicz, J.; ...

    2015-04-21

    In this study, the high precision long time-series photometry of the NASA Kepler spacecraft provides an excellent means to discover and characterize variability in main-sequence stars, and to make progress in interpreting the pulsations to derive stellar interior structure and test stellar models. For stars of spectral types A–F, the Kepler data revealed a number of surprises, such as more hybrid pulsating Sct and Dor pulsators than expected, pulsators lying outside of the instability regions predicted by theory, and stars that were expected to pulsate, but showed no variability. In our 2013 Astronomical Review article, we discussed the statistics ofmore » variability for 633 faint (Kepler magnitude 14–16) spectral type A–F stars observed by Kepler during Quarters 6–13 (June 2010–June 2012).« less

  9. The unique dynamical system underlying RR Lyrae pulsations

    NASA Astrophysics Data System (ADS)

    Kollath, Z.

    2016-05-01

    Hydrodynamic models of RR Lyrae pulsation display a very rich behaviour. Contrary to earlier expectations, high order resonances play a crucial role in the nonlinear dynamics representing the interacting modes. Chaotic attractors can be found at different time scales: both in the pulsation itself and in the amplitude equations shaping the possible modulation of the oscillations. Although there is no one-to-one connection between the nonlinear features found in the numerical models and the observed behaviour, the richness of the found phenomena suggests that the interaction of modes should be taken seriously in the study of the still unsolved puzzle of Blazhko effect. One of the main lessons of this complex system is that we should rethink the simple interpretation of the observed effect of resonances.

  10. Comparative pulsation calculations with OP and OPAL opacities

    NASA Technical Reports Server (NTRS)

    Kanbur, Shashi M.; Simon, Norman R.

    1994-01-01

    Comparative linear nonadiabatic pulsation calculations are presented using the OPAL and Opacity Project opacities. The two sets of opacities include effects due to intermediate coupling and fine structure as well as new abundances. We used two mass luminosity (M-L) relations, one standard (BIT), and one employing substantial convective core overshoot (COV). The two sets of opacities cannot be differentiated on the basis of the stellar pulsation calculations presented here. The BIT relation can model the beat and bump Cepheids with masses between 4 and 7 solar mass, while if the overshoot relation is used, masses between 2 and 6 solar mass are required. In the RR Lyrae regime, we find the inferred masses of globular cluster RRd stars to be little influenced by the choice of OPAL or OP. Finally, the limited modeling we have done is not able to constrain the Cepheid M-L relation based upon period ratios observed in the beat and bump stars.

  11. The First Six Outbursting Cool DA White Dwarf Pulsators

    NASA Astrophysics Data System (ADS)

    Bell, K. J.; Hermes, J. J.; Montgomery, M. H.; Winget, D. E.; Gentile Fusillo, N. P.; Raddi, R.; Gänsicke, B. T.

    2017-03-01

    Extensive observations from the Kepler spacecraft have recently revealed a new outburst phenomenon operating in cool pulsating DA (hydrogen atmosphere) white dwarfs (DAVs). With the introduction of two new outbursting DAVs from K2 Fields 7 (EPIC 229228364) and 8 (EPIC 220453225) in these proceedings, we presently know of six total members of this class of object. We present the observational commonalities of the outbursting DAVs: (1) outbursts that increase the mean stellar flux by up to ≍15%, last many hours, and recur irregularly on timescales of days; (2) effective temperatures that locate them near the cool edge of the DAV instability strip; and (3) rich pulsation spectra with modes that are observed to wander in amplitude/frequency.

  12. Some insights into stellar structure from nonlinear pulsations

    NASA Astrophysics Data System (ADS)

    Goupil, M. J.

    1993-12-01

    Efficient tools of investigation of stellar pulsation are the integral relations which link oscillation frequencies to the static structure of stellar models, as provided by the linear theory of pulsation. Similarly, oscillation amplitudes and phases, which arise from nonlinear processes, can be related to the stellar structure by means of amplitude equation formalisms. For the simple case of a monoperiodic oscillation, involving only one unstable marginal mode, such a formalism shows that the (limit cycle) radius variations, at time t and mass level m, can be approximated, up to second order of approximation. The nonlinear, nonadiabatic coefficients, are integrals over mass of kernels which depend on eigenfrequencies, eigenfunctions, on second and third order Taylor quantities from the equations modelling the star. They can either be computed from static models (Klapp et al., 1985) or obtained by numerical fits of hydrodynamical results (Kovacs and Buchler, 1989).

  13. New radial pulsation constants for the Beta Cephei variables

    NASA Astrophysics Data System (ADS)

    Shobbrook, R. R.

    1985-05-01

    Recent new calibrations of luminosities, temperatures and bolometric corrections for B stars in terms of the β index and the Strömgren parameter c0 have necessitated the recalculation of the radial pulsation constants, Q, for the β Cephei (of β Canis Majoris) variable stars. Corrections for the effect of binaries on the absolute magnitudes, derived both from the luminosity calibration and from the mean distance moduli of those variables in clusters, are calculated in an Appendix. The mean value of Q, although determined from absolute magnitudes which are about 0.4 mag fainter than those from previous calibrations of the β index, still suggests that the majority of the variables are pulsating in the first overtone radial mode, as have most investigations in recent years.

  14. Pulsating aurora induced by upper atmospheric barium releases

    NASA Technical Reports Server (NTRS)

    Deehr, C.; Romick, G.

    1977-01-01

    The paper reports the apparent generation of pulsating aurora by explosive releases of barium vapor near 250 km altitude. This effect occurred only when the explosions were in the path of precipitating electrons associated with the visible aurora. Each explosive charge was a standard 1.5 kg thermite mixture of Ba and CuO with an excess of Ba metal which was vaporized and dispersed by the thermite explosion. Traces of Sr, Na, and Li were added to some of the charges, and monitoring was achieved by ground-based spectrophotometric observations. On March 28, 1976, an increase in emission at 5577 A and at 4278 A was observed in association with the first two bursts, these emissions pulsating with roughly a 10 sec period for approximately 60 to 100 sec after the burst.

  15. The Pulsating, Accreting White Dwarf in GW Lib after Outburst

    NASA Astrophysics Data System (ADS)

    Szkody, Paula

    The first known pulsating white dwarf in an accreting close binary system (GW Lib) underwent an outburst in April, 2007. We aim to follow the pulsation spectrum as the white dwarf cools back to to its quiescent temperature from its heating due to the outburst which should take about 3 years. As it cools, it should re-enter the instability strip and we can witness changes in the driving mechanism and detect modes that are excited by the temperature changes. The higher pulse amplitude in UV vs optical and the available time-tag mode makes GALEX the instrument of choice. The data in 2008 will be combined with our DOT time in May, June 2007 to provide coverage of the largest cooling that takes place in the year following outburst. Since the few known systems only outburst every 20-30 yrs, this is the first opportunity to accomplish a study of this type."

  16. Quantitative results of stellar evolution and pulsation theories.

    NASA Technical Reports Server (NTRS)

    Fricke, K.; Stobie, R. S.; Strittmatter, P. A.

    1971-01-01

    The discrepancy between the masses of Cepheid variables deduced from evolution theory and pulsation theory is examined. The effect of input physics on evolutionary tracks is first discussed; in particular, changes in the opacity are considered. The sensitivity of pulsation masses to opacity changes and to the ascribed values of luminosity and effective temperature are then analyzed. The Cepheid mass discrepancy is discussed in the light of the results already obtained. Other astronomical evidence, including the mass-luminosity relation for main sequence stars, the solar neutrino flux, and cluster ages are also considered in an attempt to determine the most likely source of error in the event that substantial mass loss has not occurred.

  17. Experimental investigation on a pulsating heat pipe with hydrogen

    NASA Astrophysics Data System (ADS)

    Deng, H. R.; Liu, Y. M.; Ma, R. F.; Han, D. Y.; Gan, Z. H.; Pfotenhauer, J. M.

    2015-12-01

    The pulsating heat pipe (PHP) has been increasingly studied in cryogenic application, for its high transfer coefficient and quick response. Compared with Nb3Sn and NbTi, MgB2 whose critical transformation temperature is 39 K, is expected to replace some high-temperature superconducting materials at 25 K. In order to cool MgB2, this paper designs a Hydrogen Pulsating Heat Pipe, which allows a study of applied heat, filling ratio, turn number, inclination angle and length of adiabatic section on the thermal performance of the PHP. The thermal performance of the hydrogen PHP is investigated for filling ratios of 35%, 51%, 70% at different heat inputs, and provides information regarding the starting process is received at three filling ratios.

  18. Seismology of a Massive Pulsating Hydrogen Atmosphere White Dwarf

    NASA Astrophysics Data System (ADS)

    Kepler, S. O.; Pelisoli, Ingrid; Peçanha, Viviane; Costa, J. E. S.; Fraga, Luciano; Hermes, J. J.; Winget, D. E.; Castanheira, Barbara; Córsico, A. H.; Romero, A. D.; Althaus, Leandro; Kleinman, S. J.; Nitta, A.; Koester, D.; Külebi, Baybars; Jordan, Stefan; Kanaan, Antonio

    2012-10-01

    We report our observations of the new pulsating hydrogen atmosphere white dwarf SDSS J132350.28+010304.22. We discovered periodic photometric variations in frequency and amplitude that are commensurate with nonradial g-mode pulsations in ZZ Ceti stars. This, along with estimates for the star's temperature and gravity, establishes it as a massive ZZ Ceti star. We used time-series photometric observations with the 4.1 m SOAR Telescope, complemented by contemporary McDonald Observatory 2.1 m data, to discover the photometric variability. The light curve of SDSS J132350.28+010304.22 shows at least nine detectable frequencies. We used these frequencies to make an asteroseismic determination of the total mass and effective temperature of the star: M sstarf = 0.88 ± 0.02 M ⊙ and T eff = 12, 100 ± 140 K. These values are consistent with those derived from the optical spectra and photometric colors.

  19. SEISMOLOGY OF A MASSIVE PULSATING HYDROGEN ATMOSPHERE WHITE DWARF

    SciTech Connect

    Kepler, S. O.; Pelisoli, Ingrid; Pecanha, Viviane; Costa, J. E. S.; Fraga, Luciano; Hermes, J. J.; Winget, D. E.; Castanheira, Barbara; Corsico, A. H.; Romero, A. D.; Althaus, Leandro; Kleinman, S. J.; Nitta, A.; Koester, D.; Kuelebi, Baybars; Kanaan, Antonio

    2012-10-01

    We report our observations of the new pulsating hydrogen atmosphere white dwarf SDSS J132350.28+010304.22. We discovered periodic photometric variations in frequency and amplitude that are commensurate with nonradial g-mode pulsations in ZZ Ceti stars. This, along with estimates for the star's temperature and gravity, establishes it as a massive ZZ Ceti star. We used time-series photometric observations with the 4.1 m SOAR Telescope, complemented by contemporary McDonald Observatory 2.1 m data, to discover the photometric variability. The light curve of SDSS J132350.28+010304.22 shows at least nine detectable frequencies. We used these frequencies to make an asteroseismic determination of the total mass and effective temperature of the star: M{sub *} = 0.88 {+-} 0.02 M{sub Sun} and T{sub eff} = 12, 100 {+-} 140 K. These values are consistent with those derived from the optical spectra and photometric colors.

  20. HST observations of the pulsating white dwarf GD 358

    NASA Astrophysics Data System (ADS)

    Castanheira, B. G.; Nitta, A.; Kepler, S. O.; Winget, D. E.; Koester, D.

    2005-03-01

    We used time-resolved ultraviolet spectroscopy obtained with the FOS and STIS spectrographs of the Hubble Space Telescope (HST), together with archival IUE observations to measure the effective temperature (Teff), surface gravity (log g) and distance (d) of the pulsating DB white dwarf GD 358 with unprecedented accuracy, and to show that the temperature did not change during the 1996 sforzando, when the star changed basically to a single mode pulsator. We also measured for the first time for a DBV the spherical harmonic degree (ℓ) for two modes, with k=8 and k=9, which was only possible because the stellar light curve was dominated by a single mode in 1996. The independent spectra provide the following values: Teff=24 100± 400 K, log g=7.91±0.26 and d=42.7±2.5 pc. The ultraviolet spectroscopic distance is in better agreement with the seismological value, than the one derived by parallax.

  1. Photometric Analysis of Two Candidate Pulsating Early Stars

    NASA Astrophysics Data System (ADS)

    Sonnett, S. M.; Dukes, R. J.

    2004-12-01

    Both HD199122 and HD213617 are found to be periodic with frequencies within the characteristic range of g-mode pulsation for either the Slowly Pulsating B Stars (SPBs) or the Gamma Doradus stars. We began observing HD199122 as a SPB based on its appearance in the list of such stars found through Hipparcos data examination by Koen (MNRAS, 321, 44, 2001). However, as noted by Koen, its reported spectral type A2 is late for an SPB. Based on published photometric indices, he suggests that its spectral type is closer to B7 and thus it is likely to be a SPB. Using Stromgren uvby photometry, we have examined over 600 differential measures of this star. We find two clear frequencies of f1 = 0.80209 c/d and f2 = 0.82444 c/d, which is within the characteristic range for g-mode pulsation of hotter main sequence stars. Our data suggests the possible presence of a third frequency, but confirmation is pending more data analysis. A preliminary analysis of Hipparcos satellite data for HD 213617 proposes a frequency of 0.55672 c/d (Handler, G.MNRAS 309, L19-L23,1999). However, Castellano (private communication) has found a period closer to 0.8 c/d from his analysis of the Hipparcos data. Since this star is an early F type, confirmation of this pulsational value could classify this star as a Gamma Doradus variable. We are presently obtaining observations for both subjects and will continue analysis as data arrives. Observations of HD213617 were begun as part of a summer project as part of the NASA Academy at Ames. This work has been supported by South Carolina Space Grant and NSF grant AST-0071260 to the College of Charleston,.

  2. The effect of cushion-ram pulsation on hot stamping

    NASA Astrophysics Data System (ADS)

    Landgrebe, Dirk; Rautenstrauch, Anja; Kunke, Andreas; Polster, Stefan; Kriechenbauer, Sebastian; Mauermann, Reinhard

    2016-10-01

    Hot stamping is an important technology for manufacturing high-strength components. This technology offers the possibility to achieve significant weight reductions. In this study, cushion-ram pulsation (CRP), a new technology for hot stamping on servo-screw presses, was investigated and applied for hot stamping. Compared to a conventional process, the tests yielded a significantly higher drawing depth. In this paper, the CRP technology and the first test results with hot stamping were described in comparison to the conventional process.

  3. Pulsating stars as distance indicators and stellar population tracers

    NASA Astrophysics Data System (ADS)

    Musella, I.

    Pulsating stars can play a fundamental role as distance indicators to set the astronomical distance scale and to trace different stellar populations to infer information on the star formation history of the host galaxy. The most interesting variables are Classical Cepheids and RR Lyrae. A review of the properties of these variables and of the theoretical and observational approaches adopted in the literature are presented.

  4. Mapping the Properties of Convection in Pulsating White Dwarfs

    NASA Astrophysics Data System (ADS)

    Dalessio, J.; Provencal, J. L.; Montgomery, M. H.; Shipman, H. L.

    2013-01-01

    Montgomery (2005) showed that the properties of a pulsating white dwarf's convection zone can be determined by fitting the observed lightcurves with model simulations. The Whole Earth Telescope (WET) and the Delaware Asteroseismic Research Center (DARC) are using this technique to map the properties of convection across the DA and DB instability strips. We present the current status of the project, including preliminary analysis of light curves and from recent WET campaigns.

  5. Self-pulsation threshold of Raman amplified Brillouin fiber cavities.

    PubMed

    Ott, J R; Pedersen, M E V; Rottwitt, K

    2009-08-31

    An implicit equation for the oscillation threshold of stimulated Brillouin scattering from Raman amplified signals in fibers with external feedback is derived under the assumption of no depletion. This is compared to numerical investigations of Raman amplification schemes showing good agreement for high reflectivities. For low reflectivities and high attenuation or long fibers, the assumption of no depletion is shown not to be valid. In these cases the effects of the depletion on the self-pulsation is examined.

  6. Self-Sustained Ultrafast Pulsation in Coupled VCSELs

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng

    2001-01-01

    High frequency, narrow-band self-pulsating operation is demonstrated in two coupled vertical-cavity surface-emitting lasers (VCSELs). The coupled VCSELs provide an ideal source for high-repetition rate (over 40 GHz), sinusoidal-like modulated laser source with Gaussian-like near- and far-field profiles. We also show that the frequency of the modulation can be tuned by the inter-VCSEL separation or by DC-bias level.

  7. Development of a balloon volume sensor for pulsating balloon catheters.

    PubMed

    Nolan, Timothy D C; Hattler, Brack G; Federspiel, William J

    2004-01-01

    Helium pulsed balloons are integral components of several cardiovascular devices, including intraaortic balloon pumps (IABP) and a novel intravenous respiratory support catheter. Effective use of these devices clinically requires full inflation and deflation of the balloon, and improper operating conditions that lead to balloon under-inflation can potentially reduce respiratory or cardiac support provided to the patient. The goal of the present study was to extend basic spirographic techniques to develop a system to dynamically measure balloon volumes suitable for use in rapidly pulsating balloon catheters. The dynamic balloon volume sensor system (DBVSS) developed here used hot wire anemometry to measure helium flow in the drive line from console to catheter and integrated the flow to determine the volume delivered in each balloon pulsation. An important component of the DBVSS was an algorithm to automatically detect and adjust flow signals and measured balloon volumes in the presence of gas composition changes that arise from helium leaks occurring in these systems. The DBVSS was capable of measuring balloon volumes within 5-10% of actual balloon volumes over a broad range of operating conditions relevant to IABP and the respiratory support catheter. This includes variations in helium concentration from 70-100%, pulsation frequencies from 120-480 beats per minute, and simulated clinical conditions of reduced balloon filling caused by constricted vessels, increased driveline, or catheter resistance.

  8. Temporal characteristics and energy deposition of pulsating auroral patches

    NASA Astrophysics Data System (ADS)

    Humberset, B. K.; Gjerloev, J. W.; Samara, M.; Michell, R. G.; Mann, I. R.

    2016-07-01

    We present a careful statistical analysis of pulsating aurora (PA) using all-sky green line (557.7 nm) images obtained at 3.3 Hz. Six well-defined individual PA patches are identified and extracted using a contouring technique. Quantitative parameters such as the patch duration (on-time and off-time), peak intensity, and integrated intensity are determined for each patch and each pulsation. The resulting characteristics serve as strict observational constraints that any of the many competing theories attempting to explain PA must predict. The purpose of this paper is to determine the characteristics of PA patches in order to provide better observational constraints on the suggested mechanisms. All aspects of the temporal behavior of the individual patches appear to be erratic. Historically, PA has been defined very loosely and we argue that the use of the term "pulsating" is inappropriate since our findings and other published results are not regularly periodic and thus a more appropriate term may be fluctuating aurora. Further, we find that the observational constraints do not fit well with the flow cyclotron maser theory, which in particular is suggested to create PA patches. There is no clear candidate of the suggested mechanisms and drivers to explain the observational constraints set by the PA patches in a satisfactory manner.

  9. Heavy Metal Stars: puzzling pulsations and chaotic kinematics.

    NASA Astrophysics Data System (ADS)

    Jeffery, Simon; Martin, Pamela; N, Naslim

    2015-08-01

    A new group of chemically-peculiar stars has been discovered in recent years. Being blue and less luminous than main-sequence stars of the same colour, they are members of the much larger class of hot subdwarfs. They form a tiny subgroup of a small subgroup which are moderately enriched in helium. Their spectra show lines of ions never before observed in stellar spectra, and represent an excess relative to solar of up to 4.5 dex in zirconium, strontium, yttrium, germanium and even lead. The most likely explanation is radiatively-driven diffusion concentrating these ions in a very thin layer of the photosphere. At least one of these peculiar stars pulsates, although the driving mechansim for the pulsations in LS IV-14 116 remains a mystery. All three heavy-metal subdwarfs have unmeasurably small rotation velocities, but halo-like space velocities. We will discuss how these characteristics, along with Hubble Space Telescope and ESO Very Large Telescope observations to be obtained just after the General Assembly, will attempt to solve the mystery of their unknown origin and unexplained pulsations.

  10. An Observational Study of Pulsations in Proto-Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Hrivnak, Bruce J.; Lu, Wenxian; Henson, Gary D.; Hillwig, Todd C.

    2016-01-01

    We have been carrying out a long-term monitoring program to study the light variability in proto-planetary nebulae (PPNe). PPNe are post-Asymptotic Giant Branch objects in transition between the AGB and PN phases in the evolution of low and intermediate-mass stars. As such, it is not surprising that they display pulsational variability. We have been carrying out photometric monitoring of 30 of these at the Valparaiso University campus observatory over the last 20 years, with the assistance of undergraduate students. The sample size has been enlarged over the past six years by observations made using telescopes in the SARA consortium at KPNO and CTIO. Periods have been determined for those of F-G spectral types. We have also enlarged the sample with PPNe from outside the Milky Way by determining periods of eight PPNe in the lower metalicity environment of the Magellanic Clouds. Periods for the entire sample range from 35 to 160 days. Some clear patterns have emerged, with those of higher temperature possessing shorter periods and smaller amplitudes, indicating a reduction in period and pulsation amplitude as the objects evolve. Radial velocity monitoring of several of the brightest of these has allowed us to document their changes in brightness, color, and size during a pulsation cycle. The results of this study will be presented. This research is supported by grants from the National Science Foundation (most recently AST 1413660), with additional student support from the Indiana Space Grant Consortium.

  11. Studies of the Long Secondary Periods in Pulsating Red Giants

    NASA Astrophysics Data System (ADS)

    Percy, J. R.; Deibert, E.

    2016-12-01

    We have used systematic, sustained visual observations from the AAVSO International Database and the AAVSO time-series analysis package VSTAR to study the unexplained "long secondary periods" (LSPs) in 27 pulsating red giants. In our sample, the LSPs range from 479 to 2967 days, and are on average 8.1 +/- 1.3 times the excited pulsation period. There is no evidence for more than one LSP in each star. In stars with both the fundamental and first overtone radial period present, the LSP is more often about 10 times the latter. The visual amplitudes of the LSPs are typically 0.1 magnitude and do not correlate with the LSP. The phase curves tend to be sinusoidal, but at least two are sawtooth. The LSPs are stable, within their errors, over the timespan of our data, which is typically 25,000 days. The amplitudes, however, vary by up to a factor of two or more on a time scale of roughly 20-30 LSPs. There is no obvious difference between the carbon (C) stars and the normal oxygen (M) stars. Previous multicolor observations showed that the LSP color variations are similar to those of the pulsation period, and of the LSPs in the Magellanic Clouds, and not like those of eclipsing stars. We note that the LSPs are similar to the estimated rotation periods of the stars, though the latter have large uncertainties. This suggests that the LSP phenomenon may be a form of modulated rotational variability.

  12. Mass-spring model of a self-pulsating drop.

    PubMed

    Antoine, Charles; Pimienta, Véronique

    2013-12-03

    Self-pulsating sessile drops are a striking example of the richness of far-from-equilibrium liquid/liquid systems. The complex dynamics of such systems is still not fully understood, and simple models are required to grasp the mechanisms at stake. In this article, we present a simple mass-spring mechanical model of the highly regular drop pulsations observed in Pimienta, V.; Brost, M.; Kovalchuk, N.; Bresch, S.; Steinbock, O. Complex shapes and dynamics of dissolving drops of dichloromethane. Angew. Chem., Int. Ed. 2011, 50, 10728-10731. We introduce an effective time-dependent spreading coefficient that sums up all of the forces (due to evaporation, solubilization, surfactant transfer, coffee ring effect, solutal and thermal Marangoni flows, drop elasticity, etc.) that pull or push the edge of a dichloromethane liquid lens, and we show how to account for the periodic rim breakup. The model is examined and compared against experimental observations. The spreading parts of the pulsations are very rapid and cannot be explained by a constant positive spreading coefficient or superspreading.

  13. Accreting Pulsators Gw Lib and V455 and after Superoutburst

    NASA Astrophysics Data System (ADS)

    Szkody, Paula

    Two cataclysmic variables containing pulsating white dwarfs underwent rare outbursts in 2007 (GW Lib and V455 And). As we know outbursts heat the white dwarfs by more than 10,000K and they gradually cool to their quiescent temperatures over the course of about 3 years, these two objects present the first unique opportunity to follow the pulsation spectrum of a white dwarf as it cools on much more rapid timescales than evolutionary ones for single white dwarfs. As these 2 objects cool, they should re-enter their instability strips and we can witness changes in the driving mechanism and detect modes that are excited by the T changes. Our 2008 ground-based data on GW Lib showed an intermittent new pulsation at a longer period than at quiescence. The data in 2010 will be the critical 3rd year and will be combined with our DOT and Cycle 4,5 GI observations to determine the long term cooling of GW Lib. Similar information will be obtained for V455 And. The higher pulse amplitude in UV vs optical and the time-tag mode means that GALEX can provide optimum data over the optical. Data on both systems will provide an important contrast in how the white dwarfs react to an outburst, as GW Lib at quiescence has a hot white dwarf far outside the normal instability strip for non-accreting white dwarfs, while V455 And is cool and inside this strip.

  14. Temporal Characteristics and Energy Deposition of Pulsating Auroral Patches

    NASA Technical Reports Server (NTRS)

    Humberset, B. K.; Gjerloev, J. W.; Samara, M.; Michell, R. G.; Mann, I. R.

    2016-01-01

    We present a careful statistical analysis of pulsating aurora (PA) using all-sky green line (557.7 nm) images obtained at 3.3 Hz. Six well-defined individual PA patches are identified and extracted using a contouring technique. Quantitative parameters such as the patch duration (on-time and off-time), peak intensity, and integrated intensity are determined for each patch and each pulsation. The resulting characteristics serve as strict observational constraints that any of the many competing theories attempting to explain PA must predict. The purpose of this paper is to determine the characteristics of PA patches in order to provide better observational constraints on the suggested mechanisms. All aspects of the temporal behavior of the individual patches appear to be erratic. Historically, PA has been defined very loosely and we argue that the use of the term pulsating is inappropriate since our findings and other published results are not regularly periodic and thus a more appropriate term may be fluctuating aurora. Further, we find that the observational constraints do not fit well with the flow cyclotron maser theory, which in particular is suggested to create PA patches. There is no clear candidate of the suggested mechanisms and drivers to explain the observational constraints set by the PA patches in a satisfactory manner.

  15. HST Observations of the Pulsating White Dwarf GD 358

    NASA Astrophysics Data System (ADS)

    Castanheira, B. G.; Kepler, S. O.; Nitta, A.; Winget, D. E.; Koester, D.

    2005-07-01

    We used time-resolved ultraviolet spectroscopy obtained with the FOS and STIS spectrographs of the Hubble Space Telescope (HST), together with archival IUE observations to measure the effective temperature (Teff}), surface gravity (log g) and distance (d) of the pulsating DB white dwarf GD 358 with unprecedented accuracy, and to show the temperature did not change during the 1996 sforzando, when the star changed basically to a single mode pulsator. We also measured, for the first time for a DBV, the spherical harmonic degree (ℓ) for two modes, with k=8 and k=9, which was only possible because the stellar light curve was dominated by a single mode in 1996. In addition, we constrain ℓ to be 1 or 2 for the main pulsations in the normal multiperiodic state. The spectra are best fit for Teff}=24 100± 400 K, log g=7.91±0.26 and d=42.7±2.5 pc. The ultraviolet spectroscopic distance is in better agreement with the seismological value, than the one derived by parallax.

  16. Interhemispheric asymmetry of the amplitudes of Pc3 geomagnetic pulsations

    NASA Astrophysics Data System (ADS)

    Heilig, B.; Pilipenko, V.; Sutcliffe, P.

    2012-04-01

    The interhemispheric asymmetry between the amplitude of geomagnetic pulsations was realised already in the 1960s'. Most of the observers (Yumoto et al., 1988; Saito et al., 1989; Takahashi et al., 1994; Obana et al., 2005) reported that the energy of Pc3 (Pc4) pulsations were found to be significantly larger on the winter hemisphere (i.e. in December on the Northern hemisphere and in June in the Southern hemisphere) when comparing conjugate observations. The authors linked this behaviour to the seasonal conductivity changes of the ionosphere, however, no modelling effort were made to explain the observed behaviour. In the presented paper we make an attempt to model the seasonal asymmetry based on the model of Pilipenko et al (2008). Using data recorded at geomagnetically conjugate stations, Tihany (THY, Hungary) and Hermanus (HER, South Africa) between 2002 and 2007 we present a case where an anomalous seasonal variation can be observed. The observed amplitudes were significantly larger in local summer than in local winter, but only in years near the sunspot maximum. This is exactly the opposite what was found for other station pairs. It was also observed that the range of the seasonal variation of the HER/THY ratio diminishes with the decrease of the solar index F10.7. The phenomenon was first realised by Vero (1965) who linked the anomalous winter attenuation of pulsations to the anomalously high F2 region electron density of the ionosphere. A clear physical interpretation of these results is still missing.

  17. THE PULSATION MODE AND DISTANCE OF THE CEPHEID FF AQUILAE

    SciTech Connect

    Turner, D. G.; Kovtyukh, V. V.; Luck, R. E.; Berdnikov, L. N. E-mail: val@deneb1.odessa.ua E-mail: leonid.berdnikov@gmail.com

    2013-07-20

    The determination of pulsation mode and distance for field Cepheids is a complicated problem best resolved by a luminosity estimate. For illustration a technique based on spectroscopic luminosity discrimination is applied to the 4.47 day s-Cepheid FF Aql. Line ratios in high dispersion spectra of the variable yield values of (M{sub V} ) = -3.40 {+-} 0.02 s.e. ({+-}0.04 s.d.), average effective temperature T{sub eff} = 6195 {+-} 24 K, and intrinsic color ((B) - (V)){sub 0} = +0.506 {+-} 0.007, corresponding to a reddening of E{sub B-V} = 0.25 {+-} 0.01, or E{sub B-V}(B0) = 0.26 {+-} 0.01. The skewed light curve, intrinsic color, and luminosity of FF Aql are consistent with fundamental mode pulsation for a small-amplitude classical Cepheid on the blue side of the instability strip, not a sinusoidal pulsator. A distance of 413 {+-} 14 pc is estimated from the Cepheid's angular diameter in conjunction with a mean radius of (R) = 39.0 {+-} 0.7 R{sub Sun} inferred from its luminosity and effective temperature. The dust extinction toward FF Aql is described by a ratio of total-to-selective extinction of R{sub V} = A{sub V} /E(B - V) = 3.16 {+-} 0.34 according to the star's apparent distance modulus.

  18. The pulsating laminar flow in a rectangular channel

    NASA Astrophysics Data System (ADS)

    Valueva, E. P.; Purdin, M. S.

    2015-11-01

    The finite difference method is used to solve the task of the developed pulsating laminar flow in a rectangular channel. The optimum of the difference scheme parameters was determined. Data on the amplitude and phase of the longitudinal velocity oscillations, the hydraulic and friction drag coefficients, the shear stress on the wall have been obtained. Using the dimensionless value of the frequency pulsations two characteristic regimes — the quasisteady-state regime and the high-frequency regime have been identified. In the quasi-steady-state regime, the values of all hydrodynamic quantities at each instant of time correspond to the velocity value averaged over the cross section at a given moment of time. It is shown that in the high-frequency regime, the dependences on the dimensionless oscillation frequency of oscillating components of hydrodynamic quantities are identical for rectilinear channels with a different cross-sectional form (round pipe, flat and a rectangular channels). The effect of the aspect ratio of the rectangular channel sides channel on the pulsating flow dynamics has been analyzed.

  19. DELTA PHASE PLUTONIUM ALLOYS

    DOEpatents

    Cramer, E.M.; Ellinger, F.H.; Land. C.C.

    1960-03-22

    Delta-phase plutonium alloys were developed suitable for use as reactor fuels. The alloys consist of from 1 to 4 at.% zinc and the balance plutonium. The alloys have good neutronic, corrosion, and fabrication characteristics snd possess good dimensional characteristics throughout an operating temperature range from 300 to 490 deg C.

  20. Double throat pressure pulsation dampener for oil-free screw compressors

    NASA Astrophysics Data System (ADS)

    Lucas, Michael J.

    2005-09-01

    This paper describes a recent invention at Ingersoll-Rand for reducing the pressure pulsations in an oil-free screw compressor. Pressure pulsation is a term used in the air compressor industry to describe the rapid change in pressure with time measured in the downstream piping of the air compressor. The pulsations are due to the rapid opening and closing of the screws as the compressed air is eject from the compressor into the piping system. The pulsations are known to produce excessive noise levels and high levels of vibration in the piping system. Reducing these pulsations is critical to achieving a quiet running compressor. This paper will describe the methodology used to analyze the data and show both computational and experimental results achieved using the pulsation dampener. A patent for this design has been filed with the US patent office.

  1. Investigations on the Aerodynamic Characteristics and Blade Excitations of the Radial Turbine with Pulsating Inlet Flow

    NASA Astrophysics Data System (ADS)

    Liu, Yixiong; Yang, Ce; Yang, Dengfeng; Zhang, Rui

    2016-04-01

    The aerodynamic performance, detailed unsteady flow and time-based excitations acting on blade surfaces of a radial flow turbine have been investigated with pulsation flow condition. The results show that the turbine instantaneous performance under pulsation flow condition deviates from the quasi-steady value significantly and forms obvious hysteretic loops around the quasi-steady conditions. The detailed analysis of unsteady flow shows that the characteristic of pulsation flow field in radial turbine is highly influenced by the pulsation inlet condition. The blade torque, power and loading fluctuate with the inlet pulsation wave in a pulse period. For the blade excitations, the maximum and the minimum blade excitations conform to the wave crest and wave trough of the inlet pulsation, respectively, in time-based scale. And toward blade chord direction, the maximum loading distributes along the blade leading edge until 20% chord position and decreases from the leading to trailing edge.

  2. Reducing the effect of penstock pressure pulsations on hydro electric plant power system stabilizer signals

    SciTech Connect

    Nettleton, L.D.; Gurney, J.H.; Bollinger, K.E.

    1993-12-01

    A characteristic trait of Francis turbines operating at low-head is pressure pulsations that occur during certain load levels of the generator. These stem from pressure variations across the turbine due to pulsating flow in the draft-tube. This surging action of the water column is related to draft-tube geometry and flow-rate of water in the penstock. The pressure pulsations cause torque variations on the turbine and corresponding electric power pulsations. If electric power is used as a feedback signal to the Power System Stabilizer (PSS), then Mvar and terminal voltage pulsations will occur when the generator is operating in the ``rough zone``. This paper describes field test results for investigating feedforward control from the penstock, draft tube and spiral case pressure to reduce the effects of Mw pulsations on PSS output signals. This investigation involved a PSS with generator power as the feedback signal and the PSS tuned for local and inter-area damping.

  3. Investigation on the Possible Relationship between Magnetic Pulsations and Earthquakes

    NASA Astrophysics Data System (ADS)

    Jusoh, M.; Liu, H.; Yumoto, K.; Uozumi, T.; Takla, E. M.; Yousif Suliman, M. E.; Kawano, H.; Yoshikawa, A.; Asillam, M.; Hashim, M.

    2012-12-01

    The sun is the main source of energy to the solar system, and it plays a major role in affecting the ionosphere, atmosphere and the earth surface. The connection between solar wind and the ground magnetic pulsations has been proven empirically by several researchers previously (H. J. Singer et al., 1977, E. W. Greenstadt, 1979, I. A. Ansari 2006 to name a few). In our preliminary statistical analysis on relationship between solar and seismic activities (Jusoh and Yumoto, 2011, Jusoh et al., 2012), we observed a high possibility of solar-terrestrial coupling. We observed high tendency of earthquakes to occur during lower phase solar cycles which significantly related with solar wind parameters (i.e solar wind dynamic pressure, speed and input energy). However a clear coupling mechanism was not established yet. To connect the solar impact on seismicity, we investigate the possibility of ground magnetic pulsations as one of the connecting agent. In our analysis, the recorded ground magnetic pulsations are analyzed at different ranges of ultra low frequency; Pc3 (22-100 mHz), Pc4 (6.7-22 mHz) and Pc5 (1.7-6.7 mHz) with the occurrence of local earthquake events at certain time periods. This analysis focuses at 2 different major seismic regions; north Japan (mid latitude) and north Sumatera, Indonesia (low latitude). Solar wind parameters were obtained from the Goddard Space Flight Center, NASA via the OMNIWeb Data Explorer and the Space Physics Data Facility. Earthquake events were extracted from the Advanced National Seismic System (ANSS) database. The localized Pc3-Pc5 magnetic pulsations data were extracted from Magnetic Data Acquisition System (MAGDAS)/Circum Pan Magnetic Network (CPMN) located at Ashibetsu (Japan); for earthquakes monitored at north Japan and Langkawi (Malaysia); for earthquakes observed at north Sumatera. This magnetometer arrays has established by International Center for Space Weather Science and Education, Kyushu University, Japan. From the

  4. Detection of new pulsations in the roAp star HD 177765

    NASA Astrophysics Data System (ADS)

    Holdsworth, Daniel L.

    2016-10-01

    We report the discovery of 2 previously undetected pulsation frequencies in the known roAp star HD 177765. Photometric observations by the Kepler space telescope during K2 Campaign 7 show low-amplitude pulsations (4-11 micro mag) previously unseen in photometry. We show the pulsations to be stable over the observation period, and demonstrate that the separation of the frequencies is not representative of the large frequency separation quantity needed to perform asteroseismic analysis.

  5. The Devil's in the Delta

    ERIC Educational Resources Information Center

    Luyben, William L.

    2007-01-01

    Students frequently confuse and incorrectly apply the several "deltas" that are used in chemical engineering. The deltas come in three different flavors: "out minus in", "big minus little" and "now versus then." The first applies to a change in a stream property as the stream flows through a process. For example, the "[delta]H" in an energy…

  6. Substructures with luminosity modulation and horizontal oscillation in pulsating patch: Principal component analysis application to pulsating aurora

    NASA Astrophysics Data System (ADS)

    Nishiyama, Takanori; Miyoshi, Yoshizumi; Katoh, Yuto; Sakanoi, Takeshi; Kataoka, Ryuho; Okano, Shoichi

    2016-03-01

    We observed a mesoscale aurora (100 km × 100 km) with patchy structure and equatorward propagation at Poker Flat Research Range on 1 December 2011. Fast Fourier transform (FFT) analysis revealed that this pulsating patch clearly exhibited temporal variations that can be categorized into two types: on-off pulsation (7.8-10 s) with large amplitudes and luminosity modulations excited during on phase with a frequency of about 3.0 Hz. In addition, we applied principal component analysis (PCA) to time series image data of the pulsating aurora for the first time. Time coefficients were estimated by PCA for the whole patch and the substructures were consistent with those obtained from the FFT analysis, and therefore, we concluded that PCA is capable of decomposing several structures that have different coherent spatiotemporal characteristics. Another new insight in this study is that the rapid variations were highly localized; they were excited in only the substructures embedded in the whole structure. Moreover, the whole patch propagated equatorward because of E × B drift of cold plasma, while the substructures did not show such systematic propagation but rather forward-backward oscillations. The horizontal scale of the substructures was estimated to be no smaller than 410 km at the magnetic equator, which is comparable to that of the wave packet structure of a whistler mode chorus perpendicular to the field line. We suggest that the apparent horizontal oscillation of the substructures is associated with field-aligned propagations of the whistler mode chorus in a duct.

  7. Pulsation tectonics as the control of continental breakup

    NASA Astrophysics Data System (ADS)

    Sheridan, Robert E.

    1987-11-01

    New data from the recent IPOD drilling of DSDP Site 534 in the Blake-Bahama Basin give a definitive age for the spreading-center shift involved in the breakup of the North American Atlantic margin. A basal Callovian age (~155 m.y.) is determined for the Blake Spur anomaly marking this spreading-center shift that signals the birth of the modern North Atlantic Ocean. This is some 20 m.y. younger than previously thought. One implication of this result is that this spreading-center shift starting North Atlantic breakup is now of an age which could be assigned to the spreading-center shift needed to end the rifting in the Gulf of Mexico. It is suggested that this might be one and the same event. Another implication of this younger age for the Blake Spur event is that relatively high spreading rates are now required for the Jurassic outer magnetic quiet zone along the North American margin. This association of a relatively high spreading rate with a magnetic quiet zone is similar to that for the mid-Cretaceous and implies a link between the processes controlling plate spreading, which are in the upper mantle, and the processes controlling the magnetic field, which are in the outer core. The cycles of fast and slow spreading and quiet and reversing magnetic field have a period of 60-100 m.y. A theory of pulsation tectonics involving the cyclic eruption of plumes of hot mantle material from the lowermost D″ layer of the mantle could explain the correlation. Plumes carry heat away from the core/mantle boundary and later reach the asthenosphere and lithosphere to induce faster spreading. The pulse of fast spreading in the Jurassic apparently caused the breakup of the North Atlantic. Other pulses of fast spreading appear to correlate with major ocean openings on various parts of the globe, implying that this might be a prevalent process. I suggest rifting of passive margins may be controlled by the more fundamental global processes described by the theory of pulsation

  8. White Dwarf Period Tables I. Pulsators with hydrogen-dominated atmospheres

    NASA Astrophysics Data System (ADS)

    Bognar, Zs.; Sodor, A.

    2016-09-01

    We aimed at collecting all known white dwarf pulsators with hydrogen-dominated atmospheres and list their main photometric and atmospheric parameters together with their pulsation periods and amplitudes observed at different epochs. For this purpose, we explored the pulsating white dwarf related literature with the systematic use of the SIMBAD and the NASA's Astrophysics Data System (ADS) databases. We summarized our results in four tables listing seven ZZ Ceti stars in detached white dwarf plus main-sequence binaries, seven extremely low-mass DA pulsators, three hot DAVs and 180 ZZ Ceti stars.

  9. Cepheids in Magellanic Cloud star clusters - Fundamental and overtone pulsators in NGC 2157

    SciTech Connect

    Mateo, M.; Olszewski, E.W.; Madore, B.F. Steward Observatory, Tucson, AZ JPL, Pasadena, CA )

    1990-04-01

    CCD survey data are employed to examine Cepheids in young Magellanic Cloud star clusters. The properties of three Cepheids observed in NGC 2157 are described. It is detected that the two short-period (3 days) Cepheids have photometric properties that correspond to overtone pulsators and the long-period (7.7 days) Cepheid pulses in the fundamental mode. The pulsational masses for the three Cepheids are calculated to be about 5 solar masses. This mass value does not correlate with the average pulsational mass for Cepheids of 3.0 + or - 0.4 solar masses. The potential cause of this deviation in evolutionary/pulsational mass is investigated. 23 refs.

  10. Observations of candidate oscillating eclipsing binaries and two newly discovered pulsating variables

    NASA Astrophysics Data System (ADS)

    Liakos, A.; Niarchos, P.

    2009-03-01

    CCD observations of 24 eclipsing binary systems with spectral types ranging between A0-F0, candidate for containing pulsating components, were obtained. Appropriate exposure times in one or more photometric filters were used so that short-periodic pulsations could be detected. Their light curves were analyzed using the Period04 software in order to search for pulsational behaviour. Two new variable stars, namely GSC 2673-1583 and GSC 3641-0359, were discov- ered as by-product during the observations of eclipsing variables. The Fourier analysis of the observations of each star, the dominant pulsation frequencies and the derived frequency spectra are also presented.

  11. Analysis of a subdwarf B pulsator observed during Campaign 2 of K2

    NASA Astrophysics Data System (ADS)

    Ketzer, Laura; Baran, Andrzej; Reed, Mike; Telting, John H.; Nemeth, Peter

    2016-06-01

    We present an analysis of the pulsating subdwarf B (sdB) star EPIC 203948264, observed during Campaign 2 of the extended Kepler mission. A time series analysis of the short cadence data set has revealed a rich g-mode pulsation spectrum with 17 independent pulsation periods between 0.5 and 2.8 hours. All of the pulsations fit the asymptotic period sequences for ell=1 or 2, with average period spacings of 259+/-1.4 and 149+/-0.3 s, respectively. The pulsation amplitudes range from 0.77 to the detection limit at 0.26 ppt, with amplitudes that vary over time. Radial velocity measurements give no indication for binarity in this star. We did not find rotationally induced pulsation multiplets, which indicates that the rotation period of the star is longer than about 45 days, which would make the data too short to resolve multiplets. By characterizing the various pulsation modes present in pulsating sdB stars, and by examining the time-dependence of pulsation amplitudes, we can constrain structural models of the interiors of sdB stars. This is a promising approach to enhancing our understanding of these stars.

  12. DELTAS: A new Global Delta Sustainability Initiative (Invited)

    NASA Astrophysics Data System (ADS)

    Foufoula-Georgiou, E.

    2013-12-01

    Deltas are economic and environmental hotspots, food baskets for many nations, home to a large part of the world population, and hosts of exceptional biodiversity and rich ecosystems. Deltas, being at the land-water interface, are international, regional, and local transport hubs, thus providing the basis for intense economic activities. Yet, deltas are deteriorating at an alarming rate as 'victims' of human actions (e.g. water and sediment reduction due to upstream basin development), climatic impacts (e.g. sea level rise and flooding from rivers and intense tropical storms), and local exploration (e.g. sand or aggregates, groundwater and hydrocarbon extraction). Although many efforts exist on individual deltas around the world, a comprehensive global delta sustainability initiative that promotes awareness, science integration, data and knowledge sharing, and development of decision support tools for an effective dialogue between scientists, managers and policy makers is lacking. Recently, the international scientific community proposed to establish the International Year of Deltas (IYD) to serve as the beginning of such a Global Delta Sustainability Initiative. The IYD was proposed as a year to: (1) increase awareness and attention to the value and vulnerability of deltas worldwide; (2) promote and enhance international and regional cooperation at the scientific, policy, and stakeholder level; and (3) serve as a launching pad for a 10-year committed effort to understand deltas as complex socio-ecological systems and ensure preparedness in protecting and restoring them in a rapidly changing environment. In this talk, the vision for such an international coordinated effort on delta sustainability will be presented as developed by a large number of international experts and recently funded through the Belmont Forum International Opportunities Fund. Participating countries include: U.S., France, Germany, U.K., India, Japan, Netherlands, Norway, Brazil, Bangladesh

  13. Understanding pesticides in California's Delta

    USGS Publications Warehouse

    Kuivila, Kathryn; Orlando, James L.

    2012-01-01

    The Sacramento-San Joaquin River Delta (Delta) is the hub of California’s water system and also an important habitat for imperiled fish and wildlife. Aquatic organisms are exposed to mixtures of pesticides that flow through the maze of Delta water channels from sources including agricultural, landscape, and urban pest-control applications. While we do not know all of the effects pesticides have on the ecosystem, there is evidence that they cause some damage to organisms in the Delta. Decades of USGS research have provided a good understanding of when, where, and how pesticides enter the Delta. However, pesticide use is continually changing. New field studies and methods are needed so that scientists can analyze which pesticides are present in the Delta, and at what concentrations, enabling them to estimate exposure and ultimate effects on organisms. Continuing research will provide resource managers and stakeholders with crucial information to manage the Delta wisely.

  14. Martian deltas: Morphology and distribution

    NASA Technical Reports Server (NTRS)

    Rice, J. W., Jr.; Scott, D. H.

    1993-01-01

    Recent detailed mapping has revealed numerous examples of Martian deltas. The location and morphology of these deltas are described. Factors that contribute to delta morphology are river regime, coastal processes, structural stability, and climate. The largest delta systems on Mars are located near the mouths of Maja, Maumee, Vedra, Ma'adim, Kasei, and Brazos Valles. There are also several smaller-scale deltas emplaced near channel mouths situated in Ismenius Lacus, Memnonia, and Arabia. Delta morphology was used to reconstruct type, quantity, and sediment load size transported by the debouching channel systems. Methods initially developed for terrestrial systems were used to gain information on the relationships between Martian delta morphology, river regime, and coastal processes.

  15. Delta-doping of Semiconductors

    NASA Astrophysics Data System (ADS)

    Schubert, E. F.

    2005-08-01

    Part I: 1. Introduction E. F. Schubert; Part II: 2. Electronic structure of delta-doped semiconductors C. R. Proetto; Part III: 3. Recent progress in delta-like confinement of impurities in GaAs K. H. Ploog; 4. Flow-rate modulation epitaxy (FME) of III-V semiconductors T. Makimoto and Y. Horikoshi; 5. Gas source molecular beam epitaxy (MBE) of delta-doped III-V semiconductors D. Ritter; 6. Solid phase epitaxy for delta-doping in silicon I. Eisele; 7. Low temperature MBE of silicon H.-J. Gossmann; Part IV: 8. Secondary ion mass spectrometry of delta-doped semiconductors H. S. Luftmann; 9. Capacitance-voltage profiling E. F. Schubert; 10. Redistribution of impurities in III-V semiconductors E. F. Schubert; 11. Dopant diffusion and segregation in delta-doped silicon films H.-J. Gossmann; 12. Characterisation of silicon and delta-doped structures in GaAs R. C. Newman; 13. The DX-center in silicon delta-doped GaAs and AlxGa1-xAs P. M. Koenraad; Part V: 14. Luminescence and ellipsometry spectroscopy H. Yao and E. F. Schubert; 15. Photoluminescence and Raman spectroscopy of single delta-doped III-V semiconductor heterostructures J. Wagner and D. Richards; 16. Electron transport in delta-doped quantum wells W. T. Masselink; 17. Electron mobility in delta-doped layers P. M. Koenraad; 18. Hot electrons in delta-doped GaAs M. Asche; 19. Ordered delta-doping R. L. Headrick, L. C. Feldman and B. E. Weir; Part IV: 20. Delta-doped channel III-V field effect transistors (FETs) W.-P. Hong; 21. Selectively doped heterostructure devices E. F. Schubert; 22. Silicon atomic layer doping FET K. Nakagawa and K. Yamaguchi; 23. Planar doped barrier devices R. J. Malik; 24. Silicon interband and intersubband photodetectors I. Eisele; 25. Doping superlattice devices E. F. Schubert.

  16. The domains of instability for the pulsating PG1159 stars.

    SciTech Connect

    Quirion, P.-O.; Fontaine, Gilles.; Brassard, Pierre; Herwig, F. H.

    2004-01-01

    The fact that we find pulsating and nonpulsating stars mixed together in the PG 1159 region of the log g - T{sub eff} diagram has been a long standing puzzle. The poor understanding of the driving mechanism in those stars has been the reason why it has taken so long to address properly this problem. Following the work of Saio (1996) and Gautschy (1997) based on the OPAL opacities, Quirion, Fontaine, & Brassard (2004) recently showed that we are now able to understand and reproduce the ranges of observed periods in the pulsating PG 1159 stars in terms of the original {kappa}-mechanism associated with the partial ionization of the K-shell electrons of C and O which, along with He, make up the composition of the envelope of those stars. Contrary to others, those three studies agree in that no composition gradients are needed between the atmospheric layers and the driving region. Furthermore, the cohabitation of pulsating and nonpulsating PG 1159 stars is naturally explained in terms of a dispersion in atmospheric parameters and in terms of a variation in surface composition from star to star. In particular, the most He-rich stars tend to be stable. We go beyond the findings discussed by Quirion et al. (2004) in this paper, and present the results of additional calculations aimed at describing better the role of the chemical composition (in particular the role of metallicity) as well as that of the stellar mass on the boundaries of the instability domain in the log g - T{sub eff} plane.

  17. Discovery of a new PG 1159 (GW Vir) pulsator

    NASA Astrophysics Data System (ADS)

    Kepler, S. O.; Fraga, Luciano; Winget, Don Earl; Bell, Keaton; Córsico, Alejandro H.; Werner, Klaus

    2014-08-01

    We report the discovery of pulsations in the spectroscopic PG 1159 type pre-white dwarf SDSS J075415.12 + 085232.18. Analysis of the spectrum by Werner et al. indicated Teff = 120 000 ± 10 000 K, log g = 7.0 ± 0.3, mass {M}=0.52 ± 0.02 M_{⊙}, C/He = 0.33 by number. We obtained time series images with the SOAR 4.1 m telescope and 2.1 m Otto Struve telescope at McDonald Observatory and show the star is also a variable PG 1159 type star, with dominant period of 525 s.

  18. Dissipative double-well potential: Nonlinear stationary and pulsating modes

    SciTech Connect

    Zezyulin, Dmitry A.; Konotop, Vladimir V.; Alfimov, Georgy L.

    2010-11-15

    The analysis of nonlinear modes in a complex absorbing double-well potential supported by linear gain is presented. Families of the nonlinear modes and their bifurcations are found numerically by means of the properly modified 'shooting' method. Linear stability and dynamics of the modes are studied. It is shown that no stable modes exist in the case of attractive nonlinearity, while stable modes, including nonsymmetric ones, are found when the nonlinearity is repulsive. Varying a control parameter (e.g., the height of barrier between the wells) results in switching from one mode to another. Apart from stationary modes we have found pulsating solutions emergent from unstable modes.

  19. Pulsations powered by hydrogen shell burning in white dwarfs

    NASA Astrophysics Data System (ADS)

    Camisassa, M. E.; Córsico, A. H.; Althaus, L. G.; Shibahashi, H.

    2016-10-01

    Context. In the absence of a third dredge-up episode during the asymptotic giant-branch phase, white dwarf models evolved from low-metallicity progenitors have a thick hydrogen envelope, which makes hydrogen shell burning be the most important energy source. Aims: We investigate the pulsational stability of white dwarf models with thick envelopes to see whether nonradial g-mode pulsations are triggered by hydrogen burning, with the aim of placing constraints on hydrogen shell burning in cool white dwarfs and on a third dredge-up during the asymptotic giant-branch evolution of their progenitor stars. Methods: We construct white-dwarf sequences from low-metallicity progenitors by means of full evolutionary calculations that take into account the entire history of progenitor stars, including the thermally pulsing and the post-asymptotic giant-branch phases, and analyze their pulsation stability by solving the linear, nonadiabatic, nonradial pulsation equations for the models in the range of effective temperatures Teff 15 000-8000 K. Results: We demonstrate that, for white dwarf models with masses M⋆ ≲ 0.71 M⊙ and effective temperatures 8500 ≲ Teff ≲ 11 600 K that evolved from low-metallicity progenitors (Z = 0.0001, 0.0005, and 0.001), the dipole (ℓ = 1) and quadrupole (ℓ = 2) g1-modes are excited mostly as a result of the hydrogen-burning shell through the ɛ-mechanism, in addition to other g-modes driven by either the κ - γ or the convective driving mechanism. However, the ɛ mechanism is insufficient to drive these modes in white dwarfs evolved from solar-metallicity progenitors. Conclusions: We suggest that efforts should be made to observe the dipole g1-mode in white dwarfs associated with low-metallicity environments, such as globular clusters and/or the galactic halo, to place constraints on hydrogen shell burning in cool white dwarfs and the third dredge-up episode during the preceding asymptotic giant-branch phase.

  20. Electrodynamic response of the middle atmosphere to auroral pulsations

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Croskey, C. L.; Hale, L. C.; Mitchell, J. D.; Barcus, J. R.

    1990-01-01

    The MAC/EPSILON observational campaign encompassed the use of two Nike Orion rocket payloads which studied the effects of auroral energetics on the middle atmosphere. While one payload was launched during the recovery phase of a moderate magnetic substorm, during fairly stable auroral conditions, the other was launched during highly active postbreakup conditions during which Pc5 pulsations were in progress. The energetic radiation of the first event was composed almost entirely of relativistic electrons below 200 keV, while that of the second was dominated by much softer electrons whose high X-ray fluxes exceeded the cosmic ray background as an ionizing source down to below 30 km.

  1. Radial stellar pulsation and three-dimensional convection. III. Comparison of two-dimensional and three-dimensional convection effects on radial pulsation

    SciTech Connect

    Geroux, Christopher M.; Deupree, Robert G.

    2014-03-10

    We have developed a multi-dimensional radiation hydrodynamics code to simulate the interaction of radial stellar pulsation and convection for full-amplitude pulsating models. Convection is computed using large eddy simulations. Here, we perform three-dimensional (3D) simulations of RR Lyrae stars for comparison with previously reported 2D simulations. We find that the time-dependent behavior of the peak convective flux on pulsation phase is very similar in both the 2D and 3D calculations. The growth rates of the pulsation in the 2D calculations are about 0.1% higher than in the 3D calculations. The amplitude of the light curve for a 6500 K RR Lyrae model is essentially the same for our 2D and 3D calculations, as is the rising light curve. There are differences in the slope at various times during falling light.

  2. Searching for frequency multiplets in the pulsating subdwarf B star PG 1219+534

    NASA Astrophysics Data System (ADS)

    Crooke, John; Roessler, Ryan; Reed, Michael

    2017-01-01

    Subdwarf B (sdB) stars represent the stripped cores of horizontal branch stars. Pulsating sdB stars allow us to probe this important stage in evolution. Thanks to Kepler data, we now know that sdB star rotation periods are long; on the order of tens of days. This explains why they were not measured using ground-based follow-up data, which typically only spanned a week or two. Azimuthal pulsation degeneracies are removed by rotation, and so by detected pulsation frequency multiplets, we can determine pulsation modes and apply constraints to models, which tell us stellar structure. We need the ground-based observations as Kepler did not detect many p-mode pulsators, but rather almost exclusively g-mode pulsators. The shorter-period p-modes occur in hotter sdB stars, and so we need these to measure the pulsation dependence across the horizontal branch. During 2015, we observed PG 1219+534 (hereafter PG1219) over several months using our local 16 inch robotic telescope. Here we report preliminary results of processing those data to search for pulsation multiplets.

  3. Search for A-F Spectral type pulsating components in Algol-type eclipsing binary systems

    NASA Astrophysics Data System (ADS)

    Kim, S.-L.; Lee, J. W.; Kwon, S.-G.; Youn, J.-H.; Mkrtichian, D. E.; Kim, C.

    2003-07-01

    We present the results of a systematic search for pulsating components in Algol-type eclipsing binary systems. A total number of 14 eclipsing binaries with A-F spectral type primary components were observed for 22 nights. We confirmed small-amplitude oscillating features of a recently detected pulsator TW Dra, which has a pulsating period of 0.053 day and a semi-amplitude of about 5 mmag in B-passband. We discovered new pulsating components in two eclipsing binaries of RX Hya and AB Per. The primary component of RX Hya is pulsating with a dominant period of 0.052 day and a semi-amplitude of about 7 mmag. AB Per has also a pulsating component with a period of 0.196 day and a semi-amplitude of about 10 mmag in B-passband. We suggest that these two new pulsators are members of the newly introduced group of mass-accreting pulsating stars in semi-detached Algol-type eclipsing binary systems. Table 4 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/405/231

  4. Nonisothermal flow of a polymeric liquid under a pulsating pressure gradient

    SciTech Connect

    Shul'man, Z.P.; Khusid, B.M.; Shabunina, Z.A.

    1987-03-01

    Increasing flow rates is a major problem in transporting petroleum as well as polymer solutions and melts. Industrial methods are often directed to reducing the effective viscosity: heating and pulsation. The latter is related to the nonlinearity in the properties. This paper studies the effects of pressure-gradient pulsations on the nonisothermal flow of a nonlinear liquid with memory in an annular channel.

  5. Natural processes in delta restoration: application to the Mississippi Delta.

    PubMed

    Paola, Chris; Twilley, Robert R; Edmonds, Douglas A; Kim, Wonsuck; Mohrig, David; Parker, Gary; Viparelli, Enrica; Voller, Vaughan R

    2011-01-01

    Restoration of river deltas involves diverting sediment and water from major channels into adjoining drowned areas, where the sediment can build new land and provide a platform for regenerating wetland ecosystems. Except for local engineered structures at the points of diversion, restoration mainly relies on natural delta-building processes. Present understanding of such processes is sufficient to provide a basis for determining the feasibility of restoration projects through quantitative estimates of land-building rates and sustainable wetland area under different scenarios of sediment supply, subsidence, and sea-level rise. We are not yet to the point of being able to predict the evolution of a restored delta in detail. Predictions of delta evolution are based on field studies of active deltas, deltas in mine-tailings ponds, experimental deltas, and countless natural experiments contained in the stratigraphic record. These studies provide input for a variety of mechanistic delta models, ranging from radially averaged formulations to more detailed models that can resolve channels, topography, and ecosystem processes. Especially exciting areas for future research include understanding the mechanisms by which deltaic channel networks self-organize, grow, and distribute sediment and nutrients over the delta surface and coupling these to ecosystem processes, especially the interplay of topography, network geometry, and ecosystem dynamics.

  6. V2653 Ophiuchii with a pulsating component and Ppuls - Porb, Ppuls - g correlations for γ Dor type pulsators

    NASA Astrophysics Data System (ADS)

    Çakırlı, Ö.; Ibanoglu, C.

    2016-05-01

    We present new spectroscopic observations of the double-lined eclipsing binary V2653 Ophiuchii. The photometric observations obtained by ASAS were analyzed and combined with the analysis of radial velocities for deriving the absolute parameters of the components. Masses and radii were determined for the first time as Mp = 1.537 ± 0.021 M⊙ and Rp = 2.215 ± 0.055 R⊙, Ms = 1.273 ± 0.019 M⊙ and Rs = 2.000 ± 0.056 R⊙ for the components of V2653 Oph. We estimate an interstellar reddening of 0.15 ± 0.08 mag and a distance of 300 ± 50 pc for the system, both supporting the membership of the open cluster Collinder 359. Using the out-of-eclipse photometric data we have made frequency analysis and detected a periodic signal at 1.0029 ± 0.0019 c/d. This frequency and the location of the more massive star on the HR diagram lead to classification of a γ Dor type variable. Up to date only eleven γ Dor type pulsators in the eclipsing binaries have been discovered. For six out of 11 systems, the physical parameters were determined. Although a small sample, we find empirical relations that Ppuls ∝ Porb0.43 and Ppuls ∝ g-0.83. While the pulsation periods increase with longer orbital periods, they decrease with increasing surface gravities of pulsating components and gravitational pull exerted by the companions. We present, briefly, the underlying physics behind the correlations we derived.

  7. HADS in the Large Magellanic Cloud: Initial findings from the SuperMACHO project

    SciTech Connect

    Garg, A

    2009-07-14

    The SuperMACHO Project is a five-year survey toward the Large Magellanic Cloud (LMC) aimed at understanding the nature of the populations of lenses responsible for the excess microlensing rates observed by the MACHO project. Survey observations were completed in 2006. A rich side-product of this survey is a catalog of variable sources down to a depth of VR 23, including many classes of pulsating variables such as {delta}-Scuti and RR Lyrae. Through their position in the Period-Luminosity diagram and their light curve characteristics we have identified 2323 high amplitude {delta}-Scuti (HADS) having high quality light curves. sing Fourier decomposition of the HADS light curves, we find that the period-luminosity (PL) relation defined by the firt-overtone (FO) pulsators does not show a clear separation from the PL-relation defined by the fundamental (F) pulsators. This differs from other instability strip pulsators such as type c RR Lyrae. We also present evidence for a larger amplitude, subluminous population of HADS similar to that observed in Fornax.

  8. Pulsation versus metallicism in Am stars as revealed by LAMOST and WASP

    NASA Astrophysics Data System (ADS)

    Smalley, B.; Antoci, V.; Holdsworth, D. L.; Kurtz, D. W.; Murphy, S. J.; De Cat, P.; Anderson, D. R.; Catanzaro, G.; Cameron, A. Collier; Hellier, C.; Maxted, P. F. L.; Norton, A. J.; Pollacco, D.; Ripepi, V.; West, R. G.; Wheatley, P. J.

    2017-03-01

    We present the results of a study of a large sample of A and Am stars with spectral types from Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) and light curves from Wide Area Search for Planets (WASP). We find that, unlike normal A stars, δ Sct pulsations in Am stars are mostly confined to the effective temperature range 6900 < {{T_eff}} < 7600 K. We find evidence that the incidence of pulsations in Am stars decreases with increasing metallicism (degree of chemical peculiarity). The maximum amplitude of the pulsations in Am stars does not appear to vary significantly with metallicism. The amplitude distributions of the principal pulsation frequencies for both A and Am stars appear very similar and agree with results obtained from Kepler photometry. We present evidence that suggests turbulent pressure is the main driving mechanism in pulsating Am stars, rather than the κ-mechanism, which is expected to be suppressed by gravitational settling in these stars.

  9. K2 observations of pulsating subdwarf B stars: Analysis of EPIC 203948264 observed during Campaign 2

    NASA Astrophysics Data System (ADS)

    Ketzer, L.; Reed, M. D.; Baran, A. S.; Németh, P.; Telting, J. H.; Østensen, R. H.; Jeffery, C. S.

    2017-01-01

    We apply asteroseismic tools to the newly-discovered pulsator EPIC 203948264, observed with K2, the two-gyro mission of the Kepler space telescope. A time series analysis of the 83 day Campaign 2 (C2) short cadence data set has revealed a g -mode pulsation spectrum with 22 independent pulsation periods between 0.5 and 2.8 hours. Most of the pulsations fit the asymptotic period sequences for ℓ = 1 or 2, with average period spacings of 261.3 ± 1.1 s and 151.18 ± 0.37 s, respectively. The pulsation amplitudes are below 0.77 ppt and vary over time. We include updated spectroscopic parameters, including atmospheric abundances and radial velocities which give no indication for binarity in this star. We detect one possible low-amplitude multiplet which corresponds to a rotation period of 46 days or longer. EPIC 203948264 appears as another slowly rotating sdB star.

  10. Delta in Eberswalde

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This HiRISE image covers a portion of a delta that partially fills Eberswalde crater in Margaritifer Sinus. The delta was first recognized and mapped using MOC images that revealed various features whose presence required sustained flow and deposition into a lake that once occupied the crater. The HiRISE image resolves meter-scale features that record the migration of channels and delta distributaries as the delta grew over time. Differences in grain-size of sediments within the environments on the delta enable differential erosion of the deposits. As a result, coarser channel deposits are slightly more resistant and stand in relief relative to finer-grained over-bank and more easily eroded distal delta deposits. Close examination of the relict channel deposits confirms the presence of some meter-size blocks that were likely too coarse to have been transported by water flowing within the channels. These blocks may be formed of the sand and gravel that more likely moved along the channels that was lithified and eroded. Numerous meter-scale polygonal structures are common on many surfaces, but mostly those associated with more quiescent depositional environments removed from the channels. The polygons could be the result of deposition of fine-grained sediments that were either exposed and desiccated (dried out), rich in clays that shrunk when the water was removed, turned into rock and then fractured and eroded, or some combination of these processes.

    Image PSP_001336_1560 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on November 8, 2006. The complete image is centered at -23.8 degrees latitude, 326.4 degrees East longitude. The range to the target site was 256.3 km (160.2 miles). At this distance the image scale is 25.6 cm/pixel (with 1 x 1 binning) so objects 77 cm across are resolved. The image shown here has been map-projected to 25 cm/pixel and north is up. The image was

  11. Pioneer Launch on Delta Vehicle

    NASA Technical Reports Server (NTRS)

    1969-01-01

    NASA launches the last in the series of interplanetary Pioneer spacecraft, Pioneer 10 from Cape Kennedy, Florida. The long-tank Delta launch vehicle placed the spacecraft in a solar orbit along the path of Earth's orbit. The spacecraft then passed inside and outside Earth's orbit, alternately speeding up and slowing down relative to Earth. The Delta launch vehicle family started development in 1959. The Delta was composed of parts from the Thor, an intermediate-range ballistic missile, as its first stage, and the Vanguard as its second. The first Delta was launched from Cape Canaveral on May 13, 1960 and was powerful enough to deliver a 100-pound spacecraft into geostationary transfer orbit. Delta has been used to launch civil, commercial, and military satellites into orbit. For more information about Delta, please see Chapter 3 in Roger Launius and Dennis Jenkins' book To Reach the High Frontier published by The University Press of Kentucky in 2002.

  12. Computer modeling of capillary flow with superimposed pulsations

    NASA Astrophysics Data System (ADS)

    Yaganova, A. E.; Marfin, E. A.

    2016-11-01

    Increasing efficiency of methods of oil production can be achieved by the influence of elastic vibrations. It is a well-known fact that shift viscosity of oil changes under the effect of elastic vibrations. This change depends on properties of the oil and exposure mode. Existing approaches to the research of the way wave exposure impacts on viscosity are based on measuring it after the processing. This article concerns development of methods to measure viscosity of liquid right during its exposure to elastic vibrations. The suggested approach is based on combining numerical and natural experiments. We investigated the pulsating flow of viscid liquid in a capillary numerically in this article. We received allocations of fields of average velocity and pressure in a capillary. It is demonstrated that imposed pulsations in a capillary do not impact on hydrodynamics of the flow. We offered the scheme of an experimental installation for a research of the impact that wave exposure has on the viscosity of liquids. The installation is based on a capillary viscometer.

  13. Pulsating fronts in periodically modulated neural field models

    NASA Astrophysics Data System (ADS)

    Coombes, S.; Laing, C. R.

    2011-01-01

    We consider a coarse-grained neural field model for synaptic activity in spatially extended cortical tissue that possesses an underlying periodicity in its microstructure. The model is written as an integrodifferential equation with periodic modulation of a translationally invariant spatial kernel. This modulation can have a strong effect on wave propagation through the tissue, including the creation of pulsating fronts with widely varying speeds and wave-propagation failure. Here we develop a new analysis for the study of such phenomena, using two complementary techniques. The first uses linearized information from the leading edge of a traveling periodic wave to obtain wave speed estimates for pulsating fronts, and the second develops an interface description for waves in the full nonlinear model. For weak modulation and a Heaviside firing rate function the interface dynamics can be analyzed exactly and gives predictions that are in excellent agreement with direct numerical simulations. Importantly, the interface dynamics description improves on the standard homogenization calculation, which is restricted to modulation that is both fast and weak.

  14. Fundamental parameters of pulsating stars from atmospheric models

    NASA Astrophysics Data System (ADS)

    Barcza, S.

    2006-12-01

    A purely photometric method is reviewed to determine distance, mass, equilibrium temperature, and luminosity of pulsating stars by using model atmospheres and hydrodynamics. T Sex is given as an example: on the basis of Kurucz atmospheric models and UBVRI (in both Johnson and Kron-Cousins systems) data, variation of angular diameter, effective temperature, and surface gravity is derived as a function of phase, mass M=(0.76± 0.09) M⊙, distance d=530± 67 pc, Rmax=2.99R⊙, Rmin=2.87R⊙, magnitude averaged visual absolute brightness < MVmag>=1.17± 0.26 mag are found. During a pulsation cycle four standstills of the atmosphere are pointed out indicating the occurrence of two shocks in the atmosphere. The derived equilibrium temperature Teq=7781 K and luminosity (28.3± 8.8)L⊙ locate T Sex on the blue edge of the instability strip in a theoretical Hertzsprung-Russell diagram. The differences of the physical parameters from this study and Liu & Janes (1990) are discussed.

  15. Empirical Determination of Convection in Pulsating White Dwarfs

    NASA Astrophysics Data System (ADS)

    Provencal, Judith L.; Hermes, J. J.; Montgomery, M.; Reed, Mike; Shipman, Harry; Fraga, Luciano

    2013-02-01

    We propose high speed photometric observations of WD J1518+0658 with SOAR and the KPNO 2m as important components of a coordinated international campaign designed to survey the properties of convection in white dwarf atmospheres. Convection remains the largest source of theoretical uncertainty in our understanding of stellar physics. Asteroseismology has proven a powerful tool to attack this problem. White dwarf pulsations appear as local surface temperature variations. The extreme temperature sensitivity of convection leads to local variations in the convection zone's depth. This in turn modulates the local energy flux, producing nonsinusoidal light curves. The observed nonlinearities provide a self-consistent observational test of convection in white dwarf atmospheres. WD J1518+0658 is a member of the newly discovered class of extremely low mass white dwarf pulsators (ELMVs). ELMVs offer the opportunity to extend our investigation to unexplored regions of lower effective temperatures and surface gravities, where conditions are closer to those found in main sequence stars. High precision light curves from SOAR, combined with frequency, amplitude, and phase information provided by the KPNO 2m and the entire WET run, will allow us to recover WD J1518+0658's convective thermal response timescale.

  16. Pulsation Properties of Carbon and Oxygen Red Giants

    NASA Astrophysics Data System (ADS)

    Percy, J. R.; Huang, D. J.

    2015-07-01

    We have used up to 12 decades of AAVSO visual observations, and the AAVSO VSTAR software package to determine new and/or improved periods of 5 pulsating biperiodic carbon (C-type) red giants, and 12 pulsating biperiodic oxygen (M-type) red giants. We have also determined improved periods for 43 additional C-type red giants, in part to search for more biperiodic C-type stars, and also for 46 M-type red giants. For a small sample of the biperiodic C-type and M-type stars, we have used wavelet analysis to determine the time scales of the cycles of amplitude increase and decrease. The C-type and M-type stars do not differ significantly in their period ratios (first overtone to fundamental). There is a marginal difference in the lengths of their amplitude cycles. The most important result of this study is that, because of the semiregularity of these stars, and the presence of alias, harmonic, and spurious periods, the periods which we and others derive for these stars—especially the smaller-amplitude ones—must be determined and interpreted with great care and caution. For instance: spurious periods of a year can produce an apparent excess of stars, at that period, in the period distribution.

  17. Tidally Induced Pulsations in Kepler Eclipsing Binary KIC 3230227

    NASA Astrophysics Data System (ADS)

    Guo, Zhao; Gies, Douglas R.; Fuller, Jim

    2017-01-01

    KIC 3230227 is a short period (P ≈ 7.0 days) eclipsing binary with a very eccentric orbit (e = 0.6). From combined analysis of radial velocities and Kepler light curves, this system is found to be composed of two A-type stars, with masses of M1 = 1.84 ± 0.18 M⊙, M2 = 1.73 ± 0.17 M⊙ and radii of R1 = 2.01 ± 0.09 R⊙, R2 = 1.68 ± 0.08 R⊙ for the primary and secondary, respectively. In addition to an eclipse, the binary light curve shows a brightening and dimming near periastron, making this a somewhat rare eclipsing heartbeat star system. After removing the binary light curve model, more than 10 pulsational frequencies are present in the Fourier spectrum of the residuals, and most of them are integer multiples of the orbital frequency. These pulsations are tidally driven, and both the amplitudes and phases are in agreement with predictions from linear tidal theory for l = 2, m = ‑2 prograde modes.

  18. Pulsations of the polar cusp aurora at Saturn

    NASA Astrophysics Data System (ADS)

    Palmaerts, B.; Radioti, A.; Roussos, E.; Grodent, D.; Gérard, J.-C.; Krupp, N.; Mitchell, D. G.

    2016-12-01

    The magnetospheric cusp is a region connecting the interplanetary environment to the ionosphere and enabling solar wind particles to reach the ionosphere. We report the detection of several isolated high-latitude auroral emissions with the Ultraviolet Imaging Spectrograph of the Cassini spacecraft. We suggest that these auroral spots, located in the dawn-to-noon sector and poleward of the main emission, are the ionospheric signatures of the magnetospheric cusp, in agreement with some previous observations with the Hubble Space Telescope. The high-latitude cusp auroral signature has been associated with high-latitude lobe reconnection in the presence of a southward interplanetary magnetic field. The occurrence rate of the polar cusp aurora suggests that lobe reconnection is frequent at Saturn. Several auroral imaging sequences reveal a quasiperiodic brightening of the polar cusp aurora with a period in the range of 60 to 70 min. Similar pulsations in the energetic electron fluxes and in the azimuthal component of the magnetic field are simultaneously observed by Cassini instruments, suggesting the presence of field-aligned currents. Pulsed dayside magnetopause reconnection is a likely common triggering process for the cusp auroral brightenings at Saturn and the quasiperiodic pulsations in the high-latitude energetic electron fluxes.

  19. Numerical simulation of pressure pulsations in Francis turbines

    NASA Astrophysics Data System (ADS)

    Magnoli, M. V.; Schilling, R.

    2012-11-01

    In the last decades, hydraulic turbines have experienced the increase of their power density and the extension of their operating range, leading the fluid and mechanical dynamic effects to become significantly more pronounced. The understanding of the transient fluid flow and of the associated unsteady effects is essential for the reduction of the pressure pulsation level and improvement of the machine dynamic behaviour. In this study, the instationary fluid flow through the complete turbine was numerically calculated for an existing Francis machine with high specific speed. The hybrid turbulence models DES (detached eddy simulation) and SAS (scale adaptive simulation) allowed the accurate simulation of complex dynamic flow effects, such as the rotor-stator-interaction and the draft tube instabilities. Different operating conditions, as full load, part load, higher part load and deep part load, were successfully simulated and showed very tight agreement with the experimental results from the model tests. The transient pressure field history, obtained from the CFD (computational fluid dynamics) simulation and stored for each time step, was used as input for the full instationary FEA (finite element analysis) of turbine components. The assessment of the machine dynamic motion also offered the possibility to contribute to the understanding of the pressure pulsation effects and to further increase the turbine stability. This research project was developed at the Institute of Fluid Mechanics of the TU München.

  20. Characterization of ultra low frequency (ULF) pulsations and the investigation of their possible source

    NASA Astrophysics Data System (ADS)

    Mthembu, S. H.; Malinga, S. B.; Walker, A. D. M.; Magnus, L.

    2009-08-01

    In this paper we present the results from the observation of ultra low frequency (ULF) pulsations in the Doppler velocity data from SuperDARN HF radar located at Goose Bay (61.94° N, 23.02° E, geomagnetic). Fourier spectral techniques were used to determine the spectral content of the data and the results show Pc 5 ULF pulsations (with a frequency range of 1 to 4 mHz) where the magnetic field lines were oscillating at discrete frequencies of about 1.3 and 1.9 mHz. These pulsations are classified as field lines resonance (FLR) since the 1.9 mHz component exhibited an enhancement in amplitude with an associated phase change of approximately 180° across a resonance latitude of 71.3°. The spatial and temporal structure of the ULF pulsations was examined by investigating their instantaneous amplitude which was calculated as the amplitude of the analytic signal. The results presented a full field of view which exhibit pulsations activity simultaneously from all beams. This representation shows that the peak amplitude of the 1.9 mHz component was observed over the longitudinal range of 13°. The temporal structure of the pulsations was investigated from the evolution of the 1.9 mHz component and the results showed that the ULF pulsations had a duration of about 1 h. Wavelet analysis was used to investigate solar wind as a probable source of the observed ULF pulsations. The time delay compared well with the solar wind travel time estimates and the results suggest a possible link between the solar wind and the observed pulsations. The sudden change in dynamic pressure also proved to be a possible source of the observed ULF pulsations.

  1. Ventricular dilation and elevated aqueductal pulsations in a new experimental model of communicating hydrocephalus

    SciTech Connect

    Wagshul, M.; Smith, S.; Wagshul, M.; McAllister, J.P.; Rashid, S.; Li, J.; Egnor, M.R.; Walker, M.L.; Yu, M.; Smith, S.D.; Zhang, G.; Chen, J.J.; Beneveniste, H.

    2009-03-01

    In communicating hydrocephalus (CH), explanations for the symptoms and clear-cut effective treatments remain elusive. Pulsatile flow through the cerebral aqueduct is often significantly elevated, but a clear link between abnormal pulsations and ventriculomegaly has yet to be identified. We sought to demonstrate measurement of pulsatile aqueductal flow of CSF in the rat, and to characterize the temporal changes in CSF pulsations in a new model of CH. Hydrocephalus was induced by injection of kaolin into the basal cisterns of adult rats (n = 18). Ventricular volume and aqueductal pulsations were measured on a 9.4 T MRI over a one month period. Half of the animals developed ventricular dilation, with increased ventricular volume and pulsations as early as one day post-induction, and marked chronic elevations compared to intact controls (volume: 130.15 {+-} 83.21 {mu}l vs. 15.52 {+-} 2.00 {mu}l; pulsations: 114.51 nl {+-} 106.29 vs. 0.72 {+-} 0.13 nl). Similar to the clinical presentation, the relationship between ventricular size and pulsations was quite variable. However, the pulsation time-course revealed two distinct sub-types of hydrocephalic animals: those with markedly elevated pulsations which persisted over time, and those with mildly elevated pulsations which returned to near normal levels after one week. These groups were associated with severe and mild ventriculomegaly respectively. Thus, aqueductal flow can be measured in the rat using high-field MRI and basal cistern-induced CH is associated with an immediate change in CSF pulsatility. At the same time, our results highlight the complex nature of aqueductal pulsation and its relationship to ventricular dilation.

  2. Ventricular dilation and elevated aqueductal pulsations in a new experimental model of communicating hydrocephalus.

    PubMed

    Wagshul, M E; McAllister, J P; Rashid, S; Li, J; Egnor, M R; Walker, M L; Yu, M; Smith, S D; Zhang, G; Chen, J J; Benveniste, H

    2009-07-01

    In communicating hydrocephalus (CH), explanations for the symptoms and clear-cut effective treatments remain elusive. Pulsatile flow through the cerebral aqueduct is often significantly elevated, but a clear link between abnormal pulsations and ventriculomegaly has yet to be identified. We sought to demonstrate measurement of pulsatile aqueductal flow of CSF in the rat, and to characterize the temporal changes in CSF pulsations in a new model of CH. Hydrocephalus was induced by injection of kaolin into the basal cisterns of adult rats (n = 18). Ventricular volume and aqueductal pulsations were measured on a 9.4 T MRI over a one month period. Half of the animals developed ventricular dilation, with increased ventricular volume and pulsations as early as one day post-induction, and marked chronic elevations compared to intact controls (volume: 130.15 +/- 83.21 microl vs. 15.52 +/- 2.00 microl; pulsations: 114.51 nl +/- 106.29 vs. 0.72 +/- 0.13 nl). Similar to the clinical presentation, the relationship between ventricular size and pulsations was quite variable. However, the pulsation time-course revealed two distinct sub-types of hydrocephalic animals: those with markedly elevated pulsations which persisted over time, and those with mildly elevated pulsations which returned to near normal levels after one week. These groups were associated with severe and mild ventriculomegaly respectively. Thus, aqueductal flow can be measured in the rat using high-field MRI and basal cistern-induced CH is associated with an immediate change in CSF pulsatility. At the same time, our results highlight the complex nature of aqueductal pulsation and its relationship to ventricular dilation.

  3. [Delta-9-tetrahydrocannabinol pharmacokinetics].

    PubMed

    Goullé, J-P; Saussereau, E; Lacroix, C

    2008-08-01

    Delta-9-tetrahydrocannabinol (Delta-9-THC) is the main psychoactive ingredient of cannabis. Smoking is currently most common use of cannabis. The present review focuses on the pharmacokinetics of THC. The variability of THC in plant material which has significantly increased in recent years leads to variability in tissue THC levels from smoking, which is, in itself, a highly individual process. This variability of THC content has an important impact on drug pharmacokinetics and pharmacology. After smoking THC bioavailability averages 30%. With a 3.55% THC cigarette, a peak plasma level near 160 ng/mL occurs approximately 10 min after inhalation. THC is eliminated quickly from plasma in a multiphasic manner and is widely distributed to tissues, which is responsible for its pharmacologic effects. Body fat then serves as a long-term storage site. This particular pharmacokinetics explains the noncorrelation between THC blood level and clinical effects as is observed for ethanol. A major active 11-hydroxy metabolite is formed after both inhalation and oral dosing (20 and 100% of parent, respectively). The elimination of THC and its many metabolites, mainly THC-COOH, occurs via the feces and urine for several weeks. Thus, to confirm abstinence, urine THC-COOH analysis would be a useful tool. A positive result could be checked by gas chromatography-mass spectrometry THC blood analysis, indicative of a recent cannabis exposure.

  4. Peculiar variations of white dwarf pulsation frequencies and maestro

    NASA Astrophysics Data System (ADS)

    Dalessio, James Ruland

    In Part I we report on variations of the normal mode frequencies of the pulsating DB white dwarfs EC 20058-5234 and KIC 8626021 and the pulsating DA white dwarf GD 66. The observations of EC 20058-5234 and KIC 8626021 were motivated by the possibility of measuring the plasmon neutrino production rate of a white dwarf, while the observations of GD 66 were part of a white dwarf pulsation timing based planet search. We announce the discovery of periodic and quasi-periodic variations of multiple normal mode frequencies that cannot be due to the presence of planetary companions. We note the possible signature of a planetary companion to EC 20058-5234 and show that GD 66 cannot have a planet in a several AU orbit down to half a Jupiter mass. We also announce the discovery of secular variations of the normal mode frequencies of all three stars that are inconsistent with cooling alone. Importantly, the rates of period change of several modes of KIC 8626021 are consistent with evolutionary cooling, but are not yet statistically significant. These modes offer the best possibility of measuring the neutrino production rate in a white dwarf. We also observe periodic and secular variations in the frequency of a combination mode that exactly matches the variations predicted by the parent modes, strong observational evidence that combination modes are created by the convection zone and are not normal modes. Periodic variations in the amplitudes of many of these modes is also noted. We hypothesize that these frequency variations are caused by complex variations of the magnetic field strength and geometry, analogous to behavior observed in the Sun. In Part II we describe the MAESTRO software framework and the MAESTRO REDUCE algorithm. MAESTRO is a collection of astronomy specific MatLab software developed by the Whole Earth Telescope. REDUCE is an an algorithm that can extract the brightness of stars on a set of CCD images with minimal configuration and human interaction. The key to

  5. Soft X-Ray Pulsations in Solar Flares

    NASA Astrophysics Data System (ADS)

    Simões, P. J. A.; Hudson, H. S.; Fletcher, L.

    2015-12-01

    The soft X-ray emissions ( hν>1.5 keV) of solar flares mainly come from the bright coronal loops at the highest temperatures normally achieved in the flare process. Their ubiquity has led to their use as a standard measure of flare occurrence and energy, although the overwhelming bulk of the total flare energy goes elsewhere. Recently Dolla et al. ( Astrophys. J. Lett. 749, L16, 2012) noted quasi-periodic pulsations (QPP) in the soft X-ray signature of the X-class flare SOL2011-02-15, as observed by the standard photometric data from the GOES ( Geostationary Operational Environmental Satellite) spacecraft. In this article we analyse the suitability of the GOES data for this type of analysis and find them to be generally valuable after September, 2010 (GOES-15). We then extend the result of Dolla et al. to a complete list of X-class flares from Cycle 24 and show that most of them (80 %) display QPPs in the impulsive phase. The pulsations show up cleanly in both channels of the GOES data, making use of time-series of irradiance differences (the digital time derivative on the 2-s sampling). We deploy different techniques to characterise the periodicity of GOES pulsations, considering the red-noise properties of the flare signals, finding a range of characteristic time scales of the QPPs for each event, but usually with no strong signature of a single period dominating in the power spectrum. The QPP may also appear on somewhat longer time scales during the later gradual phase, possibly with a greater tendency towards coherence, but the sampling noise in GOES difference data for high irradiance values (X-class flares) makes these more uncertain. We show that there is minimal phase difference between the differenced GOES energy channels, or between them and the hard X-ray variations on short time scales. During the impulsive phase, the footpoints of the newly forming flare loops may also contribute to the observed soft X-ray variations.

  6. The magnetic field of the pulsating subdwarf Balloon 090100001

    NASA Astrophysics Data System (ADS)

    Savanov, I. S.; Romanyuk, I. I.; Semenko, E. A.; Dmitrienko, E. S.

    2011-12-01

    We have analyzed polarization observations of the subdwarf Bal 09, which is one of a group of hybrid sdB stars that display simultaneously both short- and long-period pulsations. Certain properties previously unknown for subdwarfs have been established for Bal 09, such as variations of the pulsation amplitude of the main oscillation mode, rotational splitting of multiplets, and variations of this splitting. Information about the stellar magnetic field must be considered if we wish to explain these properties. New observational data enabling estimation of the longitudinal magnetic field of Bal 09 have been obtained on the main stellar spectrograph of the 6-m telescope of the Special Astrophysical Observatory. Studies of the longitudinal component of the magnetic field < B z > were carried out using a regression analysis. This method simultaneously yields estimates of the uncertainty in < B z >. Test measurements of < B z > were carried out using the same method. For the star HD 158974, which has zero total magnetic field, the estimated longitudinal magnetic field is < B z > = -4 ± 5 G. The standard magnetic field for the Ap star α 2CVn was measured to be -363 ± 17 G, in very good agreement with measurements in the literature. The estimated longitudinal magnetic field for Bal 09 is 34 ± 63G—appreciably lower than values established earlier for six subdwarfs, ≈1.5 kG. The results of the regression analysis for both individual spectral subranges and for intervals containing characteristic spectral features did not indicate reliable detections of a magnetic field exceeding the uncertainties in < B z >. The uncertainty in < B z >, which was 60-80 G for the entire spectral range and 140-200 G for selected spectral intervals, leads to an estimated upper limit on the longitudinal magnetic field < B z > for Bal 09. This estimate for < B z > can place observational constraints on theoretical explanations for the amplitude variations of the pulsations, rotational

  7. Classical Cepheid Pulsation Models. IX. New Input Physics

    NASA Astrophysics Data System (ADS)

    Petroni, Silvia; Bono, Giuseppe; Marconi, Marcella; Stellingwerf, Robert F.

    2003-12-01

    We constructed several sequences of classical Cepheid envelope models at solar chemical composition (Y=0.28,Z=0.02) to investigate the dependence of the pulsation properties predicted by linear and nonlinear hydrodynamic models on input physics. To study the dependence on the equation of state (EOS) we performed several numerical experiments by using the simplified analytical EOS originally developed by Stellingwerf and the recent analytical EOS developed by Irwin. Current findings suggest that the pulsation amplitudes, as well as the topology of the instability strip, marginally depend on the adopted EOS. To compromise between accuracy and numerical complexity we computed new EOS tables using the Irwin analytical EOS. We found that the difference between analytical and tabular thermodynamic quantities and their derivatives are smaller than 2% when adopting suitable steps in temperature and density. To improve the numerical accuracy of physical quantities, we are now adopting bicubic splines to interpolate both opacity and EOS tables. The new approach presents a substantial advantage to avoiding numerical derivatives in both linear and nonlinear models. The EOS first- and second-order derivatives are estimated by means of the analytical EOS or by means of analytical derivatives of the interpolating function. The opacity first-order derivatives are evaluated by means of analytical derivatives of the interpolating function. We also investigated the dependence of observables predicted by theoretical models on the mass-luminosity (ML) relation and on the spatial resolution across the hydrogen and the helium partial ionization regions. We found that nonlinear models are marginally affected by these physical and numerical assumptions. In particular, the difference between new and old models in the location as well as in the temperature width of the instability strip is, on average, less than 200 K. However, the spatial resolution somehow affects the pulsation properties

  8. Coupled pulsating and cellular structure in the propagation of globally planar detonations in free space

    SciTech Connect

    Han, Wenhu; Gao, Yang; Wang, Cheng; Law, Chung K.

    2015-10-15

    The globally planar detonation in free space is numerically simulated, with particular interest to understand and quantify the emergence and evolution of the one-dimensional pulsating instability and the two-dimensional cellular structure which is inherently also affected by pulsating instability. It is found that the pulsation includes three stages: rapid decay of the overdrive, approach to the Chapman-Jouguet state and emergence of weak pulsations, and the formation of strong pulsations; while evolution of the cellular structure also exhibits distinct behavior at these three stages: no cell formation, formation of small-scale, irregular cells, and formation of regular cells of a larger scale. Furthermore, the average shock pressure in the detonation front consists of fine-scale oscillations reflecting the collision dynamics of the triple-shock structure and large-scale oscillations affected by the global pulsation. The common stages of evolution between the cellular structure and the pulsating behavior, as well as the existence of shock-front pressure oscillation, suggest highly correlated mechanisms between them. Detonations with period doubling, period quadrupling, and chaotic amplitudes were also observed and studied for progressively increasing activation energies.

  9. Low-latitude Pi2 pulsations during intervals of quiet geomagnetic conditions (Kp≤1)

    NASA Astrophysics Data System (ADS)

    Kwon, H.-J.; Kim, K.-H.; Jun, C.-W.; Takahashi, K.; Lee, D.-H.; Lee, E.; Jin, H.; Seon, J.; Park, Y.-D.; Hwang, J.

    2013-10-01

    It has been reported that Pi2 pulsations can be excited under extremely quiet geomagnetic conditions (Kp=0). However, there have been few comprehensive reports of Pi2 pulsations in such a near ground state magnetosphere. To understand the characteristics of quiet-time Pi2 pulsations, we statistically examined Pi2 events observed on the nightside between 1800 and 0600 local time at the low-latitude Bohyun (BOH, L = 1.35) station in South Korea. We chose year 2008 for analysis because geomagnetic activity was unusually low in that year. A total of 982 Pi2 events were identified when Kp≤1. About 80% of the Pi2 pulsations had a period between 110 and 300 s, which significantly differs from the conventional Pi2 period from 40 to 150 s. Comparing Pi2 periods and solar wind conditions, we found that Pi2 periods decrease with increasing solar wind speed, consistent with the result of Troitskaya (1967). The observed wave properties are discussed in terms of plasmaspheric resonance, which has been proposed for Pi2 pulsations in the inner magnetosphere. We also found that Pi2 pulsations occur quasi-periodically with a repetition period of ˜23-38 min. We will discuss what determines such a recurrence time of Pi2 pulsations under quiet geomagnetic conditions.

  10. Whole Earth Telescope observations of the hot helium atmosphere pulsating white dwarf EC20058-5234

    NASA Astrophysics Data System (ADS)

    Sullivan, D. J.; Metcalfe, T. S.; O'Donoghue, D.; Winget, D. E.; Kilkenny, D.; van Wyk, F.; Kanaan, A.; Kepler, S. O.; Nitta, A.; Kawaler, S. D.; Montgomery, M. H.; Nather, R. E.; O'Brien, M. S.; Bischoff-Kim, A.; Wood, M.; Jiang, X. J.; Leibowitz, E. M.; Ibbetson, P.; Zola, S.; Krzesinski, J.; Pajdosz, G.; Vauclair, G.; Dolez, N.; Chevreton, M.

    2008-06-01

    We present the analysis of a total of 177h of high-quality optical time-series photometry of the helium atmosphere pulsating white dwarf (DBV) EC20058-5234. The bulk of the observations (135h) were obtained during a WET campaign (XCOV15) in 1997 July that featured coordinated observing from four southern observatory sites over an 8-d period. The remaining data (42h) were obtained in 2004 June at Mt John Observatory in NZ over a one-week observing period. This work significantly extends the discovery observations of this low-amplitude (few per cent) pulsator by increasing the number of detected frequencies from 8 to 18, and employs a simulation procedure to confirm the reality of these frequencies to a high level of significance (1 in 1000). The nature of the observed pulsation spectrum precludes identification of unique pulsation mode properties using any clearly discernable trends. However, we have used a global modelling procedure employing genetic algorithm techniques to identify the n,l values of eight pulsation modes, and thereby obtain asteroseismic measurements of several model parameters, including the stellar mass (0.55 Msolar) and Teff (~28200K). These values are consistent with those derived from published spectral fitting: Teff ~ 28400K and logg ~ 7.86. We also present persuasive evidence from apparent rotational mode splitting for two of the modes that indicates this compact object is a relatively rapid rotator with a period of 2h. In direct analogy with the corresponding properties of the hydrogen (DAV) atmosphere pulsators, the stable low-amplitude pulsation behaviour of EC20058 is entirely consistent with its inferred effective temperature, which indicates it is close to the blue edge of the DBV instability strip. Arguably, our most significant result from this work is the clear demonstration that EC20058 is a very stable pulsator with several dominant pulsation modes that can be monitored for their long-term stability.

  11. Mackenzie River Delta, Canada

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Mackenzie River in the Northwest Territories, Canada, with its headstreams the Peace and Finley, is the longest river in North America at 4241 km, and drains an area of 1,805,000 square km. The large marshy delta provides habitat for migrating Snow Geese, Tundra Swans, Brant, and other waterfowl. The estuary is a calving area for Beluga whales. The Mackenzie (previously the Disappointment River) was named after Alexander Mackenzie who travelled the river while trying to reach the Pacific in 1789.

    The image was acquired on August 4, 2005, covers an area of 55.8 x 55.8 km, and is located at 68.6 degrees north latitude, 134.7 degrees west longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  12. Colorado River Delta

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Colorado River ends its 2330 km journey in the Gulf of Mexico in Baja California. The heavy use of the river as an irrigation source for the Imperial Valley has dessicated the lower course of the river in Mexico such that it no longer consistently reaches the sea. Prior to the mid 20th century, the Colorado River Delta provided a rich estuarine marshland that is now essentially desiccated, but nonetheless is an important ecological resource.

    The image was acquired May 29, 2006, covers an area of 44.3 x 57.5 km, and is located at 32.1 degrees north latitude, 115.1 degrees west longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  13. Measurement of suction and discharge pressure pulsations in waterflood facilities

    SciTech Connect

    Wurzbach, W.M. Jr.; Happel, P.E.

    1983-01-01

    Recent mechanical problems with reciprocating water injection pumps prompted a study of suction and discharge pressure conditions in the Red River Bull Bayou Unit, Red River Parish, La. Frequent failures in plunger pump components and discharge lines were occurring at several injection sites within the unit. Electronic surveillance equipment consisting of an oscilloscope and pressure transducers was utilized to locate and identify large suction and discharge pressure pulses. The severity of these pulses could not be identified with standard pressure gages. The data obtained with the electronic equipment indicated that cavitation was occurring on the suction side of the pumps due to insufficient net positive suction head. The large pressure pulsations caused by this cavitation problem were carried through the pump and amplified on the discharge side. Changes in the suction and discharge piping design eliminated cavitation and effectively reduced the peak pressure pulses.

  14. Construction of the Database for Pulsating Variable Stars

    NASA Astrophysics Data System (ADS)

    Chen, Bing-Qiu; Yang, Ming; Jiang, Bi-Wei

    2012-01-01

    A database for pulsating variable stars is constructed to favor the study of variable stars in China. The database includes about 230,000 variable stars in the Galactic bulge, LMC and SMC observed in an about 10 yr period by the MACHO(MAssive Compact Halo Objects) and OGLE(Optical Gravitational Lensing Experiment) projects. The software used for the construction is LAMP, i.e., Linux+Apache+MySQL+PHP. A web page is provided for searching the photometric data and light curves in the database through the right ascension and declination of an object. Because of the flexibility of this database, more up-to-date data of variable stars can be incorporated into the database conveniently.

  15. Airfoil in sinusoidal motion in a pulsating stream

    NASA Technical Reports Server (NTRS)

    Greenberg, J Mayo

    1947-01-01

    The forces and moments on a two-dimensional airfoil executing harmonic motions in a pulsating stream are derived on the basis of non-stationary incompressible potential flow theory, with the inclusion of the effect of the continuous sheet of vortices shed from the trailing edge. An assumption as to the form of the wake is made with a certain degree of approximation. A comparison with previous work applicable only to the special case of a stationary airfoil is made by means of a numerical example, and the excellent agreement obtained shows that the wake approximation is quite sufficient. The results obtained are expected to be useful in considerations of forced vibrations and flutter of rotary wing aircraft.

  16. Microphysical development of a pulsating cumulus tower - A case study

    NASA Technical Reports Server (NTRS)

    Keller, V. W.; Sax, R. I.

    1981-01-01

    In-cloud microphysical data collected within a 22-minute period during seven consecutive passes at the -13 C sampling level of a deep (base +22 C) convective cloud provide observational evidence for a secondary ice production mechanism at work in the Florida environment. The observed microphysical characteristics of the convective tower, particularly the spatial distribution and habit of the ice phase relative to the updraft, are consistent with a rime-splintering hypothesis for secondary ice production. It is shown that the cloud's updraft structure is critically important in governing the timing of the ice production by controlling the flux of graupel particles through the critical temperature zone (-3 C to -8 C). The importance of the cloud's pulsation growth dynamics on the microphysics is emphasized, particularly as it relates to rapidly glaciating cumuli.

  17. Pulsating jet-like structures in magnetized plasma

    NASA Astrophysics Data System (ADS)

    Goncharov, V. P.; Pavlov, V. I.

    2016-08-01

    The formation of pulsating jet-like structures has been studied in the scope of the nonhydrostatic model of a magnetized plasma with horizontally nonuniform density. We discuss two mechanisms which are capable of stopping the gravitational spreading appearing to grace the Rayleigh-Taylor instability and to lead to the formation of stationary or oscillating localized structures. One of them is caused by the Coriolis effect in the rotating frames, and another is connected with the Lorentz effect for magnetized fluids. Magnetized jets/drops with a positive buoyancy must oscillate in transversal size and can manifest themselves as "radio pulsars." The estimates of their frequencies are made for conditions typical for the neutron star's ocean.

  18. Making a Be star: the role of rotation and pulsations

    NASA Astrophysics Data System (ADS)

    Neiner, Coralie; Mathis, Stéphane

    2014-02-01

    The Be phenomenon, i.e. the ejection of matter from Be stars into a circumstellar disk, has been a long lasting mystery. In the last few years, the CoRoT satellite brought clear evidence that Be outbursts are directly correlated to pulsations and rapid rotation. In particular the stochastic excitation of gravito-inertial modes, such as those detected by CoRoT in the hot Be star HD 51452, is enhanced thanks to rapid rotation. These waves increase the transport of angular momentum and help to bring the already rapid stellar rotation to its critical value at the surface, allowing the star to eject material. Below we summarize the recent observational and theoretical findings and describe the new picture of the Be phenomenon which arose from these results.

  19. Dependences between kinetics of the human eye pupil and blood pulsation

    NASA Astrophysics Data System (ADS)

    Szmigiel, Marta A.; Kasprzak, Henryk; Klysik, Anna

    2016-09-01

    The study presents measurement and numerical analysis of time variability of the eye pupil geometry and its position, as well as their correlations with blood pulsation. The image of the eye pupil was recorded by use of the fast CCD camera with 200 fps rates. Blood pulsation was synchronously recorded by use of pulse transducer with the sampling frequency of 200 Hz. Each single image from a sequence was numerically processed. Contour of the eye pupil was approximated, and its selected geometrical parameters as well as center positions were calculated. Spectral and coherence analysis of time variability of calculated pupil parameters and blood pulsation were determined.

  20. Observations of intense ULF pulsation activity near the geomagnetic equator during quiet times

    NASA Technical Reports Server (NTRS)

    Engebretson, M. J.; Zanetti, L. J.; Potemra, T. A.; Klumpar, D. M.; Strangeway, R. J.; Acuna, M. H.

    1988-01-01

    This paper analyzes observations, made by particle and field instruments on the AMPTE CCE satellite, of intense ULF pulsations in the earth's magnetosphere near the geomagnetic equator. These pulsations were observed during magnetically quiet periods in regions characterized by intense fluxes of warm strongly trapped light ions, predominantly H(+), and often with streaming low-energy plasma. The strong latitudinal localization of these pulsations is interpreted to be due to equatorial mass loading or to partial reflection of Alfven wave energy by latitudinal gradients in plasma density. Possible sources of wave energy for these events are discussed.

  1. Doubled-lined eclipsing binary system KIC~2306740 with pulsating component discovered from Kepler space photometry

    NASA Astrophysics Data System (ADS)

    Yakut, Kadri

    2015-08-01

    We present a detailed study of KIC 2306740, an eccentric double-lined eclipsing binary system with a pulsating component.Archive Kepler satellite data were combined with newly obtained spectroscopic data with 4.2\\,m William Herschel Telescope(WHT). This allowed us to determine rather precise orbital and physical parameters of this long period, slightly eccentric, pulsating binary system. Duplicity effects are extracted from the light curve in order to estimate pulsation frequencies from the residuals.We modelled the detached binary system assuming non-conservative evolution models with the Cambridge STARS(TWIN) code.

  2. Discovery of Pulsations of the B[e] Component in the CI Cam System

    NASA Astrophysics Data System (ADS)

    Barsukova, E. A.; Goranskij, V. P.

    2010-02-01

    We review the studies of rapid variability of the B[e] star CI Cam based on extensive CCD monitoring in two seasons of 2006 and 2008. We found that this variability is caused by pulsations of the B4 III-V component. In the composite frequency spectrum, two pulsation components dominate with periods of 0.416° and 0.266°. In the high resolution BTA/NES spectra taken simultaneously with the photometry, the absorption components in the emission profiles of weak HeI lines temporarily appear. This is typical of pulsating stars.

  3. Biomechanics. Mechanistic origins of bombardier beetle (Brachinini) explosion-induced defensive spray pulsation.

    PubMed

    Arndt, Eric M; Moore, Wendy; Lee, Wah-Keat; Ortiz, Christine

    2015-05-01

    Bombardier beetles (Brachinini) use a rapid series of discrete explosions inside their pygidial gland reaction chambers to produce a hot, pulsed, quinone-based defensive spray. The mechanism of brachinines' spray pulsation was explored using anatomical studies and direct observation of explosions inside living beetles using synchrotron x-ray imaging. Quantification of the dynamics of vapor inside the reaction chamber indicates that spray pulsation is controlled by specialized, contiguous cuticular structures located at the junction between the reservoir (reactant) and reaction chambers. Kinematics models suggest passive mediation of spray pulsation by mechanical feedback from the explosion, causing displacement of these structures.

  4. Pulsation, Mass Loss and the Upper Mass Limit

    NASA Astrophysics Data System (ADS)

    Klapp, J.; Corona-Galindo, M. G.

    1990-11-01

    RESUMEN. La existencia de estrellas con masas en exceso de 100 M0 ha sido cuestionada por mucho tiempo. Lfmites superiores para la masa de 100 M0 han sido obtenidos de teorfas de pulsaci6n y formaci6n estelar. En este trabajo nosotros primero investigamos la estabilidad radial de estrellas masivas utilizando la aproximaci6n clasica cuasiadiabatica de Ledoux, la aproximaci6n cuasiadiabatica de Castor y un calculo completamente no-adiabatico. Hemos encontrado que los tres metodos de calculo dan resultados similares siempre y cuando una pequefia regi6n de las capas externas de la estrella sea despreciada para la aproximaci6n clasica. La masa crftica para estabilidad de estrellas masivas ha sido encontrada en acuerdo a trabajos anteriores. Explicamos Ia discrepancia entre este y trabajos anteriores por uno de los autores. Discunmos calculos no-lineales y perdida de masa con respecto a) lfmite superior de masa. The existence of stars with masses in excess of 100 M0 has been questioned for a very long time. Upper mass limits of 100 Me have been obtained from pulsation and star formation theories. In this work we first investigate the radial stability of massive stars using the classical Ledoux's quasiadiabatic approximation. the Castor quasiadiabatic approximation and a fully nonadiabatic calculation. We have found that the three methods of calculation give similar results provided that a small region in outer layers of the star be neglected for the classical approximation. The critical mass for stability of massive stars is found to be in agreement with previous work. We explain the reason for the discrepancy between this and previous work by one of the authors. We discuss non-linear calculations and mass loss with regard to the upper mass limit. Key words: STARS-MASS FUNCTION - STARS-MASS LOSS - STARS-PULSATION

  5. Erosion Between Two Delta Fronts, the Mekong Delta Case

    NASA Astrophysics Data System (ADS)

    Unverricht, D.; Heinrich, C.; Nguyen, T. C.; Szczucinski, W.; Schwarzer, K.; Stattegger, K.

    2013-12-01

    Human activities, like embanking, sand mining, groundwater extraction and deforestation lead to strong changes of the deltaic environment. Especially, mangrove cutting influences strongly the coastal erosion along large areas of the southern Mekong delta coast. However, all currently published data document erosion from subaerial areas excluding the subaqueous Mekong delta. Our study fills this gap along the subaqueous Mekong Delta between the Bassac River mouth and the Gulf of Thailand. Hydroacoustic profiles and sediment coring were carried out during two cruises in 2007 and 2008. Analyses of ADCP measurements provide valuable information of current direction and velocity during the inter-monsoon season. Fine sediment dynamics including SPM were analyzed applying laser in situ scattering and Transmissiometry (LISST) at vertical profiles. Two delta fronts were found more than 200 km apart, one in front of the main Mekong river distributaries and the other around Ca Mau Cape, the south-western most spit of the Mekong River Delta. Although the delta front around Ca Mau Cape is not directly supplied by the main distributaries of the Mekong River, it is the fastest prograding region of the subaqueous Mekong delta. Alongshore sediment transport takes place from the north-eastern main distributaries towards south-west (Ca Mau Cape). Between both delta fronts, a large scale alternating sand-ridge-system, at least 120 km long and 6 to 10 km wide (ridge crest distance), has developed where erosional channels separate two sand-ridge bodies. The origin of the sand-ridge system is situated at the delta slope off Ganh Hao around water depths between 10 and 18 m. Here, the delta slope consists mainly of fine sand in the upper layer (up to 20 cm thickness) and is separated by an erosional hiatus from the lower muddy layer. The mangroves and sandy beaches at the coast in this region are also under erosion. It is assumed that the eroded beach sand feeds the sand-ridge-system. The

  6. Artificial delta growth

    NASA Astrophysics Data System (ADS)

    Mikeš, Daniel

    2010-05-01

    A deltaic sedimentary system has a point source; sediment is carried over the delta plain by distributary channels away from the point source and deposited at the delta front by distributary mouth bars. The established methods to describe such a sedimentary system are "bedding analysis", "facies analysis", and "basin analysis". We shall call the ambient conditions "input" and the rock record "output". There exist a number of methods to deduce input from output, e.g. "Sequence stratigraphy" (a.o. Vail et al. 1977, Catuneanu et al. 2009), "Shoreline trajectory" (a.o. Helland-Hansen & Martinsen 1996, Helland-Hansen & Hampson 2009) on the one hand and the complex use of established techniques on the other (a.o. Miall & Miall 2001, Miall & Miall 2002). None of these deductive methods seems to be sufficient. I claim that the common errors in all these attempts are the following: (1) a sedimentary system is four-dimensional (3+1) and a lesser dimensional analysis is insufficient; (2) a sedimentary system is complex and any empirical/deductive analysis is non-unique. The proper approach to the problem is therefore the theoretical/inductive analysis. To that end we performed six scenarios of a scaled version of a passive margin delta in a flume tank. The scenarios have identical stepwise tectonic subsidence and semi-cyclic sealevel, but different supply curves, i.e. supply is: constant, highly-frequent, proportional to sealevel, inversely proportional to sealevel, lagging to sealevel, ahead of sealevel. The preliminary results are indicative. Lobe-switching occurs frequently and hence locally sedimentation occurs shortly and hiatuses are substantial; therefore events in 2D (+1) cross-sections don't correlate temporally. The number of sedimentary cycles disequals the number of sealevel cycles. Lobe-switching and stepwise tectonic subsidence cause onlap/transgression. Erosional unconformities are local diachronous events, whereas maximum flooding surfaces are regional

  7. On the effect of turbulent anisotropy on pulsation stability of stars

    NASA Astrophysics Data System (ADS)

    Zhang, Chun-Guang; Deng, Li-Cai; Xiong, Da-Run

    2017-02-01

    Within the framework of a non-local time-dependent stellar convection theory, we study in detail the effect of turbulent anisotropy on stellar pulsation stability. The results show that anisotropy has no substantial influence on pulsation stability of g modes and low-order (radial order n r < 5) p modes. The effect of turbulent anisotropy increases as the radial order increases. When turbulent anisotropy is neglected, most high-order (n r > 5) p modes of all low-temperature stars become unstable. Fortunately, within a wide range of the anisotropic parameter c 3, stellar pulsation stability is not sensitive to the specific value of c 3. Therefore it is safe to say that calibration errors of the convective parameter c 3 do not cause any uncertainty in the calculation of stellar pulsation stability.

  8. An ultraviolet and visible spectroscopic study of a pulsational cycle of RY Sagittarii

    NASA Technical Reports Server (NTRS)

    Clayton, Geoffrey C.; Lawson, W. A.; Cottrell, P. L.; Whitney, Barbara A.; Stanford, S. Adam; De Ruyter, Frank

    1994-01-01

    High-dispersion visible and ultraviolet spectra and UBVRI photometry, covering a complete pulsation of the R Coronae Borealis star RY Sgr, have been obtained. The UV spectra were the first high-dispersion data ever obtained for the star. Together these observations comprise the most complete data set covering an RCB star pulsation cycle. The cycle observed was somewhat anomalous as it was affected by a second 55 day pulsation period as well as the primary 38 day period. However, the visible spectra showed the typical line splitting and radial velocity variations which have been observed previously. The simultaneous UV spectra showed much smaller, and phase-shifted, velocity variations than those seen in the visible. No evidence was seen of shock-induced emission at Mg II. These observations provide some support for the models of pulsating hydrogen deficient stars developed by Saio & Wheeler.

  9. Pulsating Electrohydrodynamic Cone-Jets: from Choked Jet to Oscillating Cone

    NASA Astrophysics Data System (ADS)

    Bober, David; Chen, Chuan-Hua

    2011-11-01

    Pulsating cone-jets occur in a variety of electrostatic spraying and printing systems. We report an experimental study of the pulsation frequency to reconcile two models based on a choked jet and an oscillating cone, respectively. The two regimes are demarcated by the ratio of the supplied flow rate (Qs) to the minimum flow rate (Qm) required for a steady Taylor cone-jet. When Qs pulsation frequency in the choked jet regime is proportional to Qs /Qm . When Qs >Qm , the Taylor cone anchored at the nozzle experiences a capillary oscillation analogous to the Rayleigh mode of a free drop; the pulsation frequency in the oscillating cone regime plateaus to the capillary oscillation frequency which is independent of Qs /Qm .

  10. Recent Advances in the Theoretical Modeling of Pulsating Low-mass He-core White Dwarfs

    NASA Astrophysics Data System (ADS)

    Córsico, A. H.; Althaus, L. G.; Calcaferro, L. M.; Serenelli, A. M.; Kepler, S. O.; Jeffery, C. S.

    2017-03-01

    Many extremely low-mass (ELM) white-dwarf (WD) stars are currently being found in the field of the Milky Way. Some of these stars exhibit long-period nonradial g-mode pulsations, and constitute the class of ELMV pulsating WDs. In addition, several low-mass pre-WDs, which could be precursors of ELM WDs, have been observed to show short-period photometric variations likely due to nonradial p modes and radial modes. They could constitute a new class of pulsating low-mass pre-WD stars, the pre-ELMV stars. Here, we present the recent results of a thorough theoretical study of the nonadiabatic pulsation properties of low-mass He-core WDs and pre-WDs on the basis of fully evolutionary models representative of these stars.

  11. Type Ia supernovae: Pulsating delayed detonation models, IR light curves, and the formation of molecules

    NASA Technical Reports Server (NTRS)

    Hoflich, Peter; Khokhlov, A.; Wheeler, C.

    1995-01-01

    We computed optical and infrared light curves of the pulsating class of delayed detonation models for Type Ia supernovae (SNe Ia). It is demonstrated that observations of the IR light curves can be used to identify subluminous SNe Ia by testing whether secondary maxima occur in the IR. Our pulsating delayed detonation models are in agreement with current observations both for subluminous and normal bright SN Ia, namely SN1991bg, SN1992bo, and SN1992bc. Observations of molecular bands provide a test to distinguish whether strongly subluminous supernovae are a consequence of the pulsating mechanism occurring in a high-mass white dwarf (WD) or, alternatively, are formed by the helium detonation in a low-mass WD as was suggested by Woosley. In the latter case, no carbon is left after the explosion of low-mass WDs whereas a log of C/O-rich material is present in pulsating delayed detonation models.

  12. Celebration of the contributions of Art Cox to stellar pulsation interpretations

    SciTech Connect

    Castor, J.I.

    1997-10-02

    A roughly chronological account is given of Arthur N. Coxs published work of 1953-1996 in, mostly, stellar pulsation theory, with a digression into stellar opacity. When possible, his work is placed in the context of the contemporary efforts.

  13. Quantitative assessment of the impact of blood pulsation on images of the pupil in infrared light.

    PubMed

    Koprowski, Robert; Szmigiel, Marta; Kasprzak, Henryk; Wróbel, Zygmunt; Wilczyński, Sławomir

    2015-08-01

    Pulsation in the blood vessels of the eye has a big impact on the dynamics of the entire eyeball and its individual elements. Blood pulsation in the retina can be recorded by the pupil, whose size is also subject to dynamic changes. The study involved synchronous measurements of pupil size using a high-speed camera, and blood pulsation using a pulse oximeter placed on the ear lobe. In addition, there were no metrologically significant differences in the phase shift between the average brightness of the individual pupil quadrants. Blood pulsation in other ocular tissues can affect the dynamics of the optical properties of the eye. As demonstrated in this paper, it affects the pupil behavior and its parameters to a considerable extent.

  14. The development of early pulsation theory, or, how Cepheids are like steam engines"

    NASA Astrophysics Data System (ADS)

    Stanley, Matthew

    2011-05-01

    The pulsation theory of Cepheid variable stars was a major breakthrough of early twentieth-century astrophysics. At the beginning of that century, the basic physics of normal stars was very poorly understood, and variable stars were even more mysterious. Breaking with accepted explanations in terms of eclipsing binaries, Harlow Shapley and A.S. Eddington pioneered novel theories that considered Cepheids as pulsating spheres of gas. These theoretical models relied on highly speculative physics, but nonetheless returned very impressive results despite attacks from figures such as James Jeans. Surprisingly, the pulsation theory not only depended on developments in stellar physics, but also drove many of those developments. In particular, models of stars in radiative balance and theories of stellar energy were heavily inspired and shaped by ideas about variable stars. Further, the success of the pulsation theory helped justify the new approaches to astrophysics being developed before World War II.

  15. The Development of Early Pulsation Theory, or, How Cepheids Are Like Steam Engines

    NASA Astrophysics Data System (ADS)

    Stanley, M.

    2012-06-01

    The pulsation theory of Cepheid variable stars was a major breakthrough of early twentieth-century astrophysics. At the beginning of that century, the basic physics of normal stars was very poorly understood, and variable stars were even more mysterious. Breaking with accepted explanations in terms of eclipsing binaries, Harlow Shapley and A. S. Eddington pioneered novel theories that considered Cepheids as pulsating spheres of gas. Surprisingly, the pulsation theory not only depended on novel developments in stellar physics, but the theory also drove many of those developments. In particular, models of stars in radiative balance and theories of stellar energy were heavily inspired and shaped by ideas about variable stars. Further, the success of the pulsation theory helped justify the new approaches to astrophysics being developed before World War II.

  16. 78 FR 79304 - Cardiovascular Devices; Reclassification of External Counter-Pulsating Devices for Treatment of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-30

    ... ``Certain Specified Intended Uses'' includes the following intended uses: Unstable angina pectoris; Acute... III (premarket approval) for the following intended uses: Unstable angina pectoris; acute myocardial... External Counter- Pulsating Devices for Treatment of Chronic Stable Angina; Effective Date of...

  17. Vibration and pulsation processes in feed systems of liquid rocket engines

    NASA Astrophysics Data System (ADS)

    Kalnin, V. M.; Sherstiannikov, V. A.

    Pulsation and vibration process in high speed centrifugal pumps and feed lines were investigated. Linear and quadratic relations between pulsation parameters and main factors were obtained. The investigation of turbopump low frequency oscillations showed that the intensity of pulsations is proportional to the pump specific linear size. Linear mathematic models with lumped parameters fairly well demonstrate the vibration influence on low frequency flow pressure vibrations in pumps and feed lines. It is shown that, in some conditions, the pressure oscillation amplitude distribution by the vibrating feed lines length may be characterized by the presence of a node in an intermediate section. A one-dimensional mathematic model based on wave equations proved to be suitable for calculations of vibration and pulsation parameters within a wide frequency range.

  18. Pressure levels and pulsation frequencies can be varied on high pressure/frequency testing device

    NASA Technical Reports Server (NTRS)

    Routson, J. W.

    1967-01-01

    Hydraulic system components test device obtains a pulsating pressure from a hydraulic actuator that is being driven by a vibration exciter of sufficient force and displacement. Input to the exciter controls the frequency of pressure variation.

  19. Planetary distribution of geomagnetic pulsations during a geomagnetic storm at solar minimum

    NASA Astrophysics Data System (ADS)

    Kleimenova, N. G.; Kozyreva, O. V.

    2014-01-01

    We investigate the features of the planetary distribution of wave phenomena (geomagnetic pulsations) in the Earth's magnetic shell (the magnetosphere) during a strong geomagnetic storm on December 14-15, 2006, which is untypical of the minimum phase of solar activity. The storm was caused by the approach of the interplanetary magnetic cloud towards the Earth's magnetosphere. The study is based on the analysis of 1-min data of global digital geomagnetic observations at a few latitudinal profiles of the global network of ground-based magnetic stations. The analysis is focused on the Pc5 geomagnetic pulsations, whose frequencies fall in the band of 1.5-7 mHz ( T ˜ 2-10 min), on the fluctuations in the interplanetary magnetic field (IMF) and in the solar wind density in this frequency band. It is shown that during the initial phase of the storm with positive IMF Bz, most intense geomagnetic pulsations were recorded in the dayside polar regions. It was supposed that these pulsations could probably be caused by the injection of the fluctuating streams of solar wind into the Earth's ionosphere in the dayside polar cusp region. The fluctuations arising in the ionospheric electric currents due to this process are recorded as the geomagnetic pulsations by the ground-based magnetometers. Under negative IMF Bz, substorms develop in the nightside magnetosphere, and the enhancement of geomagnetic pulsations was observed in this latitudinal region on the Earth's surface. The generation of these pulsations is probably caused by the fluctuations in the field-aligned magnetospheric electric currents flowing along the geomagnetic field lines from the substorm source region. These geomagnetic pulsations are not related to the fluctuations in the interplanetary medium. During the main phase of the magnetic storm, when fluctuations in the interplanetary medium are almost absent, the most intense geomagnetic pulsations were observed in the dawn sector in the region corresponding to the

  20. Spatio-temporal Dynamics of Sources of Hard X-Ray Pulsations in Solar Flares

    NASA Astrophysics Data System (ADS)

    Kuznetsov, S. A.; Zimovets, I. V.; Morgachev, A. S.; Struminsky, A. B.

    2016-11-01

    We present a systematic analysis of the spatio-temporal evolution of sources of hard X-ray (HXR) pulsations in solar flares. We concentrate on disk flares whose impulsive phases are accompanied by a series of more than three successive peaks (pulsations) of HXR emission detected in the RHESSI 50 - 100 keV energy channel with a four-second time cadence. Twenty-nine such flares observed from February 2002 to June 2015 with characteristic time differences between successive peaks P ≈8 - 270 s are studied. The main observational result of the analysis is that sources of HXR pulsations in all flares are not stationary, they demonstrate apparent movements or displacements in the parent active regions from pulsation to pulsation. The flares can be subdivided into two main groups depending on the character of the dynamics of the HXR sources. Group 1 consists of 16 flares (55 %) that show systematic dynamics of the HXR sources from pulsation to pulsation with respect to a magnetic polarity inversion line (MPIL), which has a simple extended trace on the photosphere. Group 2 consists of 13 flares (45 %) that show more chaotic displacements of the HXR sources with respect to an MPIL with a more complex structure, and sometimes several MPILs are present in the parent active regions of such flares. Based on the observations, we conclude that the mechanism of the flare HXR pulsations (at least with time differences of the considered range) is related to successive triggering of the flare energy release process in different magnetic loops (or bundles of loops) of the parent active regions. Group 1 flare regions consist of loops stacked into magnetic arcades that are extended along MPILs. Group 2 flare regions have more complex magnetic structures, and the loops are arranged more chaotically and randomly there. We also found that at least 14 (88 %) group 1 flares and 11 (85 %) group 2 flares are accompanied by coronal mass ejections (CMEs), i.e. the absolute majority of the

  1. An experimental investigation of heat transfer in a spiral-coil tube with pulsating turbulent water flow

    NASA Astrophysics Data System (ADS)

    Kharvani, H. Ramezani; Doshmanziari, F. Ilami; Zohir, A. E.; Jalali-Vahid, D.

    2016-09-01

    In this study, in order to increase the heat transfer rate in a spiral-coil tube by an active method, a rotating ball valve was mounted downstream/upstream of the spiral-coil tube and used as a pulse generator. Influence of pulsation on heat transfer in the spiral-coil tube was experimentally investigated. Cold water was used as a working fluid inside the spiral-coil that was immersed horizontally in a hot water reservoir tank. The Average temperature of the hot water bath was kept constant at 60 °C to establish a uniform temperature. All experiments for both pulsator locations (upstream and downstream pulsation) were performed at fixed pulsation amplitude. Reynolds number was ranged from 6220 to 16,300 while pulsation frequency was varied from 0 to 20 Hz. It can be clearly observed from heat transfer results that the overall average heat transfer coefficient was enhanced up to 26 % for pulsating flow compared to steady flow without pulsation at all pulsation frequencies. It is also clear that the relative overall average heat transfer coefficient is strongly affected by Reynolds number. Finally, it was obtained that the upstream pulsation heat transfer coefficient has better heat transfer results than the corresponding ones of downstream pulsation in the studied range of Reynolds number.

  2. A1540-53, an eclipsing X-ray binary pulsator

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Swank, J. H.; Boldt, E. A.; Holt, S. S.; Pravdo, S. H.; Saba, J. R.; Serlemitsos, P. J.

    1977-01-01

    An eclipsing X-ray binary pulsator consistent with the location of A1540-53 was observed. The source pulse period was 528.93 plus or minus 0.10 seconds. The binary nature is confirmed by a Doppler curve for the pulsation period. The eclipse angle of 30.5 deg plus or minus 3 deg and the 4 h transition to and from eclipse suggest an early type, giant or supergiant, primary star.

  3. Latitude-independent Pc5 Geomagnetic Pulsations Associated With Field Line Resonance

    NASA Astrophysics Data System (ADS)

    Sung, S.; Kim, K.; Lee, D.; Cattell, C. A.; Andre, M.; Khotyaintsev, Y. V.

    2004-12-01

    The latitude-independent Pc5 pulsations with a spectral peak at ˜2.8 mHz were observed with IMAGE and SAMNET magnetometer array in the morning sector (0700-1000 local time) on April 29 (Day 119), 2001. The spectral amplitude had a local peak at ˜67° geomagnetic latitude, where a sudden phase change of ˜180° appeared. A vortical equivalent ionospheric current structure centered at latitude between 67° and 71° was observed during the Pc5 pulsations and the rotational sense of the current vortex was reversed for one cycle of the pulsation. During the interval of the enhancement of the Pc5 pulsations, the POLAR spacecraft in the morning side crossed near the magnetic shell (L ˜ 8) corresponding to the latitude where the spectral amplitude was maximum, and observed ˜2.8 mHz pulsations in the radial electric field and compressional magnetic field components. Since the toroidal mode Alfvén waves in the magnetosphere are characterized by an electric field perturbation in the radial direction, the simultaneous presence of the pulsations in both components indicates that a field line resonance (FLR) was driven by compressional Pc5 pulsations. Using solar wind data, we conformed that the compressional Pc5 pulsations at POLAR occurred during an interval of enhanced solar wind dynamic pressure. From the analysis of the ground magnetometer data and POLAR data, we suggest that latitude independent ground magnetic perturbations are caused by the vortical equivalent current generated by FLR-associated field-aligned currents.

  4. Outbursts from Cool Pulsating White Dwarfs in Kepler and K2

    NASA Astrophysics Data System (ADS)

    Bell, Keaton J.; Hermes, J. J.; Montgomery, Michael H.; Winget, Donald E.

    2017-01-01

    Data from the Kepler and K2 missions have captured the signatures of a new pulsation-related phenomenon in hydrogen atmosphere white dwarfs. Some pulsating white dwarfs within 500 K of the empirical cool edge of the ZZ Ceti instability strip exhibit outburst-like brightness enhancements of up to 15% that last many hours and recur irregularly on timescales on days. In this thesis talk, I summarize the observational characteristics of this new outbursting class of ZZ Ceti.

  5. RR Lyrae Variable Stars: Pulsational Constraints Relevant to the Oosterhoff Controversy

    NASA Astrophysics Data System (ADS)

    Bono, Giuseppe; Caputo, Filippina; Castellani, Vittorio; Marconi, Marcella

    1995-08-01

    A solution to the old Oosterhoff controversy is proposed on the basis of a new theoretical pulsational scenario concerning RR Lyrae cluster variables (Bono and coworkers). We show that the observed constancy of the lowest pulsation period in both Oosterhoff type I and Oosterhoff type II prototypes (M3, M15) can be easily reproduced only by assuming the canonical evolutionary horizontal-branch luminosity levels of these Galactic globular clusters and therefore by rejecting the Sandage period-shift effect (SPSE).

  6. Biotropic geomagnetic pulsations Pc1 resulting from the magnetic storm of March 17, 2015

    NASA Astrophysics Data System (ADS)

    Slivinsky, A. P.

    2016-12-01

    Data obtained by a Hall sensor-based magnetic field detector have been used to record the spectral components of the geomagnetic field. An analysis of specific features of the spectral characteristics of geomagnetic fluctuations has indicated that the pulsations identified in the vicinity of the strong magnetic storm of March 17, 2015, are "pearl"-type fluctuations, i.e., biotropic geomagnetic Pc1 pulsations.

  7. Evaluation of runner cone extension to dampen pressure pulsations in a Francis model turbine

    NASA Astrophysics Data System (ADS)

    Gogstad, Peter Joachim; Dahlhaug, Ole Gunnar

    2016-11-01

    Today's energy market has a high demand of flexibility due to introduction of other intermittent renewables as wind and solar. To ensure a steady power supply, hydro turbines are often forced to operate more at part load conditions. Originally, turbines were built for steady operation around the best efficiency point. The demand of flexibility, combined with old designs has showed an increase in turbines having problems with hydrodynamic instabilities such as pressure pulsations. Different methods have been investigated to mitigate pressure pulsations. Air injection shows a significant reduction of pressure pulsation amplitudes. However, installation of air injection requires extra piping and a compressor. Investigation of other methods such as shaft extension shows promising results for some operational points, but may significantly reduce the efficiency of the turbine at other operational points. The installation of an extension of the runner cone has been investigated at NTNU by Vekve in 2004. This has resulted in a cylindrical extension at Litjfossen Power Plant in Norway, where the bolt suffered mechanical failure. This indicates high amplitude pressure pulsations in the draft tube centre. The high pressure pulsation amplitudes are believed to be related to high tangential velocity in the draft tube. The mentioned runner cone extension has further been developed to a freely rotating extension. The objective is to reduce the tangential velocity in the draft tube and thereby the pressure pulsation amplitudes.

  8. Time course and topographic distribution of ocular fundus pulsation measured by low-coherence tissue interferometry

    NASA Astrophysics Data System (ADS)

    Dragostinoff, Nikolaus; Werkmeister, René M.; Klaizer, József; Gröschl, Martin; Schmetterer, Leopold

    2013-12-01

    Low-coherence tissue interferometry is a technique for the depth-resolved measurement of ocular fundus pulsations. Whereas fundus pulsation amplitudes at preselected axial positions can readily be assessed by this method, coupling of the interferometer with a pulse oximeter additionally allows for the reconstruction of the time course of ocular fundus pulsation with respect to the cardiac cycle of the subject. For this purpose, the interferogram resulting from the superposition of waves reflected at the cornea and the ocular fundus is recorded synchronously with the plethysmogram. A new method for evaluating the time course of synthetic interferograms in combination with plethysmograms based on averaging several pulse periods has been developed. This technique allows for the analysis of amplitudes, time courses, and phase differences of fundus pulsations at preselected axial and transversal positions and for creating fundus pulsation movies. Measurements are performed in three healthy emmetropic subjects at angles from 0 deg to 18 deg to the axis of vision. Considerably different time courses, amplitudes, and phases with respect to the cardiac cycle are found at different angles. Data on ocular fundus pulsation obtained with this technique can-among other applications-be used to verify and to improve biomechanical models of the eye.

  9. VizieR Online Data Catalog: RR Lyr pulsational model (Bono+ 1997)

    NASA Astrophysics Data System (ADS)

    Bono, G.; Caputo, F.; Castellani, V.; Marconi, M.

    1996-06-01

    We present a theoretical investigation on periods and amplitudes of RR Lyrae pulsators by adopting stellar parameters which cover the range of theoretical evolutionary expectations. Extensive grids of nonlinear, nonlocal and time-dependent convective RR Lyrae envelope models have been computed to investigate the pulsational behavior in both fundamental and first overtone modes at selected luminosity levels and over an effective temperature range which covers the whole instability region. In order to avoid spurious evaluations of modal stability and pulsation amplitudes, the coupling between pulsation and convection was followed through a direct time integration of the leading equations until radial motions approached their limiting amplitude. Blue and red boundaries for pulsational instability into the HR diagram are presented for three different mass values M=0.75, 0.65 and 0.58M⊙, together with an atlas of full amplitude theoretical light curves for both fundamental and first overtone pulsators and for two different assumptions of stellar masses: M=0.75 and 0.65M⊙. (6 data files).

  10. The dependence of pulsating auroral events on energetic electrons and cold plasma near the equatorial plane

    SciTech Connect

    Nemzek, R.J.; Belian, R.D.; McComas, D.J.; Thomsen, M.F.; Nakamura, R.; Baker, D.N.; Yamamoto, T.

    1992-10-01

    Pulsating auroras are a substorm recovery phase phenomenon, occurring shortly after an auroral breakup. The current theory of the pulsating aurora involves a ``relaxation oscillator`` mechanism requiring a population of high-energy (10`s of keV) electrons and a low-energy plasma number density on the order of a few particles per cm{sup 3}. We investigated this relationship by comparing energetic electron and plasma data from a geosynchronous satellite to pulsating auroras recorded by an all-sky video camera which contained the satellite`s ionospheric conjugate point in its field of view. Pulsating auroral events were generally closely connected to substorm injections on the satellite, but there was no clear correlation with changes in plasma density. During all of the events the density was in an acceptable range for the relaxation oscillator mechanism to function. The relationship to substorm injections impiles that the pulsating aurora can be used to map the substorm injection region down to the ionosphere. An unusual diminishing of the pulsating aurora during the growth phase of a subsequent substorm was also discovered.

  11. The dependence of pulsating auroral events on energetic electrons and cold plasma near the equatorial plane

    SciTech Connect

    Nemzek, R.J.; Belian, R.D.; McComas, D.J.; Thomsen, M.F. ); Nakamura, R.; Baker, D.N. . Goddard Space Flight Center); Yamamoto, T. )

    1992-01-01

    Pulsating auroras are a substorm recovery phase phenomenon, occurring shortly after an auroral breakup. The current theory of the pulsating aurora involves a relaxation oscillator'' mechanism requiring a population of high-energy (10's of keV) electrons and a low-energy plasma number density on the order of a few particles per cm{sup 3}. We investigated this relationship by comparing energetic electron and plasma data from a geosynchronous satellite to pulsating auroras recorded by an all-sky video camera which contained the satellite's ionospheric conjugate point in its field of view. Pulsating auroral events were generally closely connected to substorm injections on the satellite, but there was no clear correlation with changes in plasma density. During all of the events the density was in an acceptable range for the relaxation oscillator mechanism to function. The relationship to substorm injections impiles that the pulsating aurora can be used to map the substorm injection region down to the ionosphere. An unusual diminishing of the pulsating aurora during the growth phase of a subsequent substorm was also discovered.

  12. Supersonic aerodynamics of delta wings

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.

    1988-01-01

    Through the empirical correlation of experimental data and theoretical analysis, a set of graphs has been developed which summarize the inviscid aerodynamics of delta wings at supersonic speeds. The various graphs which detail the aerodynamic performance of delta wings at both zero-lift and lifting conditions were then employed to define a preliminary wing design approach in which both the low-lift and high-lift design criteria were combined to define a feasible design space.

  13. Propagation mechanism of daytime Pc 3-4 pulsations observed at synchronous orbit and multiple ground-based stations

    NASA Technical Reports Server (NTRS)

    Yumoto, K.; Saito, T.; Akasofu, S.-I.; Tsurutani, B. T.; Smith, E. J.

    1985-01-01

    Observational data obtained during the last two decades show that the amplitude of daytime Pc 3-4 magnetic pulsations is controlled by the solar wind conditions. The high degree of correlation between the solar wind parameters and Pc 3-4 pulsations in the dayside magnetosphere suggests that the ultimate cause of the daytime Pc 3-4 pulsations must be the interaction of the solar wind with the earth's magnetosphere. The present paper is concerned with details regarding the control of the properties of the Pc 3-4 pulsations by the solar wind parameters, taking into account observations made at multiple ground-based stations. It is attempted to establish the relation between the daytime Pc 3-4 pulsations at the ground stations and the compressional Pc 3-4 waves in the magnetosphere. Attention is given to the most probable propagation mechanism of the daytime Pc 3-4 pulsations in the magnetosphere.

  14. The Lyncis Two for One Special (Abstract)

    NASA Astrophysics Data System (ADS)

    Joner, M.; Hintz, E.

    2015-12-01

    (Abstract only) The pulsating delta Scuti star AN Lyn and the near contact binary UU Lyn are conveniently located at high declination in the northern constellation of Lynx. These variable stars are about 15 arc minutes apart in the sky and differ in average brightness by roughly one magnitude. This combination makes it fairly straightforward to secure photometric data on both stars at the same time using a common set of comparison stars. We present observations made at the BYU West Mountain Observatory during the spring of 2015 and outline some preliminary conclusions that can be drawn about these distinctly different variable stars.

  15. PULSATION PERIOD VARIATIONS IN THE RRc LYRAE STAR KIC 5520878

    SciTech Connect

    Hippke, Michael; Learned, John G.; Zee, A.; Edmondson, William H.; Lindner, John F.; Kia, Behnam; Ditto, William L.; Stevens, Ian R. E-mail: jgl@phys.hawaii.edu E-mail: w.h.edmondson@bham.ac.uk E-mail: wditto@hawaii.edu E-mail: irs@star.sr.bham.ac.uk

    2015-01-01

    Learned et al. proposed that a sufficiently advanced extra-terrestrial civilization may tickle Cepheid and RR Lyrae variable stars with a neutrino beam at the right time, thus causing them to trigger early and jogging the otherwise very regular phase of their expansion and contraction. This would turn these stars into beacons to transmit information throughout the galaxy and beyond. The idea is to search for signs of phase modulation (in the regime of short pulse duration) and patterns, which could be indicative of intentional, omnidirectional signaling. We have performed such a search among variable stars using photometric data from the Kepler space telescope. In the RRc Lyrae star KIC 5520878, we have found two such regimes of long and short pulse durations. The sequence of period lengths, expressed as time series data, is strongly autocorrelated, with correlation coefficients of prime numbers being significantly higher (p = 99.8%). Our analysis of this candidate star shows that the prime number oddity originates from two simultaneous pulsation periods and is likely of natural origin. Simple physical models elucidate the frequency content and asymmetries of the KIC 5520878 light curve. Despite this SETI null result, we encourage testing of other archival and future time-series photometry for signs of modulated stars. This can be done as a by-product to the standard analysis, and can even be partly automated.

  16. Pulsation properties of DB white dwarfs: A preliminary analysis

    SciTech Connect

    Winget, D.E.; Van Horn, H.M.; Tassoul, M.; Hansen, C.J.; Fontaine, G.

    1983-05-01

    We report preliminary results of a numerical investigation of the nonradial g-mode pulsation properties of evolutionary DB white dwarf models. We have solved the fully nonadiabatic equations for modes corresponding to spherical harmonic index l = 1 through 3. For each of the sequences of models we have examined (M/sub asterisk/ = 0.6 M/sub sun/; and helium layer masses of 10/sup -6/ M/sub asterisk/ and 10/sup -4/ M/sub asterisk/), we find a nonradial g-mode instability strip about 3000 K wide. For models with standard ML1 convection, this strip lies in the effective temperature range 19,000 K> or approx. =T/sub e/> or approx. =16,000 K. The boundaries of the instability strip are extremely sensitive to the assumed efficiency of convection, however, and for sequences with more efficient (ML3) convection, we find the instability strip to be in the range 29,000 K> or approx. =T/sub e/> or approx. = 26,000 K. Extrapolation of our calculations to 0.4 M/sub sun/ and 0.9 M/sub sun/ indicates that that the instability strip boundaries are insensitive to uncertainties in the total stellar mass. The most unstable modes have e-folding times of the order of days.

  17. Measurement of suction and discharge pressure pulsations in waterflood facilities

    SciTech Connect

    Wurzbach, W.M.; Happel, P.E.

    1983-10-01

    Recent mechanical problems with reciprocating water injection pumps prompted a study of suction and discharge pressure conditions in the Red River Bull Bayou Unit, Red River Parish, Louisiana. Frequent failures in plunger pump components and discharge lines were occurring at several injection sites within the unit. Electronic surveillance equipment consisting of an oscilloscope and pressure transducers was utilized to locate and identify large suction and discharge pressure pulses. The severity of these pulses could not be identified with standard pressure gauges. The data obtained with the electronic equipment indicated that cavitation was occurring on the suction side of the pumps due to insufficient net positive suction head. The large pressure pulsations caused by this cavitation problem were carried through the pump and amplified on the discharge side. This resulted in excessive vibration and equipment overload. Subsequent changes in the suction and discharge piping design eliminated cavitation and effectively reduced the peak pressure pulses. These piping changes were done systematically to measure the effect of each change individually. The resulting measurements gave better insight to future piping design for both suction and discharge installations.

  18. Search for Planets around Pulsating White Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Mullally, F.; Winget, D. E.; Kepler, S. O.

    2005-12-01

    We present initial results from our search for planets around variable white dwarf stars. White dwarf stars are the end point of stellar evolution for 98% of main sequence stars. Theoretical calculations (Sackmann 1993; Duncan & Lissauer 1998) predict that planets further than 1 AU from their parent star will survive the red giant phase. When a hydrogen atmosphere white dwarf (DA) cools to about 12000K it becomes a variable star. A subset of these stars exhibit pulsational stability that rivals atomic clocks (˙ {P} ˜ 10-15; Kepler et al. 2005). The reflex orbital motion of the star around the center of mass of the system due to the presence of a planet changes the light travel time of these stable pulses and hence their observed arrival time on earth, providing a method to detect the planet. Because we are measuring change in distance to the star, planets in long period orbits are easier to detect, complementing the Doppler shift method. This work is supported by grant from the NASA Origins program, NAG5-13094 and performed in part under contract with JPL through the Michelson Fellowship Program.

  19. Mass flow and its pulsation measurements in supersonic wing wake

    NASA Astrophysics Data System (ADS)

    Shmakov, A. S.; Shevchenko, A. M.; Yatskikh, A. A.; Yermolaev, Yu. G.

    2016-10-01

    The results of experimental study of the flow in the wing wake are presented. Experiments were carried out in supersonic wind tunnel T-325 of ITAM SB RAS. Rectangle half-wing with sharp edges with a chord length of 30 mm and semispan of 95 mm was used to generate vortex wake. Experimental data were obtained in the cross section located 6 chord length downstream of the trailing edge at Mach numbers of 2.5 and 4 and at wing angles of attack of 4 and 10 degrees. Constant temperature hot-wire anemometer was used to measure disturbances in supersonic flow. Hot-wire was made of a tungsten wire with a diameter of 10 μm and length of 1.5 mm. Shlieren flow visualization were performed. As a result, the position and size of the vortex core in the wake of a rectangular wing were determined. For the first time experimental data on the mass flow distribution and its pulsations in the supersonic longitudinal vortex were obtained.

  20. A helium based pulsating heat pipe for superconducting magnets

    NASA Astrophysics Data System (ADS)

    Fonseca, Luis Diego; Miller, Franklin; Pfotenhauer, John

    2014-01-01

    This study was inspired to investigate an alternative cooling system using a helium-based pulsating heat pipes (PHP), for low temperature superconducting magnets. In addition, the same approach can be used for exploring other low temperature applications. The advantages of PHP for transferring heat and smoothing temperature profiles in various room temperature applications have been explored for the past 20 years. An experimental apparatus has been designed, fabricated and operated and is primarily composed of an evaporator and a condenser; in which both are thermally connected by a closed loop capillary tubing. The main goal is to measure the heat transfer properties of this device using helium as the working fluid. The evaporator end of the PHP is comprised of a copper winding in which heat loads up to 10 watts are generated, while the condenser is isothermal and can reach 4.2 K via a two stage Sumitomo RDK408A2 GM cryocooler. Various experimental design features are highlighted. Additionally, performance results in the form of heat transfer and temperature characteristics are provided as a function of average condenser temperature, PHP fill ratio, and evaporator heat load. Results are summarized in the form of a dimensionless correlation and compared to room temperature systems. Implications for superconducting magnet stability are highlighted.

  1. Heat transfer mechanisms in pulsating heat-pipes with nanofluid

    NASA Astrophysics Data System (ADS)

    Gonzalez, Miguel; Kelly, Brian; Hayashi, Yoshikazu; Kim, Yoon Jo

    2015-01-01

    In this study, the effect of silver nanofluid on a pulsating heat-pipe (PHP) thermal performance was experimentally investigated to figure out how nanofluid works with PHP. A closed loop PHP was built with 3 mm diameter tubes. Thermocouples and pressure transducers were installed for fluid and surface temperature and pressure measurements. The operating temperature of the PHP varied from 30-100 °C, with power rates of 61 W and 119 W. The fill ratio of 30%, 50%, and 70% were tested. The results showed that the evaporator heat transfer performance was degraded by the addition of nanoparticles due to increased viscosity at high power rate, while the positive effects of high thermal conductivity and enhanced nucleate boiling worked better at low power rate. In the condenser section, owing to the relatively high liquid content, nanofluid more effectively improved the heat transfer performance. However, since the PHP performance was dominantly affected by evaporator heat transfer performance, the overall benefit of enhanced condenser section performance was greatly limited. It was also observed that the poor heat transfer performance with nanofluid at the evaporator section led to lower operating pressure of PHP.

  2. Noninvasive detection of cardiovascular pulsations by optical Doppler techniques

    NASA Astrophysics Data System (ADS)

    Hong, HyunDae; Fox, Martin D.

    1997-10-01

    A system has been developed based on the measurement of skin surface vibration that can be used to detect the underlying vascular wall motion of superficial arteries and the chest wall. Data obtained from tissue phantoms suggested that the detected signals were related to intravascular pressure, an important clinical and physiological parameter. Unlike the conventional optical Doppler techniques that have been used to measure blood perfusion in skin layers and blood flow within superficial arteries, the present system was optimized to pick up skin vibrations. An optical interferometer with a 633-nm He:Ne laser was utilized to detect micrometer displacements of the skin surface. Motion velocity profiles of the skin surface near each superficial artery and auscultation points on a chest for the two heart valve sounds exhibited distinctive profiles. The theoretical and experimental results demonstrated that the system detected the velocity of skin movement, which is related to the time derivative of the pressure. The system also reduces the loading effect on the pulsation signals and heart sounds produced by the conventional piezoelectric vibration sensors. The system's sensitivity, which could be optimized further, was 366.2 micrometers /s for the present research. Overall, optical cardiovascular vibrometry has the potential to become a simple noninvasive approach to cardiovascular screening.

  3. A pulsating auroral X-ray hot spot on Jupiter.

    PubMed

    Gladstone, G R; Waite, J H; Grodent, D; Lewis, W S; Crary, F J; Elsner, R F; Weisskopf, M C; Majeed, T; Jahn, J-M; Bhardwaj, A; Clarke, J T; Young, D T; Dougherty, M K; Espinosa, S A; Cravens, T E

    2002-02-28

    Jupiter's X-ray aurora has been thought to be excited by energetic sulphur and oxygen ions precipitating from the inner magnetosphere into the planet's polar regions. Here we report high-spatial-resolution observations that demonstrate that most of Jupiter's northern auroral X-rays come from a 'hot spot' located significantly poleward of the latitudes connected to the inner magnetosphere. The hot spot seems to be fixed in magnetic latitude and longitude and occurs in a region where anomalous infrared and ultraviolet emissions have also been observed. We infer from the data that the particles that excite the aurora originate in the outer magnetosphere. The hot spot X-rays pulsate with an approximately 45-min period, a period similar to that reported for high-latitude radio and energetic electron bursts observed by near-Jupiter spacecraft. These results invalidate the idea that jovian auroral X-ray emissions are mainly excited by steady precipitation of energetic heavy ions from the inner magnetosphere. Instead, the X-rays seem to result from currently unexplained processes in the outer magnetosphere that produce highly localized and highly variable emissions over an extremely wide range of wavelengths.

  4. Clinical Trial of Thermal Pulsation (LipiFlow) in Meibomian Gland Dysfunction With Preteatment Meibography

    PubMed Central

    Zhao, Yang; Veerappan, Anuradha; Yeo, Sharon; Rooney, David M.; Acharya, Rajendra U.; Tan, Jen Hong

    2016-01-01

    Objectives: Thermal pulsation (LipiFlow) has been advocated for meibomian gland dysfunction (MGD) treatment and was found useful. We aimed to evaluate the efficacy and safety of thermal pulsation in Asian patients with different grades of meibomian gland loss. Methods: A hospital-based interventional study comparing thermal pulsation to warm compresses for MGD treatment. Fifty patients were recruited from the dry eye clinic of a Singapore tertiary eye hospital. The ocular surface and symptom were evaluated before treatment, and one and three months after treatment. Twenty-five patients underwent thermal pulsation (single session), whereas 25 patients underwent warm compresses (twice daily) for 3 months. Meibomian gland loss was graded using infrared meibography, whereas function was graded using the number of glands with liquid secretion. Results: The mean age (SD) of participants was 56.4 (11.4) years in the warm compress group and 55.6 (12.7) years in the thermal pulsation group. Seventy-six percent of the participants were female. Irritation symptom significantly improved over 3 months in both groups (P<0.01), whereas tear breakup time (TBUT) was modestly improved at 1 month in only the thermal pulsation group (P=0.048), without significant difference between both groups over the 3 months (P=0.88). There was also no significant difference in irritation symptom, TBUT, Schirmer test, and gland secretion variables between patients with different grades of gland loss or function at follow-ups. Conclusions: A single session of thermal pulsation was similar in its efficacy and safety profile to 3 months of twice daily warm compresses in Asians. Treatment efficacy was not affected by pretreatment gland loss. PMID:26825281

  5. Modulation of human muscle spindle discharge by arterial pulsations--functional effects and consequences.

    PubMed

    Birznieks, Ingvars; Boonstra, Tjeerd W; Macefield, Vaughan G

    2012-01-01

    Arterial pulsations are known to modulate muscle spindle firing; however, the physiological significance of such synchronised modulation has not been investigated. Unitary recordings were made from 75 human muscle spindle afferents innervating the pretibial muscles. The modulation of muscle spindle discharge by arterial pulsations was evaluated by R-wave triggered averaging and power spectral analysis. We describe various effects arterial pulsations may have on muscle spindle afferent discharge. Afferents could be "driven" by arterial pulsations, e.g., showing no other spontaneous activity than spikes generated with cardiac rhythmicity. Among afferents showing ongoing discharge that was not primarily related to cardiac rhythmicity we illustrate several mechanisms by which individual spikes may become phase-locked. However, in the majority of afferents the discharge rate was modulated by the pulse wave without spikes being phase locked. Then we assessed whether these influences changed in two physiological conditions in which a sustained increase in muscle sympathetic nerve activity was observed without activation of fusimotor neurones: a maximal inspiratory breath-hold, which causes a fall in systolic pressure, and acute muscle pain, which causes an increase in systolic pressure. The majority of primary muscle spindle afferents displayed pulse-wave modulation, but neither apnoea nor pain had any significant effect on the strength of this modulation, suggesting that the physiological noise injected by the arterial pulsations is robust and relatively insensitive to fluctuations in blood pressure. Within the afferent population there was a similar number of muscle spindles that were inhibited and that were excited by the arterial pulse wave, indicating that after signal integration at the population level, arterial pulsations of opposite polarity would cancel each other out. We speculate that with close-to-threshold stimuli the arterial pulsations may serve as an

  6. The Nainital-Cape Survey. IV. A search for pulsational variability in 108 chemically peculiar stars

    NASA Astrophysics Data System (ADS)

    Joshi, S.; Martinez, P.; Chowdhury, S.; Chakradhari, N. K.; Joshi, Y. C.; van Heerden, P.; Medupe, T.; Kumar, Y. B.; Kuhn, R. B.

    2016-05-01

    Context. The Nainital-Cape Survey is a dedicated ongoing survey program to search for and study pulsational variability in chemically peculiar (CP) stars to understand their internal structure and evolution. Aims: The main aims of this survey are to find new pulsating Ap and Am stars in the northern and southern hemisphere and to perform asteroseismic studies of these new pulsators. Methods: The survey is conducted using high-speed photometry. The candidate stars were selected on the basis of having Strömgren photometric indices similar to those of known pulsating CP stars. Results: Over the last decade a total of 337 candidate pulsating CP stars were observed for the Nainital-Cape Survey, making it one of the longest ground-based surveys for pulsation in CP stars in terms of time span and sample size. The previous papers of this series presented seven new pulsating variables and 229 null results. In this paper we present the light curves, frequency spectra and various astrophysical parameters of the 108 additional CP stars observed since the last reported results. We also tabulated the basic physical parameters of the known roAp stars. As a part of establishing the detection limits in the Nainital-Cape Survey, we investigated the scintillation noise level at the two observing sites used in this survey, Sutherland and Nainital, by comparing the combined frequency spectra stars observed from each location. Our analysis shows that both the sites permit the detection of variations of the order of 0.6 milli-magnitude (mmag) in the frequency range 1-4 mHz, Sutherland is on average marginally better. The dataset is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/A116

  7. Cranial diameter pulsations measured by non-invasive ultrasound decrease with tilt

    NASA Technical Reports Server (NTRS)

    Ueno, Toshiaki; Ballard, Richard E.; Macias, Brandon R.; Yost, William T.; Hargens, Alan R.

    2003-01-01

    INTRODUCTION: Intracranial pressure (ICP) may play a significant role in physiological responses to microgravity by contributing to the nausea associated with microgravity exposure. However, effects of altered gravity on ICP in astronauts have not been investigated, primarily due to the invasiveness of currently available techniques. We have developed an ultrasonic device that monitors changes in cranial diameter pulsation non-invasively so that we can evaluate ICP dynamics in astronauts during spaceflight. This study was designed to demonstrate the feasibility of our ultrasound technique under the physiological condition in which ICP dynamics are changed due to altered gravitational force. METHODS: Six healthy volunteers were placed at 60 degrees head-up, 30 degrees headup, supine, and 15 degrees head-down positions for 3 min at each angle. We measured arterial blood pressure (ABP) with a finger pressure cuff, and cranial diameter pulsation with a pulsed phase lock loop device (PPLL). RESULTS: Analysis of covariance demonstrated that amplitudes of cranial diameter pulsations were significantly altered with the angle of tilt (p < 0.001). The 95% confidence interval for linear regression coefficients of the cranial diameter pulsation amplitudes with tilt angle was 0.862 to 0.968. However, ABP amplitudes did not show this relationship. DISCUSSION: Our noninvasive ultrasonic technique reveals that the amplitude of cranial diameter pulsation decreases as a function of tilt angle, suggesting that ICP pulsation follows the same relationship. It is demonstrated that the PPLL device has a sufficient sensitivity to detect changes non-invasively in ICP pulsation caused by altered gravity.

  8. The DELTA Synchrotron Light Interferometer

    SciTech Connect

    Berges, U.

    2004-05-12

    Synchrotron radiation sources like DELTA, the Dortmund Electron Accelerator, a third generation synchrotron light source, need an optical monitoring system to measure the beam size at different points of the ring with high resolution and accuracy. These measurements also allow an investigation of the emittance of the storage ring, an important working parameter for the efficiency of working beamlines with experiments using the synchrotron radiation. The resolution limits of the different types of optical synchrotron light monitors at DELTA are investigated. The minimum measurable beamsize with the normal synchrotron light monitor using visible light at DELTA is about 80 {mu}m. Due to this a synchrotron light interferometer was built up and tested at DELTA. The interferometer uses the same beamline in the visible range. The minimum measurable beamsize is with about 8 {mu}m one order of magnitude smaller. This resolution is sufficient for the expected small vertical beamsizes at DELTA. The electron beamsize and emittance were measured with both systems at different electron beam energies of the storage ring. The theoretical values of the present optics are smaller than the measured emittance. So possible reasons for beam movements are investigated.

  9. Pulsation phenomena observed in long-duration vlf whistler-mode signals.

    NASA Technical Reports Server (NTRS)

    Bell, T. F.; Helliwell, R. A.

    1971-01-01

    Whistler-mode signals from station NAA (14.7 and 17.8 kHz), Cutler, Maine, show periodic fluctuations (?pulsations') in amplitude and bandwidth. The data were recorded at Eights station, Antarctica, during unmodulated (?key-down') transmissions from NAA lasting up to 2 min. In three of four instances, the pulsations consist of a series of moderate enhancements of the amplitude and bandwidth of the signal, each pulsation lasting about 50 msec. The fourth instance, however, was unusual in that the key-down signal exhibited remarkably regular and intense amplitude variations. In all four occurrences, the period of the pulsation was in the range from 0.3 to 0.6 sec. In three occurrences, this period was roughly the same as the one-hop whistler-mode delay along the field-line path; however, no demonstrable mechanism to explain this association could be found. An explanation of pulsations in terms of multipath fading effects could not be supported by the data. More likely explanations include intrinsic oscillation in the emission generation mechanism, natural oscillation in the energetic-particle population, or modulation of the VLF growth rate by Pc 1 micropulsations in the region of wave growth.

  10. Impulsive magnetic pulsations and electrojets in the loop footpoint driven by the fast reconnection jet

    SciTech Connect

    Ugai, M.

    2009-11-15

    It is well known that magnetic pulsations of long periods impulsively occur in accordance with the sudden onset of geomagnetic substorms and drastic enhancement of electrojets in the ionosphere. On the basis of the spontaneous fast reconnection model, the present paper examines the physical mechanism by which both magnetic pulsations and strong electrojets are impulsively driven by the fast (Alfvenic) reconnection jet. When a large-scale plasmoid [or traveling compression region (TCR)], directly caused by the fast reconnection jet, collides with the magnetic loop footpoint, strong electrojets are impulsively driven in a finite extent in the loop footpoint in accordance with the evolution of the current wedge and the generator current circuit. Simultaneously, magnetohydrodynamic (Alfven) waves, accompanied by the TCR, are reflected from the electrojet layer, leading to impulsive magnetic pulsations ahead of the loop footpoint because of the interaction (or resonance) between the reflected waves and the waves traveling toward the footpoint. The pulsations propagate outward in all directions from the source region of the wave reflection, and the pulsation periods are typically estimated to be of several tens of seconds.

  11. Study on the Pressure Pulsation inside Runner with Splitter Blades in Ultra-High Head Turbine

    NASA Astrophysics Data System (ADS)

    Meng, L.; Zhang, S. P.; Zhou, L. J.; Wang, Z. W.

    2014-03-01

    Runners with splitter blades were used widely for the high efficiency and stability. In this paper, the unsteady simulation of an ultra-high head turbine at the best efficiency point, 50% and 75% discharge points were established, to analyze the pressure pulsation in the vaneless space, rotating domain and the draft tube. First of all, runners with different length splitter blades and without splitter blades were compared to learn the efficiency and the pressure distribution on the blade surface. And then the amplitude of the pressure pulsation was analysed. The peak efficiency of the runner with splitter blades is remarkably higher than that of the corresponding impeller without splitter blades. And the efficiency of the turbine is the highest when the length ratio of the splitter blades is 0.75 times the main blades. The pressure pulsation characteristics were also influenced, because the amplitudes of the pulsation induced by the RSI phenomenon were changed as a result of more blades. At last, the best design plan of the length of the splitter blades (length ratio=0.825) was obtained, which improved the pressure pulsation characteristics without significant prejudice to the efficiency.

  12. Relationship between energy of ULF pulsations, Kp indices and some solar wind parameters

    NASA Astrophysics Data System (ADS)

    Reda, J.; Heilig, B.; Nowozynski, K.; Raita, T.; Sutcliffe, P.; Vellante, M.

    2013-12-01

    In many plasmasphere studies using ground-based records of ULF geomagnetic pulsations appear geomagnetic planetary indices (Kp). By definition, the Kp index is related to a three-hour interval. Hence it can be estimated that the Kp index refers to frequencies ≥ 0.1 mHz. This frequency range is dominated by irregular variations, which have much larger amplitudes than magnetic pulsations Pc 3-4. Such pulsations indicate the Field Line Resonance (FLR) phenomenon which can be used as a base for plasmasphere studies. However, typical pulsations related to the FLR phenomenon have a relatively low contribution to the Kp index. For this reason, a statistical analysis was performed between the energy of magnetic changes in ULF band, K indices, FLR pulsations and some parameters of the solar wind. Energy was calculated for the 15 min time intervals, and because of time conformity 3-hour Kp indices were calculated every 15 minutes. This analysis carried out during the work on the project PLASMON founded by the EU FP7 shows the limitations of the use of Kp indices for FLR studies.

  13. Method of LSD profile asymmetry for estimating the center of mass velocities of pulsating stars

    NASA Astrophysics Data System (ADS)

    Britavskiy, Nikolay; Pancino, Elena; Romano, Donatella; Tsymbal, Vadim

    2015-08-01

    We present radial velocity analysis for 20 solar neighborhood RR Lyrae and 3 Population II Cepheids. High-resolution spectra were observed with either TNG/SARG or VLT/UVES over varying phases. To estimate the center of mass (barycentric) velocities of the program stars, we utilized two independent methods. First, the 'classic' method was employed, which is based on RR Lyrae radial velocity curve templates. Second, we provide the new method that used absorption line profile asymmetry to determine both the pulsation and the barycentric velocities even with a low number of high-resolution spectra and in cases where the phase of the observations is uncertain. This new method is based on a Least Squares Deconvolution (LSD) of the line profiles in order to analyze line asymmetry that occurs in the spectra of pulsating stars. By applying this method to our sample stars we attain accurate measurements (± 1 km/s) of the pulsation component of the radial velocity. This results in determination of the barycentric velocity to within 5 km/s even with a low number of high-resolution spectra. A detailed investigation of LSD profile asymmetry shows the variable nature of the project factor at different pulsation phases, which should be taken into account in the detailed spectroscopic analysis of pulsating stars.

  14. Method of LSD profile asymmetry for estimating the center of mass velocities of pulsating stars

    NASA Astrophysics Data System (ADS)

    Britavskiy, N.; Pancino, E.; Tsymbal, V.; Romano, D.; Cacciari, C.; Clementini, C.

    2016-05-01

    We present radial velocity analysis for 20 solar neighborhood RR Lyrae and 3 Population II Cepheids. High-resolution spectra were observed with either TNG/SARG or VLT/UVES over varying phases. To estimate the center of mass (barycentric) velocities of the program stars, we utilized two independent methods. First, the 'classic' method was employed, which is based on RR Lyrae radial velocity curve templates. Second, we provide the new method that used absorption line profile asymmetry to determine both the pulsation and the barycentric velocities even with a low number of high-resolution spectra and in cases where the phase of the observations is uncertain. This new method is based on a least squares deconvolution (LSD) of the line profiles in order to an- alyze line asymmetry that occurs in the spectra of pulsating stars. By applying this method to our sample stars we attain accurate measurements (+- 2 kms^-1) of the pulsation component of the radial velocity. This results in determination of the barycentric velocity to within 5 kms^-1 even with a low number of high- resolution spectra. A detailed investigation of LSD profile asymmetry shows the variable nature of the project factor at different pulsation phases, which should be taken into account in the detailed spectroscopic analysis of pulsating stars.

  15. Development of Pulsating Twin Jets Mechanism for Mixing Flow Heat Transfer Analysis

    PubMed Central

    Abdullah, Shahrir

    2014-01-01

    Pulsating twin jets mechanism (PTJM) was developed in the present work to study the effect of pulsating twin jets mixing region on the enhancement of heat transfer. Controllable characteristics twin pulsed jets were the main objective of our design. The variable nozzle-nozzle distance was considered to study the effect of two jets interaction at the mixing region. Also, the phase change between the frequencies of twin jets was taken into account to develop PTJM. All of these factors in addition to the ability of producing high velocity pulsed jet led to more appropriate design for a comprehensive study of multijet impingement heat transfer problems. The performance of PTJM was verified by measuring the pulse profile at frequency of 20 Hz, where equal velocity peak of around 64 m/s for both jets was obtained. Moreover, the jet velocity profile at different pulsation frequencies was tested to verify system performance, so the results revealed reasonable velocity profile configuration. Furthermore, the effect of pulsation frequency on surface temperature of flat hot plate in the midpoint between twin jets was studied experimentally. Noticeable enhancement in heat transfer was obtained with the increasing of pulsation frequency. PMID:24672370

  16. The demise of mode identification in the pulsating DA white dwarf GD 66

    NASA Astrophysics Data System (ADS)

    Fontaine, G.; Wesemael, F.; Bergeron, P.; Lacombe, P.; Lamontagne, R.; Saumon, D.

    1985-07-01

    An analysis of new photometric and spectroscopic observations of the pulsating DA white dwarf GD 66 is presented. It is shown that the mode identification suggested by Dolez, Vauclair, and Chevreton (1983) is premature. The photometric data reveal the existence of several additional pulsation frequencies which do not fit with their model. Moreover, the 3.90 mHz peak seen in the Fourier spectrum of their light curve of GD 66 is shown to be an artifact of both insufficient time resolution and rotational splitting of the frequency of the dominant pulsation mode. It is not caused by the presence of an independent (different k value) pulsation mode as suggested. In addition, a comparison of model atmosphere calculations with the spectroscopic observations suggests that the surface gravity of GD 66 is quite normal (log g = 7.7 + 0.4 or - 0.2). This is in conflict with the model of the above authors which further requires a significantly larger surface gravity (log g equal to approximately 8.45) to account for the observed pulsation properties of GD 66.

  17. Development of pulsating twin jets mechanism for mixing flow heat transfer analysis.

    PubMed

    Gitan, Ali Ahmed; Zulkifli, Rozli; Abdullah, Shahrir; Sopian, Kamaruzzaman

    2014-01-01

    Pulsating twin jets mechanism (PTJM) was developed in the present work to study the effect of pulsating twin jets mixing region on the enhancement of heat transfer. Controllable characteristics twin pulsed jets were the main objective of our design. The variable nozzle-nozzle distance was considered to study the effect of two jets interaction at the mixing region. Also, the phase change between the frequencies of twin jets was taken into account to develop PTJM. All of these factors in addition to the ability of producing high velocity pulsed jet led to more appropriate design for a comprehensive study of multijet impingement heat transfer problems. The performance of PTJM was verified by measuring the pulse profile at frequency of 20 Hz, where equal velocity peak of around 64 m/s for both jets was obtained. Moreover, the jet velocity profile at different pulsation frequencies was tested to verify system performance, so the results revealed reasonable velocity profile configuration. Furthermore, the effect of pulsation frequency on surface temperature of flat hot plate in the midpoint between twin jets was studied experimentally. Noticeable enhancement in heat transfer was obtained with the increasing of pulsation frequency.

  18. Quasi-periodic Pulsations during the Impulsive and Decay phases of an X-class Flare

    NASA Astrophysics Data System (ADS)

    Hayes, L. A.; Gallagher, P. T.; Dennis, B. R.; Ireland, J.; Inglis, A. R.; Ryan, D. F.

    2016-08-01

    Quasi-periodic pulsations (QPPs) are often observed in X-ray emission from solar flares. To date, it is unclear what their physical origins are. Here, we present a multi-instrument investigation of the nature of QPP during the impulsive and decay phases of the X1.0 flare of 2013 October 28. We focus on the character of the fine structure pulsations evident in the soft X-ray (SXR) time derivatives and compare this variability with structure across multiple wavelengths including hard X-ray and microwave emission. We find that during the impulsive phase of the flare, high correlations between pulsations in the thermal and non-thermal emissions are seen. A characteristic timescale of ˜20 s is observed in all channels and a second timescale of ˜55 s is observed in the non-thermal emissions. SXR pulsations are seen to persist into the decay phase of this flare, up to 20 minutes after the non-thermal emission has ceased. We find that these decay phase thermal pulsations have very small amplitude and show an increase in characteristic timescale from ˜40 s up to ˜70 s. We interpret the bursty nature of the co-existing multi-wavelength QPPs during the impulsive phase in terms of episodic particle acceleration and plasma heating. The persistent thermal decay phase QPPs are most likely connected with compressive magnetohydrodynamic processes in the post-flare loops such as the fast sausage mode or the vertical kink mode.

  19. The superslow pulsation X-ray pulsars in high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    2013-03-01

    There exists a special class of X-ray pulsars that exhibit very slow pulsation of P spin > 1000 s in the high mass X-ray binaries (HMXBs). We have studied the temporal and spectral properties of these superslow pulsation neutron star binaries in hard X-ray bands with INTEGRAL observations. Long-term monitoring observations find spin period evolution of two sources: spin-down trend for 4U 2206+54 (P spin ~ 5560 s with Ṗ spin ~ 4.9 × 10-7 s s-1) and long-term spin-up trend for 2S 0114+65 (P spin ~ 9600 s with Ṗ spin ~ -1 × 10-6 s s-1) in the last 20 years. A Be X-ray transient, SXP 1062 (P spin ~ 1062 s), also showed a fast spin-down rate of Ṗ spin ~ 3 × 10-6 s s-1 during an outburst. These superslow pulsation neutron stars cannot be produced in the standard X-ray binary evolution model unless the neutron star has a much stronger surface magnetic field (B > 1014 G). The physical origin of the superslow spin period is still unclear. The possible origin and evolution channels of the superslow pulsation X-ray pulsars are discussed. Superslow pulsation X-ray pulsars could be younger X-ray binary systems, still in the fast evolution phase preceding the final equilibrium state. Alternatively, they could be a new class of neutron star system - accreting magnetars.

  20. Quantitative Assessment of the Impact of Blood Pulsation on Intraocular Pressure Measurement Results in Healthy Subjects

    PubMed Central

    2017-01-01

    Background. Blood pulsation affects the results obtained using various medical devices in many different ways. Method. The paper proves the effect of blood pulsation on intraocular pressure measurements. Six measurements for each of the 10 healthy subjects were performed in various phases of blood pulsation. A total of 8400 corneal deformation images were recorded. The results of intraocular pressure measurements were related to the results of heartbeat phases measured with a pulse oximeter placed on the index finger of the subject's left hand. Results. The correlation between the heartbeat phase measured with a pulse oximeter and intraocular pressure is 0.69 ± 0.26 (p < 0.05). The phase shift calculated for the maximum correlation is equal to 60 ± 40° (p < 0.05). When the moment of measuring intraocular pressure with an air-puff tonometer is not synchronized, the changes in IOP for the analysed group of subjects can vary in the range of ±2.31 mmHg (p < 0.3). Conclusions. Blood pulsation has a statistically significant effect on the results of intraocular pressure measurement. For this reason, in modern ophthalmic devices, the measurement should be synchronized with the heartbeat phases. The paper proposes an additional method for synchronizing the time of pressure measurement with the blood pulsation phase. PMID:28250983

  1. Planet-induced Stellar Pulsations in HAT-P-2's Eccentric System

    NASA Astrophysics Data System (ADS)

    de Wit, Julien; Lewis, Nikole K.; Knutson, Heather A.; Fuller, Jim; Antoci, Victoria; Fulton, Benjamin J.; Laughlin, Gregory; Deming, Drake; Shporer, Avi; Batygin, Konstantin; Cowan, Nicolas B.; Agol, Eric; Burrows, Adam S.; Fortney, Jonathan J.; Langton, Jonathan; Showman, Adam P.

    2017-02-01

    Extrasolar planets on eccentric short-period orbits provide a laboratory in which to study radiative and tidal interactions between a planet and its host star under extreme forcing conditions. Studying such systems probes how the planet’s atmosphere redistributes the time-varying heat flux from its host and how the host star responds to transient tidal distortion. Here, we report the insights into the planet–star interactions in HAT-P-2's eccentric planetary system gained from the analysis of ∼350 hr of 4.5 μm observations with the Spitzer Space Telescope. The observations show no sign of orbit-to-orbit variability nor of orbital evolution of the eccentric planetary companion, HAT-P-2 b. The extensive coverage allows us to better differentiate instrumental systematics from the transient heating of HAT-P-2 b’s 4.5 μm photosphere and yields the detection of stellar pulsations with an amplitude of approximately 40 ppm. These pulsation modes correspond to exact harmonics of the planet’s orbital frequency, indicative of a tidal origin. Transient tidal effects can excite pulsation modes in the envelope of a star, but, to date, such pulsations had only been detected in highly eccentric stellar binaries. Current stellar models are unable to reproduce HAT-P-2's pulsations, suggesting that our understanding of the interactions at play in this system is incomplete.

  2. Constraining structural models of stellar helium cores using the pulsations of Feige 48

    NASA Astrophysics Data System (ADS)

    Reed, Mike; Jeffery, C. Simon; Telting, John; Quick, Breanna

    2014-02-01

    Asteroseismology is the art of using stellar pulsations to discern a star's detailed structure and evolutionary history. When many stars of similar structure and/or evolution can be studied, the results can be extremely powerful; examples of which include white dwarf and red giant seismology. However, the key to these successes are twofold: Observed pulsation frequencies must first be identified with spherical harmonics (modes) and mature models must exist for comparison. For subdwarf B (sdB) stars, Kepler observations have allowed progress with the former, but have indicated weaknesses in the latter. We propose using time- resolved spectroscopy combined with multicolor photometry to identify pulsation modes and constrain structure models. We propose to re-observe Feige 48 (KY UMa). We were allocated time during 2010A, but inclement weather prevented fully exploiting the pulsations. Yet those data provided surprising clues. Feige 48's an important sdB in a short-period binary, with constrained inclination and some constraints on three pulsation modes. Our proposed observations will constrain both the star and the binary system and provide calibration for models. This provides an arsenal of seismic tools for testing structure and evolution models of Feige 48 and other, previously observed, sdB stars.

  3. Harmonic fundamental self-pulsations from a laser diode using phase-conjugate optical feedback

    NASA Astrophysics Data System (ADS)

    Wolfersberger, Delphine; Karsaklian dal Bosco, A.; Mercier, E.; Sciamanna, M.

    2014-05-01

    Thanks to the band-gap engineering of quantum confined semiconductor materials and the development of semiconductor-based saturable absorber mirrors, recent years have seen the development of compact and low-cost external-cavity laser diodes generating pulses at several tens of GHz. The physics of the bifurcation leading to selfpulsation leads however to an intrinsic limitation: the fundamental repetition rate is fixed to and limited by the externalcavity round-trip time. By contrast, we demonstrate here that an external-cavity diode laser may generate fundamental self-pulsating dynamics at harmonics of the external-cavity frequency, when a phase conjugate mirror replaces the conventional mirror. As is known from theory, a laser diode with phase conjugate external feedback supports a single stationary solution that bifurcates to self-pulsating dynamics of increasing frequency when increasing the amount of light reflected back to the laser diode. The self-pulsation frequency then increases in step of the external-cavity frequency as one increases the feedback strength. We provide here the first experimental evidence of such harmonic external-cavity fundamental self-pulsation. As a proof-of-concept, we generate experimentally a self-pulsating dynamics at twice and three times the fundamental external-cavity frequency using an edge-emitting laser with a self-pumped ring-cavity photorefractive phase conjugator. Numerical simulations also predict stable higher harmonics.

  4. New Insights on Pulsating White Dwarfs from 3D Radiation-Hydrodynamical Simulations

    NASA Astrophysics Data System (ADS)

    Tremblay, Pier-Emmanuel; Fontaine, Gilles; Ludwig, Hans-Günter

    2015-08-01

    We have recently computed a grid of 3D radiation-hydrodynamical simulations for the atmosphere of 70 pure-hydrogen DA white dwarfs in the range 7.0 < log g < 9.0. This includes the full ZZ Ceti instability strip where DA white dwarfs are pulsating, by far the most common type of degenerate pulsators. We have significantly improved the theoretical framework to study these objects by removing the free parameters of 1D convection, which were previously a major modeling hurdle. We will compare our new models with the observed sample of ZZ Ceti stars and highlight the improved derived properties of these objects. In particular, the new spectroscopically determined 3D atmospheric parameters allow for an improved definition of instability strip edges. We have also made new predictions for the size of convection zones, which significantly impact the position where the pulsations are driven, and the region of the HR diagram where white dwarfs are expected to pulsate. Finally, we will present new results from non-adiabatic pulsation calculations.

  5. DIRECT DIAGNOSTICS OF FORMING MASSIVE STARS: STELLAR PULSATION AND PERIODIC VARIABILITY OF MASER SOURCES

    SciTech Connect

    Inayoshi, Kohei; Tanaka, Kei E. I.; Sugiyama, Koichiro; Hosokawa, Takashi; Motogi, Kazuhito E-mail: koichiro@yamaguchi-u.ac.jp

    2013-06-01

    The 6.7 GHz methanol maser emission, a tracer of forming massive stars, sometimes shows enigmatic periodic flux variations over several 10-100 days. In this Letter, we propose that these periodic variations could be explained by the pulsation of massive protostars growing under rapid mass accretion with rates of M-dot{sub *}{approx}>10{sup -3} M{sub Sun} yr{sup -1}. Our stellar evolution calculations predict that the massive protostars have very large radii exceeding 100 R{sub Sun} at maximum, and here we study the pulsational stability of such bloated protostars by way of the linear stability analysis. We show that the protostar becomes pulsationally unstable with various periods of several 10-100 days depending on different accretion rates. With the fact that the stellar luminosity when the star is pulsationally unstable also depends on the accretion rate, we derive the period-luminosity relation log (L/ L{sub Sun }) = 4.62 + 0.98log (P/100 days), which is testable with future observations. Our models further show that the radius and mass of the pulsating massive protostar should also depend on the period. It would be possible to infer such protostellar properties and the accretion rate with the observed period. Measuring the maser periods enables a direct diagnosis of the structure of accreting massive protostars, which are deeply embedded in dense gas and are inaccessible with other observations.

  6. Discovery of Three Pulsating, Mixed-atmosphere, Extremely Low-mass White Dwarf Precursors

    NASA Astrophysics Data System (ADS)

    Gianninas, A.; Curd, Brandon; Fontaine, G.; Brown, Warren R.; Kilic, Mukremin

    2016-05-01

    We report the discovery of pulsations in three mixed-atmosphere, extremely low-mass white dwarf (ELM WD, M ≤slant 0.3 M ⊙) precursors. Following the recent discoveries of pulsations in both ELM and pre-ELM WDs, we targeted pre-ELM WDs with mixed H/He atmospheres with high-speed photometry. We find significant optical variability in all three observed targets with periods in the range 320-590 s, consistent in timescale with theoretical predictions of p-mode pulsations in mixed-atmosphere ≈0.18 M ⊙ He-core pre-ELM WDs. This represents the first empirical evidence that pulsations in pre-ELM WDs can only occur if a significant amount of He is present in the atmosphere. Future, more extensive, timeseries photometry of the brightest of the three new pulsators offers an excellent opportunity to constrain the thickness of the surface H layer, which regulates the cooling timescales for ELM WDs. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).

  7. Detection of pulsations in three subdwarf B stars

    NASA Astrophysics Data System (ADS)

    Østensen, R.; Solheim, J.-E.; Heber, U.; Silvotti, R.; Dreizler, S.; Edelmann, H.

    2001-03-01

    We report the detection of short period oscillations in the sdB stars HS 0815+4243, HS 2149+0847 and HS 2201+2610 from time-series photometry made at the Nordic Optical Telescope (NOT) from a sample of 31 candidates. Hence these three hot subdwarfs are new members of the EC 14026 class of pulsating sdB stars. One short period is detected for HS 0815+4243 (P ~ 126 s; A ~ 7 mma) and two short periods are seen for HS 2149+0847 (P ~ 142, 159 s; A ~ 11, 7 mma), whereas the single oscillation detected for HS 2201+2610 has a considerably longer period (P ~ 350 s; A ~ 11 mma). Our NLTE model atmosphere analysis of the time-averaged optical spectra indicate that HS 0815+4243 has Teff = 33 700 K and log g=5.95, HS 2149+0847 has Teff = 35 600 K and log g = 5.9, and HS 2201+2610 has Teff = 29 300 K and log g= 5.4. This places the former two at the hot end and the latter at the cool end of the theoretical sdBV instability strip. Based on observations obtained at the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, operated by the Max-Plank-Institute für Astronomie Heidelberg jointly with the Spanish National Commission for Astronomy.

  8. Design and Operation of a Cryogenic Nitrogen Pulsating Heat Pipe

    NASA Astrophysics Data System (ADS)

    Diego Fonseca, Luis; Miller, Franklin; Pfotenhauer, John

    2015-12-01

    We report the design, experimental setup and successful test results using an innovative passive cooling system called a “Pulsating Heat Pipe” (PHP) operating at temperatures ranging from 77 K to 80 K and using nitrogen as the working fluid. PHPs, which transfer heat by two phase flow mechanisms through a closed loop tubing have the advantage that no electrical pumps are needed to drive the fluid flow. In addition, PHPs have an advantage over copper straps and thermal conductors since they are lighter in weight, exhibit lower temperature gradients and have higher heat transfer rates. PHPs consist of an evaporator section, thermally anchored to a solid, where heat is received at the saturation temperature where the liquid portion of the two-phase flow evaporates, and a condenser where heat is rejected at the saturation temperature where the vapor is condensed. The condenser section in our experiment has been thermally interfaced to a CT cryocooler from SunPower that has a cooling capacity of 10 W at 77 K. Alternating regions of liquid slugs and small vapor plugs fill the capillary tubing, with the vapor regions contracting in the condenser section and expanding in the evaporator section due to an electric heater that will generate heat loads up to 10 W. This volumetric expansion and contraction provides the oscillatory flow of the fluid throughout the capillary tubing thereby transferring heat from one end to the other. The thermal performance and temperature characteristics of the PHP will be correlated as a function of average condenser temperature, PHP fill liquid ratio, and evaporator heat load. The experimental data show that the heat transfer between the evaporator and condenser sections can produce an effective thermal conductivity up to 35000 W/m-K at a 3.5 W heat load.

  9. Depletion of mesospheric sodium during extended period of pulsating aurora

    NASA Astrophysics Data System (ADS)

    Takahashi, T.; Hosokawa, K.; Nozawa, S.; Tsuda, T. T.; Ogawa, Y.; Tsutsumi, M.; Hiraki, Y.; Fujiwara, H.; Kawahara, T. D.; Saito, N.; Wada, S.; Kawabata, T.; Hall, C.

    2017-01-01

    We quantitatively evaluated the Na density depletion due to charge transfer reactions between Na atoms and molecular ions produced by high-energy electron precipitation during a pulsating aurora (PsA). An extended period of PsA was captured by an all-sky camera at the European Incoherent Scatter (EISCAT) radar Tromsø site (69.6°N, 19.2°E) during a 2 h interval from 00:00 to 02:00 UT on 25 January 2012. During this period, using the EISCAT very high frequency (VHF) radar, we detected three intervals of intense ionization below 100 km that were probably caused by precipitation of high-energy electrons during the PsA. In these intervals, the sodium lidar at Tromsø observed characteristic depletion of Na density at altitudes between 97 and 100 km. These Na density depletions lasted for 8 min and represented 5-8% of the background Na layer. To examine the cause of this depletion, we modeled the depletion rate based on charge transfer reactions with NO+ and O2+ while changing the R value which is defined as the ratio of NO+ to O2+ densities, from 1 to 10. The correlation coefficients between observed and modeled Na density depletion calculated with typical value R = 3 for time intervals T1, T2, and T3 were 0.66, 0.80, and 0.67, respectively. The observed Na density depletion rates fall within the range of modeled depletion rate calculated with R from 1 to 10. This suggests that the charge transfer reactions triggered by the auroral impact ionization at low altitudes are the predominant process responsible for Na density depletion during PsA intervals.

  10. A proto-Okavango Delta?

    NASA Astrophysics Data System (ADS)

    Podgorski, J. E.; Kgotlhang, L.; Ngwisanyi, T.; Ploug, C.; Auken, E.; Kinzelbach, W. K.; Green, A. G.

    2010-12-01

    The Okavango Delta within the Kalahari Desert of northwestern Botswana is one of the world's largest inland deltas and the largest wetland in southern Africa. An annual flood originating from the Okavango River in the northwest passes through the upper panhandle region of the delta before inundating the 150 km x 150 km fan where most water is lost to evapotranspiration. The fan occupies an active graben at the southwestern end of the East Africa rift zone. The focus of faulting is along the fan’s southeastern end where the Kunyere-Thamalakane faults show 200-300 m of dip-slip offset, forming a backstop to the movement of water and sediments. An airborne TEM survey was flown over the entire delta in 2007 with 2 km line spacing. A preliminary inversion of the entire data set has been undertaken using a quasi-2D inversion scheme that includes resistivity, layer thickness, and transmitter height as parameters. Tests with a many-layer model indicate that a four-layer model explains the data. Inversion results are corroborated by limited borehole data. The TEM model includes significant lateral and vertical variations in electrical resistivity. In the central region of the fan, a near-surface high resistivity layer is underlain sequentially by a more conductive layer (about 100 m depth) and a more resistive half-space (about 160 m depth), the latter of which could be a fresh water aquifer. This resistive feature has a fan-like form. A plausible evolutionary scenario that explains the TEM data includes a proto-Okavango Delta (highly resistive half-space ) and a lake (intermediate-depth conductive layer). During a climatic episode similar to today’s, a proto-Okavango Delta sequence would have been deposited against a fault, much as the Kunyere-Thamalakane faults today delineate the southeastern margin of the present Okavango Delta. This region would have then been flooded by a Pleistocene lake system that inundated much of northern Botswana and was the source of

  11. The Shocking Truth about Cepheids: The Secret X-ray Lives of Classical Cepheids: Origin of Pulsed FUV and X-Ray Emissions of delta Cep and beta Dor

    NASA Astrophysics Data System (ADS)

    Ruby, John; Engle, Scott G.; Guinan, Edward F.

    2016-01-01

    The Cepheid variable stars (delta Cep) and (beta Dor) have shown FUV spectral emission features from hot (10,000- 300,000 K) plasma that correlate with the phasing of their pulsations.(see Engle et al. 2014). These FUV spectral emissions that include NV 1240, OI 1305,C II 1335A, Si IV 1400A, and He II 1640 show peaks prior to the maximum optical brightness (during the "piston" phase of the pulsation that is observed to be in phase with the stellar pulsations, but the observed X-ray emission occurs near minimum light (near 0.4-0.5P) during the maximum radius and coolest phase of the star. Cepheid stars are an integral part of the cosmic distance ladder, due to their Period-Luminosity relationship (the Leavitt Law). Understanding the dynamics of Cepheid stars, especially with respect to FUV and X-ray emissions, is necessary to be confident in assertions derived from the cosmic distance ladder, including establishing the Hubble Constant to more accurate values.Presented here is a possible explanation for the pulsation period-related observed UV and X-ray emissions of these Cepheids. Using stellar interior and atmosphere models, conditions found in the ionization zone and outer atmosphere of these stars may be conducive to shocks being formed that are capable of temperatures great enough to produce x-ray emission. The mechanics of these shocks and their propagation in the atmosphere of the stars can potentially explain both the apparent pulsation-phased peaks for the FUV, as well as the pulsation-phase dependent (currently unexplained) X-ray emissions.This research was supported by NASA Grants: HST grant HST-GO-13019-A, XMM-Newton grant NNX14AAF12G, andChandra Grant GO-15202X. We are very thankful for this support.

  12. Spectroscopic mode identification of main-sequence non-radially pulsating stars

    NASA Astrophysics Data System (ADS)

    Maisonneuve, F.; Pollard, K. R.; Cottrell, P. L.; Kilmartin, P. M.; Wright, D. J.; De Cat, P.

    2010-07-01

    We are undertaking an extensive observational campaign of a number of non-radially pulsating stars using the high-resolution HERCULES spectrograph on the 1.0-m telescope at the Mt John University Observatory. This is part of a large world-wide multi-site campaign to improve mode-identification techniques in non-radially pulsating stars, particularly for g-mode pulsators. This paper outlines our campaign and presents preliminary results for one γ Doradus star, HD 40745, and one β Cephei star, HD 61068. We have used a representative cross-correlation line-profile technique presented by Wright in 2008 to extract line profiles and these have then been analyzed using the FAMIAS package due to Zima published in 2006 to derive a spectroscopic mode identification.

  13. On the influence of stochastic pulsations of a bubble on its translational motion

    NASA Astrophysics Data System (ADS)

    Melnikov, N. P.

    2016-06-01

    This communication is devoted to theoretical analysis of the dynamics of a solitary cavitation bubble pulsating in a compressible viscous liquid under the action of a nonuniform acoustic field. The system of two nonlinear ordinary second-order differential equations is integrated numerically. In the range of acoustic field parameters corresponding to the principal resonance region, the bubble performs large-scale spatial oscillations. It is shown that in a very small range of initial radii, the bubble stops its oscillatory motion due to stochastic pulsations and is expelled into the region of the acoustic-pressure block. Therefore, stochastic pulsations of the bubble radically change the form of the solution to the system of the above-mentioned equations.

  14. A search for optical pulsations from GX 1+4 at H-alpha

    NASA Technical Reports Server (NTRS)

    Krzeminski, W.; Priedhorsky, W. C.

    1978-01-01

    H-alpha observations of the binary-star candidate for the slowly pulsating hard X-ray source GX 1+4 are reported which were undertaken to search for pulsations in the H-alpha flux that are synchronous with the X-ray period of about 2 min. No significant periodic variation of the candidate star was detected in the frequency band searched. Three-sigma upper limits of 1.7% (sinusoidal pulse shape) and 0.7% (X-ray pulse shape) are set for the pulsed fraction of the H-alpha flux. It is noted that because of possible diffusion from a cloud that is optically thick to Balmer radiation, the observed lack of pulsations in the H-alpha flux need not compromise the identification of GX 1+4 with the candidate star.

  15. Theoretical growth rates, periods, and pulsation constants for long-period variables

    NASA Astrophysics Data System (ADS)

    Fox, M. W.; Wood, P. R.

    1982-08-01

    An extensive set of linear, nonadiabatic pulsation models for red giant and supergiant stars is computed, in order that the dependence of pulsation periods (P), pulsation constants (Q), and growth rate on physical input parameters can be determined from the systematic behavior seen in the models. Also investigated is the extent of the dependence of P, Q, and growth rate on uncertain quantities such as atmospheric molecular opacity, surface boundary conditions, and effective temperature. The growth rate for the fundamental mode is found to increase with luminosity on the giant branch while the growth rate for the first overtone decreases. Dynamical instabilities found in previous adiabatic models of extreme red giants do not occur when nonadiabatic effects are included in the models.

  16. Finding the first cosmic explosions. III. Pulsational pair-instability supernovae

    SciTech Connect

    Whalen, Daniel J.; Smidt, Joseph; Even, Wesley; Fryer, Chris L.; Woosley, S. E.; Heger, Alexander; Stiavelli, Massimo

    2014-02-01

    Population III supernovae have been the focus of growing attention because of their potential to directly probe the properties of the first stars, particularly the most energetic events that can be seen at the edge of the observable universe. But until now pulsational pair-instability supernovae, in which explosive thermonuclear burning in massive stars fails to unbind them but can eject their outer layers into space, have been overlooked as cosmic beacons at the earliest redshifts. These shells can later collide and, like Type IIn supernovae, produce superluminous events in the UV at high redshifts that could be detected in the near infrared today. We present numerical simulations of a 110 M {sub ☉} pulsational pair-instability explosion done with the Los Alamos radiation hydrodynamics code Radiation Adaptive Grid Eulerian. We find that collisions between consecutive pulsations are visible in the near infrared out to z ∼ 15-20 and can probe the earliest stellar populations at cosmic dawn.

  17. The challenge of measuring magnetic fields in strongly pulsating stars: the case of HD 96446

    NASA Astrophysics Data System (ADS)

    Järvinen, S. P.; Hubrig, S.; Ilyin, I.; Schöller, M.; Briquet, M.

    2017-01-01

    Among the early B-type stars, He-rich Bp stars exhibit the strongest large-scale organized magnetic fields with a predominant dipole contribution. The presence of β Cep-like pulsations in the typical magnetic early Bp-type star HD 96446 was announced a few years ago, but the analysis of the magnetic field geometry was hampered by the absence of a reliable rotation period and a sophisticated procedure for accounting for the impact of pulsations on the magnetic field measurements. Using new spectropolarimetric observations and a recently determined rotation period based on an extensive spectroscopic time series, we investigate the magnetic field model parameters of this star under more detailed considerations of the pulsation behaviour of line profiles.

  18. Pulsations in the atmosphere of the rapidly oscillating Ap star 10Aquilae

    NASA Astrophysics Data System (ADS)

    Sachkov, M.; Kochukhov, O.; Ryabchikova, T.; Huber, D.; Leone, F.; Bagnulo, S.; Weiss, W. W.

    2008-09-01

    The rapidly oscillating Ap (roAp) star 10Aquilae (10Aql) shows one of the lowest photometric pulsation amplitudes and is characterized by an unusual spectroscopic pulsational behaviour compared to other roAp stars. In summer 2006 this star became target of an intense observing campaign, that combined ground-based spectroscopy with space photometry obtained with the MOST (Microvariability & Oscillations Stars) satellite. More than 1000 spectra were taken during seven nights over a time-span of 21d with high-resolution spectrographs at the 8-m European Southern Observatory (ESO) Very Large Telescope (VLT) and 3.6-m Telescopio Nazionale Galileo (TNG) giving access to radial velocity variations of about 150 lines from different chemical species. A comparison of pulsation signatures in lines formed at different atmospheric heights allowed us to resolve the vertical structure of individual pulsation modes in 10Aql which is the first time for a multiperiodic roAp star. Taking advantage of the clear oscillation patterns seen in a number of rare earth ions and using the contemporaneous MOST photometry to resolve aliasing in the radial velocity measurements, we improve also the determination of pulsation frequencies. The inferred propagation of pulsation waves in 10Aql is qualitatively similar to other roAp stars: pulsation amplitudes become measurable in the layers where Y and Eu are concentrated, increase in layers where the Hα core is formed, reach a maximum of 200-300ms-1 in the layers probed by Ce, Sm, Dy lines and then decrease to 20-50ms-1 in the layers where NdIII and PrIII lines are formed. A unique pulsation feature of 10Aql is a second pulsation maximum indicated by TbIII lines which form in the uppermost atmospheric layers and oscillate with amplitudes of up to 350ms-1. The dramatic decline of pulsations in the atmospheric layers probed by the strong PrIII and NdIII lines accounts for the apparent peculiarity of 10Aql when compared to other roAp stars. The phase

  19. Experimental study on heat transfer performance of pulsating heat pipe with refrigerants

    NASA Astrophysics Data System (ADS)

    Wang, Xingyu; Jia, Li

    2016-10-01

    The effects of different refrigerants on heat transfer performance of pulsating heat pipe (PHP) are investigated experimentally. The working temperature of pulsating heat pipe is kept in the range of 20°C-50°C. The startup time of the pulsating heat pipe with refrigerants can be shorter than 4 min, when heating power is in the range of 10W?100W. The startup time decreases with heating power. Thermal resistances of PHP with filling ratio 20.55% were obviously larger than those with other filling ratios. Thermal resistance of the PHP with R134a is much smaller than that with R404A and R600a. It indicates that the heat transfer ability of R134a is better. In addition, a correlation to predict thermal resistance of PHP with refrigerants was suggested.

  20. Ocular pulsation correlates with ocular tension: the choroid as piston for an aqueous pump?

    PubMed

    Phillips, C I; Tsukahara, S; Hosaka, O; Adams, W

    1992-01-01

    In 26 random out-patients, including 13 treated glaucoma patients and ocular hypertensives, the higher the ocular tension, the greater the pulse amplitude, by Alcon pneumotonometry, at a statistically significant level. In a single untreated hypertensive, when 2-hourly pneumotonometry was done for 24 h, the correlation was similar and significant. The higher the diastolic blood pressure, the higher the ocular pulsation, also significantly. Pulsation is suggested to be a pump, the choroid being the piston, contributing (1) to an increase in the outflow of aqueous humour and (2) to a homeostatic mechanism contributing to normalization of the intra-ocular pressure, wherein pulsation increases or decreases, as the intraocular pressure increases or decreases, respectively.

  1. Making Sense Out of Pulsating Pre-ELM and ELM White Dwarfs

    NASA Astrophysics Data System (ADS)

    Fontaine, G.; Istrate, A.; Gianninas, A.; Brassard, P.; Van Grootel, V.

    2017-03-01

    We present a unified view of pulsations in both pre-ELM and ELM white dwarfs within the framework of state-of-the-art binary evolution calculations that take into account the combined effects of diffusion and rotational mixing. We find that rotational mixing is able to maintain against settling a sufficient amount of helium in the envelope in order to fuel pulsations through He II-He III ionization on the pre-ELM branch of the evolutionary track in the spectroscopic HR diagram. By the time such a low-mass white dwarf enters the ZZ Ceti instability strip on the cooling branch, settling has taken over rotational mixing and produced a pure H envelope. Such a star then pulsates again, but, this time, as a DA white dwarf of the ZZ Ceti type.

  2. New insights on pulsating white dwarfs from 3D radiation-hydrodynamical simulations

    NASA Astrophysics Data System (ADS)

    Tremblay, Pier-Emmanuel; Fontaine, Gilles; Ludwig, Hans-Günter; Gianninas, Alexandros; Kilic, Mukremin

    We have recently computed a grid of 3D radiation-hydrodynamical simulations for the atmosphere of pure-hydrogen DA white dwarfs in the range 5.0 < log g < 9.0. Our grid covers the full ZZ Ceti instability strip where pulsating DA white dwarfs are located. We have significantly improved the theoretical framework to study these objects by removing the free parameters of 1D convection, which were previously a major modeling hurdle. We present improved atmospheric parameter determinations based on spectroscopic fits with 3D model spectra, allowing for an updated definition of the empirical edges of the ZZ Ceti instability strip. Our 3D simulations also precisely predict the depth of the convection zones, narrowing down the internal layers where pulsation are being driven. We hope that these 3D effects will be included in asteroseismic models in the future to predict the region of the HR diagram where white dwarfs are expected to pulsate.

  3. Reexamination of the connections between interplanetary magnetic field and Pc3 geomagnetic pulsations

    NASA Astrophysics Data System (ADS)

    Verö, József; Zieger, Bertalan

    1999-06-01

    Data used in an earlier paper [Verö and Holló, 1978] are here reexamined to clarify problems which emerged concerning the previously found relationship between the interplanetary magnetic field and Pc3 geomagnetic pulsations. We show that Pc3 pulsation spectra are strongly affected by wave amplification in the vicinity of the local field line resonance period. Possibilities are presented for the suppression of this effect. The influence of the variability of the interplanetary magnetic field is analyzed, and it is shown that this is a major factor determining momentary pulsation activity. The possibility of exciting field line resonances by impulses imbedded into noise of the interplanetary magnetic field is considered.

  4. Connections between short-period (Pc 1) pulsations and ionospheric parameters

    NASA Astrophysics Data System (ADS)

    Marcz, F.

    Long-term changes in Pc 1 pulsations and their dependence on latitude are analyzed using data recorded by five stations in Finland during the IMS. The daily Pc 1 occurrences at each station are plotted against the daytime f0F2 parameter. It is found that while the averaged daily durations of morning (Pc 1) pulsations generally decrease with increasing critical frequency (electron density) of the F2-layer, three somewhat different trends can be distinguished for the five stations. It is also found that the indirect connection between mid-latitude Pc 1 pulsations and increased ionospheric absorption of LF radio waves following certain geomagnetic storms (Marcz and Vero, 1977) holds in the case of high-latitude Pc 1 data.

  5. A procedure for modelling asymptotic g-mode pulsators: The case of γ Doradus stars

    NASA Astrophysics Data System (ADS)

    Moya, A.; Suárez, J. C.; Martín-Ruiz, S.; Amado, P. J.; Rodríguez-López, C.; Grigahcène, A.; Dupret, M. A.; Rodríguez, E.; Garrido, R.

    2008-06-01

    Mode identification is one of the first and main problems we encounter in trying to develop the complete potential of asteroseismology. In the particular case of {g}-mode pulsators, this is still an unsolved problem, from both the observational and theoretical points of view. Nevertheless, in recent years, some observational and theoretical efforts have been made to find a solution. In this work we use the latest theoretical and computational tools to understand asymptotic {g}-mode pulsators: 1) the Frequency Ratio Method, and 2) Time Dependent Convection. With these tools, a self-consistent procedure for mode identification and modelling of these {g}-mode pulsators can be constructed. This procedure is illustrated using observational information available for the γ Doradus star 9 Aurigae.

  6. Experimental study on rack cooling system based on a pulsating heat pipe

    NASA Astrophysics Data System (ADS)

    Lu, Qianyi; Jia, Li

    2016-02-01

    A rack cooling system based on a large scale flat plate pulsating heat pipe is proposed. The heat generated from IT equipment in a closed rack is transferred by the rear door pulsating heat pipe to the chilled air passage and is avoided to release into the room. The influence of the start-up performance of the heat pipe, the load of the rack and the load dissipation to the temperature and the velocity distribution in the rack are discussed. It is found that the temperature would be lower and the temperature distribution would be more uniform in the rack when the pulsating heat pipe is in operation. Also, the effect of rack electricity load on temperature distribution is analyzed. It is indicated that higher velocity of chilled air will improve heat transfer of the rack.

  7. Quasi-periodic pulsations with periods that change depending on whether the pulsations have thermal or nonthermal components

    NASA Astrophysics Data System (ADS)

    Li, D.; Zhang, Q. M.; Huang, Y.; Ning, Z. J.; Su, Y. N.

    2017-01-01

    Context. Quasi-periodic pulsations (QPPs) typically display periodic and regular peaks in the light curves during the flare emissions. Sometimes, QPPs show multiple periods at the same wavelength. However, changing periods in various channels are rare. Aims: We report QPPs in a solar flare on 2014 October 27. They showed a period change that depended on whether thermal or nonthermal components were included. The flare was simultaneously observed by many instruments. Methods: Using the fast Fourier transform (FFT), we decomposed the light curves at multiple wavelengths into slowly varying and rapidly varying signals. Then we identified the QPPs as the regular and periodic peaks from the rapidly varying signals. The periods are derived with the wavelet method and confirmed based on the FFT spectra of the rapidly varying signals. Results: We find a period of 50 s from the thermal emissions during the impulsive phase of the flare, that is, in the soft X-ray bands. At the same time, a period of about 100 s is detected from the nonthermal emissions, such as hard X-ray and microwave channels. The period ratio is exactly 2.0, which might be due to the modulations of the magnetic reconnection rate by the fundamental and harmonic modes of magnetohydrodynamic waves. Our results further show that the 100 s period is present over a broad wavelength, such as hard X-rays, extreme-UV/UV, and microwave emissions, indicating the periodic magnetic reconnection in this flare. Conclusions: To our knowledge, this is the first report about period changes from thermal to nonthermal components in a single flare that occur at almost the same time. This new observational finding could be a challenge to the theory of flare QPPs.

  8. Delta launch vehicle inertial guidance system (DIGS)

    NASA Technical Reports Server (NTRS)

    Duck, K. I.

    1973-01-01

    The Delta inertial guidance system, part of the Delta launch vehicle improvement effort, has been flown on three launches and was found to perform as expected for a variety of mission profiles and vehicle configurations.

  9. Revisiting double Dirac delta potential

    NASA Astrophysics Data System (ADS)

    Ahmed, Zafar; Kumar, Sachin; Sharma, Mayank; Sharma, Vibhu

    2016-07-01

    We study a general double Dirac delta potential to show that this is the simplest yet still versatile solvable potential to introduce double wells, avoided crossings, resonances and perfect transmission (T = 1). Perfect transmission energies turn out to be the critical property of symmetric and anti-symmetric cases wherein these discrete energies are found to correspond to the eigenvalues of a Dirac delta potential placed symmetrically between two rigid walls. For well(s) or barrier(s), perfect transmission (or zero reflectivity, R(E)) at energy E=0 is non-intuitive. However, this has been found earlier and called the ‘threshold anomaly’. Here we show that it is a critical phenomenon and we can have 0≤slant R(0)\\lt 1 when the parameters of the double delta potential satisfy an interesting condition. We also invoke a zero-energy and zero curvature eigenstate (\\psi (x)={Ax}+B) of the delta well between two symmetric rigid walls for R(0)=0. We resolve that the resonant energies and the perfect transmission energies are different and they arise differently.

  10. N-{Delta} weak transition

    SciTech Connect

    Graczyk, Krzysztof M.

    2011-11-23

    A short review of the Rein-Sehgal and isobar models is presented. The attention is focused on the nucleon-{Delta}(1232) weak transition form-factors. The results of the recent re-analyses of the ANL and BNL bubble chamber neutrino-deuteron scattering data are discussed.

  11. Delta-ALA urine test

    MedlinePlus

    ... increased level of urinary delta-ALA may indicate: Lead poisoning Porphyria (several types) A decreased level may occur ... A.M. Editorial team. Related MedlinePlus Health Topics Lead Poisoning Porphyria Browse the Encyclopedia A.D.A.M., ...

  12. Spongeplant Spreading in the Delta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasive, exotic aquatic plants impact a range of important economic and ecological functions in the Sacramento-San Joaquin Delta of California, and the state now spends over $5 million to control water hyacinth and Brazilian waterweed. In 2007, a new exotic floating plant South American Spongeplan...

  13. Phytoplankton fuels Delta food web

    USGS Publications Warehouse

    Jassby, Alan D.; Cloern, James E.; Muller-Solger, A. B.

    2003-01-01

    Populations of certain fishes and invertebrates in the Sacramento-San Joaquin Delta have declined in abundance in recent decades and there is evidence that food supply is partly responsible. While many sources of organic matter in the Delta could be supporting fish populations indirectly through the food web (including aquatic vegetation and decaying organic matter from agricultural drainage), a careful accounting shows that phytoplankton is the dominant food source. Phytoplankton, communities of microscopic free-floating algae, are the most important food source on a Delta-wide scale when both food quantity and quality are taken into account. These microscopic algae have declined since the late 1960s. Fertilizer and pesticide runoff do not appear to be playing a direct role in long-term phytoplankton changes; rather, species invasions, increasing water transparency and fluctuations in water transport are responsible. Although the potential toxicity of herbicides and pesticides to plank- ton in the Delta is well documented, the ecological significance remains speculative. Nutrient inputs from agricultural runoff at current levels, in combination with increasing transparency, could result in harmful al- gal blooms. 

  14. Tarsal tunnel syndrome associated with a pulsating artery: effectiveness of high-resolution ultrasound in diagnosing tarsal tunnel syndrome.

    PubMed

    Kim, Eunkuk; Childers, Martin K

    2010-01-01

    We describe a patient with tarsal tunnel syndrome in whom ultrasound imaging revealed compression of the posterior tibial nerve by a pulsating artery. High-resolution ultrasound showed a round pulsating hypoechoic lesion in contact with the posterior tibial nerve. Ultrasound-guided injection of 0.5% lidocaine temporarily resolved the paresthesia. These findings suggest an arterial etiology of tarsal tunnel syndrome.

  15. First axion bounds from a pulsating helium-rich white dwarf star

    NASA Astrophysics Data System (ADS)

    Battich, T.; Córsico, A. H.; Althaus, L. G.; Miller Bertolami, M. M.

    2016-08-01

    The Peccei-Quinn mechanism proposed to solve the CP problem of Quantum Chromodynamics has as consequence the existence of axions, hypothetical weakly interacting particles whose mass is constrained to be on the sub-eV range. If these particles exist and interact with electrons, they would be emitted from the dense interior of white dwarfs, becoming an important energy sink for the star. Due to their well known physics, white dwarfs are good laboratories to study the properties of fundamental particles such as the axions. We study the general effect of axion emission on the evolution of helium-rich white dwarfs and on their pulsational properties. To this aim, we calculate evolutionary helium-rich white dwarf models with axion emission, and assess the pulsational properties of this models. Our results indicate that the rates of change of pulsation periods are significantly affected by the existence of axions. We are able for the first time to independently constrain the mass of the axion from the study of pulsating helium-rich white dwarfs. To do this, we use an estimation of the rate of change of period of the pulsating white dwarf PG 1351+489 corresponding to the dominant pulsation period. From an asteroseismological model of PG 1351+489 we obtain gae < 3.3 × 10-13 for the axion-electron coupling constant, or macos2β lesssim 11.5 meV for the axion mass. This constraint is relaxed to gae < 5.5 × 10-13 (macos2β lesssim 19.5 meV), when no detailed asteroseismological model is adopted for the comparison with observations.

  16. The First Kepler Observations of the Pulsations of R Coronae Borealis Stars

    NASA Astrophysics Data System (ADS)

    Clayton, Geoffrey C.; Jeffery, C. Simon; Montiel, Edward; Saio, Hideyuki; Ramsay, Gavin

    2017-01-01

    K2 has opened a new avenue for the detailed study of the pulsations of the R Coronae Borealis (RCB) stars. These observations are key to understanding the evolution of the RCB stars because their masses cannot be accurately estimated by other means. The ~75 days of near continuous, high-precision observations are ideal for our planned analysis of the brightness variations of the RCB stars. We are observing about 15 RCB stars In K2 Fields 7, 9, and 11.These observations will provide a better understanding of the pulsation mechanisms and modes in RCB stars. RCB stars are thought to be ~0.8-0.9 M(Sun) from previous stellar pulsation modeling. These estimated masses agree well with the predicted masses of the merger products of a CO- and a He-WD. Final-flash stars, since they are single white dwarfs, should typically have masses of 0.55-0.6 M(Sun). No cool RCB star, with T(eff) = 5000-7000 K, is known to be a binary so these mass estimates are of great importance to understanding the evolution of these enigmatic stars. RCB stars show periodic or semi-periodic light and radial velocity fluctuations due to both radial and non-radial pulsations. These stars show pulsation periods in the 40-100 d range. These variations are separate from the large declines in brightness caused by dust forming around the star. The pulsations in RCB stars are thought to arise through strange-mode instabilities. Strange modes occur in stars with high luminosity where radiation pressure dominates. RCB stars comprise a peculiar and rare class of stars that offers an excellent opportunity to reveal crucial insights into the advanced stages of stellar evolution.

  17. Maintenance of large deltas through channelization

    NASA Astrophysics Data System (ADS)

    Giosan, L.; Constatinescu, S.; Filip, F.

    2013-12-01

    A new paradigm for delta restoration is currently taking shape using primarily Mississippi delta examples. Here we propose an alternative for delta maintenance primarily envisioned for wave-influenced deltas based on Danube delta experiences. Over the last half century, while the total sediment load of the Danube dramatically decreased due to dam construction on tributaries and its mainstem, a grand experiment was inadvertently run in the Danube delta: the construction of a dense network of canals, which almost tripled the water discharge toward the interior of the delta plain. We use core-based and chart-based sedimentation rates and patterns to explore the delta transition from the natural to an anthropogenic regime, to understand the effects of far-field damming and near-field channelization, and to construct a conceptual model for delta development as a function sediment partition between the delta plain and the delta coastal fringe. We show that sediment fluxes increased to the delta plain due to channelization, counteracting sea level rise. In turn, the delta coastal fringe was most impacted by the Danube's sediment load collapse. Furthermore, we show that morphodynamic feedbacks at the river mouth are crucial in trapping sediment near the coast and constructing wave-dominated deltas or lobes or delaying their destruction. As a general conclusion, we suggest that increased channelization that mimics and enhances natural processes may provide a simple solution for keeping delta plains above sea level and that abandonment of wave-dominated lobes may be the most long term efficient solution for protecting the internal fluvial regions of deltas and provide new coastal growth downcoast.

  18. Limited junctional diversity of V delta 5-J delta 1 rearrangement in multiple sclerosis patients.

    PubMed

    Nowak, J S; Michałowska-Wender, G; Januszkiewicz, D; Wender, M

    1997-01-01

    T-cell receptor (TCR) delta gene repertoire, as assessed by V delta-J delta rearrangements, has been analyzed in nine multiple sclerosis (MS) cases and in 30 healthy individuals by seminested PCR technique. Among the V delta-J delta junctional diversities studied, the most striking result has been observed in V delta 5-J delta 1 rearrangement. The detection of repeated V delta 5-J delta 1 nucleotide sequences in all analyzed clones from seven out of nine patients studied proved the monoclonal nature of gamma delta T-cells with V delta 5-J delta 1 rearrangement. The clonal nature of this rearrangement proved by PAGE and sequencing analysis may suggest an antigen-driven expansion of gamma delta T cells and argues for a significant role of gamma delta T-cells with V delta 5-J delta 1 rearrangement in MS pathogenesis. However, it cannot be excluded that clonal expansion of these lymphocytes may represent secondary change to central nervous system damage.

  19. An Electron Sensor for the Pulsating Aurora 2 (Pulsaur 2) Mission

    NASA Technical Reports Server (NTRS)

    Scherrer, J. R.; Sharber, J. R.; Frahm, R. A.; Piepgrass, B.

    1996-01-01

    The purpose of this grant was to provide a low-energy electron detector to be flown on the PULSAUR 2 rocket payload for investigation of the pulsating aurora. In the course of this grant, the instrument, a tophat analyzer, was built and calibrated by the combined efforts of Southwest Research Institute, Mullard Space Sciences Laboratory, Rutherford Appleton Laboratory, and Goddard Space Flight Center, and successfully flown into an active, early morning, pulsating aurora over Andoya, Norway, on February 9, 1994. This report provides a description of the instrument and its calibration and gives examples of data obtained on the flight.

  20. Scaling laws for jet pulsations associated with high-resolution electrohydrodynamic printing

    NASA Astrophysics Data System (ADS)

    Choi, Hong Kyoon; Park, Jang-Ung; Park, O. Ok; Ferreira, Placid M.; Georgiadis, John G.; Rogers, John A.

    2008-03-01

    This paper presents simple scaling laws that describe the intrinsic pulsation of a liquid jet that forms at the tips of fine nozzles under electrohydrodynamically induced flows. The jet diameter is proportional to the square root of the nozzle size and inversely proportional to the electric field strength. The fundamental pulsation frequency is proportional to the electric field strength raised to the power of 1.5. These scaling relationships are confirmed by experiments presented here and by data from the literature. The results are important for recently developed high-resolution ink jet printing techniques and other applications using electrohydrodynamics.

  1. Relationship between the IMF magnitude and Pc 3 magnetic pulsations in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Yumoto, K.; Saito, T.; Tsurutani, B. T.; Smith, E. J.; Akasofu, S.-I.

    1984-01-01

    The relationships between the IMF magnitude and pulsation frequencies in the Pc 3-4 range simultaneously observed both at synchronous orbit and at low latitudes on the ground are statistically described. A theoretical discussion is given on how these observations can be interpreted in terms of the characteristic frequency of compressional Pc 3-4 magnetic pulsations in the magnetosphere, based on the well-established ion cyclotron resonance mechanism between magnetosonic mode of low-frequency upstream waves and narrowly reflected ion beams in the earth's foreshock.

  2. Discovery of non-radial pulsations in the spectroscopic binary Herbig Ae star RS Chamaeleontis

    NASA Astrophysics Data System (ADS)

    Böhm, T.; Zima, W.; Catala, C.; Alecian, E.; Pollard, K.; Wright, D.

    2009-04-01

    Context: To understand the origin of stellar activity in pre-main-sequence Herbig Ae/Be stars and to get a deeper insight into the interior of these enigmatic stars, the pulsational instability strip of Palla and Marconi is investigated. In this article we present a first discovery of non radial pulsations in the Herbig Ae spectroscopic binary star RS Cha. Aims: The goal of the present work is to detect non-radial pulsations in a Herbig Ae star for the first time directly by spectrographic means and to identify the largest amplitude pulsation modes. Methods: The spectroscopic binary Herbig Ae star RS Cha was monitored in quasi-continuous observations during 14 observing nights (Jan. 2006) at the 1 m Mt. John (New Zealand) telescope with the Hercules high-resolution echelle spectrograph. The cumulative exposure time on the star was 44 h, corresponding to 255 individual high-resolution echelle spectra with R = 45 000. Least-square deconvolved spectra (LSD) were obtained for each spectrum, representing the effective photospheric absorption profile modified by pulsations. Difference spectra were calculated by subtracting rotationally broadened artificial profiles, these residual spectra were analysed and non-radial pulsations detected. A subsequent analysis with two complementary methods, namely Fourier Parameter Fit (FPF) and Fourier 2D (F2D) has been performed and first constraints on the pulsation modes derived. Results: For the very first time, we discovered by direct observational means using high-resolution echelle spectroscopy, non-radial oscillations in a Herbig Ae star. In fact, both components of the spectroscopic binary are Herbig Ae stars and both show NRPs. The FPF method identified 2 modes for the primary component with (degree ℓ, azimuthal order m) couples ordered by decreasing probability: f1 = 21.11 d-1 with (ℓ, m) = (11, 11), (11, 9) or (10, 6) and f2 = 30.38 d-1 with (ℓ, m) = ( 10, 6) or (9, 5). The F2D analysis indicates for f1 a degree

  3. Wider pulsation instability regions for β Cephei and SPB stars calculated using new Los Alamos opacities

    DOE PAGES

    Walczak, Przemysław; Fontes, Christopher John; Colgan, James Patrick; ...

    2015-08-13

    Here, our goal is to test the newly developed OPLIB opacity tables from Los Alamos National Laboratory and check their influence on the pulsation properties of B-type stars. We calculated models using MESA and Dziembowski codes for stellar evolution and linear, nonadiabatic pulsations, respectively. We derived the instability domains of β Cephei and SPB-types for different opacity tables OPLIB, OP, and OPAL. As a result, the new OPLIB opacities have the highest Rosseland mean opacity coefficient near the so-called Z-bump. Therefore, the OPLIB instability domains are wider than in the case of OP and OPAL data.

  4. Pulsation modes of long-period variables in the period-luminosity plane

    SciTech Connect

    Soszyński, I.; Udalski, A.; Wood, P. R. E-mail: udalski@astrouw.edu.pl

    2013-12-20

    We present a phenomenological analysis of long-period variables (LPVs) in the Large Magellanic Cloud with the aim of detecting pulsation modes associated with different period-luminosity (PL) relations. Among brighter LPVs, we discover a group of triple-mode semi-regular variables with the fundamental, first-overtone, and second-overtone modes simultaneously excited, which fall on PL sequences C, C', and B, respectively. The mode identification in the fainter red giants is more complicated. We demonstrate that the fundamental-mode pulsators partly overlap with the first-overtone modes. We show a possible range of fundamental mode and first overtone periods in the PL diagram.

  5. Feasibility study of tuned-resonator, pulsating cavitating water jet for deep-hole drilling

    SciTech Connect

    Johnson, V.E. Jr.; Lindenmuth, W.T.; Conn, A.F.; Frederick, G.S.

    1981-08-01

    This study presents the advantages of pulsing a submerged jet to increase its erosion capability (particularly as caused by cavitation) in augmenting deep-hole drill bits. Various methods of accomplishing the pulsation are presented and discussed. The most attractive systems uncovered are acoustic oscillators which passively accomplish pulsations in the flow at frequencies corresponding to a Strouhal number in the range of 0.2 to 1.0. Such passive oscillators are assessed to be feasible candidates for development into practical deep hole drill bit systems and a long range plan for this research and development is presented and discussed.

  6. Draft tube pressure pulsation predictions in Francis turbines with transient Computational Fluid Dynamics methodology

    NASA Astrophysics Data System (ADS)

    Melot, M.; Nennemann, B.; Désy, N.

    2014-03-01

    An automatic Computational Fluid Dynamics (CFD) procedure that aims at predicting Draft Tube Pressure Pulsations (DTPP) at part load is presented. After a brief review of the physics involved, a description of the transient numerical setup is given. Next, the paper describes a post processing technique, namely the separation of pressure signals into synchronous, asynchronous and random pulsations. Combining the CFD calculation with the post-processing technique allows the quantification of the potential excitation of the mechanical system during the design phase. Consequently it provides the hydraulic designer with a tool to specifically target DTPP and thus helps in the development of more robust designs for part load operation of turbines.

  7. Statistical studies of Pc 3-5 pulsations and their relevance for possible source mechanisms of ULF waves

    NASA Technical Reports Server (NTRS)

    Anderson, Brian J.

    1993-01-01

    A number of statistical studies using spacecraft data have been made of ULF waves in the magnetosphere. These studies provide an overview of ULF pulsation activity for r = 5-15 R(E) and allow an assessment of likely source mechanisms. In this review pulsations are categorized into five general types: compressional Pc 5, poloidal Pc 4, toroidal harmonics, toroidal Pc 5 (fundamental mode), and incoherent noise. The occurrence distributions and/or distributions of wave power of the different types suggest that compressional Pc 5 and poloidal Pc 4 derive their energy locally, most likely from energetic protons. The toroidal pulsations, both harmonic and fundamental mode, appear to be driven by an energy source outside the magnetopause - directly upstream in the sheath and solar wind for harmonics and the flanks for fundamentals. Incoherent pulsations are a prominent pulsation type but from their occurrence distribution alone it is unclear what their dominant energy source may be.

  8. Simultaneous observation of Pc 3-4 pulsations in the solar wind and in the earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Engebretson, M. J.; Zanetti, L. J.; Potemra, T. A.; Baumjohann, W.; Luehr, H.; Acuna, M. H.

    1987-01-01

    The equatorially orbiting Active Magnetospheric Particle Tracer Explorers CCE and IRM satellites have made numerous observations of Pc 3-4 magnetic field pulsations (10-s to 100-s period) simultaneously at locations upstream of the earth's bow shock and inside the magnetosphere. These observations show solar wind/IMF control of two categories of dayside magnetospheric pulsations. Harmonically structured, azimuthally polarized pulsations are commonly observed from L = 4 to 9 in association with upstream waves. More monochromatic compressional pulsations are clearly evident on occasion, with periods identical to those observed simultaneously in the solar wind. The observations reported here are consistent with a high-latitude (cusp) entry mechanism for wave energy related to harmonically structured pulsations.

  9. 27 CFR 9.96 - Mississippi Delta.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Mississippi Delta. 9.96... Mississippi Delta. (a) Name. The name of the viticultural area described in this section is “Mississippi Delta.” (b) Approved maps. The appropriate maps for determining the boundaries of the Mississippi...

  10. 27 CFR 9.96 - Mississippi Delta.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Mississippi Delta. 9.96... Mississippi Delta. (a) Name. The name of the viticultural area described in this section is “Mississippi Delta.” (b) Approved maps. The appropriate maps for determining the boundaries of the Mississippi...

  11. 27 CFR 9.96 - Mississippi Delta.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Mississippi Delta. 9.96... Mississippi Delta. (a) Name. The name of the viticultural area described in this section is “Mississippi Delta.” (b) Approved maps. The appropriate maps for determining the boundaries of the Mississippi...

  12. 27 CFR 9.96 - Mississippi Delta.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Mississippi Delta. 9.96... Mississippi Delta. (a) Name. The name of the viticultural area described in this section is “Mississippi Delta.” (b) Approved maps. The appropriate maps for determining the boundaries of the Mississippi...

  13. 27 CFR 9.96 - Mississippi Delta.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Mississippi Delta. 9.96... Mississippi Delta. (a) Name. The name of the viticultural area described in this section is “Mississippi Delta.” (b) Approved maps. The appropriate maps for determining the boundaries of the Mississippi...

  14. Evaluation of Pump Pulsation in Respirable Size-Selective Sampling: Part II. Changes in Sampling Efficiency

    PubMed Central

    Lee, Eun Gyung; Lee, Taekhee; Kim, Seung Won; Lee, Larry; Flemmer, Michael M.; Harper, Martin

    2015-01-01

    This second, and concluding, part of this study evaluated changes in sampling efficiency of respirable size-selective samplers due to air pulsations generated by the selected personal sampling pumps characterized in Part I (Lee E, Lee L, Möhlmann C et al. Evaluation of pump pulsation in respirable size-selective sampling: Part I. Pulsation measurements. Ann Occup Hyg 2013). Nine particle sizes of monodisperse ammonium fluorescein (from 1 to 9 μm mass median aerodynamic diameter) were generated individually by a vibrating orifice aerosol generator from dilute solutions of fluorescein in aqueous ammonia and then injected into an environmental chamber. To collect these particles, 10-mm nylon cyclones, also known as Dorr-Oliver (DO) cyclones, were used with five medium volumetric flow rate pumps. Those were the Apex IS, HFS513, GilAir5, Elite5, and Basic5 pumps, which were found in Part I to generate pulsations of 5% (the lowest), 25%, 30%, 56%, and 70% (the highest), respectively. GK2.69 cyclones were used with the Legacy [pump pulsation (PP) = 15%] and Elite12 (PP = 41%) pumps for collection at high flows. The DO cyclone was also used to evaluate changes in sampling efficiency due to pulse shape. The HFS513 pump, which generates a more complex pulse shape, was compared to a single sine wave fluctuation generated by a piston. The luminescent intensity of the fluorescein extracted from each sample was measured with a luminescence spectrometer. Sampling efficiencies were obtained by dividing the intensity of the fluorescein extracted from the filter placed in a cyclone with the intensity obtained from the filter used with a sharp-edged reference sampler. Then, sampling efficiency curves were generated using a sigmoid function with three parameters and each sampling efficiency curve was compared to that of the reference cyclone by constructing bias maps. In general, no change in sampling efficiency (bias under ±10%) was observed until pulsations exceeded 25% for the

  15. Evaluation of pump pulsation in respirable size-selective sampling: part II. Changes in sampling efficiency.

    PubMed

    Lee, Eun Gyung; Lee, Taekhee; Kim, Seung Won; Lee, Larry; Flemmer, Michael M; Harper, Martin

    2014-01-01

    This second, and concluding, part of this study evaluated changes in sampling efficiency of respirable size-selective samplers due to air pulsations generated by the selected personal sampling pumps characterized in Part I (Lee E, Lee L, Möhlmann C et al. Evaluation of pump pulsation in respirable size-selective sampling: Part I. Pulsation measurements. Ann Occup Hyg 2013). Nine particle sizes of monodisperse ammonium fluorescein (from 1 to 9 μm mass median aerodynamic diameter) were generated individually by a vibrating orifice aerosol generator from dilute solutions of fluorescein in aqueous ammonia and then injected into an environmental chamber. To collect these particles, 10-mm nylon cyclones, also known as Dorr-Oliver (DO) cyclones, were used with five medium volumetric flow rate pumps. Those were the Apex IS, HFS513, GilAir5, Elite5, and Basic5 pumps, which were found in Part I to generate pulsations of 5% (the lowest), 25%, 30%, 56%, and 70% (the highest), respectively. GK2.69 cyclones were used with the Legacy [pump pulsation (PP) = 15%] and Elite12 (PP = 41%) pumps for collection at high flows. The DO cyclone was also used to evaluate changes in sampling efficiency due to pulse shape. The HFS513 pump, which generates a more complex pulse shape, was compared to a single sine wave fluctuation generated by a piston. The luminescent intensity of the fluorescein extracted from each sample was measured with a luminescence spectrometer. Sampling efficiencies were obtained by dividing the intensity of the fluorescein extracted from the filter placed in a cyclone with the intensity obtained from the filter used with a sharp-edged reference sampler. Then, sampling efficiency curves were generated using a sigmoid function with three parameters and each sampling efficiency curve was compared to that of the reference cyclone by constructing bias maps. In general, no change in sampling efficiency (bias under ±10%) was observed until pulsations exceeded 25% for the

  16. Discharge Asymmetry in Delta Bifurcations

    NASA Astrophysics Data System (ADS)

    Salter, G.; Paola, C.; Voller, V. R.

    2015-12-01

    Distributary networks are formed by channels which bifurcate downstream in a river delta. Sediment and water fluxes are often split unequally in delta bifurcations. Understanding flux asymmetry in distributary networks is important for predicting how a delta will respond to sea-level rise. We present results of a quasi-1D model of a delta bifurcation. Consistent with previous results, in the absence of deposition, stable bifurcations may be either symmetric or asymmetric, depending on flow conditions. However, in a depositional setting, a stable asymmetric flow partitioning is no longer possible, as the dominant branch becomes less and less steep relative to the other branch. This feedback eventually causes the second branch to become favored. For the depositional case, we identify three regimes of bifurcation behavior: 1) stable symmetric bifurcation, 2) "soft" avulsions where the dominant branch switches without complete abandonment of the previous channel, and 3) complete avulsions where one branch is completely abandoned. In each case, the bifurcation is symmetric in the long-term average, but the latter two allow for short-term asymmetry. We find that keeping upstream sediment and water discharges fixed, as downstream channel length increases the regime shifts from symmetric to soft avulsions to complete avulsions. In the two avulsion regimes we examine the effect of upstream sediment and water discharges and downstream channel length on avulsion period and maximum discharge ratio. Finally, we compare numerical modeling results to a fixed-wall bifurcation experiment. As in the numerical model, the presence or absence of a downstream sink exerts a strong control on system behavior. If a sink is present, a bifurcation may be asymmetric indefinitely. Conversely, without a sink the system is depositional, and the feedback between sediment discharge asymmetry and slope causes the bifurcation to remain symmetric in the long-term average.

  17. Adaptive numerical simulation of pulsating planar flames for large Lewis and Zeldovich ranges

    NASA Astrophysics Data System (ADS)

    Roussel, Olivier; Schneider, Kai

    2006-06-01

    We study numerically the behaviour of pulsating planar flames in the thermo-diffusive approximation. The numerical scheme is based on a finite volume discretization with an adaptive multi-resolution technique for automatic grid adaption. This allows an accurate and efficient computation of pulsating flames even for very large activation energies. Depending on the Lewis number and the Zeldovich number, we observe different behaviours, like stable or pulsating flames, the latter being either damped, periodic, or a-periodic. A bifurcation diagram in the Lewis-Zeldovich plane is computed and our results are compared with previous computations [Rogg B. The effect of Lewis number greater than unity on an unsteady propagating flame with one-step chemistry. In: Peters N, Warnatz J, editors, Numerical methods in laminar flame propagation, Notes on numerical fluid mechanics, vol. 6. Vieweg; 1982. p. 38-48.] and theoretical predictions [Joulin G, Clavin P. Linear stability analysis of nonadiabatic flames: diffusional-thermal model. Combust Flame 1979;35:139-53]. For Lewis numbers larger than 6 we find that the stability limit is again increasing towards larger Zeldovich numbers and not monotonically decreasing as predicted by the asymptotic theory. A study of the flame velocities for different Zeldovich numbers shows that the amplitude of the pulsations strongly varies with the Lewis number. A Fourier analysis yields information on their frequency.

  18. THE DISCOVERY OF DIFFERENTIAL RADIAL ROTATION IN THE PULSATING SUBDWARF B STAR KIC 3527751

    SciTech Connect

    Foster, H. M.; Reed, M. D.; Telting, J. H.; Østensen, R. H.; Baran, A. S.

    2015-06-01

    We analyze 3 yr of nearly continuous Kepler spacecraft short cadence observations of the pulsating subdwarf B (sdB) star KIC 3527751. We detect a total of 251 periodicities, most in the g-mode domain, but some where p-modes occur, confirming that KIC 3527751 is a hybrid pulsator. We apply seismic tools to the periodicities to characterize the properties of KIC 3527751. Techniques to identify modes include asymptotic period spacing relationships, frequency multiplets, and the separation of multiplet splittings. These techniques allow for 189 (75%) of the 251 periods to be associated with pulsation modes. Included in these are three sets of ℓ = 4 multiplets and possibly an ℓ = 9 multiplet. Period spacing sequences indicate ℓ = 1 and 2 overtone spacings of 266.4 ± 0.2 and 153.2 ± 0.2 s, respectively. We also calculate reduced periods, from which we find evidence of trapped pulsations. Such mode trappings can be used to constrain the core/atmosphere transition layers. Interestingly, frequency multiplets in the g-mode region, which sample deep into the star, indicate a rotation period of 42.6 ± 3.4 days while p-mode multiplets, which sample the outer envelope, indicate a rotation period of 15.3 ± 0.7 days. We interpret this as differential rotation in the radial direction with the core rotating more slowly. This is the first example of differential rotation for a sdB star.

  19. AT LAST-A V777 HER PULSATOR IN THE KEPLER FIELD

    SciTech Connect

    Oestensen, R. H.; Bloemen, S.; Vuckovic, M.; Aerts, C.; Oreiro, R.; Kinemuchi, K.; Still, M.

    2011-08-01

    We present the discovery of the first-and so far the only-pulsating white dwarf star located in the field of view of the Kepler spacecraft. During our ongoing effort to search for compact pulsator candidates that can benefit from the near-continuous coverage of Kepler, we recently identified a faint DB star from spectroscopy obtained with the William Herschel Telescope. After establishing its physical parameters to be T{sub eff} = 24,950 K and log g = 7.91 dex, placing it right in the middle of the V777 Her instability strip, we immediately submitted the target for follow-up space observations. The Kepler light curve reveals a pulsation spectrum consisting of five modes that follow a sequence roughly equally spaced in period with a mean spacing of 37 s. The three strongest modes show a triplet structure with a mean splitting of 3.3 {mu}Hz. We conclude that this object is a V777 Her pulsator with a mass of {approx}0.56 M{sub sun}, and very similar to the class prototype.

  20. Morningside Pi2 Pulsation Observed in Space and on the Ground

    NASA Astrophysics Data System (ADS)

    Ghamry, Essam

    2015-12-01

    In this study, we examined a morningside Pi2 pulsation, with a non-substorm signature, that occurred in very quiet geomagnetic conditions (Kp = 0) at 05:38 UT on December 8, 2012, using data obtained by Van Allen Probes A and B (VAP-A and VAP-B, respectively) and at a ground station. Using 1 sec resolution vector magnetic field data, we measured the X-component of the pulsation from the Abu Simbel ground station (L = 1.07, LT = UT +2 hr, where LT represents local time) in Egypt. At the time of the Pi2 event, Abu Simbel and VAP-A (L = 3.3) were in the morning sector (07:38 LT and 07:59 MLT, respectively, where MLT represents magnetic local time), and VAP-B was in the postmidnight sector (04:18 MLT and L = 5.7). VAP-A and VAP-B observed oscillations in the compressional magnetic field component (Bz), which were in close agreement with the X-component measurements of the Pi2 pulsation that were made at Abu Simbel. The oscillations observed by the satellites and on the ground were in phase. Thus, we concluded that the observed morningside Pi2 pulsation was caused by the cavity resonance mode rather than by ionospheric current systems.

  1. At Last—A V777 Her Pulsator in the Kepler Field

    NASA Astrophysics Data System (ADS)

    Østensen, R. H.; Bloemen, S.; Vučković, M.; Aerts, C.; Oreiro, R.; Kinemuchi, K.; Still, M.; Koester, D.

    2011-08-01

    We present the discovery of the first—and so far the only—pulsating white dwarf star located in the field of view of the Kepler spacecraft. During our ongoing effort to search for compact pulsator candidates that can benefit from the near-continuous coverage of Kepler, we recently identified a faint DB star from spectroscopy obtained with the William Herschel Telescope. After establishing its physical parameters to be T eff = 24,950 K and log g = 7.91 dex, placing it right in the middle of the V777 Her instability strip, we immediately submitted the target for follow-up space observations. The Kepler light curve reveals a pulsation spectrum consisting of five modes that follow a sequence roughly equally spaced in period with a mean spacing of 37 s. The three strongest modes show a triplet structure with a mean splitting of 3.3 μHz. We conclude that this object is a V777 Her pulsator with a mass of ~0.56 M sun, and very similar to the class prototype.

  2. Update on the asteroseismology of the Kepler field hot pulsating white dwarf

    NASA Astrophysics Data System (ADS)

    Kim, Agnes

    2014-01-01

    In 2012, asteroseismic studies of a pulsating helium atmosphere white dwarf discovered in the Kepler field (KIC 862621) revealed that the star was one of the hottest in its class. Data gathered by Kepler also revealed that a number of the pulsation modes observed in the star were stable over time. Such stable modes can be used to measure a rate of cooling for the star. Combined with interior models of the object, such measurement can help constrain plasmon neutrino emission rates. KIC 862621 is in a temperature range where neutrino cooling contributes to more than half its luminosity. We report on the modeling of the object. The original studies were based on the 5 pulsation periods available at the time. Such a small number of modes only allowed partial constraints on the interior structure. Since then, through continuous observations with Kepler up until the end of the mission, 5 additional independent modes were discovered. We present a new, better constrained asteroseismic study of KIC 862621 based on 10 pulsation periods. Ground observations of the object will continue, yielding a measurement of the rate of cooling. We will then have the elements in place to help us constrain plasmon neutrino emission rates.

  3. ULF cusp pulsations: Diurnal variations and interplanetary magnetic field correlations with ground-based observations

    SciTech Connect

    McHarg, M.G.; Olson, J.V.; Newell, P.T.

    1995-10-01

    In this paper the authors establish the Pc 5 magnetic pulsation signatures of the cusp and boundary regions for the high-latitude dayside cusp region. These signatures were determined by comparing spectrograms of the magnetic pulsations with optical observations of particle precipitation regions observed at the cusp. The ULF pulsations have a diurnal variation, and a cusp discriminant is proposed using a particular narrow-band feature in the pulsation spectrograms. The statistical distribution of this pattern over a 253-day period resembles the statistical cusp description using particle precipitation data from the Defense Meterological Satellite Program (DMSP). The distribution of the ground-based cusp discriminant is found to peak 1 hour earlier than the DMSP cusp distribution. This offset is due to the interplanetary magnetic field (IMF) being predominantly negative B{sub y} for the period when the data were collected. The authors find the diurnal variations so repeatable that only three main categories have statistically different IMF distributions. The identification of the signatures in the magnetic spectrograms of the boundary regions and central cusp allows the spectrogram to be used as a {open_quotes}time line{close_quotes} that shows when the station passed under different regions of the dayside oval. 36 refs., 11 figs., 1 tab.

  4. Pulsating aurora observed on the ground and in-situ by the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Lessard, M.; Cohen, I. J.; Denton, R. E.; Engebretson, M. J.; Kletzing, C.; Wygant, J. R.; Bounds, S. R.; Smith, C. W.; MacDowall, R. J.; Kurth, W. S.

    2013-12-01

    Early observations and theory related to pulsating aurora suggested that the electrons that drive this aurora originate from the equatorial region of the magnetosphere and that a likely process that can scatter these electrons would involve chorus waves. Recent satellite observations during pulsating auroral events have provided important "firsts", including evidence of strong correlations between pulsating auroral patches and in-situ lower-band chorus (THEMIS), as well as correlations with energetic electron precipitation in the vicinity of geosynchronous orbit (GOES). These results provide important information regarding particle dynamics, leading to a question about how the chorus might be driven. We present observations of the Van Allen Probes in conjunction with a pulsating aurora event, as confirmed by observations on the ground. The in-situ data again show the presence of lower-band chorus. However, magnetic and electric field data also show that the wave bursts coincide with an apparent poloidal field-line resonance, begging the question of whether the resonance might be responsible for driving the VLF waves.

  5. Analysis of latitudinal distribution of Pi2 geomagnetic pulsations using the generalized variance method

    NASA Astrophysics Data System (ADS)

    Kleimenova, N. G.; Zelinsky, N. R.; Kotikov, A. L.

    2014-05-01

    The spatial dynamics of bursts of geomagnetic Pi2-type pulsations during a typical event of a magnetospheric substorm (April 13, 2010) drifting to the pole was investigated using the method of generalized variance characterizing the integral time increment of the total horizontal amplitude of the wave at a given point in the selected time interval. The digital data of Scandinavian profile observations from IMAGE magnetometers with 10-second sampling and data of the INTERMAGNET project observations at the equatorial, middle-latitude and subauroral latitudes with a 1-second sampling were used in the analysis. It was shown that Pi2 pulsation bursts in a frequency band of 8-20 mHz appear simultaneously on a global scale: from the polar to equatorial latitudes with maximum amplitudes at latitudes of the maximum intensity of the auroral electrojet and with a maximum amplitude of geomagnetic pulsations Pi3 within a band of 1.5-6 mHz. The first (left-polarized) intensive Pi2 burst appeared at auroral latitudes several minutes after breakup, while the second (right-polarized) burst occurred 15 min after breakup but at higher (polar) latitudes where the substorm had displaced by that time. The direction of wave-polarization vector rotation was opposite for auroral and subauroral latitudes, but it was identical at the equator and in the subauroral zone. The pulsation amplitude at the equator was maximal in the night sector.

  6. Viscous Analysis of Pulsating Hydrodynamic Instability and Thermal Coupling Liquid-Propellant Combustion

    NASA Technical Reports Server (NTRS)

    Margolis, Stephen B.; Sacksteder, Kurt (Technical Monitor)

    2000-01-01

    A pulsating form of hydrodynamic instability has recently been shown to arise during liquid-propellant deflagration in those parameter regimes where the pressure-dependent burning rate is characterized by a negative pressure sensitivity. This type of instability can coexist with the classical cellular, or Landau form of hydrodynamic instability, with the occurrence of either dependent on whether the pressure sensitivity is sufficiently large or small in magnitude. For the inviscid problem, it has been shown that, when the burning rate is realistically allowed to depend on temperature as well as pressure, sufficiently large values of the temperature sensitivity relative to the pressure sensitivity causes like pulsating form of hydrodynamic instability to become dominant. In that regime, steady, planar burning becomes intrinsically unstable to pulsating disturbances whose wave numbers are sufficiently small. This analysis is extended to the fully viscous case, where it is shown that although viscosity is stabilizing for intermediate and larger wave number perturbations, the intrinsic pulsating instability for small wave numbers remains. Under these conditions, liquid-propellant combustion is predicted to be characterized by large unsteady cells along the liquid/gas interface.

  7. Analysis of the Stress Wave Effect During Rock Breakage by Pulsating Jets

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Wei, Jianping; Ren, Ting

    2016-02-01

    Formation, propagation and attenuation of stress waves during rock breakage by pulsating jets are simulated by introducing the Johnson-Holmquist-Concrete nonlinear constitutive model, and using the smoothed particle hydrodynamics approach. The curve of stress over time at different locations of the rock surface under the action of high-velocity pulsating jets is obtained, as well as relationship curve between amplitude of stress wave and distance to jet action spot. Based on the computational results, breakage behavior of rocks under stress wave effect, and impacts of jet velocity and rock properties on stress wave effect are analyzed. The results show that the stress wave effect of pulsating jets is rather strongly localized, and the amplitude of stress wave decreases sharply with increasing distance to jet action spot. The intensity and effect range of stress wave are in direct proportion to jet velocity; besides, there is a threshold velocity regarding macroscopic failure of rocks. Rocks of different lithologies have somewhat different failure modes under stress wave action of pulsating jets; failure mode of low strength rocks like sandstone is mainly crack propagation under tensile stress during rock loading and unloading processes, whereas the failure mode of hard brittle rocks such as limestone and granite is mainly longitudinal failure caused by stress concentration.

  8. Characteristics pertinent to propagation of pulsating pressure in the channels of turbine machines

    NASA Astrophysics Data System (ADS)

    Liu, Hong; Chen, Zuoyi

    2007-01-01

    A new model describing the propagation of the pressure pulsations in the intricately shaped channels of turbine machines is presented. The proposed model was successfully used to analyze two emergency events: a failure of a steam turbine’s cast diaphragm and a failure of a rocket engine’s oxygen pump booster stage.

  9. Amplitude Variability as Evidence of Crystallization in GD 518 and Other Massive Pulsating White Dwarfs

    NASA Astrophysics Data System (ADS)

    Hermes, J. J.; Kepler, S. O.; Montgomery, M. H.; Gianninas, A.; Castanheira, Barbara G.; Winget, D. E.

    2015-06-01

    In 2013 March we discovered pulsations in the most massive pulsating hydrogen-atmosphere white dwarf to date, GD 518. Model atmosphere fits to the optical spectrum of this star show it is a Teff = 12,030±210 K, log g = 9.08±0.06 white dwarf, which corresponds to a mass of 1.20±0.03 M⊙. Such a massive WD should also be significantly crystallized at this temperature, and may possibly contain an oxygen-neon core. The star exhibits multi-periodic luminosity variations at timescales ranging from roughly 425 to 595 s and amplitudes up to 0.7% in a given night, consistent in period and amplitude with the observed variability of typical ZZ Ceti stars, although the pulsation amplitudes change drastically over the 33 days of our discovery observations. We investigate the possibility that these amplitude variations are a consequence of the pulsation modes sampling only the non-crystallized outer mass fraction of the white dwarf (perhaps <0.05 M⊙ of material), and thus have very low mode inertia. Amplitude variability could be an observational consequence of a significantly crystallized stellar interior.

  10. CCD Photometry of RR Lyrae Stars in M5 as a Test for the Pulsational Scenario

    NASA Astrophysics Data System (ADS)

    Brocato, E.; Castellani, V.; Ripepi, V.

    1996-02-01

    In this paper we present a new CCD based investigation of RR Lyrae pulsators in the Oo. I globular cluster M5. We confirm the variability of 11 Gerashchenko (1987) objects, adding the evidence for further 15 variables in the central region of the cluster. BV light curves for 15 RR Lyrae are presented. With the addition of further 11 light curves by Storm et al. [PASP, 103, 1264 (1991)] one is dealing with a sample of 26 well-studied cluster pulsators. The data for these stars have been combined with similar data for RR Lyrae in clusters M3, M 15, and M68 to allow a comparison with the theoretical scenario recently presented by Bono & Stellingwerf [ApJS, 93, 233 (1994)]. On this basis, we discuss the distribution of stars in the period amplitude diagram, disclosing a substantial reduction of Sandage's period shift. We suggest that theoretical constraints concerning periods and amplitudes could allow information on masses and luminosity of the pulsators to be derived directly from the Bailey diagram. Static temperatures have been derived for all stars in the sample, and we discuss the dependence on the temperature of the observed pulsational properties.

  11. Pulsational variability in proto-planetary nebulae and other post-AGB objects

    NASA Astrophysics Data System (ADS)

    Hrivnak, Bruce J.

    2016-07-01

    Light and velocity curves of several classes of pulsating stars have been successfully modeled to determine physical properties of the stars. In this observational study, we review briefly the pulsational variability of the main classes of post-AGB stars. Our attention is focused in particular on proto-planetary nebulae (PPNe), those in the short-lived phase from AGB stars to the planetary nebulae. New light curves and period analyses have been used to determine the following general properties of the PPNe variability: (a) periods range from 35 to 160 days for those of F—G spectral types, with much shorter periods (< 1 day) found for those of early-B spectral type; (b) there is a correlation between the pulsation period, maximum amplitude, and temperature of the star, with cooler stars pulsating with longer periods and larger amplitudes; (c) similar correlations are found for carbon-rich, oxygen-rich, and lower-metalicity PPNe; and (d) multiple periods are found for all of them, with P2/P1 = 1.0±0.1. New models are needed to exploit these results.

  12. Crossing HST and wet data for the pulsating DB white dwarf PG1351+489

    NASA Astrophysics Data System (ADS)

    Alves, V. M.; Kepler, S. O.

    2003-08-01

    At discovery, the pulsating DB white dwarf PG1351+489 was initially thought to have the simplest power spectrum of all pulsating helium atmosphere white dwarf stars (DBVs). The high resolution power spectrum provided by the 1995 Whole Earth Telescope data allowed us to identify 18 pulsation frequencies: a dominating frequency fo (2043.59mHz), its four harmonics, three sets of frequencies which are equidistant from the main periodicity and from its harmonics (one of these may be a splitting due to rotation). With these results, we reanalised the 1996 Faint Object Spectrograph time-resolved ultraviolet spectroscopy obtained with the Hubble Space Telescope, together with the simultaneous photometry at the zeroth-order (undifracted) light. In this work, we fixed the frequencies identified in the WET data, due to its much higher time resolution than the HST data, and analised the ones which had amplitude higher than three times the average noise and out of power spectral resolution interference. We identified other frequencies not present at WET data, including a new set of fractional frequencies. The relative amplitude change with wavelenght for each periodicity was compared with the theoretical ones, to obtain the best temperature and gravity values for this star as well as the pulsation spherical degree identification.

  13. Suppression of stochastic pulsation in laser-plasma interaction by smoothing methods

    NASA Astrophysics Data System (ADS)

    Hora, Heinrich; Aydin, Meral

    1992-04-01

    The control of the very complex behavior of a plasma with laser interaction by smoothing with induced spatial incoherence or other methods was related to improving the lateral uniformity of the irradiation. While this is important, it is shown from numerical hydrodynamic studies that the very strong temporal pulsation (stuttering) will mostly be suppressed by these smoothing methods too.

  14. Suppression of stochastic pulsation in laser-plasma interaction by smoothing methods

    SciTech Connect

    Hora, H. ); Aydin, M. )

    1992-04-15

    The control of the very complex behavior of a plasma with laser interaction by smoothing with induced spatial incoherence or other methods was related to improving the lateral uniformity of the irradiation. While this is important, it is shown from numerical hydrodynamic studies that the very strong temporal pulsation (stuttering) will mostly be suppressed by these smoothing methods too.

  15. Variable Stars and The Asymptotic Giant Branch: Stellar Pulsations, Dust Production, and Mass Loss

    NASA Astrophysics Data System (ADS)

    Speck, A. K.

    2014-09-01

    Low- and intermediate-mass stars (1-8 M⊙; LIMS) are very important contributors of material to the interstellar medium (ISM), and yet the mechanisms by which this matter is expelled remain a mystery. In this paper we discuss how interferometry plays a role in studying the interplay between pulsation, mass loss, dust formation, and evolution of these LIMS.

  16. Variable Stars and the Asymptotic Giant Branch: Stellar Pulsations, Dust Production, and Mass Loss

    NASA Astrophysics Data System (ADS)

    Speck, A. K.

    2012-06-01

    Low- and intermediate-mass stars (1-8 M⊙; LIMS) are very important contributors of material to the interstellar medium (ISM), and yet the mechanisms by which this matter is expelled remain a mystery. In this paper we discuss how interferometry plays a role in studying the interplay between pulsation, mass loss, dust formation and evolution of these LIMS.

  17. Coordinated ground-based and geosynchronous satellite-based measurements of auroral pulsations

    SciTech Connect

    Suszcynsky, David M.; Borovsky, Joseph E.; Thomsen, Michelle F.; McComas, David J.; Belian, Richard D.

    1996-09-01

    We describe a technique that uses a ground-based all-sky video camera and geosynchronous satellite-based plasma and energetic particle detectors to study ionosphere-magnetosphere coupling as it relates to the aurora. The video camera system was deployed in Eagle, Alaska for a seven month period at the foot of the magnetic field line that threads geosynchronous satellite 1989-046. Since 1989-046 corotates with the earth, its footprint remains nearly fixed in the vicinity of Eagle, allowing for routine continuous monitoring of an auroral field line at its intersections with the ground and with geosynchronous orbit. As an example of the utility of this technique, we present coordinated ground-based and satellite based observations during periods of auroral pulsations and compare this data to the predictions of both the relaxation oscillator theory and flow cyclotron maser theory for the generation of pulsating aurorae. The observed plasma and energetic particle characteristics at geosynchronous orbit during pulsating aurorae displays are found to be in agreement with the predictions of both theories lending further support that a cyclotron resonance mechanism is responsible for auroral pulsations.

  18. Deformation characteristics of {delta} phase in the delta-processed Inconel 718 alloy

    SciTech Connect

    Zhang, H.Y.; Zhang, S.H.; Cheng, M.; Li, Z.X.

    2010-01-15

    The hot working characteristics of {delta} phase in the delta-processed Inconel 718 alloy during isothermal compression deformation at temperature of 950 deg. C and strain rate of 0.005 s{sup -1}, were studied by using optical microscope, scanning electron microscope and quantitative X-ray diffraction technique. The results showed that the dissolution of plate-like {delta} phase and the precipitation of spherical {delta} phase particles coexisted during the deformation, and the content of {delta} phase decreased from 7.05 wt.% to 5.14 wt.%. As a result of deformation breakage and dissolution breakage, the plate-like {delta} phase was spheroidized and transferred to spherical {delta} phase particles. In the center with largest strain, the plate-like {delta} phase disappeared and spherical {delta} phase appeared in the interior of grains and grain boundaries.

  19. Plasmasphere pulsations observed simultaneously by midlatitude SuperDARN radars, ground magnetometers and THEMIS spacecraft during an auroral substorm

    NASA Astrophysics Data System (ADS)

    Ruohoniemi, J. M.; Shi, X.; Baker, J. B. H.; Frissell, N. A.; Hartinger, M.; Liu, J.

    2015-12-01

    We present simultaneous ground and space-based observations of ultra-low frequency (ULF) pulsations which occurred during an auroral substorm on September 25th, 2014. Expansion phase onset began at 06:04 UT at which time three midlatitude SuperDARN radars observed strong pulsations in the Pi2 frequency range with peak to peak amplitude reaching as high as 1km/s. Similar pulsations occurred during a later auroral intensification which started at 06:20 UT. Both sets of pulsations were detected in a region of radar backscatter located inside the subauroral polarization stream (SAPS) equatorward of the auroral oval specified by THEMIS all sky imagers and inside the midlatitude density trough as mapped by GPS/TEC measurements. The amplitude of the pulsations was large enough to reverse the direction of the SAPS flow from westward to eastward. Similar pulsations were detected by electric field instrument aboard the THEMIS probe D located inside the plasmasphere. Simultaneous observations from several low-latitude ground magnetometers (some located on the dayside) further illustrate the global nature of the pulsations and suggest they may have been associated with a plasmaspheric cavity resonance (PCR). Pulsed tailward plasma flow observed by THEMIS probe E at the geosynchronous orbit suggests that the compressional energy to generate the PCR was from the Bursty Bulk Flows (BBFs) braking against the magnetospheric dipolar region.

  20. Detection of Geomagnetic Pulsations of the Earth Using GPS-TEC Data

    NASA Astrophysics Data System (ADS)

    Koroglu, Ozan; Arikan, Feza; Köroǧlu, Meltem; Sabri Ozkazanc, Yakup

    2016-07-01

    The magnetosphere of the Earth is made up of both magnetic fields and plasma. In this layer, plasma waves propagate as Ultra Low Frequency (ULF) waves having mHz scale frequencies. ULF waves are produced due to complicated solar-geomagnetic interactions. In the literature, these ULF waves are defined as pulsations. The geomagnetic pulsations are classified into main two groups as continuous pulsations (Pc) and irregular pulsations (Pi). These pulsations can be determined by ionospheric parameters due to the complex lithosphere-ionosphere-magnetosphere coupling processes. Total Electron Content (TEC) is one of the most important parameters for investigating the variability of ionosphere. Global Positioning System (GPS) provides a cost-effective means for estimating TEC from GPS satellite orbital height of 20,000 km to the ground based receivers. Therefore, the time series of GPS-TEC inherently contains the above mentioned ULF waves. In this study, time series analysis of GPS-TEC is carried out by applying periodogram method to the mid-latitude annual TEC data. After the analysis of GPS-TEC data obtained for GPS stations located in Central Europe and Turkey for 2011, it is observed that some of the fundamental frequencies that are indicators of Pc waves, diurnal and semi-diurnal periodicity and earth-free oscillations can be identified. These results will be used in determination of low frequency trend structure of magnetosphere and ionosphere. Further investigation of remaining relatively low magnitude frequencies, all Pi and Pc can be identified by using time and frequency domain techniques such as wavelet analysis. This study is supported by the joint TUBITAK 115E915 and joint TUBITAK114E092 and AS CR 14/001 projects.

  1. Rapidly Pulsating Hot Subdwarfs in ω Centauri: A New Instability Strip on the Extreme Horizontal Branch?

    NASA Astrophysics Data System (ADS)

    Randall, S. K.; Calamida, A.; Fontaine, G.; Bono, G.; Brassard, P.

    2011-08-01

    Pulsating extreme horizontal branch (EHB) stars offer the unique opportunity to use asteroseismology to probe their fundamental parameters and thus constrain one of the more poorly understood phases of stellar evolution. However, they have been observed only among the field population, which necessarily prevents asteroseismological tools from being applied to globular cluster EHB stars. We launched a search for rapid EHB pulsators in ω Cen on the basis of fast time-series photometry obtained with EFOSC2 at the New Technology Telescope. Fourier analysis uncovered four multi-mode oscillators with rather similar periods between 84 and 124 s and amplitudes up to 2.7% of the mean stellar brightness. Initially, it was assumed that these stars constitute the globular cluster counterparts to the EC 14026 stars, rapid subdwarf B pulsators with T eff ~ 31,000 K that have been extensively studied among the field population, yet a subsequent atmospheric analysis of FORS MXU spectra reveals effective temperatures closely clustered around 50,000 K, implying that the four ω Cen variables are in fact helium-poor subdwarf O (sdO) stars rather than EC 14026 pulsators. It remains to be seen whether they are related to the one significantly hotter sdO oscillator known among the field star population, or belong to a hitherto unknown class of stellar pulsator that can now be subjected to asteroseismological scrutiny. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (proposal ID 083.D-0833 and 386.D-0669).

  2. A SEMI-COHERENT SEARCH FOR WEAK PULSATIONS IN AQUILA X–1

    SciTech Connect

    Messenger, C.; Patruno, A.

    2015-06-20

    Non-pulsating neutron stars in low mass X-ray binaries largely outnumber those that show pulsations. The lack of detectable pulses represents a big open problem for two important reasons. The first is that the structure of the accretion flow in the region closest to the neutron star is not well understood and it is therefore unclear what is the mechanism that prevents the pulse formation. The second is that the detection of pulsations would immediately reveal the spin of the neutron star. AQUILA X–1 is a special source among low mass X-ray binaries because it has showed the unique property of pulsating for only ∼150 s out of a total observing time of more than 1.5 million seconds. However, the existing upper limits on the pulsed fraction leave open two alternatives. Either AQUILA X–1 has very weak pulses which have been undetected, or it has genuinely pulsed only for a tiny amount of the observed time. Understanding which of the two scenarios is the correct one is fundamental to increase our knowledge about the pulse formation process and understand the chances we have to detect weak pulses in other low-mass X-ray binaries. In this paper we perform a semi-coherent search on the entire X-ray data available for AQUILA X–1. We find no evidence for (new) weak pulsations with the most stringent upper limits being of the order of 0.3% in the 7–25 keV energy band.

  3. Fast-moving diffuse auroral patches: A new aspect of daytime Pc3 auroral pulsations

    NASA Astrophysics Data System (ADS)

    Motoba, Tetsuo; Ebihara, Yusuke; Kadokura, Akira; Engebretson, Mark J.; Lessard, Marc R.; Weatherwax, Allan T.; Gerrard, Andrew J.

    2017-02-01

    Auroral pulsations are a convenient diagnostic of wave-particle interactions in the magnetosphere. A case study of a daytime Pc3 (22-100 mHz) auroral pulsation event, measured with a 2 Hz sampling all-sky camera at South Pole Station (74.4°S magnetic latitude) on 17 May 2012, is presented. The daytime Pc3 auroral pulsations were most active in a closed field line region where the aurora was dominated by diffuse green-line emissions and within ±2 h of magnetic local noon. Usually, but not always, the corresponding periodic variations were recorded with a colocated search coil magnetometer. Of particular interest is the two-dimensional auroral signature, indicating that the temporal luminosity variations at a given point were due to repeated formation and horizontal motion of faint, nonpulsating auroral patches with scale sizes of 100 km. The individual patches propagated equatorward with speeds of 15 km s-1 up to 20-25 km s-1 one after another along the magnetic meridian through local magnetic zenith. These properties differ considerably from typical pulsating aurorae, being periodic on-off luminosity variations in a particular auroral patch and drifting in accordance with the convection electric field in the magnetosphere. We speculate that such repetitive patterns of the fast-moving auroral patches, being another aspect of the daytime Pc3 auroral pulsations, may be a visible manifestation of compressional Pc3 waves which propagate earthward and cause modulation of precipitating keV electron fluxes in the dayside outer magnetosphere.

  4. Long-period Intensity Pulsations in Coronal Loops Explained by Thermal Non-equilibrium Cycles

    NASA Astrophysics Data System (ADS)

    Froment, C.; Auchère, F.; Aulanier, G.; Mikić, Z.; Bocchialini, K.; Buchlin, E.; Solomon, J.

    2017-02-01

    In solar coronal loops, thermal non-equilibrium (TNE) is a phenomenon that can occur when the heating is both highly stratified and quasi-constant. Unambiguous observational identification of TNE would thus permit us to strongly constrain heating scenarios. While TNE is currently the standard interpretation of coronal rain, the long-term periodic evolution predicted by simulations has never been observed. However, the detection of long-period intensity pulsations (periods of several hours) has been recently reported with the Solar and Heliospheric Observatory/EIT, and this phenomenon appears to be very common in loops. Moreover, the three intensity-pulsation events that we recently studied with the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) show strong evidence for TNE in warm loops. In this paper, a realistic loop geometry from linear force-free field (LFFF) extrapolations is used as input to 1D hydrodynamic simulations. Our simulations show that, for the present loop geometry, the heating has to be asymmetrical to produce TNE. We analyze in detail one particular simulation that reproduces the average thermal behavior of one of the pulsating loop bundle observed with AIA. We compare the properties of this simulation with those deduced from the observations. The magnetic topology of the LFFF extrapolations points to the presence of sites of preferred reconnection at one footpoint, supporting the presence of asymmetric heating. In addition, we can reproduce the temporal large-scale intensity properties of the pulsating loops. This simulation further strengthens the interpretation of the observed pulsations as signatures of TNE. This consequently provides important information on the heating localization and timescale for these loops.

  5. Simultaneous measurement of aurora-related, irregular magnetic pulsations at northern and southern high latitudes

    SciTech Connect

    Arnoldy, R.L.; Rajashekar, R. ); Cahill, L.J. Jr. ); Engebretson, M.J. ); Rosenberg, T.J. ); Mende, S.B. )

    1987-11-01

    A dominant feature of high-latitude magnetic pulsations is large-amplitude irregular pulsations (Pi) which are closely correlated with the movement of the observing station under particle precipitation, producing the dayside auroral and the high-latitude expansion of nightside aurora. The dayside Pi-1 pulsation maximum centered about local magnetic noon has no strong seasonal dependence, indicating that the dayside aurora illuminates both hemispheres independent of the latitude of the subsolar point. The summer noon pulsation maximum has, however, a greater longitudinal extent than the winter noon maximum, as measured at 74{degree}-75{degree} invariant latitude. The nightside magnetic pulsations are bursts of Pi (PiB) having an average duration of 15 min. From Defense Meteorological Satellite Program photos the auroral forms related to the high-latitude PiB can be identified as the poleward discrete arc generally having a large longitudinal extent. If the auroral forms are very similar in both hemispheres, then the large longitudinal extent coupled with movement of the auroral could explain why 85% of the PiB events have onsets within 10 min at opposite hemisphere sites (South Pole, Antarctica, and Sondre Stromfjord, Greenland) separated in local magnetic time by about 1.5 hours. There is no seasonal dependence in the statistical occurrence of PiB, nor in its simultaneity in opposite hemispheres. Apparently, the seasonal distortion of the tail plasma sheet has little effect on the acceleration of high-latitude auroral beams. The actual several minute time difference in opposite hemisphere onsets of PiB is probably due to the westward/poleward motion of the longitudinally extended aurora.

  6. STRAIN ELASTOGRAPHY USING DOBUTAMINE-INDUCED CAROTID ARTERY PULSATION IN CANINE THYROID GLAND.

    PubMed

    Lee, Gahyun; Jeon, Sunghoon; Lee, Sang-Kwon; Kim, Hyunwoo; Yu, Dohyeon; Choi, Jihye

    2015-01-01

    Thyroid disease is common in dogs and conventional ultrasonography is a standard diagnostic test for diagnosis and treatment planning. Strain elastography can provide additional information about tissue stiffness noninvasively after applying external or internal compression. However, natural carotid artery pulsations in the canine thyroid gland are too weak to maintain sufficient internal compression force. The objective of the present study was to describe the feasibility of strain elastography for evaluating the canine thyroid gland and the repeatability of dobutamine-induced carotid artery pulsation as an internal compression method. In seven healthy Beagle dogs, strain on each thyroid lobe was induced by external compression using the ultrasound probe and internal compression using carotid artery pulsation after dobutamine infusion. The thyroid appeared homogeneously green and the subcutaneous fat superficial to the thyroid lobe appeared blue. Strain values and strain ratios did not differ among dogs or between the left and right lobes. Interobserver repeatability was excellent for both compression methods. Intraobserver repeatability of the strain ratio measured using the carotid artery pulsation method (intraclass coefficient correlation = 0.933) was higher than that measured using the external compression method (0.760). Mean strain values of thyroid lobes for the external compression method (142.93 ± 6.67) differed from the internal method (147.31 ± 8.24; P < 0.05). Strain ratios between the two methods did not differ. Strain elastography was feasible for estimating thyroid stiffness in dogs. Carotid artery pulsation induced by dobutamine infusion can be used for canine thyroid strain elastography with excellent repeatability.

  7. Energetic electron precipitation associated with pulsating aurora: EISCAT and Van Allen Probe observations

    SciTech Connect

    Miyoshi, Y.; Oyama, S.; Saito, S.; Kurita, S.; Fujiwara, H.; Kataoka, R.; Ebihara, Y.; Kletzing, C.; Reeves, G.; Santolik, O.; Clilverd, M.; Rodger, C. J.; Turunen, E.; Tsuchiya, F.

    2015-04-21

    Pulsating auroras show quasi-periodic intensity modulations caused by the precipitation of energetic electrons of the order of tens of keV. It is expected theoretically that not only these electrons but also subrelativistic/relativistic electrons precipitate simultaneously into the ionosphere owing to whistler mode wave-particle interactions. The height-resolved electron density profile was observed with the European Incoherent Scatter (EISCAT) Tromsø VHF radar on 17 November 2012. Electron density enhancements were clearly identified at altitudes >68 km in association with the pulsating aurora, suggesting precipitation of electrons with a broadband energy range from ~10 keV up to at least 200 keV. The riometer and network of subionospheric radio wave observations also showed the energetic electron precipitations during this period. During this period, the footprint of the Van Allen Probe-A satellite was very close to Tromsø and the satellite observed rising tone emissions of the lower band chorus (LBC) waves near the equatorial plane. Considering the observed LBC waves and electrons, we conducted a computer simulation of the wave-particle interactions. This showed simultaneous precipitation of electrons at both tens of keV and a few hundred keV, which is consistent with the energy spectrum estimated by the inversion method using the EISCAT observations. This result revealed that electrons with a wide energy range simultaneously precipitate into the ionosphere in association with the pulsating aurora, providing the evidence that pulsating auroras are caused by whistler chorus waves. We suggest that scattering by propagating whistler simultaneously causes both the precipitations of subrelativistic electrons and the pulsating aurora.

  8. Energetic electron precipitation associated with pulsating aurora: EISCAT and Van Allen Probe observations

    DOE PAGES

    Miyoshi, Y.; Oyama, S.; Saito, S.; ...

    2015-04-21

    Pulsating auroras show quasi-periodic intensity modulations caused by the precipitation of energetic electrons of the order of tens of keV. It is expected theoretically that not only these electrons but also subrelativistic/relativistic electrons precipitate simultaneously into the ionosphere owing to whistler mode wave-particle interactions. The height-resolved electron density profile was observed with the European Incoherent Scatter (EISCAT) Tromsø VHF radar on 17 November 2012. Electron density enhancements were clearly identified at altitudes >68 km in association with the pulsating aurora, suggesting precipitation of electrons with a broadband energy range from ~10 keV up to at least 200 keV. The riometermore » and network of subionospheric radio wave observations also showed the energetic electron precipitations during this period. During this period, the footprint of the Van Allen Probe-A satellite was very close to Tromsø and the satellite observed rising tone emissions of the lower band chorus (LBC) waves near the equatorial plane. Considering the observed LBC waves and electrons, we conducted a computer simulation of the wave-particle interactions. This showed simultaneous precipitation of electrons at both tens of keV and a few hundred keV, which is consistent with the energy spectrum estimated by the inversion method using the EISCAT observations. This result revealed that electrons with a wide energy range simultaneously precipitate into the ionosphere in association with the pulsating aurora, providing the evidence that pulsating auroras are caused by whistler chorus waves. We suggest that scattering by propagating whistler simultaneously causes both the precipitations of subrelativistic electrons and the pulsating aurora.« less

  9. Functional Changes of Diaphragm Type Shunt Valves Induced by Pressure Pulsation

    NASA Astrophysics Data System (ADS)

    Lee, Chong-Sun; Suh, Chang-Min; Ra, Young-Shin

    Shunt valves used to treat patients with hydrocephalus were tested to investigate influence of pressure pulsation on their flow control characteristics. Our focus was on flow dynamic and functional changes of the small and thin diaphragms in the valves that serve as the main flow control mechanism and are made from silicone elastomer. Firstly, pressure-flow control curves were compared under pulsed and steady flow (without pulsation) conditions. Secondly, functional changes of the valves were tested after a long-term continuous pulsation with a peristaltic pump. Thirdly, flushing procedures selectively conducted by neurosurgeons were simulated with a fingertip pressed on the dome of the valves. As 20cc/hr of flow rate was adjusted at a constant pressure, application of 40mmH2O of pressure pulse increased flow rate through shunt valves more than 60%. As a 90cm length silicone catheter was connected to the valve outlet, increase in the flow rate was substantially reduced to 17.5%. Pressure-flow control characteristics of some valves showed significant changes after twenty-eight days of pressure pulsation at 1.0 Hz under 50.0cc/hr of flow rate. Flushing simulation resulted in temporary decrease in the pressure level. It took three hours to fully recover the normal pressure-flow control characteristics after the flushing. Our results suggest that shunt valves with a thin elastic diaphragm as the main flow control mechanism are sensitive to intracranial pressure pulsation or pressure spikes enough to change their pressure-flow control characteristics.

  10. Russian Pulsating Mixer Pump Deployment in the Gunite and Associated Tanks at ORNL

    SciTech Connect

    Hatchell, Brian K.; Lewis, Ben; Johnson, Marshall A.; Randolph, J. G.

    2001-03-01

    In FY 1998, Pulsating Mixer Pump (PMP) technology, consisting of a jet mixer powered by a reciprocating air supply, was selected for deployment in one of the Gunite and Associated Tanks at Oak Ridge National Laboratory (ORNL) to mobilize settled solids. The pulsating mixer pump technology was identified during FY 1996 and FY 1997 technical exchanges between the U.S. Department of Energy (DOE) Tanks Focus Area Retrieval and Closure program, the DOE Environmental Management International Programs, and delegates from Russia as a promising technology that could be implemented in the DOE complex. During FY 1997, the pulsating mixer pump technology, provided by the Russian Integrated Mining Chemical Company, was tested at Pacific Northwest National Laboratory (PNNL) to observe its ability to suspend settled solids. Based on the results of this demonstration, ORNL and DOE staff determined that a modified pulsating mixer pump would meet project needs for remote sludge mobilization of Gunite tank sludge and reduce the cost of operation and maintenance of more expensive mixing systems. The functions and requirements of the system were developed by combining the results and recommendations from the pulsating mixer pump demonstration at PNNL with the requirements identified by staff at ORNL involved with the remediation of the Gunite and Associated Tanks. The PMP is comprised of a pump chamber, check valve, a working gas supply pipe, a discharge manifold, and four jet nozzles. The pump uses two distinct cycles, fill and discharge, to perform its mixing action. During the fill cycle, vacuum is applied to the pump chamber by an eductor, which draws liquid into the pump. When the liquid level inside the chamber reaches a certain level, the chamber is pressurized with compressed air to discharge the liquid through the jet nozzles and back into the tank to mobilize sludge and settled solids.

  11. Response of cricket and spider motion-sensing hairs to airflow pulsations

    PubMed Central

    Kant, R.; Humphrey, J. A. C.

    2009-01-01

    Closed-form analytical solutions are presented for the angular displacement, velocity and acceleration of motion-sensing filiform hairs exposed to airflow pulsations of short time duration. The specific situations of interest correspond to a spider intentionally moving towards a cricket, or an insect unintentionally moving towards or flying past a spider. The trichobothria of the spider Cupiennius salei and the cercal hairs of the cricket Gryllus bimaculatus are explored. Guided by earlier work, the spatial characteristics of the velocity field due to a flow pulsation are approximated by the local incompressible flow field due to a moving sphere. This spatial field is everywhere modulated in time by a Gaussian function represented by the summation of an infinite Fourier series, thus allowing an exploration of the spectral dependence of hair motion. Owing to their smaller total inertia, torsional restoring constant and total damping constant, short hairs are found to be significantly more responsive than long hairs to a flow pulsation. It is also found that the spider trichobothria are underdamped, while the cercal hairs of the cricket are overdamped. As a consequence, the spider hairs are more responsive to sudden air motions. Analysis shows that while two spiders of different characteristic sizes and lunge velocities can generate pulsations with comparable energy content, the associated velocity fields display different patterns of spatial decay with distance from the pulsation source. As a consequence, a small spider lunging at a high velocity generates a smaller telltale far-field velocity signal than a larger spider lunging at a lower velocity. The results obtained are in broad agreement with several of the observations and conclusions derived from combined flow and behavioural experiments performed by Casas et al. for running spiders, and by Dangles et al. for spiders and a physical model of spiders lunging at crickets. PMID:19324674

  12. Propagation of electric fields during Pi2 pulsations based on multi­ple magnetospheric satellites and ionospheric radars

    NASA Astrophysics Data System (ADS)

    Takahashi, N.; Kasaba, Y.; Nishimura, Y.; Teramoto, M.; Hori, T.; Kikuchi, T.; Miyoshi, Y.; Nishitani, N.

    2015-12-01

    Pi2 pulsations are irregular oscillations having 40-150 s periods, and their source lies in the nightside magnetosphere. Electromagnetic disturbances associated with Pi2 pulsations propagate through the magnetosphere by magnetohydrodynamic waves. The compressional fast mode waves are launched by localized plasma sheet fast flows and propagate into the inner magnetosphere. On the other hand, the velocity shears at the edge of these flows excite shear Alfven waves, which transport magnetic shear and carry field-aligned currents along field lines. These propagation processes have been proposed based on several previous studies using magnetic field observations and numerical simulations. However, there have been few results by electric field observations although the electric field is an important quantity for detecting Pi2 pulsations than magnetic field. In addition, Pi2 pulsations are known to be associated with substorms. Nishimura et al. [2012] shows evolution of auroral streamers at the substorm onset time followed by Pi2 pulsations after a few minutes, using ground-based observations. It suggests that Pi2 pulsations are driven by multiple plasma sheet flow bursts to earthward, and reflects the nature of the current wedge and plasma sheet flow bursts. However, it is unknown whether Pi2 pulsations in the magnetosphere are caused by the oscillating current wedge or induced by a cavity mode. Therefore, simultaneous spacecraft and ground-based observations need to investigate this issue. In this study, we investigate the evolution and propagation of the electric field during Pi2 pulsations using THEMIS, Van Allen Probes, GOES 13 and 15, SuperDARN and HF Doppler radars. Pi2 events are identified by the low-latitude geomagnetic field detected at Kakioka and AL index. We will investigate several events that satellites and radars have the same local time, and evaluate the possible propagation process of the electromagnetic energy associated with Pi2 pulsations.

  13. On the 630 nm red-line pulsating aurora: Red-line Emission Geospace Observatory observations and model simulations

    NASA Astrophysics Data System (ADS)

    Liang, Jun; Donovan, E.; Jackel, B.; Spanswick, E.; Gillies, M.

    2016-08-01

    In this study, we present observations of red-line (630 nm) pulsating auroras using the camera system of Red-line Emission Geospace Observatory (REGO), during a geomagnetic storm interval. We also develop a time-dependent model to simulate the 630 nm auroral pulsations in response to modulated precipitation inputs and compare the model outputs with REGO observations. Key results are as follows. (1) Notwithstanding the long radiative timescale of the 630 nm emission, red-line auroras can still be modulated by pulsating electron precipitations and feature noticeable oscillations, which constitute the red-line pulsating auroral phenomena. (2) In a majority of cases, the oscillation magnitude of red-line pulsating auroras is substantially smaller than that of the concurrent pulsating auroras seen on Thermal Emission Imaging System whitelight images (generally dominated by 557.7 nm green-line emissions). Under certain circumstances, e.g., when the characteristic energy of the precipitation is very high, some of the pulsating auroras may not show discernible imprints on red line. (3) The altitude range contributing most to the red-line pulsating aurora is systematically lower than that of the steady-state red-line aurora, since the slower O(1D) loss rate at higher altitudes tends to suppress the oscillation range of the 630 nm emission rate. (4) We find that some pulsating auroral patches are characterized by enhanced red-to-green color ratio during their on time, hinting that the percentage increase of the red-line auroral component exceeds that of the green-line auroral component for those patches. We suggest that those special patches might possibly be associated with lower energy (<1 keV) electron precipitations.

  14. Delta deposition influenced by diapiric uplifts

    SciTech Connect

    Kindinger, J.L.

    1988-01-01

    The continental shelf in the northern Gulf of Mexico is overlain by many superimposed deltas. One late Wisconsinan delta, here informally named the lagniappe, is located east of the Mississippi River bird-foot delta and extends from mid-shelf to the continental slope. The lagniappe delta is adjacent to, but not genetically associated with, the Mississippi River delta complex. The lagniappe delta is a shelf-margin delta formed in part by stream erosion of the exposed inner and outer shelf during the late Wisconsinan lowstand. On the basis of its overall pattern and direction of accretion, the delta's fluvial source was most probably the ancient Pearl or Mobile River farther east. The progradational deposits, as seen in the high-resolution seismic reflection profile, are characterized by foreset and bottomset bedding. Areal distribution and sediment thickness were partially controlled by two diapirs active before and during deltaic sedimentation. The diapirs were a barrier to seaward progradation. As the delta prograded seaward, sediment ponded in an area between and shoreward of both uplifted diapirs. The basic geometry of the lagniappe delta was effectively changed during deposition by the presence of these diapirs.

  15. Future Deltas Utrecht University research focus area: towards sustainable management of sinking deltas

    NASA Astrophysics Data System (ADS)

    Stouthamer, E.; van Asselen, S.

    2015-11-01

    Deltas are increasingly under pressure from human impact and climate change. To deal with these pressures that threat future delta functioning, we need to understand interactions between physical, biological, chemical and social processes in deltas. This requires an integrated approach, in which knowledge on natural system functioning is combined with knowledge on spatial planning, land and water governance and legislative frameworks. In the research focus area Future Deltas of Utrecht University an interdisciplinary team from different research groups therefore works together. This allows developing integrated sustainable and resilient delta management strategies, which is urgently needed to prevent loss of vital delta services.

  16. The 2006-2007 Observing Campaign On VX Hydrae

    NASA Astrophysics Data System (ADS)

    Templeton, Matthew R.; Samolyk, G.; Dvorak, S.; Poklar, R.; Butterworth, N.; Gerner, H. S.

    2009-12-01

    We present the results of the 2006-2007 observing campaign on the double-mode delta Scuti star VX Hydrae. Nearly 8800 V-band CCD observations were obtained during the two observing seasons. Although the data were taken with small telescopes (0.3-m or less, using consumer-grade CCD cameras), the data quality is very high, enabling the detection of variability at the millimagnitude level at some frequencies. Analysis of the data yields only two primary pulsation frequencies: f(0) = 4.4765 c/d, and f(1) = 5.7899 c/d. The two modes have comparable amplitude, although the amplitude of f(1) appears to have increased slightly from 2006 to 2007 by 0.01 mag. Only two pulsation modes are detected, but at least 18 additional linear combination frequencies are also clearly detected, some having amplitudes as low as 1 mmag, resulting in an incredibly rich Fourier spectrum. We discuss the evidence for amplitude variation in VX Hydrae, along with prospects for future study of this and other similar delta Scuti stars by AAVSO observers.

  17. COMMD1 regulates the delta epithelial sodium channel ({delta}ENaC) through trafficking and ubiquitination

    SciTech Connect

    Chang, Tina; Ke, Ying; Ly, Kevin; McDonald, Fiona J.

    2011-08-05

    Highlights: {yields} The COMM domain of COMMD1 mediates binding to {delta}ENaC. {yields} COMMD1 reduces the cell surface population of {delta}ENaC. {yields} COMMD1 increases the population of {delta}ENaC-ubiquitin. {yields} Both endogenous and transfected {delta}ENaC localize with COMMD1 and transferrin suggesting they are located in early/recycling endosomes. -- Abstract: The delta subunit of the epithelial sodium channel ({delta}ENaC) is a member of the ENaC/degenerin family of ion channels. {delta}ENaC is distinct from the related {alpha}-, {beta}- and {gamma}ENaC subunits, known for their role in sodium homeostasis and blood pressure control, as {delta}ENaC is expressed in brain neurons and activated by external protons. COMMD1 (copper metabolism Murr1 domain 1) was previously found to associate with and downregulate {delta}ENaC activity. Here, we show that COMMD1 interacts with {delta}ENaC through its COMM domain. Co-expression of {delta}ENaC with COMMD1 significantly reduced {delta}ENaC surface expression, and led to an increase in {delta}ENaC ubiquitination. Immunocytochemical and confocal microscopy studies show that COMMD1 promoted localization of {delta}ENaC to the early/recycling endosomal pool where the two proteins were localized together. These results suggest that COMMD1 downregulates {delta}ENaC activity by reducing {delta}ENaC surface expression through promoting internalization of surface {delta}ENaC to an intracellular recycling pool, possibly via enhanced ubiquitination.

  18. Mission Stream Analysis - Delta Analytic Model. Revision

    DTIC Science & Technology

    2014-09-01

    demonstrating mission effectiveness. The second tool is the  ( Delta ) Analytic Model, which provides an approach for identifying disparate...requirements into a system’s technical performance and operator workload requirements; and help minimize the “ delta ” between domains across the system’s...mission and system capability requirements into a system’s technical performance and operator workload requirements; and help minimize the “ delta

  19. Delta Clipper vehicle design for supportability

    NASA Astrophysics Data System (ADS)

    Smiljanic, Ray R.; Klevatt, Paul L.; Steinmeyer, Donald A.

    1993-02-01

    The paper describes the Single Stage Rocket Technology (SSRT) Delta Clipper vehicle design. As a means of reducing vehicle processing and turnaround times, the SSRT Delta Clipper design, contrary to past practices, incorporates support ability engineering features into its initial set of design requirements. The engineering process used to 'design-in' supportability into the Delta Clipper vehicle is described in detail and is illustrated using diagrams.

  20. Delta Clipper - Design for supportability

    NASA Astrophysics Data System (ADS)

    Smiljanic, Ray R.; Conrad, Charles; Spaulding, Ed; Gisburne, Don

    1993-07-01

    The 'Delta Clipper' Single Stage Rocket Technology (SSRT) currently under development in the DC-X program will implement reliability-centered maintenance and support, involving on-equipment/off-equipment two-level maintenance, a logistics and spares pipeline, and a minimization of 'blue suit' skill-level personnel. Attention is given to the range of SSRT features that are to be validated via the DC-X test program; these prominently involve LRUs replaceability and accessibility, standardization and interchangeability, and 'aircraft-like' automated data collection.