Rott, Eduard; Kuch, Bertram; Lange, Claudia; Richter, Philipp; Minke, Ralf
2018-06-16
This work investigates the influence of ammonium ions and the organic load (chemical oxygen demand (COD)) on the UV/chlorine AOP regarding the maintenance of free available chlorine (FAC) and elimination of 16 emerging contaminants (ECs) from wastewater treatment plant effluent (WWTE) at pilot scale (UV chamber at 0.4 kW). COD inhibited the FAC maintenance in the UV chamber influent at a ratio of 0.16 mg FAC per mg COD ( k HOCl⁻COD = 182 M −1 s −1 ). An increase in ammonium ion concentration led to a stoichiometric decrease of the FAC concentration in the UV chamber influent. Especially in cold seasons due to insufficient nitrification, the ammonium ion concentration in WWTE can become so high that it becomes impossible to achieve sufficiently high FAC concentrations in the UV chamber influent. For all ECs, the elimination effect by the UV/combined Cl₂ AOP (UV/CC) was not significantly higher than that by sole UV treatment. Accordingly, the UV/chlorine AOP is very sensitive and loses its effectiveness drastically as soon as there is no FAC but only CC in the UV chamber influent. Therefore, within the electrical energy consumption range tested (0.13⁻1 kWh/m³), a stable EC elimination performance of the UV/chlorine AOP cannot be maintained throughout the year.
Treatment of old landfill leachate with high ammonium content using aerobic granular sludge.
Ren, Yanan; Ferraz, Fernanda; Kang, Abbass Jafari; Yuan, Qiuyan
2017-01-01
Aerobic granular sludge has become an attractive alternative to the conventional activated sludge due to its high settling velocity, compact structure, and higher tolerance to toxic substances and adverse conditions. Aerobic granular sludge process has been studied intensively in the treatment of municipal and industrial wastewater. However, information on leachate treatment using aerobic granular sludge is very limited. This study investigated the treatment performance of old landfill leachate with different levels of ammonium using two aerobic sequencing batch reactors (SBR): an activated sludge SBR (ASBR) and a granular sludge SBR (GSBR). Aerobic granules were successfully developed using old leachate with low ammonium concentration (136 mg L -1 NH 4 + -N). The GSBR obtained a stable chemical oxygen demand (COD) removal of 70% after 15 days of operation; while the ASBR required a start-up of at least 30 days and obtained unstable COD removal varying from 38 to 70%. Ammonium concentration was gradually increased in both reactors. Increasing influent ammonium concentration to 225 mg L -1 N, the GSBR removed 73 ± 8% of COD; while COD removal of the ASBR was 59 ± 9%. The GSBR was also more efficient than the ASBR for nitrogen removal. The granular sludge could adapt to the increasing concentrations of ammonium, achieving 95 ± 7% removal efficiency at a maximum influent concentration of 465 mg L -1 N. Ammonium removal of 96 ± 5% was obtained by the ASBR when it was fed with a maximum of 217 mg L -1 NH 4 + -N. However, the ASBR was partially inhibited by free-ammonia and nitrite accumulation rate increased up to 85%. Free-nitrous acid and the low biodegradability of organic carbon were likely the main factors affecting phosphorus removal. The results from this research suggested that aerobic granular sludge have advantage over activated sludge in leachate treatment.
Torkaman, Mojtaba; Borghei, Seyed Mehdi; Tahmasebian, Sepehr; Andalibi, Mohammad Reza
2015-01-01
A moving bed biofilm reactor with pre-denitrification configuration was fed with a synthetic wastewater containing high chemical oxygen demand (COD) and ammonia. By changing different variables including ammonium and COD loading, nitrification rate in the aerobic reactor and denitrification rate in the anoxic reactor were monitored. Changing the influent loading was achieved via adjusting the inlet COD (956-2,096 mg/L), inlet ammonium (183-438 mg/L), and hydraulic retention time of the aerobic reactor (8, 12, and 18 hours). The overall organic loading rate was in the range of 3.60-17.37 gCOD/m2·day, of which 18.5-91% was removed in the anoxic reactor depending on the operational conditions. Considering the complementary role of the aerobic reactor, the overall COD removal was in the range 87.3-98.8%. In addition, nitrification rate increased with influent ammonium loading, the maximum rate reaching 3.05 gNH4/m2·day. One of the most important factors affecting nitrification rate was influent C:N entering the aerobic reactor, by increasing which nitrification rate decreased asymptotically. Nitrate removal efficiency in the anoxic reactor was also controlled by the inlet nitrate level entering the anoxic reactor. Furthermore, by increasing the nitrate loading rate from 0.91 to 3.49 gNO/m3·day, denitrification rate increased from 0.496 to 2.47 gNO/m3·day.
Two-stage soil infiltration treatment system for treating ammonium wastewaters of low COD/TN ratios.
Lei, Zhongfang; Wu, Ting; Zhang, Yi; Liu, Xiang; Wan, Chunli; Lee, Duu-Jong; Tay, Joo-Hwa
2013-01-01
Soil infiltration treatment (SIT) is ineffective to treat ammonium wastewaters of total nitrogen (TN) > 100 mg l(-1). This study applied a novel two-stage SIT process for effective TN removal from wastewaters of TN>100 mg l(-1) and of chemical oxygen demand (COD)/TN ratio of 3.2-8.6. The wastewater was first fed into the soil column (stage 1) at hydraulic loading rate (HLR) of 0.06 m(3) m(-2) d(-1) for COD removal and total phosphorus (TP) immobilization. Then the effluent from stage 1 was fed individually into four soil columns (stage 2) at 0.02 m(3) m(-2) d(-1) of HLR with different proportions of raw wastewater as additional carbon source. Over the one-year field test, balanced nitrification and denitrification in the two-stage SIT revealed excellent TN removal (>90%) from the tested wastewaters. Copyright © 2012 Elsevier Ltd. All rights reserved.
Water Quality Characteristics of Sembrong Dam Reservoir, Johor, Malaysia
NASA Astrophysics Data System (ADS)
Mohd-Asharuddin, S.; Zayadi, N.; Rasit, W.; Othman, N.
2016-07-01
A study of water quality and heavy metal content in Sembrong Dam water was conducted from April - August 2015. A total of 12 water quality parameters and 6 heavy metals were measured and classified based on the Interim National Water Quality Standard of Malaysia (INWQS). The measured and analyzed parameter variables were divided into three main categories which include physical, chemical and heavy metal contents. Physical and chemical parameter variables were temperature, dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solid (TSS), turbidity, pH, nitrate, phosphate, ammonium, conductivity and salinity. The heavy metals measured were copper (Cu), lead (Pb), aluminium (Al), chromium (Cr), ferum (Fe) and zinc (Zn). According to INWQS, the water salinity, conductivity, BOD, TSS and nitrate level fall under Class I, while the Ph, DO and turbidity lie under Class IIA. Furthermore, values of COD and ammonium were classified under Class III. The result also indicates that the Sembrong Dam water are not polluted with heavy metals since all heavy metal readings recorded were falls far below Class I.
[A Comparative Study on Two Membrane Bioreactors for the Treatment of Digested Piggery Wastewater].
Shui, Yong; Kawagishi, Tomoki; Song, Xiao-yan; Liu, Rui; Chen, Lü-jun
2015-09-01
With high concentrations of chemical oxygen demand (COD) and ammonium while low ratio of COD to total nitrogen (TN), digested piggery wastewater is difficult to treat using conventional biological methods. In this study, a biofilm membrane bioreactor (BF-MBR) and a traditional type of membrane bioreactor (MBR) were parallel operated to treat digested piggery wastewater, and the pollutant removal performance were compared at influent COD/TN ratios of 1. 0 ± 0. 2 and 2. 3 ± 0. 4, respectively. The results showed that the effluent quality in both reactors was poor and unstable when the influent COD/TN ratio was 1. 0 ± 0. 2. The effluent quality and stability were greatly improved as the influent COD/TN ratio was increased to 2. 3 ± 0. 4. The removal rates of COD and ammonium were respectively 92. 3% ± 2. 4% and 97. 5% ± 4. 1% in BF-MBR, slightly higher than 91. 9% ± 1. 5% and 91. 2% ± 14. 0% in MBR. Benefited from the biofilm, 36. 7% ± 19. 5% of TN and 54. 0% ± 18. 9% of TP were removed by BF-MBR, significantly higher than the respective values of 19. 2% ± 12. 4% and 29. 0% ± 18. 1% by MBR. Moreover, BF-MBR consumed less than 40% of the alkaline chemicals as MBR. BF-MBR was considered more suitable for treatment of digested piggery wastewater due to its better pollutant removal performance and low consumption of alkaline.
Lin, Richen; Cheng, Jun; Yang, Zongbo; Ding, Lingkan; Zhang, Jiabei; Zhou, Junhu; Cen, Kefa
2016-08-01
Cassava ethanol wastewater (CEW) was subjected to sequential dark H2, photo H2 and CH4 fermentation to maximize H2 production and energy yield. A relatively low H2 yield of 23.6mL/g soluble chemical oxygen demand (CODs) was obtained in dark fermentation. To eliminate the inhibition of excessive NH4(+) on sequential photo fermentation, zeolite was used to remove NH4(+) in residual dark solution (86.5% removal efficiency). The treated solution from 5gCODs/L of CEW achieved the highest photo H2 yield of 369.7mL/gCODs, while the solution from 20gCODs/L gave the lowest yield of 259.6mL/gCODs. This can be explained that photo H2 yield was correlated to soluble metabolic products (SMPs) yield in dark fermentation, and specific SMPs yield decreased from 38.0 to 18.1mM/g CODs. The total energy yield significantly increased to 8.39kJ/gCODs by combining methanogenesis with a CH4 yield of 117.9mL/gCODs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Collison, Robert S; Grismer, Mark E
2014-04-01
The current article focuses on chemical oxygen demand (COD) and nitrogen (ammonium and nitrate) removal performance from synthetic human wastewater as affected by different substrate rocks having a range of porosities and cation exchange capacities (CECs). The aggregates included lava rock, lightweight expanded shale, meta-basalt (control), and zeolite. The first three had CECs of 1 to 4 mequiv/100 gm, whereas the zeolite CEC was much greater (-80 mequiv/100 gm). Synthetic wastewater was gravity fed to each constructed wetland system, resulting in a 4-day retention time. Effluent samples were collected, and COD and nitrogen species concentrations measured regularly during four time periods from November 2008 through June 2009. Chemical oxygen demand and nitrogen removal fractions were not significantly different between the field and laboratory constructed wetland systems when corrected for temperature. Similarly, overall COD and nitrogen removal fractions were practically the same for the aggregate substrates. The important difference between aggregate effects was the zeolite's ammonia removal process, which was primarily by adsorption. The resulting single-stage nitrogen removal process may be an alternative to nitrification and denitrification that may realize significant cost savings in practice.
Hou, Jie; Wang, Xin; Wang, Jie; Xia, Ling; Zhang, Yiqing; Li, Dapeng; Ma, Xufa
2018-06-01
This study aimed at assessing the influence of aeration mode and influent COD/N ratio on nitrogen removal in constructed wetlands (CWs). The results showed that a simultaneous partial nitrification, anammox and denitrification (SNAD) process was established in the intermittent aerated V1. While nitrogen removal pathway gradually changed from partial nitrification-denitrification to complete nitrification-denitrification along with reducing COD/N ratio in the continuous limited aerated V2. Effective inhibition of NOBs under intermittent aeration conditions, good retention of anammox bacteria biomass and much faster depletion of COD prior to substantial NH 4 + -N conversion jointly led to the successful achievement of stable SNDA process with elevated influent COD/N ratios in V1. Furthermore, the presence of SNAD ensured a robust ammonium (84-92%) and TN (80-91%) removal efficiency in V1 under varying COD loading rates. In contrast, the TN removal efficiency decreased rapidly along with the reducing influent COD/N ratios in V2. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zhao, Q I; Li, W; You, S J
2006-01-01
Some industrial wastewaters may contain ammonium-nitrogen and/or sulphate, which need to be removed before their discharge into natural water bodies to eliminate their severe pollution. In this paper, simultaneous removal of ammonium-nitrogen and sulphate with an anaerobic attached-growth bioreactor of 3.8 L incubated with sulphate reducing bacteria (SRB) was investigated. Artificial wastewater containing sodium sulphate as electron acceptor, ammonium chlorine as electron donor and glucose as carbon source for bacteria growth was used as the feed for the bioreactor. The loading rates of ammonium-nitrogen, sulphate and COD were 2.08 gN/m3 x d, 2.38 gS/m3 x d, 104.17 gCOD/m3 x d, respectively, with a N/S ratio of 1:1.14. The results demonstrated that removal rates of ammonium-nitrogen, sulphate and COD could reach 43.35%, 58.74% and 91.34%, respectively. Meanwhile, sulphur production was observed in effluent as well as molecular nitrogen in biogas, whose amounts increased with time substantially, suggesting the occurrence of simultaneous removal of ammonium-nitrogen and sulphate. This novel reaction provided the possibility to eliminate ammonium-nitrogen and sulphate simultaneously with accomplishment of COD removal from wastewater, making wastewater treatment more economical and sustainable.
Wu, Jun; Zhang, Yue
2017-01-01
The simultaneous nitrogen and methane removal by the combined nitritation, anaerobic ammonium oxidation (anammox), and nitrite dependent anaerobic methane oxidation (n-damo) processes in the membrane aerated biofilm reactor (MABR) offers clear advantages in term of energy saving and greenhouse gas emission mitigation. The rejected water from sludge digestion usually contained high ammonium, COD, and dissolved methane. The impact of influent COD on the anaerobic methane and ammonium removal in an MABR was evaluated in the model based study. The results indicated that the influent COD did not reduce the methane and ammonium removal efficiency at C/N ratio (influent COD/NH 4 + -N) less than 0.1. At high C/N ratio, the oxygen transfer coefficient needed to be increased to achieve high methane and nitrogen removal. Substrate flux analysis indicated that heterotrophic denitrification in the outside layer of biofilm reduced the impact of influent COD. Heterotrophic growth needed to be limited at the outside layer by using NO 3 - as electron acceptor; otherwise, the heterotrophic bacteria would compete NO 2 - and space with anammox and n-damo bacteria in the inner layers and reduce the nitrogen and methane removal efficiency.
Xu, Dong; Liu, Sitong; Chen, Qian; Ni, Jinren
2017-12-01
The microbial community diversity in anaerobic-, anoxic- and oxic-biological zones of a conventional Carrousel oxidation ditch system for domestic wastewater treatment was systematically investigated. The monitored results of the activated sludge sampled from six full-scale WWTPs indicated that Proteobacteria, Chloroflexi, Bacteroidetes, Actinobacteria, Verrucomicrobia, Acidobacteria and Nitrospirae were dominant phyla, and Nitrospira was the most abundant and ubiquitous genus across the three biological zones. The anaerobic-, anoxic- and oxic-zones shared approximately similar percentages across the 50 most abundant genera, and three genera (i.e. uncultured bacterium PeM15, Methanosaeta and Bellilinea) presented statistically significantly differential abundance in the anoxic-zone. Illumina high-throughput sequences related to ammonium oxidizer organisms and denitrifiers with top50 abundance in all samples were Nitrospira, uncultured Nitrosomonadaceae, Dechloromonas, Thauera, Denitratisoma, Rhodocyclaceae (norank) and Comamonadaceae (norank). Moreover, environmental variables such as water temperature, water volume, influent ammonium nitrogen, influent chemical oxygen demand (COD) and effluent COD exhibited significant correlation to the microbial community according to the Monte Carlo permutation test analysis (p < 0.05). The abundance of Nitrospira, uncultured Nitrosomonadaceae and Denitratisoma presented strong positive correlations with the influent/effluent concentration of COD and ammonium nitrogen, while Dechloromonas, Thauera, Rhodocyclaceae (norank) and Comamonadaceae (norank) showed positive correlations with water volume and temperature. The established relationship between microbial community and environmental variables in different biologically functional zones of the six representative WWTPs at different geographical locations made the present work of potential use for evaluation of practical wastewater treatment processes.
Yuan, Ye; Chen, Chuan; Liang, Bin; Huang, Cong; Zhao, Youkang; Xu, Xijun; Tan, Wenbo; Zhou, Xu; Gao, Shuang; Sun, Dezhi; Lee, Duujong; Zhou, Jizhong; Wang, Aijie
2014-03-30
In this paper, we proposed an integrated reactor system for simultaneous removal of COD, sulfate and ammonium (integrated C-S-N removal system) and investigated the key parameters of the system for a high level of elemental sulfur (S(0)) production. The system consisted of 4 main units: sulfate reduction and organic carbon removal (SR-CR), autotrophic and heterotrophic denitrifying sulfide removal (A&H-DSR), sulfur reclamation (SR), and aerated filter for aerobic nitrification (AN). In the system, the effects of key operational parameters on production of elemental sulfur were investigated, including hydraulic retention time (HRT) of each unit, sulfide/nitrate (S(2-)-S/NO3(-)-N) ratios, reflux ratios between the A&H-DSR and AN units, and loading rates of chemical oxygen demand (COD), sulfate and ammonium. Physico-chemical characteristics of biosulfur were studied for acquiring efficient S(0) recovery. The experiments successfully explored the optimum parameters for each unit and demonstrated 98% COD, 98% sulfate and 78% nitrogen removal efficiency. The optimum HRTs for SR-CR, A&H-DSR and AN were 12h, 3h and 3h, respectively. The reflux ratio of 3 could provide adequate S(2-)-S/NO3(-)-N ratio (approximately 1:1) to the A&H-DSR unit for obtaining maximum sulfur production. In this system, the maximum production of S(0) reached 90%, but only 60% S(0) was reclaimed from effluent. The S(0) that adhered to the outer layer of granules was deposited in the bottom of the A&H-DSR unit. Finally, the microbial community structure of the corresponding unit at different operational stage were analyzed by 16S rRNA gene based high throughput Illumina MiSeq sequencing and the potential function of dominant species were discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
Mohammad-Pajooh, Ehsan; Weichgrebe, Dirk; Cuff, Graham
2017-02-01
Leachate characteristics, applied technologies and energy demand for leachate treatment were investigated through survey in different states of Germany. Based on statistical analysis of leachate quality data from 2010 to 2015, almost half of the contaminants in raw leachate satisfy direct discharge limits. Decrease in leachate pollution index of current landfills is mainly related to reduction in concentrations of certain heavy metals (Pb, Zn, Cd, Hg) and organics (biological oxygen demand (BOD 5 ), chemical oxygen demand (COD), and adsorbable organic halogen (AOX)). However, contaminants of concern remain COD, ammonium-nitrogen (NH 4 N) and BOD 5 with average concentrations in leachate of about 1850, 640, and 120 mg/L respectively. Concentrations of COD and NH 4 N vary seasonally, mainly due to temperature changes; concentrations during the first quarter of the year are mostly below the annual average value. Electrical conductivity (EC) of leachate may be used as a time and cost saving alternative to monitor sudden changes in concentration of these two parameters, due to high correlations of around 0.8 with both COD and NH 4 N values which are possibly due to low heavy metal concentrations in leachate. The decreased concentrations of heavy metals and BOD 5 favor the retrofitting of an existing biological reactor (nitrification/denitrification) with the deammonification process and post denitrification, as this lowers average annual operational cost (in terms of energy and external carbon source) and CO 2 emission by €25,850 and 15,855 kg CO 2,eq respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chaggu, Esnati J; Sanders, Wendy; Lettinga, Gatze
2007-11-01
The anaerobic digestion of "human waste" was studied at Mlalakuwa residential settlement in Dar-es-Salaam, Tanzania at ambient tropical temperatures (24-31 degrees C). This settlement experiences a high water table with flooding during the rainy season, resulting in a very costly emptying of the latrines once per month. To improve the situation, two plastic tanks (while one is in use, the other one is on stand-by) of 3000 l capacity each, named as Improved Pit-Latrines Without Urine Separation (IMPLWUS), were used as latrine pits. They received faeces+urine+wash water; basically, an accumulation system. Septic tank seed sludge was used. The dissolved chemical oxygen demand (COD(dis)) remaining when the reactor was closed after 380 days was about 8 g COD/l, volatile fatty acids were 100 mg COD/l and total ammonium nitrogen was about 2.8 g N/l, implying the possibility of methanogenesis inhibition. Stability results indicated a need for more degradation time after reactor closure. Estimated biogas production from wastewater generated by 10 people was 544 g COD-CH(4)/day, not enough for cooking purposes.
Meng, Jia; Li, Jiuling; Li, Jianzheng; Antwi, Philip; Deng, Kaiwen; Nan, Jun; Xu, Pianpian
2018-02-01
To enhance nutrient removal more cost-efficiently in microaerobic process treating piggery wastewater characterized by high ammonium (NH 4 + -N) and low chemical oxygen demand (COD) to total nitrogen (TN) ratio, a novel upflow microaerobic biofilm reactor (UMBR) was constructed and the efficiency in nutrient removal was evaluated with various influent COD/TN ratios and reflux ratios. The results showed that the biofilm on the carriers had increased the biomass in the UMBR and enhanced the enrichment of slow-growth-rate bacteria such as nitrifiers, denitrifiers and anammox bacteria. The packed bed allowed the microaerobic biofilm process perform well at a low reflux ratio of 35 with a NH 4 + -N and TN removal as high as 93.1% and 89.9%, respectively. Compared with the previously developed upflow microaerobic sludge reactor, the UMBR had not changed the dominant anammox approach to nitrogen removal, but was more cost-efficiently in treating organic wastewater with high NH 4 + -N and low COD/TN ratio. Copyright © 2017 Elsevier Ltd. All rights reserved.
Performance and microbial community of anammox in presence of micro-molecule carbon source.
He, Shilong; Yang, Wan; Qin, Meng; Mao, Zhen; Niu, Qigui; Han, Ming
2018-08-01
Because ammonium (NH 4 + -N) coexists with organic matter in some wastewaters, the possible adverse influences of organic matter become a major concern in the applications of anaerobic ammonium oxidation (anammox). In this study, the effects of acetate, as a representative of micro-molecule organic matter, on anammox were investigated. Efficient nitrogen removal was realized because denitrifying bacteria and anammox bacteria (AnAOB) had a better synergistic effect under the condition of chemical oxygen demand (COD) concentrations lower than 251 ± 7 mg L -1 . Furthermore, the nitrogen removal efficiency (NRE) decreased to 82.02 ± 3.14% when COD was increased to 730 ± 9 mg L -1 , and effluent free ammonia (FA) reached 21.93 ± 4.71 mg L -1 might be one of factors leading to inhibition. However, the nitrogen-removal contribution rate of anammox remained steady at 61.97 ± 2.84% at COD of 730 ± 9 mg L -1 , which indicated that anammox was still dominant in the system. AnAOB, such as Ca. Kuenenia and Ca. Jettenia, and denitrifying bacteria, such as Denitratisoma and Thauera, were found to coexist in the reactor. Interestingly, Ca. Kuenenia presented in the trend of first decreased then increased with the increasing of organic matter concentration, which might be one of reasons that anammox played an important role in nitrogen removal at high COD concentration. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei Yanjie; Key Laboratory of Environmental Protection in Water Transport Engineering Ministry of Communications, Tianjin Research Institute of Water Transport Engineering, Tianjin 300456; Ji Min, E-mail: jmtju@yahoo.cn
2012-03-15
Highlights: Black-Right-Pointing-Pointer Aerobic granular sludge SBR was used to treat real landfill leachate. Black-Right-Pointing-Pointer COD removal was analyzed kinetically using a modified model. Black-Right-Pointing-Pointer Characteristics of nitrogen removal at different ammonium inputs were explored. Black-Right-Pointing-Pointer DO variations were consistent with the GSBR performances at low ammonium inputs. - Abstract: Granule sequencing batch reactors (GSBR) were established for landfill leachate treatment, and the COD removal was analyzed kinetically using a modified model. Results showed that COD removal rate decreased as influent ammonium concentration increasing. Characteristics of nitrogen removal at different influent ammonium levels were also studied. When the ammonium concentration inmore » the landfill leachate was 366 mg L{sup -1}, the dominant nitrogen removal process in the GSBR was simultaneous nitrification and denitrification (SND). Under the ammonium concentration of 788 mg L{sup -1}, nitrite accumulation occurred and the accumulated nitrite was reduced to nitrogen gas by the shortcut denitrification process. When the influent ammonium increased to a higher level of 1105 mg L{sup -1}, accumulation of nitrite and nitrate lasted in the whole cycle, and the removal efficiencies of total nitrogen and ammonium decreased to only 35.0% and 39.3%, respectively. Results also showed that DO was a useful process controlling parameter for the organics and nitrogen removal at low ammonium input.« less
Chemical composition and binary mixture of human urinary stones using FT-Raman spectroscopy method.
Selvaraju, R; Raja, A; Thiruppathi, G
2013-10-01
In the present study the human urinary stones were observed in their different chemical compositions of calcium oxalate monohydrate, calcium oxalate dihydrate, calcium phosphate, struvite (magnesium ammonium phosphate), uric acid, cystine, oxammite (ammonium oxalate monohydrate), natroxalate (sodium oxalate), glushinkite (magnesium oxalate dihydrate) and moolooite (copper oxalate) were analyzed using Fourier Transform-Raman (FT-Raman) spectroscopy. For the quantitative analysis, various human urinary stone samples are used for ratios calculation of binary mixtures compositions such as COM/COD, HAP/COD, HAP/COD, Uric acid/COM, uric acid/COD and uric acid/HAP. The calibration curve is used for further analysis of binary mixture of human urinary stones. For the binary mixture calculation the various intensities bands at 1462 cm(-1) (I(COM)), 1473 cm(-1) (I(COD)), 961 cm(-1) (I(HAP)) and 1282 cm(-1) (I(UA)) were used. Copyright © 2013 Elsevier B.V. All rights reserved.
Brennan, R B; Clifford, E; Devroedt, C; Morrison, L; Healy, M G
2017-03-01
Landfill leachate is the result of water percolating through waste deposits that have undergone aerobic and anaerobic microbial decomposition. In recent years, increasingly stringent wastewater discharge requirements have raised questions regarding the efficacy of co-treatment of leachate in municipal wastewater treatment plants (WWTPs). This study aimed to (1) examine the co-treatment of leachate with a 5-day biochemical oxygen demand (BOD 5 ): chemical oxygen demand (COD) ratio less than or slightly greater than 0.26 (intermediate age leachate) in municipal WWTPs (2) quantify the maximum hydraulic and mass (expressed as mass nitrogen or COD) loading of landfill leachate (as a percentage of the total influent loading rate) above which the performance of a WWTP may be inhibited, and (3) quantify the impact of a range of hydraulic loading rates (HLRs) of young and intermediate age leachate, loaded on a volumetric basis at 0 (study control), 2, 4 and 10% (volume landfill leachate influent as a percentage of influent municipal wastewater), on the effluent ammonium concentrations. The leachate loading regimes examined were found to be appropriate for effective treatment of intermediate age landfill leachate in the WWTPs examined, but co-treatment may not be suitable in WWTPs with low ammonium-nitrogen (NH 4 -N) and total nitrogen (TN) emission limit values (ELVs). In addition, intermediate leachate, loaded at volumetric rates of up to 4% or 50% of total WWTP NH 4 -N loading, did not significantly inhibit the nitrification processes, while young leachate, loaded at volumetric rates greater of than 2% (equivalent to 90% of total WWTP NH 4 -N loading), resulted in a significant decrease in nitrification. The results show that current hydraulic loading-based acceptance criteria recommendations should be considered in the context of leachate NH 4 -N composition. The results also indicate that co-treatment of old leachate in municipal WWTPs may represent the most sustainable solution for ongoing leachate treatment in the cases examined. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chen, Chongjun; Huang, Xiaoxiao; Lei, Chenxiao; Zhang, Tian C; Wu, Weixiang
2013-11-01
Anaerobic ammonium-N removal from modified greenhouse turtle breeding wastewater with different chemical oxygen demand (COD) strengths (194.0-577.8 mg L(-1)) at relatively fixed C/N ratios (≈ 2) was investigated using a lab-scale up-flow anaerobic sludge blanket (UASB) anammox reactor. During the entire experiment, the total nitrogen (TN) removal efficiency was about 85% or higher, while the average COD removal efficiency was around 56.5 ± 7.9%. Based on the nitrogen and carbon balance, the nitrogen removal contribution was 79.6 ± 4.2% for anammox, 12.7 ± 3.0% for denitrification+denitritation and 7.7 ± 4.9% for other mechanisms. Denaturing gradient gel electrophoresis (DGGE) analyses revealed that Planctomycete, Proteobacteria and Chloroflexi bacteria were coexisted in the reactor. Anammox was always dominant when the reactor was fed with different COD concentrations, which indicated the stability of the anammox process with the coexistence of the denitrification process in treating greenhouse turtle breeding wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.
Jing, Zhaoqian; Li, Yu-You; Cao, Shiwei; Liu, Yuyu
2012-09-01
To improve trickling filters' denitrification efficiency, a biofilter with a trickling upper layer and a submerged lower layer was developed and applied in treating highly polluted river water. It was packed with porous coal fly ash ceramic granules. Its start-up characteristics, influence of hydraulic loading rates (HLR), carbon/nitrogen (C/N) ratio and filter depth on pollutants removal were investigated. The results indicated this biofilter was started quickly in 16 days with river sediment as inoculum. Alternating nitrification and denitrification were achieved when water flowed downwards. COD and nitrogen were mainly removed in the upper layer and the lower layer, respectively. With HLR of 4.0-5.0m(3)/(m(2)d), chemical oxygen demand (COD), ammonium (NH(4)(+)-N) and total nitrogen (TN) in the effluent were below 50, 5 and 15 mg/L, respectively. This biofilter removed more than 80% of COD, 85% of NH(4)(+)-N and 60% of TN with C/N ratios ranging from 6 to 10. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bachmann-Machnik, Anna; Meyer, Daniel; Waldhoff, Axel; Fuchs, Stephan; Dittmer, Ulrich
2018-04-01
Retention Soil Filters (RSFs), a form of vertical flow constructed wetlands specifically designed for combined sewer overflow (CSO) treatment, have proven to be an effective tool to mitigate negative impacts of CSOs on receiving water bodies. Long-term hydrologic simulations are used to predict the emissions from urban drainage systems during planning of stormwater management measures. So far no universally accepted model for RSF simulation exists. When simulating hydraulics and water quality in RSFs, an appropriate level of detail must be chosen for reasonable balancing between model complexity and model handling, considering the model input's level of uncertainty. The most crucial parameters determining the resultant uncertainties of the integrated sewer system and filter bed model were identified by evaluating a virtual drainage system with a Retention Soil Filter for CSO treatment. To determine reasonable parameter ranges for RSF simulations, data of 207 events from six full-scale RSF plants in Germany were analyzed. Data evaluation shows that even though different plants with varying loading and operation modes were examined, a simple model is sufficient to assess relevant suspended solids (SS), chemical oxygen demand (COD) and NH4 emissions from RSFs. Two conceptual RSF models with different degrees of complexity were assessed. These models were developed based on evaluation of data from full scale RSF plants and column experiments. Incorporated model processes are ammonium adsorption in the filter layer and degradation during subsequent dry weather period, filtration of SS and particulate COD (XCOD) to a constant background concentration and removal of solute COD (SCOD) by a constant removal rate during filter passage as well as sedimentation of SS and XCOD in the filter overflow. XCOD, SS and ammonium loads as well as ammonium concentration peaks are discharged primarily via RSF overflow not passing through the filter bed. Uncertainties of the integrated simulation of the sewer system and RSF model mainly originate from the model parameters of the hydrologic sewer system model.
Miller, Mark W; Elliott, Matt; DeArmond, Jon; Kinyua, Maureen; Wett, Bernhard; Murthy, Sudhir; Bott, Charles B
2017-06-01
The pursuit of fully autotrophic nitrogen removal via the anaerobic ammonium oxidation (anammox) pathway has led to an increased interest in carbon removal technologies, particularly the A-stage of the adsorption/bio-oxidation (A/B) process. The high-rate operation of the A-stage and lack of automatic process control often results in wide variations of chemical oxygen demand (COD) removal that can ultimately impact nitrogen removal in the downstream B-stage process. This study evaluated the use dissolved oxygen (DO) and mixed liquor suspended solids (MLSS) based automatic control strategies through the use of in situ on-line sensors in the A-stage of an A/B pilot study. The objective of using these control strategies was to reduce the variability of COD removal by the A-stage and thus the variability of the effluent C/N. The use of cascade DO control in the A-stage did not impact COD removal at the conditions tested in this study, likely because the bulk DO concentration (>0.5 mg/L) was maintained above the half saturation coefficient of heterotrophic organisms for DO. MLSS-based solids retention time (SRT) control, where MLSS was used as a surrogate for SRT, did not significantly reduce the effluent C/N variability but it was able to reduce COD removal variation in the A-stage by 90%.
Cho, Kangwoo; Qu, Yan; Kwon, Daejung; Zhang, Hao; Cid, Clément A; Aryanfar, Asghar; Hoffmann, Michael R
2014-02-18
We have investigated electrochemical treatment of real domestic wastewater coupled with simultaneous production of molecular H2 as useful byproduct. The electrolysis cells employ multilayer semiconductor anodes with electroactive bismuth-doped TiO2 functionalities and stainless steel cathodes. DC-powered laboratory-scale electrolysis experiments were performed under static anodic potentials (+2.2 or +3.0 V NHE) using domestic wastewater samples, with added chloride ion in variable concentrations. Greater than 95% reductions in chemical oxygen demand (COD) and ammonium ion were achieved within 6 h. In addition, we experimentally determined a decreasing overall reactivity of reactive chlorine species toward COD with an increasing chloride ion concentration under chlorine radicals (Cl·, Cl2(-)·) generation at +3.0 V NHE. The current efficiency for COD removal was 12% with the lowest specific energy consumption of 96 kWh kgCOD(-1) at the cell voltage of near 4 V in 50 mM chloride. The current efficiency and energy efficiency for H2 generation were calculated to range from 34 to 84% and 14 to 26%, respectively. The hydrogen comprised 35 to 60% by volume of evolved gases. The efficacy of our electrolysis cell was further demonstrated by a 20 L prototype reactor totally powered by a photovoltaic (PV) panel, which was shown to eliminate COD and total coliform bacteria in less than 4 h of treatment.
Cydzik-Kwiatkowska, Agnieszka; Rusanowska, Paulina; Zielińska, Magdalena; Bernat, Katarzyna; Wojnowska-Baryła, Irena
2014-02-01
This study investigated how hydraulic retention time (HRT) and COD/N ratio affect nitrogen-converting consortia in constantly aerated granules treating high-ammonium digester supernatant. Three HRTs (10, 13, 19 h) were tested at COD/N ratios of 4.5 and 2.3. Denaturing gradient gel electrophoresis and relative real-time PCR were used to characterize the microbial communities. When changes in HRT and COD/N increased nitrogen loading, the ratio of the relative abundance of aerobic to anaerobic ammonium-oxidizers decreased. The COD/N ratio determined the species composition of the denitrifiers; however, Thiobacillus denitrificans, Pseudomonas denitrificans and Azoarcus sp. showed a high tolerance to the environmental conditions and occurred in the granules from all reactors. Denitrifier genera that support granule formation were identified, such as Pseudomonas, Shinella, and Flavobacterium. In aerated granules, nirK-possessing bacteria were more diverse than nirS-possessing bacteria. At a low COD/N ratio, N2O-reducer diversity increased because of the presence of bacteria known as aerobic denitrifiers. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lashkarizadeh, Monireh; Yuan, Qiuyan; Oleszkiewicz, Jan A
2015-01-01
The impact of carbon source variation on the physical and chemical characteristics of aerobic granular sludge and its biological nutrient (nitrogen and phosphorus) removal performance was investigated. Two identical sequencing batch reactors, R1 and R2, were set up. Granular biomass was cultivated to maturity using acetate-based synthetic wastewater. After mature granules in both reactors with simultaneous chemical oxygen demand (COD), ammonium and phosphorus removal capability were achieved, the feed of R2 was changed to municipal wastewater and R1 was continued on synthetic feed as control. Biological phosphorus removal was completely inhibited in R2 due to lack of readily biodegradable COD; however, the biomass maintained high ammonium and COD removal efficiencies. The disintegration of the granules in R2 occurred during the first two weeks after the change of feed, but it did not have significant impacts on settling properties of the sludge. Re-granulation of the biomass in R2 was then observed within 30 d after granules' disintegration when the biomass acclimated to the new substrate. The granular biomass in R1 and R2 maintained a Sludge Volume Index close to 60 and 47 mL g(-1), respectively, during the experimental period. It was concluded that changing the carbon source from readily biodegradable acetate to the more complex ones present in municipal wastewater did not have significant impacts on aerobic granular sludge characteristics; it particularly did not affect its settling properties. However, sufficient readily biodegradable carbon would have to be provided to maintain simultaneous biological nitrate and phosphorus removal.
Nogueira, Bruno L; Pérez, Julio; van Loosdrecht, Mark C M; Secchi, Argimiro R; Dezotti, Márcia; Biscaia, Evaristo C
2015-09-01
In moving bed biofilm reactors (MBBR), the removal of pollutants from wastewater is due to the substrate consumption by bacteria attached on suspended carriers. As a biofilm process, the substrates are transported from the bulk phase to the biofilm passing through a mass transfer resistance layer. This study proposes a methodology to determine the external mass transfer coefficient and identify the influence of the mixing intensity on the conversion process in-situ in MBBR systems. The method allows the determination of the external mass transfer coefficient in the reactor, which is a major advantage when compared to the previous methods that require mimicking hydrodynamics of the reactor in a flow chamber or in a separate vessel. The proposed methodology was evaluated in an aerobic lab-scale system operating with COD removal and nitrification. The impact of the mixing intensity on the conversion rates for ammonium and COD was tested individually. When comparing the effect of mixing intensity on the removal rates of COD and ammonium, a higher apparent external mass transfer resistance was found for ammonium. For the used aeration intensities, the external mass transfer coefficient for ammonium oxidation was ranging from 0.68 to 13.50 m d(-1) and for COD removal 2.9 to 22.4 m d(-1). The lower coefficient range for ammonium oxidation is likely related to the location of nitrifiers deeper in the biofilm. The measurement of external mass transfer rates in MBBR will help in better design and evaluation of MBBR system-based technologies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yuan, Ye; Chen, Chuan; Zhao, Youkang; Wang, Aijie; Sun, Dezhi; Huang, Cong; Liang, Bin; Tan, Wenbo; Xu, Xijun; Zhou, Xu; Lee, Duu-Jung; Ren, Nanqi
2015-01-01
An integrated reactor system was developed for the simultaneous removal of carbon, sulfur and nitrogen from sulfate-laden wastewater and for elemental sulfur (S°) reclamation. The system mainly consisted of an expanded granular sludge bed (EGSB) for sulfate reduction and organic carbon removal (SR-CR), an EGSB for denitrifying sulfide removal (DSR), a biological aerated filter for nitrification and a sedimentation tank for sulfur reclamation. This work investigated the influence of chemical oxygen demand (COD)/sulfate ratios on the performance of the system. Influent sulfate and ammonium were fixed to the level of 600 mg SO(4)(2-) L⁻¹ and 120 mg NH(4)(+) L⁻¹, respectively. Lactate was introduced to generate COD/SO(4)(2-) = 0.5:1, 1:1, 1.5:1, 2:1, 3:1, 3.5:1 and 4:1. The experimental results indicated that sulfate could be efficiently reduced in the SR-CR unit when the COD/SO(4)(2-) ratio was between 1:1 and 3:1, and sulfate reduction was inhibited by the growth of methanogenic bacteria when the COD/SO(4)(2-) ratio was between 3.5:1 and 4:1. Meanwhile, the Org-C/S²⁻/NO(3)(-) ratios affected the S(0) reclamation efficiency in the DSR unit. When the influent COD/SO(4)(2-) ratio was between 1:1 and 3:1, appropriate Org-C/S²⁻/NO(3)(-) ratios could be achieved to obtain a maximum S° recovery in the DSR unit. For the microbial community of the SR-CR unit at different COD/SO(4)(2-) ratios, 16S rRNA gene-based high throughput Illumina MiSeq sequencing was used to analyze the diversity and potential function of the dominant species.
Collison, R S; Grismer, M E
2013-09-01
Comparisons of the performance of constructed-wetland systems (CWs) for treating domestic wastewater in the laboratory and field may use pathogen-free synthetic wastewater to avoid regulatory health concerns. However, little to no data are available describing the relative treatment efficiencies of CWs to both actual and synthetic domestic wastewaters so as to enable such comparison. To fill this gap, treatment performances with respect to organics (chemical organic demand; COD) and nitrogen (ammonium and nitrate) removal from domestic (septic tank) and a similar-strength synthetic wastewater under planted and non-planted subsurface-flow CWs are determined. One pair of CWs was planted with cattails in May 2008, whereas the adjacent system was non-planted. Collected septic tank or synthesized wastewater was allowed to gravity feed each CWs, and effluent samples were collected and tested for COD and nitrogen species regularly during four different periods over six months. Overall, statistically significant greater removal of COD (-12%) and nitrogen (-5%) occurred from the synthetic as compared with the domestic wastewater from the planted and non-planted CWs. Effluent BOD5/COD ratios from the synthetic wastewater CWs averaged nearly twice that from the domestic wastewater CWs (0.17 vs 0.10), reflecting greater concentrations of readily degraded compounds. That removal fractions were consistent across the mid-range loading rates to the CWs suggests that the synthetic wastewater can be used in testing laboratory CWs with reasonable success in application of their results to the field.
Liu, Shuxin; Li, Lan; Li, Huiqiang; Wang, Hui; Yang, Ping
2017-11-01
A continuous microbial fuel cell system was constructed treating ammonium/organics rich wastewater. Operational performance of MFC system, mechanisms of ammonium removal, effect of ammonium on organics removal and energy output, C and N balance of anode chamber and microbial community analysis of anode chamber were studied. It was concluded that 0.0914kg/m 3 d NH 4 + -N and 5.739kg/m 3 d COD were removed from anode chamber and simultaneous nitrification and denitrification (SND) occurred in cathode chamber resulting in COD, TN removal rate of 88.53%, 71.35% respectively. Excess ammonium affected energy output and the MFC system reached maximum energy output of 816.8mV and 62.94mW/m 3 . In anode chamber, Spirochaetes bacterium sp., Methanobacterium formicicum sp. was predominant in bacteria, archaea communities respectively which contributed to wastewater treatment and electricity generation. This study showed the potential for practical application of continuous flow MFC system treating ammonium/organics rich wastewater and achieving electricity generation simultaneously. Copyright © 2017 Elsevier Ltd. All rights reserved.
Almatouq, Abdullah; Babatunde, Akintunde O.
2016-01-01
This study investigated the mechanism and key factors influencing concurrent phosphorus (P) recovery and energy generation in microbial fuel cells (MFC) during wastewater treatment. Using a mediator-less dual chamber microbial fuel cell operated for 120 days; P was shown to precipitate as struvite when ammonium and magnesium chloride solutions were added to the cathode chamber. Monitoring data for chemical oxygen demand (COD), pH, oxidation reduction potential (ORP) and aeration flow rate showed that a maximum 38% P recovery was achieved; and this corresponds to 1.5 g/L, pH > 8, −550 ± 10 mV and 50 mL/min respectively, for COD, pHcathode, ORP and cathode aeration flow rate. More importantly, COD and aeration flow rate were shown to be the key influencing factors for the P recovery and energy generation. Results further show that the maximum P recovery corresponds to 72 mW/m2 power density. However, the energy generated at maximum P recovery was not the optimum; this shows that whilst P recovery and energy generation can be concurrently achieved in a microbial fuel cell, neither can be at the optimal value. PMID:27043584
Almatouq, Abdullah; Babatunde, Akintunde O
2016-03-29
This study investigated the mechanism and key factors influencing concurrent phosphorus (P) recovery and energy generation in microbial fuel cells (MFC) during wastewater treatment. Using a mediator-less dual chamber microbial fuel cell operated for 120 days; P was shown to precipitate as struvite when ammonium and magnesium chloride solutions were added to the cathode chamber. Monitoring data for chemical oxygen demand (COD), pH, oxidation reduction potential (ORP) and aeration flow rate showed that a maximum 38% P recovery was achieved; and this corresponds to 1.5 g/L, pH > 8, -550 ± 10 mV and 50 mL/min respectively, for COD, pH(cathode), ORP and cathode aeration flow rate. More importantly, COD and aeration flow rate were shown to be the key influencing factors for the P recovery and energy generation. Results further show that the maximum P recovery corresponds to 72 mW/m² power density. However, the energy generated at maximum P recovery was not the optimum; this shows that whilst P recovery and energy generation can be concurrently achieved in a microbial fuel cell, neither can be at the optimal value.
Mulder, A; Versprille, A I; van Braak, D
2012-01-01
The feasibility of sustainable nitrogen removal was investigated in a two stage biofilm configuration consisting of a MBBR (Moving Bed Biofilm Reactor) and a Deamox reactor (Biobed-EGSB). The MBBR is used for nitrification and the denitrifying ammonium oxidation (Deamox) is aimed at a nitrogen removal process in which part of the required nitrite for the typical anammox reaction originated from nitrate. Anaerobic pre-treated potato wastewater was supplied to a MBBR and Deamox reactor operated in series with a bypass flow of 30%. The MBBR showed stable nitrite production at ammonium-loading rates of 0.9-1.0 kg NH₄-N/m³ d with ammonium conversion rates of 0.80-0.85 kg NH₄-N/m³ d. The nitrogen-loading rate and conversion rate of the Deamox reactor were 1.6-1.8 and 1.6 kg N/m³ d. The maximum ammonium removal capacity in the Deamox reactor was 0.6 kg NH₄-N/m³ d. The removal efficiency of soluble total nitrogen reached 90%. The Deamox process performance was found to be negatively affected during decline of the operating temperature from 33 to 22 °C and by organic loading rates with a chemical oxygen demand (COD)/NO₂-N ratio >1.
Green Walls as an Approach in Grey Water Treatment
NASA Astrophysics Data System (ADS)
Rysulova, Martina; Kaposztasova, Daniela; Vranayova, Zuzana
2017-10-01
Grey water contributes significantly to waste water parameters such as biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), total phosphorus (Ptotal), total nitrogen (Ntotal), ammonium, boron, metals, salts, surfactants, synthetic chemicals, oils and greases, xenobiotic substances and microorganisms. Concentration of these pollutants and the water quality highlights the importance of treatment process in grey water systems. Treatment technologies operating under low energy and maintenance are usually preferred, since they are more cost effective for users. Treatment technologies based on natural processes represent an example of such technology including vegetated wall. Main aim of this paper is to introduce the proposal of vegetated wall managing grey water and brief characteristic of proposed system. Is expected that prepared experiment will establish the purifying ability and the potential of green wall application as an efficient treatment technology.
Zagatto, Alessandro M; Ardigò, Luca P; Barbieri, Fabio A; Milioni, Fabio; Dello Iacono, Antonio; Camargo, Bruno H F; Padulo, Johnny
2017-09-01
Zagatto, AM, Ardigò, LP, Barbieri, FA, Milioni, F, Dello Iacono, A, Camargo, BHF, and Padulo, J. Performance and metabolic demand of a new repeated-sprint ability test in basketball players: does the number of changes of direction matter? J Strength Cond Res 31(9): 2438-2446, 2017-This study compared 2 repeated-sprint ability (RSA) tests in basketball players. Both tests included 10 × 30-m sprints, with the difference that the previously validated test (RSA2COD) featured 2 changes of direction (COD) per sprint, whereas the experimental test (RSA5COD) featured 5 CODs per sprint. Test performances and metabolic demands were specifically assessed in 20 basketball players. First, RSA5COD test-retest reliability was investigated. Then, RSA2COD, RSA5COD sprint times, peak speeds, oxygen uptake (V[Combining Dot Above]O2) and posttest blood lactate concentration [La] were measured. The RSA5COD results showed to be reliable. RSA2COD performance resulted better than the RSA5COD version (p < 0.01), with shorter sprint times and higher peak speeds. Over sprints, the tests did not differ from each other in terms of V[Combining Dot Above]O2 (p > 0.05). Over whole bout, the RSA2COD was more demanding than the RSA5COD, considering overall metabolic power requirement (i.e., VO2-driven + [La]-driven components). Given that RSA5COD (a) mimics real game-play as sprint distance and action change frequency/direction and (b) has the same metabolic expenditure per task completion as metabolic cost, RSA5COD is a valuable option for players and coaches for training basketball-specific agility and assessing bioenergetic demands.
Performance of hybrid subsurface constructed wetland system for piggery wastewater treatment.
Zhang, X; Inoue, T; Kato, K; Harada, J; Izumoto, H; Wu, D; Sakuragi, H; Ietsugu, H; Sugawara, Y
2016-01-01
The objective of this study was to evaluate performance of a hybrid constructed wetland (CW) built for high organic content piggery wastewater treatment in a cold region. The system consists of four vertical and one horizontal flow subsurface CWs. The wetland was built in 2009 and water quality was monitored from the outset. Average purification efficiency of this system was 95±5, 91±7, 89±8, 70±10, 84±15, 90±6, 99±2, and 93±16% for biochemical oxygen demand (BOD5), chemical oxygen demand (COD), total carbon (TC), total nitrogen (TN), ammonium-N (NH4-N), total phosphorus (TP), total coliform (T. Coliform), and suspended solids (SS), respectively during August 2010-December 2013. Pollutant removal rate was 15±18 g m(-2) d(-1), 49±52 g m(-2) d(-1), 6±4 g m(-2) d(-1), 7±5 g m(-2) d(-1), and 1±1 g m(-2) d(-1) for BOD5, COD, TN, NH4-N, and TP, respectively. The removal efficiency of BOD5, COD, NH4-N, and SS improved yearly since the start of operation. With respect to removal of TN and TP, efficiency improved in the first three years but slightly declined in the fourth year. The system performed well during both warm and cold periods, but was more efficient in the warm period. The nitrate increase may be attributed to a low C/N ratio, due to limited availability of carbon required for denitrification.
Pęziak-Kowalska, Daria; Fourcade, Florence; Niemczak, Michał; Amrane, Abdeltif; Chrzanowski, Łukasz; Lota, Grzegorz
2017-05-01
Recently a new group of ionic liquids (ILs) with herbicidal properties has been proposed for use in agriculture. Owing to the design of specific physicochemical properties, this group, referred to as herbicidal ionic liquids (HILs), allows for reducing herbicide field doses. Several ILs comprising phenoxy herbicides as anions and quaternary ammonium cations have been synthesized and tested under greenhouse and field conditions. However, since they are to be introduced into the environment, appropriate treatment technologies should be developed in order to ensure their proper removal and avoid possible contamination. In this study, didecyldimethylammonium (4-chloro-2-methylphenoxy) acetate was selected as a model HIL to evaluate the efficiency of a hybrid treatment method. Electrochemical oxidation or electro-Fenton was considered as a pretreatment step, whereas biodegradation was selected as the secondary treatment method. Both processes were carried out in current mode, at 10 mA with carbon felt as working electrode. The efficiency of degradation, oxidation and mineralization was evaluated after 6 h. Both processes decreased the total organic carbon and chemical oxygen demand (COD) values and increased the biochemical oxygen demand (BOD 5 ) on the COD ratio to a value close to 0.4, showing that the electrolyzed solutions can be considered as 'readily biodegradable.'
Gu, Qiyuan; Sun, Tichang; Wu, Gen; Li, Mingyue; Qiu, Wei
2014-08-01
This study aims to evaluate the effect of carrier filling ratio on the performance of a moving bed biofilm reactor in degrading chemical oxygen demand, phenol, thiocyanate, and ammonia from coking wastewater at 20h of hydraulic retention time. The operational experiments under different carrier filling ratios ranging from 20% to 60% were investigated. The maximum removal efficiency of 89%, 99% and 99% for COD, phenol and thiocyanate, and minimum sensitivity to the increasing contaminants concentration in the influent were achieved at 50% carrier filling ratio. The Haldane competitive substrate inhibition kinetics model was used to describe the relationship between the oxygen uptake rate of ammonium oxidizers and the concentration of free ammonium. The highest biofilm microbial community functional diversity (Shannon's diversity index, H') and evenness (Shannon's evenness index, E') were obtained at 50% carrier filling ratio in all runs using a Biolog ECO microplate. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cerrillo, Míriam; Viñas, Marc; Bonmatí, August
2016-11-01
Continuous assays with a microbial electrolysis cell (MEC) fed with digested pig slurry were performed to evaluate its stability and robustness to malfunction periods of an anaerobic digestion (AD) reactor and its feasibility as a strategy to recover ammonia. When performing punctual pulses of volatile fatty acids (VFA) in the anode compartment of the MEC, simulating a malfunction of the AD process, an increase in the current density was produced (up to 14 times, reaching values of 3500mAm(-2)) as a result of the added chemical oxygen demand (COD), especially when acetate was used. Furthermore, ammonium diffusion from the anode to the cathode compartment was enhanced and the removal efficiency achieved up to 60% during daily basis VFA pulses. An AD-MEC combined system has proven to be a robust and stable configuration to obtain a high quality effluent, with a lower organic and ammonium content. Copyright © 2016 Elsevier Ltd. All rights reserved.
The evaluation of enhanced nitrification by immobilized biofilm on a clinoptilolite carrier.
Park, Se Jin; Lee, Hyung Sool; Yoon, Tae Il
2002-04-01
This study was conducted to evaluate the effect of clinoptilolite on nitrification in activated sludge (AS), and was focused on a relationship between ammonium exchange capacity of this mineral and improvement of nitrification. In batch experiments, the adsorption property of biofilm-attached clinoptilolite did not show substantial difference from that of natural clinoptilolite, indicating that bioregeneration became completely achieved without any regenerant in the AS. The AS with added clinoptilolite (ZR) was compared to the control AS (CR) when the ratio of chemical oxygen demand (COD) to total kjeldahl nitrogen (TKN) of influent, i.e. C/N ratio, was varied from 3.25 to 7.5 at a hydraulic retention time (HRT) of 3 h. Enhanced nitrification was comparatively observed for the ZR as C/N ratio gradually increased. The results indicated that the clinoptilolite provided a relatively low C/N ratio for nitrifiers, due to ammonium adsorption of this mineral, and consequently nitrification was accelerated.
Nguyen, X Cuong; Chang, S Woong; Nguyen, Thi Loan; Ngo, H Hao; Kumar, Gopalakrishnan; Banu, J Rajesh; Vu, M Cuong; Le, H Sinh; Nguyen, D Duc
2018-09-15
A pilot-scale hybrid constructed wetland with vertical flow and horizontal flow in series was constructed and used to investigate organic material and nutrient removal rate constants for wastewater treatment and establish a practical predictive model for use. For this purpose, the performance of multiple parameters was statistically evaluated during the process and predictive models were suggested. The measurement of the kinetic rate constant was based on the use of the first-order derivation and Monod kinetic derivation (Monod) paired with a plug flow reactor (PFR) and a continuously stirred tank reactor (CSTR). Both the Lindeman, Merenda, and Gold (LMG) analysis and Bayesian model averaging (BMA) method were employed for identifying the relative importance of variables and their optimal multiple regression (MR). The results showed that the first-order-PFR (M 2 ) model did not fit the data (P > 0.05, and R 2 < 0.5), whereas the first-order-CSTR (M 1 ) model for the chemical oxygen demand (COD Cr ) and Monod-CSTR (M 3 ) model for the COD Cr and ammonium nitrogen (NH 4 -N) showed a high correlation with the experimental data (R 2 > 0.5). The pollutant removal rates in the case of M 1 were 0.19 m/d (COD Cr ) and those for M 3 were 25.2 g/m 2 ∙d for COD Cr and 2.63 g/m 2 ∙d for NH 4 -N. By applying a multi-variable linear regression method, the optimal empirical models were established for predicting the final effluent concentration of five days' biochemical oxygen demand (BOD 5 ) and NH 4 -N. In general, the hydraulic loading rate was considered an important variable having a high value of relative importance, which appeared in all the optimal predictive models. Copyright © 2018 Elsevier Ltd. All rights reserved.
Dubber, Donata; Gray, Nicholas F
2010-10-01
Chemical oxygen demand (COD) is widely used for wastewater monitoring, design, modeling and plant operational analysis. However this method results in the production of hazardous wastes including mercury and hexavalent chromium. The study examined the replacement of COD with total organic carbon (TOC) for general performance monitoring by comparing their relationship with influent and effluent samples from 11 wastewater treatment plants. Biochemical oxygen demand (BOD5) was also included in the comparison as a control. The results show significant linear relationships between TOC, COD and BOD5 in settled (influent) domestic and municipal wastewaters, but only between COD and TOC in treated effluents. The study concludes that TOC can be reliably used for the generic replacement of both COD (COD=49.2+3.00*TOC) and BOD5 (BOD5=23.7+1.68*TOC) in influent wastewaters but only for COD (COD=7.25+2.99*TOC) in final effluents.
Tsioptsias, C; Petridis, D; Athanasakis, N; Lemonidis, I; Deligiannis, A; Samaras, P
2015-12-01
Molasses wastewater is a high strength effluent of food industry such as distilleries, sugar and yeast production plants etc. It is characterized by a dark brown color and exhibits a high content in substances of recalcitrant nature such as melanoidins. In this study, electrocoagulation (EC) was studied as a post treatment step for biologically treated molasses wastewater with high nitrogen content obtained from a baker's yeast industry. Iron and copper electrodes were used in various forms; the influence and interaction of current density, molasses wastewater dilution, and reaction time, on COD, color, ammonium and nitrate removal rates and operating cost were studied and optimized through Box Behnken's response surface analysis. Reaction time varied from 0.5 to 4 h, current density varied from 5 to 40 mA/cm(2) and dilution from 0 to 90% (v/v expressed as water concentration). pH, conductivity and temperature measurements were also carried out during each experiment. From preliminary experiments, it was concluded that the application of aeration and sample dilution, considerably influenced the kinetics of the process. The obtained results showed that COD removal varied between 10 and 54%, corresponding to an operation cost ranging from 0.2 to 33 euro/kg COD removed. Significant removal rates were obtained for nitrogen as nitrate and ammonium (i.e. 70% ammonium removal). A linear relation of COD and ammonium to the design parameters was observed, while operation cost and nitrate removal responded in a curvilinear function. A low ratio of electrode surface to treated volume was used, associated to a low investment cost; in addition, iron wastes could be utilized as low cost electrodes i.e. iron fillings from lathes, aiming to a low operation cost due to electrodes replacement. In general, electrocoagulation proved to be an effective and low cost process for biologically treated molasses-wastewater treatment for additional removal of COD and nitrogen content and color reduction. Treated effluent samples with good quality were produced by EC, with COD, NH4-N and NO3-N concentrations of 180, 52 and 2 mg/l respectively. Response surface analysis revealed that optimized conditions could be established under moderate molasses wastewater dilution, (e.g. 45%), at 3.5 h treatment time and 33 mA/cm(2) current density. Copyright © 2015 Elsevier Ltd. All rights reserved.
Advanced physico-chemical treatment experiences on young municipal landfill leachates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozturk, Izzet; Altinbas, Mahmut; Koyuncu, Ismail
2003-07-01
In this study, Membrane Filtration (UF+RO), Struvite (MAP) precipitation and ammonia stripping alternatives were studied on biologically pre-treated Landfill Leachate. The results indicated that the system including the Upflow Anaerobic Sludge Blanket Reactor (UASBR) and Membrane Reactors (UF+RO) has been offered as an appropriate treatment alternative for young landfill leachates. This system provided high removals of COD, colour and conductivity (>98-99%). For ammonia removal, struvite precipitation was applied at the stoichiometric ratio (Mg:NH{sub 4}:PO{sub 4}=1:1:1) to anaerobically pre-treated raw landfill leachate effluent having an influent ammonium concentration of 2240 mg/l. Maximum ammonium nitrogen removal was observed as 85% at pHmore » of 9.2. In ammonia stripping following 2 h of aeration, the removal was 72% at pH=12 while the removals were around 20% at pH=10 and pH=11. When membrane reactor, and struvite precipitation or ammonia stripping was applied to anaerobically pre-treated effluents, the results indicated that each system could be used as an appropriate post-treatment option for young landfill leachates. In economic aspect, ammonia stripping was found as the cheapest alternative with high ammonium removal. However, when both high COD and ammonium removals were to be achieved membrane technology such as UF+RO (SW) could be considered as the most appropriate system due to the fact that COD removal could be obtained very low by ammonia stripping.« less
Xie, Shan; Liang, Peng; Chen, Yang; Xia, Xue; Huang, Xia
2011-01-01
A coupled microbial fuel cell (MFC) system comprising of an oxic-biocathode MFC (O-MFC) and an anoxic-biocathode MFC (A-MFC) was implemented for simultaneous removal of carbon and nitrogen from a synthetic wastewater. The chemical oxygen demand (COD) of the influent was mainly reduced at the anodes of the two MFCs; ammonium was oxidized to nitrate in the O-MFC's cathode, and nitrate was electrochemically denitrified in the A-MFC's cathode. The coupled MFC system reached power densities of 14 W/m(3) net cathodic compartment (NCC) and 7.2 W/m(3) NCC for the O-MFC and the A-MFC, respectively. In addition, the MFC system obtained a maximum COD, NH(4)(+)-N and TN removal rate of 98.8%, 97.4% and 97.3%, respectively, at an A-MFC external resistance of 5 Ω, a recirculation ratio (recirculated flow to total influent flow) of 2:1, and an influent flow ratio (O-MFC anode flow to A-MFC anode flow) of 1:1. Copyright © 2010 Elsevier Ltd. All rights reserved.
Lu, Mang; Gu, Li-Peng; Xu, Wen-Hao
2013-01-01
In this study, a novel suspended ceramsite was prepared, which has high strength, optimum density (close to water), and high porosity. The ceramsite was used to feed a moving-bed biofilm reactor (MBBR) system with an anaerobic-aerobic (A/O) arrangement to treat petroleum refinery wastewater for simultaneous removal of chemical oxygen demand (COD) and ammonium. The hydraulic retention time (HRT) of the anaerobic-aerobic MBBR system was varied from 72 to 18 h. The anaerobic-aerobic system had a strong tolerance to shock loading. Compared with the professional emission standard of China, the effluent concentrations of COD and NH3-N in the system could satisfy grade I at HRTs of 72 and 36 h, and grade II at HRT of 18 h. The average sludge yield of the anaerobic reactor was estimated to be 0.0575 g suspended solid/g CODremoved. This work demonstrated that the anaerobic-aerobic MBBR system using the suspended ceramsite as bio-carrier could be applied to achieving high wastewater treatment efficiency.
Lv, Junping; Liu, Yang; Feng, Jia; Liu, Qi; Nan, Fangru; Xie, Shulian
2018-05-24
Chlorella vulgaris was selected from five freshwater microalgal strains of Chlorophyta, and showed a good potential in nutrients removal from undiluted cattle farm wastewater. By the end of treatment, 62.30%, 81.16% and 85.29% of chemical oxygen demand (COD), ammonium (NH 4 + -N) and total phosphorus (TP) were removed. Then two two-stage processes were established to enhance nutrients removal efficiency for meeting the discharge standards of China. The process A was the biological treatment via C. vulgaris followed by the biological treatment via C. vulgaris, and the process B was the biological treatment via C. vulgaris followed by the activated carbon adsorption. After 3-5 d of treatment of wastewater via the two processes, the nutrients removal efficiency of COD, NH 4 + -N and TP were 91.24%-92.17%, 83.16%-94.27% and 90.98%-94.41%, respectively. The integrated two-stage process could strengthen nutrients removal efficiency from undiluted cattle farm wastewater with high organic substance and nitrogen concentration. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tabla-Hernandez, Jacobo; Lopez-Galvan, Edgar
2018-04-01
The aim of the present work was to study the effect of packing material on the organic matter removal efficiency (OMRE) in an anaerobic-aerobic baffled bioreactor (AAB). For this purpose, two different experiments were conducted with two types of packing material: activated carbon (AC) particles and polyurethane foam (PF). The system consisted of two treatments; the first one was anaerobic, where hydrolysis, acetogenesis and methanogenesis took place. In anaerobic chambers, there were no packing materials and the operating conditions were the same in both experiments. The second treatment was aerobic and both materials were placed at different times as a bedding. The parameters measured were chemical oxygen demand (COD), dissolved chemical oxygen demand (COD d ), total organic carbon (TOC), nitrate concentration (NO 3 - ), ammonium concentration (NH 4 + ), electric conductivity (σ), alkalinity (Alky) and hydrogen potential (pH). Paired t-Student test showed that there was no significant difference in the OMRE in anaerobic treatment, whereas there was in aerobic treatment, due to the effect of packing material. NH 4 + and NO 3 - showed a negative Pearson correlation in both experiments, indicating the presence of the nitrification process in the aerobic chamber. AAB packed with PF had better performance at obtaining an OMRE of around 63%, whereas AAB packed with AC presented an OMRE of around 51%.
Preozonation of primary-treated municipal wastewater for reuse in biofuel feedstock generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mondala, Andro H.; Hernandez, Rafael; French, W. Todd
2010-11-09
The results of a laboratory scale investigation on ozone pretreatment of primary-treated municipal wastewater for potential reuse in fermentation processes for the production of biofuels and bio-based feedstock chemicals were presented. Semi-batch preozonation with 3.0% (w/w) ozone at 1 L min -1 resulted into a considerable inactivation of the indigenous heterotrophic bacteria in the wastewater with less than 0.0002% comprising the ozone-resistant fraction of the microbial population. The disinfection process was modeled using first-order inactivation kinetics with a rate constant of 4.39 10 -3 s -1. Chemical oxygen demand (COD) levels were reduced by 30% in 1-h experiments. COD depletionmore » was also modeled using a pseudo-first-order kinetics at a rate constant of 9.50 10 -5 s -1. Biological oxygen demand (BOD 5) values were reduced by 60% up to 20 min of ozonation followed by a plateau and some slight increases attributed to partial oxidation of recalcitrant materials. Ozone also had no substantial effect on the concentration of ammonium and phosphate ions, which are essential for microbial growth and metabolism. Preliminary tests indicated that oleaginous microorganisms could be cultivated in the ozonated wastewater, resulting in relatively higher cell densities than in raw wastewater and comparable results with autoclave-sterilized wastewater. This process could potentially produce significant quantities of oil for biofuel production from municipal wastewater streams.« less
Removal of organic carbon and nitrogen in a membraneless flow-through microbial electrolysis cell.
Hussain, Abid; Lebrun, Frédérique Matteau; Tartakovsky, Boris
2017-07-01
This study evaluated performance of an upflow membraneless microbial electrolysis cell (MEC) with flow-through electrodes for wastewater treatment. First, methane production and COD removal were evaluated in continuous flow experiments carried out using synthetic and municipal wastewater. A 29-75% increase in methane production was observed under bioelectrochemical conditions as compared to an anaerobic control. Next, simultaneous removal of COD and nitrogen was studied under microaerobic conditions created by continuous air injection to the anodic compartment of the MEC. While the presence of oxygen decreased Coulombic efficiency due to aerobic degradation of COD, enhanced ammonium removal with near zero nitrite and nitrate effluent concentrations was observed. Evidence of direct ammonium oxidation at the anode as well as nitrite and nitrate reduction at the cathode was obtained by comparing performances of MECs operated under anaerobic and microaerobic conditions with the control reactor operated at zero applied voltage. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
Wang, Chao; Liu, Sitong; Xu, Xiaochen; Zhang, Chaolei; Wang, Dong; Yang, Fenglin
2018-07-01
The anaerobic ammonium oxidation (anammox) is becoming a critical technology for energy neutral in mainstream wastewater treatment. However, the presence of chemical oxygen demanding in influent would result in a poor nitrogen removal efficiency during the deammonification process. In this study, the simultaneous partial nitrification, anammox and denitrification process (SNAD) for mainstream nitrogen removal was investigated in an integrated fixed film activated sludge (IFAS) reactor. SNAD-IFAS process achieved a total nitrogen (TN) removal efficiency of 72 ± 2% and an average COD removal efficiency was 88%. The optimum COD/N ratio for mainstream wastewater treatment was 1.2 ± 0.2. Illumina sequencing analysis and activity tests showed that anammox and denitrifying bacteria were the dominant nitrogen removal microorganism in the biofilm and the high COD/N ratios (≥2.0) leaded to the proliferation of heterotrophic bacteria (Hydrogenophaga) and nitrite-oxidizing bacteria (Nitrospira) in the suspended sludge. Network analysis confirmed that anammox bacteria (Candidatus Kuenenia) could survive in organic matter environment due to that anammox bacteria displayed significant co-occurrence through positive correlations with some heterotrophic bacteria (Limnobacter) which could protect anammox bacteria from hostile environments. Overall, the results of this study provided more comprehensive information regarding the community composition and assemblies in SNAD-IFAS process for mainstream nitrogen removal. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ozel, Ummukulsum; Akdemir, Andaç; Ergun, Osman Nuri
2012-01-01
The potential long term environmental impacts of a landfill on groundwater quality depend on its liner material properties. In case synthetic liner materials are damaged during the construction or operation, many of the original chemical and biological constituents are removed by filtration and the adsorptive action of natural liner materials such as natural zeolite, perlite and bentonite minerals. Before leachate treatment, reduction of these constituents is important not only to leachate percolation, but also treatment cost and efficiency. In this study, the pollutant removal efficiency from the leachate was investigated for natural natural zeolite, expanded perlite and bentonite. Experimental studies was performed in boxes made of glass and with 1:10 sloping. Leachate quantity was determined and pH, electrical conductivity (EC), nitrate (NO3-N), ammonium-nitrogen (NH4-N), phosphate (PO4), chemical oxygen demand (COD) and organic matter in leachate samples were measured and the measurement was compared with control process (System 4). The results showed that natural zeolite was effective in removing NO3, NH4, PO4, COD and organic matter with removal efficiencies of 91.20, 95.6, 95.5, 83.4 and 87.8%, respectively. Expanded perlite has high efficiency removing of NO3, PO4 and COD 83.2, 91.0 and 62.5%, respectively, but it was unsuccessful in reducing NH4 (1.5%). PMID:22754458
Ozel, Ummukulsum; Akdemir, Andaç; Ergun, Osman Nuri
2012-05-01
The potential long term environmental impacts of a landfill on groundwater quality depend on its liner material properties. In case synthetic liner materials are damaged during the construction or operation, many of the original chemical and biological constituents are removed by filtration and the adsorptive action of natural liner materials such as natural zeolite, perlite and bentonite minerals. Before leachate treatment, reduction of these constituents is important not only to leachate percolation, but also treatment cost and efficiency. In this study, the pollutant removal efficiency from the leachate was investigated for natural natural zeolite, expanded perlite and bentonite. Experimental studies was performed in boxes made of glass and with 1:10 sloping. Leachate quantity was determined and pH, electrical conductivity (EC), nitrate (NO(3)-N), ammonium-nitrogen (NH(4)-N), phosphate (PO(4)), chemical oxygen demand (COD) and organic matter in leachate samples were measured and the measurement was compared with control process (System 4). The results showed that natural zeolite was effective in removing NO(3), NH(4), PO(4), COD and organic matter with removal efficiencies of 91.20, 95.6, 95.5, 83.4 and 87.8%, respectively. Expanded perlite has high efficiency removing of NO(3), PO(4) and COD 83.2, 91.0 and 62.5%, respectively, but it was unsuccessful in reducing NH(4) (1.5%).
Li, Hui; Zuo, Wei; Tian, Yu; Zhang, Jun; Di, Shijing; Li, Lipin; Su, Xinying
2017-02-01
Microbial fuel cells (MFCs) can use nitrate as a cathodic electron acceptor for electrochemical denitrification, yet there is little knowledge about how to apply them into current wastewater treatment process to achieve efficient nitrogen removal. In this study, two dual-chamber MFCs were integrated with an aerobic membrane bioreactor to construct a novel membrane bioelectrochemical reactor (MBER) for simultaneous nitrification and denitrification under specific aeration. The effects of chemical oxygen demand (COD) loading rate, COD/N ratio, hydraulic retention time (HRT), and external resistance on the system performance were investigated. High effluent quality was obtained in the MBER in terms of COD and ammonium. During the operation, denitrification simultaneously occurred with nitrification at the bio-cathode of the MBER, achieving a maximal nitrogen removal efficiency of 84.3 %. A maximum power density of 1.8 W/m 3 and a current density of 8.5 A/m 3 were achieved with a coulombic efficiency of 12.1 %. Furthermore, compared to the control system, the MBER exhibited lower membrane fouling tendency due to mixed liquor volatile suspended solids (MLVSSs) and extracellular polymeric substance (EPS) reductions, EPSp/EPSc ratio decrease, and particle size increase of the sludge. These results suggest that the MBER holds potential for efficient nitrogen removal, electricity production, and membrane fouling mitigation.
Mendez-Villanueva, Alberto; Palazzi, Dino; Ahmaidi, Saïd
2016-01-01
Purpose The aims of this study were to 1) compare the metabolic power demand of straight-line and change of direction (COD) sprints including 45° or 90°-turns, and 2) examine the relation between estimated metabolic demands and muscular activity throughout the 3 phases of COD-sprints. Methods Twelve highly-trained soccer players performed one 25-m and three 20-m sprints, either in straight-line or with one 45°- or 90°-COD. Sprints were monitored with 2 synchronized 100-Hz laser guns to assess players’ velocities before, during and after the COD. Acceleration and deceleration were derived from changes in speed over time. Metabolic power was estimated based on di Prampero’s approach (2005). Electromyography amplitude (RMS) of 2 lower limb muscles was measured. The expected energy expenditure during time-adjusted straight-line sprints (matching COD sprints time) was also calculated. Results Locomotor-dependant metabolic demand was largely lower with COD (90°, 142.1±13.5 J.kg-1) compared with time-adjusted (effect size, ES = -3.0; 193.2±18.6 J.kg-1) and non-adjusted straight-line sprints (ES = -1.7; 168.4±15.3 J.kg-1). Metabolic power requirement was angle-dependent, moderately lower for 90°-COD vs. 45°-COD sprint (ES = -1.0; 149.5±10.4 J.kg-1). Conversely, the RMS was slightly- (45°, ES = +0.5; +2.1%, 90% confidence limits (±3.6) for vastus lateralis muscle (VL)) to-largely (90°, ES = +1.6; +6.1 (3.3%) for VL) greater for COD-sprints. Metabolic power/RMS ratio was 2 to 4 times lower during deceleration than acceleration phases. Conclusion Present results show that COD-sprints are largely less metabolically demanding than linear sprints. This may be related to the very low metabolic demand associated with the deceleration phase during COD-sprints that may not be compensated by the increased requirement of the reacceleration phase. These results also highlight the dissociation between metabolic and muscle activity demands during COD-sprints, which questions the use of metabolic power as a single measure of running load in soccer. PMID:26930649
Ren, Qingkai; Yu, Yang; Zhu, Suiyi; Bian, Dejun; Huo, Mingxin; Zhou, Dandan; Huo, Hongliang
2017-06-01
A novel micro-pressure swirl reactor (MPSR) was designed and applied to treat domestic wastewater at low temperature by acclimating microbial biomass with steadily decreasing temperature from 15 to 3 °C. Chemical oxygen demand (COD) was constantly removed by 85% and maintained below 50 mg L -1 in the effluent during the process. When the air flow was controlled at 0.2 m 3 h -1 , a swirl circulation was formed in the reactor, which created a dissolved oxygen (DO) gradient with a low DO zone in the center and a high DO zone in the periphery for denitrification and nitrification. 81% of total nitrogen was removed by this reactor, in which ammonium was reduced by over 90%. However, denitrification was less effective because of the presence of low levels of oxygen. The progressively decreasing temperature favored acclimation of psychrophilic bacteria in the reactor, which replaced mesophilic bacteria in the process of treatment.
Demirbilek, Deniz; Öztüfekçi Önal, Ayten; Demir, Veysel; Uslu, Gulsad; Arslanoglu-Isık, Hilal
2013-11-01
Environmental monitoring of leachate quality from an open municipal solid waste dumping site in Tunceli, Turkey was studied in this research. The most commonly examined pollution parameters were determined on a seasonal basis. The annual average 5-day biological oxygen demand (BOD₅) and chemical oxygen demand (COD) values of station points were measured as 70 and 425 mg/L, respectively, and also the average BOD₅/COD ratio (a measure of biodegradability) was calculated as 0.20. The low ratio of biodegradability and slightly alkaline pH values in the leachate samples indicated that the site was characterized by methanogenic conditions. The mean ammonium-nitrogen (NH4 (+)-N) and corresponding phosphate (orthophosphate) values were assayed as 70 and 11 mg/L, respectively. The average solids content in the leachates was measured as 4,681 mg/L (total solids) and 144 mg/L (suspended solids). Very low concentrations of iron, manganese, copper, and zinc in the leachate samples were found and the concentration of cadmium was measured below detection limits. Excessive amount of nutrients and high organic and inorganic pollutant content in the leachates pose serious pollution potential to the environment. Since no drainage system or bio treatment exists in this open dumping site, high permeability of natural soil at the site and in the surrounding area and very fractured and crackled rocks under natural soil are indicators of high groundwater pollution potential in this site.
Nitrogen removal performance of anaerobic ammonia oxidation (ANAMMOX) in presence of organic matter.
Zhu, Weiqiang; Zhang, Peiyu; Yu, Deshuang; Dong, Huiyu; Li, Jin
2017-06-01
A sequencing batch reactor (SBR) was used to test the nitrogen removal performance of anaerobic ammonium oxidation (ANAMMOX) in presence of organic matter. Mesophilic operation (30 ± 0.5 °C) was performed with influent pH 7.5. The results showed, independent of organic matter species, ANAMMOX reaction was promoted when COD was lower than 80 mg/L. However, specific ANAMMOX activity decreased with increasing organic matter content. Ammonium removal efficiency decreased to 80% when COD of sodium succinate, sodium potassium tartrate, peptone and lactose were 192.5, 210, 225 and 325 mg/L, respectively. The stoichiometry ratio resulting from different OM differed largely and R 1 could be as an indicator for OM inhibition. When COD concentration was 240 mg/L, the loss of SAA resulting from lactose, peptone, sodium potassium tartrate and sodium succinate were 28, 36, 50 and 55%, respectively. Sodium succinate had the highest inhibitory effect on SAA. When ANAMMOX process was used to treat wastewater containing OM, the modified Logistic model could be employed to predict the NRE max .
Chen, Han; Li, Ang; Wang, Qiao; Cui, Di; Cui, Chongwei; Ma, Fang
2018-06-01
The low-strength domestic wastewater (LSDW) treatment with low chemical oxygen demand (COD) has drawn extensive attention for the poor total nitrogen (TN) removal performance. In the present study, an enhanced multistage anoxic/oxic (A/O) biofilm reactor was designed to improve the TN removal performance of the LSDW treatment. Efficient nitrifying and denitrifying biofilm carriers were cultivated and then filled into the enhanced biofilm reactor as the sole microbial source. Step-feed strategy and internal recycle were adopted to optimize the substrate distribution and the organics utilization. Key operational parameters were optimized to obtain the best nitrogen and organics removal efficiencies. A hydraulic retention time of 8 h, an influent distribution ratio of 2:1 and an internal recycle ratio of 200% were tested as the optimum parameters. The ammonium, TN and COD removal efficiencies under the optimal operational parameters separately achieved 99.75 ± 0.21, 59.51 ± 1.95 and 85.06 ± 0.79% with an organic loading rate at around 0.36 kg COD/m 3 d. The high-throughput sequencing technology confirmed that nitrifying and denitrifying biofilm could maintain functional bacteria in the system during long-period operation. Proteobacteria and Bacteroidetes were the dominant phyla in all the nitrifying and denitrifying biofilm samples. Nitrosomonadaceae_uncultured and Nitrospira sp. stably existed in nitrifying biofilm as the main nitrifiers, while several heterotrophic genera, such as Thauera sp. and Flavobacterium sp., acted as potential genera responsible for TN removal in denitrifying biofilm. These findings suggested that the enhanced biofilm reactor could be a promising route for the treatment of LSDW with a low COD level.
Cerrillo, Míriam; Viñas, Marc; Bonmatí, August
2017-03-01
Thermophilic anaerobic digestion (AD) of pig slurry coupled to a microbial electrolysis cell (MEC) with a recirculation loop was studied at lab-scale as a strategy to increase AD stability when submitted to organic and nitrogen overloads. The system performance was studied, with the recirculation loop both connected and disconnected, in terms of AD methane production, chemical oxygen demand removal (COD) and volatile fatty acid (VFA) concentrations. Furthermore, the microbial population was quantitatively and qualitatively assessed through DNA and RNA-based qPCR and high throughput sequencing (MiSeq), respectively to identify the RNA-based active microbial populations from the total DNA-based microbial community composition both in the AD and MEC reactors under different operational conditions. Suppression of the recirculation loop reduced the AD COD removal efficiency (from 40% to 22%) and the methane production (from 0.32 to 0.03 m 3 m -3 d -1 ). Restoring the recirculation loop led to a methane production of 0.55 m 3 m -3 d -1 concomitant with maximum MEC COD and ammonium removal efficiencies of 29% and 34%, respectively. Regarding microbial analysis, the composition of the AD and MEC anode populations differed from really active microorganisms. Desulfuromonadaceae was revealed as the most active family in the MEC (18%-19% of the RNA relative abundance), while hydrogenotrophic methanogens (Methanobacteriaceae) dominated the AD biomass. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shen, Ying-Jie; Wu, Guang-Xia; Fan, Yao-Bo; Zhong, Hui; Wu, Lin-Lin; Zhang, Shao-Lai; Zhao, Xian-Hong; Zhang, Wei-Jun
2007-01-01
Using the surface of poly (sulfone) hollow fiber membrane segments as grafted layer, the hydrophilic acrylamide chain was grafted on by UV-photoinduced grafting polymerization. The gained improvement of surface wettability for the modified membrane was tested by measuring the contact-angle as well as FTIR spectra. Then correlation between the hydrophilic ability of support material and the biofilm adherence ability was demonstrated by comparing the pollutant removal rates from urban wastewater via two identical lab-scale up-flow biological aerated filters, one employed the surface wettability modified poly (sulfone) hollow fiber membrane segment as biofilm carrier and the other employed unmodified membrane segment as biofilm carrier. The experimental results showed that under the conditions of influent flux 5 L/h, hydraulic retention time 9 h and gas to liquid ratio (G/L) 10:1, the removal rates of chemical oxygen demand (COD) and ammonium nitrogen (NH4(+)-N) for the modified packing filter and the unmodified packing filter was averaged at 83.64% and 96.25%, respectively, with the former filter being 5%-20% more than the latter. The effluent concentration of COD, NH4(+)-N and turbidity for the modified packing filter was 25.25 mg/L, 2 mg/L and 8 NTU, respectively. Moreover, the ammonium nitrogen removal performance of the filter packing the modified PSF was compared with the other bioreactor packing of an efficient floating medium. The biomass test indicated that the modified membrane matrixes provided better specific adhesion (3310-5653 mg TSS/L support), which gave a mean of 1000 mg TSS/L more than the unmodified membrane did. In addition, the phenomenon of simultaneous denitrification on the inner surface of the support and nitrification on the outer surface was found in this work.
Research progress of on-line automatic monitoring of chemical oxygen demand (COD) of water
NASA Astrophysics Data System (ADS)
Cai, Youfa; Fu, Xing; Gao, Xiaolu; Li, Lianyin
2018-02-01
With the increasingly stricter control of pollutant emission in China, the on-line automatic monitoring of water quality is particularly urgent. The chemical oxygen demand (COD) is a comprehensive index to measure the contamination caused by organic matters, and thus it is taken as one important index of energy-saving and emission reduction in China’s “Twelve-Five” program. So far, the COD on-line automatic monitoring instrument has played an important role in the field of sewage monitoring. This paper reviews the existing methods to achieve on-line automatic monitoring of COD, and on the basis, points out the future trend of the COD on-line automatic monitoring instruments.
Management of landfill leachate: The legacy of European Union Directives.
Brennan, R B; Healy, M G; Morrison, L; Hynes, S; Norton, D; Clifford, E
2016-09-01
Landfill leachate is the product of water that has percolated through waste deposits and contains various pollutants, which necessitate effective treatment before it can be released into the environment. In the last 30years, there have been significant changes in landfill management practices in response to European Union (EU) Directives, which have led to changes in leachate composition, volumes produced and treatability. In this study, historic landfill data, combined with leachate characterisation data, were used to determine the impacts of EU Directives on landfill leachate management, composition and treatability. Inhibitory compounds including ammonium (NH4-N), cyanide, chromium, nickel and zinc, were present in young leachate at levels that may inhibit ammonium oxidising bacteria, while arsenic, copper and silver were present in young and intermediate age leachate at concentrations above inhibitory thresholds. In addition, the results of this study show that while young landfills produce less than 50% of total leachate by volume in the Republic of Ireland, they account for 70% of total annual leachate chemical oxygen demand (COD) load and approximately 80% of total 5-day biochemical oxygen demand (BOD5) and NH4-N loads. These results show that there has been a decrease in the volume of leachate produced per tonne of waste landfilled since enactment of the Landfill Directive, with a trend towards increased leachate strength (particularly COD and BOD5) during the initial five years of landfill operation. These changes may be attributed to changes in landfill management practices following the implementation of the Landfill Directive. However, this study did not demonstrate the impact of decreasing inputs of biodegradable municipal waste on leachate composition. Increasingly stringent wastewater treatment plant (WWTP) emission limit values represent a significant threat to the sustainability of co-treatment of leachate with municipal wastewater. In addition, the seasonal variation in leachate production poses a risk to effective co-treatment in municipal WWTPs, as periods of high leachate production coincide with periods of maximum hydraulic loading in WWTPs. Copyright © 2015 Elsevier Ltd. All rights reserved.
Xavier, Joao B; De Kreuk, Merle K; Picioreanu, Cristian; Van Loosdrecht, Mark C M
2007-09-15
Aerobic granular sludge is a novel compact biological wastewater treatment technology for integrated removal of COD (chemical oxygen demand), nitrogen, and phosphate charges. We present here a multiscale model of aerobic granular sludge sequencing batch reactors (GSBR) describing the complex dynamics of populations and nutrient removal. The macro scale describes bulk concentrations and effluent composition in six solutes (oxygen, acetate, ammonium, nitrite, nitrate, and phosphate). A finer scale, the scale of one granule (1.1 mm of diameter), describes the two-dimensional spatial arrangement of four bacterial groups--heterotrophs, ammonium oxidizers, nitrite oxidizers, and phosphate accumulating organisms (PAO)--using individual based modeling (IbM) with species-specific kinetic models. The model for PAO includes three internal storage compounds: polyhydroxyalkanoates (PHA), poly phosphate, and glycogen. Simulations of long-term reactor operation show how the microbial population and activity depends on the operating conditions. Short-term dynamics of solute bulk concentrations are also generated with results comparable to experimental data from lab scale reactors. Our results suggest that N-removal in GSBR occurs mostly via alternating nitrification/denitrification rather than simultaneous nitrification/denitrification, supporting an alternative strategy to improve N-removal in this promising wastewater treatment process.
Effect of carbon source on nitrogen removal in anaerobic ammonium oxidation (anammox) process.
Zhu, Weiqiang; Zhang, Peiyu; Dong, Huiyu; Li, Jin
2017-04-01
Anaerobic ammonium oxidation (anammox) has been regarded as an efficient process to treat high-strength wastewater without organic carbon source. To investigate nitrogen removal performance of anammox in presence of organic carbon source can broaden its application on organic wastewater treatment. In this work, effect of carbon source on anammox process was explored. Operating temperature was set at 35 ± 1°C. Influent pH and hydraulic retention time were 7.5 and 6 h, respectively. Effluent [Formula: see text] was affected little with COD no more than 480 mg/L. Independent of carbon source content, nitrite removal rate was around 99%. The variation of [Formula: see text] lagged behind [Formula: see text] at high COD content, and pH could be used as an indicator for [Formula: see text] removal. Specific anammox activity dropped from 0.39 to 0.19 [Formula: see text] at COD=720 mg/L. The remodified logistic model was quite appropriate for describing the nitrogen removal kinetics and predicting the performance of anammox process in presence of carbon source. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Campos, Inmaculada; Alcañiz, Miguel; Aguado, Daniel; Barat, Ramón; Ferrer, José; Gil, Luis; Marrakchi, Mouna; Martínez-Mañez, Ramón; Soto, Juan; Vivancos, José-Luis
2012-05-15
The use of a voltammetric electronic tongue as tool for the prediction of concentration levels of certain water quality parameters from influent and effluent wastewater from a Submerged Anaerobic Membrane Bioreactor pilot plant applied to domestic wastewater treatment is proposed here. The electronic tongue consists of a set of noble (Au, Pt, Rh, Ir, and Ag) and non-noble (Ni, Co and Cu) electrodes that were housed inside a stainless steel cylinder which was used as the body of the electronic tongue system. As a previous step an electrochemical study of the response of the ions sulphate, orthophosphate, acetate, bicarbonate and ammonium was carried out in water using the electrodes contained in the electronic tongue. The second part of the work was devoted to the application of the electronic tongue to the characterization of the influent and effluent waters from the wastewater treatment plant. Partial Least Squares analysis was used to obtain a correlation between the data from the tongue and the pollution parameters measured in the laboratory such as soluble chemical oxygen demand (CODs), soluble biological oxygen demand (BODs), ammonia (NH(4)-N), orthophosphate (PO(4)-P), Sulphate (SO(4)-S), acetic acid (HAC) and alkalinity (Alk). A total of 28 and 11 samples were used in the training and the validation steps, respectively, for both influent and effluent water samples. The electronic tongue showed relatively good predictive power for the determination of BOD, COD, NH(4)-N, PO(4)-P, SO(4)-S, and Alk. Copyright © 2012 Elsevier Ltd. All rights reserved.
Yu, Zheng-zhe; Sun, De-zhi; Li, Chang-hai; Shi, Peng-fei; Duan, Xiao-dong; Sun, Guo-rong; Liu, Jun-xin
2004-01-01
The performance of UV/H2O2, UV/O3 and UV/H2O2/O3 oxidation systems for treating spent caustic from an ethylene plant was investigated. In UV/H2O2 system, with the increase of H2O2 dosage, removal efficiencies of COD and the ratio of biochemical oxygen demand (BOD) to chemical oxygen demand (COD) of the effluent were increased and a better performance was obtained than the H2O2 system alone. In UV/H2O2 system, removal efficiency of COD reach 68% under the optimum condition, and BOD/COD ratio was significantly increased from 0.22 to 0.52. In UV/O3 system, with the increase of O3 dosage, removal efficiency of COD and BOD/COD ratio were increased, and a better performance was obtained than the O3 system alone. Under the optimum condition, removal efficiency of COD was 54%, and BOD/COD ratio was significantly increased from 0.22 to 0.48. In UV/H2O2/O3 system, COD removal efficiency was found to be 22.0% higher than UV/O3 system.
Xu, Ming; Liu, Weijing; Li, Chao; Xiao, Chun; Ding, Lili; Xu, Ke; Geng, Jinju; Ren, Hongqiang
2016-06-01
Constructed wetlands are ecosystems that use plants and microorganisms to remediate pollution in soil and water. In this study, two parallel pilot-scale vertical flow wetland and horizontal flow wetland (VF-HF) systems were implemented to investigate the treatment performance and microorganism community structure in the secondary effluent of an industrial park wastewater treatment plant (WWTP) with a loading rate of 100 mm/day near the Yangtze River in Suzhou City, East China. Removal efficiencies of 82.3, 69.8, 77.8, and 32.3 were achieved by the VF-HF systems for ammonium nitrogen (NH4 (+)-N), total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (COD), respectively. The VF system specialized in COD and NH4 (+)-N removal (73.6 and 79.2 %), whereas the HF system mainly contributed to TN removal (63.5 %). The effluents in all seasons are capable of achieving the "surface water environmental quality standard" (GB3838-2002) grade IV. In the VF system, the 16S gene and nirK gene were significantly correlated with depth, with the 16S gene showing significant correlations with the dissolved oxygen (DO) level (r = 0.954, p < 0.05), which was determined by real-time PCR and high-throughput sequencing. Many types of bacteria capable of biodegradation, including nitrifiers, denitrifiers, and polyaromatic hydrocarbon (PAH) degraders (improvement of the BOD5/COD ratio), were observed, and they contributed to approximately 90 % of the nitrogen removal in the VF-HF system.
Yang, Xu; Zhang, Xueping; Wang, Jifu; Zhao, Guangying; Wang, Baojian
2014-05-01
The slightly polluted source water of Yellow River was pretreated in a horizontal subsurface flow constructed wetland (HSFCW) and a lateral subsurface flow constructed wetland (LSFCW) in the Ji'nan city Reservoir, Shandong, China. During almost one years run, the results showed that at the hydraulic loading rate of 1 m/day, the removal efficiencies of chemical oxygen demand (COD), total nitrogen (TN), ammonium nitrogen (NH4 (+)-N) and total phosphorus (TP) in the HSFCW were 48.9, 51.4, 48.7 and 48.9 %, respectively, and the corresponding removal efficiencies in the LSFCW were 50.51, 53.12, 50.44 and 50.83 %, respectively. The HSFCW and LSFCW had a similar high potential for nutrients removal and LSFCW was slightly better. According to the China standard for surface water resources (GB3838-2002), mean effluent COD can reach the Class I (≤ 15 mg/L), and NH4 (+)-N and TP and TN can reach nearly the Class I (≤ 0.015 mg/L), the Class III (≤ 0.05 mg/L) and the Class IV (≤ 1.5 mg/L), respectively. It can be concluded that the slightly polluted source water from Reservoir was pretreated well by the constructed wetland.
Organics and nitrogen removal from textile auxiliaries wastewater with A2O-MBR in a pilot-scale.
Sun, Faqian; Sun, Bin; Hu, Jian; He, Yangyang; Wu, Weixiang
2015-04-09
The removal of organic compounds and nitrogen in an anaerobic-anoxic-aerobic membrane bioreactor process (A(2)O-MBR) for treatment of textile auxiliaries (TA) wastewater was investigated. The results show that the average effluent concentrations of chemical oxygen demand (COD), ammonium nitrogen (NH4(+)-N) and total nitrogen (TN) were about 119, 3 and 48 mg/L under an internal recycle ratio of 1.5. The average removal efficiency of COD, NH4(+)-N and TN were 87%, 96% and 55%, respectively. Gas chromatograph-mass spectrometer analysis indicated that, although as much as 121 different types of organic compounds were present in the TA wastewater, only 20 kinds of refractory organic compounds were found in the MBR effluent, which could be used as indicators of effluents from this kind of industrial wastewater. Scanning electron microscopy analysis revealed that bacterial foulants were significant contributors to membrane fouling. An examination of foulants components by wavelength dispersive X-ray fluorescence showed that the combination of organic foulants and inorganic compounds enhanced the formation of gel layer and thus caused membrane fouling. The results will provide valuable information for optimizing the design and operation of wastewater treatment system in the textile industry. Copyright © 2015 Elsevier B.V. All rights reserved.
Yang, Shangyuan; Liang, Zhiwei; Yu, Huadong; Wang, Yunlong; Chen, Yingxu
2014-02-01
Micro-electrolysis was applied in the present study to investigate the effect of pH, iron-carbon mass ratio, contact time, and treatment batch on the removal efficiency of chemical oxygen demand (COD) within an aminosilicone emulsion. The results exhibited that the removal efficiency of COD decreased linearly with the batch increase, and this tendency was consistent under the various conditions. The adsorption of activated carbons contributes a large portion to the elimination of COD within the aminosilicone emulsion. The oxidation action of iron-carbon micro-electrolysis was proven and the aminosilicone emulsion's COD removal contribution was approximately 16%. Aminosilicone polymers were adsorbed on the surface of activated carbons and iron chips, which contributes to the decline of COD removal efficiency and limits the contribution of oxidation action.
Improvement of municipal wastewater pretreatment by direct membrane filtration.
Nascimento, Thiago A; Mejía, Fanny R; Fdz-Polanco, Fernando; Peña Miranda, Mar
2017-10-01
The high content of particulate matter in municipal wastewater hinders the conventional anaerobic treatments at psychrophilic temperatures. The hydrolysis of the particulate chemical oxygen demand (pCOD) could be the limiting step under these conditions. Therefore, new pretreatments or improved conventional pretreatments are needed in order to separate pCOD. In this work, direct membrane filtration of municipal wastewater, using an ultrafiltration membrane, was investigated. This intensive pretreatment, which aims to separate soluble chemical oxygen demand (sCOD) and to concentrate pCOD, together with anaerobic treatments of both streams at psychrophilic and mesophilic conditions respectively, could be an alternative to the conventional activated sludge process. The obtained results show a removal yield of 24.9% of the total solids (TS) and 45% of total chemical oxygen demand (tCOD), obtaining a permeate free of suspended solids. This physical removal implies the accumulation of solids inside the membrane tank, reaching the values of 45.4 and 4.4 g/L of TS in the sedimentation and filtration sections, respectively. The membrane operated with filtration, backwashing cycles and continuous gas sparging, with a permeate flux predominantly around 10 L/(m 2 h). The results show the viability of the technology to concentrate pCOD and so to improve energy recovery from municipal wastewater.
A Novel Thermal Sensor for the Sensitive Measurement of Chemical Oxygen Demand
Yao, Na; Liu, Zhuan; Chen, Ying; Zhou, Yikai; Xie, Bin
2015-01-01
A novel rapid methodology for determining the chemical oxygen demand (COD) based on a thermal sensor with a flow injection analysis system was proposed and experimentally validated. The ability of this sensor to detect and monitor COD was based on the degree of enthalpy increase when sodium hypochlorite reacted with the organic content in water samples. The measurement results were correlated with COD and were compared against the conventional method using potassium dichromate. The assay required only 5–7 min rather than the 2 h required for evaluation by potassium dichromate. The linear range was 5–1000 mg/L COD, and the limit of detection was very low, 0.74 mg/L COD. Moreover, this method exhibited high tolerance to chloride ions; 0.015 mol/L chloride ions had no influence on the response. Finally, the sensor was used to detect the COD of different water samples; the results were verified by the standard dichromate method. PMID:26295397
Collison, R S; Grismer, M E
2015-11-01
We evaluated subsurface flow (SSF) constructed wetland treatment performance with respect to organics (COD) and nitrogen (ammonium and nitrate) removal from domestic (septic tank) wastewater as affected by the presence of plants, substrate "rock" cation exchange capacity (CEC), laboratory versus field conditions and use of synthetic as compared to actual domestic wastewater. This article considers the effects of plants on constructed wetland treatment in the field. Each constructed wetland system was comprised of two beds (2.6 m long by 0.28 m wide and deep filled with ~18 mm crushed lava rock) separated by an aeration tank connected in series. The lava rock had a porosity of ~47% and a CEC of 4 meq/100 gm. One pair of constructed wetland systems was planted with cattails in May 2008, while an adjacent pair of systems remained un-planted. Collected septic tank or synthesized wastewater was allowed to gravity feed each constructed wetland system and effluent samples were regularly collected and tested for COD and nitrogen species during four time periods spanning November 2008 through June 2009. These effluent concentrations were tested for statistical differences at the 95% level for individual time periods as well as the overall 6-month period. Organics removal from domestic wastewater was 78.8% and 76.1% in the planted and un-planted constructed wetland systems, respectively, while ammonium removal was 94.5% and 90.2%, respectively. Similarly, organics removal from the synthetic wastewater of equivalent strength was 88.8% and 90.1% for planted and un-planted constructed wetland systems, respectively, while ammonium removal was 96.9% and 97.3%, respectively.
The Relationship between Running Velocity and the Energy Cost of Turning during Running
Hatamoto, Yoichi; Yamada, Yosuke; Sagayama, Hiroyuki; Higaki, Yasuki; Kiyonaga, Akira; Tanaka, Hiroaki
2014-01-01
Ball game players frequently perform changes of direction (CODs) while running; however, there has been little research on the physiological impact of CODs. In particular, the effect of running velocity on the physiological and energy demands of CODs while running has not been clearly determined. The purpose of this study was to examine the relationship between running velocity and the energy cost of a 180°COD and to quantify the energy cost of a 180°COD. Nine male university students (aged 18–22 years) participated in the study. Five shuttle trials were performed in which the subjects were required to run at different velocities (3, 4, 5, 6, 7, and 8 km/h). Each trial consisted of four stages with different turn frequencies (13, 18, 24 and 30 per minute), and each stage lasted 3 minutes. Oxygen consumption was measured during the trial. The energy cost of a COD significantly increased with running velocity (except between 7 and 8 km/h, p = 0.110). The relationship between running velocity and the energy cost of a 180°COD is best represented by a quadratic function (y = −0.012+0.066x +0.008x2, [r = 0.994, p = 0.001]), but is also well represented by a linear (y = −0.228+0.152x, [r = 0.991, p<0.001]). These data suggest that even low running velocities have relatively high physiological demands if the COD frequency increases, and that running velocities affect the physiological demands of CODs. These results also showed that the energy expenditure of COD can be evaluated using only two data points. These results may be useful for estimating the energy expenditure of players during a match and designing shuttle exercise training programs. PMID:24497913
NASA Astrophysics Data System (ADS)
Zhu, Tong; Zhu, Yufang; Fienko, Udo; Yuanhua, Xie; Kuo, Zhang
2017-01-01
A multilevel contact oxidation system was applied in a pilot-scale experiment to treat the automobile painting wastewater, which had poor biodegradability and contained high concentration of Chemical Oxygen Demand (COD). The wastewater used for this experiment study was the actual painting wastewater which had been pre-treated by the physic-chemical process, and its Biological Oxygen Demand (BOD5)/COD was less than 0.1,COD concentration was 800∼1500mg/L. The results showed that the multilevel contact oxidation system could efficiently degrade the COD of the painting wastewater. When the experimental system kept stable operation, the total removal rate of COD and suspended solid (SS) were 84% and 82.5% respectively with the Hydraulic Retention Time (HRT) of 8 hours. Meanwhile, this system had a strong ability to resist the impact of COD concentration change. The COD concentration of final treated wastewater was less than 500 mg/L, which could reach the factory discharge requirement for the paint shop. Besides, this system with simple structure was able to reduce the excess sludge production greatly, which would reduce much cost for the treatment of painting wastewater.
Treatment of oilfield produced water by anaerobic process coupled with micro-electrolysis.
Li, Gang; Guo, Shuhai; Li, Fengmei
2010-01-01
Treatment of oilfield produced water was investigated using an anaerobic process coupled with micro-electrolysis (ME), focusing on changes in chemical oxygen demand (COD) and biodegradability. Results showed that COD exhibited an abnormal change in the single anaerobic system in which it increased within the first 168 hr, but then decreased to 222 mg/L after 360 hr. The biological oxygen demand (five-day) (BODs)/COD ratio of the water increased from 0.05 to 0.15. Hydrocarbons in the wastewater, such as pectin, degraded to small molecules during the hydrolytic acidification process. Comparatively, the effect of ME was also investigated. The COD underwent a slight decrease and the BOD5/COD ratio of the water improved from 0.05 to 0.17 after ME. Removal of COD was 38.3% under the idealized ME conditions (pH 6.0), using iron and active carbon (80 and 40 g/L, respectively). Coupling the anaerobic process with ME accelerated the COD removal ratio (average removal was 53.3%). Gas chromatography/mass spectrometry was used to analyze organic species conversion. This integrated system appeared to be a useful option for the treatment of water produced in oilfields.
Castro, Francine D; Bassin, João Paulo; Dezotti, Márcia
2017-03-01
In this study, an aqueous solution containing the azo dye Reactive Orange 16 (RO16) was subjected to two sequential treatment processes, namely: ozonation and biological treatment in a moving-bed biofilm reactor (MBBR). The most appropriate ozonation pretreatment conditions for the biological process and the toxicity of the by-products resulting from RO16 ozone oxidation were evaluated. The results showed that more than 97 % of color removal from the dye solutions with RO16 concentrations ranging from 25 to 100 mg/L was observed in 5 min of ozone exposure. However, the maximum total organic carbon removal achieved by ozonation was only 48 %, indicating partial mineralization of the dye. Eleven intermediate organic compounds resulting from ozone treatment of RO16 solution were identified by LC/MS analyses at different contact times. The toxicity of the dye-containing solution decreased after 2 min of ozonation, but increased at longer contact times. The results further demonstrated that the ozonolysis products did not affect the performance of the subsequent MBBR, which achieved an average chemical oxygen demand (COD) and ammonium removal of 93 ± 1 and 97 ± 2 %, respectively. A second MBBR system fed with non-ozonated dye-containing wastewater was run in parallel for comparison purposes. This reactor also showed an appreciable COD (90 ± 1 %) and ammonium removal (97 ± 2 %), but was not effective in removing color, which remained practically invariable over the system. The use of short ozonation times (5 min) and a compact MBBR has shown to be effective for the treatment of the simulated textile wastewater containing the RO16 azo dye.
Evaluation of the Treatment Process of Landfill Leachate Using the Toxicity Assessment Method
Qiu, Aifeng; Cai, Qiang; Zhao, Yuan; Guo, Yingqing; Zhao, Liqian
2016-01-01
Landfill leachate is composed of a complex composition with strong biological toxicity. The combined treatment process of coagulation and sedimentation, anaerobics, electrolysis, and aerobics was set up to treat landfill leachate. This paper explores the effect of different operational parameters of coagulation and sedimentation tanks and electrolytic cells, while investigating the combined process for the removal efficiency of physicochemical indices after processing the landfill leachate. Meanwhile, a battery of toxicity tests with Vibrio fischeri, zebrafish larvae, and embryos were conducted to evaluate acute toxicity and calculated the toxicity reduction efficiency after each treatment process. The combined treatment process resulted in a 100% removal efficiency of Cu, Cd and Zn, and a 93.50% and an 87.44% removal efficiency of Ni and Cr, respectively. The overall removal efficiency of chemical oxygen demand (COD), ammonium nitrogen (NH4+-N), and total nitrogen (TN) were 93.57%, 97.46% and 73.60%, respectively. In addition, toxicity test results showed that the acute toxicity of landfill leachate had also been reduced significantly: toxicity units (TU) decreased from 84.75 to 12.00 for zebrafish larvae, from 82.64 to 10.55 for zebrafish embryos, and from 3.41 to 0.63 for Vibrio fischeri. The combined treatment process was proved to be an efficient treatment method to remove heavy metals, COD, NH4+-N, and acute bio-toxicity of landfill leachate. PMID:28009808
Evaluation of the Treatment Process of Landfill Leachate Using the Toxicity Assessment Method.
Qiu, Aifeng; Cai, Qiang; Zhao, Yuan; Guo, Yingqing; Zhao, Liqian
2016-12-21
Landfill leachate is composed of a complex composition with strong biological toxicity. The combined treatment process of coagulation and sedimentation, anaerobics, electrolysis, and aerobics was set up to treat landfill leachate. This paper explores the effect of different operational parameters of coagulation and sedimentation tanks and electrolytic cells, while investigating the combined process for the removal efficiency of physicochemical indices after processing the landfill leachate. Meanwhile, a battery of toxicity tests with Vibrio fischeri , zebrafish larvae, and embryos were conducted to evaluate acute toxicity and calculated the toxicity reduction efficiency after each treatment process. The combined treatment process resulted in a 100% removal efficiency of Cu, Cd and Zn, and a 93.50% and an 87.44% removal efficiency of Ni and Cr, respectively. The overall removal efficiency of chemical oxygen demand (COD), ammonium nitrogen (NH₄⁺-N), and total nitrogen (TN) were 93.57%, 97.46% and 73.60%, respectively. In addition, toxicity test results showed that the acute toxicity of landfill leachate had also been reduced significantly: toxicity units (TU) decreased from 84.75 to 12.00 for zebrafish larvae, from 82.64 to 10.55 for zebrafish embryos, and from 3.41 to 0.63 for Vibrio fischeri . The combined treatment process was proved to be an efficient treatment method to remove heavy metals, COD, NH₄⁺-N, and acute bio-toxicity of landfill leachate.
Evaluation of constructed wetland treatment performance for winery wastewater.
Grismer, Mark E; Carr, Melanie A; Shepherd, Heather L
2003-01-01
Rapid expansion of wineries in rural California during the past three decades has created contamination problems related to winery wastewater treatment and disposal; however, little information is available about performance of on-site treatment systems. Here, the project objective was to determine full-scale, subsurface-flow constructed wetland retention times and treatment performance through assessment of water quality by daily sampling of total dissolved solids, pH, total suspended solids, chemical oxygen demand (COD), tannins, nitrate, ammonium, total Kjeldahl nitrogen, phosphate, sulfate, and sulfide across operating systems for winery wastewater treatment. Measurements were conducted during both the fall crush season of heavy loading and the spring following bottling and racking operations at the winery. Simple decay model coefficients for these constituents as well as COD and tannin removal efficiencies from winery wastewater in bench-scale reactors are also determined. The bench-scale study used upward-flow, inoculated attached-growth (pea-gravel substrate) reactors fed synthetic winery wastewater. Inlet and outlet tracer studies for determination of actual retention times were essential to analyses of treatment performance from an operational subsurface-flow constructed wetland that had been overloaded due to failure to install a pretreatment system for suspended solids removal. Less intensive sampling conducted at a smaller operational winery wastewater constructed wetland that had used pretreatment suspended solids removal and aeration indicated that the constructed wetlands were capable of complete organic load removal from the winery wastewater.
Ning, Daliang; Huang, Yong; Pan, Ruisong; Wang, Fayuan; Wang, Hui
2014-07-01
To investigate the effect of the eco-remediation on nutrients and heavy metals in river water and sediment, a field study was carried out in a site of a 2-year eco-remediation mainly using planted floating bed system in an urban river in China. Before remediation, the tested properties of water and sediment in the will-be remediated area were not different from the control area, except higher concentrations of chemical oxygen demand (COD) and total nitrogen (TN) in the river water. After remediation, the remediation area showed effective removal of in-stream nutrients and elevation of dissolved oxygen and transparency. Compared to the control area, the remediation area had higher concentration of nitrate and lower concentrations of COD, ammonium, Mn and hexavalent Cr in the river water after a 2-year remediation. The remediation area also showed higher concentrations of organic carbon, TN, nitrate, sulfate, Fe, Cu, Pb and Zn in the sediment than in the control area. Accordingly, special attention should be paid to the ecological risk of heavy metals in sediments and plants in river eco-remediation projects especially in rivers polluted by heavy metals, although the metals were lower than the level of considerable ecological risk in this study. Copyright © 2014 Elsevier B.V. All rights reserved.
Kalyuzhnyi, Sergey; Gladchenko, Marina; Epov, Andrey; Appanna, Vasu
2003-01-01
As a first step of treatment of landfill leachates (total chemical oxygen demand [COD]: 1.43-3.81 g/L; total nitrogen: 90-162 mg/L), performance of laboratory upflow anaerobic sludge bed reactors was investigated under mesophilic (30 degrees C), submesophilic (20 degrees C), and psychrophilic (10 degrees C) conditions. Under hydraulic retention times (HRTs) of about 0.3 d, when the average organic loading rates (OLRs) were about 5 g of COD/(L.d), the total COD removal accounted for 81% (on average) with the effluent concentrations close to the anaerobic biodegradability limit (0.25 g of COD/L) for mesophilic and submesophilic regimes. The psychrophilic treatment conducted under an average HRT of 0.34 d and an average OLR of 4.22 g of COD/(L.d) showed a total COD removal of 47%, giving effluents (0.75 g of COD/L) more suitable for subsequent biologic nitrogen removal. All three anaerobic regimes used for leachate treatment were quite efficient for elimination of heavy metals (Fe, Zn, Cu, Pb, Cd) by concomitant precipitation in the form of insoluble sulfides inside the sludge bed. The application of aerobic/ anoxic biofilter as a sole polishing step for psychrophilic anaerobic effluents was acceptable for elimination of biodegradable COD and nitrogen approaching the current standards for direct discharge of treated wastewater.
Wang, Lizhang; Zhao, Yuemin
2010-01-01
Experiments were performed to reduce chemical oxygen demand (COD) from 4,4'-diaminostilbene-2,2'-disulfonic (DSD) acid manufacturing wastewater using electrochemical oxidation coupled with adsorption by granular activated carbon. The COD removal is affected by the residence time and applied voltage. When the residence time is increased, lower value of COD effluent could be obtained, however, the average current efficiency (ACE) decreased rapidly, and so does the applied voltage. In addition, aeration could effectively enhance COD removal efficiency and protect anodes from corrosion. Furthermore, the acidic condition is beneficial to the rapid decrease of COD and the values of pH effluent are independent of the initial solution pH. The optimization conditions obtained from these experiments are applied voltage of 4.8 V, residence time of 180 min and air-liquid ratio of 4.2 with the COD effluent of about 690 mg L⁻¹. In these cases, the ACE and energy consumption are 388% and 4.144 kW h kg⁻¹ COD, respectively. These perfect results from the experiments illustrate that the combined process is a considerable alternative for the treatment of industrial wastewater containing high concentration of organic pollutants and salinity.
Improved COD Measurements for Organic Content in Flowback Water with High Chloride Concentrations.
Cardona, Isabel; Park, Ho Il; Lin, Lian-Shin
2016-03-01
An improved method was used to determine chemical oxygen demand (COD) as a measure of organic content in water samples containing high chloride content. A contour plot of COD percent error in the Cl(-)-Cl(-):COD domain showed that COD errors increased with Cl(-):COD. Substantial errors (>10%) could occur in low Cl(-):COD regions (<300) for samples with low (<10 g/L) and high chloride concentrations (>25 g/L). Applying the method to flowback water samples resulted in COD concentrations ranging in 130 to 1060 mg/L, which were substantially lower than the previously reported values for flowback water samples from Marcellus Shale (228 to 21 900 mg/L). It is likely that overestimations of COD in the previous studies occurred as result of chloride interferences. Pretreatment with mercuric sulfate, and use of a low-strength digestion solution, and the contour plot to correct COD measurements are feasible steps to significantly improve the accuracy of COD measurements.
André, L; Pauss, A; Ribeiro, T
2017-03-01
The chemical oxygen demand (COD) is an essential parameter in waste management, particularly when monitoring wet anaerobic digestion processes. An adapted method to determine COD was developed for solid waste (total solids >15%). This method used commercial COD tubes and did not require sample dilution. A homemade plastic weighing support was used to transfer the solid sample into COD tubes. Potassium hydrogen phthalate and glucose used as standards showed an excellent repeatability. A small underestimation of the theoretical COD value (standard values around 5% lower than theoretical values) was also observed, mainly due to the intrinsic COD of the weighing support and to measurement uncertainties. The adapted COD method was tested using various solid wastes in the range of 1-8 mg COD , determining the COD of dried and ground cellulose, cattle manure, straw and a mixed-substrate sample. This new adapted method could be used to monitor and design dry anaerobic digestion processes.
Andrade do Canto, Catarina Simone; Rodrigues, José Alberto Domingues; Ratusznei, Suzana Maria; Zaiat, Marcelo; Foresti, Eugênio
2008-02-01
An investigation was performed on the biological removal of ammonium nitrogen from synthetic wastewater by the simultaneous nitrification/denitrification (SND) process, using a sequencing batch biofilm reactor (SBBR). System behavior was analyzed as to the effects of sludge type used as inoculum (autotrophic/heterotrophic), wastewater feed strategy (batch/fed-batch) and aeration strategy (continuous/intermittent). The presence of an autotrophic aerobic sludge showed to be essential for nitrification startup, despite publications stating the existence of heterotrophic organisms capable of nitrifying organic and inorganic nitrogen compounds at low dissolved oxygen concentrations. As to feed strategy, batch operation (synthetic wastewater containing 100 mg COD/L and 50 mg N-NH(4)(+)/L) followed by fed-batch (synthetic wastewater with 100 mg COD/L) during a whole cycle seemed to be the most adequate, mainly during the denitrification phase. Regarding aeration strategy, an intermittent mode, with dissolved oxygen concentration of 2.0mg/L in the aeration phase, showed the best results. Under these optimal conditions, 97% of influent ammonium nitrogen (80% of total nitrogen) was removed at a rate of 86.5 mg N-NH(4)(+)/Ld. In the treated effluent only 0.2 mg N-NO(2)(-)/L,4.6 mg N-NO(3)(-)/L and 1.0 mg N-NH(4)(+)/L remained, demonstrating the potential viability of this process in post-treatment of wastewaters containing ammonium nitrogen.
Mohammadi, Mohammad Javad; Takdastan, Afshin; Jorfi, Sahand; Neisi, Abdolkazem; Farhadi, Majid; Yari, Ahmad Reza; Dobaradaran, Sina; Khaniabadi, Yusef Omidi
2017-04-01
In this work, we present the result of an electric coagulation process with iron and aluminum electrodes for removal of chemical and biological oxygen demand (COD and BOD) from grey water in different car washes of Ahvaz, Iran. Nowadays, one of the important dangerous that can contaminate water resources for drinking, agriculture and industrial is Car wash effluent [1,2]. In this study, initial COD and BOD concentration, pH of the solution, voltage power and reaction time was investigated. The concentration level of remaining COD and BOD in samples was measured, using DR/5000 UV-vis HACH spectrophotometer [3,4]. The effects of contact time, initial pH, electrical potential and voltage data on removal of COD and BOD were presented. Statistical analysis of the data was carried out using Special Package for Social Sciences (SPSS 16).
NASA Astrophysics Data System (ADS)
Ondrasikova, I.; Stancl, L.
2017-10-01
Composting plant Točna utilize and modifies biologically biodegradable waste by aerobic fermentation method. After emergency leakage of leachate water in 2010 the quality of rock surrounding is being regularly monitored in the range of indicators: pH, conductivity, COD (chemical oxygen demand, Cr), HCO3 -, Cl-, N-NH4 +, N-NO3 -, N-NO2 - and humic substances. Technical adjustments of the interest area has been also made to prevent leakage of contaminated water. Locality monitoring system is ensured separately for shallow backfill aquifer and deeper quaternary aquifer. Protective hydraulic barrier is running at the same time to prevent effluent of shallow water to groundwater. Nitrogenous substances (above all ammonium ions) and humic substances belongs among main groundwater contaminants of the interest area. Peak concentration level of this substances is connected with shallow backfill aquifer, near south-east and east edge of the locality, not in general quaternary water direction. From long-term monitoring results follows that concentration of monitored substances is gradually decreasing, especially in water connected with backfill layer. Drier weather of last year helps to this development. Quality of quaternary aquifer is not influenced significantly, only locally in spots, in the places of both aquifers connection where increase of ammonium ions occurs as result of humic substance decomposition. In effect, monitored substances are not disseminated in quaternary aquifer.
Butkovskyi, Andrii; Bruning, Harry; Kools, Stefan A E; Rijnaarts, Huub H M; Van Wezel, Annemarie P
2017-05-02
Organic contaminants in shale gas flowback and produced water (FPW) are traditionally expressed as total organic carbon (TOC) or chemical oxygen demand (COD), though these parameters do not provide information on the toxicity and environmental fate of individual components. This review addresses identification of individual organic contaminants in FPW, and stresses the gaps in the knowledge on FPW composition that exist so far. Furthermore, the risk quotient approach was applied to predict the toxicity of the quantified organic compounds for fresh water organisms in recipient surface waters. This resulted in an identification of a number of FPW related organic compounds that are potentially harmful namely those compounds originating from shale formations (e.g., polycyclic aromatic hydrocarbons, phthalates), fracturing fluids (e.g., quaternary ammonium biocides, 2-butoxyethanol) and downhole transformations of organic compounds (e.g., carbon disulfide, halogenated organic compounds). Removal of these compounds by FPW treatment processes is reviewed and potential and efficient abatement strategies are defined.
2017-01-01
Organic contaminants in shale gas flowback and produced water (FPW) are traditionally expressed as total organic carbon (TOC) or chemical oxygen demand (COD), though these parameters do not provide information on the toxicity and environmental fate of individual components. This review addresses identification of individual organic contaminants in FPW, and stresses the gaps in the knowledge on FPW composition that exist so far. Furthermore, the risk quotient approach was applied to predict the toxicity of the quantified organic compounds for fresh water organisms in recipient surface waters. This resulted in an identification of a number of FPW related organic compounds that are potentially harmful namely those compounds originating from shale formations (e.g., polycyclic aromatic hydrocarbons, phthalates), fracturing fluids (e.g., quaternary ammonium biocides, 2-butoxyethanol) and downhole transformations of organic compounds (e.g., carbon disulfide, halogenated organic compounds). Removal of these compounds by FPW treatment processes is reviewed and potential and efficient abatement strategies are defined. PMID:28376616
Zhao, Yaqin; Yue, Qinyan; Li, Renbo; Yue, Min; Han, Shuxin; Gao, Baoyu; Li, Qian; Yu, Hui
2009-11-01
Sludge-fly ash ceramic particles (SFCP) and clay ceramic particles (CCP) were employed in two lab-scale up-flow biological aerated filters (BAF) for wastewater treatment to investigate the availability of SFCP used as biofilm support compared with CCP. For synthetic wastewater, under the selected hydraulic retention times (HRT) of 1.5, 0.75 and 0.37 h, respectively, the removal efficiencies of chemical oxygen demand (COD(Cr)) and ammonium nitrogen (NH(4)(+)-N) in SFCP reactor were all higher than those of CCP reactor all through the media height. Moreover, better capabilities responding to loading shock and faster recovery after short intermittence were observed in the SFCP reactor compared with the CCP reactor. For municipal wastewater treatment, which was carried out under HRT of 0.75 h, air-liquid ratio of 7.5 and backwashing period of 48 h, the SFCP reactor also performed better than the CCP reactor, especially for the removal of NH(4)(+)-N.
Peng, Lai; Carvajal-Arroyo, José M; Seuntjens, Dries; Prat, Delphine; Colica, Giovanni; Pintucci, Cristina; Vlaeminck, Siegfried E
2017-12-15
The implementation of nitritation/denitritation (Nit/DNit) as alternative to nitrification/denitrification (N/DN) is driven by operational cost savings, e.g. 1.0-1.8 EUR/ton slurry treated. However, as for any biological nitrogen removal process, Nit/DNit can emit the potent greenhouse gas nitrous oxide (N 2 O). Challenges remain in understanding formation mechanisms and in mitigating the emissions, particularly at a low ratio of organic carbon consumption to nitrogen removal (COD rem /N rem ). In this study, the centrate (centrifuge supernatant) from anaerobic co-digestion of pig slurry was treated in a sequencing batch reactor. The process removed approximately 100% of ammonium a satisfactory nitrogen loading rate (0.4 g N/L/d), with minimum nitrite and nitrate in the effluent. Substantial N 2 O emission (around 17% of the ammonium nitrogen loading) was observed at the baseline operational condition (dissolved oxygen, DO, levels averaged at 0.85 mg O 2 /L; COD rem /N rem of 2.8) with ∼68% of the total emission contributed by nitritation. Emissions increased with higher nitrite accumulation and lower organic carbon to nitrogen ratio. Yet, higher DO levels (∼2.2 mg O 2 /L) lowered the aerobic N 2 O emission and weakened the dependency on nitrite concentration, suggesting a shift in N 2 O production pathway. The most effective N 2 O mitigation strategy combined intermittent patterns of aeration, anoxic feeding and anoxic carbon dosage, decreasing emission by over 99% (down to ∼0.12% of the ammonium nitrogen loading). Without anaerobic digestion, mitigated Nit/DNit decreases the operational carbon footprint with about 80% compared to N/DN. With anaerobic digestion included, about 4 times more carbon is sequestered. In conclusion, the low COD rem /N rem feature of Nit/DNit no longer offsets its environmental sustainability provided the process is smartly operated. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Hongyu; He, Jiajie; Yang, Kai
2010-01-01
This study evaluated the partial nitrification performances of two biofilm filters over a synthetic non-ammonium-rich wastewater at a 20°C room temperature under both limited DO (∼2.0 mg/L) and unlimited DO (∼4.0 mg/L) conditions. The two filters were each of 80 cm long and used different biofilm carriers: activated carbon and ceramic granule. Results showed that partial nitrification was accomplished for both filters under the limited DO condition. However, the effluent NO(2)-N was higher in the ceramic granule filter than in the activated carbon filter, and was less susceptible to the influent COD/N changes. Further investigation into the water phase COD and NH(4)-N depth profiles and bacteria population within the two filters showed that by putting upper filter layer (upstream) to confront relatively higher influent COD/N ratios, the filtration process naturally put lower filter layers (downstream) relatively more favorable for nitrifying bacteria (ammonia oxidizing bacteria in this study) to prosper, making the filter depth left for nitrification a crucial factor for the effectiveness of nitrification with a filter. The potentially different porous flow velocities of the two filters might be the reason to cause their different partial nitrification performances, with a lower porous flow velocity (the ceramic granule filter) favoring partial nitrification more. In summation, DO, filter depth, and filtration speed should be played together to successfully operate a biofilm filter for partial nitrification.
Huang, Chunkai; Shi, Yijing; Xue, Jinkai; Zhang, Yanyan; Gamal El-Din, Mohamed; Liu, Yang
2017-03-15
This study compared microbial characteristics and oil sands process-affected water (OSPW) treatment performance of five types of microbial biomass (MBBR-biofilm, IFAS-biofilm, IFAS-floc, MBR-aerobic-floc, and MBR-anoxic-floc) cultivated from three types of bioreactors (MBBR, IFAS, and MBR) in batch experiments. Chemical oxygen demand (COD), ammonium, acid extractable fraction (AEF), and naphthenic acids (NAs) removals efficiencies were distinctly different between suspended and attached bacterial aggregates and between aerobic and anoxic suspended flocs. MBR-aerobic-floc and MBR-anoxic-floc demonstrated COD removal efficiencies higher than microbial aggregates obtained from MBBR and IFAS, MBBR and IFAS biofilm had higher AEF removal efficiencies than those obtained using flocs. MBBR-biofilm demonstrated the most efficient NAs removal from OSPW. NAs degradation efficiency was highly dependent on the carbon number and NA cyclization number according to UPLC/HRMS analysis. Mono- and di-oxidized NAs were the dominant oxy-NA species in OSPW samples. Microbial analysis with quantitative polymerase chain reaction (q-PCR) indicated that the bacterial 16S rRNA gene abundance was significantly higher in the batch bioreactors with suspended flocs than in those with biofilm, the NSR gene abundance in the MBR-anoxic bioreactor was significantly lower than that in aerobic batch bioreactors, and denitrifiers were more abundant in the suspended phase of the activated sludge flocs. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Dongqing; Trzcinski, Antoine P; Oh, Hyun-Suk; Chew, Evelyn; Tan, Soon Keat; Ng, Wun Jern; Liu, Yu
2017-05-12
Copper oxide nanoparticles (CuO NPs) are being increasingly applied in the industry which results inevitably in the release of these materials into the hydrosphere. In this study, simulated waste-activated sludge experiments were conducted to investigate the effects of Copper Oxide NPs at concentrations of 0.1, 1, 10 and 50 mg/L and to compare it with its ionic counterpart (CuSO 4 ). It was found that 0.1 mg/L of CuO NPs had negligible effects on Chemical Oxygen Demand (COD) and ammonia removal. However, the presence of 1, 10 and 50 mg/L of CuO NPs decreased COD removal from 78.7% to 77%, 52.1% and 39.2%, respectively (P < 0.05). The corresponding effluent ammonium (NH 4 -N) concentration increased from 14.9 mg/L to 18, 25.1 and 30.8 mg/L, respectively. Under equal Cu concentration, copper ions were more toxic towards microorganisms compared to CuO NPs. CuO NPs were removed effectively (72-93.2%) from wastewater due to a greater biosorption capacity of CuO NPs onto activated sludge, compared to the copper ions (55.1-83.4%). The SEM images clearly showed the accumulation and adsorption of CuO NPs onto activated sludge. The decrease in Live/dead ratio after 5 h of exposure of CuO NPs and Cu 2+ indicated the loss of cell viability in sludge flocs.
Membrane bioreactor technology: A novel approach to the treatment of compost leachate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Kayleigh; Ghoshdastidar, Avik J.; Hanmore, Jillian
Highlights: • First membrane bioreactor treatment method for compost leachate. • No chemical additive or UV radiation source in this new biological method. • Removal rates of more than 99% for organics and ammonium were achieved. • Heavy metals were reduced by at least 82.7% except copper. - Abstract: Compost leachate forms during the composting process of organic material. It is rich in oxidizable organics, ammonia and metals, which pose a risk to the environment if released without proper treatment. An innovative method based on the membrane bioreactor (MBR) technology was developed to treat compost leachate over 39 days. Watermore » quality parameters, such as pH, dissolved oxygen, ammonia, nitrate, nitrite and chemical oxygen demand (COD) were measured daily. Concentrations of caffeine and metals were measured over the course of the experiment using gas chromatography – mass spectrometry (GC/MS) and inductively coupled plasma – mass spectrometry (ICP–MS) respectively. A decrease of more than 99% was achieved for a COD of 116 g/L in the initial leachate. Ammonia was decreased from 2720 mg/L to 0.046 mg/L, while the nitrate concentration in the effluent rose to 710 mg/L. The bacteria in the MBR system adjusted to the presence of the leachate, and increased 4 orders of magnitude. Heavy metals were removed by at least 82.7% except copper. These successful results demonstrated the membrane bioreactor technology is feasible, efficient method for the treatment of compost leachate.« less
Zheng, Wei; Zhang, Zhenya; Liu, Rui; Lei, Zhongfang
2018-03-01
A lab-scale intermittently aerated sequencing batch reactor (IASBR) was applied to treat anaerobically digested swine wastewater (ADSW) to explore the removal characteristics of veterinary antibiotics. The removal rates of 11 veterinary antibiotics in the reactor were investigated under different chemical organic demand (COD) volumetric loadings, solid retention times (SRT) and ratios of COD to total nitrogen (TN) or COD/TN. Both sludge sorption and biodegradation were found to be the major contributors to the removal of veterinary antibiotics. Mass balance analysis revealed that greater than 60% of antibiotics in the influent were biodegraded in the IASBR, whereas averagely 24% were adsorbed by sludge under the condition that sludge sorption gradually reached its equilibrium. Results showed that the removal of antibiotics was greatly influenced by chemical oxygen demand (COD) volumetric loadings, which could achieve up to 85.1%±1.4% at 0.17±0.041kgCOD/m -3 /day, while dropped to 75.9%±1.3% and 49.3%±12.1% when COD volumetric loading increased to 0.65±0.032 and 1.07±0.073kgCOD/m -3 /day, respectively. Tetracyclines, the dominant antibiotics in ADSW, were removed by 87.9% in total at the lowest COD loading, of which 30.4% were contributed by sludge sorption and 57.5% by biodegradation, respectively. In contrast, sulfonamides were removed about 96.2%, almost by biodegradation. Long SRT seemed to have little obvious impact on antibiotics removal, while a shorter SRT of 30-40day could reduce the accumulated amount of antibiotics and the balanced antibiotics sorption capacity of sludge. Influent COD/TN ratio was found not a key impact factor for veterinary antibiotics removal in this work. Copyright © 2017. Published by Elsevier B.V.
Wu, Tingting; Englehardt, James D
2015-04-15
Mineralization of organics in secondary effluent by the peroxone process was studied at a direct potable water reuse research treatment system serving an occupied four-bedroom, four bath university residence hall apartment. Organic concentrations were measured as chemical oxygen demand (COD) and kinetic runs were monitored at varying O3/H2O2 dosages and ratios. COD degradation could be accurately described as the parallel pseudo-1st order decay of rapidly and slowly-oxidizable fractions, and effluent COD was reduced to below the detection limit (<0.7 mg/L). At dosages ≥4.6 mg L(-1) h(-1), an O3/H2O2 mass ratio of 3.4-3.8, and initial COD <20 mg/L, a simple first order decay was indicated for both single-passed treated wastewater and recycled mineral water, and a relationship is proposed and demonstrated to estimate the pseudo-first order rate constant for design purposes. At this O3/H2O2 mass ratio, ORP and dissolved ozone were found to be useful process control indicators for monitoring COD mineralization in secondary effluent. Moreover, an average second order rate constant for OH oxidation of secondary effluent organics (measured as MCOD) was found to be 1.24 × 10(7) ± 0.64 × 10(7) M(-1) S(-1). The electric energy demand of the peroxone process is estimated at 1.73-2.49 kW h electric energy for removal of one log COD in 1 m(3) secondary effluent, comparable to the energy required for desalination of medium strength seawater. Advantages/disadvantages of the two processes for municipal wastewater reuse are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Manickam, Sivakumar; Abidin, Norhaida binti Zainal; Parthasarathy, Shridharan; Alzorqi, Ibrahim; Ng, Ern Huay; Tiong, Timm Joyce; Gomes, Rachel L; Ali, Asgar
2014-07-01
Palm oil mill effluent (POME) is a highly contaminating wastewater due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD). Conventional treatment methods require longer residence time (10-15 days) and higher operating cost. Owing to this, finding a suitable and efficient method for the treatment of POME is crucial. In this investigation, ultrasound cavitation technology has been used as an alternative technique to treat POME. Cavitation is the phenomenon of formation, growth and collapse of bubbles in a liquid. The end process of collapse leads to intense conditions of temperature and pressure and shock waves which assist various physical and chemical transformations. Two different ultrasound systems i.e. ultrasonic bath (37 kHz) and a hexagonal triple frequency ultrasonic reactor (28, 40 and 70 kHz) of 15 L have been used. The results showed a fluctuating COD pattern (in between 45,000 and 60,000 mg/L) while using ultrasound bath alone, whereas a non-fluctuating COD pattern with a final COD of 27,000 mg/L was achieved when hydrogen peroxide was introduced. Similarly for the triple frequency ultrasound reactor, coupling all the three frequencies resulted into a final COD of 41,300 mg/L compared to any other individual or combination of two frequencies. With the possibility of larger and continuous ultrasonic cavitational reactors, it is believed that this could be a promising and a fruitful green process engineering technique for the treatment of POME. Copyright © 2014 Elsevier B.V. All rights reserved.
Kavitha, S; Rajesh Banu, J; IvinShaju, C D; Kaliappan, S; Yeom, Ick Tae
2016-12-01
Mechanical disintegration of sludge through ultrasonication demands high energy and cost. Therefore, in the present study, a comprehensive investigation was performed to analyze the potential of a novel method, fenton mediated sonic disintegration (FSD). In FSD process, extracellular polymeric substance (EPS) of sludge was first removed via fenton treatment. It was subsequently disintegrated via ultrasonication. Energetic assessment and economic analysis were then performed using net energy and cost gain (spent) as key factor to evaluate the practical viability of the FSD process. FSD was found to be superior over sonic disintegration based on its higher sludge solubilization (34.4% vs. 23.2%) and methane production potential (0.3gCOD/gCOD vs. 0.2gCOD/gCOD). Both energy analysis and cost assessment of the present study revealed that FSD could reduce the energy demand of ultrasonication considerably with a positive net profit of about 44.93USD/Ton of sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chan, Yi Jing; Chong, Mei Fong; Law, Chung Lim
2012-12-01
Thermophilic treatment of palm oil mill effluent (POME) was studied in a novel integrated anaerobic-aerobic bioreactor (IAAB). The IAAB was subjected to a program of steady-state operation over a range of organic loading rate (OLR)s, up to 30 g COD/L day in order to evaluate its treatment capacity. The thermophilic IAAB achieved high chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) removal efficiencies of more than 99% for OLR up to 18.5 g COD/L day. High methane yield of 0.32 LCH(4) (STP)/g COD(removed) with compliance of the final treated effluent to the discharge limit were achieved. This is higher than that of the mesophilic system due to the higher maximum specific growth rate (μ(max)) of the thermophilic microorganisms. Besides, coupling the model of Grau second order model (anaerobic system) with the model of Monod (aerobic system) will completely define the IAAB system. Copyright © 2012 Elsevier Ltd. All rights reserved.
Treatment of amoxicillin by O3/Fenton process in a rotating packed bed.
Li, Mo; Zeng, Zequan; Li, Yingwen; Arowo, Moses; Chen, Jianfeng; Meng, Hong; Shao, Lei
2015-03-01
In this study, simulated amoxicillin wastewater was treated by the O3/Fenton process in a rotating packed bed (RPB) and the results were compared with the Fenton process and the O3 followed by Fenton (O3 + Fenton) process. The chemical oxygen demand (COD) removal rate and the ratio of 5-day biological oxygen demand to chemical oxygen demand (BOD5/COD) in the O3/Fenton process were approximately 17% and 26%, respectively, higher than those in the O3 + Fenton process with an initial pH of 3. The COD removal rate of the amoxicillin solution reached maximum at the Fe(II) concentration of 0.6 mM, temperature of 25 °C, rotation speed of 800 rpm and initial pH of 3. The BOD5/COD of the amoxicillin solution increased from 0 to 0.38 after the solution was treated by the O3/Fenton process. Analysis of the intermediates indicated that the pathway of amoxicillin degradation in the O3/Fenton process was similar to that in the O3 + Fenton process. Contrast experiment results showed that amoxicillin degradation was significantly intensified in the RPB. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rao, A Gangagni; Naidu, G Venkata; Prasad, K Krishna; Rao, N Chandrasekhar; Mohan, S Venkata; Jetty, Annapurna; Sarma, P N
2004-07-01
Studies are carried out on the treatment of wastewater from a bulk drug industry using an anaerobic fixed film reactor (AFFR) designed and fabricated in the laboratory. The chemical oxygen demand (COD) and total dissolved solids (TDS) of the wastewater are found to be very high with low Biochemical oxygen demand (BOD) to COD ratio and high total suspended solid (TSS) concentration. Acclimatization of seed consortia and start up of the reactor is carried out by directly using the wastewater, which resulted in reducing the period of startup to 30 days. The reactor is studied at different organic loading rates (OLR) and it is found that the optimum OLR is 10 kg COD/m3/day. The wastewater under investigation, which is having considerable quantity of SS, is treated anaerobically without any pretreatment. The COD and BOD of the reactor outlet wastewater are monitored and reduction at steady state and optimum OLR is observed to be 60-70% of COD and 80-90% of BOD. The reactor is subjected to organic shock loads at two different OLR and it is observed that the reactor could withstand shocks and performance could be restored to normalcy at that OLR. The results obtained indicated that AFFR could be used efficiently for the treatment of wastewater from a bulk drug industry having high COD, TDS and TSS. Copyright 2003 Elsevier Ltd.
Gangagni Rao, A; Venkata Naidu, G; Krishna Prasad, K; Chandrasekhar Rao, N; Venkata Mohan, S; Jetty, Annapurna; Sarma, P N
2005-01-01
Studies were carried out on the treatment of wastewater from a bulk drug industry using an anaerobic fixed film reactor (AFFR) designed and fabricated in the laboratory. The chemical oxygen demand (COD) and total dissolved solids (TDS) of the wastewater were found to be very high with low biochemical oxygen demand (BOD) to COD ratio and high total suspended solid (TSS) concentration. Acclimatization of seed consortia and startup of the reactor was carried out by directly using the wastewater, which resulted in reducing the period of startup to 30 days. The reactor was studied at different organic loading rates (OLR) and it was found that the optimum OLR was 10 kg COD/m(3)/day. The wastewater under investigation, which had a considerable quantity of SS, was treated anaerobically without any pretreatment. COD and BOD of the reactor outlet wastewater were monitored and at steady state and optimum OLR 60-70% of COD and 80-90% of BOD were removed. The reactor was subjected to organic shock loads at two different OLR and the reaction could withstand the shocks and performance could be restored to normalcy at that OLR. The results obtained indicated that AFFR could be used efficiently for the treatment of wastewater from a bulk drug industry having high COD, TDS and TSS.
2014-01-01
This paper examined the efficiency of multivariate linear regression (MLR) and artificial neural network (ANN) models in prediction of two major water quality parameters in a wastewater treatment plant. Biochemical oxygen demand (BOD) and chemical oxygen demand (COD) as well as indirect indicators of organic matters are representative parameters for sewer water quality. Performance of the ANN models was evaluated using coefficient of correlation (r), root mean square error (RMSE) and bias values. The computed values of BOD and COD by model, ANN method and regression analysis were in close agreement with their respective measured values. Results showed that the ANN performance model was better than the MLR model. Comparative indices of the optimized ANN with input values of temperature (T), pH, total suspended solid (TSS) and total suspended (TS) for prediction of BOD was RMSE = 25.1 mg/L, r = 0.83 and for prediction of COD was RMSE = 49.4 mg/L, r = 0.81. It was found that the ANN model could be employed successfully in estimating the BOD and COD in the inlet of wastewater biochemical treatment plants. Moreover, sensitive examination results showed that pH parameter have more effect on BOD and COD predicting to another parameters. Also, both implemented models have predicted BOD better than COD. PMID:24456676
Fito, Jemal; Tefera, Nurelegne; Kloos, Helmut; Van Hulle, Stijn W H
2018-06-07
This study aimed to investigate the physicochemical properties of sugar industry and ethanol distillery wastewater and the treatment of the blended wastewater through a two-stage anaerobic reactor. For this treatment, different initial chemical oxygen demand (COD) concentrations (5-20 g/L) and hydraulic retention times (HRTs) (2-10 days) were applied. The sugar industry effluent characteristics obtained in terms of organic matter (mg/L) were as follows: 5 days biochemical oxygen demand (BOD 5 ): 654.5-1,968; COD: 1,100-2,148.9; total solids (TS): 2,467-4,012 mg/L; and pH: 6.93-8.43. The ethanol distillery spent wash strengths obtained were: BOD 5 : 27,600-42,921 mg/L; COD: 126,000-167,534 mg/L; TS: 140,160-170,000 mg/L; and pH: 3.9-4.2. Maximum COD removal of 65% was obtained at optimum condition (initial COD concentration of 10 g/L and HRT of 10 days), and maximum color removal of 79% was recorded under similar treatment conditions. Hence, the performance of the two-stage anaerobic reactor for simultaneous removal of COD and color from high-strength blended wastewater is promising for scaling up in order to mitigate environmental problems of untreated effluent discharge.
Wastewater generated by the pharmaceutical manufacturing point source Sub-categories A (Fermentation Products) and C (Chemical Synthesis Products) are characterized by high COD concentrations (10,000 mg/l and higher). Plants in these subcategories typically employ secondary treat...
Treatment of ferrous-NTA-based NO x scrubber solution by an up-flow anaerobic packed bed bioreactor.
Chandrashekhar, B; Sahu, Nidhi; Tabassum, Heena; Pai, Padmaraj; Morone, Amruta; Pandey, R A
2015-06-01
A bench scale system consisting of an up-flow packed bed bioreactor (UAPBR) made of polyurethane foam was used for the treatment and regeneration of aqueous solution of ferrous-NTA scrubbed with nitric oxide (NO). The biomass in the UAPBR was sequentially acclimatized under denitrifying and iron reducing conditions using ethanol as electron donor, after which nitric oxide (NO) gas was loaded continuously to the system by absorption. The system was investigated for different parameters viz. pH, removal efficiency of nitric oxide, biological reduction efficiency of Fe(II)NTA-NO and COD utilization. The Fe(II)NTA-NO reduction efficiency reached 87.8 % at a loading rate of 0.24 mmol L(-1) h(-1), while the scrubber efficiency reached more than 75 % with 250 ppm NO. Stover-Kincannon and a Plug-flow kinetic model based on Michaelis-Menten equation were used to describe the UAPBR performance with respect to Fe(II)NTA-NO and COD removal. The Stover-Kincannon model was found capable of describing the Fe(II)NTA-NO reduction (R m = 8.92 mM h(-1) and K NO = 11.46 mM h(-1)) while plug-flow model provided better fit to the COD utilization (U m = 66.62 mg L(-1) h(-1), K COD = 7.28 mg L(-1)). Analyses for pH, Fe(III)NTA, ammonium, nitrite concentration, and FTIR analysis of the medium samples indicated degradation of NTA, which leads to ammonium and nitrite accumulation in the medium, and affect the regeneration process.
Wendland, C; Deegener, S; Behrendt, J; Toshev, P; Otterpohl, R
2007-01-01
The objective of this research was mesophilic anaerobic digestion of blackwater from vacuum toilets (BW) and kitchen refuse (KR) in a CSTR within an ecological sanitation system. A detailed investigation of the BW characteristics was carried out. Research on anaerobic digestion was performed with CSTR of 101 volume at HRT of 10, 15 and 20 days. The digestion of BW at 20 days HRT showed stable performance without inhibition effects, in spite of relatively high ammonium concentrations. The removal of total and particulate COD was 61% and 53%, respectively, and the methane yield 10/CH4/cap/day. The addition of kitchen refuse (KR) improved the performance of the CSTR in terms of COD removal efficiency and methane yield. At 20 days HRT the removal of total and particulate COD increased up to 71% and 67%, respectively, and the methane yield to 27/CH4/cap/day. The results at 15 days HRT showed similar performance. At HRT of 10 days, the anaerobic treatment was limited but reached steady state conditions at higher VFA concentrations in the effluent, with a decrease of COD removal of 30 to 33% and of methane yields of 19 to 21%.
Chinalia, F A; Garbossa, L H P; Rodriguez, J A; Lapa, K R; Foresti, E
2012-11-01
A two-stage bioreactor was operated for a period of 140 days in order to develop a post-treatment process based on anaerobic bioxidation of sulfite. This process was designed for simultaneously treating the effluent and biogas of a full-scale UASB reactor, containing significant concentrations of NH(4) and H(2)S, respectively. The system comprised of two horizontal-flow bed-packed reactors operated with different oxygen concentrations. Ammonium present in the effluent was transformed into nitrates in the first aerobic stage. The second anaerobic stage combined the treatment of nitrates in the liquor with the hydrogen sulfide present in the UASB-reactor biogas. Nitrates were consumed with a significant production of sulfate, resulting in a nitrate removal rate of 0.43 kgNm(3)day(-1) and ≥92 % efficiency. Such a removal rate is comparable to those achieved by heterotrophic denitrifying systems. Polymeric forms of sulfur were not detected (elementary sulfur); sulfate was the main product of the sulfide-based denitrifying process. S-sulfate was produced at a rate of about 0.35 kgm(3)day(-1). Sulfur inputs as S-H(2)S were estimated at about 0.75 kgm(3)day(-1) and Chemical Oxygen Demand (COD) removal rates did not vary significantly during the process. DGGE profiling and 16S rRNA identified Halothiobacillus-like species as the key microorganism supporting this process; such a strain has not yet been previously associated with such bioengineered systems.
Basitere, M; Rinquest, Z; Njoya, M; Sheldon, M S; Ntwampe, S K O
2017-07-01
The South African poultry industry has grown exponentially in recent years due to an increased demand for their products. As a result, poultry plants consume large volumes of high quality water to ensure that hygienically safe poultry products are produced. Furthermore, poultry industries generate high strength wastewater, which can be treated successfully at low cost using anaerobic digesters. In this study, the performance of a bench-scale mesophilic static granular bed reactor (SGBR) containing fully anaerobic granules coupled with an ultrafiltration (UF) membrane system, as a post-treatment system, was investigated. The poultry slaughterhouse wastewater was characterized by a chemical oxygen demand (COD) range between 1,223 and 9,695mg/L, average biological oxygen demand of 2,375mg/L and average fats, oil and grease (FOG) of 554mg/L. The SGBR anaerobic reactor was operated for 9 weeks at different hydraulic retention times (HRTs), i.e. 55 and 40 h, with an average organic loading rate (OLR) of 1.01 and 3.14g COD/L.day. The SGBR results showed an average COD, total suspended solids (TSS) and FOG removal of 93%, 95% and 90% respectively, for both OLR. The UF post-treatment results showed an average of COD, TSS and FOG removal of 64%, 88% and 48%, respectively. The overall COD, TSS and FOG removal of the system (SGBR and UF membrane) was 98%, 99.8%, and 92.4%, respectively. The results of the combined SGBR reactor coupled with the UF membrane showed a potential to ensure environmentally friendly treatment of poultry slaughterhouse wastewater.
El-Fadel, M; Matar, F; Hashisho, J
2013-05-01
The treatability of high-strength landfill leachate is challenging and relatively limited. This study examines the feasibility of treating high-strength landfill leachate (chemical oxygen demand [COD]: 7,760-11,770 mg/L, biochemical oxygen demand [BOD5]: 2,760-3,569 mg/L, total nitrogen [TN] = 980-1,160 mg/L) using a sequencing batch reactor (SBR) preceded by a coagulation-flocculation process with phosphorus nutritional balance under various mixing and aeration patterns. Simulations were also conducted to define kinetic parameters and COD fractionation. Removal efficiencies reached 89% for BOD5, 60% for COD, and 72% for TN, similar to and better than reported studies, albeit with a relatively lower hydraulic retention time (HRT) and solid retention time (SRT). The coupled experimental and simulation results contribute in filling a gap toward managing high-strength landfill leachate and providing guidelines for corresponding SBR applications. The treatability of high-strength landfill leachate, which is challenging and relatively limited, was demonstrated using a combined coagulation-flocculation with SBR technology and nutrient balance adjustment. The most suitable coagulant, kinetic design parameters, and COD fractionation were defined using coupled experimental and simulation results contributing in filling a gap toward managing high-strength leachate by providing guidelines for corresponding SBR applications and anticipating potential constraints related to the non-biodegradable COD fraction. In this context, while the combined coagulation-flocculation and SBR process improved removal efficiencies, posttreatment may be required for high-strength leachate, depending on discharge standards and ultimate usage of the treated leachate.
Relationships between water quality parameters in rivers and lakes: BOD5, COD, NBOPs, and TOC.
Lee, Jaewoong; Lee, Seunghyun; Yu, Soonju; Rhew, Doughee
2016-04-01
Biological oxygen demand (BOD5) or chemical oxygen demand (COD) analysis is widely used to evaluate organic pollutants in water systems as well as the efficiency of wastewater treatment plants. However, both analysis methods have restrictions such as being insensitive, imprecise, time-consuming, and the production of chemical waste. Therefore, total organic carbon (TOC) analysis for organic pollutants has been considered for an alternative analysis instead of BOD5 or COD. Several studies have investigated the replacement of BOD5 or COD with TOC in wastewater samples; however, few studies have investigated the relationships between water quality parameters in rivers and lakes. Therefore, this study evaluated the relationships between BOD5, COD, or NBOPs and TOC by the analysis of national water quality monitoring data of rivers and lakes for 5 years. High correlation coefficients (r) of 0.87 and 0.66 between BOD5 and TOC (p < 0.05) were obtained for rivers and lakes, respectively, and strong correlation coefficients (r) of 0.93 and 0.75 were observed between COD and TOC (p < 0.05) for rivers and lakes, respectively. The correlation coefficient (r) between NBOPs and TOC was 0.93 for rivers and 0.72 for lakes. The coefficients of determination (R 2) were 0.75 and 0.44 between BOD5 and TOC for rivers and lakes as well as were 0.87 and 0.57 between COD and TOC for rivers and lakes, respectively. The coefficient of determination (R 2) between NBOPs and TOC was 0.73 for rivers and 0.52 for lakes.
Fort Dix Remedial Investigation/Feasibility Study for 13 Sites, Final Technical Plan, Data Item A004
1995-09-01
39 oxygen demand (COD), TSS, total dissolved solids ( TDS ), nitrate/nitrite, sulfate, W0109314.M80 7133-04 5-4 SECTION 5 phosphateand alkalinity...TSS, TDS , BOD-5, COD, alkalinity, hardness, 38 and gross alpha, beta, and gamma radiation (Table 2). 39 W0109314.M80 12-2 7133-°4 SECTION 12 l...wells. Groundwater samples 28 will be analyzed for TCL VOCs, TCL SVOCs, TAL metals (nonfiltered and filtered) 29 TSS, TDS , BOD-5, COD, alkalinity
Role of primary sedimentation on plant-wide energy recovery and carbon footprint.
Gori, Riccardo; Giaccherini, Francesca; Jiang, Lu-Man; Sobhani, Reza; Rosso, Diego
2013-01-01
The goal of this paper is to show the effect of primary sedimentation on the chemical oxygen demand (COD) and solids fractionation and consequently on the carbonaceous and energy footprints of wastewater treatment processes. Using a simple rational procedure for COD and solids fraction quantification, we quantify the effects of varying fractions on CO2 and CO2-equivalent mass flows, process energy demand and energy recovery. Then we analysed two treatment plants with similar biological nutrient removal processes in two different climatic regions and quantified the net benefit of gravity separation before biological treatment. In the cases analysed, primary settling increases the solid fraction of COD that is processed in anaerobic digestion, with an associated increase in biogas production and energy recovery, and a reduction in overall emissions of CO2 and CO2-equivalent from power importation.
Hu, Yong; Jing, Zhaoqian; Sudo, Yuta; Niu, Qigui; Du, Jingru; Wu, Jiang; Li, Yu-You
2015-07-01
The effect of the chemical oxygen demand/sulfate (COD/SO4(2-)) ratio on the anaerobic treatment of synthetic chemical wastewater containing acetate, ethanol, and sulfate, was investigated using a UASB reactor. The experimental results show that at a COD/SO4(2-) ratio of 20 and a COD loading rate of 25.2gCODL(-1)d(-1), a COD removal of as high as 87.8% was maintained. At a COD/SO4(2-) ratio of 0.5 (sulfate concentration 6000mgL(-1)), however, the COD removal was 79.2% and the methane yield was 0.20LCH4gCOD(-1). The conversion of influent COD to methane dropped from 80.5% to 54.4% as the COD/SO4(2-) ratio decreased from 20 to 0.5. At all the COD/SO4(2-) ratios applied, over 79.4% of the total electron flow was utilized by methane-producing archaea (MPA), indicating that methane fermentation was the predominant reaction. The majority of the methane was produced by acetoclastic MPA at high COD/SO4(2-) ratios and both acetoclastic and hydrogenthrophic MPA at low COD/SO4(2-) ratios. Only at low COD/SO4(2-) ratios were SRB species such as Desulfovibrio found to play a key role in ethanol degradation, whereas all the SRB species were found to be incomplete oxidizers at both high and low COD/SO4(2-) ratios. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hulin, Billy T; Gabbett, Tim J; Johnston, Rich D; Jenkins, David G
2018-03-15
Determine: 1) how change of direction (COD) workloads influence PlayerLoad variables when controlling total distance covered, and 2) relationships among collision workloads and PlayerLoad variables during rugby league match-play. Participants completed 3 protocols (crossover design) consisting of 10 repetitions of a 60 m effort in 15 s. The difference between each protocol was the COD demands required to complete 1 repetition; no COD (SL), 1 x 180º COD (1COD), or 3 x 180º COD (3COD). During rugby league matches, relationships among collision workloads, tri-axial PlayerLoad (PLVM), anterior-posterior + medio-lateral PlayerLoad (PL2D), and PLVM accumulated at locomotor velocities below 2 m.sec -1 (i.e. PLSLOW) were examined using Pearson correlations (r) with coefficients of determination (R 2 ). Comparing 3COD to SL drills: PLVM.min -1 (d = 1.50 ± 0.49, large, likelihood = 100%, almost certainly), PL2D.min -1 (d = 1.38 ± 0.53, large, likelihood = 100%, almost certainly), and PLSLOW.min -1 (d = 1.69 ± 0.40, large, likelihood = 100%, almost certainly) were greater. Collisions.min -1 demonstrated a distinct (i.e. R 2 <0.50) relationship from PLVM.min -1 (R 2 = 0.30, r = 0.55), and PL2D.min -1 (R 2 = 0.37, r = 0.61). Total distance.min 1 demonstrated a very large relationship with PLVM.min -1 (R 2 = 0.62, r = 0.79), and PL2D.min -1 (R 2 = 0.57, r = 0.76). PlayerLoad variables demonstrate: 1) large increases as COD demands intensify, 2) separate relationships from collision workloads, and 3) moderate to very large relationships with total distance during match-play. PlayerLoad variables should be used with caution to measure collision workloads in team sport.
Revilla, Marta; Galán, Berta; Viguri, Javier R
2016-07-01
An integrated mathematical model is proposed for modelling a moving bed biofilm reactor (MBBR) for removal of chemical oxygen demand (COD) under aerobic conditions. The composite model combines the following: (i) a one-dimensional biofilm model, (ii) a bulk liquid model, and (iii) biological processes in the bulk liquid and biofilm considering the interactions among autotrophic, heterotrophic and predator microorganisms. Depending on the values for the soluble biodegradable COD loading rate (SCLR), the model takes into account a) the hydrolysis of slowly biodegradable compounds in the bulk liquid, and b) the growth of predator microorganisms in the bulk liquid and in the biofilm. The integration of the model and the SCLR allows a general description of the behaviour of COD removal by the MBBR under various conditions. The model is applied for two in-series MBBR wastewater plant from an integrated cellulose and viscose production and accurately describes the experimental concentrations of COD, total suspended solids (TSS), nitrogen and phosphorous obtained during 14 months working at different SCLRs and nutrient dosages. The representation of the microorganism group distribution in the biofilm and in the bulk liquid allow for verification of the presence of predator microorganisms in the second reactor under some operational conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rapid Determination of the Chemical Oxygen Demand of Water Using a Thermal Biosensor
Yao, Na; Wang, Jinqi; Zhou, Yikai
2014-01-01
In this paper we describe a thermal biosensor with a flow injection analysis system for the determination of the chemical oxygen demand (COD) of water samples. Glucose solutions of different concentrations and actual water samples were tested, and their COD values were determined by measuring the heat generated when the samples passed through a column containing periodic acid. The biosensor exhibited a large linear range (5 to 3000 mg/L) and a low detection limit (1.84 mg/L). It could tolerate the presence of chloride ions in concentrations of 0.015 M without requiring a masking agent. The sensor was successfully used for detecting the COD values of actual samples. The COD values of water samples from various sources were correlated with those obtained by the standard dichromate method; the linear regression coefficient was found to be 0.996. The sensor is environmentally friendly, economical, and highly stable, and exhibits good reproducibility and accuracy. In addition, its response time is short, and there is no danger of hazardous emissions or external contamination. Finally, the samples to be tested do not have to be pretreated. These results suggest that the biosensor is suitable for the continuous monitoring of the COD values of actual wastewater samples. PMID:24915178
Hadavifar, Mojtaba; Younesi, Habibollah; Zinatizadeh, Ali Akbar; Mahdad, Faezeh; Li, Qin; Ghasemi, Zahra
2016-04-01
This study investigates the treatment of the distilleries vinasse using a hybrid process integrating ozone oxidation and granular activated carbons (GAC) in both batch and continuous operation mode. The batch-process studies have been carried out to optimize initial influent pH, GAC doses, the effect of the ozone (O3) and hydrogen peroxide (H2O2) concentrations on chemical oxygen demand (COD) and color removal of the distilleries vinasse. The continuous process was carried out on GAC and ozone treatment alone as well as the hybrid process comb both methods to investigate the synergism effectiveness of the two methods for distilleries vinasse COD reduction and color removal. In a continuous process, the Yan model described the experimental data better than the Thomas model. The efficiency of ozonation of the distilleries vinasse was more effective for color removal (74.4%) than COD removal (25%). O3/H2O2 process was not considerably more effective on COD and color removal. Moreover, O3/GAC process affected negatively on the removal efficiency by reducing COD and color from distilleries vinasse. The negative effect decreased by increasing pH value of the influent. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lu, Haifeng; Han, Ting; Zhang, Guangming; Ma, Shanshan; Zhang, Yuanhui; Li, Baoming; Cao, Wei
2018-01-01
Photosynthetic bacteria (PSB) have two sets of metabolic pathways. They can degrade pollutants through light metabolic under light-anaerobic or oxygen metabolic pathways under dark-aerobic conditions. Both metabolisms function under natural light-microaerobic condition, which demands less energy input. This work investigated the characteristics of PSB wastewater treatment process under that condition. Results showed that PSB had very strong adaptability to chemical oxygen demand (COD) concentration; with F/M of 5.2-248.5 mg-COD/mg-biomass, the biomass increased three times and COD removal reached above 91.5%. PSB had both advantages of oxygen metabolism in COD removal and light metabolism in resource recovery under natural light-microaerobic condition. For pollutants' degradation, COD, total organic carbon, nitrogen, and phosphorus removal reached 96.2%, 91.0%, 70.5%, and 92.7%, respectively. For resource recovery, 74.2% of C in wastewater was transformed into biomass. Especially, coexistence of light and oxygen promote N recovery ratio to 70.9%, higher than with the other two conditions. Further, 93.7% of N-removed was synthesized into biomass. Finally, CO 2 emission reduced by 62.6% compared with the traditional process. PSB wastewater treatment under this condition is energy-saving, highly effective, and environment friendly, and can achieve pollution control and resource recovery.
Uncertainties in stormwater runoff data collection from a small urban catchment, Southeast China.
Huang, Jinliang; Tu, Zhenshun; Du, Pengfei; Lin, Jie; Li, Qingsheng
2010-01-01
Monitoring data are often used to identify stormwater runoff characteristics and in stormwater runoff modelling without consideration of their inherent uncertainties. Integrated with discrete sample analysis and error propagation analysis, this study attempted to quantify the uncertainties of discrete chemical oxygen demand (COD), total suspended solids (TSS) concentration, stormwater flowrate, stormwater event volumes, COD event mean concentration (EMC), and COD event loads in terms of flow measurement, sample collection, storage and laboratory analysis. The results showed that the uncertainties due to sample collection, storage and laboratory analysis of COD from stormwater runoff are 13.99%, 19.48% and 12.28%. Meanwhile, flow measurement uncertainty was 12.82%, and the sample collection uncertainty of TSS from stormwater runoff was 31.63%. Based on the law of propagation of uncertainties, the uncertainties regarding event flow volume, COD EMC and COD event loads were quantified as 7.03%, 10.26% and 18.47%.
Effect of organic matter to nitrogen ratio on membrane bioreactor performance.
Hao, L; Liao, B Q
2015-01-01
Effect of chemical oxygen demand (COD) to nitrogen (COD:N) ratio in feed on the performance of aerobic membrane bioreactor (MBR) for treating a synthetic high-strength industrial waste water containing glucose was studied for over 370 days. The widely recommended nutrients ratio (COD:N:P = 100:5:1) is not necessary for aerobic biological industrial waste water treatment. An increased COD:N ratio from 100:5 to 100:2.5 and 100:1.8 had a limited impact on COD removal efficiency and further led to a significant improvement in membrane performance, a reduced sludge yield, and improved effluent quality in terms of residual nutrients. An increased COD:N ratio will benefit the industrial waste water treatment using MBRs by reducing membrane fouling and sludge yield, saving chemical costs, and reducing secondary pollution by nutrients addition. Optimization of nutrients usage should be conducted for specific industrial waste water streams.
Long-term effects of the transient COD concentration on the performance of microbial fuel cells.
Mateo, S; Gonzalez Del Campo, A; Lobato, J; Rodrigo, M; Cañizares, P; Fernandez-Morales, F J
2016-07-08
In this work, the long-term effects of transient chemical oxygen demands (COD) concentrations over the performance of a microbial fuel cell were studied. From the obtained results, it was observed that the repetitive change in the COD loading rate during 12 h conditioned the behavior of the system during periods of up to 7 days. The main modifications were the enhancement of the COD consumption rate and the exerted current. These enhancements yielded increasing Coulombic efficiencies (CEs) when working with COD concentrations of 300 mg/L, but constant CEs when working with COD concentrations from 900 to 1800 mg/L. This effect could be explained by the higher affinity for the substrate of Geobacter than that of the nonelectrogenic organisms such as Clostridia. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:883-890, 2016. © 2016 American Institute of Chemical Engineers.
Removing organic matter from sulfate-rich wastewater via sulfidogenic and methanogenic pathways.
Vilela, Rogerio Silveira; Damianovic, Márcia Helena Rissato Zamariolli; Foresti, Eugenio
2014-01-01
The simultaneous organic matter removal and sulfate reduction in synthetic sulfate-rich wastewater was evaluated for various chemical oxygen demand (COD)/sulfate ratios applied in a horizontal-flow anaerobic immobilized sludge (HAIS) reactor. At higher COD/sulfate ratios (12.5 and 7.5), the removal of organic matter was stable, likely due to methanogenesis. A combination of sulfate reduction and methanogenesis was clearly established at COD/sulfate ratios of 3.0 and 1.9. At a COD/sulfate ratio of 1.0, the organic matter removal was likely influenced by methanogenesis inhibition. The quantity of sulfate removed at a COD/sulfate ratio of 1.0 was identical to that obtained at a ratio of 1.9, indicating a lack of available electron donors for sulfidogenesis. The sulfate reduction and organic matter removal were not maximized at the same COD/sulfate ratio; therefore, competitive inhibition must be the predominant mechanism in establishing an electron flow.
A rapid analytical method for predicting the oxygen demand of wastewater.
Fogelman, Shoshana; Zhao, Huijun; Blumenstein, Michael
2006-11-01
In this study, an investigation was undertaken to determine whether the predictive accuracy of an indirect, multiwavelength spectroscopic technique for rapidly determining oxygen demand (OD) values is affected by the use of unfiltered and turbid samples, as well as by the use of absorbance values measured below 200 nm. The rapid OD technique was developed that uses UV-Vis spectroscopy and artificial neural networks (ANNs) to indirectly determine chemical oxygen demand (COD) levels. It was found that the most accurate results were obtained when a spectral range of 190-350 nm was provided as data input to the ANN, and when using unfiltered samples below a turbidity range of 150 NTU. This is because high correlations of above 0.90 were obtained with the data using the standard COD method. This indicates that samples can be measured directly without the additional need for preprocessing by filtering. Samples with turbidity values higher than 150 NTU were found to produce poor correlations with the standard COD method, which made them unsuitable for accurate, real-time, on-line monitoring of OD levels.
Chemically pretreating slaughterhouse solid waste to increase the efficiency of anaerobic digestion.
Flores-Juarez, Cyntia R; Rodríguez-García, Adrián; Cárdenas-Mijangos, Jesús; Montoya-Herrera, Leticia; Godinez Mora-Tovar, Luis A; Bustos-Bustos, Erika; Rodríguez-Valadez, Francisco; Manríquez-Rocha, Juan
2014-10-01
The combined effect of temperature and pretreatment of the substrate on the anaerobic treatment of the organic fraction of slaughterhouse solid waste was studied. The goal of the study was to evaluate the effect of pretreating the waste on the efficiency of anaerobic digestion. The effect was analyzed at two temperature ranges (the psychrophilic and the mesophilic ranges), in order to evaluate the effect of temperature on the performance of the anaerobic digestion process for this residue. The experiments were performed in 6 L batch reactors for 30 days. Two temperature ranges were studied: the psychrophilic range (at room temperature, 18°C average) and the mesophilic range (at 37°C). The waste was pretreated with NaOH before the anaerobic treatment. The result of pretreating with NaOH was a 194% increase in the soluble chemical oxygen demand (COD) with a dose of 0.6 g NaOH per g of volatile suspended solids (VSS). In addition, the soluble chemical oxygen demand/total chemical oxygen demand ratio (sCOD/tCOD) increased from 0.31 to 0.7. For the anaerobic treatment, better results were observed in the mesophilic range, achieving 70.7%, 47% and 47.2% removal efficiencies for tCOD, total solids (TS), and volatile solids (VS), respectively. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Energy-efficient methane production from macroalgal biomass through chemo disperser liquefaction.
Tamilarasan, K; Kavitha, S; Rajesh Banu, J; Arulazhagan, P; Yeom, Ick Tae
2017-03-01
In this study, an effort has been made to reduce the energy cost of liquefaction by coupling a mechanical disperser with a chemical (sodium tripolyphosphate). In terms of the cost and specific energy demand of liquefaction, the algal biomass disintegrated at 12,000rpm for 30min, and an STPP dosage of about 0.04g/gCOD was chosen as an optimal parameter. Chemo disperser liquefaction (CDL) was found to be energetically and economically sustainable in terms of liquefaction, methane production, and net profit (15%, 0.14gCOD/gCOD, and 4 USD/Ton of algal biomass) and preferable to disperser liquefaction (DL) (10%, 0.11 gCOD/gCOD, and -475 USD/Ton of algal biomass). Copyright © 2016 Elsevier Ltd. All rights reserved.
Improving water quality in China: Environmental investment pays dividends.
Zhou, Yongqiang; Ma, Jianrong; Zhang, Yunlin; Qin, Boqiang; Jeppesen, Erik; Shi, Kun; Brookes, Justin D; Spencer, Robert G M; Zhu, Guangwei; Gao, Guang
2017-07-01
This study highlights how Chinese economic development detrimentally impacted water quality in recent decades and how this has been improved by enormous investment in environmental remediation funded by the Chinese government. To our knowledge, this study is the first to describe the variability of surface water quality in inland waters in China, the affecting drivers behind the changes, and how the government-financed conservation actions have impacted water quality. Water quality was found to be poorest in the North and the Northeast China Plain where there is greater coverage of developed land (cities + cropland), a higher gross domestic product (GDP), and higher population density. There are significant positive relationships between the concentration of the annual mean chemical oxygen demand (COD) and the percentage of developed land use (cities + cropland), GDP, and population density in the individual watersheds (p < 0.001). During the past decade, following Chinese government-financed investments in environmental restoration and reforestation, the water quality of Chinese inland waters has improved markedly, which is particularly evident from the significant and exponentially decreasing GDP-normalized COD and ammonium (NH 4 + -N) concentrations. It is evident that the increasing GDP in China over the past decade did not occur at the continued expense of its inland water ecosystems. This offers hope for the future, also for other industrializing countries, that with appropriate environmental investments a high GDP can be reached and maintained, while simultaneously preserving inland aquatic ecosystems, particularly through management of sewage discharge. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hydroponic system for the treatment of anaerobic liquid.
Krishnasamy, K; Nair, J; Bäuml, B
2012-01-01
The effluent from anaerobic digestion process has high concentrations of nutrients, particularly nitrogen, essential for plant growth but is not suitable for direct disposal or application due to high chemical oxygen demand (COD), low dissolved oxygen (DO), odour issues and is potentially phytotoxic. This research explored the optimum conditions of anaerobic effluent for application and dilutions of the effluent required to obtain better plant growth. A small-scale hydroponic system was constructed in a glasshouse to test different concentrations of anaerobic effluent against a commercial hydroponic medium as the control for the growth of silverbeet. It was found that the survival of silverbeet was negatively affected at 50% concentration due to low DO and NH(4) toxicity. The concentration of 20% anaerobic liquid was found to be the most efficient with highest foliage yield and plant growth. The hydroponic system with 20% concentrated effluent had better utilisation of nutrients for plant growth and a COD reduction of 95% was achieved during the 50-day growth period. This preliminary evaluation revealed that the growth and development of silverbeet was significantly lower in anaerobic effluent compared with a commercial hydroponic plant growth solution. The nutrient quality of anaerobic effluent could be highly variable with the process and the waste material used and dilution may depend on the nutrient content of the effluent. It is recommended that, a pre-treatment of the effluent to increase DO and reduce ammonium content is required before plant application, and simple dilution by itself is not suitable for optimum plant growth in a hydroponic system.
Masi, F; Rizzo, A; Martinuzzi, N; Wallace, S D; Van Oirschot, D; Salazzari, P; Meers, E; Bresciani, R
2017-07-01
Swine wastewater management is often affected by two main issues: a too high volume for optimal reuse as a fertilizer and a too high strength for an economically sustainable treatment by classical solutions. Hence, an innovative scheme has been tested to treat swine wastewater, combining a low cost anaerobic reactor, upflow anaerobic sludge blanket (UASB), with intensified constructed wetlands (aerated CWs) in a pilot scale experimental study. The swine wastewater described in this paper is produced by a swine production facility situated in North Italy. The scheme of the pilot plant consisted of: (i) canvas-based thickener; (ii) UASB; (iii) two intensified aerated vertical subsurface flow CWs in series; (iv) a horizontal flow subsurface CW. The influent wastewater quality has been defined for total suspended solids (TSS 25,025 ± 9,323 mg/l), organic carbon (chemical oxygen demand (COD) 29,350 ± 16,983 mg/l), total reduced nitrogen and ammonium (total Kjeldahl nitrogen (TKN) 1,783 ± 498 mg/l and N-NH 4 + 735 ± 251 mg/l) and total phosphorus (1,285 ± 270 mg/l), with nitrates almost absent. The overall system has shown excellent performances in terms of TSS, COD, N-NH 4 + and TKN removal efficiencies (99.9%, 99.6%, 99.5%, and 99.0%, respectively). Denitrification (N-NO 3 - effluent concentration equal to 614 ± 268 mg/l) did not meet the Italian quality standards for discharging in water bodies, mainly because the organic carbon was almost completely removed in the intensified CW beds.
Zhang, Dongqing; Trzcinski, Antoine P; Oh, Hyun-Suk; Chew, Evelyn; Liu, Yu; Tan, Soon Keat; Ng, Wun Jern
2017-09-19
Zinc Oxide nanoparticles (ZnO NPs) are being increasingly applied in the industry, which results inevitably in the release of these materials into the hydrosphere. In this study, simulated waste-activated sludge experiments were conducted to investigate the effects of Zinc Oxide NPs and to compare it with its ionic counterpart (as ZnSO 4 ). It was found that even 1 mg/L of ZnO NPs could have a small impact on COD and ammonia removal. Under 1, 10 and 50 mg/L of ZnO NP exposure, the Chemical Oxygen Demand (COD) removal efficiencies decreased from 79.8% to 78.9%, 72.7% and 65.7%, respectively. The corresponding ammonium (NH 4 + N) concentration in the effluent significantly (P < 0.05) increased from 11.9 mg/L (control) to 15.3, 20.9 and 28.5 mg/L, respectively. Under equal Zn concentration, zinc ions were more toxic towards microorganisms compared to ZnO NPs. Under 50 mg/L exposure, the effluent Zn level was 5.69 mg/L, implying that ZnO NPs have a strong affinity for activated sludge. The capacity for adsorption of ZnO NPs onto activated sludge was found to be 2.3, 6.3, and 13.9 mg/g MLSS at influent ZnO NP concentrations of 1.0, 10 and 50 mg/L respectively, which were 1.74-, 2.13- and 2.05-fold more than under Zn ion exposure.
Gori, Riccardo; Jiang, Lu-Man; Sobhani, Reza; Rosso, Diego
2011-11-15
Most wastewater treatment plants monitor routinely carbonaceous and nitrogenous load parameters in influent and effluent streams, and often in the intermediate steps. COD fractionation discriminates the selective removal of VSS components in different operations, allowing accurate quantification of the energy requirements and mass flows for secondary treatment, sludge digestion, and sedimentation. We analysed the different effects of COD fractions on carbon and energy footprint in a wastewater treatment plant with activated sludge in nutrient removal mode and anaerobic digestion of the sludge with biogas energy recovery. After presenting a simple rational procedure for COD and solids fractions quantification, we use our carbon and energy footprint models to quantify the effects of varying fractions on carbon equivalent flows, process energy demand and recovery. A full-scale real process was modelled with this procedure and the results are reported in terms of energy and carbon footprint. For a given process, the increase of the ratio sCOD/COD increases the energy demand on the aeration reactors, the associated CO(2) direct emission from respiration, and the indirect emission for power generation. Even though it appears as if enhanced primary sedimentation is a carbon and energy footprint mitigation practice, care must be used since the nutrient removal process downstream may suffer from an excessive bCOD removal and an increased mean cell retention time for nutrient removal may be required. Copyright © 2011 Elsevier Ltd. All rights reserved.
Sewage treatment in integrated system of UASB reactor and duckweed pond and reuse for aquaculture.
Mohapatra, D P; Ghangrekar, M M; Mitra, A; Brar, S K
2012-06-01
The performance of a laboratory-scale upflow anaerobic sludge blanket (UASB) reactor and a duckweed pond containing Lemna gibba was investigated for suitability for treating effluent for use in aquaculture. While treating low-strength sewage having a chemical oxygen demand (COD) of typically less than 200 mg/L, with an increase in hydraulic retention time (HRT) from 10.04 to 33.49 h, COD removal efficiency of the UASB reactor decreased owing to a decrease in organic loading rate (OLR) causing poor mixing in the reactor. However, even at the lower OLR (0.475 kg COD/(m3 x d)), the UASB reactor gave a removal efficiency of 68% for COD and 74% for biochemical oxygen demand (BOD). The maximum COD, BOD, ammonia-nitrogen and phosphate removal efficiencies of the duckweed pond were 40.77%, 38.01%, 61.87% and 88.57%, respectively. Decreasing the OLR by increasing the HRT resulted in an increase in efficiency of the duckweed pond for removal of ammonia-nitrogen and phosphate. The OLR of 0.005 kg COD/(m2 x d) and HRT of 108 h in the duckweed pond satisfied aquaculture quality requirements. A specific growth rate of 0.23% was observed for tilapia fish fed with duckweed harvested from the duckweed pond. The economic analysis proved that it was beneficial to use the integrated system of a UASB reactor and a duckweed pond for treatment of sewage.
Gao, Feng; Li, Zhiwei; Chang, Qingbo; Gao, Mengchun; She, Zonglian; Wu, Juan; Jin, Chunji; Zheng, Dong; Guo, Liang; Zhao, Yangguo; Wang, Sen
2018-02-01
The effects of florfenicol (FF) on the performance, microbial activity and microbial community of a sequencing batch biofilm reactor (SBBR) were evaluated in treating mariculture wastewater. The chemical oxygen demand (COD) and nitrogen removal were inhibited at high FF concentrations. The specific oxygen utilization rate (SOUR), specific ammonium oxidation rate (SAOR), specific nitrite oxidation rate (SNOR) and specific nitrate reduction rate (SNRR) were decreased with an increase in the FF concentration from 0 to 35 mg/L. The chemical compositions of loosely bound extracellular polymeric substances (LB-EPS) and tightly bound EPS (TB-EPS) could be affected with an increase in the FF concentration. The high-throughput sequencing indicated some obvious variations in the microbial community at different FF concentrations. The relative abundance of Nitrosomonas and Nitrospira showed a decreasing tendency with an increase in the FF concentration, suggesting that FF could affect the nitrification process of SBBR. Some genera capable of reducing nitrate to nitrogen gas could be inhibited by the addition of FF in the influent, such as Azospirillum and Hyphomicrobium.
Amaral, Míriam C S; Ferreira, Cynthia F A; Lange, Liséte Celina; Aquino, Sérgio F
2009-05-01
This work presents results from a detailed characterization of landfill leachates of different ages from a landfill in a major Brazilian city. This characterization consists of determining the molecular size distribution and the inert chemical oxygen demand (COD) and the biodegradability of both aerobic and anaerobic processes. Results show that leachate with a high COD concentration leachate has low biodegradability. A significant fraction of the COD is not characterized as protein, carbohydrate, or lipids, which reinforces the hypothesis that the remaining fraction was present in all leachate fractions (less than 1 kDa; between 1 and 10 kDa; between 10 and 100 kDa; and greater than 100 kDa) and is refractory. These results suggest that leachates with such characteristics require treatment systems that use physical-chemical processes as a pre- or post-treatment step to biological processes.
Ağdağ, Osman Nuri
2011-01-01
Leachate generated in municipal solid waste landfill contains large amounts of organic and inorganic contaminants. In the scope of the study, characterization and anaerobic/aerobic treatability of leachate from Denizli (Turkey) Sanitary Landfill were investigated. Time-based fluctuations in characteristics of leachate were monitored during a one-year period. In characterization study; chemical oxygen demand (COD), biochemical oxygen demand (BOD) dissolved oxygen, temperature, pH, alkalinity, volatile fatty acids, total nitrogen, NH4-N, BOD5/COD ratio, suspended solid, inert COD, anaerobic toxicity assay and heavy metals concentrations in leachate were monitored. Average COD, BOD and NH4-N concentration in leachate were measured as 18034 mg/l, 11504 mg/l and 454 mg/l, respectively. Generally, pollution parameters in leachate were higher in summer and relatively lower in winter due to dilution by precipitation. For treatment of leachate, two different reactors, namely anaerobic hybrid and aerobic completely stirred tank reactor (CSTR) having effective volumes of 17.7 and 10.5 litres, respectively, were used. After 41 days of start-up period, leachate was loaded to hybrid reactor at 10 different organic loading rates (OLRs). OLR was increased by increasing COD concentrations. COD removal efficiency of hybrid reactor was carried out at a maximum of 91%. A percentage of 96% of residual COD was removed in the aerobic reactor. NH4-N removal rate in CSTR was quite high. In addition, high methane content was obtained as 64% in the hybrid reactor. At the end of the study, after 170 operation days, it can be said that the hybrid reactor and CSTR were very effective for leachate treatment.
Tawfik, A; El-Kamah, H
2012-01-01
This study has been carried out to assess the performance of a combined system consisting of an anaerobic hybrid (AH) reactor followed by a sequencing batch reactor (SBR) for treatment of fruit-juice industry wastewater at a temperature of 26 degrees C. Three experimental runs were conducted in this investigation. In the first experiment, a single-stage AH reactor was operated at a hydraulic retention time (HRT) of 10.2 h and organic loading rate (OLR) of 11.8 kg COD m(-3) d(-1). The reactor achieved a removal efficiency of 42% for chemical oxygen demand (COD), 50.8% for biochemical oxygen demand (BOD5), 50.3% for volatile fatty acids (VFA) and 56.4% for total suspended solids (TSS). In the second experiment, two AH reactors connected in series achieved a higher removal efficiency for COD (67.4%), BOD5 (77%), and TSS (71.5%) at a total HRT of 20 h and an OLR of 5.9 kg COD m(-3) d(-1). For removal of the remaining portions of COD, BOD5 and TSS from the effluent of the two-stage AH system, a sequencing batch reactor (SBR) was investigated as a post-treatment unit. The reactor achieved a substantial reduction in total COD, resulting in an average effluent concentration of 50 mg L(-1) at an HRT of 11 h and OLR of 5.3 kg COD m(-3) d(-1). Almost complete removal of total BOD5 and oil and grease was achieved, i.e. 10 mg L(-1) and 1.2 mg L(-1), respectively, remained in the final effluent of the SBR.
Martins, Rui C; Ferreira, Ana M; Gando-Ferreira, Licínio M; Quinta-Ferreira, Rosa M
2015-10-01
With the objective of reaching suitable techniques for olive mill wastewater treatment, ozonation and ultrafiltration were studied individually and combined. A continuous reactor was run for the treatment of a phenolic mixture mimicking an actual olive mill wastewater (OMW) by ozonation. The effect of the main operating parameters was analysed (pH, liquid flow rate and ozone inlet concentration). The increase of pH and ozone dose improved ozonation efficiency. As expected, the highest residence time led to higher steady-state degradation (35 % of chemical oxygen demand (COD) abatement). Even if the rise on ozone inlet gas concentration was able to remove COD in a higher extent, it should be taken into consideration that with the lowest oxidant load (15 g O3/m(3)), the maximum steady-state biochemical oxygen demand (BOD5)/COD ratio was reached which would reduce the process costs. These operating conditions (pH 9, 1 mL/min of liquid flow rate and 15 g O3/m(3)) were applied to an actual OMW leading to 80 % of phenolic content abatement and 12 % of COD removal at the steady state. Regarding ultrafiltration, it was concluded that the best total phenolic content (TPh) and COD abatement results (55 and 15 %) are attained for pH 9 and using a transmembrane pressure drop of 1 bar. Among the integration schemes that were tested, ultrafiltration followed by ozonation was able to reach 93 and 20 % of TPh and COD depletion, respectively. Moreover, this sequence led to an effluent with a BOD5/COD ratio of about 0.55 which means that it likely can be posteriorly refined in a municipal wastewater treatment plant.
Effect of White Charcoal on COD Reduction in Wastewater Treatment
NASA Astrophysics Data System (ADS)
Pijarn, Nuchanaporn; Butsee, Manipa; Buakul, Kanokwan; Seng, Hasan; Sribuarai, Tinnphat; Phonprasert, Pongtep; Taneeto, Kla; Atthameth, Prasertsil
2017-06-01
The objective of this study is to compare the COD reduction in wastewater between using coconut shell and coconut spathe white charcoal from Khlong Wat NongPra-Ong, Krathumbaen, SamutSakhon province, Thailand. The waste water samples were collected using composite sampling method. The experimental section can be divided into 2 parts. The first part was study the optimum of COD adsorption time using both white charcoals. The second part was study the optimum amount of white charcoal for chemical oxygen demand (COD) reduction. The pre-treatment of wastewater was examined in parameters include temperature, alkalinity (pH), conductivity, turbidity, suspended solid (SS), total dissolved solid (TDS), and COD. The results show that both white charcoals can reduce COD of wastewater. The pH of pre-treatment wastewater had pH 9 but post-treatment wastewaters using both white charcoals have pH 8. The COD of pre-treatment wastewater had COD as 258 mg/L but post-treatment wastewater using coconut shell white charcoal had COD steady at 40 mg/L in 30 min and the amount of white charcoals 4 g. The COD of post-treatment wastewater using coconut spathe white charcoal had COD steady at 71 mg/L in 30 min and the amount of white charcoals 4 g. Therefore comparison of COD reduction between coconut shell white charcoal versus coconut spathe white charcoal found that the coconut shell white charcoal had efficiency for COD reduction better than coconut spathe white charcoal.
Sui, Qianwen; Liu, Chong; Dong, Hongmin; Zhu, Zhiping
2014-09-01
A membrane bioreactor (MBR) was developed for the treatment of anaerobically digested swine wastewater and to investigate the effect of ammonium nitrogen concentration on biological nitrogen removal and ammonia-oxidizing bacteria (AOB) community structures. The MBR achieved a high NH4(+)-N removal efficiency of 0.08 kgNMLSS(-1)d(-1) and removed 95% of the influent NH4(+)-N. The TN removal rate was highest of 82.62% at COD/TN and BOD5/TN ratios of 8.76 ± 0.30 and 3.02 ± 0.09, respectively. With the decrease in ammonium nitrogen concentrations, the diversity of the AOB community declined and showed a simple pattern of DGGE. However, the AOB population size remained high, with abundance of 10(7)-10(9) copies mL(-1). With the decrease of ammonium nitrogen concentrations, Nitrosomonas eutropha gradually disappeared, whereas Nitrosomonas sp. OZK11 showed constant adaptability to survive during each treatment stage. The selective effect of ammonium concentration on AOB species could be due to the affinity for NH4(+)-N. In this study, the changes of ammonium nitrogen concentrations in digested swine wastewater were found to have selective effects on the composition of AOB community, and biological nitrogen removal was improved by optimising the influencing parameters. Copyright © 2014. Published by Elsevier B.V.
Tertiary treatment of landfill leachates by adsorption.
Marañón, Elena; Castrillón, Leonor; Fernández-Nava, Yoland; Fernández-Méndez, Alejandro; Fernández-Sánchez, Arcadio
2009-08-01
The leachates produced at the municipal solid waste (MSW) landfill of Asturias (Spain) were submitted to a biological treatment consisting of a pressurized nitrification-denitrification process followed by ultrafiltration. The effluent from this treatment plant has a high chemical oxygen demand : biochemical oxygen demand (COD : BOD( 5)) ratio (about 25 : 1). The COD values of the effluent are above the discharge limits permitted by current legislation and therefore require a final treatment. In the present study, adsorption was investigated as a possible post-treatment. Three activated carbons (Organosorb 10, Organosorb 10MB and Filtracarb CC65/1240) were selected and equilibrium and column data were obtained. The best results were obtained with Organosorb 10MB, although adsorption capacities obtained were low and equilibrium was unfavourable. Adsorption capacities ranged between 150 and 157 mg COD g(-1) for an activated carbon dosage of 1 mg L(-1) and between 13.3 and 18.4 mg COD g(-1) for a dosage of 20 mg L(-1). As regards colour, adsorption capacities ranged between 145 and 175 UPtCo g(-1) for the lower dosage and between 16 and 29 UPtCo g(-1) for the higher dosage. Removal efficiency increased with the dosage of activated carbon employed, obtaining maximum COD and colour removals of 63 and 45%, respectively, for a dosage of 20 mg L(-1) after 5 h contact time.
Xu, Lei; Zhao, Yaqian; Fan, Chuang; Fan, Zhiren; Zhao, Fangchao
2017-11-01
Chemical oxygen demand (COD) is one of the major targets to remove in constructed wetlands (CWs) system. Traditional method for COD measurement is a complex, time-consuming and highly toxic reagents participated procedure. In this study, microbial fuel cell (MFC) was successfully integrated into CW for indicating COD concentration. Results showed that there are two linear correlations between bioelectrical signals (output voltage from MFC) and COD concentration (acetate), which are COD from 0 to 500mg/L (101.99±7.42 to 631.74±7.41mV, R 2 =0.9710) and then from 500 to 1000mg/L (631.74±7.41 to 668.46±0.01mV, R 2 =0.9245). Furthermore, results also revealed the specificity of the system in terms of different types of carbon source. Overall, this work presented the feasibility of using CW-MFC for in-situ sensing COD during the wastewater treatment process, which will be a promising technique for water quality monitoring within CWs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Manual or automated measuring of antipsychotics' chemical oxygen demand.
Pereira, Sarah A P; Costa, Susana P F; Cunha, Edite; Passos, Marieta L C; Araújo, André R S T; Saraiva, M Lúcia M F S
2018-05-15
Antipsychotic (AP) drugs are becoming accumulated in terrestrial and aqueous resources due to their actual consumption. Thus, the search of methods for assessing the contamination load of these drugs is mandatory. The COD is a key parameter used for monitoring water quality upon the assessment of the effect of polluting agents on the oxygen level. Thus, the present work aims to assess the chemical oxygen demand (COD) levels of several typical and atypical antipsychotic drugs in order to obtain structure-activity relationships. It was implemented the titrimetric method with potassium dichromate as oxidant and a digestion step of 2h, followed by the measurement of remained unreduced dichromate by titration. After that, an automated sequential injection analysis (SIA) method was, also, used aiming to overcome some drawbacks of the titrimetric method. The results obtained showed a relationship between the chemical structures of antipsychotic drugs and their COD values, where the presence of aromatic rings and oxidable groups give higher COD values. It was obtained a good compliance between the results of the reference batch procedure and the SIA system, and the APs were clustered in two groups, with the values ratio between the methodologies, of 2 or 4, in the case of lower or higher COD values, respectively. The SIA methodology is capable of operating as a screening method, in any stage of a synthetic process, being also more environmentally friendly, and cost-effective. Besides, the studies presented open promising perspectives for the improvement of the effectiveness of pharmaceutical removal from the waste effluents, by assessing COD values. Copyright © 2018 Elsevier Inc. All rights reserved.
Zhang, Xiaomeng; Inoue, Takashi; Kato, Kunihiko; Izumoto, Hayato; Harada, June; Wu, Da; Sakuragi, Hiroaki; Ietsugu, Hidehiro; Sugawara, Yasuhide
2017-01-01
This study followed three field-scale hybrid subsurface flow constructed wetland (CW) systems constructed in Hokkaido, northern Japan: piggery O (2009), dairy G (2011), and dairy S (2006). Treatment performance was monitored from the outset of operation for each CW. The ranges of overall purification efficiency for these systems were 70-86%, 40-85%, 71-90%, 91-96%, 94-98%, 84-97%, and 70-97% for total N (TN), NH 4 -N, total P, chemical oxygen demand (COD), biochemical oxygen demand, suspended solid, and total Coliform, respectively. The hybrid system's removal rates were highest when influent loads were high. COD removal rates were 46.4 ± 49.2, 94.1 ± 36.6, and 25.1 ± 15.5 g COD m -2 d -1 in piggery O, dairy G, and dairy S, with average influent loads of 50.5 ± 51.5, 98.9 ± 37.1, and 26.9 ± 16.0 g COD m -2 d -1 , respectively. The systems had overall COD removal efficiencies of around 90%. TN removal efficiencies were 62 ± 19%, 82 ± 9%, and 82 ± 15% in piggery O, dairy G, and dairy S, respectively. NH 4 -N removal efficiency was adversely affected by the COD/TN ratio. Results from this study prove that these treatment systems have sustained and positive pollutant removal efficiencies, which were achieved even under extremely cold climate conditions and many years after initial construction.
Combined thermo-chemo-sonic disintegration of waste activated sludge for biogas production.
Kavitha, S; Yukesh Kannah, R; Yeom, Ick Tae; Do, Khac-Uan; Banu, J Rajesh
2015-12-01
In the present study, there was an investigation about the impact of a new combined thermo-chemo-sonic disintegration of waste activated sludge (WAS) on biodegradability. The outcome of sludge disintegration reveals that maximum Suspended Solids (SS) reduction and Chemical Oxygen Demand (COD) solubilization effectuated at a specific energy input of 5290.5kJ/kgTS, and was found to be 20%, 16.4%, 15% and 27%, 22%, and 20%, respectively for the three alkalis (NaOH, KOH, and Ca(OH)2). The conversion coefficient of the Volatile Suspended Solids (VSS) to product Soluble COD (SCOD), calculated by nonlinear regression modeling, was found to be 0.5530gSCOD/gVSS, 0.4587gSCOD/gVSS, and 0.4195gSCOD/gVSS for NaOH, KOH, and Ca(OH)2, respectively. In the biodegradability studies, the parameter evaluation provides an estimate of parameter uncertainty and correlation, and elucidates that there is no significant difference in biodegradability (0.413gCOD/gCOD, 0.367gCOD/gCOD, and 0.342gCOD/gCOD) for three alkalis (NaOH, KOH, and Ca(OH)2). Copyright © 2015 Elsevier Ltd. All rights reserved.
Kim, Kyoung-Yeol; Yang, Wulin; Ye, Yaoli; LaBarge, Nicole; Logan, Bruce E
2016-05-01
Anaerobic fluidized membrane bioreactors (AFMBRs) have been mainly developed as a post-treatment process to produce high quality effluent with very low energy consumption. The performance of an AFMBR was examined using the effluent from a microbial fuel cell (MFC) treating domestic wastewater, as a function of AFMBR hydraulic retention times (HRTs) and organic matter loading rates. The MFC-AFMBR achieved 89 ± 3% removal of the chemical oxygen demand (COD), with an effluent of 36 ± 6 mg-COD/L over 112 days operation. The AFMBR had very stable operation, with no significant changes in COD removal efficiencies, for HRTs ranging from 1.2 to 3.8h, although the effluent COD concentration increased with organic loading. Transmembrane pressure (TMP) was low, and could be maintained below 0.12 bar through solids removal. This study proved that the AFMBR could be operated with a short HRT but a low COD loading rate was required to achieve low effluent COD. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liao, B Q; Zheng, M R; Ratana-Rueangsri, L
2010-01-01
A comparative study on the treatment of synthetic kraft evaporator condensate was conducted using thermophilic (55 degrees C) and mesophilic (30 degrees C) membrane aerated biofilm reactors (MABRs) and sequencing batch reactors (SBRs) for 8 months. Under tested conditions, a chemical oxygen demand (COD) removal efficiency of 80-95% was achieved with both thermophilic and mesophilic MABRs and SBRs. The COD removal efficiency of thermophilic MABR (80-90%) was slightly lower than that of the mesophilic MABR (85-95%) and the thermophilic SBR (90-95%). A significant amount (13-37%) of COD was stripped by conventional aeration in the SBRs, while stripping in MABRs was negligible. Simultaneous COD removal and denitrification were observed in the mesophilic MABR, while the thermophilic MABR contributed mainly for COD removal. Nitrification was not significant in both the thermophilic and mesophilic MABRs. The results suggest that treatment of kraft evaporator condensate is feasible with the use of both thermophilic and mesophilic MABRs in terms of COD removal with the advantages of negligible stripping.
Effect of COD/SO4(2-) ratio on anaerobic treatment of landfill leachate during the start-up period.
Yilmaz, Tuba; Erdirencelebi, Dilek; Berktay, Ali
2012-01-01
This study investigates the performance of an anaerobic baffled reactor (ABR) during the start-up period of raw young landfill leachate treatment at two chemical oxygen demand (COD) to SO4(2-) ratios of 20 and 4. The reactor was operated at ambient temperature and low organic loading rates (0.52, 0.76 and 1.05 kg COD/m3 per day). During the study, sulfate-reducing bacteria (SRB) activity increased at the lower ratio of COD/SO4(2-) producing higher levels of sulfide and alkalinity. The dissolved sulfide concentration reached an inhibitory level above 250 mg/L, which caused a sharp reduction in the total COD removal efficiency from 77-80% to 32%. Total volatile fatty acid (TVFA) production proceeded at a constant level despite increased organic loading. As the effluent total and organic COD concentrations increased, the inhibitory effect of the inborn sulfide was correlated to the limitation experienced in the hydrolysis/acidogenesis stages, and thus VFA production and organic matter removal.
Application of a hybrid Electrocoagulation-Fenton process in yarn dye wastewater: Kinetic study
NASA Astrophysics Data System (ADS)
Riadi, L.; Sapei, L.; Lidiawati, T.; Agustin, Y. E.
2016-11-01
Reactive dyes contain a significant portion of colorants used in yarn dying process and also in textile industry. Since the COD content is usually high in such wastewater,we conducted a hybrid electrocoagulation-fenton method to treat the wastewater. This work describes the application of the hybrid system to the removal of chemical oxygen demand and color from the wastewater in a batch reactor. Having worked with initial pH of 3,0; temperature at 30°C, molar ratio of Fe2+/H2O2 =1/10 and the mol ratio H2O2/COD = 4, we got 88.3% COD conversion and 88.5% color removal. The COD degradation process can be explained in two phases, the first phase is instantaneous reaction and the second phase is first order reaction. The kinetic constant was 0.0053 minute-1 and the rate of COD degradation was 0.0053[COD] mg/L minute.
Variation in organic matter and water color in Lake Mälaren during the past 70 years.
Johansson, L; Temnerud, J; Abrahamsson, J; Berggren Kleja, D
2010-03-01
Interest in long time series of organic matter data has recently increased due to concerns about the effects of global climate change on aquatic ecosystems. This study presents and evaluates unique time series of chemical oxygen demand (COD) and water color from Lake Malaren, Sweden, stretching almost seven decades (1935-2004). A negative linear trend was found in COD, but not in water color. The decrease was mainly due to installation of sewage works around 1970. Time series of COD and water color had cyclic pattern. It was strongest for COD, with 23 years periodicity. Similar periodicity observed in air temperature and precipitation in Sweden has been attributed to the North Atlantic Oscillation index and solar system orbit, suggesting that COD in Lake Mälaren is partly derived from algae. Discharge influenced water color more than COD, possibly because water color consists of colored substances brought into the lake from surrounding soils.
NASA Astrophysics Data System (ADS)
Mai, W.; Zhang, J.-F.; Zhao, X.-M.; Li, Z.; Xu, Z.-W.
2017-11-01
Wastewater from the dye industry is typically analyzed using a standard method for measurement of chemical oxygen demand (COD) or by a single-wavelength spectroscopic method. To overcome the disadvantages of these methods, ultraviolet-visible (UV-Vis) spectroscopy was combined with principal component regression (PCR) and partial least squares regression (PLSR) in this study. Unlike the standard method, this method does not require digestion of the samples for preparation. Experiments showed that the PLSR model offered high prediction performance for COD, with a mean relative error of about 5% for two dyes. This error is similar to that obtained with the standard method. In this study, the precision of the PLSR model decreased with the number of dye compounds present. It is likely that multiple models will be required in reality, and the complexity of a COD monitoring system would be greatly reduced if the PLSR model is used because it can include several dyes. UV-Vis spectroscopy with PLSR successfully enhanced the performance of COD prediction for dye wastewater and showed good potential for application in on-line water quality monitoring.
[Comparison of ciliate diversity in biodisc reactors which purify industrial wastewater].
Luna-Pabello, V M; Durán De Bazúa, C; Aladro-Lubel, M A
1995-01-01
The comparative study of the ciliate populations present in rotating biological reactors (biodiscs reactors) of 20 l working volume, treating three different wastewaters is the aim of this project. Wastewaters chosen were those of a maize mill, of a sugarcane/ethyl alcohol plant, and of a recycled paper mill. Its dissolved organic contents, measured as soluble chemical oxygen demand (COD) and five-day biochemical oxygen demand (BOD5), were 2040 mg COD/l and 585 mg BOD5/l for maize mill effluents (nejayote), 2000 mg COD/l and 640 mg BOD5/l for sugarcane/ethanol effluents (vinasses), and 960 mg COD/l and 120 mg BOD5/l for whitewaters of the paper industry. Results obtained indicate that ciliate proliferate in all chambers of reactors treating these wastewaters. The ciliates were more abundant in vinasses, followed by nejayote, and then whitewaters. Among protozoa, ciliates were present as follows: 19 species in total. Three of them were common for the three systems. Free swimming ciliates were in higher proportion than pedunculated ones. Its diversity was higher for the whitewaters system, next for nejayote, and the lesser, for vinasses, corroborating the fact that less polluted waters have higher organisms' diversity.
Yangin-Gomec, Cigdem; Pekyavas, Goksen; Sapmaz, Tugba; Aydin, Sevcan; Ince, Bahar; Akyol, Çağrı; Ince, Orhan
2017-10-01
Performance and microbial community dynamics in an upflow anaerobic sludge bed (UASB) reactor coupled with anaerobic ammonium oxidizing (Anammox) treating diluted chicken manure digestate (Total ammonia nitrogen; TAN=123±10mg/L) were investigated for a 120-d operating period in the presence of anaerobic granular inoculum. Maximum TAN removal efficiency reached to above 80% with as low as 20mg/L TAN concentrations in the effluent. Moreover, total COD (tCOD) with 807±215mg/L in the influent was removed by 60-80%. High-throughput sequencing revealed that Proteobacteria, Actinobacteria, and Firmicutes were dominant phyla followed by Euryarchaeota and Bacteroidetes. The relative abundance of Planctomycetes significantly increased from 4% to 8-9% during the late days of the operation with decreased tCOD concentration, which indicated a more optimum condition to favor ammonia removal through anammox route. There was also significant association between the hzsA gene and ammonia removal in the UASB reactor. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Study of ammonium-nitrogen removal in suspended carrier biofilm reactor].
Wang, Wen-bin; Qi, Pei-shi
2006-12-01
In order to improve the ammonium-nitrogen (NH4+ -N) biodegradation rate, a suspended carrier was exploited and biofilm was cultivated in three different phases in a sequencing batch reactor (SBR). A flimsy honeycomb-shape biofilm was formed between the endocentric columns on the suspended carrier,which increased the cling amount of nitrobacteria and provided the better condition for nitrobacteria. The bioreactor was operated at the temperature ranges of 24-29 degrees C and pH between 7.8 and 8.2. When the influent COD and NH4+-N concentrations varied in a range of 140-300 mg x L(-1) and 40- 78 mg x L(-1) , respectively, under 90 min aeration, the effluent concentrations were less than 40 mg x L(-1) and 2 mg x L(-1) , respectively. Under 180 min aeration, the influent COD concentration varied from 150 to 350 mg x L(-1) and NH4+-N concentration in the range of 80 - 130 mg x L (-1), the effluent concentration below 45 mg x L(-1) and 3.5 mg x L(-1), respectively. The results indicated that the ammonium-nitrogen biodegradation rate is much greater than that of the conventional activated sludge process. The active fraction of the biofilm is affected by the concentration of substrates in the bulk liquid, the actual metabolic rates within the biofilm, and the thickness of the biofilm. The suspended carrier configuration used in this investigation and the method of cultivating biofilm are beneficial for decreasing biofilm thickness, for increasing the activated biomass of nitrobacteria, and for increasing surface area of the biofilm relative to the volume of the reactors, which insulting in a high rate of nitrification.
Bio-hydrogen production from molasses by anaerobic fermentation in continuous stirred tank reactor
NASA Astrophysics Data System (ADS)
Han, Wei; Li, Yong-feng; Chen, Hong; Deng, Jie-xuan; Yang, Chuan-ping
2010-11-01
A study of bio-hydrogen production was performed in a continuous flow anaerobic fermentation reactor (with an available volume of 5.4 L). The continuous stirred tank reactor (CSTR) for bio-hydrogen production was operated under the organic loading rates (OLR) of 8-32 kg COD/m3 reactor/d (COD: chemical oxygen demand) with molasses as the substrate. The maximum hydrogen production yield of 8.19 L/d was obtained in the reactor with the OLR increased from 8 kg COD/m3 reactor/d to 24 kg COD/m3 d. However, the hydrogen production and volatile fatty acids (VFAs) drastically decreased at an OLR of 32 kg COD/m3 reactor/d. Ethanoi, acetic, butyric and propionic were the main liquid fermentation products with the percentages of 31%, 24%, 20% and 18%, which formed the mixed-type fermentation.
Zhang, Yun-lin; Yang, Long-yuan; Qin, Bo-qiang; Gao, Guang; Luo, Lian-cong; Zhu, Guang-wei; Liu, Ming-liang
2008-06-01
Spatial variation of chemical oxygen demand (COD) concentration was documented and significant correlations between COD concentration and chromophoric dissolved organic matter (CDOM) absorption, fluorescence, DOC concentration were found based on a cruise sampling in the northern region of Lake Taihu in summer including 42 samplings. The possible source of COD was also discussed using every two cruise samplings in summer and winter, respectively. The COD concentration ranged from 3.77 to 7.96 mg x L(-1) with a mean value of (5.90 +/- 1.54) mg x L(-1). The mean COD concentrations in Meiliang Bay and the central lake basin were (6.93 +/- 0.89) mg x L(-1) and (4.21 +/- 0.49) mg x L(-1) respectively. A significant spatial difference was found between Meiliang Bay and the central lake basin in COD concentration, CDOM absorption coefficient, fluorescence, DOC and phytoplankton pigment concentrations, decreasing from the river mouth to inner bay, outer bay and the central lake basin. Significant correlations between COD concentration and CDOM absorption, fluorescence, DOC concentration, suggested that COD concentration could be estimated and organic pollution could be assessed using CDOM absorption retrieved from remote sensing images. Significant and positive correlation was found between COD concentration and chlorophyll a concentration in summer. However, the correlation was weak or no correlation was found in winter. Furthermore, a significant higher COD concentration was found in summer than in winter (p < 0.001). Our results indicated that degradation of phytoplankton blooms was the main source of COD in summer, except for river terrestrial input.
Cao, S M S; Fontoura, G A T; Dezotti, M; Bassin, J P
2016-01-01
Pesticide-producing factories generate highly polluting wastewaters containing toxic and hazardous compounds which should be reduced to acceptable levels before discharge. In this study, a chemical industry wastewater was treated in a pre-denitrification moving-bed biofilm reactor system subjected to an increasing internal mixed liquor recycle ratio from 2 to 4. Although the influent wastewater characteristics substantially varied over time, the removal of chemical oxygen demand (COD) and dissolved organic carbon was quite stable and mostly higher than 90%. The highest fraction of the incoming organic matter was removed anoxically, favouring a low COD/N environment in the subsequent aerobic nitrifying tank and thus ensuring stable ammonium removal (90-95%). However, during pH and salt shock periods, nitrifiers were severely inhibited but gradually restored their full nitrifying capability as non-stressing conditions were reestablished. Besides promoting an increase in the maximum nitrification potential of the aerobic attached biomass from 0.34 to 0.63 mg [Formula: see text], the increase in the internal recycle ratio was accompanied by an increase in nitrogen removal (60-78%) and maximum specific denitrification rate (2.7-3.3 mg NOx(-)--N). Total polysaccharides (PS) and protein (PT) concentrations of attached biomass were observed to be directly influenced by the influent organic loading rate, while the PS/PT ratio mainly ranged from 0.3 to 0.5. Results of Microtox tests showed that no toxicity was found in the effluent of both the anoxic and aerobic reactors, indicating that the biological process was effective in removing residual substances which might adversely affect the receiving waters' ecosystem.
Coagulant from Leucaena leucocephala for Chromium Removal
NASA Astrophysics Data System (ADS)
Razak, N. H. Abd; Khairuddin, N.; Ismail, K. N.; Musa, M.
2018-05-01
This research investigated the effectiveness of leucaena leucocephala as a natural coagulant for chromium removal. Leucaena leucocephala is a permanent non-climbing shrub tree which is wild and abundant in Malaysia and commonly known as petai belalang. Coagulation experiment using jar test were performed where the effect of coagulant dosage and pH were examined. The parameters investigated were suspended solid (SS), chemical oxygen demand (COD), biological oxygen demand (BOD), turbidity and chromium content. The optimum of leucaena leucocephala coagulant dosage for removal of suspended solid, turbidity, COD, BOD and Chromium is at range 400-600 mg/L which yielded 45, 31.4, 38.5, 27.5 and 4.05% removal respectively. While the optimum pH is at pH 2-4 (acidic) which give 33.3, 26.8, 33.75, 31.4 and 14.06% removal of suspended solid, COD, BOD, turbidity and chromium content respectively. It is concluded that the leucaena leucocephala showed tremendous potential for chromium removal.
Bansode, R R; Losso, J N; Marshall, W E; Rao, R M; Portier, R J
2004-09-01
The present investigation was undertaken to compare the adsorption efficiency of pecan shell-based granular activated carbon with the adsorption efficiency of the commercial carbon Filtrasorb 200 with respect to uptake of the organic components responsible for the chemical oxygen demand (COD) of municipal wastewater. Adsorption efficiencies for these two sets of carbons (experimental and commercial) were analyzed by the Freundlich adsorption model. The results indicate that steam-activated and acid-activated pecan shell-based carbons had higher adsorption for organic matter measured as COD, than carbon dioxide-activated pecan shell-based carbon or Filtrasorb 200 at all the carbon dosages used during the experiment. The higher adsorption may be related to surface area as the two carbons with the highest surface area also had the highest organic matter adsorption. These results show that granular activated carbons made from agricultural waste (pecan shells) can be used with greater effectiveness for organic matter removal from municipal wastewater than a coal-based commercial carbon. Copyright 2004 Elsevier Ltd.
Characteristic of leachate at Alor Pongsu Landfill Site, Perak, Malaysia: A comparative study
NASA Astrophysics Data System (ADS)
Nor Farhana Zakaria, Siti; Aziz, Hamidi Abdul
2018-04-01
Leachate is a harmful by product generated from the landfill site. Leachate contains a high concentration of pollutant which can cause serious pollution to environmental. In this study, characteristics of leachate in Alor Pongsu Landfill Site (APLS) were monitored and analyzed according to the Standard Methods for the Examination of Water and Wastewater (2005). Composition in leachate at APLS was monitored for one year starting from January 2015 until January 2016. Nine parameters were monitored including color, chemical oxygen demand (COD), biological oxygen demand (BOD5), ammoniacal nitrogen (NH3-N), biodegradability ratio (BOD5/COD), temperature, dissolved oxygen (DO), total dissolved solid (TDS) and pH. Based on the analysis, Alor Pongsu Landfill leachate was categorized as stabilized landfill leachate by referring to the BOD5/COD < 0.1. Comparison with allowable discharge limits for leachate shows that most of parameters exceeded the standard discharge limitation. Thus, proper treatment is needed before leachate can be discharged to the environment.
NASA Astrophysics Data System (ADS)
Alaoui, Abdallah; El Kacemi, K.; El Ass, K.; Kitane, S.; El Bouzidi, S.
2015-05-01
The leaching capacity of olive mill wastewater (OMW) for pyrolusite mine tailings (MnO2) was evaluated using the Box-Behnken experimental design of response surface methodology. The selected test parameters include the concentration of sulfuric acid, the OMW dosage chemical oxygen demand (COD), the solid/liquid ratio S/ L, and particle size. It was determined that the MnO2 dissolution increased with an increase in the sulfuric acid concentration and the OMW dosage, and with a decrease in the solid/liquid ratio. The particle size does not have significant influence on the manganese recovery. A quadratic polynomial model has been developed to predict the amount of manganese extraction from pyrolusite for other operating conditions that were not directly tested. The leaching ability was evaluated based on manganese recovery (Mn%) and the removal capability of chemical oxygen demand (COD%). The predicted values for the responses agreed well with experimental values; R 2 (correlation coefficient) values for Mn% and COD% were 0.9602 and 0.9687, respectively. Within the design space, the optimum conditions for the lixiviation of MnO2 in terms of manganese recovery and COD removal were established and include [H2SO4] of 3 mol L-1, OMW in range of 23 g L-1 to 25 g L-1 COD, and pulp density in range of 90 g L-1 to 100 g L-1. Under these conditions, the response values generated by the model are Mn% ˜49% and COD% >40%. These values show good agreement with those obtained in the validation test. This study has demonstrated that it is possible to use the olive mill wastewater as a reductant agent to recover manganese from a pyrolusite mining residue.
Cortez, Susana; Teixeira, Pilar; Oliveira, Rosário; Mota, Manuel
2011-03-01
Fenton treatment (Fe(2+)/H(2)O(2)) and different ozone-based Advanced Oxidation Processes (AOPs) (O(3), O(3)/OH(-) and O(3)/H(2)O(2)) were evaluated as pre-treatment of a mature landfill leachate, in order to improve the biodegradability of its recalcitrant organic matter for subsequent biological treatment. With a two-fold diluted leachate, at optimised experimental conditions (initial pH 3, H(2)O(2) to Fe(2+) molar ratio of 3, Fe(2+) dosage of 4 mmol L(-1), and reaction time of 40 min) Fenton treatment removed about 46% of chemical oxygen demand (COD) and increased the five-day biochemical oxygen demand (BOD(5)) to COD ratio (BOD(5)/COD) from 0.01 to 0.15. The highest removal efficiency and biodegradability was achieved by ozone at higher pH values, solely or combined with H(2)O(2). These results confirm the enhanced production of hydroxyl radical under such conditions. After the application for 60 min of ozone at 5.6 g O(3)h(-1), initial pH 7, and 400 mg L(-1) of hydrogen peroxide, COD removal efficiency was 72% and BOD(5)/COD increased from 0.01 to 0.24. An estimation of the operating costs of the AOPs processes investigated revealed that Fe(2+)/H(2)O(2) was the most economical system (8.2 € m(-3)g(-1) of COD removed) to treat the landfill leachate. This economic study, however, should be treated with caution since it does not consider the initial investment, prices at plant scale, maintenance and labour costs. Copyright © 2010 Elsevier Ltd. All rights reserved.
Zayas Pérez, Teresa; Geissler, Gunther; Hernandez, Fernando
2007-01-01
The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculation and advanced oxidation processes (AOP) had been studied. The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H2O2, UV/O3 and UV/H2O2/O3 processes was determined under acidic conditions. For each of these processes, different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater. Coffee wastewater is characterized by a high chemical oxygen demand (COD) and low total suspended solids. The outcomes of coffee wastewater treatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD, color, and turbidity. It was found that a reduction in COD of 67% could be realized when the coffee wastewater was treated by chemical coagulation-flocculation with lime and coagulant T-1. When coffee wastewater was treated by coagulation-flocculation in combination with UV/H2O2, a COD reduction of 86% was achieved, although only after prolonged UV irradiation. Of the three advanced oxidation processes considered, UV/H2O2, UV/O3 and UV/H2O2/O3, we found that the treatment with UV/H2O2/O3 was the most effective, with an efficiency of color, turbidity and further COD removal of 87%, when applied to the flocculated coffee wastewater.
Kashitarash, Zahra Esfahani; Taghi, Samadi Mohammad; Kazem, Naddafi; Abbass, Afkhami; Alireza, Rahmani
2012-12-27
This study was performed with the objective of determining the efficiency of iron nanoparticles for reducing chemical oxygen demand (COD), 5-day biological oxygen demand (BOD5), total solids (TS) and color of Hamadan city landfill leachate. Experiments were performed in a batch reactor and the main effective factors of pH, reaction time and concentration of iron nanoparticles were investigated. The obtained data were analyzed with One-Way ANOVA statistical test and SPSS-13 software. Maximum removal efficiencies were 47.94%, 35%, 55.62% and 76.66% for COD, BOD5, TS and color, respectively (for 2.5 g/L iron nanoparticles dosage, pH = 6.5 and 10 min reaction time). The results showed that the removal of COD, BOD5 and color had reverse relationship with contact time and TS removal followed a direct relationship (P < 0.05). Iron nanoparticles could remove averagely 53% of leachate COD, BOD5, TS and color in a short contact time (10 min) increasing pH up to 6.5, increased the removal efficiency for COD, BOD5, TS and color and then removal efficiency decreased with increasing pH to 8.5. Increasing the dosage of nanoparticles to 2.5 g/L increased the efficiency of process. High compatibility and efficiency of this process was proven by landfill leachate pre-treatment or post-treatment, so this removal method may be recommended for municipal solid waste landfill leachate treatment plants.
2012-01-01
This study was performed with the objective of determining the efficiency of iron nanoparticles for reducing chemical oxygen demand (COD), 5-day biological oxygen demand (BOD5), total solids (TS) and color of Hamadan city landfill leachate. Experiments were performed in a batch reactor and the main effective factors of pH, reaction time and concentration of iron nanoparticles were investigated. The obtained data were analyzed with One-Way ANOVA statistical test and SPSS-13 software. Maximum removal efficiencies were 47.94%, 35%, 55.62% and 76.66% for COD, BOD5, TS and color, respectively (for 2.5 g/L iron nanoparticles dosage, pH = 6.5 and 10 min reaction time). The results showed that the removal of COD, BOD5 and color had reverse relationship with contact time and TS removal followed a direct relationship (P < 0.05). Iron nanoparticles could remove averagely 53% of leachate COD, BOD5, TS and color in a short contact time (10 min) increasing pH up to 6.5, increased the removal efficiency for COD, BOD5, TS and color and then removal efficiency decreased with increasing pH to 8.5. Increasing the dosage of nanoparticles to 2.5 g/L increased the efficiency of process. High compatibility and efficiency of this process was proven by landfill leachate pre-treatment or post-treatment, so this removal method may be recommended for municipal solid waste landfill leachate treatment plants. PMID:23369361
Liao, Yi-Shan; Zhuo, Mu-Ning; Li, Ding-Qiang; Guo, Tai-Long
2013-08-01
In the Pearl Delta region, urban rivers have been seriously polluted, and the input of non-point source pollution materials, such as chemical oxygen demand (COD), into rivers cannot be neglected. During 2009-2010, the water qualities at eight different catchments in the Fenjiang River of Foshan city were monitored, and the COD loads for eight rivulet sewages were calculated in respect of different rainfall conditions. Interesting results were concluded in our paper. The rainfall and landuse type played important roles in the COD loading, with greater influence of rainfall than landuse type. Consequently, a COD loading formula was constructed that was defined as a function of runoff and landuse type that were derived SCS model and land use map. Loading of COD could be evaluated and predicted with the constructed formula. The mean simulation accuracy for single rainfall event was 75.51%. Long-term simulation accuracy was better than that of single rainfall. In 2009, the estimated COD loading and its loading intensity were 8 053 t and 339 kg x (hm2 x a)(-1), and the industrial land was regarded as the main source of COD pollution area. The severe non-point source pollution such as COD in Fenjiang River must be paid more attention in the future.
Biodegradability of fluorinated fire-fighting foams in water.
Bourgeois, A; Bergendahl, J; Rangwala, A
2015-07-01
Fluorinated fire-fighting foams may be released into the environment during fire-fighting activities, raising concerns due to the potential environmental and health impacts for some fluorinated organics. The current study investigated (1) the biodegradability of three fluorinated fire-fighting foams, and (2) the applicability of current standard measures used to assess biodegradability of fluorinated fire-fighting foams. The biodegradability of three fluorinated fire-fighting foams was evaluated using a 28-day dissolved organic carbon (DOC) Die-Away Test. It was found that all three materials, diluted in water, achieved 77-96% biodegradability, meeting the criteria for "ready biodegradability". Defluorination of the fluorinated organics in the foam during biodegradation was measured using ion chromatography. It was found that the fluorine liberated was 1-2 orders of magnitude less than the estimated initial amount, indicating incomplete degradation of fluorinated organics, and incomplete CF bond breakage. Published biodegradability data may utilize biochemical oxygen demand (BOD), chemical oxygen demand (COD), and total organic carbon (TOC) metrics to quantify organics. COD and TOC of four fluorinated compounds were measured and compared to the calculated carbon content or theoretical oxygen demand. It was found that the standard dichromate-based COD test did not provide an accurate measure of fluorinated organic content. Thus published biodegradability data using COD for fluorinated organics quantification must be critically evaluated for validity. The TOC measurements correlated to an average of 91% of carbon content for the four fluorinated test substances, and TOC is recommended for use as an analytical parameter in fluorinated organics biodegradability tests. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yang, Shuai; Yang, Fenglin; Fu, Zhimin; Lei, Ruibo
2009-04-01
A membrane bioreactor filled with carriers instead of activated sludge named a moving bed membrane bioreactor (MBMBR) was investigated for simultaneously removing organic carbon and nitrogen in wastewater. Its performance was compared with a conventional membrane bioreactor (CMBR) at various influent COD/TN ratios of 8.9-22.1. The operational parameters were optimized to increase the treatment efficiency. COD removal efficiency averaged at 95.6% and 96.2%, respectively, for MBMBR and CMBR during the 4 months experimental period. The MBMBR system demonstrated good performance on nitrogen removal at different COD/TN ratios. When COD/TN was 8.9 and the total nitrogen (TN) load was 7.58 mg/l h, the TN and ammonium nitrogen removal efficiencies of the MBMBR were maintained over 70.0% and 80.0%, respectively, and the removed total nitrogen (TN) load reached to 5.31 mg/l h. Multifunctional microbial reactions in the carrier, such as simultaneous nitrification and denitrification (SND), play important roles in nitrogen removal. In comparison, the CMBR did not perform so well. Its TN removal was not stable, and the removed total nitrogen (TN) load was only 1.02 mg/l h at COD/TN ratio 8.9. The specific oxygen utilization rate (SOUR) showed that the biofilm has a better microbial activity than an activated sludge. Nevertheless, the membrane fouling behavior was more severe in the MBMBR than in the CMBR due to a thick and dense cake layer formed on the membrane surface, which was speculated to be caused by the filamentous bacteria in the MBMBR.
NASA Astrophysics Data System (ADS)
Sari, Melati Ireng; Agustina, Tuty Emilia; Melwita, Elda; Aprianti, Tine
2017-11-01
Increasing textile industries in Indonesia resulted in increasing the utilization of dyes. The use of synthetic dyes are still dominating because they have many advantages. But, synthetic dyes are difficult to decompose in nature so they can cause potential pollution if discharged directly into the environment. In this study, Procion Red was used as a model of synthetic dye wastewater. The objective of this research is to study the effect of TiO2 catalyst concentration and irradiation time on the degradation of Procion Red under solar irradiation. Photo degradation takes place by using TiO2 catalyst powder in the various concentration of Procion Red of 150-300 ppm. The various concentrations of TiO2 catalyst of 0.5-8 g/l were used. The color and COD degradation of Procion Red for 12 hours of solar irradiation were investigated. Color degradation was measured by using a spectrophotometer. While COD degradation was measured by using Ferrous Ammonium Sulfate (FAS) analysis method. The result showed when using Procion Red of 150 ppm, the highest color degradation of 100% was achieved by using TiO2 catalyst of 6 g/l and the highest COD degradation of 62% was obtained by using TiO2 catalyst of 8 g/l, under 12 hours of solar irradiation
Victor, Kouamé Kouamé; Séka, Yapoga; Norbert, Kouadio Kouakou; Sanogo, Tidou Abiba; Celestin, Atsé Boua
2016-10-02
This paper elucidates the phytoremediation potential of water hyacinth and water lettuce on the reduction of wastewater toxicity. Acute toxicity tests were performed in an aquarium with a population of Sarotherodon melanotheron, contaminated by different concentrations of wastewaters before and after phytoremediation with Eichhornia crassipes and Pistia stratiotes. Lethal concentrations (LC50) of the fish's population obtained during 24 hours of exposures were determined. COD, BOD, ammonium, TKN and PO4(3-) concentrations in wastewaters were of 1850.29, 973.33, 38.34, 61.49 and 39.23 mg L(-1), respectively, for each plant. Phytoremediation reduced 58.87% of ammonium content, 50.04% of PO4(3-), 82.45% of COD and 84.91% of BOD. After 15 days of the experiment, metal contents in treated wastewaters decreased from 6.65 to 97.56% for water hyacinth and 3.51 to 93.51% for water lettuce tanks. Toxicity tests showed that the mortality of fish exposed increased with increase in concentration of pollutants in wastewaters and the time of exposure. Therefore, the highest value of LC50 was recorded for fish subjected to 3 hours of exposure (16.37%). The lowest rate was obtained after an exposure of 20 to 24 hours (5.85%). After phytoremediation, the effluents purified by Eichhornia crassipes can maintain the fish life beyond 24 hours of exposure.
Fourier transform infrared spectroscopy for analysis of kidney stones.
Khan, Aysha Habib; Imran, Sheharbano; Talati, Jamsheer; Jafri, Lena
2018-01-01
To compare the results of a chemical method of kidney stone analysis with the results of Fourier transform infrared (FT-IR) spectroscopy. Kidney stones collected between June and October 2015 were simultaneously analyzed by chemical and FT-IR methods. Kidney stones (n=449) were collected from patients from 1 to 81 years old. Most stones were from adults, with only 11.5% from children (aged 3-16 years) and 1.5% from children aged <2 years. The male to female ratio was 4.6. In adults, the calcium oxalate stone type, calcium oxalate monohydrate (COM, n=224), was the most common crystal, followed by uric acid and calcium oxalate dihydrate (COD, n=83). In children, the most frequently occurring type was predominantly COD (n=21), followed by COM (n=11), ammonium urate (n=10), carbonate apatite (n=6), uric acid (n=4), and cystine (n=1). Core composition in 22 stones showed ammonium urate (n=2), COM (n=2), and carbonate apatite (n=1) in five stones, while uric acid crystals were detected (n=13) by FT-IR. While chemical analysis identified 3 stones as uric acid and the rest as calcium oxalate only. Agreement between the two methods was moderate, with a kappa statistic of 0.57 (95% confidence interval, 0.5-0.64). Disagreement was noted in the analysis of 77 stones. FT-IR analysis of kidney stones can overcome many limitations associated with chemical analysis.
NASA Astrophysics Data System (ADS)
Assmann, Céline; Scott, Amanda; Biller, Dondra
2017-08-01
Organic measurements, such as biological oxygen demand (BOD) and chemical oxygen demand (COD) were developed decades ago in order to measure organics in water. Today, these time-consuming measurements are still used as parameters to check the water treatment quality; however, the time required to generate a result, ranging from hours to days, does not allow COD or BOD to be useful process control parameters - see (1) Standard Method 5210 B; 5-day BOD Test, 1997, and (2) ASTM D1252; COD Test, 2012. Online organic carbon monitoring allows for effective process control because results are generated every few minutes. Though it does not replace BOD or COD measurements still required for compliance reporting, it allows for smart, data-driven and rapid decision-making to improve process control and optimization or meet compliances. Thanks to the smart interpretation of generated data and the capability to now take real-time actions, municipal drinking water and wastewater treatment facility operators can positively impact their OPEX (operational expenditure) efficiencies and their capabilities to meet regulatory requirements. This paper describes how three municipal wastewater and drinking water plants gained process insights, and determined optimization opportunities thanks to the implementation of online total organic carbon (TOC) monitoring.
Zhou, Shaoqi; Feng, Xinbin
2017-01-01
In this paper, a statistically-based experimental design with response surface methodology (RSM) was employed to examine the effects of functional conditions on the photoelectrocatalytic oxidation of landfill leachate using a Cu/N co-doped TiO2 (Ti) electrode. The experimental design method was applied to response surface modeling and the optimization of the operational parameters of the photoelectro-catalytic degradation of landfill leachate using TiO2 as a photo-anode. The variables considered were the initial chemical oxygen demand (COD) concentration, pH and the potential bias. Two dependent parameters were either directly measured or calculated as responses: chemical oxygen demand (COD) removal and total organic carbon (TOC) removal. The results of this investigation reveal that the optimum conditions are an initial pH of 10.0, 4377.98mgL-1 initial COD concentration and 25.0 V of potential bias. The model predictions and the test data were in satisfactory agreement. COD and TOC removals of 67% and 82.5%, respectively, were demonstrated. Under the optimal conditions, GC/MS showed 73 organic micro-pollutants in the raw landfill leachate which included hydrocarbons, aromatic compounds and esters. After the landfill leachate treatment processes, 38 organic micro-pollutants disappeared completely in the photoelectrocatalytic process. PMID:28671943
Aquino, Sergio F; Gloria, Roberto M; Silva, Silvana Q; Chernicharo, Carlos A L
2009-06-01
This paper investigates the production of soluble microbial products (SMPs) in demonstration-scale upflow anaerobic sludge blanket reactors operated under different conditions and fed with raw wastewater. The results showed that 9.2 +/- 1.3% of the influent soluble chemical oxygen demand (COD) could be considered inert to anaerobic treatment and that the amount of COD produced by biomass varied from 30 to 70 mg x L(-1), accounting for 45 to 63% of the soluble effluent COD. The accumulation of SMP appeared to be dependent on the hydraulic retention time (HRT) applied to the reactors, with a larger accumulation of SMP observed at the lowest HRT (5 hours); this may have been due to stress conditions caused by high upflow velocity (1.1 m x h(-1)). In terms of residual COD characterization, ultrafiltration results showed that higher amounts of high molecular weight compounds were found when HRT was the lowest (5 hours), and that the molecular weight distribution depended on the operational condition of the reactors. Biodegradability tests showed that the low and high molecular weight SMPs were only partially degraded anaerobically (10 to 60%) and that the high molecular weight SMPs were difficult to degrade aerobically.
Effect of volumetric organic loading on the nitrogen removal rate by immobilised activated sludge.
Zielinska, M; Wojnowska-Baryla, I
2006-05-01
Activated sludge was immobilised in a porous ceramic carrier to create a stationary core of a bio-reactor. Municipal wastewater was treated in this reactor under varied conditions of volumetric organic loading rate (expressed by chemical oxygen demand (COD)) that were the following: 6.5, 8.0, 20.8, 48.8 g COD l(-1) d(-1). The rate constants of ammonification, nitrification and denitrification under aerobic conditions were determined. All rate constants increased with a growth in volumetric loading rate, but the highest loading value of 48.8 g COD l(-1) d(-1) limited the ammonification and nitrification rates.
Hydrogen peroxide-enhanced iron-mediated aeration for the treatment of mature landfill leachate.
Deng, Yang; Englehardt, James D
2008-05-01
Municipal landfill leachate is being disallowed for biological treatment by some sewer authorities due to its recalcitrance and corrosiveness, and therefore physicochemical treatment may be needed. In this paper, hydrogen peroxide-enhanced iron (Fe(0))-mediated aeration (IMA) was studied as an alternative for the treatment of mature landfill leachate. Bench-scale Taguchi array screening tests and full factorial tests were conducted. Iron grade, initial pH, H(2)O(2) addition rate, and aeration rate significantly influenced both overall chemical oxygen demand (COD) removal and iron consumption. In the enhanced IMA-treated leachate at an initial pH of 8.2, COD was reduced by 50% due to oxidation and coagulation, a level almost equivalent to those obtained by Fenton treatment. Meanwhile, the 5-day biochemical oxygen demand (BOD(5))/COD ratio was increased from 0.02 to 0.17. In particular, the effect of initial pH became minor at H(2)O(2) addition rate greater than the theoretical demand for complete oxidation of organics by H(2)O(2). In addition, 83% of 300 mg/L ammonia nitrogen and 38% of 8.30 mS/cm electrical conductivity were removed when the initial pH was not adjusted. Based on these results, the process appears suitable for treatment of mature leachate.
NASA Astrophysics Data System (ADS)
Zakaria, Siti Nor Farhana; Aziz, Hamidi Abdul
2017-10-01
One of an anaerobic stabilized landfill leachate in Malaysia underwent ozonation process. The sample rich in chemical oxygen demand (COD) was collected from Alor Pongsu Landfill Site, Perak (APLS). This site has been operating since year 2000. The leachate also contains other pollutants that exceeded the standard discharge limit for wastewater effluents. The effectiveness of ozone (O3) dosage, pH variation, and reaction time during ozonation was evaluated to measure the performance of O3 and determine the maximum operational conditions for this treatment. The maximum removal efficiency for COD was 50% at an ozone dosage of 31 g/m3, natural of pH 8.5, and reaction time of 60 min. The biodegradability ratio (BOD5/COD) improved from 0.08 to 0.23 after treatment with O3. The ozonation method has enhanced the biodegradability ratio and resulted high percentage removal of COD. This improvement showed that oxidation has a great potential to remediate recalcitrant pollutant wastes, such as landfill leachate.
Papadopoulos, A E; Fatta, D; Loizidou, M
2007-07-31
The examination of the effectiveness of the chemical oxidation using Fenton's reagent (H(2)O(2)/Fe(2+)) for the reduction of the organic content of wastewater generated from a textile industry has been studied. The experimental results indicate that the oxidation process leads to a reduction in the chemical oxygen demand (COD) concentration up to 45%. Moreover, the reduction is reasonably fast at the first stages of the process, since the COD concentration is decreased up to 45% within four hours and further treatment time does not add up to the overall decrease in the COD concentration (48% reduction within six hours). The maximum color removal achieved was 71.5%. In addition, the alterations observed in the organic matter during the development of the process, as indicated by the ratios of COD/TOC and BOD/COD and the oxidation state, show that a great part of the organic substances, which are not completely mineralized, are subjected to structural changes to intermediate organic by-products.
Dose of Biocoagulant-Mixing Rate Combinations for Optimum Reduction of COD in Wastewater
NASA Astrophysics Data System (ADS)
Patricia, Maria Faustina; Purwono; Budihardjo, Mochamad Arief
2018-02-01
Chemical oxygen demand (COD) in domestic wastewater can be treated using flocculation-coagulation process with addition of Oyster mushroom (Pleurotus ostreatus) in powder form as biocoagulant. The fungal cell wall of Oyster mushroom comprises of chitin that is high polyelectrolyte and can be function as an absorbent of heavy metals in wastewater. The effectiveness of flocculation-coagulation process in treating wastewater depends on dose of coagulant and mixing rate. Therefore, this study aims to determine the best combination of three variation of dose of biocoagulant which are 600 mg/l, 1000 mg/l, and 2000 mg/l and mixing rate which are 100 rpm, 125 rpm, and 150 rpm that give the most reduction of COD in the wastewater. The result indicates that the combination of 1000 mg/l of biocoagulant and 100 rpm of mixing rate were found to be the most optimum combination to treat COD in the wastewater with COD reduction of 47.7%.
Thung, Wei-Eng; Ong, Soon-An; Ho, Li-Ngee; Wong, Yee-Shian; Ridwan, Fahmi; Oon, Yoong-Ling; Oon, Yoong-Sin; Lehl, Harvinder Kaur
2018-04-01
This study demonstrated the potential of single chamber up-flow membrane-less microbial fuel cell (UFML-MFC) in wastewater treatment and power generation. The purpose of this study was to evaluate and enhance the performance under different operational conditions which affect the chemical oxygen demand (COD) reduction and power generation, including the increase of KCl concentration (MFC1) and COD concentration (MFC2). The results showed that the increase of KCl concentration is an important factor in up-flow membrane-less MFC to enhance the ease of electron transfer from anode to cathode. The increase of COD concentration in MFC2 could led to the drop of voltage output due to the prompt of biofilm growth in MFC2 cathode which could increase the internal resistance. It also showed that the COD concentration is a vital issue in up-flow membrane-less MFC. Despite the COD reduction was up to 96%, the power output remained constrained. Copyright © 2017. Published by Elsevier B.V.
Rodriguez-Caballero, A; Ramond, J-B; Welz, P J; Cowan, D A; Odlare, M; Burton, S G
2012-10-30
Winery wastewater is characterized by its high chemical oxygen demand (COD), seasonal occurrence and variable composition, including periodic high ethanol concentrations. In addition, winery wastewater may contain insufficient inorganic nutrients for optimal biodegradation of organic constituents. Two pilot-scale biological sand filters (BSFs) were used to treat artificial wastewater: the first was amended with ethanol and the second with ethanol, inorganic nitrogen (N) and phosphorus (P). A number of biochemical parameters involved in the removal of pollutants through BSF systems were monitored, including effluent chemistry and bacterial community structures. The nutrient supplemented BSF showed efficient COD, N and P removal. Comparison of the COD removal efficiencies of the two BSFs showed that N and P addition enhanced COD removal efficiency by up to 16%. Molecular fingerprinting of BSF sediment samples using denaturing gradient gel electrophoresis (DGGE) showed that amendment with high concentrations of ethanol destabilized the microbial community structure, but that nutrient supplementation countered this effect. Copyright © 2012 Elsevier Ltd. All rights reserved.
Treatment of oily wastewater of a gas refinery by electrocoagulation using aluminum electrodes.
Saeedi, Mohesn; Khalvati-Fahlyani, Amin
2011-03-01
Oily wastewaters are the most important discharges of gas refineries from an environmental point-of-view. In the present study, treatment of gas refinery oily wastewater by electrocoagulation using aluminum electrodes was investigated. The effects of electrode distance, initial pH, sodium sulfate (Na2SO4) as a supporting electrolyte, polyaluminum chloride dosage as a coagulant aid, and current density on the efficiency of chemical oxygen demand (COD) removal were examined. The results revealed that the COD removal rate increases by applying more current density and polyaluminum chloride and, to a lesser extent, Na2SO4 dosage. The results also showed that 97% COD can be removed at optimum operational conditions. Specific electrical energy consumption could be reduced from 19.48 kWh (kg COD removal)(-1) to 11.057 kWh (kg COD removal)(-1) using Na2SO4 as a supporting electrolyte. Gas chromatographic analysis of raw and treated wastewater also revealed that most normal hydrocarbons (nearly 99%) were removed during the electrocoagulation process.
Chemical oxidation of carwash industry wastewater as an effort to decrease water pollution
NASA Astrophysics Data System (ADS)
Bhatti, Zulfiqar Ahmad; Mahmood, Qaisar; Raja, Iftikhar Ahmad; Malik, Amir Haider; Khan, Muhammad Suleman; Wu, Donglei
Car wash wastewater (CWW) contains petroleum, hydrofluoric acid, ammonium bifluoride products, paint residues, rubber, phosphates, oil, grease and volatile organic compounds (VOCs). The present study dealt with various investigations conducted for the treatment of CWW. A treatment system of 5 L capacity was designed in the laboratory. Due to high load of oil and grease, CWW was aerated and scum was removed. Alum was used as coagulant in primary treatment which resulted 93% and 97% reduction in COD and turbidity. During secondary treatment CWW was further treated with waste hydrogen peroxide which resulted in further 71% and 83% reduction in COD and turbidity, respectively. Other desirable changes were also observed in pH, total dissolved solids (TDS), conductivity and dissolved oxygen contents. It was concluded that designed system could be effectively used to treat carwash wastewater that could be reused in the same station.
Paing, J; Serdobbel, V; Welschbillig, M; Calvez, M; Gagnon, V; Chazarenc, F
2015-01-01
This study aimed at determining the treatment performances of a full-scale vertical flow constructed wetlands designed to treat wastewater from a food-processing industry (cookie factory), and to study the influence of the organic loading rate. The full-scale treatment plant was designed with a first vertical stage of 630 m², a second vertical stage of 473 m² equipped with a recirculation system and followed by a final horizontal stage of 440 m². The plant was commissioned in 2011, and was operated at different loading rates during 16 months for the purpose of this study. Treatment performances were determined by 24 hour composite samples. The mean concentration of the raw effluent was 8,548 mg.L(-1) chemical oxygen demand (COD), 4,334 mg.L(-1) biochemical oxygen demand (BOD5), and 2,069 mg.L(-1) suspended solids (SS). Despite low nutrients content with a BOD5/N/P ratio of 100/1.8/0.5, lower than optimum for biological degradation (known as 100/5/1), mean removal performances were very high with 98% for COD, 99% for BOD5 and SS for the two vertical stages. The increasing of the organic load from 50 g.m(-2).d(-1) COD to 237 g.m(-2).d(-1) COD (on the first stage) did not affect removal performances. The mean quality of effluent reached French standards (COD < 125 mg.L(-1), BOD5 < 25 mg.L(-1), SS < 35 mg.L(-1)).
Desimone, Leslie A.; Barlow, Paul M.; Howes, Brian L.
1996-01-01
Physical, chemical, and microbial processes controlled transport of a nitrogen-rich ground-water plume through a glacial aquifer. Lithologic heterogeneity and vertical head gradients influenced plume movement and geometry. Nitrate was the predominant nitrogen form and oxygen was depleted in the ground-water plume. However, denitrification transformed only 2 percent of plume nitrogen because of limited organic-carbon availability. Aerobic respiration, nitrification and cation exchange (unsaturated zone) and ammonium sorption (saturated zone) had larger effects.
Azari, Mohammad; Walter, Uwe; Rekers, Volker; Gu, Ji-Dong; Denecke, Martin
2017-05-01
The performance of biological treatment for high ammonium removal from landfill leachate has been demonstrated. The plant was upgraded combining the activated sludge process followed by activated carbon reactor. Based on a long-term analysis of data collected from 2006 to 2015, the average total nitrogen removal efficiency of 94% was achieved for wastewaters with a C: N ratio varying from 1 to 5 kg-COD kg-TN -1 . But without the presence of activated carbon reactor, the average of biological removal efficiency for total nitrogen was only 82% ± 6% for the activated sludge stage. It means that up to 20% of the nitrogen in the influent can only be eliminated by microorganisms attached to granular activated carbon. After upgrades of the plant, the energy efficiency showed a reduction in the specific energy demand from 1.6 to less than 0.2 kWh m -3 . Methanol consumption and sludge production was reduced by 91% and 96%, respectively. Fluorescent in situ Hybridization was used for microbial diversity analysis on floccular sludge and granular biofilm samples. Anaerobic ammonium oxidation (anammox) bacteria and nitrifiers were detected and Candidatus Scalindua was found in two forms of flocs and biofilms. Due to stochastic risk assessment based on the long-term data analysis given in this research, the treatment criteria were achieved and the combination of granular activated carbon biofilm process and activated sludge can be a novel and sought approach to better enrich anammox biomass for full-scale treatment applications to reduce operating costs and promote nutrient removal stability and efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.
Guvenc, Senem Yazici; Okut, Yusuf; Ozak, Mert; Haktanir, Birsu; Bilgili, Mehmet Sinan
2017-02-01
In this study, process parameters in chemical oxygen demand (COD) and turbidity removal from metal working industry (MWI) wastewater were optimized by electrocoagulation (EC) using aluminum, iron and steel electrodes. The effects of process variables on COD and turbidity were investigated by developing a mathematical model using central composite design method, which is one of the response surface methodologies. Variance analysis was conducted to identify the interaction between process variables and model responses and the optimum conditions for the COD and turbidity removal. Second-order regression models were developed via the Statgraphics Centurion XVI.I software program to predict COD and turbidity removal efficiencies. Under the optimum conditions, removal efficiencies obtained from aluminum electrodes were found to be 76.72% for COD and 99.97% for turbidity, while the removal efficiencies obtained from iron electrodes were found to be 76.55% for COD and 99.9% for turbidity and the removal efficiencies obtained from steel electrodes were found to be 65.75% for COD and 99.25% for turbidity. Operational costs at optimum conditions were found to be 4.83, 1.91 and 2.91 €/m 3 for aluminum, iron and steel electrodes, respectively. Iron electrode was found to be more suitable for MWI wastewater treatment in terms of operational cost and treatment efficiency.
Li, Jin; Luan, Zhaokun; Yu, Lian; Ji, Zhongguang
2011-11-01
A combined Fenton-UASB (2 phase)-SBR system was employed to treat acrylic fiber manufacturing wastewater. The Chemical Oxygen Demand (COD) removal and effluent Biochemical Oxygen Demand (BOD) to COD were 65.5% and 0.529%, respectively, with the optimal Fenton conditions: ferrous was 300 mg/L; hydrogen peroxide was 500 mg/L; pH was 3.0; reaction time was 2.0 h. In two-phase UASB reactor, mesophilic operation (35±0.5 °C) was performed with hydraulic retention time (HRT) varied between 28 and 40 h. The results showed that with the HRT not less than 38 h, COD and sulfate removal were 65% and 75%, respectively. The greatest sizes of granule formed in the sulfate-reducing and methane-producing phases were 5 and 2 mm, respectively. Sulfate-reducing bacteria (SRB) accounted for 35% in the sulfate-reducing phase while methane-producing archaea (MPA) accounted for 72% in the methane-producing phase. During the SBR process, shortcut nitrification was achieved by temperature control of 30 °C. Copyright © 2011 Elsevier Ltd. All rights reserved.
Use of COD, TOC, and Fluorescence Spectroscopy to Estimate BOD in Wastewater.
Christian, Evelyn; Batista, Jacimaria R; Gerrity, Daniel
2017-02-01
Common to all National Pollutant Discharge Elimination System (NPDES) permits in the United States is a limit on biochemical oxygen demand (BOD). Chemical oxygen demand (COD), total organic carbon (TOC), and fluorescence spectroscopy are also capable of quantifying organic content, although the mechanisms of quantification and the organic fractions targeted differ for each test. This study explores correlations between BOD5 and these alternate test procedures using facility influent, primary effluent, and facility effluent samples from a full-scale water resource recovery facility. Relative reductions of the water quality parameters proved to be strong indicators of their suitability as surrogates for BOD5. Suitable correlations were generally limited to the combined datasets for the three sampling locations or the facility effluent alone. COD exhibited relatively strong linear correlations with BOD5 when considering the three sample points (r = 0.985) and the facility effluent alone (r = 0.914), while TOC exhibited a suitable linear correlation with BOD5 in the facility effluent (r = 0.902). Exponential regressions proved to be useful for estimating BOD5 based on TOC or fluorescence (r > 0.95).
Chemical Oxygen Demand abatement in sewage using Micro-Aeration Enhanced Ecological Floating Bed
NASA Astrophysics Data System (ADS)
Shi, Hongle; Zhou, Gaofeng; Liu, Yiqing; Tan, Jiancong; Fu, Yongsheng
2018-02-01
The traditional ecological floating bed combined with micro-aeration system and artificial medium was developed for the removal of contaminants and remediation of surface water. This micro-aeration enhanced ecological floating bed (MAEEFB) consisted of aeration unit, microbial processing unit and aquatic plant unit. Batch experiments were conducted in different operating conditions on the removal of chemical oxygen demand (COD) in the sewage using MAEEFB. The removal rate of COD by MAEEFB, enhanced ecological floating bed (EEFB) and traditional ecological floating bed (TEFB) in the same reaction conditions was 59.2%, 56.9% and 30.6%, respectively, indicating that the combination of micro-aeration system and artificial medium could enhance the removal efficiency of COD in TEFB. In MAEEFB, the aeration intensity should be designed reasonablely considering both treatment efficiency and operation cost. Only increasing the specific surface area of the packing cannot effectively improve the purification efficiency of water. Factors like packing material, ability of intercepting organics and complicated extent of microorganisms attaching on the packing should also be considered.
Li, Yu-Long; Wang, Jin; Yue, Zheng-Bo; Tao, Wei; Yang, Hai-Bin; Zhou, Yue-Fei; Chen, Tian-Hu
2017-07-01
Biological treatment played an important role in the treatment of landfill leachate. In the current study, acid mine drainage (AMD) was used as a source of sulfate to strengthen the anaerobic treatment of landfill leachate. Effects of chemical oxygen demand (COD) and SO 4 2- mass concentration ratio on the decomposition of organic matter, methane production and sulfate reduction were investigated and the microbial community was analyzed using the high throughout methods. Results showed that high removal efficiency of COD, methane production and heavy metal removal was achieved when the initial COD/SO 4 2- ratio (based on mass) was set at 3.0. The relative abundance of anaerobic hydrogen-producing bacteria (Candidatus Cloacamonas) in the experimental group with the addition of AMD was significantly increased compared to the control. Abundance of hydrogenotrophic methanogens of Methanosarcina and Methanomassiliicoccus was increased. Results confirmed that AMD could be used as sulfate resource to strengthen the biological treatment of landfill leachate. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Preliminary Studies on Oleochemical Wastewater Treatment using Submerged Bed Biofilm Reactor (SBBR)
NASA Astrophysics Data System (ADS)
Ismail, Z.; Mahmood, N. A. N.; Ghafar, U. S. A.; Umor, N. A.; Muhammad, S. A. F.
2017-06-01
Wastewater discharge from the industry into water sources is one of the main reason for water pollution. The oleochemicals industry effluent produces high content of chemical oxygen demand (COD) with value between 6000-20,000 ppm. Effective treatment is required before wastewater effluent is discharged to environment. The aim of the study is to develop submerged bed biofilm reactor (SBBR) with packing materials in the cosmoball® carrier. Water quality such as chemical oxygen demands (COD), turbidity and pH were analysed. The result shows that the initial COD of 6000 ppm was reduced below 200 ppm. The optimum conditions for SBBR were obtained when green sponges used as packing material in cosmoball® effluent flowrate set at 100 mL/min; 1:1 ratio of cosmoball® volume to reactor volume and 1:1 ratio of active sludge (mixed culture) volume to reactor volume. Turbidity and pH were recorded with 9.0 NTU and 7.0 respectively, which indicated that SBBR is feasible as an alternative for conventional biological treatment in oleochemical industry.
Saetang, Jenjira; Babel, Sandhya
2012-12-01
Immobilized Trametes versicolor BCC 8725 was evaluated for the biodegradation of the organic components of four different types of landfill leachate collected at different time periods and locations from the Nonthaburi landfill site of Thailand in batch treatment. The effects of carbon source, ammonia and organic loading on colour, biochemical oxygen demand (BOD) and chemical oxygen demand (COD) removal, and the reuse of immobilized fungi were investigated. It was found that fungi can remove 78% of colour, reduce BOD by 68% and reduce COD by 57% in leachate within 15 days at optimum conditions. Organic loading and ammonia were the factors that affected the biodegradation. When immobilized T versicolor on polyurethane foam (PUF) was subjected to repeated use for treatment over the course of three cycles, the decolourization efficiency of the first and the second cycle was very similar, whereas the third cycle was about 20% lower than the first cycle under similar conditions. The obtained removal of colour, BOD and COD indicates the effectiveness of fungi for leachate treatment with high organic loading and varied leachate characteristics.
Anodic oxidation of slaughterhouse wastewater on boron-doped diamond: process variables effect.
Abdelhay, Arwa; Jum'h, Inshad; Abdulhay, Enas; Al-Kazwini, Akeel; Alzubi, Mashael
2017-12-01
A non-sacrificial boron-doped diamond electrode was prepared in the laboratory and used as a novel anode for electrochemical oxidation of poultry slaughterhouse wastewater. This wastewater poses environmental threats as it is characterized by a high content of recalcitrant organics. The influence of several process variables, applied current density, initial pH, supporting electrolyte nature, and concentration of electrocoagulant, on chemical oxygen demand (COD) removal, color removal, and turbidity removal was investigated. Results showed that raising the applied current density to 3.83 mA/cm 2 has a positive effect on COD removal, color removal, and turbidity removal. These parameters increased to 100%, 90%, and 80% respectively. A low pH of 5 favored oxidants generation and consequently increased the COD removal percentage to reach 100%. Complete removal of COD had occurred in the presence of NaCl (1%) as supporting electrolyte. Na 2 SO 4 demonstrated lower efficiency than NaCl in terms of COD removal. The COD decay kinetics follows the pseudo-first-order reaction. The simultaneous use of Na 2 SO 4 and FeCl 3 decreased the turbidity in wastewater by 98% due to electrocoagulation.
Chiou, Ren-Jie; Yang, Yi-Rong
2008-07-01
The aim of this work was to assess the phosphorus storage capability of the polyphosphate (poly-P) accumulating organisms (PAO) in the biofilm using a sequential batch biofilm reactor (SBBR). In the anaerobic phase, the specific COD uptake rates increases from 0.05 to 0.22 (mg-COD/mg-biomass/h) as the initial COD increases and the main COD uptake activity occurs in the initial 30 min. The polyhydroxyalkanoates (PHAs) accumulation from 18 to 38 (mg-PHA/g-biomass) and phosphorus release from 20 to 60 (mg-P/L) share a similar trend. The adsorbed COD cannot be immediately transformed to PHAs. Since the PHAs' demand per released phosphorus is independent of the initial COD, the enhancement of the PHA accumulation would be of benefit to phosphorus release. The only requirement is to have an initial amount of substrate that will result in sufficient PHA accumulation (approximately 20 mg-PHA/g-biomass) for phosphorus release. During the aerobic phase, the aeration should not only provide sufficient dissolved oxygen, but should also enhance the mass transfer and the diffusion. In other words, the limitation to the phosphorus storage capability always occurs during the anaerobic phase, not the aerobic phase.
Farhadi, Sajjad; Aminzadeh, Behnoush; Torabian, Ali; Khatibikamal, Vahid; Alizadeh Fard, Mohammad
2012-06-15
This work makes a comparison between electrocoagulation (EC), photoelectrocoagulation, peroxi-electrocoagulation and peroxi-photoelectrocoagulation processes to investigate the removal of chemical oxygen demand (COD) from pharmaceutical wastewater. The effects of operational parameters such as initial pH, current density, applied voltage, amount of hydrogen peroxide and electrolysis time on COD removal efficiency were investigated and the optimum operating range for each of these operating variables was experimentally determined. In electrocoagulation process, the optimum values of pH and voltage were determined to be 7 and 40 V, respectively. Desired pH and hydrogen peroxide concentration in the Fenton-based processes were found to be 3 and 300 mg/L, respectively. The amounts of COD, pH, electrical conductivity, temperature and total dissolved solids (TDS) were on-line monitored. Results indicated that under the optimum operating range for each process, the COD removal efficiency was in order of peroxi-electrocoagulation > peroxi-photoelectrocoagulation > photoelectrocoagulation>electrocoagulation. Finally, a kinetic study was carried out using the linear pseudo-second-order model and results showed that the pseudo-second-order equation provided the best correlation for the COD removal rate. Copyright © 2012 Elsevier B.V. All rights reserved.
Study on COD removal mechanism and reaction kinetics of oilfield wastewater.
Yin, Xian-Qing; Jing, Bo; Chen, Wen-Juan; Zhang, Jian; Liu, Qian; Chen, Wu
2017-11-01
The chemical oxygen demand (COD) removal mechanism and reaction kinetics were mainly studied in the treatment of oilfield oily sewage containing polymer by three-dimensional electrode reactor. The results proved that the residual active oxides O 3 , H 2 O 2 , •OH and active chlorine in the system of electrochemical reaction could be effectively detected, and the COD removal mechanism was co-oxidation of active oxides; Under these experimental conditions: the electrolysis current of 6 A, surface/volume ratio of 6/25(cm 2 ·L -1 ), the reaction time of 50 min, the COD cr of treated sewage was no more than 50 mg·L -1 ; the removal reaction of COD conformed to apparent second-order reaction kinetic model, the correlation coefficient R 2 was 0.9728, and the apparent reaction rate constant was k = 3.58 × 10 -4 (L·min -1 ·mg -1 ·m -2 ). To reach the goal, the COD cr was no more than 50 mg·L -1 in treated sewage, and the theory minimum processing time was 45.73 min. The verification of experimental results was consistent with kinetic equations.
Chen, Rong; Nie, Yulun; Ji, Jiayuan; Utashiro, Tetsuya; Li, Qian; Komori, Daisuke; Li, Yu-You
2017-09-01
A submerged anaerobic membrane reactor (SAnMBR) was employed for comprehensive evaluation of sewage treatment at 25 °C and its performance in removal efficiency, biogas production and membrane fouling. Average 89% methanogenic degradation efficiency as well as 90%, 94% and 96% removal of total chemical oxygen demand (TCOD), biochemical oxygen demand (BOD) and nonionic surfactant were obtained, while nitrogen and phosphorus were only subjected to small removals. Results suggest that SAnMBRs can effectively decouple organic degradation and nutrients disposal, and reserve all the nitrogen and phosphorus in the effluent for further possible recovery. Small biomass yields of 0.11 g mixed liquor volatile suspended solids (MLVSS)/gCOD were achieved, coupled to excellent methane production efficiencies of 0.338 NLCH 4 /gCOD, making SAnMBR an attractive technology characterized by low excess sludge production and high bioenergy recovery. Batch tests revealed the SAnMBR appeared to have the potential to bear a high food-to-microorganism ratio (F/M) of 1.54 gCOD/gMLVSS without any inhibition effect, and maximum methane production rate occurred at F/M 0.7 gCOD/gMLVSS. Pore blocking dominated the membrane fouling behaviour at a relative long hydraulic retention time (HRT), i.e. >12 hours, while cake layer dominated significantly at shorter HRTs, i.e. <8 hours.
Grey water treatment by the slanted soil system with unsorted soil media.
Ushijima, Ken; Tanaka, Erina; Suzuki, Laís Yuko; Hijikata, Nowaki; Funamizu, Naoyuki; Ito, Ryusei
2015-01-01
This study evaluated the performance of unsorted soil media in the slanted soil treatment system, in terms of removal efficiency in suspended solids (SS), chemical oxygen demand (COD), linear alkylbenzene sulphonate (LAS) and Escherichia coli, and lifetime until clogging occurs. Unsorted soil performed longer lifetime until clogging than sorted fine soil. Removal of SS, COD, and LAS also performed same or better level in unsorted soil than fine soil. As reaction coefficients of COD and LAS were described as a function of the hydraulic loading rate, we can design a slanted soil system according to the expected hydraulic loading rate and the targeted level of COD or LAS in effluent. Regarding bacteria removal, unsorted soil performed sufficient reduction of E. coli for 5 weeks; however, the removal process occurred throughout all four chambers, while that of fine soil occurred in one to two chambers.
Performance of an Anaerobic Baffled Reactor (ABR) in treatment of cassava wastewater
Ferraz, Fernanda M.; Bruni, Aline T.; Del Bianchi, Vanildo L.
2009-01-01
The performance of an anaerobic baffled reactor (ABR) was evaluated in the treatment of cassava wastewater, a pollutant residue. An ABR divided in four equal volume compartments (total volume 4L) and operated at 35ºC was used in cassava wastewater treatment. Feed tank chemical oxygen demand (COD) was varied from 2000 to 7000 mg L-1 and it was evaluated the most appropriated hydraulic retention time (HRT) for the best performance on COD removal. The ABR was evaluated by analysis of COD (colorimetric method), pH, turbidity, total and volatile solids, alkalinity and acidity. Principal component analysis (PCA) was carried to better understand data obtained. The system showed buffering ability as acidity decreased along compartments while alkalinity and pH values were increased. There was particulate material retention and COD removal varied from 83 to 92% for HRT of 3.5 days. PMID:24031316
Winery wastewater treatment by a combined process: long term aerated storage and Fenton's reagent.
Lucas, Marco S; Mouta, Maria; Pirra, António; Peres, José A
2009-01-01
The degradation of the organic pollutants present in winery wastewater was carried out by the combination of two successive steps: an aerobic biological process followed by a chemical oxidation process using Fenton's reagent. The main goal of this study was to evaluate the temporal characteristics of solids and chemical oxygen demand (COD) present in winery wastewater in a long term aerated storage bioreactor. The performance of different air dosage daily supplied to the biologic reactor, in laboratory and pilot scale, were examined. The long term hydraulic retention time, 11 weeks, contributed remarkably to the reduction of COD (about 90%) and the combination with the Fenton's reagent led to a high overall COD reduction that reached 99.5% when the mass ratio (R = H(2)O(2)/COD) used was equal to 2.5, maintaining constant the molar ratio H(2)O(2)/Fe(2+)=15.
Ogedey, Aysenur; Tanyol, Mehtap
2017-12-01
Leachate is the most difficult wastewater to be treated due to its complex content and high pollution release. For this reason, since it is not possible to be treated with a single process, a pre-treatment is needed. In the present study, a batch electrocoagulation reactor containing aluminum and iron electrodes was used to reduce chemical oxygen demand (COD) from landfill leachate (Tunceli, Turkey). Optimization of COD elimination was carried out with response surface methodology to describe the interaction effect of four main process independent parameters (current density, inter-electrode distance, pH and time of electrolysis). The optimum current density, inter-electrode distance, pH and time of electrolysis for maximum COD removal (43%) were found to be 19.42 mA/m 2 , 0.96 cm, 7.23 and 67.64 min, respectively. The results shown that the electrocoagulation process can be used as a pre-treatment step for leachate.
Aerobic biological treatment of leachates from municipal solid waste landfill.
Andrés, P; Gutierrez, F; Arrabal, C; Cortijo, M
2004-01-01
The main objective of the study was to improve chemical oxygen demand (COD) elimination by secondary biological treatment from leachate of municipal solid waste landfill. This effluent was a supernatant liquid obtained after physicochemical processes and coagulating with Al3+ followed by ammoniacal stripping. First, respirometric assays were carried out to determine the substrate biodegradability. Specific sludge respiration rate (R(s)) vs. concentration of substrate (S), showed an increasing specific rate of assimilation of substrate (Rs), which reached the highest value, when the substrate concentration (COD) was between 75 and 200 mg O2 L(-1). Second, continuous experiments were made in an aerobic digester to test the previous respirometric data and the results showed removal efficiency of COD between 83 and 69%, and a substrate assimilation rate between 1.3 and 3.1 g COD g(-1) volatile suspended solids d(-1).
Khorsandi, Hassan; Alizadeh, Rahimeh; Tosinejad, Horiyeh; Porghaffar, Hadi
2014-01-01
In this descriptive-analytical study, nitrogenous and algal oxygen demand were assessed for effluent from a system of facultative partially mixed lagoons followed by the polishing pond using 120 grab samples over 1 year. Filtered and non-filtered samples of polishing pond effluent were tested in the presence and absence of a nitrification inhibitor. Effective factors, including 5-day biochemical and chemical oxygen demand (BOD and COD), total suspended solids (TSS), dissolved oxygen, chlorophyll A, and temperature, were measured using standard methods for water and wastewater tests. The results were analyzed using repeated measures analysis of variance with SPSS version 16. Findings show that the annual mean of the total 5-day BOD in the effluent from the polishing pond consisted of 44.92% as the algal carbonaceous biochemical oxygen demand (CBOD), 43.61% as the nitrogenous biochemical oxygen demand (NBOD), and 11.47% as the soluble CBOD. According to this study, the annual mean ratios of algal COD and 5-day algal CBOD to TSS were 0.8 and 0.37, respectively. As the results demonstrate, undertaking quality evaluation of the final effluent from the lagoons without considering nitrogenous and algal oxygen demand would undermine effluent quality assessment and interpretation of the performance of the wastewater treatment plant.
Ultrasound assisted biogas production from landfill leachate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oz, Nilgün Ayman, E-mail: nilgunayman@comu.edu.tr; Yarimtepe, Canan Can
Highlights: • Effect of low frequency ultrasound pretreatment on leachate was investigated. • Three different ultrasound energy inputs (200, 400 and 600 W/l) was applied. • Low-frequency ultrasound treatment increased soluble COD in landfill leachate. • Application of ultrasound to leachate increased biogas production about 40%. • Application of ultrasound to leachate increased total methane production rate about 20%. - Abstract: The aim of this study is to increase biogas production and methane yield from landfill leachate in anaerobic batch reactors by using low frequency ultrasound as a pretreatment step. In the first part of the study, optimum conditions formore » solubilization of organic matter in leachate samples were investigated using various sonication durations at an ultrasound frequency of 20 kHz. The level of organic matter solubilization during ultrasonic pretreatment experiments was determined by calculating the ratio of soluble chemical oxygen demand (sCOD) to total chemical oxygen demand (tCOD). The sCOD/tCOD ratio was increased from 47% in raw leachate to 63% after 45 min sonication at 600 W/l. Non-parametric Friedman’s test indicated that ultrasonic pretreatment has a significant effect on sCOD parameter for leachate (p < 0.05). In the second part of the study, anaerobic batch reactors were operated for both ultrasonically pretreated and untreated landfill leachate samples in order to assess the effect of sonication on biogas and methane production rate. In anaerobic batch reactor feed with ultrasonically pretreated leachate, 40% more biogas was obtained compared to the control reactor. For statistical analysis, Mann–Whitney U test was performed to compare biogas and methane production rates for raw and pretreated leachate samples and it has been found that ultrasonic pretreatment significantly enhanced biogas and methane production rates from leachate (p < 0.05) in anaerobic batch reactors. The overall results showed that low frequency ultrasound pretreatment can be potentially used for wastewater management especially with integration of anaerobic processes.« less
Farghaly, Ahmed; Tawfik, Ahmed
2017-01-01
Multi-phase anaerobic reactor for H 2 and CH 4 production from paperboard mill wastewater was studied. The reactor was operated at hydraulic retention times (HRTs) of 12, 18, 24, and 36 h, and organic loading rates (OLRs) of 2.2, 1.5, 1.1, and 0.75 kg chemical oxygen demand (COD)/m 3 day, respectively. HRT of 12 h and OLR of 2.2 kg COD/m 3 day provided maximum hydrogen yield of 42.76 ± 14.5 ml/g COD removed and volumetric substrate uptake rate (-rS) of 16.51 ± 4.43 mg COD/L h. This corresponded to the highest soluble COD/total COD (SCOD/TCOD) ratio of 56.25 ± 3.3 % and the maximum volatile fatty acid (VFA) yield (Y VFA ) of 0.21 ± 0.03 g VFA/g COD, confirming that H 2 was mainly produced through SCOD conversion. The highest methane yield (18.78 ± 3.8 ml/g COD removed ) and -rS of 21.74 ± 1.34 mgCOD/L h were achieved at an HRT of 36 h and OLR of 0.75 kg COD/m 3 day. The maximum hydrogen production rate (HPR) and methane production rate (MPR) were achieved at carbon to nitrogen (C/N) ratio of 47.9 and 14.3, respectively. This implies the important effect of C/N ratio on the distinction between the dominant microorganism bioactivities responsible for H 2 and CH 4 production.
Mitsunaga, Hitoshi; Meissner, Lena; Palmen, Thomas; Bamba, Takeshi; Büchs, Jochen; Fukusaki, Eiichiro
2016-04-01
Poly(γ-glutamic acid) (PGA) is a polymer composed of L- and/or D-glutamic acids that is produced by Bacillus sp. Because the polymer has various features as water soluble, edible, non-toxic and so on, it has attracted attention as a candidate for many applications such as foods, cosmetics and so on. However, although it is well known that the intracellular metabolism of Bacillus sp. is mainly regulated by catabolite control, the effect of the catabolite control on the PGA producing Bacillus sp. is largely unknown. This study is the first report of metabolome analysis on the PGA producing Bacillus sp. that reveals the effect of carbon catabolite control on the metabolism of PGA producing Bacillus licheniformis ATCC 9945. Results showed that the cells cultivated in glycerol-containing medium showed higher PGA production than the cells in glucose-containing medium. Furthermore, metabolome analysis revealed that the activators of CcpA and CodY, global regulatory proteins of the intracellular metabolism, accumulated in the cells cultivated in glycerol-containing and glucose-containing medium, respectively, with CodY apparently inhibiting PGA production. Moreover, the cells seemed to produce glutamate from citrate and ammonium using glutamine synthetase/glutamate synthase. Pulsed addition of di-ammonium hydrogen citrate, as suggested by the metabolome result, was able to achieve the highest value so far for PGA production in B. licheniformis. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Li, Jin-Tao; Zhang, Shao-Hui; Hua, Yu-Mei
2013-01-01
The effects of pH, chemical oxygen demand (COD) concentration and external resistance on denitrifying microbial fuel cell were evaluated in terms of electricity generation characteristics and pollutant removal performance. The results showed that anodic influent with weakly alkaline or neutral pH and cathodic influent with weakly acidic pH favored pollutant removal and electricity generation. The suitable influent pH of the anode and cathode were found to be 7.5-8.0 and 6.0-6.5, respectively. In the presence of sufficient nitrate in the cathode, higher influent COD concentration led to more electricity generation and greater pollutant removal rates. With an anodic influent pH of 8.0 and a cathodic influent pH of 6.0, an influent COD concentration of 400 mg/L was deemed to be appropriate. Low external resistance favored nitrate and COD removal. The results suggest that operation of denitrifying microbial fuel cell at a lower external resistance would be desirable for pollutant removal but not electricity generation.
Das, Bidus Kanti; Roy, Shantonu; Dev, Subhabrata; Das, Debabrata; Bhattacharya, Jayanta
2015-12-30
External dosing of sweetmeat waste (SMW) dosing into exhausted upflow packed bed bioreactor (PBR) resulted in prompt reactivation of SO4(2-) removal. Different SMW concentrations in terms of chemical oxygen demand (COD)/SO4(2-) ratios (1, 2, 4 and 8) were introduced into four identical PBR where process stability was found within 3 weeks of operation. SO4(2-) removal was proportional to COD/SO4(2-) ratios up to 4 at which maximum sulfate removal (99%) was achieved at a rate of 607 mg/d. The value of COD consumption:SO4(2-)removal was much higher at ratio 4 than 8 whereas, ratio 2 was preferred over all. Net effluent acetate concentration profile and total microbial population attached to the reactor matrices were corresponding to COD/SO4(2-) ratio as 4>8>2>1. Sulfate reducing bacteria (SRB) population was found to be inversely proportional to COD/SO4(2-) ratio in which acetate oxidizing SRB and fermentative bacteria were the dominant. Copyright © 2015 Elsevier B.V. All rights reserved.
Villa-Gomez, D K; Pakshirajan, K; Maestro, R; Mushi, S; Lens, P N L
2015-07-01
The individual and combined effect of the pH, chemical oxygen demand (COD) and SO4 (2-) concentration, metal to sulfide (M/S(2-)) ratio and hydraulic retention time (HRT) on the biological sulfate reduction (SR) process was evaluated in an inverse fluidized bed reactor by factorial design analysis (FDA) and response surface analysis (RSA). The regression-based model of the FDA described the experimental results well and revealed that the most significant variable affecting the process was the pH. The combined effect of the pH and HRT was barely observable, while the pH and COD concentration positive effect (up to 7 and 3 gCOD/L, respectively) enhanced the SR process. Contrary, the individual COD concentration effect only enhanced the COD removal efficiency, suggesting changes in the microbial pathway. The RSA showed that the M/S(2-) ratio determined whether the inhibition mechanism to the SR process was due to the presence of free metals or precipitated metal sulfides.
Simultaneous removal of AOX and COD from real recycled paper wastewater using GAC-SBBR.
Osman, Wan Hasnidah Wan; Abdullah, Siti Rozaimah Sheikh; Mohamad, Abu Bakar; Kadhum, Abdul Amir H; Rahman, Rakmi Abd
2013-05-30
A lab-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR), a combined adsorption and biological process, was developed to treat real wastewater from a recycled paper mill. In this study, one-consortia of mixed culture (4000-5000 mg/L) originating from recycled paper mill activated sludge from Kajang, Malaysia was acclimatized. The GAC-SBBR was fed with real wastewater taken from the same recycled paper mill, which had a high concentration of chemical oxygen demand (COD) and adsorbable organic halides (AOX). The operational duration of the GAC-SBBR was adjusted from 48 h to 24, 12 and finally 8 h to evaluate the effect of the hydraulic retention time (HRT) on the simultaneous removal of COD and AOX. The COD and AOX removals were in the range of 53-92% and 26-99%, respectively. From this study, it was observed that the longest HRT (48 h) yielded a high removal of COD and AOX, at 92% and 99%, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.
The application of potassium ferrate for sewage treatment.
Jiang, Jia-Qian; Panagoulopoulos, Alex; Bauer, Mike; Pearce, Pete
2006-04-01
The comparative performance of potassium ferrate(VI), ferric sulphate and aluminium sulphate for the removal of turbidity, chemical oxygen demand (COD), colour (as Vis400-abs) and bacteria in sewage treatment was evaluated. For coagulation and disinfection of sewage, potassium ferrate(VI) can remove more organic contaminants, COD and bacteria in comparison with the other two coagulants for the same doses used. Also, potassium ferrate(VI) produces less sludge volume and removes more contaminants, which should make subsequent sludge treatment easier.
Stille coupling via C-N bond cleavage
NASA Astrophysics Data System (ADS)
Wang, Dong-Yu; Kawahata, Masatoshi; Yang, Ze-Kun; Miyamoto, Kazunori; Komagawa, Shinsuke; Yamaguchi, Kentaro; Wang, Chao; Uchiyama, Masanobu
2016-09-01
Cross-coupling is a fundamental reaction in the synthesis of functional molecules, and has been widely applied, for example, to phenols, anilines, alcohols, amines and their derivatives. Here we report the Ni-catalysed Stille cross-coupling reaction of quaternary ammonium salts via C-N bond cleavage. Aryl/alkyl-trimethylammonium salts [Ar/R-NMe3]+ react smoothly with arylstannanes in 1:1 molar ratio in the presence of a catalytic amount of commercially available Ni(cod)2 and imidazole ligand together with 3.0 equivalents of CsF, affording the corresponding biaryl with broad functional group compatibility. The reaction pathway, including C-N bond cleavage step, is proposed based on the experimental and computational findings, as well as isolation and single-crystal X-ray diffraction analysis of Ni-containing intermediates. This reaction should be widely applicable for transformation of amines/quaternary ammonium salts into multi-aromatics.
Zielińska, Magdalena; Bernat, Katarzyna; Cydzik-Kwiatkowska, Agnieszka; Sobolewska, Joanna; Wojnowska-Baryła, Irena
2012-01-01
The impact of the organic carbon to nitrogen ratio (chemical oxygen demand (COD)/N) in wastewater and dissolved oxygen (DO) concentration on carbon and nitrogen removal efficiency, and total bacteria and ammonia-oxidizing bacteria (AOB) communities in activated sludge in constantly aerated sequencing batch reactors (SBRs) was determined. At DO of 0.5 and 1.5 mg O2/L during the aeration phase, the efficiency of ammonia oxidation exceeded 90%, with nitrates as the main product. Nitrification and denitrification achieved under the same operating conditions suggested the simultaneous course of these processes. The most effective nitrogen elimination (above 50%) was obtained at the COD/N ratio of 6.8 and DO of 0.5 mg O2/L. Total bacterial diversity was similar in all experimental series, however, for both COD/N ratios of 6.8 and 0.7, higher values were observed at DO of 0.5 mg O2/L. The diversity and abundance of AOB were higher in the reactors with the COD/N ratio of 0.7 in comparison with the reactors with the COD/N of 6.8. For both COD/N ratios applied, the AOB population was not affected by oxygen concentration. Amplicons with sequences indicating membership of the genus Nitrosospira were the determinants of variable technological conditions.
Cai, Xiao-Bo; Yang, Yi; Sun, Yan-Ping; Zhang, Liang; Xiao, Yao; Zhao, Hai
2010-10-01
Air cathode microbial fuel cell (MFC) were investigated for electricity production from sweet potato fuel ethanol wastewater containing 5000 mg/L of chemical oxygen demand (COD). Maximum power density of 334.1 mW/m2, coulombic efficiency (CE) of 10.1% and COD removal efficiency of 92.2% were approached. The effect of phosphate buffer solution (PBS) and COD concentration on the performance of MFC was further examined. The addition of PBS from 50 mmol/L to 200 mmol/L increased the maximum power density and CE by 33.4% and 26.0%, respectively. However, the COD removal efficiency was not relative to PBS concentration in the wastewater. When the COD increased from 625 mg/L to 10 000 mg/L, the maximum value of COD removal efficiency and the maximum power density were gained at the wastewater strength of 5 000 mg/L. But the CE ranged from 28.9% to 10.3% with a decreasing trend. These results demonstrate that sweet potato fuel ethanol wastewater can be used for electricity generation in MFC while at the same time achieving wastewater treatment. The increasing of PBS concentration can improve the power generation of MFC. The maximum power density of MFC increases with the rise of COD concentration, but the electricity generation will decrease for the acidification of high wastewater concentration.
Cosmetic wastewater treatment using the Fenton, Photo-Fenton and H2O2/UV processes.
Marcinowski, Piotr P; Bogacki, Jan P; Naumczyk, Jeremi H
2014-01-01
Advanced Oxidation Processes (AOPs), such as the Fenton, photo-Fenton and H2O2/UV processes, have been investigated for the treatment of cosmetic wastewaters that were previously coagulated by FeCl3. The Photo-Fenton process at pH 3.0 with 1000/100 mg L(-1) H2O2/Fe(2+) was the most effective (74.0% Chemical Oxygen Demand (COD) removal). The Fenton process with 1200/500 mg L(-1) H2O2/Fe(2+) achieved a COD removal of 72.0%, and the H2O2/UV process achieved a COD removal of 47.0%. Spreading the H2O2 doses over time to obtain optimal conditions did not improve COD removal. The kinetics of the Fenton and photo-Fenton processes may be described by the following equation: d[COD]/dt = -a[COD] t(m) (t represents time and a and m are constants). The rate of COD removal by the H2O2/UV process may be described by a second-order reaction equation. Head Space, Solid-Phase MicroExtraction, Gas Chromatography and Mass Spectrometry (HS-SPME-GC-MS) were used to identify 48 substances in precoagulated wastewater. Among these substances, 26 were fragrances. Under optimal AOP conditions, over 99% of the identified substances were removed in 120 min.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-12
... Available Monitoring Methods BOD 5 5-day biochemical oxygen demand CAA Clean Air Act CBI confidential... carbon dioxide CO 2 e CO 2 -equivalent COD chemical oxygen demand DOC Degradable organic carbon EIA... of ventilation systems by the Mine Safety and Health Administration (MSHA) are subject to 40 CFR part...
Anaerobic treatability of wastewater contaminated with propylene glycol.
Sezgin, Naim; Tonuk, Gulseven Ubay
2013-09-01
The purpose of this study was to investigate the biodegradability of propylene glycol in anaerobic conditions by using methanogenic culture. A master reactor was set up to develop a culture that would be acclimated to propylene glycol. After reaching steady-state, culture was transferred to serum bottles. Three reactors with same initial conditions were run for consistency. Propylene glycol was completely biodegradable under anaerobic methanogenic conditions. Semi-continuous reactors operated at a temperature of 35°C had consistently achieved a propylene glycol removal of higher than 95 % based on chemical oxygen demand (COD). It was found that in semi-continuous reactors, anaerobic treatment of propylene glycol at concentrations higher than 1,500 mg COD m(-3) day(-1) was not convenient due to instable effluent COD.
Qiao, Tiejun; Wu, Guangxue; Zhang, Xihui; Au, Doris W T; Zhang, Jinsong
2012-06-01
The performance of a hybrid granular activated carbon (GAC) and ultrafiltration (UF) process for water treatment was investigated using five types of UF membranes. The removal percentages for chemical oxygen demand (COD(Mn)), particles (> or = 2 microm) and total bacteria by the hybrid process were 30-40%, 98-99% and 76-92%, respectively. No invertebrates were detected in the hybrid process effluent. Transmembrane pressure and specific permeate flux (SPF) of the five types of membranes varied. With decreasing membrane pore sizes, removal of COD(Mn) and particles increased, whereas SPF firstly decreased and then increased. Hydrophilic membranes had a relatively high COD(Mn) removal potential, but did not obviously affect particle removal or SPF.
Batziaka, V; Fytianos, K; Voudrias, E
2008-05-01
Biosolids from the WWTP of Thessaloniki were examined for the leaching of phosphorus (as PO4(3-) -P), nitrogen (as NH4+ (-N) and NO3- (-N)), and organic matter (as TOC and COD), using two tests: (1) a pH static leaching test and (2) a characterization test, relating contaminant release to the liquid to solid (L/S) ratio. Moreover, a Microtox toxicity test was conducted, to examine the pH dependency of the toxicity of the sludge leachate on the Vibrio fischeri bacterium. Maximum phosphorus release was observed at pH < 3 and at pH > 10. Ammonium nitrogen exhibited maximum leachability at near neutral pH conditions, while nitrate nitrogen exhibited a mild increase in the leachate, as the leachant pH increased from 2 to 12. Both TOC and COD exhibited an increase in the leachate concentration, as the leachant pH was increased from 2 to 12. Ecotoxicological analysis showed that maximum toxicity occurred at very low and very high pH-conditions. As liquid-to-solid ratio increased, the leachate concentration (in mg/l) of all parameters studied decreased. The results of the study were used to conduct a release assessment estimate for the case of Thessaloniki.
Elmitwalli, Tarek A; Otterpohl, Ralf
2007-03-01
Feasibility of grey water treatment in an upflow anaerobic sludge blanket (UASB) reactor operated at different hydraulic retention time (HRT) of 16, 10 and 6h and controlled temperature of 30 degrees C was investigated. Moreover, the maximum anaerobic biodegradability without inoculum addition and maximum removal of chemical oxygen demand (COD) fractions in grey water were determined in batch experiments. High values of maximum anaerobic biodegradability (76%) and maximum COD removal in the UASB reactor (84%) were achieved. The results showed that the colloidal COD had the highest maximum anaerobic biodegradability (86%) and the suspended and dissolved COD had similar maximum anaerobic biodegradability of 70%. Furthermore, the results of the UASB reactor demonstrated that a total COD removal of 52-64% was obtained at HRT between 6 and 16 h. The UASB reactor removed 22-30% and 15-21% of total nitrogen and total phosphorous in the grey water, respectively, mainly due to the removal of particulate nutrients. The characteristics of the sludge in the UASB reactor confirmed that the reactor had a stable performance. The minimum sludge residence time and the maximum specific methanogenic activity of the sludge ranged between 27 and 93 days and 0.18 and 0.28 kg COD/(kg VS d).
Shrimp pond wastewater treatment using pyrolyzed chicken feather as adsorbent
NASA Astrophysics Data System (ADS)
Moon, Wei Chek; Jbara, Mohamad Hasan; Palaniandy, Puganeshwary; Yusoff, Mohd Suffian
2017-10-01
In this study, chicken feather fiber was used as a raw material to prepare a non-expensive adsorbent by pyrolysis without chemical activation. The main pollutants treated in this study were chemical oxygen demand (COD) and ammoniacal nitrogen (NH3-N) from shrimp pond wastewater containing high concentrations of nutrients, which caused the eutrophication phenomenon in adjacent water. Batch adsorption studies were performed to investigate the effect of pH (5-8), mass of adsorbent (0.5-3 g), and shaking time (0.5-2 h) on the removal efficiency of COD and NH3- N. Experimental results showed that the optimum conditions were as follows: pH 5, 0.5 g of adsorbent, and 0.5 h of shaking. Under these conditions, 34.01% and 40.47% of COD and NH3-N were removed, respectively, from shrimp pond wastewater. The adsorption processes were best described by the Langmuir isotherm model for COD and NH3-N removal, with maximum monolayer adsorption capacity of 36.9 and 7.24 mg/g for COD and NH3-N, respectively. The results proved that chicken feather could remove COD and NH3-N from shrimp pond wastewater. However, further studies on thermal treatment should be carried out to increase the removal efficiency of pyrolyzed chicken feather fiber.
Corn grain yield and nutrient uptake from application of enhanced-efficiency nitrogen fertilizers
USDA-ARS?s Scientific Manuscript database
Increasing demand for food and agricultural products directly impact the use of chemical fertilizers particularly nitrogen (N). This study examined corn grain yield and nutrient uptake resulting from applications of different N fertilizer sources, urea (U), urea-ammonium nitrate (UAN), ammonium nitr...
Rainwater utilization and storm pollution control based on urban runoff characterization.
Zhang, Mulan; Chen, Hao; Wang, Jizhen; Pan, Gang
2010-01-01
The characteristics of urban runoffs and their impact on rainwater utilization and storm pollution control were investigated in three different functional areas of Zhengzhou City, China. The results showed that in the same rain event the pollutant loads (chemical oxygen demand (COD) and total suspended solids (TSS)) in the sampling areas were in the order of industrial area > commercial area > residential area, and within the same area the COD and TSS concentrations of road runoffs were higher than those of roof runoffs. The first flush effects in roof and road runoffs were observed, hence the initial rainwater should be treated separately to reduce rainwater utilization cost and control storm pollution. The initial roof rainfall of 2 mm in residential area, 5 mm in commercial area and 10 mm in industrial area, and the initial road rainfall of 4 mm in residential area and all the road rainfall in commercial and industrial areas should be collected and treated accordingly before direct discharge or utilization. Based on the strong correlation between COD and TSS (R2, 0.87-0.95) and the low biodegradation capacity (biochemical oxygen demand BOD5/COD < 0.3), a sedimentation process and an effective filtration system composed of soil and slag were designed to treat the initial rainwater, which could remove over 90% of the pollutant loads. The above results may help to develop better rainwater utilization and pollution control strategies for cities with water shortages.
Xie, Li; Liu, Hui; Chen, Yin-Guang; Zhou, Qi
2014-01-01
Volatile fatty acid (VFA) production from three types of high-strength organic wastewater (cassava thin stillage, starch wastewater and yellow-wine processing wastewater) were compared. The results showed that cassava thin stillage was the most suitable substrate, based on its high specific VFA production (0.68 g chemical oxygen demand (COD)/g initial soluble chemical oxygen demand (SCOD)) and yield (0.72 g COD/g SCOD) as well as low nutrient content in the substrate and fermented liquid. The acid fermented cassava thin stillage was evaluated and compared with sodium acetate in a sequencing batch reactor system. Total nitrogen removal efficiency was higher with fermented cassava thin stillage than with the sodium acetate. The effects of pH and a pH-adjustment strategy on VFA production and composition were determined using cassava thin stillage. At an initial pH range of 7-11, a relatively high VFA concentration of about 9 g COD/L was obtained. The specific VFA production (g COD/g initial SCOD) increased from 0.27 to 0.47 to 0.67 at pH 8 and from 0.26 to 0.68 to 0.81 at pH 9 (initial pH, interval pH, and constant pH adjustment, respectively). The dominant VFA species changed significantly with the increasing frequency of the pH adjustment. Further studies will examine the metabolic pathways responsible for VFA composition.
Reuse the pulp and paper industry wastewater by using fashionable technology
NASA Astrophysics Data System (ADS)
Sudarshan, K.; Maruthaiya, K.; Kotteeswaran, P.; Murugan, A.
2017-10-01
This proposed method is a promising way, which can be implemented in pulp and paper industries by effective removal of the color and chemical oxygen demand (COD) and the resulting treated water may surely reuse to the other streams. Fourier Transformer Infra Red spectra confirmed the presence of the respective functional groups in the removed pollutants from the wastewater. The efficiency of Non-ferric Alum (NF Alum) and cationic polyacrylamide (C-PAM) with and without power boiler fly ash was also studied. The reduction efficiency of color and chemical oxygen demand (COD) is evaluated at the optimum dosage of NF Alum, fly ash, and C-PAM. At the optimized pH attained from these coagulants using to treat the wastewater, the flocs formation/settling and the pollutant removal efficiency are encouraging and the resulting color of the wastewater is to 40 PtCo units from 330 PtCo units and COD to 66 mg/L from 218 mg/L. While using NF Alum alone with C-PAM for the treatment of wastewater, the highest reduction efficiency of COD is 97 mg/L from 218 mg/L and the color is 60 from 330 PtCo units at pH 4.8 was noted. From these observations, NF Alum and power boiler fly ash with C-PAM can effectively remove the pollutants from the pulp and paper mill wastewater and the water can be reused for other streams.
Deng, Yang
2007-07-19
Municipal landfill leachate, especially mature leachate, may disrupt the performance of moderately-sized municipal activated sludge wastewater treatment plants, and likewise tend to be recalcitrant to biological pretreatment. Recently, Fenton methods have been investigated for chemical treatment or pre-treatment of mature leachate. In this paper, the results of laboratory tests to determine the roles of oxidation and coagulation in reducing the organic content of mature leachate during Fenton treatment are presented. The efficiencies of chemical oxygen demand (COD) oxidation and coagulation were tested, and the ratio of COD removal by oxidation to that by coagulation was assessed, under various operating conditions. Low initial pH, appropriate relative and absolute Fenton reagent dosages, aeration, and stepwise addition of reagents increased COD removal by oxidation and the importance of oxidation relative to coagulation. Simultaneous aeration and stepwise reagent addition allowed comparable treatment without initial acidification pH, due to the generation of acidic organic intermediates and the continuous input of CO2. On the other hand, high COD oxidation efficiency and low ferrous dosage inhibited COD removal by coagulation. At significantly high oxidation efficiency, overall COD reduction decrease slightly due to low coagulation efficiency. Under the most favorable conditions (initial pH 3, molar ratio [H(2)O(2)]/[Fe2+]=3, [H2O2]=240 mM, and six dosing steps), 61% of the initial COD was removed, and the ratio of COD removal oxidation to coagulation was 0.75. Results highlighted the synergistic roles of oxidation and coagulation in Fenton treatment of mature leachate, and the role of oxidation in controlling the efficiency of removal of COD by coagulation.
Yoo, R H; Kim, J H; McCarty, P L; Bae, J H
2014-01-01
A laboratory staged anaerobic fluidized membrane bioreactor (SAF-MBR) system was applied to the treatment of primary clarifier effluent from a domestic wastewater treatment plant with temperature decreasing from 25 to 10 °C. At all temperatures and with a total hydraulic retention time of 2.3 h, overall chemical oxygen demand (COD) and biochemical oxygen demand (BOD5) removals were 89% and 94% or higher, with permeate COD and BOD5 of 30 and 7 mg/L or lower, respectively. No noticeable negative effects of low temperature on organic removal were found, although a slight increase to 3 mg/L in volatile fatty acids concentrations in the effluent was observed. Biosolids production was 0.01-0.03 kg volatile suspended solids/kg COD, which is far less than that with aerobic processes. Although the rate of trans-membrane pressure at the membrane flux of 9 L/m(2)/h increased as temperature decreased, the SAF-MBR was operated for longer than 200 d before chemical cleaning was needed. Electrical energy potential from combustion of the total methane production (gaseous and dissolved) was more than that required for system operation.
The monitoring of organic waste pollution in the sibelis river
NASA Astrophysics Data System (ADS)
Huda, Thorikul; Jannah, Wirdatul
2017-03-01
Has conducted monitoring of organic waste pollution in the River Sibelis of Tegal City of Central Java. Organic wastes that pollute River Sibelis can degrade the quality of well water along the river. Monitoring carried out in the upstream and downstream by chemical oxygen demand (COD) and biochemical oxygen demand (BOD) parameters. COD test methods by titration and the results are used to determine the test sample comparison with the volume of diluent required for analysts BOD. COD test results on the upstream and downstream Sibelis River respectively 58.13 mg/L and 73.97 mg / L so that the ratio of the test sample with diluent volume for BOD analysis is 20: 280 (Sawyer, 1978). BOD test principle is based on the reduction of dissolved oxygen zero day (DO0) and five days (DO5). The result of observation BOD samples at upstream and downstream Sibelis Rivers are 10.7212 mg / L and 5.3792 mg / L respectively. Quality control of BOD testing conducted with measurement accuracy and precision and obtained result are 85.36% and 0.27% respectively. The result of uncertainty measurement for BOD testing at upstream and downstream are ±0.4469 mg/L and ±0.22188 mg/L.
Mounteer, A H; Souza, L C; Silva, C M
2007-02-01
Increasingly stringent effluent quality limits for bleached kraft pulp mills pose a great challenge to mill wastewater system managers since these limits can require levels of chemical oxygen demand (COD) removal efficiency rarely reported for biological treatment of these types of effluents. The present study was therefore undertaken to better understand the nature of recalcitrant COD in bleached kraft pulp effluents that persists through the biological treatment system. Bleaching effluents from a Brazilian eucalypt bleached kraft pulp mill were collected and treated in a bench-scale sequencing batch reactor. Organic matter in raw and treated effluents was characterized before and after separation into low and high molecular mass fractions. Biological treatment removed 71% of the COD, with 83% removal of the low molecular mass COD but only 36% removal of the high molecular mass COD. Microorganisms capable of degrading the recalcitrant COD were isolated from enrichment cultures of the original activated sludge fed on fractions of the bleaching effluent that presented low biodegradabilities. Use of a microbial consortium composed of ten of these isolates to treat the biologically treated effluent removed a further 12% of the effluent COD, all from the high molecular mass fraction. Results of this research indicate that microorganisms with potential for degrading recalcitrant COD are present in activated sludge, but that these are not metabolically active during normal activated sludge treatment of mill effluents. The use of biological selectors in the treatment system to promote growth of such microorganisms may enhance removal of recalcitrant organic matter.
Yang, M; Sun, Y; Xu, A H; Lu, X Y; Du, H Z; Sun, C L; Li, C
2007-07-01
Catalytic wet air of coke-plant wastewater was studied in a bubbling bed reactor. Two types of supported Ru-based catalysts, eggshell and uniform catalysts, were employed. Compared with the results in the wet air oxidation of coke-plant wastewater, supported Ru uniform catalysts showed high activity for chemical oxygen demand (COD) and ammonia/ammonium compounds (NH3-N) removal at temperature of 250 degrees C and pressure of 4.8 MPa, and it has been demonstrated that the catalytic activity of uniform catalyst depended strongly on the distribution of active sites of Ru on catalyst. Compared to the corresponding uniform catalysts with the same Ru loading (0.25 wt.% and 0.1 wt.%, respectively), the eggshell catalysts showed higher activities for CODcr removal and much higher activities for NH3-N degradation. The high activity of eggshell catalyst for treatment of coke-plant wastewater can be attributed to the higher density of active Ru sites in the shell layer than that of the corresponding uniform catalyst with the same Ru loading. It has been also evidenced that the active Ru sites in the internal core of uniform catalyst have very little or no contribution to CODcr and NH3-N removal in the total oxidation of coke-plant wastewater.
Liu, Shan; Chen, Hui; Zhou, Guang-Jie; Liu, Shuang-Shuang; Yue, Wei-Zhong; Yu, Shen; Sun, Kai-Feng; Cheng, Hefa; Ying, Guang-Guo; Xu, Xiang-Rong
2015-12-01
The occurrence and spatial distribution of 40 steroids in the environmental matrices of the Hailing Bay region, South China Sea, were investigated by rapid resolution liquid chromatography-tandem mass spectrometry (RRLC-MS/MS). Seventeen, 14 and 11 of 40 steroids were detected with the concentrations ranging from 0.04 (testosterone) to 40.00 ng/L (prednisolone), 1.33 (4-hydroxy-androst-4-ene-17-dione) to 1855 ng/L (androsta-1,4-diene-3,17-dione) and <0.19 (androsta-1,4-diene-3,17-dione) to 2.37 ng/g (progesterone) in the seawater, the municipal sewage discharged effluent and the sediment samples, respectively. The concentrations and risk quotients (RQs) of the steroids detected in the water samples decreased in the order of municipal sewage discharge site>wharves~aquaculture zones~tourism areas>offshore areas. The distribution of steroids in the marine environment was significantly correlated with the levels of chemical oxygen demand (COD) and ammonium nitrogen (NH4-N). Source analysis indicated that untreated municipal sewage was the main source of steroids in the marine environment. Furthermore, progesterone was found to be a reliable chemical indicator to surrogate different steroids in both the water and sediment phases based on the correlation analysis. Copyright © 2015 Elsevier B.V. All rights reserved.
Valderrama, Luz T; Del Campo, Claudia M; Rodriguez, Claudia M; de- Bashan, Luz E; Bashan, Yoav
2002-10-01
Laboratory-scale experiments were performed to develop a procedure for biological treatment of recalcitrant anaerobic industrial effluent (from ethanol and citric acid production) using first the microalga Chlorella vulgaris followed by the macrophyte Lemna minuscula. This recalcitrant dark-colored wastewater, containing high levels of organic matter and low pH, prevents the growth of microalgae and macrophytes, and therefore, could not be treated by them. Therefore, the wastewater was diluted to 10% of the original concentration with wash water from the production line. Within 4 days of incubation in the wastewater, C. vulgaris population grew from 5 x 10(5) to 2 x 10(6) cells/mL. This culture reduced ammonium ion (71.6%), phosphorus (28%), and chemical oxygen demand (COD) (61%), and dissolved a floating microbial biofilm after 5 days of incubation. Consequently, L. minuscule was able to grow in the treated wastewater (from 7 to 14 g/bioreactor after 6 days), precipitated the microalgal cells (by shading the culture), and reduced other organic matter and color (up to 52%) after an additional 6 days of incubation. However, L. minuscula did not improve removal of nutrients. This study demonstrates the feasibility of combining microalgae and macrophytes for bioremediation of recalcitrant industrial wastewater.
Li, Liang; Qian, Guangsheng; Ye, Linlin; Hu, Xiaomin; Yu, Xin; Lyu, Weijian
2018-09-01
In cold areas, nitrogen removal performance of wastewater treatment plants (WWTP) declines greatly in winter. This paper systematically describes the enhancement effect of a periodic reverse electrocoagulation technology on biological nitrogen removal at low temperatures. The study showed that in the lab-scale systems, the electrocoagulation technology improved the biomass amount, enzyme activity and the amount of nitrogen removal bacteria (Nitrosomonas, Nitrobacter, Paracoccus, Thauera and Enterobacter). This enhanced nitrification and denitrification of activated sludge at low temperatures. In the pilot-scale systems, the electrocoagulation technology increased the relative abundance of cold-adapted microorganisms (Luteimonas and Trueperaceae) at low temperatures. In a full-scale industrial WWTP, comparison of data from winter 2015 and winter 2016 showed that effluent chemical oxygen demand (COD), NH 4 + -N, and NO 3 - -N reduced by 10.37, 3.84, and 136.43 t, respectively, throughout the winter, after installation of electrocoagulation devices. These results suggest that the electrocoagulation technology is able to improve the performance of activated sludge under low-temperature conditions. This technology provides a new way for upgrading of the performance of WWTPs in cold areas. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhou, Dan; Li, Yan; Zhang, Yinbo; Zhang, Chang; Li, Xiongfei; Chen, Zhiliang; Huang, Junyi; Li, Xia; Flores, Giancarlo; Kamon, Masashi
2014-11-01
We investigated the optimum composition of permeable reactive barrier (PRB) materials for remediating groundwater heavily contaminated by landfill leachate, in column tests using various mixtures of zero-valent iron (ZVI), zeolite (Zeo) and activated carbon (AC) with 0.01-0.25, 3.0-5.0 and 0.7-1.0 mm grain sizes, respectively. The main contributors to the removal of organic/inorganic contaminants were ZVI and AC, and the optimum weight ratio of the three PRB materials for removing the contaminants and maintaining adequate hydraulic conductivity was found to be 5:1:4. Average reductions in chemical oxygen demand (COD) and contents of total nitrogen (TN), ammonium, Ni, Pb and 16 polycyclic aromatic hydrocarbons (PAHs) from test samples using this mixture were 55.8%, 70.8%, 89.2%, 70.7%, 92.7% and 94.2%, respectively. We also developed a systematic method for estimating the minimum required thickness and longevity of the PRB materials. A ≥ 309.6 cm layer with the optimum composition is needed for satisfactory longevity, defined here as meeting the Grade III criteria (the Chinese National Bureau of Standards: GB/T14848/93) for in situ treatment of the sampled groundwater for ≥ 10 years.
Wang, X J; Chen, S L; Gu, X Y; Wang, K Y; Qian, Y Z
2008-01-01
The combination of chemical and biological treatment processes is a promising technique to reduce refractory organics from wastewater. Ozonation can achieve high color removal, enhance biodegradability, and reduce the chemical oxygen demand (COD). The biological technique can further decrease COD of wastewater after ozonation as a pre-treatment. In this study the ozonizing-biological aerated filter processes were used to treat textile washing wastewater for reuse after conventional treatment. The result showed that when the influent qualities were COD about 80 mg/L, color 16 degree and turbidity about 8 NTU, using the combination processes with the dosages of ozone at 30-45 mg/L with the hydraulic retention time (HRT) of biological aerated filter (BAF) at 3-4 hours respectively, gave effluent qualities of COD less than 30 mg/L, color 2 degree and turbidity less than 1NTU. The cost of treatment was less than one yuan/t wastewater, and these processes could enable high quality washing water reuse in textile industry. Copyright IWA Publishing 2008.
Subha, Bakthavachallam; Song, Young Chae; Woo, Jung Hui
2015-09-15
The present study aims to optimize the slow release biostimulant ball (BSB) for bioremediation of contaminated coastal sediment using response surface methodology (RSM). Different bacterial communities were evaluated using a pyrosequencing-based approach in contaminated coastal sediments. The effects of BSB size (1-5cm), distance (1-10cm) and time (1-4months) on changes in chemical oxygen demand (COD) and volatile solid (VS) reduction were determined. Maximum reductions of COD and VS, 89.7% and 78.8%, respectively, were observed at a 3cm ball size, 5.5cm distance and 4months; these values are the optimum conditions for effective treatment of contaminated coastal sediment. Most of the variance in COD and VS (0.9291 and 0.9369, respectively) was explained in our chosen models. BSB is a promising method for COD and VS reduction and enhancement of SRB diversity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rada, Elena Cristina; Ragazzi, Marco; Torretta, Vincenzo
2013-01-01
This work describes batch anaerobic digestion tests carried out on stillages, the residue of the distillation process on fruit, in order to contribute to the setting of design parameters for a planned plant. The experimental apparatus was characterized by three reactors, each with a useful volume of 5 L. The different phases of the work carried out were: determining the basic components of the chemical oxygen demand (COD) of the stillages; determining the specific production of biogas; and estimating the rapidly biodegradable COD contained in the stillages. In particular, the main goal of the anaerobic digestion tests on stillages was to measure the parameters of specific gas production (SGP) and gas production rate (GPR) in reactors in which stillages were being digested using ASBR (anaerobic sequencing batch reactor) technology. Runs were developed with increasing concentrations of the feed. The optimal loads for obtaining the maximum SGP and GPR values were 8-9 gCOD L(-1) and 0.9 gCOD g(-1) volatile solids.
Optimizing TOC and COD removal for the biodiesel wastewater by electrocoagulation
NASA Astrophysics Data System (ADS)
Tanattı, N. Pınar; Şengil, İ. Ayhan; Özdemir, Abdil
2018-05-01
In this study, the chemical oxygen demand (COD) and the total organic carbon content (TOC) in biodiesel wastewater iron and aluminum electrodes arranged in a bipolar position. In the EC of the biodiesel wastewater, the effects of the supporting electrolyte, initial pH, electrolysis time and current density were examined. The results showed that the majority of the pollutants in the biodiesel wastewater were effectively removed when the iron or aluminum electrodes were used as a sacrificial anode. The highest COD and TOC removal efficiencies were successfully obtained with the iron electrode. COD removal efficiencies are 91.74 and 90.94% for iron and aluminum electrode, respectively. In the same way, TOC removal efficiencies were obtained as 91.79 and 91.98% for the iron and aluminum electrodes, respectively, at initial pH of 6, the current density of 0.3226 mA/cm2, NaCl concentration 1 g/L and 1 min of operating time.
Influence of organic loading rate on integrated bioreactor treating hypersaline mustard wastewater.
Kang, Wei; Chai, Hongxiang; Yang, Shiwei; Du, Guojun; Zhou, Jian; He, Qiang
2016-07-01
Mustard tuber wastewater is characterized by high salinity and high organic content that is potentially detrimental to the biological treatment system and affects the treatment efficiency accordingly. The experiment used the integrated bioreactor to reduce much of the organics in mustard tuber wastewater, and found the influence of organic loading rate on effluent chemical oxygen demand (COD) and phosphate (PO4 (3-) -P). Results showed that under the condition of 10-15 °C, 6 mg/L of dissolved oxygen, the reduction value of COD removal rate in anaerobic and aerobic area was 14.5% and 31.7% when the organic loading rate increased from 2.0 to 4.0 kg COD/m(3) /day. Therefore, an integrated bioreactor should take 2.0 kg COD/m(3) /day organic loading rate in mustard wastewater treatment if the effluent is expected to meet the third level of "Integrated Wastewater Discharge Standard" (GB 8978-1996). © 2015 International Union of Biochemistry and Molecular Biology, Inc.
Iyappan, K; Basha, C Ahmed; Saravanathamizhan, R; Vedaraman, N; Tahiyah Nou Shene, C A; Begum, S Nathira
2014-01-01
Electrochemical oxidation of tannery effluent was carried out in batch, batch recirculation and continuous reactor configurations under different conditions using a battery-integrated DC-DC converter and solar PV power supply. The effect of current density, electrolysis time and fluid flow rate on chemical oxygen demand (COD) removal and energy consumption has been evaluated. The results of batch reactor show that a COD reduction of 80.85% to 96.67% could be obtained. The results showed that after 7 h of operation at a current density of 2.5 A dm(-2) and flow rate of 100 L h(-1) in batch recirculation reactor, the removal of COD is 82.14% and the specific energy consumption was found to be 5.871 kWh (kg COD)(-1) for tannery effluent. In addition, the performance of single pass flow reactors (single and multiple reactors) system of various configurations are analyzed.
Fall, C; Rogel-Dorantes, J A; Millán-Lagunas, E L; Martínez-García, C G; Silva-Hernández, B C; Silva-Trejo, F S
2014-12-01
Long-term aerobic digestion batch tests were performed on a sludge that contained mainly two fractions, a heterotrophic biomass XH and its endogenous residues XP, which were cultivated in conditions known to favor bio-storage (XSto). The objective was to model the stabilization of the sludge and determine the parameters of the endogenous decay processes, based on simultaneous measurements of the chemical oxygen demand (COD) and oxygen uptake rates (OUR). The respirograms were shown to have a two-phase structure that was describable with activated sludge model 3 (ASM3), but not with ASM1. Comparing the information from the COD and OUR data suggested the presence of two different groups of heterotrophs (XHa and XHb), one that decays with oxygen consumption and another without using O2. A modified ASM3 model was proposed, which was able to fit the OUR and COD data from the digesters, as well as cases from the literature. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kim, Jaai; Kim, Hakchan; Lee, Changsoo
2017-10-01
Ulva biomass was evaluated as a co-substrate for anaerobic digestion of spent coffee grounds at varying organic loads (0.7-1.6g chemical oxygen demand (COD)/Ld) and substrate compositions. Co-digestion with Ulva (25%, COD basis) proved beneficial for SCG biomethanation in both terms of process performance and stability. The beneficial effect is much more pronounced at higher organic and hydraulic loads, with the highest COD removal and methane yield being 51.8% and 0.19L/g COD fed, respectively. The reactor microbial community structure changed dynamically during the experiment, and a dominance shift from hydrogenotrophic to aceticlastic methanogens occurred with increase in organic loading rate. Network analysis provides a comprehensive view of the microbial interactions involved in the system and confirms a direct positive correlation between Ulva input and methane productivity. A group of populations, including Methanobacterium- and Methanoculleus-related methanogens, was identified as a possible indicator for monitoring the biomethanation performance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Luostarinen, Sari A; Rintala, Jukka A
2005-01-01
Anaerobic on-site treatment of synthetic black water (BW) and dairy parlour wastewater (DPWW) was studied in two-phased upflow anaerobic sludge blanket (UASB)-septic tanks at low temperatures (10-20 degrees C). At all temperatures, total chemical oxygen demand (COD(t)) removal was above 90% with BW and above 80% with DPWW and removal of total suspended solids (TSS) above 90% with both wastewaters. Moreover, dissolved COD (COD(dis)) removal was approx. 70% with both wastewaters indicating good biological activity of the sludges. With BW, a single-phased reactor was found sufficient for good COD removals, while with DPWW, a two-phased process was required. Temperature optimum of reactor sludges was still 35 degrees C after long (398d) operation. Most of the nutrients from BW were removed with TSS, while with DPWW nutrient removal was low. In conclusion, UASB-septic tank was found feasible for (pre)treatment of BW and DPWW at low temperatures.
Shanmugam, Saravanan R; Adhikari, Sushil; Wang, Zhouhang; Shakya, Rajdeep
2017-01-01
Hydrothermal liquefaction of wet biomass such as algae is a promising thermochemical process for the production of bio-oil. Bio-oil aqueous phase generated during liquefaction process is rich in complex organics and can be utilized for biogas production following its pre-treatment with granular activated carbon. In our study, use of 30% activated carbon resulted in higher chemical oxygen demand (COD) reduction (53±0.3%) from aqueous phase. Higher CH 4 production (84±12mL/gCOD) was also observed in 30% carbon-treated aqueous phase fed cultures, whereas only 32±6mLCH 4 /gCOD was observed in control (non-carbon treated) cultures. The results from this study indicate that almost 67±0.3% initial COD of aqueous phase can be reduced using a combination of both carbon treatment and biogas production. This study shows that aqueous phase can be utilized for CH 4 production. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jiang, Hao; Nie, Hong; Ding, Jiangtao; Stinner, Walter; Sun, Kaixuan; Zhou, Hongjun
2018-01-02
In this study, an anaerobic baffled reactor (ABR) with seven chambers was applied to treat medium-strength synthetic industrial wastewater (MSIW). The performance of startup and shock test on treating MSIW was investigated. During the acclimation process, the chemical oxygen demand (COD) of MSIW gradually increased from 0 to 2,000 mg L -1 , and the COD removal finally reached 90%. At shock test, the feeding COD concentration increased by one-fifth and the reactor adapted very well with a COD removal of 82%. In a stable state, Comamonas, Smithella, Syntrophomonas and Pseudomonas were the main populations of bacteria, while the predominant methanogen was Methanobacterium. The results of chemical and microbiological analysis indicated the significant advantages of ABR, including buffering shocks, separating stages with matching microorganisms and promoting syntrophism. Meanwhile, the strategies for acclimation and operation were of great importance. Further work can test reactor performance in the treatment of actual industrial wastewater.
Ghangrekar, M M; Asolekar, S R; Joshi, S G
2005-03-01
Sludge characteristics available inside the reactor are of vital importance to maximize advantages of UASB reactor. The organic loading rate and sludge loading rate applied during start-up are among the important parameters to govern the sludge characteristics. Effects of these loading rates on the characteristics of the sludge developed are evaluated in six laboratory scale UASB reactors. The sludge characteristics considered are VSS/SS ratio of the sludge, sludge volume index, specific gravity, settling velocity and metal contents of the sludge developed under different loading rates. The experimental results indicate that, for developing good characteristics sludge, during primary start-up from flocculent inoculum sludge, organic loading rate and sludge loading rate should be in the range of 2.0-4.5 kg COD/m3 d and 0.1-0.25 kg COD/kg VSS d, respectively (chemical oxygen demand, COD). Proper sludge granulation and higher COD removal efficiency will be achieved by these loading rates.
Li, Jianhua; Sun, Shanshan; Yan, Ping; Fang, Li; Yu, Yang; Xiang, Yangdong; Wang, Di; Gong, Yejing; Gong, Yanjun; Zhang, Zhongzhi
2017-08-01
Microbial communities in the functional areas of biofilm reactors with large height-diameter ratio using the anaerobic-aerobic (A/O) reflux process was investigated to treat heavy oil refinery wastewater without pretreatment. In the process, chemical oxygen demand (COD) and total nitrogen (TN) removal reached 93.2% and 82.8%, and the anaerobic biofilm reactor was responsible for 95% and 99%, respectively. Areas for hydrolysis acidification and acetic acid production, methane production, and COD recovery were obvious in the anaerobic reactor. Among all areas, area for hydrolysis acidification and acetic acid production was the key factor to improve COD removal efficiency. High throughput sequencing of 16S rDNA gene showed that the native community was mainly composed of functional groups for hydrocarbon degradation, syntrophic bacteria union body, methanogenesis, nitrification, denitrification, and sulfate reduction. The deviations between predicted values and actual COD and TN removal were less than 5% in the optimal prediction model. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect of preparation conditions of activated carbon from bamboo waste for real textile wastewater.
Ahmad, A A; Hameed, B H
2010-01-15
This study deals with the use of activated carbon prepared from bamboo waste (BMAC), as an adsorbent for the removal of chemical oxygen demand (COD) and color of cotton textile mill wastewater. Bamboo waste was used to prepare activated carbon by chemical activation using phosphoric acid (H(3)PO(4)) as chemical agent. The effects of three preparation variables activation temperature, activation time and H(3)PO(4):precursor (wt%) impregnation ratio on the color and COD removal were investigated. Based on the central composite design (CCD) and quadratic models were developed to correlate the preparation variables to the color and COD. From the analysis of variance (ANOVA), the most influential factor on each experimental design response was identified. The optimum condition was obtained by using temperature of 556 degrees C, activation time of 2.33 h and chemical impregnation ratio of 5.24, which resulted in 93.08% of color and 73.98% of COD.
Use of advanced oxidation processes to improve the biodegradability of mature landfill leachates.
de Morais, Josmaria Lopes; Zamora, Patricio Peralta
2005-08-31
Two advanced oxidative processes (Fe2+/H2O2/UV and H2O2/UV systems) were used for the pre-treatment of mature landfill leachate with the objective of improving its overall biodegradability, evaluated in terms of BOD5/COD ratio, up to a value compatible with biological treatment. At optimized experimental conditions (2000 mgL(-1) of H2O2 and 10 mgL(-1) of Fe2+ for the photo-Fenton system, and 3000 mgL(-1) of H2O2 for the H2O2/UV system), both methods showed suitability for partial removal of chemical oxygen demand (COD), total organic carbon (TOC) and color. The biodegradability was significantly improved (BOD5/COD from 0.13 to 0.37 or 0.42) which allowed an almost total removal of COD and color by a sequential activated sludge process. In addition, gel permeation chromatography (GPC) has showed a substantial agreement on the cleavage of large organic compound into smaller ones.
El-Shamy, A M; Abdelfattah, Ibrahim; Elshafey, Ola I; Shehata, M F
2018-05-09
A potential and cost-effective treatment method utilizing thermally activated bentonite was evaluated for the treatment of highly loaded real petroleum processing wastewater (COD = 4500 mg/L) in order to reduce its COD and improve the corrosion properties. A save discharging COD limit of the treated effluent (800 mg/L) is achieved by using 6 g/L of calcinated bentonite after reaching the steady state (1 h of shaking) at pH 5. The durability of bentonite is proved. The corrosion behavior of the treated wastewater was investigated for mild steel by using electrochemical and weight loss measurements. The results proved that the corrosion rate of the wastewater was slightly reduced after the treatment process. More improvement of the corrosion resistance was achieved by adding sodium hexa-meta-phosphate (SHMP) corrosion inhibitor to the treated water. Tri-methyl ammonium bromide (CTAB) biocide was also added before discharging into municipal networks. Copyright © 2018. Published by Elsevier Ltd.
Shi, Wei; Xia, Jun
2017-02-01
Water quality risk management is a global hot research linkage with the sustainable water resource development. Ammonium nitrogen (NH 3 -N) and permanganate index (COD Mn ) as the focus indicators in Huai River Basin, are selected to reveal their joint transition laws based on Markov theory. The time-varying moments model with either time or land cover index as explanatory variables is applied to build the time-varying marginal distributions of water quality time series. Time-varying copula model, which takes the non-stationarity in the marginal distribution and/or the time variation in dependence structure between water quality series into consideration, is constructed to describe a bivariate frequency analysis for NH 3 -N and COD Mn series at the same monitoring gauge. The larger first-order Markov joint transition probability indicates water quality state Class V w , Class IV and Class III will occur easily in the water body of Bengbu Sluice. Both marginal distribution and copula models are nonstationary, and the explanatory variable time yields better performance than land cover index in describing the non-stationarities in the marginal distributions. In modelling the dependence structure changes, time-varying copula has a better fitting performance than the copula with the constant or the time-trend dependence parameter. The largest synchronous encounter risk probability of NH 3 -N and COD Mn simultaneously reaching Class V is 50.61%, while the asynchronous encounter risk probability is largest when NH 3 -N and COD Mn is inferior to class V and class IV water quality standards, respectively.
Lochmatter, Samuel; Maillard, Julien; Holliger, Christof
2014-01-01
This study investigated the potential of aeration control for the achievement of N-removal over nitrite with aerobic granular sludge in sequencing batch reactors. N-removal over nitrite requires less COD, which is particularly interesting if COD is the limiting parameter for nutrient removal. The nutrient removal performances for COD, N and P have been analyzed as well as the concentration of nitrite-oxidizing bacteria in the granular sludge. Aeration phase length control combined with intermittent aeration or alternate high-low DO, has proven to be an efficient way to reduce the nitrite-oxidizing bacteria population and hence achieve N-removal over nitrite. N-removal efficiencies of up to 95% were achieved for an influent wastewater with COD:N:P ratios of 20:2.5:1. The total N-removal rate was 0.18 kgN·m−3·d−1. With N-removal over nitrate the N-removal was only 74%. At 20 °C, the nitrite-oxidizing bacteria concentration decreased by over 95% in 60 days and it was possible to switch from N-removal over nitrite to N-removal over nitrate and back again. At 15 °C, the nitrite-oxidizing bacteria concentration decreased too but less, and nitrite oxidation could not be completely suppressed. However, the combination of aeration phase length control and high-low DO was also at 15 °C successful to maintain the nitrite pathway despite the fact that the maximum growth rate of nitrite-oxidizing bacteria at temperatures below 20 °C is in general higher than the one of ammonium-oxidizing bacteria. PMID:25006970
Application of a membrane bioreactor for winery wastewater treatment.
Bolzonella, D; Fatone, F; Pavan, P; Cecchi, F
2010-01-01
Winery wastewaters are variable in nature and are hard to treat by means of the conventional activated sludge process because of the high organic loading associated with their production, especially during vintage. To face this situation, recently, membrane bioreactors have been widely applied to treat winery wastewaters. In this study, a full-scale membrane bioreactor treated some 110 m(3)/d of wastewater and organic loadings up to 1,600 kg COD per day. The average removal efficiency was 95% while the corresponding sludge yield was only 0.1 kg MLVSS per kg COD removed, as usual for these wastewaters. A detailed analysis of energy consumption showed specific energy demands of 2.0-3.6 kWh/m(3) of treated wastewater or 1 kWh per kg of COD removed.
NASA Astrophysics Data System (ADS)
Tuukkanen, T.; Marttila, H.; Kløve, B.
2017-07-01
Organic matter and nutrient export from drained peatlands is affected by complex hydrological and biogeochemical interactions. Here partial least squares regression (PLSR) was used to relate various soil and catchment characteristics to variations in chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) concentrations in runoff. Peat core samples and water quality data were collected from 15 peat extraction sites in Finland. PLSR models constructed by cross-validation and variable selection routines predicted 92, 88, and 95% of the variation in mean COD, TN, and TP concentration in runoff, respectively. The results showed that variations in COD were mainly related to net production (temperature and water-extractable dissolved organic carbon (DOC)), hydrology (topographical relief), and solubility of dissolved organic matter (peat sulfur (S) and calcium (Ca) concentrations). Negative correlations for peat S and runoff COD indicated that acidity from oxidation of organic S stored in peat may be an important mechanism suppressing organic matter leaching. Moreover, runoff COD was associated with peat aluminum (Al), P, and sodium (Na) concentrations. Hydrological controls on TN and COD were similar (i.e., related to topography), whereas degree of humification, bulk density, and water-extractable COD and Al provided additional explanations for TN concentration. Variations in runoff TP concentration were attributed to erosion of particulate P, as indicated by a positive correlation with suspended sediment concentration (SSC), and factors associated with metal-humic complexation and P adsorption (peat Al, water-extractable P, and water-extractable iron (Fe)).
Impact of influent COD/N ratio on disintegration of aerobic granular sludge.
Luo, Jinghai; Hao, Tianwei; Wei, Li; Mackey, Hamish R; Lin, Ziqiao; Chen, Guang-Hao
2014-10-01
Disintegration of aerobic granular sludge (AGS) is a challenging issue in the long-term operation of an AGS system. Chemical oxygen demand (COD)-to-nitrogen (N) ratio (COD/N), often variable in industrial wastewaters, could be a destabilizing factor causing granule disintegration. This study investigates the impact of this ratio on AGS disintegration and identifies the key causes, through close monitoring of AGS changes in its physical and chemical characteristics, microbial community and treatment performance. For specific comparison, two lab-scale air-lift type sequencing batch reactors, one for aerobic granular and the other for flocculent sludge, were operated in parallel with three COD/N ratios (4, 2, 1) applied in the influent of each reactor. The decreased COD/N ratios of 2 and 1 strongly influenced the stability of AGS with regard to physical properties and nitrification efficiency, leading to AGS disintegration when the ratio was decreased to 1. Comparatively the flocculent sludge maintained relatively stable structure and nitrification efficiency under all tested COD/N ratios. The lowest COD/N ratio resulted in a large microbial community shift and extracellular polymeric substances (EPS) reduction in both flocculent and granular sludges. The disintegration of AGS was associated with two possible causes: 1) reduction in net tyrosine production in the EPS and 2) a major microbial community shift including reduction in filamentous bacteria leading to the collapse of granule structure. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ghorbani, M; Eskicioglu, C
2011-12-01
Batch and semi-continuous flow aerobic digesters were used to stabilize thickened waste-activated sludge at different initial conditions and mean solids retention times. Under dynamic conditions, total suspended solids, volatile suspended solids (VSS) and total and particulate chemical oxygen demand (COD and PCOD) were monitored in the batch reactors and effluent from the semi-continuous flow reactors. Activated Sludge Model (ASM) no. 1 and ASM no. 3 were applied to measured data (calibration data set) to evaluate the consistency and performances of models at different flow regimes for digester COD and VSS modelling. The results indicated that both ASM1 and ASM3 predicted digester COD, VSS and PCOD concentrations well (R2, Ra2 > or = 0.93). Parameter estimation concluded that compared to ASM1, ASM3 parameters were more consistent across different batch and semi-continuous flow runs with different operating conditions. Model validation on a data set independent from the calibration data successfully predicted digester COD (R2 = 0.88) and VSS (R2 = 0.94) concentrations by ASM3, while ASM1 overestimated both reactor COD (R2 = 0.74) and VSS concentrations (R2 = 0.79) after 15 days of aerobic batch digestion.
Constructed wetland using corncob charcoal substrate: pollutants removal and intensification.
Liu, Mao; Li, Boyuan; Xue, Yingwen; Wang, Hongyu; Yang, Kai
2017-09-01
To investigate the feasibility of using corncob charcoal substrate in constructed wetlands, four laboratory-scale vertical flow constructed wetlands (VFCWs) were built. Effluent pollutant (chemical oxygen demand (COD), NH 4 + -N, total phosphorus (TP)) concentrations during the experiment were determined to reveal pollutant removal mechanisms and efficiencies at different stages. In the stable stage, a VFCW using clay ceramisite substrate under aeration attained higher COD (95.1%), and NH 4 + -N (95.1%) removal efficiencies than a VFCW using corncob charcoal substrate (91.5% COD, 91.3% NH 4 + -N) under aeration, but lower TP removal efficiency (clay ceramisite 32.0% and corncob charcoal 40.0%). The VFCW with raw corncob substrate showed stronger COD emissions (maximum concentration 3,108 mg/L) than the corncob charcoal substrate (COD was lower than influent). The VFCW using corncob charcoal substrate performed much better than the VFCW using clay ceramisite substrate under aeration when the C/N ratio was low (C/N = 1.5, TN removal efficiency 36.89%, 4.1% respectively). These results suggest that corncob charcoal is a potential substrate in VFCWs under aeration with a unique self -supplying carbon source property in the denitrification process.
Cosmetic wastewater treatment by coagulation and advanced oxidation processes.
Naumczyk, Jeremi; Bogacki, Jan; Marcinowski, Piotr; Kowalik, Paweł
2014-01-01
In this study, the treatment process of three cosmetic wastewater types has been investigated. Coagulation allowed to achieve chemical oxygen demand (COD) removal of 74.6%, 37.7% and 74.0% for samples A (Al2(SO4)3), B (Brentafloc F3) and C (PAX 16), respectively. The Fenton process proved to be effective as well - COD removal was equal to 75.1%, 44.7% and 68.1%, respectively. Coagulation with FeCl3 and the subsequent photo-Fenton process resulted in the best values of final COD removal equal to 92.4%, 62.8% and 90.2%. In case of the Fenton process, after coagulation these values were equal to 74.9%, 50.1% and 84.8%, while in case of the H2O2/UV process, the obtained COD removal was 83.8%, 36.2% and 80.9%. High value of COD removal in the Fenton process carried out for A and C wastewater samples was caused by a significant contribution of the final neutralization/coagulation. Very small effect of the oxidation reaction in the Fenton process in case of sample A resulting from the presence of antioxidants, 'OH radical scavengers' in the wastewater.
Chatterjee, Pritha; Ghangrekar, M M; Rao, Surampalli; Kumar, Senthil
2017-05-01
Varying chemical oxygen demand (COD) and sulphate concentrations in substrate were used to determine reaction kinetics and mass balance of organic matter and sulphate transformation in a microbial fuel cell (MFC). MFC with anodic chamber volume of 1 L, fed with wastewater having COD of 500 mg/L and sulphate of 200 mg/L, could harvest power of 54.4 mW/m 2 , at a Coulombic efficiency of 14%, with respective COD and sulphate removals of 90 and 95%. Sulphide concentration, even up to 1500 mg/L, did not inhibit anodic biochemical reactions, due to instantaneous abiotic oxidation to sulphur, at high inlet sulphate. Experiments on abiotic oxidation of sulphide to sulphur revealed maximum oxidation taking place at an anodic potential of -200 mV. More than 99% sulphate removal could be achieved in a MFC with inlet COD/sulphate of 0.75, giving around 1.33 kg/m 3 day COD removal. Bioelectrochemical conversion of sulphate facilitating sulphur recovery in a MFC makes it an interesting pollution abatement technique.
Muhamad, Mohd Hafizuddin; Sheikh Abdullah, Siti Rozaimah; Mohamad, Abu Bakar; Rahman, Rakmi Abdul; Kadhum, Abdul Amir Hasan
2012-01-01
A pilot scale granular activated carbon-sequencing batch biofilm reactor with a capacity of 2.2 m3 was operated for over three months to evaluate its performance treating real recycled paper industry wastewater under different operational conditions. In this study, dissolved air floatation (DAF) and clarifier effluents were used as influent sources of the pilot plant. During the course of the study, the reactor was able to biodegrade the contaminants in the incoming recycled paper mill wastewater in terms of chemical oxygen demand (COD), adsorbable organic halides (AOX; specifically 2,4-dichlorophenol (2,4-DCP)) and ammoniacal nitrogen (NH3-N) removal efficiencies at varying hydraulic retention times (HRTs) of 1-3 days, aeration rates (ARs) of 2.1-3.4 m3/min and influent feed concentration of 40-950 mg COD/l. Percentages of COD, 2,4-DCP and NH3-N removals increased with increasing HRT, resulting in more than 90% COD, 2,4-DCP and NH3-N removals at HRT values above two days. Degradation of COD, 2,4-DCP and NH3-N were seriously affected by variation of ARs, which resulted in significant decrease of COD, 2,4-DCP and NH3-N removals by decreasing ARs from 3.4 m3/min to 2.1 m3/min, varying in the ranges of 24-80%, 6-96% and 5-42%, respectively. In comparison to the clarifier effluent, the treatment performance of DAF effluent, containing high COD concentration, resulted in a higher COD removal of 82%. The use of diluted DAF effluent did not improve significantly the COD removal. Higher NH3-N removal efficiency of almost 100% was observed during operation after maintenance shutdown compared to normal operation, even at the same HRT of one day due to the higher dissolved oxygen concentrations (1-7 mg/l), while no significant difference in COD removal efficiency was observed.
Kinetic analysis of Legionella inactivation using ozone in wastewater.
Li, Jun; Li, Kunquan; Zhou, Yan; Li, Xuebin; Tao, Tao
2017-02-01
Legionella inactivation using ozone was studied in wastewater using kinetic analysis and modeling. The experimental results indicate that the relationship between the ozone concentration, germ concentration, and chemical oxygen demand (COD) can be used to predict variations in germ and COD concentrations. The ozone reaction with COD and inactivation of Legionella occurred simultaneously, but the reaction with COD likely occurred at a higher rate than the inactivation, as COD is more easily oxidized by ozone than Legionella. Higher initial COD concentrations resulted in a lower inactivation rate and higher lnN/N 0 . Higher temperature led to a higher inactivation efficiency. The relationship of the initial O 3 concentration and Legionella inactivation rate was not linear, and thus, the Ct value required for a 99.99% reduction was not constant. The initial O 3 concentration was more important than the contact time, and a reduction of the initial O 3 concentration could not be compensated by increasing the contact time. The Ct values were compared over a narrow range of initial concentrations; the Ct values could only be contrasted when the initial O 3 concentrations were very similar. A higher initial O 3 concentration led to a higher inflection point value for the lnN/N 0 vs C 0 t curve. Energy consumption using a plasma corona was lower than when using boron-doped diamond electrodes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Aljuboury, Dheeaa Al Deen Atallah; Palaniandy, Puganeshwary; Abdul Aziz, Hamidi Bin; Feroz, Shaik; Abu Amr, Salem S
2016-09-01
The aim of this study is to investigate the performance of combined solar photo-catalyst of titanium oxide/zinc oxide (TiO 2 /ZnO) with aeration processes to treat petroleum wastewater. Central composite design with response surface methodology was used to evaluate the relationships between operating variables for TiO 2 dosage, ZnO dosage, air flow, pH, and reaction time to identify the optimum operating conditions. Quadratic models for chemical oxygen demand (COD) and total organic carbon (TOC) removals prove to be significant with low probabilities (<0.0001). The obtained optimum conditions included a reaction time of 170 min, TiO 2 dosage (0.5 g/L), ZnO dosage (0.54 g/L), air flow (4.3 L/min), and pH 6.8 COD and TOC removal rates of 99% and 74%, respectively. The TOC and COD removal rates correspond well with the predicted models. The maximum removal rate for TOC and COD was 99.3% and 76%, respectively at optimum operational conditions of TiO 2 dosage (0.5 g/L), ZnO dosage (0.54 g/L), air flow (4.3 L/min), reaction time (170 min) and pH (6.8). The new treatment process achieved higher degradation efficiencies for TOC and COD and reduced the treatment time comparing with other related processes.
Meng, Ying; Shen, Fei; Yuan, Hairong; Zou, Dexun; Liu, Yanping; Zhu, Baoning; Chufo, Akiber; Jaffar, Muhammad; Li, Xiujin
2014-11-01
Batch anaerobic digestion was employed to investigate the efficient start-up strategies for the liquefied food waste, and sequencing batch digestion was also performed to determine maximum influent organic loading rate (OLR) for efficient and stable operation. The results indicated that the start-up could be well improved using appropriate wastewater organic load and food-to-microorganism ratios (F/M). When digestion was initialized at low chemical oxygen demand (COD) concentration of 20.0 gCOD L(-1), the start-up would go well using lower F/M ratio of 0.5-0.7. The OLR 7.0 gCOD L(-1) day(-1) was recommended for operating the ASBR digestion, in which the COD conversion of 96.7 ± 0.53% and biomethane yield of 3.5 ± 0.2 L gCOD(-1) were achieved, respectively. The instability would occur when OLR was higher than 7.0 gCOD L(-1) day(-1), and this instability was not recoverable. Lipid was suggested to be removed before anaerobic digestion. The anaerobic digestion process in engineering project ran well, and good performance was achieved when the start-up and operational strategies from laboratory study were applied. For case application, stable digestion performance was achieved in a digester (850 m(3) volume) with biogas production of 1.0-3.8 m(3) m(-3) day(-1).
Comparison of Fenton and Fenton-like oxidation for the treatment of cosmetic wastewater.
Bautista, P; Casas, J A; Zazo, J A; Rodriguez, J J; Mohedano, A F
2014-01-01
The treatment of cosmetic wastewaters by Fenton (Fe²⁺/H₂O₂) and Fenton-like (Fe³⁺/H₂O₂) oxidation has been studied. From batch and continuous experiments it has been proved that both versions of the Fenton process lead to quite similar results in terms of chemical oxygen demand (COD) and total organic carbon reduction although the COD shows a slightly higher rate in the early stages of reaction. COD reductions of around 55% after 2 h reaction time and 75-80% with 4 h residence time were reached in batch and continuous experiments, respectively, conducted at pH around 3, ambient temperature (20 °C), with 200 mg/L of Fe dose and an initial H₂O₂/COD weight ratio corresponding to the theoretical stoichiometric value. Achieving the locally allowable limit of COD for industrial wastewater discharge into the municipal sewer system takes no more than 30 min reaction time under those conditions by both Fenton systems. However, the Fenton-like process, where iron is fed as Fe(3+), would be preferable for industrial applications since the ferric sludge resulting upon final neutralization of the effluent can be recycled to the process. A second-order kinetic equation with respect to COD fitted fairly well the experimental results at different temperatures, thus providing a simple practical tool for design purposes.
Ray, S Ghosh; Ghangrekar, M M
2016-02-01
An attempt has been made to provide solution for distillery wastewater using fungal pretreatment followed by an anaerobic process to achieve higher organic matter removal, which is a challenge at present with currently adopted technologies. Submerged growth kinetics of distillery wastewater supernatant by Aspergillus awamori was also evaluated. The proposed kinetic models using a logistic equation for fungal growth and the Leudeking-Piret equation for product formation were validated experimentally, and substrate consumption equation was derived using estimated kinetic coefficients. Up to 59.6 % chemical oxygen demand (COD) and 70 % total organic carbon (TOC) removals were observed in 96 h of fungal incubation. Maximum specific growth rate of fungi, coefficient of biomass yield on substrate and growth-associated product formation coefficient were estimated to be 0.07 ± 0.01 h(-1), 0.614 kg biomass/kg utilized COD and 0.215 kg CO2/kg utilized TOC, respectively. The chitosan recovery of 0.072-0.078 kg/kg of dry mycelium was obtained using dilute sulphuric acid extraction, showing high purity and characteristic chitosan properties according to FTIR and XRD analyses. After anaerobic treatment of the fungal pretreated effluent with COD concentration of 7.920 ± 0.120 kg COD/m(3) (organic loading rate of 3.28 kg COD/m(3) day), overall COD reduction of 91.07 % was achieved from distillery wastewater.
Kumar, Pradeep; Prasad, B; Mishra, I M; Chand, Shri
2008-05-01
The decolorization and reduction of COD of dyeing wastewater from a cotton textile mill was conducted using catalytic thermal treatment (thermolysis) accompanied with/without coagulation. Thermolysis in presence of a homogeneous copper sulphate catalyst was found to be the most effective in comparison to other catalysts (FeCl(3), FeSO(4), CuO, ZnO and PAC) used. A maximum reduction of chemical oxygen demand (COD) and color of dyeing wastewater of 66.85% and 71.4%, respectively, was observed with a catalyst concentration of 5 kg/m(3) at pH 8. Commercial alum was found most effective coagulant among various coagulants (aluminum potassium sulphate, PAC, FeCl(3) and FeSO(4)) tested during coagulation operations, resulting in 58.57% COD and 74% color reduction at pH 4 and coagulant dose of 5 kg/m(3). Coagulation of the clear fluid (supernatant) obtained after treatment by thermolysis at the conditions previously used resulted in an overall reduction of 89.91% COD and 94.4% color at pH 4 and a coagulant dose of 2 kg/m(3). The application of thermolysis followed by coagulation, thus, is the most effective treatment method in removing nearly 90% COD and 95% color at a lower dose of coagulant (2 kg/m(3)). The sludge thus produced would contain lower inorganic mass coagulant and, therefore, less amount of inorganic sludge.
Roughness and temperature effects on the filter media of a trickling filter for nitrification.
Kishimoto, Naoyuki; Ohara, Tetsuya; Hinobayashi, Jouji; Hashimoto, Tsutomu
2014-01-01
The performance of trickling filters using two types of plastic media with the same material, the same shape and different roughness was evaluated during a temperature-decreasing period to understand the roughness and temperature effects on the filter media. Real restaurant wastewater was used for the experiments. The chemical oxygen demand (COD) removal and nitrification performance of plastic media with a rough surface (LT-15) was superior to that with a smooth surface (KT-15). Because the biomass of microorganisms attached on the LT-15 was twice that attached on the KT-15, the larger biomass attached on the LT-15 was thought to be responsible for the higher performance. During the operation, the COD loading and water temperature varied in the range from 0.37 to 1.9 kg m(-3) d(-1) and 17.0--10.0 degrees C, respectively. However, the COD removal performance was not dependent on the COD loading or water temperature. On the contrary, the COD loading and the water temperature influenced the nitrification performance. Although a nitrification efficiency of 100% was recorded at a COD loading of 0.37 kg m(-3) d(-1), it deteriorated to 17-28% at higher COD loading. Moreover, a decline in the water temperature decreased the nitrification performance. The temperature-activity coefficient for nitrification was estimated to be 1.096. Based on this value, it was inferred that the COD loading should be set at less than 0.20 kg m(-3) d(-1) for the complete nitrification of the restaurant wastewater in winter, when the water temperature usually drops to around 10 degrees C.
Electrooxidation of industrial wastewater containing 1,4-dioxane in the presence of different salts.
Barndõk, H; Hermosilla, D; Cortijo, L; Torres, E; Blanco, A
2014-04-01
The treatment of 1,4-dioxane solution by electrochemical oxidation on boron-doped diamond was studied using a central composite design and the response surface methodology to investigate the use of SO4 (2-) and HCO3 (-) as supporting electrolytes considering the applied electric current, initial chemical oxygen demand (COD) value, and treatment time. Two industrial effluents containing bicarbonate alkalinity, one just carrying 1,4-dioxane (S1), and another one including 1,4-dioxane and 2-methyl-1,3-dioxolane (S2), were treated under optimized conditions and subsequently subjected to biodegradability assays with a Pseudomonas putida culture. Electrooxidation was compared with ozone oxidation (O3) and its combination with hydrogen peroxide (O3/H2O2). Regarding the experimental design, the optimal compromise for maximum COD removal at minimum energy consumption was shown at the maximum tested concentrations of SO4 (2-) and HCO3 (-) (41.6 and 32.8 mEq L(-1), respectively) and the maximum selected initial COD (750 mg L(-1)), applying a current density of 11.9 mA cm(-2) for 3.8 h. Up to 98 % of the COD was removed in the electrooxidation treatment of S1 effluent using 114 kWh per kg of removed COD and about 91 % of the COD from S2 wastewater applying 49 kWh per kg of removed COD. The optimal biodegradability enhancement was achieved after 1 h of electrooxidation treatment. In comparison with O3 and O3/H2O2 alternatives, electrochemical oxidation achieved the fastest degradation rate per oxidant consumption unit, and it also resulted to be the most economical treatment in terms of energy consumption and price per unit of removed COD.
JAFARI, Jalil; MESDAGHINIA, Alireza; NABIZADEH, Ramin; FARROKHI, Mehrdad; MAHVI, Amir Hossein
2013-01-01
Background: Anaerobic treatment methods are more suitable for the treatment of concentrated wastewater streams, offer lower operating costs, the production of usable biogas product. The aim of this study was to investigate the performance of an Anaerobic Fluidized Bed Reactor (AFBR)-Aerobic Moving Bed Bio Reactor (MBBR) in series arrangement to treat Currant wastewater. Methods: The bed materials of AFBR were cylindrical particles made of PVC with a diameter of 2–2.3 mm, particle density of 1250 kg/m3. The volume of all bed materials was 1.7 liter which expanded to 2.46 liters in fluidized situation. In MBBR, support media was composed of 1.5 liters Bee-Cell 2000 having porosity of 87% and specific surface area of 650m2/m3. Results: When system operated at 35 ºC, chemical oxygen demand (COD) removal efficiencies were achieved to 98% and 81.6% for organic loading rates (OLR) of 9.4 and 24.2 g COD/l.d, and hydraulic retention times (HRT) of 48 and 18 h, in average COD concentration feeding of 18.4 g/l, respectively. Conclusion: The contribution of AFBR in total COD removal efficiency at an organic loading rate (OLR) of 9.4 g COD/l.d was 95%, and gradually decreased to 76.5% in OLR of 24.2 g COD/l.d. Also with increasing in organic loading rate the contribution of aerobic reactor in removing COD gradually decreased. In this system, the anaerobic reactor played the most important role in the removal of COD, and the aerobic MBBR was actually needed to polish the anaerobic treated wastewater. PMID:26056640
Statistical Exposé of a Multiple-Compartment Anaerobic Reactor Treating Domestic Wastewater.
Pfluger, Andrew R; Hahn, Martha J; Hering, Amanda S; Munakata-Marr, Junko; Figueroa, Linda
2018-06-01
Mainstream anaerobic treatment of domestic wastewater is a promising energy-generating treatment strategy; however, such reactors operated in colder regions are not well characterized. Performance data from a pilot-scale, multiple-compartment anaerobic reactor taken over 786 days were subjected to comprehensive statistical analyses. Results suggest that chemical oxygen demand (COD) was a poor proxy for organics in anaerobic systems as oxygen demand from dissolved inorganic material, dissolved methane, and colloidal material influence dissolved and particulate COD measurements. Additionally, univariate and functional boxplots were useful in visualizing variability in contaminant concentrations and identifying statistical outliers. Further, significantly different dissolved organic removal and methane production was observed between operational years, suggesting that anaerobic reactor systems may not achieve steady-state performance within one year. Last, modeling multiple-compartment reactor systems will require data collected over at least two years to capture seasonal variations of the major anaerobic microbial functions occurring within each reactor compartment.
Biopower generation from kitchen wastewater using a bioreactor.
Khan, Abdul M; Naz, Shamsa
2014-01-01
This research provides a comparative study of the power output from mediator-less and mediator microbial fuel cells (MFCs) under aerobic and partially anaerobic conditions using kitchen wastewater (KWW) as a renewable energy source. The wastewater sample was subjected to different physical, chemical, biochemical, and microbial analysis. The chemical oxygen demand (COD), biochemical oxygen demand (BOD), and power output values were greater for the fermented samples than the non-fermented samples. The power output of samples was compared through the development of MFCs by using sand-salt bridge and agar-salt bridge. The H2 that was produced was converted to atomic hydrogen by using the nickel-coated zinc electrode. In addition, the power output was further enhanced by introducing air into the cathodic chamber, where oxygen reacts with the protons to form pure H2O. The study showed that the power output was increased with the increase in COD and BOD values.
Biodegradation of Sewage Wastewater Using Autochthonous Bacteria
Dhall, Purnima; Kumar, Rita; Kumar, Anil
2012-01-01
The performance of isolated designed consortia comprising Bacillus pumilus, Brevibacterium sp, and Pseudomonas aeruginosa for the treatment of sewage wastewater in terms of reduction in COD (chemical oxygen demand), BOD (biochemical oxygen demand) MLSS (mixed liquor suspended solids), and TSS (total suspended solids) was studied. Different parameters were optimized (inoculum size, agitation, and temperature) to achieve effective results in less period of time. The results obtained indicated that consortium in the ratio of 1 : 2 (effluent : biomass) at 200 rpm, 35°C is capable of effectively reducing the pollutional load of the sewage wastewaters, in terms of COD, BOD, TSS, and MLSS within the desired discharge limits, that is, 32 mg/L, 8 mg/L, 162 mg/L, and 190 mg/L. The use of such specific consortia can overcome the inefficiencies of the conventional biological treatment facilities currently operational in sewage treatment plants. PMID:22272181
Management of wastewater from the vegetable dehydration industry in Egypt--a case study.
El-Gohary, Fatma; El-Kamah, Hala; Abdel Wahaab, Rifaat; Mahmoud, Mohamed; Ibrahim, Hamdy A
2012-01-01
Management of wastewater from the vegetable dehydration industry was the subject of this study. A continuous monitoring programme for wastewater was carried out for almost four months. The characterization of the wastewater indicated that the vegetable dehydration wastewater contains moderate concentrations of organics, solids and nutrients. The wastewater was subjected to three different treatment processes, namely aerobic treatment, anaerobic treatment and chemical coagulation-flocculation treatment. For aerobic treatment, the removal of chemical oxygen demand (COD), biochemical oxygen demand (BOD5) and total suspended solids (TSS) was accomplished within 5 h, and no further reduction was observed after that, with the steady state COD and BOD5 removal efficiencies being 95% +/- 10% and 97% +/- 8%, respectively. For anaerobic treatment, the removal efficiencies for COD, BOD5 and TSS were 67-81%, 70-86% and 56-69%, respectively at hydraulic retention times (HRTs) of 5, 6 and 8 h. Chemical coagulation-flocculation treatment also achieved good results. The COD removal efficiency was 72%, 51% and 75% for ferric chloride (56 g/m3 of wastewater), lime (140 g/m3 of wastewater) and ferric chloride aided with lime (100 g/m3 for ferric chloride and 200 g/m3 for lime), respectively. The corresponding TSS removal values were 92% +/- 17%, 20% +/- 7% and 93% +/- 9%. Based on the available results and the seasonally operated mode of this industry in Egypt, the chemical coagulation-flocculation process is therefore considered to be moste applicable from a technical point of view and for the simplicity of operation and maintenance.
Performance of combined persulfate/aluminum sulfate for landfill leachate treatment.
Abu Amr, Salem S; Alkarkhi, Abbas F M; Alslaibi, Tamer M; Abujazar, Mohammed Shadi S
2018-08-01
Although landfilling is still the most suitable method for solid waste disposal, generation of large quantity of leachate is still considered as one of the main environmental problem. Efficient treatment of leachate is required prior to final discharge. Persulfate (S 2 O 8 2- ) recently used for leachate oxidation, the oxidation potential of persulfate can be improved by activate and initiate sulfate radical. The current data aimed to evaluate the performance of utilizing Al 2 SO4 reagent for activation of persulfate to treat landfill leachate. The data on chemical oxygen demand (COD), color, and NH 3 -H removals at different setting of the persulfate, Al 2 SO 4 dosages, pH, and reaction time were collected using a central composite design (CCD) were measured to identify the optimum operating conditions. A total of 30 experiments were performed, the optimum conditions for S 2 O 8 2- /Al 2 SO 4 oxidation process was obtained. Quadratic models for chemical oxygen demand (COD), color, and NH 3 -H removals were significant with p-value < 0.0001. The experimental results were in agreement with the optimum results for COD and NH 3 -N removal rates to be 67%, 81%, and 48%, respectively). The results obtained in leachate treatment were compared with those from other treatment processes, such as S 2 O 8 2- only and Al 2 SO 4 only, to evaluate its effectiveness. The combined method (i.e., /S 2 O 8 2- /Al 2 SO 4 ) showed higher removal efficiency for COD, color, and NH 3 -N compared with other studied applications.
Robust interval-based regulation for anaerobic digestion processes.
Alcaraz-González, V; Harmand, J; Rapaport, A; Steyer, J P; González-Alvarez, V; Pelayo-Ortiz, C
2005-01-01
A robust regulation law is applied to the stabilization of a class of biochemical reactors exhibiting partially known highly nonlinear dynamic behavior. An uncertain environment with the presence of unknown inputs is considered. Based on some structural and operational conditions, this regulation law is shown to exponentially stabilize the aforementioned bioreactors around a desired set-point. This approach is experimentally applied and validated on a pilot-scale (1 m3) anaerobic digestion process for the treatment of raw industrial wine distillery wastewater where the objective is the regulation of the chemical oxygen demand (COD) by using the dilution rate as the manipulated variable. Despite large disturbances on the input COD and state and parametric uncertainties, this regulation law gave excellent performances leading the output COD towards its set-point and keeping it inside a pre-specified interval.
Aravind, Priyadharshini; Subramanyan, Vasudevan; Ferro, Sergio; Gopalakrishnan, Rajagopal
2016-04-15
The present article reports an integrated treatment method viz biodegradation followed by photo-assisted electrooxidation, as a new approach, for the abatement of textile wastewater. In the first stage of the integrated treatment scheme, the chemical oxygen demand (COD) of the real textile effluent was reduced by a biodegradation process using hydrogels of cellulose-degrading Bacillus cereus. The bio-treated effluent was then subjected to the second stage of the integrated scheme viz indirect electrooxidation (InDEO) as well as photo-assisted indirect electro oxidation (P-InDEO) process using Ti/IrO2-RuO2-TiO2 and Ti as electrodes and applying a current density of 20 mA cm(-2). The influence of cellulose in InDEO has been reported here, for the first time. UV-Visible light of 280-800 nm has been irradiated toward the anode/electrolyte interface in P-InDEO. The effectiveness of this combined treatment process in textile effluent degradation has been probed by chemical oxygen demand (COD) measurements and (1)H - nuclear magnetic resonance spectroscopy (NMR). The obtained results indicate that the biological treatment allows obtaining a 93% of cellulose degradation and 47% of COD removal, increasing the efficiency of the subsequent InDEO by a 33%. In silico molecular docking analysis ascertained that cellulose fibers affect the InDEO process by interacting with the dyes that are responsible of the COD. On the other hand, P-InDEO resulted in both 95% of decolorization and 68% of COD removal, as a result of radical mediators. Free radicals generated during P-InDEO were characterized as oxychloride (OCl) by electron paramagnetic resonance spectroscopy (EPR). This form of coupled approach is especially suggested for the treatment of textile wastewater containing cellulose. Copyright © 2016 Elsevier Ltd. All rights reserved.
Barlow, Samantha L.; Metcalfe, Julian; Righton, David A.
2017-01-01
ABSTRACT Atlantic cod are a commercially important species believed to be threatened by warming seas near their southern, equatorward upper thermal edge of distribution. Limitations to circulatory O2 transport, in particular cardiac output, and the geographic distribution of functionally different haemoglobin (Hb) genotypes have separately been suggested to play a role in setting thermal tolerance in this species. The present study assessed the thermal sensitivity of O2 binding in Atlantic cod red blood cells with different Hb genotypes near their upper thermal distribution limit and modelled its consequences for the arterio-venous O2 saturation difference, Sa–vO2, another major determinant of circulatory O2 supply rate. The results showed statistically indistinguishable red blood cell O2 binding between the three HbI genotypes in wild-caught Atlantic cod from the Irish Sea (53° N). Red blood cells had an unusually low O2 affinity, with reduced or even reversed thermal sensitivity between pH 7.4 and 7.9, and 5.0 and 20.0°C. This was paired with strongly pH-dependent affinity and cooperativity of red blood cell O2 binding (Bohr and Root effects). Modelling of Sa–vO2 at physiological pH, temperature and O2 partial pressures revealed a substantial capacity for increases in Sa–vO2 to meet rising tissue O2 demands at 5.0 and 12.5°C, but not at 20°C. Furthermore, there was no evidence for an increase of maximal Sa–vO2 with temperature. It is suggested that Atlantic cod at such high temperatures may solely depend on increases in cardiac output and blood O2 capacity, or thermal acclimatisation of metabolic rate, for matching circulatory O2 supply to tissue demand. PMID:28148818
Barlow, Samantha L; Metcalfe, Julian; Righton, David A; Berenbrink, Michael
2017-02-01
Atlantic cod are a commercially important species believed to be threatened by warming seas near their southern, equatorward upper thermal edge of distribution. Limitations to circulatory O 2 transport, in particular cardiac output, and the geographic distribution of functionally different haemoglobin (Hb) genotypes have separately been suggested to play a role in setting thermal tolerance in this species. The present study assessed the thermal sensitivity of O 2 binding in Atlantic cod red blood cells with different Hb genotypes near their upper thermal distribution limit and modelled its consequences for the arterio-venous O 2 saturation difference, Sa-v O 2 , another major determinant of circulatory O 2 supply rate. The results showed statistically indistinguishable red blood cell O 2 binding between the three HbI genotypes in wild-caught Atlantic cod from the Irish Sea (53° N). Red blood cells had an unusually low O 2 affinity, with reduced or even reversed thermal sensitivity between pH 7.4 and 7.9, and 5.0 and 20.0°C. This was paired with strongly pH-dependent affinity and cooperativity of red blood cell O 2 binding (Bohr and Root effects). Modelling of Sa-v O 2 at physiological pH, temperature and O 2 partial pressures revealed a substantial capacity for increases in Sa-v O 2 to meet rising tissue O 2 demands at 5.0 and 12.5°C, but not at 20°C. Furthermore, there was no evidence for an increase of maximal Sa-v O 2 with temperature. It is suggested that Atlantic cod at such high temperatures may solely depend on increases in cardiac output and blood O 2 capacity, or thermal acclimatisation of metabolic rate, for matching circulatory O 2 supply to tissue demand. © 2017. Published by The Company of Biologists Ltd.
Evaluation of organic matter concentration in winery wastewater: a case study from Australia.
Quayle, Wendy C; Fattore, Alison; Zandona, Roy; Christen, Evan W; Arienzo, Michele
2009-01-01
The 5-day biological oxygen demand (BOD(5)) remains a key indicator for proof of compliance with environmental regulators in the monitoring and management of winery effluent. Inter-conversion factors from alternative tests that are more rapid, accurate and simpler to perform have been determined that allow prediction of BOD(5) in winery wastewaters, generally, and at different stages of production and treatment. Mean values obtained from this dataset offer rule of thumb inter-conversion factors: BOD(5) = 0.7 Chemical Oxygen Demand (COD), BOD(5) = 2.3 Total Organic Carbon (TOC) and BOD(5) = 2.7 Dissolved Organic Carbon (DOC). Specific predictive linear relationships are also provided. Out of the relationships between BOD(5) vs COD, TOC and DOC, in winery wastewater, irrespective of vintage or non-vintage production periods and stage of treatment, TOC offered the most reliable prediction of BOD(5). Ethanol, glucose and fructose were evaluated in untreated wastewater as predictors of BOD(5) due to their high specificity in winery effluent. A significant relationship was determined between BOD(5) and (ethanol + glucose + fructose; R(2) = 0.64, n = 19; p<0.05), but relationships between BOD(5) and ethanol and BOD(5) vs (glucose + fructose) were weak (R(2) = 0.45 and 0.34; n = 19; p<0.05 respectively,). There was a very strong linear correlation (y = 0.9767x + 52.8; R(2) = 0.97; n = 23; p<0.05) in COD data in winery effluents when using a commercially available mercury free test kit compared with using a traditional COD test kit that contained mercury. This suggests that mercury free COD test kits could be used by the wine industry for organic pollution assessment with associated reductions to user and environmental risk, as well as reducing the costs of kit waste disposal.
Saidi, Assia; Masmoudi, Khaoula; Nolde, Erwin; El Amrani, Btissam; Amraoui, Fouad
2017-12-01
Greywater is an important non-conventional water resource which can be treated and recycled in buildings. A decentralized greywater recycling system for 223 inhabitants started operating in 2006 in Berlin, Germany. High load greywater undergoes advanced treatment in a multistage moving bed biofilm reactor (MBBR) followed by sand filtration and UV disinfection. The treated water is used safely as service water for toilet flushing. Monitoring of the organic matter degradation was pursued to describe the degradation processes in each stage and optimize the system. Results showed that organic matter reduction was achieved for the most part in the first three reactors, whereas the highest reduction rate was observed in the third reactor in terms of COD (chemical oxygen demand), dissolved organic carbon and BOD 7 (biological oxygen demand). The results also showed that the average loading rate entering the system was 3.7 kg COD/d, while the removal rate was 3.4 kg COD/d in a total bioreactor volume of 11.7 m³. In terms of BOD, the loading rate was 2.8 kg BOD/d and it was almost totally removed. This system requires little space (0.15 m²/person) and maintenance work of less than one hour per month and it shows operational stability under peak loads.
Ozonation performance of WWTP secondary effluent of antibiotic manufacturing wastewater.
Zheng, Shaokui; Cui, Cancan; Liang, Qianjin; Xia, Xinghui; Yang, Fan
2010-11-01
The ozonation performance of wastewater treatment plant secondary effluent of oxytetracycline (OTC) manufacturing wastewater was investigated in terms of ozone dosage and initial pH levels when OTC contributed to a negligible fraction in the chemical oxygen demand (COD) ingredients of the medium-organic-strength wastewater with low biodegradability. A particular emphasis was placed on ammonia, OTC, and residual antibacterial activity (RAA) (evaluated using the objective pathogenic bacterium Staphylococcus aureus). It appears that an ozone dosage of 657 mg L⁻¹ (120 min of reaction) was enough to achieve an OTC abatement of 96%, and COD and biochemical oxygen demand removals of 29% and 33%, respectively, at initial levels of 10.4, 1360, and 300 mg L⁻¹ , respectively. There is a clear correlation between complete OTC depletion and complete RAA disappearance with an increase of ozone dosage. The presence of plentiful non-antibiotic refractory substances influenced the determination of the optimum ozone dosage for biodegradability enhancement and OTC/RAA reduction as well as the ozonation transformation of NH(3). The initial pH adjustment from the original level (pH 9) to pH 11 significantly reduced COD removal while RAA and NH(3) levels were not significantly influenced. Copyright © 2010 Elsevier Ltd. All rights reserved.
Nayl, Abd ElAziz A; Elkhashab, Reda A; El Malah, Tamer; Yakout, Sobhy M; El-Khateeb, Mohamed A; Ali, Mahmoud M S; Ali, Hazim M
2017-10-01
In this work, the adsorption of chemical oxygen demand (COD) and biological oxygen demand (BOD) from treated sewage with low-cost activated carbon prepared from date palm shell waste by chemical activation method was studied. Different parameters affecting the adsorption process such as carbon dose, pH, contact time, agitation rate, and temperature were studied. Adsorption equilibrium was attained after 150 min at pH 6.0 with agitation rate of 400 rpm at 25 °C. The results showed that COD removal percentage of 95.4 and 92.8% for BOD was obtained with carbon dosage of 0.1 g/100 ml of solution. The experimental batch equilibrium results follow linear, Langmuir, and Freundlich isotherm models. The experimental data was fitted to a pseudo-second-order kinetics model controlled by pore diffusion. Thermodynamic parameter values of ΔH 0 , ΔG 0 , and ΔS 0 were calculated. The obtained data indicated that the adsorption was spontaneous, endothermic nature and reflects an increased randomness and degree of disorderliness at the activated carbon/sewage interface during the adsorption process investigated in this study. Concentrations of different impurities were reduced to very small value by investigated adsorption process.
Non-thermal plasma for air and water remediation.
Hashim, Siti Aiasah; Samsudin, Farah Nadia Dayana Binti; Wong, Chiow San; Abu Bakar, Khomsaton; Yap, Seong Ling; Mohd Zin, Mohd Faiz
2016-09-01
A modular typed dielectric barrier discharge (DBD) device is designed and tested for air and water remediation. The module is made of a number of DBD tubes that can be arranged in series or parallel. Each of the DBD tubes comprises inner electrode enclosed with dielectric barrier and arranged as such to provide a gap for the passage of gases. Non-thermal plasma generated in the gap effectively creates gaseous chemical reactions. Its efficacy in the remediation of gas stream containing high NOx, similar to diesel emission and wastewater containing latex, are presented. A six tubes DBD module has successfully removed more than 80% of nitric oxide from the gas stream. In another arrangement, oxygen was fed into a two tubes DBD to generate ozone for treatment of wastewater. Samples of wastewater were collected from a treatment pond of a rubber vulcanization pilot plant. The water pollution load was evaluated by the chemical oxygen demand (COD) and biological oxygen demand (BOD5) values. Preliminary results showed some improvement (about 13%) on the COD after treatment and at the same time had increased the BOD5 by 42%. This results in higher BOD5/COD ratio after ozonation which indicate better biodegradability of the wastewater. Copyright © 2016 Elsevier Inc. All rights reserved.
Pipolo, Marco; Martins, Rui C; Quinta-Ferreira, Rosa M; Costa, Raquel
2017-03-01
The discharge of poorly decontaminated winery wastewater remains a serious environmental problem in many regions, and the industry is welcoming improved treatment methods. Here, an innovative decontamination approach integrating Fenton's process with biofiltration by Asian clams is proposed. The potential of this approach was assessed at the pilot scale using real effluent and by taking an actual industrial treatment system as a benchmark. Fenton peroxidation was observed to remove 84% of the effluent's chemical oxygen demand (COD), reducing it to 205 mg L. Subsequent biofiltration decreased the effluent's COD to approximately zero, well below the legal discharge limit of 150 mg L, in just 3 d. The reduction of the effluent's organic load through Fenton's process did not decrease its toxicity toward , but the effluent was much less harmful after biofiltration. The performance of the treatment proposed exceeded that of the integrated Fenton's process-sequencing batch reactor design implemented in the winery practice, where a residence time of around 10 d in the biological step typically results in 80 to 90% of COD removal. The method proposed is effective and compatible with typical winery budgets and potentially contributes to the management of a nuisance species. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Yao, Kangning; Chi, Yong; Wang, Fei; Yan, Jianhua; Ni, Mingjiang; Cen, Kefa
2016-01-01
A commonly used aeration device at present has the disadvantages of low mass transfer rate because the generated bubbles are several millimeters in diameter which are much bigger than microbubbles. Therefore, the effect of a microbubble on gas-liquid mass transfer and wastewater treatment process was investigated. To evaluate the effect of each bubble type, the volumetric mass transfer coefficients for microbubbles and conventional bubbles were determined. The volumetric mass transfer coefficient was 0.02905 s(-1) and 0.02191 s(-1) at a gas flow rate of 0.67 L min(-1) in tap water for microbubbles and conventional bubbles, respectively. The degradation rate of simulated municipal wastewater was also investigated, using aerobic activated sludge and ozone. Compared with the conventional bubble generator, the chemical oxygen demand (COD) removal rate was 2.04, 5.9, 3.26 times higher than those of the conventional bubble contactor at the same initial COD concentration of COD 200 mg L(-1), 400 mg L(-1), and 600 mg L(-1), while aerobic activated sludge was used. For the ozonation process, the rate of COD removal using microbubble generator was 2.38, 2.51, 2.89 times of those of the conventional bubble generator. Based on the results, the effect of initial COD concentration on the specific COD degradation rate were discussed in different systems. Thus, the results revealed that microbubbles could enhance mass transfer in wastewater treatment and be an effective method to improve the degradation of wastewater.
Prediction of biodegradability of aromatics in water using QSAR modeling.
Cvetnic, Matija; Juretic Perisic, Daria; Kovacic, Marin; Kusic, Hrvoje; Dermadi, Jasna; Horvat, Sanja; Bolanca, Tomislav; Marin, Vedrana; Karamanis, Panaghiotis; Loncaric Bozic, Ana
2017-05-01
The study was aimed at developing models for predicting the biodegradability of aromatic water pollutants. For that purpose, 36 single-benzene ring compounds, with different type, number and position of substituents, were used. The biodegradability was estimated according to the ratio of the biochemical (BOD 5 ) and chemical (COD) oxygen demand values determined for parent compounds ((BOD 5 /COD) 0 ), as well as for their reaction mixtures in half-life achieved by UV-C/H 2 O 2 process ((BOD 5 /COD) t1/2 ). The models correlating biodegradability and molecular structure characteristics of studied pollutants were derived using quantitative structure-activity relationship (QSAR) principles and tools. Upon derivation of the models and calibration on the training and subsequent testing on the test set, 3- and 5-variable models were selected as the most predictive for (BOD 5 /COD) 0 and (BOD 5 /COD) t1/2 , respectively, according to the values of statistical parameters R 2 and Q 2 . Hence, 3-variable model predicting (BOD 5 /COD) 0 possessed R 2 =0.863 and Q 2 =0.799 for training set, and R 2 =0.710 for test set, while 5-variable model predicting (BOD 5 /COD) 1/2 possessed R 2 =0.886 and Q 2 =0.788 for training set, and R 2 =0.564 for test set. The selected models are interpretable and transparent, reflecting key structural features that influence targeted biodegradability and can be correlated with the degradation mechanisms of studied compounds by UV-C/H 2 O 2 . Copyright © 2017 Elsevier Inc. All rights reserved.
Vyrides, Ioannis; Drakou, Efi-Maria; Ioannou, Stavros; Michael, Fotoula; Gatidou, Georgia; Stasinakis, Athanasios S
2018-07-01
The bilge water that is stored at the bottom of the ships is saline and greasy wastewater with a high Chemical Oxygen Demand (COD) fluctuations (2-12 g COD L -1 ). The aim of this study was to examine at a laboratory scale the biodegradation of bilge water using first anaerobic granular sludge followed by aerobic microbial consortium (consisted of 5 strains) and vice versa and then based on this to implement a pilot scale study. Batch results showed that granular sludge and aerobic consortium can remove up to 28% of COD in 13 days and 65% of COD removal in 4 days, respectively. The post treatment of anaerobic and aerobic effluent with aerobic consortium and granular sludge resulted in further 35% and 5% COD removal, respectively. The addition of glycine betaine or nitrates to the aerobic consortium did not enhance significantly its ability to remove COD from bilge water. The aerobic microbial consortium was inoculated in 3 pilot (200 L) Moving Bed Biofilm Reactors (MBBRs) under filling fractions of 10%, 20% and 40% and treated real bilge water for 165 days under 36 h HRT. The MBBR with a filling fraction of 40% resulted in the highest COD decrease (60%) compared to the operation of the MBBRs with a filling fraction of 10% and 20%. GC-MS analysis on 165 day pointed out the main organic compounds presence in the influent and in the MBBR (10% filling fraction) effluent. Copyright © 2018 Elsevier Ltd. All rights reserved.
Li, Xiaojin; Sun, Shan; Yuan, Heyang; Badgley, Brian D; He, Zhen
2017-11-15
Mainstream nitritation-anammox is of strong interest to energy- and resource-efficient domestic wastewater treatment. However, there lack in-depth studies of pretreatment, tests of actual wastewater, and examination of long-term performance. Herein, an upflow nitritation-anammox granular reactor has been investigated to treat primary effluent with a hybrid anaerobic reactor (HAR) as pretreatment for more than 300 days. This system achieved 92% of COD removal, 75% of which was accomplished by the HAR, and had an average final effluent COD concentration of 22 mg L -1 . More than 90% of ammonium was removed in the nitritation-anammox reactor, achieving a nitrogen removal rate of 81.0 g N m -3 d -1 in the last stage. The accumulation of sulfate-reducing bacteria in the HAR evidenced the effect of sulfate on COD removal and subsequent nitrogen removal. Anammox bacteria (predominantly Ca. Jettenia asiatica) accounted for up to 40.2% of total granular communities, but their abundance decreased over time in the suspended communities. The dynamics of major metabolisms and functional genes involved in nitrogen conversion were predicted by PICRUSt based on the taxonomic data, providing more insights into the functions of the microbial communities. These results have demonstrated the effectiveness and importance of anaerobic pretreatment to successful mainstream nitritation-anammox. Copyright © 2017 Elsevier Ltd. All rights reserved.
Identification of mineral compositions in some renal calculi by FT Raman and IR spectral analysis
NASA Astrophysics Data System (ADS)
Tonannavar, J.; Deshpande, Gouri; Yenagi, Jayashree; Patil, Siddanagouda B.; Patil, Nikhil A.; Mulimani, B. G.
2016-02-01
We present in this paper accurate and reliable Raman and IR spectral identification of mineral constituents in nine samples of renal calculi (kidney stones) removed from patients suffering from nephrolithiasis. The identified mineral components include Calcium Oxalate Monohydrate (COM, whewellite), Calcium Oxalate Dihydrate (COD, weddellite), Magnesium Ammonium Phosphate Hexahydrate (MAPH, struvite), Calcium Hydrogen Phosphate Dihydrate (CHPD, brushite), Pentacalcium Hydroxy Triphosphate (PCHT, hydroxyapatite) and Uric Acid (UA). The identification is based on a satisfactory assignment of all the observed IR and Raman bands (3500-400 cm- 1) to chemical functional groups of mineral components in the samples, aided by spectral analysis of pure materials of COM, MAPH, CHPD and UA. It is found that the eight samples are composed of COM as the common component, the other mineral species as common components are: MAPH in five samples, PCHT in three samples, COD in three samples, UA in three samples and CHPD in two samples. One sample is wholly composed of UA as a single component; this inference is supported by the good agreement between ab initio density functional theoretical spectra and experimental spectral measurements of both sample and pure material. A combined application of Raman and IR techniques has shown that, where the IR is ambiguous, the Raman analysis can differentiate COD from COM and PCHT from MAPH.
Identification of mineral compositions in some renal calculi by FT Raman and IR spectral analysis.
Tonannavar, J; Deshpande, Gouri; Yenagi, Jayashree; Patil, Siddanagouda B; Patil, Nikhil A; Mulimani, B G
2016-02-05
We present in this paper accurate and reliable Raman and IR spectral identification of mineral constituents in nine samples of renal calculi (kidney stones) removed from patients suffering from nephrolithiasis. The identified mineral components include Calcium Oxalate Monohydrate (COM, whewellite), Calcium Oxalate Dihydrate (COD, weddellite), Magnesium Ammonium Phosphate Hexahydrate (MAPH, struvite), Calcium Hydrogen Phosphate Dihydrate (CHPD, brushite), Pentacalcium Hydroxy Triphosphate (PCHT, hydroxyapatite) and Uric Acid (UA). The identification is based on a satisfactory assignment of all the observed IR and Raman bands (3500-400c m(-1)) to chemical functional groups of mineral components in the samples, aided by spectral analysis of pure materials of COM, MAPH, CHPD and UA. It is found that the eight samples are composed of COM as the common component, the other mineral species as common components are: MAPH in five samples, PCHT in three samples, COD in three samples, UA in three samples and CHPD in two samples. One sample is wholly composed of UA as a single component; this inference is supported by the good agreement between ab initio density functional theoretical spectra and experimental spectral measurements of both sample and pure material. A combined application of Raman and IR techniques has shown that, where the IR is ambiguous, the Raman analysis can differentiate COD from COM and PCHT from MAPH. Copyright © 2015 Elsevier B.V. All rights reserved.
Savoie, Jennifer G.; Smith, Richard L.; Kent, Douglas B.; Hess, Kathryn M.; LeBlanc, Denis R.; Barber, Larry B.
2006-01-01
A plume of contaminated ground water extends from former disposal beds at the Massachusetts Military Reservation wastewater-treatment plant toward Ashumet Pond, and farther southward toward coastal ponds and Vineyard Sound, Cape Cod, Massachusetts. Treated sewage-derived wastewater was discharged to the rapid-infiltration beds for nearly 60 years before the disposal site was moved to a different location in December 1995. Water-quality samples were collected periodically from monitoring wells and multilevel samplers during and after the disposal period to characterize the nature and extent of the contaminated ground water and to observe the water-quality changes after the wastewater disposal ceased. Data are presented here for water samples collected from 1994 through 2004 from 16 wells (at 2 locations) and 14 multilevel samplers (at 9 locations) along a longitudinal transect that extends through one of the disposal beds. Data collected from the treated-wastewater plume are presented in tabular format. These data include field parameters; concentrations of cations, anions, nitrate, ammonium, and organic and inorganic carbon species; and ultraviolet/visible absorbance. The natural restoration of the sand and gravel aquifer after removal of the nearly 60-year-long treated-wastewater source, along with interpretations of the water quality in the treated-wastewater plume on Cape Cod, have been documented in several published reports that are listed in the references.
Carbon and energy footprint of electrochemical vinegar wastewater treatment
NASA Astrophysics Data System (ADS)
Gerek, Emine Esra; Yilmaz, Seval; Savaş Koparal, A.; Nezih Gerek, Ömer
2017-11-01
Electrochemical treatment of wastewaters that are rich in organic compounds is a popular method, due to its acidic nature that avoids biological treatment. In many cases, the pollution hazard is considered as the chemical oxygen demand (COD) from active carbon, and the success of the treatment is measured in terms of how much this specific parameter is reduced. However, if electricity is used during the treatment process, the treatment "itself" has manufacturing and operational energy costs. Many of the studies consider energy utilization as a monetary cost, and try to reduce its amount. However, the energy cost of the treatment also causes emission of carbon at the energy producing side of the closed loop. This carbon emission can be converted into oxygen demand, too. Therefore, it can be argued that one must look for the total optimal carbon efficiency (or oxygen demand), while reducing the COD. We chose a highly acidic wastewater case of vinegar production, which is a popular food product in Turkey, to demonstrate the high energy consumption and carbon emission problem of the electrochemical treatment approach. A novel strategy is presented to monitor total oxygen demand simultaneously at the treatment and energy production sides. Necessity of renewable energy utilization and conditions on process termination points are discussed.
Zhang, Zhenchao
2017-12-01
In this study, a combined process was developed that included micro-electrolysis, Fenton oxidation and coagulation to treat oilfield fracturing wastewater. Micro-electrolysis and Fenton oxidation were applied to reduce chemical oxygen demand (COD) organic load and to enhance organic components gradability, respectively. Orthogonal experiment were employed to investigate the influence factors of micro-electrolysis and Fenton oxidation on COD removal efficiency. For micro-electrolysis, the optimum conditions were: pH, 3; iron-carbon dosage, 50 mg/L; mass ratio of iron-carbon, 2:3; reaction time, 60 min. For Fenton oxidation, a total reaction time of 90 min, a H 2 O 2 dosage of 12 mg/L, with a H 2 O 2 /Fe 2+ mole ratio of 30, pH of 3 were selected to achieve optimum oxidation. The optimum conditions in coagulation process: pH, cationic polyacrylamide dosage, mixing speed and time is 4.3, 2 mg/L, 150 rpm and 30 s, respectively. In the continuous treatment process under optimized conditions, the COD of oily wastewater fell 56.95%, 46.23%, 30.67%, respectively, from last stage and the total COD removal efficiency reached 83.94% (from 4,314 to 693 mg/L). In the overall treatment process under optimized conditions, the COD of oily wastewater was reduced from 4,314 to 637 mg/L, and the COD removal efficiency reached 85.23%. The contribution of each stage is 68.45% (micro-electrolysis), 24.07% (Fenton oxidation), 7.48% (coagulation), respectively. Micro-electrolysis is the uppermost influencing process on COD removal. Compared with the COD removal efficiency of three processes on raw wastewater under optimized conditions: the COD removal efficiency of single micro-electrolysis, single Fenton oxidation, single coagulation is 58.34%, 44.88% and 39.72%, respectively. Experiments proved the effect of combined process is marvelous and the overall water quality of the final effluent could meet the class III national wastewater discharge standard of petrochemical industry of China (GB8978-1996).
Fate of LCFA in the co-digestion of cow manure, food waste and discontinuous addition of oil.
Neves, L; Oliveira, R; Alves, M M
2009-12-01
Different concentrations of oily waste were added in a discontinuous mode and recurrently to anaerobic continuous stirred tank reactors fed with cow manure and food waste. Four continuous stirred tank reactors were run in parallel. A control reactor (R1) received no additional oil and R2, R3 and R4 received increasing concentrations of oil in two different experimental approaches. First, the lipids composition was forced to change suddenly, in three moments, without changing the total chemical oxygen demand (COD) fed to the reactors. The only long chain fatty acid (LCFA) detected onto the R1 solid matrix was palmitic acid (C16:0). Nevertheless in the solid matrix of R2, R3 and R4C16:0 and stearic acid were detected. For occasional increase in the oil concentration up to 7.7gCOD(oil)/L(reactor) (55% Oil(COD)/Total(COD)) no statistical differences were detected between the reactors, in terms of methane production, effluent soluble COD, effluent volatile fatty acids and total and volatile solids removal. Therefore this experiment allowed to conclude that cow manure-food waste co-digestion presents sufficient buffer capacity to endure solid-associated LCFA concentration up to 20-25gCOD-LCFA/kgTS. In a second experiment higher concentrations of oil were added, raising occasionally the concentration in the reactors to 9, 12, 15 and 18gCOD(oil)/L(reactor). All pulses had a positive effect in methane production, with the exception of the highest oil pulse concentration, that persistently impaired the reactor performance. This experiment demonstrates that threshold values for LCFA and C16:0 accumulation onto the solid matrix, of about 180-220gCOD-LCFA/kgTS and 120-150gCOD-C16:0/kgTS, should not be surpassed in order to prevent persistent reactor failure, as occurs in some full scale co-digestion plants.
Oloibiri, Violet; Chys, Michael; De Wandel, Stijn; Demeestere, Kristof; Van Hulle, Stijn W H
2017-12-01
Several scenarios are available to landfilling facilities to effectively treat leachate at the lowest possible cost. In this study, the performance of various leachate treatment sequences to remove COD and nitrogen from a leachate stream and the associated cost are presented. The results show that, to achieve 100% nitrogen removal, autotrophic nitrogen removal (ANR) or a combination of ANR and nitrification - denitrification (N-dN) is more cost effective than using only the N-dN process (0.58 €/m 3 ) without changing the leachate polishing costs associated with granular activated carbon (GAC). Treatment of N-dN effluent by ozonation or coagulation led to the reduction of the COD concentration by 10% and 59% respectively before GAC adsorption. This reduced GAC costs and subsequently reduced the overall treatment costs by 7% (ozonation) and 22% (coagulation). On the contrary, using Fenton oxidation to reduce the COD concentration of N-dN effluent by 63% increased the overall leachate treatment costs by 3%. Leachate treatment sequences employing ANR for nitrogen removal followed by ozonation or Fenton or coagulation for COD removal and final polishing with GAC are on average 33% cheaper than a sequence with N-dN + GAC only. When ANR is the preceding step and GAC the final step, choice of AOP i.e., ozonation or Fenton did not affect the total treatment costs which amounted to 1.43 (ozonation) and 1.42 €/m 3 (Fenton). In all the investigated leachate treatment trains, the sequence with ANR + coagulation + GAC is the most cost effective at 0.94 €/m 3 . Copyright © 2016 Elsevier Ltd. All rights reserved.
Frontistis, Zacharias; Antonopoulou, Maria; Venieri, Danae; Konstantinou, Ioannis; Mantzavinos, Dionissios
2017-06-15
The electrochemical oxidation of a commercial amoxicillin formulation over a boron-doped diamond (BDD) anode was investigated. The effect of initial COD concentration (1-2 g/L), current density (30-50 mA/cm 2 ), treatment time (15-90 min), initial pH (3-9) and electrolyte concentration (2-4 g/L NaCl) on COD removal was assessed through a factorial design methodology. For the range of conditions in question, the first three single effects, as well as the interaction between COD and time were the most important ones in terms of mass of COD removed. Liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) was employed to identify major transformation by-products (TBPs); thirteen compounds were detected as TBPs of AMX electrochemical degradation, while several others appear in the original formulation. AMX degradation occurs though the following pathways: (i) hydroxylation mainly in the benzoic ring, (ii) opening of β-lactam ring followed by decarboxylation, hydroxylation and re-arrangement, and (iii) bond cleavage between the carbons of amino and amide groups. Furthermore, the process is accompanied by the release of several ions, i.e. nitrate, sulfate and ammonium. The antibiotic activity of AMX up to 1000 mg/L was tested against Klebsiella pneumoniae and Enterococcus faecalis reference strains; both bacteria are completely inactivated at this concentration but the activity is reduced substantially at lower concentrations. Oxidized samples still exhibit some antibacterial activity (50-60%) which is due to TBPs and active chlorine species present in the liquid phase. The latter are generated from chloride ions and enhance considerably AMX degradation rates. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sumpono; Perotti, P; Belan, A; Forestier, C; Lavedrine, B; Bohatier, J
2003-01-01
Six laboratory-scale wastewater treatment ponds were filled with sediment and water obtained from a reference pond (a wastewater treatment plant located in a rural environment at Montel-de-Gelat, Puy-de-Dôme, France). They were kept at 20 degrees C, with alternative light and dark periods (12 h-12 h), and fed with raw effluent supplied weekly. Three of them were treated with Diuron (dissolved in DMSO) at a final concentration 10 mg/l, while the other three received only DMSO. Physico-chemical parameters, total bacteria, cultivable bacteria, and Aeromonas spp. were measured periodically until 41 days after the Diuron contamination. Total bacteria were treated with 4,6-diamidino 2-phenylindole (DAPI) and counted by epifluoroscence microscopy. The cultivable bacteria were quantified on plate count agar medium and Aeromonas spp. using colony hybridization. In the contaminated pilots, biochemical oxygen demand (BOD5), chemical oxygen demand (COD), suspended solids (SS), volatile suspended solids (VSS), ammonium, phosphorus, and bacteria increased, but dissolved oxygen decreased. The abundance of total bacteria, cultivable bacteria (multiplied by 30), and Aeromonas spp. increased for two weeks after Diuron introduction, reverting to initial values three weeks later. The percentage of cultivable bacteria relative to total bacteria was 0.2% in controls and 1.2% in treated pilots, while the percentage of Aeromonas spp. relative to cultivable bacteria decreased from 6-10% to 2%. Our results suggest that Diuron, which acts on the photosystem II of phototrophs, supports the development of cultivable bacteria through new carbon sources derived from the decomposition of photosynthetic micro-organisms, but does not specifically support Aeromonas spp.
Zhang, Dong-Qing; Jinadasa, K B S N; Gersberg, Richard M; Liu, Yu; Tan, Soon Keat; Ng, Wun Jern
2015-04-01
Constructed wetlands (CWs) have been successfully used for treating various wastewaters for decades and have been identified as a sustainable wastewater management option for developing countries. With the goal of promoting sustainable engineered systems that support human well-being but are also compatible with sustaining natural (environmental) systems, the application of CWs has become more relevant. Such application is especially significant for developing countries with tropical climates, which are very conducive to higher biological activity and productivity, resulting in higher treatment efficiencies compared to those in temperate climates. This paper therefore highlights the practice, applications, and research of treatment wetlands under tropical and subtropical conditions since 2000. In the present review, removal of biochemical oxygen demand (BOD) and total suspended solid (TSS) was shown to be very efficient and consistent across all types of treatment wetlands. Hybrid systems appeared more efficient in the removal of total suspended solid (TSS) (91.3%), chemical oxygen demand (COD) (84.3%), and nitrogen (i.e., 80.7% for ammonium (NH)4-N, 80.8% for nitrate (NO)3-N, and 75.4% for total nitrogen (TN)) as compared to other wetland systems. Vertical subsurface flow (VSSF) CWs removed TSS (84.9%), BOD (87.6%), and nitrogen (i.e., 66.2% for NH4-N, 73.3% for NO3-N, and 53.3% for TN) more efficiently than horizontal subsurface flow (HSSF) CWs, while HSSF CWs (69.8%) showed better total phosphorus (TP) removal compared to VSSF CWs (60.1%). Floating treatment wetlands (FTWs) showed comparable removal efficiencies for BOD (70.7%), NH4-N (63.6%), and TP (44.8%) to free water surface (FWS) CW systems. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Chairunnisak, A.; Arifin, B.; Sofyan, H.; Lubis, M. R.; Darmadi
2018-03-01
This research focuses on the Chemical Oxygen Demand (COD) treatment in palm oil mill effluent by electrocoagulation and electro-Fenton methods to solve it. Initially, the aqueous solution precipitates in acid condition at pH of about two. This study focuses on the palm oil mill effluent degradation by Fe electrodes in a simple batch reactor. This work is conducted by using different parameters such as voltage, electrolyte concentration of NaCl, volume of H2O2 and operation time. The processing of data resulted is by using response surface method coupled with Box-Behnken design. The electrocoagulation method results in the optimum COD reduction of 94.53% from operating time of 39.28 minutes, 20 volts, and without electrolyte concentration. For electro-Fenton process, experiment points out that voltage 15.78 volts, electrolyte concentration 0.06 M and H2O2 volume 14.79 ml with time 35.92 minutes yield 99.56% degradation. The result concluded that the electro-Fenton process was more effective to degrade COD of the palm-oil-mill effluent compared to electrocoagulation process.
Sponza, Delia Teresa; Çelebi, Hakan
2012-01-01
An anaerobic multichamber bed reactor (AMCBR) was effective in removing both molasses-chemical oxygen demand (COD), and the antibiotic oxytetracycline (OTC). The maximum COD and OTC removals were 99% in sequential AMCBR/completely stirred tank reactor (CSTR) at an OTC concentration of 300 mg L(-1). 51%, 29% and 9% of the total volatile fatty acid (TVFA) was composed of acetic, propionic acid and butyric acids, respectively. The OTC loading rates at between 22.22 and 133.33 g OTC m(-3) d(-1) improved the hydrolysis of molasses-COD (k), the maximum specific utilization of molasses-COD (k(mh)) and the maximum specific utilization rate of TVFA (k(TVFA)). The direct effect of high OTC loadings (155.56 and -177.78 g OTC m(-3) d(-1)) on acidogens and methanogens were evaluated with Haldane inhibition kinetic. A significant decrease of the Haldane inhibition constant was indicative of increases in toxicity at increasing loading rates. Copyright © 2011 Elsevier Ltd. All rights reserved.
Advanced purification of petroleum refinery wastewater by catalytic vacuum distillation.
Yan, Long; Ma, Hongzhu; Wang, Bo; Mao, Wei; Chen, Yashao
2010-06-15
In our work, a new process, catalytic vacuum distillation (CVD) was utilized for purification of petroleum refinery wastewater that was characteristic of high chemical oxygen demand (COD) and salinity. Moreover, various common promoters, like FeCl(3), kaolin, H(2)SO(4) and NaOH were investigated to improve the purification efficiency of CVD. Here, the purification efficiency was estimated by COD testing, electrolytic conductivity, UV-vis spectrum, gas chromatography-mass spectrometry (GC-MS) and pH value. The results showed that NaOH promoted CVD displayed higher efficiency in purification of refinery wastewater than other systems, where the pellucid effluents with low salinity and high COD removal efficiency (99%) were obtained after treatment, and the corresponding pH values of effluents varied from 7 to 9. Furthermore, environment estimation was also tested and the results showed that the effluent had no influence on plant growth. Thus, based on satisfied removal efficiency of COD and salinity achieved simultaneously, NaOH promoted CVD process is an effective approach to purify petroleum refinery wastewater. Copyright 2010 Elsevier B.V. All rights reserved.
Veratric acid removal from water by electrochemical oxidation on BDD anode
NASA Astrophysics Data System (ADS)
Jum'h, Inshad; Abdelhay, Arwa; Telfah, Ahmad; Al-Akhras, M.-Ali; Al-Kazwini, Akeel; Rosiwal, Stefan
2018-02-01
The efficiency of boron doped diamond (BDD) in the electrochemical treatment of synthetically contaminated water with veratric acid (VA), one kind of polyphenolic type compounds, is investigated in this work. A BDD electrode was practically fabricated using hot filament chemical vapor deposition (HFCVD). Later on, the BDD electrode was implemented as an anode in a batch electrolytic reactor. The effect of operating factors such as the initial concentration of VA, NaCl addition, and supporting electrolyte type (H2SO4, H3PO4 and Na2SO4) was studied. The chemical oxygen demand (COD) measurements were conducted to study the VA electrolysis kinetics. The experimental data suggested that sodium sulfate was the best supporting electrolyte as the COD removal reached a percentage of 100% using 1 mmol/dm3 as VA concentration. The kinetics of the COD decay of the VA electrolysis were found to obey the pseudo-first order model. Remarkably, the electrolysis process is significantly speeded up once chloride is added to the reaction. The complete COD removal was achieved in 60 minutes of treatment.
Lauterböck, B; Nikolausz, M; Lv, Z; Baumgartner, M; Liebhard, G; Fuchs, W
2014-04-01
The effect of reduced ammonia levels on anaerobic digestion was investigated. Two reactors were fed with slaughterhouse waste, one with a hollow fiber membrane contractor for ammonia removal and one without. Different organic loading rates (OLR) and free ammonia and sulfide concentrations were investigated. In the reactor with the membrane contactor, the NH4-N concentration was reduced threefold. At a moderate OLR (3.1 kg chemical oxygen demand - COD/m(3)/d), this reactor performed significantly better than the reference reactor. At high OLR (4.2 kg COD/m(3)/d), the reference reactor almost stopped producing methane (0.01 Nl/gCOD). The membrane reactor also showed a stable process with a methane yield of 0.23 Nl/g COD was achieved. Both reactors had predominantly a hydrogenotrophic microbial consortium, however in the membrane reactor the genus Methanosaeta (acetoclastic) was also detected. In general, all relevant parameters and the methanogenic consortium indicated improved anaerobic digestion of the reactor with the membrane. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hata, Motohide; Amano, Yoshimasa; Thiravetyan, Paitip; Machida, Motoi
2016-01-01
Bamboo chars and bamboo activated carbons prepared by steam activation were applied for ink wastewater treatment. Bamboo char at 800 °C was the best for the removal of color and chemical oxygen demand (COD) from ink wastewater compared to bamboo chars at 300 to 700 °C due to higher surface area and mesopore volume. Bamboo activated carbon at 600 °C (S600) was the best compared to bamboo activated carbon at 800 °C (S800), although S800 had larger surface area (1108 m(2)/g) than S600 (734 m(2)/g). S600 had higher mesopore volume (0.20 cm(3)/g) than S800 (0.16 cm(3)/g) and therefore achieved higher color and COD removal. All bamboo activated carbons showed higher color and COD removal efficiency than commercial activated carbon. In addition, S600 had the superior adsorption capacity for methylene blue (0.89 mmol/g). Therefore, bamboo is a suitable material to prepare adsorbents for removal of organic pollutants.
Treatment of soil eluate containing nitro aromatic compounds by adsorption on activated coke (AC).
Zhang, Yiping; Jiang, Zhenming; Zhao, Quanlin; Zhang, Zhenzhong; Su, Hongping; Gao, Xuewen; Ye, Zhengfang
2016-01-01
Soil washing is a kind of physical method to remove organic matters from contaminated soil. However, its eluate after washing may result in secondary pollution to the environment. In this study, activated coke (AC) was used to remove organic pollutants from contaminated soil eluate. The effect of temperature, initial chemical oxygen demand (COD) and AC dosage on COD removal efficiency was investigated. The results showed that the organic matter can be removed in the eluate because the COD dropped a lot. When the AC dosage was 20 g·L(-1), 88.92% of COD decreased after 480 min of adsorption at 50 °C. The process of adsorption can be described by the Redlich-Peterson isotherm. The adsorption was spontaneous and endothermic. The pseudo-second-order model can be used to describe the adsorption process. After adsorption, the acute toxicity of the eluate was reduced by 76%, and the water qualities were in agreement with Chinese discharge standard GB 14470.1-2002, which means the eluate could be discharged to the environment.
Rodríguez, D C; Belmonte, M; Peñuela, G; Campos, J L; Vidal, G
2011-01-01
Pig slurry was treated in an upflow anaerobic sludge blanket (UASB) reactor. To maintain a stable operation, the organic loading rate (OLR) applied to the system was increased stepwise by decreasing the dilution ratio of the pig slurry. Finally, during the last operational stage, no dilution was applied to the influent. The reactor maintained a soluble chemical oxygen demand (CODs) removal efficiency of 82% when OLRs lower than 1.73 g CODs l(-1) d(-1) were applied, although its efficiency fell to 55% when operated at 2.48 g CODs l(-1) d(-1). System performance was not affected by the presence of free ammonia (concentrations up to 375 mg NH3 l(-1)). The distribution of the different molecular weight fractions changed significantly during anaerobic digestion. Proteins contained in the fractions higher than 10,000 Daltons are less degraded than those belonging to the lower fractions. An important percentage of both COD and BOD5 in the effluent were observed in the lowest fraction, probably caused by the presence of volatile fatty acids (VFA).
Baiju, Archa; Gandhimathi, R; Ramesh, S T; Nidheesh, P V
2018-03-15
Treatment of stabilized landfill leachate is a great challenge due to its poor biodegradability. Present study made an attempt to treat this wastewater by combining electro-Fenton (E-Fenton) and biological process. E-Fenton treatment was applied prior to biological process to enhance the biodegradability of leachate, which will be beneficial for the subsequent biological process. This study also investigates the efficiency of iron molybdophosphate (FeMoPO) nanoparticles as a heterogeneous catalyst in E-Fenton process. The effects of initial pH, catalyst dosage, applied voltage and electrode spacing on Chemical Oxygen Demand (COD) removal efficiency were analyzed to determine the optimum conditions. Heterogeneous E-Fenton process gave 82% COD removal at pH 2, catalyst dosage of 50 mg/L, voltage 5 V, electrode spacing 3 cm and electrode area 25 cm 2 . Combined E-Fenton and biological treatment resulted an overall COD removal of 97%, bringing down the final COD to 192 mg/L. Copyright © 2018 Elsevier Ltd. All rights reserved.
Treatment of winery wastewater by an anaerobic sequencing batch reactor.
Ruíz, C; Torrijos, M; Sousbie, P; Lebrato Martínez, J; Moletta, R; Delgenès, J P
2002-01-01
Treatment of winery wastewater was investigated using an anaerobic sequencing batch reactor (ASBR). Biogas production rate was monitored and permitted the automation of the bioreactor by a simple control system. The reactor was operated at an organic loading rate (ORL) around 8.6 gCOD/L.d with soluble chemical oxygen demand (COD) removal efficiency greater than 98%, hydraulic retention time (HRT) of 2.2 d and a specific organic loading rate (SOLR) of 0.96 gCOD/gVSS.d. The kinetics of COD and VFA removal were investigated for winery wastewater and for simple compounds such as ethanol, which is a major component of winery effluent, and acetate, which is the main volatile fatty acid (VFA) produced. The comparison of the profiles obtained with the 3 substrates shows that, overall, the acidification of the organic matter and the methanisation of the VFA follow zero order reactions, in the operating conditions of our study. The effect on the gas production rate resulted in two level periods separated by a sharp break when the acidification stage was finished and only the breaking down of the VFA continued.
Shemfe, Mobolaji; Gadkari, Siddharth; Yu, Eileen; Rasul, Shahid; Scott, Keith; Head, Ian M; Gu, Sai; Sadhukhan, Jhuma
2018-05-01
A novel framework, integrating dynamic simulation (DS), life cycle assessment (LCA) and techno-economic assessment (TEA) of a bioelectrochemical system (BES), has been developed to study for the first time wastewater treatment by removal of chemical oxygen demand (COD) by oxidation in anode and thereby harvesting electron and proton for carbon dioxide reduction reaction or reuse to produce products in cathode. Increases in initial COD and applied potential increase COD removal and production (in this case formic acid) rates. DS correlations are used in LCA and TEA for holistic performance analyses. The cost of production of HCOOH is €0.015-0.005 g -1 for its production rate of 0.094-0.26 kg yr -1 and a COD removal rate of 0.038-0.106 kg yr -1 . The life cycle (LC) benefits by avoiding fossil-based formic acid production (93%) and electricity for wastewater treatment (12%) outweigh LC costs of operation and assemblage of BES (-5%), giving a net 61MJkg -1 HCOOH saving. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Physicochemical treatments of anionic surfactants wastewater: Effect on aerobic biodegradability.
Aloui, Fathi; Kchaou, Sonia; Sayadi, Sami
2009-05-15
The effect of different physicochemical treatments on the aerobic biodegradability of an industrial wastewater resulting from a cosmetic industry has been investigated. This industrial wastewater contains 11423 and 3148mgL(-1) of chemical oxygen demand (COD) and anionic surfactants, respectively. The concentration of COD and anionic surfactants were followed throughout the diverse physicochemical treatments and biodegradation experiments. Different pretreatments of this industrial wastewater using chemical flocculation process with lime and aluminium sulphate (alum), and also advanced oxidation process (electro-coagulation (Fe and Al) and electro-Fenton) led to important COD and anionic surfactants removals. The best results were obtained using electro-Fenton process, exceeding 98 and 80% of anionic surfactants and COD removals, respectively. The biological treatment by an isolated strain Citrobacter braakii of the surfactant wastewater, as well as the pretreated wastewater by the various physicochemical processes used in this study showed that the best results were obtained with electro-Fenton pretreated wastewater. The characterization of the treated surfactant wastewater by the integrated process (electro-coagulation or electro-Fenton)-biological showed that it respects Tunisian discharge standards.
Assessment and management of the performance risk of a pilot reclaimed water disinfection process.
Zhou, Guangyu; Zhao, Xinhua; Zhang, Lei; Wu, Qing
2013-10-01
Chlorination disinfection has been widely used in reclaimed water treatment plants to ensure water quality. In order to assess the downstream quality risk of a running reclaimed water disinfection process, a set of dynamic equations was developed to simulate reactions in the disinfection process concerning variables of bacteria, chemical oxygen demand (COD), ammonia and monochloramine. The model was calibrated by the observations obtained from a pilot disinfection process which was designed to simulate the actual process in a reclaimed water treatment plant. A Monte Carlo algorithm was applied to calculate the predictive effluent quality distributions that were used in the established hierarchical assessment system for the downstream quality risk, and the key factors affecting the downstream quality risk were defined using the Regional Sensitivity Analysis method. The results showed that the seasonal upstream quality variation caused considerable downstream quality risk; the effluent ammonia was significantly influenced by its upstream concentration; the upstream COD was a key factor determining the process effluent risk of bacterial, COD and residual disinfectant indexes; and lower COD and ammonia concentrations in the influent would mean better downstream quality.
Birjandi, Noushin; Younesi, Habibollah; Bahramifar, Nader; Ghafari, Shahin; Zinatizadeh, Ali Akbar; Sethupathi, Sumathi
2013-01-01
The application of coagulation-flocculation (CF) process for treating the paper-recycling wastewater in jar-test experiment was employed. The purpose of the study was aimed to examine the efficiency of alum and poly aluminum chloride (PACl) in combination with a cationic polyacrylamide (C-PAM) in removal of chemical oxygen demand (COD) and turbidity from paper-recycling wastewater. Optimization of CF process were performed by varying independent parameters (coagulants dosage, flocculants dosage, initial COD and pH) using a central composite design (CCD) under response surface methodology (RSM). Maximum set required 4.5 as pH, 40 mg/L coagulants dosage and 4.5 mg/L flocculants dosage at which gave 92% reduction of turbidity, 97% of COD removal and SVI 80 mL/g. The best coagulant and flocculants were alum and chemfloc 3876 at dose of 41 and 7.52 mg/L, respectively, correspondingly at pH of 6.85. These conditions gave 91.30% COD and 95.82% turbidity removals and 12 mL/g SVI.
Shan, Lili; Zhang, Zhaohan; Yu, Yanling; Ambuchi, John Justo; Feng, Yujie
2017-06-01
Performance and microbial community composition were evaluated in a two-phase anaerobic and aerobic system treating sulfate-rich cellulosic ethanol wastewater (CEW). The system was operated at five different chemical oxygen demand (COD)/SO 4 2- ratios (63.8, 26.3, 17.8, 13.7, and 10.7). Stable performance was obtained for total COD removal efficiency (94.5%), sulfate removal (89.3%), and methane production rate (11.5 L/day) at an organic loading rate of 32.4 kg COD/(m 3 ·day). The acidogenic reactor made a positive contribution to net VFAs production (2318.1 mg/L) and sulfate removal (60.9%). Acidogenic bacteria (Megasphaera, Parabacteroides, unclassified Ruminococcaceae spp., and Prevotella) and sulfate-reducing bacteria (Butyrivibrio, Megasphaera) were rich in the acidogenic reactor. In the methanogenic reactor, high diversity of microorganisms corresponded with a COD removal contribution of 83.2%. Moreover, methanogens (Methanosaeta) were predominant, suggesting that these organisms played an important role in the acetotrophic methanogenesis pathway. The dominant aerobic bacteria (Truepera) appeared to have been responsible for the COD removal of the SBR. These results indicate that dividing the sulfate reduction process could effectively minimize sulfide toxicity, which is important for the successful operation of system treating sulfate-rich CEW.
Siciliano, Alessio; De Rosa, Salvatore
2016-08-01
In this study, the performance of a lab-scale Moving Bed Biofilm Reactor (MBBR) under different operating conditions was analysed. Moreover, the dependence of the reaction rates both from the concentration and biodegradability of substrates and from the biofilm surface density, by means of several batch kinetic tests, was investigated. The reactor controls exhibited an increasing COD (Chemical Oxygen Demand) removal, reaching maximum yields (close to 90%) for influent loadings of up to12.5 gCOD/m(2)d. From this value, the pilot plant performance decreased to yields of only about 55% for influent loadings greater than 16 gCOD/m(2)d. In response to the influent loading increase, the biofilm surface density exhibited a logistic growing trend until reaching a maximum amount of total attached solids of about 9.5 g/m(2). The kinetic test results indicated that the COD removal rates for rapidly biodegradable, rapidly hydrolysable and slowly biodegradable substrates were not affected by the organic matter concentrations. Instead, first-order kinetics were detected with respect to biofilm surface density. The experimental results permitted the formulation of a mathematical model to predict the MBBR organic matter removal efficiency. The validity of the model was successfully tested in the lab-scale plant.
Güneş, Y
2013-01-01
The aim of this work was to study the inhibition effect of boric acid and sodium borate on the treatment of boron containing synthetic wastewater by a down flow aerobic fixed bed biofilm reactor at various chemical oxygen demand (COD)/boron ratios (0.47-20.54). The inhibitory effect of boron on activated sludge was evaluated on the basis of COD removal during the experimental period. The biofilter (effective volume = 2.5 L) was filled with a ring of plastic material inoculated with acclimated activated sludge. The synthetic wastewater composed of glucose, urea, KH2PO4, MgSO4, Fe2 SO4, ZnSO4 x 7H20, KCl, CaCl2, and di-sodium tetraborate decahydrate or boric acid (B = 100-2000 mg L(-1)). The biological treatment of boron containing wastewater resulted in a low treatment removal rate due to the reduced microbial activity as a result of toxic effects of high boron concentrations. The decrease in the COD removal rate by the presence of either boric acid or sodium borate was practically indistinguishable. It was observed from the experiments that about 90-95% of COD removal was possible at high COD/boron ratios.
Jarboui, Raja; Magdich, Salwa; Ayadi, Raja Jarboui; Gargouri, Ali; Gharsallah, Néji; Ammar, Emna
2013-01-01
The aim of this study was to investigate the Rhodotorula mucilaginosa CH4 and Aspergillus niger P6 abilities to purify olive mill wastewater (OMW) in single pure and mixed cultures during the treatment. Both fungi were molecularly identified. OMW was used at five dilutions from 5% to 30% with chemical oxygen demand (COD) ranging from 11,600 to 24,600 mg L(-1). Firstly, each fungus was used separately, then they were successively used to treat the OMW. In single pure culture, A. niger showed a better efficiency in OMW purification than R. mucilaginosa. Furthermore, when successively used, the two studied strains exhibited improvements in the decrease of COD, polyphenolic compounds concentration and effluent colour. COD removals were 95.68-56.71% by R. mucilaginosa and 98.02-69.51% by A. niger for OMW dilutions varying from 5% to 30%. Both strains showed an important polyphenolic compounds removal of 83-45% by R. mucilaginosa and 94-58% by A. niger, in accordance with the OMW COD initially used. The COD and phenolic compound removals fitted simple equation models, with high regression coefficients. The strains' growth kinetics decreased according to the OMW concentration, but, when successively used, fungal growth was improved, allowing efficient effluent treatment.
Muhamad, Mohd Hafizuddin; Sheikh Abdullah, Siti Rozaimah; Mohamad, Abu Bakar; Abdul Rahman, Rakmi; Hasan Kadhum, Abdul Amir
2013-05-30
In this study, the potential of a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR) for removing chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N) and 2,4-dichlorophenol (2,4-DCP) from recycled paper wastewater was assessed. For this purpose, the response surface methodology (RSM) was employed, using a central composite face-centred design (CCFD), to optimise three of the most important operating variables, i.e., hydraulic retention time (HRT), aeration rate (AR) and influent feed concentration (IFC), in the pilot-scale GAC-SBBR process for recycled paper wastewater treatment. Quadratic models were developed for the response variables, i.e., COD, NH3-N and 2,4-DCP removal, based on the high value (>0.9) of the coefficient of determination (R(2)) obtained from the analysis of variance (ANOVA). The optimal conditions were established at 750 mg COD/L IFC, 3.2 m(3)/min AR and 1 day HRT, corresponding to predicted COD, NH3-N and 2,4-DCP removal percentages of 94.8, 100 and 80.9%, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.
Case study of the application of Fenton process to highly polluted wastewater from power plant.
Pliego, Gema; Zazo, Juan A; Casas, Jose A; Rodriguez, Juan J
2013-05-15
This work investigates the application of Fenton process to the treatment of a highly polluted industrial wastewater resulting from the pipeline cleaning in a power plant. This effluent is characterized by a high chemical oxygen demand (COD>40 g/L), low biodegradability and quite a high iron concentration (around 3g/L) this coming from pipeline corrosion. The effect of the initial reaction temperature (between 50 and 90 °C) and the way of feeding H2O2 on the mineralization percentage and the efficiency of H2O2 consumption has been analyzed. With the stoichiometric amount of H2O2 relative to initial COD, fed in continuous mode, more than 90% COD reduction was achieved at 90 °C. That was accompanied by a dramatic improvement of the biodegradability. Thus, a combined treatment based on semicontinuous high-temperature Fenton oxidation (SHTF) and conventional aerobic biological treatment would allow fulfilling the COD and ecotoxicity regional limits for industrial wastewaters into de municipal sewer system. For the sake of comparison, catalytic wet air oxidation was also tested with poor results (less than 30% COD removal at 140 °C and 8 atm oxygen pressure). Copyright © 2013 Elsevier B.V. All rights reserved.
Jing, Liang; Chen, Bing; Wen, Diya; Zheng, Jisi; Zhang, Baiyu
2018-01-01
In this study, a UV/O 3 hybrid advanced oxidation system was used to remove chemical oxygen demand (COD), ammonia nitrogen (NH 3 -N), and atrazine (ATZ) from ATZ production wastewater. The removal of COD and NH 3 -N, under different UV and O 3 conditions, was found to follow pseudo-first-order kinetics with rate constants ranging from 0.0001-0.0048 and 0.0015-0.0056 min -1 , respectively. The removal efficiency of ATZ was over 95% after 180 min treatment, regardless the level of UV power. A kinetic model was further proposed to simulate the removal processes and to quantify the individual roles and contributions of photolysis, direct O 3 oxidation, and hydroxyl radical (OH·) induced oxidation. The experimental and kinetic modeling results agreed reasonably well with deviations of 12.2 and 13.1% for the removal of COD and NH 3 -N, respectively. Photolysis contributed appreciably to the degradation of ATZ, while OH· played a dominant role for the removal of both COD and NH 3 -N, especially in alkaline environments. This study provides insights into the treatment of ATZ containing wastewater using UV/O 3 and broadens the knowledge of kinetics of ozone-based advanced oxidation processes.
Aloui, Fathi; Fki, Firas; Loukil, Slim; Sayadi, Sami
2009-01-01
Landfill leachate (LFL) is a very complex wastewater that poses considerable hazards to local communities and the environment. With this concern in mind, the present study was undertaken to investigate the performance of an aerobic membrane bioreactor treating raw LFL from Djebel Chekir (Tunisia) discharge. The LFL samples collected from this site were found to be highly loaded with organic matter, ammonia, salts, greases, phenols and hydrocarbons. Important removals of chemical oxygen demand (COD) and NH4+-N were attained after 44 days of treatment at optimum conditions for the membrane and with organic loading rates (OLR) of 1.9 and 2.7 grams COD per litter and day. This treatment allowed for an important detoxification of the landfill leachates and a significant elimination of the microorganisms. Electrochemical oxidation using Pi/Ti was applied as a post-treatment and after the biological process in order to reduce the residual ammonia and COD. At a pH value of 9, current density of 4 A dm(-2) and electrolysis time of 60 minutes, COD and ammonia nitrogen were reduced to 1,000 mg L(-1) and 27 mg L(-1), respectively. COD and NH4+-N removals were accompanied by significant detoxification.
NASA Astrophysics Data System (ADS)
Drinkwater, Ken
2009-10-01
Concern about future anthropogenic warming has lead to demands for information on what might happen to fish and fisheries under various climate-change scenarios. One suggestion has been to use past events as a proxy for what will happen in the future. In this paper a comparison between the responses of Atlantic cod ( Gadus morhua) to two major warm periods in the North Atlantic during the 20th century is carried out to determine how reliable the past might be as a predictor of the future. The first warm period began during the 1920s, remained relatively warm through the 1960s, and was limited primarily to the northern regions (>60°N). The second warm period, which again covered the northern regions but also extended farther south (30°N), began in the 1990s and has continued into the present century. During the earlier warm period, the most northern of the cod stocks (West Greenland, Icelandic, and Northeast Arctic cod in the Barents Sea) increased in abundance, individual growth was high, recruitment was strong, and their distribution spread northward. Available plankton data suggest that these cod responses were driven by bottom-up processes. Fishing pressure increased during this period of high cod abundance and the northern cod stocks began to decline, as early as the 1950s in the Barents Sea but during the 1960s elsewhere. Individual growth declined as temperatures cooled and the cod distributions retracted southward. During the warming in the 1990s, the spawning stock biomass of cod in the Barents Sea again increased, recruitment rose, and the stock spread northward, but the individual growth did not improve significantly. Cod off West Greenland also have shown signs of improving recruitment and increasing biomass, albeit they are still very low in comparison to the earlier warming period. The abundance of Icelandic cod, on the other hand, has remained low through the recent warm period and spawning stock biomass and total biomass are at levels near the lowest on record. The different responses of cod to the two warm events, in particular the reduced cod production during the recent warm period, are attributed to the effects of intense fishing pressure and possibly related ecosystem changes. The implications of the results of the comparisons on the development of cod scenarios under future climate change are addressed.
Smith, R.L.; Baumgartner, L.K.; Miller, D.N.; Repert, D.A.; Böhlke, J.K.
2006-01-01
Nitrification was measured within a sand and gravel aquifer on Cape Cod, MA, using a series of single-well injection tests. The aquifer contained a wastewater-derived contaminant plume, the core of which was anoxic and contained ammonium. The study was conducted near the downgradient end of the ammonium zone, which was characterized by inversely trending vertical gradients of oxygen (270 to 0 μM) and ammonium (19 to 625 μM) and appeared to be a potentially active zone for nitrification. The tests were conducted by injecting a tracer solution (ambient ground water + added constituents) into selected locations within the gradients using multilevel samplers. After injection, the tracers moved by natural ground water flow and were sampled with time from the injection port. Rates of nitrification were determined from changes in nitrate and nitrite concentration relative to bromide. Initial tests were conducted with 15N-enriched ammonium; subsequent tests examined the effect of adding ammonium, nitrite, or oxygen above background concentrations and of adding difluoromethane, a nitrification inhibitor. In situ net nitrate production exceeded net nitrite production by 3- to 6- fold and production rates of both decreased in the presence of difluoromethane. Nitrification rates were 0.02–0.28 μmol (L aquifer)−1 h−1 with in situ oxygen concentrations and up to 0.81 μmol (L aquifer)−1 h−1 with non-limiting substrate concentrations. Geochemical considerations indicate that the rates derived from single-well injection tests yielded overestimates of in situ rates, possibly because the injections promoted small-scale mixing within a transport-limited reaction zone. Nonetheless, these tests were useful for characterizing ground water nitrification in situ and for comparing potential rates of activity when the tracer cloud included non-limiting ammonium and oxygen concentrations.
Verma, Shilpi; Prasad, Basheshwar; Mishra, Indra Mani
2017-01-01
Purified terephthalic acid (PTA) plant of a petrochemical unit generates wastewater having high pollution load. Acid treatment of this wastewater reduces the chemical oxygen demand (COD) load by more than 50%, still leaving substantial COD load (>1500 mg/L) which should be removed. The present study reports on the use of a bio-waste-adsorbent bagasse fly ash (BFA) for the reduction of COD and other recalcitrant acids from this wastewater. The BFA showed basic character and was mesoporous with a BET specific surface area of 82.4 m 2 /g. Optimum conditions for the adsorptive treatment of acid-pretreated PTA wastewater were found to be as follows: initial pH (pH i ) = 4, BFA dosage = 15 g/L, and contact time = 3 h. Adsorption treatment resulted in 58.2% removal of COD, 96.3% removal of terephthalic acid (TA), and 99.9% removal of benzoic acid (BA). TA and BA were removed from the pretreated PTA wastewater through precipitation and sedimentation of un-dissociated acid molecules inside the mesopores of the BFA. The results showed that the COD removed by the BFA followed pseudo-second-order kinetics. Equilibrium sorption data were best correlated by the Freundlich isotherm. The process of adsorptive removal of COD was found to be exothermic. The change in the Gibbs free energy was found to be negative, suggesting that the adsorption process is spontaneous and feasible for the treatment of PTA wastewater.
Yerushalmi, Laleh; Alimahmoodi, Mahmood; Afroze, Niema; Godbout, Stephane; Mulligan, Catherine N
2013-06-15
The removal of chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) at concentrations of 960 ± 38 to 2400 ± 96 mg/L, 143 ± 9 to 235 ± 15 mg/L and 25 ± 2 to 57 ± 4 mg/L, respectively, from the separated liquid phase of hog manure by the multi-zone BioCAST technology is discussed. Despite the inhibitory effect of hog waste toward microbial activities, removal efficiencies up to 89.2% for COD, 69.2% for TN and 47.6% for TP were obtained during 185 d of continuous operation. The free ammonia inhibition was postulated to be responsible for the steady reduction of COD and TP removal with the increase of TN/TP ratio from 3.6 to 5.8. On the contrary, the increase of COD/TN ratio from 4.8 to 14.1 improved the removal of all contaminants. Nitrogen removal did not show any dependence on the COD/TP ratio, despite the steady increase of COD and TP removal with this ratio in the range of 19.3-50.6. The removal efficiencies of organic and inorganic contaminants increased progressively owing to the adaptation of microbial biomass, resulting from the presence of suspended biomass in the mixed liquor that circulated continuously between the three zones of aerobic, microaerophilic and anoxic, as well as the attached biomass immobilized inside the aerobic zone. Copyright © 2013 Elsevier B.V. All rights reserved.
Yang, Xiao-Ying; Luo, Xing-Zhang; Zheng, Zheng; Fang, Shu-Bo
2012-09-01
Two high-density snap-shot samplings were conducted along the Yincungang canal, one important tributary of the Lake Tai, in April (low flow period) and June (high flow period) of 2010. Geostatistical analysis based on the river network distance was used to analyze the spatial and temporal patterns of the pollutant concentrations along the canal with an emphasis on chemical oxygen demand (COD) and total nitrogen (TN). Study results have indicated: (1) COD and TN concentrations display distinctly different spatial and temporal patterns between the low and high flow periods. COD concentration in June is lower than that in April, while TN concentration has the contrary trend. (2) COD load is relatively constant during the period between the two monitoring periods. The spatial correlation structure of COD is exponential for both April and June, and the change of COD concentration is mainly influenced by hydrological conditions. (3) Nitrogen load from agriculture increased significantly during the period between the two monitoring periods. Large amount of chaotic fertilizing by individual farmers has led to the loss of the spatial correlation among the observed TN concentrations. Hence, changes of TN concentration in June are under the dual influence of agricultural fertilizing and hydrological conditions. In the view of the complex hydrological conditions and serious water pollution in the Lake Taihu region, geostatistical analysis is potentially a useful tool for studying the characteristics of pollutant distribution and making predictions in the region.
Barrera-Díaz, Carlos E; Frontana-Uribe, Bernardo A; Roa-Morales, Gabriela; Bilyeu, Bryan W
2015-01-01
The objective of this study was to evaluate the effect of copper electrocoagulation and hydrogen peroxide on COD, color, turbidity, and bacterial activity in a mixed industry wastewater. The integrated system of copper electrocoagulation and hydrogen peroxide is effective at reducing the organic and bacterial content of industrial wastewater. The copper electrocoagulation alone reduces COD by 56% in 30 min at pH 2.8, but the combined system reduces COD by 78%, biochemical oxygen demand (BOD5) by 81%, and color by 97% under the same conditions. Colloidal particles are flocculated effectively, as shown by the reduction of zeta potential and the 84% reduction in turbidity and 99% reduction in total solids. Additionally, the total coliforms, fecal coliforms, and bacteria are all reduced by 99%. The integrated system is effective and practical for the reduction of both organic and bacterial content in industrial wastewater.
Fluorescence-based monitoring of tracer and substrate distribution in an UASB reactor.
Lou, S J; Tartakovsky, B; Zeng, Y; Wu, P; Guiot, S R
2006-11-01
In this work, rhodamine-related fluorescence was measured on-line at four reactor heights in order to study hydrodynamics within an upflow anaerobic sludge bed reactor. A linear dependence of the dispersion coefficient (D) on the upflow velocity was observed, while the influence of the organic loading rate (OLR) was insignificant. Furthermore, the Bodenstein number of the reactor loaded with granulated sludge was found to be position-dependent with the largest values measured at the bottom of the sludge bed. This trend was not observed in the reactor without sludge. Chemical oxygen demand (COD) and volatile fatty acid (VFA) concentrations were measured at the same reactor heights as in rhodamine tests using conventional off-line analytical methods and on-line multiwavelength fluorometry. Significant spatial COD and VFA gradients were observed at organic loading rates above 6g COD l(R)(-1)d(-1) and linear upflow velocities below 0.8m h(-1).
Pretreatment of palm oil mill effluent (POME) using Moringa oleifera seeds as natural coagulant.
Bhatia, Subhash; Othman, Zalina; Ahmad, Abdul Latif
2007-06-25
Moringa oleifera seeds, an environmental friendly and natural coagulant are reported for the pretreatment of palm oil mill effluent (POME). In coagulation-flocculation process, the M. oleifera seeds after oil extraction (MOAE) are an effective coagulant with the removal of 95% suspended solids and 52.2% reduction in the chemical oxygen demand (COD). The combination of MOAE with flocculant (NALCO 7751), the suspended solids removal increased to 99.3% and COD reduction was 52.5%. The coagulation-flocculation process at the temperature of 30 degrees C resulted in better suspended solids removal and COD reduction compared to the temperature of 40, 55 and 70 degrees C. The MOAE combined with flocculant (NALCO 7751) reduced the sludge volume index (SVI) to 210mL/g with higher recovery of dry mass of sludge (87.25%) and water (50.3%).
Upgrading the hydrolytic potential of immobilized bacterial pretreatment to boost biogas production.
Ushani, U; Kavitha, S; Johnson, M; Yeom, Ick Tae; Banu, J Rajesh
2017-01-01
In this study, surfactant dioctyl sodium sulphosuccinate (DOSS)-mediated immobilized bacterial pretreatment of waste activated sludge (WAS) was experimentally proved to be an efficient and economically feasible process for enhancing the biodegradability of WAS. The maximal floc disruption with negligible cell cleavage was achieved at surfactant dosage of 0.009 g/g SS. Results of the outcome of bacterial pretreatment of sludge biomass revealed that chemical oxygen demand (COD) solubilization for deflocculated (EPS removed-bacterially pretreated) sludge was 20 %, which was higher than that of flocculated (14 %) or control (5 %). The pretreatment was swift in deflocculated sludge with a rate constant of about 0.064 h -1 . Biochemical methane potential (BMP) assay resulted in significant methane yield at 0.24 gCOD/gCOD for deflocculated sludge. Economic assessment of the proposed method showed a net profit of about 57.39 USD/ton of sludge.
Enzymatic catalysis treatment method of meat industry wastewater using lacasse.
Thirugnanasambandham, K; Sivakumar, V
2015-01-01
The process of meat industry produces in a large amount of wastewater that contains high levels of colour and chemical oxygen demand (COD). So they must be pretreated before their discharge into the ecological system. In this paper, enzymatic catalysis (EC) was adopted to treat the meat wastewater. Box-Behnken design (BBD), an experimental design for response surface methodology (RSM), was used to create a set of 29 experimental runs needed for optimizing of the operating conditions. Quadratic regression models with estimated coefficients were developed to describe the colour and COD removals. The experimental results show that EC could effectively reduce colour (95 %) and COD (86 %) at the optimum conditions of enzyme dose of 110 U/L, incubation time of 100 min, pH of 7 and temperature of 40 °C. RSM could be effectively adopted to optimize the operating multifactors in complex EC process.
NASA Astrophysics Data System (ADS)
Dors, Gisanara; Mendes, Adriano A.; Pereira, Ernandes B.; de Castro, Heizir F.; Furigo, Agenor
2013-03-01
Simultaneous enzymatic hydrolysis and anaerobic biodegradation of lipid-rich wastewater from poultry industry with porcine pancreatic lipase at different concentrations (from 1.0 to 3.0 g L-1) were performed. The efficiency of the enzymatic pretreatment was measured by the Chemical Oxygen Demand (COD) removal and formation of methane. All samples pretreated with lipase showed a positive effect on the COD removal and formation of methane. After 30 days of anaerobic biodegradation the methane production varied from 569 ± 95 to 1,101 ± 10 mL for crude wastewater and pretreated at 3.0 g L-1 enzyme, respectively. COD removal of wastewater supplemented at different enzyme concentrations was found to be threefold higher than crude wastewater. The use of lipases seems to be a promising alternative for treating lipid-rich wastewaters such as those from the poultry industry.
Abood, Alkhafaji R; Bao, Jianguo; Du, Jiangkun; Zheng, Dan; Luo, Ye
2014-02-01
This study describes the complete treatment of non-biodegradable landfill leachate by combined treatment processes. The processes consist of agitation as a novel stripping method used to overcome the ammonia toxicity regarding aerobic microorganisms. The NH3-N removal ratio was 93.9% obtained at pH 11.5 and a gradient velocity (G) 150 s(-1) within a five-hour agitation time. By poly ferric sulphate (PFS) coagulation followed the agitation process; chemical oxygen demand (COD) and biological oxygen demand (BOD5) were removed at 70.6% and 49.4%, respectively at an optimum dose of 1200 mg L(-1) at pH 5.0. The biodegradable ratio BOD5/COD was improved from 0.18 to 0.31 during pretreatment step by agitation and PFS coagulation. Thereafter, the effluent was diluted with sewage at a different ratio before it was subjected to sequencing batch reactor (SBR) treatment. Up to 93.3% BOD5, 95.5% COD and 98.1% NH3-N removal were achieved by SBR operated under anoxic-aerobic-anoxic conditions. The filtration process was carried out using sand and carbon as a dual filter media as polishing process. The final effluent concentration of COD, BOD5, suspended solid (SS), NH3-N and total organic carbon (TOC) were 72.4 mg L(-1), 22.8 mg L(-1), 24.2 mg L(-1), 18.4 mg L(-1) and 50.8 mg L(-1) respectively, which met the discharge standard. The results indicated that a combined process of agitation-coagulation-SBR and filtration effectively eliminated pollutant loading from landfill leachate. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zolfaghari-Baghbaderani, Azadeh; Emtyazjoo, Mozhgan; Poursafa, Parinaz; Mehrabian, Sedigheh; Bijani, Samira; Farkhani, Daryoush; Mirmoghtadaee, Parisa
2012-01-01
To determine the most effective and biodegradable dispersant of spilled oil in water surrounding two Persian Gulf provinces. This study compared the effects of three dispersants, Pars 1, Pars 2, and Gamlen OD4000 on removal of oil in two Persian Gulf provinces' water. Overall, 16 stations were selected. Using the Well method, the growth rate of isolated bacteria and fungi was identified. To specify the growth rate of microorganisms and their usage of oil in the presence of the above-mentioned dispersants, as exclusive sources of carbon, the bacteria were grown in culture medium for 28 days at 120 rpm, 30°C, and their optical density was measured by spectrophotometry. Then, we tested biological oxygen demand (BOD) and chemical oxygen demand (COD) in microorganisms. The highest growth rate was documented for the growth of microorganisms on either Pars 1 or Pars 2 dispersants or their mixtures with oil. However, the culture having microorganisms grown on Pars 1 had higher BOD and COD than the other two dispersants (9200 and 16800 versus 500 and 960, P < 0.05). Mixture of oil and Pars 2 as well as oil and Pars 1 dispersants showed the highest BODs and CODs, respectively. In the Bahregan province, microorganisms grown on Pars 2 had maximum amount of BOD and COD in comparison with Pars 1 and Gamlen dispersants (7100 and 15200 versus 6000 and 10560, P < 0.05). Pars 1 and Pars 2 were the most effective dispersants with highest degradability comparing Gamlen. In each region, the most suitable compound for removing oil spill from offshores with least secondary contamination should be investigated.
Guo, Wei; Yang, Feng; Li, Yanping; Wang, Shengrui
2017-12-15
Dissolved organic carbon (DOC) can be used an alternative index of water quality instead of chemical oxygen demand (COD) to reflect the organic pollution in water. The monitoring data of water quality in a long-term (1990-2013) from Dianchi Lake confirmed the increase trend of COD concentration in the lake since 2007. The similarities and differences in the DOC components between the lake and its sources and the contribution from allochthonous and autochthonous DOC to the total DOC in this lake were determined to elucidate the reason of COD increase based on C/N atomic ratios, stable isotope abundance of carbon and nitrogen, UV-visible spectroscopy, three-dimensional excitation-emission matrix (3DEEM) fluorescence spectroscopy. The terrigenous organic matter showed humic-like fluorescence, and the autochthonous organic matter showed tryptophan-like components. Agricultural runoff (9.5%), leaf litter (7.5%) and urban runoff (13.2%) were the main sources of DOC in the lake. Sewage tail was a major source of organic materials, 3DEEM for the indicates that sewage tail DOC composition did not change markedly over the biodegradation period, indicating that sewage tail contains a high load of DOC that is resistant to further biodegradation and subsequently accumulates in the lake. The change of land use in the catchment and the increase of sewage tail load into the lake are the key factors for the increase in COD concentration in Dianchi Lake. Thus, the lake should be protected by controlling the pollution from the urban nonpoint sources and refractory composition in point sources. Copyright © 2017 Elsevier B.V. All rights reserved.
Muhamad, Mohd Hafizuddin; Sheikh Abdullah, Siti Rozaimah; Abu Hasan, Hassimi; Abd Rahim, Reehan Adnee
2015-11-01
The complexity of residual toxic organics from biologically treated effluents of pulp and paper mills is a serious concern. To date, it has been difficult to choose the best treatment technique because each of the available options has advantages and drawbacks. In this study, two different treatment techniques using laboratory-scale aerobic sequencing batch reactors (SBRs) were tested with the same real recycled paper mill effluent to evaluate their treatment efficiencies. Two attached-growth SBRs using granular activated carbon (GAC) with and without additional biomass and a suspended-growth SBR were used in the treatment of real recycled paper mill effluent at a chemical oxygen demand (COD) level in the range of 800-1300 mg/L, a fixed hydraulic retention time of 24 h and a COD:N:P ratio of approximately 100:5:1. The efficiency of this biological treatment process was studied over a 300-day period. The six most important wastewater quality parameters, namely, chemical oxygen demand (COD), turbidity, ammonia (expressed as NH3-N), phosphorus (expressed as PO4(3)-P), colour, and suspended solids (SS), were measured to compare the different treatment techniques. It was determined that these processes were able to almost completely and simultaneously eliminate COD (99%) and turbidity (99%); the removals of NH3-N (90-100%), PO4(3)-P (66-78%), colour (63-91%), and SS (97-99%) were also sufficient. The overall performance results confirmed that an attached-growth SBR system using additional biomass on GAC is a promising configuration for wastewater treatment in terms of performance efficiency and process stability under fluctuations of organic load. Hence, this hybrid system is recommended for the treatment of pulp and paper mill effluents. Copyright © 2015 Elsevier Ltd. All rights reserved.
Granular biochar compared with activated carbon for wastewater treatment and resource recovery.
Huggins, Tyler M; Haeger, Alexander; Biffinger, Justin C; Ren, Zhiyong Jason
2016-05-01
Granular wood-derived biochar (BC) was compared to granular activated carbon (GAC) for the treatment and nutrient recovery of real wastewater in both batch and column studies. Batch adsorption studies showed that BC material had a greater adsorption capacity at the high initial concentrations of total chemical oxygen demand (COD-T) (1200 mg L(-1)), PO4 (18 mg L(-1)), and NH4 (50 mg L(-1)) compared to GAC. Conversely the BC material showed a lower adsorption capacity for all concentrations of dissolved chemical oxygen demand (COD-D) and the lower concentrations of PO4 (5 mg L(-1)) and NH4 (10 mg L(-1)). Packed bed column studies showed similar average COD-T removal rate for BC with 0.27 ± 0.01 kg m(-3) d(-1) and GAC with 0.24 ± 0.01 kg m(-3) d(-1), but BC had nearly twice the average removal rate (0.41 ± 0.08 kg m(-3) d(-3)) compared to GAC during high COD-T concentrations (>500 mg L(-1)). Elemental analysis showed that both materials accumulated phosphorous during wastewater treatment (2.6 ± 0.4 g kg(-1) and 1.9 ± 0.1 g kg(-1) for BC and GAC respectively). They also contained high concentrations of other macronutrients (K, Ca, and Mg) and low concentrations of metals (As, Cd, Cr, Pb, Zn, and Cu). The good performance of BC is attributed to its macroporous structure compared with the microporous GAC. These favorable treatment data for high strength wastewater, coupled with additional life-cycle benefits, helps support the use of BC in packed bed column filters for enhanced wastewater treatment and nutrient recovery. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zolfaghari-Baghbaderani, Azadeh; Emtyazjoo, Mozhgan; Poursafa, Parinaz; Mehrabian, Sedigheh; Bijani, Samira; Farkhani, Daryoush; Mirmoghtadaee, Parisa
2012-01-01
Objective. To determine the most effective and biodegradable dispersant of spilled oil in water surrounding two Persian Gulf provinces. Methods. This study compared the effects of three dispersants, Pars 1, Pars 2, and Gamlen OD4000 on removal of oil in two Persian Gulf provinces' water. Overall, 16 stations were selected. Using the Well method, the growth rate of isolated bacteria and fungi was identified. To specify the growth rate of microorganisms and their usage of oil in the presence of the above-mentioned dispersants, as exclusive sources of carbon, the bacteria were grown in culture medium for 28 days at 120 rpm, 30°C, and their optical density was measured by spectrophotometry. Then, we tested biological oxygen demand (BOD) and chemical oxygen demand (COD) in microorganisms. Results. The highest growth rate was documented for the growth of microorganisms on either Pars 1 or Pars 2 dispersants or their mixtures with oil. However, the culture having microorganisms grown on Pars 1 had higher BOD and COD than the other two dispersants (9200 and 16800 versus 500 and 960, P < 0.05). Mixture of oil and Pars 2 as well as oil and Pars 1 dispersants showed the highest BODs and CODs, respectively. In the Bahregan province, microorganisms grown on Pars 2 had maximum amount of BOD and COD in comparison with Pars 1 and Gamlen dispersants (7100 and 15200 versus 6000 and 10560, P < 0.05). Conclusion. Pars 1 and Pars 2 were the most effective dispersants with highest degradability comparing Gamlen. In each region, the most suitable compound for removing oil spill from offshores with least secondary contamination should be investigated. PMID:22363352
Chen, Baisheng; Wu, Huanan; Li, Sam Fong Yau
2014-03-01
To overcome the challenging task to select an appropriate pathlength for wastewater chemical oxygen demand (COD) monitoring with high accuracy by UV-vis spectroscopy in wastewater treatment process, a variable pathlength approach combined with partial-least squares regression (PLSR) was developed in this study. Two new strategies were proposed to extract relevant information of UV-vis spectral data from variable pathlength measurements. The first strategy was by data fusion with two data fusion levels: low-level data fusion (LLDF) and mid-level data fusion (MLDF). Predictive accuracy was found to improve, indicated by the lower root-mean-square errors of prediction (RMSEP) compared with those obtained for single pathlength measurements. Both fusion levels were found to deliver very robust PLSR models with residual predictive deviations (RPD) greater than 3 (i.e. 3.22 and 3.29, respectively). The second strategy involved calculating the slopes of absorbance against pathlength at each wavelength to generate slope-derived spectra. Without the requirement to select the optimal pathlength, the predictive accuracy (RMSEP) was improved by 20-43% as compared to single pathlength spectroscopy. Comparing to nine-factor models from fusion strategy, the PLSR model from slope-derived spectroscopy was found to be more parsimonious with only five factors and more robust with residual predictive deviation (RPD) of 3.72. It also offered excellent correlation of predicted and measured COD values with R(2) of 0.936. In sum, variable pathlength spectroscopy with the two proposed data analysis strategies proved to be successful in enhancing prediction performance of COD in wastewater and showed high potential to be applied in on-line water quality monitoring. Copyright © 2013 Elsevier B.V. All rights reserved.
Ju, Xinxin; Wu, Shubiao; Huang, Xu; Zhang, Yansheng; Dong, Renjie
2014-10-01
Intensified nutrient removal and odor control in a novel electrolysis-integrated tidal flow constructed wetland were evaluated. The average removal efficiencies of COD and NH4(+)-N were above 85% and 80% in the two experimental wetlands at influent COD concentration of 300 mg/L and ammonium nitrogen concentration of 60 mg/L regardless of electrolysis integration. Effluent nitrate concentration decreased from 2.5mg/L to 0.5mg/L with the reduction in current intensity from 1.5 mA/cm(2) to 0.57 mA/cm(2). This result reveals the important role of current intensity in nitrogen transformation. Owing to the ferrous and ferric iron coagulant formed through the electro-dissolution of the iron anode, electrolysis integration not only exerted a positive effect on phosphorus removal but also effectively inhibited sulfide accumulation for odor control. Although electrolysis operation enhanced nutrient removal and promoted the emission of CH4, no significant difference was observed in the microbial communities and abundance of the two experimental wetlands. Copyright © 2014 Elsevier Ltd. All rights reserved.
Jiang, Yu; Wang, Hongyu; Shang, Yu; Yang, Kai
2016-05-01
The high removal efficiencies of traditional biological aniline-degrading systems always lead to accumulation of ammonium. In this study, simultaneous removal of aniline, nitrogen and phosphorus in a single sequencing batch reactor was achieved by using anaerobic/aerobic/anoxic (A/O/A) operational process. The removal efficiencies of COD, NH4(+)-N, TN, TP were over 95.80%, 83.03%, 87.13%, 90.95%, respectively in most cases with 250mgL(-1) of initial aniline at 6h cycle when DO was 5.5±0.5mgL(-1). Aniline was able to be completely degraded when initial concentrations were less than 750mgL(-1). When DO increased, the removal rate of NH4(+)-N and TP slightly increased along with the moderate decrease of removal efficiencies of TN. The variation of HRT had obvious influence on removal performance of pollutants. The system showed high removal efficiencies of aniline, COD and nutrients during the variation of operating conditions, which might contribute to disposal of aniline-rich industrial wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uke, Matthew N., E-mail: cnmnu@leeds.ac.uk; Stentiford, Edward
2013-06-15
Highlights: ► Combined downflow and upflow water addition improved hydraulic conductivity. ► Upflow water addition unclogged perforated screen leading to more leachate flow. ► The volume of water added and transmitted positively correlated with hydrolysis process. ► Combined downflow and upflow water addition increased COD production and yield. ► Combined downflow and upflow leachate recycle improved leachate and COD production. - Abstract: Poor performance of leachbed reactors (LBRs) is attributed to channelling, compaction from waste loading, unidirectional water addition and leachate flow causing reduced hydraulic conductivity and leachate flow blockage. Performance enhancement was evaluated in three LBRs M, D andmore » U at 22 ± 3 °C using three water addition and leachate recycle strategies; water addition was downflow in D throughout, intermittently upflow and downflow in M and U with 77% volume downflow in M, 54% volume downflow in U while the rest were upflow. Leachate recycle was downflow in D, alternately downflow and upflow in M and upflow in U. The strategy adopted in U led to more water addition (30.3%), leachate production (33%) and chemical oxygen demand (COD) solubilisation (33%; 1609 g against 1210 g) compared to D (control). The total and volatile solids (TS and VS) reductions were similar but the highest COD yield (g-COD/g-TS and g-COD/g-VS removed) was in U (1.6 and 1.9); the values were 1.33 and 1.57 for M, and 1.18 and 1.41 for D respectively. The strategy adopted in U showed superior performance with more COD and leachate production compared to reactors M and D.« less
González, C; García, P A; Muñoz, R
2009-01-01
Piggery wastewater is characterized by its high content in nitrogen and phosphorus, as well as by a low C/N ratio. This type of wastewater is traditionally spread to croplands (with its subsequent leaching to groundwater) or rarely discharged into natural water bodies, which ultimately cause severe episodes of eutrophication in aquatic ecosystems. In this context, activated sludge systems constitute a robust and efficient treatment option. The performance of an activated sludge process using a pre-denitrification configuration treating both sieved and flocculated swine slurry at a hydraulic retention time (HRT) of 7.7 days was evaluated. In order to avoid bacterial wash-out, sludge from the settler was recirculated to the anoxic tank to accomplish denitrification. Once the biomass was acclimatized, the reactor was fed with swine slurry containing 19, 2.6, and 0.27 g/L of total chemical oxygen demand (COD), total Kjeldhal nitrogen (TKN), and soluble P, respectively. Nitrogen removal showed a clear dependency on the influent composition. When the influent TKN/total COD and soluble COD/total COD ratios were respectively 0.12-0.15 and 0.7, the reactor exhibited good removal efficiencies (up to 99 and 91 for N-NH(4)(+), TKN, respectively) while PO(4)(3-) was removed up to 65%. However, when the influent TKN/total COD ratio rose to 0.26 and soluble COD/total COD decreased to 0.3, the denitrification process was severely hindered concomitant with and accumulation of nitrite. Nevertheless, organic matter degradation was not affected by influent composition. At the last stage of the experiment, removals of dissolved phosphorus fell to 40% when the redox potential (ORP) profile showed a constant value of -400 mV, likely due to phosphate released from bacterial sludge.
Bacterial community dynamics in surface flow constructed wetlands for the treatment of swine waste.
Ibekwe, A M; Ma, J; Murinda, Shelton; Reddy, G B
2016-02-15
Constructed wetlands are generally used for the removal of waste from contaminated water. In the swine production system, wastes are traditionally flushed into an anaerobic lagoon which is then sprayed on agricultural fields. However, continuous spraying of lagoon wastewater on fields can lead to high N and P accumulations in soil or lead to runoff which may contaminate surface or ground water with pathogens and nutrients. In this study, continuous marsh constructed wetland was used for the removal of contaminants from swine waste. Using pyrosequencing, we assessed bacterial composition within the wetland using principal coordinate analysis (PCoA) which showed that bacterial composition from manure influent and lagoon water were significantly different (P=0.001) from the storage pond to the final effluent. Canonical correspondence analysis (CCA) showed that different bacterial populations were significantly impacted by ammonium--NH4 (P=0.035), phosphate--PO4(3-) (P=0.010), chemical oxygen demand--COD (P=0.0165), total solids--TS (P=0.030), and dissolved solids--DS (P=0.030) removal, with 54% of the removal rate explained by NH4+PO4(3-) according to a partial CCA. Our results showed that different bacterial groups were responsible for the composition of different wetland nutrients and decomposition process. This may be the major reason why most wetlands are very efficient in waste decomposition. Published by Elsevier B.V.
Healy, M G; Burke, P; Rodgers, M
2010-10-01
The aim of this study was to examine the performance of intermittently loaded, 150 mm-diameter stratified filter columns of 2 depths (0.65 and 0.375 m) comprising different media--sand, crushed glass and soil--in polishing the effluent from a laboratory horizontal flow biofilm reactor (HFBR) treating synthetic domestic-strength wastewater. The HFBR has been successfully used to remove organic carbon and ammonium-nitrogen (NH4-N) from domestic wastewater. In this treatment method, wastewater is allowed to flow over and back along a stack of polyvinyl chloride (PVC) sheets. Biofilms on the sheets reduce organic carbon, suspended matter, and nutrients in the wastewater, but to achieve the quality of a septic tank system, additional treatment is required. In all filters, at a hydraulic loading rate of 100 L m(-2) d(-1), 40-65% of chemical oxygen demand (COD) and practically 100% of total suspended solids (TSS) were removed, nitrification was complete, and bacterial numbers were reduced by over 80%, with best removals achieved in the soil filters (93%). Soil polishing filters with the depth of 0.65 m performed best in terms of organic carbon, total nitrogen (Tot-N) and bacterial removal. Data from this preliminary study are useful in the design of treatment systems to polish secondary wastewaters with similar water quality characteristics.
Oxygen demand of aircraft and airfield pavement deicers and alternative freezing point depressants
Corsi, Steven R.; Mericas, Dean; Bowman, George
2012-01-01
Aircraft and pavement deicing formulations and other potential freezing point depressants were tested for biochemical oxygen demand (BOD) and chemical oxygen demand (COD). Propylene glycol-based aircraft deicers exhibited greater BOD5 than ethylene glycol-based aircraft deicers, and ethylene glycol-based products had lower degradation rates than propylene glycol-based products. Sodium formate pavement deicers had lower COD than acetate-based pavement deicers. The BOD and COD results for acetate-based pavement deicers (PDMs) were consistently lower than those for aircraft deicers, but degradation rates were greater in the acetate-based PDM than in aircraft deicers. In a 40-day testing of aircraft and pavement deicers, BOD results at 20°C (standard) were consistently greater than the results from 5°C (low) tests. The degree of difference between standard and low temperature BOD results varied among tested products. Freshwater BOD test results were not substantially different from marine water tests at 20°C, but glycols degraded slower in marine water than in fresh water for low temperature tests. Acetate-based products had greater percentage degradation than glycols at both temperatures. An additive component of the sodium formate pavement deicer exhibited toxicity to the microorganisms, so BOD testing did not work properly for this formulation. BOD testing of alternative freezing point depressants worked well for some, there was little response for some, and for others there was a lag in response while microorganisms acclimated to the freezing point depressant as a food source. Where the traditional BOD5 test performed adequately, values ranged from 251 to 1,580 g/kg. Where the modified test performed adequately, values of BOD28 ranged from 242 to 1,540 g/kg.
Hur, Jin; Cho, Jinwoo
2012-01-01
The development of a real-time monitoring tool for the estimation of water quality is essential for efficient management of river pollution in urban areas. The Gap River in Korea is a typical urban river, which is affected by the effluent of a wastewater treatment plant (WWTP) and various anthropogenic activities. In this study, fluorescence excitation-emission matrices (EEM) with parallel factor analysis (PARAFAC) and UV absorption values at 220 nm and 254 nm were applied to evaluate the estimation capabilities for biochemical oxygen demand (BOD), chemical oxygen demand (COD), and total nitrogen (TN) concentrations of the river samples. Three components were successfully identified by the PARAFAC modeling from the fluorescence EEM data, in which each fluorophore group represents microbial humic-like (C1), terrestrial humic-like organic substances (C2), and protein-like organic substances (C3), and UV absorption indices (UV(220) and UV(254)), and the score values of the three PARAFAC components were selected as the estimation parameters for the nitrogen and the organic pollution of the river samples. Among the selected indices, UV(220), C3 and C1 exhibited the highest correlation coefficients with BOD, COD, and TN concentrations, respectively. Multiple regression analysis using UV(220) and C3 demonstrated the enhancement of the prediction capability for TN.
NASA Astrophysics Data System (ADS)
Jayanudin, Kustiningsih, Indar; Sari, Denni Kartika
2017-05-01
Indonesia is rich of natural minerals, many of which had not been widely used. One potential natural mineral is zeolite from Bayah Banten that can be used to support catalyst in the process of waste degradation. The purpose of this research is to characterize the Bayah's zeolite and to figure out the effectiveness of the zeolite as supporting agent to the Fe catalyst in the process of phenol degradation, with the main purposes are to reduce the Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC). This research consists of three steps, activation of natural zeolite using 1M, 2M, and 3M NaOH solution, impregnation process with 0.025M, 0.05 M and 0.075M Fe(NO3)3.9H2O solution, and calcination at 500°C. Bayah's natural zeolite was characterize using Brauner-Emmet-Teller (BET) for its pore area, X-ray Fluorescence (XRF) for analyzing zeolite's component before and after activation process and after impregnation process, and Scanning Electron Microscope (SEM) for analyzing zeolite's morphology. The result showed that the highest pore area was 9Å, Fe metal from Fe(NO3)3.9H2O 0,075 M solution remained in zeolite pore was 7,73%, the reduction of COD and TOC was yielded at H2O2: phenol ratio of 1 : 6.
Chen, Honglei; Chen, Yuancai; Zhan, Huaiyu; Fu, Shiyu
2011-04-01
A new method has been developed for the determination of chemical oxygen demand (COD) in pulping effluent using chemometrics-assisted spectrophotometry. Two calibration models were established by inducing UV-visible spectroscopy (model 1) and derivative spectroscopy (model 2), combined with the chemometrics software Smica-P. Correlation coefficients of the two models are 0.9954 (model 1) and 0.9963 (model 2) when COD of samples is in the range of 0 to 405 mg/L. Sensitivities of the two models are 0.0061 (model 1) and 0.0056 (model 2) and method detection limits are 2.02-2.45 mg/L (model 1) and 2.13-2.51 mg/L (model 2). Validation experiment showed that the average standard deviation of model 2 was 1.11 and that of model 1 was 1.54. Similarly, average relative error of model 2 (4.25%) was lower than model 1 (5.00%), which indicated that the predictability of model 2 was better than that of model 1. Chemometrics-assisted spectrophotometry method did not need chemical reagents and digestion which were required in the conventional methods, and the testing time of the new method was significantly shorter than the conventional ones. The proposed method can be used to measure COD in pulping effluent as an environmentally friendly approach with satisfactory results.
Performance evaluation of a full-scale innovative swine waste-to-energy system.
Xu, Jiele; Adair, Charles W; Deshusses, Marc A
2016-09-01
Intensive monitoring was carried out to evaluate the performance of a full-scale innovative swine waste-to-energy system at a commercial swine farm with 8640 heads of swine. Detailed mass balances over each unit of the system showed that the system, which includes a 7600m(3) anaerobic digester, a 65-kW microturbine, and a 4200m(3) aeration basin, was able to remove up to 92% of the chemical oxygen demand (COD), 99% of the biological oxygen demand (BOD), 77% of the total nitrogen (TN), and 82% of the total phosphorous (TP) discharged into the system as fresh pig waste. The overall biogas yield based on the COD input was 64% of the maximum theoretical, a value that indicates that even greater environmental benefits could be obtained with process optimization. Overall, the characterization of the materials fluxes in the system provides a greater understanding of the fate of organics and nutrients in large scale animal waste management systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
The structure optimization of gas-phase surface discharge and its application for dye degradation
NASA Astrophysics Data System (ADS)
Ying, CAO; Jie, LI; Nan, JIANG; Yan, WU; Kefeng, SHANG; Na, LU
2018-05-01
A gas-phase surface discharge (GSD) was employed to optimize the discharge reactor structure and investigate the dye degradation. A dye mixture of methylene blue, acid orange and methyl orange was used as a model pollutant. The results indicated that the reactor structure of the GSD system with the ratio of tube inner surface area and volume of 2.48, screw pitch between a high-voltage electrode of 9.7 mm, high-voltage electrode wire diameter of 0.8 mm, dielectric tube thickness of 2.0 mm and tube inner diameter of 16.13 mm presented a better ozone (O3) generation efficiency. Furthermore, a larger screw pitch and smaller wire diameter enhanced the O3 generation. After the dye mixture degradation by the optimized GSD system, 73.21% and 50.74% of the chemical oxygen demand (COD) and total organic carbon removal rate were achieved within 20 min, respectively, and the biochemical oxygen demand (BOD) and biodegradability (BOD/COD) improved.
Gough, Heidi L; Nelsen, Diane; Muller, Christopher; Ferguson, John
2013-02-01
Recent interest in carbon-neutral biofuels has revived interest in co-digestion for methane generation. At wastewater treatment facilities, organic wastes may be co-digested with sludge using established anaerobic digesters. However, changes to organic loadings may induce digester instability, particularly for thermophilic digesters. To examine this problem, thermophilic (55 degrees C) co-digestion was studied for two food-industry wastes in semi-continuous laboratory digesters; in addition, the wastes' biochemical methane potentials were tested. Wastes with high chemical oxygen demand (COD) content were selected as feedstocks allowing increased input of potential energy to reactors without substantially altering volumetric loadings. Methane generation increased while reactor pH and volatile solids remained stable. Lag periods observed prior to methane stimulation suggested that acclimation of the microbial community may be critical to performance during co-digestion. Chemical oxygen demand mass balances in the experimental and control reactors indicated that all of the food industry waste COD was converted to methane.
Performance and cost evaluation of constructed wetland for domestic waste water treatment.
Deeptha, V T; Sudarsan, J S; Baskar, G
2015-09-01
Root zone treatment through constructed wetlands is an engineered method of purifying wastewater. The aim of the present research was to study the potential of wetland plants Phragmites and Typha in treatment of wastewater and to compare the cost of constructed wetlands with that of conventional treatment systems. A pilot wetland unit of size 2x1x0.9 m was constructed in the campus. 3x3 rows of plants were transplanted into the pilot unit and subjected to wastewater from the hostels and other campus buildings. The raw wastewater and treated wastewater were collected periodically and tested for Total nitrogen (TN),Total Phosphorous (TP), Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD). It was observed that this pilot unit reduced the concentrations of TN, TP, BOD and COD by 76, 73, 83 and 86%, respectively, on an average. Root zone system achieved standards for tertiary treatment with low operating costs, low maintenance costs, enhance the landscape, provide a natural habitat for birds, and did not emit any odour.
Kang, Jian-xiong; Lu, Lu; Zhan, Wei; Li, Bo; Li, Dao-sheng; Ren, Yong-zheng; Liu, Dong-qi
2011-02-15
The present study aims at investigating the performance of a vacuum ultraviolet (VUV, 185 nm) and TiO(2) oxidation system for the pretreatment of oily wastewater from restaurant. The influence of irradiation time, pH, dissolved oxygen (DO), the dosage of TiO(2) and the initial chemical oxygen demand (COD) concentration on COD removal efficiency was ascertained and optimum process conditions for stable and effective operation were determined. Under the optimum conditions of irradiation 10 min, initial COD 3981 mg/L, TiO(2) 150 mg/L, pH 7.0 and flow rate of air 40 L/h, the process of VUV and TiO(2)/VUV achieved removal efficiencies of COD, BOD(5) and oil as 50±3%, 37±2%, 86±3%, and 63±3%, 43±2%, 70±3%, respectively. The biodegradability factor f(B) of the wastewater was determined as 1.56 which indicated that the VUV/TiO(2) process improved the biodegradability of the oily wastewater significantly. Results clearly indicate that VUV/TiO(2) photolysis tends to destruct parts of COD, BOD(5), and ammonia, as well as enhances the biodegradability of the oily wastewater simultaneously. Thus, this technique could be used as a pretreatment step for conventional biological treatment of oily wastewater. Copyright © 2010 Elsevier B.V. All rights reserved.
Wang, Yingcai; Wang, Can; Shi, Shuai; Fang, Shuai
2018-06-01
The effects of Mn(II) on Fenton system to treat papermaking wastewater and the mechanism of Mn(II) enhanced Fenton reaction were investigated in this study. The chemical oxygen demand (COD) removal efficiency was enhanced in the presence of Mn(II), which increased by 19% compared with that of the Fenton system alone. The pseudo-first order reaction kinetic rate constant of Mn(II)/Fenton system was 2.11 times higher than that of Fenton system. 67%-81% COD were removed with the increasing Mn(II) concentration from 0 to 0.8 g/L. COD removal efficiency was also enhanced in a wider pH range (3-7), which indicated the operation parameters of Fenton technology could be broadened to a milder condition. The study of the mechanism showed that Mn(II) participated in the oxidation and coagulation stages in Fenton system. In the oxidation stage, Mn(II) promotes the production of HO 2 •/ O 2 • - , then HO 2 •/ O 2 • - reacts with Fe(III) to accelerate the formation of Fe(II), and finally accelerates the production of HO•. Meantime MnMnO 3 and Fe(OH) 3 forms in the coagulation stage, facilitating the removal of suspended substances and a large amount of COD, which enhances the overall COD removal of papermaking wastewater. This study provided a detailed mechanism to improve practical applications of Fenton technology.
Zou, Jinte; Li, Jun; Ni, Yongjiong; Wei, Su
2016-12-01
Removing nitrogen from wastewater with low chemical oxygen demand/total nitrogen (COD/TN) ratio is a difficult task due to the insufficient carbon source available for denitrification. Therefore, in the present work, a novel sequencing batch biofilm reactor (NSBBR) was developed to enhance the nitrogen removal from wastewater with low COD/TN ratio. The NSBBR was divided into two units separated by a vertical clapboard. Alternate feeding and aeration was performed in the two units, which created an anoxic unit with rich substrate content and an aeration unit deficient in substrate simultaneously. Therefore, the utilization of the influent carbon source for denitrification was increased, leading to higher TN removal compared to conventional SBBR (CSBBR) operation. The results show that the CSBBR removed up to 76.8%, 44.5% and 10.4% of TN, respectively, at three tested COD/TN ratios (9.0, 4.8 and 2.5). In contrast, the TN removal of the NSBBR could reach 81.9%, 60.5% and 26.6%, respectively, at the corresponding COD/TN ratios. Therefore, better TN removal performance could be achieved in the NSBBR, especially at low COD/TN ratios (4.8 and 2.5). Furthermore, it is easy to upgrade a CSBBR into an NSBBR in practice. Copyright © 2016. Published by Elsevier B.V.
Li, Wenzan; Li, Xuyong; Su, Jingjun; Zhao, Hongtao
2014-04-01
Many rivers in China and other newly industrialized countries have suffered from severe degradation of water quality in the context of rapid economic growth. An accounting method was developed to investigate the source and mass fluxes of the main contaminants in the Ziya River, a severely polluted and heavily modified river in a semiarid area of the North China Plain, where chemical oxygen demand (COD) and ammonia nitrogen (NH4-N) were the most important indicators of pollution. The results showed that the urban sewage with high concentration of COD and NH4-N dominated the streams, contributing to 80.7 % of the streamflow, 92.2 % of COD, and 94.5 % of NH4-N. The concentrations of COD and NH4-N in streams varied from 24.0-195.0 to 5.8-43.8 mg/L, respectively. Mass fluxes of COD and NH4-N of all pathways were quantified. Much of the polluted water was diverted to irrigation, and some eventually flowed into the Bohai Sea. Installation of adequate wastewater treatment facilities and making strict discharge standards can help improve the water quality. Our findings imply that a simple accounting method provides an extremely well-documented example for load estimation and can be useful for intervention strategies in heavily polluted and modified rivers in newly industrialized countries.
Zhang, Chen; Wang, Yuan; Song, Xiaowei; Kubota, Jumpei; He, Yanmin; Tojo, Junji; Zhu, Xiaodong
2017-12-31
This paper concentrates on a Chinese context and makes efforts to develop an integrated process to explicitly elucidate the relationship between economic growth and water pollution discharge-chemical oxygen demand (COD) discharge and ammonia nitrogen (NH 3 -N), using two unbalanced panel data sets covering the period separately from 1990 to 2014, and 2001 to 2014. In our present study, the panel unit root tests, cointegration tests, and Granger causality tests allowing for cross-sectional dependence, nonstationary, and heterogeneity are conducted to examine the causal effects of economic growth on COD/NH 3 -N discharge. Further, we simultaneously apply semi-parametric fixed effects estimation and parametric fixed effects estimation to investigate environmental Kuznets curve relationship for COD/NH 3 -N discharge. Our empirical results show a long-term bidirectional causality between economic growth and COD/NH 3 -N discharge in China. Within the Stochastic Impacts by Regression on Population, Affluence and Technology framework, we find evidence in support of an inverted U-shaped curved link between economic growth and COD/NH 3 -N discharge. To the best of our knowledge, there have not been any efforts made in investigating the nexus of economic growth and water pollution in such an integrated manner. Therefore, this study takes a fresh look on this topic. Copyright © 2017 Elsevier B.V. All rights reserved.
Masterson, John P.; Barlow, Paul M.
1994-01-01
The effects of changing patterns of ground-water pumping and aquifer recharge on the surface-water and ground-water hydrologic systems were determined for the Cape Cod, Martha's Vineyard, and Nantucket Island Basins. Three-dimensional, transient, ground-water-flow modelS that simulate both freshwater and saltwater flow were developed for the f1ow cells of Cape Cod which currently have large-capacity public-supply wells. Only the freshwater-flow system was simulated for the Cape Cod flow cells where public-water supply demands are satisfied by small-capacity domestic wells. Two- dimensional, finite-difference, change models were developed for Martha's Vineyard and Nantucket Island to determine the projected drawdowns in response to projected in-season pumping rates for 180 days of no aquifer recharge. Results of the simulations indicate very little change in the position of the freshwater-saltwater interface from predevelopment flow conditions to projected ground-water pumping and recharge rates for Cape Cod in the year 2020. Results of change model simulations for Martha's Vineyard and Nantucket Island indicate that the greatest impact in response to projected in-season ground-water pumping occurs at the pumping centers and the magnitude of the drawdowns are minimal with respect to the total thickness of the aquifers.
Lee, Yun-Yeong; Kim, Tae G; Cho, Kyung-Suk
2016-11-09
The chemical oxygen demand (COD) removal, electricity generation, and microbial communities were compared in 3 types of microbial fuel cells (MFCs) treating molasses wastewater. Single-chamber MFCs without and with a proton exchange membrane (PEM), and double-chamber MFC were constructed. A total of 10,000 mg L(-1) COD of molasses wastewater was continuously fed. The COD removal, electricity generation, and microbial communities in the two types of single-chamber MFCs were similar, indicating that the PEM did not enhance the reactor performance. The COD removal in the single-chamber MFCs (89-90%) was higher than that in the double-chamber MFC (50%). However, electricity generation in the double-chamber MFC was higher than that in the single-chamber MFCs. The current density (80 mA m(-2)) and power density (17 mW m(-2)) in the double-chamber MFC were 1.4- and 2.2-times higher than those in the single-chamber MFCs, respectively. The bacterial community structures in single- and double-chamber MFCs were also distinguishable. The amount of Proteobacteria in the double-chamber MFC was 2-3 times higher than those in the single-chamber MFCs. For the archaeal community, Methanothrix (96.4%) was remarkably dominant in the single-chamber MFCs, but Methanobacterium (35.1%), Methanosarcina (28.3%), and Methanothrix (16.2%) were abundant in the double-chamber MFC.
Chen, Qing; Yang, Ying; Zhou, Mengsi; Liu, Meihong; Yu, Sanchuan; Gao, Congjie
2015-03-02
Raw and biologically treated textile effluents were submerged filtrated using lab-fabricated hollow fiber nanofiltration membrane with a molecular weight cut-off of about 650 g/mol. Permeate flux, chemical oxygen demand (COD) reduction, color removal, membrane fouling, and cleaning were investigated and compared by varying the trans-membrane pressure (TMP) and volume concentrating factor (VCF). It was found that both raw and biologically treated textile effluents could be efficiently treated through submerged nanofiltration. The increase of TMP resulted in a decline in water permeability, COD reduction, color removal, and flux recovery ratio, while the increase of VCF resulted in both increased COD reduction and color removal. Under the TMP of 0.4 bar and VCF of 5.0, fluxes of 1.96 and 2.59 l/m(2)h, COD reductions of 95.7 and 94.2%, color removals of 99.0, and 97.3% and flux recovery ratios of 91.1 and 92.9% could be obtained in filtration of raw and biologically treated effluents, respectively. After filtration, the COD and color contents of the raw effluent declined sharply from 1780 to 325 mg/l and 1.200 to 0.060 Abs/cm, respectively, while for the biologically treated effluent, they decreased from 780 to 180 mg/l and 0.370 to 0.045 Abs/cm, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.
Pillai, Indu M Sasidharan; Gupta, Ashok K
2017-05-15
A continuous flow electrochemical reactor was developed, and its application was tested for the treatment of textile wastewater. A parallel plate configuration with serpentine flow was chosen for the continuous flow reactor. Uniparameter optimization was carried out for electrochemical oxidation of synthetic and real textile wastewater (collected from the inlet of the effluent treatment plant). Chemical Oxygen Demand (COD) removal efficiency of 90% was achieved for synthetic textile wastewater (initial COD - 780 mg L -1 ) at a flow rate of 500 mL h -1 (retention time of 6 h) and a current density of 1.15 mA cm -2 and the energy consumption for the degradation was 9.2 kWh (kg COD) -1 . The complete degradation of real textile wastewater (initial COD of 368 mg L -1 ) was obtained at a current density of 1.15 mA cm -2 , NaCl concentration of 1 g L -1 and retention time of 6 h. Energy consumption and mass transfer coefficient of the reactions were calculated. The continuous flow reactor performed better than batch reactor with reference to energy consumption and economy. The overall treatment cost for complete COD removal of real textile wastewater was 5.83 USD m -3 . Copyright © 2017 Elsevier Ltd. All rights reserved.
Uke, Matthew N; Stentiford, Edward
2013-06-01
Poor performance of leachbed reactors (LBRs) is attributed to channelling, compaction from waste loading, unidirectional water addition and leachate flow causing reduced hydraulic conductivity and leachate flow blockage. Performance enhancement was evaluated in three LBRs M, D and U at 22 ± 3°C using three water addition and leachate recycle strategies; water addition was downflow in D throughout, intermittently upflow and downflow in M and U with 77% volume downflow in M, 54% volume downflow in U while the rest were upflow. Leachate recycle was downflow in D, alternately downflow and upflow in M and upflow in U. The strategy adopted in U led to more water addition (30.3%), leachate production (33%) and chemical oxygen demand (COD) solubilisation (33%; 1609 g against 1210 g) compared to D (control). The total and volatile solids (TS and VS) reductions were similar but the highest COD yield (g-COD/g-TS and g-COD/g-VS removed) was in U (1.6 and 1.9); the values were 1.33 and 1.57 for M, and 1.18 and 1.41 for D respectively. The strategy adopted in U showed superior performance with more COD and leachate production compared to reactors M and D. Copyright © 2013 Elsevier Ltd. All rights reserved.
Treatment of hydraulic fracturing wastewater by wet air oxidation.
Wang, Wei; Yan, Xiuyi; Zhou, Jinghui; Ma, Jiuli
2016-01-01
Wastewater produced by hydraulic fracturing for oil and gas production is characterized by high salinity and high chemical oxygen demand (COD). We applied a combination of flocculation and wet air oxidation technology to optimize the reduction of COD in the treatment of hydraulic fracturing wastewater. The experiments used different values of flocculant, coagulant, and oxidizing agent added to the wastewater, as well as different reaction times and treatment temperatures. The use of flocculants for the pretreatment of fracturing wastewater was shown to improve treatment efficiency. The addition of 500 mg/L of polyaluminum chloride (PAC) and 20 mg/L of anionic polyacrylamide (APAM) during pretreatment resulted in a COD removal ratio of 8.2% and reduced the suspended solid concentration of fracturing wastewater to 150 mg/L. For a solution of pretreated fracturing wastewater with 12 mL of added H2O2, the COD was reduced to 104 mg/L when reacted at 300 °C for 75 min, and reduced to 127 mg/L when reacted at the same temperature for 45 min while using a 1 L autoclave. An optimal combination of these parameters produced treated wastewater that met the GB 8978-1996 'Integrated Wastewater Discharge Standard' level I emission standard.
Treatment of laundrette wastewater using Starbon and Fenton's reagent.
Tony, Maha A; Parker, Helen L; Clark, James H
2016-09-18
The use of grey water for a variety of purposes is gaining increased popularity as a means of preserving scarce freshwater resources. In this work, catalytic oxidation over Fenton's reagent and adsorption techniques using Starbon (mesoporous material derived from polysaccharides) has been applied. These novel techniques are used as an alternative to already studied treatments of grey water such as filtration and/or biological processes. In this study, grey water, collected from a commercial laundrette, has been used. Treatment efficiency was determined by changes in the chemical oxygen demand (COD) of the grey water. Experiments using Fenton's reagent at optimum conditions of Fe(3+) = 40 mg L(-1); H2O2 = 400 mg L(-1) and pH 3 were very successful, resulting in a 95% COD removal after 15 min. Treatment with Starbon adsorption was also effective, reaching up to 81% COD removal at pH 3 within 1 h. The combined treatment with Fenton's reagent and Starbon resulted in a 93% COD removal at a significantly reduced concentration of Fenton's reagent compared to the treatment with solo Fenton's reagent. This lower chemical dose has the advantage of reducing costs and lowering sludge generation.
Grey water characterization and treatment for reuse in an arid environment.
Smith, E; Bani-Melhem, K
2012-01-01
Grey water from a university facilities building in Cairo, Egypt was analysed for basic wastewater parameters. Mean concentrations were calculated based on grab samples over a 16-month period. Values for chemical oxygen demand (COD) and nutrients exceeded values reported in a number of other studies of grey water, while coliform counts were also high. A submerged membrane bioreactor (SMBR) system using a hollow fibre ultrafiltration membrane was used to treat the grey water with the aim of producing effluent that meets reuse guidelines for agriculture. A test run for 50 days at constant transmembrane pressure resulted in very good removal for key parameters including COD, total suspended solids (TSS), colour, turbidity, ammonia nitrogen, anionic surfactants, and coliform bacteria. High standard deviations were observed for COD and coliform concentrations for both monthly grab samples and influent values from the 50-day SMBR experiment. SMBR effluent meets international and local guidelines for at least restricted irrigation, particularly as pertains to COD, TSS, and faecal coliforms which were reduced to mean treated values of 50 mg/L, 0 mg/L (i.e., not detected), and <50 cfu/100 mL, respectively.
DC water plasma at atmospheric pressure for the treatment of aqueous phenol.
Yuan, Min-Hao; Narengerile; Watanabe, Takayuki; Chang, Ching-Yuan
2010-06-15
This study investigated the decomposition of aqueous phenol by direct current (DC) water plasma. The operation of DC water plasma was carried out in the absence of inert gases or air injected and cooling-controlled and pressure-controlled devices. The results indicated that 1 mol.% (52.8 g L(-1)) phenol was drastically decomposed by DC water plasma touch with energy efficiencies of 1.9 x 10(-8)-2.2 x 10(-8) mol J(-1). Also, the value of chemical oxygen demand (COD) was reduced from 100 000 mg L(-1) down to 320 mg L(-1) over a short retention time. The maximum decomposition rate of the COD was 258 mg COD min(-1) for the arc power of 0.91 kW. In the effluent analysis, H(2) (63-68%), CO (3.6-6.3%), CO(2) (25.3-28.1%) were major products in the exhaust gas and CH(4), C(2)H(2), HCOOH and C(6)H(6) in trace level. Further, HCOOH and HCHO were observed in the liquid effluents. Within the current paper, the results indicated that the DC water plasma torch is capable of an alternative green technology for phenol wastewater containing high COD.
El-Ashtoukhy, E-S Z; Amin, N K; Fouad, Y O
2015-10-01
This paper deals with the electrocoagulation of real wastewater produced from a car wash station using a new cell design featuring a horizontal spiral anode placed above a horizontal disc cathode. The study dealt with the chemical oxygen demand (COD) reduction and turbidity removal using electrodes in a batch mode. Various operating parameters such as current density, initial pH, NaCl concentration, temperature, and electrode material were examined to optimize the performance of the process. Also, characterization of sludge formed during electrocoagulation was carried out. The results indicated that the COD reduction and turbidity removal increase with increasing the current density and NaCl concentration; pH from 7 to 8 was found to be optimum for treating the wastewater. Temperature was found to have an insignificant effect on the process. Aluminum was superior to iron as a sacrificial electrode material in treating car wash wastewater. Energy consumption based on COD reduction ranged from 2.32 to 15.1 kWh/kg COD removed depending on the operating conditions. Finally, the sludge produced during electrocoagulation using aluminum electrodes was characterized by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) analysis.
Mesophilic biomethanation and treatment of poultry waste-water using pilot scale UASB reactor.
Atuanya, Ernest I; Aigbirior, Moses
2002-07-01
The feasibility of applying the up-flow anaerobic sludge blanket (UASB) treatment for poultry waste (faeces) water was examined. A continuous-flow UASB pilot scale reactor of 3.50 L capacity using mixed culture was operated for 95 days to assess the treatability of poultry waste-water and its methane production. The maximum chemical oxygen demand (COD) removed was found to be 78% when organic loading rate (OLR) was 2.9 kg COD m(-3) day(-1) at hydraulic retention times (HRT) of 13.2 hr. The average biogas recovery was 0.26 m3 CH4 kg COD with an average methane content of 57% at mean temperature of 30 degrees C. Data indicate more rapid methanogenesis with higher loading rates and shorter hydraulic retention times. At feed concentration of 4.8 kg COD m(-3) day(-1), anaerobic digestion was severely retarded at all hydraulic retention time tested. This complication in the reactor operations may be linked to build-up of colloidal solids often associated with poultry waste water and ammonia toxicity. Isolates from granular sludge and effluent were found to be facultative anaerobes most of which were Pseudomonas genera.
Chou, Wei-Lung; Wang, Chih-Ta; Chang, Wen-Chun; Chang, Shih-Yu
2010-08-15
In this study, metal hydroxides generated during electrocoagulation (EC) were used to remove the chemical oxygen demand (COD) of oxide chemical mechanical polishing (oxide-CMP) wastewater from a semiconductor manufacturing plant by EC. Adsorption studies were conducted in a batch system for various current densities and temperatures. The COD concentration in the oxide-CMP wastewater was effectively removed and decreased by more than 90%, resulting in a final wastewater COD concentration that was below the Taiwan discharge standard (100 mg L(-1)). Since the processed wastewater quality exceeded the direct discharge standard, the effluent could be considered for reuse. The adsorption kinetic studies showed that the EC process was best described using the pseudo-second-order kinetic model at the various current densities and temperatures. The experimental data were also tested against different adsorption isotherm models to describe the EC process. The Freundlich adsorption isotherm model predictions matched satisfactorily with the experimental observations. Thermodynamic parameters, including the Gibbs free energy, enthalpy, and entropy, indicated that the COD adsorption of oxide-CMP wastewater on metal hydroxides was feasible, spontaneous and endothermic in the temperature range of 288-318 K. Copyright 2010 Elsevier B.V. All rights reserved.
Collivignarelli, M C; Bertanza, G; Sordi, M; Pedrazzani, R
2015-01-01
This research was carried out on a full-scale pure oxygen thermophilic plant, operated and monitored throughout a period of 11 years. The plant treats 60,000 t y⁻¹ (year 2013) of high-strength industrial wastewaters deriving mainly from pharmaceuticals and detergents production and landfill leachate. Three different plant configurations were consecutively adopted: (1) biological reactor + final clarifier and sludge recirculation (2002-2005); (2) biological reactor + ultrafiltration: membrane biological reactor (MBR) (2006); and (3) MBR + nanofiltration (since 2007). Progressive plant upgrading yielded a performance improvement chemical oxygen demand (COD) removal efficiency was enhanced by 17% and 12% after the first and second plant modification, respectively. Moreover, COD abatement efficiency exhibited a greater stability, notwithstanding high variability of the influent load. In addition, the following relevant outcomes appeared from the plant monitoring (present configuration): up to 96% removal of nitrate and nitrite, due to denitrification; low-specific biomass production (0.092 kgVSS kgCODremoved⁻¹), and biological treatability of residual COD under mesophilic conditions (BOD5/COD ratio = 0.25-0.50), thus showing the complementarity of the two biological processes.
Yun, Yeo-Myeong; Shin, Hang-Sik; Lee, Chang-Kyu; Oh, You-Kwan; Kim, Hyun-Woo
2016-04-01
Converting lipid-extracted microalgal wastes to methane (CH4) via anaerobic digestion (AD) has the potential to make microalgae-based biodiesel platform more sustainable. However, it is apparent that remaining n-hexane (C6H14) from lipid extraction could inhibit metabolic pathway of methanogens. To test an inhibitory influence of residual n-hexane, this study conducted a series of batch AD by mixing lipid-extracted Chlorella vulgaris with a wide range of n-hexane concentration (∼10 g chemical oxygen demand (COD)/L). Experimental results show that the inhibition of n-hexane on CH4 yield was negligible up to 2 g COD/L and inhibition to methanogenesis became significant when it was higher than 4 g COD/L based on quantitative mass balance. Inhibition threshold was about 4 g COD/L of n-hexane. Analytical result of microbial community profile revealed that dominance of alkane-degrading sulfate-reducing bacteria (SRB) and syntrophic bacteria increased, while that of methanogens sharply dropped as n-hexane concentration increased. These findings offer a useful guideline of threshold n-hexane concentration and microbial community shift for the AD of lipid-extracted microalgal wastes.
Influence of ultrasound on the heterogeneous Fenton-like oxidation of acetic acid.
Cihanoğlu, Aydın; Gündüz, Gönül; Dükkancı, Meral
2017-11-01
The main objective of this study is to investigate the effect of ultrasound on the heterogeneous Fenton-like oxidation of acetic acid, which is one of the most resistant carboxylic acids to oxidation. For this purpose, firstly, the degradation of acetic acid was examined by using ultrasound alone and the effects of different parameters such as: type of sonication system, ultrasonic power, and addition of H 2 O 2 were investigated on the degradation of acetic acid. There was no chemical oxygen demand (COD) reduction in the presence of sonication alone. In the presence of the heterogeneous Fenton-like oxidation process alone, at 303 K, COD reduction reached only 7.1% after 2 h of reaction. However, the combination of the heterogeneous Fenton-like oxidation process with ultrasound increased the COD reduction from 7.1% to 25.5% after 2 h of reaction in an ultrasonic bath operated at 40 kHz, while the COD reduction only increased from 7.1% to 8.9% in the ultrasonic reactor operated at 850 kHz. This result indicates that the hybrid process of ultrasound and heterogeneous Fenton-like oxidation is a promising process to degrade acetic acid.
Tezcan Un, Umran; Kandemir, Ayse; Erginel, Nihal; Ocal, S Eren
2014-12-15
In this study, treatment of cheese whey wastewater was performed using a uniquely-designed continuous electrocoagulation reactor, not previously encountered in the literature. An iron horizontal rotating screw type anode was used in the continuous mode. An empirical model, in terms of effective operational factors, such as current density (40, 50, 60 mA/cm(2)), pH (3, 5, 7) and retention time (20, 40, 60 min), was developed through Response Surface Methodology. An optimal region characterized by low values of Chemical Oxygen Demand (COD) was determined. As a result of experiments, a linear effect in the removal efficiency of COD was obtained for current density and retention time, while the initial pH of the wastewater was found to have a quadratic effect in the removal efficiency of COD. The best fit nonlinear mathematical model, with a coefficient of determination value (R(2)) of 85%, was defined. An initial COD concentration of 15.500 mg/L was reduced to 2112 mg/L with a removal efficiency of 86.4%. In conclusion, it can be said that electrocoagulation was successfully applied for the treatment of cheese whey wastewater. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kolb, Marit; Bahadir, Müfit; Teichgräber, Burkhard
2017-10-01
Worldwide, the standard methods for the determination of the important wastewater parameter chemical oxygen demand (COD) are still based on the use of the hazardous chemicals, mercury sulfate and chromium(VI). However, due to their properties they are meanwhile classified as "priority pollutants" and shall be phased out or banned in the frame of REACH (current European Chemical Law: Registration, Evaluation, Authorization and restriction of Chemicals) by the European Union. Hence, a new wet-chemical method free of mercury and chromium(VI) was developed. Manganese(III) was used as oxidant and silver nitrate for the removal of chloride ions. The quantification was performed by back titration of manganese(III) with iron(II) as done in the standard method. In order to minimize losses of organic substances during the precipitation of silver chloride, suspended and colloid organic matter had to be separated by precipitation of aluminum hydroxide in a first step. In these cases, two fractions, one of the suspended and colloid matters and a second of the dissolved organic substances, are prepared and oxidized separately. The method was tested with potassium hydrogen phthalate (KHP) as conventional COD reference substance and different types of wastewater samples. The oxidation of KHP was reproducible in a COD range of 20-500 mg/L with a mean recovery rate of 88.7% in comparison to the standard COD method (DIN 38409-41). Also in presence of 1000 mg/L chloride a recovery rate of 84.1% was reached. For a series of industrial and municipal wastewater samples a high correlation (R 2 = 0.9935) to the standard method with a mean recovery rate of 78.1% (±5.2%) was determined. Even though the results of the new method are not 100% of the standard method, its high correlation to the standard method and reproducibility offers an environmentally benign alternative method with no need to purchase new laboratory equipment. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Kehoe, Thomas J.
1977-01-01
The instrumental method for detecting total organic carbon (TOC) in water samples is detailed. The method's limitations are discussed and certain precautions that must be taken are emphasized. The subject of TOC versus COD and BOD is investigated and TOC is determined to be a valid indication of biological demand. (BT)
Kaindl, Nikolaus
2010-01-01
A paper mill producing 500,000 ton of graphic paper annually has an on-site wastewater treatment plant that treats 7,240,000 m³ of wastewater per year, mechanically first, then biologically and at last by ozonation. Increased paper production capacity led to higher COD load in the mill effluent while production of higher proportions of brighter products gave worse biodegradability. Therefore the biological capacity of the WWTP needed to be increased and extra measures were necessary to enhance the efficiency of COD reduction. The full scale implementation of one MBBR with a volume of 1,230 m³ was accomplished in 2000 followed by another MBBR of 2,475 m³ in 2002. An ozonation step with a capacity of 75 kg O₃/h was added in 2004 to meet higher COD reduction demands during the production of brighter products and thus keeping the given outflow limits. Adding a moving bed biofilm reactor prior to the existing activated sludge step gives: (i) cost advantages when increasing biological capacity as higher COD volume loads of MBBRs allow smaller reactors than usual for activated sludge plants; (ii) a relief of strain from the activated sludge step by biological degradation in the MBBR; (iii) equalizing of peaks in the COD load and toxic effects before affecting the activated sludge step; (iv) a stable volume sludge index below 100 ml/g in combination with an optimization of the activated sludge step allows good sludge separation--an important condition for further treatment with ozone. Ozonation and subsequent bio-filtration pre-treated waste water provide: (i) reduction of hard COD unobtainable by conventional treatment; (ii) controllable COD reduction in a very wide range and therefore elimination of COD-peaks; (iii) reduction of treatment costs by combination of ozonation and subsequent bio-filtration; (iv) decrease of the color in the ozonated wastewater. The MBBR step proved very simple to operate as part of the biological treatment. Excellent control of the COD-removal rate in the ozone step allowed for economical usage and therefore acceptable operation costs in relation to the paper production.
2013-04-01
different non-target invertebrates (GFAFB 2003e). A study examining the non-target effects of Bti on stream invertebrate communities and fish (Lacy and...Factor), BOD (Biochemical Oxygen Demand), COD (Chemical Oxygen Demand), EC50 (50% effect concentration), ED 50 (50% effect dose), I.M. (intramuscular...loss of oxygen may cause fish suffocation. Therefore, treat only 1/3 to 1/2 of the water body area at one time and wait 14 days between treatments
Guo, Junyuan; Yang, Chunping; Zeng, Guangming
2013-09-01
Sterilization, alkaline-thermal and acid-thermal treatments were applied to activated sludge and the pre-treated sludge was used as raw material for Rhodococcus R3 to produce polymeric substances. After 60 h of fermentation, bioflocculant of 2.7 and 4.2 g L(-1) were produced in sterilized and alkaline-thermal treated sludge as compared to that of 0.9 g L(-1) in acid-thermal treated sludge. Response surface methodology (RSM) was employed to optimize the treatment process of swine wastewater using the composite of bioflocculant and zeolite modified by calcining with MgO. The optimal flocculating conditions were bioflocculant of 24 mg L(-1), modified zeolite of 12 g L(-1), CaCl2 of 16 mg L(-1), pH of 8.3 and contact time of 55 min, and the corresponding removal rates of COD, ammonium and turbidity were 87.9%, 86.9%, and 94.8%. The use of the composite by RSM provides a feasible way to improve the pollutant removal efficiencies and recycle high-level of ammonium from wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.
Textile wastewater treatment: colour and COD removal of reactive black-5 by ozonation
NASA Astrophysics Data System (ADS)
Suryawan, I. W. K.; Helmy, Q.; Notodarmojo, S.
2018-01-01
Textile industries produced a large amount of highly coloured wastewater containing variety of dyes in different concentrations. Due to the high concentration of organics in the effluents and the higher stability of modern synthetic dyes, the conventional biological treatment methods are ineffective for the complete colour removal and degradation of organics and dyes. On the other hand, physical-chemical treatment are not destructive, mainly just concentrate and separate the pollutants phases. This research paper investigates the removal of colour and chemical oxygen demand/COD from textile wastewater using ozone treatment. Varied ozone dosages of 1.16; 3.81; 18.79; and 40.88 mg/minute were used in the experiment. Varied wastewater containing Reactive Black 5 (RB-5) concentrations of 40 mg/L, 100 mg/L were also applied. Research result showed the highest colour removal efficiency of 96.9 % was achieved after 5 hours incubation time, while the highest COD removal efficiency of 77.5% was achieved after 2 hours incubation time.
Wongnoi, Rachbordin; Songkasiri, Warinthorn; Phalakornkule, Chantaraporn
2007-02-01
The objective of this study was to investigate the influence of a three-phase separator configuration on the performance of an upflow anaerobic sludge bed (USAB) treating wastewater from a fruit canning factory. The performances of two 30-L UASB reactors--one with a modified three-phase separator giving a spiral flow pattern and the other with a conventional configuration-were investigated in parallel. Wastewater, with a chemical oxygen demand (COD) concentration between 2000 and 7000 mg/L, was obtained from a fruit-canning factory. Based on the effluent data of the first 100 operation days, the UASB with the three-phase separator giving spiral flow patterns yielded up to 25% lower biomass washout. It also showed better efficiencies in treating wastewater--up to 60% lower effluent COD, up to 20% higher COD percent removal, and up to 29% higher biogas production. This work presents evidence of an improvement on the conventional physical design of a UASB.
Sabzali, Ahmad; Nikaeen, Mahnaz; Bina, Bijan
2013-01-01
Bio-carriers are an important component of integrated fixed-film activated sludge (IFAS) processes. In this study, the capability of cigarette filter rods (CFRs) as a bio-carrier in IFAS processes was evaluated. Two similar laboratory-scale IFAS systems were operated over a 4-month period using Kaldnes-K3 and CFRs as IFAS media. The process performance was studied by using chemical oxygen demand (COD). The organic loading rate was in the range 0.5-2.8 kgCOD/(m(3)·d). The COD average removal efficiencies were 89.3 and 93.9% for Kaldnes-K3 (reactor A) and cigarette filters (reactor B), respectively. The results demonstrate that the performance of the IFAS reactor containing CFRs was comparable to the reactor using Kaldnes. The CFRs, which have a high porous surface area and entrapment ability for microbial cells, could be successfully used in biofilm reactors as a bio-carrier.
Potential of tin (IV) chloride for treatment in Alor Pongsu as stabilized landfill leachate
NASA Astrophysics Data System (ADS)
Zainal, Sharifah Farah Fariza Syed; Aziz, Hamidi Abdul
2017-10-01
Leachate production from landfilling contributes crucial pollutants to the environment. This study examined the potential of tin (IV) chloride as coagulant that involved charge neutralization and sweep flocculation mechanisms. The negative charge of leachate is neutralized by adding tin (IV) chloride as cationic coagulant which resulted precipitation and swept most of the colloids and dissolved solids that entrapped in the settling as hydrous oxide floc. Parameters such as suspended solid (SS) content, color, and chemical oxygen demand (COD) were analyzed using standard jar test procedures. The best condition was observed at pH 8, with removal efficiencies of 75.99 %, 99.29 % and 98.36 % for COD, SS, and color, respectively. At optimum dosage, tin (IV) chloride successfully removed 98.40 % for color, 99.54 % for SS and 71.53 % for COD. These results indicated the satisfactory performance of tin (IV) chloride. Hence, tin (IV) chloride is a potential coagulant for the treatment of Alor Pongsu Landfill leachate.
Dumas, C; Perez, S; Paul, E; Lefebvre, X
2010-04-01
The efficiency of hyper-thermophilic (65 degrees Celsius) aerobic process coupled with a mesophilic (35 degrees Celsius) digester was evaluated for the activated sludge degradation and was compared to a conventional mesophilic digester. For two Sludge Retention Time (SRT), 21 and 42 days, the Chemical Oxygen Demand (COD) solubilisation and biodegradation processes, the methanisation yield and the aerobic oxidation were investigated during 180 days. The best results were obtained at SRT of 44 days; the COD removal yield was 30% higher with the Mesophilic Anaerobic Digestion/Thermophilic Aerobic Reactor (MAD-TAR) co-treatment. An increase of the sludge intrinsic biodegradability is also observed (20-40%), showing that the unbiodegradable COD in mesophilic conditions becomes bioavailable. However, the methanisation yield was quite similar for both processes at a same SRT. Finally, such a process enables to divide by two the volume of digester with an equivalent efficiency. Copyright 2009 Elsevier Ltd. All rights reserved.
Use of multiple functional traits of protozoa for bioassessment of marine pollution.
Zhong, Xiaoxiao; Xu, Guangjian; Xu, Henglong
2017-06-30
Ecological parameters based on multiply functional traits have many advantages for monitoring programs by reducing "signal to noise" ratios of observed species data. To identify potential indicators for bioassessment of marine pollution in function space, the functional patterns of protozoan communities and relationships with environmental changes were studied in coastal waters of the Yellow Sea during a 1-year period. The results showed that: (1) the spatial variability in functional trait distributions of the protozoa was significantly associated with changes in environmental variables, especially chemical oxygen demand (COD) and nutrients on spatial scale; (2) the functional traits, especially food resources and feeding type, were significantly correlated with COD and nutrients; and (3) the functional diversity indices were generally related to nutrients or COD. Based on the results, we suggest that the functional traits and diversity indices of protozoan communities may be used as more effective indicators for bioassessment of marine pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.
Luostarinen, S; Rintala, J
2006-01-01
Anaerobic on-site treatment of black water (BW) and a mixture of black water and kitchen waste (BWKW) was studied in a two-phased upflow anaerobic sludge blanket septic tank (UASBst) at 10-20 degrees C. The processes were fed either continuously or discontinuously (twice per weekday). Moreover, BWKW was post-treated for nitrogen removal in an intermittently aerated moving bed biofilm reactor (MBBR) at 20 degrees C. Removal of total chemical oxygen demand (COD1) was efficient at minimum 90% with all three UASBst at all temperatures. Removal of dissolved COD (CODdis) was also high at approx. 70% with continuously fed BW and discontinuously fed BWKW, while with discontinuous BW feeding it was 20%. Temperature decrease had little effect on COD removals, though the need for phase 2 increased with decreasing temperature, especially with BWKW. Post-treatment of BWKW in MBBR resulted in approx. 50% nitrogen removal, but suffered from lack of carbon for denitrification. With carbon addition, removal of ca. 83% was achieved.
Tang, Hao L; Xie, Yuefeng F; Chen, Yen-Chih
2012-11-01
This research investigated the application of Bio-Amp, a commercial bio-additive for the treatment of fat, oil, and grease (FOG) in a grease trap, and evaluated potential impacts of treated effluent on downstream collection system and treatment processes. Results show that after Bio-Amp treatment, FOG deposit formation was reduced by 40%, implicating a potential reduction of sewer line blockages. Chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP) and total fatty acids were reduced by 39%, 33%, 56%, and 59%, respectively, which represents an overall loading reduction of 9% COD, 5% TN and 40% TP received by the treatment plant from all the dining halls. On the other hand, readily biodegradable COD fractions significantly increased, which implies a potential improvement on Bio-P removal. Overall, the results showed that application of Bio-Amp in grease trap provides potential reduction of sewer line blockages, and can also alleviate downstream treatment burden. Copyright © 2012 Elsevier Ltd. All rights reserved.
Han, Wei; Yue, Qinyan; Wu, Suqing; Zhao, Yaqin; Gao, Baoyu; Li, Qian; Wang, Yan
2013-06-01
Utilization of clay ceramic particles (CCPs) as the novel filter media employed in an up-flow anaerobic bio-filter (UAF) was investigated. After a series of tests and operations, CCPs have presented higher total porosity and roughness, meanwhile lower bulk and grain density. When CCPs were utilized as fillers, the reactor had a shorter start up period of 45 days comparing with conventional reactors, and removal rate of chemical oxygen demand (COD) still reached about 76% at a relatively lower temperature during the stable state. In addition, degradation of COD and ammonia nitrogen (NH4-N) at different media height along the reactor was evaluated, and the dates showed that the main reduction process happened within the first 30 cm media height from the bottom flange. Five phases were observed according to different organic loadings during the experiment period, and the results indicated that COD removal increased linearly when the organic loading was increased. Copyright © 2013 Elsevier Ltd. All rights reserved.
Role of algal biofilm in improving the performance of free surface, up-flow constructed wetland.
Badhe, Neha; Saha, Shaswati; Biswas, Rima; Nandy, Tapas
2014-10-01
The role of algal biofilm in a pilot-scale, free-surface, up-flow constructed wetland (CW), was studied for its effect on chemical oxygen demand (COD), ammonia and phosphate removal during three seasons-autumn, winter and early spring. Effect of hydraulic retention time (HRT) was also investigated in presence and absence of algal biofilm. Principal Component Analysis was used to identify the independent factors governing the performance of CW. The study showed algal biofilm significantly improved nutrient removal, especially phosphate. Ammonia removal varied with HRT, biofilm and ambient temperature. Increase in biofilm thickness affected ammonia removal efficiency adversely. Algal biofilm-assisted COD removal compensated for reduced macrophyte density during winter. Two-way ANOVA test and the coefficients of dependent factors derived through multiple linear regression model confirmed role of algal biofilm in improving nutrient removal in CW. The study suggests that algal biofilm can be a green solution for bio-augmenting COD and nutrient removal in CW. Copyright © 2014 Elsevier Ltd. All rights reserved.
Low-cost adsorbent prepared from sewage sludge and corn stalk for the removal of COD in leachate.
He, Ying; Liao, Xiaofeng; Liao, Li; Shu, Wei
2014-01-01
Sewage sludge (SS) with corn stalk (CS) was used to prepare SS-based activated carbon (SAC) by pyrolysis with ZnCl2. The effects of mixing ratio on surface area and pore size distribution, elemental composition, surface chemistry, and morphology were investigated. The results demonstrated that the addition of CS into SS samples improved the surface area (from 92 to 902 m(2)/g) and the microporosity (from 1.2 to 4.1%) of the adsorbents and, therefore, enhancing the adsorption performance. The removal of leachate chemical oxygen demand (COD) was also determined. It was found that the COD removal rate reached 85% at pH 4 with the SAC (90 wt% CS) dosage of 2% (g/mL) and an adsorption time of 40 min. The adsorption experimental data were fitted by both Langmuir and Freundlich adsorption isotherms. Long-chain alkanes and refractory organics were found in raw leachate, but could be removed by SAC largely.
Rodriguez-Chiang, Lourdes; Llorca, Jordi; Dahl, Olli
2016-10-01
The methane potential and biodegradability of different ratios of acetate and lignin-rich effluents from a neutral sulfite semi-chemical (NSSC) pulp mill were investigated. Results showed ultimate methane yields up to 333±5mLCH4/gCOD when only acetate-rich substrate was added and subsequently lower methane potentials of 192±4mLCH4/gCOD when the lignin fraction was increased. The presence of lignin showed a linear decay in methane production, resulting in a 41% decrease in methane when the lignin-rich feed had a 30% increase. A negative linear correlation between lignin content and biodegradability was also observed. Furthermore, the effect of hydrotalcite (HT) addition was evaluated and showed increase in methane potential of up to 8%, a faster production rate and higher soluble lignin removal (7-12% higher). Chemical oxygen demand (COD) removal efficiencies between 64 and 83% were obtained for all samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
Xie, K; Lin, H J; Mahendran, B; Bagley, D M; Leung, K T; Liss, S N; Liao, B Q
2010-04-14
Submerged anaerobic membrane bioreactor (SAnMBR) technology was studied for kraft evaporator condensate treatment at 37 +/- 1 degrees C over a period of 9 months. Under tested organic loading rates of 1-24 kg COD/m3/day, a chemical oxygen demand (COD) removal efficiency of 93-99% was achieved with a methane production rate of 0.35 +/- 0.05 L methane/g COD removed and a methane content of 80-90% in produced biogas. Bubbling of recycled biogas was effective for in-situ membrane cleaning, depending on the biogas sparging rate used. The membrane critical flux increased and the membrane fouling rate decreased with an increase in the biogas sparging rate. The scanning electron microscopy images showed membrane pore clogging was not significant and sludge cake formation on the membrane surface was the dominant mechanism of membrane fouling. The results suggest that the SAnMBR is a promising technology for energy recovery from kraft evaporator condensate.
Municipal-wastewater treatment using upflow-anaerobic filters.
Manariotis, loannis D; Grigoropoulos, Sotirios G
2006-03-01
Three 12.5-L upflow-anaerobic filters (AF), with ceramic-saddle, plastic-ring, and crushed-stone packing, were used to evaluate the sustained treatment of municipal wastewater. The reactors were initially fed dogfood-fortified wastewater and then raw municipal wastewater, and operated at 25.4 degrees C (32 months) and 15.5 degrees C (2 months). During 23 months, the AF units treated municipal wastewater (mean chemical oxygen demand [COD] 442 mg/L and total suspended solids [TSS] 247 mg/L), the hydraulic retention time (HRT) ranged from 3.1 to 0.30 d (empty bed), and the organic loading rate ranged from 0.115 to 1.82 kg COD/m3d. At the higher temperature and an HRT (void volume) of 1.0 d, COD and TSS removals ranged from 74 to 79% and 95 to 96%, respectively; however, efficiencies declined substantially at HRT values less than 0.4 d. Reactor performance, under the same hydraulic and organic loadings, deteriorated with time and was adversely affected by lower temperature.
Kinetics of anaerobic treatment of landfill leachates combined with urban wastewaters.
Fueyo, Gema; Gutiérrez, Antonio; Berrueta, José
2003-04-01
The anaerobic degradation of landfill leachates mixed with domestic wastewater has been studied in a pilot-scale Upflow Anaerobic Sludge Blanket (UASB) reactor. A previous work in laboratory-scale had shown that a fraction (5%) of the refractory organic matter could be additionally degraded when these two substrates were treated in conjunction, but this synergistic effect in the Chemical Oxygen Demand (COD) removal was not reproduced. However, the mass loading rate for which the maximum degradation was obtained was higher for the mixtures (0.5 kg COD/kg SSV x d) than for the separated components (0.18 and 0.19), allowing an increase in the treatment capacity of the leachates. The methane productivity (304 L/kg COD) was close to the theoretical maximum and independent of the proportion of the mixture components. The experimental data were fitted to a modification of Haldane's kinetic model, in which the parameters depend on the hydraulic residence time and the biomass concentration.
Saratale, R G; Saratale, G D; Chang, J S; Govindwar, S P
2009-09-01
Micrococcus glutamicus NCIM-2168 exhibited complete decolorization and degradation of C.I. Reactive Green 19A (an initial concentration of 50 mg l(-1)) within 42 h at temperature 37 degrees C and pH 8, under static condition. Extent of mineralization was determined with total organic carbon (TOC) and chemical oxygen demand (COD) measurement, showing a satisfactory reduction of TOC (72%) and COD (66%) within 42 h. Enzyme studies shows involvement of oxidoreductive enzymes in decolorization/degradation process. Analytical studies of the extracted metabolites confirmed the significant degradation of Reactive Green 19A into various metabolites. The microbial toxicity and phytotoxicity assay revealed that the degradation of Reactive Green 19A produced nontoxic metabolites. In addition, the M. glutamicus strain was applied to decolorize a mixture of ten reactive dyes showing a 63% decolorization (in terms of decrease in ADMI value) within 72 h, along with 48% and 42% reduction in TOC and COD under static condition.
Malik, Sameena N; Ghosh, Prakash C; Vaidya, Atul N; Waindeskar, Vishal; Das, Sera; Mudliar, Sandeep N
2017-09-01
In this study, the comparative performance of coagulation, ozone, coagulation + ozone + coagulation and potassium ferrate processes to remove chemical oxygen demand (COD), color, and toxicity from a highly polluted textile wastewater were evaluated. Experimental results showed that ferrate alone had no effect on COD, color and toxicity removal. Whereas, in combination with FeSO 4 , it has shown the highest removal efficiency of 96.5%, 83% and 75% for respective parameters at the optimal dose of 40 mgL -1 + 3 ml FeSO 4 (1 M) in comparison with other processes. A seed germination test using seeds of Spinach (Spinacia oleracea) also indicated that ferrate was more effective in removing toxicity from contaminated textile wastewater. Potassium ferrate also produces less sludge with maximum contaminant removal, thereby making the process more economically feasible. Fourier transform infrared spectroscopy (FTIR) analysis also shows the cleavage of the chromophore group and degradation of textile wastewater during chemical and oxidation treatment processes.
Electrically enhanced MBR system for total nutrient removal in remote northern applications.
Wei, V; Elektorowicz, M; Oleszkiewicz, J A
2012-01-01
Thousands of sparsely populated communities scatter in the remote areas of northern Canada. It is economically preferable to adopt the decentralized systems to treat the domestic wastewater because of the vast human inhabitant distribution and cold climatic conditions. Electro-technologies such as electrofiltration, elctrofloatation, electrocoagulation and electrokinetic separation have been applied in water and conventional wastewater treatment for decades due to the minimum requirements of chemicals as well as ease of operation. The membrane bioreactor (MBR) is gaining popularity in recent years as an alternative water/wastewater treatment technology. However, few studies have been conducted to hyphenate these two technologies. The purpose of this work is to design a novel electrically enhanced membrane bioreactor (EMBR) as an alternative decentralized wastewater treatment system with improved nutrient removal and reduced membrane fouling. Two identical submerged membranes (GE ZW-1 hollow fiber module) were used for the experiment, with one as a control. The EMBR and control MBR were operated for 4 months at room temperature (20 ± 2 °C) with synthetic feed and 2 months at 10 °C with real sewage. The following results were observed: (1) the transmembrane pressure (TMP) increased significantly more slowly in the EMBR and the interval between the cleaning cycles of the EMBR increased at least twice; (2) the dissolved chemical oxygen demand (COD) or total organic carbon (TOC) in the EMBR biomass was reduced from 30 to 51%, correspondingly, concentrations of the extracellular polymeric substances (EPS), the major suspicious membrane foulants, decreased by 26-46% in the EMBR; (3) both control and EMBR removed >99% of ammonium-N and >95% of dissolved COD, in addition, ortho-P removal in the EMBR was >90%, compared with 47-61% of ortho-P removal in the MBR; and (4) the advantage of the EMBR over the conventional MBR in terms of membrane fouling retardation and phosphorus removal was further demonstrated at an operating temperature of 10 °C when fed with real sewage. The EMBR system has the potential for highly automated control and minimal maintenance, which is particularly suitable for remote northern applications.
Enhanced methane production from pig slurry with pulsed electric field pre-treatment.
Safavi, Seyedeh Masoumeh; Unnthorsson, Runar
2018-02-01
Intensive amount of manure produced in pig breeding sectors represents negative impact on the environment and requires optimal management. Anaerobic digestion as a well-known manure management process was optimized in this experimental study by pulsed electric field (PEF) pre-treatment. The effect of PEF on methane production was investigated at three different intensities (15, 30 and 50 kWh/m 3 ). The results indicate that the methane production and chemical oxygen demand (COD) removal was improved by continuous escalation of applied intensity, up to 50 kWh/m 3 . In comparison with untreated slurry, methane production and COD removal were increased up to 58% and 44%, respectively.
Tee, Pei-Fang; Abdullah, Mohammad Omar; Tan, Ivy A W; Amin, Mohamed A M; Nolasco-Hipolito, Cirilo; Bujang, Kopli
2018-04-01
A microbial fuel cell (MFC) integrated with adsorption system (MFC-AHS) is tested under various operating temperatures with palm oil mill effluent as the substrate. The optimum operating temperature for such system is found to be at ∼35°C with current, power density, internal resistance (R in ), Coulombic efficiency (CE) and maximum chemical oxygen demand (COD) removal of 2.51 ± 0.2 mA, 74 ± 6 mW m -3 , 25.4 Ω, 10.65 ± 0.5% and 93.57 ± 1.2%, respectively. Maximum current density increases linearly with temperature at a rate of 0.1772 mA m -2 °C -1 , whereas maximum power density was in a polynomial function. The temperature coefficient (Q 10 ) is found to be 1.20 between 15°C and 35°C. Present studies have demonstrated better CE performance when compared to other MFC-AHSs. Generally, MFC-AHS has demonstrated higher COD removals when compared to standalone MFC regardless of operating temperatures. ACFF: activated carbon fiber felt; APHA: American Public Health Association; CE: Coulombic efficiency; COD: chemical oxygen demand; ECG: electrocardiogram; GAC: granular activated carbon; GFB: graphite fiber brush; MFC: microbial fuel cell; MFC-AHS: microbial fuel cell integrated with adsorption hybrid system; MFC-GG: microbial fuel cell integrated with graphite granules; POME: palm oil mill effluent; PTFE: polytetrafluoroethylene; SEM: scanning electron microscope.
Applicability of Fluorescence and Absorbance Spectroscopy to Estimate Organic Pollution in Rivers
Knapik, Heloise Garcia; Fernandes, Cristovão Vicente Scapulatempo; de Azevedo, Júlio Cesar Rodrigues; do Amaral Porto, Monica Ferreira
2014-01-01
Abstract This article explores the applicability of fluorescence and absorbance spectroscopy for estimating organic pollution in polluted rivers. The relationship between absorbance, fluorescence intensity, dissolved organic carbon, biochemical oxygen demand (BOD), chemical oxygen demand (COD), and other water quality parameters were used to characterize and identify the origin and the spatial variability of the organic pollution in a highly polluted watershed. Analyses were performed for the Iguassu River, located in southern Brazil, with area about 2,700 km2 and ∼3 million inhabitants. Samples were collect at six monitoring sites covering 107 km of the main river. BOD, COD, nitrogen, and phosphorus concentration indicates a high input of sewage to the river. Specific absorbance at 254 and 285 nm (SUVA254 and A285/COD) did not show significant variation between sites monitored, indicating the presence of both dissolved compounds found in domestic effluents and humic and fulvic compounds derived from allochthonous organic matter. Correlations between BOD and tryptophan-like fluorescence peak (peak T2, r=0.7560, and peak T1, r=0.6949) and tyrosine-like fluorescence peak (peak B, r=0.7321) indicated the presence of labile organic matter and thus confirmed the presence of sewage in the river. Results showed that fluorescence and absorbance spectroscopy provide useful information on pollution in rivers from critical watersheds and together are a robust method that is simpler and more rapid than traditional methods employed by regulatory agencies. PMID:25469076
Treatment of domestic wastewater using conventional and baffled septic tanks.
Nasr, Fayza Aly; Mikhaeil, Basem
2013-01-01
The main theme of the study was a comparative study of domestic wastewater treatment using conventional and baffled septic tanks. The septic tanks were fed continuously with domestic wastewater at three different hydraulic retention times (HRTs). The HRTs chosen were 24, 48 and 72 h with corresponding organic loads of 0.321, 0.436 and 0.885 kg chemical oxygen demand (COD) per m3 per day, respectively. The performance of the septic tanks at the three HRTs gave satisfactory results. For the conventional septic tank, COD removal was 53.4%, 56% and 65.3%, at an HRT of 24, 48 and 72 h, respectively, with residual COD of 412, 380 and 334mg/l, respectively. At HRTs of 72, 48 and 24 h, the following percentages removals were realized for: biochemical oxygen demand (BOD), 68.4%, 57, 53.5%; total suspended solid (TSS), 65.3%, 58.3, 55%; phosphorus, 29.3%, 26.9, 25.6%; total Kjeldahl nitrogen 26.8%, 20.8, 17.7%, respectively. On the contrary, ammonia concentrations increased by 7.1%, 5.2 and 4.2% under the same conditions. Consequently, the results showed that the removal of fecal coliform at all HRTs was less than one log. The two baffled septic tanks exhibited superior results at HRTs of 72, 48 and 24 h. Comparing the treated domestic wastewater quality produced by the two types of septic tanks in terms of physico-chemical and biological characteristics, better results were obtained using the two baffles type.
Zou, Xiao-Ling
2015-06-01
Laboratorial scale experiments were performed to investigate and evaluate the performance and removal characteristics of organics, color, and genotoxicity by an integrated process including ozonation, activated carbon (AC), and biological aerated filter (BAF) for recycling biotreated dyeing wastewater (BTDW) collected from a cotton textile factory. Influent chemical oxygen demand (COD) in the range of 156 - 252 mg/L, 5-day biochemical oxygen demand (BOD5) of 13.5 - 21.7 mg/L, and color of 58 - 76° were observed during the 20-day continuous operation. Outflows with average COD of 43 mg/L, BOD5 of 6.6 mg/L, and color of 5.6° were obtained after being decontaminated by the hybrid system with ozone dosage of 0.25 mg O3applied/mg COD0, 40 min ozonation contact time, 30 min hydraulic retention time (HRT) for AC treatment, and 2.5 h HRT for BAF treatment. More than 82 % of the genotoxicity of BTDW was eliminated in the ozonation unit. The genotoxicity of the BAF effluent was less than 1.33 μg 4-nitroquinoline-N-oxide/L. Ozonation could change the organics molecular structures, destroy chromophores, increase the biodegradability, and obviously reduce the genotoxicity of BTDW. Results showed that the combined process could guarantee water reuse with high quality.
Anaerobic/aerobic treatment of greywater via UASB and MBR for unrestricted reuse.
Abdel-Shafy, Hussein I; Al-Sulaiman, Ahmed Makki; Mansour, Mona S M
2015-01-01
The aim of the present study was to investigate the efficiency of integrated up-flow anaerobic sludge blanket (UASB) as anaerobic system followed by membrane bioreactor (MBR) as aerobic system for the treatment of greywater for unrestricted reuse. Pilot-scale UASB and MBR units were installed and operated in the NRC, Egypt. Real raw greywater was subjected to UASB and the effluent was further treated with microfiltration MBR. The necessary trans-membrane pressure difference is applied by the water head above the membrane (gravity flow) without any energy input. The average characteristics of the raw greywater were 95, 392, 298, 10.45, 0.4, 118.5 and 28 mg/L for total suspended solids (TSS), chemical oxygen demand (COD), biochemical oxygen demand (BOD), total phosphates, nitrates, oil and grease, and total Kjeldahl nitrogen (TKN), respectively. The pH was 6.71. The UASB treatment efficiency reached 19.3, 57.8, 67.5 and 83.7% for TSS, COD, BOD5 and oil and grease, respectively. When the UASB effluent was further treated with MBR, the overall removal rate achieved 97.7, 97.8, 97.4 and 95.8% for the same parameters successively. The characteristics of the final effluent reached 2.5, 8.5, 6.1, 0.95, 4.6 and 2.3 mg/L for TSS, COD, BOD, phosphates, oil and grease and TKN, respectively. This final treated effluent could cope with the unrestricted water reuse of local Egyptian guidelines.
Esfandyari, Yahya; Mahdavi, Yousef; Seyedsalehi, Mahdi; Hoseini, Mohammad; Safari, Gholam Hossein; Ghozikali, Mohammad Ghanbari; Kamani, Hossein; Jaafari, Jalil
2015-04-01
Olive mill wastewater is considered as one of the most polluting effluents of the food industry and constitutes a source of important environmental problems. In this study, the removal of pollutants (chemical oxygen demand (COD), biochemical oxygen demand (BOD5), polyphenols, turbidity, color, total suspended solids (TSS), and oil and grease) from olive oil mill processing wastewater by peroxi-electrocoagulation/electrooxidation-electroflotation process with bipolar aluminum electrodes was evaluated using a pilot continuous reactor. In the electrochemical unit, aluminum (Al), stainless steel, and RuO2/Ti plates were used. The effects of pH, hydrogen peroxide doses, current density, NaCl concentrations, and reaction times were studied. Under optimal conditions of pH 4, current density of 40 mA/m(2), 1000 mg/L H2O2, 1 g/L NaCl, and 30-min reaction time, the peroxi-electrochemical method yielded very effective removal of organic pollution from the olive mill wastewater diluted four times. The treatment process reduced COD by 96%, BOD5 by 93.6%, total, polyphenols by 94.4%, color by 91.4%, turbidity by 88.7, suspended solids by 97% and oil and grease by 97.1%. The biodegradability index (BOD5/COD) increased from 0.29 to 0.46. Therefore, the peroxi-electrocoagulation/electrooxidation-electroflotation process is considered as an effective and feasible process for pre-treating olive mill wastewater, making possible a post-treatment of the effluent in a biological system.
Burger, Gillian; Parker, Wayne
2013-09-15
This study investigated the impacts of high pressure thermal hydrolysis (HPTH) pretreatment on the distribution of chemical oxygen demand (COD) species in waste activated sludge (WAS). In the first phase of the project, WAS from a synthetically-fed biological reactor (BR) was fed to an aerobic digester (AD). In the second phase, WAS from the BR was pretreated by HPTH at 150 °C and 3 bars for 30 min prior to being fed to the AD. A range of physical, biochemical and biological properties were regularly measured in each process stream in both phases. The COD of the BR WAS consisted of storage products (XSTO), active heterotrophs (XH) and endogenous decay products (XE). Pretreatment did not increase the extent to which the BR WAS was aerobically digested and hence it was concluded that the unbiodegradable COD fraction, i.e. XE, was unchanged by pretreatment. However, pretreatment did increase the rate of degradation as it converted 36% of XH to readily biodegradable COD (SB) and the remaining XH to slowly biodegradable COD (XB). Furthermore, XSTO was fully converted to SB by pretreatment. Although pretreatment did not change the VSS concentration in the downstream aerobic digester, it did decrease the ISS concentration by 46 ± 11%. This reduced the total mass of solids produced by the digester by 21 ± 8%. A COD-based HPTH pretreatment model was developed and calibrated. When this model was integrated into BioWin 3.1(®), it was able to accurately simulate both the steady state performance of the overall system employed in this study as well as dynamic respirometry results. Copyright © 2013 Elsevier Ltd. All rights reserved.
Yun, Jeonghee; Lee, Yun-Yeong; Choi, Hyung Joo; Cho, Kyung-Suk
2017-01-01
In this study, a three-stage-integrated process using the hydrogenic process (BioH 2 ), methanogenic process (BioCH 4 ), and a microbial fuel cell (MFC) was operated using molasses wastewater. The contribution of individual processes to chemical oxygen demand (COD) removal and energy production was evaluated. The three-stage integration system was operated at molasses of 20 g-COD L -1 , and each process achieved hydrogen production rate of 1.1 ± 0.24 L-H 2 L -1 day -1 , methane production rate of 311 ± 18.94 mL-CH 4 L -1 day -1 , and production rate per electrode surface area of 10.8 ± 1.4 g m -2 day -1 . The three-stage integration system generated energy production of 32.32 kJ g-COD -1 and achieved COD removal of 98 %. The contribution of BioH 2 , BioCH 4 , and the MFC reactor was 20.8, 72.2, and, 7.0 % of the total COD removal, and 18.7, 81.2, and 0.16 % of the total energy production, respectively. The continuous stirred-tank reactor BioH 2 at HRT of 1 day, up-flow anaerobic sludge blanket BioCH 4 at HRT of 2 days, and MFC reactor at HRT of 3 days were decided in 1:2:3 ratios of working volume under hydraulic retention time consideration. This integration system can be applied to various configurations depending on target wastewater inputs, and it is expected to enhance energy recovery and reduce environmental impact of the final effluent.
First-order hydrothermal oxidation kinetics of digested sludge compared with raw sludge.
Shanableh, A; Imteaz, M
2008-09-01
This article presents an assessment of the first-order hydrothermal oxidation kinetics of a selected digested sludge at subcritical (< 374 degrees C) and supercritical (> 374 degrees C) temperatures in the range of 250-460 degrees C. Furthermore, the results were compared with reported oxidation kinetics of raw sludge treated under identical experimental conditions. In the assessment, oxidation was considered to proceed in two steps: (1) decomposition of the particulate, or non-filterable, chemical oxygen demand (PCOD); followed by (2) ultimate oxidation and removal of the total, particulate and soluble, COD. The accumulation and removal of soluble COD (SCOD) was determined from the difference between the rates of sludge decomposition and ultimate oxidation. Using results from batch and continuous-flow hydrothermal treatment experiments, the reacting organic ingredients were separated into groups according to the ease or difficulty at which they were decomposed or removed, with Arrhenius-type activation energy levels assigned to the different groups. The analysis confirmed that within the treatment range of 75% to more than 97% COD removal, the oxidation kinetics of the digested and raw sludges were nearly identical despite differences in the proportions of their original organic ingredients. The original organic ingredients were mostly removed above 75% COD removal, and the oxidation kinetics appeared to be dominated by the removal of acetic acid, an intermediate by-product which constituted 50% to more than 80% of the remaining COD. Furthermore, the oxidation kinetics of both sludge types were consistent with reported first-order oxidation kinetics of pure acetic acid solutions. The resulting kinetic models adequately represented hydrothermal oxidation of digested sludge, in terms of COD and PCOD removals, as well as accumulation and removal of the soluble SCOD.
Bersinger, T; Bareille, G; Pigot, T; Bru, N; Le Hécho, I
2018-06-01
A good knowledge of the dynamic of pollutant concentration and flux in a combined sewer network is necessary when considering solutions to limit the pollutants discharged by combined sewer overflow (CSO) into receiving water during wet weather. Identification of the parameters that influence pollutant concentration and flux is important. Nevertheless, few studies have obtained satisfactory results for the identification of these parameters using statistical tools. Thus, this work uses a large database of rain events (116 over one year) obtained via continuous measurement of rainfall, discharge flow and chemical oxygen demand (COD) estimated using online turbidity for the identification of these parameters. We carried out a statistical study of the parameters influencing the maximum COD concentration, the discharge flow and the discharge COD flux. In this study a new test was used that has never been used in this field: the conditional regression tree test. We have demonstrated that the antecedent dry weather period, the rain event average intensity and the flow before the event are the three main factors influencing the maximum COD concentration during a rainfall event. Regarding the discharge flow, it is mainly influenced by the overall rainfall height but not by the maximum rainfall intensity. Finally, COD discharge flux is influenced by the discharge volume and the maximum COD concentration. Regression trees seem much more appropriate than common tests like PCA and PLS for this type of study as they take into account the thresholds and cumulative effects of various parameters as a function of the target variable. These results could help to improve sewer and CSO management in order to decrease the discharge of pollutants into receiving waters. Copyright © 2017 Elsevier B.V. All rights reserved.
Reactor performance and microbial community of an EGSB reactor operated at 20 and 15 degrees C.
Xing, W; Zuo, J-E; Dai, N; Cheng, J; Li, J
2009-09-01
To investigate the effects of low temperatures on the performance and microbial community of anaerobic wastewater treatment. An expanded granular sludge bed (EGSB) reactor was employed to treat synthetic brewery wastewater at 20 and 15 degrees C. Reactor performance was represented by chemical oxygen demand (COD) removal efficiency, while the microbial community was analysed using denaturing gradient gel electrophoresis (DGGE) and clone technology. When the hydraulic retention time (HRT) was maintained at 18 h, COD removal efficiencies above 85% were obtained at both 20 and 15 degrees C, with influent COD concentrations up to 7300 and 4100 mg l(-1), respectively. At 15 degrees C, the COD removal efficiency was more easily manipulated by increasing the influent COD concentration. DGGE and clone results for both temperatures revealed that Methanosaeta and Methanobacterium were two dominant methanogens, and that the majority of the eubacterial clones were represented by Firmicutes. When the temperature decreased from 20 to 15 degrees C, both archaeal and eubacterial communities had higher diversity, and the proportion of Methanosaeta (acetate-utilizing methanogens) decreased markedly from 60.0% to 49.3%, together with an increase in proportions of hydrogen-utilizing methanogens (especially Methanospirillum). The feasibility of psychrophilic anaerobic treatment of low and medium strength organic wastewaters was demonstrated, although lower temperature could significantly affect both reactor performance and the anaerobic microbial community. The findings enrich the theory involving the microbial community and the application of anaerobic treatment in a psychrophilic environment.
Jung, Kyung-Won; Ahn, Kyu-Hong
2016-01-01
The present study is focused on the application of recovered coagulant (RC) by acidification from drinking water treatment residuals for both adjusting the initial pH and aiding coagulant in electrocoagulation. To do this, real cotton textile wastewater was used as a target pollutant, and decolorization and chemical oxygen demand (COD) removal efficiency were monitored. A preliminary test indicated that a stainless steel electrode combined with RC significantly accelerated decolorization and COD removal efficiencies, by about 52% and 56%, respectively, even at an operating time of 5 min. A single electrocoagulation system meanwhile requires at least 40 min to attain the similar removal performances. Subsequently, the interactive effect of three independent variables (applied voltage, initial pH, and reaction time) on the response variables (decolorization and COD removal) was evaluated, and these parameters were statistically optimized using the response surface methodology. Analysis of variance showed a high coefficient of determination values (decolorization, R(2) = 0.9925 and COD removal, R(2) = 0.9973) and satisfactory prediction second-order polynomial quadratic regression models. Average decolorization and COD removal of 89.52% and 94.14%, respectively, were achieved, corresponding to 97.8% and 98.1% of the predicted values under statistically optimized conditions. The results suggest that the RC effectively played a dual role of both adjusting the initial pH and aiding coagulant in the electrocoagulation process.
Daghrir, Rimeh; Drogui, Patrick; Tshibangu, Joel; Delegan, Nazar; El Khakani, My Ali
2014-05-01
The performance of the electrochemical oxidation process for efficient treatment of domestic wastewater loaded with organic matter was studied. The process was firstly evaluated in terms of its capability of producing an oxidant agent (H2O2) using amorphous carbon (or carbon felt) as cathode, whereas Ti/BDD electrode was used as anode. Relatively high concentrations of H2O2 (0.064 mM) was produced after 90 min of electrolysis time, at 4.0 A of current intensity and using amorphous carbon at the cathode. Factorial design and central composite design methodologies were successively used to define the optimal operating conditions to reach maximum removal of chemical oxygen demand (COD) and color. Current intensity and electrolysis time were found to influence the removal of COD and color. The contribution of current intensity on the removal of COD and color was around 59.1 and 58.8%, respectively, whereas the contribution of treatment time on the removal of COD and color was around 23.2 and 22.9%, respectively. The electrochemical treatment applied under 3.0 A of current intensity, during 120 min of electrolysis time and using Ti/BDD as anode, was found to be the optimal operating condition in terms of cost/effectiveness. Under these optimal conditions, the average removal rates of COD and color were 78.9 ± 2 and 85.5 ± 2 %, whereas 70% of total organic carbon removal was achieved.
Pendyala, Brahmaiah; Chaganti, Subba Rao; Lalman, Jerald A; Heath, Daniel D
2016-03-01
The objective of this study was to establish the impact of different steam exploded organic fractions in municipal solid waste (MSW) on electricity production using microbial fuel cells (MFCs). In particular, the influence of individual steam exploded liquefied waste components (food waste (FW), paper-cardboard waste (PCW) and garden waste (GW)) and their blends on chemical oxygen demand (COD) removal, columbic efficiency (CE) and microbial diversity was examined using a mixture design. Maximum power densities from 0.56 to 0.83 W m(-2) were observed for MFCs fed with different feedstocks. The maximum COD removed and minimum CE were observed for a GW feed. However, a reverse trend (minimum COD removed and maximum CE) was observed for the FW feed. A maximum COD removal (78%) accompanied with a maximum CE (24%) was observed for a combined feed of FW, PCW plus GW in a 1:1:1 ratio. Lactate, the major byproduct detected, was unutilized by the anodic biofilm community. The organic fraction of municipal solid waste (OFMSW) could serve as a potential feedstock for electricity generation in MFCs; however, elevated protein levels will lead to reduced COD removal. The microbial communities in cultures fed FW and PCW was highly diversified; however, the communities in cultures fed FW or a feed mixture containing high FW levels were similar and dominated by Bacteroidetes and β-proteobacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.
Saejung, Chewapat; Thammaratana, Thani
2016-12-01
Utilization of photosynthetic bacteria (PSB) for wastewater treatment and production of biomass for economical single cell protein production is a feasible option. In this study, Rhodopseudomonas sp. CSK01 was used for municipal wastewater treatment and the effect of initial pH, light intensity and additional carbon source was investigated. Optimum chemical oxygen demand (COD) removal and biomass production were achieved when the initial pH and light intensity were 7 and 4000 lux, respectively. The specific growth rate, biomass yield and biomass productivity were found to be 0.4/d, 3.2 g/g COD and 2.1 g/L/d, respectively, which were improved by 100%, 167% and 200% relative to the original condition. Under the optimal conditions, COD removal reached 85% and maximum biomass was 6.2 g/L accomplished within three days of cultivation. The biomass had a relatively high protein content (60.1%) consisting of all essential amino acids. The contents of histidine, lysine, phenylalanine and leucine were superior to those of the previously described PSB. Results showed that COD removal was not improved in the presence of additional carbon sources (glucose, sucrose and malic acid). The addition of malic acid significantly increased the biomass accumulation by 279% relative to the original condition, whereas COD removal was declined due to carbon catabolite repression. In this study, PSB biomass recovery and catabolite repression are proposed in municipal wastewater treatment by Rhodopseudomonas sp.
Mesophilic and thermophilic activated sludge post-treatment of paper mill process water.
Vogelaar, J C T; Bouwhuis, E; Klapwijk, A; Spanjers, H; van Lier, J B
2002-04-01
Increasing system closure in paper mills and higher process water temperatures make the applicability of thermophilic treatment systems increasingly important. The use of activated sludge as a suitable thermophilic post-treatment system for anaerobically pre-treated paper process water from a paper mill using recycled wastepaper was studied. Two lab-scale plug flow activated sludge reactors were run in parallel for 6 months; a thermophilic reactor at 55 degrees C and a reference reactor at 30 degrees C. Both reactors were operated simultaneously at 20, 15 and 10 days SRT. The effects of temperature and SRT on sludge settleability and chemical oxygen demand (COD) removal efficiencies of different fractions were studied. Total COD removal percentages over the whole experimental period were 58+/-5% at 30 degrees C and 48 +/- 10% at 55 degrees C. The effect of the SRT on the total COD removal was negligible. Differences in total COD removal between both systems were due to a lesser removal of soluble and colloidal COD at 55 degrees C compared to the reference system. At 30 degrees C, colloidal COD removal percentages were 65+/-25%, 75+/-17% and 86+/-22% at 20, 15 and 10 days SRT, respectively. At 55 degrees C, these percentages were 48+/-34%, 40+/-28% and 70+/-25%, respectively. The effluent concentrations of colloidal COD in both systems were related to the influent concentration of colloidal material. The thermophilic sludge was not able to retain influent colloidal material as well as the mesophilic sludge causing a higher thermophilic effluent turbidity. Sludge settling properties were excellent in both reactor systems. These were neither temperature nor SRT dependent but were rather caused by extensive calcium precipitation in the aeration tanks creating a very dense sludge. For application in the board industry, a thermophilic in line treatment system seems feasible. The higher effluent turbidity is most likely offset by the energy gains of treatment under thermophilic conditions.
Pereira, Lucas A; Nimphius, Sophia; Kobal, Ronaldo; Kitamura, Katia; Turisco, Luiz A L; Orsi, Rita C; Cal Abad, César Cs; Loturco, Irineu
2018-02-22
The aims of this study were to (1) assess the relationship between selected speed-power related abilities (determined by 20-m sprint, unloaded countermovement and squat jumps [CMJ and SJ] and loaded jump squat [JS]) and performance in two distinct change of direction (COD) protocols (Zigzag and T-Test), and (2) determine the magnitude of difference between female and male Brazilian National Olympic Team handball athletes. Fifteen male and twenty-three female elite handball athletes volunteered to perform the following assessments: SJ and CMJ; Zigzag and T-Test; 20-m sprint with 5-, 10-, and 20-m splits, and mean propulsive power (MPP) in JS. Pearson product moment correlation (P< 0.05) was performed to determine the relationship between the COD tests (Zigzag and T-test) and speed-power measures (sprint, SJ, CMJ and JS). The differences between male and female performances were determined using the magnitude-based inference. Moderate to very large significant correlations were observed between both COD tests and the speed-power abilities. Further, male athletes demonstrated likely to almost certainly higher performances than female athletes in all assessed variables. The results of the current study suggest that different speed-power qualities are strongly correlated to the performance obtained in various COD assessments (r values varying from 0.38 to 0.84 and from 0.34 to 0.84 for correlations between speed and power tests with Zigzag and T-Test, respectively). However, the level of these associations can vary greatly, according to the mechanical demands of each respective COD task. Whilst COD tests may be difficult to implement during competitive seasons, due to the strong correlations presented herein, the regular use of vertical jump tests with these athletes seems to be an effective and applied alternative. Furthermore, it might be inferred that the proper development of loaded and unloaded jump abilities has potential for improving the physical qualities related to COD performance in handball athletes.
Bories, André; Guillot, Jean-Michel; Sire, Yannick; Couderc, Marie; Lemaire, Sophie-Andréa; Kreim, Virginie; Roux, Jean-Claude
2007-07-01
The effect of the addition of nitrate to winery wastewaters to control the formation of VFA in order to prevent odours during storage and treatment was studied in batch bioreactors at different NO(3)/chemical oxygen demand (COD) ratios and at full scale in natural evaporation ponds (2 x 7000 m(2)) by measuring olfactory intensity. In the absence of nitrate, butyric acid (2304 mgL(-1)), acetic acid (1633 mgL(-1)), propionic acid (1558 mgL(-1)), caproic acid (499 mgL(-1)) and valeric acid (298 mgL(-1)) were produced from reconstituted winery wastewater. For a ratio of NO(3)/COD=0.4 gg(-1), caproic and valeric acids were not formed. The production of butyric and propionic acids was reduced by 93.3% and 72.5%, respectively, at a ratio of NO(3)/COD=0.8, and by 97.4% and 100% at a ratio of NO(3)/COD=1.2 gg(-1). Nitrate delayed and decreased butyric acid formation in relation to the oxidoreduction potential. Studies in ponds showed that the addition of concentrated calcium nitrate (NITCAL) to winery wastewaters (3526 m(3)) in a ratio of NO(3)/COD=0.8 inhibited VFA production, with COD elimination (94%) and total nitrate degradation, and no final nitrite accumulation. On the contrary, in ponds not treated with nitrate, malodorous VFA (from propionic to heptanoïc acids) represented up to 60% of the COD. Olfactory intensity measurements in relation to the butanol scale of VFA solutions and the ponds revealed the pervasive role of VFA in the odour of the untreated pond as well as the clear decrease in the intensity and not unpleasant odour of the winery wastewater pond enriched in nitrates. The results obtained at full scale underscored the feasibility and safety of the calcium nitrate treatment as opposed to concentrated nitric acid.
Desimone, Leslie A.; Howes, Brian L.
1998-01-01
Nitrogen transport and transformations were followed over the initial 3 years of development of a plume of wastewater-contaminated groundwater in Cape Cod, Massachusetts. Ammonification and nitrification in the unsaturated zone and ammonium sorption in the saturated zone were predominant, while loss of fixed nitrogen through denitrification was minor. The major effect of transport was the oxidation of discharged organic and inorganic forms to nitrate, which was the dominant nitrogen form in transit to receiving systems. Ammonification and nitrification in the unsaturated zone transformed 16–19% and 50–70%, respectively, of the total nitrogen mass discharged to the land surface during the study but did not attenuate the nitrogen loading. Nitrification in the unsaturated zone also contributed to pH decrease of 2 standard units and to an N2O increase (46–660 µg N/L in the plume). Other processes in the unsaturated zone had little net effect: Ammonium sorption removed <1% of the total discharged nitrogen mass; filtering of particulate organic nitrogen was less than 3%; ammonium and nitrate assimilation was less than 6%; and ammonia volatilization was less than 0.25%. In the saturated zone a central zone of anoxic groundwater (DO ≤ 0.05 mg/L) was first detected 17 months after effluent discharge to the aquifer began, which expanded at about the groundwater-flow velocity. Although nitrate was dominant at the water table, the low, carbon-limited rates of denitrification in the anoxic zone (3.0–9.6 (ng N/cm3)/d) reduced only about 2% of the recharged nitrogen mass to N2. In contrast, ammonium sorption in the saturated zone removed about 16% of the recharged nitrogen mass from the groundwater. Ammonium sorption was primarily limited to anoxic zone, where nitrification was prevented, and was best described by a Langmuir isotherm in which effluent ionic concentrations were simulated. The initial nitrogen load discharged from the groundwater system may depend largely on the growth and stability of the sorbed ammonium pool, which in turn depends on effluent-loading practices, subsurface microbial processes, and saturation of available exchange sites.
Novel Self-driven Microbial Nutrient Recovery Cell with Simultaneous Wastewater Purification
Chen, Xi; Sun, Dongya; Zhang, Xiaoyuan; Liang, Peng; Huang, Xia
2015-01-01
Conventional wastewater purification technologies consume large amounts of energy, while the abundant chemical energy and nutrient resources contained in sewage are wasted in such treatment processes. A microbial nutrient recovery cell (MNRC) has been developed to take advantage of the energy contained in wastewater, in order to simultaneously purify wastewater and recover nutrient ions. When wastewater was circulated between the anode and cathode chambers of the MNRC, the organics (COD) were removed by bacteria while ammonium and phosphate (NH4+-N and PO43−-P) were recovered by the electrical field that was produced using in situ energy in the wastewater without additional energy input. The removal efficiencies from wastewater were >82% for COD, >96% for NH4+-N, and >64% for PO43−-P in all the operational cycles. Simultaneously, the concentrations of NH4+ and PO43− in the recovery chamber increased to more than 1.5 and 2.2 times, respectively, compared with the initial concentrations in wastewater. The MNRC provides proof-of-concept as a sustainable, self-driven approach to efficient wastewater purification and nutrient recovery in a comprehensive bioelectrochemical system. PMID:26503712
Crone, Brian C; Garland, Jay L; Sorial, George A; Vane, Leland M
2016-11-01
The need for energy efficient Domestic Wastewater (DWW) treatment is increasing annually with population growth and expanding global energy demand. Anaerobic treatment of low strength DWW produces methane which can be used to as an energy product. Temperature sensitivity, low removal efficiencies (Chemical Oxygen Demand (COD), Suspended Solids (SS), and Nutrients), alkalinity demand, and potential greenhouse gas (GHG) emissions have limited its application to warmer climates. Although well designed anaerobic Membrane Bioreactors (AnMBRs) are able to effectively treat DWW at psychrophilic temperatures (10-30 °C), lower temperatures increase methane solubility leading to increased energy losses in the form of dissolved methane in the effluent. Estimates of dissolved methane losses are typically based on concentrations calculated using Henry's Law but advection limitations can lead to supersaturation of methane between 1.34 and 6.9 times equilibrium concentrations and 11-100% of generated methane being lost in the effluent. In well mixed systems such as AnMBRs which use biogas sparging to control membrane fouling, actual concentrations approach equilibrium values. Non-porous membranes have been used to recover up to 92.6% of dissolved methane and well suited for degassing effluents of Upflow Anaerobic Sludge Blanket (UASB) reactors which have considerable solids and organic contents and can cause pore wetting and clogging in microporous membrane modules. Microporous membranes can recover up to 98.9% of dissolved methane in AnMBR effluents which have low COD and SS concentrations. Sequential Down-flow Hanging Sponge (DHS) reactors have been used to recover between 57 and 88% of dissolved methane from Upflow Anaerobic Sludge Blanket (UASB) reactor effluent at concentrations of greater than 30% and oxidize the rest for a 99% removal of total dissolved methane. They can also remove 90% of suspended solids and COD in UASB effluents and produce a high quality effluent. In situ degassing can increase process stability, COD removal, biomass retention, and headspace methane concentrations. A model for estimating energy consumption associated with membrane-based dissolved methane recovery predicts that recovered dissolved and headspace methane may provide all the energy required for operation of an anaerobic system treating DWW at psychrophilic temperatures. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kinyua, Maureen Njoki
Three continuously stirred tank reactors (CSTR) were operated in semi continuous mode treating swine waste using anaerobic digestion. The reactors were used to test the effect of solid retention time (SRT) on CH4 yield, total ammonia nitrogen (TAN) concentrations, % volatile solids (VS), chemical oxygen demand (COD) and volatile fatty acids (VFA) removal, readily biodegradable COD concentration and the denitrification potential for the effluent in a biological nutrient removal (BNR) system. During Phase I of the study, the three reactors were operated at the same 28 day SRT for 16 weeks. SRTs were then changed during the 12 week Phase II period. The SRTs studied were 14, 21 and 28 days, with the same organic loading rate (OLR) of 1.88 ± 0.2 kg VS/ m3-day. The reactor with the lowest SRT (14 days) had the highest VS and VFA removal at 73.6 and 67.6% and lowest TAN concentration at 0.78 g NH4+-N/L, followed by the 21 day and 28 day reactors. This was likely due to the fast microbial growth rates and substrate utilization rates in this reactor compared with the other two. The 14 day reactor had the highest CH4 yield at 0.33 m3CH 4/kg VS added and readily biodegradable COD concentration at 0.93 COD/L. The variations in CH4 yield and readily biodegradable COD concentrations between the three reactors were not statistically significant. Denitrification potential for the reactors was 1.20, 0.73 and 0.56 g COD/g N for 14, 21 and 28 day reactors, respectively, and the differences were statistically significant. None of the reactors achieved a denitrification potential of 5 g COD/g N, the amount required to use effluent of anaerobically digested swine waste as an internal carbon source in a BNR. This was attributed to operating conditions such as freezing and thawing of the raw swine waste that maximized CH4 yield and lowered the readily biodegradable COD concentration. In addition the 14 day reactor had low TAN concentrations thus increasing the denitrification potential of the centrate from that reactor.
NASA Astrophysics Data System (ADS)
Bhatti, Zulfiqar Ahmed; Mahmood, Qaisar; Raja, Iftikhar Ahmad; Malik, Amir Haider; Rashid, Naim; Wu, Donglei
Dilemmas like water shortage, rapid industrialization, growing human population and related issues have seriously affected human health and environmental sustainability. For conservation and sustainable use of our water resources, innovative methods for wastewater treatment are continuously being explored. Advance Oxidation Processes (AOPs) show a promising approach to meet specific objectives of municipal wastewater treatment (MWW). The MWW samples were pretreated with Al 2(SO 4) 4·8H 2O (Alum) at different doses 4, 8, 12-50 mg/L to enhance the sedimentation. The maximum COD removal was observed at alum treatments in range of 28-32 mg/L without increasing total dissolved solids (TDS). TDS were found to increase when the alum dose was increased from 32-40 mg/L. In the present study, the optimum alum dose of 30 mg/L for 3 h of sedimentation and subsequent integrated H 2O 2/UV treatment was applied (using 2.5 mL/L of 40% waste H 2O 2 and 35% fresh H 2O 2 separately). Organic and inorganic pollutants, contributing towards chemical oxygen demand (COD), biological oxygen demand (BOD), turbidity and total dissolved solids were degraded by H 2O 2/UV. About 93% COD, 90% BOD and 83% turbidity reduction occurred when 40% waste H 2O 2 was used. When using fresh H 2O 2, 63% COD, 68% BOD and 86% turbidity reduction was detected. Complete disinfection of coliform bacteria occurred by using 40% H 2O 2/UV. The most interesting part of this research was to compare the effectiveness of waste H 2O 2 with fresh H 2O 2. Waste H 2O 2 generated from an industrial process of disinfection was found more effective in the treatment of MWW than fresh 35% H 2O 2.
Li, Bing-zhi; Xu, Xiang-yang; Zhu, Liang
2010-01-01
A treatability study of industrial wastewater containing chlorinated nitroaromatic compounds (CNACs) by a catalytic ozonation process (COP) with a modified Mn/Co ceramic catalyst and an aerobic sequencing batch reactor (SBR) was investigated. A preliminary attempt to treat the diluted wastewater with a single SBR resulted in ineffective removal of the color, ammonia, total organic carbon (TOC) and chemical oxygen demand (COD). Next, COP was applied as a pretreatment in order to obtain a bio-compatible wastewater for SBR treatment in a second step. The effectiveness of the COP pretreatment was assessed by evaluating wastewater biodegradability enhancement (the ratio of biology oxygen demand after 5 d (BOD5) to COD), as well as monitoring the evolution of TOC, carbon oxidation state (COS), average oxidation state (AOS), color, and major pollutant concentrations with reaction time. In the COP, the catalyst preserved its catalytic properties even after 70 reuse cycles, exhibiting good durability and stability. The performance of SBR to treat COP effluent was also examined. At an organic loading rate of 2.0 kg COD/(m3·d), with hydraulic retention time (HRT)=10 h and temperature (30±2) °C, the average removal efficiencies of NH3-N, COD, BOD5, TOC, and color in a coupled COP/SBR process were about 80%, 95.8%, 93.8%, 97.6% and 99.3%, respectively, with average effluent concentrations of 10 mg/L, 128 mg/L, 27.5 mg/L, 25.0 mg/L, and 20 multiples, respectively, which were all consistent with the national standards for secondary discharge of industrial wastewater into a public sewerage system (GB 8978-1996). The results indicated that the coupling of COP with a biological process was proved to be a technically and economically effective method for treating industrial wastewater containing recalcitrant CNACs. PMID:20205304
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, ZhiPing, E-mail: liulqs@163.com; Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400020; Wu, WenHui
Highlights: • DOM fractions spectra analysis during the whole treatment process. • Efficient method was achieved to remove organic matters in landfill leachate. • Molecular weight distribution and fractions were discussed. - Abstract: A combined treatment process of air stripping + Fenton + sequencing batch reactor (SBR)+ coagulation was performed to remove the pollutants in landfill leachate. Molecular weight (MW) distribution and fractions of dissolved organic matter (DOM) were discussed to study the characteristics. The experiment showed that the removal rate of chemical oxygen demand (COD), five day biological oxygen demand (BOD{sub 5}) and ammonia nitrogen (NH{sub 3}−N) by themore » combined process were 92.8%, 87.8% and 98.0%, respectively. Humic acid (HA) and fulvic acid (FA) were the main fractions in raw leachate with 81.8% of the total COD concentration, while hydrophilic organic matter (HyI) was the dominant fraction in the final effluent of the combined process with 63.5% of the total COD concentration. After the combined treatment process, the removal rate of DOM and fractions HA, FA, HyI were 91.9%, 97.1%, 95.8% and 71.7%, respectively. Organic matters of MW < 2 k and MW > 100 k were removed with 90.5% and 97.9% COD concentration after the treatment. The ultraviolet–visible spectra (UV–vis), Fourier transform infrared spectra (FTIR) and three-dimensional excitation-emission matrices spectra (EEMs) indicated that benzene materials and phenol compounds were preferentially removed in air stripping. High MW matters, aromatic rings, conjugated moieties and some functional groups were mainly removed by Fenton. While small MW fractions, carboxylic acids, alcohols and protein-like materials were preferentially biodegraded via SBR. Fulvic-like and humic-like materials were mainly destroyed via Fenton oxidation and coagulation.« less
The effect of malathion on the activity, performance, and microbial ecology of activated sludge
Rauglas, Erik; Martin, Seth; Bailey, Kandace; Magnuson, Matthew; Phillips, Rebecca; Harper, Willie F.
2018-01-01
This study evaluated the effect of a VX (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate) surrogate (malathion) on the activity, performance, and ecology of activated sludge bioreactors. In the presence of malathion, the maximum observed respiration rates varied between 43 and 53 μg/O2 min, generally similar to the 49 μg O2/min rates observed in controls. Malathion did not alter the respiration ratio of O2 consumed-to-CO2 produced nor did it impact the shape of the oxygen consumption curves during respirometry. Shorter term (12 h) batch tests showed that both chemical oxygen demand (COD) and ammonia removal were not negatively impacted by the presence of 0.1–3 mg/L malathion. Longer term continuous addition (i.e. 40 days) of 0.1 mg/L of malathion also had no effect on COD and ammonia removal. In contrast to shorter term exposures, longer term continuous addition of 3 mg/L of malathion negatively impacted both COD and nitrogen removal and was associated with shifts in the abundance of species that are common to activated sludge. These results illustrate the impact that chemicals like malathion may have on COD removal, and nitrification, as well as the robustness of activated sludge microbial communities. PMID:27594690
Organic pollutants removal from 2,4,6-trinitrotoluene (TNT) red water using low cost activated coke.
Zhang, Mohe; Zhao, Quanlin; Ye, Zhengfang
2011-01-01
We treated 2,4,6-trinitrotoluene (TNT) red water from the Chinese explosive industry with activated coke (AC) from lignite. Since the composition of TNT red water was very complicated, chemical oxygen demand (COD) was used as the index for evaluating treatment efficiency. This study focused on sorption kinetics and equilibrium sorption isotherms of AC for the removal of COD from TNT red water, and the changes of water quality before and after adsorption were evaluated using high performance liquid chromatography, UV-Vis spectra and gas chromatography/mass spectroscopy. The results showed that the sorption kinetics of COD removal from TNT red water onto AC fitted well with the pseudo second-order model. The adsorption process was an exothermic and physical process. The sorption isotherm was in good agreement with Redlich-Peterson isotherm. At the conditions of initial pH = 6.28, 20 degrees C and 3 hr of agitation, under 160 g/L AC, 64.8% of COD was removed. The removal efficiencies of 2,4-dinitrotoluene-3-sulfonate (2,4-DNT-3-SO3-) and 2,4-dinitrotoluene-5-sulfonate (2,4-DNT-5-SO3-) were 80.5% and 84.3%, respectively. After adsorption, the acute toxicity of TNT red water reduced greatly, compared with that of unprocessed TNT red water.
Comett-Ambriz, I; Gonzalez-Martinez, S; Wilderer, P
2003-01-01
Anaerobic reactor biowaste effluent was treated with biofilm and activated sludge sequencing batch reactors to compare the performance of both systems. The treatment targets were organic carbon removal and nitrification. The pilot plant was operated in two phases. During the first phase, it was operated like a Moving Bed Biofilm Reactor (MBBR) with the Natrix media, with a specific surface area of 210 m2/m3. The MBBR was operated under Sequencing Batch Reactor (SBR) modality with three 8-hour cycles per day over 70 days. During the second phase of the experiment, the pilot plant was operated over 79 days as a SBR. In both phases the influent was fed to the reactor at a flow rate corresponding to a Hydraulic Retention Time (HRT) of 4 days. Both systems presented a good carbon removal for this specific wastewater. The Chemical Oxygen Demand (COD) total removal was 53% for MBBR and 55% for SBR. MBBR offered a higher dissolved COD removal (40%) than SBR (30%). The limited COD removal achieved is in agreement with the high COD to BOD5 ratio (1/3) of the influent wastewater. In both systems a complete nitrification was obtained. The different efficiencies in both systems are related to the different biomass concentrations.
Anaerobic digestion of wastewater from the fruit juice industry: experiments and modeling.
Zerrouki, Souhaib; Rihani, Rachida; Bentahar, Fatiha; Belkacemi, Khaled
2015-01-01
Anaerobic digestion of wastewater from the fruit juice industry was carried out in a batch digester. To study the effect of the pH values as well as the nutrient medium on the fermentation process, different parameters were monitored under mesophilic temperature, such as cumulative biogas volume, chemical oxygen demand (COD), total sugar, and biomass growth. It was found that for all cases, the COD concentration decreased with time. The lowest value reached was obtained when the nutrient medium was added; it was about 110 g/L after 480 h. In such cases, the COD removal reached about 80%; the highest cumulative biogas volume of about 5,515.8 NmL was reached after 480 h testing; and the lowest value reached was about 2,862.3 NmL in the case of peach-substrate containing sodium sulfite. The addition of nutrient medium improved the cumulative biogas production as well as the COD abatement. Measurement of the biogas composition highlighted three gaseous components, namely, methane (56.52%), carbon dioxide (20.14%), and hydrogen sulfide (23.34%). The modified Gompertz equation and the first-order kinetic model were used to describe the cumulative biogas production and the organic matter removal, respectively. A good agreement was found between simulated and experimental data.
Anjum, Muzammil; Al-Talhi, Hasan A; Mohamed, Saleh A; Kumar, Rajeev; Barakat, M A
2018-06-15
Biogas production using waste activated sludge (WAS) is one of the most demanding technologies for sludge treatment and generating energy in sustainable manner. The present study deals with the photocatalytic pretreatment of WAS using ZnO-ZnS@polyaniline (ZnO-ZnS@PANI) nanocomposite as means for increasing its degradability for improved biogas production by anaerobic digestion (AD). Photocatalysis accelerated the hydrolysis of WAS and increased the sCOD by 6.7 folds after 6 h and transform tCOD into bioavailable sCOD. After the AD of WAS, a removal of organic matter (60.6%) and tCOD (69.3%) was achieved in photocatalytic pretreated sludge. The biogas production was 1.6 folds higher in photocatalytic sludge with accumulative biogas up to 1645.1 ml L -1 vs after 45 days compared with the raw sludge (1022.4 ml L -1 VS ). Moreover, the photocatalysis decrease the onset of methanogenesis from 25 to 12 days while achieve the maximum conversion rate of reducing sugars into organic acids at that time. These results suggested that photocatalysis is an efficient pretreatment method and ZnO-ZnS@PANI can degrade sludge efficiently for enhance biogas production in anaerobic digestion process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Influence of lactic acid on the two-phase anaerobic digestion of kitchen wastes.
Zhang, Bo; Cai, Wei-min; He, Pin-jing
2007-01-01
To evaluate the influence of lactic acid on the methanogenesis, anaerobic digestion of kitchen wastes was firstly conducted in a two-phase anaerobic digestion process, and performance of two digesters fed with lactic acid and glucose was subsequently compared. The results showed that the lactic acid was the main fermentation products of hydrolysis-acidification stage in the two-phase anaerobic digestion process for kitchen wastes. The lactic acid concentration constituted approximately 50% of the chemical oxygen demand (COD) concentration in the hydrolysis-acidification liquid. The maximum organic loading rate was lower in the digester fed with lactic acid than that fed with glucose. Volatile fatty acids (VFAs) and COD removal were deteriorated in the methanogenic reactor fed with lactic acid compared to that fed with glucose. The specific methanogenic activity (SMA) declined to 0.343 g COD/(gVSSxd) when the COD loading were designated as 18.8 g/(Lxd) in the digester fed with lactic acid. The propionic acid accumulation occurred due to the high concentration of lactic acid fed. It could be concluded that avoiding the presence of the lactic acid is necessary in the hydrolysis-acidification process for the improvement of the two-phase anaerobic digestion process of kitchen wastes.
Hiwarkar, Ajay Devidas; Singh, Seema; Srivastava, Vimal Chandra; Mall, Indra Deo
2017-08-01
In this study, the electrochemical (EC) oxidation of a recalcitrant heterocyclic compound namely pyrrole has been reported using platinum coated titanium (Pt/Ti) electrodes. Response surface methodology (RSM) comprising of full factorial central composite design (CCD) with four factors and five levels has been used to examine the effects of different operating parameters such as current density (j), aqueous solution pH, conductivity (k) and treatment time (t) in an EC batch reactor. Pyrrole mineralization in aqueous solution was examined with multiple responses such as chemical oxygen demand (COD) (response, Y 1 ) and specific energy consumption (SEC) in kWh/kg of COD removed (response, Y 2 ). During multiple response optimization, the desirability function approach was employed to concurrently maximize Y 1 and minimize Y 2 . At the optimum condition, 82.9% COD removal and 7.7 kWh/kg of COD removed were observed. Degradation mechanism of pyrrole in wastewater was elucidated at the optimum condition of treatment by using UV-visible spectroscopy, Fourier transformed infra-red spectroscopy (FTIR), cyclic voltammetry (CV), ion chromatography (IC), higher performance liquid chromatography (HPLC) and gas chromatography-mass spectroscopy (GC-MS). The degradation pathway of pyrrole was proposed on the basis of the various analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Detoxification of olive mill wastewater by electrocoagulation and sedimentation processes.
Khoufi, Sonia; Feki, Firas; Sayadi, Sami
2007-04-02
Olive mill wastewater (OMW) is characterised by its high suspended solids content (SS), high turbidity (NTU), chemical oxygen demand (COD) concentration up to 100 gl(-1) and toxic phenolic compounds concentration up to 10 gl(-1). This study examined the effect of a physico-electrochemical method to detoxify olive mill wastewater prior an anaerobic biotreatment process. The proposed pre-treatment process consisted in a preliminary electrocoagulation step in which most phenolic compounds were polymerised, followed by a sedimentation step. The BOD(5)/COD ratio of the electrocoagulated OMW increased from 0.33, initial value, to 0.58. Furthermore, the sedimentation step yielded the removal of 76.2%, 75% and 71% of phenolic compounds, turbidity and suspended solid, respectively, after 3 days of plain settling. The combination of electrocoagulation and sedimentation allowed a COD reduction and decoloration of about 43% and 90%, respectively. This pre-treatment decreases the inhibition of Vibrio fisheri luminescence by 66.4%. Continuous anaerobic biomethanization experiments conducted in parallel with raw OMW and electrocoagulated OMW before and after sedimentation at a loading rate of 6g COD l(-1)day(-1), proved that the final pre-treated OMW was bioconverted into methane at high yield while raw OMW was very toxic to anaerobic microorganisms.
Treatment of landfill leachate using ASBR combined with zeolite adsorption technology.
Lim, Chi Kim; Seow, Ta Wee; Neoh, Chin Hong; Md Nor, Muhamad Hanif; Ibrahim, Zaharah; Ware, Ismail; Mat Sarip, Siti Hajar
2016-12-01
Sanitary landfilling is the most common way to dispose solid urban waste; however, improper landfill management may pose serious environmental threats through discharge of high strength polluted wastewater also known as leachate. The treatment of landfill leachate to fully reduce the negative impact on the environment, is nowadays a challenge. In this study, an aerobic sequencing batch reactor (ASBR) was proposed for the treatment of locally obtained real landfill leachate with initial ammoniacal nitrogen and chemical oxygen demand (COD) concentration of 1800 and 3200 mg/L, respectively. ASBR could remove 65 % of ammoniacal nitrogen and 30 % of COD during seven days of treatment time. Thereafter, an effective adsorbent, i.e., zeolite was used as a secondary treatment step for polishing the ammoniacal nitrogen and COD content that is present in leachate. The results obtained are promising where the adsorption of leachate by zeolite further enhanced the removal of ammoniacal nitrogen and COD up to 96 and 43 %, respectively. Furthermore, this combined biological-physical treatment system was able to remove heavy metals, i.e. aluminium, vanadium, chromium, magnesium, cuprum and plumbum significantly. These results demonstrate that combined ASBR and zeolite adsorption is a feasible technique for the treatment of landfill leachate, even considering this effluent's high resistance to treatment.
Kinetic study of anaerobic digestion of fruit-processing wastewater in immobilized-cell bioreactors.
Borja, R; Banks, C J
1994-08-01
The kinetics of the anaerobic digestion of a fruit-processing wastewater [chemical oxygen demand (COD) = 5.1 g/l] were investigated. Laboratory experiments were carried out in bioreactors containing supports of different chemical composition and features, namely bentonite and zeolite (aluminum silicates), sepiolite and saponite (magnesium silicates) and polyurethane foam, to which the microorganisms responsible for the process adhered. The influence of the support medium on the kinetics was compared with a control digester with suspended biomass. Assuming the overall anaerobic digestion process conforms to first-order kinetics, the specific rate constant, K0, was determined for each of the experimental reactors. The average values obtained were: 0.080 h-1 (bentonite); 0.103 h-1 (zeolite); 0.180 h-1 (sepiolite); 0.198 h-1 (saponite); 0.131 h-1 (polyurethane); and 0.037 h-1 (control). The results indicate that the support used to immobilize the micro-organisms had a marked influence on the digestion process; the results were significant at the 95% confidence level. Methanogenic activity increased linearly with COD, with the saponite and sepiolite supports showing the highest values. The yield coefficient of methane was 270 ml of methane (under standard temperature and pressure conditions)/g of COD. The average elimination of COD was 89.5%.
Picos-Benítez, Alain R; López-Hincapié, Juan D; Chávez-Ramírez, Abraham U; Rodríguez-García, Adrián
2017-03-01
The complex non-linear behavior presented in the biological treatment of wastewater requires an accurate model to predict the system performance. This study evaluates the effectiveness of an artificial intelligence (AI) model, based on the combination of artificial neural networks (ANNs) and genetic algorithms (GAs), to find the optimum performance of an up-flow anaerobic sludge blanket reactor (UASB) for saline wastewater treatment. Chemical oxygen demand (COD) removal was predicted using conductivity, organic loading rate (OLR) and temperature as input variables. The ANN model was built from experimental data and performance was assessed through the maximum mean absolute percentage error (= 9.226%) computed from the measured and model predicted values of the COD. Accordingly, the ANN model was used as a fitness function in a GA to find the best operational condition. In the worst case scenario (low energy requirements, high OLR usage and high salinity) this model guaranteed COD removal efficiency values above 70%. This result is consistent and was validated experimentally, confirming that this ANN-GA model can be used as a tool to achieve the best performance of a UASB reactor with the minimum requirement of energy for saline wastewater treatment.
Improving alachlor biodegradability by ferrate oxidation.
Zhu, Jian-Hang; Yan, Xi-Luan; Liu, Ye; Zhang, Bao
2006-07-31
Alachlor can be recalcitrant when present at high concentrations in wastewater. Ferrate oxidation was used as a pretreatment to improve its biodegradability and was evaluated by monitoring alachlor elimination and removal of COD(Cr) (chemical oxygen demand determined by potassium dichromate) during the oxidation process up to a value compatible with biological treatment. Ferrate oxidation resulted in elimination of alachlor followed by degradation of its intermediates. High pH suppressed alachlor removal and COD(Cr) removal due to the low redox potential of ferrate ions. Although alachlor can be totally eliminated within 10 min under optimized conditions (alachlor, 40 mg l(-1); ferrate:alachlor molar ratio, 2; and pH 7.0), its complete mineralization cannot be achieved by ferrate oxidation alone. Alachlor solution treated by ferrate for 10 min inhibited an up-flow biotreatment with activated sludge. The biodegradability of ferrate-pretreated solution improved when the treatment was increased to 20 min, at the point of which BOD(5)/COD(Cr) ratio of the treated solution was increased to 0.87 from 0.35 after 10 min treatment. Under optimized conditions, ferrate oxidation for 20 min resulted in total elimination of alachlor, partial removal of COD(Cr) and the ferrate-treated solution could be effectively treated by the up-flow activated sludge process.
The quality of raw water for drinking water unit in Jakarta-Indonesia
NASA Astrophysics Data System (ADS)
Sidabutar, Noni Valeria; Hartono, Djoko M.; Soesilo, Tri Edhi Budhi; Hutapea, Reynold C.
2017-03-01
Water problems, i.e quality, quantity, continuity of clean water faced by the mostly urban area. Jakarta also faces similar issues, because the needs of society higher than the number of water fulfilled by the government. Moreover, Jakarta's water quality does not meet the standard set by the Government and heavily polluted by anthropogenic activities along its rivers. This research employs a quantitative research approach with the mix-method. It examines the raw water quality status for drinking water in West Tarum Canalin 2011-2015. The research results show water quality with this research, using water quality of with the water categorized as heavily-polluted category based on the Ministry of Environment's Decree No 115/2003 regarding the Guidelines for Determination of Water Quality Status. This present research also shown the water quality (parameters pH, temperature, Dissolved Oxygen (DO), Chemical Oxygen Demand (COD), and Biochemical Oxygen Demand (BOD)) from Jatiluhur Dam to the intake drinking water unit. In thirteen points of sampling also, the results obtained the parameters DO, COD, and BOD are fluctuating and exceed the standard.
Assessment of spill flow emissions on the basis of measured precipitation and waste water data
NASA Astrophysics Data System (ADS)
Hochedlinger, Martin; Gruber, Günter; Kainz, Harald
2005-09-01
Combined sewer overflows (CSOs) are substantial contributors to the total emissions into surface water bodies. The emitted pollution results from dry-weather waste water loads, surface runoff pollution and from the remobilisation of sewer deposits and sewer slime during storm events. One possibility to estimate overflow loads is a calculation with load quantification models. Input data for these models are pollution concentrations, e.g. Total Chemical Oxygen Demand (COD tot), Total Suspended Solids (TSS) or Soluble Chemical Oxygen Demand (COD sol), rainfall series and flow measurements for model calibration and validation. It is important for the result of overflow loads to model with reliable input data, otherwise this inevitably leads to bad results. In this paper the correction of precipitation measurements and the sewer online-measurements are presented to satisfy the load quantification model requirements already described. The main focus is on tipping bucket gauge measurements and their corrections. The results evidence the importance of their corrections due the effects on load quantification modelling and show the difference between corrected and not corrected data of storm events with high rain intensities.
Anaerobic co-digestion of aircraft deicing fluid and municipal wastewater sludge.
Zitomer, D; Ferguson, N; McGrady, K; Schilling, J
2001-01-01
At many airports, aircraft deicing fluid and precipitation mix, becoming aircraft deicing runoff having a 5-day biochemical oxygen demand (BOD5) of 10(2) to 10(6) mg/L. Publicly owned treatment works can be used for aerobic biological treatment; however, it may be more economical to use anaerobic digesters to codigest a mixture of aircraft deicing fluid and sludge. The objectives of this investigation were to determine benefits and appropriate propylene glycol aircraft deicing fluid loadings to anaerobic codigesters. Results demonstrate aircraft deicing fluid can be successfully codigested to produce methane; supernatant BOD5 and Kjeldahl nitrogen concentration were not higher in codigesters compared to a conventional digester. Aircraft deicing fluid loadings as high as 1.6 g chemical oxygen demand (COD)/L x d were sustainable in codigesters, whereas system fed only aircraft deicing fluid with nutrients and alkalinity achieved a loading of 0.65 g COD/L x d. The sludge used increased digester alkalinity and provided nitrogen, iron, nickel, cobalt, and biomass required for methanogenesis. The deicer provides organics for increased methane production.
Zhang, Qi
2015-01-01
In this study, the Fe/Cu/C and Fe/Al/C inner micro-electrolysis systems were used to treat actual oilfield produced water to evaluate the feasibility of the technology. Effects of reaction time, pH value, the dosage of metals and activated carbon, and Fe:C mass ratio on the treatment efficiency of wastewater were studied. The results showed that the optimum conditions were reaction time 120 min, initial solution pH 4.0, Fe dosage 13.3 g/L, activated carbon dosage 6.7 g/L, Cu dosage 2.0 g/L or Al dosage 1.0 g/L. Under the optimum conditions, the removal efficiencies of chemical oxygen demand (COD) were 39.3%, 49.7% and 52.6% in the Fe/C, Fe/Cu/C and Fe/Al/C processes, respectively. Meanwhile, the ratio of five-day biochemical oxygen demand to COD was raised from 0.18 to above 0.35, which created favourable conditions for the subsequent biological treatment. All these led to an easy maintenance and low operational cost.
Monitoring and assessment of water quality of Tasik Cempaka, Bangi
NASA Astrophysics Data System (ADS)
Sabri, Nurul Ain Syahirah Mohamad; Abdullah, Md Pauzi; Mat, Sohif
2014-09-01
A study was carried out to determine the status of water quality of Tasik Cempaka which is a part of Sg. Air Itam, located near the Bangi industrial area. The study was carried out for eight months from May and to December 2013. Eight sampling stations were selected from upstream to downstream of Sg. Air Itam which represent the entire body of the lake water. There are 8 parameters measured and Water Quality Indices (WQI) was calculated and classified according to the National Water Quality Standard (NWQS). The physical and chemical parameters were temperature, pH, conductivity, dissolve oxygen (DO), total suspended solid (TSS), ammoniacal nitrogen (AN), chemical oxygen demand (COD) and biochemical oxygen demand (BOD). Among parameters that are affected by pollution is AN, COD and BOD. Classification by WQI shows that the average for all sampling was 54 (dry) and 52 (wet). Both are of class III according to National Water Quality Standard (NWQS) indicating slightly polluted. This is mainly due to drainage from Bangi Golf Resort and Bangi-Putrajaya Hotel. Other factors are activities around Sg. Air Itam such as municipal activities, settlements and manufacturing industries.
Nitrite Interference with Soluble COD Measurements from Aerobically Treated Wastewater.
Ferraz, Fernanda M; Yuan, Qiuyan
2017-06-01
This study aimed to determine the interference of nitrite (
Analysis of pharmaceuticals in wastewater and removal using a membrane bioreactor
Radjenovic, Jelena; Barceló, Damiá
2006-01-01
Much attention has recently been devoted to the life and behaviour of pharmaceuticals in the water cycle. In this study the behaviour of several pharmaceutical products in different therapeutic categories (analgesics and anti-inflammatory drugs, lipid regulators, antibiotics, etc.) was monitored during treatment of wastewater in a laboratory-scale membrane bioreactor (MBR). The results were compared with removal in a conventional activated-sludge (CAS) process in a wastewater-treatment facility. The performance of an MBR was monitored for approximately two months to investigate the long-term operational stability of the system and possible effects of solids retention time on the efficiency of removal of target compounds. Pharmaceuticals were, in general, removed to a greater extent by the MBR integrated system than during the CAS process. For most of the compounds investigated the performance of MBR treatment was better (removal rates >80%) and effluent concentrations of, e.g., diclofenac, ketoprofen, ranitidine, gemfibrozil, bezafibrate, pravastatin, and ofloxacin were steadier than for the conventional system. Occasionally removal efficiency was very similar, and high, for both treatments (e.g. for ibuprofen, naproxen, acetaminophen, paroxetine, and hydrochlorothiazide). The antiepileptic drug carbamazepine was the most persistent pharmaceutical and it passed through both the MBR and CAS systems untransformed. Because there was no washout of biomass from the reactor, high-quality effluent in terms of chemical oxygen demand (COD), ammonium content (N-NH4), total suspended solids (TSS), and total organic carbon (TOC) was obtained. PMID:17115140
Electro-oxidation of reverse osmosis concentrates generated in tertiary water treatment.
Pérez, G; Fernández-Alba, A R; Urtiaga, A M; Ortiz, I
2010-05-01
This work investigates the application of the electro-oxidation technology provided with boron doped diamond (BDD), an electrode material which has shown outstanding properties in oxidation of organic and inorganic compounds, for the treatment of reverse osmosis (RO) concentrates generated in tertiary wastewater treatment plants (WWTP). Chemical oxygen demand (COD), ammonium and several anions were measured during the electro-oxidation process, and the influence of the applied current density (20-200A/m(2)) was analysed on process kinetics. Analytical assessment showed that several emerging pollutants (pharmaceuticals, personal care products, stimulants, etc.) were presented both in the effluent of the secondary WWTP as well as in the RO concentrate. For this reason, a group of 10 emerging pollutants, those found with higher concentrations, was selected in order to test whether electro-oxidation can be also applied for their mitigation. In the removal of emerging pollutants the electrical current density in the range 20-100A/m(2) did not show influence likely due to the mass transfer resistance developed in the process when the oxidized solutes are present in such low concentrations. Their removal rates were fitted to first order expressions, and the apparent kinetic constants for the anodic oxidation of each compound were calculated. Finally, the formation of trihalomethanes (THMs) has been checked; concluding that after selecting the appropriate operational conditions the attained concentration is lower than the standards for drinking water established in European and EPA regulations. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Vieira, L G T; Fazolo, A; Zaiat, M; Foresti, E
2003-01-01
This paper presents the conception and discusses the results obtained from the operation of an integrated biological anaerobic/aerobic/anaerobic system composed of horizontal-flow anaerobic and radial-flow aerobic reactors for domestic sewage treatment. The performance of a horizontal-flow anaerobic immobilized biomass reactor, with five stages,followed by a radial-flow aerobic immobilized biomass reactor was evaluated along 22 weeks. After the 14th week, the last stage of the HAIB reactor was used as a denitrifying unit. Polyurethane foam cubic matrices with 1-cm sides were used as support for biomass immobilization in all the units. The influent domestic sewage presented mean chemical oxygen demand of 365 +/- 71 mg. 1(-1) and the temperature was 23 +/- 3degrees C. The integrated system achieved COD removal efficiency of 90% while the maximum ammonium removal efficiency was 97% in the aerobic post-treatment unit. The nitrification process was found to be better represented by first-order reactions in series model. The apparent first-order kinetic coefficient for nitrate formation was about 50 times higher than that estimated for the nitrite formation. The denitrification process was well represented by a Monod-type kinetic model. The maximum specific denitrifying rate and the half-saturation coefficient were 2.9 x 10(-4) mg NO(3)(-)-N mg(-1) VSS h(-1) and 19.4 mg NO(3)(-)-N 1(-1), respectively.
Chen, C; Xie, Q; Hu, B Q; Zhao, X L
2014-01-01
Two immobilized nano-sized TiO2 catalysts, TiO2/activated carbon (TiO2/AC) and TiO2/silica gel (SG) (TiO2/SG), were prepared by the sol-gel method, and their use in the photocatalytic degradation of organic matter in fresh garbage leachate under UV irradiation was investigated. The influences of the catalyst dosage, the initial solution pH, H2O2 addition and the reuse of the catalysts were evaluated. The degradation of organic matter was assessed based on the decrease of the chemical oxygen demand (COD) in the leachate. The results indicated that the degradation of the COD obeyed first-order kinetics in the presence of both photocatalysts. The degradation rate of COD was found to increase with increasing catalyst dosage up to 9 g/L for TiO2/AC and 6 g/L for TiO2/SG, above which the degradation began to attenuate. Furthermore, the degradation rate first increased and then decreased as the solution pH increased from 2 to 14, and the degradation rate increased as the amount of H2O2 increased to 2.93 mM, after which it remained constant. No obvious decrease in the rate of COD degradation was observed during the first four repeated uses of the photocatalysts, indicating that the catalysts could be recovered and reused. Compared with TiO2/AC, TiO2/SG exhibited higher efficiency in photocatalyzing the degradation of COD in garbage leachate.
Liu, Xiao-Hui; Wang, Wei-Liang; Lu, Shao-Yong; Wang, Yu-Fan; Ren, Zongming
2016-08-01
In Zaozhuang, economic development affects the discharge amount of industrial wastewater, chemical oxygen demand (COD), and ammonia nitrogen (NH3-N). To reveal the trend of water environmental quality related to the economy in Zaozhuang, this paper simulated the relationships between industrial wastewater discharge, COD, NH3-N load, and gross domestic product (GDP) per capita for Zaozhuang (2002-2012) using environmental Kuznets curve (EKC) models. The results showed that the added value of industrial GDP, the per capita GDP, and wastewater emission had average annual growth rates of 16.62, 16.19, and 17.89 %, respectively, from 2002 to 2012, while COD and NH3-N emission in 2012, compared with 2002, showed average annual decreases of 10.70 and 31.12 %, respectively. The export of EKC models revealed that industrial wastewater discharge had a typical inverted-U-shaped relationship with per capita GDP. However, both COD and NH3-N showed the binding curve of the left side of the "U" curve and left side U-shaped curve. The economy in Zaozhuang had been at the "fast-growing" stage, with low environmental pollution according to the industrial pollution level. In recent years, Zaozhuang has abated these heavy-pollution industries emphatically, so pollutants have been greatly reduced. Thus, Zaozhuang industrial wastewater treatment has been quite effective, with water quality improved significantly. The EKC models provided scientific evidence for estimating industrial wastewater discharge, COD, and NH3-N load as well as their changeable trends for Zaozhuang from an economic perspective.
De Gisi, Sabino; Galasso, Maurizio; De Feo, Giovanni
2013-01-01
The treatment of wastewater derived from a biodiesel fuel (BDF) production plant with alkali-catalyzed transesterification was studied at full scale. The investigated wastewater treatment plant consisted of the following phases: primary adsorption/coagulation/flocculation/sedimentation processes, biological treatment with the combination of trickling filter and activated sludge systems, secondary flocculation/sedimentation processes, and reverse osmosis (RO) system with spiral membranes. All the processes were developed in a continuous mode, while the RO experiment was performed with batch tests. Two types of BDF wastewater were considered: the first wastewater (WW1) had an average total chemical oxygen demand (COD), pH and feed flow rate of 10,850.8 mg/L, 5.9 and 2946.7 L/h, respectively, while the second wastewater (WW2) had an average total COD, pH and feed flow rate of 43,898.9 mg/L, 3.3 and 2884.6 L/h, respectively. The obtained results from the continuous tests showed a COD removal percentage of more than 90% for the two types of wastewater considered. The removal of biorefractory COD and salts was obtained with a membrane technology in order to reuse the RO permeate in the factory production cycle. The rejections percentage of soluble COD, chlorides and sulphates were 92.8%, 95.0% and 99.5%, respectively. Because the spiral membranes required a high number of washing cycles, the use of plane membranes was preferable. Finally, the RO reject material should be evaporated using the large amount of inexpensive heat present in this type of industry.
Lemna minor tolerance to metal-working fluid residues: implications for rhizoremediation.
Grijalbo, L; Becerril, J M; Barrutia, O; Gutierrez-Mañero, J; Lucas Garcia, J A
2016-07-01
For the first time in the literature, duckweed (Lemna minor) tolerance (alone or in combination with a consortium of bacteria) to spent metal-working fluid (MWF) was assessed, together with its capacity to reduce the chemical oxygen demand (COD) of this residue. In a preliminary study, L. minor response to pre-treated MWF residue (ptMWF) and vacuum-distilled MWF water (MWFw) was tested. Plants were able to grow in both residues at different COD levels tested (up to 2300 mg·l(-1) ), showing few toxicity symptoms (mainly growth inhibition). Plant response to MWFw was more regular and dose responsive than when exposed to ptMWF. Moreover, COD reduction was less significant in ptMWF. Thus, based on these preliminary results, a second study was conducted using MWFw to test the effectiveness of inoculation with a bacterial consortium isolated from a membrane bioreactor fed with the same residue. After 5 days of exposure, COD in solutions containing inoculated plants was significantly lower than in non-inoculated ones. Moreover, inoculation reduced β+γ-tocopherol levels in MWFw-exposed plants, suggesting pollutant imposed stress was reduced. We therefore conclude from that L. minor is highly tolerant to spent MWF residues and that this species can be very useful, together with the appropriate bacterial consortium, in reducing COD of this residue under local legislation limits and thus minimise its potential environmental impact. Interestingly, the lipophilic antioxidant tocopherol (especially the sum of β+γ isomers) proved to be an effective plant biomarker of pollution. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.
Choi, Miyoung; Choi, Dong Whan; Lee, Jung Yeol; Kim, Young Suk; Kim, Bun Su; Lee, Byoung Ho
2012-01-01
Growing attention is given to pharmaceutical residue in the water environment. It is known that pharmaceuticals are able to survive from a series of wastewater treatment processes. Concerns regarding pharmaceutical residues are attributed to the fact that they are being detected in water and sediment environment ubiquitously. Pharmaceutical treatment using a series of wastewater treatment processes of the DAF (dissolved air flotation)-MBR (membrane bioreactor)-ozone oxidation was conducted in the study. DAF, without addition of coagulant, could remove COD(cr) (chemical oxygen demand by Cr) up to over 70%, BOD 73%, SS 83%, T-N 55%, NH₄(+) 23%, and T-P 65% in influent of municipal wastewater. Average removal rates of water quality parameters by the DAF-MBR system were very high, e.g. COD(cr) 95.88%, BOD₅ 99.66%, COD(mn) (chemical oxygen demand by Mn) 93.63%, T-N 69.75%, NH₄-N 98.46%, T-P 78.23%, and SS 99.51%, which satisfy effluent water quality standards. Despite the high removal rate of the wastewater treatment system, pharmaceuticals were eliminated to be about 50-99% by the MBR system, depending on specific pharmaceuticals. Ibuprofen was well removed by MBR system up to over 95%, while removal rate of bezafibrate ranged between 50 and 90%. With over 5 mg/l of ozone oxidation, most pharmaceuticals which survived the DAF-MBR process were removed completely or resulted in very low survival rate within the range of few micrograms per litre. However, some pharmaceuticals such as bezafibrate and naproxen tended to be resistant to ozone oxidation.
Characterization of domestic graywater and graywater solids.
Sievers, Jan Christian; Londong, Jörg
2018-03-01
The knowledge of loads and concentrations is fundamental for the design of graywater treatment units, but the data on the characteristics of graywater and in particular graywater solids are weak. As general design values regarding graywater treatment facilities are not available for Germany, the objective of this article is to elaborate the characteristics of graywater and graywater solids. This paper describes the results of six sampling campaigns carried out on graywater systems in the German cities Berlin, Lübeck and Kiel. All graywater samples were collected proportional to the flow and the graywater solids were gathered separately. The collected data include graywater volumes and characteristics regarding the organic pollution (chemical oxygen demand (COD), 5-day biochemical oxygen demand (BOD 5 )) and nutrients (total nitrogen (TN), total phosphorus (TP)). The graywater volume fluctuated depending on the location. The specific average flow was 68 litre per inhabitant per day (L/inh.d). Inhabitant-specific loads of 49.3 gCOD t /inh·d, 28 gBOD 5 /inh.d, 1 gTN t /inh.d and 0.38 gTP t /inh.d (subscript 't' = total) were found. Information about the composition of graywater solids in terms of quantity and quality is seriously lacking. Therefore, graywater solids were examined with respect to organic matter (COD) and nutrients (TN, TP). The contribution of graywater solids with particle sizes over 200 microns in relation to the total inhabitant-specific load was approximately 3-8% depending on the parameter. The qualitative and quantitative characteristics of the investigated graywater fractions may serve as a base for the estimation of design values.
Rivera-Hoyos, Claudia M; Morales-Álvarez, Edwin D; Abelló-Esparza, Juanita; Buitrago-Pérez, Daniel F; Martínez-Aldana, Nicolás; Salcedo-Reyes, Juan C; Poutou-Piñales, Raúl A; Pedroza-Rodríguez, Aura M
2018-02-22
Cellulose-pulping requires chemicals such as Cl 2 , ClO 2 , H 2 O 2 , and O 2 . The black liquor (BL) generated exhibits a high chemical oxygen demand (COD), five-day biochemical oxygen demand (BOD 5 ), and chlorophenol content, along with an augmented colour and increased pH. BL is often discharged into water bodies, where it has a negative impact on the environment. Towards that end, laccases are of great interest for bioremediation, since they can degrade aromatic and non-aromatic compounds while reducing O 2 to water instead of H 2 O 2 . As such, we evaluated Pleurotus ostreatus and Pichia pastoris (which produces rPOXA 1B laccase) in the treatment of synthetic BL (SBL) in an "in vitro" modified Kraft process followed by CuO/TiO 2 /visible light photocatalysis. Treating SBL with P. ostreatus viable biomass (VB) followed by CuO/TiO 2 /visible light photocatalysis resulted in 80.3% COD removal and 70.6% decolourisation. Toxic compounds such as 2-methylphenol, 4-methylphenol, and 2-methoxyphenol were eliminated. Post-treated SBL exhibited low phytotoxicity, as evidenced by a Lactuca sativa L seed germination index (GI) > 50%. Likewise, SBL treatment with P. pastoris followed by VB/CuO/TiO 2 /visible light photocatalysis resulted in 63.7% COD removal and 46% decolourisation. Moreover, this treatment resulted in the elimination of most unwanted compounds, with the exception of 4-chlorophenol. The Lactuca sativa L seed GI of the post-treated SBL was 40%, indicating moderate phytotoxicity.
Modelling oxygen transfer using dynamic alpha factors.
Jiang, Lu-Man; Garrido-Baserba, Manel; Nolasco, Daniel; Al-Omari, Ahmed; DeClippeleir, Haydee; Murthy, Sudhir; Rosso, Diego
2017-11-01
Due to the importance of wastewater aeration in meeting treatment requirements and due to its elevated energy intensity, it is important to describe the real nature of an aeration system to improve design and specification, performance prediction, energy consumption, and process sustainability. Because organic loadings drive aeration efficiency to its lowest value when the oxygen demand (energy) is the highest, the implications of considering their dynamic nature on energy costs are of utmost importance. A dynamic model aimed at identifying conservation opportunities is presented. The model developed describes the correlation between the COD concentration and the α factor in activated sludge. Using the proposed model, the aeration efficiency is calculated as a function of the organic loading (i.e. COD). This results in predictions of oxygen transfer values that are more realistic than the traditional method of assuming constant α values. The model was applied to two water resource recovery facilities, and was calibrated and validated with time-sensitive databases. Our improved aeration model structure increases the quality of prediction of field data through the recognition of the dynamic nature of the alpha factor (α) as a function of the applied oxygen demand. For the cases presented herein, the model prediction of airflow improved by 20-35% when dynamic α is used. The proposed model offers a quantitative tool for the prediction of energy demand and for minimizing aeration design uncertainty. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Electricity generation from corn steepwater using microbial fuel cell technology].
Lu, Na; Zhou, Shun-Gui; Zhang, Jin-Tao; Ni, Jin-Ren
2009-02-15
Corn steepwater containing 49,732.2 mg/L of chemical oxygen demand (COD) was used as fuel for a membrane electrode assembly microbial fuel cell (MEA-MFC), which could generate electricity and treat the wastewater at the same time. During a batch experiment of 94 days with a fixed 1,000 Omega external resistance, the maximum voltage output of 525.0 mV and power density of 169.6 mW/m2 were obtained after 17 days, corresponding to the current density, internal resistance and open voltage of 440.2 mA/m2, 350 Omega and 619.5 mV, respectively. However, data showed that the coulombic efficiency was only 1.6%, suggesting very limited COD was utilized for electricity generation. At the conclusion of the test, the removals of COD and ammonia-nitrogen were achieved 51.6% and 25.8%, respectively. This study demonstrates that corn steepwater can be used for power generation in MFC with simultaneous accomplishments of wastewater treatment, providing a novel approach for the safe disposal and recycle of corn steepwater.
Couto, Carolina Fonseca; Marques, Larissa Silva; Balmant, Janine; de Oliveira Maia, Andreza Penido; Moravia, Wagner Guadagnin; Santos Amaral, Miriam Cristina
2018-03-01
This work investigates the application of a microfiltration (MF)-membrane bioreactor (MBR) hybrid process for textile dyeing process wastewater reclamation. The indigo blue dye was efficiently retained by the MF membrane (100%), which allows its recovery from the concentrate stream. MF promotes 100% of colour removal, and reduces the chemical oxygen demand (COD) and conductivity by about 65% and 25%, respectively, and improves the wastewater biodegradability. MF flux decline was mostly attributed to concentration polarization and the chemical cleaning was efficient enough to recover initial hydraulic resistance. The MBR provides to be a stable process maintaining its COD and ammonia removal efficiency (73% and 100%, respectively) mostly constant throughout and producing a permeate that meets the reuse criteria for some industry activities, such as washing-off and equipment washdown. The use of an MF or ultrafiltration (UF) membrane in the MBR does not impact the MBR performance in terms of COD removal. Although the membrane of MBR-UF shows permeability lower than MBR-MF membrane, the UF membrane contributes to a more stable operation in terms of permeability.
Park, Jungyu; Lee, Beom; Shin, Wonbeom; Jo, Sangyeol; Jun, Hangbae
2018-07-01
In this study, a practical bioelectrochemical anaerobic digestion (BEAD) reactor equipped with a rotating STS304 impeller was tested to verify its methane production performance. Methane production in the BEAD reactor was possible without accumulation of volatile fatty acids (VFAs) and decreases in pH at high organic loading rates (OLRs) up to 6 kg-COD/m 3 ·d (COD: chemical oxygen demand). Methane production in a BEAD-O (open circuit) reactor was inhibited at OLRs above 4 kg-COD/m 3 ·d; however, the performance could be recovered bioelectrochemically by supplying voltage. The population density of hydrogenotrophic methanogens increased to 73.3% in the BEAD-C (closed circuit) reactor, even at high OLRs, through the removal of VFAs and conversion of hydrogen to methane. The energy efficiency in the BEAD-C reactor was 85.6%, indicating that the commercialization of BEAD reactors equipped with rotating STS304 impeller electrodes is possible. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gannoun, Hana; Omri, Ilhem; Chouari, Rakia; Khelifi, Eltaief; Keskes, Sajiaa; Godon, Jean-Jacques; Hamdi, Moktar; Sghir, Abdelghani; Bouallagui, Hassib
2016-02-01
The effect of increasing the organic loading rates (OLRs) on the performance of the anaerobic codigestion of olive mill (OMW) and abattoir wastewaters (AW) was investigated under mesophilic and thermophilic conditions. The structure of the microbial community was also monitored. Increasing OLR to 9g of chemical oxygen demand (COD) L(-1)d(-1) affected significantly the biogas yield and microbial diversity at 35°C. However, at 55°C digester remained stable until OLR of 12g of CODL(-1)d(-1) with higher COD removal (80%) and biogas yield (0.52Lg(-1) COD removed). Significant differences in the bacterial communities were detected between mesophilic and thermophilic conditions. The dominant phyla detected in the digester at both phases were the Firmicutes, Actinobacteria, Bacteroidetes, Synergistetes and Spirochaete. However, Verrucomicrobia, Proteobacteria and the candidate division BRC1 were only detected at thermophilic conditions. The Methanobacteriales and the Thermoplasmales were found as a high predominant archaeal member in the anaerobic sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.
Enhanced degradation of paracetamol by UV-C supported photo-Fenton process over Fenton oxidation.
Manu, B; Mahamood, S
2011-01-01
For the treatment of paracetamol in water, the UV-C Fenton oxidation process and classic Fenton oxidation have been found to be the most effective. Paracetamol reduction and chemical oxygen demand (COD) removal are measured as the objective functions to be maximized. The experimental conditions of the degradation of paracetamol are optimized by the Fenton process. Influent pH 3, initial H(2)O(2) dosage 60 mg/L, [H(2)O(2)]/[Fe(2+)] ratio 60 : 1 are the optimum conditions observed for 20 mg/L initial paracetamol concentration. At the optimum conditions, for 20 mg/L of initial paracetamol concentration, 82% paracetamol reduction and 68% COD removal by Fenton oxidation, and 91% paracetamol reduction and 82% COD removal by UV-C Fenton process are observed in a 120 min reaction time. By HPLC analysis, 100% removal of paracetamol is observed at the above optimum conditions for the Fenton process in 240 min and for the UV-C photo-Fenton process in 120 min. The methods are effective and they may be used in the paracetamol industry.
Study on the effect of landfill leachate on nutrient removal from municipal wastewater.
Yuan, Qiuyan; Jia, Huijun; Poveda, Mario
2016-05-01
In this study, landfill leachate with and without pre-treatment was co-treated with municipal wastewater at different mixing ratios. The leachate pre-treatment was achieved by air stripping to removal ammonia. The objective of this study was to investigate the effect of landfill leachate on nutrient removal of the wastewater treatment process. It was demonstrated that when landfill leachate was co-treated with municipal wastewater, the high ammonia concentration in the leachate did not have a negative impact on the nitrification. The system was able to adapt to the environment and was able to improve nitrification capacity. The readily biodegradable portion of chemical oxygen demand (COD) in the leachate was utilized by the system to improve phosphorus and nitrate removal. However, this portion was small and majority of the COD ended up in the effluent thereby decreased the quality of the effluent. The study showed that the 2.5% mixing ratio of leachate with wastewater improved the overall biological nutrient removal process of the system without compromising the COD removal efficiency. Copyright © 2015. Published by Elsevier B.V.
Rosas-Romero, Zaidy G; Ramirez-Suarez, Juan C; Pacheco-Aguilar, Ramón; Lugo-Sánchez, Maria E; Carvallo-Ruiz, Gisela; García-Sánchez, Guillermina
2010-01-01
Jumbo squid (Dosidicus gigas) mantle muscle was cooked simulating industrial procedures (95 degrees C x 25 min, 1.2:5 muscle:water ratio). The effluent produced was analyzed for chemical and biochemical oxygen demands (COD and BOD(5), respectively), proximate analysis, flavor-related compounds (free amino acids, nucleotides and carbohydrates) and SDS-PAGE. The COD and BOD(5) exhibited variation among samplings (N=3) (27.4-118.5 g O(2)/L for COD and 11.3-26.7 g O(2)/L for BOD(5)). The effluent consisted of 1% total solids, 75% of which represented crude protein. Sixty percent of the total free amino acid content, which imparts flavor in squid species, corresponded to glutamic acid, serine, glycine, arginine, alanine, leucine and lysine. The nucleotide concentration followed this order, Hx>ADP>AMP>ATP>IMP>HxR. The variation observed in the present work was probably due to physiological maturity differences among the squid specimens (i.e., juvenile versus mature). Solids present in squid cooking effluent could be recovered and potentially used as flavor ingredients in squid-analog production by the food industry.
Sun, Xuefei; Wang, Cunwen; Li, Zihao; Wang, Weiguo; Tong, Yanjie; Wei, Jiang
2013-09-01
In this work, the acclimation of Chlorella pyrenoidosa in diluted wastewater was studied to produce biomass and remove chemical oxygen demand (COD), ammonia-N and phosphorous. The results indicated that the optimal conditions (the volume ratio of wastewater, light intensity, culture temperature, CO2 concentration in feeding gas) which could influence the wastewater treatment efficiency were 0.05, 250 photons m(-2) s(-1), 28 °C and 5%, respectively. Under these conditions, the removal efficiency of COD reached up to 89.2%, while the total nitrogen and total phosphorous decreased by 64.52% and 82.20%, respectively. With the second treatment, COD in the wastewater was further reduced to less than 100 mg/L while it was only reduced to 542.9 mg/L after the first treatment. The treated wastewater could be discharged directly or subjected to for further treatment for recycling. In addition, 1.25 g/L of the biomass and 38.27% (dry basis, w%) of lipid content were reached after microalgal cultivation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Variability estimation of urban wastewater biodegradable fractions by respirometry.
Lagarde, Fabienne; Tusseau-Vuillemin, Marie-Hélène; Lessard, Paul; Héduit, Alain; Dutrop, François; Mouchel, Jean-Marie
2005-11-01
This paper presents a methodology for assessing the variability of biodegradable chemical oxygen demand (COD) fractions in urban wastewaters. Thirteen raw wastewater samples from combined and separate sewers feeding the same plant were characterised, and two optimisation procedures were applied in order to evaluate the variability in biodegradable fractions and related kinetic parameters. Through an overall optimisation on all the samples, a unique kinetic parameter set was obtained with a three-substrate model including an adsorption stage. This method required powerful numerical treatment, but improved the identifiability problem compared to the usual sample-to-sample optimisation. The results showed that the fractionation of samples collected in the combined sewer was much more variable (standard deviation of 70% of the mean values) than the fractionation of the separate sewer samples, and the slowly biodegradable COD fraction was the most significant fraction (45% of the total COD on average). Because these samples were collected under various rain conditions, the standard deviations obtained here on the combined sewer biodegradable fractions could be used as a first estimation of the variability of this type of sewer system.
Perendeci, Altinay; Arslan, Sever; Tanyolaç, Abdurrahman; Celebi, Serdar S
2009-10-01
A conceptual neural fuzzy model based on adaptive-network based fuzzy inference system, ANFIS, was proposed using available input on-line and off-line operational variables for a sugar factory anaerobic wastewater treatment plant operating under unsteady state to estimate the effluent chemical oxygen demand, COD. The predictive power of the developed model was improved as a new approach by adding the phase vector and the recent values of COD up to 5-10 days, longer than overall retention time of wastewater in the system. History of last 10 days for COD effluent with two-valued phase vector in the input variable matrix including all parameters had more predictive power. History of 7 days with two-valued phase vector in the matrix comprised of only on-line variables yielded fairly well estimations. The developed ANFIS model with phase vector and history extension has been able to adequately represent the behavior of the treatment system.
Bolzonella, D; Zanette, M; Battistoni, P; Cecchi, F
2007-01-01
A full-scale wastewater treatment plant where municipal and winery wastewaters were co-treated was studied for five years. The experimental results showed that suspended solids, COD, nitrogen and phosphorous were effectively removed both during the treatment of municipal wastewater and the cotreatment of municipal and winery wastewater. The sludge production increase from 4 tons to 5.5 tons per day during the harvesting and wine making period. In any case the specific sludge production was 0.2 kgMLVSS per kgCOD(removed) despite the organic loading increasing. About 70% of the COD was removed through respiration. Also the energy demand increased from 6,000 to 7,000 kWh per day. The estimated costs for the treatment of the winery wastewater was 0.2-0.3 Euros per m3 of treated wastewater. With reference to the process efficiency, the nitrogen removal was just 20%. The co-treatment of municipal and winery wastewater in conventional activated sludge processes can be a feasible solution for the treatment of these streams at relatively low costs.
Effect of transient sodium chloride shock loads on the performance of submerged membrane bioreactor.
Yogalakshmi, K N; Joseph, Kurian
2010-09-01
Membrane bioreactor (MBR) is a promising technological option to meet water reuse demands. Though MBR provides effluent quality of reusable standard, its versatility to shock loads remains unexplored. The present study investigates the robustness of MBR under sodium chloride shock load (5-60 g/L) conditions. A bench scale aerobic submerged MBR (6L working volume) with polyethylene hollow fiber membrane module (pore size 0.4 microm) was operated with synthetic wastewater at steady state OLR of 3.6g COD/L/d and HRT of 8h. This resulted in 99% TSS removal and 95% COD and TKN removal. The COD removal during the salt shock load was in the range of 84-64%. The TSS removal showed maximum disturbance (88%) with a corresponding decrease in biomass MLVSS by 8% at 60 g/L shock. TKN removal was reduced due to inhibition of nitrification with increasing shock loads. It took about 4-9 days for the MBR to regain its steady state performance. Copyright 2010 Elsevier Ltd. All rights reserved.
Zhao, Bowei; Li, Jiangzheng; Buelna, Gerardo; Dubé, Rino; Le Bihan, Yann
2016-01-01
A combined upflow anaerobic sludge blanket (UASB)-trickling biofilter (TBF) process was constructed to treat swine wastewater, a typical high-strength organic wastewater with low carbon/nitrogen ratio and ammonia toxicity. The results showed that the UASB-TBF system can remarkably enhance the removal of pollutants in the swine wastewater. At an organic loading rate of 2.29 kg/m(3) d and hydraulic retention time of 48 h in the UASB, the chemical oxygen demand (COD), Suspended Solids and Total Kjeldahl Nitrogen removals of the combined process reached 83.6%, 84.1% and 41.2%, respectively. In the combined system the UASB served as a pretreatment process for COD removal while nitrification and denitrification occurred only in the TBF process. The TBF performed reasonably well at a surface hydraulic load as high as 0.12 m(3)/m(2) d. Since the ratio of influent COD to total mineral nitrogen was less than 3.23, it is reasonable to suggest that the wood chips in TBF can serve as a new carbon source for denitrification.
Agustsson, Jon; Akermann, Oliver; Barry, D Andrew; Rossi, Luca
2014-08-01
Water contamination is an important environmental concern underlining the need for reliable real-time information on contaminant concentrations in natural waters. Here, a new non-contact UV-Vis spectroscopic approach for monitoring contaminants in water, and especially wastewater, is proposed. Diffuse reflectance UV-Vis spectroscopy was applied to measure simultaneously the chemical oxygen demand (COD) and turbidity (TUR) concentrations in water. The measurements were carried out in the wavelength range from 200-1100 nm. The measured spectra were analysed using partial-least-squares (PLS) regression. The correlation coefficient between the measured and the reference concentrations of COD and TUR in the water samples were R(2) = 0.85 and 0.96, respectively. These results highlight the potential of non-contact UV-Vis spectroscopy for the assessment of water contamination. A system built on the concept would be able to monitor wastewater pollution continuously, without the need for laborious sample collection and subsequent laboratory analysis. Furthermore, since no parts of the system are in contact with the wastewater stream the need for maintenance is minimised.
Farrell, Mikella E; Holthoff, Ellen L; Pellegrino, Paul M
2014-01-01
The United States Army and the first responder community are increasingly focusing efforts on energetic materials detection and identification. Main hazards encountered in theater include homemade explosives and improvised explosive devices, in part fabricated from simple components like ammonium nitrate (AN). In order to accurately detect and identify these unknowns (energetic or benign), fielded detection systems must be accurately trained using well-understood universal testing substrates. These training substrates must contain target species at known concentrations and recognized polymorphic phases. Ammonium nitrate is an explosive precursor material that demonstrates several different polymorphic phases dependent upon how the material is deposited onto testing substrates. In this paper, known concentrations of AN were uniformly deposited onto commercially available surface-enhanced Raman scattering (SERS) substrates using a drop-on-demand inkjet printing system. The phase changes observed after the deposition of AN under several solvent conditions are investigated. Characteristics of the collected SERS spectra of AN are discussed, and it is demonstrated that an understanding of the exact nature of the AN samples deposited will result in an increased ability to accurately and reliably "train" hazard detection systems.
Woźniak, R; Dittmer, U; Welker, A
2007-01-01
The EU Water Framework Directive (WFD) calls for a good quality of all water bodies. Retention soil filters (RSF) have been developed to treat discharges from combined sewers systems. RSF have proved over the past 15 years to be the most effective measure to meet the EU WFD standards, especially for small or particularly sensitive receiving waters, which require an enhanced reduction of emissions from combined sewer overflows (CSOs). The paper presents results from laboratory-scale experiments, in which the oxygen measurement in the filter plays a main role. The results show remarkable differences in oxygen concentrations in different filter depths. The highest oxygen consumption takes place in the upper part of the filter. In the lower part the re-aeration of sewage from the soil air dominates. This indicates that the biological activity is limited to the upper part of the filter. The availability of oxygen in the filter is a sign for degradation of wastewater compounds (ammonium, COD) under certain conditions and already takes place during the filter operation. The removal of ammonium especially cannot be strictly divided into phases of sorption during the loading and oxidation during the dry period any more.
Submerged anaerobic membrane bioreactor for wastewater treatment and energy generation.
Bornare, J B; Adhyapak, U S; Minde, G P; Kalyan Raman, V; Sapkal, V S; Sapkal, R S
2015-01-01
Compared with conventional wastewater treatment processes, membrane bioreactors (MBRs) offer several advantages including high biodegradation efficiency, excellent effluent quality and smaller footprint. However, it has some limitations on account of its energy intensive operation. In recent years, there has been growing interest in use of anaerobic membrane bioreactors (AnMBRs) due to their potential advantages over aerobic systems, which include low sludge production and energy generation in terms of biogas. The aim of this study was to evaluate the performance of a submerged AnMBR for the treatment of synthetic wastewater having 4,759 mg/l chemical oxygen demand (COD). The COD removal efficiency was over 95% during the performance evaluation study. Treated effluent with COD concentration of 231 mg/l was obtained for 25.5 hours hydraulic retention time. The obtained total organic carbon concentrations in feed and permeate were 1,812 mg/l and 89 mg/l, respectively. An average biogas generation and yield were 25.77 l/d and 0.36 m3/kg COD, respectively. Evolution of trans-membrane pressure (TMP) as a function of time was studied and an average TMP of 15 kPa was found suitable to achieve membrane flux of 12.17 l/(m2h). Almost weekly back-flow chemical cleaning of the membrane was found necessary to control TMP within the permissible limit of 20 kPa.
Chen, Zhiqiang; Wang, Hongcheng; Chen, Zhaobo; Ren, Nanqi; Wang, Aijie; Shi, Yue; Li, Xiaoming
2011-01-30
A full-scale test was conducted with an up-flow anaerobic sludge blanket (UASB) pre-treating pharmaceutical wastewater containing 6-aminopenicillanic acid (6-APA) and amoxicillin. The aim of the study is to investigate the performance of UASB in the condition of a high chemical oxygen demand (COD) loading rate from 12.57 to 21.02 kgm(-3)d(-1) and a wide pH from 5.57 to 8.26, in order to provide a reference for treating the similar chemical synthetic pharmaceutical wastewater containing 6-APA and amoxicillin. The results demonstrated that the UASB average percentage reduction in COD, 6-APA and amoxicillin were 52.2%, 26.3% and 21.6%, respectively. In addition, three models, built on the back propagation neural network (BPNN) theory and linear regression techniques were developed for the simulation of the UASB system performance in the biodegradation of pharmaceutical wastewater containing 6-APA and amoxicillin. The average error of COD, 6-APA and amoxicillin were -0.63%, 2.19% and 5.40%, respectively. The results indicated that these models built on the BPNN theory were well-fitted to the detected data, and were able to simulate and predict the removal of COD, 6-APA and amoxicillin by UASB. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.
Zhang, Zhiyin; Lei, Zhongfang; Zhang, Zhenya; Sugiura, Norio; Xu, Xiaotian; Yin, Didi
2007-11-19
Soil infiltration treatment (SIT) was proved to be an effective and low-cost treatment technique for decentralized effluents in the areas without perfect sewage systems. Field-scale experiments were conducted under several conditions to assess organics removals through a shallow soil infiltration treatment (SSIT, with effective depth 0.3m) of combined wastewater (discharge from toilets, restaurants and a gas station), while bench-scale soil column experiments were performed in laboratory in parallel to investigate biological and abiological effects of this kind of system. From the start-up to the 10th month, the field SSIT trenches experienced the lowest and highest temperatures of the operation period in Shanghai and exhibited effective organics removals after maturation, with the highest removal rate 75.8% of chemical oxygen demand (COD), highest ultraviolet absorption at 254 nm (UV(254)) decrease by 67.2% and 35.2-100% removals of phenolic and phthalate pollutants. The laboratory results indicated that more organics could be removed in room-temperatured (25+/-2 degrees C) SSIT systems under different influent COD concentrations from 45 mg/l to 406 mg/l, and the highest total COD removal rate could reach 94.0%, in which biological effect accounted for 57.7-71.9%. The results showed that temperature and hydraulic loading rate were the most important factors influencing the removals of COD and organic pollutants in SSIT.
Pandey, A; Pandey, A
2017-07-31
In this study photo-hydrogen production from cheese whey dark fermentation (DF) effluent by the co-culture of Rhodobacter sphaeroides -NMBL-01 and Bacillus firmus - NMBL-03 has been reported. The effect of pH, initial chemical oxygen demand (COD) and the concentration effect of FeSO4.7H2O on photo-hydrogen production have been investigated. The end products of dark fermentation effluent of cheese whey were mainly comprised of soluble organic acids, i.e. butyric acid and lactic acid. The batch process was carried out under light intensity of 2.5 kLux at 32 ± 2oC without any addition of extra carbon and nitrogen source. The single parameter optimization studies revealed optimum pH 6.5, initial COD 4.71 g/L and supplementation of Fe2+ concentration 100 mg/L. The maximum cumulative hydrogen production and yield were found to be 469 ± 45.8 ml H2/L and 146.56 ± 14.31 ml H2/g COD reduced (67.9% reduction in COD) respectively. The mutual interactions among the process parameters were also investigated by three factorial Box-Behnken design of response surface methodology. The optimized experimental values were found concurrent with the calculated values obtained from the theoretical model.
Performance assessment of two-stage anaerobic digestion of kitchen wastes.
Bo, Zhang; Pin-Jing, He
2014-01-01
This study is aimed at investigating the performance of the two-phase anaerobic digestion of kitchen wastes in a lab-scale setup. The semi-continuous experiment showed that the two-phase anaerobic digestion of kitchen wastes had a bioconversion rate of 83%, biogas yield of 338 mL x (g chemical oxygen demand (COD))(-1) and total solid conversion of 63% when the entire two-phase anaerobic digestion process was subjected to an organic loading rate (OLR) of 10.7 g x (L d)(-1). In the hydrolysis-acidogenesis process, the efficiency of solubilization decreased from 72.6% to 41.1%, and the acidogenesis efficiency decreased from 31.8% to 17.8% with an increase in the COD loading rate. On the other hand, the performance of the subsequent methanogenic process was not susceptible to the increase in the feeding COD loading rate in the hydrolysis-acidogenesis stage. Lactic acid was one of the main fermentation products, accounting for over 40% of the total soluble COD in the fermentation liquid. The batch experiments indicated that the lactic acid was the earliest predominant fermentation product, and distributions of fermentation products were pH dependent. Results showed that increasing the feeding OLR of kitchen wastes made the two-stage anaerobic digestion process more effective. Moreover, there was a potential improvement in the performance of anaerobic digestion of kitchen wastes with a corresponding improvement in the hydrolysis process.
Patil, Sagar; Chakraborty, Saswati
2017-03-21
The effect of step feed strategy and intermittent aeration on removal of chemical oxygen demand (COD) and nitrogen was investigated in a laboratory scale horizontal subsurface flow constructed wetland (HSSFCW). Wetland was divided into four zones along the length (zone I to IV), and influent was introduced into first and third zones by step feeding. Continuous study was carried out in four phases. In phases I to III, 30% of influent was bypassed to zone III for denitrification along with organics removal. Intermittent aeration was provided only in zone II at 2.5 L/min for 4 h/day, during phases II, III and IV. In phase I, 87% COD and 43% NH 4 + -N (ammonia-nitrogen) removal were obtained from influents of 331 and 30 mg/L, respectively. In phase II study, external aeration resulted in 97% COD and 71% NH 4 + -N removal in the wetland. In phase IV, 40% of feed was delivered to zone III. Higher supply of organic in zone III resulted in higher denitrification, and total nitrogen removal rate increased to 70% from 56%. In the final effluent, concentration of NO 3 - -N was 9-11 mg/L in phase I to III and decreased to 4 mg/L in phase IV. Batch study showed that COD and NH 4 + -N removal followed first order kinetics in different zones of wetland.
Two-stage combined treatment of acid mine drainage and municipal wastewater.
Deng, Dongyang; Lin, Lian-Shin
2013-01-01
This study examined the feasibility of the combined treatment of field-collected acid mine drainages (AMD, pH = 4.2 ± 0.9, iron = 112 ± 118 mg/L, sulfate = 1,846 ± 594 mg/L) and municipal wastewater (MWW, avg. chemical oxygen demand (COD) = 234-333 mg/L) using a two-stage process. The process consisted of batch mixing of the two wastes to condition the mixture solutions, followed by anaerobic biological treatment. The mixings performed under a range of AMD/MWW ratios resulted in phosphate removal of 9 to ∼100%, the mixture pH of 6.2-7.9, and COD/sulfate concentration ratio of 0.05-5.4. The biological treatment consistently removed COD and sulfate by >80% from the mixture solutions for COD/sulfate ratios of 0.6-5.4. Alkalinity was produced in the biological treatment causing increased pH and further removal of metals from the solutions. Scanning electron microscopy of produced sludge with energy dispersion analysis suggested chemical precipitation and associated adsorption and co-precipitation as the mechanisms for metal removal (Fe: >99%, Al: ∼100%, Mn: 75 to ∼100%, Ca: 52-81%, Mg: 13-76%, and Na: 56-76%). The study showed promising results for the treatment method and denoted the potential of developing innovative technologies for combined management of the two wastes in mining regions.
NASA Astrophysics Data System (ADS)
Zakaria, Siti Nor Farhana; Aziz, Hamidi Abdul
2017-10-01
Leachate is a critical problem of sanitary landfills because it contains high organic matter and hazardous compounds that can generate negative environmental effects. The high chemical oxygen demand (COD) and color of the leachate necessitates its treatment before it can be released to the water body. Thus, an investigation into the performance of advanced oxidation processes (AOPs) was conducted using a combination of ozone (O3) with zirconium tetrachloride (ZrCl4) as catalyst in stabilized landfill leachate treatment. Such leachate was collected from the Alor Pongsu Landfill site (APLS), Perak, Malaysia. COD and color parameter were used as indicators to examine the effect of O3/ZrCl4 dosage, pH, and contact time. The experiment was run under gas flow rate of 1,000 mL/min±10% and temperature below 15 °C. The maximum removal obtained for COD and color were 88% and 100%, respectively. This outcome was achieved at 27 g/m3 ozone dosage, pH 6, 90 min reaction time, and dosage ratio of 1:2 (COD g: ZrCl4 g). The reaction rate constant (k) was 0.2364 min-1 and followed pseudo first order. Thus, given the efficiency of the O3/ZrCl4 mixture for the remediation of stabilized landfill leachate, a new alternative method in leachate industrial treatment was identified.
Basset, N; López-Palau, S; Dosta, J; Mata-Álvarez, J
2014-01-01
An anaerobic membrane bioreactor and aerobic granulation technologies were tested at laboratory scale to treat winery wastewater, which is characterised by a high and variable biodegradable organic load. Both technologies have already been tested for alcohol fermentation wastewaters, but there is a lack of data relating to their application to winery wastewater treatment. The anaerobic membrane bioreactor, with an external microfiltration module, was started up for 230 days, achieving a biogas production of up to 0.35 L CH4L(-1)d(-1) when 1.5 kg COD m(-3)d(-1) was applied. Average flux was 10.5 L m(-2) h(-1) (LMH), obtaining a treated effluent free of suspended solids and a chemical oxygen demand (COD) concentration lower than 100 mg COD L(-1). In contrast, the aerobic granular sequencing batch reactor coped with 15 kg COD m(-3)d(-1), but effluent quality was slightly worse. Aerobic granulation was identified as a suitable technique to treat this kind of wastewater due to excellent settleability, high biomass retention and a good ability to handle high organic loads and seasonal fluctuations. However, energy generation from anaerobic digestion plays an important role, favouring anaerobic membrane bioreactor application, although it was observed to be sensitive to sudden load fluctuations, which led to a thorough pH control and alkali addition.
Treatment of olive mill wastewater by chemical processes: effect of acid cracking pretreatment.
Hande Gursoy-Haksevenler, B; Arslan-Alaton, Idil
2014-01-01
The effect of acid cracking (pH 2.0; T 70 °C) and filtration as a pretreatment step on the chemical treatability of olive mill wastewater (chemical oxygen demand (COD) 150,000 m/L; total organic carbon (TOC) 36,000 mg/L; oil-grease 8,200 mg/L; total phenols 3,800 mg/L) was investigated. FeCl3 coagulation, Ca(OH)2 precipitation, electrocoagulation using stainless steel electrodes and the Fenton's reagent were applied as chemical treatment methods. Removal performances were examined in terms of COD, TOC, oil-grease, total phenols, colour, suspended solids and acute toxicity with the photobacterium Vibrio fischeri. Significant oil-grease (95%) and suspended solids (96%) accompanied with 58% COD, 43% TOC, 39% total phenols and 80% colour removals were obtained by acid cracking-filtration pretreatment. Among the investigated chemical treatment processes, electrocoagulation and the Fenton's reagent were found more effective after pretreatment, especially in terms of total phenols removal. Total phenols removal increased from 39 to 72% when pretreatment was applied, while no significant additional (≈10-15%) COD and TOC removals were obtained when acid cracking was coupled with chemical treatment. The acute toxicity of the original olive mill wastewater sample increased considerably after pretreatment from 75 to 89% (measured for the 10-fold diluted wastewater sample). An operating cost analysis was also performed for the selected chemical treatment processes.
Improving bioelectricity generation and COD removal of sewage sludge in microbial desalination cell.
Ebrahimi, Atieh; Yousefi Kebria, Daryoush; Darzi, Ghasem Najafpour
2018-05-01
Improving wastewater treatment process and water desalination are two important solutions for increasing the available supply of fresh water. Microbial desalination cells (MDCs) with common electrolytes display relatively low organic matter removal and high cost. In this study, sewage sludge was used as the substrate in the Microbial desalination cell (MDC) under three different initial salt concentrations (5, 20 and 35 g.L -1 ) and the maximum salt removal rates of 50.6%, 64% and 69.6% were obtained under batch condition, respectively. The MDC also produced the maximum power density of 47.1 W m -3 and the averaged chemical oxygen demand (COD) removal of 58.2 ± 0.89% when the initial COD was 6610 ± 83 mg L -1 . Employing treated sludge as catholyte enhanced COD removal and power density to 87.3% and 54.4 W m -3 , respectively, with counterbalancing pH variation in treated effluent. These promising results showed, for the first time, that the excess sewage sludge obtained from biological wastewater treatment plants could be successfully used as anolyte and catholyte in MDC, achieving organic matter biodegradation along with salt removal and energy production. In addition, using treated sludge as catholyte will improve the performance of MDC and introduce a more effective method for both sludge treatment and desalination.
The effect of malathion on the activity, performance, and microbial ecology of activated sludge.
Rauglas, Erik; Martin, Seth; Bailey, Kandace; Magnuson, Matthew; Phillips, Rebecca; Harper, Willie F
2016-12-01
This study evaluated the effect of a VX (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate) surrogate (malathion) on the activity, performance, and ecology of activated sludge bioreactors. In the presence of malathion, the maximum observed respiration rates varied between 43 and 53 μg/O2 min, generally similar to the 49 μg O2/min rates observed in controls. Malathion did not alter the respiration ratio of O2 consumed-to-CO2 produced nor did it impact the shape of the oxygen consumption curves during respirometry. Shorter term (12 h) batch tests showed that both chemical oxygen demand (COD) and ammonia removal were not negatively impacted by the presence of 0.1-3 mg/L malathion. Longer term continuous addition (i.e. 40 days) of 0.1 mg/L of malathion also had no effect on COD and ammonia removal. In contrast to shorter term exposures, longer term continuous addition of 3 mg/L of malathion negatively impacted both COD and nitrogen removal and was associated with shifts in the abundance of species that are common to activated sludge. These results illustrate the impact that chemicals like malathion may have on COD removal, and nitrification, as well as the robustness of activated sludge microbial communities. Published by Elsevier Ltd.
Rain-Franco, Angel; Muñoz, Claudia; Fernandez, Camila
2014-01-01
We investigated the production of ammonium by the photodegradation of dissolved organic matter (DOM) in the coastal upwelling system off central Chile (36°S). The mean penetration of solar radiation (Z1%) between April 2011 and February 2012 was 9.4 m, 4.4 m and 3.2 m for Photosynthetically Active Radiation (PAR; 400-700 nm), UV-A (320-400 nm) and UV-B (280-320 nm), respectively. Ammonium photoproduction experiments were carried out using exudates of DOM obtained from cultured diatom species (Chaetoceros muelleri and Thalassiosira minuscule) as well as natural marine DOM. Diatom exudates showed net photoproduction of ammonium under exposure to UVR with a mean rate of 0.56±0.4 µmol L(-1) h(-1) and a maximum rate of 1.49 µmol L(-1) h(-1). Results from natural marine DOM showed net photoproduction of ammonium under exposure to PAR+UVR ranging between 0.06 and 0.2 µmol L(-1) h(-1). We estimated the potential contribution of photochemical ammonium production for phytoplankton ammonium demand. Photoammonification of diatom exudates could support between 117 and 453% of spring-summer NH4(+) assimilation, while rates obtained from natural samples could contribute to 50-178% of spring-summer phytoplankton NH4(+) requirements. These results have implications for local N budgets, as photochemical ammonium production can occur year-round in the first meters of the euphotic zone that are impacted by full sunlight.
Rain-Franco, Angel; Muñoz, Claudia; Fernandez, Camila
2014-01-01
We investigated the production of ammonium by the photodegradation of dissolved organic matter (DOM) in the coastal upwelling system off central Chile (36°S). The mean penetration of solar radiation (Z1%) between April 2011 and February 2012 was 9.4 m, 4.4 m and 3.2 m for Photosynthetically Active Radiation (PAR; 400–700 nm), UV-A (320–400 nm) and UV-B (280–320 nm), respectively. Ammonium photoproduction experiments were carried out using exudates of DOM obtained from cultured diatom species (Chaetoceros muelleri and Thalassiosira minuscule) as well as natural marine DOM. Diatom exudates showed net photoproduction of ammonium under exposure to UVR with a mean rate of 0.56±0.4 µmol L−1 h−1 and a maximum rate of 1.49 µmol L−1 h−1. Results from natural marine DOM showed net photoproduction of ammonium under exposure to PAR+UVR ranging between 0.06 and 0.2 µmol L−1 h−1. We estimated the potential contribution of photochemical ammonium production for phytoplankton ammonium demand. Photoammonification of diatom exudates could support between 117 and 453% of spring-summer NH4 + assimilation, while rates obtained from natural samples could contribute to 50–178% of spring-summer phytoplankton NH4 + requirements. These results have implications for local N budgets, as photochemical ammonium production can occur year-round in the first meters of the euphotic zone that are impacted by full sunlight. PMID:24968138
Ismail, Sherif; Tawfik, Ahmed
2016-01-01
Fenton process for pre-treatment of hazardous landfill leachate (HLL) was investigated. Total, particulate and soluble chemical oxygen demand (CODt, CODp and CODs) removal efficiency amounted to 67%, 47% and 64%, respectively, at pH value of 3.5, molar ratio (H2O2/Fe(2+)) of 5, H2O2 dosage of 25 ml/L and contact time of 15 min. Various treatment scenarios were attempted and focused on studying the effect of pre-catalytic oxidation process on the performance of up-flow anaerobic sludge blanket (UASB), UASB/down-flow hanging sponge (DHS) and DHS system. The results obtained indicated that pre-catalytic oxidation process improved the CODt removal efficiency in the UASB reactor by a value of 51.4%. Overall removal efficiencies of CODt, CODs and CODp were 80 ± 6%, 80 ± 7% and 78 ± 16% for UASB/DHS treating pre-catalytic oxidation effluent, respectively. The removal efficiencies of CODt, CODs and CODp were, respectively, decreased to 54 ± 2%, 49 ± 2% and 71 ± 16% for UASB/DHS system without pre-treatment. However, the results for the combined process (UASB/DHS) system is almost similar to those obtained for UASB reactor treating pre-catalytic oxidation effluent. The DHS system achieved average removal efficiencies of 52 ± 4% for CODt, 51 ± 4% for CODs and 52 ± 15% for CODp. A higher COD fractions removal was obtained when HLL was pre-treated by Fenton reagent. The combined processes provided a removal efficiency of 85 ± 1% for CODt, 85 ± 1% for CODs and 83 ± 8% for CODp. The DHS system is not only effective for organics degradation but also for ammonia oxidation. Almost complete ammonia (NH4-N) removal (92 ± 3.6%) was occurred and the nitrate production amounted to 37 ± 6 mg/L in the treated effluent. This study strongly recommends applying Fenton process followed by DHS system for treatment of HLL.
Cultivation of aerobic granules in a novel configuration of sequencing batch airlift reactor.
Rezaei, Laya Siroos; Ayati, Bita; Ganjidoust, Hossein
2012-01-01
Aerobic granules can be formed in sequencing batch airlift reactors (SBAR) and sequencing batch reactors (SBR). Comparing these two systems, the SBAR has excellent mixing condition, but due to a high height-to-diameter ratio (H/D), there is no performance capability at full scale at the present time. This research examined a novel configuration of SBAR at laboratory scale (with a box structure) for industrial wastewater treatment. To evaluate chemical oxygen demand (COD) removal efficiency and granule formation of the novel reactor (R1), in comparison a conventional SBAR (R2) was operated under similar conditions during the experimental period. R1 and R2 with working volumes of 3.6 L and 4.5 L, respectively, were used to cultivate aerobic granules. Both reactors were operated for 4 h per cycle. Experiments were done at different organic loading rates (OLRs) ranging from 0.6-4.5 kg COD/m3.d for R1 and from 0.72-5.4 kg COD/m3.d for R2. After 150 days of operation, large-sized black filamentous granules with diameters of 0.5-2 mm and 2-11 mm were formed in R1 and R2, respectively. In the second part of the experiment, the efficiency of removal of a toxic substance by aerobic granules was investigated using aniline as a carbon source with a concentration in the range 1.2-6.6 kg COD/m3.d and 1.44-7.92 kg COD/m3.d in R1 and R2, respectively. It was found that COD removal efficiency of the novel airlift reactor was over 97% and 94.5% using glucose and aniline as carbon sources, respectively. Sludge volume index (SVI) was also decreased to 30 mL/g by granulation in the novel airlift reactor.
Removal Efficiency of Electrocoagulation Treatment Using Aluminium Electrode for Stabilized Leachate
NASA Astrophysics Data System (ADS)
Mohamad Zailani, L. W.; Amdan, N. S. Mohd; Zin, N. S. M.
2018-04-01
This research was conducted to investigate the performance of aluminium electrode in electrocoagulation process removing chemical oxygen demand (COD), ammonia, turbidity, colour and suspended solid (SS) from Simpang Renggam landfill leachate. Effects of current density, electrolysis duration and pH were observed in this study. From the data obtained, optimum condition at current density was recorded at 200 A/m2with the electrolysis duration of 20-minutes and optimum pH value at 4. The removal recorded at this condition for COD, ammonia, colour, turbidity and suspended solid were 60%, 37%, 94%, 88% and 89% respectively. Electrocoagulation treatment give a better result and can be applied for leachate treatment in future. Thus, electrocoagulation treatment has the potential to be used in treatment of leachate.
Treatment of a textile effluent by adsorption with cork granules and titanium dioxide nanomaterial.
Castro, Margarida; Nogueira, Verónica; Lopes, Isabel; Vieira, Maria N; Rocha-Santos, Teresa; Pereira, Ruth
2018-05-12
This study aimed to explore the efficiency of two adsorbents, cork granules with different granulometry and titanium dioxide nanomaterial, in the removal of chemical oxygen demand (COD), colour and toxicity from a textile effluent. The adsorption assays with cork were unsatisfactory in the removal of chemical parameters however they eliminated the acute toxicity of the raw effluent to Daphnia magna. The assay with TiO 2 NM did not prove to be efficient in the removal of colour and COD even after 240 min of contact; nevertheless it also reduced the raw effluent toxicity. The best approach for complete remediation of the textile effluent has not yet been found however promising findings were achieved, which may be an asset in future adsorption assays.
Biological decolourisation of pulp mill effluent using white rot fungus Trametes versicolor.
Srinivasan, S V; Murthy, D V S; Swaminathan, T
2012-07-01
The conventional biological treatment methods employed in the pulp and paper industries are not effective in reducing the colour and chemical oxygen demand (COD). The white-rot fungi are reported to have the ability to biodegrade the lignin and its derivatives. This paper is focused on the biological treatment of pulp mill effluent from a bagasse-based pulp and paper industry using fungal treatment. Experiments were conducted using the white rot fungus, Trametes versicolor in shake flasks operated in batch mode with different carbon sources. The decolourisation efficiencies of 82.5% and 80.3% were obtained in the presence of 15 g/L and 5 g/L of glucose and sucrose concentrations respectively with a considerable COD reduction. The possibility of reusing the grown fungus was examined for repeated treatment studies.
Metabolism of Some Anionic Tallow-based Detergents by Sewage Microorganisms1
Cordon, Theone C.; Maurer, Elmer W.; Nuñez-Ponzoa, M. V.; Stirton, A. J.
1968-01-01
A method in which the test detergent was the sole source of carbon was used to study the metabolism of several tallow-based detergents. These were tallow alcohol sulfates, long-chain ether alcohol sulfates, and esters of α-sulfo fatty acids. Sodium p-(1-methylundecyl)benzenesulfonate (LAS) was used as a reference material. The alcohol sulfates were the most rapidly and completely metabolized (96 to 99%), and one ether alcohol sulfate was 94% degraded. The other compounds were metabolized to the extent of 61 to 87%; LAS was 80% degraded. Except for the alcohol sulfates, loss of methylene blue activity (MBAS) occurred long before the chemical oxygen demand (COD) values had reached a minimum; with the alcohol sulfates, MBAS and COD decreased simultaneously. PMID:5636472
Performance of innovative textile biofilters for domestic wastewater treatment.
Spychała, Marcin; Błazejewski, Ryszard; Nawrot, Tadeusz
2013-01-01
Two types of geotextile, TS 50 and TC/PP 300, were investigated as experimental filters. The raw wastewater, pre-treated in a septic tank, was intermittently dosed and filtered under hydrostatic pressure. At the beginning, the filter reactor comprised nine filters made of geotextiles (of three types: TS 10, TS 50 and TC/PP 300). At the end of the start-up period the TS 10 filters were removed due to their high outflow instability. After four months of working, the hydraulic capacities of the remaining filters were: 3.23 cm3/cm2/d for TS 50 and 4.14 cm3/cm2/d for TC/PP 300. The efficiencies of COD and BOD5 removal were similar for both types of geotextile (COD: 64%, BOD5: 80%). A small but statistically significant difference between ammonium nitrogen removal was observed (40% for TS 50 and 35% for TC/PP 300), most probably due to their different structure. Biological removal of P(tot) was relatively poor and similar for both geotextile types. The mean concentration of matter accumulated on the geotextiles was over one order of magnitude higher than conventional activated sludge concentrations. During the last weeks of the experiments the values of basic pollution indicators in the effluent were lower than the maximum permissible values (according to Polish law).
Reilly, Thomas E.
1994-01-01
An experiment was designed to evaluate the changing chemical composition of the water pumped from a well screened in a physically and chemically heterogenous aquifer. Well F453-63, at the U.S. Geological Survey Toxic-Substances Hydrology research site located on Cape Cod, Massachusetts, was selected because it was known that the screen penetrated both the oxic and anoxic zones of the sewage plume from the Otis Air Base sewage-disposal sand beds. The experiment was conducted on August 12, 1992. Well F453-63 was sampled over time as it was pumped continuously, and three multilevel samplers were used to document the vertical distribution of selected chemicals in the ground water in the immediate vicinity of the well. All water samples obtained during the experiment were analyzed in the field for specific conductance and pH. The samples were subsequently analyzed for concentrations of ferrous iron (Fe+2), boron, calcium, chloride, iron (Fe total), phosphorus, potassium, magnesium, manganese, sodium, zinc, and nitrogen species, including nitrous oxide, ammonium, nitrite and nitrate. The results of these chemical analyses along with appropriate physical measurements of the site and aquifer material are documented in this data report.
Hu, Xia; Liu, Baojun; Zhou, Jiti; Jin, Ruofei; Qiao, Sen; Liu, Guangfei
2015-09-01
An air-lift-type microbial carbon capture cell (ALMCC) was constructed for the first time by using an air-lift-type photobioreactor as the cathode chamber. The performance of ALMCC in fixing high concentration of CO2, producing energy (power and biodiesel), and removing COD together with nutrients was investigated and compared with the traditional microbial carbon capture cell (MCC) and air-lift-type photobioreactor (ALP). The ALMCC system produced a maximum power density of 972.5 mW·m(-3) and removed 86.69% of COD, 70.52% of ammonium nitrogen, and 69.24% of phosphorus, which indicate that ALMCC performed better than MCC in terms of power generation and wastewater treatment efficiency. Besides, ALMCC demonstrated 9.98- and 1.88-fold increases over ALP and MCC in the CO2 fixation rate, respectively. Similarly, the ALMCC significantly presented a higher lipid productivity compared to those control reactors. More importantly, the preliminary analysis of energy balance suggested that the net energy of the ALMCC system was significantly superior to other systems and could theoretically produce enough energy to cover its consumption. In this work, the established ALMCC system simultaneously achieved the high level of CO2 fixation, energy recycle, and municipal wastewater treatment effectively and efficiently.
Nomoto, Naoki; Ali, Muntjeer; Jayaswal, Komal; Iguchi, Akinori; Hatamoto, Masashi; Okubo, Tsutomu; Takahashi, Masanobu; Kubota, Kengo; Tagawa, Tadashi; Uemura, Shigeki; Yamaguchi, Takashi; Harada, Hideki
2018-04-01
Profile analysis of the down-flow hanging sponge (DHS) reactor was conducted under various temperature and organic load conditions to understand the organic removal and nitrification process for sewage treatment. Under high organic load conditions (3.21-7.89 kg-COD m -3 day -1 ), dissolved oxygen (DO) on the upper layer of the reactor was affected by organic matter concentration and water temperature, and sometimes reaches around zero. Almost half of the COD Cr was removed by the first layer, which could be attributed to the adsorption of organic matter on sponge media. After the first layer, organic removal proceeded along the first-order reaction equation from the second to the fourth layers. The ammoniacal nitrogen removal ratio decreased under high organic matter concentration (above 100 mg L -1 ) and low DO (less than 1 mg L -1 ) condition. Ammoniacal nitrogen removal proceeded via a zero-order reaction equation along the reactor height. In addition, the profile results of DO, COD Cr , and NH 3 -N were different in the horizontal direction. Thus, it is thought the concentration of these items and microbial activities were not in a uniform state even in the same sponge layer of the DHS reactor.
Annabi, Cyrine; Fourcade, Florence; Soutrel, Isabelle; Geneste, Florence; Floner, Didier; Bellakhal, Nizar; Amrane, Abdeltif
2016-01-01
This study aims to investigate the effectiveness of the electro-Fenton process on the removal of a second generation of fluoroquinolone, enoxacin. The electrochemical reactor involved a carbon-felt cathode and a platinum anode. The influence of some experimental parameters, namely the initial enoxacin concentration, the applied current intensity and the Fe(II) amount, was examined. The degradation of the target molecule was accompanied by an increase of the biodegradability, assessed from the BOD5 on COD ratio, which increased from 0 before treatment until 0.5 after 180 min of electrolysis at 50 mg L(-1) initial enoxacin concentration, 0.2 mmol L(-1) Fe(II) concentration and 300 mA applied current intensity. TOC and COD time-courses were also evaluated during electrolysis and reached maximum residual yields of 54% and 43% after 120 min of treatment, respectively. Moreover, a simultaneous generation of inorganic ions (fluorides, ammonium and nitrates) were observed and 3 short chain carboxylic acids (formic, acetic and oxalic acids) were identified and monitored during 180 min of electrolysis. By-products were identified according to UPLC-MS/MS results and a degradation pathway was proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.
McCobb, Timothy D.; LeBlanc, Denis R.
2002-01-01
Trichloroethene and tetrachloroethene were detected in ground water in a vertical interval from about 68 to 176 feet below sea level beneath the shoreline where the contaminant plume emanating from a capped landfill on the Massachusetts Military Reservation intersects Red Brook Harbor. The highest concentrations at the shoreline, about 15 micrograms per liter of trichloroethene and 1 microgram per liter of tetrachloroethene, were measured in samples from one well at about 176 feet below sea level. The concentrations of nutrients, such as nitrate and ammonium, and trace metals, such as iron and manganese, in these same samples are typical of uncontaminated ground water on Cape Cod. Fresh ground water (bulk electrical conductance less than 100 millisiemens per meter) is present beneath the harbor at 40 of 48 locations investigated within about 250 feet of the shoreline. Fresh ground water also was detected at one location approximately 450 feet from shore. The harbor bottom consists of soft sediments that range in thickness from 0 to greater than 20 feet and overlie sandy aquifer materials. Trichloroethene was detected at several locations in fresh ground water from the sandy aquifer materials beneath the harbor. The highest trichloroethene concentration, about 4.5 micrograms per liter, was measured about 450 feet from shore.
Packed- and fluidized-bed biofilm reactor performance for anaerobic wastewater treatment.
Denac, M; Dunn, I J
1988-07-05
Anaerobic degradation performance of a laboratory-scale packed-bed reactor (PBR) was compared with two fluidized-bed biofilm reactors (FBRs) on molasses and whey feeds. The reactors were operated under constant pH (7) and temperature (35 degrees C) conditions and were well mixed with high recirculation rates. The measured variables were chemical oxygen demand (COD), individual organic acids, gas composition, and gas rates. As carrier, sand of 0.3-0.5 mm diameter was used in the FBR, and porous clay spheres of 6 mm diameter were used in the PBR. Startup of the PBR was achieved with 1-5 day residence times. Start-up of the FBR was only successful if liquid residence times were held low at 2-3 h. COD degradations of 86% with molasses (90% was biodegradable) were reached in both the FBR and PBR at 6 h residence time and loadings of 10 g COD/L day. At higher loadings the FBR gave the best performance; even at 40-45 g COD/L day, with 6 h residence times, 70% COD was degraded. The PBR could not be operated above 20 g COD/L day without clogging. A comparison of the reaction rates show that the PBR and FBR per formed similarly at low concentrations in the reactors up to 1 g COD/L, while above 3 g COD/L the rates were 17.4 g COD/L day for the PBR and 38.4 g COD/L day for the FBR. This difference is probably due to diffusion limitations and a less active biomass content of the PBR compared with the fluidized bed.The results of dynamic step change experiments, in which residence times and feed concentrations were changed hanged at constant loading, demonstrated the rapid response of the reactors. Thus, the response times for an increase in gas rate or an increase in organic acids due to an increase in feed concentration were less than 1 day and could be explained by substrate limitation. Other slower responses were observed in which the reactor culture adapted over periods of 5-10 days; these were apparently growth related. An increase in loading of over 100% always resulted in large increases inorganic acids, especially acetic and propionic, as well as large increases in the CO(2) gas content. In general, the CO(2) content of the gas was very low, due to the large amount of dissolved CO(2) that exited with the liquid phase at low residence times. The performance of the FBR with whey was comparable to its performance with molasses, and switching of molasses to whey feed resulted in immediate good performance without adaptation.
Enhanced leachate recirculation and stabilization in a pilot landfill bioreactor in Taiwan.
Huang, Fu-Shih; Hung, Jui-Min; Lu, Chih-Jen
2012-08-01
This study focused on the treatment of municipal solid waste (MSW) by modification and recirculation of leachate from a simulated landfill bioreactor. Hydrogen peroxide was added to recirculated leachate to maintain a constant oxygen concentration as the leachate passed again through the simulated landfill bioreactor. The results showed that leachate recirculation increased the dissolved oxygen concentration in the test landfill bioreactor. Over a period of 405 days, the biochemical oxygen demand (BOD(5)) in the collected leachate reduced by 99.7%, whereas the chemical oxygen demand (COD) reduced by 96%. The BOD(5)/COD ratio at the initial stage of 0.9 improved to 0.09 under aerobic conditions (leachate recirculation with added hydrogen peroxide) compared with the anaerobic test cell 0.11 (leachate recirculation alone without hydrogen peroxide). The pH increased from 5.5 to 7.6, and the degradation rate of organic carbon was 93%. Leachate recirculation brings about the biodegradation of MSW comparatively faster than the conventional landfill operation. The addition of a constant concentration of hydrogen peroxide was found to further increase the biodegradation. This increased biodegradation rate ultimately enables an MSW landfill to reach a stable state sooner and free up the land for further reuse.
Costa, Susana P F; Pereira, Sarah A P; Pinto, Paula C A G; Araujo, André R T S; Passos, Marieta L C; Saraiva, M Lúcia M F S
2017-05-19
A novel automated fluorimetric technique was developed for the assessment of the chemical oxygen demand (COD) of ionic liquids (ILs) and combined with a photodegradation step to promote IL degradation. The method was implemented on a sequential injection analysis (SIA) system and is based on the reduction of cerium(IV) in the presence of irradiated ILs. Compounds incorporating the chloride anion were found to exhibit higher COD values and 1-butyl-3-methylimidazolium chloride ([bmim] + [Cl] - ), 1-butyl-1-methylpyrrolidinium chloride ([bmpyr] + [Cl] - ), and1-hexyl-3-methylimidazolium chloride ([hmim] + [Cl] - ) also exhibited considerable photodegradability, whereas the cholinium cation and methanesulfonate and tetrafluoroborate anions showed resistance to photolysis. The developed methodology proved to be a simple, affordable, and robust method, showing good repeatability under the tested conditions (rsd <3.5 %, n=10). Therefore, it is expected that the developed approach can be used as a screening method for the preliminary evaluation of compounds' potential impact in the aquatic field. Additionally, the photolysis step presents an attractive option to promote degradation of ILs prior to their release into wastewater. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.