Intersubband linear and nonlinear optical response of the delta-doped SiGe quantum well
NASA Astrophysics Data System (ADS)
Duque, C. A.; Akimov, V.; Demediuk, R.; Belykh, V.; Tiutiunnyk, A.; Morales, A. L.; Restrepo, R. L.; Mora-Ramos, M. E.; Fomina, O.; Tulupenko, V.
2015-11-01
The degree of ionization, controlled by external fields, of delta-doped layers inside the quantum wells can affect their energy structure, therefore delta-doped QWs can be used to engineer different kinds of tunable THz optical devices on intersubband transitions. Here it is calculated and analyzed the linear and nonlinear (Kerr-type) optical response, including absorption coefficient and refractive index change of 20 nm-wide Si0.8Ge0.2/Si/Si0.8Ge0.2 QW structures n-delta-doped either at the center or at the edge of the well under different temperatures. The conduction subband energy structure was found self-consistently, including the calculation of the impurity binding energy. Our results show that the degree of ionization of the impurity layer as well as the heterostructure symmetry has a strong influence on optical properties of the structures in THz region.
NASA Astrophysics Data System (ADS)
Dong, T. Y.; Nittrouer, J.; McElroy, B. J.; Czapiga, M. J.; Il'icheva, E.; Pavolv, M.; Parker, G.
2014-12-01
The Selenga River delta, Lake Baikal, Russia, is approximately 700 km2 in size and contains three active lobes that receive varying amounts of water and sediment discharge. This delta represents a unique end-member in so far that the system is positioned along the deep-water (~1500 m) margin of Lake Baikal and therefore exists as a shelf-edge delta. In order to evaluate the morphological dynamics of the Selenga delta, field expeditions were undertaken during July 2013 and 2014, to investigate the morphologic, sedimentologic, and hydraulic nature of this delta system. Single-beam bathymetry data, sidescan sonar data, sediment samples, and aerial survey data were collected and analyzed to constrain: 1) channel geometries within the delta, 2) bedform sizes and spatial distributions, 3) grain size composition of channel bed sediment as well as bank sediment, collected from both major and minor distributary channels, and 4) elevation range of the subaerial portion of the delta. Our data indicate that the delta possesses downstream sediment fining, ranging from predominantly gravel and sand near the delta apex to silt and sand at the delta-lake interface. Field surveys also indicate that the Selenga delta has both eroding and aggrading banks, and that the delta is actively incising into some banks that consist of terraces, which are defined as regions that are not inundated by typical 2- to 4-year flood discharge events. Therefore the terraces are distinct from the actively accreting regions of the delta that receive sedimentation via water inundation during regular river floods. We spatially constrain the regions of the Selenga delta that are inundated during floods versus terraced using a 1-D water-surface hydrodynamic model that produces estimates of stage for flood water discharges, whereby local water surface elevations produced with the model are compared to the measured terrestrial elevations. Our analyses show that terrace elevations steadily decrease downstream for all lobes, and that the delta is undergoing an active phase of erosion, characterized by channel incision and extensive lateral erosion of terraces; this process of delta 'self-cannibalization' contributes to the downstream sediment flux and morphological evolution of the delta.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Yufeng; Vinson, John; Pemmaraju, Sri
Constrained-occupancy delta-self-consistent-field (ΔSCF) methods and many-body perturbation theories (MBPT) are two strategies for obtaining electronic excitations from first principles. Using the two distinct approaches, we study the O 1s core excitations that have become increasingly important for characterizing transition-metal oxides and understanding strong electronic correlation. The ΔSCF approach, in its current single-particle form, systematically underestimates the pre-edge intensity for chosen oxides, despite its success in weakly correlated systems. By contrast, the Bethe-Salpeter equation within MBPT predicts much better line shapes. This motivates one to reexamine the many-electron dynamics of x-ray excitations. We find that the single-particle ΔSCF approach can bemore » rectified by explicitly calculating many-electron transition amplitudes, producing x-ray spectra in excellent agreement with experiments. This study paves the way to accurately predict x-ray near-edge spectral fingerprints for physics and materials science beyond the Bethe-Salpether equation.« less
Liang, Yufeng; Vinson, John; Pemmaraju, Sri; ...
2017-03-03
Constrained-occupancy delta-self-consistent-field (ΔSCF) methods and many-body perturbation theories (MBPT) are two strategies for obtaining electronic excitations from first principles. Using the two distinct approaches, we study the O 1s core excitations that have become increasingly important for characterizing transition-metal oxides and understanding strong electronic correlation. The ΔSCF approach, in its current single-particle form, systematically underestimates the pre-edge intensity for chosen oxides, despite its success in weakly correlated systems. By contrast, the Bethe-Salpeter equation within MBPT predicts much better line shapes. This motivates one to reexamine the many-electron dynamics of x-ray excitations. We find that the single-particle ΔSCF approach can bemore » rectified by explicitly calculating many-electron transition amplitudes, producing x-ray spectra in excellent agreement with experiments. This study paves the way to accurately predict x-ray near-edge spectral fingerprints for physics and materials science beyond the Bethe-Salpether equation.« less
Liang, Yufeng; Vinson, John; Pemmaraju, Sri; Drisdell, Walter S; Shirley, Eric L; Prendergast, David
2017-03-03
Constrained-occupancy delta-self-consistent-field (ΔSCF) methods and many-body perturbation theories (MBPT) are two strategies for obtaining electronic excitations from first principles. Using the two distinct approaches, we study the O 1s core excitations that have become increasingly important for characterizing transition-metal oxides and understanding strong electronic correlation. The ΔSCF approach, in its current single-particle form, systematically underestimates the pre-edge intensity for chosen oxides, despite its success in weakly correlated systems. By contrast, the Bethe-Salpeter equation within MBPT predicts much better line shapes. This motivates one to reexamine the many-electron dynamics of x-ray excitations. We find that the single-particle ΔSCF approach can be rectified by explicitly calculating many-electron transition amplitudes, producing x-ray spectra in excellent agreement with experiments. This study paves the way to accurately predict x-ray near-edge spectral fingerprints for physics and materials science beyond the Bethe-Salpether equation.
Hyperfine field and magnetic structure in the B phase of CeCoIn5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graf, Matthias J; Curro, Nicholas J; Young, Ben - Li
2009-01-01
We re-analyze Nuclear Magnetic Resonance (NMR) spectra observed at low temperatures and high magnetic fields in the field-induced B-phase of CeCoIn{sub 5}. The NMR spectra are consistent with incommensurate antiferromagnetic order of the Ce magnetic moments. However, we find that the spectra of the In(2) sites depend critically on the direction of the ordered moments, the ordering wavevector and the symmetry of the hyperfine coupling to the Ce spins. Assuming isotropic hyperfine coupling, the NMR spectra observed for H {parallel} [100] are consistent with magnetic order with wavevector Q = {pi}(1+{delta}/a, 1/a, 1/c) and Ce moments ordered antiferromagnetically along themore » [100] direction in real space. If the hyperfine coupling has dipolar symmetry, then the NMR spectra require Ce moments along the [001] direction. The dipolar scenario is also consistent with recent neutron scattering measurements that find an ordered moment of 0.15{micro}{sub B} along [001] and Q{sub n} = {pi}(1+{delta}/a, 1+{delta}c, 1/c) with incommensuration {delta} = 0.12 for field H {parallel} [1{bar 1}0]. Using these parameters, we find that the hyperfine field is consistent with both experiments. We speculate that the B phase of CeCoIn{sub 5} represents an intrinsic phase of modulated superconductivity and antiferromagnetism that can only emerge in a highly clean system.« less
Optimality and self-organization in river deltas
NASA Astrophysics Data System (ADS)
Tejedor, A.; Longjas, A.; Edmonds, D. A.; Zaliapin, I. V.; Georgiou, T. T.; Rinaldo, A.; Foufoula-Georgiou, E.
2017-12-01
Deltas are nourished by channel networks, whose connectivity constrains, if not drives, the evolution, functionality and resilience of these systems. Understanding the coevolution of deltaic channels and their flux organization is crucial for guiding maintenance strategies of these highly stressed systems from a range of anthropogenic activities. However, in contrast to tributary channel networks, to date, no theory has been proposed to explain how deltas self-organize to distribute water and sediment to the delta top and the shoreline. Here, we hypothesize the existence of an optimality principle underlying the self-organized partition of fluxes in delta channel networks. Specifically, we hypothesize that deltas distribute water and sediment fluxes on a given delta topology such as to maximize the diversity of flux delivery to the shoreline. By introducing the concept of nonlocal Entropy Rate (nER) and analyzing ten field deltas in diverse environments, we present evidence that supports our hypothesis, suggesting that delta networks achieve dynamically accessible maxima of their nER. Furthermore, by analyzing six simulated deltas using the Delf3D model and following their topologic and flux re-organization before and after major avulsions, we further study the evolution of nER and confirm our hypothesis. We discuss how optimal flux distributions in terms of nER, when interpreted in terms of resilience, are configurations that reflect an increased ability to withstand perturbations.
Solar Dynamo Driven by Periodic Flow Oscillation
NASA Technical Reports Server (NTRS)
Mayr, Hans G.; Hartle, Richard E.; Einaudi, Franco (Technical Monitor)
2001-01-01
We have proposed that the periodicity of the solar magnetic cycle is determined by wave mean flow interactions analogous to those driving the Quasi Biennial Oscillation in the Earth's atmosphere. Upward propagating gravity waves would produce oscillating flows near the top of the radiation zone that in turn would drive a kinematic dynamo to generate the 22-year solar magnetic cycle. The dynamo we propose is built on a given time independent magnetic field B, which allows us to estimate the time dependent, oscillating components of the magnetic field, (Delta)B. The toroidal magnetic field (Delta)B(sub phi) is directly driven by zonal flow and is relatively large in the source region, (Delta)(sub phi)/B(sub Theta) much greater than 1. Consistent with observations, this field peaks at low latitudes and has opposite polarities in both hemispheres. The oscillating poloidal magnetic field component, (Delta)B(sub Theta), is driven by the meridional circulation, which is difficult to assess without a numerical model that properly accounts for the solar atmosphere dynamics. Scale-analysis suggests that (Delta)B(sub Theta) is small compared to B(sub Theta) in the dynamo region. Relative to B(sub Theta), however, the oscillating magnetic field perturbations are expected to be transported more rapidly upwards in the convection zone to the solar surface. As a result, (Delta)B(sub Theta) (and (Delta)B(sub phi)) should grow relative to B(sub Theta), so that the magnetic fields reverse at the surface as observed. Since the meridional and zonai flow oscillations are out of phase, the poloidal magnetic field peaks during times when the toroidal field reverses direction, which is observed. With the proposed wave driven flow oscillation, the magnitude of the oscillating poloidal magnetic field increases with the mean rotation rate of the fluid. This is consistent with the Bode-Blackett empirical scaling law, which reveals that in massive astrophysical bodies the magnetic moment tends to increase with the angular momentum of the fluid.
Shchurova, L Yu; Kulbachinskii, V A
2011-03-01
We investigate energy levels, thermodynamic, transport and magnetotransport properties of holes in GaAs structure with quantum well InGaAs delta-doped by C and Mn. We present self-consistent calculations for energy levels in the quantum well for different degrees of ionization of Mn impurity. The magnetoresistance of holes in the quantum well is calculated. We explain observed negative magnetoresistance by the reduction of spin-flip scattering on magnetic ions due to aligning of spins with magnetic field.
Entropy and optimality in river deltas
NASA Astrophysics Data System (ADS)
Tejedor, Alejandro; Longjas, Anthony; Edmonds, Douglas A.; Zaliapin, Ilya; Georgiou, Tryphon T.; Rinaldo, Andrea; Foufoula-Georgiou, Efi
2017-10-01
The form and function of river deltas is intricately linked to the evolving structure of their channel networks, which controls how effectively deltas are nourished with sediments and nutrients. Understanding the coevolution of deltaic channels and their flux organization is crucial for guiding maintenance strategies of these highly stressed systems from a range of anthropogenic activities. To date, however, a unified theory explaining how deltas self-organize to distribute water and sediment up to the shoreline remains elusive. Here, we provide evidence for an optimality principle underlying the self-organized partition of fluxes in delta channel networks. By introducing a suitable nonlocal entropy rate (nER) and by analyzing field and simulated deltas, we suggest that delta networks achieve configurations that maximize the diversity of water and sediment flux delivery to the shoreline. We thus suggest that prograding deltas attain dynamically accessible optima of flux distributions on their channel network topologies, thus effectively decoupling evolutionary time scales of geomorphology and hydrology. When interpreted in terms of delta resilience, high nER configurations reflect an increased ability to withstand perturbations. However, the distributive mechanism responsible for both diversifying flux delivery to the shoreline and dampening possible perturbations might lead to catastrophic events when those perturbations exceed certain intensity thresholds.
Nonlinear Delta-f Simulations of Collective Effects in Intense Charged Particle Beams
NASA Astrophysics Data System (ADS)
Qin, Hong
2002-11-01
A nonlinear delta-f particle simulation method based on the Vlasov-Maxwell equations has been recently developed to study collective processes in high-intensity beams, where space-charge and magnetic self-field effects play a critical role in determining the nonlinear beam dynamics. Implemented in the Beam Equilibrium, Stability and Transport (BEST) code, the nonlinear delta-f method provides a low-noise and self-consistent tool for simulating collective interactions and nonlinear dynamics of high-intensity beams in modern and next- generation accelerators and storage rings, such as the Spallation Neutron Source, and heavy ion fusion drivers. Simulation results for the electron-proton two-stream instability in the Proton Storage Ring (PSR) experiment at Los Alamos National Laboratory agree well with experimental observations. Large-scale parallel simulations have also been carried out for the ion-electron two-stream instability in the very high-intensity heavy ion beams envisioned for heavy ion fusion applications. In both cases, the simulation results indicate that the dominant two-stream instability has a dipole-mode (hose-like) structure and can be stabilized by a modest axial momentum spread of the beam particles of less than 0.25collective processes in high-intensity beams, such as anisotropy-driven instabilities, collective eigenmode excitations for perturbations about stable beam equilibria, and the Darwin model for fully electromagnetic perturbations will also be discussed.
NASA Technical Reports Server (NTRS)
Langel, R. A.
1974-01-01
A complete survey of the near-earth magnetic field magnitude was carried out by the Polar Orbiting Geophysical Observatories (Ogo 2, 4, and 6). The average properties of variations in total magnetic field strength at invariant latitudes greater than 55 deg are given. Data from all degrees of magnetic disturbance are included, the emphasis being on periods when Kp = 2- to 3+. Although individual satellite passes at low altitudes confirm the existence of electrojet currents, neither individual satellite passes nor contours of average delta B are consistent with latitudinally narrow electrojet currents as the principal source of delta B at the satellite. The total field variations at the satellite form a region of positive delta B between about 2200 and 1000 MLT and a region of negative delta B between about 1000 and 2200 MLT. The ratio of delta B magnitudes in these positive and negative regions is variable.
Kim, Eunae; Jang, Soonmin; Pak, Youngshang
2007-10-14
We have attempted to improve the PARAM99 force field in conjunction with the generalized Born (GB) solvation model with a surface area correction for more consistent protein folding simulations. For this purpose, using an extended alphabeta training set of five well-studied molecules with various folds (alpha, beta, and betabetaalpha), a previously modified version of PARAM99/GBSA is further refined, such that all native states of the five training species correspond to their lowest free energy minimum states. The resulting modified force field (PARAM99MOD5/GBSA) clearly produces reasonably acceptable conformational free energy surfaces of the training set with correct identifications of their native states in the free energy minimum states. Moreover, due to its well-balanced nature, this new force field is expected to describe secondary structure propensities of diverse folds in a more consistent manner. Remarkably, temperature dependent behaviors simulated with the current force field are in good agreement with the experiment. This agreement is a significant improvement over the existing standard all-atom force fields. In addition, fundamentally important thermodynamic quantities, such as folding enthalpy (DeltaH) and entropy (DeltaS), agree reasonably well with the experimental data.
Self-consistent field theory of polymer-ionic molecule complexation.
Nakamura, Issei; Shi, An-Chang
2010-05-21
A self-consistent field theory is developed for polymers that are capable of binding small ionic molecules (adsorbates). The polymer-ionic molecule association is described by Ising-like binding variables, C(i) ((a))(kDelta)(=0 or 1), whose average determines the number of adsorbed molecules, n(BI). Polymer gelation can occur through polymer-ionic molecule complexation in our model. For polymer-polymer cross-links through the ionic molecules, three types of solutions for n(BI) are obtained, depending on the equilibrium constant of single-ion binding. Spinodal lines calculated from the mean-field free energy exhibit closed-loop regions where the homogeneous phase becomes unstable. This phase instability is driven by the excluded-volume interaction due to the single occupancy of ion-binding sites on the polymers. Moreover, sol-gel transitions are examined using a critical degree of conversion. A gel phase is induced when the concentration of adsorbates is increased. At a higher concentration of the adsorbates, however, a re-entrance from a gel phase into a sol phase arises from the correlation between unoccupied and occupied ion-binding sites. The theory is applied to a model system, poly(vinyl alcohol) and borate ion in aqueous solution with sodium chloride. Good agreement between theory and experiment is obtained.
Analysis of lightning field changes produced by Florida thunderstorms
NASA Technical Reports Server (NTRS)
Koshak, William John
1991-01-01
A new method is introduced for inferring the charges deposited in a lightning flash. Lightning-caused field changes (delta E's) are described by a more general volume charge distribution than is defined on a large cartesian grid system centered above the measuring networks. It is shown that a linear system of equations can be used to relate delta E's at the ground to the values of charge on this grid. It is possible to apply more general physical constraints to the charge solutions, and it is possible to access the information content of the delta E data. Computer-simulated delta E inversions show that the location and symmetry of the charge retrievals are usually consistent with the known test sources.
Is there a self-organization principle of river deltas?
NASA Astrophysics Data System (ADS)
Tejedor, Alejandro; Longjas, Anthony; Foufoula-Georgiou, Efi
2017-04-01
River deltas are known to possess a complex topological and flux-partitioning structure which has recently been quantified using spectral graph theory [Tejedor et al., 2015a,b]. By analysis of real and simulated deltas it has also been shown that there is promise in formalizing relationships between this topo-dynamic delta structure and the underlying delta forming processes [e.g., Tejedor et al., 2016]. The question we pose here is whether there exists a first order organizational principle behind the self-organization of river deltas and whether this principle can be unraveled from the co-evolving topo-dynamic structure encoded in the delta planform. To answer this question, we introduce a new metric, the nonlocal Entropy Rate (nER) that captures the information content of a delta network in terms of the degree of uncertainty in delivering fluxes from any point of the network to the shoreline. We hypothesize that if the "guiding principle" of undisturbed deltas is to efficiently and robustly build land by increasing the diversity of their flux pathways over the delta plane, then they would exhibit maximum nonlocal Entropy Rate at states at which geometry and flux dynamics are at equilibrium. At the same time, their nER would be non-optimal at transient states, such as before and after major avulsions during which topology and dynamics adjust to each other to reach a new equilibrium state. We will present our results for field and simulated deltas, which confirm this hypothesis and open up new ways of thinking about self-organization, complexity and robustness in river deltas. One particular connection of interest might have important implications since entropy rate and resilience are related by the fluctuation theorem [Demetrius and Manke, 2005], and therefore our results suggest that deltas might in fact self-organize to maximize their resilience to structural and dynamic perturbations. References: Tejedor, A., A. Longjas, I. Zaliapin, and E. Foufoula-Georgiou (2015), Water Resour. Res., 51, 3998-4018. Tejedor, A., A. Longjas, I. Zaliapin, and E. Foufoula-Georgiou (2015), Water Resour. Res., 51, 4019-4045. Tejedor, A., A. Longjas, R. Caldwell, D. A. Edmonds, I. Zaliapin, and E. Foufoula-Georgiou (2016), Geophys. Res. Lett., 43, 3280-3287. Demetrius, L., and T. Manke (2005), Phys. A Stat. Mech. Appl., 346, 682-696.
Mixed Carrier Conduction in Modulation-doped Field Effect Transistors
NASA Technical Reports Server (NTRS)
Schacham, S. E.; Haugland, E. J.; Mena, R. A.; Alterovitz, S. A.
1995-01-01
The contribution of more than one carrier to the conductivity in modulation-doped field effect transistors (MODFET) affects the resultant mobility and complicates the characterization of these devices. Mixed conduction arises from the population of several subbands in the two-dimensional electron gas (2DEG), as well as the presence of a parallel path outside the 2DEG. We characterized GaAs/AlGaAs MODFET structures with both delta and continuous doping in the barrier. Based on simultaneous Hall and conductivity analysis we conclude that the parallel conduction is taking place in the AlGaAs barrier, as indicated by the carrier freezeout and activation energy. Thus, simple Hall analysis of these structures may lead to erroneous conclusions, particularly for real-life device structures. The distribution of the 2D electrons between the various confined subbands depends on the doping profile. While for a continuously doped barrier the Shubnikov-de Haas analysis shows superposition of two frequencies for concentrations below 10(exp 12) cm(exp -2), for a delta doped structure the superposition is absent even at 50% larger concentrations. This result is confirmed by self-consistent analysis, which indicates that the concentration of the second subband hardly increases.
NASA Technical Reports Server (NTRS)
Ayres, Thomas R.; Wiedemann, Gunter R.
1989-01-01
A more extensive and detailed non-LTE simulation of the Delta v = 1 bands of CO than attempted previously is reported. The equations of statistical equilibrium are formulated for a model molecule containing 10 bound vibrational levels, each split into 121 rotational substates and connected by more than 1000 radiative transitions. Solutions are obtained for self-consistent populations and radiation fields by iterative application of the 'Lambda-operator' to an initial LTE distribution. The formalism is used to illustrate models of the sun and Arcturus. For the sun, negligible departures from LTE are found in either a theoretical radiative-equilibrium photosphere with outwardly falling temperatures in its highest layers or in a semiempirical hot chromosphere that reproduces the spatially averaged emission cores of Ca II H and K. The simulations demonstrate that the puzzling 'cool cores' of the CO Delta V = 1 bands observed in limb spectra of the sun and in flux spectra of Arcturus cannot be explained simply by non-LTE scattering effects.
NASA Astrophysics Data System (ADS)
Liu, Jin-Song; Hao, Zhong-Hua
2003-10-01
The self-deflection of a bright solitary beam can be controlled by a dark solitary beam via a parametric coupling effect between the bright and dark solitary beams in a separate bright-dark spatial soliton pair supported by an unbiased series photorefractive crystal circuit. The spatial shift of the bright solitary beam centre as a function of the input intensity of the dark solitary beam (hat rho) is investigated by taking into account the higher-order space charge field in the dynamics of the bright solitary beam via both numerical and perturbation methods under steady-state conditions. The deflection amount (Deltas0), defined as the value of the spatial shift at the output surface of the crystal, is a monotonic and nonlinear function of hat rho. When hat rho is weak or strong enough, Deltas0 is, in fact, unchanged with hat rho, whereas Deltas0 increases or decreases monotonically with hat rho in a middle range of hat rho. The corresponding variation range (deltas) depends strongly on the value of the input intensity of the bright solitary beam (r). There are some peak and valley values in the curve of deltas versus r under some conditions. When hat rho increases, the bright solitary beam can scan toward both the direction same as and opposite to the crystal's c-axis. Whether the direction is the same as or opposite to the c-axis depends on the parameter values and configuration of the crystal circuit, as well as the value of r. Some potential applications are discussed.
The quantum-field renormalization group in the problem of a growing phase boundary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antonov, N.V.; Vasil`ev, A.N.
1995-09-01
Within the quantum-field renormalization-group approach we examine the stochastic equation discussed by S.I. Pavlik in describing a randomly growing phase boundary. We show that, in contrast to Pavlik`s assertion, the model is not multiplicatively renormalizable and that its consistent renormalization-group analysis requires introducing an infinite number of counterterms and the respective coupling constants ({open_quotes}charge{close_quotes}). An explicit calculation in the one-loop approximation shows that a two-dimensional surface of renormalization-group points exits in the infinite-dimensional charge space. If the surface contains an infrared stability region, the problem allows for scaling with the nonuniversal critical dimensionalities of the height of the phase boundarymore » and time, {delta}{sub h} and {delta}{sub t}, which satisfy the exact relationship 2 {delta}{sub h}= {delta}{sub t} + d, where d is the dimensionality of the phase boundary. 23 refs., 1 tab.« less
NASA Astrophysics Data System (ADS)
Craymer, M.; Forbes, D.; Henton, J.; Lapelle, E.; Piraszewski, M.; Solomon, S.
2005-12-01
With observed climate warming in the western Canadian Arctic and potential increases in regional sea level, we anticipate expansion of the coastal region subject to rising relative sea level and increased flooding risk. This is a concern for coastal communities such as Tuktoyaktuk and Sachs Harbour and for the design and safety of hydrocarbon production facilities on the Mackenzie Delta. To provide a framework in which to monitor these changes, a consistent velocity field has been determined from GPS observations throughout North America, including the Canadian Arctic Archipelago and the Mackenzie Delta region. An expanded network of continuous GPS sites and multi-epoch (episodic) sites has enabled an increased density that enhances the application to geophysical studies including the discrimination of crustal motion, other components of coastal subsidence, and sea-level rise. To obtain a dense velocity field consistent at all scales, we have combined weekly solutions of continuous GPS sites from different agencies in Canada and the USA, together with the global reference frame under the North American Reference Frame initiative. Although there is already a high density of continuous GPS sites in the conterminous United States, there are many fewer such sites in Canada. To make up for this lack of density, we have incorporated high-accuracy episodic GPS observations on stable monuments distributed throughout Canada. By combining up to ten years of repeated, episodic GPS observations at such sites, together with weekly solutions from the continuous sites, we have obtained a highly consistent velocity field with a significantly increased spatial sampling of crustal deformation throughout Canada. This exhibits a spatially coherent pattern of uplift and subsidence in Canada that is consistent with the expected rates of glacial isostatic adjustment. To determine the contribution of vertical motion to sea-level rise under climate warming in the Canadian Arctic, we have established co-located tide gauges and continuous GPS at a number of sites across the Canadian Arctic, including Tuktoyaktuk on the eastern side of the Mackenzie Delta. We are also investigating additional sources of subsidence in the delta, including sediment loading, compaction of unfrozen and discontinuously ice-bonded sediments, and anticipated subsidence resulting from future natural gas production. Further densification of the velocity field, including the addition of new sites in the delta, and regular reoccupation of episodic sites will assist in determining local rates of motion. Strategies for discriminating the various components of subsidence in this large delta include episodic GPS on monuments and borehole casing penetrating to various depths and supporting InSAR analysis and geological data. Coastal flooding hazards will be evaluated using digital elevation models derived from real-time kinematic GPS, airborne LiDAR surveys, and synthetic aperture radar flood mapping.
NASA Astrophysics Data System (ADS)
Shao, Zhiqiang
2018-04-01
The relativistic full Euler system with generalized Chaplygin proper energy density-pressure relation is studied. The Riemann problem is solved constructively. The delta shock wave arises in the Riemann solutions, provided that the initial data satisfy some certain conditions, although the system is strictly hyperbolic and the first and third characteristic fields are genuinely nonlinear, while the second one is linearly degenerate. There are five kinds of Riemann solutions, in which four only consist of a shock wave and a centered rarefaction wave or two shock waves or two centered rarefaction waves, and a contact discontinuity between the constant states (precisely speaking, the solutions consist in general of three waves), and the other involves delta shocks on which both the rest mass density and the proper energy density simultaneously contain the Dirac delta function. It is quite different from the previous ones on which only one state variable contains the Dirac delta function. The formation mechanism, generalized Rankine-Hugoniot relation and entropy condition are clarified for this type of delta shock wave. Under the generalized Rankine-Hugoniot relation and entropy condition, we establish the existence and uniqueness of solutions involving delta shocks for the Riemann problem.
NASA Astrophysics Data System (ADS)
Zhou, Hongying; Yuan, Xuanjun; Zhang, Youyan; Dong, Wentong; Liu, Song
2016-11-01
It is of great importance for petroleum exploration to study the sedimentary features and the growth pattern of shoal water deltas in lake basins. Taking spatio-temporal remote sensing images as the principal data source, combined with field sedimentation survey, a quantitative research on the modern deposition of Ganjiang delta in the Poyang Lake Basin is described in this paper. Using 76 multi-temporal and multi-type remote sensing images acquired from 1973 to 2015, combined with field sedimentation survey, remote sensing interpretation analysis was conducted on the sedimentary facies of the Ganjiang delta. It is found that that the current Poyang Lake mainly consists of three types of sand body deposits including deltaic deposit, overflow channel deposit, and aeolian deposit, and the distribution of sand bodies was affected by the above three types of depositions jointly. The mid-branch channels of the Ganjiang delta increased on an exponential growth rhythm. The main growth pattern of the Ganjiang delta is dendritic and reticular, and the distributary channel mostly arborizes at lake inlet and was reworked to be reticulatus at late stage.
Field instrumentation and measured response of the I-295 cable-stayed bridge.
DOT National Transportation Integrated Search
1992-01-01
This first report describes the results of a field study of the live load responses of a segmentally constructed prestressed concrete cable-stayed bridge. The main span of the test structure consists of twin box girders connected by delta frames. Kno...
The collective gyration of a heavy ion cloud in a magnetized plasma
NASA Technical Reports Server (NTRS)
Brenning, N.; Swenson, C.; Kelley, M. C.; Providakes, J.; Torbert, R.
1990-01-01
In both the ionospheric barium injection experiments CRIT 1 and CRIT 2, a long duration oscillation was seen with a frequency close to the gyro frequency of barium and a time duration of about one second. A model for the phenomena which was proposed for the CRIT 1 experiment is compared to the results from CRIT 2 which made a much more complete set of measurements. The model follows the motion of a low Beta ion cloud through a larger ambient plasma. The internal field of the model is close to antiparallel to the injection direction v sub i but slightly tilted towards the self polarization direction E sub p = -V sub i by B. As the ions move across the magnetic field, the space charge is continuously neutralized by magnetic field aligned electron currents from the ambient ionosphere, drawn by the divergence in the perpendicular electric field. These currents give a perturbation of the magnetic field related to the electric field perturbation by Delta E/Delta B approximately equal to V sub A. The model predictions agree quite well with the observed vector directions, field strengths, and decay times of the electric and magnetic fields in CRIT 2. The possibility to extend the model to the active region, where the ions are produces in this type of self-ionizing injection experiments, is discussed.
Peng, Youyi; Keenan, Susan M; Zhang, Qiang; Kholodovych, Vladyslav; Welsh, William J
2005-03-10
Three-dimensional quantitative structure-activity relationship (3D-QSAR) models were constructed using comparative molecular field analysis (CoMFA) on a series of opioid receptor antagonists. To obtain statistically significant and robust CoMFA models, a sizable data set of naltrindole and naltrexone analogues was assembled by pooling biological and structural data from independent studies. A process of "leave one data set out", similar to the traditional "leave one out" cross-validation procedure employed in partial least squares (PLS) analysis, was utilized to study the feasibility of pooling data in the present case. These studies indicate that our approach yields statistically significant and highly predictive CoMFA models from the pooled data set of delta, mu, and kappa opioid receptor antagonists. All models showed excellent internal predictability and self-consistency: q(2) = 0.69/r(2) = 0.91 (delta), q(2) = 0.67/r(2) = 0.92 (mu), and q(2) = 0.60/r(2) = 0.96 (kappa). The CoMFA models were further validated using two separate test sets: one test set was selected randomly from the pooled data set, while the other test set was retrieved from other published sources. The overall excellent agreement between CoMFA-predicted and experimental binding affinities for a structurally diverse array of ligands across all three opioid receptor subtypes gives testimony to the superb predictive power of these models. CoMFA field analysis demonstrated that the variations in binding affinity of opioid antagonists are dominated by steric rather than electrostatic interactions with the three opioid receptor binding sites. The CoMFA steric-electrostatic contour maps corresponding to the delta, mu, and kappa opioid receptor subtypes reflected the characteristic similarities and differences in the familiar "message-address" concept of opioid receptor ligands. Structural modifications to increase selectivity for the delta over mu and kappa opioid receptors have been predicted on the basis of the CoMFA contour maps. The structure-activity relationships (SARs) together with the CoMFA models should find utility for the rational design of subtype-selective opioid receptor antagonists.
Singular Behaviour of the Electrodynamic Fields of an Oscillating Dipole
ERIC Educational Resources Information Center
Leung, P. T.
2008-01-01
The singularity of the exact electromagnetic fields is derived to include the "source terms" for harmonically oscillating electric (and magnetic) dipoles, so that the fields will be consistent with the full Maxwell equations with a source. It is shown explicitly, as somewhat expected, that the same [delta]-function terms for the case of static…
Microdischarge Sources of O2(singlet Delta)
2006-07-15
A two-dimensional model of the MCSD has been developed which includes the details of the Ar/O2 plasma chemistry and yields a self-consistent...the details of the plasma chemistry in oxygen mixtures must be taken into account to predict correctly the plasma conductivity. This must be done
NASA Technical Reports Server (NTRS)
Agrawal, Bal K.; Agrawal, Savitri
1995-01-01
The electronic structure and the hole concentrations in the high Tc superconductor HgBa2CuO(4+delta) (delta = O, 1) has been investigated by employing a first principles full potential self-consistent LMTO method with the local density functional theory. The scalar relativistic effects have been considered. The hole concentrations of the Cu-d and O-p(x,y) orbitals are seen to be larger for the HgBaCuO5 system than those of the HgBaCuO4 solid. However, the van Hove singularity (vHs) induced Cu-d and O-p peak which is seen to lie comparatively away and above the Fermi level in the delta = 1 system shifts towards the Fermi level in the delta = 0 system. Thus, the superconducting behavior appears to originate from the occurrence of the vHs peak at the Fermi level. The Fermi surface nesting area in the delta = 0 compound is seen to be larger than in the delta = 1 compound. The calculation reveals that the increase in pressure on the crystal enhances the hole concentrations but without showing any optimum value, On the other hand, the vHs peak approaches to-wards the Fermi level with pressure and crosses the Fermi surface near V/Vo approximately equals 0.625 (V and Vo are the crystal volumes at high and normal pressures, respectively). Our calculated value of the bulk modulus equal to 0.626 Mbar predicts the occurrence of this crossover at about 24 GPa which is in complete agreement with the experimental value. At this pressure the compound has maximum nesting area and self-doped behavior.
Reaction mechanism of guanidinoacetate methyltransferase, concerted or step-wise.
Zhang, Xiaodong; Bruice, Thomas C
2006-10-31
We describe a quantum mechanics/molecular mechanics investigation of the guanidinoacetate methyltransferase catalyzed reaction, which shows that proton transfer from guanidinoacetate (GAA) to Asp-134 and methyl transfer from S-adenosyl-L-methionine (AdoMet) to GAA are concerted. By self-consistent-charge density functional tight binding/molecular mechanics, the bond lengths in the concerted mechanism's transition state are 1.26 A for both the OD1 (Asp-134)-H(E) (GAA) and H(E) (GAA)-N(E) (GAA) bonds, and 2.47 and 2.03 A for the S8 (AdoMet)-C9 (AdoMet) and C9 (AdoMet)-N(E) (GAA) bonds, respectively. The potential-energy barrier (DeltaE++) determined by single-point B3LYP/6-31+G*//MM is 18.9 kcal/mol. The contributions of the entropy (-TDeltaS++) and zero-point energy corrections Delta(ZPE)++ by normal mode analysis are 2.3 kcal/mol and -1.7 kcal/mol, respectively. Thus, the activation enthalpy of this concerted mechanism is predicted to be DeltaH++ = DeltaE++ plus Delta(ZPE)++ = 17.2 kcal/mol. The calculated free-energy barrier for the concerted mechanism is DeltaG++ = 19.5 kcal/mol, which is in excellent agreement with the value of 19.0 kcal/mol calculated from the experimental rate constant (3.8 +/- 0.2.min(-1)).
Lowenstern, Jacob B.; Janik, Cathy J.; Fahlquist, Lynne; Johnson, Linda S.
1999-01-01
The Geysers geothermal field in northern California, with about 2000-MW electrical capacity, is the largest geothermal field in the world. Despite its importance as a resource and as an example of a vapor-dominated reservoir, very few complete geochemical analyses of the steam have been published (Allen and Day, 1927; Truesdell and others, 1987). This report presents data from 90 steam, gas, and condensate samples from wells in The Geysers geothermal field in northern California. Samples were collected between 1978 and 1991. Well attributes include sampling date, well name, location, total depth, and the wellhead temperature and pressure at which the sample was collected. Geochemical characteristics include the steam/gas ratio, composition of noncondensable gas (relative proportions of CO2, H2S, He, H2, O2, Ar, N2, CH4, and NH3), and isotopic values for deltaD and delta18O of H2O, delta13C of CO2, and delta34S of H2S. The compilation includes 81 analyses from 74 different production wells, 9 isotopic analyses of steam condensate pumped into injection wells, and 5 complete geochemical analyses on gases from surface fumaroles and bubbling pools. Most samples were collected as saturated steam and plot along the liquid-water/steam boiling curve. Steam-togas ratios are highest in the southeastern part of the geothermal field and lowest in the northwest, consistent with other studies. Wells in the Northwest Geysers are also enriched in N2/Ar, CO2 and CH4, deltaD, and delta18O. Well discharges from the Southeast Geysers are high in steam/gas and have isotopic compositions and N2/Ar ratios consistent with recharge by local meteoric waters. Samples from the Central Geysers show characteristics found in both the Southeast and Northwest Geysers. Gas and steam characteristics of well discharges from the Northwest Geysers are consistent with input of components from a high-temperature reservoir containing carbonrich gases derived from the host Franciscan rocks. Throughout the geothermal field, the carbon-isotopic composition of CO2 is consistent with derivation of carbon from Franciscan metasedimentary rocks. NH3 concentrations are high in most Geysers well fluids, and are 2-3 orders of magnitude greater than would be expected in a the gas phase exhibiting homogeneous equilibrium at normal reservoir temperatures and pressures. Evidently, NH3 is flushed from the Franciscan host rocks at a rate that exceeds the reaction rate for NH3 breakdown. Many wells show clear influence by fluids from reinjection wells where steam condensate has been pumped back into the geothermal reservoir. Six wells were resampled over the time period of this study. One of these six wells was strongly affected by a nearby injection well. Three of the six resampled wells showed some signs of decreasing liquid/ steam within the geothermal reservoir, consistent with 'drying out' of the reservoir due to steam withdrawal. However, two wells exhibited little change. Analyses of gases from five surface manifestations (fumaroles and bubbling pools) are roughly similar to the deeper geothermal samples in both chemical and isotopic composition, but are lower in soluble gases that dissolve in groundwater during transit toward the surface.
Grain size controls on the morphology and stratigraphy of river-dominated deltas
NASA Astrophysics Data System (ADS)
Burpee, Alex; Parsons, Daniel; Slingerland, Rudy; Edmonds, Doug; Best, Jim; Cederberg, James; McGuffin, Andrew; Caldwell, Rebecca; Nijhuis, Austin
2015-04-01
The proportions of sand and mud that make up a river-dominated delta strongly determine its topset morphology, which in turn controls its internal facies and clinoform geometry. These relationships allow prediction of the stratigraphy of a delta using the character of its topset and reconstruction of deltaic planform from measures of clinoform geometry. This paper presents results from the Delft3D modeling system which was used to simulate nine self-formed deltas that possess different sediment loads and critical shear stresses that are required for re-entrainment of mud. The simulated deltas were set to prograde into a shallow basin without waves, tides, Coriolis forcing, and buoyancy. Model results indicate that sand-dominated deltas are more fan-shaped whilst mud-dominated deltas are more birdsfoot in planform, because the sand-dominated deltas have more active distributaries, a smaller variance of topset elevations, and thereby experience a more equitable distribution of sediment to their perimeters. This results in a larger proportion of channel facies in sand-dominated deltas, and more uniformly-distributed clinoform dip directions, steeper dips, and greater clinoform concavity. These conclusions are consistent with data collected from the Goose River Delta, a coarse-grained fan delta prograding into Goose Bay, Labrador, Canada and also allow us to undertake a re-interpretation of the Kf-1 parasequence set of the Cretaceous Last Chance Delta, a unit of the Ferron Sandstone near Emery, Utah, USA. We argue that the Last Chance delta likely possessed numerous distributaries with at least five orders of bifurcation.
Characterization of a prototype MR-compatible Delta4 QA system in a 1.5 tesla MR-linac
NASA Astrophysics Data System (ADS)
de Vries, J. H. W.; Seravalli, E.; Houweling, A. C.; Woodings, S. J.; van Rooij, R.; Wolthaus, J. W. H.; Lagendijk, J. J. W.; Raaymakers, B. W.
2018-01-01
To perform patient plan quality assurance (QA) on a newly installed MR-linac (MRL) it is necessary to have an MR-compatible QA device. An MR compatible device (MR-Delta4) has been developed together with Scandidos AB (Uppsala, Sweden). The basic characteristics of the detector response, such as short-term reproducibility, dose linearity, field size dependency, dose rate dependency, dose-per-pulse dependency and angular dependency, were investigated for the clinical Delta4-PT as well as for the MR compatible version. All tests were performed with both devices on a conventional linac and the MR compatible device was tested on the MRL as well. No statistically significant differences were found in the short-term reproducibility (<0.1%), dose linearity (⩽0.5%), field size dependency (<2.0% for field sizes larger than 5 × 5 cm2), dose rate dependency (<1.0%) or angular dependency for any phantom/linac combination. The dose-per-pulse dependency (<0.8%) was found to be significantly different between the two devices. This difference can be explained by the fact that the diodes in the clinical Delta4-PT were irradiated with a much larger dose than the MR-Delta4-PT ones. The absolute difference between the devices (<0.5%) was found to be small, so no clinical impact is expected. For both devices, the results were consistent with the characteristics of the Delta4-PT device reported in the literature (Bedford et al 2009 Phys. Med. Biol. 54 N167-76 Sadagopan et al 2009 J. Appl. Clin. Med. Phys. 10 2928). We found that the characteristics of the MR compatible Delta4 phantom were found to be comparable to the clinically used one. Also, the found characteristics do not differ from the previously reported characteristics of the commercially available non-MR compatible Delta4-PT phantom. Therefore, the MR compatible Delta4 prototype was found to be safe and effective for use in the 1.5 tesla magnetic field of the Elekta MR-linac
NASA Astrophysics Data System (ADS)
Meylan, G.; Burki, G.; Rufener, F.; Mayor, M.; Burnet, M.; Ischi, E.
1986-04-01
Simultaneous measurements in the Geneva seven-color photometry and in radial velocities with the spectrophotometer CORAVEL for two RR Lyrae, one Delta Scuti and one SX Phoenicis field star were obtained in order to apply the Baade-Wesselink method to these kinds of variable stars. As a first step, the data regarding the RR Cet, DX Del, BS Aqr, and DY Peg are presented. The target of this study will consist in determining the physical parameters (temperature, gravity, metal content, mass, luminosity) and distances of these stars.
Contribution of Sediment Compaction/Loading to the Ganges-Bangladesh Delta Subsidence
NASA Astrophysics Data System (ADS)
Karpytchev, Mikhail; Krien, Yann; Ballu, Valerie; Becker, Melanie; Calmant, Stephane; Spada, Giorgio; Guo, Junyi; Khan, Zahirul; Shum, Ck
2016-04-01
A pronounced spatial variability characterizes the subsidence/uplift rates in the Ganges-Bangladesh delta estimated from both sediment cores and modern geodetic techniques. The large variability of the subsidence rates suggests an interplay of different natural and anthropogenic processes including tectonics, sediment loading and sediment compaction, groundwater extaction among many others drivers of the delta vertical land movements.In this study, we focus on estimating the subsidence rates due to the sediments transported by the Ganges-Brahmaputra since the last 18 000 years. The delta subsidence induced by the sediment loading and the resulting sea level changes are modelled by the TABOO and SELEN software (Spada, 2003; Stocchi and Spada, 2007) in the framework of a gravitationally self-consistent Earth model. The loading history was obtained from available sediment cores and from the isopach map of Goodbread and Kuehl (2000). The results demonstrate that the delta loading enhanced by the Holocene sedimention can be responsable for a regular subsidence across the Ganges-Brahmaputra delta with an amplitude of 1-5 mm/yr along the Bengal coast. These estimates demonstrate that the contribution of the Holocene as well as modern sediment loading should be taken into account in climate change mitigation politicy for Bangladesh.
Hanni, Matti; Lantto, Perttu; Runeberg, Nino; Jokisaari, Jukka; Vaara, Juha
2004-09-22
Quantum chemical calculations of the nuclear shielding tensor, the nuclear quadrupole coupling tensor, and the spin-rotation tensor are reported for the Xe dimer using ab initio quantum chemical methods. The binary chemical shift delta, the anisotropy of the shielding tensor Delta sigma, the nuclear quadrupole coupling tensor component along the internuclear axis chi( parallel ), and the spin-rotation constant C( perpendicular ) are presented as a function of internuclear distance. The basis set superposition error is approximately corrected for by using the counterpoise correction (CP) method. Electron correlation effects are systematically studied via the Hartree-Fock, complete active space self-consistent field, second-order Møller-Plesset many-body perturbation, and coupled-cluster singles and doubles (CCSD) theories, the last one without and with noniterative triples, at the nonrelativistic all-electron level. We also report a high-quality theoretical interatomic potential for the Xe dimer, gained using the relativistic effective potential/core polarization potential scheme. These calculations used valence basis set of cc-pVQZ quality supplemented with a set of midbond functions. The second virial coefficient of Xe nuclear shielding, which is probably the experimentally best-characterized intermolecular interaction effect in nuclear magnetic resonance spectroscopy, is computed as a function of temperature, and compared to experiment and earlier theoretical results. The best results for the second virial coefficient, obtained using the CCSD(CP) binary chemical shift curve and either our best theoretical potential or the empirical potentials from the literature, are in good agreement with experiment. Zero-point vibrational corrections of delta, Delta sigma, chi (parallel), and C (perpendicular) in the nu=0, J=0 rovibrational ground state of the xenon dimer are also reported.
NASA Astrophysics Data System (ADS)
Luo, K.; Sun, D. M.; Zhang, J.; Shen, Q.; Zhang, N.
2017-12-01
This study proposes a multi-stage travelling-wave thermoacoustically refrigeration system (TAD-RS) operating at liquefied natural gas temperature, which consists of two thermoacoustic engines (TAE) and one thermoacoustic refrigerator (TAR) in a closed-loop configuration. Three thermoacoustic units connect each other through a resonance tube of small cross-sectional area, achieving “self-matching” for efficient thermoacoustic conversion. Based on the linear thermoacoustic theory, a model of the proposed system has been built by using DeltaEC program to show the acoustic field characteristics and performance. It is shown that with pressurized 5 MPa helium as working gas, the TAEs are able to build a stable and strong acoustic field with a frequency of about 85 Hz. When hot end temperature reaches 923 K, this system can provide about 1410 W cooling power at 110 K with an overall exergy efficiency of 15.5%. This study indicates a great application prospect of TAD-RS in the field of natural gas liquefaction with a large cooling capacity and simple structure.
González, Begoña; de Miguel, Rosario; Martín, Sonsoles; Pérez-Rosado, Alberto; Romero, Julián; García-Lecumberri, Carmen; Fernández-Ruiz, Javier; Ramos, José Antonio; Ambrosio, Emilio
2003-06-01
The present study examined the effects of Delta(9)-tetrahydrocannabinol (Delta(9)-THC) when administered during the perinatal period on morphine self-administration in adulthood. To this end, pregnant Wistar rats were daily exposed to Delta(9)-THC from the fifth day of gestation up to pup weaning, when they were separated by gender and left to mature to be used for analyses of operant food- and morphine-reinforced behavior in a progressive ratio (PR) schedule. We also analyzed dopaminergic activity (DOPAC/DA) in reward-related structures during specific phases of the behavioral study. In both reinforcement paradigms, food and morphine, females always reached higher patterns of self-administration than males, but this occurred for the two treatment groups, Delta(9)-THC or vehicle. These higher patterns measured in females corresponded with a higher DOPAC/DA in the nucleus accumbens prior to the onset of morphine self-administration in comparison to males. Interestingly, DOPAC/DA was lower in Delta(9)-THC-exposed females compared to oil-exposed females and similar to oil- and Delta(9)-THC-exposed males. In addition, Delta(9)-THC-exposed females also exhibited a reduction in DOPAC/DA in the ventral tegmental area, which did not exist in males. All these changes, however, disappeared after 15 days of morphine self-administration and they did not reappear after 15 additional days of extinction of this response. Our data suggest that females are more vulnerable than males in a PR schedule for operant food and morphine self-administration; perinatal Delta(9)-THC exposure is not a factor influencing this vulnerability. The neurochemical analysis revealed that the activity of limbic dopaminergic neurons prior to morphine self-administration was higher in females than males, as well as that the perinatal Delta(9)-THC treatment reduced the activity of these neurons only in females, although this had no influence on morphine vulnerability in these animals.
Delta-configurations - Flare activity and magnetic-field structure
NASA Technical Reports Server (NTRS)
Patty, S. R.; Hagyard, M. J.
1986-01-01
Complex sunspots in four active regions of April and May 1980, all exhibiting regions of magnetic classification delta, were studied using data from the NASA Marshall Space Flight Center vector magnetograph. The vector magnetic field structure in the vicinity of each delta was determined, and the location of the deltas in each active region was correlated with the locations and types of flare activity for the regions. Two types of delta-configuration were found to exist, active and inactive, as defined by the relationships between magnetic field structure and activity. The active delta exhibited high flare activity, strong horizontal gradients of the longitudinal (line-of-sight) magnetic field component, a strong transverse (perpendicular to line-of-sight) component, and a highly nonpotential orientation of the photospheric magnetic field, all indications of a highly sheared magnetic field. The inactive delta, on the other hand, exhibited little or no flare production, weaker horizontal gradients of the longitudinal component, weaker transverse components, and a nearly potential, nonsheared orientation of the magnetic field. It is concluded that the presence of such sheared fields is the primary signature by which the active delta may be distinguished, and that it is this shear which produces the flare activity of the active delta.
NASA Astrophysics Data System (ADS)
Takayama, Toru; Mochida, Atsunori; Orita, Kenji; Tamura, Satoshi; Ohnishi, Toshikazu; Yuri, Masaaki; Shimizu, Hirokazu
2002-05-01
High-power (>100mW) 820 nm-band distributed Bragg reflector (DBR) laser diodes (LDs) with stable fundamental transverse mode operation and continuous wavelength tuning characteristics have been developed. To obtain high-power LDs with a stable fundamental transverse mode in 820 nm wavelength range, an AlGaAs narrow stripe (2.0 micrometers ) real refractive-index-guided self-aligned (RISA) structure is utilized. In the RISA structure, the index step between inside and outside the stripe region ((Delta) n) can be precisely controlled in the order of 10-3). To maintain a stable fundamental transverse mode up to an output power over 100 mW, (Delta) n is designed to be 4x10-3. Higher-order transverse modes are effectively suppressed by a narrow stripe geometry. Further, to achieve continuous wavelength tuning capability, the three-section LD structure, which consists of the active (700micrometers ), phase control (300micrometers ), and DBR(500micrometers ) sections, is incorporated. Our DBR LDs show a maximum output power over 200mW with a stable fundamental transverse mode, and wavelength tuning characteristics ((Delta) (lambda) ~2nm) under 100 mW CW operation.
Congruent Bifurcation Angles in River Delta and Tributary Channel Networks
NASA Astrophysics Data System (ADS)
Coffey, Thomas S.; Shaw, John B.
2017-11-01
We show that distributary channels on river deltas exhibit a mean bifurcation angle that can be understood using theory developed in tributary channel networks. In certain cases, tributary network bifurcation geometries have been demonstrated to be controlled by diffusive groundwater flow feeding incipient bifurcations, producing a characteristic angle of 72∘. We measured 25 unique distributary bifurcations in an experimental delta and 197 bifurcations in 10 natural deltas, yielding a mean angle of 70.4∘±2.6∘ (95% confidence interval) for field-scale deltas and a mean angle of 68.3∘±8.7∘ for the experimental delta, consistent with this theoretical prediction. The bifurcation angle holds for small scales relative to channel width length scales. Furthermore, the experimental data show that the mean angle is 72∘ immediately after bifurcation initiation and remains relatively constant over significant time scales. Although distributary networks do not mirror tributary networks perfectly, the similar control and expression of bifurcation angles suggests that additional morphodynamic insight may be gained from further comparative study.
Detection of interstellar sodium hydroxide in self-absorption toward the galactic center
NASA Technical Reports Server (NTRS)
Hollis, J. M.; Rhodes, P. J.
1982-01-01
A weak self-absorbed emission line, which is identified as the J = 4-3 transition of sodium hydroxide, has been detected in the direction of Sgr B2(OH). The correspondingly weak Sgr B2(QH) emission line U75406, previously reported as an unidentified spectral feature by other investigators, is consistent with the J = 3-2 transition of sodium hydroxide. This detection may represent the first evidence of a grain reaction formation mechanism for simple metal hydroxides. The detection of H62 Delta toward Orion A is also reported.
Probing the nature of superfluid helium-3 very near its critical temperature
NASA Astrophysics Data System (ADS)
Nishimori, Arito
We have measured with high resolution the static magnetization and NMR frequency shift of bulk superfluid 3He near its critical point. The static magnetization measurements at 31.4 bars and 33.7 bars in the magnetic field of 36.1 mT show that the size of the magnetization change through the A1 region is smaller than 0.1% of the total magnetization in the normal phase. NMR frequency shifts which have the similar |Delta|2 dependency(Delta:order parameter) to that of the magnetization are measured at the melting pressure in magnetic fields from 29.6 mT to 425 mT using a new feedback technique. We find that the frequency shifts agree very well with the mean field calculations based on the spin fluctuation feedback model proposed by Brinkman, Serene and Anderson(BSA) and there is no high temperature tail above T A1 nor smearing of kinks at TA 1 and TA2 originating from critical fluctuations. From the fitting parameters, the Brinkman-Anderson parameter delta averaged over the data in 92.6 mT, 154 mT and 213 mT at the melting pressure is found to be 0.57+/-0.02. We also obtained the widths of the A1 phase at low magnetic fields. Its linear dependence on magnetic field strength is consistent with the mean field calculation.
Nonlinear scalar forcing based on a reaction analogy
NASA Astrophysics Data System (ADS)
Daniel, Don; Livescu, Daniel
2017-11-01
We present a novel reaction analogy (RA) based forcing method for generating stationary passive scalar fields in incompressible turbulence. The new method can produce more general scalar PDFs (e.g. double-delta) than current methods, while ensuring that scalar fields remain bounded, unlike existent forcing methodologies that can potentially violate naturally existing bounds. Such features are useful for generating initial fields in non-premixed combustion or for studying non-Gaussian scalar turbulence. The RA method mathematically models hypothetical chemical reactions that convert reactants in a mixed state back into its pure unmixed components. Various types of chemical reactions are formulated and the corresponding mathematical expressions derived. For large values of the scalar dissipation rate, the method produces statistically steady double-delta scalar PDFs. Gaussian scalar statistics are recovered for small values of the scalar dissipation rate. In contrast, classical forcing methods consistently produce unimodal Gaussian scalar fields. The ability of the new method to produce fully developed scalar fields is discussed using 2563, 5123, and 10243 periodic box simulations.
Question of the change in thermal conductivity of semiconductors in a magnetic field
NASA Astrophysics Data System (ADS)
Amirkhanov, Kh. I.; Daibov, A. Z.; Zhuze, V. P.
1986-09-01
The Maggi-Righi-Leduc effect consists in the appearance of an additional longitudinal difference in temperatures delta T in the plate of a conductor placed in a transverse magnetic field H perpendicular if there is a temperature gradient along the plate. The appearance of this difference in temperature leads to an increase in the effective part of thermal conductivity.
NASA Astrophysics Data System (ADS)
Tiotsop, M.; Fotue, A. J.; Fotsin, H. B.; Fai, L. C.
2017-08-01
Bound polaron in RbCl delta quantum dot under electric field and Coulombic impurity were considered. The ground and first excited state energy were derived by employing Pekar variational and unitary transformation methods. Applying Fermi golden rule, the expression of temperature and polaron lifetime were derived. The decoherence was studied trough the Tsallis entropy. Results shows that decreasing (or increasing) the lifetime increases (or decreases) the temperature and delta parameter (electric field strength and hydrogenic impurity). This suggests that to accelerate quantum transition in nanostructure, temperature and delta have to be enhanced. The improvement of electric field and coulomb parameter, increases the lifetime of the delta quantum dot qubit. Energy spectrum of polaron increases with increase in temperature, electric field strength, Coulomb parameter, delta parameter, and polaronic radius. The control of the delta quantum dot energies can be done via the electric field, coulomb impurity, and delta parameter. Results also show that the non-extensive entropy is an oscillatory function of time. With the enhancement of delta parameter, non-extensive parameter, Coulombic parameter, and electric field strength, the entropy has a sinusoidal increase behavior with time. With the study of decoherence through the Tsallis entropy, it may be advised that to have a quantum system with efficient transmission of information, the non-extensive and delta parameters need to be significant. The study of the probability density showed an increase from the boundary to the center of the dot where it has its maximum value and oscillates with period T0 = ℏ / ΔE with the tunneling of the delta parameter, electric field strength, and Coulombic parameter. The results may be very helpful in the transmission of information in nanostructures and control of decoherence
Magnetic structure of rare-earth dodecaborides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siemensmeyer, K.; Flachbart, K.; Gabani, S.
2006-09-15
We have investigated the magnetic structure of HoB{sub 12}, ErB{sub 12} and TmB{sub 12} by neutron diffraction on isotopically enriched single-crystalline samples. Results in zero field as well as in magnetic field up to 5T reveal modulated incommensurate magnetic structures in these compounds. The basic reflections can be indexed with q=(1/2+/-{delta}, 1/2+/-{delta}, 1/2+/-{delta}), where {delta}=0.035 both for HoB{sub 12} and TmB{sub 12} and with q=(3/2+/-{delta}, 1/2+/-{delta}, 1/2+/-{delta}), where {delta}=0.035, for ErB{sub 12}. In an applied magnetic field, new phases are observed. The complex magnetic structure of these materials seems to result from the interplay between the RKKY and dipole-dipole interaction.more » The role of frustration due to the fcc symmetry of dodecaborides and the crystalline electric field effect is also considered.« less
Barnhardt, W.A.; Sherrod, B.L.
2006-01-01
Episodic, large-volume pulses of volcaniclastic sediment and coseismic subsidence of the coast have influenced the development of a late Holocene delta at southern Puget Sound. Multibeam bathymetry, ground-penetrating radar (GPR) and vibracores were used to investigate the morphologic and stratigraphic evolution of the Nisqually River delta. Two fluvial–deltaic facies are recognized on the basis of GPR data and sedimentary characteristics in cores, which suggest partial emplacement from sediment-rich floods that originated on Mount Rainier. Facies S consists of stacked, sheet-like deposits of andesitic sand up to 4 m thick that are continuous across the entire width of the delta. Flat-lying, highly reflective surfaces separate the sand sheets and comprise important facies boundaries. Beds of massive, pumice- and charcoal-rich sand overlie one of the buried surfaces. Organic-rich material from that surface, beneath the massive sand, yielded a radiocarbon age that is time-correlative with a series of known eruptive events that generated lahars in the upper Nisqually River valley. Facies CF consists of linear sandbodies or palaeochannels incised into facies S on the lower delta plain. Radiocarbon ages of wood fragments in the sandy channel-fill deposits also correlate in time to lahar deposits in upstream areas. Intrusive, sand-filled dikes and sills indicate liquefaction caused by post-depositional ground shaking related to earthquakes. Continued progradation of the delta into Puget Sound is currently balanced by tidal-current reworking, which redistributes sediment into large fields of ebb- and flood-oriented bedforms.
Microelectrophoresis of a bilayer-coated silica bead in an optical trap: application to enzymology.
Galneder, R; Kahl, V; Arbuzova, A; Rebecchi, M; Rädler, J O; McLaughlin, S
2001-05-01
We describe an apparatus that combines microelectrophoresis and laser trap technologies to monitor the activity of phosphoinositide-specific phospholipase C-delta1 (PLC-delta) on a single bilayer-coated silica bead with a time resolution of approximately 1 s. A 1-microm-diameter bead was coated with a phospholipid bilayer composed of electrically neutral phosphatidylcholine (PC) and negatively charged phosphatidylinositol 4,5-bisphosphate (2% PIP2) and captured in a laser trap. When an AC field was applied (160 Hz, 20 V/cm), the electrophoretic force produced a displacement of the bead, Delta(x), from its equilibrium position in the trap; Delta(x), which was measured using a fast quadrant diode detector, is proportional to the zeta potential and thus to the number of PIP2 molecules on the outer leaflet (initially, approximately 10(5)). When a solution containing PLC-delta flows past the bead, the enzyme adsorbs to the surface and hydrolyzes PIP2 to form the neutral lipid diacylglycerol. We observed a nonexponential decay of PIP2 on the bead with time that is consistent with a model based on the known structural properties of PLC-delta.
Vibrational multiconfiguration self-consistent field theory: implementation and test calculations.
Heislbetz, Sandra; Rauhut, Guntram
2010-03-28
A state-specific vibrational multiconfiguration self-consistent field (VMCSCF) approach based on a multimode expansion of the potential energy surface is presented for the accurate calculation of anharmonic vibrational spectra. As a special case of this general approach vibrational complete active space self-consistent field calculations will be discussed. The latter method shows better convergence than the general VMCSCF approach and must be considered the preferred choice within the multiconfigurational framework. Benchmark calculations are provided for a small set of test molecules.
Doubly self-consistent field theory of grafted polymers under simple shear in steady state.
Suo, Tongchuan; Whitmore, Mark D
2014-03-21
We present a generalization of the numerical self-consistent mean-field theory of polymers to the case of grafted polymers under simple shear. The general theoretical framework is presented, and then applied to three different chain models: rods, Gaussian chains, and finitely extensible nonlinear elastic (FENE) chains. The approach is self-consistent at two levels. First, for any flow field, the polymer density profile and effective potential are calculated self-consistently in a manner similar to the usual self-consistent field theory of polymers, except that the calculation is inherently two-dimensional even for a laterally homogeneous system. Second, through the use of a modified Brinkman equation, the flow field and the polymer profile are made self-consistent with respect to each other. For all chain models, we find that reasonable levels of shear cause the chains to tilt, but it has very little effect on the overall thickness of the polymer layer, causing a small decrease for rods, and an increase of no more than a few percent for the Gaussian and FENE chains. Using the FENE model, we also probe the individual bond lengths, bond correlations, and bond angles along the chains, the effects of the shear on them, and the solvent and bonded stress profiles. We find that the approximations needed within the theory for the Brinkman equation affect the bonded stress, but none of the other quantities.
NASA Astrophysics Data System (ADS)
Anthony, E.; Besset, M.; Brunier, G.; Dussouillez, P.; Dolique, F.; Nguyen, V. L.; Goichot, M.
2014-12-01
River delta shorelines may be characterized by complex patterns of sediment transport and sequestering at various timescales in response to changes in sediment supply, hydrodynamic conditions, and deltaic self-organization. While being good indicators of delta stability, these changes also have important coastal management and defence implications. These aspects are examined with reference to the mouths of the Mekong River delta, the world's third largest delta, backbone of the Vietnamese economy and home to nearly 20 million people. We conducted an analysis of shoreline fluctuations over the last five decades using low-resolution Landsat (1973-2014), very high-resolution SPOT 5 (2003-2011) satellite imagery, topographic maps (1950, 1965), and field hydrodynamic and shoreline topographic measurements. The results show that the 250 km-long river-mouth sector of the delta shoreline has been characterized by overall accretion but with marked temporal and spatial variations. The temporal pattern is attributed to fluctuations in sediment supply due to both human activities and natural variations in catchment sediment loads (e.g., 2000-2003), and natural adjustments in delta-plain sediment storage and delivery to the coast. The spatial pattern is indicative of discrete sediment cells that may be a response to an overall decreasing sand supply, especially since 2003, following increasingly massive riverbed mining with concomitant losses in channel-bed sand. Field measurements show the prevalence of mesotidal bar-trough beaches characterized by sand migration to the southwest in response to energetic dry-season monsoon waves. Beaches underfed as a result of both wave-energy gradients and possible diminishing sand supply from the adjacent river mouths are eroded to feed accreting beaches. Understanding this cell pattern has important implications in terms of: (1) interpreting past patterns of shoreline translation involved in the construction of successive beach ridges that characterise the prograding mouths sector of the Mekong; (2) linking shoreline stability/instability with coastal sand supply by the Mekong River and the impacts of human activities on this supply; (3) shoreline management and defence planning in the critical sandy river-mouth sector of this densely populated delta.
Self-Consistent-Field Calculation on Lithium Hydride for Undergraduates.
ERIC Educational Resources Information Center
Rioux, Frank; Harriss, Donald K.
1980-01-01
Describes a self-consistent-field-linear combination of atomic orbitals-molecular orbital calculation on the valence electrons of lithium hydride using the method of Roothaan. This description is intended for undergraduate physics students.
Long time, large scale properties of the noisy driven-diffusion equation
NASA Astrophysics Data System (ADS)
Prakash, J. Ravi; Bouchaud, J. P.; Edwards, S. F.
1994-07-01
We study the driven-diffusion equation, describing the dynamics of density fluctuations delta-rho(x-vector, t) in powders or traffic flows. We have performed quite detailed numerical simulations of this equation in one dimension, focusing in particular on the scaling behavior of the correlation function (delta-rho(x-vector, t)delta-rho(0, 0)). One of our motivations was to assess the validity of various theoretical approaches, such as Renormalization Group and different self consistent truncation schemes, to these nonlinear dynamical equations. Although all of them are seen to predict correctly the scaling exponents, only one of them (where the non-exponential nature of the relaxation is taken into account) is able to reproduce satisfactorily the value of the numerical prefactors. Several other interesting issues, such as the noise spectrum of the output current, or the statistics of distance between jams (showing a transition between a `laminar' regime for small noise to a `jammed' regime for higher noise) are also investigated.
On the Role of Global Magnetic Field Configuration in Affecting Ring Current Dynamics
NASA Technical Reports Server (NTRS)
Zheng, Y.; Zaharia, S. G.; Fok, M. H.
2010-01-01
Plasma and field interaction is one important aspect of inner magnetospheric physics. The magnetic field controls particle motion through gradient, curvature drifts and E cross B drift. In this presentation, we show how the global magnetic field affects dynamics of the ring current through simulations of two moderate geomagnetic storms (20 November 2007 and 8-9 March 2008). Preliminary results of coupling the Comprehensive Ring Current Model (CRCM) with a three-dimensional plasma force balance code (to achieve self-consistency in both E and B fields) indicate that inclusion of self-consistency in B tends to mitigate the intensification of the ring current as other similar coupling efforts have shown. In our approach, self-consistency in the electric field is already an existing capability of the CRCM. The magnetic self-consistency is achieved by computing the three-dimensional magnetic field in force balance with anisotropic ring current ion distributions. We discuss the coupling methodology and its further improvement. In addition, comparative studies by using various magnetic field models will be shown. Simulation results will be put into a global context by analyzing the morphology of the ring current, its anisotropy and characteristics ofthe interconnected region 2 field-aligned currents.
Digital TV tri-state delta modulation system for Space Shuttle ku-band downlink
NASA Technical Reports Server (NTRS)
Udalov, S.; Huth, G. K.; Roberts, D.; Batson, B. H.
1982-01-01
A tri-state delta modulation/demodulation (TSDM) technique which provides for efficient run-length coding of constant-intensity segments of a TV picture is described. Aspects of the hardware implementation of a high-speed TSDM transmitter and receiver for black-and-white TV or field-sequential color or NTSC format color are reviewed. Run-length encoding of the TSDM output can consistently reduce the required channel data rate well below one bit per sample. As compared with a bistate delta modulation system, the present technique eliminates granularity in the reconstructed video without degrading rise or fall times. About 40 chips are used by TSDM when used to handle the luminance information in a color link. A possible overall space and ground functional configuration to accommodate Shuttle digital TV with scrambling for privacy is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson-Heine, Magnus W. D., E-mail: magnus.hansonheine@nottingham.ac.uk
Carefully choosing a set of optimized coordinates for performing vibrational frequency calculations can significantly reduce the anharmonic correlation energy from the self-consistent field treatment of molecular vibrations. However, moving away from normal coordinates also introduces an additional source of correlation energy arising from mode-coupling at the harmonic level. The impact of this new component of the vibrational energy is examined for a range of molecules, and a method is proposed for correcting the resulting self-consistent field frequencies by adding the full coupling energy from connected pairs of harmonic and pseudoharmonic modes, termed vibrational self-consistent field (harmonic correlation). This approach ismore » found to lift the vibrational degeneracies arising from coordinate optimization and provides better agreement with experimental and benchmark frequencies than uncorrected vibrational self-consistent field theory without relying on traditional correlated methods.« less
An aerodynamic model for one and two degree of freedom wing rock of slender delta wings
NASA Technical Reports Server (NTRS)
Hong, John
1993-01-01
The unsteady aerodynamic effects due to the separated flow around slender delta wings in motion were analyzed. By combining the unsteady flow field solution with the rigid body Euler equations of motion, self-induced wing rock motion is simulated. The aerodynamic model successfully captures the qualitative characteristics of wing rock observed in experiments. For the one degree of freedom in roll case, the model is used to look into the mechanisms of wing rock and to investigate the effects of various parameters, like angle of attack, yaw angle, displacement of the separation point, and wing inertia. To investigate the roll and yaw coupling for the delta wing, an additional degree of freedom is added. However, no limit cycle was observed in the two degree of freedom case. Nonetheless, the model can be used to apply various control laws to actively control wing rock using, for example, the displacement of the leading edge vortex separation point by inboard span wise blowing.
Experimental Investigation of the Flow Structure over a Delta Wing Via Flow Visualization Methods.
Shen, Lu; Chen, Zong-Nan; Wen, Chihyung
2018-04-23
It is well known that the flow field over a delta wing is dominated by a pair of counter rotating leading edge vortices (LEV). However, their mechanism is not well understood. The flow visualization technique is a promising non-intrusive method to illustrate the complex flow field spatially and temporally. A basic flow visualization setup consists of a high-powered laser and optic lenses to generate the laser sheet, a camera, a tracer particle generator, and a data processor. The wind tunnel setup, the specifications of devices involved, and the corresponding parameter settings are dependent on the flow features to be obtained. Normal smoke wire flow visualization uses a smoke wire to demonstrate the flow streaklines. However, the performance of this method is limited by poor spatial resolution when it is conducted in a complex flow field. Therefore, an improved smoke flow visualization technique has been developed. This technique illustrates the large-scale global LEV flow field and the small-scale shear layer flow structure at the same time, providing a valuable reference for later detailed particle image velocimetry (PIV) measurement. In this paper, the application of the improved smoke flow visualization and PIV measurement to study the unsteady flow phenomena over a delta wing is demonstrated. The procedure and cautions for conducting the experiment are listed, including wind tunnel setup, data acquisition, and data processing. The representative results show that these two flow visualization methods are effective techniques for investigating the three-dimensional flow field qualitatively and quantitatively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mearns, E.W.; McBride, J.J.; Bramwell, M.
1996-01-01
Oil is produced primarily from open fracture porosity in Upper Cretaceous chalk in the Sidi El Kilani oil field. Strontium Stratigraphy analyses of primary, unaltered matrix chalk has confirmed a Campanian to Maastrichtian age and has allowed dating of the reservoir with a resolution of [+-]1 Ma. This has facilitated reservoir correlation and has indicated where section is missing in certain wells due to faulting. [sup 87]Sr/[sup 86]Sr, [delta][sup 18]O and [delta][sup 13]C analyses suggest an early generation of fracture fill calcite cement may have formed by redistribution of CaCO[sub 3] from underlying carbonate sequences at temperatures in the regionmore » 35-55[degrees]C. Calcite cemented fractures tend to be healed and are not productive. Strontium Isotope Residual Salt Analyses (SrRSA) conducted on core, provide information on the formation water chemistry and reservoir connectivity at the time of oil filling. These data suggest that the NW-SE trending fault system that bisects the field is sealed across much of the fault plane. The main oil pool lies SW of the fault. A later generation of dolomite and barite cements, associated with productive open fractures, have Sr-O-C composition consistent with precipitation from fluids circulating at the time of hydrocarbon charge at temperatures close to current reservoir conditions of 70-75[degrees]C. Predicting the distribution of dolomite cemented open fractures has thus helped guide the development strategy of the field.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mearns, E.W.; McBride, J.J.; Bramwell, M.
1996-12-31
Oil is produced primarily from open fracture porosity in Upper Cretaceous chalk in the Sidi El Kilani oil field. Strontium Stratigraphy analyses of primary, unaltered matrix chalk has confirmed a Campanian to Maastrichtian age and has allowed dating of the reservoir with a resolution of {+-}1 Ma. This has facilitated reservoir correlation and has indicated where section is missing in certain wells due to faulting. {sup 87}Sr/{sup 86}Sr, {delta}{sup 18}O and {delta}{sup 13}C analyses suggest an early generation of fracture fill calcite cement may have formed by redistribution of CaCO{sub 3} from underlying carbonate sequences at temperatures in the regionmore » 35-55{degrees}C. Calcite cemented fractures tend to be healed and are not productive. Strontium Isotope Residual Salt Analyses (SrRSA) conducted on core, provide information on the formation water chemistry and reservoir connectivity at the time of oil filling. These data suggest that the NW-SE trending fault system that bisects the field is sealed across much of the fault plane. The main oil pool lies SW of the fault. A later generation of dolomite and barite cements, associated with productive open fractures, have Sr-O-C composition consistent with precipitation from fluids circulating at the time of hydrocarbon charge at temperatures close to current reservoir conditions of 70-75{degrees}C. Predicting the distribution of dolomite cemented open fractures has thus helped guide the development strategy of the field.« less
Analysis of the vector magnetic fields of complex sunspots
NASA Technical Reports Server (NTRS)
Patty, S. R.
1981-01-01
An analysis of the vector magnetic field in the delta-configurations of two complex sunspot groups is presented, noting several characteristics identified in the delta-configurations. The observations of regions 2469 (S12E80) and 2470 (S21E83) took place in May, 1980 with a vector magnetograph, verified by optical viewing. Longitudinal magnetic field plots located the delta-configurations in relation to the transverse field neutral line. It is shown that data on the polarization yields qualitative information on the magnetic field strengths, while the azimuth of the transverse field can be obtained from the relative intensities of linear polarization measurements aligned with respect to the magnetograph analyses axis at 0 and 90 deg, and at the plus and minus 45 deg positions. Details of the longitudinal fields are discussed. A strong, sheared transverse field component is found to be a signature of strong delta. A weak delta is accompanied by a weak longitudinal gradient with an unsheared transverse component of variable strength.
Marineo, G; Fesce, E
2006-12-01
The therapy in question uses an innovative bioengineering device denoted as ''Delta-S DVD Entropy Variation System''. Previous research indicated regression of cirrhosis as evaluated in its morphofunctional and symptomatological aspects. The aim of the study is to confirm and extend previous experimental observations by enhancing hemodynamic evaluation techniques. In order to clarify scar regression, it was decided to include in the endpoints a quantitative evaluation of portal hypertension called HVPG, which is sensitive to the breakdown of hepatic architecture and the influence of regeneration nodules and therefore the advance of cirrhosis. The experimental design consists of a self-controlled study carried out on Child A-B cirrhosis patients with portal hypertension (hepatic venous pressure gradient, HVPG > or = 10 mmHg). Five patients were enrolled, 4 HCV positive, one with autoimmune cirrhosis, all showing extensive symptoms. At the end of the treatment all patients showed a reduction in portal hypertension (mean reduction HVPG = 40.2%, P<0.011), together with an improved ultrasound flowmeter pattern and a sharp decrease or disappearance of the symptoms. No adverse effects were reported. Efficacy on autoimmune cirrhosis was unaffected. By means of a quantitative analysis of portal hypertension and of functional aspects, this study confirms that the Delta-S DVD system can lead to the regression of the scar component of cirrhosis, promote the regeneration of functioning liver tissue with positive effects on hepatic functionality and prevent symptoms and the risk of varicose vein rupture.
Doubly self-consistent field theory of grafted polymers under simple shear in steady state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suo, Tongchuan; Whitmore, Mark D., E-mail: mark-whitmore@umanitoba.ca
2014-03-21
We present a generalization of the numerical self-consistent mean-field theory of polymers to the case of grafted polymers under simple shear. The general theoretical framework is presented, and then applied to three different chain models: rods, Gaussian chains, and finitely extensible nonlinear elastic (FENE) chains. The approach is self-consistent at two levels. First, for any flow field, the polymer density profile and effective potential are calculated self-consistently in a manner similar to the usual self-consistent field theory of polymers, except that the calculation is inherently two-dimensional even for a laterally homogeneous system. Second, through the use of a modified Brinkmanmore » equation, the flow field and the polymer profile are made self-consistent with respect to each other. For all chain models, we find that reasonable levels of shear cause the chains to tilt, but it has very little effect on the overall thickness of the polymer layer, causing a small decrease for rods, and an increase of no more than a few percent for the Gaussian and FENE chains. Using the FENE model, we also probe the individual bond lengths, bond correlations, and bond angles along the chains, the effects of the shear on them, and the solvent and bonded stress profiles. We find that the approximations needed within the theory for the Brinkman equation affect the bonded stress, but none of the other quantities.« less
NASA Astrophysics Data System (ADS)
de Vries, Sandra; Rutten, Martine; de Vries, Liselotte; Anema, Kim; Klop, Tanja; Kaspersma, Judith
2017-04-01
In highly populated deltas, much work is to be done. Complex problems ask for new and knowledge driven solutions. Innovations in delta technology and water can bring relief to managing the water rich urban areas. Testing fields form a fundamental part of the knowledge valorisation for such innovations. In such testing fields, product development by start-ups is coupled with researchers, thus supplying new scientific insights. With the help of tests, demonstrations and large-scale applications by the end-users, these innovations find their way to the daily practices of delta management. More and more cities embrace the concept of Smart Cities to tackle the ongoing complexity of urban problems and to manage the city's assets - such as its water supply networks and other water management infrastructure. Through the use of new technologies and innovative systems, data are collected from and with citizens and devices - then processed and analysed. The information and knowledge gathered are keys to enabling a better quality of life. By testing water innovations together with citizens in order to find solutions for water management problems, not only highly spatial amounts of data are provided by and/or about these innovations, they are also improved and demonstrated to the public. A consortium consisting of a water authority, a science centre, a valorisation program and two universities have joined forces to create a testing field for delta technology and water innovations using citizen science methods. In this testing field, the use of citizen science for water technologies is researched and validated by facilitating pilot projects. In these projects, researchers, start-ups and citizens work together to find the answer to present-day water management problems. The above mentioned testing field tests the use of crowd-sourcing data as for example hydrological model inputs, or to validate remote sensing applications, or improve water management decisions. Currently the testing field starts two pilot projects concerning (1) the validation of green measures used for water storage in order to better quantify their worth, and (2) the collection of water quality data in a polder polluted by horticulture in such manner that water management and awareness are improved.
Self-consistent chaos in a mean-field Hamiltonian model of fluids and plasmas
NASA Astrophysics Data System (ADS)
del-Castillo-Negrete, D.; Firpo, Marie-Christine
2002-11-01
We present a mean-field Hamiltonian model that describes the collective dynamics of marginally stable fluids and plasmas. In plasmas, the model describes the self-consistent evolution of electron holes and clumps in phase space. In fluids, the model describes the dynamics of vortices with negative and positive circulation in shear flows. The mean-field nature of the system makes it a tractable model to study the dynamics of large degrees-of-freedom, coupled Hamiltonian systems. Here we focus in the role of self-consistent chaos in the formation and destruction of phase space coherent structures. Numerical simulations in the finite N and in the Narrow kinetic limit (where N is the number of particles) show the existence of coherent, rotating dipole states. We approximate the dipole as two macroparticles, and show that the N = 2 limit has a family of rotating integrable solutions described by a one degree-of-freedom nontwist Hamiltonian. The coherence of the dipole is explained in terms of a parametric resonance between the rotation frequency of the macroparticles and the oscillation frequency of the self-consistent mean field. For a class of initial conditions, the mean field exhibits a self-consistent, elliptic-hyperbolic bifurcation that leads to the destruction of the dipole and violent mixing of the phase space.
NASA Astrophysics Data System (ADS)
Meier, Patrick; Oschetzki, Dominik; Pfeiffer, Florian; Rauhut, Guntram
2015-12-01
Resonating vibrational states cannot consistently be described by single-reference vibrational self-consistent field methods but request the use of multiconfigurational approaches. Strategies are presented to accelerate vibrational multiconfiguration self-consistent field theory and subsequent multireference configuration interaction calculations in order to allow for routine calculations at this enhanced level of theory. State-averaged vibrational complete active space self-consistent field calculations using mode-specific and state-tailored active spaces were found to be very fast and superior to state-specific calculations or calculations with a uniform active space. Benchmark calculations are presented for trans-diazene and bromoform, which show strong resonances in their vibrational spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meier, Patrick; Oschetzki, Dominik; Pfeiffer, Florian
Resonating vibrational states cannot consistently be described by single-reference vibrational self-consistent field methods but request the use of multiconfigurational approaches. Strategies are presented to accelerate vibrational multiconfiguration self-consistent field theory and subsequent multireference configuration interaction calculations in order to allow for routine calculations at this enhanced level of theory. State-averaged vibrational complete active space self-consistent field calculations using mode-specific and state-tailored active spaces were found to be very fast and superior to state-specific calculations or calculations with a uniform active space. Benchmark calculations are presented for trans-diazene and bromoform, which show strong resonances in their vibrational spectra.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-24
... exemption rules among exchanges. The ``options contract equivalent of the net delta'' of a hedged equity...\\ The term ``options contract equivalent of the net delta'' is defined in Rule 904, Commentary .10(c) as... delta and options contract equivalent of the net delta will be calculated for each respective option...
NASA Technical Reports Server (NTRS)
Langel, R. A.
1973-01-01
Variations in the scalar magnetic field (delta B) from the polar orbiting OGO 2, 4, and 6 spacecraft are examined as a function of altitude for times when the interplanetary magnetic field is toward the sun and for times when the interplanetary magnetic field away from the sun. This morphology is basically the same as that found when all data, irrespective of interplanetary magnetic sector, are averaged together. Differences in delta B occur, both between sectors and between seasons, which are similar in nature to variations in the surface delta Z found by Langel (1973c). The altitude variation of delta B at sunlit local times, together with delta Z at the earth's surface, demonstrates that the delta Z and delta B which varies with sector has an ionospheric source. Langel (1973b) showed that the positive delta B region in the dark portion of the hemisphere is due to at least two sources, the westward electrojet and an unidentified non-ionospheric source(s). Comparison of magnetic variations between season/sector at the surface and at the satellite, in the dark portion of the hemisphere, indicates that these variations are caused by variations in the latitudinally narrow electrojet currents and not by variations in the non-ionospheric source of delta B.
Informational temperature concept and the nature of self-organization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Shu-Kun
1996-12-31
Self-organization phenomena are spontaneous processes. Their behavior should be governed by the second law of thermodynamics. The dissipative structure theory of the Prigogine school of thermodynamics claims that {open_quotes}order out of chaos{close_quotes} through {open_quotes}self-organization{close_quotes} and challenges the validity of the second law of thermodynamics. Unfortunately this theory is questionable. Therefore we have to reconsider the related fundamental theoretical problems. Informational entropy (S) and information (I) are related by S = S{sub max} - I, where S{sub max} is the maximum informational entropy. This conforms with the broadly accepted definition that entropy is the information loss. As informational entropy concept hasmore » been proved to be useful, it will be convenient to define an informational temperature, T{sub I}. This can be related to energy E and the informational entropy S. Information registration is a process of {Delta}I > 0, or {Delta}S < 0, and involves the energetically excited states ({Delta}E > 0). Therefore, T{sub I} is negative, and has the opposite sign of the conventional thermodynamic temperature, T. This concept is useful for clarifying the concepts of {open_quotes}order{close_quotes} and {open_quotes}disorder{close_quotes} of static structures and characterizing many typical information loss processes of self-organization.« less
Reconnection in Compressible Plasmas: Extended Conversion Region
NASA Technical Reports Server (NTRS)
Birn, J.; Hesse, M.; Zenitani, S.
2011-01-01
The classical Sweet-Parker approach to steady-state magnetic reconnection is extended into the regime of large resistivity (small magnetic Reynolds or Lundquist number) when the aspect ratio between the outflow and inflow scale, delta = d/L, approaches unity. In a previous paper the vicinity of the dissipation site ("diffusion region") was investigated. In this paper, the approach is extended to cover larger sites, in which the energy transfer and conversion is not confined to the diffusion region. Consistent with the results of Paper I, we find that increasing aspect ratio delta is associated with increasing compression, increasing reconnect ion rate for low Beta, but slightly decreasing rate for higher Beta, decreasing outflow speed, and increasing outflow magnetic field. These trends are stronger for lower Beta. Deviations from the traditional Sweet-Parker limit delta approaches 0 become significant for R(sub m) approx < 10, where R(sub m) is the magnetic Reynolds number (Lundquist number) based on the half-thickness of the current layer responsible for the Ohmic dissipation. They are also more significant for small gamma, that is, for increasing compressibility. In contrast to the results of Paper I, but consistent with earlier results for delta much < 1,nu(sub A) we find that in this limit the outflow speed is given by the Alfven speed nu(sub A) in the inflow region and the energy conversion is given by an even split of Poynting flux into enthalpy flux and bulk kinetic energy flux. However, with increasing delta the conversion to enthalpy flux becomes more and more dominant.
Ma, Manman; Xu, Zhenli
2014-12-28
Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects in the framework of the self-consistent field theory. The model incorporates a space- or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Hückel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huber, D.; Bedding, T. R.; Stello, D.
2010-11-10
We have studied solar-like oscillations in {approx}800 red giant stars using Kepler long-cadence photometry. The sample includes stars ranging in evolution from the lower part of the red giant branch to the helium main sequence. We investigate the relation between the large frequency separation ({Delta}{nu}) and the frequency of maximum power ({nu}{sub max}) and show that it is different for red giants than for main-sequence stars, which is consistent with evolutionary models and scaling relations. The distributions of {nu}{sub max} and {Delta}{nu} are in qualitative agreement with a simple stellar population model of the Kepler field, including the first evidencemore » for a secondary clump population characterized by M {approx}> 2 M{sub sun} and {nu}{sub max} {approx_equal} 40-110 {mu}Hz. We measured the small frequency separations {delta}{nu}{sub 02} and {delta}{nu}{sub 01} in over 400 stars and {delta}{nu}{sub 03} in over 40. We present C-D diagrams for l = 1, 2, and 3 and show that the frequency separation ratios {delta}{nu}{sub 02}/{Delta}{nu} and {delta}{nu}{sub 01}/{Delta}{nu} have opposite trends as a function of {Delta}{nu}. The data show a narrowing of the l = 1 ridge toward lower {nu}{sub max}, in agreement with models predicting more efficient mode trapping in stars with higher luminosity. We investigate the offset {epsilon} in the asymptotic relation and find a clear correlation with {Delta}{nu}, demonstrating that it is related to fundamental stellar parameters. Finally, we present the first amplitude-{nu}{sub max} relation for Kepler red giants. We observe a lack of low-amplitude stars for {nu}{sub max} {approx}> 110 {mu}Hz and find that, for a given {nu}{sub max} between 40 and 110 {mu}Hz, stars with lower {Delta}{nu} (and consequently higher mass) tend to show lower amplitudes than stars with higher {Delta}{nu}.« less
Self-consistent electrostatic potential due to trapped plasma in the magnetosphere
NASA Technical Reports Server (NTRS)
Miller, Ronald H.; Khazanov, George V.
1993-01-01
A steady state solution for the self-consistent electrostatic potential due to a plasma confined in a magnetic flux tube is considered. A steady state distribution function is constructed for the trapped particles from the constants of the motion, in the absence of waves and collisions. Using Liouville's theorem, the particle density along the geomagnetic field is determined and found to depend on the local magnetic field, self-consistent electric potential, and the equatorial plasma distribution function. A hot anisotropic magnetospheric plasma in steady state is modeled by a bi-Maxwellian at the equator. The self-consistent electric potential along the magnetic field is calculated assuming quasineutrality, and the potential drop is found to be approximately equal to the average kinetic energy of the equatorially trapped plasma. The potential is compared with that obtained by Alfven and Faelthammar (1963).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Economidou, Daina; Mattioli, Laura; Ubaldi, Massimo
The present study evaluated the consequences of perinatal {delta}{sup 9}-tetrahydrocannabinol ({delta}{sup 9}-THC) treatment (5 mg/kg/day by gavage), either alone or combined with ethanol (3% v/v as the only fluid available), on ethanol self-administration and alcohol-seeking behavior in rat adult offspring. Furthermore, the effect of the selective cannabinoid CB{sub 1} receptor antagonist, SR-141716A, on ethanol self-administration and on reinstatement of ethanol-seeking behavior induced either by stress or conditioned drug-paired cues was evaluated in adult offspring of rats exposed to the same perinatal treatment. Lastly, microarray experiments were conducted to evaluate if perinatal treatment with {delta}{sup 9}-tetrahydrocannabinol, ethanol or their combination causesmore » long-term changes in brain gene expression profile in rats. The results of microarray data analysis showed that 139, 112 and 170 genes were differentially expressed in the EtOH, {delta}{sup 9}-THC, or EtOH + {delta}{sup 9}-THC group, respectively. No differences in alcohol self-administration and alcohol seeking were observed between rat groups. Intraperitoneal (IP) administration of SR-141716A (0.3-3.0 mg/kg) significantly reduced lever pressing for ethanol and blocked conditioned reinstatement of alcohol seeking. At the same doses SR-141716A failed to block foot-shock stress-induced reinstatement of alcohol seeking. The results reveal that perinatal exposure to {delta}{sup 9}-THC ethanol or their combination results in evident changes in gene expression patterns. However, these treatments do not significantly affect vulnerability to ethanol abuse in adult offspring. On the other hand, the results obtained with SR-141716A emphasize that endocannabinoid mechanisms play a major role in ethanol self-administration, as well as in the reinstatement of ethanol-seeking behavior induced by conditioned cues, supporting the idea that cannabinoid CB{sub 1} receptor antagonists may represent interesting agents for the pharmacotherapy of alcoholism.« less
Yu, Yiqun; Jordanova, Vania Koleva; Ridley, Aaron J.; ...
2017-05-10
Here, we report a self-consistent electric field coupling between the midlatitude ionospheric electrodynamics and inner magnetosphere dynamics represented in a kinetic ring current model. This implementation in the model features another self-consistency in addition to its already existing self-consistent magnetic field coupling with plasma. The model is therefore named as Ring current-Atmosphere interaction Model with Self-Consistent magnetic (B) and electric (E) fields, or RAM-SCB-E. With this new model, we explore, by comparing with previously employed empirical Weimer potential, the impact of using self-consistent electric fields on the modeling of storm time global electric potential distribution, plasma sheet particle injection, andmore » the subauroral polarization streams (SAPS) which heavily rely on the coupled interplay between the inner magnetosphere and midlatitude ionosphere. We find the following phenomena in the self-consistent model: (1) The spatially localized enhancement of electric field is produced within 2.5 < L < 4 during geomagnetic active time in the dusk-premidnight sector, with a similar dynamic penetration as found in statistical observations. (2) The electric potential contours show more substantial skewing toward the postmidnight than the Weimer potential, suggesting the resistance on the particles from directly injecting toward the low-L region. (3) The proton flux indeed indicates that the plasma sheet inner boundary at the dusk-premidnight sector is located further away from the Earth than in the Weimer potential, and a “tongue” of low-energy protons extends eastward toward the dawn, leading to the Harang reversal. (4) SAPS are reproduced in the subauroral region, and their magnitude and latitudinal width are in reasonable agreement with data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Yiqun; Jordanova, Vania Koleva; Ridley, Aaron J.
Here, we report a self-consistent electric field coupling between the midlatitude ionospheric electrodynamics and inner magnetosphere dynamics represented in a kinetic ring current model. This implementation in the model features another self-consistency in addition to its already existing self-consistent magnetic field coupling with plasma. The model is therefore named as Ring current-Atmosphere interaction Model with Self-Consistent magnetic (B) and electric (E) fields, or RAM-SCB-E. With this new model, we explore, by comparing with previously employed empirical Weimer potential, the impact of using self-consistent electric fields on the modeling of storm time global electric potential distribution, plasma sheet particle injection, andmore » the subauroral polarization streams (SAPS) which heavily rely on the coupled interplay between the inner magnetosphere and midlatitude ionosphere. We find the following phenomena in the self-consistent model: (1) The spatially localized enhancement of electric field is produced within 2.5 < L < 4 during geomagnetic active time in the dusk-premidnight sector, with a similar dynamic penetration as found in statistical observations. (2) The electric potential contours show more substantial skewing toward the postmidnight than the Weimer potential, suggesting the resistance on the particles from directly injecting toward the low-L region. (3) The proton flux indeed indicates that the plasma sheet inner boundary at the dusk-premidnight sector is located further away from the Earth than in the Weimer potential, and a “tongue” of low-energy protons extends eastward toward the dawn, leading to the Harang reversal. (4) SAPS are reproduced in the subauroral region, and their magnitude and latitudinal width are in reasonable agreement with data.« less
NASA Astrophysics Data System (ADS)
Yu, Yiqun; Jordanova, Vania K.; Ridley, Aaron J.; Toth, Gabor; Heelis, Roderick
2017-05-01
We report a self-consistent electric field coupling between the midlatitude ionospheric electrodynamics and inner magnetosphere dynamics represented in a kinetic ring current model. This implementation in the model features another self-consistency in addition to its already existing self-consistent magnetic field coupling with plasma. The model is therefore named as Ring current-Atmosphere interaction Model with Self-Consistent magnetic (B) and electric (E) fields, or RAM-SCB-E. With this new model, we explore, by comparing with previously employed empirical Weimer potential, the impact of using self-consistent electric fields on the modeling of storm time global electric potential distribution, plasma sheet particle injection, and the subauroral polarization streams (SAPS) which heavily rely on the coupled interplay between the inner magnetosphere and midlatitude ionosphere. We find the following phenomena in the self-consistent model: (1) The spatially localized enhancement of electric field is produced within 2.5 < L < 4 during geomagnetic active time in the dusk-premidnight sector, with a similar dynamic penetration as found in statistical observations. (2) The electric potential contours show more substantial skewing toward the postmidnight than the Weimer potential, suggesting the resistance on the particles from directly injecting toward the low-L region. (3) The proton flux indeed indicates that the plasma sheet inner boundary at the dusk-premidnight sector is located further away from the Earth than in the Weimer potential, and a "tongue" of low-energy protons extends eastward toward the dawn, leading to the Harang reversal. (4) SAPS are reproduced in the subauroral region, and their magnitude and latitudinal width are in reasonable agreement with data.
Utility of correlation techniques in gravity and magnetic interpretation
NASA Technical Reports Server (NTRS)
Chandler, V. W.; Koski, J. S.; Braice, L. W.; Hinze, W. J.
1977-01-01
Internal correspondence uses Poisson's Theorem in a moving-window linear regression analysis between the anomalous first vertical derivative of gravity and total magnetic field reduced to the pole. The regression parameters provide critical information on source characteristics. The correlation coefficient indicates the strength of the relation between magnetics and gravity. Slope value gives delta j/delta sigma estimates of the anomalous source. The intercept furnishes information on anomaly interference. Cluster analysis consists of the classification of subsets of data into groups of similarity based on correlation of selected characteristics of the anomalies. Model studies are used to illustrate implementation and interpretation procedures of these methods, particularly internal correspondence. Analysis of the results of applying these methods to data from the midcontinent and a transcontinental profile shows they can be useful in identifying crustal provinces, providing information on horizontal and vertical variations of physical properties over province size zones, validating long wavelength anomalies, and isolating geomagnetic field removal problems.
Sn nanothreads in GaAs: experiment and simulation
NASA Astrophysics Data System (ADS)
Semenikhin, I.; Vyurkov, V.; Bugaev, A.; Khabibullin, R.; Ponomarev, D.; Yachmenev, A.; Maltsev, P.; Ryzhii, M.; Otsuji, T.; Ryzhii, V.
2016-12-01
The gated GaAs structures like the field-effect transistor with the array of the Sn nanothreads was fabricated via delta-doping of vicinal GaAs surface by Sn atoms with a subsequent regrowth. That results in the formation of the chains of Sn atoms at the terrace edges. Two device models were developed. The quantum model accounts for the quantization of the electron energy spectrum in the self-consistent two-dimensional electric potential, herewith the electron density distribution in nanothread arrays for different gate voltages is calculated. The classical model ignores the quantization and electrons are distributed in space according to 3D density of states and Fermi-Dirac statistics. It turned out that qualitatively both models demonstrate similar behavior, nevertheless, the classical one is in better quantitative agreement with experimental data. Plausibly, the quantization could be ignored because Sn atoms are randomly placed along the thread axis. The terahertz hot-electron bolometers (HEBs) could be based on the structure under consideration.
Polymers at interfaces and in colloidal dispersions.
Fleer, Gerard J
2010-09-15
This review is an extended version of the Overbeek lecture 2009, given at the occasion of the 23rd Conference of ECIS (European Colloid and Interface Society) in Antalya, where I received the fifth Overbeek Gold Medal awarded by ECIS. I first summarize the basics of numerical SF-SCF: the Scheutjens-Fleer version of Self-Consistent-Field theory for inhomogeneous systems, including polymer adsorption and depletion. The conformational statistics are taken from the (non-SCF) DiMarzio-Rubin lattice model for homopolymer adsorption, which enumerates the conformational details exactly by a discrete propagator for the endpoint distribution but does not account for polymer-solvent interaction and for the volume-filling constraint. SF-SCF corrects for this by adjusting the field such that it becomes self-consistent. The model can be generalized to more complex systems: polydispersity, brushes, random and block copolymers, polyelectrolytes, branching, surfactants, micelles, membranes, vesicles, wetting, etc. On a mean-field level the results are exact; the disadvantage is that only numerical data are obtained. Extensions to excluded-volume polymers are in progress. Analytical approximations for simple systems are based upon solving the Edwards diffusion equation. This equation is the continuum variant of the lattice propagator, but ignores the finite segment size (analogous to the Poisson-Boltzmann equation without a Stern layer). By using the discrete propagator for segments next to the surface as the boundary condition in the continuum model, the finite segment size can be introduced into the continuum description, like the ion size in the Stern-Poisson-Boltzmann model. In most cases a ground-state approximation is needed to find analytical solutions. In this way realistic analytical approximations for simple cases can be found, including depletion effects that occur in mixtures of colloids plus non-adsorbing polymers. In the final part of this review I discuss a generalization of the free-volume theory (FVT) for the phase behavior of colloids and non-adsorbing polymer. In FVT the polymer is considered to be ideal: the osmotic pressure Pi follows the Van 't Hoff law, the depletion thickness delta equals the radius of gyration. This restricts the validity of FVT to the so-called colloid limit (polymer much smaller than the colloids). We have been able to find simple analytical approximations for Pi and delta which account for non-ideality and include established results for the semidilute limit. So we could generalize FVT to GFVT, and can now also describe the so-called protein limit (polymer larger than the 'protein-like' colloids), where the binodal polymer concentrations scale in a simple way with the polymer/colloid size ratio. For an intermediate case (polymer size approximately colloid size) we could give a quantitative description of careful experimental data. Copyright 2010 Elsevier B.V. All rights reserved.
A new method to track seed dispersal and recruitment using 15N isotope enrichment.
Carlo, Tomás A; Tewksbury, Joshua J; Martínez Del Río, Carlos
2009-12-01
Seed dispersal has a powerful influence on population dynamics, genetic structuring, evolutionary rates, and community ecology. Yet, patterns of seed dispersal are difficult to measure due to methodological shortcomings in tracking dispersed seeds from sources of interest. Here we introduce a new method to track seed dispersal: stable isotope enrichment. It consists of leaf-feeding plants with sprays of 15N-urea during the flowering stage such that seeds developed after applications are isotopically enriched. We conducted a greenhouse experiment with Solanum americanum and two field experiments with wild Capsicum annuum in southern Arizona, USA, to field-validate the method. First, we show that plants sprayed with 15N-urea reliably produce isotopically enriched progeny, and that delta 15N (i.e., the isotopic ratio) of seeds and seedlings is a linear function of the 15N-urea concentration sprayed on mothers. We demonstrate that three urea dosages can be used to distinctly enrich plants and unambiguously differentiate their offspring after seeds are dispersed by birds. We found that, with high urea dosages, the resulting delta 15N values in seedlings are 10(3) - 10(4) times higher than the delta 15N values of normal plants. This feature allows tracking not only where seeds arrive, but in locations where seeds germinate and recruit, because delta 15N enrichment is detectable in seedlings that have increased in mass by at least two orders of magnitude before fading to normal delta 15N values. Last, we tested a mixing model to analyze seed samples in bulk. We used the delta 15N values of batches (i.e., combined seedlings or seeds captured in seed traps) to estimate the number of enriched seeds coming from isotopically enriched plants in the field. We confirm that isotope enrichment, combined with batch-sampling, is a cheap, reliable, and user-friendly method for bulk-processing seeds and is thus excellent for the detection of rare dispersal events. This method could further the study of dispersal biology, including the elusive, but critically important, estimation of long-distance seed dispersal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krommes, J.A.
2000-01-18
The delta f simulation method is revisited. Statistical coarse-graining is used to rigorously derive the equation for the fluctuation delta f in the particle distribution. It is argued that completely collisionless simulation is incompatible with the achievement of true statistically steady states with nonzero turbulent fluxes because the variance of the particle weights w grows with time. To ensure such steady states, it is shown that for dynamically collisionless situations a generalized thermostat or W-stat may be used in lieu of a full collision operator to absorb the flow of entropy to unresolved fine scales in velocity space. The simplestmore » W-stat can be implemented as a self-consistently determined, time-dependent damping applied to w. A precise kinematic analogy to thermostatted nonequilibrium molecular dynamics (NEMD) is pointed out, and the justification of W-stats for simulations of turbulence is discussed. An extrapolation procedure is proposed such that the long-time, steady-state, collisionless flux can be deduced from several short W-statted runs with large effective collisionality, and a numerical demonstration is given.« less
NASA Astrophysics Data System (ADS)
Pécoul, S.; Heuraux, S.; Koch, R.; Leclert, G.; Bécoulet, A.; Colas, L.
1999-09-01
Self-consistent calculations of the 3D electric field patterns between the screen and the plasma have been made with the ICANT code for realistic antennas. Here we explain how the ICRH antennas of the Tore Supra tokamak are modelled.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pecoul, S.; Heuraux, S.; Koch, R.
1999-09-20
Self-consistent calculations of the 3D electric field patterns between the screen and the plasma have been made with the ICANT code for realistic antennas. Here we explain how the ICRH antennas of the Tore Supra tokamak are modelled.
Self-consistent hybrid functionals for solids: a fully-automated implementation
NASA Astrophysics Data System (ADS)
Erba, A.
2017-08-01
A fully-automated algorithm for the determination of the system-specific optimal fraction of exact exchange in self-consistent hybrid functionals of the density-functional-theory is illustrated, as implemented into the public Crystal program. The exchange fraction of this new class of functionals is self-consistently updated proportionally to the inverse of the dielectric response of the system within an iterative procedure (Skone et al 2014 Phys. Rev. B 89, 195112). Each iteration of the present scheme, in turn, implies convergence of a self-consistent-field (SCF) and a coupled-perturbed-Hartree-Fock/Kohn-Sham (CPHF/KS) procedure. The present implementation, beside improving the user-friendliness of self-consistent hybrids, exploits the unperturbed and electric-field perturbed density matrices from previous iterations as guesses for subsequent SCF and CPHF/KS iterations, which is documented to reduce the overall computational cost of the whole process by a factor of 2.
Ratio of entropy to enthalpy in thermal transitions in biological tissues.
Jacques, Steven L
2006-01-01
Thermal transitions in biological tissues that have been reported in the literature are summarized in terms of the apparent molar entropy (DeltaS) and molar enthalpy (DeltaH) involved in the transition. A plot of DeltaS versus DeltaH for all the data yields a straight line, consistent with the definition of free energy, DeltaG=DeltaH+TDeltaS. Various bonds may be involved in cooperative bond breakage during thermal transitions; however, for the sake of description, the equivalent number of cooperative hydrogen bonds can be cited. Most of the tissue data behave as if 10 to 20 hydrogen bonds are cooperatively broken during coagulation, with one transition, the expression of heat shock protein, involving 90 cooperative hydrogen bonds. The data are consistent with DeltaS=a+bDeltaH, where a=-327.5 J(mol K) and b=31.47 x 10(-4) K(-1). If each additional hydrogen bond adds 19 x 10(3) Jmol to DeltaH, then each additional bond adds 59.8 J(mol K) to DeltaS. Hence, the dynamics of irreversible thermal transitions can be described in terms of one free parameter, the apparent number of cooperative hydrogen bonds broken during the transition.
Self-consistent expansion for the molecular beam epitaxy equation.
Katzav, Eytan
2002-03-01
Motivated by a controversy over the correct results derived from the dynamic renormalization group (DRG) analysis of the nonlinear molecular beam epitaxy (MBE) equation, a self-consistent expansion for the nonlinear MBE theory is considered. The scaling exponents are obtained for spatially correlated noise of the general form D(r-r('),t-t('))=2D(0)[r-->-r(')](2rho-d)delta(t-t(')). I find a lower critical dimension d(c)(rho)=4+2rho, above which the linear MBE solution appears. Below the lower critical dimension a rho-dependent strong-coupling solution is found. These results help to resolve the controversy over the correct exponents that describe nonlinear MBE, using a reliable method that proved itself in the past by giving reasonable results for the strong-coupling regime of the Kardar-Parisi-Zhang system (for d>1), where DRG failed to do so.
Lopsidedness of Self-consistent Galaxies Caused by the External Field Effect of Clusters
NASA Astrophysics Data System (ADS)
Wu, Xufen; Wang, Yougang; Feix, Martin; Zhao, HongSheng
2017-08-01
Adopting Schwarzschild’s orbit-superposition technique, we construct a series of self-consistent galaxy models, embedded in the external field of galaxy clusters in the framework of Milgrom’s MOdified Newtonian Dynamics (MOND). These models represent relatively massive ellipticals with a Hernquist radial profile at various distances from the cluster center. Using N-body simulations, we perform a first analysis of these models and their evolution. We find that self-gravitating axisymmetric density models, even under a weak external field, lose their symmetry by instability and generally evolve to triaxial configurations. A kinematic analysis suggests that the instability originates from both box and nonclassified orbits with low angular momentum. We also consider a self-consistent isolated system that is then placed in a strong external field and allowed to evolve freely. This model, just like the corresponding equilibrium model in the same external field, eventually settles to a triaxial equilibrium as well, but has a higher velocity radial anisotropy and is rounder. The presence of an external field in the MOND universe generically predicts some lopsidedness of galaxy shapes.
Lopsidedness of Self-consistent Galaxies Caused by the External Field Effect of Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Xufen; Wang, Yougang; Feix, Martin
2017-08-01
Adopting Schwarzschild’s orbit-superposition technique, we construct a series of self-consistent galaxy models, embedded in the external field of galaxy clusters in the framework of Milgrom’s MOdified Newtonian Dynamics (MOND). These models represent relatively massive ellipticals with a Hernquist radial profile at various distances from the cluster center. Using N -body simulations, we perform a first analysis of these models and their evolution. We find that self-gravitating axisymmetric density models, even under a weak external field, lose their symmetry by instability and generally evolve to triaxial configurations. A kinematic analysis suggests that the instability originates from both box and nonclassified orbitsmore » with low angular momentum. We also consider a self-consistent isolated system that is then placed in a strong external field and allowed to evolve freely. This model, just like the corresponding equilibrium model in the same external field, eventually settles to a triaxial equilibrium as well, but has a higher velocity radial anisotropy and is rounder. The presence of an external field in the MOND universe generically predicts some lopsidedness of galaxy shapes.« less
Mud volcanoes of the Orinoco Delta, Eastern Venezuela
Aslan, A.; Warne, A.G.; White, W.A.; Guevara, E.H.; Smyth, R.C.; Raney, J.A.; Gibeaut, J.C.
2001-01-01
Mud volcanoes along the northwest margin of the Orinoco Delta are part of a regional belt of soft sediment deformation and diapirism that formed in response to rapid foredeep sedimentation and subsequent tectonic compression along the Caribbean-South American plate boundary. Field studies of five mud volcanoes show that such structures consist of a central mound covered by active and inactive vents. Inactive vents and mud flows are densely vegetated, whereas active vents are sparsely vegetated. Four out of the five mud volcanoes studied are currently active. Orinoco mud flows consist of mud and clayey silt matrix surrounding lithic clasts of varying composition. Preliminary analysis suggests that the mud volcano sediment is derived from underlying Miocene and Pliocene strata. Hydrocarbon seeps are associated with several of the active mud volcanoes. Orinoco mud volcanoes overlie the crest of a mud-diapir-cored anticline located along the axis of the Eastern Venezuelan Basin. Faulting along the flank of the Pedernales mud volcano suggests that fluidized sediment and hydrocarbons migrate to the surface along faults produced by tensional stresses along the crest of the anticline. Orinoco mud volcanoes highlight the proximity of this major delta to an active plate margin and the importance of tectonic influences on its development. Evaluation of the Orinoco Delta mud volcanoes and those elsewhere indicates that these features are important indicators of compressional tectonism along deformation fronts of plate margins. ?? 2001 Elsevier Science B.V. All rights reserved.
Schwartz, L M; Bergman, D J; Dunn, K J; Mitra, P P
1996-01-01
Random walk computer simulations are an important tool in understanding magnetic resonance measurements in porous media. In this paper we focus on the description of pulsed field gradient spin echo (PGSE) experiments that measure the probability, P(R,t), that a diffusing water molecule will travel a distance R in a time t. Because PGSE simulations are often limited by statistical considerations, we will see that valuable insight can be gained by working with simple periodic geometries and comparing simulation data to the results of exact eigenvalue expansions. In this connection, our attention will be focused on (1) the wavevector, k, and time dependent magnetization, M(k, t); and (2) the normalized probability, Ps(delta R, t), that a diffusing particle will return to within delta R of the origin after time t.
NASA Technical Reports Server (NTRS)
Kahn, Brian H.; Fishbein, Evan; Nasiri, Shaima L.; Eldering, Annmarie; Fetzer, Eric J.; Garay, Michael J.; Lee, Sung-Yung
2007-01-01
The consistency of cloud top temperature (Tc) and effective cloud fraction (f) retrieved by the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit (AMSU) observation suite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on the EOS-Aqua platform are investigated. Collocated AIRS and MODIS TC and f are compared via an 'effective scene brightness temperature' (Tb,e). Tb,e is calculated with partial field of view (FOV) contributions from TC and surface temperature (TS), weighted by f and 1-f, respectively. AIRS reports up to two cloud layers while MODIS reports up to one. However, MODIS reports TC, TS, and f at a higher spatial resolution than AIRS. As a result, pixel-scale comparisons of TC and f are difficult to interpret, demonstrating the need for alternatives such as Tb,e. AIRS-MODIS Tb,e differences ((Delta)Tb,e) for identical observing scenes are useful as a diagnostic for cloud quantity comparisons. The smallest values of DTb,e are for high and opaque clouds, with increasing scatter in (Delta)Tb,e for clouds of smaller opacity and lower altitude. A persistent positive bias in DTb,e is observed in warmer and low-latitude scenes, characterized by a mixture of MODIS CO2 slicing and 11-mm window retrievals. These scenes contain heterogeneous cloud cover, including mixtures of multilayered cloudiness and misplaced MODIS cloud top pressure. The spatial patterns of (Delta)Tb,e are systematic and do not correlate well with collocated AIRS-MODIS radiance differences, which are more random in nature and smaller in magnitude than (Delta)Tb,e. This suggests that the observed inconsistencies in AIRS and MODIS cloud fields are dominated by retrieval algorithm differences, instead of differences in the observed radiances. The results presented here have implications for the validation of cloudy satellite retrieval algorithms, and use of cloud products in quantitative analyses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michel, D. T.; Davis, A. K.; Armstrong, W.
Self-emission x-ray shadowgraphy provides a method to measure the ablation-front trajectory and low-mode nonuniformity of a target imploded by directly illuminating a fusion capsule with laser beams. The technique uses time-resolved images of soft x-rays (> 1 keV) emitted from the coronal plasma of the target imaged onto an x-ray framing camera to determine the position of the ablation front. Methods used to accurately measure the ablation-front radius (more » $${\\it\\delta}R=\\pm 1.15~{\\rm\\mu}\\text{m}$$), image-to-image timing ($${\\it\\delta}({\\rm\\Delta}t)=\\pm 2.5$$ ps) and absolute timing ($${\\it\\delta}t=\\pm 10$$ ps) are presented. Angular averaging of the images provides an average radius measurement of$${\\it\\delta}(R_{\\text{av}})=\\pm 0.15~{\\rm\\mu}\\text{m}$$and an error in velocity of$${\\it\\delta}V/V=\\pm 3\\%$$. This technique was applied on the Omega Laser Facility and the National Ignition Facility.« less
Michel, D. T.; Davis, A. K.; Armstrong, W.; ...
2015-07-08
Self-emission x-ray shadowgraphy provides a method to measure the ablation-front trajectory and low-mode nonuniformity of a target imploded by directly illuminating a fusion capsule with laser beams. The technique uses time-resolved images of soft x-rays (> 1 keV) emitted from the coronal plasma of the target imaged onto an x-ray framing camera to determine the position of the ablation front. Methods used to accurately measure the ablation-front radius (more » $${\\it\\delta}R=\\pm 1.15~{\\rm\\mu}\\text{m}$$), image-to-image timing ($${\\it\\delta}({\\rm\\Delta}t)=\\pm 2.5$$ ps) and absolute timing ($${\\it\\delta}t=\\pm 10$$ ps) are presented. Angular averaging of the images provides an average radius measurement of$${\\it\\delta}(R_{\\text{av}})=\\pm 0.15~{\\rm\\mu}\\text{m}$$and an error in velocity of$${\\it\\delta}V/V=\\pm 3\\%$$. This technique was applied on the Omega Laser Facility and the National Ignition Facility.« less
Self-mode-locked chromium-doped forsterite laser generates 50-fs pulses
NASA Technical Reports Server (NTRS)
Seas, A.; Petricevic, V.; Alfano, R. R.
1993-01-01
Stable transform-limited (delta nu-delta tau = 0.32) femtosecond pulses with a FWHM of 50 fs were generated from a self-mode-locked chromium-doped forsterite laser. The forsterite laser was synchronously pumped by a CW mode-locked Nd:YAG (82 MHz) laser that generated picosecond pulses (200-300 ps) and provided the starting mechanism for self-mode-locked operation. Maximum output power was 45 mW for 3.9 W of absorbed pumped power with the use of an output coupler with 1 percent transmission. The self-mode-locked forsterite laser was tuned from 1240 to 1270 nm.
Singular perturbations with boundary conditions and the Casimir effect in the half space
NASA Astrophysics Data System (ADS)
Albeverio, S.; Cognola, G.; Spreafico, M.; Zerbini, S.
2010-06-01
We study the self-adjoint extensions of a class of nonmaximal multiplication operators with boundary conditions. We show that these extensions correspond to singular rank 1 perturbations (in the sense of Albeverio and Kurasov [Singular Perturbations of Differential Operaters (Cambridge University Press, Cambridge, 2000)]) of the Laplace operator, namely, the formal Laplacian with a singular delta potential, on the half space. This construction is the appropriate setting to describe the Casimir effect related to a massless scalar field in the flat space-time with an infinite conducting plate and in the presence of a pointlike "impurity." We use the relative zeta determinant (as defined in the works of Müller ["Relative zeta functions, relative determinants and scattering theory," Commun. Math. Phys. 192, 309 (1998)] and Spreafico and Zerbini ["Finite temperature quantum field theory on noncompact domains and application to delta interactions," Rep. Math. Phys. 63, 163 (2009)]) in order to regularize the partition function of this model. We study the analytic extension of the associated relative zeta function, and we present explicit results for the partition function and for the Casimir force.
Development and optimization of hardware for delta relaxation enhanced MRI.
Harris, Chad T; Handler, William B; Araya, Yonathan; Martínez-Santiesteban, Francisco; Alford, Jamu K; Dalrymple, Brian; Van Sas, Frank; Chronik, Blaine A; Scholl, Timothy J
2014-10-01
Delta relaxation enhanced magnetic resonance (dreMR) imaging requires an auxiliary B0 electromagnet capable of shifting the main magnetic field within a clinical 1.5 Tesla (T) MR system. In this work, the main causes of interaction between an actively shielded, insertable resistive B0 electromagnet and a 1.5T superconducting system are systematically identified and mitigated. The effects of nonideal fabrication of the field-shifting magnet are taken into consideration through careful measurement during winding and improved accuracy in the design of the associated active shield. The shielding performance of the resultant electromagnet is compared against a previously built system in which the shield design was based on an ideal primary coil model. Hardware and software approaches implemented to eliminate residual image artifacts are presented in detail. The eddy currents produced by the newly constructed dreMR system are shown to have a significantly smaller "long-time-constant" component, consistent with the hypothesis that less energy is deposited into the cryostat of the MR system. With active compensation, the dreMR imaging system is capable of 0.22T field shifts within a clinical 1.5T MRI with no significant residual eddy-current fields. Copyright © 2013 Wiley Periodicals, Inc.
Templin, William E.; Cherry, Daniel E.
1997-01-01
Partial data on drainage returns and surface-water withdrawals are presented for areas of the Sacramento-San Joaquin Delta, California, for March 1994 through February 1996. These areas cover most of the delta. Data are also presented for all drainage returns and some surface-water withdrawals for Twitchell Island, which is in the western part of the delta. Changes in land use between 1968 and 1991 are also presented for the delta. Measurements of monthly drainage returns and surface-water withdrawals were made using flowmeters installed in siphons and drain pipes on Twitchell Island. Estimates of monthly returns throughout the delta were made using electric power-consumption data with pump-efficiency-test data. For Twitchell Island, monthly measured drainage returns for the 1995 calendar year totaled about 11,200 acre-feet, whereas drainage returns estimated from power-consumption data totaled 5 percent less at about 10,600 acre-feet. Monthly surface-water withdrawals onto Twitchell Island through 12 of the 21 siphons totaled about 2,400 acre-feet for 1995. For most of the delta, the monthly estimated drainage returns for 1995 totaled about 430,000 acre-feet. The area consisting of Bouldin, Brannan, Staten, Tyler, and Venice Islands had the largest estimated drainage returns for calendar year 1995. Between 1968 and 1991, native vegetation in the delta decreased by 25 percent (about 40,000 acres), and grain and hay crops increased by 340 percent (about 71,000 acres). For Twitchell Island, native vegetation decreased about 77 percent (about 850 acres), while field crop acreage increased by about 44 percent (about 780 acres).
Geology and total petroleum systems of the West-Central Coastal province (7203), West Africa
Brownfield, Michael E.; Charpentier, Ronald R.
2006-01-01
The West-Central Coastal Province of the Sub-Saharan Africa Region consists of the coastal and offshore areas of Cameroon, Equatorial Guinea, Gabon, Democratic Republic of the Congo, Republic of the Congo, Angola (including the disputed Cabinda Province), and Namibia. The area stretches from the east edge of the Niger Delta south to the Walvis Ridge. The West-Central Coastal Province includes the Douala, Kribi-Campo, Rio Muni, Gabon, Congo, Kwanza, Benguela, and Namibe Basins, which together form the Aptian salt basin of equatorial west Africa. The area has had significant exploration for petroleum; more than 295 oil fields have been discovered since 1954. Since 1995, several giant oil fields have been discovered, especially in the deep-water area of the Congo Basin. Although many total petroleum systems may exist in the West-Central Coastal Province, only four major total petroleum systems have been defined. The area of the province north of the Congo Basin contains two total petroleum systems: the Melania-Gamba Total Petroleum System, consisting of Lower Cretaceous source and reservoir rocks, and the Azile-Senonian Total Petroleum System, consisting of Albian to Turonian source rocks and Cretaceous reservoir rocks. Two assessment units are defined in the West-Central Coastal Province north of the Congo Basin: the Gabon Subsalt and the Gabon Suprasalt Assessment Units. The Congo Basin contains the Congo Delta Composite Total Petroleum System, consisting of Lower Cretaceous to Tertiary source and reservoir rocks. The Central Congo Delta and Carbonate Platform and the Central Congo Turbidites Assessment Units are defined in the Congo Delta Composite Total Petroleum System. The area south of the Congo Basin contains the Cuanza Composite Total Petroleum System, consisting of Lower Cretaceous to Tertiary source and reservoir rocks. The Cuanza-Namibe Assessment Unit is defined in the Cuanza Composite Total Petroleum System. The U.S. Geological Survey (USGS) assessed the potential for undiscovered conventional oil and gas resources in this province as part of its World Petroleum Assessment 2000. The USGS estimated a mean of 29.7 billion barrels of undiscovered conventional oil, 88.0 trillion cubic feet of gas, and 4.2 billion barrels of natural gas liquids. Most of the hydrocarbon potential remains in the offshore waters of the province in the Central Congo Turbidites Assessment Unit. Large areas of the offshore parts of the Kwanza, Douala, Kribi-Campo, and Rio Muni Basins are underexplored, considering their size, and current exploration activity suggests that the basins have hydrocarbon potential. Since about 1995, the offshore part of the Congo Basin has become a major area for new field discoveries and for hydrocarbon exploration, and many deeper water areas in the basin have excellent hydrocarbon potential. Gas resources may be significant and accessible in areas where the zone of oil generation is relatively shallow.
Coal depositional models in some Tertiary and Cretaceous coal fields in the U.S. Western Interior
Flores, R.M.
1979-01-01
Detailed stratigraphic and sedimentological studies of the Tertiary Tongue River Member of the Fort Union Formation in the Powder River Basin, Wyoming, and the Cretaceous Blackhawk Formation and Star Point Sandstone in the Wasatch Plateau, Utah, indicate that the depositional environments of coal played a major role in controlling coal thickness, lateral continuity, potential minability, and type of floor and roof rocks. The potentially minable, thick coal beds of the Tongue River Member were primarily formed in long-lived floodbasin backswamps of upper alluvial plain environment. Avulsion of meandering fluvial channels contributed to the erratic lateral extent of coals in this environment. Laterally extensive coals formed in floodbasin backswamps of a lower alluvial plain environment; however, interruption by overbank and crevasse-splay sedimentation produced highly split and merging coal beds. Lacustrine sedimentation common to the lower alluvial plain, similar to the lake-covered lower alluvial valley of the Atchafalaya River Basin, is related to a high-constructive delta. In contrast to these alluvial coals are the deltaic coal deposits of the Blackhawk Formation. The formation consists of three coal populations: upper delta plain, lower delta plain, and 'back-barrier'. Coals of the lower delta plain are thick and laterally extensive, in contrast to those of the upper delta plain and 'back-barrier', which contain abundant, very thin and laterally discontinuous carbonaceous shale partings. The reworking of the delta-front sediments of the Star Point Sandstone suggests that the Blackhawk-Star Point delta was a high-destructive system. ?? 1979.
ERIC Educational Resources Information Center
Akpochafo, G. O.
2014-01-01
This study investigated self efficacy and some demographic variables as predictors of occupational stress among primary school teachers in Delta State. Three hypotheses were formulated to guide the study. The study adopted a descriptive survey design that utilized an expost-facto research type. A sample of one hundred and twenty primary school…
Decorrelation Times of Photospheric Fields and Flows
NASA Technical Reports Server (NTRS)
Welsch, B. T.; Kusano, K.; Yamamoto, T. T.; Muglach, K.
2012-01-01
We use autocorrelation to investigate evolution in flow fields inferred by applying Fourier Local Correlation Tracking (FLCT) to a sequence of high-resolution (0.3 "), high-cadence (approx = 2 min) line-of-sight magnetograms of NOAA active region (AR) 10930 recorded by the Narrowband Filter Imager (NFI) of the Solar Optical Telescope (SOT) aboard the Hinode satellite over 12 - 13 December 2006. To baseline the timescales of flow evolution, we also autocorrelated the magnetograms, at several spatial binnings, to characterize the lifetimes of active region magnetic structures versus spatial scale. Autocorrelation of flow maps can be used to optimize tracking parameters, to understand tracking algorithms f susceptibility to noise, and to estimate flow lifetimes. Tracking parameters varied include: time interval Delta t between magnetogram pairs tracked, spatial binning applied to the magnetograms, and windowing parameter sigma used in FLCT. Flow structures vary over a range of spatial and temporal scales (including unresolved scales), so tracked flows represent a local average of the flow over a particular range of space and time. We define flow lifetime to be the flow decorrelation time, tau . For Delta t > tau, tracking results represent the average velocity over one or more flow lifetimes. We analyze lifetimes of flow components, divergences, and curls as functions of magnetic field strength and spatial scale. We find a significant trend of increasing lifetimes of flow components, divergences, and curls with field strength, consistent with Lorentz forces partially governing flows in the active photosphere, as well as strong trends of increasing flow lifetime and decreasing magnitudes with increases in both spatial scale and Delta t.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-22
..., Bay-Delta Fish and Wildlife Office, 650 Capitol Mall, 8th Floor, Sacramento, CA 95814. Please submit.... FOR FURTHER INFORMATION CONTACT: Mike Chotkowski, Field Supervisor, Bay-Delta Fish and Wildlife Office... prepared by a team of Service biologists from the Service's Bay-Delta, Carlsbad, Ventura, and Arcata Field...
Symplectic multiparticle tracking model for self-consistent space-charge simulation
Qiang, Ji
2017-01-23
Symplectic tracking is important in accelerator beam dynamics simulation. So far, to the best of our knowledge, there is no self-consistent symplectic space-charge tracking model available in the accelerator community. In this paper, we present a two-dimensional and a three-dimensional symplectic multiparticle spectral model for space-charge tracking simulation. This model includes both the effect from external fields and the effect of self-consistent space-charge fields using a split-operator method. Such a model preserves the phase space structure and shows much less numerical emittance growth than the particle-in-cell model in the illustrative examples.
Banerjee, Amartya S.; Suryanarayana, Phanish; Pask, John E.
2016-01-21
Pulay's Direct Inversion in the Iterative Subspace (DIIS) method is one of the most widely used mixing schemes for accelerating the self-consistent solution of electronic structure problems. In this work, we propose a simple generalization of DIIS in which Pulay extrapolation is performed at periodic intervals rather than on every self-consistent field iteration, and linear mixing is performed on all other iterations. Lastly, we demonstrate through numerical tests on a wide variety of materials systems in the framework of density functional theory that the proposed generalization of Pulay's method significantly improves its robustness and efficiency.
Symplectic multiparticle tracking model for self-consistent space-charge simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiang, Ji
Symplectic tracking is important in accelerator beam dynamics simulation. So far, to the best of our knowledge, there is no self-consistent symplectic space-charge tracking model available in the accelerator community. In this paper, we present a two-dimensional and a three-dimensional symplectic multiparticle spectral model for space-charge tracking simulation. This model includes both the effect from external fields and the effect of self-consistent space-charge fields using a split-operator method. Such a model preserves the phase space structure and shows much less numerical emittance growth than the particle-in-cell model in the illustrative examples.
Skin friction fields on delta wings
NASA Astrophysics Data System (ADS)
Woodiga, S. A.; Liu, Tianshu
2009-12-01
The normalized skin friction fields on a 65° delta wing and a 76°/40° double-delta wing are measured by using a global luminescent oil-film skin friction meter. The detailed topological structures of skin friction fields on the wings are revealed for different angles of attack and the important features are detected such as reattachment lines, secondary separation lines, vortex bursting and vortex interaction. The comparisons with the existing flow visualization results are discussed.
Effects of a nearby Mn delta layer on the optical properties of an InGaAs/GaAs quantum well
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balanta, M. A. G., E-mail: magbfisc@ifi.unicamp.br; Brasil, M. J. S. P.; Iikawa, F.
We investigated the effects of nearby Mn ions on the confined states of a InGaAs/GaAs quantum well through circularly polarized and magneto-optical measurements. The addition of a Mn delta-doping layer at the barrier close to the well gives rise to surprisingly narrow absorption peaks in the photoluminescence excitation spectra. The peaks become increasingly stronger for decreasing spacer-layer thicknesses between the quantum well and the Mn layer. Most of the peaks were identified based on self-consistent calculations; however, we observed additional peaks that cannot be identified with quantum well transitions, which origin we attribute to an enhanced exciton-phonon coupling. Finally, wemore » discuss possible effects related to the exciton magneto-polaron complex in the reinforcement of the photoluminescence excitation peaks.« less
Theoretical analysis of high-order harmonic generation from a coherent superposition of states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milosevic, Dejan B.; Max-Born-Institut, Max-Born-Strasse 2a, Berlin, 12489
2006-02-15
A quantum theory of high-order harmonic generation by a strong laser field in the presence of more bound states is formulated. The obtained numerical and analytical results for a two-state hydrogenlike atom model show that the harmonic spectrum consists of two parts: a usual single-state harmonic spectrum of odd harmonics having the energies (2k+1){omega} and a resonant part with the peaks around the excitation energy {delta}{omega}. The energy of the harmonics in the resonant part of the spectrum is equal to {delta}{omega}{+-}{omega}, {delta}{omega}{+-}3{omega}, .... For energies higher than the excitation energy, the resonant part forms a plateau, followed by amore » cutoff. The emission rate of the harmonics in this resonant plateau is many orders of magnitude higher than that of the harmonics generated in the presence of the ground state alone. The influence of the depletion of the initial states, as well as of the pulse shape and intensity, is analyzed.« less
NASA Technical Reports Server (NTRS)
Gamayunov, K. V.; Khazanov, G. V.; Liemohn, M. W.; Fok, M.-C.; Ridley, A. J.
2009-01-01
Further development of our self-consistent model of interacting ring current (RC) ions and electromagnetic ion cyclotron (EMIC) waves is presented. This model incorporates large scale magnetosphere-ionosphere coupling and treats self-consistently not only EMIC waves and RC ions, but also the magnetospheric electric field, RC, and plasmasphere. Initial simulations indicate that the region beyond geostationary orbit should be included in the simulation of the magnetosphere-ionosphere coupling. Additionally, a self-consistent description, based on first principles, of the ionospheric conductance is required. These initial simulations further show that in order to model the EMIC wave distribution and wave spectral properties accurately, the plasmasphere should also be simulated self-consistently, since its fine structure requires as much care as that of the RC. Finally, an effect of the finite time needed to reestablish a new potential pattern throughout the ionosphere and to communicate between the ionosphere and the equatorial magnetosphere cannot be ignored.
Body-induced vortical flows: a common mechanism for self-corrective trimming control in boxfishes.
Bartol, Ian K; Gharib, Morteza; Webb, Paul W; Weihs, Daniel; Gordon, Malcolm S
2005-01-01
Boxfishes (Teleostei: Ostraciidae) are marine fishes having rigid carapaces that vary significantly among taxa in their shapes and structural ornamentation. We showed previously that the keels of the carapace of one species of tropical boxfish, the smooth trunkfish, produce leading edge vortices (LEVs) capable of generating self-correcting trimming forces during swimming. In this paper we show that other tropical boxfishes with different carapace shapes have similar capabilities. We conducted a quantitative study of flows around the carapaces of three morphologically distinct boxfishes (spotted boxfish, scrawled cowfish and buffalo trunkfish) using stereolithographic models and three separate but interrelated analytical approaches: digital particle image velocimetry (DPIV), pressure distribution measurements, and force balance measurements. The ventral keels of all three forms produced LEVs that grew in circulation along the bodies, resembling the LEVs produced around delta-winged aircraft. These spiral vortices formed above the keels and increased in circulation as pitch angle became more positive, and formed below the keels and increased in circulation as pitch angle became more negative. Vortices also formed along the eye ridges of all boxfishes. In the spotted boxfish, which is largely trapezoidal in cross section, consistent dorsal vortex growth posterior to the eye ridge was also present. When all three boxfishes were positioned at various yaw angles, regions of strongest concentrated vorticity formed in far-field locations of the carapace compared with near-field areas, and vortex circulation was greatest posterior to the center of mass. In general, regions of localized low pressure correlated well with regions of attached, concentrated vorticity, especially around the ventral keels. Although other features of the carapace also affect flow patterns and pressure distributions in different ways, the integrated effects of the flows were consistent for all forms: they produce trimming self-correcting forces, which we measured directly using the force balance. These data together with previous work on smooth trunkfish indicate that body-induced vortical flows are a common mechanism that is probably significant for trim control in all species of tropical boxfishes.
NASA Astrophysics Data System (ADS)
Raghunathan, A. V.; Aluru, N. R.
2007-07-01
A self-consistent molecular dynamics (SCMD) formulation is presented for electric-field-mediated transport of water and ions through a nanochannel connected to reservoirs or baths. The SCMD formulation is compared with a uniform field MD approach, where the applied electric field is assumed to be uniform, for 2nm and 3.5nm wide nanochannels immersed in a 0.5M KCl solution. Reservoir ionic concentrations are maintained using the dual-control-volume grand canonical molecular dynamics technique. Simulation results with varying channel height indicate that the SCMD approach calculates the electrostatic potential in the simulation domain more accurately compared to the uniform field approach, with the deviation in results increasing with the channel height. The translocation times and ionic fluxes predicted by uniform field MD can be substantially different from those predicted by the SCMD approach. Our results also indicate that during a 2ns simulation time K+ ions can permeate through a 1nm channel when the applied electric field is computed self-consistently, while the permeation is not observed when the electric field is assumed to be uniform.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hattori, Koichi, E-mail: khattori@yonsei.ac.kr; Itakura, Kazunori, E-mail: kazunori.itakura@kek.jp; Department of Particle and Nuclear Studies, Graduate University for Advanced Studies
2013-07-15
We compute the refractive indices of a photon propagating in strong magnetic fields on the basis of the analytic representation of the vacuum polarization tensor obtained in our previous paper. When the external magnetic field is strong enough for the fermion one-loop diagram of the polarization tensor to be approximated by the lowest Landau level, the propagating mode in parallel to the magnetic field is subject to modification: The refractive index deviates from unity and can be very large, and when the photon energy is large enough, the refractive index acquires an imaginary part indicating decay of a photon intomore » a fermion–antifermion pair. We study dependences of the refractive index on the propagating angle and the magnetic-field strength. It is also emphasized that a self-consistent treatment of the equation which defines the refractive index is indispensable for accurate description of the refractive index. This self-consistent treatment physically corresponds to consistently including the effects of back reactions of the distorted Dirac sea in response to the incident photon. -- Highlights: •Vacuum birefringence and photon decay are described by the complex refractive index. •Resummed photon vacuum polarization tensor in the lowest Landau level is used. •Back reactions from the distorted Dirac sea are self-consistently taken into account. •Self-consistent treatment drastically changes structure in photon energy dependence. •Dependences on photon propagation angle and magnetic-field strength are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dilts, R.P. Jr.
In vitro autoradiographic techniques were coupled with selective chemical lesions of the A10 dopamine cells and intrinsic perikarya of the region to delineate the anatomical localization of mu and delta opioid receptors, as well as, neurotensin receptors. Mu opioid receptors were labeled with {sup 125}I-DAGO. Delta receptors were labeled with {sup 125}I-DPDPE. Neurotensin receptors were labeled with {sup 125}I-NT3. Unilateral lesions of the dopamine perikarya were produced by injections of 6-OHDA administered in the ventral mesencephalon. Unilateral lesions of intrinsic perikarya were induced by injections of quinolinic acid in to the A10 dopamine cell region. Unilateral lesions produced with 6-OHDAmore » resulted in the loss of neurotensin receptors in the A10 region and within the terminal fields. Mu opioid receptors were unaffected by this treatment, but delta opioid receptors increased in the contralateral striatum and nucleus accumbens following 6-OHDA administration. Quinolinic acid produced a reduction of mu opioid receptors within the A10 region with a concomitant reduction in neurotensin receptors in both the cell body region and terminal fields. These results are consistent with a variety of biochemical and behavioral data which suggest the indirect modulation of dopamine transmission by the opioids. In contrast these results strongly indicate a direct modulation of the mesolimbic dopamine system by neurotensin.« less
NASA Astrophysics Data System (ADS)
Lai, Steven Yueh Jen; Hsiao, Yung-Tai; Wu, Fu-Chun
2017-12-01
Deltas form over basements of various slope configurations. While the morphodynamics of prograding deltas over single-slope basements have been studied previously, our understanding of delta progradation over segmented basements is still limited. Here we use experimental and analytical approaches to investigate the deltaic morphologies developing over two-slope basements with unequal subaerial and subaqueous slopes. For each case considered, the scaled profiles of the evolving delta collapse to a single profile for constant water and sediment influxes, allowing us to use the analytical self-similar profiles to investigate the individual effects of subaerial/subaqueous slopes. Individually varying the subaerial/subaqueous slopes exerts asymmetric effects on the morphologies. Increasing the subaerial slope advances the entire delta; increasing the subaqueous slope advances the upstream boundary of the topset yet causes the downstream boundary to retreat. The delta front exhibits a first-retreat-then-advance migrating trend with increasing subaqueous slope. A decrease in subaerial topset length is always accompanied by an increase in subaqueous volume fraction, no matter which segment is steepened. Applications are presented for estimating shoreline retreat caused by steepening of basement slopes, and estimating subaqueous volume and delta front using the observed topset length. The results may have implications for real-world delta systems subjected to upstream tectonic uplift and/or downstream subsidence. Both scenarios would exhibit reduced topset lengths, which are indicative of the accompanied increases in subaqueous volume and signal tectonic uplift and/or subsidence that are at play. We highlight herein the importance of geometric controls on partitioning of sediment between subaerial and subaqueous delta components.
Self-Consistent Field Lattice Model for Polymer Networks.
Tito, Nicholas B; Storm, Cornelis; Ellenbroek, Wouter G
2017-12-26
A lattice model based on polymer self-consistent field theory is developed to predict the equilibrium statistics of arbitrary polymer networks. For a given network topology, our approach uses moment propagators on a lattice to self-consistently construct the ensemble of polymer conformations and cross-link spatial probability distributions. Remarkably, the calculation can be performed "in the dark", without any prior knowledge on preferred chain conformations or cross-link positions. Numerical results from the model for a test network exhibit close agreement with molecular dynamics simulations, including when the network is strongly sheared. Our model captures nonaffine deformation, mean-field monomer interactions, cross-link fluctuations, and finite extensibility of chains, yielding predictions that differ markedly from classical rubber elasticity theory for polymer networks. By examining polymer networks with different degrees of interconnectivity, we gain insight into cross-link entropy, an important quantity in the macroscopic behavior of gels and self-healing materials as they are deformed.
Marijuana and cannabinoid regulation of brain reward circuits.
Lupica, Carl R; Riegel, Arthur C; Hoffman, Alexander F
2004-09-01
The reward circuitry of the brain consists of neurons that synaptically connect a wide variety of nuclei. Of these brain regions, the ventral tegmental area (VTA) and the nucleus accumbens (NAc) play central roles in the processing of rewarding environmental stimuli and in drug addiction. The psychoactive properties of marijuana are mediated by the active constituent, Delta(9)-THC, interacting primarily with CB1 cannabinoid receptors in a large number of brain areas. However, it is the activation of these receptors located within the central brain reward circuits that is thought to play an important role in sustaining the self-administration of marijuana in humans, and in mediating the anxiolytic and pleasurable effects of the drug. Here we describe the cellular circuitry of the VTA and the NAc, define the sites within these areas at which cannabinoids alter synaptic processes, and discuss the relevance of these actions to the regulation of reinforcement and reward. In addition, we compare the effects of Delta(9)-THC with those of other commonly abused drugs on these reward circuits, and we discuss the roles that endogenous cannabinoids may play within these brain pathways, and their possible involvement in regulating ongoing brain function, independently of marijuana consumption. We conclude that, whereas Delta(9)-THC alters the activity of these central reward pathways in a manner that is consistent with other abused drugs, the cellular mechanism through which this occurs is likely different, relying upon the combined regulation of several afferent pathways to the VTA.
ERIC Educational Resources Information Center
Iyeke, Patrick; Dafe, Onoharigho Festus
2016-01-01
This study is set out to ascertain the knowledge of hazards of self-medication among Secondary School Students. The descriptive Survey design was adopted for the work. The population of the study is 9,500 students in the public Secondary Schools, in Ethiope East Local Government Area of Delta State. The sample is 300 students randomly selected…
Functional level-set derivative for a polymer self consistent field theory Hamiltonian
NASA Astrophysics Data System (ADS)
Ouaknin, Gaddiel; Laachi, Nabil; Bochkov, Daniil; Delaney, Kris; Fredrickson, Glenn H.; Gibou, Frederic
2017-09-01
We derive functional level-set derivatives for the Hamiltonian arising in self-consistent field theory, which are required to solve free boundary problems in the self-assembly of polymeric systems such as block copolymer melts. In particular, we consider Dirichlet, Neumann and Robin boundary conditions. We provide numerical examples that illustrate how these shape derivatives can be used to find equilibrium and metastable structures of block copolymer melts with a free surface in both two and three spatial dimensions.
Self-consistent simulation of radio frequency multipactor on micro-grooved dielectric surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Libing; Wang, Jianguo, E-mail: wanguiuc@mail.xjtu.edu.cn; Northwest Institute of Nuclear Technology, Xi'an, Shaanxi 710024
2015-02-07
The multipactor plays a key role in the surface breakdown on the feed dielectric window irradiated by high power microwave. To study the suppression of multipactor, a 2D electrostatic PIC-MCC simulation code was developed. The space charge field, including surface deposited charge and multipactor electron charge field, is obtained by solving 2D Poisson's equation in time. Therefore, the simulation is self-consistent and does not require presetting a fixed space charge field. By using this code, the self-consistent simulation of the RF multipactor on the periodic micro-grooved dielectric surface is realized. The 2D space distributions of the multipactor electrons and spacemore » charge field are presented. From the simulation results, it can be found that only half slopes have multipactor discharge when the slope angle exceeds a certain value, and the groove presents a pronounced suppression effect on the multipactor.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krommes, J.A.
1999-05-01
The {delta}f simulation method is revisited. Statistical coarse graining is used to rigorously derive the equation for the fluctuation {delta}f in the particle distribution. It is argued that completely collisionless simulation is incompatible with the achievement of true statistically steady states with nonzero turbulent fluxes because the variance {ital W} of the particle weights {ital w} grows with time. To ensure such steady states, it is shown that for dynamically collisionless situations a generalized thermostat or {open_quotes}{ital W} stat{close_quotes} may be used in lieu of a full collision operator to absorb the flow of entropy to unresolved fine scales inmore » velocity space. The simplest {ital W} stat can be implemented as a self-consistently determined, time-dependent damping applied to {ital w}. A precise kinematic analogy to thermostatted nonequilibrium molecular dynamics is pointed out, and the justification of {ital W} stats for simulations of turbulence is discussed. An extrapolation procedure is proposed such that the long-time, steady-state, collisionless flux can be deduced from several short {ital W}-statted runs with large effective collisionality, and a numerical demonstration is given. {copyright} {ital 1999 American Institute of Physics.}« less
Strong transverse fields in delta-spots
NASA Technical Reports Server (NTRS)
Zirin, Harold; Wang, Haimin
1993-01-01
Spectroscopic measurements of the strength and direction of transverse magnetic fields in six delta-spots are presented. The field direction is determined by the relative strength of the pi- and sigma-components at different polarizer orientations, and is, with one exception, parallel to the neutral line and as strong as the umbral field. Field strengths determined by line splitting are as high as 3980 G.
Self-consistent theory of nanodomain formation on non-polar surfaces of ferroelectrics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozovska, Anna N.; Obukhovskii, Vyacheslav; Fomichov, Evhen
2016-04-28
We propose a self-consistent theoretical approach capable of describing the features of the anisotropic nanodomain formation induced by a strongly inhomogeneous electric field of a charged scanning probe microscopy tip on nonpolar cuts of ferroelectrics. We obtained that a threshold field, previously regarded as an isotropic parameter, is an anisotropic function that is specified from the polar properties and lattice pinning anisotropy of a given ferroelectric in a self-consistent way. The proposed method for the calculation of the anisotropic threshold field is not material specific, thus the field should be anisotropic in all ferroelectrics with the spontaneous polarization anisotropy alongmore » the main crystallographic directions. The most evident examples are uniaxial ferroelectrics, layered ferroelectric perovskites, and low-symmetry incommensurate ferroelectrics. Obtained results quantitatively describe the differences at several times in the nanodomain length experimentally observed on X and Y cuts of LiNbO3 and can give insight into the anisotropic dynamics of nanoscale polarization reversal in strongly inhomogeneous electric fields.« less
Field dependence of interface-trap buildup in polysilicon and metal gate MOS devices
NASA Astrophysics Data System (ADS)
Shaneyfelt, M. R.; Schwank, J. R.; Fleetwood, D. M.; Winokur, P. S.; Hughes, K. L.
1990-12-01
The electric field dependence of radiation-induced oxide- and interface-trap charge (Delta Vot and Delta Vit) generation for polysilicon- and metal-gate MOS transistors is investigated at electric fields (Eox) from -4.2 MV/cm to +4.7 MV/cm. If electron-hole recombination effects are taken into account, the absolute value of Delta Vot and the saturated value of Delta Vit for both polysilicon- and metal-gate transistors are shown to follow an approximate E exp -1/2 field dependence for Eox = 0.4 MV/cm or greater. An E exp -1/2 dependence for the saturated value of Delta Vit was also observed for negative-bias irradiation followed by a constant positive-bias anneal. The E exp -1/2 field dependence observed suggests that the total number of interface traps created in these devices may be determined by hole trapping near the Si/SiO2 interface for positive-bias irradiation or near the gate/SiO2 interface for negative bias irradiation, though H+ drift remains the likely rate-limiting step in the process. Based on these results, a hole-trapping/hydrogen transport model-involving hole trapping and subsequent near-interfacial H+ release, transport, and reaction at the interface-is proposed as a possible explanation of Delta Vit buildup in these polysilicon- and metal-gate transistors.
Tritiated amorphous silicon films and devices
NASA Astrophysics Data System (ADS)
Kosteski, Tome
The do saddle-field glow discharge deposition technique has been used to bond tritium within an amorphous silicon thin film network using silane and elemental tritium in the glow discharge. The concentration of tritium is approximately 7 at. %. Minimal outgassing of tritium from tritiated hydrogenated amorphous silicon (a-Si:H:T) at room temperature suggests that tritium is bonded stably. Tritium effusion only occurred at temperatures above the film's growth temperature. The radioactive decay of tritium results in the production of high-energy beta particles. Each beta particle can generate on average approximately 1300 electron-hole pairs in a-Si:H:T. Electrical conductivity of a-Si:H:T is shown to be due to a thermally activated process and due to the generation of excess carriers by the beta particles. p-i-n betavoltaic devices have been made with a-Si:H:T in the intrinsic (i-) region. The i-region consisted of either a-Si:H:T, or a thin section of a-Si:H:T (a Delta layer) sandwiched between undoped hydrogenated amorphous silicon (a-Si:H). The excess carriers generated in the i-region are separated by the device's built-in electric field. Short-circuit currents (Isc ), open-circuit voltages (Voc), and power have been measured and correlated to the generation of excess carriers in the i-region. Good devices were made at a substrate temperature of 250°C and relatively large flow rates of silane and tritium; this ensures that there are more monohydride bonds than dihydride bonds. Under dark conditions, Isc, and Voc have been found to decrease rapidly. This is consistent with the production of silicon neutral dangling bonds (5 x 1017cm-3 per day) from the loss of tritium due to its transmutation into helium. Dangling bonds reduce carrier lifetime and weaken the electric field in the i-region. The short-circuit current from Delta layer devices decreased more slowly and settled to higher values for narrower Delta layers. This is because the dangling bonds are isolated to the Delta layer and the lifetime of excess carriers generated in the a-Si:H remains unaffected. Annealing a-Si:H:T at 120°C for approximately one hour is shown to remove dangling bonds produced from the decay of bonded tritium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mercouris, Theodoros; Nicolaides, Cleanthes A.; Physics Department, National Technical University, Athens
2003-06-01
The solution of the many-electron many-photon (MEMP) problem for strong fields is facilitated if the corresponding theory entails a computational methodology that combines economy with accuracy and generality, as regards electronic structure and the incorporation of the continuous spectrum. By applying the nonperturbative MEMP theory (MEMPT) to the prototypical Li{sup -} {sup 1}S state, where both radial and angular correlations in the initial state and interchannel couplings in the final scattering states cannot be ignored, we computed frequency-dependent widths {gamma}({omega}) of multiphoton detachment, as well as energy shifts {delta}({omega}), for intensities 1x10{sup 9}-1x10{sup 11} W/cm{sup 2}, using one- as wellmore » as two-color fields. Even though the 1s{sup 2}2p {sup 2}P{sup o} threshold is kept energetically closed, its coupling to the open channel 1s{sup 2}2s {sup 2}S cannot be ignored. For the two-color MEMP problem, the present application of the MEMPT provides results for a four-electron system, whereby the self-consistent field, electron correlation, and interchannel coupling are taken into account. The results for ({omega}, 3{omega}) laser fields exhibit the recently predicted [Th. Mercouris and C.A. Nicolaides, Phys. Rev. A 63, 013411 (2001)] linear dependence of the rate on cos {phi}, where {phi} is the phase difference of the two weak fields. Based on this and on lowest-order perturbation theory (LOPT), we obtain a quantity characteristic of the system atom plus fields, which we name the 'interference generalized cross section'. For the one-color system, comparison is made with our previous conclusions [C.A. Nicolaides and Th. Mercouris, Chem. Phys. Lett. 159, 45 (1989); J. Opt. Soc. Am. B 7, 494 (1990)] and with results from recent calculations of the two- and three-photon detachment rates by Glass et al. [J. Phys. B 31, L667 (1998)], who implemented R-matrix Floquet theory, and by Telnov and Chu [Phys. Rev. A 66, 043417 (2002)], who implemented time-dependent density-functional theory in the Floquet formulation via exterior complex scaling. Similarities as well as discrepancies are observed. Our results for {gamma}({omega}) and {delta}({omega}) involve a dense set of values as a function of {omega} and provide a clear picture of the physics below, at, and above the 3{yields}2 photon threshold.« less
Magnetization and transport properties of silver-sheathed (Hg, Re)Ba2Ca2Cu3O8+delta tapes
NASA Astrophysics Data System (ADS)
Su, J. H.; Sastry, P. V. P. S. S.; Schwartz, J.
2003-10-01
(Hg, Re)Ba2Ca2Cu3O8+delta ((Hg, Re)-1223) samples have been fabricated by wrapping Re0.2Ba2Ca2Cu3Oy precursor powder within Ag foil and pressing or rolling. The Ag/precursor composite is then reacted with CaHgO2 in sealed reaction tubes. X-ray diffraction (XRD) patterns showed only one superconducting phase, (Hg, Re)-1223, in agreement with magnetization measurements showing an onset critical temperature (Tc) of 132 K. The magnetization properties were studied by dc magnetic measurements. The irreversibility line (Hirr), deduced from magnetization hysteresis loops, is approximated by a power law, Hirr ~ (1 - T/Tc)n, with n ~ 2.5, indicating moderate coupling between CuO2 layers compared to YBa2Cu3O7 (n ~ 1.5) and Bi/Tl-based superconductors (n ~ 5.5). The temperature dependence of the magnetization hysteresis loop width DeltaM showed three regimes, dominated by weak links at low temperature (regime I), thermally activated depinning of vortices at intermediate temperature (regime II) and giant flux creep at high temperature (regime III), respectively. Two field dependences were found in the intragrain critical current density (Jmagc) versus applied field at various temperatures: a weak one at lower temperature (leq50 K) and a stronger one at high temperature (geq65 K), indicating a transition from vortex lattice to vortex liquid in the tapes. The transport critical current density (Jtranc) of ~3 × 103 A cm-2 at 4.2 K and self-field was comparable to those for bulk Hg-based superconductors, indicating granular nature of the samples, which was confirmed further by XRD, scanning electron microscopy (SEM) and magneto-optical imaging (MOI).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Mandeep; Thanh, Dong Nguyen, E-mail: Dong.Nguyen.Thanh@vscht.c; Ulbrich, Pavel
2010-12-15
Single-phase {alpha}-MnO{sub 2} nanorods and {delta}-MnO{sub 2} nano-fiber clumps were synthesized using manganese pentahydrate in an aqueous solution. These nanomaterials were characterized using the Transmission Electron Microscope (TEM), Field Emission Scanning Electron Microscope (FE-SEM), Powder X-ray diffraction (XRD) and the Brunauer-Elmet-Teller nitrogen adsorption technique (BET-N{sub 2} adsorption). The structural analysis shows that {alpha}-MnO{sub 2} (2x2 tunnel structure) has the form of needle-shaped nanorods and {delta}-MnO{sub 2} (2D-layered structure) consists of fine needle-like fibers arranged in ball-like aggregates. Batch adsorption experiments were carried out to determine the effect of pH on adsorption kinetics and adsorption capacity for the removal of As(V)more » from aqueous solution onto these two types of nanoadsorbents. The adsorption capacity of As(V) was found to be highly pH dependent. The adsorption of As(V) onto {alpha}-MnO{sub 2} reached equilibrium more rapidly with higher adsorption capacity compared to {delta}-MnO{sub 2}. -- Graphical abstract: {alpha}-MnO{sub 2} (2x2 tunnel structure) nanorods and {delta}-MnO{sub 2} (2-D layered structure) nano-fiber clumps were synthesized in a facile way in an aqueous solution and characterized by TEM, FE-SEM, XRD and BET-N{sub 2} adsorption techniques. The structural analysis shows that {alpha}-MnO{sub 2} is needle shaped nanorods and {delta}-MnO{sub 2} consists of 2-D platelets of fine needle-like fibers arranged in ball-like aggregates. Further batch experiments confirmed that both nanoadsorbents are potential candidates for the adsorption of As(V) with a capacity of 19.41 and 15.33 mg g{sup -1} for {alpha}-MnO{sub 2} and {delta}-MnO{sub 2}, respectively. The presence of As3d peak in XPS study indicates that arsenic on the surface of nanoadsorbents is in the stable form of As(V) with a percentage of arsenate onto {alpha}-MnO{sub 2} is 0.099% as compared to 0.021% onto {delta}-MnO{sub 2}, clearly indicating the higher adsorption of As(V) in case of {alpha}-MnO{sub 2} as compared to {delta}-MnO{sub 2}, which is in good agreement with the adsorption studies results. Display Omitted« less
Upper critical field of high temperature Y(1.2)Ba(0.8)CuO(4-delta) superconductor
NASA Technical Reports Server (NTRS)
Hor, P. H.; Meng, R. L.; Huang, J. Z.; Chu, C. W.; Huang, C. Y.
1987-01-01
A 20-T high-field magnet is used to measure electrical resistance as a function of temperature in the Y(1.2)Ba(0.8)CuO(4-delta) superconductor. The temperature dependence of the critical field, Hc2(T), is obtained from the superconduction transition. A Hc2(O) value of 166T is determined which is the highest critical field yet reported. Results show Y(1.2)Ba(0.8)CuO(4-delta) to be a 90K Type-II superconductor, with a lower critical field Hc1(O) of about 0.2T and a penetration depth of about 290 A.
Separation of crack extension modes in orthotropic delamination models
NASA Technical Reports Server (NTRS)
Beuth, Jack L.
1995-01-01
In the analysis of an interface crack between dissimilar elastic materials, the mode of crack extension is typically not unique, due to oscillatory behavior of near-tip stresses and displacements. This behavior currently limits the applicability of interfacial fracture mechanics as a means to predict composite delamination. The Virtual Crack Closure Technique (VCCT) is a method used to extract mode 1 and mode 2 energy release rates from numerical fracture solutions. The mode of crack extension extracted from an oscillatory solution using the VCCT is not unique due to the dependence of mode on the virtual crack extension length, Delta. In this work, a method is presented for using the VCCT to extract Delta-independent crack extension modes for the case of an interface crack between two in-plane orthotropic materials. The method does not involve altering the analysis to eliminate its oscillatory behavior. Instead, it is argued that physically reasonable, Delta-independent modes of crack extension can be extracted from oscillatory solutions. Knowledge of near-tip fields is used to determine the explicit Delta dependence of energy release rate parameters. Energy release rates are then defined that are separated from the oscillatory dependence on Delta. A modified VCCT using these energy release rate definitions is applied to results from finite element analyses, showing that Delta-independent modes of crack extension result. The modified technique has potential as a consistent method for extracting crack extension modes from numerical solutions. The Delta-independent modes extracted using this technique can also serve as guides for testing the convergence of finite element models. Direct applications of this work include the analysis of planar composite delamination problems, where plies or debonded laminates are modeled as in-plane orthotropic materials.
Optimization of edge state velocity in the integer quantum Hall regime
NASA Astrophysics Data System (ADS)
Sahasrabudhe, H.; Novakovic, B.; Nakamura, J.; Fallahi, S.; Povolotskyi, M.; Klimeck, G.; Rahman, R.; Manfra, M. J.
2018-02-01
Observation of interference in the quantum Hall regime may be hampered by a small edge state velocity due to finite phase coherence time. Therefore designing two quantum point contact (QPCs) interferometers having a high edge state velocity is desirable. Here we present a new simulation method for designing heterostructures with high edge state velocity by realistically modeling edge states near QPCs in the integer quantum Hall effect (IQHE) regime. Using this simulation method, we also predict the filling factor at the center of QPCs and their conductance at different gate voltages. The 3D Schrödinger equation is split into 1D and 2D parts. Quasi-1D Schrödinger and Poisson equations are solved self-consistently in the IQHE regime to obtain the potential profile, and quantum transport is used to solve for the edge state wave functions. The velocity of edge states is found to be
Phase diagram, correlation gap, and critical properties of the coulomb glass.
Goethe, Martin; Palassini, Matteo
2009-07-24
We investigate the lattice Coulomb glass model in three dimensions via Monte Carlo simulations. No evidence for an equilibrium glass phase is found down to very low temperatures, although the correlation length increases rapidly near T = 0. A charge-ordered phase exists at low disorder. The transition to this phase is consistent with the random field Ising universality class, which shows that the interaction is effectively screened at moderate temperature. For large disorder, the single-particle density of states near the Coulomb gap satisfies the scaling relation g(epsilon, T) = T;{delta}f(|epsilon|/T) with delta = 2.01 +/- 0.05 in agreement with the prediction of Efros and Shklovskii. For decreasing disorder, a crossover to a larger effective exponent occurs due to the proximity of the charge-ordered phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudheesh, V. D.; Vinesh, A.; Lakshmi, N.
Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} has been prepared by self combustion method and studied using X-ray diffraction, Moessbauer spectroscopy and DC magnetization techniques. X-ray diffractogram shows highly crystalline nano sized sample with no impurity phases. The room temperature Moessbauer and magnetization measurements show the co-existence of superparamagnetic and ferrimagnetic particles in the sample. The presence of inter particle interaction is confirmed from the {delta}M(H) curve at 20K. The dependence of magnetic moment below blocking temperature in the field cooling curve indicates that the inter particle interaction is weak in the as prepared sample.
Improved determination of vector lithospheric magnetic anomalies from MAGSAT data
NASA Technical Reports Server (NTRS)
Ravat, Dhananjay
1993-01-01
Scientific contributions made in developing new methods to isolate and map vector magnetic anomalies from measurements made by Magsat are described. In addition to the objective of the proposal, the isolation and mapping of equatorial vector lithospheric Magsat anomalies, isolation of polar ionospheric fields during the period were also studied. Significant progress was also made in isolation of polar delta(Z) component and scalar anomalies as well as integration and synthesis of various techniques of removing equatorial and polar ionospheric effects. The significant contributions of this research are: (1) development of empirical/analytical techniques in modeling ionospheric fields in Magsat data and their removal from uncorrected anomalies to obtain better estimates of lithospheric anomalies (this task was accomplished for equatorial delta(X), delta(Z), and delta(B) component and polar delta(Z) and delta(B) component measurements; (2) integration of important processing techniques developed during the last decade with the newly developed technologies of ionospheric field modeling into an optimum processing scheme; and (3) implementation of the above processing scheme to map the most robust magnetic anomalies of the lithosphere (components as well as scalar).
Tang, Xiao-hong; Luo, You-jin; Ren, Zhen-jiang; Lü, Jia-ke; Wei, Chao-fu
2011-04-01
A 16-year field experiment was conducted in a ridge culture paddy field in the hilly region of Sichuan Basin, aimed to investigate the distribution characteristics of stable carbon isotope natural abundance (delta 13C) in soil humus fractions. The soil organic carbon (SOC) content in the paddy field under different cultivation modes ranked in the order of wide ridge culture > ridge culture > paddy and upland rotation. In soil humus substances (HS), humin (HU) was the main composition, occupying 21% - 30% of the total SOC. In the extracted soil carbon, humic acid (HA) dominated, occupying 17% - 21% of SOC and 38% - 65% of HS. The delta 13C value of SOC ranged from -27.9 per thousand to -25.6 per thousand, and the difference of the delta 13C value between 0-5 cm and 20-40 cm soil layers was about 1.9 per thousand. The delta 13C value of HA under different cultivation modes was 1 per thousand - 2 per thousand lower than that of SOC, and more approached to the delta 13C value of rapeseed and rice residues. As for fulvic acid (FA), its delta 13C value was about 2 per thousand and 4 per thousand higher than that of SOC and HA, respectively. The delta 13C value of HU in plough layer (0-20 cm) and plow layer (20-40 cm) ranged from -23.7 per thousand - -24.9 per thousand and -22.6 per thousand - -24.2 per thousand, respectively, reflecting the admixture of young and old HS. The delta 13C value in various organic carbon fractions was HU>FA>SOC>rapeseed and rice residues>HA. Long-term rice planting benefited the increase of SOC content, and cultivation mode played an important role in affecting the distribution patterns of soil humus delta 13C in plough layer and plow layer.
Fiber optic microsensor hydrogen leak detection system on Delta IV launch vehicle
NASA Astrophysics Data System (ADS)
Kazemi, Alex A.; Goepp, John W.; Larson, David B.; Wuestling, Mark E.
2008-04-01
This paper describes the successful development and test of a multipoint fiber optic hydrogen microsensors system during the static firing of an Evolved Expandable Launch Vehicle (EELV)/Delta's common booster core (CBC) rocket engine at NASA's Stennis Space Center. The hydrogen sensitive chemistry is fully reversible and has demonstrated a response to hydrogen gas in the range of 0% to 10% with a resolution of 0.1% and a response time of <=5 seconds measured at a gas flow rate of 1 cc/min. The system consisted of a reversible chemical interaction causing a change in reflective of a thin film of coated Palladium. The sensor using a passive element consisting of chemically reactive microcoatings deposited on the surface of a glass microlens, which is then bonded to an optical fiber. The system uses a multiplexing technique with a fiber optic driver-receiver consisting of a modulated LED source that is launched into the sensor, and photodiode detector that synchronously measures the reflected signal. The system incorporates a microprocessor to perform the data analysis and storage, as well as trending and set alarm function. The paper illustrates the sensor design and performance data under field deployment conditions.
Defense Standardization Program Journal, January/March 2013
2013-03-01
image plane , representing half the distance across the iris along the horizontal Pupil-to-iris ratio Degree to which the pupil is dilated or constricted... the Poincare indices, ori- entation zone coherences, entropy of local orientations, and core orien- tation field masks Number of deltas Detected deltas...based on the combination of the Poincare indices, ori- entation zone coherences, entropy of local orientations, and delta ori- entation field masks
NASA Astrophysics Data System (ADS)
Hulot, G.; Leger, J. M.; Olsen, N.; Stolle, C.; Chulliat, A.; Kuvshinov, A. V.; Vigneron, P.; Lesur, V.; Shimizu, H.; Sreenivasan, B.
2015-12-01
ESA's Swarm mission aims at studying all sources of Earth's magnetic field. It consists of two satellites (Alpha and Charlie), which fly side-by-side on near polar orbits at an altitude of slightly less than 500 km, and of a third satellite (Bravo) on a similar but slightly more polar and higher orbit, which progressively drifts with respect to that of Alpha and Charlie. This orbital configuration has proven extremely valuable, as evidenced by the many results already obtained from the first two years of the mission. These results, however, also reveal that geomagnetic field modeling and investigation efforts are now hampered by the still limited local time coverage provided by this constellation. This affects our ability to accurately characterize time changes in the ionospheric and magnetospheric field contributions, and to model the electrical conductivity of the Earth's mantle. It also indirectly limits our ability to model the core and lithospheric field. More generally, many of the "residual signals" detected in the very accurate magnetic data of the Swarm mission can still not fully be exploited. Further increasing the scientific return of the Swarm mission by squeezing more out of these data, however, would be possible if a fourth "Delta" satellite were to be launched soon enough to join the constellation at a similar altitude but much lower inclination orbit (such as 60°). Such a satellite would provide less geographical coverage but a much faster mapping of all local times over these latitudes. In this presentation we will present the rational for such a Delta mission and discuss the benefit it would bring, as well as plans currently under consideration to build a small satellite that could meet the corresponding requirements.
Yang, Jihui [Lakeshore, CA; Shi, Xun [Troy, MI; Bai, Shengqiang [Shanghai, CN; Zhang, Wenqing [Shanghai, CN; Chen, Lidong [Shanghai, CN; Yang, Jiong [Shanghai, CN
2012-01-17
A thermoelectric material includes a multiple transition metal-doped type I clathrate crystal structure having the formula A.sub.8TM.sub.y.sub.1.sup.1TM.sub.y.sub.2.sup.2 . . . TM.sub.y.sub.n.sup.nM.sub.zX.sub.46-y.sub.1.sub.-y.sub.2.sub.- . . . -y.sub.n.sub.-z. In the formula, A is selected from the group consisting of barium, strontium, and europium; X is selected from the group consisting of silicon, germanium, and tin; M is selected from the group consisting of aluminum, gallium, and indium; TM.sup.1, TM.sup.2, and TM.sup.n are independently selected from the group consisting of 3d, 4d, and 5d transition metals; and y.sub.1, y.sub.2, y.sub.n and Z are actual compositions of TM.sup.1, TM.sup.2, TM.sup.n, and M, respectively. The actual compositions are based upon nominal compositions derived from the following equation: z=8q.sub.A-|.DELTA.q.sub.1|y.sub.1-|.DELTA.q.sub.2|y.sub.2- . . . -|.DELTA.q.sub.n|y.sub.n, wherein q.sub.A is a charge state of A, and wherein .DELTA.q.sub.1, .DELTA.q.sub.2, .DELTA.q.sub.n are, respectively, the nominal charge state of the first, second, and n-th TM.
On the genealogy of branching random walks and of directed polymers
NASA Astrophysics Data System (ADS)
Derrida, Bernard; Mottishaw, Peter
2016-08-01
It is well known that the mean-field theory of directed polymers in a random medium exhibits replica symmetry breaking with a distribution of overlaps which consists of two delta functions. Here we show that the leading finite-size correction to this distribution of overlaps has a universal character which can be computed explicitly. Our results can also be interpreted as genealogical properties of branching Brownian motion or of branching random walks.
Tunable terahertz optical properties of graphene in dc electric fields
NASA Astrophysics Data System (ADS)
Dong, H. M.; Huang, F.; Xu, W.
2018-03-01
We develop a simple theoretical approach to investigate terahertz (THz) optical properties of monolayer graphene in the presence of an external dc electric field. The analytical results for optical coefficients such as the absorptance and reflectivity are obtained self-consistently on the basis of a diagrammatic self-consistent field theory and a Boltzmann equilibrium equation. It is found that the optical refractive index, reflectivity and conductivity can be effectively tuned by not only a gate voltage but also a driving dc electric field. This study is relevant to the applications of graphene as advanced THz optoelectronic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, P.F.; Wang, J.S.; Chao, Y.J.
The stereo vision is used to study the fracture behavior in the compact tension (CT) specimen made from 304L stainless steel. During crack tip blunting, initiation, and growth in the CT specimen, both in-plane and out-of-plane displacement fields near the crack tip are measured by the stereo vision. Based on the plane stress assumption and the deformation theory of plasticity, the J integral is evaluated along several rectangular paths surrounding the crack tip by using the measured in-plane displacement field. Prior to crack growth, the J integral is path independent. For crack extension up to {Delta}a {approx} 3 mm, themore » near field J integral values are 6% to 10% lower than far field J integral values. For the crack extension of {Delta}a {approx} 4 mm, the J integral lost path independence. The far field J integral values are in good agreement with results obtained from Merkle-Corten`s formula. Both J-{Delta}a and CTOA-{Delta}a are obtained by computing the J integral value and crack tip opening angle (CTOA) at each {Delta}a. Results indicate that CTOA reached a nearly constant value at a crack extension of {Delta}a = 3 mm with a leveled resistance curve thereafter. Also, the J integral value is determined by the maximum transverse diameter of the shadow spots, which are generated by using the out-of-plane displacement field. Results indicate that for crack extension up to 0.25 mm, the J integral values evaluated by using the out-of- plane displacement are close to those obtained by using in-plane displacements and Merkle-Corten`s formula.« less
NASA Astrophysics Data System (ADS)
Revesz, K.; Shapiro, A. M.; Tiedeman, C.; Goode, D. J.; Lacombe, P. J.; Imbrigiotta, T. E.
2008-12-01
The isotopic ratio of 13C/12C, expressed in delta13CVPDB per mill for trichloroethene (TCE), can differentiate between microbial degradation and other processes (dilution, dispersion, and sorption) that can also affect the concentration of TCE and its degradation products. The delta13C of TCE isotopically fractionates during microbial degradation; however, it remains practically unchanged during other processes. The isotope fractionation factor (alpha) estimated under laboratory conditions, however, may not be representative of microbial degradation in natural ground waters. Estimating alpha under field conditions provides evidence of the presence or absence of in situ microbial degradation and provides valuable information on the in situ processes that affect the fate and transport of chlorinated hydrocarbons. Our modified analytical method of analyzing for the isotopic ratio proved to be comparable to previously published methods. Isotope values were stable within analytical uncertainty in sample sizes ranging from 22 to 2200 nanomoles. Prepared standard mixtures of TCE and DCEs (trans- and cis- dichloroethene) were analyzed after every five field samples, and were stable during the time period that field samples were processed (a year). Water samples were collected from multiple boreholes completed in the fractured mudstone underlying the former Naval Air Warfare Center, West Trenton, NJ, and analyzed for delta13C of the chlorinated hydrocarbons. The results showed an ongoing natural microbial degradation following the typical dehalogenation pathway: TCE to DCE (trans- and cis-dichloroethene) to VC (vinyl chloride). The carbon isotope enrichment due to fractionation was smaller between TCE to DCE degradation than the enrichment between DCE to VC degradation, which is consistent with previous investigations. Results also showed a correlation between delta13C of TCE and the transmissivity of the boreholes where water samples were collected. We assumed that boreholes with extremely low transmissivity behaved analogously to microbial batch reactors. The value of alpha obtained from the borehole interval with the lowest transmissivity was 0.99345, which is in the range of published values: 0.9862 to 0.9934. We consider this value to represent the "field alpha" for microbial degradation in the absence of other processes. Values of alpha in other boreholes that differ from the field alpha could point to other processes affecting the delta13C and concentration of TCE. The value of alpha from the various monitored intervals is referred to as the "apparent alpha". The apparent alpha is characteristic of the borehole and the time at which the concentrations and the isotope values were measured. The difference between the apparent alpha and the field alpha provides insight into hydrologic conditions around the well. Results from one well showed fluctuation in the TCE concentrations, which were correlated with the calculated apparent alpha, and pointed to the recent introduction of TCE into the ground water that had not been significantly degraded. Recent drilling in the vicinity of this well may have remobilized free-phase TCE.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-18
...--PUT--IMP--VOL--50DELTA--DFLT, which is derived from at the money listed put options on each of such... theoretical at-the-money strike. A delta of less than 50 is considered out-of- the-money, while a delta of greater than 50 is considered in-the- money. Each listed put option included in the Index will be an...
Growth laws for delta crevasses in the Mississippi River Delta: observations and modeling
NASA Astrophysics Data System (ADS)
Yocum, T. A.; Georgiou, I. Y.
2016-02-01
River deltas are accumulations of sedimentary deposits delivered by rivers via a network of distributary channels. Worldwide they are threatened by environmental changes, including subsidence, global sea level rise and a suite of other local factors. In the Mississippi River Delta (MRD) these impacts are exemplified, and have led to proposed solutions to build land that include sediment diversions, thereby reinitiating the delta cycle. While economically efficient, there are too few analogs of small deltas aside from laboratory studies, numerical modeling studies, theoretical approaches, and limited field driven observations. Anthropogenic crevasses in the modern delta are large enough to overcome limitations of laboratory deltas, and small enough to allow for "rapid" channel and wetland development, providing an ideal setting to investigate delta development mechanics. Crevasse metrics were obtained using a combination of geospatial tools, extracting key parameters (bifurcation length and width, channel order and depth) that were non-dimensionalized and compared to river-dominated delta networks previously studied. Analysis showed that most crevasses in the MRD appear to obey delta growth laws and delta allometry relationships, suggesting that crevasses do exhibit similar planform metrics to larger Deltas; the distance to mouth bar versus bifurcation order demonstrated to be a very reasonable first order estimate of delta-top footprint. However, some crevasses exhibited different growth metrics. To better understand the hydrodynamic and geomorphic controls governing crevasse evolution in the MRD, we assess delta dynamics via a suite of field observations and numerical modeling in both well-established and newly constructed crevasses. Our analysis suggests that delta development is affected by the relative influence of external (upstream and downstream) and internal controls on the hydrodynamic and sediment transport patterns in these systems.
Neoclassical simulation of tokamak plasmas using the continuum gyrokinetic code TEMPEST.
Xu, X Q
2008-07-01
We present gyrokinetic neoclassical simulations of tokamak plasmas with a self-consistent electric field using a fully nonlinear (full- f ) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five-dimensional computational grid in phase space. The present implementation is a method of lines approach where the phase-space derivatives are discretized with finite differences, and implicit backward differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving the gyrokinetic Poisson equation with self-consistent poloidal variation. With a four-dimensional (psi,theta,micro) version of the TEMPEST code, we compute the radial particle and heat fluxes, the geodesic-acoustic mode, and the development of the neoclassical electric field, which we compare with neoclassical theory using a Lorentz collision model. The present work provides a numerical scheme for self-consistently studying important dynamical aspects of neoclassical transport and electric field in toroidal magnetic fusion devices.
Neoclassical simulation of tokamak plasmas using the continuum gyrokinetic code TEMPEST
NASA Astrophysics Data System (ADS)
Xu, X. Q.
2008-07-01
We present gyrokinetic neoclassical simulations of tokamak plasmas with a self-consistent electric field using a fully nonlinear (full- f ) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five-dimensional computational grid in phase space. The present implementation is a method of lines approach where the phase-space derivatives are discretized with finite differences, and implicit backward differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving the gyrokinetic Poisson equation with self-consistent poloidal variation. With a four-dimensional (ψ,θ,γ,μ) version of the TEMPEST code, we compute the radial particle and heat fluxes, the geodesic-acoustic mode, and the development of the neoclassical electric field, which we compare with neoclassical theory using a Lorentz collision model. The present work provides a numerical scheme for self-consistently studying important dynamical aspects of neoclassical transport and electric field in toroidal magnetic fusion devices.
Cauchy problem in spacetimes with closed timelike curves
NASA Astrophysics Data System (ADS)
Friedman, John; Morris, Michael S.; Novikov, Igor D.; Echeverria, Fernando; Klinkhammer, Gunnar; Thorne, Kip S.; Yurtsever, Ulvi
1990-09-01
The laws of physics might permit the existence, in the real Universe, of closed timelike curves (CTC's). Macroscopic CTC's might be a semiclassical consequence of Planck-scale, quantum gravitational, Lorentzian foam, if such foam exists. If CTC's are permitted, then the semiclassical laws of physics (the laws with gravity classical and other fields quantized or classical) should be augmented by a principle of self-consistency, which states that a local solution to the equations of physics can occur in the real Universe only if it can be extended to be part of a global solution, one which is well defined throughout the (nonsingular regions of) classical spacetime. The consequences of this principle are explored for the Cauchy problem of the evolution of a classical, massless scalar field Φ (satisfying □Φ=0) in several model spacetimes with CTC's. In general, self-consistency constrains the initial data for the field Φ. For a family of spacetimes with traversible wormholes, which initially possess no CTC's and then evolve them to the future of a stable Cauchy horizon scrH, self-consistency seems to place no constraints on initial data for Φ that are posed on past null infinity, and none on data posed on spacelike slices which precede scrH. By contrast, initial data posed in the future of scrH, where the CTC's reside, are constrained; but the constraints appear to be mild in the sense that in some neighborhood of every event one is free to specify initial data arbitrarily, with the initial data elsewhere being adjusted to guarantee self-consistent evolution. A spacetime whose self-consistency constraints have this property is defined to be ``benign with respect to the scalar field Φ.'' The question is posed as to whether benign spacetimes in some sense form a generic subset of all spacetimes with CTC's. It is shown that in the set of flat, spatially and temporally closed, 2-dimensional spacetimes the benign ones are not generic. However, it seems likely that every 4-dimensional, asymptotically flat space-time that is stable and has a topology of the form R×(S-one point), where S is a closed 3-manifold, is benign. Wormhole spacetimes are of this type, with S=S1×S2. We suspect that these types of self-consistency behavior of the scalar field Φ are typical for noninteracting (linearly superposing), classical fields. However, interacting classical systems can behave quite differently, as is demonstrated by a study of the motion of a hard-sphere billiard ball in a wormhole spacetime with closed timelike curves: If the ball is classical, then some choices of initial data (some values of the ball's initial position and velocity) give rise to unique, self-consistent motions of the ball; other choices produce two different self-consistent motions; and others might (but we are not yet sure) produce no self-consistent motions whatsoever. By contrast, in a path-integral formulation of the nonrelativistic quantum mechanics of such a billiard ball, there appears to be a unique, self-consistent set of probabilities for the outcomes of all measurements. This paper's conclusion, that CTC's may not be as nasty as people have assumed, is reinforced by the fact that they do not affect Gauss's theorem and thus do not affect the derivation of global conservation laws from differential ones. The standard conservation laws remain valid globally, and in asymptotically flat, wormhole spacetimes they retain a natural, quasilocal interpretation.
Path planning for assembly of strut-based structures. Thesis
NASA Technical Reports Server (NTRS)
Muenger, Rolf
1991-01-01
A path planning method with collision avoidance for a general single chain nonredundant or redundant robot is proposed. Joint range boundary overruns are also avoided. The result is a sequence of joint vectors which are passed to a trajectory planner. A potential field algorithm in joint space computes incremental joint vectors delta-q = delta-q(sub a) + delta-q(sub c) + delta-q(sub r). Adding delta-q to the robot's current joint vector leads to the next step in the path. Delta-q(sub a) is obtained by computing the minimum norm solution of the underdetermined linear system J delta-q(sub a) = x(sub a) where x(sub a) is a translational and rotational force vector that attracts the robot to its goal position and orientation. J is the manipulator Jacobian. Delta-q(sub c) is a collision avoidance term encompassing collisions between the robot (links and payload) and obstacles in the environment as well as collisions among links and payload of the robot themselves. It is obtained in joint space directly. Delta-q(sub r) is a function of the current joint vector and avoids joint range overruns. A higher level discrete search over candidate safe positions is used to provide alternatives in case the potential field algorithm encounters a local minimum and thus fails to reach the goal. The best first search algorithm A* is used for graph search. Symmetry properties of the payload and equivalent rotations are exploited to further enlarge the number of alternatives passed to the potential field algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu Shiyang; Nakajima, Anri; Ohashi, Takuo
2005-12-01
The interface trap generation ({delta}N{sub it}) and fixed oxide charge buildup ({delta}N{sub ot}) under negative bias temperature instability (NBTI) of p-channel metal-oxide-semiconductor field-effect transistors (pMOSFETs) with ultrathin (2 nm) plasma-nitrided SiON gate dielectrics were studied using a modified direct-current-current-voltage method and a conventional subthreshold characteristic measurement. Different stress time dependences were shown for {delta}N{sub it} and {delta}N{sub ot}. At the earlier stress times, {delta}N{sub it} dominates the threshold voltage shift ({delta}V{sub th}) and {delta}N{sub ot} is negligible. With increasing stress time, the rate of increase of {delta}N{sub it} decreases continuously, showing a saturating trend for longer stress times, while {delta}N{submore » ot} still has a power-law dependence on stress time so that the relative contribution of {delta}N{sub ot} increases. The thermal activation energy of {delta}N{sub it} and the NBTI lifetime of pMOSFETs, compared at a given stress voltage, are independent of the peak nitrogen concentration of the SiON film. This indicates that plasma nitridation is a more reliable method for incorporating nitrogen in the gate oxide.« less
Thomson, Jessica L; Tussing-Humphreys, Lisa M; Zoellner, Jamie M; Goodman, Melissa H
2016-08-01
Evaluating an intervention's theoretical basis can inform design modifications to produce more effective interventions. Hence the present study's purpose was to determine if effects from a multicomponent lifestyle intervention were mediated by changes in the psychosocial constructs decisional balance, self-efficacy and social support. Delta Body and Soul III, conducted from August 2011 to May 2012, was a 6-month, church-based, lifestyle intervention designed to improve diet quality and increase physical activity. Primary outcomes, diet quality and aerobic and strength/flexibility physical activity, as well as psychosocial constructs, were assessed via self-report, interviewer-administered surveys at baseline and post intervention. Mediation analyses were conducted using ordinary least squares (continuous outcomes) and maximum likelihood logistic (dichotomous outcomes) regression path analysis. Churches (five intervention and three control) were recruited from four counties in the Lower Mississippi Delta region of the USA. Rural, Southern, primarily African-American adults (n 321). Based upon results from the multiple mediation models, there was no evidence that treatment (intervention v. control) indirectly influenced changes in diet quality or physical activity through its effects on decisional balance, self-efficacy and social support. However, there was evidence for direct effects of social support for exercise on physical activity and of self-efficacy for sugar-sweetened beverages on diet quality. Results do not support the hypothesis that the psychosocial constructs decisional balance, self-efficacy and social support were the theoretical mechanisms by which the Delta Body and Soul III intervention influenced changes in diet quality and physical activity.
Smiderle, Fhernanda R; Sassaki, Guilherme L; van Arkel, Jeroen; Iacomini, Marcello; Wichers, Harry J; Van Griensven, Leo J L D
2010-08-25
An alpha-glucan was isolated from the culinary medicinal mushroom A. bisporus by hot water extraction, ethanol precipitation and DEAE-cellulose chromatography. The resulting material showed a single HMW peak excluded from a Sephadex G50 column that could completely be degraded by alpha-amylase treatment. After heating in 1% SDS a small additional peak of low MW eluted from the G50 column. The monosaccharide composition of the main peak was evaluated by HPLC, and was found to consist of a majority of glucose (97.6%), and a minor proportion of galactose (2.4%). Methylation analysis and degradation by alpha-amylase indicated the presence of an alpha-glucan with a main chain consisting of (1(R)4)-linked units, substituted at O-6 by alpha-D-glucopyranose single-units in the relation 1:8. Mono- (13C-, 1H-NMR) and bidimensional [1H (obs.),13C-HSQC] spectroscopy analysis confirmed the alpha-configuration of the Glcp residues by low frequency resonances of C-1 at delta 100.6, 100.2, and 98.8 ppm and H-1 high field ones at delta 5.06, 5.11, and 4.74 ppm. The DEPT-13C-NMR allowed assigning the non-substituted and O-substituted -CH(2) signals at delta 60.3/60.8 and 66.2 ppm, respectively. Other assignments were attributed to C-2, C-3, C-4, C-5 and C-6 of the non-reducing ends at delta 71.8; 72.8; 70.0; 71.3 and 60.3/60.8 ppm, respectively. The minor proportion of galactose that was demonstrated was probably derived from a complex between the alpha-glucan and a low molecular weight galactan.
Natural and anthropogenic emissions of N and P to the Parnaíba River Delta in NE Brazil
NASA Astrophysics Data System (ADS)
de Paula Filho, Francisco José; Marins, Rozane Valente; de Lacerda, Luiz Drude
2015-12-01
The Parnaiba River Delta is the largest open sea delta in the Americas, having a unique ecological importance for the conservation of wildlife and fisheries resources. However, little is known about the biogeochemistry of this ecosystem. This study estimates N and P emissions to the delta using emissions factors, calibrated with field samples and N and P concentrations in different compartments of the delta. The estimated loads totaled 14.517 t N year-1 and 8.748 t P year-1, indicating that anthropogenic N and P emissions outweigh natural emissions by approximately 5 and 10 times, respectively. The activities that contribute the most to this result are livestock farming, agriculture and the release of untreated domestic sewage. The flows of N and P from the estimated loads corresponded to 339 kg N km-2 year-1 and 204 kg P km-2 year-1, so the region can be classified as "meso-active" and "eury-active" with regard to the transfer of nutrients. These results are consistent with the coastal megabasin design (COSCATs) proposed by Meyback et al. (2006). This article presents a first approach to the calculation of an estimated annual emissions inventory of N and P for the lower basin of the Parnaíba River and its coastal region, representing an approach that has been satisfactorily used in assessing the sensitivity of estuarine systems in northeastern Brazil.
Lee side flow for slender delta wings of finite thickness
NASA Technical Reports Server (NTRS)
Szodruch, J. G.
1980-01-01
An experimental and theoretical investigation carried out to determine the lee side flow field over delta wings at supersonic speeds is presented. A theoretical method to described the flow field is described, where boundary conditions as a result of the experimental study are needed. The computed flow field with shock induced separation is satisfactory.
ERIC Educational Resources Information Center
Hutson, Patricia Evonne
2013-01-01
The description of the self-defined expert instructional technologist is unclear. Technologists in the field are identified in various ways. To determine the characteristics and competencies of self-defined expert instructional technologists, an interpretive field study consisting of interviews was conducted. The results revealed three core…
Communication: A difference density picture for the self-consistent field ansatz.
Parrish, Robert M; Liu, Fang; Martínez, Todd J
2016-04-07
We formulate self-consistent field (SCF) theory in terms of an interaction picture where the working variable is the difference density matrix between the true system and a corresponding superposition of atomic densities. As the difference density matrix directly represents the electronic deformations inherent in chemical bonding, this "difference self-consistent field (dSCF)" picture provides a number of significant conceptual and computational advantages. We show that this allows for a stable and efficient dSCF iterative procedure with wholly single-precision Coulomb and exchange matrix builds. We also show that the dSCF iterative procedure can be performed with aggressive screening of the pair space. These approximations are tested and found to be accurate for systems with up to 1860 atoms and >10 000 basis functions, providing for immediate overall speedups of up to 70% in the heavily optimized TeraChem SCF implementation.
Communication: A difference density picture for the self-consistent field ansatz
NASA Astrophysics Data System (ADS)
Parrish, Robert M.; Liu, Fang; Martínez, Todd J.
2016-04-01
We formulate self-consistent field (SCF) theory in terms of an interaction picture where the working variable is the difference density matrix between the true system and a corresponding superposition of atomic densities. As the difference density matrix directly represents the electronic deformations inherent in chemical bonding, this "difference self-consistent field (dSCF)" picture provides a number of significant conceptual and computational advantages. We show that this allows for a stable and efficient dSCF iterative procedure with wholly single-precision Coulomb and exchange matrix builds. We also show that the dSCF iterative procedure can be performed with aggressive screening of the pair space. These approximations are tested and found to be accurate for systems with up to 1860 atoms and >10 000 basis functions, providing for immediate overall speedups of up to 70% in the heavily optimized TeraChem SCF implementation.
Smith, Matthew Lee; Wilson, Mark G; Robertson, Melissa M; Padilla, Heather M; Zuercher, Heather; Vandenberg, Robert; Corso, Phaedra; Lorig, Kate; Laurent, Diana D; DeJoy, David M
2018-04-25
Disease management is gaining importance in workplace health promotion given the aging workforce and rising chronic disease prevalence. The Chronic Disease Self-Management Program (CDSMP) is an effective intervention widely offered in diverse community settings; however, adoption remains low in workplace settings. As part of a larger NIH-funded randomized controlled trial, this study examines the effectiveness of a worksite-tailored version of CDSMP (wCDSMP [ n = 72]) relative to CDSMP (‘Usual Care’ [ n = 109]) to improve health and work performance among employees with one or more chronic conditions. Multiple-group latent-difference score models with sandwich estimators were fitted to identify changes from baseline to 6-month follow-up. Overall, participants were primarily female (87%), non-Hispanic white (62%), and obese (73%). On average, participants were age 48 (range: 23⁻72) and self-reported 3.25 chronic conditions (range: 1⁻16). The most commonly reported conditions were high cholesterol (45%), high blood pressure (45%), anxiety/emotional/mental health condition (26%), and diabetes (25%). Among wCDSMP participants, significant improvements were observed for physically unhealthy days (uΔ = −2.07, p = 0.018), fatigue (uΔ = −2.88, p = 0.002), sedentary behavior (uΔ = −4.49, p = 0.018), soda/sugar beverage consumption (uΔ = −0.78, p = 0.028), and fast food intake (uΔ = −0.76, p = 0.009) from baseline to follow-up. Significant improvements in patient⁻provider communication (uΔ = 0.46, p = 0.031) and mental work limitations (uΔ = −8.89, p = 0.010) were also observed from baseline to follow-up. Relative to Usual Care, wCDSMP participants reported significantly larger improvements in fatigue, physical activity, soda/sugar beverage consumption, and mental work limitations ( p < 0.05). The translation of Usual Care (content and format) has potential to improve health among employees with chronic conditions and increase uptake in workplace settings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardin, A; Avery, S; Ding, X
2014-06-15
Purpose: Validation of high-resolution 3D patient QA for proton pencil beam scanning and IMPT by polymer gel dosimetry. Methods: Four BANG3Pro polymer gel dosimeters (manufactured by MGS Research Inc, Madison, CT) were used for patient QA at the Robert's Proton Therapy Center (RPTC, Philadelphia, PA). All dosimeters were sealed in identical thin-wall Pyrex glass spheres. Each dosimeter contained a set of markers for 3D registration purposes. The dosimeters were mounted in a consistent and reproducible manner using a custom build holder. Two proton pencil beam scanning plans were designed using Varian Eclipse™ treatment planning system: 1) A two-field intensity modulatedmore » proton therapy (IMPT) plan and 2) one single field uniform dose (SFUD) plan. The IMPT fields were evaluated as a composite plan and individual fields, the SFUD plan was delivered as a single field plan.Laser CT scanning was performed using the manufacturer's OCTOPUS-IQ axial transmission laser CT scanner using a 1 mm slice thickness. 3D registration, analysis, and OD/cm to absorbed dose calibrations were perfomed using DICOM RT-Dose and CT files, and software developed by the manufacturer. 3D delta index, a metric equivalent to the gamma tool, was used for dose comparison. Results: Very good agreement with single IMPT fields and with SFUD was obtained. Composite IMPT fields had a less satisfactory agreement. The single fields had 3D delta index passing rates (3% dose difference, 3 mm DTA) of 98.98% and 94.91%. The composite 3D delta index passing rate was 80.80%. The SFUD passing rate was 93.77%. Required shifts of the dose distributions were less than 4 mm. Conclusion: A formulation of the BANG3Pro polymer gel dosimeter, suitable for 3D QA of proton patient plans is established and validated. Likewise, the mailed QA analysis service provided by the manufacturer is a practical option when required resources are unavailable. We fully disclose that the subject of this research regards a production of MGS Research, Inc.« less
NASA Astrophysics Data System (ADS)
Cohen, Bruce; Umansky, Maxim; Joseph, Ilon
2015-11-01
Progress is reported on including self-consistent zonal flows in simulations of drift-resistive ballooning turbulence using the BOUT + + framework. Previous published work addressed the simulation of L-mode edge turbulence in realistic single-null tokamak geometry using the BOUT three-dimensional fluid code that solves Braginskii-based fluid equations. The effects of imposed sheared ExB poloidal rotation were included, with a static radial electric field fitted to experimental data. In new work our goal is to include the self-consistent effects on the radial electric field driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We describe a model for including self-consistent zonal flows and an algorithm for maintaining underlying plasma profiles to enable the simulation of steady-state turbulence. We examine the role of Braginskii viscous forces in providing necessary dissipation when including axisymmetric perturbations. We also report on some of the numerical difficulties associated with including the axisymmetric component of the fluctuating fields. This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory (LLNL-ABS-674950).
Pressure calculation in hybrid particle-field simulations
NASA Astrophysics Data System (ADS)
Milano, Giuseppe; Kawakatsu, Toshihiro
2010-12-01
In the framework of a recently developed scheme for a hybrid particle-field simulation techniques where self-consistent field (SCF) theory and particle models (molecular dynamics) are combined [J. Chem. Phys. 130, 214106 (2009)], we developed a general formulation for the calculation of instantaneous pressure and stress tensor. The expressions have been derived from statistical mechanical definition of the pressure starting from the expression for the free energy functional in the SCF theory. An implementation of the derived formulation suitable for hybrid particle-field molecular dynamics-self-consistent field simulations is described. A series of test simulations on model systems are reported comparing the calculated pressure with those obtained from standard molecular dynamics simulations based on pair potentials.
Ring current Atmosphere interactions Model with Self-Consistent Magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordanova, Vania; Jeffery, Christopher; Welling, Daniel
The Ring current Atmosphere interactions Model with Self-Consistent magnetic field (B) is a unique code that combines a kinetic model of ring current plasma with a three dimensional force-balanced model of the terrestrial magnetic field. The kinetic portion, RAM, solves the kinetic equation to yield the bounce-averaged distribution function as a function of azimuth, radial distance, energy and pitch angle for three ion species (H+, He+, and O+) and, optionally, electrons. The domain is a circle in the Solar-Magnetic (SM) equatorial plane with a radial span of 2 to 6.5 RE. It has an energy range of approximately 100 eVmore » to 500 KeV. The 3-D force balanced magnetic field model, SCB, balances the JxB force with the divergence of the general pressure tensor to calculate the magnetic field configuration within its domain. The domain ranges from near the Earth’s surface, where the field is assumed dipolar, to the shell created by field lines passing through the SM equatorial plane at a radial distance of 6.5 RE. The two codes work in tandem, with RAM providing anisotropic pressure to SCB and SCB returning the self-consistent magnetic field through which RAM plasma is advected.« less
NASA Astrophysics Data System (ADS)
Ferrier, K.; Mitrovica, J. X.
2015-12-01
In sedimentary deltas and fans, sea-level changes are strongly modulated by the deposition and compaction of marine sediment. The deposition of sediment and incorporation of water into the sedimentary pore space reduces sea level by increasing the elevation of the seafloor, which reduces the thickness of sea-water above the bed. In a similar manner, the compaction of sediment and purging of water out of the sedimentary pore space increases sea level by reducing the elevation of the seafloor, which increases the thickness of sea water above the bed. Here we show how one can incorporate the effects of sediment deposition and compaction into the global, gravitationally self-consistent sea-level model of Dalca et al. (2013). Incorporating sediment compaction requires accounting for only one additional quantity that had not been accounted for in Dalca et al. (2013): the mean porosity in the sediment column. We provide a general analytic framework for global sea-level changes including sediment deposition and compaction, and we demonstrate how sea level responds to deposition and compaction under one simple parameterization for compaction. The compaction of sediment generates changes in sea level only by changing the elevation of the seafloor. That is, sediment compaction does not affect the mass load on the crust, and therefore does not generate perturbations in crustal elevation or the gravity field that would further perturb sea level. These results have implications for understanding sedimentary effects on sea-level changes and thus for disentangling the various drivers of sea-level change. ReferencesDalca A.V., Ferrier K.L., Mitrovica J.X., Perron J.T., Milne G.A., Creveling J.R., 2013. On postglacial sea level - III. Incorporating sediment redistribution. Geophysical Journal International, doi: 10.1093/gji/ggt089.
Self-Consistent Superthermal Electron Effects on Plasmaspheric Refilling
NASA Technical Reports Server (NTRS)
Liemohn, M. W.; Khazanov, G. V.; Moore, T. E.; Guiter, S. M.
1997-01-01
The effects of self-consistently including superthermal electrons in the definition of the ambipolar electric field are investigated for the case of plasmaspheric refilling after a geomagnetic storm. By using the total electron population in the hydrodynamic equations, a method for incorporating superthermal electron parameters in the electric field and electron temperature calculation is developed. Also, the ambipolar electric field is included in the kinetic equation for the superthermal electrons through a change of variables using the total energy and the first adiabatic invariant. Calculations based on these changes are performed by coupling time-dependent models of the thermal plasma and superthermal electrons. Results from this treatment of the electric field and the self-consistent development of the solution are discussed in detail. Specifically, there is a decreased thermal electron density in the plasmasphere during the first few minutes of refilling, a slightly accelerated proton shock front, and a decreased superthermal electron flux due to the deceleration by the electric field. The timescales of plasmaspheric refilling are discussed and determined to be somewhat shorter than previously calculated for the thermal plasma and superthermal electron population due to the effects of the field-aligned potential.
NASA Astrophysics Data System (ADS)
Pahlavani, M. R.; Firoozi, B.
2016-09-01
γ-ray transitions from excited states of {}16{{N}} and {}16{{O}} isomers that appear in the γ spectrum of the {}616{{{C}}}10\\to {}716{{{N}}}9\\to {}816{{{O}}}8 beta decay chain are investigated. The theoretical approach used in this research starts with a mean-field potential consisting of a phenomenological Woods-Saxon potential including spin-orbit and Coulomb terms (for protons) in order to obtain single-particle energies and wave functions for nucleons in a nucleus. A schematic residual surface delta interaction is then employed on the top of the mean field and is treated within the proton-neutron Tamm-Dancoff approximation (pnTDA) and the proton-neutron random phase approximation. The goal is to use an optimized surface delta interaction interaction, as a residual interaction, to improve the results. We have used artificial intelligence algorithms to establish a good agreement between theoretical and experimental energy spectra. The final results of the ‘optimized’ calculations are reasonable via this approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willett, A; Gilmore, M; Rowbottom, C
2016-06-15
Purpose: The purpose of this work was to see if the EPID is a viable alternative to other QA devices for routine FFF QA and plan dose measurements. Methods: Sensitivity measurements were made to assess response to small changes in field size and beam steering. QA plans were created where field size was varied from baseline values (5–5.5cm, 20–20.5cm). Beam steering was adjusted by altering values in service mode (Symmetry 0–3%). Plans were measured using the Varian portal imager (aS1200 DMI panel), QA3 (Sun Nuclear), and Starcheck Maxi (PTW). FFF beam parameters as stated in Fogliata et al were calculated.more » Constancy measurements were taken using all 3 QC devices to measure a MLC defined 20×20cm field. Two clinical SABR patient plans were measured on a Varian Edge linac, using the Portal Dosimetry module in ARIA, and results compared with analysis made using Delta4 (ScandiDos). Results: The EPID and the Starcheck performed better at detecting clinically relevant changes in field size with the QA3 performing better when detecting similar changes in beam symmetry. Consistency measurements with the EPID and Starcheck were equivalent, with comparable standard deviations. Clinical plan measurements on the EPID compared well with Delta4 results at 3%/1mm. Conclusion: Our results show that for FFF QA measurements such as field size and symmetry, using the EPID is a viable alternative to other QA devices. The EPID could potentially be used for QC measurements with a focus on geometric accuracy, such as MLC positional QA, due to its high resolution compared to other QA devices (EPID 0.34mm, Starcheck 3mm, QA3 5mm). Good agreement between Delta4 and portal dosimetry also indicated the EPID may be a suitable alternative for measurement of clinical plans.« less
40 CFR 81.122 - Mississippi Delta Intrastate Air Quality Control Region.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Quality Control Region. 81.122 Section 81.122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.122 Mississippi Delta Intrastate Air Quality Control Region. The Mississippi Delta Intrastate Air Quality Control Region consists of the territorial area encompassed by the...
Caracterizacion de materiales magnetoelasticos y su aplicacion al control de vibraciones
NASA Astrophysics Data System (ADS)
Morales Robredo, Angel Luis
The characterization and application of magnetoelastic materials to problems of vibration control is tackled in this thesis. Although this subject has been thoroughly studied since the nineteenth century, and despite the fact that this type of material is currently of topical interest due to their use as smart materials in several fields of science and engineering, there is room for further research in this field, specially in topics concerning measurement and application of DeltaE- and DeltaΨ- effects. Throughout this work, several contributions can be found. First, a new experimental system for measuring both DeltaE- and DeltaΨ- effects, simultaneously, has been developed with new or improved features. Second, this new experimental system has been used to characterize in depth the three classical ferromagnetic materials, nickel, cobalt and iron, and also Terfenol-D, a special alloy which shows a great magnetoelastic response. Third, the influence of internal stresses on both DeltaE- and DeltaΨ- effects has been studied by means of different heat treatments applied to nickel specimens. And fourth, the more suitable materials regarding their DeltaE- and DeltaΨ- effects were selected and applied to novel ways of vibration control. The results obtained in the different parts of this thesis are, in our humble opinion, very valuable. Regarding the new experimental system, the improvements endow the method with notable advantages over other techniques, such as lack of mechanical or magnetic interaction with the specimen, high accuracy and resolution in magnetic field, speed of measurement, no need for sample preparation, possibility of studying stress dependence, full automation and integration of the measurement and post-processing stages. Regarding the measurement of DeltaE- and DeltaΨ- effects, our results agree with the literature but provide better accuracy. Terfenol-D shows the highest DeltaE-effect (95%), followed at a great distance by nickel (3.75%), cobalt (0.60%) and iron (0.22%), whereas the DeltaΨ-effect is high in all cases (40% in most cases, 80% in nickel). Regarding the influence of internal stress, it is stated that annealing treatments leading to lower internal stresses maximize the magnetoelastic behaviour of the material, as in the instance of nickel were the DeltaE- and DeltaΨ- effects were maximized from 3.75% to 13.00% and from 80% to 99.99%, respectively. Finally, regarding the vibration control problem, two different strategies were tested: passive control and adaptative-passive control. Both methods showed excellent results in terms of reduction of the establishing time in free vibration (63% with annealed nickel) and in terms of reduction of the magnification factor in forced vibration (34% with annealed nickel and 64% with Terfenol-D).
Flow patterns and bathymetric signatures on the delta front of a prograding river delta
NASA Astrophysics Data System (ADS)
Shaw, J.; Mohrig, D. C.; Wagner, R. W.
2016-02-01
The transition of water between laterally confined channels and the unchannelized delta front controls the growth pattern of river deltas, but is difficult to measure on field-scale deltas. We quantify flow patterns, bathymetry and bathymetric evolution for the subaqueous delta front on the Wax Lake Delta (WLD), a rapidly prograding delta in coastal Louisiana. The flow direction field, mapped using streaklines composed of biogenic slicks on the water surface, shows that a significant portion of flow ( 59%) departs subaqueous channels laterally over the subaqueous margins of the channel seaward of the shoreline. Synoptic datasets of bathymetry and flow direction allow spatial changes in flow velocity to be quantified. Most lateral flow divergence and deceleration occurs within 3-8 channel widths outboard of subaqueous channel margins, rather than downstream of channel tips. In interdistributary bays, deposit elevation decreases with a basinward slope of 2.4 x 10-4 with distance from a channel margin along any flow path. Flow patterns and this slope produce constructional features called interdistributary troughs - topographic lows in the center of interdistributary bays. These data show that flow patterns and bathymetry on the delta front are coupled both at the transition from channelized to unchannelized flow and in the depositional regions outside the distributary network.
Visual Field Asymmetries in Attention Vary with Self-Reported Attention Deficits
ERIC Educational Resources Information Center
Poynter, William; Ingram, Paul; Minor, Scott
2010-01-01
The purpose of this study was to determine whether an index of self-reported attention deficits predicts the pattern of visual field asymmetries observed in behavioral measures of attention. Studies of "normal" subjects do not present a consistent pattern of asymmetry in attention functions, with some studies showing better left visual field (LVF)…
Self-consistent perturbed equilibrium with neoclassical toroidal torque in tokamaks
Park, Jong-Kyu; Logan, Nikolas C.
2017-03-01
Toroidal torque is one of the most important consequences of non-axisymmetric fields in tokamaks. The well-known neoclassical toroidal viscosity (NTV) is due to the second-order toroidal force from anisotropic pressure tensor in the presence of these asymmetries. This work shows that the first-order toroidal force originating from the same anisotropic pressure tensor, despite having no flux surface average, can significantly modify the local perturbed force balance and thus must be included in perturbed equilibrium self-consistent with NTV. The force operator with an anisotropic pressure tensor is not self-adjoint when the NTV torque is finite and thus is solved directly formore » each component. This approach yields a modified, non-self-adjoint Euler-Lagrange equation that can be solved using a variety of common drift-kinetic models in generalized tokamak geometry. The resulting energy and torque integral provides a unique way to construct a torque response matrix, which contains all the information of self-consistent NTV torque profiles obtainable by applying non-axisymmetric fields to the plasma. This torque response matrix can then be used to systematically optimize non-axisymmetric field distributions for desired NTV profiles. Published by AIP Publishing.« less
NASA Astrophysics Data System (ADS)
Arneitz, P.; Leonhardt, R.; Fabian, K.; Egli, R.
2017-12-01
Historical and paleomagnetic data are the two main sources of information about the long-term geomagnetic field evolution. Historical observations extend to the late Middle Ages, and prior to the 19th century, they consisted mainly of pure declination measurements from navigation and orientation logs. Field reconstructions going back further in time rely solely on magnetization acquired by rocks, sediments, and archaeological artefacts. The combined dataset is characterized by a strongly inhomogeneous spatio-temporal distribution and highly variable data reliability and quality. Therefore, an adequate weighting of the data that correctly accounts for data density, type, and realistic error estimates represents the major challenge for an inversion approach. Until now, there has not been a fully self-consistent geomagnetic model that correctly recovers the variation of the geomagnetic dipole together with the higher-order spherical harmonics. Here we present a new geomagnetic field model for the last 4 kyrs based on historical, archeomagnetic and volcanic records. The iterative Bayesian inversion approach targets the implementation of reliable error treatment, which allows different record types to be combined in a fully self-consistent way. Modelling results will be presented along with a thorough analysis of model limitations, validity and sensitivity.
Self-Consistent Chaotic Transport in a High-Dimensional Mean-Field Hamiltonian Map Model
Martínez-del-Río, D.; del-Castillo-Negrete, D.; Olvera, A.; ...
2015-10-30
We studied the self-consistent chaotic transport in a Hamiltonian mean-field model. This model provides a simplified description of transport in marginally stable systems including vorticity mixing in strong shear flows and electron dynamics in plasmas. Self-consistency is incorporated through a mean-field that couples all the degrees-of-freedom. The model is formulated as a large set of N coupled standard-like area-preserving twist maps in which the amplitude and phase of the perturbation, rather than being constant like in the standard map, are dynamical variables. Of particular interest is the study of the impact of periodic orbits on the chaotic transport and coherentmore » structures. Furthermore, numerical simulations show that self-consistency leads to the formation of a coherent macro-particle trapped around the elliptic fixed point of the system that appears together with an asymptotic periodic behavior of the mean field. To model this asymptotic state, we introduced a non-autonomous map that allows a detailed study of the onset of global transport. A turnstile-type transport mechanism that allows transport across instantaneous KAM invariant circles in non-autonomous systems is discussed. As a first step to understand transport, we study a special type of orbits referred to as sequential periodic orbits. Using symmetry properties we show that, through replication, high-dimensional sequential periodic orbits can be generated starting from low-dimensional periodic orbits. We show that sequential periodic orbits in the self-consistent map can be continued from trivial (uncoupled) periodic orbits of standard-like maps using numerical and asymptotic methods. Normal forms are used to describe these orbits and to find the values of the map parameters that guarantee their existence. Numerical simulations are used to verify the prediction from the asymptotic methods.« less
Self-Consistent Chaotic Transport in a High-Dimensional Mean-Field Hamiltonian Map Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martínez-del-Río, D.; del-Castillo-Negrete, D.; Olvera, A.
We studied the self-consistent chaotic transport in a Hamiltonian mean-field model. This model provides a simplified description of transport in marginally stable systems including vorticity mixing in strong shear flows and electron dynamics in plasmas. Self-consistency is incorporated through a mean-field that couples all the degrees-of-freedom. The model is formulated as a large set of N coupled standard-like area-preserving twist maps in which the amplitude and phase of the perturbation, rather than being constant like in the standard map, are dynamical variables. Of particular interest is the study of the impact of periodic orbits on the chaotic transport and coherentmore » structures. Furthermore, numerical simulations show that self-consistency leads to the formation of a coherent macro-particle trapped around the elliptic fixed point of the system that appears together with an asymptotic periodic behavior of the mean field. To model this asymptotic state, we introduced a non-autonomous map that allows a detailed study of the onset of global transport. A turnstile-type transport mechanism that allows transport across instantaneous KAM invariant circles in non-autonomous systems is discussed. As a first step to understand transport, we study a special type of orbits referred to as sequential periodic orbits. Using symmetry properties we show that, through replication, high-dimensional sequential periodic orbits can be generated starting from low-dimensional periodic orbits. We show that sequential periodic orbits in the self-consistent map can be continued from trivial (uncoupled) periodic orbits of standard-like maps using numerical and asymptotic methods. Normal forms are used to describe these orbits and to find the values of the map parameters that guarantee their existence. Numerical simulations are used to verify the prediction from the asymptotic methods.« less
NASA Astrophysics Data System (ADS)
Flemming, Burghard W.; Kudrass, Hermann-Rudolf
2018-02-01
The existence of a continuously flowing Mozambique Current, i.e. a western geostrophic boundary current flowing southwards along the shelf break of Mozambique, was until recently accepted by oceanographers studying ocean circulation in the south-western Indian Ocean. This concept was then cast into doubt based on long-term current measurements obtained from current-meter moorings deployed across the northern Mozambique Channel, which suggested that southward flow through the Mozambique Channel took place in the form of successive, southward migrating and counter-clockwise rotating eddies. Indeed, numerical modelling found that, if at all, strong currents on the outer shelf occurred for not more than 9 days per year. In the present study, the negation of the existence of a Mozambique Current is challenged by the discovery of a large (50 km long, 12 km wide) subaqueous dune field (with up to 10 m high dunes) on the outer shelf east of the modern Zambezi River delta at water depths between 50 and 100 m. Being interpreted as representing the current-modified, early Holocene Zambezi palaeo-delta, the dune field would have migrated southwards by at least 50 km from its former location since sea level recovered to its present-day position some 7 ka ago and after the former delta had been remoulded into a migrating dune field. Because a large dune field composed of actively migrating bedforms cannot be generated and maintained by currents restricted to a period of only 9 days per year, the validity of those earlier modelling results is questioned for the western margin of the flow field. Indeed, satellite images extracted from the Perpetual Ocean display of NASA, which show monthly time-integrated surface currents in the Mozambique Channel for the 5 month period from June-October 2006, support the proposition that strong flow on the outer Mozambican shelf occurs much more frequently than postulated by those modelling results. This is consistent with more recent modelling studies comparing the application of slippage and non-slippage approaches—they suggest that, when applying partial slippage, a western boundary current can exist simultaneously with the southward migrating eddies. Considering the evidence presented in this paper, it is concluded that a quasi-persistent, though seasonally variable Mozambique Current does exist.
Epitaxy of mercury-based high temperature superconducting films on oxide and metal substrates
NASA Astrophysics Data System (ADS)
Xie, Yi-Yuan
High-Tc superconducting (HTS) cuprates are highly anisotropic thus epitaxy along certain crystalline directions is essential to realize high-current-carrying capability at temperatures above 77 K. Hg-based HTS (Hg-HTS) cuprates have the record-high Tc up to 135 K, therefore are of great interest for fundamental research and practical applications. However, growth Of epitaxial Hg-HTS films is extremely difficult in conventional thermal-reaction process since Hg is highly volatile. Motivated by this, we first developed a cation-exchange process for growing epitaxial Hg-HTS films, which involves two steps: selection of precursor matrices with predesigned structure and composition followed by cation-exchange processing. New materials are formed via "atomic surgery" on an existing structure rather than thermal reaction among amorphous oxides in conventional process, thus the structural features of the precursor are inherited by the new material. Using epitaxial Tl-based HTS films as precursor and annealing them in Hg-vapor, epitaxial Hg-HTS films with superior quality have been obtained. This success encouraged us to develop epitaxy on metal tapes for coated conductors and On large-area wafers for electronic devices. For coated conductors, we addressed three critical issues: epitaxy on metal substrates, enhancement of in-field Jcs and scale-up in thickness and length. First, using a fabrication scheme that combines two processes: cation-exchange and fast-temperature-ramping-annealing, epitaxial HgBa2CaCu2O6+delta films were grown on rolling-assisted-biaxially-textured Ni substrates buffered with CeO 2/YSZ/CeO2 for the first time. We fabricated HgBa2CaCu 2O6+delta coated conductors with Tc = 122--124 K and self-field Jc > 1 x 106A/cm2 at 92 K which are record-high for HTS coated conductors. Second, we demonstrated improved in-field J cs via overdoping HgBa2CaCu 2O6+delta films (by means Of charge "overdoped"), heavy-ion-irradiation and substrate engineering. Finally, thick HgBa 2CaCu2O6+delta films show high I c, and spool process also shows potential in middle-length tape fabrication. These results make Hg-HTS films good candidates as power transmission wires/tapes. For large-area epitaxy, ½ inch x ½ inch HgBa2CaCu 2O6+delta films were synthesized on LaAlO3(100) with uniform and high Tcs and Jc s. A new crucible Hg-annealing technique that requires neither vacuum nor torch-sealing has been invented, promising for large-area wafers and long tapes/wires. So far HgBa2CaCu2O6+delta films with good quality have been reproducibly fabricated using this new technique.
Light-front field theory in the description of hadrons
NASA Astrophysics Data System (ADS)
Ji, Chueng-Ryong
2017-03-01
We discuss the use of light-front field theory in the descriptions of hadrons. In particular, we clarify the confusion in the prevailing notion of the equivalence between the infinite momentum frame and the light-front dynamics and the advantage of the light-front dynamics in hadron physics. As an application, we present our recent work on the flavor asymmetry in the proton sea and identify the presence of the delta-function contributions associated with end-point singularities arising from the chiral effective theory calculation. The results pave the way for phenomenological applications of pion cloud models that are manifestly consistent with the chiral symmetry properties of QCD.
Delta Evolution at Røde Elv, Disko Island, Greenland
NASA Astrophysics Data System (ADS)
Kroon, A.; Arngrimson, J.; Bendixen, M.; Sigsgaard, C.
2017-12-01
Ice, snow and freezing temperatures have a large impact on coastal morphodynamics in Arctic polar environments. A recent warming of the Arctic climate induces many changes along the arctic shorelines. Sea-levels are rising due to thermal expansion and due to an increased fresh water flux from the glaciers and land ice masses. At the same time, the ice coverage of the coastal waters reduces and the open water periods in summer extend. There is a strong seasonal variation with open waters and active rivers in summer and ice-covered coastal waters and inactive rivers in winter. Coastal processes by waves and tides are thus limited to the summer and early fall. Besides, there is also a strong daily variation in fluvial discharges due to the daily variations in glacier melt with maximum melt in the afternoon and minimum values at night. At the same time, the actual flux of the river to the coastal bay is influenced by the tidal phase. Low tides will enhance the transport to the delta front, while high tides will create stagnant waters over the delta plain. The delta of the Røde Elv is located in southwestern Disko Island in west Greenland. It has a relatively small (ca. 101 km2) and partly glaciated drainage basin (ca. 20%) and its sediments consist of a mixture of basaltic sands and gravels. The Røde Elv delta is located at the end of a pro-glacial and fluvial valley at about 20 km from the glacier. The shores of the delta are reworked by waves, predominantly from southwestern, southern (largest fetch, over 50 km), and southeastern directions. The environment has a micro- to meso- tidal range with a spring tidal range of 2.7 m. The morphologic changes on the delta over the last decades clearly showed a seaward extension of the delta and a periodic shift in the location of the main delta channel. In this presentation, we focus on quantification of water discharges and suspended sediment fluxes to the Røde Elv delta in western Greenland, and on the morphological evolution of the delta over the last decades. We highlight the variation of fluxes over different seasons under changing river discharges and tidal phases. We use field observations of river discharges and sediment fluxes at the lower part of the river close to the delta apex and estimate the wave activity on the delta front using wind and sea ice data and a numerical model computing wave-driven transport rates.
Putman, Peter; Arias-Garcia, Elsa; Pantazi, Ioanna; van Schie, Charlotte
2012-05-01
Previously, electroencephalographic (EEG) delta-beta coupling (positive correlation between power in the fast beta and slow delta frequency bands) has been related to affective processing. For instance, differences in delta-beta coupling have been observed between people in a psychological stress condition and controls. We previously reported relationships between attentional threat processing and delta-beta coupling and individual differences in attentional control. The present study extended and replicated these findings in a large mixed gender sample (N=80). Results demonstrated that emotional Stroop task interference for threatening words was related to self-reported attentional inhibition capacity and frontal delta-beta coupling. There was no clear gender difference for delta-beta coupling (only a non-significant trend) and the relationship between delta-beta coupling and attentional threat-processing was not affected by gender. These results replicate and extend an earlier finding concerning delta-beta coupling and cognitive affect regulation and further clarify relationships between delta-beta coupling, attentional control, and threat-processing. Copyright © 2012 Elsevier B.V. All rights reserved.
Electromagnetic plasma wave propagation along a magnetic field. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Olson, C. L.
1970-01-01
The linearized response of a Vlasov plasma to the steady-state excitation of transverse plasma waves along an external magnetic field is examined. Assuming a delta-function excitation mechanism, and performing a detailed Vlasov-Maxwell equation analysis using Fourier-Laplace transforms, the plasma response is found to consist of three terms: a branch-cut term, a free-streaming term, and a dielectric-pole term. Also considered is the phenomenon of plasma wave echoes. The case of longitudinal electrostatic waves is extended to the case of transverse plasma waves that propagate along an external magnetic field. It is shown that a transverse echo results in lowest order only when one excitation is transverse and the other is longitudinal.
A pseudoinverse deformation vector field generator and its applications
Yan, C.; Zhong, H.; Murphy, M.; Weiss, E.; Siebers, J. V.
2010-01-01
Purpose: To present, implement, and test a self-consistent pseudoinverse displacement vector field (PIDVF) generator, which preserves the location of information mapped back-and-forth between image sets. Methods: The algorithm is an iterative scheme based on nearest neighbor interpolation and a subsequent iterative search. Performance of the algorithm is benchmarked using a lung 4DCT data set with six CT images from different breathing phases and eight CT images for a single prostrate patient acquired on different days. A diffeomorphic deformable image registration is used to validate our PIDVFs. Additionally, the PIDVF is used to measure the self-consistency of two nondiffeomorphic algorithms which do not use a self-consistency constraint: The ITK Demons algorithm for the lung patient images and an in-house B-Spline algorithm for the prostate patient images. Both Demons and B-Spline have been QAed through contour comparison. Self-consistency is determined by using a DIR to generate a displacement vector field (DVF) between reference image R and study image S (DVFR–S). The same DIR is used to generate DVFS–R. Additionally, our PIDVF generator is used to create PIDVFS–R. Back-and-forth mapping of a set of points (used as surrogates of contours) using DVFR–S and DVFS–R is compared to back-and-forth mapping performed with DVFR–S and PIDVFS–R. The Euclidean distances between the original unmapped points and the mapped points are used as a self-consistency measure. Results: Test results demonstrate that the consistency error observed in back-and-forth mappings can be reduced two to nine times in point mapping and 1.5 to three times in dose mapping when the PIDVF is used in place of the B-Spline algorithm. These self-consistency improvements are not affected by the exchanging of R and S. It is also demonstrated that differences between DVFS–R and PIDVFS–R can be used as a criteria to check the quality of the DVF. Conclusions: Use of DVF and its PIDVF will improve the self-consistency of points, contour, and dose mappings in image guided adaptive therapy. PMID:20384247
Testing strong-segregation theory against self-consistent-field theory for block copolymer melts
NASA Astrophysics Data System (ADS)
Matsen, M. W.
2001-06-01
We introduce a highly efficient self-consistent-field theory (SCFT) method for examining the cylindrical and spherical block copolymer morphologies using a standard unit cell approximation (UCA). The method is used to calculate the classical diblock copolymer phase boundaries deep into the strong-segregation regime, where they can be compared with recent improvements to strong-segregation theory (SST). The comparison suggests a significant discrepancy between the two theories indicating that our understanding of strongly stretched polymer brushes is still incomplete.
Self-consistent mean-field approach to the statistical level density in spherical nuclei
NASA Astrophysics Data System (ADS)
Kolomietz, V. M.; Sanzhur, A. I.; Shlomo, S.
2018-06-01
A self-consistent mean-field approach within the extended Thomas-Fermi approximation with Skyrme forces is applied to the calculations of the statistical level density in spherical nuclei. Landau's concept of quasiparticles with the nucleon effective mass and the correct description of the continuum states for the finite-depth potentials are taken into consideration. The A dependence and the temperature dependence of the statistical inverse level-density parameter K is obtained in a good agreement with experimental data.
Experimental determination of a Viviparus contectus thermometry equation.
Bugler, Melanie J; Grimes, Stephen T; Leng, Melanie J; Rundle, Simon D; Price, Gregory D; Hooker, Jerry J; Collinson, Margaret E
2009-09-01
Experimental measurements of the (18)O/(16)O isotope fractionation between the biogenic aragonite of Viviparus contectus (Gastropoda) and its host freshwater were undertaken to generate a species-specific thermometry equation. The temperature dependence of the fractionation factor and the relationship between Deltadelta(18)O (delta(18)O(carb.) - delta(18)O(water)) and temperature were calculated from specimens maintained under laboratory and field (collection and cage) conditions. The field specimens were grown (Somerset, UK) between August 2007 and August 2008, with water samples and temperature measurements taken monthly. Specimens grown in the laboratory experiment were maintained under constant temperatures (15 degrees C, 20 degrees C and 25 degrees C) with water samples collected weekly. Application of a linear regression to the datasets indicated that the gradients of all three experiments were within experimental error of each other (+/-2 times the standard error); therefore, a combined (laboratory and field data) correlation could be applied. The relationship between Deltadelta(18)O (delta(18)O(carb.) - delta(18)O(water)) and temperature (T) for this combined dataset is given by: T = - 7.43( + 0.87, - 1.13)*Deltadelta18O + 22.89(+/- 2.09) (T is in degrees C, delta(18)O(carb.) is with respect to Vienna Pee Dee Belemnite (VPDB) and delta(18)O(water) is with respect to Vienna Standard Mean Ocean Water (VSMOW). Quoted errors are 2 times standard error).Comparisons made with existing aragonitic thermometry equations reveal that the linear regression for the combined Viviparus contectus equation is within 2 times the standard error of previously reported aragonitic thermometry equations. This suggests there are no species-specific vital effects for Viviparus contectus. Seasonal delta(18)O(carb.) profiles from specimens retrieved from the field cage experiment indicate that during shell secretion the delta(18)O(carb.) of the shell carbonate is not influenced by size, sex or whether females contained eggs or juveniles. Copyright (c) 2009 John Wiley & Sons, Ltd.
Dynamics and Self-consistent Chaos in a Mean Field Hamiltonian Model
NASA Astrophysics Data System (ADS)
del-Castillo-Negrete, Diego
We study a mean field Hamiltonian model that describes the collective dynamics of marginally stable fluids and plasmas in the finite N and N-> infty kinetic limit (where N is the number of particles). The linear stability of equilibria in the kinetic model is studied as well as the initial value problem including Landau damping . Numerical simulations show the existence of coherent, rotating dipole states. We approximate the dipole as two macroparticles and show that the N=2 limit has a family of rotating integrable solutions that provide an accurate description of the dynamics. We discuss the role of self-consistent Hamiltonian chaos in the formation of coherent structures, and discuss a mechanism of "violent" mixing caused by a self-consistent elliptic-hyperbolic bifurcation in phase space.
Designing of a self-adaptive digital filter using genetic algorithm
NASA Astrophysics Data System (ADS)
Geng, Xuemei; Li, Hongguang; Xu, Chi
2018-04-01
This paper presents a novel methodology applying non-linear model for closed loop Sigma-Delta modulator that is based on genetic algorithm, which offers opportunity to simplify the process of tuning parameters and further improve the noise performance. The proposed Sigma-Delta modulator is able to quickly and efficiently design high performance, high order, closed loop that are robust to sensor fabrication tolerances. Simulation results with respect to the proposed Sigma-Delta modulator, SNR>122dB and the noise floor under -170dB are obtained in frequency range of [5-150Hz]. In further simulation, the robustness of the proposed Sigma-Delta modulator is analyzed.
NASA Astrophysics Data System (ADS)
Lin, Changsong; Zhang, Zhongtao; liu, Jingyan; Jiang, Jing
2016-04-01
The Pear River Mouth Basin is located in the northern continent margin of the South China Sea. Since the Late Oligocene, the long-term active fluvial systems (Paleo-Zhujiang) from the western basin margin bebouched into the northern continental margin of the South China Sea and formed widespread deltaic deposits in various depositional geomorphologies and tectonic settings. Based of integral analysys of abundant seismic, well logging and drilling core data, Depositional architecture and evolution of these delta systems and their respone to the tectonic and sea level change are documented in the study. There are two basic types of the delta systems which have been recognized: inner shelf delta deposited in shallow water enviroments and the outer shelf or shelf-edge delta systems occurred in deep water settings. The paleowater depths of these delta systems are around 30 to 80m (inner shelf delta) and 400-1000m (shelf-edge delta) estimated from the thickness (decompaction) of the delta front sequences. The study shows that the inner shelf delta systems are characterized by relatively thin delta forests (20-40m), numereous stacked distributary channel fills, relative coarse river mouth bar deposits and thin distal delta front or distal bar and prodelta deposits. In contrast, the outer shelf or shelf edge delta systems are characteristic of thick (300-800m) and steep (4-60) of deltaic clinoforms, which commonly display in 3D seismic profiles as "S" shape reflection. Large scale soft-sediment deformation structures, slump or debris flow deposits consisting mainly of soft-sediment deformed beds, blocks of sandstones and siltstones or mudstones widely developed in the delta front deposits. The shelf edge delta systems are typically associated with sandy turbidite fan deposits along the prodelta slopes, which may shift basinwards as the progradation of the delta systems. The delta systems underwent several regional cycles of evolution from inner shelf deltas to shelf edge deltas since the Late Oligocene in the study area, and this is consistent with relative sea level changes constrained by interplay of tectonic subsidence or global sea level change and sediment supply. The shelf-edge delta sandy deposits and the associated prodelta turbidite fan systems are the most important oil/gas bearing reservoirs in the continental slope area.
Coronal Magnetic Field Measurement from EUV Images Made by the Solar Dynamics Observatory
NASA Technical Reports Server (NTRS)
Gopalswamy, Natchimuthuk; Nitta, Nariaki; Akiyama, Sachiko; Makela, Pertti; Yashiro, Seiji
2012-01-01
By measuring the geometrical properties of the coronal mass ejection (CME) flux rope and the leading shock observed on 2010 June 13 by the Solar Dynamics Observatory (SDO) mission's Atmospheric Imaging Assembly we determine the Alfven speed and the magnetic field strength in the inner corona at a heliocentric distance of approx. 1.4 Rs The basic measurements are the shock standoff distance (Delta R) ahead of the CME flux rope, the radius of curvature of the flux rope (R(sub c)), and the shock speed. We first derive the Alfvenic Mach number (M) using the relationship, Delta R/R(sub c) = 0.81[(gamma-1) M(exp 2) + 2] / [(gamma +1)(M2 - 1)], where gamma is the only parameter that needed to be assumed. For gamma = 4/3, the Mach number declined from 3.7 to 1.5 indicating shock weakening within the field of view of the imager. The shock formation coincided with the appearance of a type II radio burst at a frequency of approx. 300 MHz (harmonic component), providing an independent confirmation of the shock. The shock compression ratio derived from the radio dynamic spectrum was found to be consistent with that derived from the theory of fast-mode MHD shocks. From the measured shock speed and the derived Mach number, we found the Alfven speed to increase from approx 140 km/s to 460 km/s over the distance range 1.2-1.5 Rs. By deriving the upstream plasma density from the emission frequency of the associated type II radio burst, we determined the coronal magnetic field to be in the range 1.3-1.5 G. The derived magnetic field values are consistent with other estimates in a similar distance range. This work demonstrates that the EUV imagers, in the presence of radio dynamic spectra, can be used as coronal magnetometers
A rapid radiative transfer model for reflection of solar radiation
NASA Technical Reports Server (NTRS)
Xiang, X.; Smith, E. A.; Justus, C. G.
1994-01-01
A rapid analytical radiative transfer model for reflection of solar radiation in plane-parallel atmospheres is developed based on the Sobolev approach and the delta function transformation technique. A distinct advantage of this model over alternative two-stream solutions is that in addition to yielding the irradiance components, which turn out to be mathematically equivalent to the delta-Eddington approximation, the radiance field can also be expanded in a mathematically consistent fashion. Tests with the model against a more precise multistream discrete ordinate model over a wide range of input parameters demonstrate that the new approximate method typically produces average radiance differences of less than 5%, with worst average differences of approximately 10%-15%. By the same token, the computational speed of the new model is some tens to thousands times faster than that of the more precise model when its stream resolution is set to generate precise calculations.
A delta-doped amorphous silicon thin-film transistor with high mobility and stability
NASA Astrophysics Data System (ADS)
Kim, Pyunghun; Lee, Kyung Min; Lee, Eui-Wan; Jo, Younjung; Kim, Do-Hyung; Kim, Hong-jae; Yang, Key Young; Son, Hyunji; Choi, Hyun Chul
2012-12-01
Ultrathin doped layers, known as delta-doped layers, were introduced within the intrinsic amorphous silicon (a-Si) active layer to fabricate hydrogenated amorphous silicon (a-Si:H) thin-film transistors (TFTs) with enhanced field-effect mobility. The performance of the delta-doped a-Si:H TFTs depended on the phosphine (PH3) flow rate and the distance from the n+ a-Si to the deltadoping layer. The delta-doped a-Si:H TFTs fabricated using a commercial manufacturing process exhibited an enhanced field-effect mobility of approximately ˜0.23 cm2/Vs (compared to a conventional a-Si:H TFT with 0.15 cm2/Vs) and a desirable stability under a bias-temperature stress test.
Distribution of flux-pinning energies in YBa2Cu3O(7-delta) and Bi2Sr2CaCu2O(8+delta) from flux noise
NASA Astrophysics Data System (ADS)
Ferrari, M. J.; Johnson, Mark; Wellstood, Frederick C.; Clarke, John; Mitzi, D.
1990-01-01
The spectral density of the magnetic flux noise measured in high-temperature superconductors in low magnetic fields scales approximately as the inverse of the frequency and increases with temperature. The temperature and frequency dependence of the noise are used to determine the pinning energies of individual flux vortices in thermal equilibrium. The distribution of pinning energies below 0.1 eV in YBa(2)Cu(3)O(7-delta) and near 0.2 eV in Bi(2)Sr(2)CaCu(2)O(8+delta). The noise power is proportional to the ambient magnetic field, indicating that the vortex motion is uncorrelated.
Cernusak, Lucas A; Winter, Klaus; Turner, Benjamin L
2009-11-01
Based upon considerations of a theoretical model of (15)N/(14)N fractionation during steady-state nitrate uptake from soil, we hypothesized that, for plants grown in a common soil environment, whole-plant delta(15)N (deltaP) should vary as a function of the transpiration efficiency of nitrogen acquisition (F(N)/v) and the difference between deltaP and root delta(15)N (deltaP - deltaR). We tested these hypotheses with measurements of several tropical tree and liana species. Consistent with theoretical expectations, both F(N)/v and deltaP - deltaR were significant sources of variation in deltaP, and the relationship between deltaP and F(N)/v differed between non-N(2)-fixing and N(2)-fixing species. We interpret the correlation between deltaP and F(N)/v as resulting from variation in mineral nitrogen efflux-to-influx ratios across plasma membranes of root cells. These results provide a simple explanation of variation in delta(15)N of terrestrial plants and have implications for understanding nitrogen cycling in ecosystems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugawara, K.; Tanaka, S.
1992-06-20
This paper reports that ESR of DPPH coated on Bi-Sr-Ca-Cu-O films fabricated on MgO (100) substrates by MOCVD have been studied for samples with different thicknesses, 1000 {Angstrom} and 100 {Angstrom}. Temperature dependence of the ESR peak-to-peak linewidth, {Delta}H{sub pp}, revealed that {Delta}H{sub pp} increases with film thickness. The Excess ESR linewidth, {delta}({Delta}H{sub pp}) was also analyzed in terms of (1 {minus} t{sup alpha}, with t = T/T{sub c}, giving for example {alpha} = 4 ={minus}1 for the 1000 {Angstrom} thick sample. The ESR lineshapes were distorted by rotating the samples in applied magnetic fields. Severe distortion was found formore » the 1000 {Angstrom} sample below about 30 K, but the distortion almost disappears at temperatures above 30 K. The applied magnetic field effects were also examined in both field-cooled and zero-field-cooled cases.« less
Perceived Effects of Community Gardening in Lower Mississippi Delta Gardening Participants
ERIC Educational Resources Information Center
Landry, Alicia S.; Chittendon, Nikki; Coker, Christine E. H.; Weiss, Caitlin
2015-01-01
This article describes the perceived physical and psychological health impacts of community gardening on participants in the Mississippi Delta. Themes identified include the use of gardening as an educational tool and as a means to increase self-efficacy and responsibility for personal and community health. Additional benefits of gardening as…
Self-Excited Roll Oscillations of Non-Slender Wings
2010-03-01
on low sweep delta wings ( Yavuz et al. 2004; Taylor and Gursul 2004). Seeding was provided by a smoke machine placed in the low- speed section of...NV. Yavuz , M.M., Elkhoury, M., Rockwell, D., 2004, “Near-surface topology and flow structure on a delta wing”, AIAA Journal, vol. 42, no. 2, pp
NASA Technical Reports Server (NTRS)
Walker, Kevin P.; Freed, Alan D.; Jordan, Eric H.
1993-01-01
Local stress and strain fields in the unit cell of an infinite, two-dimensional, periodic fibrous lattice have been determined by an integral equation approach. The effect of the fibres is assimilated to an infinite two-dimensional array of fictitious body forces in the matrix constituent phase of the unit cell. By subtracting a volume averaged strain polarization term from the integral equation we effectively embed a finite number of unit cells in a homogenized medium in which the overall stress and strain correspond to the volume averaged stress and strain of the constrained unit cell. This paper demonstrates that the zeroth term in the governing integral equation expansion, which embeds one unit cell in the homogenized medium, corresponds to the generalized self-consistent approximation. By comparing the zeroth term approximation with higher order approximations to the integral equation summation, both the accuracy of the generalized self-consistent composite model and the rate of convergence of the integral summation can be assessed. Two example composites are studied. For a tungsten/copper elastic fibrous composite the generalized self-consistent model is shown to provide accurate, effective, elastic moduli and local field representations. The local elastic transverse stress field within the representative volume element of the generalized self-consistent method is shown to be in error by much larger amounts for a composite with periodically distributed voids, but homogenization leads to a cancelling of errors, and the effective transverse Young's modulus of the voided composite is shown to be in error by only 23% at a void volume fraction of 75%.
NASA Astrophysics Data System (ADS)
Amerikheirabadi, Fatemeh
Organic Donor-Acceptor complexes form the main component of the organic photovoltaic devices (OPVs). The open circuit voltage of OPVs is directly related to the charge transfer excited state energies of these complexes. Currently a large number of different molecular complexes are being tested for their efficiency in photovoltaic devices. In this work, density functional theory as implemented in the NRLMOL code is used to investigate the electronic structure and related properties of these donor-acceptor complexes. The charge transfer excitation energies are calculated using the perturbative delta self-consistent field method recently developed in our group as the standard time dependent density functional approaches fail to accurately provide them. The model photovoltaics systems analyzed are as follows: Sc3N C 80--ZnTPP, Y3 N C80-- ZnTPP and Sc3 N C80-- ZnPc. In addition, a thorough analysis of the isolated donor and acceptor molecules is also provided. The studied acceptors are chosen from a class of fullerenes named trimetallic nitride endohedral fullerenes. These molecules have shown to possess advantages as acceptors such as long lifetimes of the charge-separated states.
Storm time plasma transport in a unified and inter-coupled global magnetosphere model
NASA Astrophysics Data System (ADS)
Ilie, R.; Liemohn, M. W.; Toth, G.
2014-12-01
We present results from the two-way self-consistent coupling between the kinetic Hot Electron and Ion Drift Integrator (HEIDI) model and the Space Weather Modeling Framework (SWMF). HEIDI solves the time dependent, gyration and bounced averaged kinetic equation for the phase space density of different ring current species and computes full pitch angle distributions for all local times and radial distances. During geomagnetic times the dipole approximation becomes unsuitable even in the inner magnetosphere. Therefore the HEIDI model was generalized to accommodate an arbitrary magnetic field and through the coupling with SWMF it obtains a magnetic field description throughout the HEIDI domain along with a plasma distribution at the model outer boundary from the Block Adaptive Tree Solar Wind Roe Upwind Scheme (BATS-R-US) magnetohydrodynamics (MHD) model within SWMF. Electric field self-consistency is assured by the passing of convection potentials from the Ridley Ionosphere Model (RIM) within SWMF. In this study we test the various levels of coupling between the 3 physics based models, highlighting the role that the magnetic field, plasma sheet conditions and the cross polar cap potential play in the formation and evolution of the ring current. We show that the dynamically changing geospace environment itself plays a key role in determining the geoeffectiveness of the driver. The results of the self-consistent coupling between HEIDI, BATS-R-US and RIM during disturbed conditions emphasize the importance of a kinetic self-consistent approach to the description of geospace.
Solvent effects in time-dependent self-consistent field methods. I. Optical response calculations
Bjorgaard, J. A.; Kuzmenko, V.; Velizhanin, K. A.; ...
2015-01-22
In this study, we implement and examine three excited state solvent models in time-dependent self-consistent field methods using a consistent formalism which unambiguously shows their relationship. These are the linear response, state specific, and vertical excitation solvent models. Their effects on energies calculated with the equivalent of COSMO/CIS/AM1 are given for a set of test molecules with varying excited state charge transfer character. The resulting solvent effects are explained qualitatively using a dipole approximation. It is shown that the fundamental differences between these solvent models are reflected by the character of the calculated excitations.
Wang, Lixin; Caylor, Kelly K; Dragoni, Danilo
2009-02-01
The (18)O and (2)H of water vapor serve as powerful tracers of hydrological processes. The typical method for determining water vapor delta(18)O and delta(2)H involves cryogenic trapping and isotope ratio mass spectrometry. Even with recent technical advances, these methods cannot resolve vapor composition at high temporal resolutions. In recent years, a few groups have developed continuous laser absorption spectroscopy (LAS) approaches for measuring delta(18)O and delta(2)H which achieve accuracy levels similar to those of lab-based mass spectrometry methods. Unfortunately, most LAS systems need cryogenic cooling and constant calibration to a reference gas, and have substantial power requirements, making them unsuitable for long-term field deployment at remote field sites. A new method called Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS) has been developed which requires extremely low-energy consumption and neither reference gas nor cryogenic cooling. In this report, we develop a relatively simple pumping system coupled to a dew point generator to calibrate an ICOS-based instrument (Los Gatos Research Water Vapor Isotope Analyzer (WVIA) DLT-100) under various pressures using liquid water with known isotopic signatures. Results show that the WVIA can be successfully calibrated using this customized system for different pressure settings, which ensure that this instrument can be combined with other gas-sampling systems. The precisions of this instrument and the associated calibration method can reach approximately 0.08 per thousand for delta(18)O and approximately 0.4 per thousand for delta(2)H. Compared with conventional mass spectrometry and other LAS-based methods, the OA-ICOS technique provides a promising alternative tool for continuous water vapor isotopic measurements in field deployments. Copyright 2009 John Wiley & Sons, Ltd.
Been, M D; Perrotta, A T
1995-01-01
A non-Watson-Crick G.G interaction within the core region of the hepatitis delta virus (HDV) antigenomic ribozyme is required for optimal rates of self-cleavage activity. Base substitutions for either one or both G's revealed that full activity was obtained only when both G's were replaced with A's. At those positions, substitutions that generate potential Watson-Crick, G.U, heteropurine, or homopyrimidine combinations resulted in dramatically lower cleavage activity. A homopurine symmetric base pair, of the same type identified in the high-affinity binding site of the HIV RRE, is most consistent with this data. Additional features shared between the antigenomic ribozyme and the Rev binding site in the vicinity of the homopurine pairs suggest some structural similarity for this region of the two RNAs and a possible motif associated with this homopurine interaction. Evidence for a homopurine pair at the equivalent position in a modified form of the HDV genomic ribozyme was also found. With the postulated symmetric pairing scheme, large distortions in the nucleotide conformation, the sugar-phosphate backbone, or both would be necessary to accommodate this interaction at the end of a helix; we hypothesize that this distortion is critical to the structure of the active site of the ribozyme and it is stabilized by the homopurine base pair. PMID:8595561
Growth laws for sub-delta crevasses in the Mississippi River Delta
NASA Astrophysics Data System (ADS)
Yocum, T. A.; Georgiou, I. Y.; Straub, K. M.
2017-12-01
River deltas are threatened by environmental change, including subsidence, global sea level rise, reduced sediment inputs and other local factors. In the Mississippi River Delta (MRD) these impacts are exemplified, and have led to proposed solutions to build land that include sediment diversions to reinitiate the delta cycle. Deltas were studied extensively using numerical models, theoretical and conceptual frameworks, empirical scaling relationships, laboratory models and field observations. But predicting the future of deltas relies on field observations where for most deltas data are still lacking. Moreover, empirical and theoretical scaling laws may be influenced by the data used to develop them, while laboratory deltas may be influenced by scaling issues. Anthropogenic crevasses in the MRD are large enough to overcome limitations of laboratory deltas, and small enough to allow for rapid channel and wetland development, providing an ideal setting to investigate delta development mechanics. Here we assessed growth laws of sub-delta crevasses (SDC) in the MRD, in two experimental laboratory deltas (LD - weakly and strongly cohesive) and compared them to river dominated deltas worldwide. Channel and delta geometry metrics for each system were obtained using geospatial tools, bathymetric datasets, sediment size, and hydrodynamic observations. Results show that SDC follow growth laws similar to large river dominated deltas, with the exception of some that exhibit anomalous behavior with respect to the frequency and distance to a bifurcation and the fraction of wetted delta shoreline (allometry metrics). Most SDC exhibit a systematic decrease of non-dimensional channel geometries with increased bifurcation order, indicating that channels are adjusting to decreased flow after bifurcations occur, and exhibit linear trends for land allometry and width-depth ratio, although geometries decrease more rapidly per bifurcation order. Measured distance to bifurcations in SDC and LD appear longer compared to those predicted by power law metrics. With less channel splitting in some crevasses, channel extension creates wetted perimeter faster than or at the same rate as wetted area, which explains why some SDC displayed fractal growth of the wetted allometry.
A method of evaluating quantitative magnetospheric field models by an angular parameter alpha
NASA Technical Reports Server (NTRS)
Sugiura, M.; Poros, D. J.
1979-01-01
The paper introduces an angular parameter, termed alpha, which represents the angular difference between the observed, or model, field and the internal model field. The study discusses why this parameter is chosen and demonstrates its usefulness by applying it to both observations and models. In certain areas alpha is more sensitive than delta-B (the difference between the magnitude of the observed magnetic field and that of the earth's internal field calculated from a spherical harmonic expansion) in expressing magnetospheric field distortions. It is recommended to use both alpha and delta-B in comparing models with observations.
AmeriFlux US-Bn1 Bonanza Creek, 1920 Burn site near Delta Junction
Randerson, James [University of California, Irvine
2016-01-01
This is the AmeriFlux version of the carbon flux data for the site US-Bn1 Bonanza Creek, 1920 Burn site near Delta Junction. Site Description - The Delta Junction 1920 Control site is located near Delta Junction, just to the north of the Alaska Range in interior Alaska. All three Delta Junction sites are within a 15-km radius of one another. Composed of a combination of alluvial outwashes, floodplains, and low terraces dissected by glacial streams originating in the nearby Alaska Range. In 2001, total aboveground biomass consisted almost entirely of black spruce (Picea mariana).
Elastic parabolic equation solutions for underwater acoustic problems using seismic sources.
Frank, Scott D; Odom, Robert I; Collis, Jon M
2013-03-01
Several problems of current interest involve elastic bottom range-dependent ocean environments with buried or earthquake-type sources, specifically oceanic T-wave propagation studies and interface wave related analyses. Additionally, observed deep shadow-zone arrivals are not predicted by ray theoretic methods, and attempts to model them with fluid-bottom parabolic equation solutions suggest that it may be necessary to account for elastic bottom interactions. In order to study energy conversion between elastic and acoustic waves, current elastic parabolic equation solutions must be modified to allow for seismic starting fields for underwater acoustic propagation environments. Two types of elastic self-starter are presented. An explosive-type source is implemented using a compressional self-starter and the resulting acoustic field is consistent with benchmark solutions. A shear wave self-starter is implemented and shown to generate transmission loss levels consistent with the explosive source. Source fields can be combined to generate starting fields for source types such as explosions, earthquakes, or pile driving. Examples demonstrate the use of source fields for shallow sources or deep ocean-bottom earthquake sources, where down slope conversion, a known T-wave generation mechanism, is modeled. Self-starters are interpreted in the context of the seismic moment tensor.
Rotating and binary relativistic stars with magnetic field
NASA Astrophysics Data System (ADS)
Markakis, Charalampos
We develop a geometrical treatment of general relativistic magnetohydrodynamics for perfectly conducting fluids in Einstein--Maxwell--Euler spacetimes. The theory is applied to describe a neutron star that is rotating or is orbiting a black hole or another neutron star. Under the hypotheses of stationarity and axisymmetry, we obtain the equations governing magnetohydrodynamic equilibria of rotating neutron stars with poloidal, toroidal or mixed magnetic fields. Under the hypothesis of an approximate helical symmetry, we obtain the first law of thermodynamics governing magnetized equilibria of double neutron star or black hole - neutron star systems in close circular orbits. The first law is written as a relation between the change in the asymptotic Noether charge deltaQ and the changes in the area and electric charge of black holes, and in the vorticity, baryon rest mass, entropy, charge and magnetic flux of the magnetofluid. In an attempt to provide a better theoretical understanding of the methods used to construct models of isolated rotating stars and corotating or irrotational binaries and their unexplained convergence properties, we analytically examine the behavior of different iterative schemes near a static solution. We find the spectrum of the linearized iteration operator and show for self-consistent field methods that iterative instability corresponds to unstable modes of this operator. On the other hand, we show that the success of iteratively stable methods is due to (quasi-)nilpotency of this operator. Finally, we examine the integrability of motion of test particles in a stationary axisymmetric gravitational field. We use a direct approach to seek nontrivial constants of motion polynomial in the momenta---in addition to energy and angular momentum about the symmetry axis. We establish the existence and uniqueness of quadratic constants and the nonexistence of quartic constants for stationary axisymmetric Newtonian potentials with equatorial symmetry and elucidate their relativistic analogues.
Electromagnetic scattering calculations on the Intel Touchstone Delta
NASA Technical Reports Server (NTRS)
Cwik, Tom; Patterson, Jean; Scott, David
1992-01-01
During the first year's operation of the Intel Touchstone Delta system, software which solves the electric field integral equations for fields scattered from arbitrarily shaped objects has been transferred to the Delta. To fully realize the Delta's resources, an out-of-core dense matrix solution algorithm that utilizes some or all of the 90 Gbyte of concurrent file system (CFS) has been used. The largest calculation completed to date computes the fields scattered from a perfectly conducting sphere modeled by 48,672 unknown functions, resulting in a complex valued dense matrix needing 37.9 Gbyte of storage. The out-of-core LU matrix factorization algorithm was executed in 8.25 h at a rate of 10.35 Gflops. Total time to complete the calculation was 19.7 h-the additional time was used to compute the 48,672 x 48,672 matrix entries, solve the system for a given excitation, and compute observable quantities. The calculation was performed in 64-b precision.
Comparison of storm-time changes of geomagnetic field at ground and at MAGSAT altitudes
NASA Technical Reports Server (NTRS)
Kane, R. P.; Trivedi, N. B.
1981-01-01
Computations concerning variations of the geomagnetic field at MAGSAT altitudes were investigated. Using MAGSAT data for the X, Y, and Z components of the geomagnetic field, a computer conversion to yield the H component was performed. Two methods of determining delta H normalized to a constant geocentric distance R sub 0 = 6800 were investigated, and the utility of elta H at times of magnetic storms was considered. Delta H at a geographical latitude of 0 at dawn and dusk, the standard Dst, and K sub p histograms were plotted and compared. Magnetic anomalies are considered. Examination of data from the majority of the 400 passes of MAGSAT considered show a reasonable delta H versus latitude variation. Discrepancies in values are discussed.
NASA Astrophysics Data System (ADS)
Ong, C. K.; Rao, X. S.; Jin, B. B.
1999-11-01
An unusual microwave response of the surface impedance Zs of high-Tc thin films at an applied small dc magnetic field (Bdc) at 77 K, namely a decrease of Zs, is observed with the microstrip resonator technique. The resonant frequency is 1.107 GHz. The direction of Bdc is parallel or perpendicular to the a-b plane. Bdc ranges from 0 to 200 G. It is found that the surface resistance (Rs) at Bdc parallel to the a-b plane first decreases with Bdc and then increases above a crossover field. The Rs behaviour for Bdc perpendicular to the a-b plane is the same but with a different crossover field. The two behaviours can be collapsed to one curve by scaling the crossover fields. The changes of surface reactance Xs correlated linearly with the changes of Rs in the ranges of Bdc. The ratios rH of changes of Rs and Xs (rH = icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/> Rs/icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/> Xs) are 0.5 at Bdc less than the crossover field and 0.1 at Bdc greater than the crossover field. The measurements also show that the crossover field is independent of rf input power. A phenomenological model is also proposed to explain this unusual behaviour. By adjusting fitting parameters the computed results agree with the experimental results qualitatively.
Yin, Yi; Zech, M; Williams, T L; Wang, X F; Wu, G; Chen, X H; Hoffman, J E
2009-03-06
We present an atomic resolution scanning tunneling spectroscopy study of superconducting BaFe1.8Co0.2As2 single crystals in magnetic fields up to 9 T. At zero field, a single gap with coherence peaks at Delta=6.25 meV is observed in the density of states. At 9 and 6 T, we image a disordered vortex lattice, consistent with isotropic, single flux quantum vortices. Vortex locations are uncorrelated with strong-scattering surface impurities, demonstrating bulk pinning. The vortex-induced subgap density of states fits an exponential decay from the vortex center, from which we extract a coherence length xi=27.6+/-2.9 A, corresponding to an upper critical field Hc2=43 T.
Self-rescue strategies for EVA crewmembers equipped with the SAFER backpack
NASA Technical Reports Server (NTRS)
Williams, Trevor; Baughman, David
1994-01-01
An extravehicular astronaut who becomes separated from a space station has three options available: grappling the station immediately by means of a 'shepherd's crook' device; rescue by either a second crewmember flying an MMU or a robotic-controlled MMU; or self-rescue by means of a propulsive system. The first option requires very fast response by a tumbling astronaut; the second requires constant availability of an MMU, as well as a rendezvous procedure thousands of feet from the station. This paper will consider the third option, propulsive self-rescue. In particular, the capability of the new Simplified Aid for EVA Rescue (SAFER) propulsive backpack, which is to be tested on STS-64 in Sep. 1994, will be studied. This system possesses an attitude hold function that can automatically detumble an astronaut after separation. On-orbit tests of candidate self-rescue systems have demonstrated the need for such a feature. SAFER has a total delta(v) capability of about 10 fps, to cover both rotations and translations, compared with a possible separation rate of 2.5 fps. But the delta(v) required for self-rescue is critically dependent on the delay before return can be initiated, as a consequence of orbital effects. A very important practical question is then whether the total delta(v) of SAFER is adequate to perform self-rescue for worst case values of separation speed, time to detumble, and time for the astronaut to visually acquire the station. This paper shows that SAFER does indeed have sufficient propellant to carry out self-rescue in all realistic separation cases, as well as in cases which are considerably more severe than anything likely to be encountered in practice. The return trajectories and total delta(v)'s discussed are obtained by means of an 'inertial line-of-sight targeting' scheme, derived in the paper, which allows orbital effects to be corrected by making use of the visual information available to the pilot, namely the line-of-sight direction to the station relative to the stars.
Mayrhofer, Severine; Weber, Jan M; Pöggeler, Stefanie
2006-03-01
The homothallic, filamentous ascomycete Sordaria macrospora is self-fertile and produces sexual fruiting bodies (perithecia) without a mating partner. Even so, S. macrospora transcriptionally expresses two pheromone-precursor genes (ppg1 and ppg2) and two pheromone-receptor genes (pre1 and pre2). The proteins encoded by these genes are similar to alpha-factor-like and a-factor-like pheromones and to G-protein-coupled pheromone receptors of the yeast Saccharomyces cerevisiae. It has been suggested that in S. macrospora, PPG1/PRE2 and PPG2/PRE1 form two cognate pheromone-receptor pairs. To investigate their function, we deleted (delta) pheromone-precursor genes (delta ppg1, delta ppg2) and receptor genes (delta pre1, delta pre2) and generated single- as well as double-knockout strains. No effect on vegetative growth, fruiting-body, and ascospore development was seen in the single pheromone-mutant and receptor-mutant strains, respectively. However, double-knockout strains lacking any compatible pheromone-receptor pair (delta pre2/delta ppg2, delta pre1/delta ppg1) and the double-pheromone mutant (delta ppg1/delta ppg2) displayed a drastically reduced number of perithecia and sexual spores, whereas deletion of both receptor genes (delta pre1/delta pre2) completely eliminated fruiting-body and ascospore formation. The results suggest that pheromones and pheromone receptors are required for optimal sexual reproduction of the homothallic S. macrospora.
NASA Technical Reports Server (NTRS)
Green, S.
1972-01-01
Previous accurate dipole moment calculation techniques are modified to be applicable to higher excited states of symmetry. The self-consistent fields and configuration interactions are calculated for the X(2)Sigma(+) and B(2)Sigma(+) states of CN. Spin hyperfine constants and spin density at the nucleus are considered in the context of one-electron operator properties. The values of the self-consistent field and configuration interaction for the spin density are compared with experimental values for several diatomic molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
La Russa, D. J.; Rogers, D. W. O.
EGSnrc calculations of ion chamber response and Spencer-Attix (SA) restricted stopping-power ratios are used to test the assumptions of the SA cavity theory and to assess the accuracy of this theory as it applies to the air kerma formalism for {sup 60}Co beams. Consistent with previous reports, the EGSnrc calculations show that the SA cavity theory, as it is normally applied, requires a correction for the perturbation of the charged particle fluence (K{sub fl}) by the presence of the cavity. The need for K{sub fl} corrections arises from the fact that the standard prescription for choosing the low-energy threshold {Delta}more » in the SA restricted stopping-power ratio consistently underestimates the values of {Delta} needed if no perturbation to the fluence is assumed. The use of fluence corrections can be avoided by appropriately choosing {Delta}, but it is not clear how {Delta} can be calculated from first principles. Values of {Delta} required to avoid K{sub fl} corrections were found to be consistently higher than {Delta} values obtained using the conventional approach and are also observed to be dependent on the composition of the wall in addition to the cavity size. Values of K{sub fl} have been calculated for many of the graphite-walled ion chambers used by the national metrology institutes around the world and found to be within 0.04% of unity in all cases, with an uncertainty of about 0.02%.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-22
... pursuant to an industry-wide initiative, under the auspices of the Intermarket Surveillance Group (``ISG... equivalent of the net delta'' of a hedged equity option position is subject to the position limits under... purposes of the Exemption. \\8\\ The term ``options contract equivalent of the net delta'' is defined in...
ERIC Educational Resources Information Center
Jones, Liz
2006-01-01
The Developing Everyone's Learning and Thinking Abilities (DELTA) parenting programme aims to promote both the holistic development of children and their parent's self-esteem in order to enhance the parent/carer and child relationship. DELTA operates on a multidisciplinary basis using a "Parents as Partners" model. The programme was…
Analysis of mixed-mode crack propagation using the boundary integral method
NASA Technical Reports Server (NTRS)
Mendelson, A.; Ghosn, L. J.
1986-01-01
Crack propagation in a rotating inner raceway of a high speed roller bearing is analyzed using the boundary integral equation method. The method consists of an edge crack in a plate under tension, upon which varying Hertzian stress fields are superimposed. A computer program for the boundary integral equation method was written using quadratic elements to determine the stress and displacement fields for discrete roller positions. Mode I and Mode II stress intensity factors and crack extension forces G sub 00 (energy release rate due to tensile opening mode) and G sub r0 (energy release rate due to shear displacement mode) were computed. These calculations permit determination of that crack growth angle for which the change in the crack extension forces is maximum. The crack driving force was found to be the alternating mixed-mode loading that occurs with each passage of the most heavily loaded roller. The crack is predicted to propagate in a step-like fashion alternating between radial and inclined segments, and this pattern was observed experimentally. The maximum changes DeltaG sub 00 and DeltaG sub r0 of the crack extension forces are found to be good measures of the crack propagation rate and direction.
Chai, Y; Calaf, G M; Zhou, H; Ghandhi, S A; Elliston, C D; Wen, G; Nohmi, T; Amundson, S A; Hei, T K
2013-01-01
Background: Although radiation-induced bystander effects have been confirmed using a variety of endpoints, the mechanism(s) underlying these effects are not well understood, especially for in vivo study. Methods: A 1-cm2 area (1 cm × 1 cm) in the lower abdominal region of gpt delta transgenic mice was irradiated with 5 Gy of 300 keV X-rays, and changes in out-of-field lung and liver were observed. Results: Compared with sham-treated controls, the Spi− mutation frequency increased 2.4-fold in non-targeted lung tissues at 24 h after partial body irradiation (PBIR). Consistent with dramatic Cyclooxygenase 2 (COX-2) induction in the non-targeted bronchial epithelial cells, increasing levels of prostaglandin, together with 8-hydroxydeoxyguanosine, in the out-of-field lung tissues were observed after PBIR. In addition, DNA double-strand breaks and apoptosis were induced in bystander lung tissues after PBIR. Conclusion: The PBIR induces DNA damage and mutagenesis in non-targeted lung tissues, especially in bronchial epithelial cells, and COX-2 has an essential role in bystander mutagenesis. PMID:23321513
Improvement Cutting Betters Growth and Quality of Hardwoods
R. M. Krinard; R. L. Johnson
1964-01-01
Improvement cuttings can speed growth and development of hardwood stands on rundown slack water sites in the Mississippi Delta. This statement summarizes 20-year results of a study begun on the Delta Experimental Forest in 1940. When the study started, the stand was typical of much of the second growth timber in the Delta. It consisted of an uneven-aged aggregation of...
Electronic Structure of Tl2Ba2CuO(6+Delta) Epitaxial Films Measured by X-Ray Photoemission
NASA Technical Reports Server (NTRS)
Vasquez, R. P.; Ren, Z. F.; Wang, J. H.
1996-01-01
The valence electronic structure and core levels of Tl2Ba2CuO(6 + delta) (Tl-2201) epitaxial films have been measured with X-ray photoelectron spectroscopy and are compared to those of Tl2Ba2CaCu2O(8 + delta) (Tl-2212). Changes in the Tl-2201 core-level binding energies with oxygen doping are consistent with a change in the chemical potential. Differences between the Tl-2201 and Tl-2212 measured densities of states are consistent with the calculated Cu 3d and Tl 6s partial densities of states.
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Kane, R. P.; Trivedi, N. B.
1983-01-01
The values of H, X, Y, Z at MAGSAT altitudes were first expressed as residuals delta H, delta X, delta Y, delta Z after subtracting the model HMD, XMD, YMD, ZMC. The storm-time variations of H showed that delta H (Dusk) was larger (negative) than delta H (Dawn) and occurred earlier, indicating a sort of hysteresis effect. Effects at MAGSAT altitudes were roughly the same (10% accuracy) as at ground, indicating that these effects were mostly of magnetospheric origin. The delta Y component also showed large storm-time changes. The latitudinal distribution of storm-time delta H showed north-south asymmetries varying in nature as the storm progressed. It seems that the central plane of the storm-time magnetospheric ring current undergoes latitudinal meanderings during the course of the storm.
76 FR 47009 - Marine Mammals; Incidental Take During Specified Activities
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-03
..., some of these fields include associated satellite oilfields: Sag Delta North, Eider, North Prudhoe Bay... exploration) and CD- 4 (CD South) are in the Colville Delta. The CD-3 drill site is located north of CD-1... oil from the Ivishak formation: Eider produces about 110 barrels per day, and Sag Delta North produces...
Temporal changes of land use in Asi river delta (Hatay, Southern Turkey).
Korkmaz, Hüseyin; Cetin, Bayram; Kuscu, Veysel; Ege, Ismail; Bom, Ahmet; Ozsahin, Emre; Karatas, Atilla
2012-04-01
Increasing non-ecological land use necessitates more efficient using and utilization of land by man. Therefore, in recent years studies on sustainable land use have gained momentum. In this study, temporal change in land use, mainly between years 1940 and 2010, in Asi river delta on Southern Turkey was covered. To this end, in addition to literature, topographical maps and satellite images from year 1940 and after were used. Also, data were collected through field studies and interviews. Collected data were evaluated from geographical viewpoint using Geographical information system (GIS) and Remote sensing (RS) methods. Unplanned settlement in delta has reached levels high enough to threaten agricultural fields. Especially, greattendencyshown by Samandag city and the villages around it towards expanding into delta is an indicatorof this threat In additon, uncontrolled sand mining and touristic facilities on the coastline are also indicators of wrong land use. In future, direction of settlement to slopes around the delta rather than lowlands will be a much more ecological approach.
Self-force calculations with matched expansions and quasinormal mode sums
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casals, Marc; Dolan, Sam; Ottewill, Adrian C.
2009-06-15
Accurate modeling of gravitational wave emission by extreme-mass ratio inspirals is essential for their detection by the LISA mission. A leading perturbative approach involves the calculation of the self-force acting upon the smaller orbital body. In this work, we present the first application of the Poisson-Wiseman-Anderson method of 'matched expansions' to compute the self-force acting on a point particle moving in a curved spacetime. The method employs two expansions for the Green function, which are, respectively, valid in the 'quasilocal' and 'distant past' regimes, and which may be matched together within the normal neighborhood. We perform our calculation in amore » static region of the spherically symmetric Nariai spacetime (dS{sub 2}xS{sup 2}), in which scalar-field perturbations are governed by a radial equation with a Poeschl-Teller potential (frequently used as an approximation to the Schwarzschild radial potential) whose solutions are known in closed form. The key new ingredients in our study are (i) very high order quasilocal expansions and (ii) expansion of the distant past Green function in quasinormal modes. In combination, these tools enable a detailed study of the properties of the scalar-field Green function. We demonstrate that the Green function is singular whenever x and x{sup '} are connected by a null geodesic, and apply asymptotic methods to determine the structure of the Green function near the null wave front. We show that the singular part of the Green function undergoes a transition each time the null wave front passes through a caustic point, following a repeating fourfold sequence {delta}({sigma}), 1/{pi}{sigma}, -{delta}({sigma}), -1/{pi}{sigma}, etc., where {sigma} is Synge's world function. The matched-expansion method provides insight into the nonlocal properties of the self-force. We show that the self-force generated by the segment of the worldline lying outside the normal neighborhood is not negligible. We apply the matched-expansion method to compute the scalar self-force acting on a static particle on the Nariai spacetime, and validate against an alternative method, obtaining agreement to six decimal places. We conclude with a discussion of the implications for wave propagation and self-force calculations. On black hole spacetimes, any expansion of the Green function in quasinormal modes must be augmented by a branch-cut integral. Nevertheless, we expect the Green function in Schwarzschild spacetime to inherit certain key features, such as a fourfold singular structure manifesting itself through the asymptotic behavior of quasinormal modes. In this way, the Nariai spacetime provides a fertile testing ground for developing insight into the nonlocal part of the self-force on black hole spacetimes.« less
On the Debye-Hückel effect of electric screening
NASA Astrophysics Data System (ADS)
Campos, L. M. B. C.; Lau, F. J. P.
2014-07-01
The paper considers non-linear self-consistent electric potential equation (Sec. I), due to a cloud made of a single species of electric charges, satisfying a Boltzmann distribution law (Sec. II). Exact solutions are obtained in a simple logarithmic form, in three cases: (Sec. III) spherical radial symmetry; (Sec. IV) plane parallel symmetry; (Sec. V) a special case of azimuthal-cylindrical symmetry. All these solutions, and their transformations (Sec. VI), involve the Debye-Hückel radius; the latter was originally defined from a solution of the linearized self-consistent potential equation. Using an exact solution of the self-consistent potential equation, the distance at which the potential vanishes differs from the Debye-Hückel radius by a factor of √2 . The preceding (Secs. II-VI) simple logarithmic exact solutions of the self-consistent potential equations involve no arbitrary constants, and thus are special or singular integrals not the general integral. The general solution of the self-consistent potential equation is obtained in the plane parallel case (Sec. VII), and it involves two arbitrary constants that can be reduced to one via a translation (Sec. VIII). The plots of dimensionless potential (Figure 1), electric field (Figure 2), charge density (Figure 3), and total charge between ζ and infinity (Figure 4), versus distance normalized to Debye-Hückel radius ζ ≡ z/a, show that (Sec. IX) there is a continuum of solutions, ranging from a charge distribution concentrated inside the Debye-Hückel radius to one spread-out beyond it. The latter case leads to the limiting case of logarithmic potential, and stronger electric field; the former case, of very concentrated charge distribution, leads to a fratricide effect and weaker electric field.
On the Debye–Hückel effect of electric screening
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campos, L. M. B. C.; Lau, F. J. P.
2014-07-15
The paper considers non-linear self-consistent electric potential equation (Sec. I), due to a cloud made of a single species of electric charges, satisfying a Boltzmann distribution law (Sec. II). Exact solutions are obtained in a simple logarithmic form, in three cases: (Sec. III) spherical radial symmetry; (Sec. IV) plane parallel symmetry; (Sec. V) a special case of azimuthal-cylindrical symmetry. All these solutions, and their transformations (Sec. VI), involve the Debye-Hückel radius; the latter was originally defined from a solution of the linearized self-consistent potential equation. Using an exact solution of the self-consistent potential equation, the distance at which the potentialmore » vanishes differs from the Debye-Hückel radius by a factor of √(2). The preceding (Secs. II–VI) simple logarithmic exact solutions of the self-consistent potential equations involve no arbitrary constants, and thus are special or singular integrals not the general integral. The general solution of the self-consistent potential equation is obtained in the plane parallel case (Sec. VII), and it involves two arbitrary constants that can be reduced to one via a translation (Sec. VIII). The plots of dimensionless potential (Figure 1), electric field (Figure 2), charge density (Figure 3), and total charge between ζ and infinity (Figure 4), versus distance normalized to Debye-Hückel radius ζ ≡ z/a, show that (Sec. IX) there is a continuum of solutions, ranging from a charge distribution concentrated inside the Debye-Hückel radius to one spread-out beyond it. The latter case leads to the limiting case of logarithmic potential, and stronger electric field; the former case, of very concentrated charge distribution, leads to a fratricide effect and weaker electric field.« less
NASA Astrophysics Data System (ADS)
Byrd, K. B.; Ballanti, L.; Nguyen, D.; Simard, M.; Thomas, N.; Windham-Myers, L.; Castaneda, E.; Kroeger, K. D.; Gonneea, M. E.; O'Keefe Suttles, J.; Megonigal, P.; Troxler, T.; Schile, L. M.; Davis, M.; Woo, I.
2016-12-01
According to 2013 IPCC Wetlands Supplement guidelines, tidal marsh Tier 2 or Tier 3 accounting must include aboveground biomass carbon stock changes. To support this need, we are using free satellite and aerial imagery to develop a national scale, consistent remote sensing-based methodology for quantifying tidal marsh aboveground biomass. We are determining the extent to which additional satellite data will increase the accuracy of this "blue carbon" accounting. Working in 6 U.S. estuaries (Cape Cod, MA, Chesapeake Bay, MD, Everglades, FL, Mississippi Delta, LA, San Francisco Bay, CA, and Puget Sound, WA), we built a tidal marsh biomass dataset (n=2404). Landsat reflectance data were matched spatially and temporally with field plots using Google Earth Engine. We quantified percent cover of green vegetation, non-vegetation, and open water in Landsat pixels using segmentation of 1m National Agriculture Imagery Program aerial imagery. Sentinel-1A C-band backscatter data were used in Chesapeake, Mississippi Delta and Puget Sound. We tested multiple Landsat vegetation indices and Sentinel backscatter metrics in 30m scale biomass linear regression models by region. Scaling biomass by fraction green vegetation significantly improved biomass estimation (e.g. Cape Cod: R2 = 0.06 vs. R2 = 0.60, n=28). The best vegetation indices differed by region, though indices based on the shortwave infrared-1 and red bands were most predictive in the Everglades and the Mississippi Delta, while the soil adjusted vegetation index was most predictive in Puget Sound and Chesapeake. Backscatter metrics significantly improved model predictions over vegetation indices alone; consistently across regions, the most significant metric was the range in backscatter values within the green vegetation segment of the Landsat pixel (e.g. Mississippi Delta: R2 = 0.47 vs. R2 = 0.59, n=15). Results support using remote sensing of biomass stock change to estimate greenhouse gas emission factors in tidal wetlands.
The argon nuclear quadrupole moments
NASA Astrophysics Data System (ADS)
Sundholm, Dage; Pyykkö, Pekka
2018-07-01
New standard values -116(2) mb and 76(3) mb are suggested for the nuclear quadrupole moments (Q) of the 39Ar and 37Ar nuclei, respectively. The Q values were obtained by combining optical measurements of the quadrupole coupling constant (B or eqQ/h) of the 3s23p54s[3/2]2 (3Po) and 3s23p54p[5/2]3 (3De) states of argon with large scale numerical complete active space self-consistent field and restricted active space self-consistent field calculations of the electric field gradient at the nucleus (q) using the LUCAS code, which is a finite-element based multiconfiguration Hartree-Fock program for atomic structure calculations.
Volumetric measurement of tank volume
NASA Technical Reports Server (NTRS)
Walter, Richard T. (Inventor); Vanbuskirk, Paul D. (Inventor); Weber, William F. (Inventor); Froebel, Richard C. (Inventor)
1991-01-01
A method is disclosed for determining the volume of compressible gas in a system including incompressible substances in a zero-gravity environment consisting of measuring the change in pressure (delta P) for a known volume change rate (delta V/delta t) in the polytrophic region between isothermal and adiabatic conditions. The measurements are utilized in an idealized formula for determining the change in isothermal pressure (delta P sub iso) for the gas. From the isothermal pressure change (delta iso) the gas volume is obtained. The method is also applicable to determination of gas volume by utilizing work (W) in the compression process. In a passive system, the relationship of specific densities can be obtained.
NASA Technical Reports Server (NTRS)
Bollman, W. E.; Chadwick, C.
1982-01-01
A number of interplanetary missions now being planned involve placing deterministic maneuvers along the flight path to alter the trajectory. Lee and Boain (1973) examined the statistics of trajectory correction maneuver (TCM) magnitude with no deterministic ('bias') component. The Delta v vector magnitude statistics were generated for several values of random Delta v standard deviations using expansions in terms of infinite hypergeometric series. The present investigation uses a different technique (Monte Carlo simulation) to generate Delta v magnitude statistics for a wider selection of random Delta v standard deviations and also extends the analysis to the case of nonzero deterministic Delta v's. These Delta v magnitude statistics are plotted parametrically. The plots are useful in assisting the analyst in quickly answering questions about the statistics of Delta v magnitude for single TCM's consisting of both a deterministic and a random component. The plots provide quick insight into the nature of the Delta v magnitude distribution for the TCM.
NASA Astrophysics Data System (ADS)
Lytvtnenko, D. M.; Slyusarenko, Yu. V.; Kirdin, A. I.
2012-10-01
A consistent theory of equilibrium states of same sign charges above the surface of liquid dielectric film located on solid substrate in the presence of external attracting constant electric field is proposed. The approach to the development of the theory is based on the Thomas-Fermi model generalized to the systems under consideration and on the variational principle. The using of self-consistent field model allows formulating a theory containing no adjustable constants. In the framework of the variational principle we obtain the self-consistency equations for the parameters describing the system: the distribution function of charges above the liquid dielectric surface, the electrostatic field potentials in all regions of the system and the surface profile of the liquid dielectric. The self-consistency equations are used to describe the phase transition associated with the formation of spatially periodic structures in the system of charges on liquid dielectric surface. Assuming the non-degeneracy of the gas of charges above the surface of liquid dielectric film the solutions of the self-consistency equations near the critical point are obtained. In the case of the symmetric phase we obtain the expressions for the potentials and electric fields in all regions of the studied system. The distribution of the charges above the surface of liquid dielectric film for the symmetric phase is derived. The system parameters of the phase transition to nonsymmetric phase - the states with a spatially periodic ordering are obtained. We derive the expression determining the period of two-dimensional lattice as a function of physical parameters of the problem - the temperature, the external attractive electric field, the number of electrons per unit of the flat surface area of the liquid dielectric, the density of the dielectric, its surface tension and permittivity, and the permittivity of the solid substrate. The possibility of generalizing the developed theory in the case of degenerate gas of like-charged particles above the liquid dielectric surface is discussed.
Jacobson, M D; Muñoz, C X; Knox, K S; Williams, B E; Lu, L L; Cross, F R; Vallen, E A
2001-01-01
SIC1 encodes a nonessential B-type cyclin/CDK inhibitor that functions at the G1/S transition and the exit from mitosis. To understand more completely the regulation of these transitions, mutations causing synthetic lethality with sic1 Delta were isolated. In this screen, we identified a novel gene, SID2, which encodes an essential protein that appears to be required for DNA replication or repair. sid2-1 sic1 Delta strains and sid2-21 temperature-sensitive strains arrest preanaphase as large-budded cells with a single nucleus, a short spindle, and an approximately 2C DNA content. RAD9, which is necessary for the DNA damage checkpoint, is required for the preanaphase arrest of sid2-1 sic1 Delta cells. Analysis of chromosomes in mutant sid2-21 cells by field inversion gel electrophoresis suggests the presence of replication forks and bubbles at the arrest. Deleting the two S phase cyclins, CLB5 and CLB6, substantially suppresses the sid2-1 sic1 Delta inviability, while stabilizing Clb5 protein exacerbates the defects of sid2-1 sic1 Delta cells. In synchronized sid2-1 mutant strains, the onset of replication appears normal, but completion of DNA synthesis is delayed. sid2-1 mutants are sensitive to hydroxyurea indicating that sid2-1 cells may suffer DNA damage that, when combined with additional insult, leads to a decrease in viability. Consistent with this hypothesis, sid2-1 rad9 cells are dead or very slow growing even when SIC1 is expressed. PMID:11560884
From Wine to Pineapples: Delta Company Takes on New Satellite Role
2011-01-01
2011 Spring / Summer edition army Space Journal 2F Delta Company Takes on New Satellite Role FROM Wine TO PineAPPLeS WAHIAWA, Hawaii – 2011 has yet...next to pineapple fields on the island of Oahu, Hawaii. Delta Company has provided network and payload control for the Defense Satellite...1. REPORT DATE 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE From Wine to Pineapples : Delta Company
Integration of RAM-SCB into the Space Weather Modeling Framework
Welling, Daniel; Toth, Gabor; Jordanova, Vania Koleva; ...
2018-02-07
We present that numerical simulations of the ring current are a challenging endeavor. They require a large set of inputs, including electric and magnetic fields and plasma sheet fluxes. Because the ring current broadly affects the magnetosphere-ionosphere system, the input set is dependent on the ring current region itself. This makes obtaining a set of inputs that are self-consistent with the ring current difficult. To overcome this challenge, researchers have begun coupling ring current models to global models of the magnetosphere-ionosphere system. This paper describes the coupling between the Ring current Atmosphere interaction Model with Self-Consistent Magnetic field (RAM-SCB) tomore » the models within the Space Weather Modeling Framework. Full details on both previously introduced and new coupling mechanisms are defined. Finally, the impact of self-consistently including the ring current on the magnetosphere-ionosphere system is illustrated via a set of example simulations.« less
Integration of RAM-SCB into the Space Weather Modeling Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welling, Daniel; Toth, Gabor; Jordanova, Vania Koleva
We present that numerical simulations of the ring current are a challenging endeavor. They require a large set of inputs, including electric and magnetic fields and plasma sheet fluxes. Because the ring current broadly affects the magnetosphere-ionosphere system, the input set is dependent on the ring current region itself. This makes obtaining a set of inputs that are self-consistent with the ring current difficult. To overcome this challenge, researchers have begun coupling ring current models to global models of the magnetosphere-ionosphere system. This paper describes the coupling between the Ring current Atmosphere interaction Model with Self-Consistent Magnetic field (RAM-SCB) tomore » the models within the Space Weather Modeling Framework. Full details on both previously introduced and new coupling mechanisms are defined. Finally, the impact of self-consistently including the ring current on the magnetosphere-ionosphere system is illustrated via a set of example simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocharovsky, V. V., E-mail: vkochar@physics.tamu.edu; Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843-4242; Kocharovsky, VI. V.
Widespread use of a broken-power-law description of the spectra of synchrotron emission of various plasma objects requires an analysis of origin and a proper interpretation of spectral components. We show that, for a self-consistent magnetic configuration in a collisionless plasma, these components may be angle-dependent according to an anisotropic particle momentum distribution and may have no counterparts in a particle energy distribution. That has never been studied analytically and is in contrast to a usual model of synchrotron radiation, assuming an external magnetic field and a particle ensemble with isotropic momentum distribution. We demonstrate that for the wide intervals ofmore » observation angle the power-law spectra and, in particular, the positions and number of spectral breaks may be essentially different for the cases of the self-consistent and not-self-consistent magnetic fields in current structures responsible for the synchrotron radiation of the ensembles of relativistic particles with the multi-power-law energy distributions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugawara, K.; Baar, D.J.; Shiohara, Y.
1991-05-10
This paper reports on the ESR linewidth ({Delta}{ital H}{sub p{bar p}}) of DPPH coated on the surface of powder specimens of Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub y} studied under various magnetic field and temperature conditions. {Delta}{ital H}{sub p{bar p}} increases substantially with decreasing temperature in the field cooled case, whereas almost no linewidth broadening was found in the zero field cooled case. {Delta}{ital H}{sub p{bar p}} was found to be sensitive to the applied magnetic field. This effect was very pronounced at temperatures lower than 40 K, but decreased strongly with increasing temperature. The broadening of the resonance lineshape has beenmore » attributed to spatial and temporal variations of the fluxon distribution in the powder particles.« less
Geomorphology of the Chippewa River delta of Glacial Lake Saginaw, central Lower Michigan, USA
NASA Astrophysics Data System (ADS)
Connallon, Christopher B.; Schaetzl, Randall J.
2017-08-01
We introduce, characterize, and interpret the geomorphic history of a relict, Pleistocene-aged delta of the Chippewa River in central Lower Michigan. The broad, sandy Chippewa delta developed into various stages of Glacial Lake Saginaw, between ca. ≈ 17 and 15 ka·BP (calibrated ages). Although the delta was first identified in 1955 on a statewide glacial geology map, neither its extent nor its Pleistocene history had been previously determined. The delta is typically forested, owing to its wet, sandy soils, which stand out against the agricultural fields of the surrounding, loamy lake plain sediments. The delta heads near the city of Mt Pleasant and extends eastward onto the Saginaw Lowlands, i.e., the plain of Glacial Lake Saginaw. Data from 3285 water well logs, 180 hand augered sites, and 185 points randomly located in a GIS on two-storied (sand over loam) soils were used to determine the extent, textural properties, and thickness of the delta. The delta is ≈ 18 km wide and ≈ 38 km long and is sandy throughout. Deltaic sediments from neighboring rivers that also drained into Glacial Lake Saginaw merge with the lower Chippewa delta, obscuring its boundary there. The delta is thickest near the delta's head and in the center, but thins to 1-2 m or less on its eastern margins. Mean thicknesses are 2.3-2.9 m, suggestive of a thin sediment body, frequently impacted by the waves and fluctuating waters of the lakes. Although beach ridges are only weakly expressed across the delta because of the sandy sediment, the coarsest parts of the delta are generally coincident with some of these inferred former shorezones and have a broad, incised channel that formed while lake levels were low. The thick upper delta generally lies above the relict shorelines of Glacial Lakes Saginaw and Arkona (≈ 17.1 to ≈ 16 ka·BP), whereas most of the thin, distal delta is associated with Glacial Lake Warren (≈ 15 ka·BP). Together, these data suggest that the Chippewa delta formed and prograded as lake levels in the Saginaw Lowlands alternated and episodically fell. The result is a delta that is comparatively thin, expansive, and sandy. In some places, these sands have subsequently been reworked into fields of small parabolic dunes.
NASA Astrophysics Data System (ADS)
Marvin-Dipasquale, M. C.; Windham-Myers, L.; Alpers, C. N.; Agee, J. L.; Cox, M. H.; Kakouros, E.; Wren, S. L.
2007-12-01
The Yolo Bypass Wildlife Area (YBWA) is part of the larger Yolo Bypass floodwater protection zone associated with the Sacramento River and the Sacramento-San Joaquin Delta, California. Land use in the YBWA consists of white and wild rice fields, seasonally flooded fallow agricultural fields, and permanently and seasonally flooded non-agricultural wetlands used for resident and migratory waterfowl. A recent assessment of mercury (Hg) and methylmercury (MeHg) loads indicates that the Yolo Bypass is responsible for a high proportion of the aqueous MeHg entering the Delta, and that biota from the Yolo Bypass are considerably elevated in MeHg. The current study examines benthic MeHg production and biogeochemical controls on this process, as a function of YBWA land use, wetland management, and agricultural practices during the 2007 rice growing season (June to October). Preliminary results indicate that in the week following initial flooding of agricultural fields, prior to the establishment of rice plants, the microbial community in the 0-2 cm surface sediment zone exhibited very little potential Hg(II)-methylation activity compared to the permanent wetland habitat (as assessed via the 203Hg(II)- methylation assay). Approximately 1 month after flooding, rice plants were established and the activity of the resident Hg(II)-methylating microbial community had increased substantially in all agricultural fields, although the observed rates of MeHg production were still much lower than those observed in the permanent wetland setting. Ongoing field sampling includes analysis of reactive Hg(II) in sediments and of iron and sulfur redox species in sediments and pore waters.
NASA Astrophysics Data System (ADS)
Cheng, Shengfeng; Wen, Chengyuan; Egorov, Sergei
2015-03-01
Molecular dynamics simulations and self-consistent field theory calculations are employed to study the interactions between a nanoparticle and a polymer brush at various densities of chains grafted to a plane. Simulations with both implicit and explicit solvent are performed. In either case the nanoparticle is loaded to the brush at a constant velocity. Then a series of simulations are performed to compute the force exerted on the nanoparticle that is fixed at various distances from the grafting plane. The potential of mean force is calculated and compared to the prediction based on a self-consistent field theory. Our simulations show that the explicit solvent leads to effects that are not captured in simulations with implicit solvent, indicating the importance of including explicit solvent in molecular simulations of such systems. Our results also demonstrate an interesting correlation between the force on the nanoparticle and the density profile of the brush. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Tesla K40 GPU used for this research.
Neoclassical Simulation of Tokamak Plasmas using Continuum Gyrokinetc Code TEMPEST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, X Q
We present gyrokinetic neoclassical simulations of tokamak plasmas with self-consistent electric field for the first time using a fully nonlinear (full-f) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five dimensional computational grid in phase space. The present implementation is a Method of Lines approach where the phase-space derivatives are discretized with finite differences and implicit backwards differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving gyrokinetic Poisson equation with self-consistent poloidal variation. Withmore » our 4D ({psi}, {theta}, {epsilon}, {mu}) version of the TEMPEST code we compute radial particle and heat flux, the Geodesic-Acoustic Mode (GAM), and the development of neoclassical electric field, which we compare with neoclassical theory with a Lorentz collision model. The present work provides a numerical scheme and a new capability for self-consistently studying important aspects of neoclassical transport and rotations in toroidal magnetic fusion devices.« less
Carbon storage in the Mississippi River delta enhanced by environmental engineering
NASA Astrophysics Data System (ADS)
Shields, Michael R.; Bianchi, Thomas S.; Mohrig, David; Hutchings, Jack A.; Kenney, William F.; Kolker, Alexander S.; Curtis, Jason H.
2017-11-01
River deltas have contributed to atmospheric carbon regulation throughout Earth history, but functioning in the modern era has been impaired by reduced sediment loads, altered hydrologic regimes, increased global sea-level rise and accelerated subsidence. Delta restoration involves environmental engineering via river diversions, which utilize self-organizing processes to create prograding deltas. Here we analyse sediment cores from Wax Lake delta, a product of environmental engineering, to quantify the burial of organic carbon. We find that, despite relatively low concentrations of organic carbon measured in the cores (about 0.4%), the accumulation of about 3 T m-2 of sediment over the approximate 60 years of delta building resulted in the burial of a significant amount of organic carbon (16 kg m-2). This equates to an apparent organic carbon accumulation rate of 250 +/- 23 g m-2 yr-1, which implicitly includes losses by carbon emissions and erosion. Our estimated accumulation rate for Wax Lake delta is substantially greater than previous estimates based on the top metre of delta sediments and comparable to those of coastal mangrove and marsh habitats. The sedimentation of carbon at the Wax Lake delta demonstrates the capacity of engineered river diversions to enhance both coastal accretion and carbon burial.
Ready, David J; Thomas, Kaprice R; Worley, Virginia; Backscheider, Andrea G; Harvey, Leigh Anne C; Baltzell, David; Rothbaum, Barbara Olasov
2008-04-01
Group-based exposure therapy (GBET) was field-tested with 102 veterans with war-related posttraumatic stress disorder (PTSD). Nine to 11 patients attended 3 hours of group therapy per day twice weekly for 16-18 weeks. Stress management and a minimum of 60 hours of exposure was included (3 hours of within-group war-trauma presentations per patient, 30 hours of listening to recordings of patient's own war-trauma presentations and 27 hours of hearing other patients' war-trauma presentations). Analysis of assessments conducted by treating clinicians pre-, post- and 6-month posttreatment suggests that GBET produced clinically significant and lasting reductions in PTSD symptoms for most patients on both clinician symptoms ratings (6-month posttreatment effect size delta = 1.22) and self-report measures with only three dropouts.
NASA Astrophysics Data System (ADS)
Gsponer, Andre
2009-01-01
The objective of this introduction to Colombeau algebras of generalized functions (in which distributions can be freely multiplied) is to explain in elementary terms the essential concepts necessary for their application to basic nonlinear problems in classical physics. Examples are given in hydrodynamics and electrodynamics. The problem of the self-energy of a point electric charge is worked out in detail: the Coulomb potential and field are defined as Colombeau generalized functions, and integrals of nonlinear expressions corresponding to products of distributions (such as the square of the Coulomb field and the square of the delta function) are calculated. Finally, the methods introduced in Gsponer (2007 Eur. J. Phys. 28 267, 2007 Eur. J. Phys. 28 1021 and 2007 Eur. J. Phys. 28 1241), to deal with point-like singularities in classical electrodynamics are confirmed.
Understanding pesticides in California's Delta
Kuivila, Kathryn; Orlando, James L.
2012-01-01
The Sacramento-San Joaquin River Delta (Delta) is the hub of California’s water system and also an important habitat for imperiled fish and wildlife. Aquatic organisms are exposed to mixtures of pesticides that flow through the maze of Delta water channels from sources including agricultural, landscape, and urban pest-control applications. While we do not know all of the effects pesticides have on the ecosystem, there is evidence that they cause some damage to organisms in the Delta. Decades of USGS research have provided a good understanding of when, where, and how pesticides enter the Delta. However, pesticide use is continually changing. New field studies and methods are needed so that scientists can analyze which pesticides are present in the Delta, and at what concentrations, enabling them to estimate exposure and ultimate effects on organisms. Continuing research will provide resource managers and stakeholders with crucial information to manage the Delta wisely.
Predicting switched-bias response from steady-state irradiations
NASA Astrophysics Data System (ADS)
Fleetwood, D. M.; Winokur, P. S.; Riewe, L. C.
1990-12-01
A novel semiempirical model of radiation-induced charge neutralization is presented. This model is combined with 12 heuristic guidelines derived from studies of oxide- and interface-trap charge (Delta Vot and Delta Vit) buildup and annealing to develop a method to predict MOS switched-bias response from steady-state irradiations, with no free parameters. For n-channel MOS devices, predictions of Delta Vot, Delta Vit, and mobility degradation differ from experimental values through irradiation by less than 30 percent in all cases considered. This is demonstrated for gate oxides with widely varying Delta Vot and Delta Vit and for parasitic field oxides. Preliminary results suggest that n-channel MOS Delta Vot annealing and Delta Vit buildup following switched-bias irradiation and through switched-bias annealing also may be predicted with less than 30 percent error. The p-channel MOS response at high frequencies is more difficult to predict.
Kirschbaum, M.A.
1986-01-01
This deltaic Upper Cretaceous Rock Springs Formation of the Mesaverde Group was deposited during early Campanian time near the end of the regressive phase of the Niobrara cyclothem. On the southwest end of the Uplift, part of the delta system is exposed near the seaward edge of a series of transgressive/regressive sequences, which consist of intertonguing prodelta, delta-front, and delta-plain deposits. Eight major delta-front sandstones are vertically stacked and laterally continuous throughout the main study area.-from Author
NASA Astrophysics Data System (ADS)
Bonilla, L. L.; Carretero, M.; Segura, A.
2017-12-01
When quantized, traces of classically chaotic single-particle systems include eigenvalue statistics and scars in eigenfuntions. Since 2001, many theoretical and experimental works have argued that classically chaotic single-electron dynamics influences and controls collective electron transport. For transport in semiconductor superlattices under tilted magnetic and electric fields, these theories rely on a reduction to a one-dimensional self-consistent drift model. A two-dimensional theory based on self-consistent Boltzmann transport does not support that single-electron chaos influences collective transport. This theory agrees with existing experimental evidence of current self-oscillations, predicts spontaneous collective chaos via a period doubling scenario, and could be tested unambiguously by measuring the electric potential inside the superlattice under a tilted magnetic field.
Bonilla, L L; Carretero, M; Segura, A
2017-12-01
When quantized, traces of classically chaotic single-particle systems include eigenvalue statistics and scars in eigenfuntions. Since 2001, many theoretical and experimental works have argued that classically chaotic single-electron dynamics influences and controls collective electron transport. For transport in semiconductor superlattices under tilted magnetic and electric fields, these theories rely on a reduction to a one-dimensional self-consistent drift model. A two-dimensional theory based on self-consistent Boltzmann transport does not support that single-electron chaos influences collective transport. This theory agrees with existing experimental evidence of current self-oscillations, predicts spontaneous collective chaos via a period doubling scenario, and could be tested unambiguously by measuring the electric potential inside the superlattice under a tilted magnetic field.
Ganguly, Abir; Thaplyal, Pallavi; Rosta, Edina; Bevilacqua, Philip C; Hammes-Schiffer, Sharon
2014-01-29
The hepatitis delta virus (HDV) ribozyme catalyzes a self-cleavage reaction using a combination of nucleobase and metal ion catalysis. Both divalent and monovalent ions can catalyze this reaction, although the rate is slower with monovalent ions alone. Herein, we use quantum mechanical/molecular mechanical (QM/MM) free energy simulations to investigate the mechanism of this ribozyme and to elucidate the roles of the catalytic metal ion. With Mg(2+) at the catalytic site, the self-cleavage mechanism is observed to be concerted with a phosphorane-like transition state and a free energy barrier of ∼13 kcal/mol, consistent with free energy barrier values extrapolated from experimental studies. With Na(+) at the catalytic site, the mechanism is observed to be sequential, passing through a phosphorane intermediate, with free energy barriers of 2-4 kcal/mol for both steps; moreover, proton transfer from the exocyclic amine of protonated C75 to the nonbridging oxygen of the scissile phosphate occurs to stabilize the phosphorane intermediate in the sequential mechanism. To explain the slower rate observed experimentally with monovalent ions, we hypothesize that the activation of the O2' nucleophile by deprotonation and orientation is less favorable with Na(+) ions than with Mg(2+) ions. To explore this hypothesis, we experimentally measure the pKa of O2' by kinetic and NMR methods and find it to be lower in the presence of divalent ions rather than only monovalent ions. The combined theoretical and experimental results indicate that the catalytic Mg(2+) ion may play three key roles: assisting in the activation of the O2' nucleophile, acidifying the general acid C75, and stabilizing the nonbridging oxygen to prevent proton transfer to it.
Ruegg, H; Yu, W Z; Bodnar, R J
1997-07-01
Selective mu ([D-Ala2, N-Me-Phe4, Gly-ol5]-enkephalin (DAMGO)), delta1 ([D-Pen2, D-Pen5]-enkephalin (DPDPE)), delta2 ([D-Ala2, Glu4]-Deltorphin (Delt II)), kappa1 (U50488H) and kappa3 (naloxone benzoylhydrazone (NalBzOH)) opioid agonists each stimulate food intake in rats. Whereas studies with selective opioid antagonists implicate mu and kappa1 receptors in the mediation of sucrose intake, studies with selective opioid agonists implicate mu and delta receptors in the mediation of saccharin intake. The present study determined if specific delta1, delta2, kappa1, kappa3 and mu opioid-receptor subtype agonists produced similar alterations in sucrose intake as a function of sucrose concentration (0.5%, 2.5%, 10%) across a 1-h time-course. Each of these agonists significantly increased sucrose intake with variations in pattern, magnitude, and consistency as a function of sucrose concentration. Whereas the mu opioid agonist, DAMGO, and the delta1 opioid agonist, DPDPE, each enhanced sucrose intake at higher (2.5%, 10%), but not lower (0.5%), concentrations, the delta2 opioid agonist, Delt II, increased sucrose intake at lower (0.5%, 2.5%), but not higher (10%), concentrations. Kappa opioid agonists produced less consistent effects. The kappa1 opioid agonist, U50488H, increased sucrose intake at high (10%) concentrations and decreased sucrose intake at low (0.5%) concentrations, and the kappa3 opioid agonist, NalBzOH, inconsistently increased sucrose intake at the 0.5% (20 microg) and 10% (1 microg) concentrations. Thus, these data further implicate mu, delta1, and delta2 opioid mediation of palatable intake, particularly of its orosensory characteristics.
NASA Astrophysics Data System (ADS)
Stingl, K.
1994-12-01
The Eibiswald Bucht is a small subbasin of the Western Styrian Basin exposing sediments of Lower Miocene age. In the past the entire sequence exposed in the Eibiswalder Bucht has been interpreted as being of fluvial/lacustrine origin; here, results are presented of detailed sedimentological investigations that lead to a revision of this concept. The lowermost siliciclastic sedimentary unit of the Eibiswalder Bucht sequence is the Radl Formation. It is overlain by the Eibiswald Beds, which are subdivided into the Lower, Middle and Upper Eibiswald Beds. The Radl Formation and the Lower Eibiswald Beds are interpreted as a fan delta complex deposited along NNW-SSE striking faults. Based on the sedimentary facies this fan delta can be subdivided into a subaerial alluvial fan facies group, a proximal delta facies group and a distal delta/prodelta facies group. The Radl Formation comprises the alluvial fan and proximal delta facies groups, the Lower Eibiswald Beds the distal delta/prodelta facies group. The alluvial fan and the proximal delta consist of diverse deposits of gravelly flows. The distal delta/prodelta consists of wave-reworked, bioturbated, low density turbidites intercalated with minor gravelly mass flows. The prodelta can be regarded as as the basin facies of the small and shallow Eibiswalder Bucht, where marine conditions prevailed. The basin was probably in part connected with the Eastern Styrian Basin, the contemporary depositional environment of the Styrian Schlier (mainly turbiditic marine offshore sediments in the Eastern Styrian Basin). Analysis of the clast composition, in conjunction with the paleotransport direction of the coarse delta mass flows of the Radl Formation, shows that the source rocks were exclusively crystalline rocks ranging from greenschists to eclogites.
NASA Technical Reports Server (NTRS)
Curtiss, L. A.; Langhoff, S. R.; Carney, G. D.
1979-01-01
The constant and linear terms in a Taylor series expansion of the dipole moment function of the ground state of ozone are calculated with Cartesian Gaussian basis sets ranging in quality from minimal to double zeta plus polarization. Results are presented at both the self-consistent field and configuration-interaction levels. Although the algebraic signs of the linear dipole moment derivatives are all established to be positive, the absolute magnitudes of these quantities, as well as the infrared intensities calculated from them, vary considerably with the level of theory.
Granovsky, Alexander A
2015-12-21
We present a new, very efficient semi-numerical approach for the computation of state-specific nuclear gradients of a generic state-averaged multi-configuration self consistent field wavefunction. Our approach eliminates the costly coupled-perturbed multi-configuration Hartree-Fock step as well as the associated integral transformation stage. The details of the implementation within the Firefly quantum chemistry package are discussed and several sample applications are given. The new approach is routinely applicable to geometry optimization of molecular systems with 1000+ basis functions using a standalone multi-core workstation.
Self-consistent-field KKR-CPA calculations in the atomic-sphere approximations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, P.P. Gonis, A.; de Fontaine, D.
1991-12-03
We present a formulation of the Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA) for the treatment of substitutionally disordered alloys within the KKR atomic-sphere approximations (ASA). This KKR-ASA-CPA represents the first step toward the implementation of a full cell potential CPA, and combines the accuracy of the KKR-CPA method with the flexibility of treating complex crystal structures. The accuracy of this approach has been tested by comparing the self-consistent-field (SCF) KKR-ASA-CPA calculations of Cu-Pd alloys with experimental results and previous SCF-KKR-CPA calculations.
Self-consistent-field perturbation theory for the Schröautdinger equation
NASA Astrophysics Data System (ADS)
Goodson, David Z.
1997-06-01
A method is developed for using large-order perturbation theory to solve the systems of coupled differential equations that result from the variational solution of the Schröautdinger equation with wave functions of product form. This is a noniterative, computationally efficient way to solve self-consistent-field (SCF) equations. Possible applications include electronic structure calculations using products of functions of collective coordinates that include electron correlation, vibrational SCF calculations for coupled anharmonic oscillators with selective coupling of normal modes, and ab initio calculations of molecular vibration spectra without the Born-Oppenheimer approximation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granovsky, Alexander A., E-mail: alex.granovsky@gmail.com
We present a new, very efficient semi-numerical approach for the computation of state-specific nuclear gradients of a generic state-averaged multi-configuration self consistent field wavefunction. Our approach eliminates the costly coupled-perturbed multi-configuration Hartree-Fock step as well as the associated integral transformation stage. The details of the implementation within the Firefly quantum chemistry package are discussed and several sample applications are given. The new approach is routinely applicable to geometry optimization of molecular systems with 1000+ basis functions using a standalone multi-core workstation.
Theoretical studies of electronically excited states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Besley, Nicholas A.
2014-10-06
Time-dependent density functional theory is the most widely used quantum chemical method for studying molecules in electronically excited states. However, excited states can also be computed within Kohn-Sham density functional theory by exploiting methods that converge the self-consistent field equations to give excited state solutions. The usefulness of single reference self-consistent field based approaches for studying excited states is demonstrated by considering the calculation of several types of spectroscopy including the infrared spectroscopy of molecules in an electronically excited state, the rovibrational spectrum of the NO-Ar complex, core electron binding energies and the emission spectroscopy of BODIPY in water.
Geometry-dependent penetration fields of superconducting Bi2Sr2CaCu2O8+δ platelets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curran, P. J.; Clem, J. R.; Bending, S. J.
Magneto-optical imaging has been used to study vortex penetration into regular polygon-shaped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} platelets with various geometries (disks, pentagons, squares, and triangles) but known fixed areas. In all cases we observe an exponential dependence of the field of first penetration, H{sub p}, on temperature, consistent with a dominant Bean-Livingston barrier for pancake vortices at our measurement temperatures (45-80 K). However, the penetration field consistently decreases with decreasing degree of sample symmetry, in stark contrast to conventional estimates of demagnetization factors using equivalent ellipsoids based on inscribed circles, which predict the reverse trend. Surprisingly, this observation doesmore » not appear to have been reported in the literature before. We demonstrate empirically that estimates using equivalent ellipsoids based on circumscribed circles predict the correct qualitative experimental trend in Hp. Our work has important implications for the estimation of appropriate effective demagnetization factors for flux penetration into arbitrarily shaped superconducting bodies.« less
Geometry-dependent penetration fields in superconducting Bi2Sr2CaCu2O8+δ platelets
DOE Office of Scientific and Technical Information (OSTI.GOV)
By: Curran, P. J.; Clem, J. R.; Bending, S. J.
Magneto-optical imaging has been used to study vortex penetration into regular polygon-shaped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} platelets with various geometries (disks, pentagons, squares, and triangles) but known fixed areas. In all cases we observe an exponential dependence of the field of first penetration, H{sub p}, on temperature, consistent with a dominant Bean-Livingston barrier for pancake vortices at our measurement temperatures (45-80 K). However, the penetration field consistently decreases with decreasing degree of sample symmetry, in stark contrast to conventional estimates of demagnetization factors using equivalent ellipsoids based on inscribed circles, which predict the reverse trend. Surprisingly, this observation doesmore » not appear to have been reported in the literature before. We demonstrate empirically that estimates using equivalent ellipsoids based on circumscribed circles predict the correct qualitative experimental trend in H{sub p}. Our work has important implications for the estimation of appropriate effective demagnetization factors for flux penetration into arbitrarily shaped superconducting bodies.« less
Estimating Field Scale Crop Evapotranspiration using Landsat and MODIS Satellite Observations
NASA Astrophysics Data System (ADS)
Wong, A.; Jin, Y.; Snyder, R. L.; Daniele, Z.; Gao, F.
2016-12-01
Irrigation accounts for 80% of human freshwater consumption, and most of it return to the atmosphere through Evapotranspiration (ET). Given the challenges of already-stressed water resources and ground water regulation in California, a cost-effective, timely, and consistent spatial estimate of crop ET, from the farm to watershed level, is becoming increasingly important. The Priestley-Taylor (PT) approach, calibrated with field data and driven by satellite observations, shows great promise for accurate ET estimates across diverse ecosystems. We here aim to improve the robustness of the PT approach in agricultural lands, to enable growers and farm managers to tailor irrigation management based on in-field spatial variability and in-season variation. We optimized the PT coefficients for each crop type with available ET measurements from eddy covariance towers and/or surface renewal stations at six crop fields (Alfalfa, Almond, Citrus, Corn, Pistachio and Rice) in California. Good agreement was found between satellite-based estimates and field measurements of net radiation, with a RMSE of less than 36 W m-2. The crop type specific optimization performed well, with a RMSE of 30 W m-2 and a correlation of 0.81 for predicted daily latent heat flux. The calibrated algorithm was used to estimate ET at 30 m resolution over the Sacramento-San Joaquin Delta region for 2015 water year. It captures well the seasonal dynamics and spatial distribution of ET in Sacramento-San Joaquin Delta. A continuous monitoring of the dynamics and spatial heterogeneity of canopy and consumptive water use at a field scale, will help the growers to be well prepared and informed to adaptively manage water, canopy, and grove density to maximize the yield with the least amount of water.
Coupar, I. M.; Taylor, D. A.
1982-01-01
1 Whole brain and regional brain levels of prostaglandin E2 (PGE2)-like material have been determined following administration of delta 9-tetrahydrocannabinol (delta 9 -THC) in rats. 2 Intravenous administration of delta 9-THC 2 mg/kg, resulted in marked behavioural changes and hypothermia. The behavioural changes consisted mainly of catatonia (most apparent at 30 min after administration of delta 9-THC), followed by sedation (most evident at 60 min). Hypothermia was marked from 30 min after administration of delta 9-THC. 3 delta 9-THC did not after the whole brain levels of PGE2-like material 30, 60 or 120 min after administration. 4 delta 9-THC did not alter the levels of PGE2-like material in the medulla oblongata/pons, midbrain, cortex and cerebellum, 30 min after administration. However, there was a significant reduction of PGE2-like material in the hypothalamus, 30 min after delta 9-THC. 5 It is suggested that the delta 9-THC-induced decrease in hypothalamic PGE2-like material may contribute to the hypothermia observed following delta 9-THC administration. PMID:6282371
Delta L: An Apparatus for Measuring Macromolecular Crystal Growth Rates in Microgravity
NASA Technical Reports Server (NTRS)
Judge, Russell A.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
In order to determine how macromolecule crystal quality improvement in microgravity is related to crystal growth characteristics, is was necessary to develop new hardware that could measure the crystal growth rates of a population of crystals growing under the same solution conditions. As crystal growth rate is defined as the change or delta in a defined dimension or length (L) of a crystal over time, the hardware was named Delta L. Delta L consists of fluids, optics, and data acquisition, sub-assemblies. Temperature control is provided for the crystal growth chamber. Delta L will be used in connection with the Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) inside the Microgravity Science Glovebox (MSG), onboard the International Space Station (ISS). Delta L prototype hardware has been assembled. This paper will describe an overview of the design of Delta L and present preliminary crystal growth rate data.
Toroidal Ampere-Faraday Equations Solved Consistently with the CQL3D Fokker-Planck Time-Evolution
NASA Astrophysics Data System (ADS)
Harvey, R. W.; Petrov, Yu. V.
2013-10-01
A self-consistent, time-dependent toroidal electric field calculation is a key feature of a complete 3D Fokker-Planck kinetic distribution radial transport code for f(v,theta,rho,t). In the present CQL3D finite-difference model, the electric field E(rho,t) is either prescribed, or iteratively adjusted to obtain prescribed toroidal or parallel currents. We discuss first results of an implementation of the Ampere-Faraday equation for the self-consistent toroidal electric field, as applied to the runaway electron production in tokamaks due to rapid reduction of the plasma temperature as occurs in a plasma disruption. Our previous results assuming a constant current density (Lenz' Law) model showed that prompt ``hot-tail runaways'' dominated ``knock-on'' and Dreicer ``drizzle'' runaways; we will examine modifications due to the more complete Ampere-Faraday solution. Work supported by US DOE under DE-FG02-ER54744.
Bui, Thanh Cong; Markham, Christine M; Ross, Michael W; Williams, Mark L; Beasley, R Palmer; Tran, Ly T H; Nguyen, Huong T H; Le, Thach Ngoc
2012-09-01
Worldwide, the literature on sexual behaviour has documented associations between gender-based relationship inequality and sexual communication ability and the actual use of condoms or other contraceptives among young women. This study aimed to examine these associations among undergraduate female students in the Mekong Delta of Vietnam. A cross-sectional survey of 1181 female third-year students from two universities in the Mekong Delta was conducted. Latent variable modelling and logistic regression were employed to examine the hypothesised associations. Among the 72.4% of students who had ever had boyfriends, 44.8% indicated that their boyfriends had asked for sex, 13% had had penile-vaginal sex and 10.3% had had oral sex. For those who had had penile-vaginal sex, 33% did not use any contraceptive method, including condoms, during their first sexual intercourse. The greater a student's perception that women were subordinate to men, the lower her self-efficacy for sexual communication and the lower her actual frequency of discussing safer sex matters and asking her partner to use a condom. Sexual communication self-efficacy was associated with actual contraceptive use (P=0.039) but only marginally with condom use (P=0.092) at first sexual intercourse. Sexual health promotion strategies should address the influence of gender relations on young women's sexual communication self-efficacy and the subsequent impact on actual contraceptive and condom use.
NASA Astrophysics Data System (ADS)
Liu, Zhaosen; Ian, Hou
2016-01-01
We give a theoretical study on the magnetic properties of monolayer nanodisks with both Heisenberg exchange and Dzyaloshinsky-Moriya (DM) interactions. In particular, we survey the magnetic effects caused by anisotropy, external magnetic field, and disk size when DM interaction is present by means of a new quantum simulation method facilitated by a self-consistent algorithm based on mean field theory. This computational approach finds that uniaxial anisotropy and transversal magnetic field enhance the net magnetization as well as increase the transition temperature of the vortical phase while preserving the chiralities of the swirly magnetic structures, whereas when the strength of DM interaction is sufficiently strong for a given disk size, magnetic domains appear within the circularly bounded region, which vanish and give in to a single vortex when a transversal magnetic field is applied. The latter confirms the magnetic skyrmions induced by the magnetic field as observed in the experiments.
Comparison of storm-time changes of geomagnetic field at ground and MAGSAT altitudes
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Kane, R. P.; Trivedi, N. B.
1982-01-01
The MAGSAT data for the period Nov. 2-20, 1979 were studied. From the observed H, the HMD predicted by model was subtracted. The residue delta H = H-HMD shows storm-time variations similar to geomagnetic Dst, at least qualitatively. Delta H sub 0, i.e., equatorial values of delta H were studied separately for dusk and dawn and show some differences.
Microstructural evolution in a 17-4 PH stainless steel after aging at 400 C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murayama, M.; Hono, K.; Katayama, Y.
1999-02-01
The microstructure of 17-4 PH stainless steel at various stages of heat treatment, i.e., after solution heat treatment, tempering at 580 C, and long-term aging at 400 C, have been studied by atom probe field ion microscopy (APFIM) and transmission electron microscopy (TEM). The solution-treated specimen consists largely of martensite with a small fraction of {delta}-ferrite. No precipitates are present in the martensite phase, while spherical fcc-Cu particles are present in the {delta}-ferrite. No precipitates are present in the martensite phase, while spherical fcc-Cu particles are present in the {delta}-ferrite. After tempering for 4 hours as 580 C, coherent Cumore » particles precipitate in the martensite phase. At this stage, the Cr concentration in the martensite phase is still uniform. After 5000 hours aging at 400 C, the martensite spinodaly decomposes into Fe-rich {alpha} and Cr-enriched {alpha}{prime}. In addition, fine particles of the G-phase (structure type D8{sub a}, space group Fm{bar 3}m) enriched in Si, Ni, and Mn have been found in intimate contact with the Cu precipitates. Following spinodal decomposition of the martensite phase, G-phase precipitation occurs after long-term aging.« less
Measurement of Arcminute Scale Cosmic Microwave Background Anisotropy with the BIMA Array
NASA Technical Reports Server (NTRS)
Dawson, K. S.; Holzapfel, W. L.; Carlstrom, J. E.; Joy, M.; LaRoque, S. J.; Miller, A.; Nagai, D.; Six, N. Frank (Technical Monitor)
2002-01-01
We report the results of our continued study of arcminute scale anisotropy in the Cosmic Microwave Background (CMB) with the Berkeley-Illinois-Maryland Association (BIMA) array. The survey consists of ten independent fields selected for low infrared dust emission and lack of bright radio point sources. With observations from the VLA (Very Large Array) at 4.8 GHz, we have identified point sources which could act as contaminants in estimates of the CMB power spectrum and removed them in the analysis. Modeling the observed power spectrum with a single. flat band power with average multipole of l(sub eff) = 6864, we find Delta T = 14.2((sup +4.8)(sub -6.0)) micro K at 68% confidence. The signal in the visibility data exceeds the expected contribution from instrumental noise with 96.5% confidence. We have also divided the data into two bins corresponding to different spatial resolutions in the power spectrum. We find Delta T(sub 1) = 16.6((sup +5.3)(sub -5.9)) micro K at 68% confidence for CMB flat band power described by an average multipole of l(sub eff) = 5237 and Delta T(sub 2) is less than 26.5 micro K at 95% confidence for l(sub eff) = 8748.
An exploratory study of apex fence flaps on a 74 deg delta wing
NASA Technical Reports Server (NTRS)
Wahls, R. A.; Vess, R. J.
1985-01-01
An exploratory wind tunnel investigation was performed to observe the flow field effects produced by vertically deployed apex fences on a planar 74 degree delta wing. The delta shaped fences, each comprising approximately 3.375 percent of the wing area, were affixed along the first 25 percent of the wing leading edge in symmetric as well as asymmetric (i.e., fence on one side only) arrangements. The vortex flow field was visualized at angles of attack from 0 to 20 degrees using helium bubble and oil flow techniques; upper surface pressures were also measured along spanwise rows. The results were used to construct a preliminary description of the vortex patterns and induced pressures associated with vertical apex fence deployment. The objective was to obtain an initial evaluation of the potential of apex fences as vortex devices for subsonic lift modulation as well as lateral directional control of delta wing aircraft.
NASA Astrophysics Data System (ADS)
Tagaya, Kimihito; Fukuoka, Nobuo; Nakanishi, Shigemitsu
1990-12-01
ESR measurements were performed for ErBa2Cu3O(7-delta) and HoBa2Cu3O(7-delta) single crystals from 77 K to room temperature. The ESR signals of Er2BaCuO5 and Ho2BaCuO5 were observed, and their temperature variations were investigated. Nonresonant microwave absorption was also observed below the superconducting critical temperature of 93 K. The principal values of lower critical field were determined.
Bjorgaard, J. A.; Velizhanin, K. A.; Tretiak, S.
2015-08-06
This study describes variational energy expressions and analytical excited state energy gradients for time-dependent self-consistent field methods with polarizable solvent effects. Linear response, vertical excitation, and state-specific solventmodels are examined. Enforcing a variational ground stateenergy expression in the state-specific model is found to reduce it to the vertical excitation model. Variational excited state energy expressions are then provided for the linear response and vertical excitation models and analytical gradients are formulated. Using semiempiricalmodel chemistry, the variational expressions are verified by numerical and analytical differentiation with respect to a static external electric field. Lastly, analytical gradients are further tested by performingmore » microcanonical excited state molecular dynamics with p-nitroaniline.« less
Three-dimensional drift kinetic response of high- β plasmas in the DIII-D tokamak
Wang, Zhirui R.; Lanctot, Matthew J.; Liu, Y. Q.; ...
2015-04-07
A quantitative interpretation of the experimentally measured high pressure plasma response to externally applied three-dimensional (3D) magnetic field perturbations, across the no-wall Troyon limit, is achieved. The key to success is the self-consistent inclusion of the drift kinetic resonance effects in numerical modeling using the MARS-K code. This resolves an outstanding issue of ideal magneto-hydrodynamic model, which signi cantly over-predicts the plasma induced field ampli fication near the no-wall limit, as compared to experiments. The self-consistent drift kinetic model leads to quantitative agreement not only for the measured 3D field amplitude and toroidal phase, but also for the measured internalmore » 3D displacement of the plasma.« less
Criss, R.E.; Ekren, E.B.; Hardyman, R.F.
1984-01-01
The largest fossil hydrothermal system occupying a 4500 km2 area in central Idaho is revealed by delta 18O studies. The remains of this meteoric-hydrothermal system are preserved within a sharply bounded, 15 km wide, 70-km-diameter annulus of low delta 18O rock (+2.0 to -8.8per mille) termed the Castro ring zone. The zone is centred on a less depleted (+4.5) core zone consisting of granitic rocks of the Castro pluton. This 700-km2 Eocene subvolcanic batholith has intruded, domed, and hydrothermally metamorphosed a thick sequence of Challis Volcanics, the stratigraphically low rocks in the 2000-km2 Van Horn Peak and the 1000-km2 Thunder Mountain cauldron complexes being most strongly altered. Less extreme 18O depletions occur in the youngest major ash-flow sheets of these complexes, indicating a vertical 18O gradient. Water/rock ratios of geothermal systems are surprisingly insensitive to the circulation scale.-L.-di H.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jong-Kyu; Logan, Nikolas C.
Toroidal torque is one of the most important consequences of non-axisymmetric fields in tokamaks. The well-known neoclassical toroidal viscosity (NTV) is due to the second-order toroidal force from anisotropic pressure tensor in the presence of these asymmetries. This work shows that the first-order toroidal force originating from the same anisotropic pressure tensor, despite having no flux surface average, can significantly modify the local perturbed force balance and thus must be included in perturbed equilibrium self-consistent with NTV. The force operator with an anisotropic pressure tensor is not self-adjoint when the NTV torque is finite and thus is solved directly formore » each component. This approach yields a modified, non-self-adjoint Euler-Lagrange equation that can be solved using a variety of common drift-kinetic models in generalized tokamak geometry. The resulting energy and torque integral provides a unique way to construct a torque response matrix, which contains all the information of self-consistent NTV torque profiles obtainable by applying non-axisymmetric fields to the plasma. This torque response matrix can then be used to systematically optimize non-axisymmetric field distributions for desired NTV profiles. Published by AIP Publishing.« less
ERIC Educational Resources Information Center
Sax, Linda J.; Kanny, M. Allison; Riggers-Piehl, Tiffani A.; Whang, Hannah; Paulson, Laura N.
2015-01-01
Math self-concept (MSC) is considered an important predictor of the pursuit of science, technology, engineering and math (STEM) fields. Women's underrepresentation in the STEM fields is often attributed to their consistently lower ratings on MSC relative to men. Research in this area typically considers STEM in the aggregate and does not account…
Is there a field-theoretic explanation for precursor biopolymers?
Rosen, Gerald
2002-08-01
A Hu-Barkana-Gruzinov cold dark matter scalar field phi may enter a weak isospin invariant derivative interaction that causes the flow of right-handed electrons to align parallel to (inverted delta phi). Hence, in the outer regions of galaxies where (inverted delta phi) is large, as in galactic halos, the derivative interaction may induce a chirality-imbued quantum chemistry. Such a chirality-imbued chemistry would in turn be conducive to the formation of abundant precursor biopolymers on interstellar dust grains, comets and meteors in galactic halo regions, with subsequent delivery to planets in the inner galactic regions where phi and (inverted delta phi) are concomitantly near zero and left-right symmetric terrestrial quantum chemistry prevails.
Serial-to-parallel color-TV converter
NASA Technical Reports Server (NTRS)
Doak, T. W.; Merwin, R. B.; Zuckswert, S. E.; Sepper, W.
1976-01-01
Solid analog-to-digital converter eliminates flicker and problems with time base stability and gain variation in sequential color TV cameras. Device includes 3-bit delta modulator; two-field memory; timing, switching, and sync network; and three 3-bit delta demodulators
NASA Astrophysics Data System (ADS)
Birdsall, Charles K.
1986-12-01
The Pierce diode linear behavior with external R, C, or L was verified very accurately by particle simulation. The Pierce diode non-linear equilibria with R, C, or L are described theoretically and explored via computer simulation. A simple model of the sheath outside the separatrix of an FRC was modeled electrostatically in 2d and large potentials due to the magnetic well and peak which were found. These may explain the anomalously high ion confinement in the FRC edge layer. A planar plasma source with cold ions and warm electrons produces a source sheath with sufficient potential drop to accelerate ions to sound velocity, which obviates the need for a Bohm pre-collector-sheath electric field. Final reports were prepared for collector sheath, presheath, and source sheath in a collisionless, finite ion temperature plasma; potential drop and transport in a bounded plasma with ion reflection at the collector; potential drop and transport in a bounded plasma with secondary electron emission at the collector. A movie has been made displaying the long-lived vortices resulting from the Kelvin-Helmholtz instability in a magnetized sheath. A relativistic Monte Carlo binary (Coulomb) collision model has been developed and tested for inclusion into the electrostatic particle simulation code TESS. Two direct implicit time integration schemes are tested for self-heating and self-cooling and regions of neither are found as a function of delta t and delta x for the model of a freely expanding plasma slab.
Zhang; Deltour; Zhao
2000-10-16
The electrical transport properties of epitaxial superconducting Bi(2+y)Sr(2-x-y)La(x)CuO(6+delta) thin films have been studied in magnetic fields. Using a modified Coulomb-gas scaling law, we can fit all the magnetic field dependent low resistance data with a universal scaling curve, which allows us to determine a relation between the activation energy of the thermally activated flux flow resistance and the characteristic temperature scaling parameters.
Deep Space Navigation with Noncoherent Tracking Data
NASA Technical Reports Server (NTRS)
Ellis, J.
1983-01-01
Navigation capabilities of noncoherent tracking data are evaluated for interplanetary cruise phase and planetary (Venus) flyby orbit determination. Results of a formal covariance analysis are presented which show that a combination of one-way Doppler and delta DOR yields orbit accuracies comparable to conventional two-way Doppler tracking. For the interplanetary cruise phase, a tracking cycle consisting of a 3-hour Doppler pass and delta DOR (differential one-way range) from two baselines (one observation per overlap) acquired 3 times a month results in 100-km orbit determination accuracy. For reconstruction of a Venus flyby orbit, 10 days tracking at encounter consisting of continuous one-way Doppler and delta DOR sampled at one observation per overlap is sufficient to satisfy the accuracy requirements.
Primary afferent neurons express functional delta opioid receptors in inflamed skin.
Brederson, Jill-Desiree; Honda, Christopher N
2015-07-21
Peripherally-restricted opiate compounds attenuate hyperalgesia in experimental models of inflammatory pain, but have little discernable effect on nociceptive behavior in normal animals. This suggests that activation of opioid receptors on peripheral sensory axons contributes to decreased afferent activity after injury. Previously, we reported that direct application of morphine to cutaneous receptive fields decreased mechanical and heat-evoked responses in a population of C-fiber nociceptors in inflamed skin. Consistent with reported behavioral studies, direct application of morphine had no effect on fiber activity in control skin. The aim of the present study was to determine whether mechanical responsiveness of nociceptors innervating inflamed skin was attenuated by direct activation of delta opioid receptors (DORs) on peripheral terminals. An ex vivo preparation of rat plantar skin and tibial nerve was used to examine effects of a selective DOR agonist, deltorphin II, on responsiveness of single fibers innervating inflamed skin. Electrical recordings were made eighteen hours after injection of complete Freund's adjuvant into the hindpaw. Deltorphin II produced an inhibition of the mechanical responsiveness of single fibers innervating inflamed skin; an effect blocked by the DOR-selective antagonist, naltrindole. The population of units responsive to deltorphin II was identified as consisting of C fiber mechanical nociceptors. Copyright © 2015 Elsevier B.V. All rights reserved.
Yokosawa, Tadahiro; Awana, V P S Veer Pal Singh; Kimoto, Koji; Takayama-Muromachi, Eiji; Karppinen, Maarit; Yamauchi, Hisao; Matsui, Yoshio
2004-01-01
Microstructures of the RuSr(2)Gd(1.5)Ce(0.5)Cu(2)O(10-delta) (Ru-1222) and RuSr(2)GdCu(2)O(8) (Ru-1212) magneto-superconductors have been investigated by using selected-area electron diffraction, convergent-beam electron diffraction, dark-field electron microscopy and high-resolution electron microscopy at room temperature. Both Ru-1212 and Ru-1222 consist of nm-size domains stacked along the [Formula: see text] direction, where the domains are formed by two types of superstructures due to ordering of rotated RuO(6) octahedra about the c-axis. In Ru-1212, both primitive-and body-centered tetragonal superstructures (the possible space groups: P4/mbm and I4/mcm) are derived to form the corresponding nm-domains. It is of great interest that Ru-1212 consists of domains of two crystallographically different superstructures, while the similar domains observed in Ru-1222 have crystallographically identical superstructure with an orthorhombic symmetry (possible space group: Aeam), related by 90 degrees rotation around the c-axis (Yokosawa et al., 2003, submitted for publication).
Yang, Guang; Tang, Ping; Yang, Yuliang; Wang, Qiang
2010-11-25
We employ the self-consistent field theory (SCFT) incorporating Maier-Saupe orientational interactions between rods to investigate the self-assembly of rod-coil diblock copolymers (RC DBC) in bulk and especially confined into two flat surfaces in 2D space. A unit vector defined on a spherical surface for describing the orientation of rigid blocks in 3D Euclidean space is discretized with an icosahedron triangular mesh to numerically integrate over rod orientation, which is confirmed to have numerical accuracy and stability higher than that of the normal Gaussian quadrature. For the hockey puck-shaped phases in bulk, geometrical confinement, i.e., the film thickness, plays an important role in the self-assembled structures' transitions for the neutral walls. However, for the lamellar phase (monolayer smectic-C) in bulk, the perpendicular lamellae are always stable, less dependent on the film thicknesses because they can relax to the bulk spacing with less-paid coil-stretching in thin films. In particular, a very thin rod layer near the surfaces is formed even in a very thin film. When the walls prefer rods, parallel lamellae are obtained, strongly dependent on the competition between the degree of the surface fields and film geometrical confinement, and the effect of surface field on lamellar structure as a function of film thickness is investigated. Our simulation results provide a guide to understanding the self-assembly of the rod-coil films with desirable application prospects in the fabrication of organic light emitting devices.
Belt, Edward S.; Flores, Romeo M.; Warwick, Peter D.; Conway, Kevin M.; Johnson, Kirk R.; Waskowitz, Robert S.; Rahmani, R.A.; Flores, Romeo M.
1984-01-01
Facies analysis of the Ludlow and Tongue River Members of the Palaeocene Fort Union Formation provides an understanding of the relationship between fluviodeltaic environments and associated coal deposition in the south-western Williston Basin. The Ludlow Member consists of high-constructive delta facies that interfinger with brackish-water tongues of the Cannonball Member of the Fort Union Formation. The lower part of the Ludlow Member was deposited on a lower delta plain that consisted of interdistributary crevasse and subdelta lobes. The upper part of the Ludlow Member was deposited in meander belts of the upper delta plain. The delta plain facies of the Ludlow Member is overlain by alluvial plain facies consisting of swamp, crevasse-lobe, lacustrine, and trunk meander belt deposits of the Tongue River Member. The Ludlow delta is believed to have been fed by fluvial systems that probably flowed from the Powder River Basin to the Williston Basin undeterred by the Cedar Creek Anticline. However, the evidence indicates that the Cedar Creek Anticline was prominent enough, during early Tongue River Member deposition, to cause the obstruction of the regional fluvial system flowing from the SW, and the formation of local drainage.The Ludlow Member contains 18 coal beds in the area studied, of which the T-Cross and Yule coals are as thick as 4 m (12 ft). Abandoned delta lobes served as platforms where coals formed, which in turn, were drowned by mainly fresh water and subordinate brackish water. Repetition of deltaic sedimentation, abandonment, and occupation by swamp led to preservation of the T-Cross and Oyster coals in areas as extensive as 260 km2 (< 100 miles2).
Organization a Culture of Self-Education of Music Teachers
ERIC Educational Resources Information Center
Dyganova, Elena Aleksandrovna; Yavgildina, Ziliya Mukhtarovna
2015-01-01
The article discusses the culture of self-education of music teacher as a professionally necessary quality of a modern specialist in the field of music education. The author proposes finalized definitions of basic concepts; consistently reveals the essence, structure, criteria and indicators of self-culture of music teacher; reveals the potential…
The development of a laterally confined laboratory fan delta under sediment supply reduction
NASA Astrophysics Data System (ADS)
Zhang, Xiaofeng; Wang, Siqiang; Wu, Xi; Xu, Shun; Li, Zhangyong
2016-03-01
In previous fan delta experiments, the effect of lateral confinement was generally ignored as these fans were usually unconfined with semiconical geometries. However, in gorge areas, fan development is usually laterally confined by valley walls. This study investigates autogenic processes of fan deltas in a laterally confined experimental tank. The experiment is divided into three phases. The sediment supply is held constant within each phase, so the autogenic processes of the fan are separated from the allogenic forcings. Results indicate that laterally confined fan deltas have higher progradation and aggradation potential, more regular channel braiding, and more even transverse sedimentation than unconfined fans. Besides, responses of fan deltas to sediment supply reduction are investigated in this research. At the initiation of the second and third phases, sediment feed rates are instantaneously reduced so that the allogenic forcings are predominant. Observations show that under sediment supply reduction, channelization on fan deltas are more pronounced and durations of the fluvial cycles are longer. The adjustment of fan morphology becomes slower as the self-regulation capacity of the fan decreases with reduced sediment supply.
Theoretical characterization of the potential energy surface for NH + NO
NASA Technical Reports Server (NTRS)
Walch, Stephen P.
1992-01-01
The potential energy surface (PES) for NH + NO was characterized using complete active space self-consistent field (CASSCF) gradient calculations to determine the stationary point geometries and frequencies followed by CASSCF/internally contracted configuration interaction (CCI) calculations to refine the energetics. The present results are in qualitative accord with the BAC-MP4 calculations, but there are differences as large as 8 kcal/mol in the detailed energetics. Addition of NH to NO on a (2)A' surface, which correlated with N2 + OH or H + N2O products, involves barriers of 3.2 kcal/mol (trans) and 6.3 kcal/mol (cis). Experimental evidence for these barriers is found in earlier works. The (2)A' surface has no barrier to addition, but does not correlate with products. Surface crossings between the barrierless (2)A' surface and the (2)A' surface may be important. Production of N2 + OH products is predicted to occur via a planar saddle point of (2)A' symmetry. This is in accord with the preferential formation of II(A') lambda doublet levels of OH in earlier experiments. Addition of NH (1)delta to NO is found to occur on an excited state surface and is predicted to lead to N2O product as observed in earlier works.
Oscillatory correlates of autobiographical memory.
Knyazev, Gennady G; Savostyanov, Alexander N; Bocharov, Andrey V; Dorosheva, Elena A; Tamozhnikov, Sergey S; Saprigyn, Alexander E
2015-03-01
Recollection of events from one's own life is referred to as autobiographical memory. Autobiographical memory is an important part of our self. Neuroimaging findings link self-referential processes with the default mode network (DMN). Much evidence coming primarily from functional magnetic resonance imaging studies shows that autobiographical memory and DMN have a common neural base. In this study, electroencephalographic data collected in 47 participants during recollection of autobiographical episodes were analyzed using temporal and spatial independent component analyses in combination with source localization. Autobiographical remembering was associated with an increase of spectral power in alpha and beta and a decrease in delta band. The increase of alpha power, as estimated by sLORETA, was most prominent in the posterior DMN, but was also observed in visual and motor cortices, prompting an assumption that it is associated with activation of DMN and inhibition of irrelevant sensory and motor areas. In line with data linking delta oscillations with aversive states, decrease of delta power was more pronounced in episodes associated with positive emotions, whereas episodes associated with negative emotions were accompanied by an increase of delta power. Vividness of recollection correlated positively with theta oscillations. These results highlight the leading role of alpha oscillations and the DMN in the processes accompanying autobiographical remembering. Copyright © 2014 Elsevier B.V. All rights reserved.
Incorporation of transmembrane hydroxide transport into the chemiosmotic theory.
de Grey, A D
1999-10-01
A cornerstone of textbook bioenergetics is that oxidative ATP synthesis in mitochondria requires, in normal conditions of internal and external pH, a potential difference (delta psi) of well over 100 mV between the aqueous compartments that the energy-transducing membrane separates. Measurements of delta psi inferred from diffusion of membrane-permeant ions confirm this, but those using microelectrodes consistently find no such delta psi--a result ostensibly irreconcilable with the chemiosmotic theory. Transmembrane hydroxide transport necessarily accompanies mitochondrial ATP synthesis, due to the action of several carrier proteins; this nullifies some of the proton transport by the respiratory chain. Here, it is proposed that these carriers' structure causes the path of this "lost" proton flow to include a component perpendicular to the membrane but within the aqueous phases, so maintaining a steady-state proton-motive force between the water at each membrane surface and in the adjacent bulk medium. The conflicting measurements of delta psi are shown to be consistent with the response of this system to its chemical environment.
Flow-field in a vortex with breakdown above sharp edged delta wings
NASA Technical Reports Server (NTRS)
Hayashi, Y.; Nakaya, T.
1978-01-01
The behavior of vortex-flow, accompanied with breakdown, formed above sharp-edged delta wings, was studied experimentally as well as theoretically. Emphasis is placed particularly on the criterion for the breakdown at sufficiently large Reynolds numbers
Theoretical research program to study chemical reactions in AOTV bow shock tubes
NASA Technical Reports Server (NTRS)
Taylor, P.
1986-01-01
Progress in the development of computational methods for the characterization of chemical reactions in aerobraking orbit transfer vehicle (AOTV) propulsive flows is reported. Two main areas of code development were undertaken: (1) the implementation of CASSCF (complete active space self-consistent field) and SCF (self-consistent field) analytical first derivatives on the CRAY X-MP; and (2) the installation of the complete set of electronic structure codes on the CRAY 2. In the area of application calculations the main effort was devoted to performing full configuration-interaction calculations and using these results to benchmark other methods. Preprints describing some of the systems studied are included.
Superthermal Electron Energy Interchange in the Ionosphere-Plasmasphere System
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Glocer, A.; Liemohn, M. W.; Himwich, E. W.
2013-01-01
A self-consistent approach to superthermal electron (SE) transport along closed field lines in the inner magnetosphere is used to examine the concept of plasmaspheric transparency, magnetospheric trapping, and SE energy deposition to the thermal electrons. The dayside SE population is generated both by photoionization of the thermosphere and by secondary electron production from impact ionization when the photoelectrons collide with upper atmospheric neutral particles. It is shown that a self-consistent approach to this problem produces significant changes, in comparison with other approaches, in the SE energy exchange between the plasmasphere and the two magnetically conjugate ionospheres. In particular, plasmaspheric transparency can vary by a factor of two depending on the thermal plasma content along the field line and the illumination conditions of the two conjugate ionospheres. This variation in plasmaspheric transparency as a function of thermal plasma and ionospheric conditions increases with L-shell, as the field line gets longer and the equatorial pitch angle extent of the fly-through zone gets smaller. The inference drawn from these results is that such a self-consistent approach to SE transport and energy deposition should be included to ensure robustness in ionosphere-magnetosphere modeling networks.
Collisionless absorption of intense laser radiation in nanoplasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaretsky, D F; Korneev, Philipp A; Popruzhenko, Sergei V
The rate of linear collisionless absorption of an electromagnetic radiation in a nanoplasma - classical electron gas localised in a heated ionised nanosystem (thin film or cluster) irradiated by an intense femtosecond laser pulse - is calculated. The absorption is caused by the inelastic electron scattering from the self-consistent potential of the system in the presence of a laser field. The effect proves to be appreciable because of a small size of the systems. General expressions are obtained for the absorption rate as a function of the parameters of the single-particle self-consistent potential and electron distribution function in the regimemore » linear in field. For the simplest cases, where the self-consistent field is created by an infinitely deep well or an infinite charged plane, closed analytic expressions are obtained for the absorption rate. Estimates presented in the paper demonstrate that, over a wide range of the parameters of laser pulses and nanostructures, the collisionless mechanism of heating electron subsystem can be dominant. The possibility of experimental observation of the collisionless absorption of intense laser radiation in nanoplasma is also discussed. (interaction of laser radiation with matter)« less
NASA Astrophysics Data System (ADS)
Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex; Niklasson, Anders M. N.; Head-Gordon, Teresa; Skylaris, Chris-Kriton
2017-03-01
Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities are treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes—in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.
Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex; Niklasson, Anders M N; Head-Gordon, Teresa; Skylaris, Chris-Kriton
2017-03-28
Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities are treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes-in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.
Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex; ...
2017-03-28
Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities aremore » treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes—in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Furthermore, both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex
Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities aremore » treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes—in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Furthermore, both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.« less
NASA Technical Reports Server (NTRS)
Knoll, A. H.; Kaufman, A. J.; Semikhatov, M. A.
1995-01-01
Thick carbonate-dominated successions in northwestern Siberia document secular variations in the C-isotopic composition of seawater through Mesoproterozoic and early Neoproterozoic (Early to early Late Riphean) time. Mesoproterozoic dolomites of the Billyakh Group, Anabar Massif, have delta 13C values that fall between 0 and -1.9 permil versus PDB, with values in the upper part of the succession (Yusmastakh Formation) consistently higher than those of the lower (Ust'-Il'ya and Kotuikan formations). Consistent with available biostratigraphic and radiometric data, delta 13C values for Billyakh carbonates compare closely with those characterizing early Mesoproterozoic carbonates (about 1600-1200 Ma) worldwide. In contrast, late Mesoproterozoic to early Neoproterozoic limestones and dolomites in the Turukhansk Uplift exhibit moderate levels of secular variation. Only the lowermost carbonates in the Turukhansk succession (Linok Formation) have delta 13C values that approximate Billyakh values. Higher in the Turukhansk succession, delta 13C values vary from -2.7 to +4.6 permil (with outliers as low as -5.0 permil interpreted as diagentically altered). Again, consistent with paleontological and radiometric data, these values compare well with isotopic values from 1200 to 850 Ma successions elsewhere. Five sections measured in different parts of the Turukhansk basin show nearly identical patterns of variation, confirming that carbonate delta 13C correlates primarily with time and not facies. The Siberian sections illustrate the potential of integrated biostratigraphic and chemostratigraphic data in the intra- and interbasinal correlation of Mesoproterozoic and early Neoproterozoic rocks.
Low-density homogeneous symmetric nuclear matter: Disclosing dinucleons in coexisting phases
NASA Astrophysics Data System (ADS)
Arellano, Hugo F.; Delaroche, Jean-Paul
2015-01-01
The effect of in-medium dinucleon bound states on self-consistent single-particle fields in Brueckner, Bethe and Goldstone theory is investigated in symmetric nuclear matter at zero temperature. To this end, dinucleon bound state occurences in the 1 S 0 and 3 SD 1 channels are explicitly accounted for --within the continuous choice for the auxiliary fields-- while imposing self-consistency in Brueckner-Hartree-Fock approximation calculations. Searches are carried out at Fermi momenta in the range fm-1, using the Argonne bare nucleon-nucleon potential without resorting to the effective-mass approximation. As a result, two distinct solutions meeting the self-consistency requirement are found with overlapping domains in the interval 0.130 fm-1 0.285 fm-1, corresponding to mass densities between and g cm-3. Effective masses as high as three times the nucleon mass are found in the coexistence domain. The emergence of superfluidity in relationship with BCS pairing gap solutions is discussed.
Three-dimensional particle-in-cell simulation on gain saturation effect of microchannel plate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qiangqiang; Yuan, Zheng; Cao, Zhurong, E-mail: cao33jin@aliyun.com
We present here the results of the simulation work, using the three-dimensional particle-in-cell method, on the performance of the lead glass microchannel plate under saturated state. We calculated the electron cascade process with different DC bias voltages under both self-consistent condition and non-self-consistent condition. The comparative results have demonstrated that the strong self-consistent field can suppress the cascade process and make the microchannel plate saturated. The simulation results were also compared to the experimental data and good agreement was obtained. The simulation results also show that the electron multiplication process in the channel is accompanied by the buildup process ofmore » positive charges in the channel wall. Though the interactions among the secondary electron cloud in the channel, the positive charges in the channel wall, and the external acceleration field can make the electron-surface collision more frequent, the collision energy will be inevitably reduced, thus the electron gain will also be reduced.« less
On the large eddy simulation of turbulent flows in complex geometry
NASA Technical Reports Server (NTRS)
Ghosal, Sandip
1993-01-01
Application of the method of Large Eddy Simulation (LES) to a turbulent flow consists of three separate steps. First, a filtering operation is performed on the Navier-Stokes equations to remove the small spatial scales. The resulting equations that describe the space time evolution of the 'large eddies' contain the subgrid-scale (sgs) stress tensor that describes the effect of the unresolved small scales on the resolved scales. The second step is the replacement of the sgs stress tensor by some expression involving the large scales - this is the problem of 'subgrid-scale modeling'. The final step is the numerical simulation of the resulting 'closed' equations for the large scale fields on a grid small enough to resolve the smallest of the large eddies, but still much larger than the fine scale structures at the Kolmogorov length. In dividing a turbulent flow field into 'large' and 'small' eddies, one presumes that a cut-off length delta can be sensibly chosen such that all fluctuations on a scale larger than delta are 'large eddies' and the remainder constitute the 'small scale' fluctuations. Typically, delta would be a length scale characterizing the smallest structures of interest in the flow. In an inhomogeneous flow, the 'sensible choice' for delta may vary significantly over the flow domain. For example, in a wall bounded turbulent flow, most statistical averages of interest vary much more rapidly with position near the wall than far away from it. Further, there are dynamically important organized structures near the wall on a scale much smaller than the boundary layer thickness. Therefore, the minimum size of eddies that need to be resolved is smaller near the wall. In general, for the LES of inhomogeneous flows, the width of the filtering kernel delta must be considered to be a function of position. If a filtering operation with a nonuniform filter width is performed on the Navier-Stokes equations, one does not in general get the standard large eddy equations. The complication is caused by the fact that a filtering operation with a nonuniform filter width in general does not commute with the operation of differentiation. This is one of the issues that we have looked at in detail as it is basic to any attempt at applying LES to complex geometry flows. Our principal findings are summarized.
Delta and gamma oscillations in operculo-insular cortex underlie innocuous cold thermosensation
Vinding, Mikkel C.; Allen, Micah; Jensen, Troels Staehelin; Finnerup, Nanna Brix
2017-01-01
Cold-sensitive and nociceptive neural pathways interact to shape the quality and intensity of thermal and pain perception. Yet the central processing of cold thermosensation in the human brain has not been extensively studied. Here, we used magnetoencephalography and EEG in healthy volunteers to investigate the time course (evoked fields and potentials) and oscillatory activity associated with the perception of cold temperature changes. Nonnoxious cold stimuli consisting of Δ3°C and Δ5°C decrements from an adapting temperature of 35°C were delivered on the dorsum of the left hand via a contact thermode. Cold-evoked fields peaked at around 240 and 500 ms, at peak latencies similar to the N1 and P2 cold-evoked potentials. Importantly, cold-related changes in oscillatory power indicated that innocuous thermosensation is mediated by oscillatory activity in the range of delta (1–4 Hz) and gamma (55–90 Hz) rhythms, originating in operculo-insular cortical regions. We suggest that delta rhythms coordinate functional integration between operculo-insular and frontoparietal regions, while gamma rhythms reflect local sensory processing in operculo-insular areas. NEW & NOTEWORTHY Using magnetoencephalography, we identified spatiotemporal features of central cold processing, with respect to the time course, oscillatory profile, and neural generators of cold-evoked responses in healthy human volunteers. Cold thermosensation was associated with low- and high-frequency oscillatory rhythms, both originating in operculo-insular regions. These results support further investigations of central cold processing using magnetoencephalography or EEG and the clinical utility of cold-evoked potentials for neurophysiological assessment of cold-related small-fiber function and damage. PMID:28250150
Simulations of Turbulence in Tokamak Edge and Effects of Self-Consistent Zonal Flows
NASA Astrophysics Data System (ADS)
Cohen, Bruce; Umansky, Maxim
2013-10-01
Progress is reported on simulations of electromagnetic drift-resistive ballooning turbulence in the tokamak edge. This extends previous work to include self-consistent zonal flows and their effects. The previous work addressed simulation of L-mode tokamak edge turbulence using the turbulence code BOUT that solves Braginskii-based plasma fluid equations in tokamak edge domain. The calculations use realistic single-null geometry and plasma parameters of the DIII-D tokamak and produce fluctuation amplitudes, fluctuation spectra, and particle and thermal fluxes that compare favorably to experimental data. In the effect of sheared ExB poloidal rotation is included with an imposed static radial electric field fitted to experimental data. In the new work here we include the radial electric field self-consistently driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We present simulations with/without zonal flows for both cylindrical geometry, as in the UCLA Large Plasma Device, and for the DIII-D tokamak L-mode cases in to quantify the influence of self-consistent zonal flows on the microturbulence and the concomitant transport. This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory.
Simulations of Tokamak Edge Turbulence Including Self-Consistent Zonal Flows
NASA Astrophysics Data System (ADS)
Cohen, Bruce; Umansky, Maxim
2013-10-01
Progress on simulations of electromagnetic drift-resistive ballooning turbulence in the tokamak edge is summarized in this mini-conference talk. A more detailed report on this work is presented in a poster at this conference. This work extends our previous work to include self-consistent zonal flows and their effects. The previous work addressed the simulation of L-mode tokamak edge turbulence using the turbulence code BOUT. The calculations used realistic single-null geometry and plasma parameters of the DIII-D tokamak and produced fluctuation amplitudes, fluctuation spectra, and particle and thermal fluxes that compare favorably to experimental data. In the effect of sheared ExB poloidal rotation is included with an imposed static radial electric field fitted to experimental data. In the new work here we include the radial electric field self-consistently driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We present simulations with/without zonal flows for both cylindrical geometry, as in the UCLA Large Plasma Device, and for the DIII-D tokamak L-mode cases in to quantify the influence of self-consistent zonal flows on the microturbulence and the concomitant transport. This work was performed under the auspices of the US Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory.
Experiments on Plasma Turbulence Created by Supersonic Plasma Flows with Shear
2014-04-01
for producing a plasma column (in black). An insulated wire traverses the plasma and car - ries a pulsed current in x-direction. The unmagnetized ions... electric field which together with the B field around the wire causes an electron ExB drift. The ions are unmagnetized. A radial space charge electric field...by the self-consistent currents passing through the grid. These currents, consisting of electron and ion flows, are controlled by the electrical
Investigating the spatial distribution of water levels in the Mackenzie Delta using airborne LiDAR
Hopkinson, C.; Crasto, N.; Marsh, P.; Forbes, D.; Lesack, L.
2011-01-01
Airborne light detection and ranging (LiDAR) data were used to map water level (WL) and hydraulic gradients (??H/??x) in the Mackenzie Delta. The LiDAR WL data were validated against eight independent hydrometric gauge measurements and demonstrated mean offsets from - 0??22 to + 0??04 m (??< 0??11). LiDAR-based WL gradients could be estimated with confidence over channel lengths exceeding 5-10 km where the WL change exceeded local noise levels in the LiDAR data. For the entire Delta, the LiDAR sample coverage indicated a rate of change in longitudinal gradient (??2H/??x) of 5??5 ?? 10-10 m m-2; therefore offering a potential means to estimate average flood stage hydraulic gradient for areas of the Delta not sampled or monitored. In the Outer Delta, within-channel and terrain gradient measurements all returned a consistent estimate of - 1 ?? 10-5 m m-1, suggesting that this is a typical hydraulic gradient for the downstream end of the Delta. For short reaches (<10 km) of the Peel and Middle Channels in the middle of the Delta, significant and consistent hydraulic gradient estimates of - 5 ?? 10-5 m m-1 were observed. Evidence that hydraulic gradients can vary over short distances, however, was observed in the Peel Channel immediately upstream of Aklavik. A positive elevation anomaly (bulge) of > 0??1 m was observed at a channel constriction entering a meander bend, suggesting a localized modification of the channel hydraulics. Furthermore, water levels in the anabranch channels of the Peel River were almost 1 m higher than in Middle Channel of the Mackenzie River. This suggests: (i) the channels are elevated and have shallower bank heights in this part of the delta, leading to increased cross-delta and along-channel hydraulic gradients; and/or (ii) a proportion of the Peel River flow is lost to Middle Channel due to drainage across the delta through anastamosing channels. This study has demonstrated that airborne LiDAR data contain valuable information describing Arctic river delta water surface and hydraulic attributes that would be challenging to acquire by other means. ?? 2011 John Wiley & Sons, Ltd.
Cohen, A.S.; Palacios-Fest, M. R.; McGill, J.; Swarzenski, P.W.; Verschuren, D.; Sinyinza, R.; Songori, T.; Kakagozo, B.; Syampila, M.; O'Reilly, C. M.; Alin, S.R.
2005-01-01
We investigated paleolimnological records from a series of river deltas around the northeastern rim of Lake Tanganyika, East Africa (Tanzania and Burundi) in order to understand the history of anthropogenic activity in the lake's catchment over the last several centuries, and to determine the impact of these activities on the biodiversity of littoral and sublittoral lake communities. Sediment pollution caused by increased rates of soil erosion in deforested watersheds has caused significant changes in aquatic communities along much of the lake's shoreline. We analyzed the effects of sediment discharge on biodiversity around six deltas or delta complexes on the east coast of Lake Tanganyika: the Lubulungu River delta, Kabesi River delta, Nyasanga/Kahama River deltas, and Mwamgongo River delta in Tanzania; and the Nyamuseni River delta and Karonge/Kirasa River deltas in Burundi. Collectively, these deltas and their associated rivers were chosen to represent a spectrum of drainage-basin sizes and disturbance levels. By comparing deltas that are similar in watershed attributes (other than disturbance levels), our goal was to explore a series of historical "experiments" at the watershed scale, with which we could more clearly evaluate hypotheses of land use or other effects on nearshore ecosystems. Here we discuss these deltas, their geologic and physiographic characteristics, and the field procedures used for coring and sampling the deltas, and various indicators of anthropogenic impact. ?? Springer 2005.
Vestibulosympathetic reflex during orthostatic challenge in aging humans
NASA Technical Reports Server (NTRS)
Monahan, Kevin D.; Ray, Chester A.
2002-01-01
Aging attenuates the increase in muscle sympathetic nerve activity (MSNA) and elicits hypotension during otolith organ engagement in humans. The purpose of the present study was to determine the neural and cardiovascular responses to otolithic engagement during orthostatic stress in older adults. We hypothesized that age-related impairments in the vestibulosympathetic reflex would persist during orthostatic challenge in older subjects and might compromise arterial blood pressure regulation. MSNA, arterial blood pressure, and heart rate responses to head-down rotation (HDR) performed with and without lower body negative pressure (LBNP) in prone subjects were measured. Ten young (27 +/- 1 yr) and 11 older subjects (64 +/- 1 yr) were studied prospectively. HDR performed alone elicited an attenuated increase in MSNA in older subjects (Delta106 +/- 28 vs. Delta20 +/- 7% for young and older subjects). HDR performed during simultaneous orthostatic stress increased total MSNA further in young (Delta53 +/- 15%; P < 0.05) but not older subjects (Delta-5 +/- 4%). Older subjects demonstrated consistent significant hypotension during HDR performed both alone (Delta-6 +/- 2 mmHg) and during LBNP (Delta-7 +/- 2 mmHg). These data provide experimental support for the concept that age-related impairments in the vestibulosympathetic reflex persist during orthostatic challenge in older adults. Furthermore, these findings are consistent with the concept that age-related alterations in vestibular function might contribute to altered orthostatic blood pressure regulation with age in humans.
Identification of saline soils with multi-year remote sensing of crop yields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobell, D; Ortiz-Monasterio, I; Gurrola, F C
2006-10-17
Soil salinity is an important constraint to agricultural sustainability, but accurate information on its variation across agricultural regions or its impact on regional crop productivity remains sparse. We evaluated the relationships between remotely sensed wheat yields and salinity in an irrigation district in the Colorado River Delta Region. The goals of this study were to (1) document the relative importance of salinity as a constraint to regional wheat production and (2) develop techniques to accurately identify saline fields. Estimates of wheat yield from six years of Landsat data agreed well with ground-based records on individual fields (R{sup 2} = 0.65).more » Salinity measurements on 122 randomly selected fields revealed that average 0-60 cm salinity levels > 4 dS m{sup -1} reduced wheat yields, but the relative scarcity of such fields resulted in less than 1% regional yield loss attributable to salinity. Moreover, low yield was not a reliable indicator of high salinity, because many other factors contributed to yield variability in individual years. However, temporal analysis of yield images showed a significant fraction of fields exhibited consistently low yields over the six year period. A subsequent survey of 60 additional fields, half of which were consistently low yielding, revealed that this targeted subset had significantly higher salinity at 30-60 cm depth than the control group (p = 0.02). These results suggest that high subsurface salinity is associated with consistently low yields in this region, and that multi-year yield maps derived from remote sensing therefore provide an opportunity to map salinity across agricultural regions.« less
Phase-Array Approach to Optical Whispering Gallery Modulators
NASA Technical Reports Server (NTRS)
Strekalov, Dmitry
2010-01-01
This technology leverages the well-defined orbital number of a whispering gallery modulator (WGM) to expand the range of applications for such resonators. This property rigidly connects the phase variation of the field in this mode with the azimuthal angle between the coupling locations. A WGM with orbital momentum L has exactly L instant nodes around the circumference of the WGM resonator supporting such a mode. Therefore, in two locations separated by the arc alpha, the phase difference of such a field will be equal to phi= alpha L. Coupling the field out of such locations, and into a balanced interferometer, once can observe a complete constructive or distractive interference (or have any situation in between) depending on the angle alpha. Similarly, a mode L + delta L will pick up the phase phi + alpha delta L. In all applications of a WGM resonator as a modulator, the orbital numbers for the carrier and sidebands are different, and their differences delta L are known (usually, but not necessarily, delta L = 1). Therefore, the choice of the angle alpha, and of the interferometer arms difference, allows one to control the relative phase between different modes and to perform the conversion, separation, and filtering tasks necessary.
Zakharov, A V; Vakulenko, A A; Romano, Silvano
2009-10-28
We have considered a homogeneously aligned liquid crystal (HALC) microvolume confined between two infinitely long horizontal coaxial cylinders and investigated dynamic field pumping, i.e., studied the interactions between director, velocity, and electric E fields as well as a radially applied temperature gradient inverted Delta T, where the inner cylinder is kept at a lower temperature than the outer one. In order to elucidate the role of inverted Delta T in producing hydrodynamic flow u, we have carried out a numerical study of a system of hydrodynamic equations including director reorientation, fluid flow, and temperature redistribution across the HALC cavity. Calculations show that only under the influence of inverted Delta T does the initially quiescent HALC sample settle down to a stationary flow regime with horizontal component of velocity u(eq)(r). The effects of inverted Delta T and of the size of the HALC cavity on magnitude and direction of u(eq)(r) have been investigated for a number of hydrodynamic regimes. Calculations also showed that E influences only the director redistribution across the HALC but not the magnitude of the velocity u(eq)(r).
Study of Modern Instrumentation and Methods for Astronomic Positioning in the Field
1987-03-01
CALL AMAT(A.Y, UKK, KALPHA, DELTA) DO 40 kl.,2*K WR ITE( 3.300 )( A( I.M),.M=1,3) 300 FORMAT M, 3F18.12) 40 CONTINUE CALL BMAT (BY, UKKK, ALPHA, DELTA...1 20 CONTINUE RETURN END C C C SUBROUTINE BMAT (B, YU, KK, KALPHA, DELTA) C BMAT constructs the matrix 8 DIMENSION B(2*KK,3*KK)LY(KK,3),U(3),ALPHA(KK
NASA Astrophysics Data System (ADS)
Baleanu, Dumitru; Inc, Mustafa; Aliyu, Aliyu Isa; Yusuf, Abdullahi
2017-11-01
In this paper, the complex envelope function ansatz method is used to acquire the optical solitons to the cubic nonlinear Shrödinger's equation with repulsive delta potential (δ-NLSE). The method reveals dark and bright optical solitons. The necessary constraint conditions which guarantee the existence of the solitons are also presented. We studied the δ-NLSE by analyzing a system of partial differential equations (PDEs) obtained by decomposing the equation into real and imaginary components. We derive the Lie point symmetry generators of the system and prove that the system is nonlinearly self-adjoint with an explicit form of a differential substitution satisfying the nonlinear self-adjoint condition. Then we use these facts to establish a set of conserved vectors for the system using the general Cls theorem presented by Ibragimov. Some interesting figures for the acquired solutions are also presented.
FitzGerald, D.M.; Kulp, M.; Penland, S.; Flocks, J.; Kindinger, J.
2004-01-01
The Barataria barrier coast formed between two major distributaries of the Mississippi River delta: the Plaquemines deltaic headland to the east and the Lafourche deltaic headland to the west. Rapid relative sea-level rise (1??03 cm year-1) and other erosional processes within Barataria Bay have led to substantial increases in the area of open water (> 775 km2 since 1956) and the attendant bay tidal prism. Historically, the increase in tidal discharge at inlets has produced larger channel cross-sections and prograding ebb-tidal deltas. For example, the ebb delta at Barataria Pass has built seaward > 2??2 km since the 1880s. Shoreline erosion and an increasing bay tidal prism also facilitated the formation of new inlets. Four major lithofacies characterize the Barataria coast ebb-tidal deltas and associated sedimentary environments. These include a proximal delta facies composed of massive to laminated, fine grey-brown to pale yellow sand and a distal delta facies consisting of thinly laminated, grey to pale yellow sand and silty sand with mud layers. The higher energy proximal delta deposits contain a greater percentage of sand (75-100%) compared with the distal delta sediments (60-80%). Associated sedimentary units include a nearshore facies consisting of horizontally laminated, fine to very fine grey sand with mud layers and an offshore facies that is composed of grey to dark grey, laminated sandy silt to silty clay. All facies coarsen upwards except the offshore facies, which fines upwards. An evolutionary model is presented for the stratigraphic development of the ebb-tidal deltas in a regime of increasing tidal energy resulting from coastal land loss and tidal prism growth. Ebb-tidal delta facies prograde over nearshore sediments, which interfinger with offshore facies. The seaward decrease in tidal current velocity of the ebb discharge produces a gradational contact between proximal and distal tidal delta facies. As the tidal discharge increases and the inlet grows in dimensions, the proximal and distal tidal delta facies prograde seawards. Owing to the relatively low gradient of the inner continental shelf, the ebb-tidal delta lithosome is presently no more than 5 m thick and is generally only 2-3 m in thickness. The ebb delta sediment is sourced from deepening of the inlet and the associated channels and from the longshore sediment transport system. The final stage in the model envisages erosion and segmentation of the barrier chain, leading to a decrease in tidal discharge through the former major inlets. This process ultimately results in fine-grained sedimentation seaward of the inlets and the encasement of the ebb-tidal delta lithosome in mud. The ebb-tidal deltas along the Barataria coast are distinguished from most other ebb deltas along sand-rich coasts by their muddy content and lack of large-scale stratification produced by channel cut-and-fills and bar migration. ?? 2004 International Association of Sedimentologists.
Cramer, E.M.; Ellinger, F.H.; Land. C.C.
1960-03-22
Delta-phase plutonium alloys were developed suitable for use as reactor fuels. The alloys consist of from 1 to 4 at.% zinc and the balance plutonium. The alloys have good neutronic, corrosion, and fabrication characteristics snd possess good dimensional characteristics throughout an operating temperature range from 300 to 490 deg C.
Kinetic modeling of Nernst effect in magnetized hohlraums.
Joglekar, A S; Ridgers, C P; Kingham, R J; Thomas, A G R
2016-04-01
We present nanosecond time-scale Vlasov-Fokker-Planck-Maxwell modeling of magnetized plasma transport and dynamics in a hohlraum with an applied external magnetic field, under conditions similar to recent experiments. Self-consistent modeling of the kinetic electron momentum equation allows for a complete treatment of the heat flow equation and Ohm's law, including Nernst advection of magnetic fields. In addition to showing the prevalence of nonlocal behavior, we demonstrate that effects such as anomalous heat flow are induced by inverse bremsstrahlung heating. We show magnetic field amplification up to a factor of 3 from Nernst compression into the hohlraum wall. The magnetic field is also expelled towards the hohlraum axis due to Nernst advection faster than frozen-in flux would suggest. Nonlocality contributes to the heat flow towards the hohlraum axis and results in an augmented Nernst advection mechanism that is included self-consistently through kinetic modeling.
West, Jason B; Hurley, Janet M; Ehleringer, James R
2009-01-01
There remains significant uncertainty in illicit marijuana cultivation. We analyzed the delta(13)C and delta(15)N of 508 domestic samples from known U.S.A. counties, 31 seized from a single location, 5 samples grown in Mexico and Colombia, and 10 northwest border seizures. For a subset, inflorescences and leaves were analyzed separately. These data revealed a strong correspondence, with inflorescences having slightly higher delta(13)C and delta(15)N values than leaves. A framework for interpreting these results is introduced and evaluated. Samples identified as outdoor-grown by delta(13)C were generally recorded as such by the Drug Enforcement Administration (DEA). DEA-classified indoor-grown samples had the most negative delta(13)C values, consistent with indoor cultivation, although many were also in the outdoor-grown domain. Delta(15)N indicated a wide range of fertilizers across the dataset. Samples seized at the single location suggested multiple sources. Northwest border delta(13)C values suggested indoor growth, whereas for the Mexican and Colombian samples they indicated outdoor growth.
Bui, Thanh Cong; Markham, Christine M.; Ross, Michael W.; Williams, Mark L.; Beasley, R. Palmer; Tran, Ly T. H.; Nguyen, Huong T. H.; Le, Thach Ngoc
2012-01-01
Background Worldwide, the literature on sexual behaviour has documented associations between gender-based relationship inequality and sexual communication ability and the actual use of condoms or other contraceptives among young women. This study aimed to examine these associations among undergraduate female students in the Mekong Delta of Vietnam. Methods A cross-sectional survey of 1181 female third-year students from two universities in the Mekong Delta was conducted. Latent variable modelling and logistic regression were employed to examine the hypothesised associations. Results Among the 72.4% of students who had ever had boyfriends, 44.8% indicated that their boyfriends had asked for sex, 13% had had penile–vaginal sex and 10.3% had had oral sex. For those who had had penile–vaginal sex, 33% did not use any contraceptive method, including condoms, during their first sexual intercourse. The greater a student’s perception that women were subordinate to men, the lower her self-efficacy for sexual communication and the lower her actual frequency of discussing safer sex matters and asking her partner to use a condom. Sexual communication self-efficacy was associated with actual contraceptive use (P = 0.039) but only marginally with condom use (P = 0.092) at first sexual intercourse. Conclusion Sexual health promotion strategies should address the influence of gender relations on young women’s sexual communication self-efficacy and the subsequent impact on actual contraceptive and condom use. PMID:22877589
NASA Technical Reports Server (NTRS)
Rau, G. H.; Takahashi, T.; Des Marais, D. J.; Repeta, D. J.; Martin, J. H.
1992-01-01
Consistent with the hypothesis that plankton delta C-14 and (CO2(aq)) are inversely related, increases in both sinking and suspended particulate organic matter (POM) delta C-13 detected by the Joint Global Ocean Flux Study (JGOFS) were highly negatively correlated with mixed-layer (CO2(aq)). A model of plant delta C-13 by Farquhar et al. (1982) is adapted to show that under a constant phytoplankton demand for CO2 an inverse nonlinear suspended POM delta C-13 response to ambient (CO2(aq)) is expected. Differences between predicted and observed suspended POM delta C-13 vs. (CO2(aq)) trends and among observed relationships can be reconciled if biological CO2 demand is allowed to vary.
Two Carrier Analysis of Persistent Photoconductivity in Modulation-Doped Structures
NASA Technical Reports Server (NTRS)
Schacham, S. E.; Mena, R. A.; Haugland, E. J.; Alterovitz, S. A.
1995-01-01
A simultaneous fit of Hall and conductivity data gives quantitative results on the carrier concentration and mobility in both the quantum well and the parallel conduction channel. In this study this method was applied to reveal several new findings on the effect of persistent photoconductivity (PPC) on free-carrier concentrations and mobilities. The increase in the two-dimensional electron-gas (2DEG) concentration is significantly smaller than the apparent one derived from single carrier analysis of the Hall coefficient. In the two types of structures investigated, delta doped and continuously doped barrier, the apparent concentration almost doubles following illumination, while analysis reveals an increase of about 20% in the 2DEG. The effect of PPC on mobility depends on the structure. For the sample with a continuously doped barrier the mobility in the quantum well more than doubles. This increase is attributed to the effective screening of the ionized donors by the large electron concentration in the barrier. In the delta doped barrier sample the mobility is reduced by almost a factor of 2. This decrease is probably caused by strong coupling between the two wells, as is demonstrated by self-consistent analysis.
Fujii, R.; Bergamaschi, B.A.; Ganju, N.K.; Fleck, J.A.; Burow-Fogg, K.R.; Schoellhamer, D.; Deverel, S.J.
2003-01-01
Water exported from the Sacramento-San Joaquin River Delta supplies drinking water to more than 22 million people in California. At certain times of the year, Delta waters contain relatively high concentrations of dissolved organic carbon (DOC) and bromide. During these times, chlorination of Delta water for drinking water disinfection will form disinfection byproducts, such as trihalomethanes (THMs), that can exceed the U.S. Environmental Protection Agency's maximum contaminant level for THMs of 80 mg/L. Important sources of DOC and THM precursors (types of DOC that form THMs when chlorinated) to the Delta include rivers, drainage water from peat islands, water from wetlands and areas with extensive riparian vegetation, and in-channel growth of algae and macrophytes. Due to proposed ecosystem restoration and creation of wetlands in the Delta, there is an urgent need for information on the relative loads of DOC and THM precursors produced from three different land uses: restored wetlands constructed for subsidence mitigation, tidal wetlands, and agricultural operations. We have been conducting research in the Delta to provide this information. A restored wetland and agricultural field located on Twitchell Island, and a tidal wetland on Browns Island have been monitored for flow, DOC, and THM precursors. Initial results indicate that the loads of DOC and THM precursors are similar for the restored wetland (surface water only) and the agricultural field. These land uses produce DOC loads of about 14 and 11 g C/m2/yr, respectively, and THM precursor loads of about 1.7 and 1.0 g THM/m2/yr, respectively. Estimates of DOC and THM precursor loads for the tidal wetland site on Browns Island and seepage associated with the restored wetland are being developed.
NASA Astrophysics Data System (ADS)
Fukushima, Kimichika; Sato, Hikaru
2018-04-01
Ultraviolet self-interaction energies in field theory sometimes contain meaningful physical quantities. The self-energies in such as classical electrodynamics are usually subtracted from the rest mass. For the consistent treatment of energies as sources of curvature in the Einstein field equations, this study includes these subtracted self-energies into vacuum energy expressed by the constant Lambda (used in such as Lambda-CDM). In this study, the self-energies in electrodynamics and macroscopic classical Einstein field equations are examined, using the formalisms with the ultraviolet cut-off scheme. One of the cut-off formalisms is the field theory in terms of the step-function-type basis functions, developed by the present authors. The other is a continuum theory of a fundamental particle with the same cut-off length. Based on the effectiveness of the continuum theory with the cut-off length shown in the examination, the dominant self-energy is the quadratic term of the Higgs field at a quantum level (classical self-energies are reduced to logarithmic forms by quantum corrections). The cut-off length is then determined to reproduce today's tiny value of Lambda for vacuum energy. Additionally, a field with nonperiodic vanishing boundary conditions is treated, showing that the field has no zero-point energy.
Chen, Ri-Zhao; Li, Lian-Bing; Klein, Michael G; Li, Qi-Yun; Li, Peng-Pei; Sheng, Cheng-Fa
2016-02-01
Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae), commonly referred to as the Asian corn borer, is the most important corn pest in Asia. Although capturing males with pheromone traps has recently been the main monitoring tool and suppression technique, the best trap designs remain unclear. Commercially available Delta and funnel traps, along with laboratory-made basin and water traps, and modified Delta traps, were evaluated in corn and soybean fields during 2013-2014 in NE China. The water trap was superior for capturing first-generation O. furnacalis (1.37 times the Delta trap). However, the basin (8.3 ± 3.2 moths/trap/3 d), Delta (7.9 ± 2.5), and funnel traps (7.0 ± 2.3) were more effective than water traps (1.4 ± 0.4) during the second generation. Delta traps gave optimal captures when deployed at ca. 1.57 × the highest corn plants, 1.36× that of average soybean plants, and at the field borders. In Delta traps modified by covering 1/3 of their ends, captures increased by ca. 15.7 and 8.1% in the first and second generations, respectively. After 35 d in the field, pheromone lures were still ca. 50% as attractive as fresh lures, and retained this level of attraction for ca. 25 more days. Increased captures (first and second generation: 90.9 ± 9.5%; 78.3 ± 9.3%) were obtained by adding a lure exposed for 5 d to funnel traps baited with a 35-d lure. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Quantitative verification of ab initio self-consistent laser theory.
Ge, Li; Tandy, Robert J; Stone, A D; Türeci, Hakan E
2008-10-13
We generalize and test the recent "ab initio" self-consistent (AISC) time-independent semiclassical laser theory. This self-consistent formalism generates all the stationary lasing properties in the multimode regime (frequencies, thresholds, internal and external fields, output power and emission pattern) from simple inputs: the dielectric function of the passive cavity, the atomic transition frequency, and the transverse relaxation time of the lasing transition.We find that the theory gives excellent quantitative agreement with full time-dependent simulations of the Maxwell-Bloch equations after it has been generalized to drop the slowly-varying envelope approximation. The theory is infinite order in the non-linear hole-burning interaction; the widely used third order approximation is shown to fail badly.
Saboungi, Marie-Louis; Price, David C. L.; Rosenbaum, Thomas F.; Xu, Rong; Husmann, Anke
2001-01-01
The heavily-doped silver chalcogenides, Ag.sub.2+.delta. Se and Ag.sub.2+.delta. Te, show magnetoresistance effects on a scale comparable to the "colossal" magnetoresistance (CMR) compounds. Hall coefficient, magnetoconductivity, and hydrostatic pressure experiments establish that elements of narrow-gap semiconductor physics apply, but both the size of the effects at room temperature and the linear field dependence down to fields of a few Oersteds are surprising new features.
NASA Astrophysics Data System (ADS)
Yousefvand, Hossein Reza
2017-07-01
In this paper a self-consistent numerical approach to study the temperature and bias dependent characteristics of mid-infrared (mid-IR) quantum cascade lasers (QCLs) is presented which integrates a number of quantum mechanical models. The field-dependent laser parameters including the nonradiative scattering times, the detuning and energy levels, the escape activation energy, the backfilling excitation energy and dipole moment of the optical transition are calculated for a wide range of applied electric fields by a self-consistent solution of Schrodinger-Poisson equations. A detailed analysis of performance of the obtained structure is carried out within a self-consistent solution of the subband population rate equations coupled with carrier coherent transport equations through the sequential resonant tunneling, by taking into account the temperature and bias dependency of the relevant parameters. Furthermore, the heat transfer equation is included in order to calculate the carrier temperature inside the active region levels. This leads to a compact predictive model to analyze the temperature and electric field dependent characteristics of the mid-IR QCLs such as the light-current (L-I), electric field-current (F-I) and core temperature-electric field (T-F) curves. For a typical mid-IR QCL, a good agreement was found between the simulated temperature-dependent L-I characteristic and experimental data, which confirms validity of the model. It is found that the main characteristics of the device such as output power and turn-on delay time are degraded by interplay between the temperature and Stark effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, S.-W.; Kim, D.-W.; Byun, Y.-I.
We present statistical characteristics of 1578 {delta} Scuti stars including nearby field stars and cluster member stars within the Milky Way. We obtained 46% of these stars (718 stars) from work by Rodriguez and collected the remaining 54% of stars (860 stars) from other literature. We updated the entries with the latest information of sky coordinates, color, rotational velocity, spectral type, period, amplitude, and binarity. The majority of our sample is well characterized in terms of typical period range (0.02-0.25 days), pulsation amplitudes (<0.5 mag), and spectral types (A-F type). Given this list of {delta} Scuti stars, we examined relationsmore » between their physical properties (i.e., periods, amplitudes, spectral types, and rotational velocities) for field stars and cluster members, and confirmed that the correlations of properties are not significantly different from those reported in Rodriguez's work. All the {delta} Scuti stars are cross-matched with several X-ray and UV catalogs, resulting in 27 X-ray and 41 UV-only counterparts. These counterparts are interesting targets for further study because of their uniqueness in showing {delta} Scuti-type variability and X-ray/UV emission at the same time. The compiled catalog can be accessed through the Web interface http://stardb.yonsei.ac.kr/DeltaScuti.« less
Quantifying variability in delta experiments
NASA Astrophysics Data System (ADS)
Miller, K. L.; Berg, S. R.; McElroy, B. J.
2017-12-01
Large populations of people and wildlife make their homes on river deltas, therefore it is important to be able to make useful and accurate predictions of how these landforms will change over time. However, making predictions can be a challenge due to inherent variability of the natural system. Furthermore, when we extrapolate results from the laboratory to the field setting, we bring with it random and systematic errors of the experiment. We seek to understand both the intrinsic and experimental variability of river delta systems to help better inform predictions of how these landforms will evolve. We run exact replicates of experiments with steady sediment and water discharge and record delta evolution with overhead time lapse imaging. We measure aspects of topset progradation and channel dynamics and compare these metrics of delta morphology between the 6 replicated experimental runs. We also use data from all experimental runs collectively to build a large dataset to extract statistics of the system properties. We find that although natural variability exists, the processes in the experiments must have outcomes that no longer depend on their initial conditions after some time. Applying these results to the field scale will aid in our ability to make forecasts of how these landforms will progress.
Quadratic squeezing: An overview
NASA Technical Reports Server (NTRS)
Hillery, M.; Yu, D.; Bergou, J.
1992-01-01
The amplitude of the electric field of a mode of the electromagnetic field is not a fixed quantity: there are always quantum mechanical fluctuations. The amplitude, having both a magnitude and a phase, is a complex number and is described by the mode annihilation operator a. It is also possible to characterize the amplitude by its real and imaginary parts which correspond to the Hermitian and anti-Hermitian parts of a, X sub 1 = 1/2(a(sup +) + a) and X sub 2 = i/2(a(sup +) - a), respectively. These operators do not commute and, as a result, obey the uncertainty relation (h = 1) delta X sub 1(delta X sub 2) greater than or = 1/4. From this relation we see that the amplitude fluctuates within an 'error box' in the complex plane whose area is at least 1/4. Coherent states, among them the vacuum state, are minimum uncertainty states with delta X sub 1 = delta X sub 2 = 1/2. A squeezed state, squeezed in the X sub 1 direction, has the property that delta X sub 1 is less than 1/2. A squeezed state need not be a minimum uncertainty state, but those that are can be obtained by applying the squeeze operator.
Attitudes and beliefs affect frequency of eating out in the Lower Mississippi Delta
USDA-ARS?s Scientific Manuscript database
Attitudes and beliefs reflecting cultural values can have a positive or negative influence on eating behaviors. Eating out may negatively affect diet quality through increased fat intake and larger portion sizes. In a representative sample of the Lower Mississippi Delta (LMD) consisting of 1601 Af...
Synthesis of acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters
Moens, Luc
2003-06-24
A process of preparing an acid addition salt of delta-aminolevulinc acid comprising: a) dissolving a lower alkyl 5-bromolevulinate and hexamethylenetetramine in a solvent selected from the group consisting of water, ethyl acetate, chloroform, acetone, ethanol, tetrahydrofuran and acetonitrile, to form a quaternary ammonium salt of the lower alkyl 5-bromolevulinate; and b) hydrolyzing the quaternary ammonium salt with an inorganic acid to form an acid addition salt of delta-aminolevulinic acid.
tetrahydrocannabinol (delta-9-THC)] in Schedule II. Final rule.
2017-11-22
This final rule adopts without changes an interim final rule with request for comments published in the Federal Register on March 23, 2017. On July 1, 2016, the U.S. Food and Drug Administration (FDA) approved a new drug application for Syndros, a drug product consisting of dronabinol [(-)-delta-9-trans-tetrahydrocannabinol (delta-9-THC)] oral solution. The Drug Enforcement Administration (DEA) maintains FDA-approved products of oral solutions containing dronabinol in schedule II of the Controlled Substances Act.
Natural and anthropogenic nitrogen uptake by bloom-forming macroalgae.
Thornber, Carol S; DiMilla, Peter; Nixon, Scott W; McKinney, Richard A
2008-02-01
The frequency and duration of macroalgal blooms have increased in many coastal waters over the past several decades. We used field surveys and laboratory culturing experiments to examine the nitrogen content and delta(15)N values of Ulva and Gracilaria, two bloom-forming algal genera in Narragansett Bay, RI (USA). The northern end of this bay is densely populated with large sewage treatment plant nitrogen inputs; the southern end is more lightly populated and opens to the Atlantic Ocean. Field-collected Ulva varied in delta(15)N among sites, but with two exceptions had delta(15)N above 10 per thousand, reflecting a significant component of heavy anthropogenic N. This variation was not correlated with a north-south gradient. Both Ulva and Gracilaria cultured in water from across Narragansett Bay also had high signals (delta(15)N= approximately 14-17 per thousand and 8-12 per thousand, respectively). These results indicate that inputs of anthropogenic N can have far-reaching impacts throughout estuaries.
NASA Astrophysics Data System (ADS)
Hill, S. C.; Edmond, J. A.; Xu, H.; Perez, J. D.; Fok, M. C. H.; Goldstein, J.; McComas, D. J.; Valek, P. W.
2017-12-01
The characteristics of a four day 7-10 September 2015 co-rotating interaction region (CIR) storm (min. SYM/H ≤ -110 nT) are categorized by storm phase. Ion distributions of trapped particles in the ring current as measured by the Two Wide-Angle Imaging Neutral Atom Spectrometers (TWINS) are compared with the simulated ion distributions of the Comprehensive Inner Magnetosphere-Ionosphere Model (CIMI). The energetic neutral atom (ENA) images obtained by TWINS are deconvolved to extract equatorial pitch angle, energy spectra, ion pressure intensity, and ion pressure anisotropy distributions in the inner magnetosphere. CIMI, using either a self-consistent electric field or a semi-empirical electric field, simulates comparable distributions. There is good agreement between the data measured by TWINS and the different distributions produced by the self-consistent electric field and the semi-empirical electric field of CIMI. Throughout the storm the pitch angle distribution (PAD) is mostly perpendicular in both CIMI and TWINS and there is agreement between the anisotropy distributions. The locations of the ion pressure peaks seen by TWINS and by the self-consistent and semi empirical electric field parameters in CIMI are usually between dusk and midnight. On average, the self-consistent electric field in CIMI reveals ion pressure peaks closer to Earth than its semi empirical counterpart, while TWINS reports somewhat larger radial values for the ion pressure peak locations. There are also notable events throughout the storm during which the simulated observations show some characteristics that differ from those measured by TWINS. At times, there are ion pressure peaks with magnetic local time on the dayside and in the midnight to dawn region. We discuss these events in light of substorm injections indicated by fluctuating peaks in the AE index and a positive By component in the solar wind. There are also times in which there are multiple ion pressure peaks. This may imply that there are time dependent and spatially dependent injection events that are influenced by local reconnection regions in the tail of the magnetosphere. Using CIMI simulations, we present paths of particles with various energies to assist in interpreting these notable events.
Dayside Magnetosphere-Ionosphere Coupling and Prompt Response of Low-Latitude/Equatorial Ionosphere
NASA Astrophysics Data System (ADS)
Tu, J.; Song, P.
2017-12-01
We use a newly developed numerical simulation model of the ionosphere/thermosphere to investigate magnetosphere-ionosphere coupling and response of the low-latitude/equatorial ionosphere. The simulation model adapts an inductive-dynamic approach (including self-consistent solutions of Faraday's law and retaining inertia terms in ion momentum equations), that is, based on magnetic field B and plasma velocity v (B-v paradigm), in contrast to the conventional modeling based on electric field E and current j (E-j paradigm). The most distinct feature of this model is that the magnetic field in the ionosphere is not constant but self-consistently varies, e.g., with currents, in time. The model solves self-consistently time-dependent continuity, momentum, and energy equations for multiple species of ions and neutrals including photochemistry, and Maxwell's equations. The governing equations solved in the model are a set of multifluid-collisional-Hall MHD equations which are one of unique features of our ionosphere/thermosphere model. With such an inductive-dynamic approach, all possible MHD wave modes, each of which may refract and reflect depending on the local conditions, are retained in the solutions so that the dynamic coupling between the magnetosphere and ionosphere and among different regions of the ionosphere can be self-consistently investigated. In this presentation, we show that the disturbances propagate in the Alfven speed from the magnetosphere along the magnetic field lines down to the ionosphere/thermosphere and that they experience a mode conversion to compressional mode MHD waves (particularly fast mode) in the ionosphere. Because the fast modes can propagate perpendicular to the field, they propagate from the dayside high-latitude to the nightside as compressional waves and to the dayside low-latitude/equatorial ionosphere as rarefaction waves. The apparent prompt response of the low-latitude/equatorial ionosphere, manifesting as the sudden increase of the upward flow around the equator and global antisunward convection, is the result of such coupling of the high-latitude and the low-latitude/equatorial ionosphere, and the requirement of the flow continuity, instead of mechanisms such as the penetration electric field.
Magnetic field extrapolation with MHD relaxation using AWSoM
NASA Astrophysics Data System (ADS)
Shi, T.; Manchester, W.; Landi, E.
2017-12-01
Coronal mass ejections are known to be the major source of disturbances in the solar wind capable of affecting geomagnetic environments. In order for accurate predictions of such space weather events, a data-driven simulation is needed. The first step towards such a simulation is to extrapolate the magnetic field from the observed field that is only at the solar surface. Here we present results of a new code of magnetic field extrapolation with direct magnetohydrodynamics (MHD) relaxation using the Alfvén Wave Solar Model (AWSoM) in the Space Weather Modeling Framework. The obtained field is self-consistent with our model and can be used later in time-dependent simulations without modifications of the equations. We use the Low and Lou analytical solution to test our results and they reach a good agreement. We also extrapolate the magnetic field from the observed data. We then specify the active region corona field with this extrapolation result in the AWSoM model and self-consistently calculate the temperature of the active region loops with Alfvén wave dissipation. Multi-wavelength images are also synthesized.
NASA Astrophysics Data System (ADS)
Qiao, Bin; He, X. T.; Zhu, Shao-ping; Zheng, C. Y.
2005-08-01
The acceleration of plasma electron in intense laser-plasma interaction is investigated analytically and numerically, where the conjunct effect of laser fields and self-consistent spontaneous fields (including quasistatic electric field Esl, azimuthal quasistatic magnetic field Bsθ and the axial one Bsz) is completely considered for the first time. An analytical relativistic electron fluid model using test-particle method has been developed to give an explicit analysis about the effects of each quasistatic fields. The ponderomotive accelerating and scattering effects on electrons are partly offset by Esl, furthermore, Bsθ pinches and Bsz collimates electrons along the laser axis. The dependences of energy gain and scattering angle of electron on its initial radial position, plasma density, and laser intensity are, respectively, studied. The qualities of the relativistic electron beam (REB), such as energy spread, beam divergence, and emitting (scattering) angle, generated by both circularly polarized (CP) and linearly polarized (LP) lasers are studied. Results show CP laser is of clear advantage comparing to LP laser for it can generate a better REB in collimation and stabilization.
NASA Astrophysics Data System (ADS)
Dugar-Zhabon, V. D.; Orozco, E. A.; Herrera, A. M.
2016-02-01
The space cyclotron autoresonance interaction of an electron beam with microwaves of TE 102 rectangular mode is simulated. It is shown that in these conditions the beam electrons can achieve energies which are sufficient to generate hard x-rays. The physical model consists of a rectangular cavity fed by a magnetron oscillator through a waveguide with a ferrite isolator, an iris window and a system of dc current coils which generates an axially symmetric magnetic field. The 3D magnetic field profile is that which maintains the electron beam in the space autoresonance regime. To simulate the beam dynamics, a full self-consistent electromagnetic particle-in-cell code is developed. It is shown that the injected 12keV electron beam of 0.5A current is accelerated to energy of 225keV at a distance of an order of 17cm by 2.45GHz standing microwave field with amplitude of 14kV/cm.
Hepatitis delta genotypes in chronic delta infection in the northeast of Spain (Catalonia).
Cotrina, M; Buti, M; Jardi, R; Quer, J; Rodriguez, F; Pascual, C; Esteban, R; Guardia, J
1998-06-01
Based on genetic analysis of variants obtained around the world, three genotypes of the hepatitis delta virus have been defined. Hepatitis delta virus variants have been associated with different disease patterns and geographic distributions. To determine the prevalence of hepatitis delta virus genotypes in the northeast of Spain (Catalonia) and the correlation with transmission routes and clinical disease, we studied the nucleotide divergence of the consensus sequence of HDV RNA obtained from 33 patients with chronic delta hepatitis (24 were intravenous drug users and nine had no risk factors), and four patients with acute self-limited delta infection. Serum HDV RNA was amplified by the polymerase chain reaction technique and a fragment of 350 nucleotides (nt 910 to 1259) was directly sequenced. Genetic analysis of the nucleotide consensus sequence obtained showed a high degree of conservation among sequences (93% of mean). Comparison of these sequences with those derived from different geographic areas and pertaining to genotypes I, II and III, showed a mean sequence identity of 92% with genotype I, 73% with genotype II and 61% with genotype III. At the amino acid level (aa 115 to 214), the mean identity was 87% with genotype I, 63% with genotype II and 56% with genotype III. Conserved regions included the RNA editing domain, the carboxyl terminal 19 amino acids of the hepatitis delta antigen and the polyadenylation signal of the viral mRNA. Hepatitis delta virus isolates in the northeast of Spain are exclusively genotype I, independently of the transmission route and the type of infection. No hepatitis delta virus subgenotypes were found, suggesting that the origin of hepatitis delta virus infection in our geographical area is homogeneous.
An overview of self-consistent methods for fiber-reinforced composites
NASA Technical Reports Server (NTRS)
Gramoll, Kurt C.; Freed, Alan D.; Walker, Kevin P.
1991-01-01
The Walker et al. (1989) self-consistent method to predict both the elastic and the inelastic effective material properties of composites is examined and compared with the results of other self-consistent and elastically based solutions. The elastic part of their method is shown to be identical to other self-consistent methods for non-dilute reinforced composite materials; they are the Hill (1965), Budiansky (1965), and Nemat-Nasser et al. (1982) derivations. A simplified form of the non-dilute self-consistent method is also derived. The predicted, elastic, effective material properties for fiber reinforced material using the Walker method was found to deviate from the elasticity solution for the v sub 31, K sub 12, and mu sub 31 material properties (fiber is in the 3 direction) especially at the larger volume fractions. Also, the prediction for the transverse shear modulus, mu sub 12, exceeds one of the accepted Hashin bounds. Only the longitudinal elastic modulus E sub 33 agrees with the elasticity solution. The differences between the Walker and the elasticity solutions are primarily due to the assumption used in the derivation of the self-consistent method, i.e., the strain fields in the inclusions and the matrix are assumed to remain constant, which is not a correct assumption for a high concentration of inclusions.
Coarse-Graining Polymer Field Theory for Fast and Accurate Simulations of Directed Self-Assembly
NASA Astrophysics Data System (ADS)
Liu, Jimmy; Delaney, Kris; Fredrickson, Glenn
To design effective manufacturing processes using polymer directed self-assembly (DSA), the semiconductor industry benefits greatly from having a complete picture of stable and defective polymer configurations. Field-theoretic simulations are an effective way to study these configurations and predict defect populations. Self-consistent field theory (SCFT) is a particularly successful theory for studies of DSA. Although other models exist that are faster to simulate, these models are phenomenological or derived through asymptotic approximations, often leading to a loss of accuracy relative to SCFT. In this study, we employ our recently-developed method to produce an accurate coarse-grained field theory for diblock copolymers. The method uses a force- and stress-matching strategy to map output from SCFT simulations into parameters for an optimized phase field model. This optimized phase field model is just as fast as existing phenomenological phase field models, but makes more accurate predictions of polymer self-assembly, both in bulk and in confined systems. We study the performance of this model under various conditions, including its predictions of domain spacing, morphology and defect formation energies. Samsung Electronics.
On the Distribution of Ion Density Depletion Along Magnetic Field Lines as Deduced Using C-NOFS
NASA Technical Reports Server (NTRS)
Dao, E.; Kelley, M. C.; Hysell, D. L.; Retterer, J. M.; Su, Y.-J.; Pfaff, Robert F.; Roddy, P. A.; Ballenthin, J. O.
2012-01-01
To investigate ion density depletion along magnetic field lines, we compare in situ-measured ion density fluctuations as seen from C/NOFS and compare them to the field-line-integrated depletion of the whole bubble as inferred from electric field measurements. Results show that, within C/NOFS' range, local measurement of the normalized density depletion, (Delta)n/n(sub 0), near the apex may be far less than at other points on the same field line. We argue that the distribution of (Delta)n/n(sub 0) is a weighted distribution concentrated at latitudes of the Appleton anomalies and becomes more heavily weighted the closer the field-aligned bubble rises to the peak of the anomalies. A three-dimensional simulation of an ionospheric bubble verifies our arguments.
The electrical transport properties of liquid Rb using pseudopotential theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, A. B., E-mail: amit07patel@gmail.com; Bhatt, N. K., E-mail: amit07patel@gmail.com; Thakore, B. Y., E-mail: amit07patel@gmail.com
2014-04-24
Certain electric transport properties of liquid Rb are reported. The electrical resistivity is calculated by using the self-consistent approximation as suggested by Ferraz and March. The pseudopotential due to Hasegawa et al for full electron-ion interaction, which is valid for all electrons and contains the repulsive delta function due to achieve the necessary s-pseudisation was used for the calculation. Temperature dependence of structure factor is considered through temperature dependent potential parameter in the pair potential. Finally, thermo-electric power and thermal conductivity are obtained. The outcome of the present study is discussed in light of other such results, and confirms themore » applicability of pseudopotential at very high temperature via temperature dependent pair potential.« less
Sato, Hiroki; Fuchino, Yutaka; Kiguchi, Masashi; Katura, Takusige; Maki, Atsushi; Yoro, Takeshi; Koizumi, Hideaki
2005-01-01
We investigate the intersubject signal variability of near-infrared spectroscopy (NIRS), which is commonly used for noninvasive measurement of the product of the optical path length and the concentration change in oxygenated hemoglobin (DeltaC'oxy) and deoxygenated hemoglobin (DeltaC'deoxy) and their sum (DeltaC'total) related to human cortical activation. We do this by measuring sensorimotor cortex activation in 31 healthy adults using 24-measurement-position near-infrared (NIR) topography. A finger-tapping task is used to activate the sensorimotor cortex, and significant changes in the hemisphere contralateral to the tapping hand are assessed as being due to the activation. Of the possible patterns of signal changes, 90% include a positive DeltaC'oxy, 76% included a negative DeltaC'deoxy, and 73% included a positive DeltaC'total. The DeltaC'deoxy and DeltaC'total are less consistent because of a large intersubject variability in DeltaC'deoxy; in some cases there is a positive DeltaC'deoxy. In the cases with no positive DeltaC'oxy in the contralateral hemisphere, there are cases of other possible changes for either or both hemispheres and no cases of no change in any hemoglobin species in either hemisphere. These results suggest that NIR topography is useful for observing brain activity in most cases, although intersubject signal variability still needs to be resolved.
NASA Technical Reports Server (NTRS)
Menzies, Margaret Anne
1996-01-01
The unsteady, three-dimensional Navier-Stokes equations coupled with the Euler equations of rigid-body dynamics are sequentially solved to simulate and analyze the aerodynamic response of a high angle of attack delta wing undergoing oscillatory motion. The governing equations of fluid flow and dynamics of the multidisciplinary problem are solved using a time-accurate solution of the laminar, unsteady, compressible, full Navier- Stokes equations with the implicit, upwind, Roe flux-difference splitting, finite-volume scheme and a four-stage Runge-Kutta scheme, respectively. The primary model under consideration consists of a 65 deg swept, sharp-edged, cropped delta wing of zero thickness at 20 deg angle of attack. In a freestream of Mach 0.85 and Reynolds number of 3.23 x 10(exp 6), the flow over the upper surface of the wing develops a complex shock system which interacts with the leading-edge primary vortices producing vortex breakdown. The effect of the oscillatory motion of the wing on the vortex breakdown and overall aerodynamic response is detailed to provide insight to the complicated physics associated with unsteady flows and the phenomenon of wing rock. Forced sinusoidal single and coupled mode rolling and pitching motion is presented for the wing in a transonic freestream. The Reynolds number, frequency of oscillation, and the phase angle are varied. Comparison between the single and coupled mode forced rolling and pitching oscillation cases illustrate the effects of coupling the motion. This investigation shows that even when coupled, forced rolling oscillation at a reduced frequency of 2(pi) eliminates the vortex breakdown which results in an increase in lift. The coupling effect for in phase forced oscillations show that the lift coefficient of the pitching-alone case and the rolling-moment coefficient of the rolling-alone case dominate the resulting response. However, with a phase lead in the pitching motion, the coupled motion results in a non-periodic response of the rolling moment. The second class of problems involve releasing the wing in roll to respond to the flowfield. Two models of sharp-edged delta wings, the previous 65 deg swept model and an 80 deg swept, sharp-edged delta wing, are used to observe the aerodynamic response of a wing free to roll in a transonic and subsonic freestream, respectively. These cases demonstrate damped oscillations, self-sustained limit cycle oscillations, and divergent rolling oscillations. Ultimately, an active control model using a mass injection system was applied on the surface of the wing to suppress the self-sustained limit cycle oscillation known as wing rock. Comparisons with experimental investigations complete this study, validating the analysis and illustrating the complex details afforded by computational investigations.
Perception of object trajectory: parsing retinal motion into self and object movement components.
Warren, Paul A; Rushton, Simon K
2007-08-16
A moving observer needs to be able to estimate the trajectory of other objects moving in the scene. Without the ability to do so, it would be difficult to avoid obstacles or catch a ball. We hypothesized that neural mechanisms sensitive to the patterns of motion generated on the retina during self-movement (optic flow) play a key role in this process, "parsing" motion due to self-movement from that due to object movement. We investigated this "flow parsing" hypothesis by measuring the perceived trajectory of a moving probe placed within a flow field that was consistent with movement of the observer. In the first experiment, the flow field was consistent with an eye rotation; in the second experiment, it was consistent with a lateral translation of the eyes. We manipulated the distance of the probe in both experiments and assessed the consequences. As predicted by the flow parsing hypothesis, manipulating the distance of the probe had differing effects on the perceived trajectory of the probe in the two experiments. The results were consistent with the scene geometry and the type of simulated self-movement. In a third experiment, we explored the contribution of local and global motion processing to the results of the first two experiments. The data suggest that the parsing process involves global motion processing, not just local motion contrast. The findings of this study support a role for optic flow processing in the perception of object movement during self-movement.
Bonnet, Udo; Borda, Thorsten; Scherbaum, Norbert; Specka, Michael
2015-10-01
To investigate the impact of inpatient detoxification treatment on psychiatric symptoms of chronic cannabis addicts and to analyze the influence of serum cannabinoid levels on the severity of these symptoms. Thirty five treatment-seeking, not active co-morbid chronic cannabis dependents (ICD-10) were studied on admission and on abstinence days 8 and 16, using several observational and self-report scales, such as Hamilton Depression Rating Scale (HAMD), Hamilton Anxiety Rating Scale (HAMA), Young Mania Rating Scale (YMRS) and Brief Psychiatric Rating Scale (BPRS), and the Symptom Checklist-90-Revised (SCL-90-R). Simultaneously obtained serum was analyzed with regard to levels of delta-9-tetrahydrocannabinol (THC) and its main metabolites 11-hydroxy-delta-9-tetrahydrocannabinol (THC-OH) and 11-nor-delta-9-tetrahydrocannabinol-9-carboxylic acid (THC-COOH). At admission, nearly 90% of the patients were not, or only mildly, affected by depression, anxiety or manic symptoms. In contrast, patients' self-description indicated a strong psychiatric burden in approximately 60% of the cases. All patients improved significantly within 16 days of the treatment. Effect sizes ranged from 0.7 to 1.4. (Cohen's d) for the respective scales. Serum THC-levels were positively associated with impairment of cognition in HAMA and motor retardation in BPRS. All other test results were not significantly related to the serum levels of the measured cannabinoids. Effects of the cannabis withdrawal syndrome and executive dysfunctions might explain the discrepancy between the observer ratings and self-reported psychiatric burden. Inpatient cannabis detoxification treatment significantly improved psychiatric symptoms. Serum THC-levels were not associated with affective symptoms and anxiety but predicted cognitive impairment and motor retardation. Copyright © 2015. Published by Elsevier Ireland Ltd.
INCREASING EVIDENCE FOR HEMISPHERICAL POWER ASYMMETRY IN THE FIVE-YEAR WMAP DATA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoftuft, J.; Eriksen, H. K.; Hansen, F. K.
Motivated by the recent results of Hansen et al. concerning a noticeable hemispherical power asymmetry in the Wilkinson Microwave Anisotropy Probe (WMAP) data on small angular scales, we revisit the dipole-modulated signal model introduced by Gordon et al.. This model assumes that the true cosmic microwave background signal consists of a Gaussian isotropic random field modulated by a dipole, and is characterized by an overall modulation amplitude, A, and a preferred direction, p-hat. Previous analyses of this model have been restricted to very low resolution (i.e., 3.{sup 0}6 pixels, a smoothing scale of 9 deg. FWHM, and l {approx}< 40)more » due to computational cost. In this paper, we double the angular resolution (i.e., 1.{sup 0}8 pixels and 4.{sup 0}5 FWHM smoothing scale), and compute the full corresponding posterior distribution for the five-year WMAP data. The results from our analysis are the following: the best-fit modulation amplitude for l {<=} 64 and the ILC data with the WMAP KQ85 sky cut is A = 0.072 {+-} 0.022, nonzero at 3.3{sigma}, and the preferred direction points toward Galactic coordinates (l, b) = (224 deg., - 22 deg.) {+-} 24 deg. The corresponding results for l {approx}< 40 from earlier analyses were A = 0.11 {+-} 0.04 and (l, b) = (225 deg. - 27 deg.). The statistical significance of a nonzero amplitude thus increases from 2.8{sigma} to 3.3{sigma} when increasing l{sub max} from 40 to 64, and all results are consistent to within 1{sigma}. Similarly, the Bayesian log-evidence difference with respect to the isotropic model increases from {delta}ln E = 1.8 to {delta}ln E = 2.6, ranking as 'strong evidence' on the Jeffreys' scale. The raw best-fit log-likelihood difference increases from {delta}ln L = 6.1 to {delta}ln L = 7.3. Similar, and often slightly stronger, results are found for other data combinations. Thus, we find that the evidence for a dipole power distribution in the WMAP data increases with l in the five-year WMAP data set, in agreement with the reports of Hansen et al.« less
Box simulations of rotating magnetoconvection. Effects of penetration and turbulent pumping
NASA Astrophysics Data System (ADS)
Ziegler, U.; Rüdiger, G.
2003-04-01
Various effects of penetration in rotating magnetoconvection are studied by means of three-dimensional numerical simulations employing the code NIRVANA. A local, 2-layer model is applied dividing the computational domain (which is a rectangular box placed tangentially on a sphere at latitude 45deg) in an unstable polytropic region on top of a stable polytropic region. Different realizations of convection are examined parameterized by Taylor numbers Ta=0,6 x 104, 6x 105 and magnetic field strengths β = 5,50,500,5000,infty . We find a rather distinctive behavior of the penetration depth Delta on the system parameters (Ta,β). In non-rotating convection Delta is a monotonically decreasing function of β-1 which is due to magnetic quenching effects. Also, penetration is subject to rotational quenching, i.e. Delta is reduced for increasing rotation rate. In the intermediate regime of (Ta,β), the effects of rotation and magnetic field on Delta do not simply add (see Fig. 3). We find, nevertheless, a very strong reduction of the penetration depth of overshooting turbulence by both rotation and magnetism. Penetrative convection is closely associated with the mixing of a passive scalar quantity advected with the flow. In the long term, the tracer material penetrates significantly deeper into the stable layer than suggested by Delta which is due to the cumulative effect of isolated, fast-moving plumes. In case of a weak magnetic field, penetrative convection also serves to ensure a downward transport of magnetic flux by turbulent pumping with an average rate gammaz ~ -7x 10-3 measured in units of the sound speed at the top z-boundary. For larger magnetic fields the pumping effect is quenched and even changes sign in the convection zone. This effect is suggested as being due to the effect of ``turbulent buoyancy'' which in density-stratified media transports a given magnetic field upwards if it is not too strong (Kichatinov & Rüdiger \\cite{Kichatinov92}).
Heavy metal flows in aquatic systems of the Don and Kuban river deltas
NASA Astrophysics Data System (ADS)
Tkachenko, A. N.; Tkachenko, O. V.; Lychagin, M. Yu.; Kasimov, N. S.
2017-05-01
This paper presents the calculated heavy metal (Fe, Mn, Zn, Ni, Cu, Cr, Co, Cd, and Pb) flows in suspended and dissolved forms in the main navigable branches of the Don and Kuban river deltas during the low-water period of 2013-2014. This work is based on the data of field studies in which water and suspended matter samples were collected and the turbidity and water discharge in deltas were measured. A quantitative estimate of heavy metal inflows into the deltas of the Don and Kuban rivers is provided. Transformation of flows of suspended and dissolved metal forms from the delta top to the sea edge is discussed. The influence of localities (Rostov-on-Don, Temryuk) on the increase in heavy metal flows downstream is shown, and the heavy metal flows in the deltas of the Don and Kuban rivers are compared.
Radiation of a nonrelativistic particle during its finite motion in a central field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karnakov, B. M., E-mail: karnak@theor.mephi.ru; Korneev, Ph. A., E-mail: korneev@theor.mephi.ru; Popruzhenko, S. V.
The spectrum and expressions for the intensity of dipole radiation lines are obtained for a classical nonrelativistic charged particle that executes a finite aperiodic motion in an arbitrary central field along a non-closed trajectory. It is shown that, in this case of a conditionally periodic motion, the radiaton spectrum consists of two series of equally spaced lines. It is pointed out that, according to the correspondence principle, the rise of two such series in the classical theory corresponds to the well-known selection rule |{delta}l = 1 for the dipole radiation in a central field in quantum theory, where l ismore » the orbital angular momentum of the particle. The results obtained can be applied to the description of the radiation and the absorption of a classical collisionless electron plasma in nanoparticles irradiated by an intense laser field. As an example, the rate of collisionless absorption of electromagnetic wave energy in equilibrium isotropic nanoplasma is calculated.« less
Field-induced thermal metal-to-insulator transition in underdoped La(2-x)Sr(x)CuO(4+delta).
Hawthorn, D G; Hill, R W; Proust, C; Ronning, F; Sutherland, Mike; Boaknin, Etienne; Lupien, C; Tanatar, M A; Paglione, Johnpierre; Wakimoto, S; Zhang, H; Taillefer, Louis; Kimura, T; Nohara, M; Takagi, H; Hussey, N E
2003-05-16
The transport of heat and charge in cuprates was measured in single crystals of La(2-x)Sr(x)CuO(4+delta) (LSCO) across the doping phase diagram at low temperatures. In underdoped LSCO, the thermal conductivity is found to decrease with increasing magnetic field in the T-->0 limit, in striking contrast to the increase observed in all superconductors, including cuprates at higher doping. In heavily underdoped LSCO, where superconductivity can be entirely suppressed with an applied magnetic field, we show that a novel thermal metal-to-insulator transition takes place upon going from the superconducting state to the field-induced normal state.
The density-magnetic field relation in the atomic ISM
NASA Astrophysics Data System (ADS)
Gazol, A.; Villagran, M. A.
2018-07-01
We present numerical experiments aimed to study the correlation between the magnetic field strength, B, and the density, n, in the cold atomic interstellar medium (CNM). We analyse 24 magnetohydrodynamic models with different initial magnetic field intensities (B0 = 0.4, 2.1, 4.2, and 8.3 μG) and/or mean densities (2, 3, and 4 cm-3), in the presence of driven and decaying turbulence, with and without self-gravity, in a cubic computational domain with 100 pc by side. Our main findings are as follows: (i) For forced simulations that reproduce the main observed physical conditions of the CNM in the solar neighbourhood, a positive correlation between B and n develops for all the B0 values. (ii) The density at which this correlation becomes significant (≲30 cm-3) depends on B0 but is not sensitive to the presence of self-gravity. (iii) The effect of self-gravity, when noticeable, consists of producing a shallower correlation at high densities, suggesting that, in the studied regime, self-gravity induces motions along the field lines. (iv) Self-gravitating decaying models where the CNM is subsonic and sub-Alfvénic with β ≲ 1 develop a high-density positive correlation whose slopes are consistent with a constant β(n). (v) Decaying models where the low-density CNM is subsonic and sub-Alfvénic with β > 1 show a negative correlation at intermediate densities, followed by a high-density positive correlation.
The Density-Magnetic Field Relation in the Atomic ISM
NASA Astrophysics Data System (ADS)
Gazol, A.; Villagran, M. A.
2018-04-01
We present numerical experiments aimed to study the correlation between the magnetic field strength, B, and the density, n, in the cold atomic interstellar medium (CNM). We analyze 24 magneto-hydrodynamic models with different initial magnetic field intensities (B0 =0.4, 2.1, 4.2, and 8.3 μG) and/or mean densities (2, 3, and 4 cm-3), in the presence of driven and decaying turbulence, with and without self-gravity, in a cubic computational domain with 100 pc by side. Our main findings are: i) For forced simulations, which reproduce the main observed physical conditions of the CNM in the Solar neighborhood, a positive correlation between B and n develops for all the B0 values. ii) The density at which this correlation becomes significant (≲ 30 cm-3) depends on B0 but is not sensitive to the presence of self-gravity. iii) The effect of self-gravity, when noticeable, consists of producing a shallower correlation at high densities, suggesting that, in the studied regime, self-gravity induces motions along the field lines. iv) Self-gravitating decaying models where the CNM is subsonic and sub-Alfvénic with β ≲ 1 develop a high density positive correlation whose slopes are consistent with a constant β(n). v) Decaying models where the low density CNM is subsonic and sub-Alfvénic with β > 1 show a negative correlation at intermediate densities, followed by a high density positive correlation.
Self-consistent current sheet structures in the quiet-time magnetotail
NASA Technical Reports Server (NTRS)
Holland, Daniel L.; Chen, James
1993-01-01
The structure of the quiet-time magnetotail is studied using a test particle simulation. Vlasov equilibria are obtained in the regime where v(D) = E(y) c/B(z) is much less than the ion thermal velocity and are self-consistent in that the current and magnetic field satisfy Ampere's law. Force balance between the plasma and magnetic field is satisfied everywhere. The global structure of the current sheet is found to be critically dependent on the source distribution function. The pressure tensor is nondiagonal in the current sheet with anisotropic temperature. A kinetic mechanism is proposed whereby changes in the source distribution results in a thinning of the current sheet.
Thermodynamically self-consistent theory for the Blume-Capel model.
Grollau, S; Kierlik, E; Rosinberg, M L; Tarjus, G
2001-04-01
We use a self-consistent Ornstein-Zernike approximation to study the Blume-Capel ferromagnet on three-dimensional lattices. The correlation functions and the thermodynamics are obtained from the solution of two coupled partial differential equations. The theory provides a comprehensive and accurate description of the phase diagram in all regions, including the wing boundaries in a nonzero magnetic field. In particular, the coordinates of the tricritical point are in very good agreement with the best estimates from simulation or series expansion. Numerical and analytical analysis strongly suggest that the theory predicts a universal Ising-like critical behavior along the lambda line and the wing critical lines, and a tricritical behavior governed by mean-field exponents.
NASA Astrophysics Data System (ADS)
Ochsenfeld, Christian; Head-Gordon, Martin
1997-05-01
To exploit the exponential decay found in numerical studies for the density matrix and its derivative with respect to nuclear displacements, we reformulate the coupled perturbed self-consistent field (CPSCF) equations and a quadratically convergent SCF (QCSCF) method for Hartree-Fock and density functional theory within a local density matrix-based scheme. Our D-CPSCF (density matrix-based CPSCF) and D-QCSCF schemes open the way for exploiting sparsity and to achieve asymptotically linear scaling of computational complexity with molecular size ( M), in case of D-CPSCF for all O( M) derivative densities. Furthermore, these methods are even for small molecules strongly competitive to conventional algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zegadlo, Krzysztof B., E-mail: zegadlo@if.pw.edu.pl; Karpierz, Miroslaw A.; Wasak, Tomasz
We report results of the analysis for families of one-dimensional (1D) trapped solitons, created by competing self-focusing (SF) quintic and self-defocusing (SDF) cubic nonlinear terms. Two trapping potentials are considered, the harmonic-oscillator (HO) and delta-functional ones. The models apply to optical solitons in colloidal waveguides and other photonic media, and to matter-wave solitons in Bose-Einstein condensates loaded into a quasi-1D trap. For the HO potential, the results are obtained in an approximate form, using the variational and Thomas-Fermi approximations, and in a full numerical form, including the ground state and the first antisymmetric excited one. For the delta-functional attractive potential,more » the results are produced in a fully analytical form, and verified by means of numerical methods. Both exponentially localized solitons and weakly localized trapped modes are found for the delta-functional potential. The most essential conclusions concern the applicability of competing Vakhitov-Kolokolov (VK) and anti-VK criteria to the identification of the stability of solitons created under the action of the competing SF and SDF terms.« less
Stabilization of solitons under competing nonlinearities by external potentials
NASA Astrophysics Data System (ADS)
Zegadlo, Krzysztof B.; Wasak, Tomasz; Malomed, Boris A.; Karpierz, Miroslaw A.; Trippenbach, Marek
2014-12-01
We report results of the analysis for families of one-dimensional (1D) trapped solitons, created by competing self-focusing (SF) quintic and self-defocusing (SDF) cubic nonlinear terms. Two trapping potentials are considered, the harmonic-oscillator (HO) and delta-functional ones. The models apply to optical solitons in colloidal waveguides and other photonic media, and to matter-wave solitons in Bose-Einstein condensates loaded into a quasi-1D trap. For the HO potential, the results are obtained in an approximate form, using the variational and Thomas-Fermi approximations, and in a full numerical form, including the ground state and the first antisymmetric excited one. For the delta-functional attractive potential, the results are produced in a fully analytical form, and verified by means of numerical methods. Both exponentially localized solitons and weakly localized trapped modes are found for the delta-functional potential. The most essential conclusions concern the applicability of competing Vakhitov-Kolokolov (VK) and anti-VK criteria to the identification of the stability of solitons created under the action of the competing SF and SDF terms.
Turbulent MHD transport coefficients - An attempt at self-consistency
NASA Technical Reports Server (NTRS)
Chen, H.; Montgomery, D.
1987-01-01
In this paper, some multiple scale perturbation calculations of turbulent MHD transport coefficients begun in earlier papers are first completed. These generalize 'alpha effect' calculations by treating the velocity field and magnetic field on the same footing. Then the problem of rendering such calculations self-consistent is addressed, generalizing an eddy-viscosity hypothesis similar to that of Heisenberg for the Navier-Stokes case. The method also borrows from Kraichnan's direct interaction approximation. The output is a set of integral equations relating the spectra and the turbulent transport coefficients. Previous 'alpha effect' and 'beta effect' coefficients emerge as limiting cases. A treatment of the inertial range can also be given, consistent with a -5/3 energy spectrum power law. In the Navier-Stokes limit, a value of 1.72 is extracted for the Kolmogorov constant. Further applications to MHD are possible.
NASA Astrophysics Data System (ADS)
Ustin, S.; Khanna, S.; Bellvert, J.; Ustin, J. D.; Shapiro, K.
2016-12-01
Starting in the late 1980s major invasive aquatic pests began to expand their distributions in the Sacramento-San Joaquin Delta, California, USA, an area of 2,219 Km2 with 1,800 Km waterways. The most aggressive are the floating weed, Eichhornia crassipes (water hyacinth) and the submerged Egeria densa (Brazilian waterweed). The distribution of these species has reportedly expanded during the 2011-2015 drought. We mapped the distributions of invasive aquatic species using data from NASA's Airborne Visible InfraRed Imaging Spectrometer - Next Generation (AVIRIS-NG), which was flown over the Delta November 14, 15, 17, 24, 25, 2014 and September 17-21, 2015 by the Jet Propulsion Laboratory (JPL). AVIRIS-NG measures 432 bands across the visible and reflected solar infrared, in wavelengths between 346 nm to 2505 nm. Sixty-one flightlines were flown at a nominal spatial resolution of 2.5 m x 2.5 m each year. Field data, identifying locations of aquatic species (1,036 points in 2014 and 1,375 in 2015) were collected by boat between October 20-30, 2014 and September 9-17, 2015 and were used for training and validation. The Random Forest (RF) machine learning algorithm was used to classify the species locations each year. The resulting classification was highly consistent with the field data, and produced pixel-based overall accuracy from confusion matrices of 83.9% with kappa values > 0.8 (indicating excellent agreement) in 2014 and overall accuracy of 95.8 and kappa value > 0.9 in 2015. Species distributions were highly dynamic between years. Submerged macrophytes increased their extent and density in 2015 from 779.4 m2 in 2014 to 1170.6 m2. Floating macrophytes acreage decreased from 354.0 m2 in 2014 to 191.4 m2 in 2015. Water hyacinth cover decreased throughout the delta due to chemical control activities but much of the cleared area was replaced by water primrose or submerged species. Water primrose increased from 83.6 m2 in 2014 to 114.3 m2 in 2015.
Long, Leonora E; Chesworth, Rose; Huang, Xu-Feng; McGregor, Iain S; Arnold, Jonathon C; Karl, Tim
2010-08-01
Cannabis contains over 70 unique compounds and its abuse is linked to an increased risk of developing schizophrenia. The behavioural profiles of the psychotropic cannabis constituent Delta9-tetrahydrocannabinol (Delta9-THC) and the non-psychotomimetic constituent cannabidiol (CBD) were investigated with a battery of behavioural tests relevant to anxiety and positive, negative and cognitive symptoms of schizophrenia. Male adult C57BL/6JArc mice were given 21 daily intraperitoneal injections of vehicle, Delta9-THC (0.3, 1, 3 or 10 mg/kg) or CBD (1, 5, 10 or 50 mg/kg). Delta9-THC produced the classic cannabinoid CB1 receptor-mediated tetrad of hypolocomotion, analgesia, catalepsy and hypothermia while CBD had modest hyperthermic effects. While sedative at this dose, Delta9-THC (10 mg/kg) produced locomotor-independent anxiogenic effects in the open-field and light-dark tests. Chronic CBD produced moderate anxiolytic-like effects in the open-field test at 50 mg/kg and in the light-dark test at a low dose (1 mg/kg). Acute and chronic Delta9-THC (10 mg/kg) decreased the startle response while CBD had no effect. Prepulse inhibition was increased by acute treatment with Delta9-THC (0.3, 3 and 10 mg/kg) or CBD (1, 5 and 50 mg/kg) and by chronic CBD (1 mg/kg). Chronic CBD (50 mg/kg) attenuated dexamphetamine (5 mg/kg)-induced hyperlocomotion, suggesting an antipsychotic-like action for this cannabinoid. Chronic Delta9-THC decreased locomotor activity before and after dexamphetamine administration suggesting functional antagonism of the locomotor stimulant effect. These data provide the first evidence of anxiolytic- and antipsychotic-like effects of chronic but not acute CBD in C57BL/6JArc mice, extending findings from acute studies in other inbred mouse strains and rats.
NASA Astrophysics Data System (ADS)
Parker, Robert L.; Booker, John R.
1996-12-01
The properties of the log of the admittance in the complex frequency plane lead to an integral representation for one-dimensional magnetotelluric (MT) apparent resistivity and impedance phase similar to that found previously for complex admittance. The inverse problem of finding a one-dimensional model for MT data can then be solved using the same techniques as for complex admittance, with similar results. For instance, the one-dimensional conductivity model that minimizes the χ2 misfit statistic for noisy apparent resistivity and phase is a series of delta functions. One of the most important applications of the delta function solution to the inverse problem for complex admittance has been answering the question of whether or not a given set of measurements is consistent with the modeling assumption of one-dimensionality. The new solution allows this test to be performed directly on standard MT data. Recently, it has been shown that induction data must pass the same one-dimensional consistency test if they correspond to the polarization in which the electric field is perpendicular to the strike of two-dimensional structure. This greatly magnifies the utility of the consistency test. The new solution also allows one to compute the upper and lower bounds permitted on phase or apparent resistivity at any frequency given a collection of MT data. Applications include testing the mutual consistency of apparent resistivity and phase data and placing bounds on missing phase or resistivity data. Examples presented demonstrate detection and correction of equipment and processing problems and verification of compatibility with two-dimensional B-polarization for MT data after impedance tensor decomposition and for continuous electromagnetic profiling data.
Comparison of storm-time changes of geomagnetic field at ground and at MAGSAT altitudes, part 3
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Kane, R. P.; Trivedi, N. B.
1982-01-01
The latitudinal distributions of delta H, delta X, delta Y, and delta Z were studied for quiet and disturbed periods. For quiet periods, the average patterns showed some variations common to dusk and dawn, thus indicating probable ground anomaly. However, there were significant differences too between dusk and dawn, indicating considerable diurnal variation effects. Particularly in delta Y, these effects were large and were symmetric about the dip equator. For disturbed day passes, the quiet day patterns were considered as base levels and the latter were subtracted from the former. The resulting residual latitudinal patterns were, on the average, symmetric about the geographical equator. However, individual passes showed considerable north-south asymmetries, probably indicating meanderings of the central plane of the magnetospheric ring current.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asai, Ayumi; Kiyohara, Junko; Takasaki, Hiroyuki
2013-02-15
We studied electron spectral indices of nonthermal emissions seen in hard X-rays (HXRs) and microwaves. We analyzed 12 flares observed by the Hard X-Ray Telescope aboard Yohkoh, Nobeyama Radio Polarimeters, and the Nobeyama Radioheliograph (NoRH), and compared the spectral indices derived from total fluxes of HXRs and microwaves. Except for four events, which have very soft HXR spectra suffering from the thermal component, these flares show a gap {Delta}{delta} between the electron spectral indices derived from HXRs {delta} {sub X} and those from microwaves {delta}{sub {mu}} ({Delta}{delta} = {delta} {sub X} - {delta}{sub {mu}}) of about 1.6. Furthermore, from themore » start to the peak times of the HXR bursts, the time profiles of the HXR spectral index {delta} {sub X} evolve synchronously with those of the microwave spectral index {delta}{sub {mu}}, keeping the constant gap. We also examined the spatially resolved distribution of the microwave spectral index by using NoRH data. The microwave spectral index {delta}{sub {mu}} tends to be larger, which means a softer spectrum, at HXR footpoint sources with stronger magnetic field than that at the loop tops. These results suggest that the electron spectra are bent at around several hundreds of keV, and become harder at the higher energy range that contributes the microwave gyrosynchrotron emission.« less
Paige, John T; Kozmenko, Valeriy; Yang, Tong; Paragi Gururaja, Ramnarayan; Hilton, Charles W; Cohn, Isidore; Chauvin, Sheila W
2009-02-01
The operating room (OR) is a dynamic, high risk setting requiring effective teamwork for the safe delivery of care. Teamwork in the modern OR, however, is less than ideal. High fidelity simulation is an attractive approach to training key teamwork competencies. We have developed a portable simulation platform, the mobile mock OR (MMOR) that permits bringing team training over long distances to the point of care. We examined the effectiveness of this innovative, simulation-based interdisciplinary operating room (OR) team training model on its participants. All general surgical OR team members at an academic affiliated medical center underwent scenario-based training using a mobile mock OR. Pre- and post-session mean scores were calculated and analyzed for 15 Likert-type items measuring self-efficacy in teamwork competencies using t test. The mean gain in pre-post item scores for 38 participants averaged 0.4 units on a 6-point Likert scale. The significance was demonstrated in 4 of the items: role clarity (Delta = 0.6 units, P = .02), anticipatory response (Delta = 0.6 units, P = .01), cross monitoring (Delta = 0.6 units, P < .01), and team cohesion and interaction (Delta = 0.7 units, P < .01). High-fidelity, simulation-based OR team training at the point of care positively impacts self-efficacy for effective teamwork performance in everyday practice.
Self-consistent adjoint analysis for topology optimization of electromagnetic waves
NASA Astrophysics Data System (ADS)
Deng, Yongbo; Korvink, Jan G.
2018-05-01
In topology optimization of electromagnetic waves, the Gâteaux differentiability of the conjugate operator to the complex field variable results in the complexity of the adjoint sensitivity, which evolves the original real-valued design variable to be complex during the iterative solution procedure. Therefore, the self-inconsistency of the adjoint sensitivity is presented. To enforce the self-consistency, the real part operator has been used to extract the real part of the sensitivity to keep the real-value property of the design variable. However, this enforced self-consistency can cause the problem that the derived structural topology has unreasonable dependence on the phase of the incident wave. To solve this problem, this article focuses on the self-consistent adjoint analysis of the topology optimization problems for electromagnetic waves. This self-consistent adjoint analysis is implemented by splitting the complex variables of the wave equations into the corresponding real parts and imaginary parts, sequentially substituting the split complex variables into the wave equations with deriving the coupled equations equivalent to the original wave equations, where the infinite free space is truncated by the perfectly matched layers. Then, the topology optimization problems of electromagnetic waves are transformed into the forms defined on real functional spaces instead of complex functional spaces; the adjoint analysis of the topology optimization problems is implemented on real functional spaces with removing the variational of the conjugate operator; the self-consistent adjoint sensitivity is derived, and the phase-dependence problem is avoided for the derived structural topology. Several numerical examples are implemented to demonstrate the robustness of the derived self-consistent adjoint analysis.
Composite solid oxide fuel cell anode based on ceria and strontium titanate
Marina, Olga A.; Pederson, Larry R.
2008-12-23
An anode and method of making the same wherein the anode consists of two separate phases, one consisting of a doped strontium titanate phase and one consisting of a doped cerium oxide phase. The strontium titanate phase consists of Sr.sub.1-xM.sub.xTiO.sub.3-.delta., where M is either yttrium (Y), scandium (Sc), or lanthanum (La), where "x" may vary typically from about 0.01 to about 0.5, and where .delta. is indicative of some degree of oxygen non-stoichiometry. A small quantity of cerium may also substitute for titanium in the strontium titanate lattice. The cerium oxide consists of N.sub.yCe.sub.1-yO.sub.2-.delta., where N is either niobium (Nb), vanadium (V), antimony (Sb) or tantalum (Ta) and where "y" may vary typically from about 0.001 to about 0.1 and wherein the ratio of Ti in said first phase to the sum of Ce and N in the second phase is between about 0.2 to about 0.75. Small quantities of strontium, yttrium, and/or lanthanum may additionally substitute into the cerium oxide lattice. The combination of these two phases results in better performance than either phase used separately as an anode for solid oxide fuel cell or other electrochemical device.
GSC 02505-00411: A new delta Sct star in the field of RZ LMi
NASA Astrophysics Data System (ADS)
Ishioka, R.; Kokumbaeva, R.
2017-04-01
We present the time series analysis of CCD photometry from ``EAST'' Zeiss-1000 telescope at Tien-Shan Astronomical Observatory (Almaty, Kazakhstan) for GSC 02505-00411. GSC 02505-00411 is a new multi-frequency delta Scuti variable with a primary frequency of 43.84 c/d.
Climate optimized planting windows for cotton in the lower Mississippi Delta region
USDA-ARS?s Scientific Manuscript database
Unique, variable summer climate of the lower Mississippi Delta region poses a critical challenge to cotton producers in deciding when to plant for optimized production. Traditional 2- to 4-year agronomic field trials conducted in this area fail to capture the effects of long-term climate variabiliti...
NASA Technical Reports Server (NTRS)
Poppe, A. R.; Halekas, J. S.; Delory, G. T.; Farrell, W. M.
2012-01-01
As the solar wind is incident upon the lunar surface, it will occasionally encounter lunar crustal remanent magnetic fields. These magnetic fields are small-scale, highly non-dipolar, have strengths up to hundreds of nanotesla, and typically interact with the solar wind in a kinetic fashion. Simulations, theoretical analyses, and spacecraft observations have shown that crustal fields can reflect solar wind protons via a combination of magnetic and electrostatic reflection; however, analyses of surface properties have suggested that protons may still access the lunar surface in the cusp regions of crustal magnetic fields. In this first report from a planned series of studies, we use a 1 1/2-dimensional, electrostatic particle-in-cell code to model the self-consistent interaction between the solar wind, the cusp regions of lunar crustal remanent magnetic fields, and the lunar surface. We describe the self-consistent electrostatic environment within crustal cusp regions and discuss the implications of this work for the role that crustal fields may play regulating space weathering of the lunar surface via proton bombardment.
Rubenstein, R C; Egan, M E; Zeitlin, P L
1997-01-01
The most common cystic fibrosis transmembrane conductance regulator mutation, delta F508-CFTR, is a partially functional chloride channel that is retained in the endoplasmic reticulum and degraded. We hypothesize that a known transcriptional regulator, sodium 4-phenylbutyrate (4PBA), will enable a greater fraction of delta F508-CFTR to escape degradation and appear at the cell surface. Primary cultures of nasal polyp epithelia from CF patients (delta F508 homozygous or heterozygous), or the CF bronchial epithelial cell line IB3-1 (delta F508/W1282X) were exposed to 4PBA for up to 7 d in culture. 4PBA treatment at concentrations of 0.1 and 2 mM resulted in the restoration of forskolin-activated chloride secretion. Protein kinase A-activated, linear, 10 pS chloride channels appeared at the plasma membrane of IB3-1 cells at the tested concentration of 2.5 mM. Treatment of IB3-1 cells with 0.1-1 mM 4PBA and primary nasal epithelia with 5 mM 4PBA also resulted in the appearance of higher molecular mass forms of CFTR consistent with addition and modification of oligosaccharides in the Golgi apparatus, as detected by immunoblotting of whole cell lysates with anti-CFTR antisera. Immunocytochemistry in CF epithelial cells treated with 4PBA was consistent with increasing amounts of delta F508-CFTR. These data indicate that 4PBA is a promising pharmacologic agent for inducing correction of the CF phenotype in CF patients carrying the delta F508 mutation. PMID:9366560
Rubenstein, R C; Egan, M E; Zeitlin, P L
1997-11-15
The most common cystic fibrosis transmembrane conductance regulator mutation, delta F508-CFTR, is a partially functional chloride channel that is retained in the endoplasmic reticulum and degraded. We hypothesize that a known transcriptional regulator, sodium 4-phenylbutyrate (4PBA), will enable a greater fraction of delta F508-CFTR to escape degradation and appear at the cell surface. Primary cultures of nasal polyp epithelia from CF patients (delta F508 homozygous or heterozygous), or the CF bronchial epithelial cell line IB3-1 (delta F508/W1282X) were exposed to 4PBA for up to 7 d in culture. 4PBA treatment at concentrations of 0.1 and 2 mM resulted in the restoration of forskolin-activated chloride secretion. Protein kinase A-activated, linear, 10 pS chloride channels appeared at the plasma membrane of IB3-1 cells at the tested concentration of 2.5 mM. Treatment of IB3-1 cells with 0.1-1 mM 4PBA and primary nasal epithelia with 5 mM 4PBA also resulted in the appearance of higher molecular mass forms of CFTR consistent with addition and modification of oligosaccharides in the Golgi apparatus, as detected by immunoblotting of whole cell lysates with anti-CFTR antisera. Immunocytochemistry in CF epithelial cells treated with 4PBA was consistent with increasing amounts of delta F508-CFTR. These data indicate that 4PBA is a promising pharmacologic agent for inducing correction of the CF phenotype in CF patients carrying the delta F508 mutation.
NASA Astrophysics Data System (ADS)
Gale, J.; Steckler, M. S.; Sousa, D.; Seeber, L.; Goodbred, S. L., Jr.; Ferguson, E. K.
2014-12-01
The Ganges-Brahmaputra Delta abuts the Indo-Burman Arc on the east. Subduction of the thick delta strata has generated a large subaerial accretionary prism, up to 250 km wide, with multiple ranges of anticlines composed of the folded and faulted delta sediments. As the wedge has grown, the exposed anticlines have become subject to erosion by the rivers draining the Himalaya, a local Indo-Burman drainage network, and coastal processes. Multiple lines of geophysical, geologic, and geomorphologic evidence indicate anticline truncation as a result of interaction with the rivers of the delta and sea level. Seismic lines, geologic mapping, and geomorphology reveal truncated anticlines with angular unconformities that have been arched due to continued growth of the anticline. Buried, truncated anticlines have been identified by seismic lines, tube well logs, and resistivity measurements. The truncation of these anticlines also appears to provide a pathway for high-As Holocene groundwater into the generally low-As Pleistocene groundwater. Overall, the distribution of anticline erosion and elevation in the fold belt appears to be consistent with glacial-interglacial changes in river behavior in the delta. The anticline crests are eroded during sea level highstands as rivers and the coastline sweep across the region, and excavated by local drainage during lowstands. With continued growth, the anticlines are uplifted above the delta and "survive" as topographic features. As a result, the maximum elevations of the anticlines are clustered in a pattern suggesting continued growth since their last glacial highstand truncation. An uplift rate is calculated from this paced truncation and growth that is consistent with other measurements of Indo-Burman wedge advance. This rate, combined with the proposed method of truncation, give further evidence of dynamic fluvial changes in the delta between glacial and interglacial times.
An Emergent Bifurcation Angle on River Deltas
NASA Astrophysics Data System (ADS)
Shaw, J.; Coffey, T.
2017-12-01
Distributary channel bifurcations on river deltas are important features that control water, sediment, and nutrient routing and can dictate large-scale stratigraphic heterogeneity. We use theory originally developed for a special case of tributary networks to understand the dynamics of distributary channel bifurcations. Interestingly, bifurcations in groundwater-fed tributary networks have been shown to evolve dependent on the diffusive flow field outside the network. These networks possess a characteristic bifurcation angle of 72°, due to Laplacian flow in the groundwater flow field near tributary channel tips (gradient2h2=0, where h is water surface elevation). We develop and test the hypothesis that bifurcation angles in distributary channel networks are likewise dictated by the external flow field, in this case the shallow surface water surrounding the subaqueous portion of distributary channel bifurcations in a deltaic setting. We measured 130 unique distributary channel bifurcations in a single experimental delta and in 10 natural deltas, yielding a mean angle of 70.35°±2.59° (95% confidence interval), in line with the theoretical prediction. These data and hydrodynamic scaling arguments convince us that distributary network formation can result simply from the coupling of (Laplacian) extra-channel flow to channels along subaqueous channel networks. The simplicity of this model provides new insight into distributary network formation and its geomorphic and stratigraphic consequences.
NASA Astrophysics Data System (ADS)
Al-Zaidi, B. M.; Moussa, A.; Viparelli, E.
2017-12-01
The construction of the High and Old Aswan Dams and of barrages significantly altered the flow and the sediment transport regimes in the Egyptian reach of the Nile River. The field data collected by the Nile Research Institute show that the post-High Aswan Dam Nile River hydrology is characterized by reductions of more than 70% in flow discharge and 98% in sediment load compared to pre-High Aswan Dam conditions. A significant portion of discharge released from the dams is diverted at the barrages for agricultural ( 80%) and municipal ( 15%) uses. Thus, virtually no water is reaching the Nile Delta and the Mediterranean Sea. Consequently, the sediment load delivered to the Mediterranean Sea is negligible compared to pre-dam conditions. Consequences of the flow regulation are delta wide wetland loss and shoreline retreat, widespread delta pollution, reduction soil quality, salination of cultivated land, wetland losses, and saltwater intrusion in the groundwater. Here we present the second part of a feasibility study for the restoration of the Nile River-Delta system characterized by controlled flow releases and sediment augmentations downstream of the High Aswan Dam. The controlled flow releases are obtained by regulating the current releases from the High Aswan Dam at the Old Aswan Dam, which is located 6.5 km downstream of the High Aswan Dam. Previous studies showed that 10 billion m3 of water can be saved annually by improving the Egyptian irrigation system. Here we propose to use the saved water to increase the water discharge to the Nile Delta, i.e., the total volume of water released from the dams does not change, what changes is the water used and the imposed hydrograph. We modulate the river flow by storing the saved water during the agriculture season upstream of the Old Aswan Dam and releasing it in the months coinciding with the natural river flood season. It is important to note that here we are considering the simplest possible scenario for water storage. In reality, additional storage volumes are available upstream of the major barrages, and these volumes can also be used during the proposed restoration project. The study consists in the implementation and validation of a laterally averaged delta growth model to quantify the impact of the proposed restoration project on the Nile Delta in terms of changes in shoreline position and channel-floodplain characteristics under the predicted rates of sea level rise.
Cahoon, E B; Ripp, K G; Hall, S E; Kinney, A J
2001-01-26
Divergent forms of the plant Delta(12)-oleic-acid desaturase (FAD2) have previously been shown to catalyze the formation of acetylenic bonds, epoxy groups, and conjugated Delta(11),Delta(13)-double bonds by modification of an existing Delta(12)-double bond in C(18) fatty acids. Here, we report a class of FAD2-related enzymes that modifies a Delta(9)-double bond to produce the conjugated trans-Delta(8),trans-Delta(10)-double bonds found in calendic acid (18:3Delta(8trans,10trans,12cis)), the major component of the seed oil of Calendula officinalis. Using an expressed sequence tag approach, cDNAs for two closely related FAD2-like enzymes, designated CoFADX-1 and CoFADX-2, were identified from a C. officinalis developing seed cDNA library. The deduced amino acid sequences of these polypeptides share 40-50% identity with those of other FAD2 and FAD2-related enzymes. Expression of either CoFADX-1 or CoFADX-2 in somatic soybean embryos resulted in the production of calendic acid. In embryos expressing CoFADX-2, calendic acid accumulated to as high as 22% (w/w) of the total fatty acids. In addition, expression of CoFADX-1 and CoFADX-2 in Saccharomyces cerevisiae was accompanied by calendic acid accumulation when induced cells were supplied exogenous linoleic acid (18:2Delta(9cis,12cis)). These results are thus consistent with a route of calendic acid synthesis involving modification of the Delta(9)-double bond of linoleic acid. Regiospecificity for Delta(9)-double bonds is unprecedented among FAD2-related enzymes and further expands the functional diversity found in this family of enzymes.
Offshore Deterioration in the Mekong Delta, Vietnam
NASA Astrophysics Data System (ADS)
Stattegger, K.; Unverricht, D.; Heinrich, C.
2016-02-01
The interplay of river, tide and wave forcing controls shape and sedimentation at the front of the Mekong Delta. Specific hydro- and morphodynamic conditions in the western subaqueous part of the asymmetric Mekong Delta generate a sand ridge - channel system (SRCS) which is unique in subaqueous delta formation. This large-scale morphological element extends 130 km along the delta front consisting of two sand ridges and two erosional channels. Three different zones within SRCS can be distinguished. The eastern initial zone stretches along delta slope and inner shelf platform southwest of the Bassac river mouth, the largest and westernmost distributary of the Mekong Delta. In the central zone SRCS covers the outer part of the subaqueous delta platform with a pronounced sand-ridge and erosional channel morphology. Cross-sections of the SRCS reveal an asymmetric shape including steeper ridge flanks facing into offshore direction. Channels incise down to 18.2 m water depth (wd) and 10.5 down the ridge top at the outer subaqueous delta platform, respectively. Towards the west the sand ridges pinch out while the two channels merge into one and form a giant erosional scour of up to 33 m wd within the subaqueous delta platform. In the western zone, the channel gets shallower and vanishes along the south-western edge of the subaqueous delta platform around Ca Mau Cape. Sediment transport from the Mekong River nourishes the sand ridges. In contrast, tide and wind-driven currents cut the erosional channels, which act also as fine-sediment conveyor from eroding headlands to the distal part of the delta front that is 200 km apart of the Bassac river mouth. SRCS in the subaqueous Mekong Delta is a relevant indicator of delta-front instability and erosion.
Liang, Y Y; Chen, H; Mizuseki, H; Kawazoe, Y
2011-04-14
We use density functional theory based nonequilibrium Green's function to self-consistently study the current through the 1,4-benzenedithiol (BDT). The elastic and inelastic tunneling properties through this Au-BDT-Au molecular junction are simulated, respectively. For the elastic tunneling case, it is found that the current through the tilted molecule can be modulated effectively by the external gate field, which is perpendicular to the phenyl ring. The gate voltage amplification comes from the modulation of the interaction between the electrodes and the molecules in the junctions. For the inelastic case, the electron tunneling scattered by the molecular vibrational modes is considered within the self-consistent Born approximation scheme, and the inelastic electron tunneling spectrum is calculated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schrottke, L., E-mail: lutz@pdi-berlin.de; Lü, X.; Grahn, H. T.
We present a self-consistent model for carrier transport in periodic semiconductor heterostructures completely formulated in the Fourier domain. In addition to the Hamiltonian for the layer system, all expressions for the scattering rates, the applied electric field, and the carrier distribution are treated in reciprocal space. In particular, for slowly converging cases of the self-consistent solution of the Schrödinger and Poisson equations, numerous transformations between real and reciprocal space during the iterations can be avoided by using the presented method, which results in a significant reduction of computation time. Therefore, it is a promising tool for the simulation and efficientmore » design of complex heterostructures such as terahertz quantum-cascade lasers.« less
NASA Technical Reports Server (NTRS)
James, Mark; Wells, Doug; Allen, Phillip; Wallin, Kim
2017-01-01
The proposed size-independent linear-elastic fracture toughness, K (sub Isi), for potential inclusion in ASTM E399 targets a consistent 0.5 millimeters crack extension for all specimen sizes through an offset secant that is a function of the specimen ligament length. The K (sub Isi) method also includes an increase in allowable deformation, and the removal of the P (sub max)/P (sub Q) criterion. A finite element study of the K (sub Isi) test method confirms the viability of the increased deformation limit, but has also revealed a few areas of concern. Findings: 1. The deformation limit, b (sub o) greater than or equal to 1.1 times (K (sub I) divided by delta (sub ys) squared) maintains a K-dominant crack tip field with limited plastic contribution to the fracture energy; 2. The three dimensional effects on compliance and the shape of the force versus CMOD (Crack-Mouth Opening Displacement) trace are significant compared to a plane strain assumption; 3. The non-linearity in the force versus CMOD trace at deformations higher than the current limit of 2.5 times (K (sub I) divided by delta (sub ys) squared) is sufficient to introduce error or even "false calls" regarding crack extension when using a constant offset secant line. This issue is more significant for specimens with W (width) greater than or equal to 2 inches; 4. A non-linear plasticity correction factor in the offset secant may improve the viability of the method at deformations between 2.5 times (K (sub I) divided by delta (sub ys) squared) and 1.1 times (K (sub I) divided by delta (sub ys) squared).
Autogenic erosional surfaces on backwater-mediated deltas from floods and avulsions
NASA Astrophysics Data System (ADS)
Ganti, V.; Chadwick, A. J.; Lamb, M. P.; Fischer, W. W.; Trower, L.
2016-12-01
Erosional surfaces provide key bounds on the architecture of fluvio-deltaic stratigraphy and are attributed to relative sea level fall and sediment supply changes modulated by secular changes in climate; however, major knowledge gap exists in detangling the record of internal sedimentary dynamics from that of allogenic forcings. Recent work suggests that river flood variability through persistent backwater hydrodynamics exerts a primary control on lobe-scale avulsions on deltas, and floods and avulsions play an important role in driving transient channel incision even in deltas experiencing net aggradation. Here, we identify and quantify two autogenically generated mechanisms that result in erosional boundaries within fluvio-deltaic stratigraphy, namely, flood-induced and avulsion-induced scours. We developed a theoretical model based on mass conversation that suggests that flood-induced scours resulting from river drawdown propagate approximately one backwater length (Lb) from the shoreline, and the scour depth is maximum near the shoreline and scales with flood variability and the bankfull depth (hbf). Avulsion-induced scours result from river steepening due to shortening of the new river path. This mechanism results in an erosional pulse whose maximum depth scales with the critical in-channel sedimentation that induces an avulsion (scales with hbf) and initiates at the avulsion site and propagates upstream by Lb. Together, autogenically generated erosional scours can extend 1-2Lb from the shoreline and their depths are a function of hbf and flood variability. We validate these theoretical predictions using a recent experiment of river delta evolution governed by persistent backwater hydrodynamics under constant sea level conditions. Finally, we reinterpret outcrop scale observations within the Castlegate sandstone, Utah—type example for sequence stratigraphy—and show that field observations are consistent with scours resulting from floods and avulsions alone.
Material System Engineering for Advanced Electrocaloric Cooling Technology
NASA Astrophysics Data System (ADS)
Qian, Xiaoshi
Electrocaloric effect refers to the entropy change and/or temperature change in dielectrics caused by the electric field induced polarization change. Recent discovery of giant ECE provides an opportunity to realize highly efficient cooling devices for a broad range of applications ranging from household appliances to industrial applications, from large-scale building thermal management to micro-scale cooling devices. The advances of electrocaloric (EC) based cooling device prototypes suggest that highly efficient cooling devices with compact size are achievable, which could lead to revolution in next generation refrigeration technology. This dissertation focuses on both EC based materials and cooling devices with their recent advances that address practical issues. Based on better understandings in designing an EC device, several EC material systems are studied and improved to promote the performances of EC based cooling devices. In principle, applying an electric field to a dielectric would cause change of dipolar ordering states and thus a change of dipolar entropy. Giant ECE observed in ferroelectrics near ferroelectric-paraelectric (FE-PE) transition temperature is owing to the large dipolar orientation change, between random-oriented dipolar states in paraelectric phase and spontaneous-ordered dipolar states in ferroelectric phases, which is induced by external electric fields. Besides pursuing large ECE, studies on EC cooling devices indicated that EC materials are required to possess wide operational temperature window, in which large ECE can be maintained for efficient operations. Although giant ECE was first predicted in ferroelectric polymers, where the large effect exhibits near FEPE phase transition, the narrow operation temperature window poses obstacles for these normal ferroelectrics to be conveniently perform in wide range of applications. In this dissertation, we demonstrated that the normal ferroelectric polymers can be converted to relaxor ferroelectric polymers which possess both giant ECE (27 Kelvin temperature drop) and much wider operating temperature window (over 50 kelvin covering RT) by proper defect modification which delicately tailors ferroelectrics in meso-, micro- and molecular scales. In addition, in order to be practical, EC device requires EC material can be driven at low electric fields upon achieve the large ECE. It is demonstrated in this dissertation that by facially modifying materials structure in meso-, micro- and molecular scale, lowfield ECE can be greatly improved. Large ECE, induced by low electric fields and existing in wide temperature window, is a major improvement in EC materials for practical applications. Besides EC polymers, this thesis also investigated EC ceramics. Due to several unique opportunities offered by the EC ceramics, Ba(ZrxTi 1-x)O3 (BZT), that is studied. (i) This class of EC ceramics offers a possibility to explore the invariant critical point (ICP), which maximizes the number of coexistent phase and provides a nearly vanishing energy barrier for switching among different phases. As demonstrated in this thesis, the BZT bulk ceramics at x˜ 0.2 exhibits a large adiabatic temperature drop DeltaTc=4.5 K, a large isothermal entropy change DeltaS = 8 Jkg-1K-1, a large EC coefficient (|DeltaT c/DeltaE| = 0.52x10-6 KmV-1 and DeltaS/DeltaE=0.93x10 -6 Jmkg-1K-1V-1) over a wide operating temperature range Tspan>30K. (ii) The thermal conductivity of EC ceramics is in general, much higher than that of EC polymers, and consequently they will allow EC cooling configurations which are not accessible by the EC polymers. Moreover, in the same device configuration, the high thermal conductivity of EC ceramics (kappa> 5 W/mK, compared with EC polymer, ˜ 0.25 W/mK) allows higher operation frequency and therefore a higher cooling power. (iii) Well-established fabrication processes of multilayer ceramic capacitor (MLCC) provide a foundation for the EC ceramic toward mass production. In this thesis, BZT thick film double layers have been fabricated and large ECE has been directly measured. EC induced temperature drop (DeltaT) around 6.3 °C and entropy change (DeltaS) of 11.0 Jkg-1K -1 are observed under an electric field of DeltaE=14.6 MV/m at 40 °C was observed in BZT thick film double layers. The result encourages further investigations on ECE in MLCC for practical applications. (Abstract shortened by ProQuest.).
Computation of the bluff-body sound generation by a self-consistent mean flow formulation
NASA Astrophysics Data System (ADS)
Fani, A.; Citro, V.; Giannetti, F.; Auteri, F.
2018-03-01
The sound generated by the flow around a circular cylinder is numerically investigated by using a finite-element method. In particular, we study the acoustic emissions generated by the flow past the bluff body at low Mach and Reynolds numbers. We perform a global stability analysis by using the compressible linearized Navier-Stokes equations. The resulting direct global mode provides detailed information related to the underlying hydrodynamic instability and data on the acoustic field generated. In order to recover the intensity of the produced sound, we apply the self-consistent model for non-linear saturation proposed by Mantič-Lugo, Arratia, and Gallaire ["Self-consistent mean flow description of the nonlinear saturation of the vortex shedding in the cylinder wake," Phys. Rev. Lett. 113, 084501 (2014)]. The application of this model allows us to compute the amplitude of the resulting linear mode and the effects of saturation on the mode structure and acoustic field. Our results show excellent agreement with those obtained by a full compressible simulation direct numerical simulation and those derived by the application of classical acoustic analogy formulations.
A self-consistency check for unitary propagation of Hawking quanta
NASA Astrophysics Data System (ADS)
Baker, Daniel; Kodwani, Darsh; Pen, Ue-Li; Yang, I.-Sheng
2017-11-01
The black hole information paradox presumes that quantum field theory in curved space-time can provide unitary propagation from a near-horizon mode to an asymptotic Hawking quantum. Instead of invoking conjectural quantum-gravity effects to modify such an assumption, we propose a self-consistency check. We establish an analogy to Feynman’s analysis of a double-slit experiment. Feynman showed that unitary propagation of the interfering particles, namely ignoring the entanglement with the double-slit, becomes an arbitrarily reliable assumption when the screen upon which the interference pattern is projected is infinitely far away. We argue for an analogous self-consistency check for quantum field theory in curved space-time. We apply it to the propagation of Hawking quanta and test whether ignoring the entanglement with the geometry also becomes arbitrarily reliable in the limit of a large black hole. We present curious results to suggest a negative answer, and we discuss how this loss of naive unitarity in QFT might be related to a solution of the paradox based on the soft-hair-memory effect.
Pesticides in soil and sediment of a dyke-protected area of the Red River Delta, Vietnam
NASA Astrophysics Data System (ADS)
Braun, Gianna; Bläsing, Melanie; Kruse, Jens; Amelung, Wulf; Renaud, Fabrice; Sebesvari, Zita
2017-04-01
Coastal regions are densely populated but at the same time represent important agricultural areas for food production of the growing world population. To sustain high agricultural yields, in monocultures such as permanent rice systems, pesticides are used in high quantity and frequency. While earlier studies monitored the fate of pesticides in paddy rice systems, the overall fate of these compounds is altered nowadays due to the construction of dykes, which are needed in many delta regions to protect them from high tides, storm surges and salt water intrusion such as in the Red River Delta. The dyke system regulates the discharge and water exchange inside the diked area including irrigation channels for the paddy rice production. Local authorities observed increasing pollution towards the sea (highest pollution close to the dykes) and hypothesized that the dyke system would prevent water exchange and thus lead to an accumulation of pollutants within the diked area. Hence, the purpose of this study was to investigate the effect of dykes on pesticide pollution patterns in coastal delta regions of the Red River Delta. The study was conducted in the district Giao Thuy of the Red River Delta, Vietnam. This area is surrounded by a sea and river dyke; both have several inlet and outlet gates to control the water level in the irrigation channels. We determined the pesticide pollution pattern in a diked agricultural area, as well as along salinity gradients in and outside the diked areas. Samples were taken from rice fields and sediments from irrigation channels inside the diked area as well from saline aquaculture fields located outside the dyke. Pesticide analysis was conducted by accelerated solvent extraction (ASE), followed up by the clean-up process described by Laabs et al. (2007) and analyses using gas chromatography coupled with a mass selective detector (MSD). Preliminary results suggest that out of the 26 analysed compounds chlorpyrifos, propiconazole and isoprothiolane occurred frequently in samples taken from rice fields. Pesticide concentrations were not higher in rice field closer to the dykes. Pesticide concentrations within paddy fields are likely driven by pesticide inputs on site. However, pattern in canal sediment samples is more likely de-coupled from on-site applications. Results will be discussed in relation to adaptation to increasing salinity intrusion in coastal areas.
NASA Astrophysics Data System (ADS)
Gkioulidou, M.; Wang, C.; Lyons, L. R.; Wolf, R. A.
2010-12-01
Transport of plasma sheet particles into the inner magnetosphere is strongly affected by the penetration of the convection electric field, which is the result of the large-scale magnetosphere-ionosphere electromagnetic coupling. This transport, on the other hand, results in plasma heating and magnetic field stretching, which become very significant in the inner plasma sheet (inside 20 RE). We have previously run simulations with the Rice Convection Model (RCM) to investigate how the earthward penetration of convection electric field, and therefore plasma sheet population, depends on plasma sheet boundary conditions. Outer boundary conditions at r ~20 RE are a function of MLT and interplanetary conditions based on 11 years of Geotail data. In the previous simulations, Tsyganenko 96 magnetic field model (T96) was used so force balance between plasma pressure and magnetic fields was not maintained. We have now integrated the RCM with a magnetic field solver (Liu et al., 2006) to obtain the required force balance in the equatorial plane. We have run the self-consistent simulations under enhanced convection with different boundary conditions in which we kept different parameters (flux tube particle content, plasma pressure, plasma beta, or magnetic fields) at the outer boundary to be MLT-dependent but time independent. Different boundary conditions result in qualitatively similar plasma sheet profiles. The results show that magnetic field has a dawn dusk asymmetry with field lines being more stretched in the pre-midnight sector, due to relatively higher plasma pressure there. The asymmetry in the magnetic fields in turn affects the radial distance and MLT of plasma sheet penetration into the inner magnetosphere. In comparison with results using the T96, plasma transport under self-consistent magnetic field results in proton and electron plasma sheet inner edges that are located in higher latitudes, weaker pressure gradients, and more efficient shielding of the near-Earth convection electric field (since auroral conductance is also confined to higher latitudes). We are currently evaluating the simulated plasma sheet properties by comparing them with statistical results obtained from Geotail and THEMIS observations.
Changing Course: The Studio Misi-Ziibi Team_ New Misi-Ziibi Living Delta
NASA Astrophysics Data System (ADS)
Hoal, J.
2016-02-01
Acknowledging that the Mississippi River Delta will continue to evolve over the next 100 years, the new MISI-ZIIBI LIVING DELTA for the 22nd century - a healthy, productive and resilient delta - relies on a synergistic and leveraged combination of delta building, the working delta, and delta living. This new Delta will be more sustainable and smaller in area, but have faster vertical accretion rates than earlier deltas, which keeps pace with current and future rates of global sea-level rise. The vision for the new Delta will be achieved through ECO 3D [dredge + dump, dredge-siphon, divert] - in which the bounded Mississippi River will be fragmented into a network of constructed distributaries, using sediment diversions, in order to feed the wetlands with the necessary sediment for delta building. Although the diversions will be constructed and managed, the delta formation in the receiving basins is self-organizing and naturally formed. In addition, we propose to shorten the Mississippi River and construct a new navigation entry point further upstream with a new distributary node near West Point à la Hache. The realigned and shortened river provides more efficient methods to use the sediment loads and increase safety and navigation reliability, and lower flood levels along the Mississippi River in this area. Ensuring that the navigation and marine economy continues to expand the river will be dredged to 50ft deep, the existing ports and Port Fourchon expanded, existing navigable inland water bodies maintained, and a new port constructed in the new Bird's Foot. We propose retreat from the southern rim of the existing Delta in order to assure long-term sustainability of the regions with the highest population density and economic productivity. The concept of DELTA LIVING is about embracing the ideology and cultural aspect of communities by enabling a means to continue to live with the Delta in new ways, and accommodating a regional growth strategy of safe, strong, and distinctive communities. Overall, the MISI-ZIIBI LIVING DELTA uses constructed and natural ecological landscapes to provide for both the safe and sustainable inhabitance of the Delta region while encouraging a vibrant, growing and sustainable economy that thrives in light of unpredictable and long-term changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malacek, S.J.; Reaves, C.M.; Atmadja, W.S.
1994-07-01
A sequence stratigraphic study was conducted to help evaluate the exploration potential of the Makassar PSC, offshore East Kalimantan, Indonesia. The PSC is on the present-day slope in water depths of 500-3000 ft and borders the large oil and gas fields of the Mahakam delta. The study provided important insights on reservoir distribution, trapping style, and seismic hydrocarbon indicators. Lowstand deposition on a slope modified by growth faulting and shale diapirism controlled reservoir distribution within the prospective late Miocene section. Three major lowstand intervals can be seismically defined and tied to deep-water sands in nearby wells where log character andmore » biostratigraphic data support the seismic system tract interpretation. The three intervals appear to correlate with third-order global lowstand events and are consistent with existing sequence stratigraphic schemes for the shelf and upper slope in the Makassar area. Seismic mapping delineated lowstand features, including incised valleys and intraslope to basin-floor thicks. Regional information on positions of middle-late Miocene delta lobes and shelf edges, helped complete the picture for sand sources, transport routes, and depocenters.« less
Synthesis of an acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters
Moens, L.
1999-05-25
A process is disclosed for preparing an acid addition salt of delta-aminolevulinic acid comprising. The process involves dissolving a lower alkyl 5-bromolevulinate and an alkali metal diformylamide in an organic solvent selected from the group consisting of acetonitrile, methanol, tetrahydrofuran, 2-methyltetrahydrofuran and methylformate or mixtures to form a suspension of an alkyl 5-(N,N-diformylamino) levulinate ester; and hydrolyzing the alkyl 5-(N,N-diformylamino) levulinate with an inorganic acid to form an acid addition salt of delta-amino levulinic acid.
Synthesis of an acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters
Moens, Luc
1999-01-01
A process of preparing an acid addition salt of delta-aminolevulinic acid comprising: dissolving a lower alkyl 5-bromolevulinate and an alkali metal diformylamide in an organic solvent selected from the group consisting of acetonitrile, methanol, tetrahydrofuran, 2-methyltetrahydrofuran and methylformate or mixtures thereof to form a suspension of an alkyl 5-(N,N-diformylamino) levulinate ester; and hydrolyzing said alkyl 5-(N,N-diformylamino) levulinate with an inorganic acid to form an acid addition salt of delta-amino levulinic acid.
3D seismic attribute expressions of deep offshore Niger Delta
NASA Astrophysics Data System (ADS)
Anyiam, Uzonna Okenna
Structural and stratigraphic interpretation of 3D seismic data for reservoir characterization in an area affected by dense faulting, such as the Niger Delta, is typically difficult and strongly model driven because of problems with imaging. In the Freeman field, located about 120km offshore southwestern Niger Delta at about 1300m water depth, 3D seismic attribute-based analogs, and structural and stratigraphic based geometric models are combined to help enhance and constrain the interpretation. The objectives being to show how 3D seismic attribute analysis enhances seismic interpretation, develop structural style and stratigraphic architecture models and identify trap mechanisms in the study area; with the main purpose of producing structural and stratigraphic framework analogs to aid exploration and production companies, as well as researchers in better understanding the structural style, stratigraphic framework and trap mechanism of the Miocene to Pliocene Agbada Formation reservoirs in the deep Offshore Niger Delta Basin. A multidisciplinary approach which involved analyses of calculated variance-based coherence cube, spectral decomposition box probe and root-mean-square amplitude attributes, sequence stratigraphy based well correlation, and structural modeling; were undertaken to achieve these objectives. Studies reveal a massive northwest-southeast trending shale cored detachment fold anticline, with associated normal faults; interpreted to have been folded and faulted by localized compression resulting from a combination of differential loading on the deep-seated overpressured-ductile-undercompacted-marine Akata shale, and gravitational collapse of the Niger delta continental slope due to influx of sediments. Crestal extension resulting from this localized compression, is believed to have given rise to the synthetic, antithetic and newly observed crossing conjugate normal faults in the study area. This structure is unique to the existing types of principal oil field structures in the Niger Delta. Stratigraphic results show that the Mid-Miocene to Pliocene Agbada Formation reservoirs of the Freeman field occur as part of a channelized fan system; mostly deposited as turbidites in an unconfined distributary environment; except one that occurs as channel sand within a submarine canyon that came across and eroded previously deposited distributary fan complex, at the time. Hence, prospective area for hydrocarbon exploration is suggested southwest of the Freeman field.
NASA Astrophysics Data System (ADS)
Kracklauer, A. F.
2015-09-01
The linguistic and epistemological constraints on finding and expressing an answer to the title question are reviewed. First, it is recalled that "fields" are defined in terms of their effect on "test charges" and not in terms of any, even idealistically considered, primary, native innate qualities of their own. Thus, before fields can be discussed, the theorist has to have already available a defined "test particle" and field source. Clearly, neither the test nor the engendering particles can be defined as elements of the considered field without redefining the term "field." Further, the development of a theory as a logical structure (i.e., an internally self consistent conceptual complex) entails that the subject(s) of the theory (the primitive elements) and the rules governing their interrelationships (axioms) cannot be deduced by any logical procedure. They are always hypothesized on the basis of intuition supported by empirical experience. Given hypothesized primitive elements and axioms it is possible, in principle, to test for the 'completion' of the axiom set (i.e., any addition introduces redundancy) and for self consistency. Thus, theory building is limited to establishing the self consistency of a theory's mathematical expression and comparing that with the external, ontic world. Finally, a classical model with an event-by-event simulation of an EPR-B experiment to test a Bell Inequality is described. This model leads to a violation of Bell's limit without any quantum input (no nonlocal interaction nor entanglement), thus substantiating previous critical analysis of the derivation of Bell inequalities. On the basis of this result, it can be concluded that the electromagnetic interaction possesses no preternatural aspects, and that the usual models in terms of waves, fields and photons are all just imaginary constructs with questionable relation to a presumed reality.
NASA Astrophysics Data System (ADS)
Lamb, K. A.; Swart, P. K.
2004-12-01
In order to examine the possible influences of anthropogenic wastes on the Florida Keys coral reef tract, water column particulate organic matter \\(POM\\), primary producers, and filter feeders were sampled from within the coastal waters of the reef tract, and analyzed for \\delta 15N and \\delta 13C isotopic composition. The POM was found to have a mean \\delta 15N value of +4.13\\permil (\\pm 1.03\\permil\\) and a mean \\delta 13C value of -19.93\\permil (\\pm 0.58\\permil). The \\delta 13C values for POM across the entire reef tract were heavier inshore \\(avg \\delta 13C = -18.29\\permil \\(\\pm 1.04\\permil\\)\\) and became lighter offshore \\(avg \\delta 13C = -21.41\\permil \\(\\pm 0.89\\permil\\)\\), which is consistent with influences from benthic algae/seagrass closer to shore in contrast to open-marine influences offshore. The \\delta 15N values for POM were neither temporally nor spatially interrelated, as the data showed no clear trend moving in either the inshore or offshore direction. Instead, our \\delta 15N values for POM reflect a combined influence from nitrogen fixation \\(\\approx0\\permil\\), zooplankton and other suspended particles, and not anthropogenic wastes \\(>+10\\permil\\), as other authors claim. The mean isotopic composition of various primary producers suggests a nitrogen fixation source of nutrients to the reef system (Halimeda sp. (\\delta 15N = 2.43\\permil; \\delta 13C = -18.04\\permill), Dictyota sp. (\\delta 15N = +2.86\\permil; \\delta 13C = -16.30\\permil), Thalassia sp. (\\delta 15N = 2.39\\permil; \\delta 13C = -10.32\\permil)), while filter feeders were found to have a mean isotopic composition more similar to POM values (sponge \\delta 15N = 4.95\\permil; \\delta 13C = -18.02\\permil). Our data simply do not appear to show evidence of anthropogenic influence on the Florida Keys reef tract. Further more, we suggest that \\delta 15N values of +4\\permil, which have recently been suggested to indicate anthropogenic influences are not, in fact, indicative of sewage.
Relating polarization phase difference of SAR signals to scene properties
NASA Technical Reports Server (NTRS)
Ulaby, Fawwaz T.; Dobson, Myron C.; Mcdonald, Kyle C.; Senior, Thomas B. A.; Held, Daniel
1987-01-01
This paper examines the statistical behavior of the phase difference Delta-phi between the HH-polarized and VV-polarized backscattered signals recorded by an L-band SAR over an agricultural test site in Illinois. Polarization-phase difference distributions were generated for about 200 agricultural fields for which ground information had been acquired in conjunction with the SAR mission. For the overwhelming majority of cases, the Delta-phi distribution is symmetric and has a single major lobe centered at the mean value of the distribution Delta-phi. Whereas the mean Delta-phi was found to be close to zero degrees for bare soil, cut vegetation, alfalfa, soybeans, and clover, a different pattern was observed for the corn fields; the mean Delta-phi increased with increasing incidence angle Theta = 35 deg. The explanation proposed for this variation is that the corn canopy, most of whose mass is contained in its vertical stalks, acts like a uniaxial crystal characterized by different velocities of propagation for waves with horizontal and vertical polarization. Thus, it is hypothesized that the observed backscatter is contributed by a combination of propagation delay, forward scatter by the soil surface, and specular bistatic reflection by the stalks. Model calculations based on this assumption were found to be in general agreement with the phase observations.
Zhai, Bao-Ping; Lu, Ming-Hong; Liu, Wan-Cai; Zhu, Feng; Wu, Xiang-Wen; Chen, Gui-Hua; Zhang, Xiao-Xi
2014-01-01
An effective control strategy for migratory pests is difficult to implement because the cause of infestation (i.e., immigration or local reproduction) is often not established. In particular, the outbreak mechanisms of the brown planthopper, Nilaparvata lugens (Stål), an insect causing massive losses in rice fields in the Yangtze River Delta in China, are frequently unclear. Field surveys of N. lugens were performed in Jiangsu and Zhejiang Provinces in 2008 to 2010 and related historical data from 2003 onwards were collected and analyzed to clarify the cause of these infestations. Results showed that outbreaks of N. lugens in the Yangtze River Delta were mostly associated with an extremely high increase in population. Thus, reproduction rather than immigration from distant sources were the cause of the infestations. Although mass migration occurred late in the season (late August and early September), the source areas of N. lugens catches in the Yangtze River Delta were mainly located in nearby areas, including the Yangtze River Delta itself, Anhui and northern Jiangxi Provinces. These regions collectively form the lower-middle reaches of the Yangtze River, and the late migration can thus be considered as an internal bioflow within one population. PMID:24558459
Hu, Gao; Lu, Fang; Zhai, Bao-Ping; Lu, Ming-Hong; Liu, Wan-Cai; Zhu, Feng; Wu, Xiang-Wen; Chen, Gui-Hua; Zhang, Xiao-Xi
2014-01-01
An effective control strategy for migratory pests is difficult to implement because the cause of infestation (i.e., immigration or local reproduction) is often not established. In particular, the outbreak mechanisms of the brown planthopper, Nilaparvata lugens (Stål), an insect causing massive losses in rice fields in the Yangtze River Delta in China, are frequently unclear. Field surveys of N. lugens were performed in Jiangsu and Zhejiang Provinces in 2008 to 2010 and related historical data from 2003 onwards were collected and analyzed to clarify the cause of these infestations. Results showed that outbreaks of N. lugens in the Yangtze River Delta were mostly associated with an extremely high increase in population. Thus, reproduction rather than immigration from distant sources were the cause of the infestations. Although mass migration occurred late in the season (late August and early September), the source areas of N. lugens catches in the Yangtze River Delta were mainly located in nearby areas, including the Yangtze River Delta itself, Anhui and northern Jiangxi Provinces. These regions collectively form the lower-middle reaches of the Yangtze River, and the late migration can thus be considered as an internal bioflow within one population.
Limits on plasma anisotropy in a tail-like magnetic field
NASA Technical Reports Server (NTRS)
Hill, T. W.; Voigt, G.-H.
1992-01-01
The condition of magnetohydrostatic equilibrium implies tight constraints on the degree of anisotropy that is supportable in a magnetotail field geometry. If the plasma pressure tensor is assumed to be gyrotropic at the tail midplane (z = 0), then equilibrium requires that it also be nearly isotropic there, with P-perpendicular sub 0/P-parallel sub 0 in the range 1 +/- delta square, where delta of about 0.1 is the ratio of the normal field component at the symmetry plane to the field strength in the tail lobe. The upper and the lower limits are essentially equivalent, respectively, to the marginal mirror and firehose stability conditions evaluated at z = 0, which have been invoked previously to limit the degree of anisotropy in the plasma sheet.
NASA Astrophysics Data System (ADS)
Molz, F. J.; Kozubowski, T. J.; Miller, R. S.; Podgorski, K.
2005-12-01
The theory of non-stationary stochastic processes with stationary increments gives rise to stochastic fractals. When such fractals are used to represent measurements of (assumed stationary) physical properties, such as ln(k) increments in sediments or velocity increments "delta(v)" in turbulent flows, the resulting measurements exhibit scaling, either spatial, temporal or both. (In the present context, such scaling refers to systematic changes in the statistical properties of the increment distributions, such as variance, with the lag size over which the increments are determined.) Depending on the class of probability density functions (PDFs) that describe the increment distributions, the resulting stochastic fractals will display different properties. Until recently, the stationary increment process was represented using mainly Gaussian, Gamma or Levy PDFs. However, measurements in both sediments and fluid turbulence indicate that these PDFs are not commonly observed. Based on recent data and previous studies referenced and discussed in Meerschaert et al. (2004) and Molz et al. (2005), the measured increment PDFs display an approximate double exponential (Laplace) shape at smaller lags, and this shape evolves towards Gaussian at larger lags. A model for this behavior based on the Generalized Laplace PDF family called fractional Laplace motion, in analogy with its Gaussian counterpart - fractional Brownian motion, has been suggested (Meerschaert et al., 2004) and the necessary mathematics elaborated (Kozubowski et al., 2005). The resulting stochastic fractal is not a typical self-affine monofractal, but it does exhibit monofractal-like scaling in certain lag size ranges. To date, it has been shown that the Generalized Laplace family fits ln(k) increment distributions and reproduces the original 1941 theory of Kolmogorov when applied to Eulerian turbulent velocity increments. However, to make a physically self-consistent application to turbulence, one must adopt a Lagrangian viewpoint, and the details of this approach are still being developed. The potential analogy between turbulent delta(v) and sediment delta[ln(k)] is intriguing, and perhaps offers insight into the underlying chaotic processes that constitute turbulence and may result also in the pervasive heterogeneity observed in most natural sediments. Properties of the new Laplace fractal are presented, and potential applications to both sediments and fluid turbulence are discussed.
Physical activity and psychological distress amongst Vietnamese living in the Mekong Delta.
Rees, Susan; Silove, Derrick; Chey, Tien; Steel, Zachary; Bauman, Adrian; Phan, Thuy
2012-10-01
Regular physical activity may be an important contributor to psychological well-being. This link has not been explored in ethnically distinct, low- and middle-income countries (LMIC), especially in countries affected by war. This study aimed to examine the relationship between physical activity and levels of psychological distress in an epidemiological cross-representative sample of Vietnamese living in the Mekong Delta region of Vietnam. The sample was drawn from an urban (Cn Th City) and a rural (H u Giang) region, using a multi-stage probabilistic cluster sampling frame. The measures applied included the Composite International Diagnostic Interview (CIDI 2.0) yielding 12-month prevalence rates of common mental disorders, including anxiety, mood and substance use disorders; the Phan Vietnamese Psychiatric Scale (PVPS), a culturally specific self-report measure; and the Harvard Trauma Questionnaire. The Global Physical Activity Questionnaire (GPAQ version 1) was used to measure activity. Analyses were conducted using SAS software v.9.1.3. The population was assigned to three (high, moderate and low) physical activity levels. Analyses included chi-square tests and univariable and multivariable logistic models. Physical activity was greater in males, the middle-aged group (30-54 years), those who were married, the rural population, less educated individuals and those who were employed. High physical activity was significantly associated with low levels of psychological distress (indexed by a combination of CIDI and PVPS cases identified) when controlling for socio-demographic factors and number of medical conditions). Membership of the lowest of the three physical activity groups was associated with a psychological distress odds ratio of 2.19 (95% CI 1.28-3.75). The results remained consistent when analyses were undertaken separately for males and females. Low levels of physical activity appear to be associated with greater psychological distress in the Mekong Delta of Vietnam. The association remained after adjusting for the influence of socio-demographic characteristics, exposure to past trauma, urban-rural residency and the presence of self-reported physical disorders. These data provide a foundation for exploring the role of physical activity as an adjunct to conventional interventions for common mental disorders in resource-poor LMIC countries.
Quasiparticle self-consistent GW method for the spectral properties of complex materials.
Bruneval, Fabien; Gatti, Matteo
2014-01-01
The GW approximation to the formally exact many-body perturbation theory has been applied successfully to materials for several decades. Since the practical calculations are extremely cumbersome, the GW self-energy is most commonly evaluated using a first-order perturbative approach: This is the so-called G 0 W 0 scheme. However, the G 0 W 0 approximation depends heavily on the mean-field theory that is employed as a basis for the perturbation theory. Recently, a procedure to reach a kind of self-consistency within the GW framework has been proposed. The quasiparticle self-consistent GW (QSGW) approximation retains some positive aspects of a self-consistent approach, but circumvents the intricacies of the complete GW theory, which is inconveniently based on a non-Hermitian and dynamical self-energy. This new scheme allows one to surmount most of the flaws of the usual G 0 W 0 at a moderate calculation cost and at a reasonable implementation burden. In particular, the issues of small band gap semiconductors, of large band gap insulators, and of some transition metal oxides are then cured. The QSGW method broadens the range of materials for which the spectral properties can be predicted with confidence.
NASA Astrophysics Data System (ADS)
Becerra, Marley; Frid, Henrik; Vázquez, Pedro A.
2017-12-01
This paper presents a self-consistent model of electrohydrodynamic (EHD) laminar plumes produced by electron injection from ultra-sharp needle tips in cyclohexane. Since the density of electrons injected into the liquid is well described by the Fowler-Nordheim field emission theory, the injection law is not assumed. Furthermore, the generation of electrons in cyclohexane and their conversion into negative ions is included in the analysis. Detailed steady-state characteristics of EHD plumes under weak injection and space-charge limited injection are studied. It is found that the plume characteristics far from both electrodes and under weak injection can be accurately described with an asymptotic simplified solution proposed by Vazquez et al. ["Dynamics of electrohydrodynamic laminar plumes: Scaling analysis and integral model," Phys. Fluids 12, 2809 (2000)] when the correct longitudinal electric field distribution and liquid velocity radial profile are used as input. However, this asymptotic solution deviates from the self-consistently calculated plume parameters under space-charge limited injection since it neglects the radial variations of the electric field produced by a high-density charged core. In addition, no significant differences in the model estimates of the plume are found when the simulations are obtained either with the finite element method or with a diffusion-free particle method. It is shown that the model also enables the calculation of the current-voltage characteristic of EHD laminar plumes produced by electron field emission, with good agreement with measured values reported in the literature.
NASA Astrophysics Data System (ADS)
Varadharajan, Ramanathan; Leermakers, Frans A. M.
2018-01-01
Bending rigidities of tensionless balanced liquid-liquid interfaces as occurring in microemulsions are predicted using self-consistent field theory for molecularly inhomogeneous systems. Considering geometries with scale invariant curvature energies gives unambiguous bending rigidities for systems with fixed chemical potentials: the minimal surface I m 3 m cubic phase is used to find the Gaussian bending rigidity κ ¯, and a torus with Willmore energy W =2 π2 allows for direct evaluation of the mean bending modulus κ . Consistent with this, the spherical droplet gives access to 2 κ +κ ¯. We observe that κ ¯ tends to be negative for strong segregation and positive for weak segregation, a finding which is instrumental for understanding phase transitions from a lamellar to a spongelike microemulsion. Invariably, κ remains positive and increases with increasing strength of segregation.
NASA Astrophysics Data System (ADS)
Xu, Xiaonong; Lu, Dingwei; Xu, Xibin; Yu, Yang; Gu, Min
2018-01-01
When a conventional Halbach type Hollow Cylindrical Permanent Magnet Array (HCPMA) is used to generate magnetic induction over the magnitude of coercivity μ0Hc, some detrimental parasitic magnetic phenomena, such as the demagnetization, magnetization reversal, and vortexes of magnetization, can appear in the interior of the magnets. We present a self-consistent quantitative analysis of the magnetization and magnetic induction distributions inside the magnetic array by considering the anisotropic and nonlinear magnetization functions of the materials consisting of the array. These numeric simulations reveal novel magnetization structures resulted from the self-field of array. We demonstrate that both the field uniformity and magnetic flux in the pole gap can be modulated by partially substituting the magnets of high energy products with the soft irons and the superhard magnets. We also show how the optimized substitution parameters can be obtained for a HCPMA achieving the best field uniformity or the maximum magnetic flux.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazra, Soumitra; Nandy, Dibyendu; Passos, Dário, E-mail: s.hazra@iiserkol.ac.in, E-mail: dariopassos@ist.utl.pt, E-mail: dnandi@iiserkol.ac.in
Fluctuations in the Sun's magnetic activity, including episodes of grand minima such as the Maunder minimum have important consequences for space and planetary environments. However, the underlying dynamics of such extreme fluctuations remain ill-understood. Here, we use a novel mathematical model based on stochastically forced, non-linear delay differential equations to study solar cycle fluctuations in which time delays capture the physics of magnetic flux transport between spatially segregated dynamo source regions in the solar interior. Using this model, we explicitly demonstrate that the Babcock-Leighton poloidal field source based on dispersal of tilted bipolar sunspot flux, alone, cannot recover the sunspotmore » cycle from a grand minimum. We find that an additional poloidal field source effective on weak fields—e.g., the mean-field α effect driven by helical turbulence—is necessary for self-consistent recovery of the sunspot cycle from grand minima episodes.« less
Color accuracy and reproducibility in whole slide imaging scanners
Shrestha, Prarthana; Hulsken, Bas
2014-01-01
Abstract We propose a workflow for color reproduction in whole slide imaging (WSI) scanners, such that the colors in the scanned images match to the actual slide color and the inter-scanner variation is minimum. We describe a new method of preparation and verification of the color phantom slide, consisting of a standard IT8-target transmissive film, which is used in color calibrating and profiling the WSI scanner. We explore several International Color Consortium (ICC) compliant techniques in color calibration/profiling and rendering intents for translating the scanner specific colors to the standard display (sRGB) color space. Based on the quality of the color reproduction in histopathology slides, we propose the matrix-based calibration/profiling and absolute colorimetric rendering approach. The main advantage of the proposed workflow is that it is compliant to the ICC standard, applicable to color management systems in different platforms, and involves no external color measurement devices. We quantify color difference using the CIE-DeltaE2000 metric, where DeltaE values below 1 are considered imperceptible. Our evaluation on 14 phantom slides, manufactured according to the proposed method, shows an average inter-slide color difference below 1 DeltaE. The proposed workflow is implemented and evaluated in 35 WSI scanners developed at Philips, called the Ultra Fast Scanners (UFS). The color accuracy, measured as DeltaE between the scanner reproduced colors and the reference colorimetric values of the phantom patches, is improved on average to 3.5 DeltaE in calibrated scanners from 10 DeltaE in uncalibrated scanners. The average inter-scanner color difference is found to be 1.2 DeltaE. The improvement in color performance upon using the proposed method is apparent with the visual color quality of the tissue scans. PMID:26158041
Xiao, Ke; Shen, Li-Cheng; Wang, Peng
2014-08-01
The condition of water cycles in Tibet Plateau is a complex process, and the hydrogen and oxygen isotopes contain important information of this process. Based on the analysis of isotopic composition of freshwater lake, saltwater lake and geothermal water in the southern Tibetan Plateau, this study investigated water cycling, composition and variation of hydrogen and oxygen isotopes and the influencing factors in the study area. The study found that the mean values of delta18O and deltaD in Daggyaima lake water (-17.0 per thousand for delta18O and -138. 6 per thousand for deltaD), Langcuo lake water (-6.4 per thousand for delta18O and -87.4 per thousand for deltaD) and Dagejia geothermal water (-19.2 per thousand for delta18 and -158.2 per thousand for deltaD) all showed negative delta18O and deltaD values in Tibetan Plateau by the influence of altitude effects. Lake water and geothermal water were influenced by evaporation effects in inland arid area, and the slope of evaporation line was less than 8. Deuterium excess parameters of lake water and geothermal water were all negative. The temperature of geothermal reservoirs in Dagejia geothermal field was high,and oxygen shift existed in the relationship of hydrogen and oxygen isotopes.
Self consistent MHD modeling of the solar wind from coronal holes with distinct geometries
NASA Technical Reports Server (NTRS)
Stewart, G. A.; Bravo, S.
1995-01-01
Utilizing an iterative scheme, a self-consistent axisymmetric MHD model for the solar wind has been developed. We use this model to evaluate the properties of the solar wind issuing from the open polar coronal hole regions of the Sun, during solar minimum. We explore the variation of solar wind parameters across the extent of the hole and we investigate how these variations are affected by the geometry of the hole and the strength of the field at the coronal base.
The concept of coupling impedance in the self-consistent plasma wake field excitation
NASA Astrophysics Data System (ADS)
Fedele, R.; Akhter, T.; De Nicola, S.; Migliorati, M.; Marocchino, A.; Massimo, F.; Palumbo, L.
2016-09-01
Within the framework of the Vlasov-Maxwell system of equations, we describe the self-consistent interaction of a relativistic charged-particle beam with the surroundings while propagating through a plasma-based acceleration device. This is done in terms of the concept of coupling (longitudinal) impedance in full analogy with the conventional accelerators. It is shown that also here the coupling impedance is a very useful tool for the Nyquist-type stability analysis. Examples of specific physical situations are finally illustrated.
From the Delta Banks to the Upper Ranks: An Evaluation of KIPP Charter Schools in Rural Arkansas
ERIC Educational Resources Information Center
Rose, Caleb P.; Maranto, Robert; Ritter, Gary W.
2017-01-01
Knowledge is Power Program Delta College Preparatory School (KIPP DCPS), an open-enrollment charter school,1 opened in 2002 in Helena, Arkansas. KIPP DCPS students have consistently outperformed their peers from neighboring districts on year-end student achievement scores, and KIPP's national reputation led Arkansas lawmakers to exempt KIPP from…
Bettles  Bettles Field (Evansville)  Biedermans Camp  Big Delta  Big Horn  Big Lake  Birch College  Crooked Creek  Dahten  Dall  Dalton  Delta Junction  Demarcation Pt  Diamond Â
USDA-ARS?s Scientific Manuscript database
Field studies evaluated the relative performance of a clear versus several colored delta traps baited with sex pheromone or a food bait for two key moth pests of stone fruits: oriental fruit moth, Graphollita molesta (Busck); and peach twig borer, Anarsia lineatella Zeller. Preliminary studies found...
Manage postharvest deficit irrigation of peach trees using canopy to air temperature
USDA-ARS?s Scientific Manuscript database
A field study was conducted to use mid-day canopy to air temperature difference (delta T) to manage postharvest deficit irrigation of peach trees in San Joaquin Valley of California and its performance was evaluated. Delta T thresholds were selected, based on previous years’ stem water potential and...
NASA Astrophysics Data System (ADS)
Bentley, S. J.; Keller, G. P.; Obelcz, J.; Maloney, J. M.; Xu, K.; Georgiou, I. Y.; Miner, M. D.
2016-12-01
On river deltas dominated by proximal sediment accumulation (Mississippi, Huang He, others), the delta front region is commonly dominated by rapid accumulation of cohesive fluvial sediments, and mass-wasting processes that remobilize recently deposited sediments. Mass transport is preconditioned in sediments by high water content, biogenic gas production, over steepening, and is commonly triggered by strong wave loading and other processes. This understanding is based on extensive field studies in the 1970's and 80's. Recent studies of the Mississippi River Delta Front are yielding new perspectives on these processes, in a time of anthropogenically reduced sediment loads, rising sea level, and catastrophic deltaic land loss. We have synthesized many industry data sets collected since ca. 1980, and conducted new pilot field and modeling studies of sedimentary and morphodynamic processes. These efforts have yielded several key findings that diverge from historical understanding of this dynamic setting. First, delta distributary mouths have ceased seaward progradation, ending patterns that have been documented since the 18th century. Second, despite reduced sediment supply, offshore mass transport continues, yielding vertical displacements at rates of 1 m/y. This displacement is apparently forced by wave loading from storm events of near-annual return period, rather than major hurricanes that have been the focus of most previous studies. Third, core analysis indicates that this vertical displacement is occurring along failure planes >3 m in the seabed, rather than in more recently deposited sediments closer to the sediment-water interface. These seabed morphodynamics have the potential to destabilize both nearshore navigation infrastructure, and seabed hydrocarbon infrastructure offshore. As well, these findings raise more questions regarding the future seabed evolution offshore of major river deltas, in response to anthropogenic and climatic forcing.
Salinity Impacts on Agriculture and Groundwater in Delta Regions
NASA Astrophysics Data System (ADS)
Clarke, D.; Salehin, M.; Jairuddin, M.; Saleh, A. F. M.; Rahman, M. M.; Parks, K. E.; Haque, M. A.; Lázár, A. N.; Payo, A.
2015-12-01
Delta regions are attractive for high intensity agriculture due to the availability of rich sedimentary soils and of fresh water. Many of the world's tropical deltas support high population densities which are reliant on irrigated agriculture. However environmental changes such as sea level rise, tidal inundation and reduced river flows have reduced the quantity and quality of water available for successful agriculture. Additionally, anthropogenic influences such as the over abstraction of ground water and the increased use of low quality water from river inlets has resulted in the accumulation of salts in the soils which diminishes crop productivity. Communities based in these regions are usually reliant on the same water for drinking and cooking because surface water is frequently contaminated by commercial and urban pollution. The expansion of shallow tube well systems for drinking water and agricultural use over the last few decades has resulted in mobilisation of salinity in the coastal and estuarine fringes. Sustainable development in delta regions is becoming constrained by water salinity. However salinity is often studied as an independent issue by specialists working in the fields of agriculture, community water supply and groundwater. The lack of interaction between these disciplines often results in corrective actions being applied to one sector without fully assessing the effects of these actions on other sectors. This paper describes a framework for indentifying the causes and impacts of salinity in delta regions based on the source-pathway-receptor framework. It uses examples and scenarios from the Ganges-Brahmaputra-Meghna delta in Bangladesh together with field measurements and observations made in vulnerable coastal communities. The paper demonstrates the importance of creating an holistic understanding of the development and management of water resources to reduce the impact of salinity in fresh water in delta regions.
NASA Astrophysics Data System (ADS)
Nikzad, Shouleh; Jewell, April D.; Hoenk, Michael E.; Jones, Todd J.; Hennessy, John; Goodsall, Tim; Carver, Alexander G.; Shapiro, Charles; Cheng, Samuel R.; Hamden, Erika T.; Kyne, Gillian; Martin, D. Christopher; Schiminovich, David; Scowen, Paul; France, Kevin; McCandliss, Stephan; Lupu, Roxana E.
2017-07-01
Exciting concepts are under development for flagship, probe class, explorer class, and suborbital class NASA missions in the ultraviolet/optical spectral range. These missions will depend on high-performance silicon detector arrays being delivered affordably and in high numbers. To that end, we have advanced delta-doping technology to high-throughput and high-yield wafer-scale processing, encompassing a multitude of state-of-the-art silicon-based detector formats and designs. We have embarked on a number of field observations, instrument integrations, and independent evaluations of delta-doped arrays. We present recent data and innovations from JPL's Advanced Detectors and Systems Program, including two-dimensional doping technology, JPL's end-to-end postfabrication processing of high-performance UV/optical/NIR arrays and advanced coatings for detectors. While this paper is primarily intended to provide an overview of past work, developments are identified and discussed throughout. Additionally, we present examples of past, in-progress, and planned observations and deployments of delta-doped arrays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schenewerk, P.; Goddard, D.; Echols, J.
The decline in production in several fields in Concordia Parish, Louisiana, has created interest in the economic feasibility of producing the remaining bypassed oil in the lower Wilcox Group. One of these fields, Bee Brake, has been one of the more prolific oil-producing fields in east-central Louisiana. The producing interval, the Minter sandstones, at a depth of about 6,775 ft typically consists of an upper Bee Brake sandstone and a lower Angelina sandstone. A detailed study of a conventional core in the center of the field reveals a 15-ft-thick Minter interval bounded above and below by sealing shales and lignitesmore » of lower delta plain marsh facies. The upper 4-ft-thick Bee Brake is a very fine silty sandstone with characteristics of a small overbank or crevasse splay deposit. The lower 3-ft-thick oil-producing Angelina sandstone consists of very fine and fine sandstone of probable overbank or crevasse facies. Cumulative production from the Angelina is about 1.8 million stock-tank barrels of oil. Special core analysis data (capillary pressure, relative permeability, and waterflood recovery) have been used to develop a simulation model of the two reservoirs in the Minter. This model incorporates the geologic and engineering complexities noted during evaluation of the field area. Operators can use the model results in this field to design an optimal development plan for enhanced recovery.« less
Aaltonen, Timo Antero
2016-06-03
In this study, we measure the forward--backward asymmetry of the production of top quark and antiquark pairs in proton-antiproton collisions at center-of-mass energymore » $$\\sqrt{s} = 1.96~\\mathrm{TeV}$$ using the full data set collected by the Collider Detector at Fermilab (CDF) in Tevatron Run II corresponding to an integrated luminosity of $$9.1~\\rm{fb}^{-1}$$. The asymmetry is characterized by the rapidity difference between top quarks and antiquarks ($$\\Delta y$$), and measured in the final state with two charged leptons (electrons and muons). The inclusive asymmetry, corrected to the entire phase space at parton level, is measured to be $$A_{\\text{FB}}^{t\\bar{t}} = 0.12 \\pm 0.13$$, consistent with the expectations from the standard-model (SM) and previous CDF results in the final state with a single charged lepton. The combination of the CDF measurements of the inclusive $$A_{\\text{FB}}^{t\\bar{t}}$$ in both final states yields $$A_{\\text{FB}}^{t\\bar{t}}=0.160\\pm0.045$$, which is consistent with the SM predictions. We also measure the differential asymmetry as a function of $$\\Delta y$$. A linear fit to $$A_{\\text{FB}}^{t\\bar{t}}(|\\Delta y|)$$, assuming zero asymmetry at $$\\Delta y=0$$, yields a slope of $$\\alpha=0.14\\pm0.15$$, consistent with the SM prediction and the previous CDF determination in the final state with a single charged lepton. The combined slope of $$A_{\\text{FB}}^{t\\bar{t}}(|\\Delta y|)$$ in the two final states is $$\\alpha=0.227\\pm0.057$$, which is $$2.0\\sigma$$ larger than the SM prediction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Kun; Zhao Hongmei; Wang Caixia
Bromoiodomethane photodissociation in the low-lying excited states has been characterized using unrestricted Hartree-Fock, configuration-interaction-singles, and complete active space self-consistent field calculations with the SDB-aug-cc-pVTZ, aug-cc-pVTZ, and 3-21g** basis sets. According to the results of the vertical excited energies and oscillator strengths of these low-lying excited states, bond selectivity is predicted. Subsequently, the minimum energy paths of the first excited singlet state and the third excited state for the dissociation reactions were calculated using the complete active space self-consistent field method with 3-21g** basis set. Good agreement is found between the calculations and experimental data. The relationships of excitations, the electronicmore » structures at Franck-Condon points, and bond selectivity are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yokogawa, D., E-mail: d.yokogawa@chem.nagoya-u.ac.jp; Institute of Transformative Bio-Molecules
2016-09-07
Theoretical approach to design bright bio-imaging molecules is one of the most progressing ones. However, because of the system size and computational accuracy, the number of theoretical studies is limited to our knowledge. To overcome the difficulties, we developed a new method based on reference interaction site model self-consistent field explicitly including spatial electron density distribution and time-dependent density functional theory. We applied it to the calculation of indole and 5-cyanoindole at ground and excited states in gas and solution phases. The changes in the optimized geometries were clearly explained with resonance structures and the Stokes shift was correctly reproduced.
Unmasking the masked Universe: the 2M++ catalogue through Bayesian eyes
NASA Astrophysics Data System (ADS)
Lavaux, Guilhem; Jasche, Jens
2016-01-01
This work describes a full Bayesian analysis of the Nearby Universe as traced by galaxies of the 2M++ survey. The analysis is run in two sequential steps. The first step self-consistently derives the luminosity-dependent galaxy biases, the power spectrum of matter fluctuations and matter density fields within a Gaussian statistic approximation. The second step makes a detailed analysis of the three-dimensional large-scale structures, assuming a fixed bias model and a fixed cosmology. This second step allows for the reconstruction of both the final density field and the initial conditions at z = 1000 assuming a fixed bias model. From these, we derive fields that self-consistently extrapolate the observed large-scale structures. We give two examples of these extrapolation and their utility for the detection of structures: the visibility of the Sloan Great Wall, and the detection and characterization of the Local Void using DIVA, a Lagrangian based technique to classify structures.
Setting Formative Assessments in Real-World Contexts to Facilitate Self-Regulated Learning
ERIC Educational Resources Information Center
Tay, Hui Yong
2015-01-01
Some writers (Black and Wiliam in "Phi Delta Kappan" 80(2):139-148, 1998; Clark 2012; Panadero and Jonsson in "Educational Research Review" 9:129-144, 2013) have hypothesized a link between formative assessments (FA) and self-regulated learning (SRL). FA give students an opportunity to play an active role in their learning…
The 3 micron spectrum of the classical Be star Beta Monocerotis A
NASA Technical Reports Server (NTRS)
Sellgren, K.; Smith, R. G.
1992-01-01
A 3.1-3.7-micron spectrum of the classical Be star Beta Mon A is presented at a resolution of lambda/Delta-lambda of 700-800. The spectrum shows strong hydrogen recombination lines, including Pf-delta and a series of Humphreys lines from Hu 19 to Hu 28. The relative recombination line strengths suggest that Pf-delta has a large optical depth. The Humphreys lines have relative strengths consistent with case B and may be optically thin. The line widths observed are broader than the Balmer lines and similar in width to Fe II lines, consistent with a disk model in which optically thinner lines arise primarily from a faster rotating inner disk, while optically thicker lines come mainly from a slower rotating outer disk. The apparent lack of Stark broadening of the Humphreys lines is used to place an upper limit on the circumstellar electron density of about 10 exp 12/cu cm.
Conical Euler solution for a highly-swept delta wing undergoing wing-rock motion
NASA Technical Reports Server (NTRS)
Lee, Elizabeth M.; Batina, John T.
1990-01-01
Modifications to an unsteady conical Euler code for the free-to-roll analysis of highly-swept delta wings are described. The modifications involve the addition of the rolling rigid-body equation of motion for its simultaneous time-integration with the governing flow equations. The flow solver utilized in the Euler code includes a multistage Runge-Kutta time-stepping scheme which uses a finite-volume spatial discretization on an unstructured mesh made up of triangles. Steady and unsteady results are presented for a 75 deg swept delta wing at a freestream Mach number of 1.2 and an angle of attack of 30 deg. The unsteady results consist of forced harmonic and free-to-roll calculations. The free-to-roll case exhibits a wing rock response produced by unsteady aerodynamics consistent with the aerodynamics of the forced harmonic results. Similarities are shown with a wing-rock time history from a low-speed wind tunnel test.
Effect of Delta Tabs on Free Jets from Complex Nozzles
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.
2001-01-01
Effects of 'delta-tabs' on the mixing and noise characteristics of two model-scale nozzles have been investigated experimentally. The two models are (1) an eight-lobed nozzle simulating the primary flow of a mixer-ejector configuration considered for the HSCT program, (2) an axisymmetric nozzle with a centerbody simulating the 'ACE' configuration also considered for the HSCT program. Details of the flow-field for model (1) are explored, while primarily the noise-field is explored for model (2). Effects of different tab configurations are documented.
Neutron Stars with Delta-Resonances in the Walecka and Zimanyi-Moszkowski Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fong, C. T.; Oliveira, J. C. T.; Rodrigues, H.
2010-11-12
In the present work we have obtained the equation of state of the highly asymmetric dense stellar matter focusing on the delta resonance formation. We extended the nonlinear Walecka (NLW) and Zimanyi-Moszkowski (ZM) models to accommodate in the context of the relativistic mean field approximation the Rarita-Schwinger field for the spin 3/2 resonances. With the constructed stellar matter equations of state we solve numerically the TOV equation (Tolman-Oppenheimer-Volkoff) in order to determine the internal structure of neutron stars, and discuss the obtained masses versus radii diagram.
NASA Technical Reports Server (NTRS)
Rubin, Alan E.; Kunihiro, Tak; Wasson, John T.
2006-01-01
With one exception, the low-FeO relict olivine grains within high-FeO porphyritic chondrules in the type 3.0 Acfer 094 carbonaceous chondrite have DELTA O-17 ( = delta O-17 - 0.52 X delta O-18) values that are substantially more negative than those of the high-FeO olivine host materials. These results are similar to observations made earlier on chondrules in C03.0 chondrites and are consistent with two independent models: (1) Nebular solids evolved from low-FeO, low-DELTA O-17 compositions towards high-FeO, more positive DELTA O-17 compositions; and (2) the range of compositions resulted from the mixing of two independently formed components. The two models predict different trajectories on a DELTA O-17 vs. log Fe/Mg (olivine) diagram, but our sample set has too few values at intermediate Fe/Mg ratios to yield a definitive answer. Published data showing that Acfer 094 has higher volatile contents than CO chondrites suggest a closer link to CM chondrites. This is consistent with the high modal matrix abundance in Acfer 094 (49 vol.%). Acfer 094 may be an unaltered CM chondrite or an exceptionally matrix-rich CO chondrite. Chondrules in Acfer 094 and in CO and CM carbonaceous chondrites appear to sample the same population. Textural differences between Acfer 094 and CM chondrites are largely attributable to the high degree of hydrothermal alteration that the CM chondrites experienced in an asteroidal setting.
Justinová, Zuzana; Redhi, Godfrey H; Goldberg, Steven R; Ferré, Sergi
2014-05-07
Different doses of an adenosine A2A receptor antagonist MSX-3 [3,7-dihydro-8-[(1E)-2-(3-ethoxyphenyl)ethenyl]-7 methyl-3-[3-(phosphooxy)propyl-1-(2 propynil)-1H-purine-2,6-dione] were found previously to either decrease or increase self-administration of cannabinoids delta-9-tetrahydrocannabinol (THC) or anandamide in squirrel monkeys. It was hypothesized that the decrease observed with a relatively low dose of MSX-3 was related to blockade of striatal presynaptic A2A receptors that modulate glutamatergic neurotransmission, whereas the increase observed with a higher dose was related to blockade of postsynaptic A2A receptors localized in striatopallidal neurons. This hypothesis was confirmed in the present study by testing the effects of the preferential presynaptic and postsynaptic A2A receptor antagonists SCH-442416 [2-(2-furanyl)-7-[3-(4-methoxyphenyl)propyl]-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine] and KW-6002 [(E)-1, 3-diethyl-8-(3,4-dimethoxystyryl)-7-methyl-3,7-dihydro-1H-purine-2,6-dione], respectively, in squirrel monkeys trained to intravenously self-administer THC. SCH-442416 produced a significant shift to the right of the THC self-administration dose-response curves, consistent with antagonism of the reinforcing effects of THC. Conversely, KW-6002 produced a significant shift to the left, consistent with potentiation of the reinforcing effects of THC. These results show that selectively blocking presynaptic A2A receptors could provide a new pharmacological approach to the treatment of marijuana dependence and underscore corticostriatal glutamatergic neurotransmission as a possible main mechanism involved in the rewarding effects of THC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadsell, M; Holcombe, C; Chin, E
Introduction: As diagnostic techniques become more sensitive and targeting methods grow in accuracy, target volumes continue to shrink and SBRT becomes more prevalent. Due to this fact, patient-specific QA must also enhance resolution and accuracy in order to verify dose delivery in these volumes. It has been suggested that when measuring small fields at least two separate detectors be used to verify delivered dose. Therefore, we have instituted a secondary patient QA verification for small (<3cm) SBRT fields using Gafchromic EBT2 film. Methods: Films were cross-calibrated using a Farmer chamber in plastic water at reference conditions as defined by TG-51.more » Films were scanned, and an RGB calibration curve was created according to best practices published by Ashland, Inc. Four SBRT cases were evaluated both with the Scandidos Delta4 and with EBT2 films sandwiched in plastic water. Raw values obtained from the film were converted to dose using an in-house algorithm employing all three color channels to increase accuracy and dosimetric range. Gamma and dose profile comparisons to Eclipse dose calculations were obtained using RIT and compared to values obtained with the Delta4. Results: Film gamma pass rates at 2% and 2mm were similar to those obtained with the Delta4. However, dose difference histograms showed better absolute dose agreement, with the average mean film dose agreeing with calculation to 0.3% and the Delta4 only agreeing to 3.1% across the cases. Additionally, films provided more resolution than the Delta4 and thus their dose profiles better succeeded in diagnosing dose calculation inaccuracies. Conclusion: We believe that the implementation of secondary patient QA using EBT2 film analyzed with all three color channels is an invaluable tool for evaluation of small SBRT fields. Furthermore, we have shown that this method can sometimes provide a more detailed and faithful reproduction of plan dose than the Delta4.« less
Pi Bond Orders and Bond Lengths
ERIC Educational Resources Information Center
Herndon, William C.; Parkanyi, Cyril
1976-01-01
Discusses three methods of correlating bond orders and bond lengths in unsaturated hydrocarbons: the Pauling theory, the Huckel molecular orbital technique, and self-consistent-field techniques. (MLH)
Analysis of the medium field Q-slope in superconducting cavities made of bulk niobium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gianluigi Ciovati; J. Halbritter
The quality factor of superconducting radio-frequency cavities made of high purity, bulk niobium increases with rf field in the medium field range (peak surface magnetic field between 20 and about 100 mT). The causes for this effect are not clear yet. The dependence of the surface resistance on the peak surface magnetic field is typically linear and quadratic. This contribution will present an analysis of the medium field Q-slope data measured on cavities treated with buffered chemical polishing (BCP) at Jefferson Lab, as function of different treatments such as post-purification and low-temperature baking. The data have been compared with amore » model involving a combination of heating and of hysteresis losses due to ''strong-links'' formed or weakened at niobium surfaces during oxidation, which correlate to {delta}{Delta}/kT{sub c} changes by baking.« less
Radial widths, optical depths, and eccentricities of the Uranian rings
NASA Technical Reports Server (NTRS)
Nicholson, P. D.; Matthews, K.; Goldreich, P.
1982-01-01
Observations of the stellar occultation by the Uranian rings of 15/16 August 1980 are used to estimate radial widths and normal optical depths for segments of rings 6, 5, 4, alpha, beta, eta, gamma, and delta. Synthetic occultation profiles are generated to match the observed light curves. A review of published data confirms the existence of width-radius relations for rings alpha and beta, and indicates that the optical depths of these two rings vary inversely with their radial widths. Masses are obtained for rings alpha and beta, on the assumption that differential precession is prevented by their self-gravity. A quantitative comparison of seven epsilon-ring occultation profiles obtained over a period of 3.4 yr reveals a consistent structure, which may reflect the presence of unresolved gaps and subrings.
A New Self-Consistent Field Model of Polymer/Nanoparticle Mixture
NASA Astrophysics Data System (ADS)
Chen, Kang; Li, Hui-Shu; Zhang, Bo-Kai; Li, Jian; Tian, Wen-De
2016-02-01
Field-theoretical method is efficient in predicting assembling structures of polymeric systems. However, it’s challenging to generalize this method to study the polymer/nanoparticle mixture due to its multi-scale nature. Here, we develop a new field-based model which unifies the nanoparticle description with the polymer field within the self-consistent field theory. Instead of being “ensemble-averaged” continuous distribution, the particle density in the final morphology can represent individual particles located at preferred positions. The discreteness of particle density allows our model to properly address the polymer-particle interface and the excluded-volume interaction. We use this model to study the simplest system of nanoparticles immersed in the dense homopolymer solution. The flexibility of tuning the interfacial details allows our model to capture the rich phenomena such as bridging aggregation and depletion attraction. Insights are obtained on the enthalpic and/or entropic origin of the structural variation due to the competition between depletion and interfacial interaction. This approach is readily extendable to the study of more complex polymer-based nanocomposites or biology-related systems, such as dendrimer/drug encapsulation and membrane/particle assembly.
Nickel-induced down-regulation of {Delta}Np63 and its role in the proliferation of keratinocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Zhuo, E-mail: zhuo.zhang@uky.edu; Li Wenqi; Cheng Senping
2011-06-15
Epidemiological, animal, and cell studies have demonstrated that nickel compounds are human carcinogens. The mechanisms of their carcinogenic actions remain to be investigated. p63, a close homologue of the p53 tumor suppressor protein, has been linked to cell fate determination and/or maintenance of self-renewing populations in several epithelial tissues, including skin, mammary gland, and prostate. {Delta}Np63, a dominant negative isoform of p63, is amplified in a variety of epithelial tumors including squamous cell carcinomas and carcinomas of the prostate and mammary glands. The present study shows that nickel suppressed {Delta}Np63 expression in a short-time treatment (up to 48 h). Nickelmore » treatment caused activation of NF-{kappa}B. Blockage of NF-{kappa}B partially reversed nickel-induced {Delta}Np63 suppression. Nickel decreased interferon regulatory factor (IRF) 3 and IRF7, IKK{epsilon}, and Sp100. Over-expression of IRF3 increased {Delta}Np63 expression suppressed by nickel. Nickel was able to activate p21, and its activation was offset by the over-expression of {Delta}Np63. In turn, elevated p63 expression counteracted the ability of nickel to restrict cell growth. The present study demonstrated that nickel decreased interferon regulatory proteins IRF3 and IRF7, and activated NF-{kappa}B, resulting in {Delta}Np63 suppression and then p21 up-regulation. {Delta}Np63 plays an important role in nickel-induced cell proliferation. - Highlights: > Ni suppressed {Delta}Np63 expression in HaCat cells. > Ni activated NF-{kappa}B, decreased expressions of IRF3 and IRF7, IKK{epsilon}, and Sp100. > Over-expression of IRF3 increased {Delta}Np63 expression suppressed by Ni. > Ni activated p21, and its activation was offset by over-expression of {Delta}Np63. > Elevated p63 expression counteracted the ability of nickel to restrict cell growth.« less
Bareiss, Sonja; Kim, Kwonseop; Lu, Qun
2010-08-15
Through a multiprotein complex, glycogen synthase kinase-3beta (GSK-3beta) phosphorylates and destabilizes beta-catenin, an important signaling event for neuronal growth and proper synaptic function. delta-Catenin, or NPRAP (CTNND2), is a neural enriched member of the beta-catenin superfamily and is also known to modulate neurite outgrowth and synaptic activity. In this study, we investigated the possibility that delta-catenin expression is also affected by GSK-3beta signaling and participates in the molecular complex regulating beta-catenin turnover in neurons. Immunofluorescent light microscopy revealed colocalization of delta-catenin with members of the molecular destruction complex: GSK-3beta, beta-catenin, and adenomatous polyposis coli proteins in rat primary neurons. GSK-3beta formed a complex with delta-catenin, and its inhibition resulted in increased delta-catenin and beta-catenin expression levels. LY294002 and amyloid peptide, known activators of GSK-3beta signaling, reduced delta-catenin expression levels. Furthermore, delta-catenin immunoreactivity increased and protein turnover decreased when neurons were treated with proteasome inhibitors, suggesting that the stability of delta-catenin, like that of beta-catenin, is regulated by proteasome-mediated degradation. Coimmunoprecipitation experiments showed that delta-catenin overexpression promoted GSK-3beta and beta-catenin interactions. Primary cortical neurons and PC12 cells expressing delta-catenin treated with proteasome inhibitors showed increased ubiquitinated beta-catenin forms. Consistent with the hypothesis that delta-catenin promotes the interaction of the destruction complex molecules, cycloheximide treatment of cells overexpressing delta-catenin showed enhanced beta-catenin turnover. These studies identify delta-catenin as a new member of the GSK-3beta signaling pathway and further suggest that delta-catenin is potentially involved in facilitating the interaction, ubiquitination, and subsequent turnover of beta-catenin in neuronal cells. (c) 2010 Wiley-Liss, Inc.
Ennouri, Karim; Ayed, Rayda Ben; Hassen, Hanen Ben; Mazzarello, Maura; Ottaviani, Ennio
2015-12-01
Bacillus thuringiensis (Bt) is a Gram-positive bacterium. The entomopathogenic activity of Bt is related to the existence of the crystal consisting of protoxins, also called delta-endotoxins. In order to optimize and explain the production of delta-endotoxins of Bacillus thuringiensis kurstaki, we studied seven medium components: soybean meal, starch, KH₂PO₄, K₂HPO₄, FeSO₄, MnSO₄, and MgSO₄and their relationships with the concentration of delta-endotoxins using an experimental design (Plackett-Burman design) and Bayesian networks modelling. The effects of the ingredients of the culture medium on delta-endotoxins production were estimated. The developed model showed that different medium components are important for the Bacillus thuringiensis fermentation. The most important factors influenced the production of delta-endotoxins are FeSO₄, K2HPO₄, starch and soybean meal. Indeed, it was found that soybean meal, K₂HPO₄, KH₂PO₄and starch also showed positive effect on the delta-endotoxins production. However, FeSO4 and MnSO4 expressed opposite effect. The developed model, based on Bayesian techniques, can automatically learn emerging models in data to serve in the prediction of delta-endotoxins concentrations. The constructed model in the present study implies that experimental design (Plackett-Burman design) joined with Bayesian networks method could be used for identification of effect variables on delta-endotoxins variation.
Variability in the preservation of the isotopic composition of collagen from fossil bone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuross, N.; Fogel, M.L.; Hare, P.E.
1988-04-01
Collagen from bone was prepared by several methods. For modern and well-preserved bone the {delta}{sup 13}C and {delta}{sup 15}N of collagen replicas obtained after HCl or EDTA demineralization were similar to those obtained with a gelatinization procedure. However, in more poorly preserved fossil bone the {delta}{sup 13}C and {delta}{sup 15}N varied among the different protein extracts. The yield of collagen obtained with EDTA demineralization was consistently higher than extraction procedures that used HCl. The {delta}{sup 13}C of individual amino acids separated from the collagen of modern and fossil whale bone varied up to 17{per thousand}, and the {delta}{sup 15}N frommore » the same amino acids ranged over 47{per thousand}. The {delta}{sup 13}C and {delta}{sup 15}N of most amino acids clustered closely to the average of the HCl insoluble collagen. The {delta}{sup 13}C of the major amino acid in collagen, glycine, differed from the average HCl insoluble collagen by approximately 8{per thousand} in the fossil whale and 14{per thousand} in the modern whale. The {delta}{sup 15}N of glycine differed from the average HCl insoluble values by approximately 4{per thousand} in the fossil whale and 7{per thousand} in the modern whale. Thus, diagenetic changes that alter the ratio of glycine to other amino acids in bone can be expected to perturb the values for carbon and nitrogen isotopes.« less
The gamma delta T cell repertoire in Graves' disease and multinodular goitre.
McIntosh, R S; Tandon, N; Pickerill, A P; Davies, R; Barnett, D; Weetman, A P
1993-01-01
gamma delta T cells are a subset of T cells with unknown function, and restriction of the gamma delta T cell receptor (TCR) repertoire has been described in rheumatoid arthritis and multiple sclerosis. Elevated numbers of gamma delta T cells have been reported in the peripheral blood and thyroids of patients with Graves' disease. We have carried out flow cytometric analysis on peripheral blood mononuclear cells (PBMC) and intrathyroidal lymphocytes (ITL) from 12 patients with Graves' disease and nine patients with multinodular goitre (MNG), a thyroid disease of unknown etiology. There was no significant difference between the proportion of gamma delta T cells in the PBMC of Graves' and MNG patients, nor between the PBMC and ITL populations in either patient group. We have also carried out polymerase chain reaction amplification on RNA prepared from matched PBMC, ITL and the activated (CD25+) subset of ITL using six TCR V delta-family specific primers. Although there were differences in the amounts of each V delta transcript amplified from PBMC and ITL, there was no difference between the two patient groups. No consistent differences were therefore found between the gamma delta T cell populations in Graves' and MNG patients, arguing against the direct involvement of this T cell subset in the pathogenesis of Graves' disease. Images Fig. 1 PMID:8252809
Linking rapid erosion of the Mekong River delta to human activities.
Anthony, Edward J; Brunier, Guillaume; Besset, Manon; Goichot, Marc; Dussouillez, Philippe; Nguyen, Van Lap
2015-10-08
As international concern for the survival of deltas grows, the Mekong River delta, the world's third largest delta, densely populated, considered as Southeast Asia's most important food basket, and rich in biodiversity at the world scale, is also increasingly affected by human activities and exposed to subsidence and coastal erosion. Several dams have been constructed upstream of the delta and many more are now planned. We quantify from high-resolution SPOT 5 satellite images large-scale shoreline erosion and land loss between 2003 and 2012 that now affect over 50% of the once strongly advancing >600 km-long delta shoreline. Erosion, with no identified change in the river's discharge and in wave and wind conditions over this recent period, is consistent with: (1) a reported significant decrease in coastal surface suspended sediment from the Mekong that may be linked to dam retention of its sediment, (2) large-scale commercial sand mining in the river and delta channels, and (3) subsidence due to groundwater extraction. Shoreline erosion is already responsible for displacement of coastal populations. It is an additional hazard to the integrity of this Asian mega delta now considered particularly vulnerable to accelerated subsidence and sea-level rise, and will be exacerbated by future hydropower dams.
Linking rapid erosion of the Mekong River delta to human activities
Anthony, Edward J.; Brunier, Guillaume; Besset, Manon; Goichot, Marc; Dussouillez, Philippe; Nguyen, Van Lap
2015-01-01
As international concern for the survival of deltas grows, the Mekong River delta, the world’s third largest delta, densely populated, considered as Southeast Asia’s most important food basket, and rich in biodiversity at the world scale, is also increasingly affected by human activities and exposed to subsidence and coastal erosion. Several dams have been constructed upstream of the delta and many more are now planned. We quantify from high-resolution SPOT 5 satellite images large-scale shoreline erosion and land loss between 2003 and 2012 that now affect over 50% of the once strongly advancing >600 km-long delta shoreline. Erosion, with no identified change in the river’s discharge and in wave and wind conditions over this recent period, is consistent with: (1) a reported significant decrease in coastal surface suspended sediment from the Mekong that may be linked to dam retention of its sediment, (2) large-scale commercial sand mining in the river and delta channels, and (3) subsidence due to groundwater extraction. Shoreline erosion is already responsible for displacement of coastal populations. It is an additional hazard to the integrity of this Asian mega delta now considered particularly vulnerable to accelerated subsidence and sea-level rise, and will be exacerbated by future hydropower dams. PMID:26446752
Investigation of leading-edge flap performance on delta and double-delta wings at supersonic speeds
NASA Technical Reports Server (NTRS)
Covell, Peter F.; Wood, Richard M.; Miller, David S.
1987-01-01
An investigation of the aerodynamic performance of leading-edge flaps on three clipped delta and three clipped double-delta wing planforms with aspect ratios of 1.75, 2.11, and 2.50 was conducted in the Langley Unitary Plan Wind Tunnel at Mach numbers of 1.60, 1.90, and 2.16. A primary set of fullspan leading-edge flaps with similar root and tip chords were investigated on each wing, and several alternate flap planforms were investigated on the aspect-ratio-1.75 wings. All leading-edge flap geometries were effective in reducing the drag at lifting conditions over the range of wing aspect ratios and Mach numbers tested. Application of a primary flap resulted in better flap performance with the double-delta planform than with the delta planform. The primary flap geometry generally yielded better performance than the alternate flap geometries tested. Trim drag due to flap-induced pitching moments was found to reduce the leading-edge flap performance more for the delta planform than for the double-delta planform. Flow-visualization techniques showed that leading-edge flap deflection reduces crossflow shock-induced separation effects. Finally, it was found that modified linear theory consistently predicts only the effects of leading-edge flap deflection as related to pitching moment and lift trends.
NASA Technical Reports Server (NTRS)
Schlosser, H.
1981-01-01
The self consistent calculation of the electronic energy levels of noble gas pseudomolecules formed when a metal surface is bombarded by noble gas ions is discussed along with the construction of energy level correlation diagrams as a function of interatomic spacing. The self consistent field x alpha scattered wave (SCF-Xalpha-SW) method is utilized. Preliminary results on the Ne-Mg system are given. An interactive x alpha programming system, implemented on the LeRC IBM 370 computer, is described in detail. This automated system makes use of special PROCDEFS (procedure definitions) to minimize the data to be entered manually at a remote terminal. Listings of the special PROCDEFS and of typical input data are given.
The Statistical Mechanics of Dilute, Disordered Systems
NASA Astrophysics Data System (ADS)
Blackburn, Roger Michael
Available from UMI in association with The British Library. Requires signed TDF. A graph partitioning problem with variable inter -partition costs is studied by exploiting its mapping on to the Ashkin-Teller spin glass. The cavity method is used to derive the TAP equations and free energy for both extensively connected and dilute systems. Unlike Ising and Potts spin glasses, the self-consistent equation for the distribution of effective fields does not have a solution solely made up of delta functions. Numerical integration is used to find the stable solution, from which the ground state energy is calculated. Simulated annealing is used to test the results. The retrieving activity distribution for networks of boolean functions trained as associative memories for optimal capacity is derived. For infinite networks, outputs are shown to be frozen, in contrast to dilute asymmetric networks trained with the Hebb rule. For finite networks, a steady leaking to the non-retrieving attractor is demonstrated. Simulations of quenched networks are reported which show a departure from this picture: some configurations remain frozen for all time, while others follow cycles of small periods. An estimate of the critical capacity from the simulations is found to be in broad agreement with recent analytical results. The existing theory is extended to include noise on recall, and the behaviour is found to be robust to noise up to order 1/c^2 for networks with connectivity c.
NASA Astrophysics Data System (ADS)
Long, Debing; Li, Mingkai; Meng, Dongxue; Ahuja, Rajeev; He, Yunbin
2018-03-01
In this work, the structural, electronic, and thermodynamic properties of wurtzite (WZ) and zincblende (ZB) CdS1-xSex alloys are investigated using the density functional theory (DFT) and the cluster expansion method. A special quasirandom structure containing 16 atoms is constructed to calculate the band structures of random alloys. The band gaps of CdS1-xSex alloys are direct and decrease as the Se content increases. The delta self-consistent-field method is applied to correct band gaps that are underestimated by DFT. The band offsets clearly reflect the variation in valence band maxima and conduction band minima, thus providing information useful to the design of relevant quantum well structures. The positive formation enthalpies of both phases imply that CdS1-xSex is an immiscible system and tends to phase separate. The influence of lattice vibrations on the phase diagram is investigated by calculating the phonon density of states. Lattice vibration effects can reduce the critical temperature Tc and increase alloy solid solubilities. This influence is especially significant in the ZB structure. When only chemical interactions are present, the Tc values for WZ- and ZB-CdS1-xSex are 260 K and 249 K, respectively. The lattice vibration enthalpy and entropy lower the Tc to 255 K and 233 K, respectively.
NASA Astrophysics Data System (ADS)
Saidi, Hosni; Msahli, Melek; Ben Dhafer, Rania; Ridene, Said
2017-12-01
Band structure and optical gain properties of [111]-oriented AlGaInAs/AlGaInAs-delta-InGaAs multi-quantum wells, subjected to piezoelectric field, for the near-infrared lasers diodes applications was proposed and investigated in this paper. By using genetic algorithm based on optimization technique we demonstrate that the structural parameters can be conveniently optimized to achieve high-efficiency laser diode performance at room temperature. In this work, significant optical gain for the wished emission wavelength at 1.55 μm and low threshold injection current are the optimization target. The end result of this optimization is a laser diode based on InP substrate using quaternary compound material of AlGaInAs in both quantum wells and barriers with different composition. It has been shown that the transverse electric polarized optical gain which reaches 3500 cm-1 may be acquired for λ = 1.55 μm with a threshold carrier density Nth≈1.31018cm-3, which is very promising to serve as an alternative active region for high-efficiency near-infrared lasers. Finally, from the design presented here, we show that it is possible to apply this technique to a different III-V compound semiconductors and wavelength ranging from deep-ultra-violet to far infrared.
Quantitative metrics that describe river deltas and their channel networks
NASA Astrophysics Data System (ADS)
Edmonds, Douglas A.; Paola, Chris; Hoyal, David C. J. D.; Sheets, Ben A.
2011-12-01
Densely populated river deltas are losing land at an alarming rate and to successfully restore these environments we must understand the details of their morphology. Toward this end we present a set of five metrics that describe delta morphology: (1) the fractal dimension, (2) the distribution of island sizes, (3) the nearest-edge distance, (4) a synthetic distribution of sediment fluxes at the shoreline, and (5) the nourishment area. The nearest-edge distance is the shortest distance to channelized or unchannelized water from a given location on the delta and is analogous to the inverse of drainage density in tributary networks. The nourishment area is the downstream delta area supplied by the sediment coming through a given channel cross section and is analogous to catchment area in tributary networks. As a first step, we apply these metrics to four relatively simple, fluvially dominated delta networks. For all these deltas, the average nearest-edge distances are remarkably constant moving down delta suggesting that the network organizes itself to maintain a consistent distance to the nearest channel. Nourishment area distributions can be predicted from a river mouth bar model of delta growth, and also scale with the width of the channel and with the length of the longest channel, analogous to Hack's law for drainage basins. The four delta channel networks are fractal, but power laws and scale invariance appear to be less pervasive than in tributary networks. Thus, deltas may occupy an advantageous middle ground between complete similarity and complete dissimilarity, where morphologic differences indicate different behavior.
Serpentinites and Boron Isotope Evidence for Shallow Fluid Transfer Across Subduction Zones
NASA Astrophysics Data System (ADS)
Scambelluri, M.; Tonarini, S.
2012-04-01
In subduction zones, fluid-mediated chemical exchanges between subducting plates and overlying mantle dictate volatile and incompatible element cycles in earth and influence arc magmatism. One of the outstanding issues is concerned with the sources of water for arc magmas and mechanisms for its slab-to-mantle wedge transport. Does it occur by slab dehydration at depths directly beneath arc front, or by hydration of fore-arc mantle and subsequent subduction of the hydrated mantle? Historically, the deep slab dehydration hypothesis had strong support, but it appears that the hydrated mantle wedge hypothesis is gaining ground. At the center of this hypothesis are studies of fluid-mobile element tracers in volatile-rich mantle wedge peridotites (serpentinites) and their subducted high-pressure equivalents. Serpentinites are key players in volatile and fluid-mobile element cycles in subduction zones. Their dehydration represents the main event for fluid and element flux from slabs to mantle, though direct evidence for this process and identification of dehydration environments have been elusive. Boron isotopes are known markers of fluid-assisted element transfer during subduction and can be the tracers of these processes. Until recently, the altered oceanic crust has been considered the main 11B reservoir for arc magmas, which largely display positive delta11B. However, slab dehydration below fore-arcs transfers 11B to the overlying hydrated mantle and leaves the residual mafic crust very depleted in 11B below sub-arcs. The 11B-rich composition of serpentinites candidate them as the heavy B carriers for subduction. Here we present high positive delta11B of Alpine high-pressure (HP) serpentinites recording subduction metamorphism from hydration at low gades to eclogite-facies dehydration: we show a connection among serpentinite dehydration, release of 11B-rich fluids and arc magmatism. In general, the delta11B of these rocks is heavy (16‰ to + 24‰ delta11B). No B loss and no 11B fractionation occurs in these rocks with progressive burial: their high B and 11B compositions demonstrate that initially high budgets acquired during shallow hydration are transferred and released to fluids at arc magma depths, providing the high-boron component requested for arcs. Interaction of depleted mantle-wedge with de-serpentinization fluids and/or serpentinite diapirs uprising from the slab-mantle interface thus provide an efficient self-consistent mechanism for water and B transfer to many arcs. The boron compositions documented here for Erro-Tobbio serpentinites are unexpected for slabs, deputed to loose much B and 11B during subduction dehydration. Their isotopic compositions can be achieved diluting through the mantle the subduction-fluids released during shallow dehydration (30 km) of a model slab. Moreover their delta11B is close to values measured in Syros eclogite blocks, hosted in mélanges atop of the slab and metasomatized by uprising subduction-fluids. The nature of serpentinizing fluids and the fluid-transfer mechanism in Erro-Tobbio is further clarified integrating B isotopes with O-H and Sr isotopic systems. Low deltaD (-102‰), high delta18O (8‰) of early serpentinites suggest low-temperature hydration by metamorphic fluids. 87Sr/86Sr ranges from 0.7044 to 0.7065 and is lower than oceanic serpentinites formed from seawater. Our data indicate that alteration occurred distant from mid-ocean ridges: we propose metamorphic environments like the slab-mantle interface or the fore-arc mantle fed by B- and 11B-rich slab fluids. We therefore provide field-based evidence for delivery of water and 11B at sub-arcs by serpentinites formed by subduction-fluid infiltration in mantle rocks atop of the slab since the early stages of burial, witnessing shallow fluid transfer across the subduction zone.
TRANSMISSION ELECTRON MICROSCOPY STUDY OF HELIUM BEARING FUSION WELDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tosten, M; Michael Morgan, M
2008-12-12
A transmission electron microscopy (TEM) study was conducted to characterize the helium bubble distributions in tritium-charged-and-aged 304L and 21Cr-6Ni-9Mn stainless steel fusion welds containing approximately 150 appm helium-3. TEM foils were prepared from C-shaped fracture toughness test specimens containing {delta} ferrite levels ranging from 4 to 33 volume percent. The weld microstructures in the low ferrite welds consisted mostly of austenite and discontinuous, skeletal {delta} ferrite. In welds with higher levels of {delta} ferrite, the ferrite was more continuous and, in some areas of the 33 volume percent sample, was the matrix/majority phase. The helium bubble microstructures observed were similarmore » in all samples. Bubbles were found in the austenite but not in the {delta} ferrite. In the austenite, bubbles had nucleated homogeneously in the grain interiors and heterogeneously on dislocations. Bubbles were not found on any austenite/austenite grain boundaries or at the austenite/{delta} ferrite interphase interfaces. Bubbles were not observed in the {delta} ferrite because of the combined effects of the low solubility and rapid diffusion of tritium through the {delta} ferrite which limited the amount of helium present to form visible bubbles.« less
234 nm and 246 nm AlN-Delta-GaN quantum well deep ultraviolet light-emitting diodes
NASA Astrophysics Data System (ADS)
Liu, Cheng; Ooi, Yu Kee; Islam, S. M.; Xing, Huili Grace; Jena, Debdeep; Zhang, Jing
2018-01-01
Deep ultraviolet (DUV) AlN-delta-GaN quantum well (QW) light-emitting diodes (LEDs) with emission wavelengths of 234 nm and 246 nm are proposed and demonstrated in this work. Our results reveal that the use of AlN-delta-GaN QW with ˜1-3 monolayer GaN delta-layer can achieve a large transverse electric (TE)-polarized spontaneous emission rate instead of transverse magnetic-polarized emission, contrary to what is observed in conventional AlGaN QW in the 230-250 nm wavelength regime. The switching of light polarization in the proposed AlN-delta-GaN QW active region is attributed to the rearrangement of the valence subbands near the Γ-point. The light radiation patterns obtained from angle-dependent electroluminescence measurements for the Molecular Beam Epitaxy (MBE)-grown 234 nm and 246 nm AlN-delta-GaN QW LEDs show that the photons are mainly emitted towards the surface rather than the edge, consistent with the simulated patterns achieved by the finite-difference time-domain modeling. The results demonstrate that the proposed AlN-delta-GaN QWs would potentially lead to high-efficiency TE-polarized surface-emitting DUV LEDs.
Takesue, Renee K.; Swarzenski, Peter W.
2011-01-01
The Nisqually River Delta is located about 25 km south of the Tacoma Narrows in the southern reach of Puget Sound. Delta evolution is controlled by sedimentation from the Nisqually River and erosion by strong tidal currents that may reach 0.95 m/s in the Nisqually Reach. The Nisqually River flows 116 km from the Cascade Range, including the slopes of Mount Rainier, through glacially carved valleys to Puget Sound. Extensive tidal flats on the delta consist of late-Holocene silty and sandy strata from normal river streamflow and seasonal floods and possibly from distal sediment-rich debris flows associated with volcanic and seismic events. In the early 1900s, dikes and levees were constructed around Nisqually Delta salt marshes, and the reclaimed land was used for agriculture and pasture. In 1974, U.S. Fish and Wildlife Service established the Nisqually National Wildlife Refuge on the reclaimed land to protect migratory birds; its creation has prevented further human alteration of the Delta and estuary. In October 2009, original dikes and levees were removed to restore tidal exchange to almost 3 km2 of man-made freshwater marsh on the Nisqually Delta.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weese, R K; Burnham, A K
Dimensional changes related to temperature cycling of the {beta} and {delta} polymorphs of HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) are important for a variety of applications. The coefficient of thermal expansion (CTE) of the {beta} and {delta} phases are measured over a temperature range of -20 C to 215 C by thermo-mechanical analysis (TMA). Dimensional changes associated with the phase transition were also measured, and the time-temperature dependence of the dimensional change is consistent with phase transition kinetics measured earlier by differential scanning calorimetry (DSC). One HMX sample measured by TMA during its initial heating and again three days later during a second heatingmore » showed the {beta}-to-{delta} phase transition a second time, thereby indicating back conversion from {delta}-to-{beta} phase HMX during those three days. DSC was used to measure kinetics of the {delta}-to-{beta} back conversion. The most successful approach was to first heat the material to create the {delta} phase, then after a given period at room temperature, measure the heat absorbed during a second pass through the {beta}-to-{delta} phase transition. Back conversion at room temperature follows nucleation-growth kinetics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brian Leen, J.; Berman, Elena S. F.; Gupta, Manish
Developments in cavity-enhanced absorption spectrometry have made it possible to measure water isotopes using faster, more cost-effective field-deployable instrumentation. Several groups have attempted to extend this technology to measure water extracted from plants and found that other extracted organics absorb light at frequencies similar to that absorbed by the water isotopomers, leading to {delta}{sup 2}H and {delta}{sup 18}O measurement errors ({Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O). In this note, the off-axis integrated cavity output spectroscopy (ICOS) spectra of stable isotopes in liquid water is analyzed to determine the presence of interfering absorbers that lead to erroneous isotope measurements. The baseline offsetmore » of the spectra is used to calculate a broadband spectral metric, m{sub BB}, and the mean subtracted fit residuals in two regions of interest are used to determine a narrowband metric, m{sub NB}. These metrics are used to correct for {Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O. The method was tested on 14 instruments and {Delta}{delta}{sup 18}O was found to scale linearly with contaminant concentration for both narrowband (e.g., methanol) and broadband (e.g., ethanol) absorbers, while {Delta}{delta}{sup 2}H scaled linearly with narrowband and as a polynomial with broadband absorbers. Additionally, the isotope errors scaled logarithmically with m{sub NB}. Using the isotope error versus m{sub NB} and m{sub BB} curves, {Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O resulting from methanol contamination were corrected to a maximum mean absolute error of 0.93 per mille and 0.25 per mille respectively, while {Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O from ethanol contamination were corrected to a maximum mean absolute error of 1.22 per mille and 0.22 per mille . Large variation between instruments indicates that the sensitivities must be calibrated for each individual isotope analyzer. These results suggest that the properly calibrated interference metrics can be used to correct for polluted samples and extend off-axis ICOS measurements of liquid water to include plant waters, soil extracts, wastewater, and alcoholic beverages. The general technique may also be extended to other laser-based analyzers including methane and carbon dioxide isotope sensors.« less
Role of Unchannelized Flow in Determining Bifurcation Angle in Distributary Channel Networks
NASA Astrophysics Data System (ADS)
Coffey, T.
2016-02-01
Distributary channel bifurcations on river deltas are important features in both actively prograding river deltas and in lithified deltas within the stratigraphic record. Attributes of distributary channels have long been thought to be defined by flow velocity, grain size and channel aspect ratio where the channel enters the basin. Interestingly, bifurcations in groundwater-fed tributary networks have been shown to grow and bifurcate independent of flow within the exposed channel network. These networks possess a characteristic bifurcation angle of 72°, based on Laplacian flow (water surface concavity equals zero) in the groundwater flow field near tributary channel tips. Based on the tributary channel model, we develop and test the hypothesis that bifurcation angles in distributary channels are likewise dictated by the external flow field, in this case the surface water surrounding the subaqueous portion of distributary channel tips in a deltaic setting. We measured 64 unique distributary bifurcations in an experimental delta, yielding a characteristic angle of 70.2°±2.2° (95% confidence interval), in line with the theoretical prediction for tributary channels. This similarity between bifurcation angles suggests that (A) flow directly outside of the distributary network is Laplacian, (B) the external flow field controls the bifurcation dynamics of distributary channels, and (C) that flow within the channel plays a secondary role in network dynamics.
NASA Astrophysics Data System (ADS)
Gkioulidou, M.; Wang, C.; Lyons, L. R.; Wolf, R.
2009-12-01
Transport of plasma sheet particles into the inner magnetosphere is strongly affected by the penetration of the convection electric field, which is the result of the large-scale magnetosphere ionosphere electromagnetic coupling. This transport, on the other hand, results in plasma heating and magnetic field stretching, which become very significant in the inner plasma sheet (inside 20 RE). We have previously run simulations with the Rice Convection Model (RCM), using the Tsyganenko 96 magnetic field model, to investigate how the earthward penetration of electric field depends on plasma sheet conditions. Outer proton and electron sources at r ~20 RE, are based on 11 years of Geotail data, and realistically represent the mixture of cold and hot plasma sheet population as a function of MLT and interplanetary conditions. We found that shielding of the inner magnetosphere electric field is more efficient for a colder and denser plasma sheet, which is found following northward IMF, than for the hotter and more tenuous plasma sheet found following southward IMF. Our simulation results so far indicate further earthward penetration of plasma sheet particles in response to enhanced convection if the preceding IMF is southward, which leads to weaker electric field shielding. Recently we have integrated the RCM with a magnetic field solver to obtain magnetic fields that are in force balance with given plasma pressures in the equatorial plane. We expect the self-consistent magnetic field to have a pronounced dawn dusk asymmetry due to the asymmetric inner magnetospheric pressure. This should affect the radial distance and MLT of plasma sheet penetration into the inner magnetosphere. We are currently using this force-balanced and self-consistent model with our realistic boundary conditions to evaluate the dependence of the shielding timescale on pre-existing plasma sheet number density and temperature and to more quantitatively determine the correlation between the plasma sheet conditions and spatial distribution of the penetrating particles. Our results are potentially crucial to understanding the contribution of plasma sheet penetration to the development of the storm-time ring current.
Dust particle radial confinement in a dc glow discharge.
Sukhinin, G I; Fedoseev, A V; Antipov, S N; Petrov, O F; Fortov, V E
2013-01-01
A self-consistent nonlocal model of the positive column of a dc glow discharge with dust particles is presented. Radial distributions of plasma parameters and the dust component in an axially homogeneous glow discharge are considered. The model is based on the solution of a nonlocal Boltzmann equation for the electron energy distribution function, drift-diffusion equations for ions, and the Poisson equation for a self-consistent electric field. The radial distribution of dust particle density in a dust cloud was fixed as a given steplike function or was chosen according to an equilibrium Boltzmann distribution. The balance of electron and ion production in argon ionization by an electron impact and their losses on the dust particle surface and on the discharge tube walls is taken into account. The interrelation of discharge plasma and the dust cloud is studied in a self-consistent way, and the radial distributions of the discharge plasma and dust particle parameters are obtained. It is shown that the influence of the dust cloud on the discharge plasma has a nonlocal behavior, e.g., density and charge distributions in the dust cloud substantially depend on the plasma parameters outside the dust cloud. As a result of a self-consistent evolution of plasma parameters to equilibrium steady-state conditions, ionization and recombination rates become equal to each other, electron and ion radial fluxes become equal to zero, and the radial component of electric field is expelled from the dust cloud.
Early Detection | Division of Cancer Prevention
[[{"fid":"171","view_mode":"default","fields":{"format":"default","field_file_image_alt_text[und][0][value]":"Early Detection Research Group Homepage Logo","field_file_image_title_text[und][0][value]":"Early Detection Research Group Homepage Logo","field_folder[und]":"15"},"type":"media","field_deltas":{"1":{"format":"default","field_file_image_alt_text[und][0][value]":"Early
Mapping the change of Phragmites australis live biomass in the lower Mississippi River Delta marshes
Ramsey, Elijah W.; Rangoonwala, Amina
2017-07-28
Multiyear remote sensing mapping of the normalized difference vegetation index (NDVI) was carried out as an indicator of live biomass composition of the Phragmites australis (hereafter Phragmites) marsh in the lower Mississippi River Delta (hereafter delta) from 2014 to 2017. Maps of NDVI change showed that the Phragmites condition was fairly stable between May 2014 and July 2015. From July 2015 to April 2016 NDVI change indicated Phragmites suffered a widespread decline in the live biomass proportion. Between April and September 2016, most marsh remained unchanged from the earlier period or showed improvement; although there were pockets of continued decline scattered throughout the lower delta. From September 2016 to May 2017 a pronounced and widely exhibited decline in the condition of Phragmites marsh again occurred throughout the lower delta. This final NDVI change mapping supported field observations of Phragmites decline during the same period.
Fuchs, G; Drechsler, S-L; Kozlova, N; Behr, G; Köhler, A; Werner, J; Nenkov, K; Klingeler, R; Hamann-Borrero, J; Hess, C; Kondrat, A; Grobosch, M; Narduzzo, A; Knupfer, M; Freudenberger, J; Büchner, B; Schultz, L
2008-12-05
We report upper critical field Bc2(T) data for disordered (arsenic-deficient) LaO0.9F0.1FeAs1-delta in a wide temperature and magnetic field range up to 47 T. Because of the large linear slope of Bc2 approximately -5.4 to -6.6 T/K near Tc approximately 28.5 K, the T dependence of the in-plane Bc2(T) shows a flattening near 23 K above 30 T which points to Pauli-limited behavior with Bc2(0) approximately 63-68 T. Our results are discussed in terms of disorder effects within [corrected] unconventional superconducting pairings.
NASA Technical Reports Server (NTRS)
Min, Q.-L.; Lummerzheim, D.; Rees, M. H.; Stamnes, K.
1993-01-01
The consequences of electric field acceleration and an inhomogeneous magnetic field on auroral electron energy distributions in the topside ionosphere are investigated. The one-dimensional, steady state electron transport equation includes elastic and inelastic collisions, an inhomogeneous magnetic field, and a field-aligned electric field. The case of a self-consistent polarization electric field is considered first. The self-consistent field is derived by solving the continuity equation for all ions of importance, including diffusion of O(+) and H(+), and the electron and ion energy equations to derive the electron and ion temperatures. The system of coupled electron transport, continuity, and energy equations is solved numerically. Recognizing observations of parallel electric fields of larger magnitude than the baseline case of the polarization field, the effect of two model fields on the electron distribution function is investigated. In one case the field is increased from the polarization field magnitude at 300 km to a maximum at the upper boundary of 800 km, and in another case a uniform field is added to the polarization field. Substantial perturbations of the low energy portion of the electron flux are produced: an upward directed electric field accelerates the downward directed flux of low-energy secondary electrons and decelerates the upward directed component. Above about 400 km the inhomogeneous magnetic field produces anisotropies in the angular distribution of the electron flux. The effects of the perturbed energy distributions on auroral spectral emission features are noted.
NASA Technical Reports Server (NTRS)
Min, Q.-L.; Lummerzheim, D.; Rees, M. H.; Stamnes, K.
1993-01-01
The consequences of electric field acceleration and an inhomogencous magnetic field on auroral electron energy distributions in the topside ionosphere are investigated. The one- dimensional, steady state electron transport equation includes elastic and inelastic collisions, an inhomogencous magnetic field, and a field-aligned electric field. The case of a self-consistent polarization electric field is considered first. The self-consistent field is derived by solving the continuity equation for all ions of importance, including diffusion of 0(+) and H(+), and the electron and ion energy equations to derive the electron and ion temperatures. The system of coupled electron transport, continuity, and energy equations is solved numerically. Recognizing observations of parallel electric fields of larger magnitude than the baseline case of the polarization field, the effect of two model fields on the electron distribution function in investigated. In one case the field is increased from the polarization field magnitude at 300 km to a maximum at the upper boundary of 800 km, and in another case a uniform field is added to the polarization field. Substantial perturbations of the low energy portion of the electron flux are produced: an upward directed electric field accelerates the downward directed flux of low-energy secondary electrons and decelerates the upward directed component. Above about 400 km the inhomogencous magnetic field produces anisotropies in the angular distribution of the electron flux. The effects of the perturbed energy distributions on auroral spectral emission features are noted.
2003-07-22
KENNEDY SPACE CENTER, FLA. - A solid rocket booster (SRB) for the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF) arrives at Launch Complex 17-B, Cape Canaveral Air Force Station. The Delta II Heavy features nine 46-inch-diameter, stretched SRBs. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.
Ramundo-Orlando, Alfonsina; Serafino, Annalucia; Schiavo, Rosangela; Liberti, Micaela; d'Inzeo, Guglielmo
2005-02-01
The effect of extremely low frequency and low amplitude magnetic fields on gap junctional permeability was investigated by using reconstituted connexin32 hemi channel in liposomes. Cytochrome c was loaded inside these proteoliposomes and its reduction upon addition of ascorbate in the bulk aqueous phase was adopted as the index of hemi channel permeability. The permeability rate of the hemi channels, expressed as DeltaA/min, was dependent on the incubation temperature of proteoliposomes. The effect of exposures to magnetic fields at different frequencies (7, 13 and 18 Hz) and amplitudes (50, 50 and 70 microT, respectively), and at different temperatures (16, 18 and 24 degrees C) was studied. Only the exposure of proteoliposomes to 18-Hz (B(acpeak) and B(dc)=70 microT) magnetic field for 60 min at 16+/-0.4 degrees C resulted in a significant enhancement of the hemi channel permeability from DeltaA/min=0.0007+/-0.0002 to DeltaA/min=0.0010+/-0.0001 (P=0.030). This enhancement was not found for magnetic field exposures of liposomes kept at the higher temperatures tested. Temperature appears to influence lipid bilayer arrangement in such a way as being capable to mask possible effects induced by the magnetic field. Although the observed effect was very low, it seems to confirm the applicability of our model previously proposed for the interaction of low frequency electromagnetic fields with lipid membrane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopasov, V. P., E-mail: lopas@iao.ru
The conditions for dissipative self-organization of a fireball (FB) is a molecular gas by means of a regular correction of an elastic collision of water and nitrogen molecules by the field of a coherent bi-harmonic light wave (BLW) are presented. The BWL field is generated due to conversion of energy of a linear lightning discharge into light energy. A FB consists of two components: an ensemble of optically active diamagnetic electron-ion nanoparticles and a standing wave of elliptical polarization (SWEP). It is shown that the FB lifetime depends on the energies accumulated by nanoparticles and the SWEP field and onmore » the stability of self-oscillations of the energy between nanoparticles and SWEP.« less
Determination of University Athletes Character through Sport Participation in Niger Delta of Nigeria
ERIC Educational Resources Information Center
Dada, Benson Olu
2016-01-01
There are increasing reports concerning the character displayed by athletes on and off the field of play. These reports are not far different from the ones observed in Nigerian University sports. This worrisome report has necessitated this study carried out on determining the character of university athletes in Niger Delta region of Nigeria. The…
USDA-ARS?s Scientific Manuscript database
Promoting effective immunity to Mycobacterium tuberculosis complex pathogens is a challenge that is of interest to the fields of human and veterinary medicine alike. We report that gamma delta T cells from virulent Mycobacterium bovis-infected cattle respond specifically and directly to complex, pro...
Jing, Tian-Xing; Wu, Yu-Xian; Li, Ting; Wei, Dan-Dan; Smagghe, Guy; Wang, Jin-Jun
2017-04-01
Glutathione S-transferases (GSTs) comprise a diverse family of enzymes found ubiquitously in aerobic organisms and they play important roles in insecticide resistance. In this study, we tested the sensitivities of Liposcelis entomophila, collected from four different field populations, to three insecticides. The results showed that the insects from Tongliang population had a relatively higher tolerance to malathion and propuxor than insects from other field populations. The insecticide sensitivities of different populations detected in psocids may be due to the different control practices. Through sequence mining and phylogenetic analyses, we identified 15 delta class GST genes that contained the conserved motifs of the GSTs. Quantitative real-time PCR (Q-PCR) analysis indicated that the 15 GST genes were expressed at all tested developmental stages, and 12 GST genes had significantly higher expression levels in adulthood than in egg stage. The expression levels of 15 GST genes in different field populations showed that 9 GST genes were significantly higher in Tongliang population compared to other populations. Furthermore, Q-PCR confirmed that the expression of several delta class GSTs was upregulated at different times after malathion, propuxor and deltamethrine exposure with the LC 50 concentration of insecticide. Taken together, these findings showed that delta class GST genes have various expression levels in different developmental stages and different field populations, and they were up-regulated in response to insecticide exposure, which suggested that these GSTs may be associated with insecticide metabolism in psocids. Copyright © 2017 Elsevier Inc. All rights reserved.
Fatigue crack growth under general-yielding cyclic-loading
NASA Technical Reports Server (NTRS)
Minzhong, Z.; Liu, H. W.
1986-01-01
In low cycle fatigue, cracks are initiated and propagated under general yielding cyclic loading. For general yielding cyclic loading, Dowling and Begley have shown that fatigue crack growth rate correlates well with the measured delta J. The correlation of da/dN with delta J was also studied by a number of other investigators. However, none of thse studies have correlated da/dN with delta J calculated specifically for the test specimens. Solomon measured fatigue crack growth in specimens in general yielding cyclic loading. The crack tips fields for Solomon's specimens are calculated using the finite element method and the J values of Solomon's tests are evaluated. The measured crack growth rate in Solomon's specimens correlates very well with the calculated delta J.
Astrøm, Anne Nordrehaug; Okullo, I
2004-12-01
This study addressed three questions: What is the power of the Theory of Planned Behavior (TPB) in predicting adolescents' intended and self-perceived consumption of non-milk extrinsic sugars using a non-intervention prospective approach? To what extent do the TPB constructs change across time following adolescents' mere exposure to an oral health survey? Do changes in self-perceived sugar consumption at follow-up associate with changes in behavioral intention as predicted by the TPB? A survey was conducted in Kampala (urban) and Lira (rural) and 1146 secondary school students completed questionnaires assessing the TPB at school (Time 1). A random sub-sample of 415 students was selected from the original survey of which 372 students were examined clinically. After 3 months (Time 2), the questionnaire was administered a second time in the sub-sample. All analyses are based on the number of students who participated on both survey occasions, n = 372. Attitudes and perceived behavioral control predicted intended sugar consumption at Time 1 and Time 2, accounting for 58% (DeltaR(2) = 0.58) and 19% (DeltaR(2) = 0.19) of the variance, respectively. Time 1 intention provided significant prediction of Time 2 self-perceived sugar consumption with DeltaR(2) = 0.5. Adolescents with high-caries experience more than their counterparts with low, changed towards weaker intentions and less frequent sugar consumption across the survey period. Mean sugar consumption scores changed from 2.6 to 2.7 (ns), 3.1 to 2.6 (P < 0.001) and 2.3 to 3.2 (P < 0.001) among adolescents who, respectively, remained stable, increased and decreased their intentions across time. This study supports the validity of the TPB in predicting intended and self-perceived sugar consumption prospectively.
Magnetic field experiment on the SUNSAT satellite
NASA Astrophysics Data System (ADS)
Kotzé, P. B.; Langenhoven, B.; Risbo, T.
2002-03-01
On Tuesday 23 February 1999, at 10:29 UTC, SUNSAT was launched into an 857×655 km, 96.47° polar orbit on a Boeing-Delta II rocket from Vandenberg Air Force Base in California, USA. Both SUNSAT and Ørsted were NASA-sponsored secondary payloads accompanying the USA Air Force Argos satellite. In the process it became South Africa's (and Africa's) first satellite in space. Although sponsored by several private industrial organisations, it is essentially a student project with more than 96 graduate students in the Department of Electronic and Electrical Engineering at the University of Stellenbosch providing the majority of SUNSAT's engineering development and operation since 1992. This paper reports on the magnetic field experiment on board the Sunsat satellite, consisting of two fluxgate magnetometers, called Orimag and Scimag, both built and calibrated by the Hermanus Magnetic Observatory. Orimag is mainly used for orientation control purposes on SUNSAT, while Scimag, mounted on a boom of 2.2 m is designed to perform geomagnetic field observations, employing standard navigation fluxgate technology.
Dispersion mechanisms of a tidal river junction in the Sacramento–San Joaquin Delta, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gleichauf, Karla T.; Wolfram, Philip J.; Monsen, Nancy E.
In branching channel networks, such as in the Sacramento–San Joaquin River Delta, junction flow dynamics contribute to dispersion of ecologically important entities such as fish, pollutants, nutrients, salt, sediment, and phytoplankton. Flow transport through a junction largely arises from velocity phasing in the form of divergent flow between junction channels for a portion of the tidal cycle. Field observations in the Georgiana Slough junction, which is composed of the North and South Mokelumne rivers, Georgiana Slough, and the Mokelumne River, show that flow phasing differences between these rivers arise from operational, riverine, and tidal forcing. A combination of Acoustic Dopplermore » Current Profile (ADCP) boat transecting and moored ADCPs over a spring–neap tidal cycle (May to June 2012) monitored the variability of spatial and temporal velocity, respectively. Two complementary drifter studies enabled assessment of local transport through the junction to identify small-scale intrajunction dynamics. We supplemented field results with numerical simulations using the SUNTANS model to demonstrate the importance of phasing offsets for junction transport and dispersion. Different phasing of inflows to the junction resulted in scalar patchiness that is characteristic of MacVean and Stacey’s (2011) advective tidal trapping. Furthermore, we observed small-scale junction flow features including a recirculation zone and shear layer, which play an important role in intra-junction mixing over time scales shorter than the tidal cycle (i.e., super-tidal time scales). Thus, the study period spanned open- and closed-gate operations at the Delta Cross Channel. Synthesis of field observations and modeling efforts suggest that management operations related to the Delta Cross Channel can strongly affect transport in the Delta by modifying the relative contributions of tidal and riverine flows, thereby changing the junction flow phasing.« less
Dispersion mechanisms of a tidal river junction in the Sacramento–San Joaquin Delta, California
Gleichauf, Karla T.; Wolfram, Philip J.; Monsen, Nancy E.; ...
2014-12-17
In branching channel networks, such as in the Sacramento–San Joaquin River Delta, junction flow dynamics contribute to dispersion of ecologically important entities such as fish, pollutants, nutrients, salt, sediment, and phytoplankton. Flow transport through a junction largely arises from velocity phasing in the form of divergent flow between junction channels for a portion of the tidal cycle. Field observations in the Georgiana Slough junction, which is composed of the North and South Mokelumne rivers, Georgiana Slough, and the Mokelumne River, show that flow phasing differences between these rivers arise from operational, riverine, and tidal forcing. A combination of Acoustic Dopplermore » Current Profile (ADCP) boat transecting and moored ADCPs over a spring–neap tidal cycle (May to June 2012) monitored the variability of spatial and temporal velocity, respectively. Two complementary drifter studies enabled assessment of local transport through the junction to identify small-scale intrajunction dynamics. We supplemented field results with numerical simulations using the SUNTANS model to demonstrate the importance of phasing offsets for junction transport and dispersion. Different phasing of inflows to the junction resulted in scalar patchiness that is characteristic of MacVean and Stacey’s (2011) advective tidal trapping. Furthermore, we observed small-scale junction flow features including a recirculation zone and shear layer, which play an important role in intra-junction mixing over time scales shorter than the tidal cycle (i.e., super-tidal time scales). Thus, the study period spanned open- and closed-gate operations at the Delta Cross Channel. Synthesis of field observations and modeling efforts suggest that management operations related to the Delta Cross Channel can strongly affect transport in the Delta by modifying the relative contributions of tidal and riverine flows, thereby changing the junction flow phasing.« less
Psychophysiological Studies in Extreme Environments
NASA Technical Reports Server (NTRS)
Toscano, William B.
2011-01-01
This paper reviews the results from two studies that employed the methodology of multiple converging indicators (physiological measures, subjective self-reports and performance metrics) to examine individual differences in the ability of humans to adapt and function in high stress environments. The first study was a joint collaboration between researchers at the US Army Research Laboratory (ARL) and NASA Ames Research Center. Twenty-four men and women active duty soldiers volunteered as participants. Field tests were conducted in the Command and Control Vehicle (C2V), an enclosed armored vehicle, designed to support both stationary and on-the-move operations. This vehicle contains four computer workstations where crew members are expected to perform command decisions in the field under combat conditions. The study objectives were: 1) to determine the incidence of motion sickness in the C2V relative to interior seat orientation/position, and parked, moving and short-haul test conditions; and 2) to determine the impact of the above conditions on cognitive performance, mood, and physiology. Data collected during field tests included heart rate, respiration rate, skin temperature, and skin conductance, self-reports of mood and symptoms, and cognitive performance metrics that included seven subtests in the DELTA performance test battery. Results showed that during 4-hour operational tests over varied terrain motion sickness symptoms increased; performance degraded by at least 5 percent; and physiological response profiles of individuals were categorized based on good and poor cognitive performance. No differences were observed relative to seating orientation or position.
Reservoir characterization and modeling of deltaic facies, Lower Wilcox, Concordia Parish, Louisiana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schenewerk, P.; Goddard, D.; Echols, J.
Production decline in several fields in Concordia Parish, Louisiana, has sparked interest in the economic feasibility of producing the remaining bypassed oil in the lower Wilcox. One of these fields, the Bee Brake field, located in townships 4N, 6E and 4N, 7E, has been one of the more prolific oil-producing areas in east central Louisiana. The producing interval in the field, the Minter, typically consists of an upper Bee Brake sand and a lower Angelina sand. Cumulative production from the Angelina has been 2.1 mm STB of oil. A detailed study of a conventional core in the center of themore » field presented a 15-ft-thick Minter interval bounded above and below by sealing shales and lignites of lower delta plain marsh facies. The lower oil producing 3-ft thick Angelina consists of fine to medium sandstone of overbank bay fill facies. The upper 4-ft thick Bee Brake is a very fine silty sandstone with characteristics of a crevasse splay deposit. Special core analysis data (capillary pressure, relative permeability, and waterflood recovery) were obtained and have been used to develop a simulation model of the two reservoirs in the Minter. This model incorporates the geologic and engineering complexities noted during the first comprehensive evaluation of the field area. The model results will be used by the operators in the field to plan the optimal development for enhanced recovery. In addition, the production potential of the Bee Brake sand has been defined.« less
NASA Astrophysics Data System (ADS)
Fanget, Anne-Sophie; Berné, Serge; Jouet, Gwénaël; Bassetti, Maria-Angela; Dennielou, Bernard; Maillet, Grégoire M.; Tondut, Mathieu
2014-05-01
The modern Rhone delta in the Gulf of Lions (NW Mediterranean) is a typical wave-dominated delta that developed after the stabilization of relative sea level following the last deglacial sea-level rise. Similar to most other deltas worldwide, it displays several stacked parasequences and lobes that reflect the complex interaction between accommodation, sediment supply and autogenic processes on the architecture of a wave-dominated delta. The interpretation of a large set of newly acquired very high-resolution seismic and sedimentological data, well constrained by 14C dates, provides a refined three-dimensional image of the detailed architecture (seismic bounding surfaces, sedimentary facies) of the Rhone subaqueous delta, and allows us to propose a scenario for delta evolution during the last deglaciation and Holocene. The subaqueous delta consists of “parasequence-like” depositional wedges, a few metres to 20-30 m in thickness. These wedges first back-stepped inland toward the NW in response to combined global sea-level rise and overall westward oceanic circulation, at a time when sediment supply could not keep pace with rapid absolute (eustatic) sea-level rise. At the Younger Dryas-Preboreal transition, more rapid sea-level rise led to the formation of a major flooding surface (equivalent to a wave ravinement surface). After stabilization of global sea level in the mid-Holocene, accommodation became the leading factor in controlling delta architecture. An eastward shift of depocentres occurred, probably favoured by higher subsidence rate within the thick Messinian Rhone valley fill. The transition between transgressive (backstepping geometry) and regressive (prograding geometry) (para)sequences resulted in creation of a Maximum Flooding Surface (MFS) that differs from a “classical” MFS described in the literature. It consists of a coarse-grained interval incorporating reworked shoreface material within a silty clay matrix. This distinct lithofacies results from condensation/erosion, which appears as an important process even within supply-dominated deltaic systems, due to avulsion of distributaries. The age of the MFS varies along-strike between ca. 7.8 and 5.6 kyr cal. BP in relation to the position of depocentres and climatically-controlled sediment supply. The last rapid climate change of the Holocene, the Little Ice Age (1250-1850 AD), had a distinct stratigraphic influence on the architecture and lithofacies of the Rhone subaqueous delta through the progradation of two deltaic lobes. In response to changes in sediment supply linked to rapid climate changes (and to anthropic factors), the Rhone delta evolved from wave-dominated to fluvial dominated, and then wave dominated again.
Postec, Anne; Quéméneur, Marianne; Bes, Méline; Mei, Nan; Benaïssa, Fatma; Payri, Claude; Pelletier, Bernard; Monnin, Christophe; Guentas-Dombrowsky, Linda; Ollivier, Bernard; Gérard, Emmanuelle; Pisapia, Céline; Gérard, Martine; Ménez, Bénédicte; Erauso, Gaël
2015-01-01
Active carbonate chimneys from the shallow marine serpentinizing Prony Hydrothermal Field were sampled 3 times over a 6 years period at site ST09. Archaeal and bacterial communities composition was investigated using PCR-based methods (clone libraries, Denaturating Gel Gradient Electrophoresis, quantitative PCR) targeting 16S rRNA genes, methyl coenzyme M reductase A and dissimilatory sulfite reductase subunit B genes. Methanosarcinales (Euryarchaeota) and Thaumarchaea were the main archaeal members. The Methanosarcinales, also observed by epifluorescent microscopy and FISH, consisted of two phylotypes that were previously solely detected in two other serpentinitzing ecosystems (The Cedars and Lost City Hydrothermal Field). Surprisingly, members of the hyperthermophilic order Thermococcales were also found which may indicate the presence of a hot subsurface biosphere. The bacterial community mainly consisted of Firmicutes, Chloroflexi, Alpha-, Gamma-, Beta-, and Delta-proteobacteria and of the candidate division NPL-UPA2. Members of these taxa were consistently found each year and may therefore represent a stable core of the indigenous bacterial community of the PHF chimneys. Firmicutes isolates representing new bacterial taxa were obtained by cultivation under anaerobic conditions. Our study revealed diverse microbial communities in PHF ST09 related to methane and sulfur compounds that share common populations with other terrestrial or submarine serpentinizing ecosystems.
Final Results from the BIMA CMB Anisotropy Survey and Search for Signature of the SZ Effect
NASA Technical Reports Server (NTRS)
Dawson, K. S.; Holzapfel, W. L.; Carlstrom, J. E.; Joy, M.; LaRoque, S. J.
2006-01-01
We report the final results of our study of the cosmic microwave background (CMB) with the BIMA array. Over 1000 hours of observation were dedicated to this project exploring CMB anisotropy on scales between 1' and 2' in eighteen 6'.6 FWHM fields. In the analysis of the CMB power spectrum, the visibility data is divided into two bins corresponding to different angular scales. Modeling the observed excess power as a flat band of average multipole l(sub eff)= 5237, we find deltaT(sup 2)(sub 1) = 220(sup +140)(sub -120) mu K(sup 2) at 68% confidence and deltaT(sup 2)(sub 1) greater than 0 muK(sup 2) with 94.7% confidence. In a second band with average multipole of l(sub eff) = 8748, we find deltaT(sup 2)(sub 2) consistent with zero, and an upper limit 880 muK(sup 2) at 95% confidence. An extensive series of tests and supplemental observations with the VLA provide strong evidence against systematic errors or radio point sources being the source of the observed excess power. The dominant source of anisotropy on these scales is expected to arise from the Sunyaev-Zel'dovich (SZ) effect in a population of distant galaxy clusters. If the excess power is due to the SZ effect, we can place constraints on the normalization of the matter power spectrum sigma(sub 8) = 1.03(sup +0.20)(sub -0.29) at 68% confidence. The distribution of pixel fluxes in the BIMA images are found to be consistent with simulated observations of the expected SZ background and rule out instrumental noise or radio sources as the source of the observed excess power with similar confidence to the detection of excess power. Follow-up optical observations to search for galaxy over-densities anti-correlated with flux in the BIMA images, as might be expected from the SZ effect, proved to be inconclusive.
Harper, Jeremy; Malone, Stephen M.; Bachman, Matthew D.; Bernat, Edward M.
2015-01-01
Recent work suggests that dissociable activity in theta and delta frequency bands underlies several common event-related potential (ERP) components, including the nogo N2/P3 complex, which can better index separable functional processes than traditional time-domain measures. Reports have also demonstrated that neural activity can be affected by stimulus sequence context information (i.e., the number and type of preceding stimuli). Stemming from prior work demonstrating that theta and delta index separable processes during response inhibition, the current study assessed sequence context in a Go/Nogo paradigm in which the number of go stimuli preceding each nogo was selectively manipulated. Principal component analysis (PCA) of time-frequency representations revealed differential modulation of evoked theta and delta related to sequence context, where delta increased robustly with additional preceding go stimuli, while theta did not. Findings are consistent with the view that theta indexes simpler initial salience-related processes, while delta indexes more varied and complex processes related to a variety of task parameters. PMID:26751830
Atmospheric heating of meteorites: Results from nuclear track studies
NASA Technical Reports Server (NTRS)
Jha, R.
1984-01-01
A quantitative model to estimate the degree of annealing of nuclear tracks in mineral grains subjected to a variable temperature history was proposed. This model is applied to study the track annealing records in different meteorites resulting from their atmospheric heating. Scale lengths were measured of complete and partial track annealing, delta X sub 1 and delta X sub 2, respectively. In mineral grain close to fusion crust in about a dozen meteorites. Values of delta X sub 1 and delta X sub 2 depend on extent and duration of heating during atmospheric transit and hence on meteorite entry parameters. To estimate track annealing, the temperature history during atmospheric heating at different distances from the crusted surface of the meteorite is obtained by solving heat conduction equation in conjunction with meteorite entry model, and use of the annealing model to evaluate the degree of annealing of tracks. It is shown that the measured values of delta X sub 1 and delta X sub 2 in three of the meteorites studied are consistent with values using preatmospheric mass, entry velocity and entry angle of these meteorites.
Lawson concepts and criticality in DT fusion reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lartigue, J.G.
1987-12-01
The original Lawson concepts (amplification factor R and parameter n{tau}) as well as their applications in DT reactors are discussed in two cases: the ignition regime and the subignition regime in a self-sufficient plant. The modified Lawson factor or internal amplification factor R{sub a} (a function of alpha power) is proposed as a means to measure the ignition level reached by the plasma, in a more precise way than that given by the collective parameter (n{tau}kT). The self-sufficiency factor ({delta}) is proposed as a means to measure the plant self-sufficiency, {delta} being more significant than the traditional Q factor. Itmore » is stated that the ignition regime (R{sub a} = 1) is equivalent to a critical state (energy equilibrium); then, the corresponding critical mass concept is proposed. The analysis of the R{sub a} relationship with temperature (kT), (n{tau}), and recirculating factor ({var epsilon}) gives the conditions for the reactor to reach ignition or for the plant to reach self-sufficiency; it also shows that an approach to ignition is not improved by heating from 50 to 100 KeV.« less
Thermometric titration studies of mixed ligand complexes of thorium.
Kugler, G C; Carey, G H
1970-10-01
Mixed-ligand chelates consisting of two different multidentate ligands linked to a central thorium(IV) ion have been prepared in aqueous solution and their heats of formation studied thermo metrically. Pyrocatechol, tiron, chromotropic acid, potassium hydrogen phthalate, 8-hydroxyquinoline-S-sulphonic acid, iminodiacetic acid, 5-sulphosalicylic acid and salicylic acid were used as the secondary ligands, while ethylenediaminetetra-acetate and 1, 2-diaminocyclohexane-N,N,N',N'-tetra-acetate were used as primary ligands. DeltaH values for the overall reactions are given, and where possible, the DeltaH and DeltaS values for the specific secondary ligand addition were calculated. The overall stability of the mixed-ligand chelates and the enhanced stability of EDTA mixed chelates relative to the analogous DCTA chelates were found to be due to entropy rather than enthalpy effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, A; Han, B; Bush, K
Purpose: Dosimetric verification of VMAT/SBRT is currently performed on one or two planes in a phantom with either film or array detectors. A robust and easy-to-use 3D dosimetric tool has been sought since the advent of conformal radiation therapy. Here we present such a strategy for independent 3D VMAT/SBRT plan verification system by a combined use of EPID and cloud-based Monte Carlo (MC) dose calculation. Methods: The 3D dosimetric verification proceeds in two steps. First, the plan was delivered with a high resolution portable EPID mounted on the gantry, and the EPID-captured gantry-angle-resolved VMAT/SBRT field images were converted into fluencemore » by using the EPID pixel response function derived from MC simulations. The fluence was resampled and used as the input for an in-house developed Amazon cloud-based MC software to reconstruct the 3D dose distribution. The accuracy of the developed 3D dosimetric tool was assessed using a Delta4 phantom with various field sizes (square, circular, rectangular, and irregular MLC fields) and different patient cases. The method was applied to validate VMAT/SBRT plans using WFF and FFF photon beams (Varian TrueBeam STX). Results: It was found that the proposed method yielded results consistent with the Delta4 measurements. For points on the two detector planes, a good agreement within 1.5% were found for all the testing fields. Patient VMAT/SBRT plan studies revealed similar level of accuracy: an average γ-index passing rate of 99.2± 0.6% (3mm/3%), 97.4± 2.4% (2mm/2%), and 72.6± 8.4 % ( 1mm/1%). Conclusion: A valuable 3D dosimetric verification strategy has been developed for VMAT/SBRT plan validation. The technique provides a viable solution for a number of intractable dosimetry problems, such as small fields and plans with high dose gradient.« less
A theoretical study of bond selective photochemistry in CH2BrI
NASA Astrophysics Data System (ADS)
Liu, Kun; Zhao, Hongmei; Wang, Caixia; Zhang, Aihua; Ma, Siyu; Li, Zonghe
2005-01-01
Bromoiodomethane photodissociation in the low-lying excited states has been characterized using unrestricted Hartree-Fock, configuration-interaction-singles, and complete active space self-consistent field calculations with the SDB-aug-cc-pVTZ, aug-cc-pVTZ, and 3-21g** basis sets. According to the results of the vertical excited energies and oscillator strengths of these low-lying excited states, bond selectivity is predicted. Subsequently, the minimum energy paths of the first excited singlet state and the third excited state for the dissociation reactions were calculated using the complete active space self-consistent field method with 3-21g** basis set. Good agreement is found between the calculations and experimental data. The relationships of excitations, the electronic structures at Franck-Condon points, and bond selectivity are discussed.
Pfeiffer, Florian; Rauhut, Guntram
2011-10-13
Accurate anharmonic frequencies are provided for molecules of current research, i.e., diazirines, diazomethane, the corresponding fluorinated and deuterated compounds, their dioxygen analogs, and others. Vibrational-state energies were obtained from state-specific vibrational multiconfiguration self-consistent field theory (VMCSCF) based on multilevel potential energy surfaces (PES) generated from explicitly correlated coupled cluster, CCSD(T)-F12a, and double-hybrid density functional calculations, B2PLYP. To accelerate the vibrational structure calculations, a configuration selection scheme as well as a polynomial representation of the PES have been exploited. Because experimental data are scarce for these systems, many calculated frequencies of this study are predictions and may guide experiments to come.
NASA Astrophysics Data System (ADS)
Gârlea, Ioana C.; Mulder, Bela M.
2017-12-01
We design a novel microscopic mean-field theory of inhomogeneous nematic liquid crystals formulated entirely in terms of the tensor order parameter field. It combines the virtues of the Landau-de Gennes approach in allowing both the direction and magnitude of the local order to vary, with a self-consistent treatment of the local free-energy valid beyond the small order parameter limit. As a proof of principle, we apply this theory to the well-studied problem of a colloid dispersed in a nematic liquid crystal by including a tunable wall coupling term. For the two-dimensional case, we investigate the organization of the liquid crystal and the position of the point defects as a function of the strength of the coupling constant.
NASA Astrophysics Data System (ADS)
Lu, Shih-I.
2018-01-01
We use the discrete solvent reaction field model to evaluate the linear and second-order nonlinear optical susceptibilities of 3-methyl-4-nitropyridine-1-oxyde crystal. In this approach, crystal environment is created by supercell architecture. A self-consistent procedure is used to obtain charges and polarizabilities for environmental atoms. Impact of atomic polarizabilities on the properties of interest is highlighted. This approach is shown to give the second-order nonlinear optical susceptibilities within error bar of experiment as well as the linear optical susceptibilities in the same order as experiment. Similar quality of calculations are also applied to both 4-N,N-dimethylamino-3-acetamidonitrobenzene and 2-methyl-4-nitroaniline crystals.
Integral processing in beyond-Hartree-Fock calculations
NASA Technical Reports Server (NTRS)
Taylor, P. R.
1986-01-01
The increasing rate at which improvements in processing capacity outstrip improvements in input/output performance of large computers has led to recent attempts to bypass generation of a disk-based integral file. The direct self-consistent field (SCF) method of Almlof and co-workers represents a very successful implementation of this approach. This paper is concerned with the extension of this general approach to configuration interaction (CI) and multiconfiguration-self-consistent field (MCSCF) calculations. After a discussion of the particular types of molecular orbital (MO) integrals for which -- at least for most current generation machines -- disk-based storage seems unavoidable, it is shown how all the necessary integrals can be obtained as matrix elements of Coulomb and exchange operators that can be calculated using a direct approach. Computational implementations of such a scheme are discussed.
NASA Astrophysics Data System (ADS)
Kuchar, J.; Milne, G. A.; Wolstencroft, M.; Love, R.; Tarasov, L.; Hijma, M.
2017-12-01
Sea level rise presents a hazard for coastal populations and the Mississippi Delta (MD) is a region particularly at risk due to the high rates of land subsidence. We apply a gravitationally self-consistent model of glacial and sediment isostatic adjustment (SIA) along with a realistic sediment load reconstruction in this region for the first time to determine isostatic contributions to relative sea level (RSL) and land motion. We determine optimal model parameters (Earth rheology and ice history) using a new high quality compaction-free sea level indicator database and a parameter space of four ice histories and 400 Earth rheologies. Using the optimal model parameters, we show that SIA is capable of lowering predicted RSL in the MD area by several metres over the Holocene and so should be taken into account when modelling these data. We compare modelled contemporary rates of vertical land motion with those inferred using GPS. This comparison indicates that isostatic processes can explain the majority of the observed vertical land motion north of latitude 30.7oN, where subsidence rates average about 1 mm/yr; however, vertical rates south of this latitude shows large data-model discrepancies of greater than 3 mm/yr, indicating the importance of non-isostatic processes controlling the observed subsidence. This discrepancy extends to contemporary RSL change, where we find that the SIA contribution in the Delta is on the order of 10-1 mm per year. We provide estimates of the isostatic contributions to 20th and 21st century sea level rates at Gulf Coast PSMSL tide gauge locations as well as vertical and horizontal land motion at GPS station locations near the Mississippi Delta.
Silica Glass Fibers : Modes Of Degradation And Thoughts On Protection
NASA Astrophysics Data System (ADS)
Kruger, Albert A.; Mularie, William M.
1984-03-01
The widely held explanation for mechanical failure of silicate glasses rests upon the existence of Griffith-flaw and the associated free-ion diffusion concept used to model crack growth. However, this theory has consistently failed to provide complete agreement with the experimental results known to those "schooled" in the poignant literature. This dilemma coupled with the reports of single-valued strengths in fibers cannot be rationalized by the modification of the intrinsic Griffith-flaw distribution to essentially a delta function (this violates entropy). It is for these reasons that the field-enhanced ion diffusion model has been introduced. The inclusion of a term for electrostatic potential in the solution of Fick's second law is shown to be consistent with the experimental results in the existing literature. The results of the work presented herein provide further support of the proposed model, and the implied consequences of chemical corrosion in glass which results in its subsequent failure.
Sand transport, shear stress, and the building of a delta
NASA Astrophysics Data System (ADS)
Wagner, W.; Miller, K. L.; Hiatt, M. R.; Mohrig, D. C.
2017-12-01
River deltas distribute sediment to the coastal sea through a complex branching network of channels; however, the routing and storage of this sediment in and through the delta is poorly understood. We present results from field studies of the sediment and water transport through the branching Wax Lake Delta on the coast of Louisiana. Two channels studied, Main Pass and East Pass, maintain a near-equal total partitioning of flow and sediment. However, East Pass is narrower and has higher river velocities, lower tidal velocity fluctuations, less alluvial bed cover, and more sediment flux per unit width than Main Pass. We connect these differences to small differences in the geometry of the two channels and feedbacks between these differences. We link trends in measured sediment deposits to both measured and modeled shear velocities in Wax Lake Delta's channels and open water `islands' to understand how hydrologic processes shaped the sedimentary architecture of the delta. These connections define the sediment transport and deposition regimes in the WLD. We extend the results herein to suggest that the relationships between the available sediment and shear stress determines the basic planform of the Wax Lake Delta and cross-sectional geometries of its channels.
NASA Astrophysics Data System (ADS)
Wilson, C.; Bain, R. L.; Goodbred, S. L., Jr.; Hale, R. P.
2017-12-01
Studies of tidal channel dynamics frequently emphasize "morphologically short" spatial scales (i.e., settings in which the cross-system tidal propagation time is negligible) or idealized single-channel planforms. In contrast, tides in the Ganges-Brahmaputra-Meghna Delta (GBMD) propagate more than 100 kilometers inland from the coast through a network of interconnected tidal estuaries, producing complex hydrodynamic behavior that remains poorly understood. Intense anthropogenic modification of the GBMD landscape further complicates tidally-driven, natural delta surface maintenance. Analyzing this system is particularly urgent given the current trend of rising sea level and its associated impacts on coastal communities.We present results from an ongoing field investigation of tidal waveform interaction and mass exchange between the Pussur and Shibsa Rivers, two large macrotidal estuaries in the southwestern GBMD. In the 1960s, construction of earthen embankments ("polders") eliminated regular tidal inundation for a vast region of the tidal platform, shrinking the Shibsa and Pussur basins by an estimated 1000 km2 and 700 km2, respectively. Conservation of mass predicts that a reduction in tidal basin area will decrease peak flow velocities and induce channel siltation; indeed, 100 km2 of secondary channels at the distal end of the tidal range have partly or fully closed in recent decades. The Pussur is likewise rapidly shoaling, restricting navigational access along a major shipping route. However, discharge and bathymetric datasets indicate that the adjacent Shibsa conveys three to four times more water than the Pussur and is actively scouring its bed, contrary to its predicted response to polder construction. Our field measurements are consistent with an ongoing channel capture event in which the Shibsa floods and drains a progressively greater portion of the former Pussur basin, allowing the Shibsa to widen and deepen despite the regional trend of channel abandonment. These observations suggest that natural or anthropogenic changes to a tidal basin can drive rapid morphological adjustment of these typically-stable tidal channel systems.
NASA Astrophysics Data System (ADS)
Koehl, Patrice; Orland, Henri; Delarue, Marc
2011-08-01
We present an extension of the self-consistent mean field theory for protein side-chain modeling in which solvation effects are included based on the Poisson-Boltzmann (PB) theory. In this approach, the protein is represented with multiple copies of its side chains. Each copy is assigned a weight that is refined iteratively based on the mean field energy generated by the rest of the protein, until self-consistency is reached. At each cycle, the variational free energy of the multi-copy system is computed; this free energy includes the internal energy of the protein that accounts for vdW and electrostatics interactions and a solvation free energy term that is computed using the PB equation. The method converges in only a few cycles and takes only minutes of central processing unit time on a commodity personal computer. The predicted conformation of each residue is then set to be its copy with the highest weight after convergence. We have tested this method on a database of hundred highly refined NMR structures to circumvent the problems of crystal packing inherent to x-ray structures. The use of the PB-derived solvation free energy significantly improves prediction accuracy for surface side chains. For example, the prediction accuracies for χ1 for surface cysteine, serine, and threonine residues improve from 68%, 35%, and 43% to 80%, 53%, and 57%, respectively. A comparison with other side-chain prediction algorithms demonstrates that our approach is consistently better in predicting the conformations of exposed side chains.
NASA Astrophysics Data System (ADS)
Blanco, J. M.; Zhukov, A. P.; González, J.
1999-12-01
The magneto-impedance effect icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/> Z/ZH = [Z(H)-Z(Hmax)]/Z(Hmax) has been measured in (Fe0.95Co0.05)72.5B15Si12.5 wire under torsion stress, icons/Journals/Common/xi" ALT="xi" ALIGN="TOP"/> (torsion angle per unit length) with axial magnetic field (H) as parameter. Without stress (icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/> Z/Z)H(H) dependence has a non-monotonous shape with first an increase of total impedance Z and then a decrease, i.e. shows a maximum at certain axial magnetic field Hm. It was found that the torsion stress dependence of electrical impedance (torsion impedance), (icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/> Z/Z)icons/Journals/Common/xi" ALT="xi" ALIGN="MIDDLE"/> = [Z(icons/Journals/Common/xi" ALT="xi" ALIGN="TOP"/>)-Z(icons/Journals/Common/xi" ALT="xi" ALIGN="TOP"/>max)]/Z(icons/Journals/Common/xi" ALT="xi" ALIGN="TOP"/>max), has asymmetric character with a clear maximum at torsion angle, icons/Journals/Common/xi" ALT="xi" ALIGN="TOP"/> around 7icons/Journals/Common/pi" ALT="pi" ALIGN="TOP"/> rad m-1 in as-cast wire, while (icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/> Z/Z)icons/Journals/Common/xi" ALT="xi" ALIGN="MIDDLE"/> reaches a maximum around 170%. Thermal treatments under torsion stress (without and with a previous annealing stage) develop a helical anisotropy on the amorphous wire, which drastically modifies the (icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/> Z/Z)icons/Journals/Common/xi" ALT="xi" ALIGN="MIDDLE"/> response. Such treatments were carried out by using current annealing which resulted in a drastic increase of the maximum (icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/> Z/Z)icons/Journals/Common/xi" ALT="xi" ALIGN="MIDDLE"/> up to 225%, and a change of torsion dependence of icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/> Z/Z with a tendency to a finally symmetric dependence of (icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/> Z/Z)icons/Journals/Common/xi" ALT="xi" ALIGN="MIDDLE"/>(icons/Journals/Common/xi" ALT="xi" ALIGN="TOP"/>). The maximum (icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/> Z/Z)icons/Journals/Common/xi" ALT="xi" ALIGN="MIDDLE"/> ratio, (icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/> Z/Z)icons/Journals/Common/xi" ALT="xi" ALIGN="TOP"/> m, was obtained under torsion stress of icons/Journals/Common/xi" ALT="xi" ALIGN="TOP"/> = 20icons/Journals/Common/pi" ALT="pi" ALIGN="TOP"/> rad m-1 (in a torsion annealed sample) and
= 11
rad m-1 (with pre-annealing and torsion annealing). Observed dependences were explained taking into account the frozen-in magneto-elastic anisotropy owing to the internal stress distribution during the fabrication process, the helical anisotropies induced by the torsion strain and that developed by thermal treatment under torsion stress (torsion annealing). The differences in the shape and intensity of the maximum (
Z/Z)
m between the torsion annealed and pre-annealed and torsion annealed samples should be ascribed to the visco-elastic character of the helical anisotropy induced by torsion stress.
Migration in Deltas: An Integrated Analysis
NASA Astrophysics Data System (ADS)
Nicholls, Robert J.; Hutton, Craig W.; Lazar, Attila; Adger, W. Neil; Allan, Andrew; Arto, Inaki; Vincent, Katharine; Rahman, Munsur; Salehin, Mashfiqus; Sugata, Hazra; Ghosh, Tuhin; Codjoe, Sam; Appeaning-Addo, Kwasi
2017-04-01
Deltas and low-lying coastal regions have long been perceived as vulnerable to global sea-level rise, with the potential for mass displacement of exposed populations. The assumption of mass displacement of populations in deltas requires a comprehensive reassessment in the light of present and future migration in deltas, including the potential role of adaptation to influence these decisions. At present, deltas are subject to multiple drivers of environmental change and often have high population densities as they are accessible and productive ecosystems. Climate change, catchment management, subsidence and land cover change drive environmental change across all deltas. Populations in deltas are also highly mobile, with significant urbanization trends and the growth of large cities and mega-cities within or adjacent to deltas across Asia and Africa. Such migration is driven primarily by economic opportunity, yet environmental change in general, and climate change in particular, are likely to play an increasing direct and indirect role in future migration trends. The policy challenges centre on the role of migration within regional adaptation strategies to climate change; the protection of vulnerable populations; and the future of urban settlements within deltas. This paper reviews current knowledge on migration and adaptation to environmental change to discern specific issues pertinent to delta regions. It develops a new integrated methodology to assess present and future migration in deltas using the Volta delta in Ghana, Mahanadi delta in India and Ganges-Brahmaputra-Meghna delta across India and Bangladesh. The integrated method focuses on: biophysical changes and spatial distribution of vulnerability; demographic changes and migration decision-making using multiple methods and data; macro-economic trends and scenarios in the deltas; and the policies and governance structures that constrain and enable adaptation. The analysis is facilitated by a range of consistent scenarios from global to delta scales, developed in consultation with major stakeholders. Initial results suggest that migration decision-making strongly interacts with diverse measures for adaptation of land, water and agricultural management. A key normative challenge is to identify the parameters of successful migration and adaptation across delta regions, to inform policy analysis and formulation. Key words: Deltas, sea-level rise, migration and adaptation Acknowledgement: DECCMA (Deltas, Vulnerability & Climate Change: Migration & Adaptation) project is part of the Collaborative ADAPTATION Research Initiative in Africa and Asia (CARIAA), with financial support from the UK Government's Department for International Development (DFID) and the International Development Research Centre (IDRC), Canada.
Day, Warren C.; O'Neill, J. Michael
2008-01-01
The U.S. Geological Survey, in cooperation with the Alaska Department of Natural Resources Division of Mining, Land, and Water, has released a geologic map of the Big Delta B-1 quadrangle of east-central Alaska (Day and others, 2007). This companion report presents the major element oxide and trace element geochemical analyses, including those for gold, silver, and base metals, for representative rock units and for grab samples from quartz veins and mineralized zones within the quadrangle. Also included are field station locations, field notes, structural data, and field photographs based primarily on observations by W.C. Day with additions by J.M. O'Neill and B.M. Gamble, all of the U.S. Geological Survey. The data are provided in both Microsoft Excel spread sheet format and as a Microsoft Access database.
NASA Technical Reports Server (NTRS)
Lui, A. T. Y.; Krimigis, S. M.; Armstrong, T. P.
1982-01-01
The association between energetic protons (0.29-0.50 MeV) and simultaneous local fluctuations of magnetic field at 35 to 45 earth radii in the magnetotail is examined statistically with data from APL/JHU particle telescopes aboard IMP 7 and IMP 8. About four satellite years of 5.5 min averaged measurements are used in this study. In addition to confirming that the level of magnetic field fluctuations generally increases with the presence of energetic protons and their streaming anisotropy, it is found that increases in occurrence frequency of streaming of energetic protons are ordered far better by magnetic field fluctuations than by proximity to the neutral sheet. However, the presence of large magnetic field fluctuations (delta B greater than 5 nT or delta B/B greater than 50%) is neither a necessary nor a sufficient condition for the detection of large streaming in energetic protons.
NASA Astrophysics Data System (ADS)
Oyeyemi, Kehinde D.; Olowokere, Mary T.; Aizebeokhai, Ahzegbobor P.
2017-12-01
The evaluation of economic potential of any hydrocarbon field involves the understanding of the reservoir lithofacies and porosity variations. This in turns contributes immensely towards subsequent reservoir management and field development. In this study, integrated 3D seismic data and well log data were employed to assess the quality and prospectivity of the delineated reservoirs (H1-H5) within the OPO field, western Niger Delta using a model-based seismic inversion technique. The model inversion results revealed four distinct sedimentary packages based on the subsurface acoustic impedance properties and shale contents. Low acoustic impedance model values were associated with the delineated hydrocarbon bearing units, denoting their high porosity and good quality. Application of model-based inverted velocity, density and acoustic impedance properties on the generated time slices of reservoirs also revealed a regional fault and prospects within the field.
Spin torque oscillator for microwave assisted magnetization reversal
NASA Astrophysics Data System (ADS)
Taniguchi, Tomohiro; Kubota, Hitoshi
2018-05-01
A theoretical study is given for the self-oscillation excited in a spin torque oscillator (STO) consisting of an in-plane magnetized free layer and a perpendicularly magnetized pinned layer in the presence of a perpendicular magnetic field. This type of STO is a potential candidate for a microwave source of microwave assisted magnetization reversal (MAMR). It is, however, found that the self-oscillation applicable to MAMR disappears when the perpendicular field is larger than a critical value, which is much smaller than a demagnetization field. This result provides a condition that the reversal field of a magnetic recording bit by MAMR in nanopillar structure should be smaller than the critical value. The analytical formulas of currents determining the critical field are obtained, which indicate that a material with a small damping is not preferable to acheive a wide range of the self-oscillation applicable to MAMR, although such a material is preferable from the viewpoint of the reduction of the power consumption.